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Preface 

Many approaches have already been proposed for classification and modeling 
in the literature. These approaches are usually based on mathematical mod
els. Computer systems can easily handle mathematical models even when 
they are complicated and nonlinear (e.g., neural networks). On the other 
hand, it is not always easy for human users to intuitively understand mathe
matical models even when they are simple and linear. This is because human 
information processing is based mainly on linguistic knowledge while com
puter systems are designed to handle symbolic and numerical information. 
A large part of our daily communication is based on words. We learn from 
various media such as books, newspapers, magazines, TV, and the Inter
net through words. We also communicate with others through words. While 
words play a central role in human information processing, linguistic models 
are not often used in the fields of classification and modeling. If there is no 
goal other than the maximization of accuracy in classification and model
ing, mathematical models may always be preferred to linguistic models. On 
the other hand, linguistic models may be chosen if emphasis is placed on 
interpretability. 

The main purpose in writing this book is to clearly explain how classifi
cation and modeling can be handled in a human understandable manner. In 
this book, we only use simple linguistic rules such as "// the 1st input is large 
and the 2nd input is small then the output is large^^ and "// the 1st attribute is 
small and the 2nd attribute is medium then the pattern is Class ^". These lin
guistic rules are extracted from numerical data. In this sense, our approaches 
to classification and modeling can be viewed as linguistic knowledge extrac
tion from numerical data (i.e., linguistic data mining). There are many issues 
to be discussed in linguistic approaches to classification and modeling. The 
first issue is how to determine the linguistic terms used in linguistic rules. For 
example, we have some linguistic terms such as young, middle-aged, and old 
for describing our ages. In the case of weight, we might use light, middle, and 
heavy. Two problems are involved in the determination of linguistic terms. 
One is to choose linguistic terms for each variable, and the other is to define 
the meaning of each linguistic term. The choice of linguistic terms is related 
to linguistic discretization (i.e., granulation) of each variable. The definition 
of the meaning of each linguistic term is performed using fuzzy logic. That is, 
the meaning of each linguistic term is specified by its membership function. 
Linguistic rules can be viewed as combinations of linguistic terms for each 
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variable. The main focus of this book is to find good combinations of linguis
tic terms for generating linguistic rules. Interpret ability as well as accuracy 
are taken into account when we extract linguistic rules from numerical data. 
Various aspects are related to the interpretability of linguistic models. In this 
book, the following aspects are discussed: 

• Granulation of each variable (i.e., the number of linguistic terms). 
• Overlap between adjacent linguistic terms. 
• Length of each linguistic rule (i.e., the number of antecedent conditions). 
• Number of linguistic rules. 

The first two aspects are related to the determination of linguistic terms. We 
examine the effect of these aspects on the performance of linguistic models. 
The other two aspects are related to the complexity of linguistic models. We 
examine a tradeoff between the accuracy and the complexity of linguistic 
models. We mainly use genetic algorithms for designing linguistic models. 
Genetic algorithms are used as machine learning tools as well as optimization 
tools. We also describe the handling of linguistic rules in neural networks. 
Linguistic rules and numerical data are simultaneously used as training data 
in the learning of neural networks. Trained neural networks are used to extract 
linguistic rules. 

While this book includes many state-of-the-art techniques in soft com
puting such as multi-objective genetic algorithms, genetics-based machine 
learning, and fuzzified neural networks, undergraduate students in computer 
science and related fields may be able to understand almost all parts of this 
book without any particular background knowledge. We make the book as 
simple as possible by using many examples and figures. We explain fuzzy 
logic, genetic algorithms, and neural networks in an easily understandable 
manner when they are used in the book. This book can be used as a textbook 
in a one-semester course. In this case, the last four chapters can be omitted 
because they include somewhat advanced topics on fuzzified neural networks. 
The first ten chapters clearly explain linguistic models for classification and 
modeling. 

I would like to thank Prof. Lakhmi C. Jain for giving me the opportunity 
to write this book. We would also like to thank Prof. Witold Pedrycz and 
Prof. Francisco Herrera for their useful comments on the draft version of 
this book. Special thanks are extended to people who kindly assisted us in 
publishing this book. For example, Mr. Ronan Nugent worked hard for the 
copy-editing of this book. Ms. Ulrike Strieker gave us helpful comments on 
the layout and production. And general comments are given by Mr. Ralf 
Gerstner, who patiently and kindly contacted us. Some simulation results 
in this book were checked by my students. It is a pleasure to acknowledge 
the help of Takashi Yamamoto, Gaku Nakai, Teppei Seguchi, Yohei Shibata, 
Masayo Udo, Shiori Kaige, and Satoshi Namba. 

Sakai, Osaka, March 2003 Hisao Ishibuchi 
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1. Linguistic Information Granules 

In this book, we handle classification and modeling as linguistic rule extrac
tion from numerical data. When rule extraction problems involve continuous 
attributes such as height, weight, and length, those attributes are usually 
discretized into several intervals in the field of machine learning [30]. In some 
situations, human knowledge exactly corresponds to interval discretization 
of continuous attributes. For example, the domain of age is divided into two 
intervals by the threshold age 20 in the following knowledge: "People under 
20 are not allowed to smoke". Many laws are related to interval discretiza
tion of age. Various fare systems are also based on interval discretization of 
age (e.g., the bus fare for children between the ages of 6 and 12 is half of 
that for adults). Other familiar examples of interval discretization are weight 
divisions in boxing, wrestling, and judo. In these sports, weight is divided 
into some intervals (e.g., heavyweight, cruiserweight, light heavyweight, su
per middleweight, middleweight, etc.). Matchmaking is usually done within 
the same weight division. While we can show many examples of interval 
discretization, all of them come from artificially specified systems. In our ev
eryday conversations, we usually do not use interval discretization. Instead of 
interval discretization, we use fuzzy discretization with no sharp boundaries. 
For example, let us consider the situation where a girl tells us that her father 
is tall. In this situation, we do not know the exact height of her father. We 
do not know the exact range (i.e., interval) of the height of her father, either. 
We just know that her father is tall. While the statement that her father 
is tall is vague, it gives us significant information about the height of her 
father. In this example, we do not have any exact interval corresponding to 
the linguistic term tall but have a vague range. Almost all linguistic terms 
in everyday conversations are related to vague ranges (not exact intervals). 
We can give many examples of linguistic terms with vague ranges. For ex
ample, the following statements include linguistic terms with vague ranges: 
she can run fast, his house is large, and my blood pressure is high. In these 
statements, fast, large, and high are not related to any exact intervals with 
clear boundaries. 

We construct if-then rules using linguistic terms to handle classification 
and modeling problems. Linguistic rules for classification problems have lin
guistic conditions in the antecedent part and a class label in the consequent 
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part. When our classification problem involves two continuous attributes of 
length and width, an example of linguistic rules is "If the length is large and 
the width is large then Class 1". On the other hand, linguistic rules for mod
eling problems have linguistic conditions in the antecedent part and linguistic 
terms in the consequent part. When our modeling problem involves two in
put variables and a single output variable, an example of linguistic rules is 
"If the first input is small and the second input is large then the output 
is mediurri\ Throughout this book, we show how these linguistic rules can 
be generated from numerical data. We also examine the classification and 
modeling performance of linguistic rules. We expect that the performance of 
linguistic models (i.e., linguistic rule-based systems) is inferior to complicated 
nonlinear mathematical models. For improving the performance of linguistic 
models, we examine some tricks such as assigning a certainty factor to each 
rule and replacing a consequent linguistic term with a real number. Through 
computer simulations on simple numerical examples and real-world data sets, 
it is shown that the performance of Hnguistic models is significantly improved 
by such tricks. 

The main advantage of using linguistic terms with vague ranges is the in
tuitive interpretability of linguistic rules. We can easily understand linguistic 
rules because they are based on linguistic terms as in our everyday conversa
tions. While complicated nonlinear mathematical models such as neural net
works are usually handled as black-box models, linguistic rule-based systems 
are transparent models. In this book, emphasis is placed on interpretability as 
well as accuracy when we tackle classification and modeling problems. That 
is, we try to design linguistic models with high interpretability as well as 
high accuracy. In addition to the performance of linguistic rules, we discuss 
their interpretability in this book. The design of linguistic models is viewed 
as finding a good tradeoff between interpretability and accuracy. Some users 
may prefer somewhat complicated linguistic models with high accuracy while 
other users may prefer very simple ones with high interpretability. Thus the 
design of linguistic models is also treated in the framework of multi-objective 
optimization. Multi-objective genetic algorithms are used to find a number 
of alternative rule-based systems with different accuracy and interpretability. 

1.1 Mathemat ical Handling of Linguistic Terms 

A mathematical framework for handling linguistic terms is fuzzy logic pro
posed by Zadeh in 1965 [190]. The concept of linguistic terms was introduced 
by Zadeh [191]. Recently fuzzy logic has been recognized as a useful mathe
matical tool for handling continuous attributes in rule-based systems [147]. 
Fuzzy rule-based systems have been successfully applied to various applica
tion fields such as control, modeling, and classification [117, 118, 119, 156]. 
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A fuzzy set is a generalized concept of a standard non-fuzzy set. First let 
us consider a standard non-fuzzy set. For example, let A be a set of positive 
integers less than or equal to 5. The standard non-fuzzy set A is written as 

A = {1,2,3,4,5}. (1.1) 

All positive integers less than or equal to 5 are included in A and any other 
integers are excluded from A. In this case, the membership of each integer in 
A is clear. That is, we know whether each integer is included in A or excluded 
from A. Now let us consider a set of small positive integers. We denote this 
set by B. We may be sure that the smallest positive integer "1" is included 
in B. We may also be sure that large integers such as "100" are not included 
in B. Let us assume that a small positive integer x (e.g., 1) is included in B. 
In this case, we may think that the next integer a; -h 1 is also included in B 
because the difference between x and a: -h 1 is only 1. In the same manner, 
we may also think that a: + 2 is included in B because a; -h 1 is in J5 and 
the difference between x + I and a; -h 2 is only 1. This leads to the counter
intuitive result that all positive integers are included in the set B of small 
positive integers. If we try to define the set B using interval discretization, we 
have to specify a threshold integer 0 such that 6 is included in B while ^ + 1 
is not included in B. The use of such a threshold value is counter-intuitive 
because the difference between 0 and ^ -h 1 is only 1. For example, it is not 
natural to think that "6" is not a small positive integer when we think that 
"5" is a small positive integer. 

The difficulty in handling the set B of small positive integers within the 
framework of the standard set theory stems from the fact that the linguistic 
term small cannot be specified by interval discretization. In fuzzy logic (more 
specifically, fuzzy set theory), the set B of small positive integers is handled as 
a fuzzy set. It is assumed that each integer has a different grade of membership 
in the fuzzy set B. We may think that "1" and "2" have the maximum grade 
of membership (i.e., grade 1.0) in the fuzzy set B while "3" has a slightly 
smaller grade of membership (e.g., 0.9) than "1" and "2". Table 1.1 shows the 
membership grade of each integer in the fuzzy set B. We intuitively specify 
those grades of membership in Table 1.1. Readers may assign a different grade 
to each integer depending on their subjective understanding of the linguistic 
term small The fuzzy set B specified by the membership grades in Table 1.1 
is written as follows: 

B 
- ih9. 1:0 2:9 0^ 05 0^ OTi 
" l l ' 2 ' 3 ' 4 ' 5 ' 6 ' 7 j * ^ ^ ^ 

As shown in (1.2), fuzzy sets are denoted in the form of {membership 
grade/element}. Elements with no membership grade (i.e., grade 0.0) are 
omitted. In (1.2), integers larger than 7 have no membership grade in the 
fuzzy set B. As shown in Table 1.1, the maximum and minimum member
ship grades are 1.0 and 0.0 in fuzzy logic, respectively. 
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Table 1.1. Examples of membership grades in the fuzzy set B of small positive 
integers 

Integer 

Membership 

1 

1.0 

2 

1.0 

3 

0.9 

4 

0.8 

5 

0.5 

6 

0.2 

7 

0.1 

8 

0.0 

9 

0.0 

10 

0.0 

When we have a fuzzy concept on a continuous attribute, we cannot write 
all elements with positive membership grades in the same manner as (1.2). For 
handling such a situation, fuzzy logic uses a membership function for defining 
a fuzzy concept. In Fig. 1.1, we show an example of a membership function 
that defines the fuzzy concept tall We intuitively define this membership 
function on the continuous domain of height (i.e., the horizontal axis of Fig. 
1.1). Readers may have different membership functions for the fuzzy concept 
tall In fuzzy logic, membership functions are usually denoted by yu(-). Let us 
denote the height by x as in Fig. 1.1. Then the membership function of the 
fuzzy concept tall in Fig. 1.1 is mathematically written as 

r 0, for X < 170, 
fJ^taiiix) = { {x- 170)/10, for 170 < a: < 180, (1.3) 

[ 1, for 180 < X. 

The subscript tall of the membership function jutaiii') denotes the label of 
the fuzzy set. This membership function specifies a membership grade of 
every particular value of height to the fuzzy concept tall For example, the 
membership grade of the height 176 cm can be calculated from (1.3) as 0.6. 
As shown in Fig. 1.1, a membership function on a continuous attribute can 
be viewed as a mapping from its domain interval to the unit interval [0,1]. 
Usually the domain on which a membership function is defined is referred to 
as the universe of discourse in fuzzy logic. 

- J — • x 
200 Fig. 1.1. An example of a member-
Height [cm] ship function 

1.2 Linguistic Discretization of Continuous Attributes 

We use some linguistic terms for describing a continuous attribute. For ex
ample, we may use the three linguistic terms of light, middle, and heavy 
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for describing weight. This means that the domain interval of weight is dis-
cretized into the three hnguistic terms light, middle, and heavy. Figure 1.2 
shows membership functions of these three hnguistic terms, which are in
tuitively specified based on our subjective understanding of these linguistic 
terms. When the linguistic discretization into the three linguistic terms in 
Fig. 1.2 is given, we only use those three linguistic terms in our fuzzy models 
for describing weight. That is, numerical information with respect to weight 
is granulized into those three linguistic terms. 

—̂̂  X Fig. 1.2. Linguistic discretiza
tion of weight into three linguistic 

Weight [kg] ^erms 

The membership function of each linguistic term mathematically specifies 
its meaning. As we have already mentioned, the membership function is de
termined according to our subjective understanding of each linguistic term. 
Readers may assign a different membership function to each linguistic term 
in Fig. 1.2. Of course, the meaning of each linguistic term depends on the 
situation. For example, the meaning of the linguistic term heavy with respect 
to high school students is different from its meaning in the context of heavy 
professional wrestlers. Moreover, readers may have a different number of lin
guistic terms. The number of linguistic terms depends on the situation. It also 
depends on the culture. For example, there exist many linguistic terms for 
describing rain in Japanese. Some languages spoken in dry regions with little 
rain may have far fewer linguistic terms for describing rain than Japanese. 

While people do not always have the same understanding of each linguis
tic term, we can usually communicate with each other using linguistic terms 
without mentioning their exact definitions. This is because our everyday con
versations usually do not require any exact definition of each linguistic term. 
Everyone has a vague understanding of each linguistic term. This corresponds 
to linguistic discretization with fuzzy boundaries in Fig. 1.2. While people 
may depict different membership functions for the same linguistic term, they 
may have large overlaps. Thanks to such overlaps in our understanding of 
each linguistic term, we can communicate with each other using linguistic 
terms. 

To illustrate linguistic rule extraction from numerical data based on lin
guistic discretization, let us consider the situation where we ask eleven ex
aminees whether they feel comfortable in a small car or not. Suppose that we 
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have the responses in Table 1.2 from the eleven examinees on the comfort
ableness of the small car. Numerical data in Table 1.2 are depicted in Fig. 1.3 
together with the linguistic discretization of weight into the three linguistic 
terms. From Fig. 1.3, we can extract the following linguistic rules: 

If the weight is heavy then they do not feel comfortable in a small car. 
If the weight is middle then they do not feel comfortable in a small car. 
If the weight is light then they feels comfortable in a small car. 

We explain formal mathematical procedures for linguistic rule extraction in 
the next chapter for classification problems. Here we show these linguistic 
rules just to illustrate the relation between linguistic discretization and rule 
extraction. 

Table 1.2. Responses from eleven examinees (artificial data for illustration pur
poses) 

Examinee (p) 

Weight (xp) 

Comfortableness 

1 

45 

yes 

2 

50 

yes 

3 

55 

yes 

4 

60 

no 

5 

65 

yes 

6 

70 

no 

7 

75 

no 

8 

80 

no 

9 

85 

no 

10 

90 

no 

11 

95 

no 

O: Comfortable 
•: Not Comfortable 

Weight [kg] 
Fig. 1.3. Responses from eleven 
examinees in Table 1.2 

Of course, different linguistic rules have been obtained from different lin
guistic discretization. In this book, we assume that linguistic discretization 
of the domain interval of each attribute is given. That is, we assume that a 
set of linguistic terms is given for describing each attribute. This assumption 
corresponds to the fact that we usually use a fixed number of linguistic terms 
to describe each attribute in our everyday conversations. In many machine 
learning techniques for handling continuous attributes such as decision trees 
[143], the domain interval of each continuous attribute is discretized into sev
eral intervals according to some performance criterion using numerical data. 
That is, threshold values are specified or adjusted using numerical data. On 
the contrary, we use a given set of linguistic terms for each attribute. In 
some cases, linguistic discretization of each attribute may be obtained from 
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human users or domain experts. There are, however, other cases where no 
hnguistic discretization is available for each a t t r ibute . In these cases, we have 
to specify a set of linguistic terms for each a t t r ibute . We use homogeneous 
discretization of the domain interval because such discretization is more eas
ily understood by human users than inhomogeneous discretization. Figure 
1.4 shows some examples of homogeneous discretization of the domain inter
val [0,1] into several linguistic terms with tr iangular membership functions. 
On the other hand, Fig. 1.5 shows an example of inhomogeneous discretiza
tion. From the comparison between Fig. 1.4 and Fig. 1.5, we can see tha t 
homogeneous discretization is much more interpretable than inhomogeneous 
discretization. The interpret ability of linguistic discretization (or fuzzy dis
cretization in general) has been discussed in many studies. For example, see 
Oliveira [134], Pedrycz & Oliveira [140], and Suzuki & Furuhashi [161]. While 
we do not discuss the determination of membership functions from numerical 
data , we examine the effect of the granularity (i.e., resolution of linguistic 
discretization: the number of linguistic terms K in Fig. 1.4) on the perfor
mance of linguistic models through computer simulations. We also compare 
linguistic models based on linguistic discretization with non-fuzzy rule-based 
systems based on interval discretization. These computer simulations will 
clearly demonstrate some characteristic features of linguistic models. Further
more we demonstrate the effect of using a certainty factor (i.e., rule weight) 
for each linguistic rule on the performance of linguistic models. 

(a) ^ = 2 (b)^=3 

(c)^=4 {&)K=5 

Fig. 1.4. Examples of homogeneous linguistic discretization of the domain interval 
[0,1]. The meaning of each label is as follows: S: small, MS: medium small, M: 
medium, ML: medium large, and L: large. The superscript on each label denotes 
the granularity of the corresponding linguistic discretization (i.e., the number of 
linguistic terms: K) 



1. Linguistic Information Granules 

Fig. 1.5. Example of inhomogeneous dis
cretization 

In the case of modeling problems, we assume that linguistic discretization 
is given for each of the input and output variables. Figure 1.6 illustrates a 
single-input and single-output modeling problem where five linguistic terms 
(i.e., S: small, MS: medium small, M: medium, ML: medium large, and L: 
large) are given to describe both the input variable x and the output variable 
y. From this figure, we can generate the following five linguistic rules by 
choosing a consequent linguistic term for each antecedent condition: 

If X is small then y is large. 
If X is medium small then y is medium. 
If X is medium then y is medium. 
If X is medium large then y is medium large. 
If X is large then y is medium. 

We explain formal mathematical procedures for linguistic rule extraction in 
a later chapter for modeling problems. We also use a different form of lin
guistic rules where the consequent part is defined by real numbers instead of 
linguistic terms (e.g., "If x is small then y is 0.95"). 

Fig. 1.6. Linguistic discretization of the 
input-output space and numerical data 

As shown in Fig. 1.6, linguistic rules for modeling problems correspond to 
cells (i.e., patches) in grid spaces defined by linguistic discretization of input 
and output variables. Linguistic rule extraction can be viewed as the choice of 
such cells. The point is that each attribute is discretized into several linguistic 
terms for generating linguistic rules. This corresponds to our knowledge and 
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memory in everyday situations. For example, when we talk about our friends, 
we usually do not mention the exact values of their height, weight, salary, age, 
etc. Instead, we describe them using linguistic terms (e.g., she is tall). In many 
cases, we do not know the exact values of those attributes for our friends. 
We may, however, have linguistic knowledge about these attributes. This 
contrasts with information processing in computer systems where exact values 
are stored and processed. In this book, we intend to handle classification and 
modeling problems using linguistic terms in a similar manner to our everyday 
information processing. Since we use only a small number of pre-specified 
linguistic terms, the performance of linguistic rules seems to be inferior to that 
of complicated nonlinear mathematical models. On the other hand, linguistic 
rules have high interpretability. We do not try to design mathematical models 
with high accuracy but design linguistic models with high interpretability. 
We do not adjust (i.e., modify) the membership function of each linguistic 
term. This is because the adjustment of the membership function leads to the 
modification of the meaning of each linguistic term. We try to improve the 
performance of linguistic models by finding good linguistic rules. This involves 
not only the specification of the consequent part but also input selection and 
rule selection. Through the use of computer simulations in this book, the 
classification and modeling performance of linguistic models are examined. 
Simulation results show that linguistic models have high performance while 
we may expect low performance of linguistic models from the fact that we 
use a small number of pre-specified linguistic terms without modifying their 
membership functions. 

This book can be viewed as an attempt to summarize a part of recent 
studies in a rapidly emerging field of computer science called "computing 
with words". We concentrate our attention on classification and modeling 
using linguistic rules. For more general discussions on the field of computing 
with words, see the edited books by Wang [177] and Zadeh & Kacprzyk [192]. 
Shanahan [152] discussed Cartesian granule models from the viewpoints of 
fuzzy set theory, fuzzy logic, probability theory, machine learning, and data 
mining. The edited books by Casillas et al. [18, 19] include various topics 
related to the accuracy, complexity, and interpretability of fuzzy rule-based 
models. These books may be good choices for advanced readers after reading 
this book. 



 

 

 

 

 



2. Pat tern Classification with Linguistic Rules 

In this chapter, we describe a heuristic approach to hnguistic rule extraction 
from numerical data for pattern classification problems. We also explain a 
single winner-based fuzzy reasoning method for classifying new patterns by 
generated linguistic rules. Learning of linguistic rules is discussed in the next 
chapter. Handling of high-dimensional classification problems is discussed 
in later chapters where input selection, rule selection, and genetics-based 
machine learning techniques are described. 

2.1 Problem Description 

Let us assume that we have m labeled patterns Xp = {xpi,... ,Xpn), p = 
1, 2 , . . . , m, from M classes for an n-dimensional pattern classification prob
lem where Xpi is the attribute value of the i-th attribute in the p-th. pattern 
Xp. Each attribute is in general continuous (i.e., each attribute value Xpi is a 
real number). Each attribute, however, can be discrete (i.e., binary, ternary, 
etc.). We also assume that a set of linguistic terms is given for describing 
each attribute. Our task is to generate linguistic rules (i.e., to construct a 
linguistic rule-based system) from the given numerical data using the given 
linguistic terms. Figure 1.3 in the previous chapter is an example of our lin
guistic rule extraction problem where eleven patterns from two classes and 
three linguistic terms for each attribute are given in a single-dimensional 
continuous pattern space. 

For simplicity of explanation, we assume that each attribute value is nor
malized into a real number in the unit interval [0,1]. This means that the 
n-dimensional pattern space of our pattern classification problem is normal
ized into the n-dimensional unit hypercube [0,1]"^. In computer simulations 
in this book, this normalization is performed as a preprocessing procedure. 
An example of our pattern classification problem is shown in Fig. 2.1 where 
30 patterns from two classes and three linguistic terms for each attribute are 
given in the two-dimensional pattern space [0,1]^. 

Linguistic rules for our n-dimensional pattern classification problem are 
written in the following form: 

Rule Rqi If xi is Aqi and . . . and Xn is Aqn then Class Cg, (2.1) 
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•: Class 1 O: Class 2 

Fig. 2.1. A simple example 
of our linguistic rule extraction 
problem where 30 patterns are 
given from two classes (15 pat
terns from each class). The nor
malized domain interval [0,1] of 
each attribute is discretized into 
three linguistic terms 

where Rq is the label of the q-th linguistic rule, x = (x i , . . . ,Xn) is an n-
dimensional pattern vector, Aqi is a linguistic term given for the i-th at
tribute, and Cq is a consequent class. When K linguistic terms are given for 
each of the n attributes, we have K^ linguistic rules of the form (2.1). In Fig. 
2.1, we have nine linguistic rules (e.g., "If xi is small and X2 is small then 
Class 1"). 

We also use linguistic rules of the following form with a rule weight: 

Rule Rqi If xi is Aqi and . . . and Xn is Aqn 

then Class Cq with CFq, (2.2) 

where CFq is a rule weight (i.e., certainty factor) of the q-th linguistic rule Rq. 
The effect of using rule weights on the performance of linguistic rule-based 
classification systems was discussed in Ishibuchi & Nakashima [67]. The rule 
weight CFq, which is a real number in the unit interval [0,1], denotes the 
strength of the linguistic rule Rq. Linguistic rules with the maximum rule 
weight 1.0 have the largest effect on the classification of new patterns. On 
the other hand, linguistic rules with the minimum rule weight 0.0 have no 
effect on the classification of new patterns. Heuristic specification methods of 
rule weights are discussed later in this chapter. Learning algorithms of rule 
weights are described in the next chapter. 

2.2 Linguistic Rule Extract ion for Classification 
Problems 

We describe how the consequent class and the rule weight of each linguistic 
rule can be specified from numerical data. The consequent class of each lin-
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guistic rule is uniquely determined from training patterns compatible with its 
antecedent part. There are, however, several alternative definitions of its rule 
weight. Roughly speaking, the consequent class of each linguistic rule is the 
dominant class in the cell corresponding to its antecedent part. For example, 
the consequent class for the antecedent part "If xi is small and X2 is large^^ 
is determined as Class 1 in Fig. 2.1 because there are many closed circles 
(i.e., Class 1 patterns) and no open circles (i.e.. Class 2 patterns) around the 
top-left corner of the pattern space [0,1]^. When all patterns compatible with 
the antecedent part are from a single class (i.e., the consequent class of the 
linguistic rule), the rule weight is its maximum value (i.e., 1.0). The larger 
is the ratio of compatible patterns from the consequent class to all compat
ible patterns, the higher is the rule weight. In this section, we describe a 
heuristic specification method of the consequent class. We also describe four 
alternative heuristic definitions of the rule weight of each linguistic rule. 

2.2.1 Specification of the Consequent Class 

When we use interval discretization for each attribute, it is easy to count 
the number of patterns compatible with the antecedent part of each rule. On 
the other hand, we have to take into account a compatibility grade of each 
pattern with the antecedent part in the case of linguistic discretization. To 
calculate the compatibility grade of the pattern Xp = (xpi , . . . , Xpn) with the 
antecedent part of the linguistic rule Rq, first the compatibility grade of each 
attribute value Xpi with the corresponding linguistic term Aqi is calculated as 
MA i {xpi) where IIA i (•) is the membership function of the linguistic term Aqi. 
Then the compatibility grade of the pattern Xp with the antecedent part of 
Rq is calculated from the compatibility grade /LLA^iixpi). In many studies on 
fuzzy rule-based systems, the minimum operator and the product operator 
have been used to calculate the compatibility grade with the antecedent part. 
When the minimum operator is used, the compatibility grade is calculated 
as 

/iAg {Xp) = min {/iA,i (xpi),..., /i^,^ {xpn)} , (2.3) 

where Aq = {Aqi,..., Aqn)- For simplicity of notation, Aq is used to denote 
the antecedent part "If xi is Aqi and . . . and Xn is Aqn^ of the linguistic rule 
Rq in this book. On the other hand, the compatibility grade is calculated as 
follows when the product operator is used: 

fJ^A,{Xp) = fiA,i{Xpl) X . . . X llA,^{Xpn). (2.4) 

Traditionally the minimum operator has often been used in the litera
ture. Recently the product operator has been frequently used especially in 
adaptive fuzzy rule-based systems. This is because the derivation of learning 
algorithms is easier for the product operator than for the minimum operator. 
We illustrate the difference in the compatibility grade between these two op
erators in Fig. 2.2 and Fig. 2.3. Let us consider the pattern Xp = (0.25,0.25) 
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denoted by a closed circle in these figures. The compatibility grade of this 
pattern with the antecedent part "If xi is medium and X2 is medium^^ is 
calculated using the minimum operator as 

I^Aq{Xp) = mm{llmedium{0.2b),flmedium{0.2b)} 

= min{0.5,0 .5} 

= 0.5, (2.5) 

where Aq = {medium^ medium). On the other hand, the compatibility grade 
is calculated using the product operator as 

(0.25) -̂  /^medium (0.25) 

= 0.5 X 0.5 

= 0.25. (2.6) 

Figure 2.2 and Fig. 2.3 show contour lines of the compatibility grade for 
the cases of the minimum operator and the product operator, respectively. 
Contour lines are square in the case of the minimum operator in Fig. 2.2 while 
they are somewhat circular in the case of the product operator in Fig. 2.3. In 
almost all computer simulations in this book, we use the product operator. 
The minimum operator is used only when these two operators are compared 
with each other. 

Fig. 2.2. Contour lines of the 
compatibility grade with the an
tecedent part "If xi is medium. 
and X2 is medium^^ in the case of 
the minimum operator 

Let D be the set of the given training patterns: D = (a^i,... ^Xm)- The 
cardinality of D ism (i.e., \D\ = m). Let D{Aq) be the fuzzy set of compatible 
training patterns with the antecedent part Aq of the linguistic rule Rq. Then 
the total compatibility grade with the antecedent part Aq is calculated as 
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Fig. 2 .3. Contour lines of the 
compatibility grade with the an
tecedent part "If xi is medium 
and X2 is medium^^ in the case of 
the product operator 

\D{Aq)\ = Y^/j.A,{xp). (2.7) 

|Z)(A^)| can be viewed as the cardinality of the fuzzy set D{Aq). In the case 
of interval discretization (i.e., in the case where Aqi is an interval), |D(A^)| 
is the number of compatible training patterns with the antecedent part Aq. 

Using (2.4), we can define the compatibility grade of each training pattern 
Xp with the linguistic rule Rq (i.e., with both the antecedent part Aq and 
the consequent class Cq) as 

luiA,{xp), if pe Class Cq, 
if p ^ Class Cq. 

(2.8) 

Let D{Aq) n D{Cq) be the fuzzy set of compatible training patterns with 
both the antecedent part Aq and the consequent class Cq. Then the total 

(i.e., with both Aq and Cq) 

(2.9) 

compatibility grade with the linguistic rule Rq 
is calculated as 

p=l pGClass Cq 

\D{Aq) n D{Cq)\ can be viewed as the total compatibility grade of training 
patterns from Class Cq with the antecedent part Aq. In the case of interval 
discretization, \D{Aq)nD{Cq)\ is the number of compatible training patterns 
from Class Cq with the antecedent part Aq. 

In the field of data mining, two measures are often used to evaluate as
sociation rules [4, 5]. They are "confidence" and "support". These concepts 
can be easily extended to the case of linguistic rules [57, 95]. We use the 
confidence to describe four heuristic definitions of the rule weight of each 
linguistic rule. 
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The linguistic rule Rq in (2.1) can be viewed as a linguistic association 
rule Aq =^ Cq. The confidence c{Aq ^ Cq) of the linguistic association rule 
Aq ^ Cq is defined as 

C^Aq^Lq)- _ (2.1U) 

The confidence c(Ag =^ C^) is the ratio of compatible patterns with both the 
antecedent part Aq and the consequent class Cq to compatible patterns with 
the antecedent part Aq. The confidence c{^Aq ^ Cq) measures the validity of 
the linguistic association rule Aq ^ Cq. The confidence can be viewed as the 
fuzzy conditional probability of Class Cq [171]. Note that the definition of 
the confidence c{Aq =^ Cq) in (2.10) can be used for linguistic discretization 
and interval discretization. 

On the other hand, the support s{Aq => Cq) of the association rule Aq :=^ 
Cq is defined as 

siA, => C,) = l^(-^.)nI>(C.)l ^ ^ ^ ^ • - ' ^ ^ ' . (2.11) 

The support s{Aq => Cg) is the ratio of compatible patterns with both the 
antecedent part Aq and the consequent class Cq to the given m training 
patterns. The support s{Aq ^ Cq) measures the coverage of training patterns 
by the linguistic association rule Aq ^ Cq. As the confidence in (2.10), the 
definition of the support s{Aq ^ Cq) in (2.11) can be used for linguistic 
discretization and interval discretization. 

To illustrate these two measures (i.e., confidence and support) of linguistic 
association rules, let us again consider the two-class pattern classification 
problem in Fig. 1.3 of the previous chapter. First we show how c{middle ^ 
uncomfortable) and s{middle ^ uncomfortable) are calculated. The fuzzy set 
D(middle) of examinees compatible with the linguistic term middle in Fig. 
1.3 is explicitly written as 

Dimzddle) - I ^ ^ , - ^ , — , — , — , ^7^ , - ^ } , (2.12) 
55 ' 60 ' 65 ' 70 ' 75 ' 80 ' 85 

where the denominator and the numerator show the weight Xp of each exam
inee and its membership value jUmiddieixp), respectively. As we have already 
explained in the previous chapter, each element in (2.12) should not be viewed 
as a fraction but as a pair consisting of an element and its membership value. 
The total compatibility grade with the linguistic term middle is calculated 
from (2.12) as 

\D{middle)\ = 0.33 -h 0.67 + 1.0 + 1.0 -h 1.0 -h 0.67 -h 0.33 = 5.0. (2.13) 

From Fig. 1.3, the total compatibility grade \D{middle) f) D(uncomfortable)\ 
is calculated as 
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\D{middle) H D{uncomfotahle)\ = 0.67 + 1.0 + 1.0 + 0.67 + 0.33 

= 3.67. (2.14) 

Thus the confidence and the support are calculated as 

c{middle => uncomfortable) = —-— = 0.734, (2.15) 
o.u 

s(middle ^ uncomfortable) — —j—- = 0.334. (2.16) 

In the same manner, the confidence and the support of the linguistic 
association rule ^'middle ^ comfortable^^ are calculated as 

1 33 
c{middle ^ comfortable) = —— = 0.266, (2.17) 

o.u 

1 33 
s{middle => comfortable) = —— = 0.121. (2.18) 

Since c{middle => uncomfortable) is larger than c{middle •=^ comfortable), 
we choose the linguistic association rule ''middle => uncomfortable^^ rather 
than ''middle => comfortable^^ In the same manner, we can choose the con
sequent class for each of the other antecedent linguistic terms. That is, we 
can generate linguistic association rules "light ^ comfortable^^ and "heavy ^ 
uncomfortable^^ in addition to "middle => uncomfortable^^ 

As shown in the above example, it is natural to choose the consequent 
class Cq with the maximum confidence for the antecedent part A^ as 

c{Aq ^Cq) =max{c(A^ ^ Class/i)|/i = 1 , 2 , . . . , M } . (2.19) 

Note that the same consequent class Cq is obtained if we use the support s{-) 
instead of the confidence c(-) in (2.19). When multiple classes have the same 
maximum confidence (i.e., when Cq cannot be uniquely specified), we do not 
generate any linguistic rule with the antecedent part Aq. Using (2.19), we 
determine the consequent class for each of the nine cells in Fig. 2.1. Gener
ated linguistic rules are summarized in Fig. 2.4. The same consequent class is 
specified for each linguistic rule independent of the choice between the min
imum operator and the product operator in this numerical example. From 
the comparison between Fig. 2.1 and Fig. 2.4, we can see that the dominant 
class in each cell is chosen as the consequent class for the corresponding lin
guistic rule. It should be noted that the dotted lines in these figures are not 
sharp boundaries but fuzzy boundaries between cells because we use linguistic 
discretization. 

2.2.2 Specification of the Rule Weight 

The confidence c{Aq => Cq) can be directly used as the rule weight CFq of 
the linguistic rule Rq in (2.2) as in Cordon et al. [26]. That is, the rule weight 
CFq of the linguistic rule Rq in (2.2) is specified as 
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Class 1 

Class 1 

Class 1 

Class 1 

Class 2 

Class 2 

Class 2 

Class 2 

Class 2 

Fig. 2.4. Nine linguistic rules 
generated from numerical data in 
Fig. 2.1 

CF] = c{A, ^ C,). (2.20) 

The superscript "I" shows that (2.20) is the first alternative definition of the 
rule weight CFq. 

Ishibuchi et al. [81] used a different heuristic definition of the rule weight 
CF,: 

^^q — ^\^q ^ ^q) ^Average? (2.21) 

where CAverage IS the average confidence over linguistic rules with the same 
antecedent part Aq but different consequent classes: 

^Average 
1 

M 

M -1 
Y^ c{Aq =^ Class h) (2.22) 
h = i 

This definition of CFq can be easily understood if we consider the case of 
M = 2 (i.e., two-class pattern classification problems). In this case, CFq is 
calculated as follows when the consequent class is Class 1 (i.e., when c{Aq =^ 
Class 1) > c{Aq => Class 2)): 

CFl^ = c{Aq ^ Class 1) - c{Aq => Class 2). (2.23) 

When the consequent class is Class 2 (i.e., when c{Aq =^ Class 1) < c{Aq =^ 
Class 2)), CFq is calculated as 

CFl^ = c{Aq :=^ Class 2) - c{Aq => Class 1). (2.24) 

As we can see from (2.23) and (2.24), the rule weight CFq by the second 
definition is a real number such that 0 < CF^^ < 1. On the other hand, the 
rule weight CFq by the first definition is always larger than 0.5 in the case of 
two-class pattern classification problems: 0.5 < CF^ < 1 when M = 2. The 
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difference between these two definitions is illustrated in Fig. 2.5. In this figure, 
the value of CFq calculated by each definition is shown in the corresponding 
cell. The first and second values in each cell are the values of the rule weight 
calculated by the first and second definitions for the corresponding linguistic 
rule, respectively. From this figure, we can see that the rule weight of each 
linguistic rule is larger in the case of the first definition than the case of 
the second definition. We can also see that the rule weights of linguistic rules 
around the class boundary are smaller than those far from the class boundary. 

I: 0.984 
II: 0.968 

I: 0.853 
II: 0.705 

I: 0.885 
II: 0.769 

I: 0.763 
II: 0.526 

I: 0.727 
II: 0.453 

I: 0.506 
11:0.013 

I: 0.787 
II: 0.574 

I: 0.956 
11:0.911 

I: 0.995 
II: 0.990 

Fig. 2.5. Rule weights of the nine 
linguistic rules in Fig. 2.4 calcu
lated by the two definitions from 
numerical data in Fig. 2.1. The 
product operator was used to cal
culate the compatibility grade of 
each pattern 

Other definitions of the rule weight CFq are possible. For example, the 
following definition is simpler and more intuitively understandable than the 
second definition in (2.21): 

C F f I = c{Aq ^ Cq) - CSecond, ( 2 . 2 5 ) 

where csecond is the second largest confidence among M linguistic rules with 
the antecedent part Aqi 

csecond = max{c(A^ =^ Class /i)|/i = 1,2,... ,M,/i / Cq} . (2.26) 

In the third definition in (2.25), the rule weight is defined as the difference 
between the largest confidence and the second largest confidence. Note that 
Aq ^ Cq always has the maximum confidence among the M linguistic rules 
with the antecedent part Aq from the specification of the consequent class 

c,. 
The following definition is also possible: 

CFl'' = ciAg ^ C,) - csum, (2.27) 

where csum is the sum of the confidence over linguistic rules with the same 
antecedent part Aq but different consequent classes from Cq: 
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M 

h=i 
h^Cq 

While CFq is always positive in the first three definitions, CF^ can be nega
tive even when the consequent class Cq is uniquely determined by (2.19). We 
do not use linguistic rules with negative rule weights (i.e., negative certainty 
grades) in linguistic models. Thus some linguistic rules may be removed from 
linguistic models when we use the fourth definition of the rule weight CF^. 

Note that the third and fourth definitions in (2.25) and (2.27) are ex
actly the same as the second definition in (2.21) when our pattern classifi
cation problem involves only two classes (i.e., when M = 2). In this case, 
CAverage = Csecond = csum iH (2.22), (2.26), and (2.28). The difference among 
these definitions becomes significant when the number of classes is large. This 
is illustrated in a later section of this chapter. The second definition becomes 
similar to the first definition when the number of classes is very large. We 
can see that the following relation holds among the four definitions: 

CFf^ < CF™ < CFf < CFl (2.29) 

Linguistic rules with no rule weights in (2.1) can be viewed as a special 
case of linguistic rules with rule weights in (2.2). Linguistic rules with the 
same rule weight (e.g., CFq = 1.0, ^q) are actually the same as Hnguistic 
rules with no rule weights in (2.1). Hereafter we use linguistic rules with 
rule weights in (2.2) to illustrate linguistic rule-based systems for pattern 
classification problems. 

2.3 Classification of New Pa t t e rns by Linguistic Rules 

We describe two fuzzy reasoning methods for classifying new patterns using 
linguistic rules. One is a single winner-based method where a single winner 
rule is used for classifying each pattern. The other is a voting-based method 
where the classification of each pattern is performed through a voting proce
dure by all linguistic rules. Various fuzzy reasoning methods for classification 
problems were discussed in Cordon et al. [26] and Ishibuchi et al. [68]. 

2.3.1 Single Winner-Based Method 

Let 5 be a set of linguistic rules of the form (2.2). The rule set S can be 
viewed as a linguistic rule-based classification system. The single winner rule 
R^o in the rule set S is determined for a new pattern Xp = (x^ i , . . . , Xpn) as 

fiA^ixp) ' CF^ = max{/XA,(a^p) • CFq\Rq e S} . (2.30) 

That is, the winner rule has the maximum product of the compatibility grade 
and the rule weight. If multiple linguistic rules have the same maximum prod
uct but different consequent classes for the new pattern Xp, the classification 
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of Xp is rejected. The classification is also rejected if no linguistic rule is 
compatible with the new pattern Xp. When we use the single winner-based 
method, each linguistic rule has its decision region. That is, each linguistic 
rule is responsible for the classification of new patterns in its decision region. 
This leads to high transparency of the classification process of new patterns. 
Since we know which linguistic rule classifies a new pattern, we can explain 
why that pattern is classified as a particular class by our linguistic rule-based 
classification system. This is an advantage of the single winner-based method 
over other fuzzy reasoning methods such as a voting-based method by mul
tiple linguistic rules. 

In Fig. 2.6, we show the decision region of each linguistic rule in Fig. 
2.4. The boundary between decision regions of linguistic rules with different 
consequent classes corresponds to the classification (i.e., decision) boundary 
between two classes, which is depicted by bold lines in Fig. 2.6. As we can see 
from Fig. 2.6, the classification boundary is not always parallel to each axis 
of the pattern space. This contrasts with classification results by rule-based 
systems with interval discretization where the classification boundary is al
ways parallel to each axis. Generally speaking, the larger is the rule weight in 
linguistic rule-based classification systems, the larger is the decision region. 
The rule weight of each linguistic rule is specified by the first definition in 
Fig. 2.6. On the other hand. Fig. 2.7 shows the decision region of each lin
guistic rule when its rule weight is specified by the second definition. From 
the comparison between Fig. 2.6 and Fig. 2.7, we can see that different clas
sification boundaries are obtained from the two definitions of the rule weight 
of each linguistic rule. This suggests the possibility that the performance of 
linguistic rule-based classification systems can be improved by adjusting the 
rule weight of each linguistic rule. 
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Fig. 2.6. Decision regions of the 
nine linguistic rules in Fig. 2.4. 
We used the first definition to 
specify the rule weight of each 
linguistic rule. The rule weight 
of each linguistic rule is shown 
in the corresponding cell in Fig. 
2.5. The bold line shows the clas
sification boundary between two 
classes 
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•: Class 1 O: Class 2 

1* i • h ! 
pi Ho ^ o 1 
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Fig. 2.7. Decision regions of the 
nine linguistic rules. In this fig
ure, the second definition is used 
to specify the rule weight of each 
linguistic rule 

As shown in Kuncheva [117], the classification region of each linguistic 
rule is rectangular when we use linguistic rules with no rule weights (or 
equivalently linguistic rules with the same rule weight). This situation is 
illustrated in Fig. 2.8. The same decision region of each linguistic rule as 
in Fig. 2.8 can be generated from interval discretization of each axis of the 
pattern space. This is illustrated in Fig. 2.9. This observation suggests that 
the rule weight of each linguistic rule plays an important role in linguistic 
rule-based classification systems. Classification results by linguistic rule-based 
systems with no rule weights are sometimes exactly the same as those based 
on interval discretization. We compare linguistic discretization with interval 
discretization in detail in a later chapter. 

2.3.2 Voting-Based M e t h o d 

When we use a voting-based method to classify a new pattern Xp^ each lin
guistic rule votes for its consequent class. The product of the compatibility 
grade and the rule weight is used as the importance (i.e., strength) of the 
vote by each linguistic rule. When the new pattern Xp is to be classified by 
the linguistic rule set S using the voting-based method, the total vote for 
each class is calculated as follows: 

Vblass h^" Yl I^-^MP) ' ^^Q' (2.31) 
Rqes 
C Q =h . 

While a single responsible linguistic rule is identified for the classification of 
each pattern in the case of the single winner-based method, all compatible 
linguistic rules are responsible for the classification of each pattern with dif
ferent grades of responsibility. This makes it difficult to explain why a new 
pattern is classified as a particular class by the linguistic rule set S. 
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Fig. 2.8. Decision regions of the 
nine linguistic rules with no rule 
weights 
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Fig. 2.9. Decision regions 
of the nine rules generated 
from interval discretization of 
each axis of the pattern space. 
Threshold values in interval 
discretization are the same as 
crossing points of neighboring 
membership functions in lin
guistic discretization 

To illustrate the difference between the single winner-based method and 
the voting-based method, let us consider the following four linguistic rules, 
which are also shown in Fig. 2.10 (a). 

Ri: If xi is small and X2 is small then Class 1 with CFi — 1.0, 
i?2* If xi is small and X2 is large then Class 1 with CF2 = 1.0, 
R^: If Xi is large and X2 is small then Class 2 with CF^ = 1.0, 
R4: If Xi is large and X2 is large then Class 1 with CF4 = 1.0. 
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Figure 2.10 (a) shows the decision region of each linguistic rule and the classi
fication boundary when we use the single winner-based method. On the other 
hand, the classification boundary by the voting-based method is shown in Fig. 
2.10 (b). As shown in Fig. 2.10, the classification boundary by the voting-
based method is smooth while that by the single winner-based method is 
piece-wise linear. Higher classification performance is obtained by the voting-
based method in some cases and by the single winner-based method in other 
cases. In this book, we use the single winner-based method because it leads to 
higher interpret ability of classification results. As shown in the next chapter, 
the implementation of learning algorithms of rule weights is much easier for 
the single winner-based method. This is because a single responsible linguis
tic rule is identified for the classification of each pattern. By the same reason, 
the design of genetics-based machine learning algorithms is much easier for 
the single winner-based method as shown in a later chapter. 

1.0 

X2 

0.0 

R2. Class 1 

Ri: Class 1 

RA. Class 1 

i?3:Class2 

\ ^ / \ ^ 
\ -3 / 

/ 1 \ 

(a) Single winner-based method. (b) Voting-based method. 

Fig. 2.10. Comparison of the single winner-based method with the voting-based 
method. The product operator is used to calculate the compatibility grade 

Using the same four linguistic rules, we illustrate the eflfect of the rule 
weight CFq of each linguistic rule Rq on the classification boundary. First we 
decrease the rule weights of the three linguistic rules i?i, -R2, and R^ with 
Class 1 in the consequent part. We specify the rule weight of each linguistic 
rule as 

CFi = CF2 = CF4 = 0.5, CF3 1.0. (2.32) 

The classification boundary is shown in Fig. 2.11. Since the relative weight 
of î 3 with Class 2 in the consequent part is large, the region of Class 2 is 
also large in Fig. 2.11. Another example is shown in Fig. 2.12 where the rule 
weight of each linguistic rule is specified as 

CFi = 0.7, CF2 = 0.3, CF3 - 0.9, CF4 = 0.2. (2.33) 
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From Fig. 2.11 and Fig. 2.12, we can see tha t the rule weight of each linguistic 
rule has a large effect on the classification boundary. Note tha t we did not 
modify the membership function of each linguistic term in these figures. 

1.0 

X2 

0.0 

(a) Single winner-based method. (b) Voting-based method. 

Fig. 2.11. Classification boundary when the relative rule weight of R^ with Class 
2 in the consequent part is large 

1.0 

X2 

0.0 

(a) Single winner-based method. (b) Voting-based method. 

Fig. 2.12. Classification boundary when different weights are assigned to the four 
linguistic rules 

2.4 Computer Simulations 

We compare the four definitions of rule weights with one another through 
computer simulations on a class of simple artificial test problems and two 
well-known real-world da ta sets: iris da ta and wine data . We also examine 
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the effect of the granularity of linguistic discretization (i.e., the number of 
linguistic terms) on the performance of linguistic rule-based systems. 

2.4.1 Comparison of Four Definitions of Rule Weights 

Using simple artificial test problems, we illustrate the difference among the 
four definitions of rule weights. Let us consider a two-class pattern classifica
tion problem on the unit interval [0,1]. We assume that an infinite number 
of training patterns are uniformly distributed in the pattern space [0,1]. We 
also assume that each training pattern Xp belongs to Class 1 or Class 2 de
pending on its location as shown in Fig. 2.13: \i Xp < 9 then Xp belongs to 
Class 1 otherwise Xp belongs to Class 2. In Fig. 2.13, the threshold value 0 
is specified as ^ = 0.47. To generate linguistic rules, we use three linguistic 
terms in Fig. 2.14 (i.e., small, medium, and large). 

> X 

Pattern space 
Fig. 2.13. Distribution of training pat
terns in an artificial test problem 

0.5 

Pattern space 
Fig. 2.14. Linguistic discretization with 
three linguistic terms 

Using the uniform distribution of training patterns in Fig. 2.13 and the 
three linguistic terms in Fig. 2.14, we can generate the following linguistic 
rules: 

Ri: If X is small then Class 1 with CFi, 
R2: If X is medium then Class 2 with CF2, 
Rs: If ar is large then Class 2 with CFs. 

Rule weights of these linguistic rules are calculated from the uniform distri
bution of training patterns as 
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CFl = 0.996, CFl = 0.558, CF^ - l.OOO, (2.34) 

CFi" = 0.993, CF2" = 0.116, CF3" = 1.000, (2.35) 

CFi"^ = 0.993, C F P = 0.116, C F ^ = 1.000, (2.36) 

CFi^v ^ Q 993^ ^ ^ w ^ Q -̂̂ ĝ  ^ ^ i v ^ ;|̂  QQQ ^2.37) 

Since our test problem is a two-class pattern classification problem (i.e., 
M = 2), the second definition is exactly the same as the third and fourth 
definitions. We can observe a large difference in the rule weight CF2 of the 
second linguistic rule R2 between the first definition and the other definitions. 
The confidence is calculated for this linguistic rule and the other linguistic 
rule '^medium =^ Class 1" with the same antecedent linguistic term medium 
and a different consequent class as 

c{medium => Class 1) = 0.442, (2.38) 

c{medium => Class 2) = 0.558. (2.39) 

Thus the rule weight CF2 of the linguistic rule "i?2: medium ^ Class 2" is 
very small in the last three definitions. On the other hand, the rule weight CF2 
is not small in the first definition because the confidence c{medium ^ Class 2) 
is directly used as the rule weight. 

Using the three linguistic rules, we estimate the class boundary between 
the two classes. The estimated class boundary 0 is calculated as follows: 
0 = 0.320 by the first definition and 9 = 0.448 by the other definitions. 
The estimated class boundary 6 has a large error in the case of the first 
definition while it is close to the actual threshold 0.47 in the case of the other 
definitions. The large error in the case of the first definition is due to the large 
rule weight CF2 of the second linguistic rule R2. Since the rule weight CF2 
is not negligible, the second linguistic rule R2 has a significant effect on the 
classification of new patterns around the center of the pattern space [0,1]. 
That is, the second linguistic rule R2 has a large decision region in which 
i?2 is selected as the winner rule. As a result, the estimated class boundary 
9 is pushed to ^ = 0.320. On the other hand, the rule weight CF2 is very 
small when we use the other definitions. Thus the second linguistic rule R2 
has a very small decision region. As a result, the estimated class boundary 
9 is close to the boundary between the two dominant rules Ri and Rs (i.e., 
: r - 0 . 5 ) . 

In the same manner, we calculate the estimated class boundary 9 between 
the two classes for our test problem with various specifications of the actual 
threshold value 9. We examine 51 versions of our test problem with different 
values of 9: 9 = 0.25,0.26,0.27,.. .,0.75. Simulation results are summarized 
in Fig. 2.15. This figure shows the relation between the actual threshold 9 
and the estimated class boundary 9. The line in this figure shows the desired 
ideal relation 9 — 9. From the figure, we can see that the difference between 
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0 and 0 is very large in the case of the first definition. On the other hand, 
the estimated class boundary 0 is almost the same as the actual threshold 0 
when we use the other definitions. This figure suggests that the direct use of 
the confidence c{Aq ^ C^) as the rule weight CFq (i.e., the first definition 
CFq) may lead to large classification errors. 

It should be noted that our simulation results in Fig. 2.15 were obtained 
using the single winner-based method. Different results can be derived from 
other fuzzy reasoning methods (see, for example. Berg et al. [171]). 

w 

0.75 
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0.25. 
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Actual threshould 0 
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Fig. 2.15. Simulation results by the 
four definitions of rule weights for the 
two-class artificial test problem in Fig. 
2.13. Results by the last three definitions 
are the same 

Let us extend our test problem in Fig. 2.13 to an M-class pattern classifi
cation problem (M > 2). For simplicity of discussion, we assume that the unit 
interval [0,1] in Fig. 2.13 is a part of a larger entire pattern space. We also 
assume that training patterns from the other classes (i.e., Class 3, . . . , Class 
M) exist in the other region of the pattern space. From these assumptions, 
we can discuss the specification of rule weights locally in the unit interval 
[0,1]. In this situation, the increase in the number of classes has no effect on 
the rule weight specification except for the second definition. Only the second 
definition depends on the number of classes (i.e., M) as shown in (2.22). Thus 
the second definition is not the same as the third and fourth definitions when 
pattern classification problems involve more than two classes. For example, 
the rule weights of the three linguistic rules are calculated from the second 
definition for the case of M = 5 and ^ — 0.47 as 

CFi" = 0.996, CF2" = 0.448, CF3" = 1.000. (2.40) 

The class boundary between the two classes is calculated as ^ = 0.345 by 
the second definition while the actual threshold is ^ = 0.47. Note that the 
class boundary was calculated as ^ = 0.448 from the second definition when 
M = 2. This result suggests that the increase in the number of classes has a 
bad effect on the classification performance of linguistic rule-based systems 
constructed by the second definition of rule weights. 
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In the same manner as Fig. 2.15, we calculate the estimated class bound
ary 6 using the second definition of rule weights for three specifications of 
M (i.e., M = 2,5,10). Simulation results are summarized in Fig. 2.16. From 
this figure, we can see that the diflFerence between the actual threshold 6 and 
the estimated class boundary 6 increases as the value of M increases. This is 
because the rule weight CF^ of the second linguistic rule R2 becomes unnec
essarily large when our test problem involves more than two classes as shown 
in (2.40). 

O M=2 n M=5 A M=10 

0.75 

W 
0.25 

0.25 0.5 
Actual threshould 0 

0.75 
Fig. 2.16. Simulation results by the sec
ond definition of rule weights for M-class 
test problems 

2.4.2 Simulation Results on Iris Data 

The iris data set is one of the most frequently used data sets in the lit
erature. This data set is a three-class pattern classification problem in
volving 150 samples (50 samples from each class) with four continuous at
tributes. The data set is available from the UCI Machine Learning Repository 
(http://www.ics.uci.edu/^mlearn/MLRepository.html). It is known that lin
ear models work very well on the iris data set. Weiss & Kulikowski [178] 
examined the classification performance of nine classification methods (e.g., 
nearest neighbor and neural networks) where the highest classification rate 
(i.e., 98.0%) on test patterns was obtained by linear models. 

Through computer simulations on the iris data set, we compare the four 
definitions of rule weights. We also examine the effect of the granularity of lin
guistic discretization on the classification performance of linguistic rule-based 
systems. Furthermore we compare the product operator with the minimum 
operator. In our computer simulations, the granularity of linguistic discretiza
tion means the number of linguistic terms in Fig. 1.4 of Chap. 1. First all the 
attribute values were normalized into real numbers in the unit interval [0,1]. 
This means that the iris data set was handled as a three-class pattern classi
fication problem in the four-dimensional unit hypercube [0,1]^. This pattern 

http://www.ics.uci.edu/%5emlearn/MLRepository.html


30 2. Pattern Classification with Linguistic Rules 

space was discretized into K x K x K x K cells using K linguistic terms on 
each axis of the pattern space. We examined four different sets of linguistic 
terms in Fig. 1.4 of Chap. 1 (i.e., K — 2,3,4,5). For example, each axis of 
the pattern space was discretized into two linguistic terms as in Fig. 2.12 
when ET = 2. In this case, the pattern space was discretized into 2 x 2 x 2 x 2 
cells. A linguistic rule was generated for each cell using a heuristic method 
described in this chapter. When there was no compatible training pattern in 
a cell, the corresponding linguistic rule was not generated. 

First we examined the performance of linguistic rule-based systems on 
training patterns. All the 150 samples were used as training patterns for 
generating linguistic rules, and the same 150 samples were used for calculat
ing the performance of generated linguistic rules. Table 2.1 summarizes the 
number of generated linguistic rules, the number of cells, and the rate of the 
number of generated linguistic rules to the number of cells when we used the 
first definition of rule weights and the product operator. From Table 2.1, we 
can see that many rules could not be generated when linguistic discretization 
was fine (e.g., K = 5). This is because there were no compatible patterns in 
many small cells constructed from fine linguistic discretization. At the same 
time, we can also see from Table 2.1 that the number of generated linguistic 
rules was very large, especially when linguistic discretization was fine. Rule 
selection is discussed in a later chapter of this book for finding only a small 
number of important linguistic rules. 

The number of generated linguistic rules in the cases of the second and 
third definitions is always the same as the case of the first definition. Only 
in the case of the fourth definition may rule weights of some linguistic rules 
be negative for multi-class pattern classification problems with more than 
two classes. Linguistic rules with negative rule weights were removed from 
linguistic rule-based systems in our computer simulations in this book. Table 
2.2 shows the number of linguistic rules where we used the fourth definition 
and the product operator. From the comparison between Table 2.1 and Table 
2.2, we can see that some rules were removed when linguistic discretization 
was coarse (i.e., K — 2^. This is because large cells constructed from coarse 
linguistic partitions tend to include training patterns from multiple classes. 
On the contrary, small cells are not likely to include training patterns from 
more than two classes. When each linguistic rule does not have compatible 
patterns from more than two classes, the fourth definition of rule weights is 
the same as the third definition independent of the total number of classes 
involved in pattern classification problems. 

We examined four granularities of linguistic discretization (i.e., K — 
2,3,4, 5) and the four definitions of rule weights. We also examined the case 
of no rule weight. Table 2.3 shows the classification rate on training patterns 
for each combination of the granularity and the rule weight definition where 
the product operator was used to calculate the compatibility grade. From 
this table, we can see that higher classification rates were obtained from finer 
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Table 2.1. Relation between the number of generated linguistic rules and the gran
ularity of linguistic discretization in the case of the first definition of rule weights. 
The same results are obtained with respect to the number of generated linguistic 
rules from the second and third definitions of rule weights 

Granularity 

# of generated rules 

# of cells: K^ 

Rate of generated rules 

K = 2 

16 

16 

1.00 

K = ^ 

62 

81 

0.77 

K = A 

133 

256 

0.52 

K = b 

186 

625 

0.30 

Table 2.2. Relation between the number of generated linguistic rules and the 
granularity of linguistic discretization in the case of the fourth definition of rule 
weights. Linguistic rules with negative weights are removed from Table 2.1 

Granularity 

# of generated rules 

# of cells: K^ 

Rate of generated rules 

K = 2 

12 

16 

0.75 

K = 3 

62 

81 

0.77 

K = A 

133 

256 

0.52 

K = 5 

186 

625 

0.30 

linguistic discretization. Tha t is, high classification rates on training pat terns 
v^ere realized by dividing the pa t te rn space into many small cells. In Table 
2.3, the highest classification rate in each row is highlighted by bold letters. 
The highest classification rate in Table 2.3 is indicated by *. For comparison, 
Table 2.4 shows the simulation results when we used the minimum operator. 

Table 2.3. Classification rates on training patterns in the iris data set. All the 150 
samples in the iris data set were used for generating linguistic rules of length 4. 
The product operator was used to calculate the compatibility grade 

Granularity 

K = 2 
K = 3 
K = 4 
K = 5 

No weight 

71.3% 
92.0% 
80.0% 
94.7% 

Rule 

1st def. 

70.7% 
92.7% 
90.7% 
96.0% 

weight definition 

2nd def. 

67.3% 
94.0% 
92.7% 
96.0% 

3rd def. 

68.0% 
94.0% 
97.3%* 
96.7% 

4th def. 

66.0% 
94.0% 
97.3%* 
96.7% 

* Best result in this table 

We also examined the performance of linguistic rule-based systems on 
test pat terns . We used the leaving-one-out technique [178] where the 150 
samples in the iris da ta set were divided into 149 training pat terns and a 
single test pat tern . The design of a linguistic rule-based system using 149 
training pat terns and the performance evaluation of the designed system 
using a single test pat tern were iterated 150 times so tha t all the 150 samples 
were used as test pat terns just once. In general, the number of iterations of 
such a design-evaluation trial in the leaving-one-out technique is the same as 
the number of given samples. 
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Table 2.4. Classification rates on training patterns in the iris data set. The mini
mum operator was used to calculate the compatibility grade 

Granularity 

K = 2 
K = 3 
K = 4: 
K = b 

No weight 

68.7% 
91.3% 
82.0% 
94.7% 

Rule ^ 

1st def. 

80.7% 
96.7%* 

88.7% 
96.0% 

A êight definit 

2nd def. 

91 .3% 
96.0% 
92.0% 
96.0% 

;ion 

3rd def. 

75.3% 
94.7% 
95 .3% 
96.0% 

4th def. 

70.7% 
90.0% 
95.3% 
96.0% 

* Best result in this table 

Simulation results on the iris da ta using the leaving-one-out technique are 
summarized in Table 2.5 where the product operator was used to calculate the 
compatibility grade. For comparison, Table 2.6 shows the simulation results 
when we used the minimum operator. 

Table 2.5. Classification rates on test patterns in the iris data set. The leaving-
one-out technique was used to examine the generalization ability of linguistic rule-
based classification systems. In each trial of the leaving-one-out technique, 149 
samples were used as training patterns for generating linguistic rules of length 4. 
The product operator was used to calculate the compatibility grade 

Granularity 

K = 2 
K = 3 
K = 4 
K = b 

No weight 

71.3% 
92.0% 
78.7% 
94.7% 

Rule 

1st def. 

70.0% 
92.0% 
88.7% 

95 .3%* 

weight definition 

2nd def. 

67.3% 
93 .3% 
89.3% 

95 .3%* 

3rd def. 

68.0% 
93 .3% 
94.0% 

95 .3%* 

4th def. 

66.0% 
93 .3% 
94.0% 

95 .3%* 
* Best result in this table 

Table 2.6. Classification rates on test patterns in the iris data set. The minimum 
operator was used to calculate the compatibility grade 

Granularity 

K = 2 
K = 3 
K = 4 
K = 5 

No weight 

68.7% 
91.3% 
80.7% 
94.7% 

Rule weight definition 

1st def. 

79.3% 
93.3% 
86.7% 

96.0%* 

2nd def. 

88.0% 
95 .3% 
91.3% 
95.3% 

3rd def. 

72.3% 
94.0% 
94.7% 
95.3% 

4th def. 

69.3% 
90.0% 
94.7% 
95.3% 

* Best result in this table 

2.4 .3 S i m u l a t i o n R e s u l t s o n W i n e D a t a 

The wine da ta set is a 13-dimensional pa t te rn classification problem with 
178 samples from three classes. We chose this da ta set because it involves 
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many continuous attributes. This data set is also available from the UCI Ma
chine Learning Repository, like the iris data set. We first normalized each 
attribute value into a real number in the unit interval [0,1]. Thus the pattern 
space of the wine data was normalized into the 13-dimensional unit hyper-
cube [0,1]^^. Then we calculated average classification rates on test patterns 
as well as training patterns. All the given 178 samples were used as train
ing patterns when we examined the classification performance of linguistic 
rule-based systems on training patterns. On the other hand, we used the 
leaving-one-out technique when we examined the classification performance 
on test patterns as in our previous computer simulations on the iris data. In 
the leaving-one-out technique, the given 178 samples were divided into 177 
training patterns and a single test pattern. The product operator was used 
to calculate the compatibility grade in our computer simulations on the wine 
data. 

As in the previous computer simulations, we examined the four granular
ities (i.e., K = 2,3,4,5) and the five specifications of rule weights (i.e., their 
four definitions and the case of no rule weights). Since it is difficult to examine 
K^^ cells in the 13-dimensional pattern space corresponding to the linguistic 
discretization of each axis into K linguistic terms, we only generated short 
linguistic rules with a few antecedent conditions. The number of antecedent 
conditions is referred to as the rule length in this book. For example, the 
length of the following linguistic rule is two: 

Rule Rq-. If Xi is Aqi and Xj is Aqj then Class Cq with CFq^ (2.41) 

where xi and Xj are two attributes chosen from the 13 attributes in the 
wine data (i.e., i , j G {1 ,2 , . . . , 13}). The total number of combinations of 
antecedent linguistic terms for generating linguistic rules of the length L is 
calculated as I^CL X K^ where I^CL is the number of combinations of choos
ing L attributes from the 13 attributes and K^ is the number of combinations 
of K linguistic terms for the selected K attributes. Table 2.7 summarizes the 
number of generated linguistic rules when all the 178 samples were used as 
training patterns. In this table, the first definition of rule weights was used 
(the same results were obtained from the second and third definitions as we 
have already explained). It should be noted that the number of short linguis
tic rules is much smaller than the number of combinations of linguistic terms 
for generating linguistic rules of length 13 (i.e., K^"^). 

We can construct a linguistic rule-based classification system using all or 
some of linguistic rules in Table 2.7. As an example, we constructed a linguis
tic rule-based system using linguistic rules of length 2 for each specification 
of the granularity of linguistic discretization. Classification rates of such a 
linguistic rule-based system on training patterns are summarized in Table 
2.8 where the five specifications of rule weights and the four granularities of 
linguistic discretization are examined. In the same manner, we examined the 
performance of linguistic rules of length 2 on test patterns using the leaving-
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Table 2.7. The number of generated linguistic rules of each length from the 178 
training patterns in the wine data. The first definition of rule weights was used in 
this table. The same results were obtained with respect to the number of generated 
linguistic rules from the second and third definitions 

Length of linguistic rules (L) 
^crranuiarity 

K = 2 
K = 3 
K = 4 
K = 5 

Length 0 

1 
1 
1 
1 

Length 1 

26 
39 
52 
65 

Length 2 

312 
701 

1201 
1768 

Length 3 

2288 
7585 

15766 
25589 

Length 4 

11440 
54633 

129624 
220876 

one-out technique. Classification rates on test pat terns are summarized in 
Table 2.9. 

Table 2.8. Classification rates on training patterns in the wine data set. All the 
178 samples in the wine data set were used to generate linguistic rules of length 2 

Granularity 

K = 2 
K = 3 
K = 4 
K = 5 

No weight 

84.8% 
70.2% 
71.9% 
74.7% 

Rule 

1st def. 

90.4% 
94.9% 
96.6% 
94.4% 

weight definition 

2nd def. 

94.9% 
96.6% 
97.2% 
97.2% 

3rd def. 

92.7% 
96.6% 
98.3% 

98.9%* 

4th def. 

92.7% 
94.4% 
97.8% 
97.8% 

Best result in this table 

Table 2.9. Classification rates on test patterns in the wine data set. The leaving-
one-out technique was used to examine the generalization ability of linguistic rule-
based classification systems. In each trial of the leaving-one-out technique, 177 
samples were used as training patterns for generating linguistic rules of length 2 

Granularity 

K = 2 
K = 3 
K = 4 
K = 5 

No weight 

80.3% 
68.0% 
68.5% 
69.7% 

Rule 

1st def. 

90.4% 
93.3% 
93.3% 
89.9% 

weight definition 

2nd def. 

92.7% 
95.5%* 
94.9% 
92.7% 

3rd def. 

91.6% 
95.5%* 
94.9% 
93.3% 

4th def. 

90.4% 
93.3% 
94.9% 
93.8% 

* Best result in this table 

In Table 2.8 and Table 2.9, we used a large number of linguistic rules. 
From the viewpoint of interpretability, rule-based systems with only a small 
number of rules are desirable. While we discuss rule selection in detail in a 
later chapter, here we show simulation results using a simple heuristic rule 
selection method for comparing the five specifications of rule weights. In the 
computer simulations, first we generated linguistic rules of length 3 or less 
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from training patterns. We used all the 14 linguistic terms in Fig. 1.4 of Chap. 
1 for generating linguistic rules. That is, we simultaneously used linguistic 
terms with different granularities. In this case, the total number of combina
tions of antecedent linguistic terms for generating linguistic rules of length L 
is calculated as ISCL X 14^. The generated linguistic rules were divided into 
three groups according to their consequent classes. Linguistic rules in each 
group were sorted in descending order of a rule selection criterion. We used 
the product of the confidence c(-) and the support s{-) as the rule selection 
criterion in our computer simulations in this subsection. When multiple lin
guistic rules had the same value with respect to the rule selection criterion, 
they were randomly sorted (i.e., random tiebreak). We constructed a linguis
tic rule-based system by choosing the first N rules from each group. Using 
various values of N (i.e., N = 1,2,.. . , 10), we examined the classification 
performance of linguistic rule-based systems with different sizes. For decreas
ing the effect of the random tiebreak, we calculated average results over 1000 
iterations of our computer simulation to evaluate the performance on train
ing patterns. By the same reason, the leaving-one-out technique was iterated 
20 times (i.e., 20 x 178 trials) to evaluate the performance on test patterns. 
Simulation results on training patterns and test patterns are summarized in 
Table 2.10 and Table 2.11, respectively. In these tables, the best result in 
each row and the best result in each table are indicated by bold type and *, 
respectively. 

Table 2.10. Classification rates on training patterns in the wine data set. First 
linguistic rules of length 3 or less were generated. Then a pre-specified number 
of linguistic rules were selected from the generated rules using a rule selection 
criterion. The product of the confidence and the support was used as the rule 
selection criterion 

# of rules 

3 
6 
9 
12 
15 
18 
21 
24 
27 
30 

No weight 

89.89% 
91.01% 
93.26% 
93.26% 
88.76% 
91.01% 
91.01% 
92.13% 
90.45% 
90.45% 

1st def. 

89.89% 
91.57% 
93.82% 
93.82% 
92.70% 
91.57% 
91.57% 
92.13% 
92.13% 
92.13% 

2nd def. 

89.89% 
91.01% 
92.13% 
92.70% 
92.13% 
92.70% 
92.70% 
92.70% 
92.70% 
92.70% 

3rd def. 

89.33% 
92.13% 
93.82% 

94.94%* 
94.94%* 
94.94%* 
94.38% 
94.38% 
94.38% 

94.94%* 

4th def. 

89.89% 
91.01% 
93.82% 

94.94%* 
94.94%* 

94.38% 
93.82% 
93.82% 
93.82% 
93.82% 

* Best result in this table 

2.4.4 Discussions on Simulation Results 

From the simulation results in this section, we can see that the best results 
were obtained from the third definition of rule weights on the average. This 
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Table 2.11. Classification rates of small linguistic rule-based systems on test pat
terns in the wine data set. Linguistic rule-based systems were designed in the same 
manner as Table 2.9 

# of rules 

3 
6 
9 
12 
15 
18 
21 
24 
27 
30 

No weight 

89.89% 
80.34% 
88.76% 
93.26% 
88.76% 
88.20% 
89.33% 
88.20% 
88.20% 
90.45% 

1st def. 

89.89% 
83.15% 
91.57% 
93.26% 
91.57% 
89.89% 
89.33% 
89.33% 
89.89% 
90.45% 

2nd def. 

89.89% 
85.96% 
92.13% 
92.70% 
91.57% 
89.89% 
89.33% 
89.33% 
90.45% 
91.01% 

3rd def. 

89.33% 
84.83% 
93.26% 
93.26% 

94.38%* 
92.13% 
91.57% 
91.57% 
92.70% 
93.26% 

4th def. 

89.89% 
85.39% 
93.26% 
93.26% 
93.26% 
91.01% 
91.01% 
91.01% 
91.57% 
92.13% 

* Best result in this table 

coincides with the discussions in the previous section using a class of arti
ficial test problems. Hereafter we use the third definition of rule weights in 
this book. We can also see from the simulation results that the use of rule 
weights improved the performance of linguistic rule-based systems. In the 
next chapter, we present two learning schemes of rule weights. The perfor
mance of linguistic rule-based systems is further improved by the adjustment 
of rule weights. 

In this section, we also examined the relation between the granularity 
of linguistic discretization and the performance of linguistic rule-based sys
tems. In general, higher classification rates on training patterns are obtained 
from finer linguistic discretization. Classification rates on test patterns are not 
monotonic with respect to the granularity of linguistic discretization (e.g., see 
Table 2.9). While coarse linguistic discretization cannot approximate desir
able classification boundaries very well, fine linguistic discretization is likely 
to fit training patterns excessively (i.e., overfitting training patterns). Too 
fine linguistic discretization usually leads to very high classification rates on 
training patterns but low classification rates on test patterns. In this book, 
we assume that a set of linguistic terms is given for each attribute by human 
users or domain experts according to their knowledge and intuition. Our ap
proaches in this book use the given set of linguistic terms for each attribute. 
Thus the above discussions on the relation between the granularity of lin
guistic discretization and the performance of linguistic rule-base systems are 
useful only when linguistic terms are not given (i.e., when we have to specify 
linguistic discretization for each attribute). 

Slightly better results were obtained from the product operator than the 
minimum operator in our computer simulations on the iris data. Hereafter 
we use the product operator to calculate the compatibility grade. In recent 
studies on fuzzy rule-based systems, the product operator has often been used 
instead of the minimum operator. 
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In the computer simulations on the wine data, we used a heuristic rule 
selection method for choosing a tractable number of linguistic rules. In the 
first computer simulation, we used all linguistic rules of length 2. In the sec
ond computer simulation, the product of the confidence and the support was 
used to select a small number of rules from linguistic rules of length 3 or less. 
Simulation results in this section can be improved by using more sophisti
cated techniques for selecting linguistic rules. In a later chapter, we discuss 
other heuristic rule selection criteria. For various rule selection criteria, see 
Ishibuchi & Yamamoto [93]. We also describe a genetic algorithm-based ap
proach to linguistic rule selection. 



 

 

 

 

 



3. Learning of Linguistic Rules 

In this chapter, we describe two approaches to the learning of rule weights. 
One is a reward-punishment learning scheme and the other is an analytical 
learning scheme. We also mention the adjustment of the membership function 
of each linguistic term. As in the previous chapter, we use linguistic rules of 
the following form for our n-dimensional pattern classification problem: 

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn 

then Class Cq with CFq. (3.1) 

3.1 Reward—Punishment Learning 

A simple approach to the learning of rule weights is a reward-punishment 
learning scheme [132]. The basic idea of this learning scheme is to increase or 
decrease the rule weight of a winner rule according to the classification result 
(i.e., correct classification or misclassification) of each training pattern. 

3.1.1 Learning Algorithm 

Let 5 be a set of linguistic rules with rule weights in the form (3.1). The 
rule set S can be viewed as a linguistic rule-based system. In the learning of 
rule weights, each training pattern Xp is presented to the linguistic rule-based 
system S. Since we use the single winner-based method, a single winner rule 
is identified for each training pattern. When a training pattern is correctly 
classified by the winner rule R^^ its rule weight CFuj is increased as the 
reward of the correct classification in the following manner: 

where 77+ is a positive constant for increasing the rule weight (0 < 77+ < 1). 
Note that the updated rule weight by (3.2) is always a real number in the unit 
interval [0,1] when its initial value is a real number in [0,1]. If the update rule 
in (3.2) is iteratively applied to the rule weight of a particular linguistic rule 
(i.e., if the linguistic rule continues to correctly classify training patterns), its 
rule weight gradually approaches the maximum value of 1.0. 
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On the other hand, when a training pattern is misclassified by the winner 
rule R^, its rule weight CF^ is decreased as the punishment of the misclas-
sification in the following manner: 

where ri~ is a positive constant for decreasing the rule weight {0 < rj~ < 1). 
As in (3.2), the updated rule weight by (3.3) is always a real number in the 
unit interval [0,1] when its initial value is a real number in [0,1]. If the update 
rule in (3.3) is iteratively applied to the rule weight of a particular linguistic 
rule (i.e., if the linguistic rule continues to misclassify training patterns), its 
rule weight gradually approaches the minimum value of 0.0. 

Only the rule weight of the winner rule is adjusted in the learning for each 
training pattern depending on its classification result (i.e., correct classifica
tion or misclassification). Since the number of correctly classified training 
patterns is usually much larger than that of misclassified training patterns, 
a much smaller value is assigned to the learning rate rj^ for increasing rule 
weights than the learning rate r]~ for decreasing rule weights (e.g., rj'^ = 0.001 
and rj" = 0.1). When the classification of a training pattern is rejected, rule 
weights of no linguistic rules are adjusted. The classification of a training 
pattern is rejected when no linguistic rules are compatible with the pattern. 
The rejection also happens when multiple linguistic rules with different con
sequent classes have the same maximum product of the compatibility grade 
and the consequent rule weight (i.e., when there exist multiple winner rules 
with different classes for a training pattern). In the latter case, the pattern is 
located on the classification boundary generated by the linguistic rule-based 
system. 

The reward-punishment learning scheme can be written as the following 
algorithm: 

[Reward—Punishment Learning Algorithm] 

Step 1: Choose a single training pattern. 
Step 2: Classify the training pattern by the linguistic rule-based system. 
Step 3: If the training pattern is correctly classified, increase the rule weight 

of the winner rule using (3.2). If the training pattern is misclassified, 
decrease the rule weight of the winner rule using (3.3). When the 
classification of the training pattern is rejected, do not change the 
rule weights of any linguistic rules. 

Step 4: If a pre-specified stopping condition is satisfied, terminate this algo
rithm. Otherwise, return to Step 1. 

Learning results of the reward-punishment learning scheme depend on 
the order of training patterns to be presented to the linguistic rule-based 
system. Usually all the given training patterns are presented to the linguis
tic rule-based system in a random order. After all the training patterns are 
examined, they are presented again in a random order. The presentation of 
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all the training patterns is referred to as a single epoch (or a single sweep). 
In this book, we use the term "epoch" to describe the number of iterations 
of the learning algorithm. The upper bound of epochs can be used as a stop
ping condition of the learning algorithm. Of course, the learning algorithm is 
usually terminated when all training patterns are correctly classified. 

In computer simulations in this book, we handle the two learning rates rj^ 
and 7y~ as constant. In real-world applications, the use of variable learning 
rates may improve the performance of adjusted linguistic rule-based systems. 
That is, the values of 77+ and r]~ can be gradually decreased during the 
iterative execution of the reward-punishment learning scheme. They can also 
be adjusted during the learning according to the classification rate of the 
linguistic rule-based system. 

3.1.2 Illustration of the Learning Algorithm Using Artificial Test 
Problems 

For visually illustrating the reward-punishment learning scheme, we applied 
the learning algorithm to a linguistic rule-based system with the following 
four linguistic rules for a simple two-dimensional pattern classification prob
lem in Fig. 3.1: 

Ri: If xi is small and X2 is small then Class 1 with CFi, 

R2: If xi is small and X2 is large then Class 1 with CF2, 

JR3: If xi is large and X2 is small then Class 1 with CF3, 

R4: If xi is large and X2 is large then Class 2 with (7F4. 

Together with 20 training patterns. Fig. 3.1 shows the classification boundary 
when all the four linguistic rules have the same rule weight (their initial rule 
weights were specified as CFq = 0.5 for q — 1,2,3,4). In this figure, three 
patterns are misclassified by the linguistic rule-based system with the four 
linguistic rules whose rule weights are the same. For applying the learning 
algorithm to the linguistic rule-based system, first we randomly specified 
an order of the given 20 patterns. Then we iteratively presented the given 
patterns in the specified order to the linguistic rule-based system. The first 
four patterns are indicated in Fig. 3.1 for illustration purposes. The values 
of the learning rates r]^ and r]~ were specified as 77+ — 0.001 and r]~ = 0 . 1 
in this computer simulation. 

As shown in Fig. 3.1, the first pattern a:;i is correctly classified by the 
linguistic rule R\. Thus the rule weight CF\ of R\ is increased by (3.2) as 

CFi = 0.5 + 0.001 • (1 - 0.5) = 0.5005. (3.4) 

The second pattern X2 is misclassified by the linguistic rule Rz. Thus the rule 
weight CF3 of i?3 is decreased by (3.3) as 

CF3 = 0.5 - 0.1 • 0.5 = 0.45. (3.5) 
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I: Class 1 o: Class 2 
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Fig. 3 .1 . A two-dimensional test 
problem with 20 training patterns. 
The decision region of each linguistic 
rule and the classification boundary 
correspond to the case with the same 
rule weight 

The third pa t tern x^ is correctly classified by the same rule R^. Thus the 
rule weight CF^ is increased by (3.2) as 

CFs = 0.45 + 0.001 • (1 - 0.45) = 0.45055. (3.6) 

The fourth pat tern X4, is correctly classified by the linguistic rule R4,. Thus 
the rule weight (7^4 is increased by (3.2) as 

CF4 = 0.5 + 0.001 • (1 - 0.5) = 0.5005. (3.7) 

In this manner, the rule weight of each linguistic rule is updated by presenting 
all the given training pat terns to the linguistic rule-based system. In Fig. 3.2, 
we show the classification boundaries after a single epoch and seven epochs. 
As shown in Fig. 3.2, three pat terns are misclassified after a single epoch and 
all the given pat terns are correctly classified after seven epochs. Table 3.1 
shows the values of the rule weights and the number of misclassified training 
pat terns after each epoch. 

Table 3 .1 . Simulation results by the reward-punishment learning algorithm on the 
artificial test problem in Fig. 3.1. The second row "Errors" shows the number of 
misclassified training patterns 

Epoch 

Errors 

CFi 
CF2 
CFs 
CF4 

0 

3 

0.5000 
0.5000 
0.5000 
0.5000 

1 

3 

0.5015 
0.5015 
0.4066 
0.4541 

2 

3 

0.5030 
0.5030 
0.3311 
0.4131 

3 

2 

0.5045 
0.5045 
0.2999 
0.3770 

4 

1 

0.5065 
0.5065 
0.2713 
0.3826 

5 

2 

0.5084 
0.5080 
0.2456 
0.3498 

6 

1 

0.5104 
0.5099 
0.2225 
0.3557 

7 

0 

0.5124 
0.5119 
0.2240 
0.3621 

We also applied the learning algorithm to the following three linguistic 
rules tha t were used for our single-dimensional artificial test problem in Fig. 
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•: Class 1 o: Class 2 

<-After 1 epoch 
<-After 7 epochs 

Fig. 3.2. Classification bound
aries after a single epoch and 
seven epochs 

2.13 of Chap. 2: 

Ri: If X is small then Class 1 with CFi, 

R2: If X is medium then Class 2 with CF2, 

Rs: If X is large then Class 2 with CF^. 

Note that the membership function of each linguistic term in these linguistic 
rules (i.e., Fig. 2.14) is different from the above computer simulation (i.e., 
Fig. 3.1). 

We adjusted the rule weights of the three linguistic rules using the 
reward-punishment learning scheme. The initial rule weights were specified 
as CFi = CF2 — CF3 — 0.5. Training patterns were randomly generated 
from the pattern space [0,1] in Fig. 2.13 according to the uniform distri
bution in the pattern space [0,1]. The execution of the learning algorithm 
was iterated until 10000 training patterns were examined. The values of the 
learning rates r;+ and r]~ were specified as rj^ — 0.0005 and r]~ — 0.2. In 
Fig. 3.3, we show how the rule weights were updated during the iterative 
execution of the learning algorithm. On the other hand. Fig. 3.4 shows how 
the estimated class boundary was adjusted. The estimated class boundary 
was calculated as ^ = 0.25 by the linguistic rules with the initial rule weights 
CFi = CF2 = CF3 = 0.5. Since the actual threshold 0 in Fig. 2.13 is 6> = 0.47 
in our single-dimensional artificial test problem, training patterns in the in
terval [0,0] were misclassified by the second linguistic rule R2 in the early 
stage of the learning. Thus the value of CF2 was rapidly decreased by the 
learning algorithm as shown in Fig. 3.3. At the same time, the values of CFi 
and CFs were gradually increased because the first and third linguistic rules 
always correctly classified training patterns in their decision regions. Since 
compatible training patterns with the third linguistic rule are always Class 
2 patterns (i.e., training patterns in the interval [0.5,1.0] are always from 
Class 2; see Fig. 2.13), CF^ continued to be increased during the execution 
of the leaning algorithm. On the other hand, we can observe some drops in 
the value of CFi in Fig. 3.3. When the estimated class boundary 0 became 
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larger than the actual class boundary 9 — 0.47 (i.e., when 6 < 9), training 
pat terns in the interval [9^9] were misclassified by the first linguistic rule Ri. 
Thus the value of CFi was decreased. This happened only when the weight 
CFi of the first linguistic rule Ri became much larger than the weight CF2 
of the second linguistic rule R2 (i.e., only when CF2 < CFi). 

10 100 1000 
Number of presented patterns 

10000 

Fig. 3.3. Rule weight update 
during the iterative execution of 
the reward-punishment learning 
scheme 

10 100 1000 

Number of presented patterns 
10000 

Fig. 3.4. Adjustment of the 
estimated class boundary dur
ing the iterative execution of 
the reward-punishment learning 
scheme 

Learning results of the reward-punishment learning scheme strongly de
pend on the values of the learning rates 77+ and rj~. To demonstrate this 
dependency, we performed the same computer simulation as in Fig. 3.3 and 
Fig. 3.4 using various specifications of 77+ and rj~. Since learning results also 
depend on the order of training pat terns , we performed our computer simu
lation 20 times for each combination of 77+ and r]~. In each trial, a different 
set of randomly generated 10000 training pat terns was used in the learning 
of the rule weights. Tha t is, we used 20 sets of 10000 training pat terns in 
our computer simulations. Table 3.2 summarizes the average value of the es
t imated class boundary 9 after the presentation of 10000 training pat terns 
over 20 trials for each combination of 77+ and 77". From this table, we can see 
tha t the estimated class boundary 9 was far from the actual threshold value 
9 = 0.47 when the specifications of 77+ and 77" were not appropriate. 
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Table 3.2. Average values of the estimated class boundary 0. The actual threshold 
^ is ^ = 0.47. The derivation \9 — 0\ can be viewed as an error measure. Reasonable 
specifications of 7/"̂  and r]~ satisfy the inequality relation rj^ <C 77" 

+ 
77^ 

0.1 
0.01 

0.001 
0.0001 

0.1 

0.309 
0.421 
0.463 
0.470 

r] 

0.01 

0.259 
0.315 
0.422 
0.460 

-

0.001 

0.251 
0.259 
0.314 
0.379 

0.0001 

0.250 
0.251 
0.257 
0.270 

3.1.3 Computer Simulations on Iris Data 

For examining the effect of the rule weight learning on the performance of lin
guistic rule-based classification systems, we applied the reward-punishment 
learning scheme to the iris data. As in Sect. 2.4.2, we discretized the nor
malized pattern space [0,1]^ into K x K x K x K cells using K linguistic 
terms on each attribute. We examined four values of K: K — 2,3,4,5. Lin
guistic discretization corresponding to each value of K is shown in Fig. 1.4 
of Chap. 1. For specifying initial rule weights, we used the third definition 
of rule weights. We also examined the case with the same initial rule weight 
for all linguistic rules (i.e., CFq — 0.5, ^g). In computer simulations, training 
patterns were presented in a random order. The values of r]^ and 77~ were 
specified as 7/+ = 0.001 and rj" = 0 . 1 . 

In Table 3.3, we show simulation results on training patterns using the 
initial weights specified by the third definition. Average classification rates 
were calculated for each value of K over 20 independent trials with differ
ent orders of presentation of the 150 training patterns. The learning of rule 
weights in each trial was iterated for 100 epochs even when all training pat
terns were correctly classified before the 100th epoch. On the other hand, 
Table 3.4 shows simulation results on training patterns in the case of the 
same initial rule weight for all linguistic rules. These tables show that the 
learning of rule weights significantly improved classification rates on train
ing patterns, especially when we used coarse linguistic discretization (e.g., 
K = 2). When linguistic discretization was fine (e.g., if = 5), classification 
rates were already high before the learning algorithm was applied to linguis
tic rule-based systems. Thus the effect of the rule weight learning was not so 
significant compared with the case of coarse discretization. From the com
parison between Table 3.3 and Table 3.4, we can see that similar results were 
obtained after enough iterations of the learning algorithm independent of the 
initial specifications of rule weights (except for the case of K = 2). 

We also examined classification rates on test patterns using the leaving-
one-out technique. This technique was iterated ten times using different or
ders of presentation of 149 training patterns. Simulation results are summa
rized in Table 3.5 and Table 3.6. As we have already mentioned, the increase 
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Table 3.3. Classification rates on training patterns in the iris data set. Rule weights 
were adjusted by the reward-punishment learning scheme from their initial values 
heuristically specified by the third definition 

Granularity 

K = 2 
K = 3 
K = 4 
K = 5 

0 

68.0% 
94.0% 
97.3% 
96.7% 

1 

78.2% 
95.1% 
97.3% 
96.7% 

Number of epochs 

2 5 10 

84.7% 90.2% 91.5% 
96.1% 96.4% 96.7% 
97.3% 98.0% 98.0% 
96.2% 96.0% 97.0% 

50 

92.7% 
98.3% 
99.9% 
99.3% 

100 

92.0% 
98.2% 
99.5% 
99.7% 

Table 3.4. Classification rates on training patterns in the iris data set. Rule weights 
were adjusted by the reward-punishment learning scheme from their common initial 
value of 0.5 

Granularity 

K = 2 
K = 3 
K = A 
K = 5 

0 

71.3% 
92.0% 
82.7% 
94.7% 

1 

86.4% 
95.0% 
88.0% 
95.2% 

Number of epochs 

2 5 10 

92.7% 93.7% 95.3% 
96.8% 96.5% 97.0% 
91.8% 95.5% 96.5% 
95.4% 94.7% 95.5% 

50 

96.7% 
97.3% 
99.9% 
99.4% 

100 

96.7% 
97.8% 
99.9% 
99.4% 

in classification rates on training patterns does not always lead to the in
crease in classification rates on test patterns. In Table 3.5 and Table 3.6, the 
rule weight learning significantly improved the generalization ability of lin
guistic rule-based systems on test patterns when linguistic discretization was 
coarse (e.g., K = 2). We can also observe overfitting of linguistic rule-based 
systems to training patterns. For example, the average classification rate in 
the case of K = 5 in Table 3.6 was first improved during the learning of 
rule weights. After reaching its peak value (i.e., 95.3% classification rate), 
the average classification rate was decreased by further learning. From the 
comparison between Table 3.5 and Table 3.6, we can see that similar results 
were obtained on test patterns after enough iterations of the learning algo
rithm independent of the initial specifications of rule weights as in Table 3.3 
and Table 3.4 on training patterns (except for the case of K = 2). 

Table 3.5. Classification rates on test patterns in the iris data set. Rule weights 
were adjusted by the reward-punishment learning scheme from their initial values 
heuristically specified by the third definition 

Granularity 

K = 2 
K = 3 

K = 5 

0 

68.0% 
93.3% 
94.0% 
95.3% 

1 

80.2% 
95.6% 
96.0% 
94.7% 

Number of epochs 

2 5 10 

83.9% 89.5% 89.0% 
96.6% 96.6% 95.3% 
96.0% 96.3% 95.8% 
94.7% 94.7% 94.0% 

50 

89.1% 
94.9% 
96.0% 
95.3% 

100 

88.7% 
95.2% 
96.0% 
96.1% 
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Table 3.6. Classification rates on test patterns in the iris data set. Rule weights 
were adjusted by the reward-punishment learning scheme from their common initial 
value of 0.5 

Granularity 

K = 2 
K = 3 
K = 4 
K = 5 

0 

71.3% 
92.0% 
81.3% 
94.7% 

1 

90.8% 
96.5% 
88.3% 
95.3% 

Number of epochs 

2 5 10 

93.0% 92.9% 92.5% 
96.1% 96.4% 96.3% 
88.7% 91.4% 92.3% 
95.3% 94.7% 94.7% 

50 

93.2% 
95.0% 
96.2% 
94.5% 

100 

93.2% 
95.0% 
96.6% 
94.1% 

3.1.4 Compu te r Simulations on Wine Da ta 

The wine data set was also used to examine the effect of the rule weight 
learning on the classification performance of linguistic rule-based systems. We 
applied the learning algorithm to linguistic rule-based systems constructed 
in Table 2.10 and Table 2.11 in the previous chapter. Linguistic rule-based 
systems in those tables were constructed by choosing a small number of lin
guistic rules of length 3 or less using the product of the confidence and the 
support as a rule selection criterion. Candidate rules from which linguistic 
rules were selected were generated using all the 14 linguistic terms with dif
ferent granularities in Fig. 1.4 of Chap. 1. 

We used the third definition for specifying the initial rule weight of each 
linguistic rule. Simulation results on training patterns and test patterns are 
summarized in Table 3.7 and Table 3.8. From these tables, we can see that 
the classification performance of linguistic rule-based systems on the wine 
data was improved by the rule weight learning. When the number of linguistic 
rules was very small (e.g., only three rules), the rule weight learning could not 
improve classification rates on training patterns as well as test patterns. On 
the other hand, the eff'ect of the rule weight learning was significant when the 
number of linguistic rules was not too small. This is because the rule weight 
learning cannot adjust the classification boundary when there is no overlap 
between linguistic rules with different consequent classes. The adjustment of 
the classification boundary can be performed only in the overlapping region 
of such linguistic rules in the pattern space. When the number of linguistic 
rules is very small, there seems to be no large overlapping region in which 
the classification boundary can be adjusted. 

3.2 Analytical Learning 

The reward-punishment learning scheme gradually adjusts the rule weight of 
each linguistic rule. Thus many epochs are usually required for the adjustment 
of rule weights, especially when the learning rates are small. In this section, 
we explain an analytical learning scheme. 
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Table 3.7. Classification rates on training patterns in the wine data set. Rule 
weights were adjusted by the reward-punishment learning scheme from their initial 
values specified by the third definition 

# of rules 

3 
6 
9 
12 
15 
18 
21 
24 
27 
30 

0 

89.3% 
92.1% 
93.8% 
94.9% 
94.9% 
94.9% 
94.4% 
94.4% 
94.4% 
94.9% 

1 

89.1% 
91.5% 
93.9% 
94.4% 
94.7% 
95.6% 
95.3% 
95.3% 
95.3% 
95.7% 

Number of epochs 

2 

89.0% 
91.6% 
94.3% 
94.7% 
95.1% 
96.4% 
96.2% 
96.2% 
96.2% 
95.8% 

5 

88.8% 
92.4% 
95.0% 
94.3% 
95.4% 
98.3% 
98.3% 
98.3% 
98.3% 
98.2% 

10 

89.0% 
90.3% 
95.6% 
94.4% 
97.0% 
98.7% 
98.9% 
98.9% 
98.3% 
98.2% 

50 

89.1% 
91.1% 
93.8% 
95.7% 
95.6% 
98.7% 
98.7% 
98.2% 
97.9% 
98.3% 

100 

89.1% 
91.1% 
93.8% 
96.0% 
95.7% 
98.4% 
98.4% 
98.1% 
98.3% 
97.8% 

Table 3.8. Classification rates on test patterns in the wine data set. Rule weights 
were adjusted by the reward-punishment learning scheme from their initial values 
specified by the third definition 

# of rules 

3 
6 
9 
12 
15 
18 
21 
24 
27 
30 

0 

89.3% 
84.8% 
93.3% 
93.3% 
94.4% 
92.1% 
91.6% 
91.6% 
92.7% 
93.3% 

1 

88.3% 
86.2% 
93.7% 
93.8% 
93.8% 
93.2% 
91.6% 
92.1% 
93.2% 
93.8% 

Number of epochs 

2 

88.5% 
87.2% 
92.9% 
93.5% 
94.4% 
93.7% 
92.5% 
92.8% 
92.2% 
93.5% 

5 

88.2% 
87.6% 
91.7% 
93.0% 
93.5% 
93.6% 
94.1% 
93.7% 
93.8% 
94.4% 

10 

88.2% 
86.7% 
91.9% 
92.4% 
92.9% 
93.8% 
95.5% 
94.4% 
94.8% 
94.4% 

50 

88.4% 
87.1% 
92.4% 
93.7% 
92.7% 
95.1% 
93.3% 
94.0% 
93.7% 
94.1% 

100 

88.4% 
87.3% 
92.5% 
93.5% 
93.6% 
94.4% 
95.3% 
95.0% 
93.9% 
93.4% 

3.2 .1 Learning A l g o r i t h m 

When a training pat tern Xp is classified by our linguistic rule-based system 
5 , the single winner-based method identifies a single winner rule R^ tha t 
has the maximum product of the compatibility grade and the rule weight 
among linguistic rules in S. Let tp be the actual class (i.e., target class) of 
Xp. When the consequent class Cw of the winner rule Ryj is the same as tp^ Xp 
is correctly classified. Otherwise, it is misclassified. From the definition of the 
winner rule R^, the following relation holds when Xp is correctly classified: 

max{/iA,(a^p) • CFq\Cq = tp.Rq G 5 } = /iA^(xp) • CF^. (3.8) 

On the other hand, the following relation holds when Xp is misclassified: 

max{//A,(a^p) • CFq\Cq = tp.Rq G 5 } < IIAA^P) ' CF^. (3.9) 
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Let Rq:^ be the linguistic rule with the maximum value in the left hand 
side of (3.9). Rq^ can be viewed as the most promising linguistic rule for 
correctly classifying the training pattern Xp. Using Rq^^ (3.9) is rewritten as 

/iA,, {xp) • CFq^ < fiA^ (xp) • CF^. (3.10) 

In this formulation, the consequent class C^ of the winner rule is different 
from the actual class of Xp (i.e., C^ i^ tp) because Xp is misclassified. For 
correctly classifying Xp, it is required to reverse the inequality in (3.10) by 
adjusting our linguistic rule-based system so that the following inequality 
holds: 

MA,, (Xp) • CFq^ > flA^ (Xp) • CF^. (3.11) 

When the left hand side of (3.10) is zero (i.e., when Xp is not covered by 
any linguistic rule with the same consequent class as the actual class of x^), 
we do not try to correctly classify Xp. In this case, the misclassification of 
Xp does not invoke any modification procedure of our linguistic rule-based 
system. In the following explanations, we assume that Xp is covered by at 
least one linguistic rule with the same consequent class as the actual class of 
Xp (i.e., the left hand size of (3.10) is positive). 

There are two alternative ways in the adjustment of rule weights for re
versing the inequality in (3.10): 

(1) To increase the rule weight CFq^ of the linguistic rule Rq^ in the left 
hand side of (3.10) as 

j iNew 

^A,, (Xp) 
CF^:-^ = ^^-^^7; . CFS'^ -f- e, (3.12) 

where e is a very small positive real number. The inequality relation (3.11) 
holds after this modification. This adjustment is not always possible. 
When the right hand side of (3.12) is larger than 1, we do not adopt this 
adjustment. 

(2) To decrease the rule weight CF^ of the winner rule Rw in the right hand 
side of (3.10) as 

pNew _ MAg, [Xp) ^ ^ o i d 

[^A^ \Xp) 

When the right hand side of (3.13) is smaller than 0, we specify CF^^^ as 
Qjp^ew __ Q rpĵ ^ inequality relation (3.11) holds after this modification. 
If î g* becomes the new winner rule after the adjustment of CF^^ based on 
(3.13), Xp is correctly classified. On the other hand, Xp is still misclassified 
if another linguistic rule becomes the new winner rule. In the latter case, 
(3.13) is applied to the new winner rule again. This procedure is iterated 
until î g* becomes the winner rule (i.e., until Xp is correctly classified). 
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When Xp is misclassified, our linguistic rule-based system is modified by 
(3.12) or (3.13). We calculate the classification rate of each of the three alter
natives (i.e., the current linguistic rule-based system before the modification 
and two modified ones) on training patterns. Then we replace the current 
linguistic rule-based system with the best one among the three alternatives. 
When all the given training patterns are correctly classified, the analytical 
learning scheme no longer changes the current linguistic rule-based system. 
Even when some training patterns are misclassified, the current linguistic 
rule-based system is not modified if no improvement in the classification rate 
can be achieved. The classification rate on training patterns is monotonically 
improved during the rule weight learning based on the analytical learning 
scheme. 

The analytical learning scheme can be written as the following algorithm: 

[Analytical Learning Algorithm] 

Step 1: Choose a single training pattern. 
Step 2: Classify the training pattern by the linguistic rule-based system. 
Step 3: When the training pattern is misclassified, perform the following pro

cedures. Otherwise, go to Step 4. 
(1) Examine the classification performance on training patterns of 

the three alternative linguistic rule-based systems: the current 
one and its two modified versions by (3.12) and (3.13). Note that 
the modification by (3.13) is iterated until the current training 
pattern chosen in Step 1 is correctly classified. If no modified 
versions outperform the current one, go to Step 4. 

(2) Replace the current linguistic rule-based system with the better 
modified version. If the two modified versions have the same clas
sification rate on training patterns, randomly choose one version. 

Step 4: If a pre-specified stopping condition is satisfied, terminate this algo
rithm. Otherwise, return to Step 1. 

Learning results of the analytical learning scheme depend on the order of 
training patterns to be presented to the linguistic rule-based system as in the 
case of the reward-punishment learning scheme. When there are no misclas
sified training patterns, rule weights are no longer adjusted by the analytical 
learning scheme. On the contrary, the reward-punishment learning scheme 
continues to change the rule weight of the winner rule because the reward is 
given to the winner rule when a training pattern is correctly classified. 

3.2.2 Illustration of the Learning Algorithm Using Artificial Test 
Problems 

For visually illustrating the analytical learning scheme, let us again consider 
the two-dimensional pattern classification problem in Fig. 3.1. We adjusted 
the rule weights of the four linguistic rules in Fig. 3.1 using the analytical 



3.2 Analytical Learning 51 

learning scheme. As in the case of the reward-punishment learning scheme, 
we specified the initial rule weights as CFq — 0.5 for all the four linguistic 
rules. Figure 3.1 shows the classification boundary by the initial linguistic 
rule-based system. The value of e was specified as e = 0.001 in computer 
simulations. 

Since the first training pattern X\\VL Fig. 3.1 is correctly classified by the 
initial linguistic rule-based system, no rule weights are modified. As shown 
in Fig. 3.1, the second pattern x^ is misclassified by the linguistic rule i^s. 
Thus i?3 is the winner rule R^ for x^ in (3.10). Since the actual class of x^ 
is Class 2, î 4 is chosen as the most promising linguistic rule i?^* in (3.10) 
for correctly classifying the training pattern x^. One modified version of 
the current linguistic rule-based system is constructed by increasing the rule 
weight of the most promising linguistic rule Rq^ (i.e., R/^ using (3.12) as 

^0 .944x0 .555 
0.944 X 0.445 

Pd 0.625. (3.14) 

The rule weights of the other linguistic rules are not adjusted (i.e., CF\ — 
CF2 = CF3 = 0.5). The classification boundary by this modified linguistic 
rule-based system is shown in Fig. 3.5. As shown in this figure, the training 
pattern X2 is correctly classified. The classification boundary is close to X2 
because e is very small. Note that X2 is located on the classification bound
ary when e is zero. Some issues related to the location of the classification 
boundary are discussed in a later section of this chapter. 

Another alternative linguistic rule-based system is constructed by decreas
ing the rule weight of the winner rule R^^ for X2 (i.e., i^s) using (3.13) as 

^|'AAx2) 
^0 .944x0 .445 

0.944 X 0.555 
^ 0.400. (3.15) 

The rule weights of the other linguistic rules are not adjusted (i.e., CFi = 
CF2 = CF4 — 0.5). The classification boundary by this modified linguistic 
rule-based system is shown in Fig. 3.6. As shown in this figure, the train
ing pattern X2 is correctly classified. In Fig. 3.6, two training patterns are 
misclassified while three training patterns are misclassified in Fig. 3.5. Since 
three training patterns are misclassified by the current linguistic rule-based 
system in Fig. 3.1, the second modification in Fig. 3.6 is adopted. That is, 
the rule weights of the four linguistic rules are updated as 

CFi = CF2 = CF^ = 0.5, (3.16) 



52 3. Learning of Linguistic Rules 

CFs = 0.400. (3.17) 

After the learning for the second training pattern X2, the current situation 
is Fig. 3.6. The third training pattern Xs in Fig. 3.6 is correctly classified. 
Thus no rule weights are modified. The fourth training pattern X4 is also 
correctly classified. Thus Fig. 3.6 is still the current situation after the pre
sentation of CC4. 
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Fig. 3.5. Classification boundary 
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Fig. 3.6. Classification boundary 
by the modified linguistic rule-based 
system using (3.13) 

In this manner, the rule weight of each linguistic rule is updated by pre
senting each training pattern to the linguistic rule-based system. In Fig. 3.7, 
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we show the classification boundary after a single epoch. As shown in Fig. 
3.7, all the given patterns are correctly classified after a single epoch. Table 
3.9 shows the values of the rule weights and the number of misclassified train
ing patterns after each epoch. As shown in this table, the analytical learning 
scheme needs far fewer epochs than the reward-punishment learning scheme. 
This is because the amount of adjustment is analytically calculated for up
dating the rule weight of each linguistic rule in the analytical learning scheme 
while the weight is incrementally updated without considering the effect of 
the modification on the classification performance of the linguistic rule-based 
system in the reward-punishment learning scheme. Of course, much more 
computation time is required for a single epoch by the analytical learning 
scheme than the reward-punishment learning scheme. 
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Table 3.9. Simulation results by the analytical learning scheme on the artificial 
test problem in Fig. 3.1. The second row "Errors" shows the number of misclassified 
training patterns 

Epoch 

Errors 

CFi 
CF2 
CFs 
CF4 

0 

3 

0.5000 
0.5000 
0.5000 
0.5000 

1 

0 

0.5000 
0.6638 
0.3254 
0.5000 

We also applied the analytical learning scheme to the single-dimensional 
artificial test problem in Fig. 2.13. Since Fig. 2.13 is an online-type classifica
tion problem where the number of training patterns incrementally increases 
over time, the application of the analytical learning scheme is not straightfor
ward. In our computer simulation, all the generated training patterns were 
used to examine the classification performance of the linguistic rule-based 
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system. That is, all the available p patterns xi,X2,... ,Xp are used for the 
performance evaluation in the learning for the p-th training pattern Xp. In 
real-world applications, it is more natural to use a pre-specified number of 
recent training patterns in the learning. That is, only recent training patterns 
in a moving window are used in the learning. 

We adjusted the rule weights of the three linguistic rules for the single-
dimensional artificial test problem using the analytical learning scheme from 
their initial specifications CFi = CF2 = CFs = 0.5. Training patterns 
were randomly generated from the pattern space [0,1] in Fig. 2.13 according 
to the uniform distribution as in the computer simulation by the reward-
punishment learning scheme in the previous section. The execution of the 
learning algorithm was iterated until 10000 training patterns were examined. 
The values of e was specified as e = 0.001. In Fig. 3.8, we show how the rule 
weights were updated during the iterative execution of the learning algorithm. 
On the other hand. Fig. 3.9 shows how the estimated class boundary was ad
justed. Note that the actual threshold ^ is ^ = 0.47 in our single-dimensional 
artificial test problem. From Fig. 3.9, we can see that the estimated class 
boundary monotonically approaches the actual threshold value of 0.47 from 
the initial value of 0.25. From the comparison between Fig. 3.9 and Fig. 
3.4, we can see that the analytical learning scheme required far fewer epochs 
than the reward-punishment learning scheme for driving the estimated class 
boundary to its desired value of 0.47. 
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3.2.3 Computer Simulations on Iris Data 

In the same manner as the computer simulations on the iris data using the 
reward-punishment learning scheme in Sect. 3.1.3, we applied the analytical 
learning scheme to the iris data set. We examined the four granularities of 
linguistic discretization (i.e., K = 2,3,4,5) and the two initial rule weight 
specifications (i.e., CFq = 0.5, ^g, and the heuristic specification using the 
third definition). 
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Number of presented patterns 
10000 

Fig. 3.9. Adjustment of the es
timated class boundary during 
the iterative execution of the an
alytical learning scheme 

Average classification rates on training pat terns were calculated over 20 
independent trials for each combination of the granularity and the initial rule 
weight specification. Simulation results on training pat terns are summarized 
in Table 3.10 for the heuristic rule weight specification and Table 3.11 for 
the initial rule weight 0.5. From these tables, we can see tha t the analytical 
learning scheme required only a few epochs to reach to high classification 
rates on training pat terns . 

Table 3.10. Classification rates on training patterns in the iris data set. Rule 
weights were adjusted by the analytical learning scheme from their initial values 
heuristically specified by the third definition 

Granularity 

K = 2 
K = 3 
K = 4 
K = 5 

0 

68.0% 
94.0% 
97.3% 
96.7% 

Number of epochs 

1 2 

94.5% 95.9% 
97.7% 98.0% 
98.0% 98.0% 
98.7% 98.7% 

3 

96.2% 
98.0% 
98.0% 
98.7% 

Table 3.11. Classification rates on training patterns in the iris data set. Rule 
weights were adjusted by the analytical learning scheme from their common initial 
value of 0.5 

Granularity 

K = 2 
K = 3 
K = 4 
K = 5 

0 

71.3% 
92.0% 
82.7% 
94.7% 

Number of epochs 

1 2 

95.4% 95.6% 
98.0% 98.0% 
95.4% 95.8% 
97.0% 97.0% 

3 

95.7% 
98.0% 
95.8% 
97.0% 

We also examined classification rates on test pat terns using the leaving-
one-out technique. This technique was i terated ten times using different or-
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ders of presentation of 149 training patterns. Simulation results are summa
rized in Table 3.12 and Table 3.13. As in Table 3.5 and Table 3.6 using the 
reward-punishment learning scheme, the rule weight learning significantly 
improved the generalization ability of linguistic rule-based systems on test 
patterns when linguistic discretization was coarse (e.g., K = 2). We can also 
observe overfitting of linguistic rule-based systems to training patterns in 
some cases. 

Table 3.12. Classification rates on test patterns in the iris data set. Rule weights 
were adjusted by the analytical learning scheme from their initial values heuristi-
cally specified by the third definition 

Granularity 

K = 2 
K = 3 
K = 4 
K = 5 

Number of epochs 

0 1 2 

68.0% 91.5% 93.6% 
93.3% 95.9% 96.3% 
94.0% 96.0% 96.0% 
95.3% 94.6% 94.6% 

Table 3.13. Classification rates on test patterns in the iris data set. Rule weights 
were adjusted by the analytical learning scheme from their common initial value of 
0.5 

Granularity 

K = 2 
K = 3 
K = 4 
K = 5 

Number of epochs 

0 1 2 

71.3% 93.6% 93.6% 
92.0% 96.7% 96.7% 
81.3% 89.4% 90.1% 
94.7% 94.0% 94.0% 

3.2.4 Computer Simulations on Wine Data 

We also performed computer simulations on the wine data using the ana
lytical learning scheme in the same manner as the computer simulations in 
Sect. 3.1.4 using the reward-punishment learning scheme. Simulation results 
on training patterns and test patterns are summarized in Table 3.14 and 
Table 3.15, respectively. As in the case of the iris data, the analytical learn
ing scheme required only a few epochs to reach high classification rates on 
training patterns. As we have already mentioned in the previous section, the 
improvement of classification rates on training patterns does not always mean 
an improvement on test patterns. 
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Table 3.14. Classification rates on training patterns in the wine data set. Rule 
weights were adjusted by the analytical learning scheme from their initial values 
specified by the third definition 

# of rules 

3 
6 
9 
12 
15 
18 
21 
24 
27 
30 

0 

89.3% 
92.1% 
93.8% 
94.9% 
94.9% 
94.9% 
94.4% 
94.4% 
94.4% 
94.9% 

Number of epochs 

1 

90.5% 
94.0% 
96.5% 
96.5% 
96.6% 
98.2% 
98.1% 
98.4% 
98.3% 
98.0% 

2 

90.5% 
94.1% 
96.8% 
96.6% 
96.6% 
98.2% 
98.1% 
98.5% 
98.3% 
98.2% 

3 

90.5% 
94.1% 
96.8% 
96.6% 
96.6% 
98.2% 
98.1% 
98.5% 
98.4% 
98.2% 

Table 3.15. Classification rates on test patterns in the wine data set. Rule weights 
were adjusted by the analytical learning scheme from their initial values specified 
by the third definition 

# of rules 

3 
6 
9 
12 
15 
18 
21 
24 
27 
30 

0 

89.3% 
84.8% 
93.3% 
93.3% 
94.4% 
92.1% 
91.6% 
91.6% 
92.7% 
93.3% 

Number of epochs 

1 

88.9% 
84.6% 
93.7% 
94.0% 
94.2% 
93.5% 
93.5% 
93.7% 
92.1% 
92.8% 

2 

88.9% 
84.6% 
93.7% 
94.0% 
94.2% 
93.5% 
93.4% 
96.7% 
92.3% 
93.0% 

3 

88.9% 
84.6% 
93.7% 
94.0% 
94.2% 
93.5% 
93.4% 
93.7% 
92.3% 
93.0% 

3.3 Related Issues 

In this section, we discuss two issues related to the learning of rule weights. 
One is additional learning when all the training pat terns are correctly classi
fied. The other is the learning of the membership function of each linguistic 
term. 

3.3.1 Further A d j u s t m e n t of Class i f icat ion B o u n d a r i e s 

As shown in the previous section, the classification boundary obtained by the 
analytical learning scheme is always close to the training pat tern tha t was 
used in the final adjustment of rule weights. This is because the value of e 
in the update rules (3.12) and (3.13) is very small. For examining the effect 
of the value of e on the location of the classification boundary, we performed 
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computer simulations on the two-dimensional test problem in Fig. 3.1 using 
various values ofe: e = 0.001,0.1,0.3. In Fig. 3.7, we have already shown the 
classification boundary obtained from e = 0.001. Simulation results obtained 
from e = 0.1 and e = 0.3 are shown in Fig. 3.10 and Fig. 3.11, respectively. In 
the case of e = 0.1 in Fig. 3.10, the classification boundary is not very close 
to any training patterns compared with the case of e = 0.001 in Fig. 3.7. 
On the other hand, all the training patterns could not be correctly classified 
in the case of e == 0.3 in Fig. 3.11. This is because the value of e (i.e., the 
amount of adjustment of rule weights) is too large. 
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As the above simulation results on the two-dimensional test problem sug
gest, large values of e make successful execution of the analytical learning 
scheme very difficult. On the other hand, the classification boundary is very 
close to training patterns in the case of small values of e. 

When we use the reward-punishment learning scheme, we cannot adjust 
the location of the classification boundary. The rule weight of the winner rule 
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is increased or decreased depending on the classification result (i.e., correct 
classification or misclassification) of each training pattern. The classification 
rate of the linguistic rule-based system after the rule weight adjustment is 
not taken into account in the reward-punishment learning scheme. 

Let us consider a very simple single-dimensional pattern classification 
problem in Fig. 3.12 where ten patterns from two classes are given together 
with three linguistic terms. Training patterns from Class 1 and Class 2 are 
depicted by closed circles and open circles in Fig. 3.12, respectively. As in the 
case of the single-dimensional artificial test problem in the previous computer 
simulations, we use the following three linguistic rules: 

Ri: If X is small then Class 1 with CFi, 
R2: If X is medium then Class 2 with CF2, 
i?3: If X is large then Class 2 with CF^. 

Xi X2 X2 X4 X5 

• • • • • 

0.0 

Xs Xq 
o o 

Xg X9 

o o 

0.5 

Pattern space 

X\Q 

o 
I I I I I I I I I I I 

1.0 
Fig. 3.12. A simple single-
dimensional test problem 

In Fig. 3.13, we show simulation results (i.e., classification boundaries) by 
the reward-punishment learning scheme with 77+ =0.001 and r/~ = 0 . 1 , and 
the analytical learning scheme with e = 0.001. The learning of the rule weights 
based on each scheme was iterated from their initial values CFi — CF2 = 
CFs = 0 . 5 until all the training patterns were correctly classified. The ten 
training patterns a^i,X2,. •.,Xio were presented in this order in the learning. 
As we can see from Fig. 3.13, the classification boundaries in both cases are 
very close to the fifth training pattern x^ = 0.3. This training pattern was 
used in the final rule weight adjustment in the analytical learning scheme. 

Intuitively we think that the actual class boundary in the simple single-
dimensional pattern classification problem in Fig. 3.12 may be around x = OA 
because the largest attribute value from Class 1 is a: = 0.3 and the smallest 
attribute value from Class 2 is a; = 0.5. To drive the classification boundary 
of the linguistic rule-based system to such an intuitive location, an idea of 
additional learning was proposed in [132]. The additional learning scheme 
was utilized when all the training patterns were correctly classified using 
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0.3018 by the reward-punishment learning scheme 

>^5 l l I 1^6 

"olT 04 05 
0.3004 by the analytical learning scheme 

Fig. 3.13. Simulation results by the reward-punishment learning scheme and the 
analytical learning scheme 

the reward-punishment learning scheme. In the following, we explain this 
additional learning scheme. 

Let us assume that a training pattern Xp is correctly classified as Class tp 
by the linguistic rule-based system S. That is, we assume that Xp is correctly 
classified by the winner rule R^ satisfying the following relation: 

fiA^{xp) ' CFyj = m8ix{fiAq{xp) ' CFq\Cq = tp}. (3.18) 

Let Rw:^ be the linguistic rule with the maximum product of the compati
bility grade and the rule weight among those rules whose consequent class is 
different from the actual class tp of Xp. That is, Ryj:^ is defined as 

I^A^A^p) • CF,^^ = max{/iAg(xp) • CFq\Cq 7̂  tp}. (3.19) 
RqES 

Since the training pattern Xp is correctly classified as Class tp by the winner 
rule Ruj, the following relation holds: 

MA *̂ (xp) • CF^^ < fiA^ (xp) ' CF^. (3.20) 

In Fig. 3.13, the rule weights of the three linguistic rules updated by the 
analytical learning scheme were as follows: 

CFi = 0.5000, CF2 = 0.3323, CF3 = 0.5000. (3.21) 

In Fig. 3.14, we depict the value of fiAgi^) • CFq for each linguistic rule where 
Aq is small, medium, or large. The first linguistic rule Ri with small in the 
antecedent part is the winner rule R^ for the fifth training pattern x^ and 
the second linguistic rule R2 with medium is R^*-

Let us define ap as 

^P = f^A^ (xp) • CF^ - /LLA^^ (Xp) • CF^*. (3.22) 

As we can see from Fig. 3.14, the smaller is the value of ap, the closer is 
the training pattern Xp to the classification boundary. The basic idea of the 
additional learning scheme is to drive the classification boundary to the center 
of two training patterns from different classes by making the value of ap large. 
In each epoch of the additional learning scheme, first a training pattern Xp^ 
with the minimum value of ap is selected as 

ap:^^ = mm{ap\p = 1 , 2 , . . . , m}. (3.23) 
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^^ small 

0.0 ""p / \ 05 

j^ = 0 3 Classification boundary 

Fig. 3.14. Shape of the product of the compatibility grade and the rule weight for 
each linguistic rule. The membership function of each linguistic term is shown by 
dashed lines 

Then R^ in (3.18) and R^^ in (3.19) are found for the training pattern x 
To increase the value cr̂ *, CFyj is increased and CF^^ is decreased as 

p * . 

CF, 

iNew 01d\ CFr^+77-(l-CFr<^), 
iNew CF: lOld 

(3.24) 

(3.25) 

where ry is a positive real number (e.g., TJ = 0.05). While we treat ry as a 
constant parameter in the following computer simulations, it is possible to 
treat 77 as a variable control parameter. That is, r] can be decreased during 
the iterative execution of the additional learning scheme. 

We applied the additional learning scheme with rj — 0.05 to the three 
linguistic rules for the simple single-dimensional test problem in Fig. 3.12 
after all the training patters were correctly classified by the analytical learning 
scheme. Table 3.16 shows how the classification boundary was adjusted by 
the analytical learning scheme (the first epoch) and the additional learning 
scheme (the other epochs). From this table, we can see that the classification 
boundary gradually approached the intuitively acceptable boundary of 0.4. 

Table 3.16. The location of the classification boundary after each epoch of the 
analytical learning scheme and the additional learning scheme 

Epoch 

Boundary 

0 

0.250 

1 

0.3004 

2 

0.3122 

3 

0.3233 

4 

0.3336 

5 

0.3433 

10 

0.3829 
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We also applied the additional learning scheme with ry = 0.01 to the four 
linguistic rules for the two-dimensional test problem in Fig. 3.1 after all the 
training patters were correctly classified by the analytical learning scheme. 
Figure 3.15 shows simulation results by the analytical learning scheme and 
the additional learning scheme. The additional learning scheme was iterated 
100 times (i.e., 100 epochs) after all the training patterns were correctly 
classified by the analytical learning scheme. From Fig. 3.15, we can see that 
the classification boundary was driven to the center of two adjacent training 
patterns from different classes by the additional learning scheme, while it 
was very close to some training patterns when all the training patterns were 
correctly classified by the analytical learning scheme. 
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Fig. 3.15. Simulation results by 
the analytical learning scheme 
and the additional learning 
scheme 

As we illustrated through the computer simulations on the simple test 
problems, the additional learning scheme tries to improve the generaliza
tion ability of linguistic rule-based systems after all the training patterns are 
correctly classified. High classification rates on test patterns were reported 
in Nozaki et al. [132] using a hybrid algorithm of the reward-punishment 
learning scheme and the additional learning scheme. For example, a 98.0% 
classification rate on test patterns was obtained for the iris data set using the 
leaving-one-out technique. 

3.3.2 Adjustraent of Membership Functions 

In this book, we use a set of given linguistic terms for each attribute without 
modifying their membership functions for constructing linguistic rule-based 
systems. This means that we use simple grid-type fuzzy partitions of the pat
tern space for generating linguistic rule-based systems. An example of a sim
ple grid-type fuzzy partition is shown in Fig. 3.16 where the two-dimensional 
pattern space is discretized into 5 x 3 cells. In each cell, a single linguistic 
rule is to be generated from training patterns. 

In some studies on fuzzy rule-based classification systems, fuzzy parti
tions are adjusted (e.g., see [128]). That is, the membership function of each 
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Fig. 3.16. An example of a simple 
grid-type fuzzy partition 

linguistic term is adjusted. An example of an adjustable grid-type fuzzy parti
tion is shown in Fig. 3.17. As we have already discussed in Chap. 1, linguistic 
interpretation of adjusted membership functions is not always easy. In this 
book, we use given linguistic terms without adjusting their membership func
tions for constructing linguistic rule-based systems with high interpretability. 
In the following, we briefly discuss the adjustment of membership functions. 

^x^^x 
j 

1.0 

X2 

0.0 

0.0 
Xi 

1.0 Fig. 3.17. An example of an ad
justable grid-type fuzzy partition 

The basic idea of the reward-punishment learning scheme can be applied 
to the learning of membership functions. When a training pattern Xp is cor
rectly classified by the winner rule, the compatibility grade of the training 
pattern Xp with the winner rule is increased as the reward for the correct clas
sification. This can be implemented by moving the center of the antecedent 
part of the winner rule toward the training pattern Xp in the n-dimensional 
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pattern space as shown in Fig. 3.18. Usually the neighboring membership 
functions of the adjusted ones are also modified according to some constraint 
conditions. For example, the sum of adjacent membership functions is often 
maintained as 1 for covering the entire pattern space by the membership 
functions after their adjustment (see Fig. 3.17). On the other hand, when 
a training pattern Xp is misclassified by the winner rule, the compatibility 
grade of the training pattern Xp with the winner rule is decreased as the 
punishment of the misclassification. This can be implemented by moving the 
center of the antecedent part of the winner rule in the opposite direction of 
the training pattern shown in Fig. 3.19. 

ZE37 

i ^ ^ " ^ 

Fig. 3.18. Adjustment of the antecedent 
part of the winner rule for increasing 
the compatibility grade with the training 
pattern denoted by a closed circle 

i ^ ^ ^ ^ 
Fig. 3.19. Adjustment of the antecedent 
part of the winner rule for decreasing 
the compatibility grade with the training 
pattern denoted by an open circle 

The basic idea of the analytical learning scheme can also be applied to 
the adjustment of the compatibility grade of each linguistic rule. That is, 
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instead of adjusting rule weights, it is possible to adjust compatibility grades 
for correctly classifying a misclassified training pattern. By the same idea as 
the update rule for increasing the rule weight of the most promising linguistic 
rule Rq^ in (3.12), the update rule for increasing the compatibility grade of 
Rq^ can be written as 

M^::(^p) = 1 ^ • i^Ti^p)+«• (3-26) 

This can be implemented by moving the center of the antecedent part of Rq^ 
toward the training pattern Xp as shown in Fig. 3.18. On the other hand, the 
update rule for decreasing the compatibility grade of the winner rule Ryj can 
be written as follows from the same idea as (3.13): 

M ! l r K ) = § ^ - < l ( ^ p ) - e - (3-27) 

This can be implemented by moving the center of the antecedent part of R^ 
in the opposite direction of the training pattern Xp as shown in Fig. 3.19. 

The main drawback of grid-type fuzzy partitions is that the number of 
linguistic rules (or fuzzy rules)increases exponentially with the dimensional
ity of the pattern space. This is often called the "curse of dimensionality". 
One popular approach for handling high-dimensional problems is to use scat
tered fuzzy partitions. Examples of scattered fuzzy partitions are shown in 
Fig. 3.20 and Fig. 3.21. The main characteristic feature of scattered fuzzy 
partitions is that each fuzzy rule does not use linguistic discretization of each 
attribute. Instead, each fuzzy rule has its own multi-dimensional antecedent 
fuzzy set. In Fig. 3.20, multi-dimensional antecedent fuzzy sets are decom
posable into single-dimensional antecedent fuzzy sets while those in Fig. 3.21 
are not decomposable. Scattered fuzzy partitions were used in many studies 
on fuzzy rule-based pattern classification [1]. When we use scattered fuzzy 
partitions, the number of fuzzy rules is independent of the dimensionality of 
the pattern space. Since there is no interaction between antecedent fuzzy sets 
of different fuzzy rules, the adjustment of the antecedent part of each fuzzy 
rule has high flexibility. Thus we can expect high classification performance 
of fuzzy rule-based systems with scattered partitions. The interpret ability of 
such fuzzy rule-based systems, however, is usually low. It is not easy to un
derstand the meaning of the antecedent part of each fuzzy rule in Fig. 3.20 
and Fig. 3.21. 

Another approach to the handling of high-dimensional pattern classifi
cation problems is the use of tree-type fuzzy partitions. Figure 3.22 shows 
an example of a tree-type fuzzy partition. This fuzzy partition corresponds 
to the tree structure in Fig. 3.23. Fuzzy rule-based systems with tree-type 
fuzzy partitions are often called "fuzzy decision trees". Fuzzy decision trees 
can be viewed as an extension of non-fuzzy standard decision trees [143]. See 
Janikow [100] for the design of fuzzy decision trees. 
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Fig. 3.20. An example of a scat
tered fuzzy partition with decom
posable multi-dimensional antecedent 
fuzzy sets. Each multi-dimensional 
antecedent fuzzy set has a pyramidal 
shape 

Fig. 3.21. An example of a scattered fuzzy 
partition with non-decomposable multi
dimensional antecedent fuzzy sets. Each 
multi-dimensional antecedent fuzzy set has 
an ellipsoidal shape 

Multi-layer structures are also used in fuzzy modeling for high-dimensional 
problems. An example of a multi-layer structure is shown in Fig. 3.24. A hi
erarchical fuzzy rule-based system consists of multiple subsystems that are 
hierarchically combined. Each subsystem is usually a low-dimensional fuzzy 
rule-based system with grid-type fuzzy partitions. Since each subsystem has 
only a few input variables, the exponential increase in the number of fuzzy 
rules can be avoided by the use of multi-layer structures. From the view
point of interpretability, multi-layer structures have an inherent drawback in 
that the interpretation of intermediate variables is very difficult. Intermedi
ate variables are the subsystem's input (or output) variables that are not 
the input (or output) variables of the entire rule-based system. The design of 
multi-layer structures of fuzzy rule-based systems was discussed in Ishigami 
et al. [96] and Shimojima et al. [153]. 
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4. Input Selection and Rule Selection 

In this chapter, we explain how hnguistic rule-based systems with simple 
grid-type fuzzy partitions can be extended to the case of high-dimensional 
pattern classification problems. First we mention input selection. Then we 
describe a genetic algorithm-based approach to rule selection. 

4.1 Curse of Dimensionality 

As we have already mentioned in the previous section, the main difficulty in 
applying grid-type fuzzy partitions to high-dimensional pattern classification 
problems stems from the curse of dimensionality: the exponential increase in 
the number of linguistic rules with the number of attributes. Let Ki be the 
number of linguistic terms given for the i-th attribute {i = 1,2,.. . , n). Then 
the total number of cells in a grid-type fuzzy partition of the n-dimensional 
pattern space is Xi x K2 x . . . x Kn- For example, there are more than 1 
billion cells when five linguistic terms are given for each of the 13 attributes 
of the wine data set. Thus it is unrealistic to use grid-type fuzzy partitions 
for high-dimensional pattern classification problems. 

From the viewpoint of interpret ability of linguistic rule-based systems, 
the use of grid-type fuzzy partitions can be recommended only for two-
dimensional pattern classification problems. In this case, linguistic rule-based 
systems are concisely written in a two-dimensional tabular form as in Fig. 
2.4 of Chap. 2. On the other hand, three-dimensional linguistic rule tables 
cannot be written in a human understandable manner. For example, let us 
consider a three-dimensional pattern classification problem with five linguis
tic terms for each attribute. In this case, the pattern space was discretized 
into 125 cells by a grid-type fuzzy partition. While computer systems can 
easily handle 125 linguistic rules with no difficulty, it is not an easy task for 
human users to intuitively understand a linguistic rule-based system with 125 
linguistic rules. 
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4.2 Input Selection 

A straightforward approach to the design of interpret able linguistic rule-
based systems is input selection. Input selection has been discussed for many 
years in the fields of pattern classification and machine learning. For general 
discussions on input selection, see Blum & Langley [12], Kohavi & John 
[115], and Liu & Motoda [122, 123]. It was shown in Holte [56] that very 
good results were obtained for some data sets from the selection of only 
a single attribute. The relation between the number of attributes and the 
classification performance of linguistic rule-based systems was examined in 
Ishibuchi & Yamamoto [91] using sequential feedforward input selection. In 
this section, we examine the classification performance of linguistic rule-based 
systems generated from simple grid-type fuzzy partitions with only a few 
attributes. It is shown through computer simulations that more than two 
attributes are necessary for designing linguistic rule-based systems with high 
classification performance for the wine data set. This observation motivates 
us to use a rule selection method for the wine data set in the next section. 

4.2.1 Examination of Subsets of Attributes 

The total number of subsets of n attributes is 2'^ including the two extreme 
cases: the whole set with all attributes and an empty set with no attributes. 
It is possible to find the best subset of attributes by examining all the 2^ 
subsets only when the following conditions are satisfied: 

(a) The design of a classification system using each subset is not time-
consuming. 

(b) The evaluation of a classification system is not time-consuming. 
(c) The number of attributes is small. 

Let us consider the wine data set with 13 attributes. The total number 
of subsets is calculated as 2^^ = 8192. If the examination of each subset 
needs 1 second on the average, the examination of 8192 subsets needs about 
2 hours. Thus the examination of all subsets is realistic. Such an enumeration 
method, however, is impractical when the design of classification systems is 
time-consuming (e.g., the learning of multi-layer feedforward neural networks 
with a large number of training patterns). The enumeration of all subsets is 
also impractical when the number of attributes is large. 

While the examination of all subsets is difficult in the case of linguistic 
rule-based systems for high-dimensional pattern classification problems, small 
subsets with a few attributes can be efficiently examined. This is because 
the size of linguistic rule-based systems with a few attributes is very small 
compared with those with many attributes. Note that the number of linguistic 
rules increases exponentially with the number of attributes. The number 
of subsets including k attributes out of the given n attributes is nCk- For 
example, the number of subsets with two attributes is calculated for the wine 
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da ta set with 13 at t r ibutes as 13C2 = 78. This is much smaller than the total 
number of subsets 8192. In the next subsection, we examine all subsets of 
the four at t r ibutes in the iris da ta set. In the case of wine da ta set with 13 
at t r ibutes, we examine only small subsets with a few at t r ibutes . 

4.2 .2 S i m u l a t i o n R e s u l t s 

For the iris da ta set, we examined all subsets of the four at t r ibutes . The 
number of examined subsets is 2^ — 1 = 15 excluding an empty set. Simu
lation results on training pat terns and test pat terns are summarized in Ta
ble 4.1 and Table 4.2, respectively. In computer simulations, each linguistic 
rule-based system was generated using the third definition of rule weights 
and a simple grid-type fuzzy parti t ion with the three linguistic terms small^ 
medium^ and large as in Fig. 2.1 of Chap. 2. The leaving-one-out technique 
was used to examine the performance of each subset of the four at t r ibutes on 
test pat terns . From Table 4.1 and Table 4.2, we can see tha t the subset with 
the single a t t r ibute X4, has bet ter classification ability (i.e., 96.0% on training 
pat terns and test pat terns) than all the four at t r ibutes in the iris da ta set 
(i.e., 94.0% on training pat terns and 93.3% on test pat terns) . We can also see 
tha t the classification ability of some subsets is very poor when inappropriate 
at tr ibutes are selected (see the row labeled "Worst classification ra te") . 

Table 4 . 1 . Simulation results on training patterns in the iris data set. All subsets 
of the four attributes are examined for input selection 

Number of a t t r ibu tes : k 

Number of cells: 3^ 
Average number of rules 
Best classification ra te 
Average classification ra te 
Worst classification ra te 
Best combinat ion 

1 

3 
3.0 

96.0% 
77.3% 
55.3% 
{X4} 

2 

9 
8.7 

96.7% 
88.9% 
66.7% 

{XI.XA} 

3 

27 
23.8 

96.7% 
94.2% 
92.7% 

{XI,X2,XA} {xi 

4 

81 
62.0 

94.0% 
94.0% 
94.0% 

,X2,X^,XA} 

Table 4.2. Simulation results on test patterns in the iris data set. All subsets of 
the four attributes are examined for input selection 

Number of attributes: A; 1 2 3 4 

Number of cells: 3^ 
Average number of rules 
Best classification rate 
Average classification rate 
Worst classification rate 
Best combination 

3 
3.0 

96.0% 
76.5% 
52.0% 
{XA} 

9 
8.7 

95.3% 
88.0% 
64.7% 

{X2,XA} 

27 
23.7 

96.0% 
93.2% 
90.0% 

{XI,X2,XA} {xi 

81 
62.0 

93.3% 
93.3% 
93.3% 

,X2,X2„XA} 
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For visually illustrating the effect of input selection, we show the nor
malized 150 patterns in the iris data set using the two-dimensional attribute 
space with xi and x^ in Fig. 4.1. That is, this figure shows the projection of 
the normalized 150 patterns onto the xi~X4 space. The classification bound
ary in this figure was depicted by the linguistic rule-based system generated 
from all the 150 patterns using the two attributes xi and x^. For comparison, 
we also show the projection onto the xi-a;2 space in Fig. 4.2. The worst clas
sification rates on training patterns and test patterns were obtained by the 
two attributes xi and X2 for the case of A: = 2 in Table 4.1 and Table 4.2 (i.e., 
66.7% and 64.7%), respectively. The classification boundary in Fig. 4.2 was 
depicted by the linguistic rule-based system with the two attributes xi and 
X2- The comparison between Fig. 4.1 and Fig. 4.2 clearly shows the impor
tance of choosing good attributes for designing linguistic rule-based systems 
with high classification ability. 

• : Class 1 o: Class 2 A : Class 3 
A 

A A 

A AAA A 
A 

o 

o 

o o ^^SA 
OO OftOiODOO ^ 

o 
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Fig. 4.1. Projection of the nor
malized 150 patterns in the iris 
data set onto the xi-x^ space and 
the classification boundary by the 
linguistic rule-based system with 
these two attributes in the an
tecedent part 

In Fig. 4.1, only eight linguistic rules were generated. These linguistic 
rules are shown in Fig. 4.3. We can easily understand the linguistic rule-based 
system in Fig. 4.3 because the number of linguistic rules is small and each 
linguistic rule has only two attributes in its antecedent part. As shown in Fig. 
4.3, we can generate linguistic rule-based systems with high interpret ability 
by choosing two attributes. 

We also examined linguistic rule-based systems with only a few attributes 
for the wine data set. For each attribute, we used the three linguistic terms 
small, medium, and large as in the above computer simulations on the iris 
data set. Since the wine data set has 13 attributes, the number of linguistic 
rule-based systems with k attributes is isCk- The number of combinations 
of antecedent linguistic terms in each linguistic rule-based system with k 
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y. Class 1 o: Class 2 : Class 3 

Fig. 4.2. Projection of the nor
malized 150 patterns in the iris 
data set onto the a:i-X2 space and 
the classification boundary by the 
linguistic rule-based system with 
these two attributes in the an
tecedent part 

Fig. 4 .3 . Eight linguistic rules 
generated from the 150 training 
patterns in the iris data set using 
the three linguistic terms small, 
medium, and large for xi and 
X4. The other two attributes are 
removed. In each cell, the cor
responding consequent class and 
rule weight are shown 

at t r ibutes is 3^ (i.e., 3^ is the number of cells in each of the isCk grid-type 
fuzzy part i t ions). When k is small, it is easy to generate linguistic rules for 
designing a linguistic rule-based system by examining all the 3^ combinations. 
The number of linguistic rule-based systems (i.e., isCk) is also small when k 
is small. On the contrary, 3^ is huge when k is large. This means tha t it takes 
a long computat ion time to examine isCk linguistic rule-based systems when 
the number of selected at tr ibutes is large. At the same time, linguistic rule-
based systems are not interpretable when the number of selected at t r ibutes 
is large. Thus we only examined linguistic rule-based systems with three or 
less a t t r ibutes . Simulation results on training pat terns and test pat terns are 
summarized in Table 4.3 and Table 4.4, respectively. The leaving-one-out 
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technique was used to calculate the performance of each subset of the 13 
at tr ibutes on test pat terns . 

Table 4 .3 . Simulation results on training patterns in the wine data set. All subsets 
including three or less attributes are examined for input selection 

Number of a t t r ibu tes : k 

Number of cells: 3^ 
Average number of rules 
Best classification r a t e 
Average classification r a t e 
Worst classification r a t e 

Best combinat ion 

1 

3 
3.0 

68.0% 
55.4% 
43.3% 

{xis} 

2 

9 
8.9 

91.0% 
70.3% 
54.5% 

{a:i2,xi3} 

3 

27 
26.5 

95.5% 
79.9% 
61.8% 

{xr.xio.xis} 
{X7,X11,X13} 

3 
3 

67.4% 
52.3% 
27.0% 

{^i} 

9 
8.9 

90.5% 
68 .1% 
50.6% 

{a:i2,a:i3} 

27 
26.5 

94.9% 
77.8% 
56.2% 

{X7,X10,X13} 
{a;7,icii, 3:̂ 13} 

Table 4.4. Simulation results on test patterns in the wine data set. All subsets 
including three or less attributes are examined for input selection 

Number of attributes: A; 1 2 3 

Number of cells: 3^ 
Average number of rules 
Best classification rate 
Average classification rate 
Worst classification rate 

Best combination 

When the number of at t r ibutes was two, the highest classification rate on 
training pat terns was obtained from a;i2 and xis in Table 4.3 and Table 4.4. 
Figure 4.4 shows the corresponding classification boundary together with the 
normalized 178 training pat terns in the Xi2-a:^i3 space. On the other hand, 
Fig. 4.5 shows the corresponding linguistic rule table. The linguistic rule-
based system in Fig. 4.5 can be easily understood because it consists of nine 
linguistic rules with only two antecedent conditions. The classification ability 
of this linguistic rule-based system, however, is not high (i.e., classification 
rates are 91.0% on training pat terns and 90.5% on test pat terns) . From Table 
4.3 and Table 4.4, we can see tha t any linguistic rule-based systems with two 
at t r ibutes do not have high classification ability (compare the third column 
of each table for two at t r ibutes with the fourth column for three at t r ibutes) . 
This suggests tha t a linguistic rule-based system with both high comprehen-
sibility and high classification ability cannot be obtained for the wine da ta 
set by input selection. In the next section, we show how such a linguistic 
rule-based system can be obtained by rule selection. 
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: Class 1 o: Class 2 Class 3 

Fig. 4.4. Projection of the nor
malized 178 patterns in the wine 
data set onto the xi2-a^i3 space 
and the classification boundary 
by the linguistic rule-based sys
tem with these two attributes in 
the antecedent part 

Fig. 4.5. Nine linguistic rules 
generated from the 178 training 
patterns in the wine data set us
ing the three linguistic terms on 
a: 12 and xis. The other eleven at
tributes are removed 

4.3 Genetic Algorithm-Based Rule Selection 

The use of genetic algorithms [48, 55] for selecting a small number of linguis
tic rules from a large number of candidate rules was proposed in Ishibuchi 
et al. [83, 84]. This idea was extended to the case of two-objective rule se
lection in [65] for explicitly examining the tradeoff between the number of 
linguistic rules and the classification ability of linguistic rule-based systems. 
Genetic algorithm-based rule selection was further extended to the case of 
three-objective rule selection in [71, 94] by considering the length of each lin
guistic rule together with the above-mentioned two objectives. In this section, 
we explain rule selection in the framework of single-objective optimization. 
Multi-objective rule selection is explained in a later chapter. 
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4.3.1 Basic Idea 

A genetic algorithm-based rule selection method consists of two phases. The 
first phase is the generation of candidate rules using the heuristic rule genera
tion method in Chap. 2. The second phase is the selection of a small number 
of linguistic rules from a large number of candidate rules using a genetic 
algorithm. 

We explain the basic idea of the genetic algorithm-based rule selection 
method using the simple two-dimensional pattern classification problem in 
Fig. 2.1 of Chap. 2. As we have already shown in Fig. 2.4 of Chap. 2, nine 
linguistic rules are generated using the grid-type 3 x 3 fuzzy partition with 
the three linguistic terms small, medium, and large for each attribute. All 
the nine linguistic rules have two antecedent conditions. While the linguistic 
rule-based system with the nine linguistic rules is simple, we can construct a 
simpler linguistic rule-based system by considering linguistic rules with only 
a single antecedent condition in addition to those with two conditions. In 
fact, the two-dimensional pattern classification problem in Fig. 2.1 can be 
handled by the following four linguistic rules: 

If xi is large then Class 2 with 0.839, 
If X2 is medium then Class 2 with 0.255, 
If X2 is large then Class 1 with 0.428, 
If xi is small and X2 is medium then Class 1 with 0.705. 

The rule weight of each linguistic rule is calculated using the third defini
tion (the same rule weight is also obtained for each linguistic rule from the 
second and fourth definitions because the number of classes is two in Fig. 
2.1). The first linguistic rules can be viewed as having a don^t care condition 
on the second attribute X2. Similarly, a don't care condition is used on the 
first attribute xi in the second and third linguistic rules. The classification 
boundary by these four linguistic rules is shown in Fig. 4.6. From the com
parison between Fig. 4.6 with the four linguistic rules and Fig. 2.7 with the 
nine linguistic rules in Chap. 2, we can see that almost the same classification 
boundaries were obtained by the two linguistic rule-based systems in Fig. 2.7 
and Fig. 4.6. This observation suggests that we may be able to construct sim
pler linguistic rule-based systems using short linguistic rules (e.g., the first 
three linguistic rules in the above four rules) than simple grid-type fuzzy par
titions without significant deterioration in their classification performance. 

In the genetic algorithm-based rule selection method, we use as candi
date rules short linguistic rules with some don't care conditions as well as 
standard linguistic rules with no don't care conditions. In the case of the 
two-dimensional pattern classification problem in Fig. 4.6, we examine 16 
cells in the four fuzzy partitions in Fig. 4.7 for generating candidate rules. 
The bottom-right figure is the standard simple grid-type fuzzy partition. In 
the bottom-left figure, the antecedent condition on the second attribute X2 is 
don't care. On the other hand, the antecedent condition on the first attribute 
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• : Class 1 o: Class 2 

L • ^ 

• 
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• 
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L/vj 
Fig. 4.6. Decision regions of the four 
linguistic rules and the classification 
boundary 

Xi is don^t care in the top-right figure. The single linguistic rule in the top-left 
figure has two don't care conditions (i.e., has no antecedent condition). The 
shaded regions in Fig. 4.7 correspond to the above-mentioned four linguistic 
rules in Fig. 4.6. 

For high-dimensional pattern classification problems, we only generate 
short linguistic rules using many don't care conditions. We have already em
ployed this trick in the computer simulations on the wine data set in Chaps. 
2 and 3. Only short linguistic rules are used as candidate rules in the genetic 
algorithm-based rule selection method for designing linguistic rule-based sys
tems with high interpretability and high classification ability. 

The inclusion or exclusion of each candidate rule is represented by a sin
gle binary variable. As a result, any subset of candidate rules is represented 
by a binary string. The length of the binary string is the same as the num
ber of candidate rules. Genetic algorithms are used to handle such a binary 
string. The fitness value of each subset is calculated from its classification 
performance and its cardinality (i.e., the number of linguistic rules). In the 
following subsections, we explain the genetic algorithm-based rule selection 
method in detail. 

4.3.2 Generation of Candidate Rules 

Let Ki be the number of linguistic terms given for the i-th attribute of an 
n-dimensional pattern classification problem. In addition to the Ki linguistic 
terms, ^^don't care'^ is also used for each attribute as an additional antecedent 
linguistic term (i.e., an additional antecedent fuzzy set) for generating candi
date rules. The membership value of don't care is always unity in the domain 
interval of each attribute as shown in Fig. 4.7. The total number of combina
tions of antecedent fuzzy sets is {Ki + 1) x {K2 + 1) x . . . x {Kn + 1). In Fig. 
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• : Class 1 o: Class 2 • : Class 1 o; Class 2 
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don 't care 
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• : Class 1 o: Class 2 

X2 

: Class 1 o: Class 2 

Xl 

Fig. 4.7. Four fuzzy partitions of the two-dimensional pattern space [0,1] x [0,1]. 
All the 16 cells in the four fuzzy partitions are used for generating candidate rules. 
Shaded regions correspond to the four linguistic rules in Fig. 4.6 

4.7 with the three linguistic terms for each of the two attributes, the total 
number of combinations of antecedent fuzzy sets is (3 + 1) x (3 + 1) = 16. 
Each combination of antecedent fuzzy sets corresponds to a single cell in the 
four fuzzy partitions of the pattern space in Fig. 4.7. 

For low-dimensional pattern classification problems, we can examine all 
combinations of antecedent fuzzy sets for generating candidate rules. The 
consequent class for each combination is determined by the heuristic rule 
generation method in Chap. 2. The rule weight of each candidate rule is de
termined by the third definition in Chap. 2. All the generated rules are used 
as candidate rules in the genetic algorithm-based rule selection method. For 
example, 16 combinations of antecedent fuzzy sets are examined for generat
ing candidate rules for the two-dimensional pattern classification problem in 
Fig. 4.7. Table 4.5 shows the generated candidate rules. All the 15 linguistic 
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rules in Table 4.5 are used as candidate rules. It should be noted that the 
linguistic rule with the antecedent part "If xi is don^t care and X2 is don't 
care^^ is not generated as a candidate rule in Table 4.5. For this linguistic 
rule with no antecedent condition (i.e., with two don't care conditions), all 
the training patterns are fully compatible. In Fig. 4.7, the number of Class 1 
patterns is the same as that of Class 2 patterns. Thus the consequent class 
of this linguistic rule cannot be uniquely specified by the heuristic rule gen
eration method in Chap. 2. As a result, this linguistic rule is not generated 
in Table 4.5. 

Table 4.5. Candidate rules for the two-dimensional pattern classification problem 
in Fig. 4.7 

Rule 

Ri 
R2 
Rs 
R4 

Rs 
Re 
R7 
Rg 
Rg 
Rio 
Rii 
R12 
Rl3 
Rl4 
Rl5 

Xl 

small 
medium 

large 
don't care 
don't care 
don't care 

small 
small 
small 

medium 
medium 
medium 

large 
large 
large 

X2 

don't care 
don't care 
don't care 

small 
medium 

large 
small 

medium 
large 
small 

medium 
large 
small 

medium 
large 

Consequent 

Class 1 
Class 2 
Class 2 
Class 2 
Class 2 
Class 1 
Class 1 
Class 1 
Class 1 
Class 2 
Class 2 
Class 1 
Class 2 
Class 2 
Class 2 

Weight 

0.808 
0.049 
0.839 
0.074 
0.255 
0.428 
0.769 
0.705 
0.968 
0.013 
0.453 
0.526 
0.990 
0.911 
0.574 

On the other hand, it is impractical to examine all combinations of 
antecedent fuzzy sets for generating candidate rules in the case of high-
dimensional pattern classification problems. Thus we only generate short lin
guistic rules with many don't care conditions as candidate rules. The shortest 
linguistic rule for an n-dimensional pattern classification problem has the 
following form: 

If (no condition) then Class Cq with CFq (4.1) 

This linguistic rule is the same as the following linguistic rule with n don't 
care conditions: 

If Xl is don't care and . . . and Xn is don't care 

then Class Cq with CFq. (4.2) 

All training patterns are fully compatible with the antecedent part of this 
linguistic rule because there is no antecedent condition. This linguistic rule 
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corresponds to the top-left figure in Fig. 4.7. In the case of Fig. 4.7, we cannot 
generate the linguistic rule with no antecedent condition because the number 
of Class 1 patterns is the same as that of Class 2 patterns (see Table 4.5). 

The second shortest linguistic rule with a single antecedent condition has 
the following form: 

If Xi is Aqi then Class Cq with CFq. (4.3) 

The number of linguistic rules of this form is Ki + i^2 + • • • + ^n- The 
compatibility grade of each training pattern with the antecedent part of the 
linguistic rule in (4.3) is the same as that with the linguistic term Aqi because 
there is only a single antecedent condition. The first six candidate rules in 
Table 4.5, which correspond to the top-right figure and the bottom-left figure 
in Fig. 4.7, are linguistic rules of this form. 

Linguistic rules with two antecedent conditions have the following form: 

If Xi is Aqi and Xj is Aqj then Class Cq with CFq. (4.4) 

The number of linguistic rules of this form is X^̂ <;j KiKj. When Ki = K for 
all i, this is calculated as nC2 • K'^. In the same manner, we can generate lin
guistic rules with three antecedent conditions. Generated linguistic rules with 
three or less antecedent conditions are used as candidate rules in this chapter. 
When the number of attributes is large (i.e., when n is large), linguistic rules 
with three antecedent conditions are not examined for generating candidate 
rules. In this case, linguistic rules with two or less antecedent conditions are 
used as candidate rules. 

4.3.3 Genetic Algorithms for Rule Selection 

Let N be the number of candidate rules. Any subset S of the N candidate 
rules can be represented by a binary string of length N as 

S = siS2 ...SN. (4.5) 

In (4.5), Sq = 1 means that the q-th candidate rule Rq is included in the 
subset S while Sq = 0 means that Rq is not included in S. For example, any 
subset S of the 15 candidate rules in Table 4.5 is represented by a binary 
string of length 15 (i.e., S — siS2 - • - si^). The number of linguistic rules in S 
(i.e., the cardinality of S) is denoted by \S\. The cardinality l^l is the same 
as the number of I's in the binary string S. For example, the subset including 
the four linguistic rules in the shaded regions of Fig. 4.7 is represented as 

S = 001011010000000. (4.6) 

This binary string shows the following subset of the 15 candidate rules in 
Table 4.5: 

5 = {i?3,i?5,i^6,i^8}. (4.7) 
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Each binary string S can be viewed as a linguistic rule-based system. 
For assigning a fitness value to the string 5, training patterns are classified 
by linguistic rules in S. Let NCP{S) be the number of correctly classified 
training patterns by S. The fitness value of 5 is defined as 

fitness{S) = NCP{S) - w^si • \S\, (4.8) 

where l^l is the number of linguistic rules in S and w^s\ is a positive con
stant. The second term is added as the penalty with respect to the number 
of linguistic rules in order to find a small number of linguistic rules with 
high classification ability. A genetic algorithm is used to search for the op
timal subset with the maximum fitness value among the 2^ subsets of the 
N candidate rules. Of course, the obtained optimal subset depends on the 
specification of the positive constant w^s\' In the field of evolutionary com
putation, an objective function to be maximized is referred to as a fitness 
function. In this chapter, fitness{S) in (4.8) is the fitness function in rule 
selection. 

While we consider two diff'erent criteria (i.e., classification ability and the 
number of linguistic rules) in (4.8), they are treated within the framework 
of single-objective optimization because w^s\ is a pre-specified constant. In 
a later chapter, we explain how rule selection can be treated within in the 
framework of multi-objective optimization. 

Since each feasible solution S (i.e., each subset S) is represented by a 
binary string with a scalar fitness value, we can directly apply genetic algo
rithms [48, 55] to the maximization problem of the fitness function in (4.8). 
First a pre-specified number of initial strings of length N are randomly gen
erated. An initial population consists of the generated strings. It is possible 
to use some heuristic procedures for generating initial strings. We will use 
such a heuristic in later chapters. An example of a randomly generated ini
tial population is shown in Table 4.6 where ten binary strings of length 15 
are randomly generated for the two-dimensional pattern classification prob
lem in Fig. 4.7. For explanation purposes, the generated strings are sorted 
in descending order of their fitness values in Table 4.6. The value oi w\s\ in 
the fitness function in (4.8) is specified as w\s\ = 0 . 1 . The number of strings 
in each population is referred to as the population size, which is denoted as 
Â pop in this book. The population size of the initial population in Table 4.6 
is ten (i.e., Â pop = 10). 

The search for good strings is performed by generating new strings from 
existing ones in the current population using genetic operations called selec
tion, crossover, and mutation. The point is to use good strings for generating 
new strings. Selection is a genetic operation that selects a pair of good parent 
strings from which new strings are generated. Crossover is a genetic operation 
that combines two parent strings for generating new strings. Mutation is a 
genetic operation that partially and randomly modifies each string. 

Traditionally, roulette wheel selection has been used to select parent 
strings. In this selection scheme, the selection probability of each string is 
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Table 4.6. A randomly generated initial population for the two-dimensional pat
tern classification problem in Fig. 4.7. The value of w\s\ is specified as w\s\ = 0.1 
for calculating the fitness value of each string 

String 

Si 
S2 
Ss 
54 
55 
56 
57 
58 
59 
5io 

Binary code 

000011010100011 
100100011111011 
101111110100100 
111111101001001 
101001111111100 
111010001001000 
100011000011111 
100000001011000 
111000111010011 
010110010110101 

NCP{S) 
28 
28 
28 
28 
28 
27 
27 
26 
25 
22 

1̂1 
6 
9 
9 
10 
10 
6 
8 
4 
9 
8 

fitness{S) 
27.4 
27.1 
27.1 
27.0 
27.0 
26.4 
26.2 
25.6 
24.1 
21.2 

proportional to its fitness value. That is, a string Sk in the population ^ has 
the following selection probability: 

PiSu) = f"";!'^'"^.,. (4.9) 
2^ jitness{Sj) 

Roulette wheel selection seems to have two drawbacks. One is the slow con
vergence in the late stage of evolution. Let us consider a situation where the 
fitness values of ten strings are {96, 94, 93, 93, 92, 90, 90, 88, 87, 85}. In this 
case, the selection probabilities of these strings are almost the same. Thus 
the selection pressure toward good strings is very low. The other drawback 
is the premature convergence in the early stage of evolution. Let us consider 
another situation where the fitness values of ten strings are {50, 4, 4, 3, 2, 2, 
2, 2, 1, 1}. In this case, the first string has a much larger selection probability 
than the other strings. Thus the selection pressure toward this string is very 
high. As a result, the first string is frequently selected as parent strings. This 
leads to the next population consisting of similar strings generated from the 
first string with the largest fitness value in the previous population. 

In the genetic algorithm-based rule selection method in Ishibuchi et al. 
[83, 84], roulette wheel selection with linear scaling was used as 

fitnessjSk) - /min(^) ..^^. 
^^ '' - E IfitnessiS,) - UUn' ^ ^ ^ 

where /min(^) is the worst fitness value in the current population y^: 

U,r.m = mm{fitness{Sk)\Sk G ^ } . (4.11) 

Recently binary tournament selection with replacement has often been used 
in genetic algorithms. In this selection scheme, two strings are randomly 
selected with replacement. These two strings can be the same (i.e., a single 
string can be selected twice). The better string with the higher fitness value 
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is selected as a parent string. The selection probability of each string can be 
analytically calculated for binary tournament selection with replacement. In 
the case of Table 4.6 with ten strings, the selection probability of the best 
string ^i is calculated as 

The denominator is the total number of combinations of selecting two strings 
from ten strings with replacement. The first term of the numerator is also 
the total number of combinations of two strings. The second term is the 
total number of combinations of two strings excluding the best string ^ i . In 
the same manner, the selection probability of the second best string S2 is 
calculated as 

9 x 9 - 8 x 8 
^^^^) ^ 10x10 • ^ ' - ' '^ 

While roulette wheel selection depends on the fitness value of each string, 
tournament selection depends on only the order of the fitness value of each 
string. 

In Table 4.7, we compare the above-mentioned three schemes (i.e., roulette 
wheel selection, roulette wheel selection with linear scaling, and binary tour
nament selection with replacement) with one another using the ten strings in 
Table 4.6. Table 4.7 clearly shows the effect of the linear scaling on the selec
tion probability of each string. This table also shows the diff'erence between 
roulette wheel selection and binary tournament selection. In this chapter, we 
use binary tournament selection with replacement in genetic algorithms for 
rule selection. 

Table 4.7. Selection probability of each string in Table 4.6 

String 

Si 
52 
S3 
54 
56 
56 
57 
58 
59 
5*10 

fitness{S) 

27.4 
27.1 
27.1 
27.0 
27.0 
26.4 
26.2 
25.6 
24.1 
21.2 

Roulette wheel selection 

No scaling 

0.106 
0.105 
0.105 
0.104 
0.104 
0.102 
0.101 
0.099 
0.093 
0.082 

Scaling 

0.132 
0.125 
0.125 
0.123 
0.123 
0.110 
0.106 
0.093 
0.062 
0.000 

Binary 

tournament 

0.190 
0.160 
0.160 
0.120 
0.120 
0.090 
0.070 
0.050 
0.030 
0.010 

After a pair of parent strings is selected from the current population, a 
crossover operation is used to generate new strings from the selected parent 
strings. One-point crossover, two-point crossover, and uniform crossover have 
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frequently been used for binary strings in genetic algorithms. These crossover 
operations are illustrated in Figs. 4.8 - 4.10 where Si and 52 in Table 4.6 are 
used as parent strings for illustration purposes. 

Crossover point 

Si IQIOIOIO 

Si l l l O l O l l 

IQIOIOIO 

I I I O I O I I 

Si lOlOlOlO 

52 I I I O I O I I 

foToToTo 

nioToTT 

l I l l O l l l O l l l O I O I O I l l l l 

OlOlll l l l l l l l lOll l l l 

iIoioiiiiiiiiflTol IIJJ 

1|Q| 1 |Q| 1 |Q|Q|Q| 1| 11 Yig. 4.8. One-point crossover operation 

Crossover points 

iTiloiiloii loToioiil i l 

OlOlOllllllllTllOlllll 

iIo|o|i|i|i|iIo|oIIII] 

oTilQliloiiloTiTol 1 1 Fig. 4.9. Two-point crossover operation 

In the one-point crossover operation in Fig. 4.8, a single crossover point is 
randomly selected. A different crossover point is selected for a different pair 
of parent strings. Each parent string is divided into two parts by the single 
crossover point. Then the right hand side of one parent string is interchanged 
with the corresponding part of the other parent string. 

On the other hand, two crossover points are randomly selected in the two-
point crossover operation in Fig. 4.9. Each parent string is divided into three 
parts by the two crossover points. The substring between the two crossover 
points of one parent string is interchanged with the corresponding part of the 
other parent string. 

In the uniform crossover operation in Fig. 4.10, locations (i.e., loci) are 
randomly chosen for crossover. These locations are indicated by * in Fig. 
4.10. We randomly assign * to each location with the probability 0.5 for 
implementing the uniform crossover operation. Values (i.e., genes) in the 
selected locations of one parent string are exchanged with those of the other 
parent string. In this chapter, we use the uniform crossover operation because 
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^1 |Q|0|0|0|l|l|Q|l|0|l|Q|Q|OTnn 

& lllOlOlllOlOlOlllllllllllOlllll 

IIIOIOIOIIIOIOIIIQIIIOIQIOIIIII 

|0 |0 |0 |1 |0 |1 |Q|1 |1 |1 |1 |1 |0 |1 |1 | Fig. 4.10. Uniform crossover operation 

this operation is independent of the order of rules located in each string. On 
the other hand, the other crossover operations depend on the order of rules 
(e.g., offspring are likely to inherit adjacent rules from their parents by the 
one-point and two-point crossover operations). 

The uniform crossover operation is applied to each pair of parent strings 
with a pre-specified crossover probability. This means that the crossover op
eration is not applied to some pairs of parent strings. In this case, parent 
strings are not modified by the crossover operation. 

A mutation operation is applied to each string after the crossover opera
tion. We use a simple flip-flop mutation operation. This mutation operation is 
illustrated in Fig. 4.11 where mutated values are indicated by shaded boxes. 
The mutation operation is applied to each location in each string with a 
pre-specified mutation operation. 

I I I O I O I O I I I O I O I I I O I I I O I O I O I I I I I 

| 1 |0 |0 |0B0|0 |1 |0 |1 |0 |1 |0 |1 |1 | Fig. 4.11. Mutation operation 

The best string in the current population is inherited by the next popula
tion with no modification. This is referred to as an elitist strategy or elitism. 
We use this strategy in genetic algorithms for rule selection. In the case of 
Table 4.7, the best string 5i is inherited by the next population (see Table 
4.8). 

As we have explained, the next population is generated from the cur
rent one using binary tournament selection with replacement, the uniform 
crossover, the flip-flop mutation, and the elitist strategy. This is illustrated 
in Table 4.8 for the current population in Table 4.7. The first column of Table 
4.8 shows five pairs of parent strings that are selected by binary tournament 
selection with replacement. The second column shows new strings after the 
crossover operation. The crossover operation is not applied to the second pair 
of parent strings. The best string in Table 4.7 is inserted in the bottom row 
of the third column as the elite string. The third column shows strings after 
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the mutation operation. Mutated values are underlined in this column. The 
next population consists of the ten strings in the third column. It should be 
noted that the elite string is handed down from the current population to 
the next population with no modification. 

Table 4.8. Next population generated from the current population in Table 4.7 

Si 
Sr 

Ss 
Si 

Se 
S4 

54 
S4 

S5 
S2 

Parent strings 

000011010100011 
100011000011111 

101111110100100 
000011010100011 

111010001001000 
111111101001001 

111111101001001 
111111101001001 

101001111111100 
100100011111011 

After crossover 

lOOOllOlOlOOOll 
000011000011111 

101111110100100 
000011010100011 

IIIOIIIOIOOIOOO 
111110001001001 

111111101001001 
111111101001001 

100101111111011 
Elite string (^i) 

After mutation 

100011010100011 
000111001011111 

101111100100100 
001011010100011 

IIIOIIIOIOOIOOO 
lOlllOOOlOOlOOl 

IIIOIIIOIOOIOOO 
111110111001001 

lOOlOOll l l l lOl l 
000011010100011 

The above-mentioned genetic operations (i.e., selection, crossover, muta
tion, and elitist strategy) are iterated to find the optimal rule set with the 
highest fitness value. Since good strings with high fitness values are selected 
from the current population for generating the next population, we expect 
that better strings are obtained through the iterations of the genetic opera
tions. Our genetic algorithm for rule selection can be written as follows: 

[Genetic Algorithm for Rule Selection] 

Step 0: Parameter Specification. Specify the population size Npop^ the cross
over probability Pc, the mutation probability pm^ and the stopping 
condition. 

Step 1: Initialization. Randomly generate Â pop binary strings of length N 
as the initial population. 

Step 2: Genetic Operations. Calculate the fitness value of each string in the 
current population. Store the best string as the elite string. Gener
ate (A p̂op — 1) strings using selection, crossover, and mutation from 
the current population. The current population is replaced with the 
newly generated (A p̂op — 1) strings. 

Step 3: Elitist Strategy. Add the elite string stored in Step 2 to the current 
population. 

Step 4: Termination Test. If the stopping condition is not satisfied, return 
to Step 2. Otherwise terminate the execution of the algorithm. The 
best string in the current population is the obtained solution of the 
rule selection problem. 
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4.3.4 Computer Simulations 

We applied the genetic algorithm-based rule selection method to the two-
dimensional test problem in Fig. 4.7 with the 15 candidate rules in Table 4.5. 
Each subset of the candidate rules was denoted by a binary string of length 
15. The value of w\s\ in the fitness function (4.8) was specified as w\s\ = 0-1. 
This specification means that the first objective (i.e., the number of correctly 
classified training patterns) is more important than the second objective (i.e., 
the number of selected linguistic rules). The sensitivity of obtained rule sets to 
the specification ofw\s\ is examined later in this subsection through computer 
simulations with various values of w\s\-

In Step 0 of the genetic algorithm for rule selection in the previous sub
section, we have to specify some parameter values. In computer simulations 
on the two-dimensional test problem, we used the following parameter spec
ifications: 

Population size: Â pop = 10, 
Crossover probability: Pc = 0.8, 
Mutation probability: Pm — l/(string length) = 1/15, 
Stopping condition: 500 iterations (i.e., 500 generation updates). 

Since the string length is small (i.e., the search space is small), the population 
size and the total number of iterations are also small. The above specification 
of the mutation probability means that each string has a single occurrence of 
mutation on the average. From the population size and the stopping condi
tion, we can see that 5000 subsets were examined among 2^^ = 32768 subsets 
of the 15 candidate rules. In Step 1, ten strings were randomly generated. We 
have already shown the generated strings in Table 4.6. The next population 
was generated by selection, crossover, and mutation in Step 2 and the elitist 
strategy in Step 3. We have already shown the updated population in Table 
4.8. The generation update (i.e., generating the next population from the cur
rent one) was iterated 500 times. Then the genetic algorithm was terminated. 
The following string was obtained as the best string in the final population: 

S = 001011010000000. (4.14) 

This string corresponds to the following rule set: 

S = {i?3,i^5,i^6,i^8}. (4.15) 

We have already used this rule set to explain rule selection in this chapter 
(see Fig. 4.6 and Fig. 4.7). 

We performed the same computer simulation 20 times using different ini
tial populations. The rule set in (4.15) was obtained from 14 trials (out of 
the 20 trials). To examine the optimality of this rule set, we calculated the 
fitness values of all the 2^^ — 32768 subsets of the 15 candidate rules. From 
those exhaustive calculations, we confirmed that the rule set in (4.15) is one 
of the two optimal solutions with the maximum fitness value. The other op
timal solution was found from the remaining six trials in the above computer 
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simulations. This means that the genetic algorithm could find the optimal 
solution by examining 5000 solutions among 32768 possible solutions. 

Figure 4.12 shows the average classification rate of the elite string at 
each generation over the 20 trials. From this figure, we can see that the 
average classification rate was rapidly improved by the genetic algorithm 
during the first 100 generations. On the other hand, Fig. 4.13 shows the 
average cardinality of the elite string at each generation over the 20 trials. 
From the comparison between Fig. 4.12 and Fig. 4.13, we can see that the 
decrease in the number of linguistic rules was slower than the increase in the 
classification rate. This is because the value ofw\s\ was small (i.e., w^s\ = 0-1) 
in the fitness function (4.8). 

100 200 300 400 
Number of generations 

500 

Fig. 4.12. The average classi
fication rate of the elite string 
at each generation over the 20 
trials in the case of wis\ = 0.1 

100 200 300 400 
Number of generations 

500 

Fig. 4.13. The average cardi
nality of the elite string at each 
generation over the 20 trials in 
the case of w\s\ =0.1 

We also performed the same computer simulation using a large value for 
w^si in the fitness function (4.8). The value of w^si was specified as w\s\ = 
2. This means that the minimization of the number of linguistic rules is 
more important than the maximization of the number of correctly classified 
training patterns. Average simulation results over 20 trials are summarized 
in Fig. 4.14 and Fig. 4.15. From these figures, we can see that the increase 
in the number of correctly classified training patterns in Fig. 4.14 was slower 
than the decrease in the number of linguistic rules in Fig. 4.15. We can also 
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see that the average classification rate deteriorated from Fig. 4.12 to Fig. 
4.14 on increasing the value of w\s\- At the same time, the average number 
of linguistic rules was decreased from Fig. 4.13 to Fig. 4.15 by increasing 
w\s\' The following rule set was obtained from all the 20 trials when w\s\ was 
specified as w\s\ = 2: 

S = {R^,Rs,Ri2}- (4.16) 

This rule set is the optimal solution in the case ofw]^s\ = 2. Figure 4.16 shows 
the decision region of each linguistic rule in the rule set (4.16) together with 
the classification boundary. 

u 
100 200 300 400 

Number of generations 
500 

Fig. 4.14. The average classi
fication rate of the elite string 
at each generation over the 20 
trials in the case of it;|5| = 2 

100 200 300 400 
Number of generations 

500 

Fig. 4.15. The average cardi
nality of the elite string at each 
generation over the 20 trials in 
the case of w\s\ = 2 

4.4 Some Extensions to Rule Selection 

We have already explained the structure of the genetic algorithm-based 
rule selection method. While the genetic algorithm worked well on the two-
dimensional test problem, some extensions are required to improve its effi
ciency and applicability when it is applied to real-world pattern classification 
problems with many attributes. In this section, we present some heuristics for 
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•: Class 1 o: Class 2 

Fig. 4.16. Decision region of each lin
guistic rule in the rule set in (4.16) 
and the classification boundary 

improving the efficiency and the applicability of the genetic algorithm-based 
rule selection method. 

4.4.1 Heuristics in Genetic Algorithms 

One heuristic is the removal of unnecessary linguistic rules from each string 
S (i.e., each rule set S). Since we use the single winner-based method, the 
classification of each pattern by the rule set S is performed by finding a 
single winner rule with the maximum product of the rule weight and the 
compatibility grade with that pattern as we have already explained in Chap. 
2. There may be a case where some linguistic rules in S are not chosen as 
winner rules for any patterns. We can remove these linguistic rules from S 
without causing any changes in the classification results by S. That is, the 
removal of those linguistic rules does not decrease the number of correctly 
classified training patterns by S. At the same time, the number of linguis
tic rules is decreased by removing unnecessary linguistic rules. This leads to 
an improvement in the fitness value of S. Thus we remove all linguistic rules 
that are not selected as winner rules for any patterns from the rule set S. The 
removal of those linguistic rules is performed for each string of the current 
population by changing the corresponding I's to O's. This heuristic proce
dure can be viewed as a kind of local search because each string is modified 
to improve its fitness value. The removal of unnecessary linguistic rules is 
performed when the fitness value is calculated (i.e., between the calculation 
of the number of correctly classified training patterns and the calculation of 
the number of linguistic rules). 

For example, let us consider the following two linguistic rules in Table 4.5 
for the two-dimensional test problem in Fig. 4.7: 
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Ri: If xi is small and X2 is don^t care then Class 1 with 0.808, 
Rs'. If xi is small and X2 is medium then Class 1 with 0.705. 

When these two linguistic rules are included in the rule set S, Rsis never cho
sen as the winner rules of any patterns because both the compatibility grade 
and the rule weight of Ri are always larger than Rg. Thus we can remove Rs 
from the rule set S without causing any changes in the classification results 
by S when both Ri and Rs are included in 5. In this case, the removal of Rs 
from S improves the fitness value of S. 

Another heuristic is the use of biased mutation probabilities. For effi
ciently decreasing the number of linguistic rules in each rule set (i.e., the 
number of I's in each string), we assign a higher probability to the mutation 
from 1 to 0 than the mutation from 0 to 1. We briefly explain here the effect 
of the unbiased mutation on the number of linguistic rules. Let N and pm be 
the number of candidate rules (i.e., string length) and the mutation proba
bility, respectively. The number of I's and O's in the string S are written as 
\S\ and Â  — |5 | , respectively. Thus the expected number of I's to be mutated 
to 0 is written for the string S as 

Nm{l -^ 0) = \S\ - Pm- (4.17) 

On the other hand, the expected number of O's to be mutated to 1 is written 
as 

Nm{0-^ 1) = {N - \S\) ' Pm- (4.18) 

Since initial strings are randomly generated, jS'l is almost the same as A^—15|. 
Thus the mutation operation does not change the number of linguistic rules 
on the average in the initial stage of evolution. Since the goal of rule selection 
is to find a small number of linguistic rules from a large number of candidate 
rules, 151 should be much smaller than N in the late stage of evolution. Thus, 
| 5 | should be much smaller than N - \S\. In this case, Nm{0 -^ 1) in (4.18) 
is much larger than Nm{l —>• 0) in (4.17). This means that the mutation 
operation increases the number of linguistic rules on the average while the 
goal of rule selection is to find a small number of linguistic rules. The aim of 
using biased mutation probabilities is twofold. One is to rapidly decrease the 
number of linguistic rules in the initial stage of evolution where the number 
of I's is almost the same as the number of O's in each string. The other is 
to prevent the mutation operation from increasing the number of linguistic 
rules in the late stage of evolution where the number of I's is much smaller 
than the number of O's. 

For simplicity of explanation, let us consider a rule set S with TV == 1010 
and \S\ = 10. In this case, the number of I's is 10 and the number of O's 
is 1000. When we use an unbiased mutation probability pm, the expected 
number of I's to be mutated to 0 is calculated as 

Nm{l -^ 0) = | 5 | 'Pm = 10 'Pm- (4.19) 
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On the other hand, the expected number of O's to be mutated to 1 is calcu
lated as 

NmiO ^1) = {N- \S\) -pm = 1000 . p ^ . (4.20) 

Thus we have the following relation: 

Nmil ^ 0) = Y^A^m(0 -^ 1). (4.21) 

From this relation, we can see that the mutation operation almost always 
increases the number of linguistic rules. 

We examined the effect of the two heuristics (i.e., the removal of unnec
essary linguistic rules and the use of biased mutation probabilities) through 
computer simulations on the iris data set. First we generated linguistic rules 
by examining all combinations of the four antecedent fuzzy sets (i.e., small, 
medium, large, and don't care) for each of the four attributes (i.e., 4^ = 256 
combinations). Using all the 150 samples in the iris data set as training pat
terns, 221 linguistic rules were generated. The other linguistic rules were not 
generated because their consequent classes could not be uniquely determined 
by the heuristic rule generation method in Chap. 2. All the generated lin
guistic rules were used as candidate rules in rule selection. 

We used the following four versions of the genetic algorithm-based rule 
selection method: 

GA: Original algorithm in the previous selection with no extension, 
R-GA: Modified algorithm with the removal of unnecessary linguistic rules, 
B-GA: Modified algorithm with biased mutation probabilities, 
RB-GA: Modified algorithm with both heuristics. 

These algorithms were applied to the iris data set using the following param
eter specifications: 

The value of w\s\' ^ | 5 | = 0.1, 
Population size: Â pop = 50, 
Crossover probability: pc = 0.8, 
Mutation probability: pm = l/(string length) = 1/221, 
Stopping condition: 1000 generation updates. 

In the two versions with biased mutation probabilities, the above mutation 
probability was biased as 

Pm{0 ^ 1) = l/(string length) = 1/221, 
P m ( 1 ^ 0 ) = 0 . 1 . 

We applied each algorithm to the iris data set 20 times using different 
initial populations. Simulation results over 20 trials of each algorithm are 
summarized in Fig. 4.17 and Fig. 4.18. Figure 4.17 shows the average classi
fication rate by the elite string at each generation. The difference among the 
four algorithms is not clear in this figure. This is because the two heuristics 
did not improve the classification performance of each string. On the other 
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hand, Fig. 4.18 shows the average number of linguistic rules in the elite string 
at each generation. From this figure, we can see tha t each of the two heuristics 
had a large effect on the decrease in the number of linguistic rules. 

97.5| 

U 

» GA o R-GA A B-GA ^RB-GA 

97.0 

i--0-0--C<^0-<><>-0--0-<><>-C5^0K><>^^ 

500 

Number of generations 
1000 

Fig. 4.17. The average classifi
cation rate of the elite string at 
each generation over the 20 tri
als of each version in computer 
simulations on the iris data set 

• GA o R-GA A B-GA ^RB-GA 

500 

Number of generations 
1000 

Fig. 4.18. The average cardi
nality of the elite string at each 
generation over the 20 trials of 
each version in computer simu
lations on the iris data set 

Since the number of linguistic rules in each string was rapidly decreased by 
the two heuristics as shown in Fig. 4.18, computation t ime was also decreased. 
The average CPU time of each algorithm over 20 trials is shown in Table 4.9. 
The average CPU time was measured for each algorithm implemented in the 
C language on a P C with an Intel Pentium IV 1.5 GHz processor. 

Table 4.9. The average CPU time 

Algorithm GA R-GA B-GA 

CPU time (s) 50.6 27.5 51.1 

RB-GA 

31.1 

4.4 .2 P r e s c r e e n i n g of C a n d i d a t e R u l e s 

The efficiency of the genetic algorithm-based rule selection method strongly 
depends on the number of candidate rules. It is very difficult for genetic 
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algorithms to efficiently find a small number of linguistic rules with high 
classification ability when the number of candidate rules is huge. The size 
of the search space in rule selection is 2^ where N is the number of candi
date rules. That is, the search space expands exponentially as the number of 
candidate rules increases. If we can find only good candidate rules by pre-
screening, the efficiency of genetic algorithms can be significantly improved. 
In this subsection, we explain such a prescreening procedure. 

In the computer simulations on the wine data set in Chap. 2 (i.e.. Table 
2.10 and Table 2.11), we designed linguistic rule-based systems using a heuris
tic rule selection method where the product of the confidence c(-) in (2.10) 
and the support s(-) in (2.11) was used as a rule selection criterion. In this 
subsection, we use the same heuristic method as a prescreening procedure 
of candidate rules. As in Chapter 2, generated linguistic rules are divided 
into M groups according to their consequent classes where M is the number 
of classes. Linguistic rules in each group were sorted in descending order of 
the product of the confidence and the support. When multiple linguistic rules 
have the same product, they are randomly sorted (i.e., random tiebreak). The 
first N/M rules from each group are chosen as candidate rules for finding N 
candidate rules in total. While we use the product of the confidence and the 
support as a rule selection criterion in this book, better results have been 
reported for some tet problems by more complicated criteria in [93] 

We examined the effectiveness of this prescreening procedure of candidate 
rules through computer simulations on the wine data set. First we generated 
linguistic rules with three or less antecedent conditions (i.e., with ten or 
more don^t care conditions) using the three linguistic terms small, medium, 
and large. All the 178 samples in the wine data set were used as training 
patterns. Table 4.10 summarizes the number of generated linguistic rules. 

Table 4.10. The number of generated linguistic rules with each number of an
tecedent conditions. The three linguistic terms small, medium, and large were used 
to generate linguistic rules 

Number of antecedent conditions 

0 1 2 3 

1 39 701 7585 

Total 

8326 

Using the prescreening procedure, we found a set of candidate rules. Table 
4.11 shows the relation between the number of candidate rules and their clas
sification ability on training patterns. For comparison. Table 4.11 also shows 
the classification ability of candidate rules obtained by other rule selection 
criteria (i.e., confidence and support). To decrease the effect of the random 
tiebreak, the average classification rate was calculated over 100 computer 
simulations for each case. Note that classification rates in Table 4.11 were 
measured on training patterns for the candidate rules before rule selection. 
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From Table 4.11, we can see that the highest classification rates were obtained 
when candidate rules were prescreened using the product of the confidence 
and the support. 

Table 4.11. Classification rates on training patterns of candidate rules obtained 
by the prescreening procedure for the wine data set 

Number of 

candidate rules 

3 
6 
9 

30 
60 
90 

300 
600 
900 

Rule selection criterion 

Product 

68.0% 
94.4% 
92.7% 
95.5% 
95.5% 
95.5% 
96.1% 
96.1% 
96.1% 

Confidence 

16.2% 
28.6% 
36.4% 
59.1% 
64.9% 
68.1% 
76.1% 
79.6% 
91.3% 

Support 

43.3% 
42.1% 
53.9% 
78.1% 
93.3% 
93.8% 
95.5% 
95.5% 
95.5% 

We applied the genetic algorithm-based rule selection method to 900 can
didate rules obtained by the product criterion. We used the genetic algorithm 
with the two heuristics (i.e., removal of unnecessary rules and biased muta
tion probabilities) in the same manner as in the computer simulation on the 
iris data set in the previous subsection. This computer simulation was per
formed 20 times using different initial populations. For comparison, we also 
performed the same computer simulation with no prescreening procedure. 
That is, all the generated 8326 linguistic rules in Table 4.10 were used as can
didate rules. Average simulation results are summarized in Table 4.12. From 
this table, we can see that almost the same results were obtained from the 
two cases: with prescreening and without prescreening. We can also see that 
the prescreening procedure significantly decreased the average CPU time. 

Table 4.12. Average results on the wine data set by the genetic algorithm-based 
rule selection method with/without the prescreening procedure 

Genetic algorithm-based rule selection method 
With prescreening Without prescreening 

Classification rate 100% 100% 
Number of rules 6.9 7.0 
CPU times (s) 119.8 546.3 

From the comparison between Table 4.11 and Table 4.12, we can see that 
the genetic algorithm-based rule selection method significantly improved the 
classification ability of candidate rules. The average classification rate 96.1% 
of 900 candidate rules in Table 4.11 was improved to 100% by selecting 6.9 
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linguistic rules on the average in Table 4.12. We can also see from Table 
4.11 that small rule sets designed by the prescreening procedure have lower 
classification rates than the average result of the genetic algorithm-based 
rule selection method in Table 4.12. This is because the classification accu
racy of rule sets is taken into account in the genetic algorithm-based rule 
selection method while the classification ability of individual linguistic rules 
is independently evaluated in the prescreening procedure using a heuristic 
rule evaluation criterion. This observation shows the advantage of the ge
netic algorithm-based rule selection method over heuristic rule selection. Of 
course, it should be noted that the prescreening procedure is used to find 
a tractable number of candidate rules in the genetic algorithm-based rule 
selection method in this chapter. 

4.4.3 Computer Simulations 

We further examine the genetic algorithm-based rule selection method through 
computer simulations on the iris data set and the wine data set. We have used 
the three linguistic terms small, medium, and large in the previous computer 
simulations of this chapter. That is, we have used the same fuzzy partition 
into the three linguistic terms for all attributes of each data set. In this sub
section, we use the four fuzzy partitions with different granularities in Fig. 1.4 
of Chap. 1. That is, we use the 14 antecedent fuzzy sets in Fig. 1.4 and don't 
care for each attribute. This is to demonstrate how the genetic algorithm-
based rule selection method can be employed in the case where we do not 
know an appropriate fuzzy partition for each attribute. The total number of 
combinations of antecedent fuzzy sets is (14-1-1)"^ in an n-dimensional pattern 
classification problem. Thus far more candidate rules are generated in com
puter simulations of this subsection than the case with the three linguistic 
terms in the previous computer simulations. 

In the application of the genetic algorithm-based rule selection method 
to the iris data set, we generated 32840 linguistic rules by examining all the 
(14-1-1)^ combinations of antecedent fuzzy sets for generating candidate rules. 
While it is not impossible to use all the generated 32840 linguistic rules as 
candidate rules with no prescreening, a long computation time is required to 
find good rule sets. Thus we chose 900 candidate rules using the prescreening 
procedure. We applied the genetic algorithm with the two heuristics to the 900 
candidate rules in the same manner as in the previous computer simulations 
on the iris data set. We examined four specifications of w^s]' ̂ \s\ =0.1,0 .5 ,1 , 
and 5. Note that the value oi w\s\ can be viewed as the penalty with respect 
to the number of linguistic rules. A large value oi w^s\ tends to decrease the 
number of linguistic rules at the expense of the classification ability of rule 
sets. On the other hand, a small value of w\s\ may lead to relatively large 
rule sets with high classification ability. 

For each specification of w^s\^ the computer simulation was iterated 20 
times. Average simulation results are summarized in Table 4.13. This table 



4.4 Some Extensions to Rule Selection 97 

clearly shows the effect of the value of w^s\ on ^he characteristic features of 
obtained rule sets. When w\s\ is very large (i.e., w\s\ — 5), only three linguistic 
rules were selected. That is, only a single linguistic rule was selected for each 
class. On the other hand, many linguistic rules with high classification ability 
were selected when w\s\ is very small (i.e., 1̂ 151 = 0.1). 

Table 4.13. Simulation results on training patterns of the iris data set using various 
specifications of the penalty with respect to the number of linguistic rules in the 
fitness function 

Value of :!ML 0.1 0.5 1 
Classification rate 99.3% 98.7% 98.0% 97.7% 
Number of rules 5.5 4.7 3.3 3.0 

As shown in Table 4.13, rule sets with different sizes can be obtained 
from multiple runs of the genetic algorithm-based rule selection method using 
different specifications of w^sy Iii ^ later chapter, we discuss the handling 
of rule selection in the framework of multi-objective optimization where a 
number of rule sets can be obtained from a single run of a multi-objective 
genetic algorithm. 

In Fig. 4.19, we show an example of a rule set with three linguistic rules 
selected by the genetic algorithm-based rule selection method with w\s\ — 5 
(i.e., a large penalty value with respect to the number of linguistic rules). 
Each shaded triangle shows an antecedent fuzzy set. Each real number in 
parentheses is the rule weight of the corresponding linguistic rule. This rule 
set can correctly classify 146 training patterns (i.e., 97.3% of the 150 samples 
in the iris data set). We can see from Fig. 4.19 that very simple linguistic 
rules were selected. Thus this rule set is easily understood by human users. 
While we did not use input selection in an explicit manner, the selected three 
linguistic rules do not have antecedent conditions on x\ and xi-
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1 DC 1 1 DC 1 1 DC 1 KXXI 
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1 DC 1 1 DC 1 I X ^ 1 DC 1 
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Class 1 
(1.00) 

Class 2 
(0.94) 

Class 3 
(0.61) 

Fig. 4.19. An example of a rule 
set with three linguistic rules se
lected by the genetic algorithm-
based rule selection method with 
w\s\ = 5 for the iris data set 

In Fig. 4.20, we show an example of an obtained rule set in the case of 
a small penalty value with respect to the number of linguistic rules (i.e., 
w^s\ — O-l)- This rule set can correctly classify 150 training patterns (i.e., 
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100% of the 150 samples). The classification rate of the rule set in Fig. 4.20 
is higher than that of the rule set in Fig. 4.19 (i.e., 97.3%). At the same 
time, the rule set in Fig. 4.20 is more complicated than that in Fig. 4.19. The 
rule set in Fig. 4.20 includes more linguistic rules, and each linguistic rule 
has more antecedent conditions. From the comparison between Fig. 4.19 and 
Fig. 4.20, we can see a tradeoff between the classification ability of each rule 
set and its complexity. This tradeoff is handled by the value of w^s\ ^^ the 
genetic algorithm-based rule selection method in this chapter. The tradeoff 
is further discussed in a later chapter in the framework of multi-objective 
optimization. 
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Fig. 4.20. An example of a 
rule set obtained by the ge
netic algorithm-based rule selec
tion method with W\Q\ = 0.1 for 
the iris data set 

s\ 

To examine the generalization ability (i.e., classification rates on test pat
terns), we used the leaving-one-out technique for the iris data set as in the 
computer simulations on test patterns in the previous chapters. The pre-
screening of candidate rules and the selection from candidate rules were per
formed in the same manner as in the computer simulation for Table 4.13 
using 149 training patterns. The remaining single pattern was used as a test 
pattern. The whole leaving-one-out procedure (i.e., 150 runs) was iterated 
ten times. Simulation results are summarized in Table 4.14. Since we did not 
use any trick to improve the generalization ability of selected linguistic rules 
during the evolution of rule sets in the genetic algorithm-based rule selection 
method, the classification rates of selected linguistic rules on test patterns 
are not so high in Table 4.14. The fitness function in (4.8) of this chapter 
was designed to maximize the classification rate on training patterns and 
minimize the number of linguistic rules. Thus it may be necessary to change 
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the fitness function if our goal is to find a rule set with high generalization 
ability. Discussions on the adjustment of classification boundaries in Sect. 3.3 
may be useful for modifying the fitness functions. 

Table 4.14. Average simulation results on test patterns of the iris data set 

Value of ;̂|5I 0.1 0.5 1 5 
Classification rate 93.5% 93.3% 93.2% 93.8% 
Number of rules 5.2 4.6 3.5 3.0 

We also applied the leaving-one-out procedure to the wine data set using 
the 14 antecedent fuzzy sets and don^t care as in the above computer simu
lations on the iris data set. The total number of combinations of antecedent 
fuzzy sets is (14 + 1)^^, which is much larger than (14 + 1)^ in the case of 
the iris data set. It is impractical to generate candidate rules by examining 
all the 15^^ combinations of antecedent fuzzy sets. Thus we only examined 
short linguistic rules with three or less antecedent conditions (i.e., with ten or 
more don^t care conditions). The number of generated candidate rules of each 
length is summarized in Table 4.15. We selected 900 candidate rules from the 
generated 711716 candidate rules using the prescreening procedure. In Table 
4.16, we show the relation between the number of candidate rules and their 
classification performance on training patterns. We used the product of the 
confidence and the support as the prescreening criterion of candidate rules. 

Table 4.15. The number of generated linguistic rules using 14 antecedent fuzzy 
sets and don't care for each attribute of the wine data set 

Length of rules 

Number of rules 

0 

1 

1 

182 

2 

14781 

3 

696752 

Total 

711716 

The genetic algorithm with the two heuristics was used to select a small 
number of linguistic rules from the 900 candidate rules. We used the same 
parameter specifications as in the previous computer simulations on the iris 
data set for Table 4.13. Simulation results are summarized in Table 4.17. 
From this table, we can see that rule sets with high classification rates were 
obtained by selecting a small number of linguistic rules from the 900 candidate 
rules. Note that the classification rate of the 900 candidate rules is 96.1% (see 
Table 4.16). Figure 4.21 and Fig. 4.22 show examples of obtained rule sets 
in the cases oi w\s\ = 5 and w\s\ = 0 . 1 , respectively. From these figures and 
Table 4.17, we can see that rule sets with different sizes were obtained from 
various specifications of w^s]- The rule set in Fig. 4.21 can correctly classify 
174 patterns (i.e., 97.8% of the 178 samples of the wine data set). This rule 
set has high interpretability because the number of rules is very small and 
each rule has only a few antecedent conditions. While we did not use input 
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Table 4.16. Classification rates on training patterns of candidate rules obtained 
by the prescreening procedure for the wine data set 

Number 

candidate 

3 
6 
9 

30 
60 
90 

300 
600 
900 

of 

rules 

Rule selection criterion 

Product 

89.3% 
92.1% 
93.8% 
94.9% 
94.4% 
96.1% 
96.1% 
96.6% 
96.1% 

Confidence 

11.0% 
17.8% 
21.3% 
28.7% 
30.3% 
32.0% 
32.4% 
71.3% 
98.2% 

Support 

60.7% 
52.2% 
61.2% 
88.2% 
86.5% 
88.2% 
96.6% 
96.1% 
96.1% 

selection in an explicit manner, only a few at t r ibutes are used in the obtained 
rule set in Fig. 4.21. It should be noted tha t all the 13 at t r ibutes were used 
for generating candidate rules. On the other hand, the rule set in Fig. 4.22 
can correctly classify 178 training pat terns (i.e., 100% of the 178 samples). 
This rule set has higher classification ability and lower interpretability than 
the rule set in Fig. 4.21. 

Table 4.17. Simulation results on training patterns of the wine data set using 
various specifications of the penalty with respect to the number of linguistic rules 
in the fitness function 

Value of ti;|5[ 0.1 0.5 

Classification rate 100% 100% 99.9% 98.7% 
Number of rules 5.6 5.1 3.2 3.0 

Ri 

Ri 

Xio Xl3 Consequent 

^ : i 
DC 

1 ^ [W] 

S kXl 
^3 [̂  
[^ ^ ] 

1^ [K] X̂l B 

Class 1 
(0.54) 

Class 2 
(0.65) 

Class 3 
(0.89) 

Fig. 4.21. An example of a 
rule set obtained by the ge
netic algorithm-based rule selec
tion method with it;|5| = 5 for the 
wine data set 

We also examined the average classification rate on test pat terns of the 
wine da ta set using the leaving-one-out technique in the same manner as the 
previous computer simulations on the iris da ta set for Table 4.14. The whole 
leaving-one-out procedure (i.e., 178 runs) was iterated ten times. Simulation 
results are summarized in Table 4.18. From the comparison between Table 
4.17 and Table 4.18, we can see tha t there are differences of about 5% between 
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Xi XA Xe Xi Xio Xii Xi2 Xi3 

DC ^;)^ ^T] [ ^ [ ^ [ ^ DC \m 
^ 

1^ 
1 DC 1 

^c] 
1 DC 1 

DC 1 

DC 1 

DC 1 

DC 1 

DC 1 

\m. DC 

I DC I I DC I I DC 

DC DC DC 

!££] y ^ [ ^ 

" ^ k>d r^ 

DC 

\m 
DC KA 

^ [ ^ [ ^ ["BTI 

DC DC DC 

\m ̂ A 
DC DC 

DC 

Consequent 

Class 1 
(0.95) 

Class 1 
(0.82) 

Class 2 
(0.90) 

Class 2 
(0.86) 

Class 2 
(0.63) 

Class 3 
(0.73) 

Fig. 4.22. An example of a rule set obtained by the genetic algorithm-based rule 
selection method with w\s\ — 0.1 for the wine data set 

simulation results on training patterns and test patterns. This observation 
suggests the overfitting to training patterns of rule sets obtained by the ge
netic algorithm-based rule selection method. As we have already mentioned 
with respect to the simulation results on the iris data set where there were 
also differences of about 5% between training set performance (Table 4.13) 
and test set performance (Table 4.14), it may be necessary to change the fit
ness function if our goal is to find a rule set with high generalization ability. 
It is interesting to note that the increase in the number of linguistic rules did 
not always lead to an increase in the classification rate on test patterns in 
Table 4.14 and Table 4.18. 

Table 4.18. Average simulation results on test patterns of the wine data set 

Value of If 15 L5L 0.1 0.5 
Classification rate 94.7% 95.4% 95.7% 94.4% 
Number of rules 5.6 5.2 4.3 3.0 



 

 

 

 

 



5. Genetics-Based Machine Learning 

In the previous chapter, genetic algorithms were used as an optimization tool 
for rule selection. In this chapter, genetic algorithms are used as a machine 
learning tool for designing linguistic rule-based classification systems. While 
a rule set was represented as a binary string in the previous chapter, each lin
guistic rule is coded using its antecedent fuzzy sets in this chapter. Genetic 
algorithms for machine learning are referred to as genetics-based machine 
learning (GBML) algorithms. GBML algorithms are usually divided into two 
categories: Michigan approach and Pittsburgh approach. Each rule is repre
sented by a string and handled as an individual in the Michigan approach. A 
population of strings corresponds to a rule set. On the other hand, a rule set 
is represented by a concatenated string and handled as an individual in the 
Pittsburgh approach. In this chapter, we first explain GBML algorithms in 
these two approaches for designing linguistic rule-based classification systems. 
Then we describe the hybridization of these two approaches into a single hy
brid GBML algorithm. For further discussions on fuzzy GBML algorithms, 
see Cordon et al. [24] where various fuzzy GBML algorithms are described. 

As in the previous chapter, we use linguistic rules of the following form 
for our n-dimensional pattern classification problem: 

Rule Rqi If xi is Aqi and . . . and Xn is Aqn 

then Class Cq with CFq. (5.1) 

It is assumed that m training patterns Xp = (x^ i , . . . , Xpn)^ p = 1,2, . . . ,m, 
are given from M classes as in the previous chapter. 

5.1 Two Approaches in Genetics-Based Machine 
Learning 

Genetics-based machine learning (GBML) algorithms categorized as the 
Michigan approach are often referred to as classifier systems [14]. It should be 
noted that classifier systems are totally different from classification systems. 
Classifier systems are genetic algorithms for generating rules (i.e., designing 
rule-based systems) while classification systems are computer systems that 
perform pattern classification. The main characteristic feature of Michigan-
style GBML algorithms is the handling of a single rule as an individual (i.e., 
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as a string). Thus a fitness value is assigned to a single rule. A population 
of individuals corresponds to a single rule set. The performance of a rule set 
(i.e., population) is not utilized in the evolution of rules. This means that 
rule sets are not directly optimized. On the other hand, GBML algorithms 
categorized as Pittsburgh approach [155] handle a rule set as an individual. 
A rule set is represented by a concatenated string where each substring de
notes a single rule. A population of strings corresponds to multiple rule sets. 
A fitness value is assigned to a rule set. Thus rule sets are directly optimized 
through the maximization of their fitness values in the evolution of rule sets. 
The performance of each rule in a rule set is not utilized in the evolution 
of rule sets in Pittsburgh-style GBML algorithms. Differences between the 
Michigan and Pittsburgh approaches are summarized in Table 5.1. 

Table 5.1. Differences between Michigan approach and Pittsburgh approach 

Michigan approach Pittsburgh approach 
Individual A single rule A single rule set 
Population A single rule set Multiple rule sets 
Evaluation of each rule Yes No 
Evaluation of each rule set No Yes 
Fitness calculation For each rule For each rule set 
Selection Good rules Good rule sets 
Crossover Between rules Between rule sets 

Since the early 1990s, genetic algorithms have been used for the design of 
fuzzy rule-based systems mainly in the area of fuzzy control. Fuzzy GBML 
algorithms have also been proposed for pattern classification problems. Ex
amples of recent fuzzy GBML algorithms for pattern classification problems 
are Castillo et al. [20], Ishibuchi et al. [71], and Setnes & Roubos [151]. 
Many fuzzy GBML algorithms have been proposed in the framework of the 
Pittsburgh approach [17, 54, 138]. This is because Pittsburgh-style GBML 
algorithms can directly optimize fuzzy rule-based systems (i.e., rule sets). Ex
amples of early studies on fuzzy GBML algorithms categorized as the Pitts
burgh approach are Karr [102], Nomura et al. [131], and Thrift [165]. Fuzzy 
GBML algorithms categorized as the Michigan approach have also been pro
posed since the early 1990s. Those algorithms are often referred to as fuzzy 
classifier systems. Examples of early studies on fuzzy classifier systems are 
Parodi & BonelH [135] and Valenzuela-Rendon [170]. In Cordon et al. [24], 
fuzzy GBML algorithms in a different approach called iterative rule learning 
are described as well as those in the Pittsburgh and Michigan approaches. 
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5.2 Michigan-Style Algorithm 

A Michigan-style fuzzy GBML algorithm (i.e., fuzzy classifier system) was 
proposed by Ishibuchi et al. [69] for designing linguistic rule-based systems 
for high-dimensional pattern classification problems. Its search ability to find 
good rule sets was examined in [66, 70]. In this subsection, we explain their 
Michigan-style GBML algorithm. 

5.2.1 Coding of Linguistic Rules 

In the Michigan-style GBML algorithm in [69], each linguistic rule is repre
sented by a string and handled as an individual. A population consists of 
a pre-specified number of linguistic rules. Because the consequent class and 
the rule weight of each linguistic rule can be easily specified from the given 
training patterns by the heuristic rule generation procedure in Chap. 2, they 
are not used in the coding of each linguistic rule (i.e., they are not included in 
a string). Each linguistic rule is represented by a string using its antecedent 
fuzzy sets. For explanation purposes, we assume that all the n attributes of 
our n-dimensional pattern classification problem have three linguistic terms 
small, medium, and large. As in the previous chapter, we also use don^t care 
in addition to these three linguistic terms as antecedent fuzzy sets. The total 
number of combinations of these antecedent fuzzy sets is (3 + 1)" .̂ Each com
bination of antecedent fuzzy sets (i.e., each linguistic rule) is represented by 
a string of length n written in an alphabet with four symbols. Each symbol 
denotes an antecedent fuzzy set (i.e., one of the three linguistic terms or don't 
care). We use the following four symbols to denote the four antecedent fuzzy 
sets: 

1: small, 
2: medium, 
3: large, 
# : don't care. 

For example, the following linguistic rule for a five-dimensional pattern clas
sification problem is coded as "#1#23": 

Rule Rq: If X2 is small and X4 is medium and X5 is large 
then Class Cq with CFq, 

where xi and xs have don't care conditions. It should be noted that the 
consequent class Cq and the rule weight CFq are not included in the string 
"# 1:̂ ^23". They are specified by the heuristic rule generation procedure in 
Chap. 2. 

5.2.2 Genetic Operations 

First the Michigan-style GBML algorithm randomly generates a pre-specified 
number of linguistic rules (say, iVruie linguistic rules) as an initial population. 
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For our n-dimensional pattern classification problem, Â ruie strings of the 
length n are generated by randomly choosing each of the four symbols with 
the probability 1/4. 

Next the fitness value of each linguistic rule in the current population 
is evaluated. Let S be the set of linguistic rules in the current population. 
The evaluation of each linguistic rule is performed by classifying all the given 
training patterns by the rule set S using the single winner-based method 
described in Chap. 2. In the single winner-based method, only a single winner 
rule is responsible for the classification of each training pattern. The winner 
rule receives a unit reward when it correctly classifies a training pattern. After 
all the given training patterns are classified by the rule set 5, the fitness value 
fitness{Rq) of each linguistic rule Rq in S is calculated as 

fitness{Rq) = NCP{Rq), (5.2) 

where NCP{Rq) is the number of correctly classified training patterns by Rq. 
It should be noted that the following relation holds between the classifica
tion performance NCP{Rq) of each linguistic rule Rq and the classification 
performance NCP{S) of the rule set S used in the fitness function in Chap. 
4: 

NCP(S) - J2 NCP{Rq). (5.3) 
Rqes 

The Michigan-style fuzzy GBML algorithm is implemented so that only 
a single copy is selected as a winner rule when multiple copies of the same 
linguistic rule are included in the rule set S. In genetic algorithms for opti
mization problems, multiple copies of the same string usually have the same 
fitness value. This often leads to undesired early convergence of the current 
population to a single solution. In the Michigan-style fuzzy GBML algorithm 
in this section, only a single copy can have a positive fitness value and the 
other copies have zero fitness. This prevents the current population from 
being dominated by many copies of a single or few linguistic rules. 

Then new linguistic rules are generated from linguistic rules in the current 
population using genetic operations. As parent strings, two linguistic rules 
are selected from the current population. As in the genetic algorithm for 
rule selection in the previous chapter, we use binary tournament selection 
with replacement. That is, two linguistic rules are randomly selected from 
the current population and the better rule with the higher fitness value is 
chosen as a parent string. A pair of parent strings is chosen by iterating this 
procedure twice. While the original fuzzy classifier system in Ishibuchi et al. 
[69] used the roulette wheel selection, we use binary tournament selection 
with replacement in this chapter as in the genetic algorithm for rule selection 
in the previous chapter. 

From the selected pair of parent strings, two new strings are generated by a 
crossover operation. As in the previous chapter, we use the uniform crossover 
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operation, which is illustrated in Fig. 5.1 for a five-dimensional pattern clas
sification problem. Crossover positions indicated by "*" are randomly chosen 
for each pair of parent strings. The crossover operation is applied to each pair 
of parent strings with a pre-specified crossover probability. After new strings 
are generated by the crossover operation, each symbol of the generated strings 
is randomly replaced with a different symbol by a mutation operation with 
a pre-specified mutation probability. Usually the same mutation probability 
is assigned to every position of each string. The mutation operation is illus
trated in Fig. 5.2 where mutated values are indicated by an underline. The 
selection, crossover, and mutation are iterated until a pre-specified number 
of new strings (say, A r̂epiace strings) are generated. 

Parent 1 

Parent 2 

* * 
1 1 I 2 I 2 I 3 

l # | 2 | 3 | 1 

* 
#1 
2 | 0 Child 1 

Child 2 

l # | 2 | 2 | 1 | 2 1 

| 1 | 2 | 3 | 3 | # | 

Fig. 5.1. Illustration of the uniform crossover in the Michigan-style fuzzy GBML 
algorithm 

# C> # 2 3 1 # 

Fig. 5.2. Illustration of the mutation operation in the Michigan-style fuzzy GBML 
algorithm. This mutation is also used in the Pittsburgh-style fuzzy GBML algorithm 

Finally the worst A r̂epiace strings with the smallest fitness values in the 
current population are removed, and the newly generated iVrepiace strings 
are added to the remaining strings to form a new population. Because the 
number of removed strings is the same as the number of added strings, every 
population consists of the same number of strings. That is, every rule set has 
the same number of linguistic rules. This generation update can be viewed 
as the elitist strategy where the number of elite strings is (iVmie — ^replace)-

The above procedures are applied to the new population again. The gen
eration update is iterated until a pre-specified stopping condition is satisfied. 
In the computer simulations of this chapter, we use the total number of itera
tions (i.e., the total number of generation updates) as the stopping condition 
as in the genetic algorithm for rule selection in the previous chapter. 

5.2.3 Algorithm 

The Michigan-style fuzzy GBML algorithm for designing a linguistic rule-
based system can be written as follows: 
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[Michigan-Style Fuzzy GBML Algorithm] 

Step 0: Parameter Specification. Specify the number of hnguistic rules A r̂uie, 
the number of replaced rules A/'repiace, the crossover probability pc, 
the mutation probability Pm, and the stopping condition. 

Step 1: Initialization. Randomly generate Â ruie linguistic rules (i.e., A r̂uie 
strings of length n) as an initial population. 

Step 2: Genetic Operations. Calculate the fitness value of each linguistic rule 
in the current population. Generate A r̂epiace linguistic rules using 
selection, crossover, and mutation from existing linguistic rules in 
the current population. 

Step 3: Generation Update (Elitist Strategy). Remove the worst A r̂epiace lin
guistic rules from the current population and add the newly gener
ated iVrepiace Huguistic rulcs to the current population. 

Step 4: Termination Test. If the stopping condition is not satisfied, return 
to Step 2. Otherwise terminate the execution of the algorithm. 

During the execution of the Michigan-style fuzzy GBML algorithm, we 
monitor the classification rate of the current population on the given training 
patterns. The rule set (i.e., population) with the highest classification rate is 
chosen as the final solution by this algorithm. 

In this section, we explain the simplest version of the Michigan-style 
fuzzy GBML algorithm. Many heuristics can be combined with the above-
mentioned algorithm. For example, the search ability of this algorithm can be 
improved by adding a misclassification penalty term to the fitness function in 
(5.2), using a tailored initial population, and generating new linguistic rules 
from misclassified or rejected training patterns [66, 70]. Some heuristics are 
explained in a later subsection. 

5.2.4 Computer Simulations 

We applied the Michigan-style fuzzy GBML algorithm to the wine data set 
using the three linguistic terms and don^t care for each of the 13 attributes. 
The total number of combinations of antecedent fuzzy sets is (3 -h 1)^^. Each 
combination of antecedent fuzzy sets (i.e., each Hnguistic rule) is denoted 
by a string of length 13. It should be noted that we do not have to use 
any prescreening procedure. The search space in the Michigan-style GBML 
algorithm consists of all the (3 -h 1)^^ linguistic rules. 

In Step 0 of the algorithm in the previous subsection, we have to specify 
some parameter values. In our computer simulations, they were specified as 
follows: 
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Number of linguistic rules: Â ruie = 10, 
Number of replaced rules: A r̂epiace = 2, 
Crossover probability: Pc = 0.8, 
Mutation probability: Pm = 1/(string length) = 1/13, 
Stopping condition: 1000 iterations 

(i.e., 1000 generation updates). 

From these parameter specifications, we can see that 1000 rule sets with ten 
linguistic rules were examined in our computer simulation. It should be noted 
that the total number of rule sets with ten linguistic rules is ATCIO where 
N = {3 -\- 1)^^. Among such a huge number of rule sets, we only examined 
1000 combinations in our computer simulation. 

In Step 1, ten linguistic rules were randomly generated. The generated 
linguistic rules and their fitness values are shown in Table 5.2. The fitness 
value of each linguistic rule was calculated by classifying all the 178 samples in 
the wine data set using the ten linguistic rules in the current population. For 
explanation purposes, the generated linguistic rules are sorted in descending 
order of their fitness values in Table 5.2. Since the initial linguistic rules 
were randomly generated, the fitness values of many linguistic rules are zero 
in Table 5.2. These linguistic rules did not correctly classify any training 
patterns. The rule set in Table 5.2 can correctly classify 54 training patterns 
(i.e., 30.3% of the 178 samples in the wine data set). This number is the sum 
of the fitness values of all the ten linguistic rules in Table 5.2. 

Table 5.2. Ten randomly generated initial linguistic rules for the wine data set 
with 13 attributes. Each linguistic rule is denoted by a string of length 13 

Rule 

Ri 
R2 
Rs 
RA 

R5 
RQ 

Rv 
Rg 
RQ 

Rio 

String 

2 # 2 # # 2 1 2 1 2 2 2 1 
3 2 3 1 2 2 2 1 1 1 3 3 2 
# 2 1 2 1 2 1 1 # # 2 1 1 
1 3 2 # 1 # 2 2 2 # 1 1 1 
3 1 3 3 2 3 # 3 # 2 1 # 2 
1 # 1 3 # 2 # # 2 # 3 # # 
1 # 2 3 3 2 3 2 1 # 3 3 3 
1 1 # 2 2 1 # 3 3 3 2 3 # 
2 1 1 3 3 1 1 2 # 3 2 2 # 
2 3 3 2 1 1 # 1 3 1 # 3 # 

fitness{Rq) 

42.0 
6.0 
2.0 
2.0 
1.0 
1.0 
0.0 
0.0 
0.0 
0.0 

In Step 2, two new linguistic rules were generated from the ten linguistic 
rules in the current population using the selection, crossover, and mutation 
operations. The generation of new linguistic rules is illustrated in Table 5.3. 
In Step 3, the two worst linguistic rules were removed from the current pop
ulation in Table 5.2 and the newly generated linguistic rules were added. 
The new population is shown in Table 5.4 where the newly generated linguis-
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tic rules are inserted into the last two rows. The rule set in Table 5.4 can 
correctly classify 55 training patterns (i.e., 30.9% of the 178 samples). 

Table 5.3. Generating new linguistic rules from the linguistic rules in the current 
population in Table 5.2 

Parent strings J^ 
KG 

After crossover 

After mutation 

1 
1 

1 
1 

1 
1 

3 
# 
# 
3 

# 
3 

2 
1 

1 
2 

1 
2 

# 
3 

# 
3 

# 
3 

1 
# 
1 
# 
1 
# 

# 
2 

# 
2 

# 
2 

2 
# 
# 
2 

# 
2 

2 
# 
2 
# 
3 
# 

2 
2 

2 
2 

2 
2 

# 
# 
# 
# 
2 
# 

1 
3 

3 
1 

3 
1 

1 
# 
1 
# 
1 
# 

1 
# 
# 
1 

# 
1 

Table 5.4. Ten linguistic rules after a single iteration of the Michigan-style fuzzy 
GBML algorithm. Two newly generated rules are inserted into the last two rows as 
Rii and R12 

Rule 

Ri 
R2 
Rs 
R4 

Rs 
Re 
Rj 
Rg 

Rii 

R12 

String 

2 # 2 # # 2 1 2 1 2 2 2 1 
3 2 3 1 2 2 2 1 1 1 3 3 2 
# 2 1 2 1 2 1 1 # # 2 1 1 
1 3 2 # 1 # 2 2 2 # 1 1 1 
3 1 3 3 2 3 # 3 # 2 1 # 2 
1 # 1 3 # 2 # # 2 # 3 # # 
1 # 2 3 3 2 3 2 1 # 3 3 3 
1 1 # 2 2 1 # 3 3 3 2 3 # 
1 # 1 # 1 # # 3 2 2 3 1 # 
1 3 2 3 # 2 2 # 2 # 1 # 1 

fitness{Rq) 

40.0 
6.0 
2.0 
2.0 
1.0 
1.0 
0.0 
0.0 
0.0 
3.0 

In Fig. 5.3, we show how the classification rate of each population (i.e., 
each rule set) was improved by the evolution of linguistic rules in the 
Michigan-style fuzzy GBML algorithm. Figure 5.3 simultaneously shows sim
ulation results of three trials from different initial populations. From this 
figure, we can see that the classification rate was rapidly improved in the 
early stage of evolution. We can also see that the classification rate did not 
increase monotonically (i.e., there were ups and downs). This is because the 
classification performance of each population was not used for the evolution 
of hnguistic rules by the Michigan-style fuzzy GBML algorithm. 

We also performed the same computer simulations as in Fig. 5.3 using five 
linguistic terms (i.e., small, medium small, medium, medium large, and large) 
and don^t care for each of the 13 attributes of the wine data set. The mem
bership function of the antecedent fuzzy set corresponding to each linguistic 
term is shown in the bottom-right figure of Fig. 1.4 of Chap. 1. Simulation 
results are shown in Fig. 5.4. From the comparison between Fig. 5.3 and Fig. 
5.4, we can see that the classification rate of each population deteriorated sig-
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500 

Number of generations 
1000 

Fig. 5.3. Simulation results of 
three trials of the Michigan-style 
fuzzy GBML algorithm on the 
wine data set using three linguis
tic terms. The classification rate 
on training patterns of the cur
rent population at each gener
ation is shown for each of the 
three trials 

nificantly by the use of the fine fuzzy parti t ion with the five linguistic terms, 
especially in the early stage of evolution. This is because the antecedent par t 
of each linguistic rule covers a much smaller portion of the pa t te rn space in 
Fig. 5.4 than Fig. 5.3. Thus the chance tha t a randomly generated linguistic 
rule covers some training pat terns is much smaller in Fig. 5.4 than in Fig. 
5.3. Actually, the classification rates of initial populations were zero in all tri
als in Fig. 5.4. This means tha t no initial linguistic rules correctly classified 
any training pat terns in all trials. Thus all the initial linguistic rules had the 
same fitness value (i.e., zero fitness). In this case, the genetic search in the 
Michigan-style fuzzy GBML algorithm was the same as the random search 
for linguistic rules. When some linguistic rules with positive fitness values 
were included in the current population, the genetic search tried to find good 
rules using those linguistic rules as parent strings. 

500 
Number of generations 

1000 

Fig. 5.4. Simulation results of 
three trials of the Michigan-style 
fuzzy GBML algorithm on the 
wine data set using five linguistic 
terms. The classification rate on 
training patterns of the current 
population at each generation is 
shown for each of the three trials 

5.2.5 E x t e n s i o n s t o t h e Mich igan-S ty l e A l g o r i t h m 

As shown in Fig. 5.4, randomly generated initial linguistic rules with fine 
fuzzy parti t ions usually do not classify many training pat terns in high-
dimensional pat tern classification problems. This is because each linguistic 
rule covers a very small portion of the pa t tern space. When we use the five 
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linguistic terms and don^t care as antecedent fuzzy sets, each antecedent fuzzy 
set covers the following portion of the domain interval (see the bottom-right 
figure of Fig. 1.4 of Chap. 1): 

small, large: 1/4, 
medium small, medium, m,edium large: 1/2, 
don't care: 1. 

Thus a randomly selected antecedent fuzzy set covers 1/2 of the domain 
interval of each attribute on the average where 

i x 2 + i x 3 + l x l ) - 6 = i . (5.4) 

As a result, a randomly generated initial linguistic rule for the wine data 
set with 13 attributes covers (1/2)^^ = 1/8192 of the pattern space. Such a 
linguistic rule is not likely to cover any of the 178 samples in the wine data 
set. 

A simple trick for expanding the covered area by each initial linguistic rule 
is to increase the selection probability of don't care among the six antecedent 
fuzzy sets. Let Pdon't care bc the selection probability of don't care when initial 
linguistic rules are generated. In this case, the selection probability of each of 
the other five antecedent fuzzy sets is (1 —pdon't care)/^- A randomly selected 
antecedent fuzzy set with those selection probabilities covers the following 
portion of the domain interval of each attribute (i.e., (5.4) is modified as 
follows): 

-'- r» , o \ \ Pdon't care) , -, -, 
- X 2 - f - - X 3 j X ^ '- + 1 X 1 X Pdon't care 

= "̂  H~ "̂  >̂  Pdon't care- \^'^) 

Thus the portion of the pattern space covered by each initial linguistic rule 
can be increased from (1/2)^^ to 1 by increasing the selection probability of 
don't care from 1/6 to 1. 

This simple trick has a significant effect on the search ability of the 
Michigan-style fuzzy GBML algorithm. In the same manner as in Fig. 5.4 
except for the selection probability Pdon't care of don't care, we applied the 
Michigan-style fuzzy GBML algorithm to the wine data set three times. The 
selection probability was specified as Pdon't care = 3/4. In this case, the se
lection probability of each of the other five antecedent fuzzy sets was 1/20. 
Simulation results are shown in Fig. 5.5. It should be noted that Fig. 5.4 
and Fig. 5.5 used the same parameter specifications except for the selection 
probability Pdon't care of don't care for generating initial linguistic rules (i.e., 
Pdon't care = 3/4 iu Fig. 5.5 wMlc Pdon't care = 1/6 iu Fig. 5.4). From the 
comparison between these two figures, we can see that the classification abil
ity of randomly generated initial linguistic rules was significantly improved. 
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As a result, the Michigan-style fuzzy GBML algorithm efficiently found good 
rule sets with high classification rates in the early stage of evolution. 

Fig. 5.5. Simulation results of 
three trials of the Michigan-style 
fuzzy GBML algorithm on the 
wine data set using five linguistic 
terms. The selection probability 
of don't care for generating ini
tial linguistic rules was increased 

500 1000 from 1/6 in Fig. 5.4 to 3/4 in this 
Number of generations figure 

A more straightforward trick for generating initial linguistic rules with 
high classification ability is to use training patterns for specifying their an
tecedent fuzzy sets [66]. To generate an initial population of Â ruie linguistic 
rules, first we randomly select Â ruie training patterns. Next we choose the 
combination of the most compatible linguistic terms with each training pat
tern. For example, the combination {small, medium, large) is chosen for a 
three-dimensional training pattern (0.03, 0.52, 0.98). Note that don^t care is 
not used in this stage because any attribute values are fully compatible with 
don't care (i.e., because don't care is always chosen as the most compatible 
antecedent fuzzy set for any attribute values). Each linguistic term in the 
selected combination is replaced with don't care using the selection probabil
ity Pdon't care- The Combination of the linguistic terms after this replacement 
is used as the antecedent part of an initial linguistic rule. This procedure is 
applied to all the randomly selected A r̂uie training patterns for generating an 
initial population of Â mie linguistic rules. 

In the same manner as in Fig. 5.4 and Fig. 5.5 except for the initial pop
ulations, we applied the Michigan-style fuzzy GBML algorithm to the wine 
data set. In each trial, ten training patterns were randomly selected for gen
erating an initial population of ten linguistic rules. The selection probability 
Pdon't care of don't carc was specified as Pdon't care = 1/2. This means that 
half of the antecedent fuzzy sets in the initial linguistic rules were replaced 
with don't care on the average. Simulation results are shown in Fig. 5.6. From 
the comparison of Fig. 5.6 with Fig. 5.4 and Fig. 5.5, we can see that the 
direct specification of antecedent fuzzy sets from training patterns improved 
the performance of rule sets in late generations as well as early generations. 

The specification of antecedent fuzzy sets from training patterns can be 
utilized not only for generating an initial population but also for updating the 
current population. When a training pattern is misclassified or its classifica
tion is rejected by the current population, the generation of a new linguistic 



114 5. Genetics-Based Machine Learning 

500 
Number of generations 

1000 

Fig. 5.6. Simulation results of 
three trials of the Michigan-style 
fuzzy GBML algorithm on the 
wine data set using five linguis
tic terms. The initial population 
in each trial was generated from 
randomly selected ten training 
patterns 

rule from the misclassified or rejected training pat tern may improve the clas
sification ability of the current population. In the above computer simulations 
on the wine da ta set, two linguistic rules were generated using the genetic 
operations for updat ing the current population. We modify this generation 
update procedure as follows. We generate a single linguistic rule using the 
genetic operations and another linguistic rule from a misclassified or rejected 
training pat tern. When all the training pat terns are correctly classified, two 
linguistic rules are generated using the genetic operations. In the same man
ner as in Fig. 5.6, we applied the Michigan-style fuzzy GBML algorithm with 
the modified generation update scheme to the wine da ta set. Simulation re
sults are shown in Fig. 5.7. From the comparison between Fig. 5.6 and Fig. 
5.7, we can see tha t the modification of the generation update scheme im
proved the search ability of the Michigan-style fuzzy GBML algorithm to find 
good linguistic rules in two of the three trials. 

One may think tha t the genetic operations may be unnecessary in the 
modified generation update scheme. Figure 5.8 shows simulation results where 
no linguistic rules were generated using the genetic operations. Two linguistic 
rules were generated for the generation update from misclassified or rejected 
training pat terns . When all the training pat terns were correctly classified, the 
execution of the algorithm was to be terminated in Fig. 5.8. The comparison 
between Fig. 5.7 and Fig. 5.8 shows the necessity of the genetic operations. 
While the generation of linguistic rules from misclassified or rejected training 
pat terns is a good idea as shown in Fig. 5.7, the genetic operations are also 
necessary for designing linguistic rule-based systems with high classification 
ability. This means tha t the combination of the most compatible antecedent 
fuzzy sets with a misclassified or rejected training pat tern is not always a 
good choice for generating a new linguistic rule, though it works very well in 
many cases. 

Another extension to the Michigan-style fuzzy GBML algorithm is the 
introduction of a penalty term with respect to the number of misclassified 
training pat terns to the fitness function in (5.2) as follows: 

fitness{Rq) = NCP{Rq) - WNMP • NMP{Rq), (5.6) 
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Fig. 5.7. Simulation results of 
three trials of the Michigan-style 
fuzzy GBML algorithm on the 
wine data set using five linguis
tic terms. The initial population 
in each trial was generated from 
ten randomly selected training 
patterns. For the generation up
date, a single linguistic rule was 
generated from a misclassified 
or rejected training pattern, and 
another linguistic rule was gen
erated by the genetic operations 

Fig. 5.8. Simulation results of 
three trials of the Michigan-style 
fuzzy GBML algorithm on the 
wine data set using five linguis
tic terms. The initial population 
in each trial was generated from 
randomly selected ten training 
patterns. For the generation up
date, two linguistic rules were 
generated from misclassified or 
rejected training patterns, and 
no linguistic rule was generated 
by the genetic operations 

where NMP{Rq) is the number of misclassified training pat terns and WNMP 
is a positive constant. The fitness function in (5.2) can be viewed as a special 
case of (5.6) with WNMP = 0. In (5.6), NCP{Rq) and NMP{Rq) are cal
culated by classifying all the training pat terns by the current population S 
including the linguistic rule Rq. To understand the effect of the second term 
of (5.6) on the evolution of linguistic rules, let us consider a linguistic rule 
tha t correctly classifies ten pat terns and misclassifies three pat terns . If the 
misclassification penalty is zero (i.e., if WNMP = 0), the fitness value of this 
linguistic rule is 10. Thus this linguistic rule is not likely to be removed from 
the current population. As a result, the three misclassified pat terns will also 
be misclassified in the next population. On the other hand, the fitness value 
of this linguistic rule is negative (i.e., —5) when WNMP = 5. In this case, 
this linguistic rule will be removed from the current population. As a result, 
the three misclassified pat terns may be correctly classified by other linguistic 
rules or their classification may be rejected in the next population. From this 
discussion, we can see tha t the introduction of the misclassification penalty 
to the fitness function may improve the search ability of the Michigan-style 
fuzzy GBML algorithm to find rule sets with high classification ability. 

In the same manner as the computer simulation for Fig. 5.7, we per
formed computer simulations using the Michigan-style fuzzy GBML algo-
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rithm with the misclassification penalty. We examined three specifications of 
WNMP' U)NMP = 0,3,10. For each value of WNMP, the computer simulation 
was iterated 20 times. It should be noted that the computer simulation with 
u)NMP = 0 is the same as Fig. 5.7. The average classification rate at each 
generation over the 20 trials for each value of WNMP is shown in Fig. 5.9. 
From this figure, we can see that the average classification rate was slightly 
improved by increasing the value of WNMP from 0 to 3 while it deteriorated 
on further increasing the value from 3 to 10. 

•u)m4p-0 - o - ^ i V M p - 3 -WNMP- 10 
^ 1 0 0 

500 
Number of generations 

Fig. 5.9. The average classi
fication rate over 20 trials of 
the Michigan-style fuzzy GBML 
algorithm with various specifi
cations of the misclassification 
penalty. Computer simulations 
were performed on the wine data 
set using five linguistic terms in 
the same manner as Fig. 5.7 

The effect of the misclassification penalty on the evolution of linguistic 
rules is more significant when we use coarse fuzzy partitions. In this case, 
each linguistic rule covers a larger portion of the pattern space than the case 
of fine fuzzy partitions. As a result, more patterns are correctly and wrongly 
classified by each linguistic rule. Figure 5.10 shows the simulation results 
when we used the three linguistic terms for each attribute instead of the five 
linguistic terms. Computer simulations were performed in the same manner 
as in Fig. 5.9 except for the fuzzy partition of each attribute. We can observe 
in Fig.5.10 a large deterioration in the average classification rate when the 
misclassification penalty WNMP was large (i.e., WNMP = 10). 

5.3 Pittsburgh-Style Algorithm 

It is possible to use the Pittsburgh approach to design linguistic rule-based 
classification systems with high classification ability and high interpretability. 
In this section, we explain a Pittsburgh-style fuzzy GBML algorithm. Its char
acteristic features are explained in comparison with the Michigan-style fuzzy 
GBML algorithm in the previous section. While the above-mentioned exten
sions to the Michigan-style algorithm can also be utilized in our Pittsburgh-
style algorithm, we describe its simplest version with no extensions in this 
section to maintain the simplicity of explanation. 
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Fig. 5.10. The average classi
fication rate over 20 trials of 
the Michigan-style fuzzy GBML 
algorithm with various specifi
cations of the misclassification 
penalty. Computer simulations 
were performed on the wine data 
set using three linguistic terms 
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5.3.1 C o d i n g of R u l e Se t s 

As in the Michigan-st}^le fuzzy GBML algorithm in the previous section, let 
A r̂uie be the number of linguistic rules in a rule set S. In our Pittsburgh-style 
fuzzy GBML algorithm in this section, the rule set S is represented by a con
catenated string where each substring of length n denotes a single linguistic 
rule for our n-dimensional pat tern classification problem. The coding of each 
linguistic rule using its antecedent fuzzy sets is the same as the coding in the 
Michigan-style algorithm. The length of the string S including A r̂uie linguis
tic rules is n • A^mie- For simplicity of explanation, we assume tha t all the n 
at t r ibutes of our n-dimensional pa t te rn classification problem have the three 
linguistic terms small, medium, and large. We also use don't care as an addi
tional antecedent fuzzy set. These antecedent fuzzy sets are denoted in the 
same manner as in the Michigan-style algorithm (i.e., 1: small, 2: medium, 3: 
large, and # : don't care). For example, a rule set of the following four linguis
tic rules for a five-dimensional pat tern classification problem is represented 
by a string " # 1 # 2 # 2 2 # # # # # # # 1 3 # # # 3 " of length 20: 

Rule Ri: If X2 is small and X4 is medium then Class Ci with CFi, 
Rule R2: If xi is medium and X2 is medium then Class C2 with CF2, 
Rule Rs: If x^ is small then Class Cs with CF3, 
Rule R4: If xi is large and x^ is large then Class C4 with CF4. 

As in the Michigan-style algorithm, the consequent class Cq and the rule 
weight CFq of each linguistic rule are not included in the string. They are 
specified by the heuristic rule generation procedure in Chap. 2. 

5.3.2 G e n e t i c O p e r a t i o n s 

In our Pit tsburgh-style fuzzy GBML algorithm, first a pre-specified number 
of rule sets (say, iVpop rule sets) with iV^uie linguistic rules are generated 
by randomly specifying their antecedent fuzzy sets. An initial population is 
composed of the generated A p̂op rule sets where A p̂op is the population size. 
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Next each rule set is evaluated by classifying the given training patterns. 
The fitness value of each rule set Si in the current population is calculated 
as follows after all the given training patterns are classified by Sf. 

fitness{Si) = NCP{Si), z = 1,2,... ,7Vp (5.7) 

where NCP{Si) is the number of correctly classified training patterns by the 
rule set Si. This fitness function of the rule set Si can be rewritten using the 
fitness function of each linguistic rule Rq in Sii 

fitness{Si) = E 
RqeSi 

fitness{Rq)^ i = 1,2, ,iV. pop- (5.8) 

Next new rule sets are generated from the existing rule sets in the cur
rent population by genetic operations. As parent strings, two rule sets are 
selected from the current population using binary tournament selection with 
replacement. From the two selected strings, two new strings are generated 
by the uniform crossover operation with a pre-specified crossover probability. 
The uniform crossover operation in the Pittsburgh-style algorithm exchanges 
substrings between the two parent strings. This crossover operation is illus
trated in Fig. 5.11 for rule sets with four linguistic rules for a five-dimensional 
pattern classification problem. Then each symbol of the new strings gener
ated by the crossover operation is randomly replaced with a diff"erent symbol 
using a pre-specified mutation probability as in the Michigan-style algorithm. 
The selection, crossover, and mutation are iterated until (iVpop — 1) rule sets 
are generated. Finally the best rule set in the current population is added to 
the newly generated rule sets as an elite rule set to form a new population 
including Â pop rule sets. 

^ 
1 |1|2|3|1|# 

2 |#|3|2|#|2 
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#|2| 1 |2|# 

3|#|3|1|2 
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Fig. 5.11. Illustration of the uniform crossover operation in the Pittsburgh ap
proach 

The generation update is iterated until a pre-specified stopping condition 
is satisfied. As in the Michigan-style algorithm in the previous section and 
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the genetic algorithm for rule selection in Chap. 4, we use the total number 
of iterations as the stopping condition. 

5.3.3 Algorithm 

Our Pittsburgh-style fuzzy GBML algorithm can be written as follows: 

[Pittsburgh-Style Fuzzy GBML Algorithm] 

Step 0: Parameter Specification. Specify the population size A p̂op, the num
ber of linguistic rules A r̂uie, the crossover probability pc, the mutation 
probability Pm: and the stopping condition. 

Step 1: Initialization. Randomly generate Â pop rule sets with Â ruie linguistic 
rules (i.e., Â pop strings of length n • iVruie) as an initial population. 

Step 2: Genetic Operations. Calculate the fitness value of each rule set in 
the current population. Generate (A p̂op — 1) rule sets using selec
tion, crossover, and mutation from existing rule sets in the current 
population. 

Step 3: Generation Update (Elitist Strategy). Add the best rule set in the 
current population to the newly generated (A p̂op — 1) rule sets to 
form the next population of the population size A p̂op. 

Step 4: Termination Test. If the stopping condition is not satisfied, return 
to Step 2. Otherwise terminate the execution of the algorithm. The 
final solution is the best rule set in the final population because the 
best rule set in the current population is always handed down to the 
next population by the elitist strategy. 

5.3.4 Computer Simulations 

To compare the two fuzzy GBML algorithms with each other, we performed 
computer simulations on the wine data set using the Pittsburgh-style fuzzy 
GBML algorithm in the same manner as the computer simulations in Sect. 
5.2.4 using the Michigan-style fuzzy GBML algorithm with no extensions. 
Parameter specifications in these two algorithms are summarized in Table 5.5. 
As the parameter values in Table 5.5 show, our task is to design a classification 
system with ten linguistic rules. From Table 5.5, we can see that only 1000 
rule sets were examined in a single trial of the Michigan-style algorithm while 
50000 rule sets were examined in the Pittsburgh-style algorithm. 

The average classification rate and the average CPU time of each algo
rithm over five trials are summarized in Table 5.6 for the case of the three 
linguistic terms and Table 5.7 for the case of the five linguistic terms. Each 
algorithm was implemented in the C language and executed on a personal 
computer with a 1.5 GHz Pentium IV processor. From these tables, we can 
see that slightly better rule sets were obtained by the Pittsburgh-style algo
rithm than the Michigan-style algorithm in the case of the three linguistic 
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Table 5.5. Parameter values in each algorithm 

Michigan Pittsburgh 
Number of linguistic rules 
Number of rule sets 
Crossover probability 
Mutation probability 
Number of replaced rules 
Stopping condition (generations) 

10 
1 

0.8 
1/13 

2 
1000 

10 
50 
0.8 

1/13 
N.A. 
1000 

terms. On the other hand, the performance of the Michigan-style algorithm 
is clearly better than the Pittsburth-style algorithm in the case of the five 
linguistic terms. This is because the difference in the search ability between 
different algorithms is likely to become clear when the search space is large. 
In both tables, CPU time for the Michigan-style algorithm is much less than 
the Pittsburgh-style algorithm. 

Table 5.6. Average classification rate and average CPU time of each algorithm in 
the case of the three linguistic terms 

Michigan Pittsburgh 
Classification rate 97.1% 97.3% 
CPU time (s) L6 303.5 

Table 5.7. Average classification rate and average CPU time of each algorithm in 
the case of the five linguistic terms 

Michigan Pittsburgh 
Classification rate 96.0% 75.4% 
CPU time (s) L5 236.6 

One may think that the rule exchange-type uniform crossover operation 
in Fig. 5.11 had a bad effect on the search ability of the Pittsburgh-style algo
rithm. We also performed the same computer simulations using the standard 
(i.e., gene exchange-type) uniform crossover operation shown in Fig. 5.12. 
Simulation results are summarized in Table 5.8. From the comparison of Ta
ble 5.8 with Table 5.6 and Table 5.7, we can see that the average classification 
rate by the Pittsburgh-style algorithm for the case of the five linguistic terms 
was much lower than that by the Michigan-style algorithm independent of 
the choice of crossover operation. In the following computer simulations, we 
use the rule exchange-type uniform crossover operation in Fig. 5.11 in the 
Pittsburgh-style algorithm. 
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Table 5.8. Average classification rates by the two versions of the Pittsburgh-style 
algorithm with different crossover operations 

Number of Crossover operation 
linguistic terms Rule exchange Gene exchange 

Three 
Five 

97.3% 
75.4% 

94.5% 
62.2% 
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Fig. 5.12. Standard uniform crossover where genes at randomly selected positions 
are exchanged between two parents 

5.4 Hybridization of the Two Approaches 

In this section, first we explain the advantages of each of the two fuzzy GBML 
algorithms through computer simulations. Then we combine the two algo
ri thms into a single hybrid algorithm. Finally we extend the hybrid algorithm 
to simultaneously perform the maximization of the classification accuracy and 
the minimization of the number of linguistic rules as in the genetic algorithm 
for rule selection in Chap. 4. 

5.4.1 A d v a n t a g e s of Each A l g o r i t h m 

To further compare the Pittsburgh-style algorithm with the Michigan-style 
algorithm, we examined the performance of these two algorithms through 
computer simulations on the wine da ta set using various stopping conditions. 
The simplest version of each algorithm with no extensions was used in the 
computer simulations of this subsection as in the previous computer simula
tions in Sect. 5.3.4 for comparing the two algorithms. Simulation results are 
summarized in Fig. 5.13 for the case of the five linguistic terms and Fig. 5.14 
for the case of the three linguistic terms. It should be noted tha t the horizontal 
axis of these figures is the number of examined rule sets, which is the same as 
the number of generations in the case of the Michigan-style algorithm. Each 
figure shows the average classification rate over five trials of each algorithm. 
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The average classification rate at each generation was calculated using the 
best rule set obtained until that generation in each trial. The best rule set 
is not always the current population in the Michigan-style algorithm while it 
is always the elite rule set in the current population in the Pittsburgh-style 
algorithm. From these figures, we can see that the Michigan-style algorithm 
has a much higher search ability to efficiently find good linguistic rules in 
the early stage of evolution than the Pittsburgh-style algorithm. That is, the 
average classification rate was rapidly improved by the Michigan-style algo
rithm. This improvement was not observed after a certain number of rule 
sets were examined (e.g., about 10000 rule sets in Fig. 5.13). In the long 
run, the Pittsburgh-style algorithm will outperform the Michigan-style algo
rithm in Fig. 5.13 if we continue the iterative execution of these algorithms 
much further. This is because the Michigan-style algorithm does not have 
the direct optimization ability of rule sets. The evolution of rule sets in the 
Michigan-style algorithm corresponds to the search of good linguistic rules 
while in the Pittsburgh-style algorithm it corresponds to the optimization 
of rule sets. This optimization of rule sets is indirectly performed by finding 
good linguistic rules in the Michigan-style algorithm. 

Michigan-style - Pittsburgh-style 

100 1000 10000 100000 1000000 10000000 

Number of examined rule sets 

Fig. 5.13. Average simulation 
results on the wine data set with 
the five linguistic terms over five 
trials of each algorithm with var
ious stopping conditions 

In order to examine why the Michigan-style algorithm has a high search 
ability to efficiently find good linguistic rules, we performed computer simu
lations using partially modified variants of the algorithm. We examined the 
following three variants of the Michigan-style algorithm. 

Entire replacement. In this variant, all linguistic rules in the current 
population are entirely replaced with newly generated linguistic rules. The 
entire replacement variant is implemented from our original Michigan-style 
algorithm by setting the number of replaced rules (i.e., iVrepiace) equal to the 
number of linguistic rules in the current population. In computer simulations, 
we specified iVrepiace as A r̂epiace = 10 (scc Table 5.5). 
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Fig. 5.14. Average simulation 
results on the wine data set with 
the three linguistic terms over 
five trials of each algorithm with 
various stopping conditions 

Random removal. In this variant, randomly selected rules are removed 
from the current population and replaced with newly generated ones in the 
generation update procedure. While the worst iVrepiace rules are removed 
from the current population in our original Michigan-style algorithm, the 
selection of linguistic rules to be removed in the random removal variant is 
randomly performed regardless of the fitness value of each rule. In computer 
simulations, we specified the number of replaced rules as TVrepiace = 2 as in 
our original algorithm (see Table 5.5). 

Random selection. In this variant, parent strings are randomly selected 
from the current population regardless of their fitness values. That is, the 
selection probability of each linguistic rule is defined in the random selection 
variant as P{Rq) = l/Nmie where Â mie is the number of linguistic rules in 
the current population. 

We applied these three variants to the wine data set. Average simulation 
results over five trials of each variant are summarized in Table 5.9. In this 
table, the performance of the random selection variant was the worst among 
the four algorithms. From this poor performance of the random selection 
variant, we can see that the rule generation from good linguistic rules is an 
important characteristic feature of the Michigan-style algorithm. On the other 
hand, the difference in the performance between the original algorithm and 
the other two variants (i.e., entire replacement and random removal) suggests 
that the inheritance of good linguistic rules from the current population to the 
next population is also an important characteristic feature of the Michigan-
style algorithm. It should be noted that the Pittsburgh-style algorithm has 
none of these two characteristic features (i.e., the rule generation from good 
rules and the inheritance of good rules). In the Pittsburgh-style algorithm, 
the best rule set is handed down from the current population to the next 
population as an elite rule set. If good linguistic rules are included in a poor 
rule set, they are not likely to survive the generation update because poor 
rule sets do not have high selection probabilities. In the Pittsburgh-style 
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algorithm, new rule sets are generated from good rule sets. This does not 
mean tha t new rules are generated from good rules because the performance 
of each linguistic rule is not taken into account in the evolution of rule sets 
in the Pit tsburgh-style algorithm. 

Table 5.9. Average classification rate over five trials of each variant of the 
Michigan-style algorithm on the wine data set 

Three linguistic terms Five linguistic terms 

Original algorithm 97.1% 96.0% 
Entire replacement 89.9% 44.7% 
Random removal 89.7% 33.7% 
Random selection 60.7% 6.5% 

From the simulation results in this subsection, we can see tha t the 
Michigan-style algorithm has a high search ability to efficiently find good lin
guistic rules in the early stage of evolution. The performance of the Michigan-
style algorithm deteriorated when we removed the following two characteristic 
features: 

(1) To generate new rules from good rules in the current population. 
(2) To pass down good rules from the current population to the next popu

lation. 

The Pittsburgh-style algorithm has none of these two characteristic features. 
The search ability of the Pit tsburgh-style algorithm to find good linguistic 
rules in the large search space is inferior to tha t of the Michigan-style algo
ri thm. The advantage of the Pittsburgh-style algorithm is 

(3) To directly optimize rule sets. 

The Michigan-style algorithm cannot directly optimize rule sets because the 
evolution of rule sets is driven only by the performance of each linguistic rule. 

5.4.2 H y b r i d A l g o r i t h m 

The aim of the hybridization of the two algorithms is to implement a single 
hybrid algorithm tha t has all the above three advantages. Our hybrid algo
r i thm can directly optimize rule sets because its basic framework is the same 
as the Pit tsburgh-style algorithm. The Michigan-style algorithm is used as a 
mutat ion operation for partially modifying each string (i.e., each rule set). 
Our hybrid algorithm can be written as follows: 

[Hybrid Fuzzy G B M L A l g o r i t h m ] 

Step 0: Parameter Specification. Specify the population size A^pop, the num
ber of linguistic rules A^ruie, the number of replaced rules iVrepiace, the 
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crossover probability Pcp in the Pittsburgh part, the crossover prob-
abihty pc^ in the Michigan part, the mutation probabihty Prnp in 
the Pittsburgh part, the mutation probabihty PmM i^ ^^^ Michigan 
part, and the stopping condition. 

Step 1: Initialization. Randomly generate iVpop rule sets with Â ruie linguistic 
rules (i.e., Â pop strings of length n • -/Vruie) as an initial population. 

Step 2: Genetic Operations. Calculate the fitness value of each rule set in 
the current population. Generate (A p̂op — 1) mle sets using selec
tion, crossover, and mutation from existing rule sets in the current 
population. The selection and crossover operations are the same as 
those in the Pittsburgh-style algorithm. The single iteration of the 
Michigan-style algorithm (i.e., the rule generation and the replace
ment) is applied as a mutation operation to each of the generated 
rule sets by the selection and crossover operations in the Pittsburgh 
part. The mutation probability Pmp is used for the application of the 
Michigan-style algorithm as a mutation operation. That is, Pmp is 
the application probability of the Michigan-style algorithm to each 
rule set. 

Step 3: Generation Update (Elitist Strategy). Add the best rule set in the 
current population to the newly generated (iVpop — 1) rule sets to 
form the next population of the population size A p̂op-

Step 4: Termination Test. If the stopping condition is not satisfied, return 
to Step 2. Otherwise terminate the execution of the algorithm. The 
final solution is the best rule set in the final population because the 
best rule set in the current population is always handed down to the 
next population by the elitist strategy. 

5.4.3 Computer Simulations 

We applied our hybrid algorithm to the wine data set in the same manner as 
in the previous computer simulations using the following parameter values: 

Number of linguistic rules: Â ruie = 10? 
Number of rule sets: A'pop — 50, 
Crossover probabilities: Pcp — 0.8 in the Pittsburgh part, 

p^^ — 0.8 in the Michigan part, 
Mutation probabilities: pmp = 0.8 in the Pittsburgh part, 

p^^ = 1/13 in the Michigan part, 
Stopping condition: 1000 iterations (i.e., 1000 generations), 
Number of replaced linguistic rules in the Michigan part: 

-^^replace — •̂ * 

It should be noted that the mutation probability of 0.8 in the Pittsburgh 
part is defined for each string (i.e., for each rule set) while the mutation 
probability of 1/13 in the Michigan part is defined for each gene (i.e., for 
each antecedent fuzzy set). 
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Average simulation results over five trials of the hybrid algorithm are sum
marized in Table 5.10 and Table 5.11 where we also cite the corresponding 
simulation results by the original Michigan-style and Pittsburgh-style algo
rithms with no modifications. Table 5.10 and Table 5.11 show the average 
classification rate and the average CPU time of each algorithm, respectively. 
We can see from Table 5.10 that the hybrid algorithm outperformed the two 
fuzzy GBML algorithms. This observation suggests that we can successfully 
implement the advantages of the two algorithms in a single hybrid algorithm. 
The average CPU time of the hybrid algorithm is of the same order as that 
of the Pittsburgh-style algorithm. This is because the basic framework of the 
hybrid algorithm is the Pittsburgh-style algorithm. 

Table 5.10. Average classification rate over five trials of each algorithm 

Three linguistic terms Five linguistic terms 
Michigan 97.1% 96.0% 
Pittsburgh 97.3% 75.4% 
Hybrid algorithm 100.0% 100.0% 

Table 5.11. Average CPU time over five trials of each algorithm (seconds) 

Three linguistic terms Five linguistic terms 
1.5 
237 
246 

5.4.4 Minimization of the Number of Linguistic Rules 

We have already examined the three fuzzy GBML algorithms: the Michigan-
style algorithm, the Pittsburgh-style algorithm, and their hybrid algorithm. 
In these algorithms, the number of linguistic rules in each rule set was always 
constant. That is, the population size in the Michigan-style algorithm and 
the string length of the other algorithms were fixed. In this subsection, we 
extend the hybrid algorithm to the case of variable string length to simulta
neously perform the minimization of the number of linguistic rules and the 
maximization of the classification ability of rule sets. 

The extended hybrid algorithm is the same as the hybrid algorithm in 
the previous section except for its crossover operation and fitness function. 
The main difference is that the string length (i.e., the number of linguistic 
rules) is not fixed in the extended hybrid algorithm. The number of linguistic 
rules is changed when new rule sets are generated from parent rule sets by 
a crossover operation. We use a one-point crossover operation with different 

Michigan 
Pittsburgh 
Hybrid algorithm 

1.6 
304 
345 
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crossover points in Fig. 5.15. To decrease the effect of the order of hnguistic 
rules in each string on the genetic search in the extended hybrid algorithm 
(i.e., to mix up linguistic rules), linguistic rules on one side of one parent 
are combined with those on the same side of the other parent to form a new 
string as shown in Fig. 5.15. Since the crossover point in one parent is not 
always the same as that in the other parent, the string length of new strings 
is not always the same as that of their parent strings. 

Rule 1 1 
Parent 1 | 1 | 2 | 3 | 1 | # 

Rule A 
Parent2 |#|3|2|#|2 

r Rule 2 
#|2|1|2|# 

RuleB 
3|#|3|1|2 

A 

Rules 
3|1|2|#|3 

RuleC 
2|3|#|3|# 

L 

Rule 4 
#|1|3|2|2| 

RuleD 
2|#|1|#|2| 

o 
Rulel 

IM2|3|1|# 
Rule A 

#|3|2|#|2 
RuleB 

3|^|3|1|2| 

Child or 
Rule 2 

|#|2|1|2|# 
Rule 3 

3|1|2|#|3 
Rule 4 

#1 1 |3|2|2 
RuleC 

2|3|#|3|# 
RuleD 

2|#|1|#|2| 

Fig. 5.15. One-point crossover operation with different crossover points. This 
crossover operation is used in the extended hybrid algorithm to simultaneously 
perform the minimization of the number of linguistic rules and the maximization 
of the classification ability of linguistic rules 

In the extended hybrid algorithm, we use the following fitness function to 
evaluate each rule set S: 

fitness(S) = NCP{S) - w^si • \S\. (5.9) 

This fitness function was also used in the genetic algorithm for rule selection 
in Chap. 4. This means that the task of the extended hybrid algorithm is the 
same as that of the genetic algorithm-based rule selection method: to find a 
small number of linguistic rules with a high classification ability. 

We applied the extended hybrid algorithm with w^s\ — 1 to the wine data 
set. We used the same parameter specifications as in the previous computer 
simulations with the hybrid algorithm in terms of the number of rule sets 
(i.e., population size), the crossover probabilities, the mutation probabilities, 
and the stopping condition. The number of linguistic rules was specified as 10 
in initial rule sets, which was changed by the crossover operation during the 
iterative execution of the extended hybrid algorithm. The number of replaced 
linguistic rules in the Michigan part was not specified as a constant value. In 
the Michigan part, 20% of linguistic rules in each rule set were replaced (i.e., 
-̂ replace = [0*2 X \SW whcrc \x\ deuotes the minimum integer that is larger 
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than or equal to x). This is because the number of Hnguistic rules in each 
rule set was not constant. 

Average simulation results over five trials of the extended hybrid algo
rithm are shown in Table 5.12. To compare the extended hybrid algorithm 
with the other three fuzzy GBML algorithms in Table 5.10 and Table 5.11, 
we did not use any extensions or modifications described in the previous sec
tions. From the comparison of Table 5.12 with Table 5.10 and Table 5.11, 
we can see that a smaller number of linguistic rules with a high classification 
ability were obtained by the extended hybrid algorithm than by each indi
vidual algorithm. The average number of linguistic rules in the case of the 
three linguistic terms was smaller than that in the case of the five linguistic 
terms in Table 5.12. This is because each linguistic rule in the former case 
can cover a larger portion of the pattern space than in the latter case. From 
the comparison between Table 5.12 and Table 5.10 with ten linguistic rules, 
we can see that the extended hybrid algorithm found smaller rule sets with 
lower classification rates due to the penalty term in (5.9) with respect to the 
number of fuzzy rules. 

Table 5.12. Average simulation results over five trials of the extended hybrid 
algorithm 

Three linguistic terms Five linguistic terms 
Classification rate 97.5% 97.3% 

CPU time (s) 688 688 
Number of rules 5.2 7.2 

The extended hybrid algorithm uses the same fitness function but a dif
ferent coding scheme as the genetic algorithm for rule selection in Chap. 4. 
To compare these two algorithms, we applied the extended hybrid algorithm 
to the wine data set using the 14 antecedent fuzzy sets in Fig. 1.4 of Chap. 
1 and don^t care as in the computer simulations with the genetic algorithm 
for rule selection in Chap. 4. While the genetic algorithm-based rule selection 
method used a prescreening procedure for decreasing the number of candidate 
rules, the extended hybrid algorithm does not use any trick for decreasing 
the search space. That is, it tries to maximize the fitness function in the 
search space with (14 + 1)^^ combinations of antecedent fuzzy sets for the 
13-dimensional wine data set. In computer simulations, we used the following 
two extensions described for the Michigan-style algorithm: 

(1) Specification of antecedent fuzzy sets of initial linguistic rules from train
ing patterns. 

(2) Generation of new linguistic rules from misclassified or rejected training 
patterns. 

As in the computer simulations on the wine data set using the genetic 
algorithm for rule selection in Chap. 4 (i.e.. Table 4.17), four values of w^s\ 
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were used: w^s\ =0.1,0.5,1,5. The average simulation results over five trials 
of the extended hybrid algorithm are shown in Table 5.13 where the sim
ulation results in Table 4.17 by the genetic algorithm-based rule selection 
method are also cited. The CPU time for the genetic algorithm-based rule 
selection method is for both the candidate rule prescreening and the execu
tion of the genetic algorithm. From Table 5.13, we can see that better results 
were obtained by the genetic algorithm-based rule selection. This may be 
because the search space of the extended hybrid algorithm is much larger. 

Table 5.13. Comparison between the genetic algorithm-based rule selection 
method and the extended hybrid algorithm of the two fuzzy GBML algorithms 

GBML algorithm 

Rule selection 

Value of w\s\ 

Classification rate 
Number of rules 

CPU time (s) 

Classification rate 
Number of rules 

CPU time (s) 

0.1 

100% 
18.8 
2032 

100% 
5.6 
193 

0.5 

99.6% 
10.2 
750 

100% 
5.1 
180 

1 

97.3% 
7.0 
498 

99.9% 
3.2 
193 

5 

90.8% 
3.2 
261 

98.7% 
3.0 
162 

We can use the extended hybrid algorithm and the genetic algorithm-
based rule selection method for the same task: to find a small number of 
linguistic rules with a high classification ability. As shown in Table 5.13, 
somewhat better results were obtained from rule selection. The question is 
which method should be used for a particular pattern classification problem. 
There is no general answer to this question. The main difference between 
these two approaches is that the prescreening procedure of candidate rules 
is used for decreasing the search space in the genetic algorithm-based rule 
selection method while the entire search space is handled in the extended 
hybrid algorithm. Thus the performance of the genetic algorithm-based rule 
selection method strongly depends on the prescreening procedure. If good 
linguistic rules are not included in candidate rules, the genetic algorithm for 
rule selection cannot find good rule sets. On the other hand, the extended 
hybrid algorithm does not use any prescreening procedure. Thus the search 
space is not heuristically reduced. While good rule sets were obtained by the 
extended hybrid algorithm in Table 5.13 for the wine data set, there may be 
many cases where the extended hybrid algorithm cannot find good rule sets 
because the search space is too large. In those cases, the genetic algorithm-
based rule selection may find good rule sets if the prescreening procedure 
works well. 



 

 

 

 

 



6. Multi-Objective Design of Linguistic Models 

The extended hybrid fuzzy GBML algorithm in the previous chapter was 
designed to find a small number of linguistic rules with a high classification 
ability. The genetic algorithm-based rule selection method in Chap. 4 also 
tackled the same task. These two algorithms used the same fitness function 
to simultaneously perform the maximization of classification ability and the 
minimization of the number of linguistic rules. The minimization of the num
ber of linguistic rules is used to design linguistic rule-based systems with 
high interpretability. There is a tradeoff between the accuracy and the inter-
pretability of linguistic rule-based systems [18, 19]. istic rule-based systems 
with both high accuracy and high interpretability. This tradeoff is illustrated 
in Fig. 6.1. The error on training patterns is monotonically decreased by in
creasing the complexity of linguistic rule-based systems. On the other hand, 
the error on test patterns is first decreased and then increased after reach
ing the minimum error at S*. Thus the rule set S* is optimal with respect 
to the accuracy of linguistic rule-based systems. The accuracy of linguistic 
rule-based systems deteriorates on decreasing the complexity (i.e., improv
ing the interpretability) from S*. In some cases, human users may prefer 
simpler rule-based systems with higher interpretability than 5* even if the 
classification accuracy deteriorates. That is, the rule set S* with the high
est generalization ability is not always preferred when the interpretability of 
linguistic rule-based systems is taken into account in addition to the classifica
tion accuracy. Recently, several approaches have been proposed for designing 
fuzzy rule-based systems with high interpretability as well as high accuracy 
[18, 19, 101, 145, 150, 151]. In this chapter, we discuss the design of linguis
tic rule-based systems for pattern classification problems in the framework 
of multi-objective optimization to handle the tradeoff between accuracy and 
interpretability. Our task in this chapter is not to find a single optimal rule 
set (e.g., 5* in Fig. 6.1) but to find multiple non-dominated rule sets with 
respect to the two criteria of accuracy and interpretability. 

6.1 Formulation of Three-Objective Problem 

While only the number of linguistic rules was considerd in the genetic 
algorithm-based rule selection method in Chap. 4 and the extended hybrid 
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" Fig. 6.1. Relation between the 
^ _ error and the complexity of lin-

Complexity guistic rule-based systems 

fuzzy GBML algorithm in Chap. 5, there are a number of issues that are 
related to the interpret ability of linguistic rule-based systems. For example: 

(1) Comprehensibility of fuzzy partitions (e.g., interpretability of each an
tecedent fuzzy set, separation of neighboring antecedent fuzzy sets, the 
number of antecedent fuzzy sets for each attribute). 

(2) Simplicity of linguistic rule-based systems (e.g., the number of attributes, 
the number of linguistic rules). 

(3) Simplicity of linguistic rules (e.g., type of linguistic rules, the number of 
antecedent conditions in each linguistic rule). 

(4) Simplicity of a classification method (e.g., selection of a single winner 
rule, voting by multiple rules). 

As in the previous chapters, we use the single winner-based method in 
classification systems with linguistic rules of the following form: 

Rule Rqi If xi is Aqi and . . . and x„ is Aqn 

then Class Cq with CFq. (6.1) 

It is assumed that linguistic terms are given for each attribute. Thus we 
do not discuss the first issue: comprehensibility of fuzzy partitions. We do 
not discuss the last issue, either (i.e., we always use the single winner-based 
method in this chapter). We measure the simplicity of linguistic rule-based 
systems by the number of linguistic rules as in Chaps. 4 and 5. That is, the 
number of linguistic rules is taken into account with respect to the second 
issue: simplicity of linguistic rule-based systems. Moreover, the number of 
antecedent conditions of each linguistic rule (i.e., rule length) is taken into 
account with respect to the third issue: simplicity of linguistic rules. 

Ishibuchi et al. [71] formulated the design of linguistic rule-based classifi
cation systems as the following three-objective optimization problem: 

Maximize /i(5'), minimize /2(5'), and minimize fsiS), (6.2) 

where / i (5) is the number of correctly classified training patterns by a rule 
set S (i.e., NCP{S)), f2{S) is the number of linguistic rules in S (i.e., |5|), 
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and f3{S) is the total rule length of linguistic rules in S. Usually there is no 
optimal rule set with respect to all the above three objectives due to the exis
tence of the above-mentioned tradeoff between accuracy and interpretability. 
Thus our task is to find multiple rule sets that are not dominated by any 
other rule sets. A rule set SB is said to dominate another rule set SA (i.e., 
SB is better than SA- SA ̂  SB) if all the following inequalities hold: 

MSA) < MSB), f2iSA}>f2{SB), f3{SA)>f3{SB), (6.3) 

and at least one of the following inequalities holds: 

fliSA)<hiSB), f2iSA)>MSB), fz{SA)>f3{SB). (6.4) 

The first condition (i.e., all the three inequalities in (6.3)) means that no 
objective of SB is worse than SA (i-e., SB is not worse than SA)- The second 
condition (i.e., one of the three inequalities in (6.4)) means that at least one 
objective of SB is better than SA- When a rule set S is not dominated by any 
other rule sets, S is said to be a Pareto-optimal solution of the three-objective 
optimization problem in (6.2). 

It should be noted that the third objective fsiS) is not the average rule 
length but the total rule length. Let us consider another three-objective opti
mization problem with /i(5'), /2(5'), and f3*{S) where f3*{S) is the average 
rule length of linguistic rules in S. This three-objective optimization problem 
is the same as the original formulation in (6.2) except for the third objective. 
Let us consider a rule set S where the average rule length is larger than 1: 
/3*(5) > 1 (e.g., the rule set with the three linguistic rules in Fig. 4.21 of 
Chap. 4). We add another linguistic rule of length 1 to this rule set to con
struct an enlarged rule set S+. Since /s* (S) > 1 and the length of the added 
linguistic rule is 1, the following relation always holds with respect to the 
average rule length between S and 5+: 

/ 3 - ( 5 + ) < / 3 . ( 5 ) , (6.5) 

while the following relation holds with respect to the total rule length: 

/3(5+) > faiS). (6.6) 

This means that the average rule length /s* (5) is improved by adding another 
linguistic rule of length 1 to the rule set S while the complexity of the rule 
set S is increased. Even if the added linguistic rule does not improve the 
classification accuracy of the rule set S (i.e., fi{S) > / i (5+)) , 5"^ is not 
dominated by S when we use the average rule length f3*{S) as the third 
objective instead of the total rule length f3{S). This discussion shows that 
the average rule length is not an appropriate criterion for measuring the 
simplicity of linguistic rules in the context of multi-objective optimization. 
Thus we use the total rule length as the third objective f3{S) in (6.2). 
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6.2 Multi-Objective Genetic Algorithms 

To find non-dominated rule sets of the three-objective optimization problem 
in (6.2), we use a three-objective genetic algorithm. In this section, we explain 
its basic framework, which can be used to extend both the genetic algorithm-
based rule selection method and the extended hybrid fuzzy GBML algorithm. 
Recently many evolutionary multi-objective optimization (EMO) algorithms 
have been proposed [21, 28, 193, 194]. Those EMO algorithms can be ap
plied to the three-objective optimization problem in (6.2). In this section, 
we explain a slightly modified version of a multi-objective genetic algorithm 
(MOGA) in [71] because it is easily implemented by simply modifying stan
dard single-objective genetic algorithms. This MOGA has two characteristic 
features. One is to use a scalar fitness function with random weights to evalu
ate each solution (i.e., each rule set). Random weights are updated whenever 
a pair of parent solutions is selected for crossover. That is, the selection of 
each pair of parent solutions is governed by different weights. A genetic search 
mechanism in various directions in the three-dimensional objective space is 
realized by this random weighting scheme. The other characteristic feature 
is to store all non-dominated solutions as a secondary population separately 
from the current population. The secondary population is updated at every 
generation. A small number of non-dominated solutions are randomly chosen 
from the secondary population and their copies are added to the current pop
ulation as elite solutions. The convergence speed of the current population to 
Pareto-optimal solutions is improved by this elitist strategy. Other parts of 
our MOGA in this chapter are the same as standard single-objective genetic 
algorithms. The search ability of our three-objective genetic algorithm, which 
is based on a simple EMO algorithm [127], is not always comparable to that 
of state-of-the-art EMO algorithms such as NSGA-II [29] and SPEA [194]. 
In Ishibuchi & Yamamoto [88, 91, 94], the NSGA-II algorithm was used to 
efficiently find non-dominated rule sets of the three-objective optimization 
problem in (6.2). 

6.2.1 Fi tness Funct ion 

The fitness value of each string S (i.e., each rule set S) in the current popu
lation is defined by the three objectives as 

fitness{S) = wi • fi{S) - W2 - f2{S) - ws • fsiS), (6.7) 

where w;i, W2, and w^ are weights satisfying the following conditions: 

Wi,W2,lV3 > 0, (6.8) 

wi + W2 + ws = 1. (6.9) 

As we have already mentioned, one characteristic feature of our MOGA in this 
chapter is to randomly specify the weights whenever a pair of parent strings 
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is selected from the current population. We use binary tournament selection 
with replacement for the selection of parent strings. Thus we calculate the 
fitness function in (6.7) for only four rule sets in the current population using 
the randomly specified weights when a pair of parent strings is selected. When 
another pair of parent strings is selected, the three weights are randomly 
updated. That is, the selection of each pair of parent strings is governed by 
a different weight vector. A pre-specified number of pairs are selected from 
the current population. New strings are generated from each pair of parent 
strings using crossover and mutation as in standard single-objective genetic 
algorithms. 

6.2.2 Elitist Strategy 

A secondary population stores non-dominated rule sets among examined ones 
during the execution of our MOGA. The secondary population is updated at 
every generation so that it includes all non-dominated rule sets and it does 
not include any dominated ones. Each rule set in the current population is ex
amined to see if it is dominated by any rule sets in the secondary population. 
If a rule set is not dominated, its copy is added to the secondary popula
tion. All solutions in the secondary population dominated by the added copy 
are removed. In this manner, the secondary population is updated at every 
generation. 

Each non-dominated rule set in the secondary population can be viewed 
as a kind of elite solution because it is not dominated by any examined 
rule sets. A pre-specified number (say A/'eiite) of non-dominated rule sets are 
randomly selected from the secondary population and their copies are added 
to the current population as elite solutions. This is a simple elitist strategy in 
EMO algorithms. It is shown in [193, 194] that the use of elitism is essential 
for designing EMO algorithms with high search ability. Most of the recently 
proposed EMO algorithms use some form of elitism (see [21, 28]). 

6.2.3 Basic Framework of Multi-Objective Genetic Algorithms 

The basic framework of our MOGA, which is used in the genetic algorithm-
based rule selection method and the extended hybrid fuzzy GBML algorithm, 
can be written as follows: 

[Multi-Objective Genetic Algorithm] 

Step 0: Parameter Specification. Specify the population size A p̂op, the num
ber of elite solutions A êiite, the parameter values for genetic opera
tions, and the stopping condition. 

Step 1: Initialization. Randomly generate iVpop rule sets as an initial popu
lation. Find non-dominated rule sets in the initial population by cal
culating the three objectives of each rule set. Construct a secondary 
population using copies of those non-dominated rule sets. 
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Step 2: Genetic Operations. Generate (iVpop — -/Veiite) I'ule sets using genetic 
operations (i.e., selection, crossover, and mutation) from the current 
population. The selection of parent rule sets is performed by iterating 
the following procedures: 
(a) Randomly specify the three weights as 

Wi = randomi/{randomi + random2 + random^), 

i = 1,2,3,(6.10) 
where randorrii is a non-negative random real number. 

(b) Select a pair of parent rule sets using binary tournament selection 
with replacement. The fitness value of each rule set is calculated 
by the fitness function in (6.7) using the current weight values 
specified in (6.10). 

Step 3: Evaluation, Calculate the three objectives of each of the newly gen
erated {Npop — Neiite) rule sets. 

Step 4: Secondary Population Update. Update the secondary population by 
examining whether each of the newly generated (A p̂op — A êiite) rule 
sets is dominated by any rule sets in the secondary population. 

Step 5: Generation Update (Elitist Strategy). Randomly select iVeiite non-
dominated rule sets from the secondary population and add their 
copies to the newly generated (iVpop — A êiite) rule sets to form the 
next population of the population size Npop. 

Step 6: Termination Test. If the stopping condition is not satisfied, return 
to Step 2. Otherwise terminate the execution of the algorithm. All 
the non-dominated rule sets among the examined ones during the 
execution of the algorithm are stored in the secondary population. 

6.3 Multi-Objective Rule Selection 

6.3.1 Algorithm 

The genetic algorithm for rule selection in Chap. 4 can be directly extended to 
the case of three-objective rule selection using the framework of our MOGA 
(and other EMO algorithms) described in Sect. 6.2. The binary coding of each 
rule set and the genetic operations for generating new rule sets in Chap. 4 
can be used in the three-objective genetic algorithm for rule selection with no 
modifications. As we have already explained in Chap. 4, unnecessary linguistic 
rules are removed from each rule set. The second and third objectives are 
calculated for each rule set after unnecessary linguistic rules are removed. 

6.3.2 Computer Simulations 

We applied the three-objective genetic algorithm for rule selection to the wine 
data set. We used the 14 antecedent fuzzy sets in Fig. 1.4 of Chap. 1 and 
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don't care for generating linguistic rules. As in the computer simulations in 
Sect. 4.4, we generated linguistic rules of length 3 or less (i.e., linguistic rules 
with three or less antecedent conditions). The number of generated linguistic 
rules was 711716. We selected 900 candidate rules from the 711716 linguistic 
rules using the candidate rule prescreening procedure as in Sect. 4.4 

The three-objective genetic algorithm for rule selection was used to find 
non-dominated rule sets from the 900 candidate rules. Parameter values were 
specified as follows. 

Population size: Â pop = 50, 
Number of elite solutions: A êiite = 5, 
Crossover probability: p^ = 0.8, 
Mutation probability: ^,^(0 -^ 1) = 1/900, 

p^{l -> 0) = 0.1, 
Stopping condition: 1000 population updates. 

We used the same parameter specifications as in the computer simulations in 
Sect. 4.4 using the genetic algorithm-based rule selection method. It should be 
noted that we do not have to specify the weight values in the fitness function 
in (6.7). This is because we use the three-objective genetic algorithm with 
variable weights. If we pre-specify the weight values, single-objective genetic 
algorithms can be utilized to maximize the fitness function in (6.7) with the 
constant weights. 

Table 6.1 shows non-dominated rule sets obtained by a single run of the 
three-objective genetic algorithm for rule selection. It should be noted that 
only 50000 rule sets were examined by the three-objective genetic algorithm 
for finding the rule sets in Table 6.1. To clearly demonstrate the tradeoff 
between the accuracy and the interpretability of linguistic rule-based sys
tems, each rule set in Table 6.1 is depicted in the two-dimensional space with 
the total rule length and the error rate in Fig. 6.2. Some rule sets are not 
shown because they are out of the range of this figure. The figure clearly 
shows the tradeoff between the total rule length (i.e., complexity of linguistic 
rule-based systems) and the error rate (i.e., classification performance). The 
improvement in the error rate leads to an increase in the total rule length. 

Since genetic algorithms are based on a stochastic search mechanism, the 
obtained rule sets are not always true Pareto-optimal solutions. Thus better 
solutions may be obtained from multiple runs of the three-objective genetic 
algorithm for rule selection. Better rule sets may also be obtained by in
creasing the population size and/or the number of iterations. The increase 
in the number of candidate rules also increases the chance of finding better 
rule sets, though it also increases the difficulty of finding good rule sets due 
to the exponential increase in the size of the search space for rule selection. 
Table 6.2 shows the simulation results of a single run of the three-objective 
genetic algorithm for rule selection with a population size of 500 and 10000 
iterations. This means that the computation load in Table 6.2 is 100 times as 
large as in Table 6.1 with a population size of 50 and 1000 iterations. From 
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Table 6.1. Non-dominated rule sets obtained by a single run of the three-objective 
genetic algorithm for rule selection with population size of 50 and 1000 iterations 

Rule set 

^1 

52 
Ss 
S4 
55 
56 
57 
58 
59 
'S'lo 
5 i i 
Sl2 
Sl3 
Sl4 
Sl5 

Classification ra te 

100.0% 
98.9% 
98.3% 
97.8% 
97.2% 
96 .1% 
95.5% 
93.8% 
88.8% 
71.9% 
70.2% 
69 .1% 
68.0% 
39.9% 
39.3% 

Number of rules 

4 
4 
4 
4 
3 
3 
3 
3 
3 
2 
2 
2 
2 
1 
1 

Average length 

2.50 
2.25 
2.00 
1.75 
2.33 
2.00 
1.67 
1.33 
1.00 
2.50 
2.00 
1.50 
1.00 
2.00 
1.00 
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Fig. 6.2. Obtained rule sets in 
the two-dimensional space with 
the total rule length and the er-

the comparison between Table 6.1 and Table 6.2, we can see tha t simula
tion results were slightly improved by increasing the computation load. As 
mentioned in Chap. 4, the efficiency of genetic algorithm-based rule selection 
strongly depends on the prescreening of candidate rules. 

For further discussions on multi-objective genetic rule selection and other 
simulation results, see Ishibuchi & Yamamoto [94, 88, 89]. 
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Table 6.2. Non-dominated rule sets obtained by a single run of the three-objective 
genetic algorithm for rule selection with a population size of 500 and 10000 itera
tions 

Rule set 

5 i 
52 
S3 
S4 
55 
56 
57 
58 
59 
Sio 
5 i i 
'S'l2 
'S'i3 
Sl4 

Classification ra te 

100.0% 
99.4% 
98.3% 
97.2% 
96 .1% 
96 .1% 
94.9% 
88.2% 
73.0% 
72.5% 
71.9% 
69.7% 
67.4% 
39.9% 

Number of rules 

3 
3 
3 
4 
3 
4 
3 
3 
2 
2 
2 
2 
2 
1 

Average length 

2.33 
2.00 
1.67 
1.00 
1.33 
0.75 
1.00 
0.67 
2.50 
2.00 
1.50 
1.00 
0.50 
0.00 

6.4 Multi-Objective Genetics-Based Machine Learning 

6.4.1 Algorithm 

The extended hybrid fuzzy GBML algorithm in Chap. 5 can also be easily 
adapted to the case of three-objective optimization using the framework of the 
MOGA described in Sect. 6.2. The coding of each rule set using antecedent 
fuzzy sets and the genetic operations for generating new rule sets in Chap. 5 
can be used in three-objective fuzzy GBML with no modifications. The num
ber of linguistic rules in each rule set is changed by the one-point crossover 
operation with different crossover points as in Chap. 5. Our three-objective 
fuzzy GBML algorithm is a hybrid algorithm of the Michigan approach and 
the Pittsburgh approach. We use the following two heuristics in the three-
objective fuzzy GBML algorithm (see Chap. 5). 

(1) Heuristic generation of an initial population. 
(2) Rule generation from misclassified or rejected training patterns. 

6.4.2 Computer Simulations 

We applied the three-objective fuzzy GBML algorithm to the wine data set. 
As in the previous section, we used the 14 antecedent fuzzy sets in Fig. 1.4 
of Chap. 1 and don^t care. The total number of combinations of antecedent 
fuzzy sets for generating linguistic rules is (14 -h 1)^^. The three-objective 
fuzzy GBML algorithm was used to construct non-dominated rule sets from 
such a huge number of possible linguistic rules. 

The three-objective fuzzy GBML algorithm was applied to the wine data 
set using the following parameter specifications: 
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Number of linguistic rules in initial rule sets: A r̂uie = 10, 
Number of rule sets: Â pop = 50, 
Crossover probabilities: Pcp = 0.8 in the Pittsburgh part, 

PcM = 0.8 in the Michigan part, 
Mutation probabilities: Pmp = 0.8 in the Pittsburgh part, 

PrriM — 1/1^ i^ the Michigan part, 
Number of elite solutions: A êiite = 5, 
Stopping condition: 1000 iterations, 
Number of replaced linguistic rules: 20% of existing rules. 

The same parameter specifications were used in the computer simulations 
in Sect. 5.4 using the extended hybrid fuzzy GBML algorithm. As in the 
case of the three-objective genetic algorithm for rule selection in the previous 
section, we do not have to specify the weight values in the fitness function in 
(6.7). 

Table 6.3 shows non-dominated rule sets obtained by a single run of the 
three-objective fuzzy GBML algorithm. As in Table 6.1, only 50000 rule sets 
were examined by the three-objective fuzzy GBML algorithm for finding the 
rule sets in Table 6.3. From the comparison between Table 6.1 and Table 
6.3, we can see that larger rule sets were obtained from the three-objective 
fuzzy GBML algorithm. That is, many rule sets in Table 6.3 are inferior to 
those in Table 6.1 with respect to the comprehensibility of rule sets. This is 
because the search space in Table 6.1 (i.e., 2^°^) is much smaller than that 
in Table 6.3 (i.e., 2^ where N = 15^^). We also applied the three-objective 
fuzzy GBML algorithm to the wine data set using a greater computation load 
than in Table 6.3. That is, the population size and the stopping condition 
were specified as 500 rule sets and 10000 iterations, respectively. Simulation 
results are summarized in Table 6.4. From the comparison between Table 6.4 
and Table 6.3, we can see that better rule sets were obtained in Table 6.4. 
Simulation results in Table 6.4, however, are still inferior to those in Table 
6.1 by rule selection. This suggests that a greater computation load may be 
required for finding good rule sets in the huge search space. 
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Table 6.3. Non-dominated rule sets obtained by a single run of the three-objective 
fuzzy GBML algorithm with a population size of 50 and 1000 iterations 

Rule set 

5 i 
52 
S3 
S4 
Se 
Se 
Sr 
Ss 
59 
5io 
5 i i 
Sl2 
Sis 
Si4 
Sl5 
Sl6 
Su 

Classification ra te 

100.0% 
99.4% 
98.9% 
98.3% 
97.8% 
97.2% 
96.6% 
96 .1% 
96 .1% 
94.9% 
93.3% 
91.6% 
68.0% 
65.7% 
65.2% 
60 .1% 
39.9% 

N u m b e r of rules 

11 
9 
9 
9 
7 
6 
5 
4 
5 
4 
4 
3 
3 
2 
2 
2 
1 

Average length 

2.00 
2.22 
2.00 
1.78 
1.86 
1.67 
1.80 
1.75 
1.20 
1.25 
1.00 
1.00 
0.67 
2.00 
1.00 
0.50 
0.00 

Table 6.4. Non-dominated rule sets obtained by a single run of the three-objective 
fuzzy GBML algorithm with a population size of 500 and 10000 iterations 

Rule set 

5 i 
52 
53 
54 
55 
56 
57 
58 
59 
5io 
5 i i 
Sl2 
Sis 
Sl4 
Sl5 
Sl6 
Sir 
Sl8 

Classification ra te 

100.0% 
100% 
99.4% 
99.4% 
98.9% 
98.3% 
98.3% 
97.8% 
97.2% 
96 .1% 
93.8% 
93.3% 
92.7% 
88.2% 
70.2% 
69.7% 
67.4% 
39.9% 

N u m b e r of rules 

6 
7 
5 
6 
5 
4 
5 
4 
4 
4 
3 
3 
3 
3 
2 
2 
2 
1 

Average length 

2.67 
1.71 
2.20 
1.67 
1.40 
1.75 
1.00 
1.25 
1.00 
0.75 
1.67 
1.33 
1.00 
0.67 
1.50 
1.00 
0.50 
0.00 



 

 

 

 

 



7. Comparison of Linguistic Discretization 
with Interval Discretization 

We have already explained several approaches to the design of linguistic rule-
based systems for pattern classification problems. In this chapter, we compare 
linguistic discretization with interval discretization to clearly illustrate char
acteristic features of linguistic rule-based classification systems. For such a 
comparison, we specify linguistic discretization in a different manner from the 
previous chapters. While we assumed in the previous chapters that linguistic 
discretization is given for each attribute by human users or domain experts, 
in this chapter we construct linguistic discretization from interval discretiza
tion. Figures 7.1 and 7.2 are examples of linguistic discretization generated 
from interval discretization. Interval discretization in Fig. 7.1 is homogeneous 
(i.e., five intervals have the same width) while it is inhomogeneous in Fig. 
7.2. 

Fig. 7.1. Homogeneous interval 
discretization into five intervals 
with the same width and the corre
sponding linguistic discretization 

Fig. 7.2. Inhomogeneous inter
val discretization into five inter
vals with different widths and 
the corresponding linguistic dis
cretization 
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7.1 Effects of Linguistic Discretization 

7.1.1 Effect in the Rule Generation Phase 

The main characteristic feature of Hnguistic discretization is the overlap be
tween adjacent antecedent fuzzy sets (i.e., adjacent linguistic terms). This 
means that many linguistic rules overlap with each other in the pattern space. 
On the other hand, there is no overlap of rules in the case of interval dis
cretization. This difference is illustrated in Fig. 7.3. In Fig. 7.3 (a), an input 
pattern denoted by the closed circle in the pattern space is covered by four 
linguistic rules corresponding to the four shaded cells. In general, an input 
pattern in the n-dimensional pattern space is covered by 2^ linguistic rules. 
On the other hand, an input pattern is covered by only a single rule in the 
case of interval discretization as shown in Fig. 7.3 (b). 

1.0 

0.0 

[ [• J 

0.0 

1.0 

0.0 
1.0 0.0 

m 
I A 

1.0 

S ^!dvisXMXML% L 

I S . LMS.I. M |UML.i L 

'\\y \\y \\,y \l/ 

/ \ / \ /\ / \ 

(a) Linguistic discretization (b) Interval discretization 

Fig. 7.3. Difference between fuzzy discretization and interval discretization. Each 
axis is homogeneously divided into five linguistic terms (S: small^ MS: medium 
small, M: medium, ML: medium large, and L: large) and five intervals 

As shown in Fig. 7.3 (a), an input pattern in the pattern space is covered 
by multiple linguistic rules. This means that each training pattern is involved 
in the generation of multiple linguistic rules. On the other hand, each training 
pattern is involved in the generation of a single rule in the case of interval 
discretization. This difference in the rule generation phase is significant when 
training patterns are sparse and discretization is fine. In Fig. 7.4, the two-
dimensional pattern space is divided into 25 cells. From the given 14 training 
patterns (i.e., seven closed circles and seven open circles), 22 linguistic rules 
in the shaded region in Fig. 7.4 (a) can be generated. On the other hand, 
only nine rules can be generated in the case of interval discretization in Fig. 
7.4 (b). 
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(a) Linguistic discretization (b) Interval discretization 

Fig. 7.4. Training patterns and generated rules 

It should be noted that each training pattern has a different influence 
(i.e., different importance) in the rule generation phase according to its com
patibility grade to each linguistic rule. Let us consider the following linguistic 
rule at the center of the pattern space in Fig. 7.4 (a): 

If xi is medium and X2 is medium then Class 1 with CF = 0.17. (7.1) 

The consequent class and the rule weight of this linguistic rule were de
termined from four training patterns in the large dotted square at the center 
of the pattern space in Fig. 7.4 (a). In the rule generation phase of this lin
guistic rule, one training pattern from Class 1 near the center of the pattern 
space has a larger compatibility grade than two training patterns from Class 
2 near the sides of the small cell at the center of the pattern space. The com
patibility grades of the four compatible patterns are 0.90 (Class 1 pattern 
near the center of the pattern space), 0.52 (Class 2 pattern), 0.30 (Class 2 
pattern), and 0.26 (Class 1 pattern). The sum of the compatibility grades 
over the two training patterns from Class 2 is smaller than that of the two 
Class 1 patterns. As a result, the consequent of the linguistic rule in (7.1) is 
Class 1. 

The corresponding rule was generated in Fig. 7.4 (b) in the case of interval 
discretization as 

If xi is medium and X2 is medium then Class 2 with CF = 0.33. (7.2) 

This rule was generated from three compatible training patterns that are 
located in the small cell at the center of the pattern space in Fig. 7.4 (b). Note 
that the linguistic rule in (7.1) and the interval rule in (7.2) have different 
consequent classes. 
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7.1.2 Effect in the Classification Phase 

The characteristic features of linguistic discretization in the classification 
phase also stem from the fact that multiple linguistic rules overlap with each 
other in the pattern space. The decision region of each linguistic rule in the 
case of linguistic discretization is usually different from the corresponding 
cell in the case of interval discretization (see Fig. 7.5 (a)). This is because the 
size of the decision region of each linguistic rule depends on its rule weight 
(i.e., its certainty grade). The location of the classification boundary can 
be adjusted using the rule weight of each linguistic rule as shown in Chap. 
3 [67, 132]. On the other hand, the location of the classification boundary 
is determined by the threshold values on each axis in the case of interval 
discretization as shown in Fig. 7.5 (b). This is because the decision region of 
each interval rule is uniquely determined by the threshold values on each axis. 
Note that no rules are generated in the two cells shaded in Fig. 7.5 (b). From 
these discussions, we expect that good results can be obtained by linguistic 
rules even when the linguistic discretization of each axis is not appropriately 
specified. On the other hand, each axis should be appropriately discretized 
into intervals for generating interval rules with high classification ability. 
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(a) Linguistic discretization (b) Interval discretization 

Fig. 7.5. Decision region of each rule and the classification boundary 

Linguistic rules have larger decision regions than the corresponding inter
val rules when rules are sparse. If there are no adjacent linguistic rules around 
the linguistic rule in (7.1) with the antecedent part {medium, medium), its 
decision region is the dotted square in Fig. 7.4 (a). On the other hand, the 
decision region of the corresponding interval rule is always the corresponding 
cell at the center of Fig. 7.4 (b). That is, the size of the decision region is 
independent of the existence of adjacent interval rules in the case of interval 
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discretization. The size of the decision region of each hnguistic rule, however, 
depends on the existence of adjacent linguistic rules. Thus a small number 
of sparsely located linguistic rules can classify far more patterns than the 
corresponding interval rules. In the case of interval discretization, the classi
fication of many patterns will be rejected if the number of interval rules is 
very small. From these discussions, we expect that a small number of linguis
tic rules have higher classification ability than the same number of interval 
rules. 

7.1.3 Summary of Effects of Linguistic Discretization 

In this section, we have illustrated some effects of linguistic discretization 
in the rule generation phase and the pattern classification phase. The main 
positive effects of linguistic discretization on the classification performance 
of linguistic rule-based systems are summarized as follows: 

(1) Multiple linguistic rules can be generated from a single training pattern 
while only a single rule can be generated in the case of interval dis
cretization. This may lead to better results by linguistic discretization 
than interval discretization when the number of training patters is very 
small (i.e., when training patterns are sparse). 

(2) The location of the classification boundary can be adjusted using the rule 
weight of each linguistic rule while it is determined by the specification 
of threshold values in the case of interval discretization. This may lead 
to better results by linguistic discretization than interval discretization 
when the discretization of each axis is not tuned appropriately. 

(3) Each linguistic rule can classify a larger region than the corresponding 
interval rule. This may lead to better results by linguistic discretization 
than interval discretization when the number of rules is very small (i.e., 
when rules are sparse). 

7.2 Specification of Linguistic Discretization from 
Interval Discretization 

7.2.1 Specification of Fully Fuzzified Linguistic Discretization 

The membership function of each fuzzy set in Fig. 7.1 and Fig. 7.2 was 
generated from the corresponding interval based on the following constraint 
conditions: 

(a) Membership functions are linear (i.e., triangular or trapezoidal). 
(b) The sum of neighboring membership functions is 1. 
(c) Crossing points of neighboring membership functions coincide with thresh

old values for interval discretization (see Fig. 7.1 and Fig. 7.2). 
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(d) The membership value of each intermediate fuzzy set (e.g., MS: medium 
small, M: medium, and ML: medium large in Fig. 7.1) is 1 at the midpoint 
of the corresponding interval. The membership value of the smallest fuzzy 
set (e.g., S: small in Fig. 7.1) is 1 at the smallest input value 0 in the 
domain interval [0,1]. The membership value of the largest fuzzy set (e.g., 
L: large in Fig. 7.1) is 1 at the largest input value 1 in the domain interval 
[0,1]. 

It should be noted that linguistic discretization is not uniquely specified by 
these constraint conditions from interval discretization. For example, Fig. 
7.6 satisfies these constraint conditions as well as Fig. 7.1. While Fig. 7.1 
shows fully fuzzified linguistic discretization, Fig. 7.6 shows partially fuzzified 
linguistic discretization. 

Fig. 7.6. Partially fuzzified lin
guistic discretization 

To represent the grade of fuzzification, let us introduce the fuzzification 
grade F. When F = 1, linguistic discretization is fully fuzzified under the 
above constraint conditions as shown in Fig. 7.1 and Fig. 7.2. On the other 
hand, F = 0 corresponds to interval discretization with no fuzzification (i.e., 
no overlap between adjacent fuzzy sets). From fully fuzzified linguistic dis
cretization with F = 1 and interval discretization with F = 0, we can generate 
partially fuzzified linguistic discretization with arbitrary grades of fuzzifica
tion. 

Before explaining the specification of partially fuzzified linguistic dis
cretization, we first show how fully fuzzified linguistic discretization (e.g., 
Fig. 7.1 and Fig. 7.2) can be obtained from interval discretization based on 
the above-mentioned four constraint conditions. Let us assume that the unit 
interval [0,1] is discretized into K intervals / i , / 2 , . . . , / x as shown in Fig. 
7.7. We denote each interval Ij by its lower limit Lj and upper limit Uj as 
Ij = [Lj,Uj], j = 1,2,.. . , K. For these intervals, the following relations hold 
(see Fig. 7.7): 

Li =0,UK = 1, 

U, ^i+i for i = l , 2 , . . . , i ^ ~ l . 

(7.3) 

(7.4) 

Our task is to derive the fully fuzzified linguistic discretization with K fuzzy 
sets from the interval discretization with those K intervals. Let ^ i , A2 , . . . , AK 
be the K fuzzy sets corresponding to the K intervals / i , / 2 , . . . , I ^ . 
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IK 

L, = 0 Ui = L2 U2 = L, UK-I = LK UK= I 

Fig. 7.7. Interval discretization of the unit interval [0,1] into K intervals 

As shown in Fig. 7.1 and Fig. 7.2, each fuzzy set Aj is in general t rape
zoidal from the first constraint condition (a). A triangular fuzzy set can be 
viewed as a special case of a trapezoidal fuzzy set. We denote the trapezoidal 
fuzzy set Aj by its four parameters as Aj = (aj^bj^Cj^dj). This notation is 
illustrated in Fig. 7.8. It should be noted tha t the fuzzy set Aj is triangular 
when bj = Cj. 

Fig. 7.8. Adjacent trapezoidal 
fuzzy sets 

From the second constraint condition (b), we have the following relations 
(see Fig. 7.8): 

ttj+i = Cj and bj-^i = dj for j = 1, 2 , . . . , jff — 1. (7.5) 

In this case, we can see from Fig. 7.8 tha t the following relation holds: 

fXAj (x) + fj.Aj+1 (x) = 1 for Cj <x < dj, J = 1 ,2 , . . . , i^ - 1. (7.6) 

From the fourth constraint condition (d), the left hand side slope of the 
first fuzzy set Ai (e.g., S in Fig. 7.1) is specified as 

ai=bi= 0. (7.7) 

The right hand side slope of the last fuzzy set AK (e.g., L in Fig. 7.1) is 
specified as 

CK = dK = 1. (7.8) 

From (7.5), (7.7), and (7.8), we can see tha t the fuzzy discretization with 
^ 1 , ^2 5 • • • 5 AK is uniquely specified by determining the values of Cj and dj 
for j = 1 ,2 , . . . , K — 1. In the following, we show how these parameters can 
be determined from the interval discretization with / i , / 2 , . . . , / ^ . 

The third constraint condition (c) requires the following relation: 

t̂ . = ^4^fori = l,2,.. ,K (7.9) 
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To handle the fourth constraint condition (d), let us define Mj where the 
membership value of Aj should be 1 as follows: 

f 0, if j = 1, 
Mj = I (Lj + Uj)/2, ifl<j<K, (7.10) 

( 1, if J = K. 

The fourth constraint condition (d) requires the following relation: 

Mj < Cj < dj < Mj^i for i =̂  1,2,.. . , K - 1. (7.11) 

The specification of the fully fuzzified linguistic partition means the min
imization of Cj and the maximization of dj under the constraint conditions 
in (7.9) and (7.11). This optimization problem can be easily solved as follows: 

Case 1 (Fig. 7.9 (a)): When Uj < {Mj + Mj+i)/2, then 

Cj = Mj and dj = Uj + {Uj - Mj). 

Case 2 (Fig. 7.9 (b)): When Uj > {Mj + M^+i)/2, then 

Cj = Uj - {Mj^i - Uj) and dj M. j+ i -

(7.12) 

(7.13) 

Using (7.12) and (7.13), we can specify Cj and dj for j = 1,2,..., if — 1. 
Then aj and hj are specified from (7.5) for j = 2 , 3 , . . . , if. The other param
eters have already been specified by (7.7) and (7.8). In this manner, we can 
specify the fully fuzzified linguistic discretization of the domain interval [0,1] 
with the K fuzzy sets from the interval discretization with the K intervals. 

d r ^^— 

1 

MJ 

i 
^ 

^ " ^ • r / 

M>i M, UJ 

(a) Case 1 (b) Case 2 

Fig. 7.9. Illustration of the specification of Cj and dj 

7.2.2 Specification of Partially Fuzzified Linguistic Discretization 

Now we show how we can specify the partially fuzzified linguistic discretiza
tion with the fuzzification grade F . Let us denote the partially fuzzified trape
zoidal fuzzy set Aj with the fuzzification grade F as Af = {aJ,bj,cj,dj) 
where 0 < F < 1. Note that we have already obtained the fully fuzzified 
trapezoidal fuzzy set Aj — (a],6],cj,(ij) with the maximum fuzzification 
grade (i.e., F = 1) in the previous subsection. On the other hand, the trape
zoidal fuzzy set J^j — (a^, 6^,c^,d^) with no fuzzification is the same as the 
interval F : 
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a^.=lP.=Lj, (7.14) 

c° = rfO = Uj. (7.15) 

Using the interpolation between A^ and A], we specify Aj = (aj", bf^cf, 
dj) as follows: 

af = a''j + {a]-a^j)F, (7.16) 

^f = ^i + (^i - ^ i )^ ' (7-17) 

"̂" = ^' + ( 4 - ^ ' ) ^ ' (^-IS) 

df = d^'j + ( 4 - d^j)F. (7.19) 

From these formulations, we can generate partially fuzzy linguistic discretiza
tion with arbitrary fuzzification grades when the interval discretization is 
given. Figure 7.6 was drawn using these formulations for F = 0.5. 

7.3 C o m p a r i s o n Us ing H o m o g e n e o u s D i s c r e t i z a t i o n 

Through computer simulations on the iris data set and the wine data set, we 
compare linguistic discretization with interval discretization when the domain 
interval of each attribute is homogeneously divided into multiple intervals 
with the same width. 

7.3.1 Simulation Results on Iris Data 

In this subsection, we present simulation results on the iris data set. As in 
the previous chapters, the iris data set was treated as a three-class pattern 
classification problem in the four-dimensional unit hypercube [0,1]^. 

First we examined the classification performance of linguistic rule-based 
systems in the case of sparse training patterns. We randomly selected only 
five samples from each class as training patterns. Thus the total number of 
training patterns was 15. These training patterns were used to design a lin
guistic rule-based system. The other 135 samples were used as test patterns 
to evaluate the generalization ability of the designed linguistic rule-based 
system. In our computer simulations in this subsection, the domain interval 
[0,1] of each attribute was uniformly divided into K intervals with the same 
width. The linguistic discretization with K fuzzy sets of the fuzzification 
grade F was generated from the interval discretization with the K intervals. 
To generate linguistic rules, K^ combinations of K antecedent fuzzy sets for 
each of the four attributes were examined using the heuristic rule generation 
procedure in Chap. 2. There were many combinations for which linguistic 
rules could not be generated. This is because training patterns were sparse. 
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We examined four parameter specifications of K: K = 2,3,4,5. For each 
specification of K, we examined eleven parameter specifications of the fuzzi-
fication grade F : F = 0,0.1,0.2,. . . , 1. For each combination of K and F , we 
calculated the average classification rate on test patterns over 500 trials with 
different choices of 15 training patterns (i.e., different partitions of the 150 
samples into 15 training patterns and 135 test patterns). Simulation results 
are summarized in Fig. 7.10. 

o 

U 

Fuzzification grade (F) 

Fig. 7.10. Average classification 
rates on test patterns. Only 15 
samples in the iris data set were 
used as training patterns 

From Fig. 7.10, we can see that the fuzzification of interval discretization 
improved the generalization ability of linguistic rule-based systems. The main 
reason for the poor generalization ability of interval discretization (i.e., poor 
results in Fig. 7.10 in the case of no fuzzification: F = 0) is that only a small 
number of rules were generated from sparse training patterns. As a result, 
the classification of many test patterns was rejected. The average number of 
generated linguistic rules is summarized in Table 7.1. From this table, we can 
see that much far rules were generated in the case of linguistic discretization 
than interval discretization. We also calculated the average rejection rate for 
each combination ofK and F . Simulation results are summarized in Fig. 7.11. 
From this figure, we can see that the classification of many test patterns was 
rejected in the case of a large K (i.e., fine partition) and a small F (i.e., small 
fuzzification grade). The combination of a large K and a small F means a 
small decision region of each linguistic rule. Such a small decision region has 
two negative effects on the classification performance in the case of sparse 
training patterns. One is that the number of generated rules is small. The 
other is that each rule can classify only a small number of test patterns. As 
a result, many test patterns cannot be classified in the case of fine partitions 
and small fuzzification grades. 

Next we examined the classification performance of linguistic rule-based 
systems in the case of sparse rules. We used the 10-fold cross-validation 
(lOCV) technique to estimate the generalization ability of linguistic rule-
based systems. In the lOCV technique, the 150 samples in the iris data set 
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Table 7.1. Number of generated rules 

Partition 

Granularity 

# of rules 

Interval discretization {F = 0) 

2 3 4 5 

6.5 9.0 14.4 11.8 

Partition 

Granularity 

# of rules 

Linguistic discretization (F = 1) 

2 3 4 5 

16.0 40.3 65.5 87.2 

o 

Pi 

Fuzzification grade (F) 

Fig. 7.11. Average rejection 
rates on test patterns. Only 15 
samples in the iris data set were 
used as training patterns 

were randomly divided into ten subsets with five samples from each class (i.e., 
15 samples in each subset). Nine subsets were used as training patterns and 
the remaining subset was used as test patterns. This was iterated ten times so 
that all subsets were used once as test patterns. The whole lOCV procedure 
was iterated 50 times using different partitions of the 150 samples into ten 
subsets for each combination of granularity K and fuzzification grade F. In 
each trial in the lOCV procedure, K^ combinations of K antecedent fuzzy 
sets for each of the four attributes were examined to generate linguistic rules. 
From the generated linguistic rules, N linguistic rules were selected using the 
rule prescreening procedure in Chap. 4. Simulation results are summarized in 
Fig. 7.12 for the case of Â  = 3 (i.e., only a single rule for each class) and Fig. 
7.13 for the case of Â  = 30 (i.e., ten rules for each class). These figures show 
the average classification rate on test patterns for each specification for the 
granularity K, the fuzzification grade F , and the number of linguistic rules 
N. From Fig. 7.12, we can see that the effect of fuzzification on the classifi
cation performance of linguistic rule-based systems was significant when the 
number of linguistic rules was very small. On the other hand, this effect was 
not so significant when the number of linguistic rules was large as shown in 
Fig. 7.13. 
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Fuzzification grade (F) 

K = 3 OK = 4 mK = 5 

Fig. 7.12. Average classification 
rates on test patterns obtained 
from the lOCV procedure for the 
iris data set using three linguistic 
rules (i.e., a single linguistic rule 
for each class) 

Fuzzification grade (F) 

Fig. 7.13. Average classification 
rates on test patterns obtained 
from the lOCV procedure for the 
iris data set using 30 linguistic 
rules (i.e., ten linguistic rules for 
each class) 

7.3.2 Simulation Results on Wine Data 

In this subsection, we present simulation results on the wine data set. As in 
the previous chapters, the wine data set was treated as a three-class pattern 
classification problem in the 13-dimensional unit hypercube [0,1]^^. In our 
computer simulations in this subsection, we only generated linguistic rules of 
length of 2 or less. 

Using linguistic rules of this length, we performed almost the same com
puter simulations on the wine data set as in the previous subsection on the 
iris data set. First we examined the classification performance of linguistic 
rule-based systems in the case of sparse training patterns. About 10% of the 
given samples were randomly selected as training patterns from the wine data 
set: six samples from Class 1 with 59 samples, seven samples from Class 2 
with 71 samples, and five samples from Class 3 with 48 samples. Thus the 
total number of training patterns was 18. These training patterns were used 
to design a linguistic rule-based system. The other 160 samples were used as 
test patterns to evaluate the generalization ability of the designed linguistic 
rule-based system. For each specification of the granularity K and the fuzzifi
cation grade F , we calculated the average classification rate on test patterns 
over 500 trials with different choices of the 18 training patterns. Simulation 
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results are summarized in Fig. 7.14. From this figure, we can see that the 
fuzzification of interval discretization significantly improved the generaliza
tion ability of linguistic rule-based systems as in Fig. 7.10 on the iris data set 
when training patterns were sparse. 

100 
n-K = 2 mK = 3 OK = 4 mK = 5 

Fuzzification grade (F) 

Fig. 7.14. Average classification 
rates on test patterns. Only 18 
samples in the wine data were 
used as training patterns 

Next we examined the classification performance of linguistic rule-based 
systems in the case of sparse rules. As in the previous subsection, we used the 
lOCV technique to estimate the generalization ability of linguistic rule-based 
systems. The whole lOCV procedure was iterated 50 times using different 
partitions of the wine data set into ten subsets for each specification of the 
granularity K and the fuzzification grade F. Simulation results are summa
rized in Fig. 7.15 for the case of Â  == 3 (only a single linguistic rule from 
each class) and Fig. 7.16 for the case of iV = 30 (ten linguistic rules from 
each class). From Fig. 7.15, we can see that the effect of fuzzification on the 
performance of linguistic rule-based systems was significant when the number 
of linguistic rules was very small. On the other hand, this effect was not so 
significant in Fig. 7.16 where the number of fuzzy rules was large. The same 
observations were obtained from the previous computer simulations on the 
iris data set (i.e.. Fig. 7.12 and Fig. 7.13). 

7.4 Comparison Using Inhomogeneous Discretization 

In the previous computer simulations, we used homogeneous interval dis
cretization for generating linguistic discretization with arbitrary fuzzifica
tion grades. Since the location of classification boundaries totally depends on 
threshold values in the case of interval discretization, generalization ability 
can be improved by carefully choosing threshold values for each attribute. In 
this section, we specify interval discretization using the entropy measure as 
in Fayyad & Irani [45] and Quinlan [143]. 
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K = 3> OK = A %K=5 

Fuzzification grade {F) 

Fig. 7.15. Average classification 
rates on test patterns obtained 
from the lOCV procedure for the 
wine data set using three linguis
tic rules (i.e., a single linguistic 
rule for each class) 

i: = 3 0 ^ = 

Fuzzification grade (F) 

Fig. 7.16. Average classification 
rates on test patterns obtained 
from the lOCV procedure for the 
wine data set using 30 linguistic 
rules (i.e., ten linguistic rules for 
each class) 

7.4.1 E n t r o p y - B a s e d I n h o m o g e n e o u s Interval D i s c r e t i z a t i o n 

In computer simulations in this section, the domain interval of each a t t r ibute 
was discretized independently of the other at t r ibutes. When the domain inter
val of an a t t r ibute was discretized into K intervals / i , / 2 , . . . , //^ using {K — 1) 
threshold values, the threshold values were selected from (m — 1) candidates. 
Each candidate was the midpoint of a pair of neighboring a t t r ibute values in 
the given m t raining pat terns . All the m-iCK-i combinations were examined 
to select (K — 1) threshold values from (m — 1) candidates (for more efficient 
discretization methods, see [41]). The entropy was calculated for each combi
nation of {K — 1) threshold values (i.e., for each discretization). Let D be the 
set of given training pat terns . Using (K — l) threshold values on the a t t r ibute 
to be discretized (i.e., using K intervals J i , /2 , • • •, ^ K on tha t a t t r ibute) , the 
da ta set D is divided into K subsets i ^ i ,D2 , •. • , D K where Dj is the set of 
training pat terns in the interval Ij. According to the class of each training 
pat tern , each subset Dj is further divided into M subsets Dji,Dj2,..., DJM 
where Djh is the set of training pat terns from Class h in the interval Ij. The 
entropy measure i J ( / i , / 2 , . . . , / K ) is defined for the interval discretization 
J i , / 2 , . . . , / x as 
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K 

H{h,h....jK) = -Y. 
\Dj\ 
m 

M 

L. p . | A-g2 |̂ .̂| (7.20) 

The combination of {K — 1) threshold values with the minimum entropy 
was selected for each attribute. We discretized the domain interval of each 
attribute in this manner as a preprocessing procedure before designing lin
guistic rule-based systems. From the inhomogeneous interval discretization 
generated in this manner, we generated the corresponding fully fuzzified 
linguistic discretization as shown in Fig. 7.2. Then we generated partially 
fuzzified linguistic discretization with various fuzzification grades F from the 
inhomogeneous interval discretization and the corresponding fully fuzzified 
linguistic discretization. 

7.4.2 Simulation Results on Iris Data 

As in Sect. 7.3.1, we examined the classification performance of linguistic rule-
based systems in the case of sparse training patterns (i.e., 15 training patterns 
from the iris data set). Simulation results are summarized in Fig. 7.17. From 
this figure, we can see that the classification performance of linguistic rule-
based systems on test patterns was improved by increasing the fuzzification 
grade. This improvement was more significant in the case of fine discretization 
(e.g., K = 5) than coarse discretization (e.g., K = 2). 

nK = 2 mK=3 OK=4 mK = 5 

o 

U 

Fuzzification grade (F) 

Fig. 7.17. Average classification 
rates on test patterns in the case 
of inhomogeneous discretization. 
Only 15 samples in the iris data 
set were used as training patterns 

We also examined the classification performance of linguistic rule-based 
systems in the case of sparse rules. As in Sect. 7.3.1, we used the lOCV 
technique. Simulation results are summarized in Fig. 7.18 for the case of 
N = 3 (i.e., only a single linguistic rule from each class) and Fig. 7.19 for 
the case of Â  = 30 (i.e., ten linguistic rules from each class). From these 
figures, we can see that the classification performance of linguistic rule-based 
systems on test patterns was improved by increasing the fuzzification grade. 
This improvement was more significant in Fig. 7.18 with only three linguistic 
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rules than Fig. 7.19 with 30 linguistic rules. In the case of i f = 3 in Fig. 7.19 
(i.e., closed squares), we can observe no improvement in the classification rate 
by the increase of the fuzzification grade. 

nK = 2 mK = 3 OK = 4 

Fuzzification grade (F) 

Fig. 7.18. Average classification 
rates on test patterns obtained 
from the lOCV procedure for the 
iris data set using three linguis
tic rules (i.e., a single linguistic 
rule for each class). Inhomoge-
neous discretization was used 

Fuzzification grade (7^ 

Fig. 7.19. Average classification 
rates on test patterns obtained 
from the lOCV procedure for the 
iris data set using 30 linguistic 
rules (i.e., ten linguistic rules for 
each class). Inhomogeneous dis
cretization was used 

7.4.3 S i m u l a t i o n R e s u l t s o n W i n e D a t a 

In the same manner as in Sect. 7.3.2, we performed computer simulations 
on the wine da ta set using inhomogeneous discretization. Linguistic rules of 
length of 2 or less were used. First we examined the classification performance 
of linguistic rule-based systems in the case of sparse training pat terns (i.e., 
only 18 training pat terns) . Simulation results are summarized in Fig. 7.20. 
From Fig. 7.20, we can see tha t the classification performance of linguistic 
rule-based systems was improved by increasing the fuzzification grade when 
they were generated from sparse training pat terns . The same observation was 
obtained from the previous computer simulations on the iris da ta set. 
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Fuzzification grade (F) 

Fig. 7.20. Average classification 
rates on test patterns using in-
homogeneous discretization. Only 
18 samples in the wine data set 
were used as training patterns 

Next we examined the classification performance of linguistic rule-based 
systems in the case of sparse rules using the lOCV technique. Simulation 
results are summarized in Fig. 7.21 for N = 3 (i.e., only a single linguistic 
rule for each class) and Fig. 7.22 for N = 30 (i.e., ten linguistic rules for 
each class). From Fig. 7.21, we can see tha t the classification performance 
of linguistic rule-based systems was improved by increasing the fuzzification 
grade when the number of linguistic rules was very small. The same obser
vation was obtained from the previous computer simulations on the iris da ta 
set. On the other hand, the classification performance was impaired by the 
fuzzification of interval discretization in Fig. 7.22. Only this figure among 
simulation results in this chapter shows a clear deterioration in the classi
fication performance by the fuzzification of interval discretization. Thus we 
conclude tha t the fuzzification of interval discretization can have a negative 
eff'ect on the classification performance of rule-based systems when the fol
lowing conditions are satisfied: the number of training pat terns is not too 
small, the number of rules is not too small, and threshold values for interval 
discretization are appropriately specified. 

100 r-r 
nK = 2 *K = 3 0 ^ = 4 %K = 5 

Fuzzification grade (F) 

Fig. 7.21. Average classification 
rates on test patterns obtained 
from the lOCV procedure for the 
wine data set using three linguis
tic rules (i.e., a single linguistic 
rule for each class). Inhomoge
neous discretization was used 
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^K = 2 » ^ = 3 OK = 4 mK^5 

Fuzzification grade (F) 

Fig. 7.22. Average classification 
rates on test patterns obtained 
from the lOCV procedure for the 
wine data set using 30 linguistic 
rules (i.e., ten linguistic rules for 
each class). Inhomogeneous dis
cretization was used 



8. Modeling with Linguistic Rules 

We have already explained how linguistic rules can be used for pattern clas
sification problems. In this chapter, we discuss modeling problems using lin
guistic rules. Our task in this chapter is to extract linguistic rules (i.e., to 
design a linguistic rule-based system) from numerical data to approximately 
realize an unknown nonlinear function. First we describe a heuristic approach 
to linguistic rule extraction from numerical data for modeling problems. Then 
we explain a fuzzy reasoning method for calculating an output value for an 
input vector using linguistic rules. In later chapters, we explain rule selection, 
genetics-based machine learning, and learning of linguistic rules for modeling 
problems. 

8.1 Problem Description 

Let us assume that we have m input-output pairs (Xp, yp),p = 1,2,.. . , m, as 
training data where Xp = {xpi,Xp2^..., Xpn) is an n-dimensional input vector 
and ijp is the corresponding output value. We also assume that linguistic 
terms are given for describing the input and output variables. This means 
that a fuzzy partition of the input-output space is given. Our task is to 
design a linguistic rule-based system to approximately realize an unknown 
n-input and single-output nonlinear function using the given training data 
and the given linguistic terms. For simplicity of explanation, we assume that 
the n-dimensional input space and the single-dimensional output space are 
normalized into the n-dimensional unit hypercube [0,1]^ and the unit interval 
[0,1], respectively. In Fig. 8.1, we show a simple example of our modeling 
problem where 20 input-output pairs are given in a two-dimensional input-
output space [0,1] X [0,1]. Five linguistic terms (i.e., S: small, MS: medium 
small, M: medium, ML: medium large, and L: large) are given for both the 
input and output variables in Fig. 8.1. 

The linguistic rules for approximately realizing an n-input and single-
output function are written in the following form: 

Rule Rqi If xi is Aqi and . . . and Xn is Aqn then y is Bq, (8.1) 

where Rq is the label of the q-th linguistic rule, x = {xi,... ,Xn) is an n-
dimensional input vector, Aqi is a linguistic term given for the i-th input 
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Fig. 8.1. A simple example of our 
modeling problem where 20 input-
output pairs are given. The two-
dimensional input-output space is dis-
cretized into 25 fuzzy subspaces by 
five linguistic terms for the input and 
output variables 

variable Xi (i.e., Aqi is an antecedent fuzzy set), y is an output variable, and 
Bq is a linguistic term for the output variable (i.e., Bq is a consequent fuzzy 
set). When K linguistic terms are given for each of the n input and single 
output variables (e.g., K = 5 in Fig. 8.1), the total number of combinations 
of antecedent and consequent fuzzy sets is K^'^-^ in (8.1). Our task in this 
chapter is to generate a linguistic rule-based system, which is a subset of the 
j{ri+i combinations of antecedent and consequent fuzzy sets. When we use 
a grid-type fuzzy partition to generate a linguistic rule table, the number of 
linguistic rules is K^ because a single linguistic rule is generated for each 
combination of antecedent fuzzy sets (i.e., for each fuzzy subspace in the n-
dimensional input space). In Fig. 8.2, we show an example of a 5 x 5 fuzzy 
rule table. This table consists of the following 25 linguistic rules: 

If xi is small and X2 is small then y is small, (8-2) 

If xi is small and X2 is medium small then y is medium small, (8.3) 

If xi is large and X2 is large then y is small. (8.4) 

Figure 8.3 shows the corresponding nonlinear function generated by the 
fuzzy rule table in Fig. 8.2. In this chapter, we explain how linguistic rules 
(e.g., Fig. 8.2) can be extracted from training data. We also explain how 
nonlinear functions (e.g.. Fig. 8.3) can be depicted from linguistic rule-based 
systems. 

8.2 Linguistic Rule Extract ion for Modeling Problems 

When the number of input variables is small (e.g., n = 2), we can use a 
linguistic rule-based system in a tabular form as Fig. 8.2. In this case, the 
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Fig . 8 .2 . An example of a 5 x 5 fuzzy 
rule table 

y 0.5 

0.0 
0.0 

1.0 0.0 

Fig. 8.3. The nonlinear function de
picted by the fuzzy rule table in Fig. 
8.2. The calculation of the output 
value for each input vector is ex
plained in Sect. 8.2.4 

antecedent part of each linguistic rule is specified by the combination of 
given linguistic terms. The number of linguistic rules is the same as the 
number of combinations of linguistic terms for the n input variables in the 
antecedent part. In this section, we explain a heuristic method for determining 
the consequent part of each linguistic rule. Our heuristic method for modeling 
problems is similar to the heuristic rule generation method in Chap. 2 for 
pattern classification problems. 

8.2.1 Linguistic Association Rules for Modeling Problems 

The linguistic rule R^ in (8.1) can be viewed as a linguistic association rule 
Aq ^ Bq where Aq = (Agi, . . . ,^^n)- While the consequent part is a class 
label in the pattern classification problems in Chap. 2, 5^ is a linguistic term 
in the modeling problems in this chapter. We extend the two measures (i.e., 
confidence and support) in data mining to the case of the linguistic association 
rule Aq ^ Bq in the same manner as in Chap. 2 [57, 95]. 
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Let us denote the given training data hj D: D = {(xi, ^ i ) , . . . , {Xm^ym)}-
The cardinality of D is m (i.e., \D\ = m). Let D{Aq) be the fuzzy set of 
compatible training data with the antecedent part Aq of the linguistic rule Rq. 
Then the total compatibility grade with the antecedent part Aq is calculated 
as 

m 

\D{Aq)\=J2^^A^P^- (^•^) 
p=l 

As in Chap. 2, the compatibility grade fiAq{xp) of Xp with Aq is defined 
by the minimum operator or the product operator (see (2.3) and (2.4) of 
Chap. 2). In this book, we use the product operator. In (8.5), |D(Ag)| is the 
cardinality of the fuzzy set D{Aq). 

Using the product operator, the compatibility grade fiR^{xp,yp) of the 
input-output pair (xp^yp) with the linguistic rule Rq (i.e., with both the 
antecedent part Aq and the consequent part Bq) is defined as 

I^RMP^VP) = ^^Aq{xp) X fiB,{yp)' (8.6) 

It is possible to use the minimum operator instead of the product operator in 
(8.6). Let D{Aq) U D{Bq) be the fuzzy set of compatible training data with 
both the antecedent part Aq and the consequent part Bq. Then the total 
compatibility grade with the linguistic rule Rq (i.e., with both Aq and Bq) 
is calculated as 

m m 

p=l p=l 

As in Chap. 2 for pattern classification problems, the two measures (i.e., 
confidence and support) in the field of data mining [4, 5] can be defined for 
the linguistic association rule Aq ̂  Bq [57, 95]. The confidence c{Aq ^ Bq) 
of the linguistic association rule Aq =^ Bq is defined as 

m 

l n / 4 M , r . / D M ^ f^A.iXp) XfiB,{yp) 
. . ^ O X \D{Aq)UD{Bq)\ _p=l 

' ^ '^' Ef^A,{Xp) 
p=l 

The confidence c{Aq ^ Bq) is the ratio of compatible training data with both 
the antecedent part Aq and the consequent part Bq to compatible training 
data with the antecedent part Aq. The confidence c{Aq ^ Bq) measures the 
validity of the linguistic association rule Aq ̂  Bq. 

On the other hand, the support s{Aq ^ Bq) of the linguistic association 
rule A^ =^ Bq is defined as 

m 

s{Ag ^ Bg) - r^i — . (8.9) 
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The support s{Aq ^ Bq) is the ratio of compatible training data with both 
the antecedent part Aq and the consequent part Bq to the given training 
data. The support s{Aq ^ Bq) measures the coverage of training data by 
the linguistic association rule Aq ^ Bq. 

8.2.2 Specification of the Consequent Part 

As in the heuristic rule generation method in Chap. 2 for pattern classifica
tion problems, we choose the consequent linguistic term with the maximum 
confidence for the antecedent part Aq as 

c{Aq => Bq) = m3.x{c{Aq ^ Bk)\k = l,2,...,K}, (8.10) 

where Bk, k = 1,2^... ,K, are linguistic terms given for the output variable. 
In Chap. 2, the consequent part of each linguistic rule was specified as the 
consequent class with the maximum confidence. 

We illustrate the heuristic rule generation method in (8.10) using the 
simple numerical example in Fig. 8.1. The location of each input-output pair 
in Fig. 8.1 is shown in Table 8.1. Let us consider the specification of the 
consequent part of the linguistic rule "If x is small then y is Bq^\ As shown 
in Fig. 8.1, five linguistic terms are given for the output variable. Thus Bq 
is one of those five linguistic terms (i.e., S: small, MS: medium small, M: 
medium, ML: medium large, and L: large). The membership function of each 
linguistic term is as follows: 

fis{y) =max{0, 1 - 4 

fJ^Msiy) = max{0, 1 - 4 

fiM{y) =max{0, 1 - 4 

fJ^Miiy) = max{0, 1 - 4 

fiiiy) = max{0, 1 - 4 

The five linguistic terms for t 
membership functions as (8.11)-(8.15). 

•\y\}, 

•10.25-2/1}, 
•10.5-2/1}, 
•10.75-2/1}, 

•\i-y\}-

he input variable x in Fig 

(8.11) 

(8.12) 

(8.13) 

(8.14) 

(8.15) 

. 8 . 1 have the same 

Table 8.1. 

P 1 
Xp 0.01 
yp 0.77 

p 11 

Xp 0.59 
yp 0.74 

Input-output 

2 

0.05 
0.63 

12 

0.64 
0.77 

3 

0.12 
0.59 

13 

0.71 
0.73 

pairs in 

4 

0.14 
0.49 

14 

0.74 
0.55 

Fig. 8.1 

5 

0.22 
0.44 

15 

0.79 
0.65 

6 

0.26 
0.48 

16 

0.82 
0.54 

7 

0.29 
0.56 

17 

0.85 
0.35 

8 

0.39 
0.53 

18 

0.89 
0.44 

9 

0.43 
0.63 

19 

0.91 
0.28 

10 

0.53 
0.64 

20 

0.98 
0.21 

To determine the consequent part Bq of the linguistic rule "If x is small 
then y is Bq^ using (8.10), the confidence for each of the five consequent 
linguistic terms is calculated as 
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c{small ^ small) = 0.000, (8.16) 

c{small ^ medium sm^all) = 0.016, (8.17) 

c{sm.all ^ m^edium) — 0.433, (8.18) 

c{sm,all =^ m^edium. large) = 0.523, (8.19) 

c{small ^ large) = 0.027. (8.20) 

Since medium large has the maximum confidence among the five consequent 
linguistic terms, the consequent part is specified as medium large for the 
antecedent linguistic term small. In the same manner, we can generate the 
following five linguistic rules for the simple numerical example in Fig. 8.1: 

If X is small then y is medium large^ (8.21) 

If X is medium small then y is medium^ (8.22) 

If X is medium then y is medium large, (8.23) 

If X is medium large then y is medium large, (8.24) 

If X is large then y is medium small. (8.25) 

If we try to intuitively generate linguistic rules from the given training 
data in Fig. 8.1, we are likely to generate the same five linguistic rules. That 
is, our heuristic rule generation method determines the consequent part of 
each linguistic rule in an intuitively acceptable manner. 

To further illustrate our heuristic rule generation method, we applied it 
to 441 input-output pairs obtained from a nonlinear function in Fig. 8.4. The 
441 input-output pairs correspond to the 441 grid points of the uniformly 
divided 21 x 21 grid of the two-dimensional input space [0,1] x [0,1]. Our 
task is to approximately represent the nonlinear function in Fig. 8.4 using 
linguistic rules. When five linguistic terms are given for each of the two input 
variables as in Fig. 8.2, 25 linguistic rules are to be generated from the 441 
input-output pairs. The generated linguistic rules using five linguistic terms 
for the output variable are shown in Fig. 8.5. From the comparison between 
Fig. 8.4 and Fig. 8.5, we can see that intuitively acceptable linguistic rules 
were generated by the heuristic rule generation method. 

8.2.3 Other Approaches to Linguistic Rule Generations 

Since Mamdani's pioneering work [124], fuzzy rule-based systems have been 
mainly applied to control problems [118, 119, 156]. In early studies, fuzzy 
rules were obtained from human experts in the form of linguistic knowledge. 
Many studies have been proposed for automatically generating fuzzy rules 
from numerical data. Takagi & Sugeno [162] proposed the well-known Takagi-
Sugeno model where a linear function instead of a linguistic term was used 
in the consequent part as follows: 
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Fig. 8.4. Nonlinear function from 
which 441 input-output pairs are ob
tained for generating a linguistic rule-
based system 
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Fig. 8.5. Linguistic rule-based system 
generated to approximately realize the 
nonlinear function in Fig. 8.4 

R(^'. If x\ is Aq\ and . . . and Xn is Aq 

then yq(x) = a^o + CLqi^i + . . . + a^ (8.26) 

where aqi is an adjustable parameter (real number) . They proposed a fuzzy 
modeling method for determining the membership function of each an
tecedent fuzzy set and the consequent linear function of each fuzzy rule. 

For determining fuzzy rules of the form in (8.1), clustering techniques have 
been used in many fuzzy modeling methods [150, 151, 159]. In clustering-
based methods, antecedent and consequent fuzzy sets are usually generated 
by the projection of each cluster (i.e., multi-dimensional fuzzy set) onto input 
and output variables. Tha t is, usually clustering-based methods (as well as 
the Takagi-Sugeno model) do not assume tha t linguistic terms are given for 
input and output variables. 

Wang & Mendel [176] proposed a rule generation method tha t used given 
linguistic terms. In their method, it is assumed tha t the input -ou tput space 
has already been divided into fuzzy subspaces by given linguistic terms as 
in Fig. 8.1. First the linguistic rule with the highest compatibility grade for 
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each input-output pair is identified. That is, m linguistic rules are generated 
from the given m input-output pairs. Of course, the same linguistic rule may 
be generated from multiple input-output pairs. The compatibility grade of 
each linguistic rule with the corresponding input-output pair (i.e., the input-
output pair that generates the linguistic rule) is used as the rule weight of 
the linguistic rule. When there exist inconsistent linguistic rules (i.e., linguis
tic rules with the same antecedent part but different consequent linguistic 
terms), the linguistic rule with the largest rule weight is chosen to resolve 
the inconsistency. Rule weights are used only for resolving the inconsistency 
in the rule generation method of Wang & Mendel (i.e., rule weights are not 
used in fuzzy reasoning). 

We illustrate the rule generation method of Wang & Mendel using the 
simple numerical example in Fig. 8.1. From each input-output pair in Fig. 
8.1 (i.e., in Table 8.1), the following 20 linguistic rules are generated: 

1st pair: If x is small then y is medium large (weight: 0.883), (8.27) 

2nd pair: If x is small then y is medium large (weight: 0.416), (8.28) 

3rd pair: If x is small then y is medium (weight: 0.333), (8.29) 

4th pair: If x is medium small then y is medium (weight: 0.538), (8.30) 

20th pair: If x is large then y is medium small (weight: 0.773). (8.31) 

From the first three input-output pairs, linguistic rules with the same an
tecedent part "If X is small" are generated. These linguistic rules are incon
sistent. Thus the linguistic rule with the largest weight (i.e., (8.27) generated 
from the first input-output pair) is chosen. In this manner, we have five 
linguistic rules for the simple numerical example in Fig. 8.1 using the rule 
generation method of Wang & Mendel. The generated five linguistic rules are 
the same as those by our heuristic rule generation method in the previous 
subsection. 

The difference between our heuristic method and the rule generation 
method of Wang & Mendel can be clearly illustrated using Fig. 8.6. In this fig
ure, a single input-output pair (0.49,0.24) is added to the 20 input-output 
pairs in Fig. 8.1. Our heuristic method generates the same five linguistic 
rules for Fig. 8.6 as those for Fig. 8.1. On the other hand, the rule generation 
method of Wang & Mendel generates the linguistic rule "If x is medium then 
y is medium smaW for Fig. 8.6 while it generates "If x is medium then y 
is medium large^^ for Fig. 8.1. This is because the consequent linguistic term 
of each linguistic rule is determined by a single input-output pair with the 
highest compatibility grade in the rule generation method of Wang & Mendel. 
On the other hand, it is determined by all the compatible input-output pairs 
with the antecedent part in our heuristic method. 
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K^><SxS><l 
0.0 1.0 

Fig. 8.6. A slightly modified example. 
A single input-output pair (0.49, 0.24) 
is added to the 20 input-output pairs 
in Fier. 8.1 

8.2.4 Estimation of Output Values by Linguistic Rules 

Fuzzy reasoning for modeling problems in this chapter is to infer an output 
value for an input vector using linguistic rules. Many fuzzy reasoning meth
ods have been proposed in the literature. They can be classified into two 
categories: FATI (first aggregate then infer) and FITA (first infer then aggre
gate). In fuzzy reasoning methods in the FATI category, first an aggregated 
fuzzy set on the output variable is constructed by combining the consequent 
part of each linguistic rule. Then a final inferred output value is calculated 
from the aggregated fuzzy set constructed in the first phase. On the other 
hand, first a real number is calculated for the consequent part of each lin
guistic rule in fuzzy reasoning methods in the FITA category. Then a final 
inferred output value is calculated from the real number for each linguistic 
rule obtained in the first phase. Fuzzy reasoning methods in the FATI cate
gory such as the center-of-gravity method were mainly used in early studies 
on fuzzy rule-based systems. Recently fuzzy reasoning methods in the FITA 
category have been frequently used. In this chapter, we use a simple fuzzy 
reasoning method in the FITA category. See Emami et al. [44] and Cordon 
et al. [25] for details of these two categories of fuzzy reasoning methods. 

8.2.5 Standard Fuzzy Reasoning 

Let 5 be a set of linguistic rules of the form (8.1). The rule set S can be 
viewed as a linguistic rule-based system. The estimated output value y{x) 
is calculated from the linguistic rule-based system S for an input vector 
X = {xi,X2,...,Xn) as 

E fJ^A,{x) 'bq 

y{x) = 
RqES 

ROES 

(8.32) 
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where /x^g (x) is the compatibility grade of the input vector x with the an
tecedent part Aq, and bq is a representative real number for the consequent 
linguistic term Bq of the g'-th linguistic rule Rq. We use the output value 
with the maximum membership of the triangular membership function as 
bq for Bq (e.g., 0 for small, 0.25 for medium small, 0.5 for medium, 0.75 for 
medium large, and 1 for large in the case of the five linguistic terms on the 
unit interval [0,1]). 

The fuzzy reasoning method in (8.32) can be viewed as a simplified version 
of the Takagi-Sugeno model with the following fuzzy reasoning method: 

E I^A,{x)-yq{x) 

RgES 

where yq{x) is the consequent linear function of the q-th fuzzy rule Rq in 
(8.26). 

In Fig. 8.7, we show the estimated output by the five linguistic rules in 
(8.21)-(8.25) for the simple numerical example in Fig. 8.1. The bold lines in 
Fig. 8.7 are the input-output relation obtained from the five linguistic rules 
using the fuzzy reasoning method in (8.32). 

For the five linguistic terms for the input variable in Fig. 8.7, the following 
relation holds for any input value x in the domain interval [0,1]: 

fis{x) + /iMs(^) + I~IM{X) + /XML(^) + f^hix) = 1. (8.34) 

Thus (8.32) can be rewritten for the five linguistic rules in (8.21)-(8.25) as 

y{x) = 0.75 X fisix) + 0.5 x fiMs{x) 

+0.75 X /jiuix) + 0.75 X /iML(^) + 0.25 x /XL(^). (8.35) 

Using the membership function of each linguistic term, this formulation is 
further rewritten as 

f 0.75 • 4(0.25 -x)-\- 0.5 • 4x, if 0 < x < 0.25, 
0.5 • 4(0.5 - x) + 0.75 • 4(x - 0.25), if 0.25 <x< 0.5, . . 
0.75 • 4(0.75 -x)+ 0.75 • 4{x - 0.5), if 0.5 < a: < 0.75, ^ ^ ^ 

[ 0.75 • 4(1 - x) + 0.25 • 4:{x - 0.75), if 0.75 <x<\. 

The bold lines in Fig. 8.7 correspond to this piece-wise linear function. As 
shown in Fig. 8.7 and (8.36), we can see that the input-output relation real
ized from the five linguistic rules is the linear interpolation of the represen
tative real numbers for the consequent linguistic terms of adjacent linguistic 
rules. 

Another example of a fuzzy reasoning result is shown in Fig. 8.8. This 
figure shows the estimated input-output relation from the 25 linguistic rules 
in Fig. 8.5. From the comparison between Fig. 8.5 and Fig. 8.8, we can see 
that the fuzzy reasoning result in Fig. %.% is intuitively acceptable. 

y^x) 
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y 0.5 

0.0 
0.0 

Fig. 8.7. The estimated input-output 
relation from the five linguistic rules 
with no rule weights 

1.0 0.0 

Fig. 8.8. The input-output relation 
obtained from the 25 linguistic rules 
in Fig. 8.5 

While the rule weight of each linguistic rule has a large effect on the 
location of the classification boundary in the application to pattern classifi
cation problems in Chap. 2, the rule weight has only a limited effect on the 
input-output relation realized by the fuzzy reasoning method. Let us consider 
linguistic rules with rule weights of the following form: 

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn 

then y is Bq with CFq^ (8.37) 

where CFq is the rule weight of the linguistic rule Rq. In this case, the fuzzy 
reasoning method in (8.32) is modified as 

y{x) 

J2 CFq • /iA, (X) • bq 
Rqes 

E CFq^f,A,{x) ' 
Roes 

(8.38) 
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As shown in Fig. 8.7, some input values (vectors) are compatible with only a 
single linguistic rule. For each of these input values (vectors), the estimated 
output value is calculated as the representative real number of the consequent 
linguistic term of the single compatible rule. Thus the rule weight of each 
linguistic rule has no effect on the calculation of the estimated output values 
for those input values (vectors). 

The bold lines in Fig. 8.7 (i.e., the input-output relation obtained from 
the five linguistic rules) are determined by the following five points: 

y{x) = 0.75 for x = 0, (8.39) 

y{x) = 0.5 for x = 0.25, (8.40) 

y{x) = 0.75 for x = 0.5, (8.41) 

y{x) = 0.75 for x = 0.75, (8.42) 

y{x) = 0.25 for x = 1. (8.43) 

Each of these five points is calculated from the corresponding single compat
ible linguistic rule. Thus the locations of these five points are independent 
of the rule weight of each linguistic rule. The rule weight has an effect only 
on the interpolation between these five points. For example, if we assign a 
rule weight 0.2 to the second linguistic rule "If x is medium small then y is 
medium^^ and 1.0 to all the other four linguistic rules, the estimated input-
output relation from the five linguistic rules is calculated as shown in Fig. 
8.9. See [129] for further discussions on the effect of rule weights on fuzzy 
reasoning results in modeling problems. 

Fig. 8.9. The estimated input-output 
relation from the five linguistic rules 
with rule weights. The rule weight of 
the second linguistic rule is 0.2 and 
those of the other linguistic rules are 
1.0 

8.2.6 Limitations and Extensions 

As shown in Fig. 8.7 and Fig. 8.8, fuzzy reasoning results (i.e., input-output 
relations realized by linguistic rules) are piece-wise linear lines (planes, hyper-
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planes). Since we use given linguistic terms for input and output variables, 
it is difficult to perform the fine tuning of linguistic rule-based systems. The 
adjustment of linguistic rule-based systems in a tabular form is performed by 
replacing the consequent linguistic term of each linguistic rule with another 
one. Since we use only a small number of linguistic terms for the output vari
able, the adjustment of linguistic rules by replacing their consequent linguistic 
terms with other ones is very coarse. In Fig. 8.7, we observe large errors be
tween the given input-output pairs and the estimated input-output relation 
for medium large x. One may think that these errors would be decreased by 
using a different consequent linguistic term for the fourth linguistic rule. In 
Fig. 8.10, we show the estimated input-output relation when we use medium 
instead of medium large in the consequent part of the fourth linguistic rule. 
As shown in this figure, the accuracy of the five linguistic rules deteriorates 
from Fig. 8.7 to Fig. 8.10 on replacing the consequent linguistic term. While 
the desired input-output relation is somewhere between Fig. 8.7 and Fig. 
8.10, we cannot realize such an input-output relation using the given five 
linguistic terms. This discussion shows that the adjustment of the member
ship function of each linguistic term is necessary to improve the accuracy of 
linguistic rule-based systems. Many learning methods based on neural net
works and genetic algorithms have been proposed to improve the accuracy of 
fuzzy rule-based systems [119]. In Chap. 10, we will show how the accuracy 
of linguistic rule-based systems can be improved by using an adjustable real 
number in the consequent part of each linguistic rule instead of a linguistic 
term. 

Fig. 8.10. The estimated input-
output relation from the five linguis
tic rules after replacing the consequent 
linguistic term of the fourth linguistic 
rule (i.e., medium large) with medium 

Another limitation of linguistic rule-based systems in a tabular form is the 
scalability to high-dimensional problems with many input variables. As we 
have already explained for pattern classification problems, the number of lin
guistic rules in a rule table is K^ when we have K linguistic terms for each of 
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the n input variables. This means that the number of linguistic rules increases 
exponentially as the number of input variables increases. Thus we cannot use 
Hnguistic rule-based systems in a tabular form for high-dimensional prob
lems. As in the case of pattern classification problems, we use short linguistic 
rules with many don^t care conditions to handle high-dimensional modeling 
problems. In Chap. 9, we will explain genetic algorithm-based rule selection 
and GBML for modeling problems. 

8.2.7 Non-Standard Fuzzy Reasoning Based on the Specificity of 
Each Linguistic Rule 

When we simultaneously use general linguistic rules and specific linguistic 
rules in a single linguistic rule-based system, counter-intuitive fuzzy reason
ing results are often obtained [61, 92]. Let us consider the following three 
linguistic rules for a modeling problem with two input variables xi and X2: 

Ri: If xi is small and X2 is small then y is medium, 

i?2* If xi is small then y is medium small, 

R3: y is small. 

(8.44) 

(8.45) 

(8.46) 

The first linguistic rule has two antecedent conditions while the second rule 
has only a single antecedent condition. The third rule has no antecedent 
condition (i.e., has two don't care conditions). The estimated input-output 
function is depicted in Fig. 8.1L This figure is obtained from the three lin
guistic rules using the standard fuzzy reasoning method in (8.32). 

y 0.5 

0.0 
0.0 

1.0 0.0 

Fig. 8.11. The input-output rela
tion obtained from the three linguistic 
rules using the standard fuzzy reason
ing method in (8.32) 

The point is whether the nonlinear function in Fig. 8.11 coincides with our 
intuition or not (i.e., whether an intuitively constructed nonlinear function 
from the three linguistic rules is similar to Fig. 8.11 or not). Let us consider 
the estimated output value for a small xi and a small X2. For example, all 
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the three linguistic rules are fully compatible with the input vector x = 
(0,0). Thus the estimated output value for this input vector is calculated 
as y{x) = 0.25 as the interpolation of the three linguistic terms medium, 
medium small, and small It seems that the estimated output value 0.25 does 
not coincide with our intuition. When the three linguistic rules in (8.44)-
(8.46) are given, usually we intuitively think that the output value would 
be medium for a small xi and a small x^- This is because we usually use 
the most specific rule (i.e., (8.44)) when multiple rules are applicable to a 
current situation. On the other hand, fuzzy reasoning is usually based on the 
interpolation of compatible rules. As a result, fuzzy reasoning results are often 
counter-intuitive when general rules (i.e., short rules with many don^t care 
conditions) and specific rules (long rules with many antecedent conditions) 
are simultaneously used in a single linguistic rule-based system. 

One might think that the three linguistic rules in (8.44)-(8.46) should 
not be used in a single rule-based system because they are inconsistent with 
each other. Several approaches have been proposed for finding inconsistent 
rules in fuzzy rule-based systems [11, 125, 172, 186]. In those studies, it was 
implicitly assumed that the inconsistency in fuzzy rule-based systems should 
be removed or resolved. Recently the importance of outliers and exception 
rules was recognized in some studies on data mining [113, 114, 160]. This 
is because interesting rules are likely to be generated from exceptions in 
many cases. The handling of inconsistent rules has also been studied in the 
field of default reasoning [9, 49, 141, 144, 147]. Many studies on default 
reasoning espouse some form of preference for more specific information [9]. 
When two inconsistent rules are applicable to a current situation, the more 
specific rule is usually used in the reasoning for this situation. In a data 
mining algorithm for finding exception rules [160], more specific rules (i.e., 
exception rules) are implicitly assumed to have priority over general rules. 
Default reasoning has also been discussed in the framework of possibility 
theory (for details, see Dubois et al. [31, 32], Dubois & Prade [34, 35, 37], 
and Yager [182, 183, 184, 185]). 

The preference for more specific information is frequently explained in the 
literature using the following simple example. Let us consider the reasoning 
about a penguin x using the following three rules: 

Rule Rr. Birds fiy, (8.47) 

Rule R\\\ Penguins are birds, (8.48) 

Rule R\\\\ Penguins do not fly. (8.49) 

If we use the first two rules Ri and R\\, we conclude that x flies. We usually 
conclude, however, that x does not fly using the third rule R\\\. This is 
because the third rule R\\\ is more specific than the first rule Ri. 

In order to implement the preference for more specific information, the 
following non-standard fuzzy reasoning method was proposed in [61, 92] based 
on the specificity of each linguistic rule: 
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RqES 

This formulation is the same as the standard fuzzy reasoning method in (8.32) 
when w{Rq,x) = 1. In this formulation, w{Rq^x) is a rule weight determined 
by the relative specificity of the linguistic rule Rq. When Rq includes more 
specific rules, the rule weight w{Rq,x) of Rq for x is discounted in the fuzzy 
reasoning method in (8.50) as follows: 

w{R„x)= n il-i,Adx)). (8.51) 
Rj^CRq 

kjtq 

On the other hand, w{Rq,x) is defined as w{Rq^x) — 1 when no rule is 
included in Rq. This means that the non-standard fuzzy reasoning method in 
(8.50) is the same as the standard fuzzy reasoning method (8.32) when they 
are used for linguistic rule-based systems in the standard tabular form (e.g., 
Fig. 8.5). This is because all linguistic rules in the standard tabular form 
have the same specificity (i.e., no inclusion relations hold among linguistic 
rules). Different results are obtained from the two fuzzy reasoning methods 
only when the inclusion relation holds among linguistic rules. Note that the 
inclusion relation between linguistic rules is defined by their antecedent parts 
as 

RkCRq^ Aki C A,i for i = 1,2,.. . , n. (8.52) 

Let us illustrate the non-standard fuzzy reasoning method using the three 
linguistic rules in (8.44)-(8.46). Among the three linguistic rules, the inclusion 
relation Ri C R2 C R^ holds. Thus w(Rq^x) is calculated as 

w{Ri,x)=:l, (8.53) 

w{R2,x) = 1 - fiAiix) 

= l - / i s (x i ) . / i s (a :2) , (8.54) 

w{Rs,x) = (1 - flAiix)) X {1- flA2{x)) 

= {I- fis(xi) - /xs(^2)) X (1 - /is(^i)). (8.55) 

From (8.55), we can see that the rule weight of the most general rule (i.e., 
Rs: y is small) is discounted when the input vector is compatible with the 
other rules. The weight of R2 is discounted in (8.54) when the input vector is 
compatible with the most specific rule Ri. In Fig. 8.12, we show the input-
output relation obtained from the three linguistic rules in (8.44)-(8.46) using 
the non-standard fuzzy reasoning method. We can see from Fig. 8.12 that 
the non-standard fuzzy reasoning method successfully implements the pref
erence for more specific information through the weighting mechanism using 
w{Rq,x). For example, the estimated output value y{x) for the input vector 
X = (0,0) is 0.5 in Fig. 8.12 with the non-standard fuzzy reasoning method 
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while it was 0.25 in Fig. 8.11 with the standard fuzzy reasoning method. 
This is because the estimated output value (i.e., y{x) = 0.5) is calculated 
only from the most specific linguistic rule Ri in the case of the non-standard 
fuzzy reasoning method in Fig. 8.12 while it was calculated as the interpola
tion of all three linguistic rules compatible with the input vector x = (0,0) 
in the case of the standard fuzzy reasoning method in Fig. 8.11. 

From the comparison between Fig. 8.12 and Fig. 8.8, we can see that very 
similar results are obtained from the three linguistic rules in (8.44)-(8.46) 
and from the 25 linguistic rules in Fig. 8.5. That is, the three linguistic rules 
with the non-standard fuzzy reasoning method played a very similar role as 
the 25 linguistic rules in Fig. 8.5 with the standard fuzzy reasoning method. 
The non-standard fuzzy reasoning method in (8.50) is an attempt to handle 
linguistic rule-based systems that consist of general and specific linguistic 
rules. The formulation in (8.50) may need modifications and/or extensions 
in future studies. 

y 0.5 

1.0 0.0 

Fig. 8.12. The input-output rela
tion obtained from the three linguis
tic rules using the non-standard fuzzy 
reasoning method in (8.50) 

8.3 Modeling of Nonlinear Fuzzy Functions 

In the previous section, we discussed the estimation of the output value y{x) 
from a linguistic rule-based system for an input vector x. That is, the linguis
tic rule-based system was used as an approximator of a nonlinear function. In 
this section, we briefly discuss the modeling of fuzzy functions using linguistic 
rule-based systems. This topic will be further discussed in Chap. 14 where 
fuzzified neural networks are used to approximately realize fuzzy functions. 

A function with non-fuzzy input and fuzzy output values is referred to 
as a fuzzy function in this section. That is, a fuzzy function is a mapping 
from a non-fuzzy input vector x = (xi,X2,. . . ^Xn) to a fuzzy number y{x). 
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The fuzzy reasoning method in (8.32) is modified to approximately realize a 
nonlinear fuzzy function as 

Kx) = 
E fJ^A,{x)-Bq 

Rqes 

Rges 

(8.56) 

In this formulation, the calculation of y{x) is performed using fuzzy arith
metic [106]. We will explain fuzzy arithmetic in detail in Chap. 11 in the con
text of fuzzification of neural networks. Since the approximation of non-fuzzy 
functions has been the main research topic in the field of fuzzy rule-based 
systems, there are not many studies on the approximation of fuzzy functions 
[78]. 

Using the five linguistic rules in Fig. 8.7 (i.e., in (8.21)-(8.25)), we illus
trate the difference between (8.32) for calculating the estimated real number 
and (8.56) for calculating the estimated fuzzy number. When the input value 
X — 0.125 is presented to the linguistic rule-based system with the five lin
guistic rules, the estimated real number y{x) is calculated from (8.32) as 

y{^) 
/j.s{x) '0.75 + fiMsjx) -0.5 

fisix) + fJ^Msix) 
0.5 • 0.75-h 0.5-0.5 

0.5-h 0.5 
= 0.625. (8.57) 

On the other hand, the estimated fuzzy number y{x) is calculated for the 
input value x = 0.125 from (8.56) as 

jj^six) ' medium large + /iMs(^) * m^edium. 
y{x) = 

lis{x) +/iMs(^) 
= 0.5 • m^edium. large + 0.5 • medium. (8.58) 

Intuitively, y{x) is a fuzzy number between medium, large and medium. More 
specifically, y{x) is the weighted average of medium large and medium. Using 
fuzzy arithmetic, the membership function y{x) in (8.58) is calculated as 
shown in Fig. 8.13. 

Fig. 8.13. Membership func
tion of y(x) in (8.58) 
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A fuzzy rule-based system can also be used as an approximator of a fuzzy 
mapping from a fuzzy input vector to a fuzzy output value. When a fuzzy 
input vector x = (^i,:r2,. . . ,^n) is presented to a fuzzy rule-based system, 
(8.56) is further extended to calculate the estimated fuzzy output y{x) as 

where fiAq (^) is the compatibility grade of the fuzzy input vector x with 
the antecedent part Aq of the linguistic rule Rq. Using fuzzy arithmetic, the 
estimated fuzzy output y{x) is calculated from (8.59) in the same manner as 
illustrated in (8.58). The problem in (8.59) is the definition of the compati
bility grade JIA^ (^) of the fuzzy input vector x with the antecedent part Aq. 
There may be many alternative definitions. One definition is based on the 
possibility measure [36] as follows: 

IJiAq{x) =: P0SS(ylg i ,Xi) X . . . X V0Ss{Aqr^,Xn), (8.60) 

where 

Vos^{Aqi,Xi) •= max{/x^^.(a:) A/i^.(x)|a; G 3?}. (8.61) 

In (8.61), A is the minimum operator (i.e., a Ab = min{a, 6}). Of course, 
we can use the minimum operator instead of the product operator in (8.60). 
Other measures may be used in (8.60) instead of the possibility measure. 
The approximation of fuzzy functions and fuzzy mappings will be further 
discussed in Chap. 14. 



 

 

 

 

 



9. Design of Compact Linguistic Models 

As in the case of pattern classification problems, genetic algorithm-based 
rule selection and genetics-based machine learning can be applied to the 
design of linguistic rule-based systems for modeling problems [85, 90]. These 
two schemes for pattern classification problems are slightly modified in this 
chapter to apply them to modeling problems. As in the previous chapter, we 
use linguistic rules of the following form to approximately realize an n-input 
and single-output nonlinear function: 

Rule Rq-. If xi is Aqi and . . . and x^ is Aqn then y is Bq. (9.1) 

Our task in this chapter is to design a linguistic rule-based system from 
the given m input-output pairs {Xp,yp)^ p = 1,2, . . . ,m, where Xp = 
{xpi, Xp2,..., Xpn) is an n-dimensional input vector and yp is the correspond
ing output value. For simplicity of explanation, we assume that the input-
output space has already been normalized into the unit hypercube [0,1]"^"^ .̂ 
We also assume that K linguistic terms are given for each of the n input and 
single output variables. 

9.1 Single-Objective and Multi-Objective Formulations 

9.1.1 Three Objectives in the Design of Linguistic Models 

In Chap. 6, we explained the three-objective optimization problem in the 
design of linguistic rule-based systems for pattern classification problems. 
The three objectives were the classification accuracy, the number of linguistic 
rules, and the total rule length of linguistic rules. The first objective should 
be modified for modeling problems while the other two objectives can be used 
with no modifications. 

Let A? be a set of linguistic rules of the form (9.1). In addition to the given 
K linguistic terms, we use don^t care as an antecedent fuzzy set (i.e., Aqi in 
(9.1)). This special fuzzy set is not used as a consequent fuzzy set (i.e., Bq 
in (9.1)) because linguistic rules with don't care in the consequent part are 
meaningless. Thus the total number of possible linguistic rules is K{K + 1)'^. 
The rule set 5 is a subset of these linguistic rules. The rule set S can be 
viewed as a fuzzy rule-based system for our modeling problem. 
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We measure the accuracy of the rule set S by the total squared error as 
m 

fi{S) = ^{y{x,)-y,r/2, (9.2) 
p=i 

where y{xp) is the estimated output value for the input vector Xp = 
(xpi, Xp2,..., Xpn) by the rule set 5. We can use any fuzzy reasoning method 
for the calculation ofy{x). In this chapter, we use the non-standard fuzzy rea
soning method in (8.50) of the previous chapter. Note that the non-standard 
fuzzy reasoning method is the same as the standard fuzzy reasoning method 
in (8.32) when no inclusion relation holds among linguistic rules in the rule 
set S. 

Since S is an arbitrary subset of the K{K -\-l)'^ linguistic rules, there are 
many cases where the entire input space is not covered by the rule set S. 
This means that the estimated output value y{x) is not always calculated for 
an arbitrary input vector x = (ari,X2,... ,Xn)- When there is no compatible 
linguistic rule in S for the input vector Xp, the corresponding estimated 
output value y{xp) cannot be calculated from S. In this case, the squared 
error for the input-output pair {xp,yp) cannot be calculated in (9.2), either. 
Thus we use a pre-specified penalty value as the squared error when y{xp) 
cannot be calculated: 

{y{xp)-ypf=S\ (9.3) 

where S is a. pre-specified positive constant. In our computer simulations in 
this chapter, we specified the penalty value as {y{xp) — ypY = 1 because the 
output value yp is normalized into a real number in the unit interval [0,1]. 

As in Chap. 6 for pattern classification problems, the second objective 
/2(5) and the third objective fsiS) are the number of linguistic rules in S 
(i.e., \S\) and the total rule length of linguistic rules in 5, respectively. 

Using the three objectives, the design of linguistic rule-based systems for 
modeling problems is formulated as 

Minimize /i(5'), minimize /2(5'), and minimize fsiS). (9.4) 

Note that all three objectives are to be minimized. In Chap. 6, the first ob
jective was to be maximized because it was the number of correctly classified 
training patterns by the rule set S. In this chapter, / i (5) should be minimized 
because it is the total squared error. 

9.1.2 Handling as a Single-Objective Optimization Problem 

When the weight for each objective is available from a human user, the three 
objectives in (9.4) can be combined into a single scalar objective function as 

Minimize f{S) = wi • / i (5) -f W2 • f2{S) + ws • fsiS), (9.5) 

where wi, W2^ and ws are non-negative real numbers. The three weights 
wi, W2, and ws should be specified according to the user's preference with 
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respect to the three objectives. We assume that the weight values are given 
by the human user. The minimization problem in (9.5) can be treated in 
the framework of single-objective optimization. Thus standard optimization 
techniques are applicable to the design of linguistic rule-based systems. This 
is an advantage of the single-objective formulation in (9.5) over the multi-
objective formulation in (9.4). 

The main drawback of the single-objective formulation is related to the 
specification of the weight values with respect to the three objectives. It is not 
easy for the human user to appropriately specify the weight values according 
to their preference with respect to the three objectives. Moreover, the final 
solution (i.e., the obtained rule set) strongly depends on the specification of 
the weight values. This dependency is illustrated in Fig. 9.1. For simplicity 
of explanation, the three-dimensional objective space is represented as a two-
dimensional objective space in Fig. 9.1 where the ellipsoidal region shows all 
subsets (i.e., all rule sets) of the linguistic rules. Figure 9.1 shows the relation 
between the search direction and the obtained rule set. The search direction 
is specified by the three weights wi, W2, and ws. When the weight wi with 
respect to the total squared error is much larger than the other two weights 
W2 and ws, a complicated rule set with high accuracy will be obtained (e.g., 
the rule set Sa will be obtained from the search direction Wa in Fig. 9.1). 
In this case, the obtained rule set may consist of a large number of long 
linguistic rules. On the other hand, when the two weights W2 and ws with 
respect to the complexity of rule sets are much larger than the other weight 
wi for the total squared error, a simple rule set with low accuracy may be 
obtained (e.g., the rule set Sb will be obtained from the search direction 
Wb). In this case, the obtained rule set may consist of a small number of 
short linguistic rules. When the three weights are of the same magnitude, a 
compromise solution may be obtained (e.g., the rule set Sc will be obtained 
from the search direction Wc). From these discussions, we can see that the 
obtained rule set from the single-objective formulation strongly depends on 
the specification of the three weight values. In real-world applications, the 
single-objective optimization problem in (9.5) will be solved several times 
using diflFerent weight vectors to find a number of alternative rule sets. 

9.1.3 Handling as a Three-Objective Optimization Problem 

As in Chap. 6, we can use multi-objective optimization algorithms to find 
non-dominated rule sets with respect to the three objectives in (9.4). Let us 
briefly review the concept of non-dominated rule sets for the three-objective 
optimization problem in (9.4). A rule set SB is said to dominate another rule 
set SA (i-e., SB is better than SA) if all the following inequalities hold: 

fliSA)>hiSB), / 2 ( 5 A ) > / 2 ( 5 B ) , /3(5^) > / 3 ( 5 B ) , (9.6) 

and at least one of the following inequalities holds: 
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h{SA)>h{SB), f2iSA)>f2{SB), fsiSA) > fsiSe). (9.7) 

The first condition (i.e., all three inequalities in (9.6)) means tha t no ob
jective of SB is worse than SA (i-e., SB is not worse than SA)- The second 
condition (i.e., one of the three inequalities in (9.7)) means tha t at least one 
objective of SB is bet ter than SA- When a rule set S is not dominated by any 
other rule set, 5 is said to be a Pareto-optimal solution of the three-objective 
optimization problem in (9.4). In Fig. 9.1, Pareto-optimal solutions are rule 
sets on the bold curve. The above conditions in (9.6)-(9.7) are slightly dif
ferent from Chap. 6. This is because the first objective is to be minimized in 
this chapter while it was to be maximized in Chap. 6. 

When the search space is not large, it may be easy to find all the Pareto-
optimal solutions of the three-objective optimization problem in (9.4). On 
the other hand, when the search space is huge, it is impractical to t ry to find 
t rue Pareto-optimal solutions. In this case, multi-objective optimization al
gorithms try to find near-optimal solutions. Non-dominated solutions among 
examined ones are presented to the human user as search results. 

In this chapter, we use the multi-objective genetic algorithm (MOGA) in 
Sect. 6.2 after modifying the definition of the fitness function. For the three-
objective optimization problem in (9.4), the fitness value of each rule set S 
is defined as 

fitnessiS) = -wi • A ( 5 ) - W2 • f2{S) - ws • MS), (9.8) 

where wi, W2, and w^ are weights satisfying the following conditions: 

Wi,W2,W3 > 0, (9.9) 

wi + W2 -\- w^ = 1. (9.10) 

Since all three objectives are to be minimized, a negative sign is added to 
each weight in the fitness function in (9.8). The fitness function is supposed 
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to be maximized. The other parts of the MOGA in Sect. 6.2 are used for 
modeling problems with no modifications. 

9.2 Multi-Objective Rule Selection 

As we have already explained in Chaps. 4 and 6 for pattern classification 
problems, genetic algorithm-based rule selection consists of two phases: can
didate rule generation and rule selection. In the first phase, a large number of 
candidate rules are generated. When too many candidate rules are generated, 
prescreening is used to decrease the number of candidate rules. In the second 
phase, a small number of linguistic rules are selected from a large number 
of candidate rules to design a linguistic rule-based system. In the frame
work of single-objective optimization, a single rule set is obtained. On the 
other hand, multiple rule sets are obtained as non-dominated solutions of the 
three-objective optimization problem in (9.4) when we used the MOGA. In 
this section, we explain a genetic algorithm-based rule selection method that 
is designed to find multiple non-dominated rule sets of the three-objective 
optimization problem in (9.4). 

9.2.1 Candidate Rule Generation 

As we have explained, the total number of combinations of antecedent and 
consequent fuzzy sets is K{K -\-1)^ when we use K linguistic terms and don^t 
care for each of the n input variables and K linguistic terms for the single 
output variable. Thus the total number of linguistic rules is also K{K + 
1)'^. For low-dimensional modeling problems, we can use all the K{K + 1)^ 
linguistic rules as candidate rules in rule selection. 

Let us consider a two-input and single-output nonlinear function in Fig. 
9.2. This nonlinear function was depicted using nine linguistic rules in Fig. 
9.3. When the three linguistic terms (i.e., S: small, M: medium, and L: large) 
are given for the two input and single output variables as in Fig. 9.3, the 
total number of combinations of antecedent and consequent fuzzy sets is 
3 X (3 + 1)^ = 4 8 . Thus the total number of possible linguistic rules is also 
48. Genetic algorithms can easily handle such a small number of linguistic 
rules as candidate rules. 

9.2.2 Candidate Rule Prescreening 

Candidate rule prescreening is a procedure for decreasing the number of can
didate rules in a heuristic manner. As we have explained in Chap. 4, candidate 
rule prescreening significantly improves the efficiency of genetic algorithm-
based rule selection. A simple prescreening procedure for modeling problems 
is to remove linguistic rules with no compatible training data. That is, this 
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prescreening procedure removes linguistic rules that satisfy the following re
lation: 

mA^p^Vp) =^^ p = l , 2 , . . . , m . (9.11) 

The compatibility grade of each input-output pair {xp, yp) with the linguistic 
rule Rq is defined by its antecedent part Aq and the consequent part Bq as 

mMp^Vp) = ^^AMP) ^ ^B.ivp)' (9.12) 

Let us assume that 441 input-output pairs are generated as training data 
from the nonlinear function in Fig. 9.2 using the uniformly divided 21x21 grid 
of the two-dimensional input space [0,1] x [0,1]. While we can generate the 
48 candidate rules by considering all the possible combinations of antecedent 
and consequent fuzzy sets, some rules have no compatible training data. For 
example, we can see from Fig. 9.2 that the following linguistic rule has no 
compatible training data: 

If â i is large and X2 is large then y is large. (9.13) 
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Among the possible 48 candidate rules, 8 rules have no compatible training 
data. Thus the removal of these rules is likely to have no bad effect on the 
performance of the rule sets finally obtained by genetic algorithm-based rule 
selection. 

For high-dimensional problems, we cannot examine all the K{K + 1)"̂  
combinations of antecedent and consequent fuzzy sets for generating candi
date rules. This is because the number of these combinations {i.e.^ K{K+1)'^) 
increases exponentially as the number of input variables (i.e., n) increases. 
As in Chap. 4, we can use the rule length as a heuristic prescreening criterion 
for decreasing the number of examined linguistic rules. The total number of 
possible linguistic rules of length L for an n-input and single-output nonlinear 
function is K-JICL 'K^ where K is the number of consequent linguistic terms, 
^CL is the number of combinations of choosing L out of n input variables, 
and K^ is the number of combinations of K antecedent linguistic terms for 
L input variables. The number of short linguistic rules is not large even when 
the total number of linguistic rules is huge (i.e., K -UCL * K^ is not large for 
a small L even when i^(iir -h 1)^ is huge). 

The fuzzy versions of the two rule evaluation measures (i.e., confidence 
and support) described in the previous chapter can be used for candidate rule 
prescreening. As in Chap. 4 for pattern classification problems, we can find an 
arbitrary number of candidate rules for modeling problems using a heuristic 
prescreening criterion. First we generate linguistic rules of length L or less. 
The confidence and the support are calculated for each of the generated lin
guistic rules. When L is too large, we are not likely to complete the generation 
of linguistic rules within the available computation time. On the other hand, 
when L is too small, we are not likely to generate a large number of good 
linguistic rules. The value of L should be specified by taking into account 
various factors such as the available computation time, the number of input 
variables, the number of given input-output pairs, the number of linguistic 
terms for input and output variables, etc. As in Chap. 4, the product of the 
confidence and the support is used as a heuristic prescreening criterion for 
choosing an arbitrary number of candidate rules from the generated linguistic 
rules. 

9.2.3 Three-Objective Genetic Algorithm for Rule Selection 

Let N be the number of candidate rules. As in Chaps. 4 and 6, any subset S 
of the N candidate rules can be represented by a binary string of length N 
as 

S = S1S2 • • • SN, (9.14) 

where Sq = 1 and Sq = 0 represent the inclusion of the g-th candidate rule 
Rq in S and the exclusion of Rq from 5, respectively. 

First a pre-specified number (say iVpop) of binary strings of length Â  
are randomly generated as an initial population. The three objectives of each 
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string S (i.e., rule set S) are evaluated. Copies of non-dominated rule sets are 
stored as a secondary population separately from the current population. In 
the application of genetic algorithm-based rule selection to pattern classifica
tion problems in Chap. 4, unnecessary rules were removed from each rule set 
S. While only a single winner rule was used to classify each training pattern 
in the case of pattern classification problems, all compatible rules are used 
to calculate the estimated output value for each input vector in modeling 
problems. If a linguistic rule in S has no compatible input vector, that rule 
has no effect on the calculation of the estimated output for any input vector 
in the training data. This means that the removal of such a linguistic rule 
does not change the value of the first objective / i (5 ) . Thus we can remove 
all linguistic rules that satisfy the following condition: 

l2A,{xp)=0, p = l , 2 , . . . , m . (9.15) 

The removal of these linguistic rules improves the second objective /2(5') 
and the third objective fsiS). Usually linguistic rules satisfying (9.15) have 
already been removed from candidate rules by a prescreening procedure. This 
is because the prescreening criterion (9.11) always holds if (9.15) holds. Thus 
we do not use the rule removal procedure based on (9.15) in the genetic 
algorithm-based rule selection method for modeling problems. 

For selecting a pair of parent strings from the current population, the 
three weights in the fitness function (9.8) are randomly specified as 

Wi = randorriiI{randorrii -f- random2 + randoms)^ i = 1, 2,3, (9.16) 

where randorrii is a non-negative random real number. Using binary tour
nament selection with replacement, a pair of parent strings is selected from 
the current population based on the fitness function (9.8) with the randomly 
specified weight values in (9.16). When another pair of parent strings is se
lected from the current population, the three weights are randomly updated 
by (9.16). That is, the selection of each pair of parent strings is governed 
by a different weight vector. From each pair of parent strings, we gener
ate new strings by the uniform crossover and the biased mutation as in the 
case of pattern classification problems in Chap. 4. By iteratively executing 
the genetic operations (i.e., selection, crossover, and mutation), we generate 
(^pop — ^eiite) i"ule sets. The secondary population of non-dominated rule 
sets is updated using the newly generated rule sets. If a newly generated rule 
set is not dominated by any other rule sets in the current and secondary pop
ulations, its copy is added to the secondary population and all the solutions 
dominated by the added one are removed from the secondary population. 
Finally a pre-specified number (say A êiite) of non-dominated rule sets are 
randomly selected from the secondary population and their copies are added 
to the newly generated (iVpop — ^eiite) rule sets to form the next population 
of Â pop rule sets. In this manner, the next population is generated from cur
rent and secondary populations using the selection, crossover, mutation, and 
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elitism. The generation update is iterated until a pre-specified stopping con
dition is satisfied. At each generation, the secondary population is updated 
to include all the non-dominated rule sets among the examined ones. 

9.2 .4 S i m p l e N u m e r i c a l E x a m p l e 

We applied the three-objective genetic algorithm for rule selection to the 441 
inpu t -ou tpu t pairs generated from Fig. 9.2. As in Fig. 9.3, we used the three 
linguistic terms (i.e., small, medium, and large) for each of the two input and 
single output variables. The number of possible combinations of antecedent 
and consequent fuzzy sets is 48. Since the number of possible combinations 
is very small, we can use all the 48 linguistic rules as candidate rules. In 
this case, each rule set is represented by a binary string of length 48. The 
task of the three-objective genetic algorithm for rule selection is to find non-
dominated rule sets from the 48 candidate rules. Our computer simulation 
was performed using the following parameter specifications: 

Population size: iVpop = 50, 
Number of elite solutions: A^eiite = 5, 
Crossover probability: pc = 0.8, 
Mutat ion probability: Pm(0 ^ 1) = 1/48, 

P m ( l - ^ 0 ) = 0.1, 
Stopping condition: 1000 populations. 

After 1000 iterations of the population update using the genetic opera
tions, five rule sets were obtained (i.e., these rule sets were included in the 
secondary population after the 1000th generation). The obtained rule sets 
are shown in Table 9.1. 

Table 9.1. Non-dominated rule sets for the nonlinear function in Fig. 9.2 

Rule set 

Si 
52 
Ss 
S4 
55 

Total squared 

441 
27.6 
7.4 
3.7 
0.0 

error Number of rules 

0 
1 
2 
3 
4 

Average rule length 
-

0.0 
0.5 
1.0 

1.25 

The simplest rule set ^2 (excluding an empty set Si) in Table 9.1 includes 
only a single linguistic rule of length 0. The linguistic rule is 

Ri: y is medium. (9-17) 

This is a very rough description of the nonlinear function in Fig. 9.2. The 
second simplest rule set 53 includes the following linguistic rule in addition 
to Ri in (9.17). 
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R2: If Xi is large then y is small (9.18) 

In Fig. 9.4, we show the nonHnear function depicted from the rule set 
53 — {Ri,R2} using the non-standard fuzzy reasoning method. From the 
comparison between Fig. 9.4 and Fig. 9.2, we can see that the rule set S^ is 
a rough approximation of the nonlinear function in Fig. 9.2. The accuracy 
of approximation can be improved by increasing the number of linguistic 
rules. For example, the rule set ^5 in Table 9.1 includes four linguistic rules, 
which are shown in Fig. 9.5. The corresponding estimated nonlinear function 
is shown in Fig. 9.6. From the comparison between Fig. 9.6 and Fig. 9.2, we 
can see that the rule set ^5 with the four linguistic rules in Fig. 9.5 approxi
mates the nonlinear function in Fig. 9.2 very well (actually the total squared 
error is zero as shown in Table 9.1). As we can see from Table 9.1, there exists 
a tradeoff between the accuracy and the complexity of linguistic rule-based 
systems. 

y 0.5 

Fig. 9.4. Estimated nonlinear func-
1-̂  -̂̂  tion from the obtained rule set ^3 

In the above computer simulation, we used all the 48 linguistic rules as 
candidate rules for rule selection. As we have already explained, eight linguis
tic rules have no compatible input-output pairs. Thus these linguistic rules 
can be removed from candidate rules. We performed the same computer sim
ulation using the remaining 40 linguistic rules as candidate rules. Exactly the 
same rule sets as Table 9.1 were obtained from this computer simulation. 

9.3 Fuzzy Genetics-Based Machine Learning 

In the application of linguistic rule-based systems to pattern classification 
problems, it is easy to implement a Michigan-style genetics-based machine 
learning (GBML) algorithm as shown in Chap. 5. This is because a single 
winner rule is responsible for the classification of each training pattern. A 
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Fig. 9.5. Obtained rule set S5 with four Unguistic rules in Table 9.1 for the non
linear function in Fig. 9.2 
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Fig. 9.6. Estimated nonlinear func
tion from the obtained rule set ^5 in 
Fig. 9.5 

reward or penalty will be given to the single winner rule depending on the 
classification result (i.e., correct classification or misclassification). On the 
other hand, the definition of a fitness function for each linguistic rule is not 
easy in modeling problems because multiple linguistic rules are involved in 
the calculation of the estimated output value for each input vector. Moreover, 
the evaluation of the estimated output value is not easy, while the evalua
tion of the classification result is straightforward (i.e., correct classification or 
misclassification). In this section, we implement a Pittsburgh-style GBML al
gorithm for the design of linguistic rule-based systems for modeling problems. 
See [13] for recent developments of Michigan-style fuzzy GBML algorithms 
(i.e., fuzzy classifier systems). 
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9.3.1 Coding of Rule Sets 

For simplicity of explanation, let us assume that we have the three linguistic 
terms (i.e., small, medium, and large) for each of the n input and single 
output variables as in Fig. 9.3. In the same manner as in Chap. 5, we use the 
following four symbols to denote the four antecedent fuzzy sets: 

1: small, 
2: medium, 
3: large, 
# : don't care. 

It should be noted that don't care is not used as a consequent fuzzy set (i.e., 
it is used only in the antecedent part). The total number of combinations 
of antecedent and consequent fuzzy sets is (3 + l)'^ • 3. Each combination 
corresponds to a single linguistic rule. In Pittsburgh-style fuzzy GBML al
gorithms, each linguistic rule Rq in (9.1) is coded as a substring of length 
(n -h 1) using its antecedent and consequent fuzzy sets as AqiAq2 .. .AqnBq. 
For example, a substring "1##232" denotes the following linguistic rule for 
a modeling problem with five input variables: 

Rule Ri: If xi is small and X4 is medium and X5 is large 

then y is medium. (9.19) 

Each rule set S including Â ruie hnguistic rules is represented by a con
catenated string of length (n -h 1) • iVruie and handled as an individual in 
our Pittsburgh-style fuzzy GBML algorithm. For example, a rule set of the 
following four linguistic rules for a modeling problem with five input vari
ables is represented by a concatenated string "1##232 2 2 # # # 1 # # # # 1 2 
3 # # # 3 3 " of length 24: 

Rule Ri: If xi is small and x^ is medium and x^ is large 

then y is medium, (9.20) 

Rule R2: If xi is medium and X2 is medium then y is small, (9.21) 

Rule Rs: If x^ is small then y is medium, (9.22) 

Rule R4: If xi is large and x^ is large then y is large. (9.23) 

9.3.2 Three-Objective Fuzzy GBML Algorithm 

In our three-objective fuzzy GBML algorithm for approximately realizing an 
n-input and single-output function, each rule set including iV ûie Hnguistic 
rules is represented by a string of length (n + 1) • iVruie- First we randomly 
generate a pre-specified number (say A p̂op) of strings of length (n +1) • A r̂uie-
Then the three objectives of each string S (i.e., rule set S) are evaluated. 
Copies of non-dominated rule sets are stored as a secondary population sep
arately from the current population. 



9.3 Fuzzy Genetics-Based Machine Learning 193 

The selection operation of parent strings is the same as the previous sec
tion. That is, the three weights in the fitness function (9.8) are randomly 
specified for selecting a pair of parent strings as shown in (9.16). We use 
binary tournament selection with replacement. When another pair of parent 
strings is selected from the current population, the three weights are ran
domly updated by (9.16). 

From each pair of parent strings, we generate new strings using crossover 
and mutation. We use the one-point crossover operation with different 
crossover points as in Chap. 5. This crossover operation is illustrated in Fig. 
9.7 (also see Fig. 5.15). 

R\\R2\R3\R4\R5\R6 

RA\RB\RC\RD\RE\RP 

^ 

Ri Ri iRA|i?B|i?c| or \RI>\RA\R5\R6\RD\R^\RF 

Fig. 9.7. One-point crossover 
operation with different 
crossover points 

Two mutation operations are applied to each of the generated new strings 
by the crossover operation. One mutation operation randomly replaces an an
tecedent or consequent fuzzy set with another one. Note that don^t care is not 
used as a consequent fuzzy set, though it is used as an antecedent fuzzy set. 
This mutation operation is applied to each antecedent or consequent fuzzy set 
with a pre-specified mutation probability. The other mutation operation is to 
randomly remove linguistic rules from each rule set. This mutation operation 
is applied to each linguistic rule with a pre-specified mutation probability. 
These mutation operations can also be used in the fuzzy GBML algorithms 
in Chaps. 5 and 6 for classification problems. 

By iteratively executing the genetic operations (i.e., selection, crossover, 
and mutation), we generate (-/Vpop — ^eiite) I'ule sets. The secondary popu
lation of non-dominated rule sets is updated using the newly generated rule 
sets. Finally a pre-specified number (say A êiite) of non-dominated rule sets 
are randomly selected from the secondary population and their copies are 
added to the newly generated (A p̂op — ^eiite) rule sets to form the next pop
ulation of Â pop rule sets. In this manner, the next population is generated 
from the current and secondary populations using selection, crossover, mu
tation, and elitism. The generation update is iterated until a pre-specified 
stopping condition is satisfied. At each generation, the secondary population 
is updated to include all the non-dominated rule sets among the examined 
ones. 
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9.3.3 Simple Numerical Example 

We applied the three-objective fuzzy GBML algorithm to the 441 input-
output pairs generated from Fig. 9.2 to design linguistic rule-based systems. 
As in the previous computer simulation in Sect. 9.2.4, we used the three 
linguistic terms (i.e., small, medium, and large) for each of the two input and 
single output variables. Our computer simulation was performed using the 
following parameter specifications: 

Population size: 50, 
Number of linguistic rules in each initial rule set: 10, 
Number of elite solutions: 5, 
Crossover probability: 0.8, 
Mutation probability: 0.05 for replacement of each fuzzy set, 

0.05 for removal of each linguistic rule, 
Stopping condition: 1000 populations. 

After 1000 iterations of the population update using the genetic opera
tions, five rule sets were obtained (i.e., these rule sets were included in the 
secondary population after the 1000th generation). The obtained rule sets 
are exactly the same as those in Table 9.1. 

9.3.4 Some Heuristic Procedures 

As we have already mentioned, the total number of possible linguistic rules 
is K • {K + 1)'^ when K linguistic terms are given for each of the n input and 
single output variables. Each substring of length (n + 1) corresponds to one 
of the K • {K + 1)^ linguistic rules. Since each rule set S (i.e., each string S) 
is a subset of the K - {K -h 1)^ linguistic rules, the size of the search space 
is 2^ where N = K - (K -\-1)^. This means that the size of the search space 
rapidly increases as the number of input variables increases. Thus the three-
objective fuzzy GBML algorithm in this section does not always work well 
on high-dimensional problems while it worked well on the simple numerical 
example in the previous computer simulation. 

We explain two heuristic procedures [85] for improving the search ability 
of the three-objective fuzzy GBML algorithm to find good rule sets for high-
dimensional modeling problems. Both heuristic procedures are applied to rule 
sets generated by the genetic operations in each generation. 

One is a heuristic replacement procedure of the consequent linguistic term 
of each linguistic rule. Since the genetic operations do not take into account 
the given input-output pairs, each linguistic rule does not always have an 
appropriate consequent linguistic term. The heuristic replacement procedure 
probabilistically replaces the consequent linguistic term of each linguistic rule 
with a more appropriate one using the information about the given input-
output pairs. The replacement probability for each linguistic term from the 
current one is defined using the confidence as 
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piB,) = ; ^ ^ - ^ ^ - ^ , (9.24) 
E c(A, => Bk) 

k=l 

where K is the number of Hnguistic terms for the output variable. This pro
cedure is apphed to each Hnguistic rule with a pre-specified probability. In 
the computer simulations in the next section, the application probability is 
specified as 0.5. 

Let us consider a linguistic rule of the form "If xi is small and X2 is small 
then y is 5^" for the simple numerical example in Fig. 9.2 with the 441 input-
output pairs. The confidence of each linguistic rule with the antecedent part 
{small^ small) is calculated as 

c{{small^ small) => small) = 0.49, (9.25) 

c{{sm.all, sm.all) => m,edium) — 0.51, (9.26) 

c{{small, small) => large) = 0.00. (9.27) 

Thus the consequent part of a linguistic rule of the form "If â i is small and 
X2 is small then y is ^g" is replaced with small or medium when the heuristic 
replacement procedure is applied to the linguistic rule. The replacement prob
abilities of small and medium are 0.49 and 0.51, respectively. That is, small 
and medium are chosen as the consequent fuzzy set with the probabilities of 
0.49 and 0.5, respectively. 

The other heuristic procedure is to generate a linguistic rule from an 
input-output pair with the maximum error. A similar idea was explained for 
pattern classification problems in Chap. 5. In this procedure, first the squared 
error for each input-output pair is calculated using each rule set in the current 
population after the replacement procedure. Next an input-output pair with 
the maximum error is identified for each rule set. Let {xp,yp) be the input-
output pair with the maximum error for the rule set S. Then a linguistic rule 
is generated from this input-output pair. Its antecedent and consequent parts 
are determined by the most compatible linguistic terms with the input and 
output values (xp^yp). For example, if Xp — (0.12,0.48,0.97) and yp = 0.57, 
then the following linguistic rule is generated: 

If xi is small and x^ is medium and x^ is large 

then y is medium.. (9.28) 

Each antecedent linguistic term is replaced with don^t care using a pre-
specified probability. This probability is specified as 0.5 in the computer 
simulations in the next section. The generated linguistic rule is added to 
the rule set S. This procedure is applied to each rule set with a pre-specified 
probability (0.1 in the computer simulations in the next section) after the 
above-mentioned replacement procedure. 
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9.4 Comparison of Two Schemes 

We compared the following four algorithms with each other through computer 
simulations on numerical examples: 

(1) The genetic algorithm-based rule selection method with no prescreening 
procedure. 

(2) The genetic algorithm-based rule selection method with a heuristic pre
screening procedure. 

(3) The fuzzy GBML algorithm with no heuristic procedure. 
(4) The fuzzy GBML algorithm with the two heuristic procedures in Sect. 

9.3.4. 

In the second algorithm, 100 candidate rules were selected using the product 
of the confidence and the support as a heuristic prescreening criterion. When 
the total number of candidate rules was not more than 100, all candidate 
rules were used in rule selection. 

Since the evaluation of simulation results by multi-objective optimization 
methods is not easy, we used these four algorithms as single-objective opti
mization methods by specifying the three weights as wi = 100, tt;2 = 1, and 
Ws = 1. That is, we used the following fitness function in the four algorithms: 

fitnessiS) = -lOOhiS) - /2(5) - MS). (9.29) 

As training data, we generated 441 input-output pairs {xpi,Xp2,yp)j 
p = 1,2, . . . , 441 , from the nonlinear function in Fig. 9.8 using the uni
formly divided 21 x 21 grid of the input space [0,1] x [0,1]. That is, 
Xpi = 0.00,0.05,..., 1.00, Xp2 = 0.00,0.05,..., 1.00, and the value of yp 
was calculated from Fig. 9.8. For each of the two input and single output 
variables, we used five linguistic terms (i.e., small, medium small, medium, 
medium large, and large). 

We also generated a test problem with three input variables by adding an 
additional input variable Xs to the test problem with the two input variables. 
The value of xs in each of the 441 input-output pairs {xpi,Xp2,Xps,yp), p = 
1,2, . . . ,441, was randomly specified as a real number in the unit interval 
[0,1]. In the same manner, we also generated test problems with four and 
five input variables. 

The length of bit strings in the genetic algorithm-based rule selection 
(i.e., the first algorithm) becomes extremely long as the number of input 
variables increases. This is because the number of candidate rules exponen
tially increases as the number of input variables increases. It is impractical to 
directly apply the first algorithm to the problems with three and more input 
variables. Thus, we modify the initialization process of the first algorithm. 
We pre-specified the probability of Si = 1 for i = 1 , . . . , Â" in (9.14) as 0.1 
in the case of the three and the four input variables and 0.001 in the case 
of the five input variables. This modification reduces the CPU time of the 
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algorithm since the number of selected rules in the initial population does 
not become large. 

y 0.5 

1.0 0.0 Fig. 9.8. A test problem 

We applied each of the four algorithms to each of the four test problems 
ten times. Average simulation results are summarized in Tables 9.2 - 9.5. In 
these tables, each algorithm was implemented in the C language and exe
cuted on a PC with a Pentium IV 2.80 GHz processor. From the comparison 
between Table 9.2 and Table 9.3, we can see that the prescreening proce
dure of candidate rules significantly decreased the CPU time of the genetic 
algorithm-based rule selection method. As we have already demonstrated in 
Chapt. 4 for pattern classification problems, candidate rule prescreening is 
necessary in rule selection for handling high-dimensional problems. However, 
the performance of the genetic algorithm-based rule selection method with 
the prescreening procedure is significantly worse than that with no prescreen
ing procedure in some cases. This is because we cannot always successfully 
select important linguistic rules as candidate rules for the genetic algorithm-
based rule selection method by the prescreening procedure. For example, in 
the case of the four input variables, we did not select the following linguistic 
rule as a candidate rule: 

If xi is small and X2 is small then y is large. (9.30) 

The product of the support and the confidence of this linguistic rule is 0.001. 
This value is the 974th largest in the entire set of the generated linguistic 
rules. It should be noted that 100 candidate rules were selected in the com
puter simulations for Table 9.3. 

From the comparison between Table 9.4 and Table 9.5, we can see that 
the search ability of the fuzzy GBML algorithm was improved by the two 
heuristic procedures. We can also see from Tables 9.2-9.5 that better results 
were obtained by the fuzzy GBML algorithm in Table 9.4 and Table 9.5 than 
the rule selection method in Table 9.2 and Table 9.3. 
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Table 9.2. Average simulation results over ten trials for each test problem using the 
genetic algorithm-based rule selection method with no candidate rule prescreening 
procedure 

Number of 
input variables 

2 
3 
4 
5 

Total squared 
error 

0.019 
0.114 
0.197 
1.074 

Number of 
rules 

3.4 
4.5 
4.1 
7.8 

Average rule 
length 

1.03 
1.18 
1.10 
2.08 

CPU time 
(s) 

250.2 
1006.7 

12103.1 
35316.8 

Table 9.3. Average simulation results over ten trials for each test problem using 
the genetic algorithm-based rule selection method with the prescreening procedure 

Number of 
input variables 

2 
3 
4 
5 

Total squared 
error 

0.0 
0.833 
0.870 
8.596 

Number of 
rules 

3.0 
3.0 
2.0 
1.0 

Average rule 
length 

1.00 
1.00 
0.50 
0.00 

CPU time 
(s) 

163.6 
155.2 
146.8 
102.5 

Table 9.4. Average simulation results over ten trials for each test problem using 
the fuzzy GBML algorithm with no heuristic procedure 

Number of 
input variables 

2 
3 
4 
5 

Total squared 
error 

0.0 
0.072 
0.051 
0.190 

Number of 
rules 

3.0 
3.7 
3.1 
3.7 

Average rule 
length 

1.00 
1.11 
0.97 
1.16 

CPU time 
(s) 

72.5 
269.5 
505.6 
1243.6 

Table 9.5. Average simulation results over ten trials for each test problem using 
the fuzzy GBML algorithm with the two heuristic procedures 

Number of 
input variables 

2 
3 
4 
5 

Total squared 
error 

0.0 
0.0 
0.0 

0.026 

Number 
rules 

3.0 
3.0 
3.2 
3.2 

of Average rule 
length 

1.00 
1.00 
1.13 
1.13 

CPU time 
(s) 

597.3 
4829.2 
8330.3 
11010.0 



10. Linguistic Rules with Consequent Real 
Numbers 

In this chapter, we use hnguistic rules of the following form to approximately 
realize an n-input and single-output nonlinear function: 

Rule Rq-. If xi is Aqi and . . . and Xn is Aqn then y is bq^ (10-1) 

where bq is an adjustable real number. As in Chaps. 8 and 9, we assume 
that m input-output pairs (xp^pp)^ p = 1,2, . . . ,m, are given as training 
data in the normalized input-output space [0,1]^^+ .̂ We also assume that K 
linguistic terms are given for each of the n input variables. The estimated 
output value y{x) is calculated for the input vector x as 

E fJ^A,{x) 'bq 

RgSS 

where 5 is a set of linguistic rules of the form (10.1). This formulation is the 
same as the standard fuzzy reasoning method in Chap. 8. We can also use the 
non-standard fuzzy reasoning method in Chap. 8 when S includes linguistic 
rules with different specificity levels. 

10.1 Consequent Real Numbers 

Linguistic rules with consequent real numbers in (10.1) can be viewed as a 
simplified version of the following rule in the Takagi-Sugeno model [162] with 
a consequent linear function: 

Rule Rq : If xi is Aqi and . . . and Xn is Aqn 

then 2/g(x) = a^o + ctqiXi + . . . + aqnXn, (10.3) 

where aqi is an adjustable real number. In Chaps. 8 and 9, we used the 
representative real number bq in fuzzy reasoning for the consequent linguistic 
term Bq of the linguistic rule Rq of the following form: 

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn then y is Bq. (10.4) 

This means that we actually used linguistic rules with consequent real num
bers of the form (10.1) in fuzzy reasoning while linguistic rules with con
sequent linguistic terms of the form (10.2) were used in rule generation in 
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Chaps. 8 and 9. Wang & Mendel [176] also used real numbers for consequent 
Hnguistic terms in fuzzy reasoning while consequent linguistic terms played an 
important role in their rule generation method. Fuzzy rules with consequent 
real numbers have often been used in adjustable fuzzy rule-based systems as 
in Ichihashi & Watanabe [60] and Nomura et al. [130]. This is because fuzzy 
reasoning and rule adjustment are implemented more easily for consequent 
real numbers than for consequent linguistic terms. 

The accuracy of linguistic rule-based systems can be significantly im
proved by replacing a fixed consequent linguistic term with an adjustable 
consequent real number. This is illustrated in Fig. 10.1 where the thick and 
thin lines are fuzzy reasoning results using fixed consequent linguistic terms 
and adjustable consequent real numbers, respectively. In Chaps. 8 and 9, 
the consequent part of each linguistic rule was selected from a set of given 
linguistic terms. Thus the adjustment of linguistic rule-based systems was 
very coarse. As a result, good fitting to training data was not always ob
tained as shown by the thick lines in Fig. 10.1. On the other hand, adjustable 
consequent real numbers can be tuned to improve the fitting of linguistic 
rule-based systems to training data as shown by the thin lines in Fig. 10.1. In 
this chapter, we show how the consequent real number of each linguistic rule 
of the form (10.1) can be specified and adjusted from training data. We will 
not discuss the adjustment of antecedent linguistic terms in this book. This 
is because such adjustment often leads to difficulties in the interpretation 
of adjusted linguistic rules. Various approaches have been proposed for ad
justing antecedent and consequent parts of fuzzy rules using neural learning 
schemes and genetic algorithms (e.g., [53, 58, 99, 103, 151]). 

Fig. 10.1. Comparison in fuzzy rea
soning results between fixed conse
quent linguistic terms (thick lines) and 
adjustable consequent real numbers 
(thin lines) 
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10.2 Local Learning of Consequent Real Numbers 

The basic idea of local learning is to adjust the consequent part of each linguis
tic rule using compatible training data independently of other linguistic rules. 
On the other hand, global learning tries to minimize a global error measure 
(e.g., total squared error) between the actual output value of each input-
output pair and the corresponding estimated output value by a linguistic 
rule-based system. The difference between local learning and global learning 
was demonstrated in Ishibuchi et al. [82], Nozaki et al. [133], and Yen & Wang 
[187]. The main advantage of local learning over global learning is that the 
learning of each linguistic rule can be performed independently of the learn
ing of other linguistic rules. Another advantage is that local learning usually 
improves the interpret ability of each linguistic rule. Sometimes global learn
ing leads to meaningless results from the viewpoint of interpretability even 
if a global error measure is very small. In this section, we explain two meth
ods based on the concept of local learning: a heuristic specification method 
and an incremental learning algorithm of the consequent real number of each 
linguistic rule. 

10.2.1 Heuristic Specification Method 

A heuristic method for specifying the consequent real number of each linguis
tic rule from compatible input-output pairs was proposed in Ishibuchi et al. 
[82]. In their heuristic method, the consequent real number is specified as the 
weighted average of output values of compatible input-output pairs as 

m 

K = ^ (10.5) 
E fJ^A,{Xp) 

p=l 

where JJ^A (xp) is the compatibility grade of the input vector Xp with the 
antecedent part Aq of the linguistic rule Rq in (10.1). This formulation can 
be understood more easily by rewriting it as 

m 

bq = Y^WqiXp) 'Vp, (10.6) 
p=l 

where 

- . (^p) = J!^'^""'^ . (10.7) 
E f^A.iXp) 

p=l 

m 

Y,w,{x^) = l. (10.8) 
p=i 
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In (10.6), Wq{Xp) can be viewed as the weight of the p-th input-output pair 
(Xp^ijp) in the specification of the consequent real number bq of the q-th 
linguistic rule Rq. From (10.6)-(10.8), we can see that the consequent real 
number bq is the weighted average of yp over compatible input-output pairs 
where the weight of each output value yp is proportional to the compatibility 
grade fiAqi^p) of the corresponding input vector Xp with the antecedent 
part Aq of the linguistic rule Rq. It should be noted that the consequent real 
number bq is specified independently of other linguistic rules. 

Let us consider the following minimization problem: 
m 

Minimize z = "^i2A,{Xp) • fe - bqf/2. (10.9) 
p=i 

The objective function is a local error measure for the linguistic rule Rq, which 
is defined independently of other linguistic rules. More specifically, it is the 
weighted total squared error between the consequent real number bq and the 
output value yp of each input-output pair (Xp,yp). The weight of each input-
output pair (xp^yp) is the compatibility grade fiAqiXp) of the input vector 
Xp with the antecedent part Aq of the linguistic rule Rq. The optimal value 
of bq of this minimization problem is obtained from the following equation: 

This equation is rewritten from (10.9) as 
m 

Y,f^AAxp)'(yp-bq)=0. (10.11) 
p=i 

From this equation, we have the heuristic specification method of bq in (10.5). 
That is, bq in (10.5) is the optimal solution of the minimization problem in 
(10.9) of the weighted total squared error between the consequent real number 
and the output value of each input-output pair. 

We applied the heuristic specification method in (10.5) to the 20 input-
output pairs in Fig. 10.1 (i.e., in Table 8.1). The consequent real number of 
each linguistic rule was specified as follows: 

If X is small then y is 0.640, (10.12) 

If X is medium small then y is 0.522, (10.13) 

If X is medium then y is 0.652, (10.14) 

If X is medium large then y is 0.573, (10.15) 

If X is large then y is 0.343. (10.16) 

The fuzzy reasoning result by these five linguistic rules is shown in Fig. 10.2. 
The result is not good from the viewpoint of the fitting of the estimated 
output values to the given input-output pairs. This is because the heuristic 
specification method (i.e., local learning) does not try to minimize the total 
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squared error between the estimated output values and the given input-
output pairs. 

Fig. 10.2. Fuzzy reasoning result using the five 
linguistic rules obtained by the heuristic specifi
cation method of consequent real numbers 

As shown in Nozaki et al. [133], the fitting of linguistic rule-based systems 
to training data can be improved by generalizing the heuristic specification 
method in (10.5) as 

p=i 
m 
E[MA,(X,)F 

p=l 

(10.17) 

When the value of ^ is very small (e.g., P — 0.01), the weights of all compati
ble input-output pairs are close to 1 (i.e., [//^^(^p)]^ — 1 \i[lA^^p^p) > 0). In 
this case, the value oihq in (10.17) is almost the same as the simple average 
of y^ over compatible input-output pairs. On the other hand, when the value 
of /? is very large (e.g., /3 = 100), the weights of almost all input-output pairs 
become very small. In this case, the value oihq in (10.17) is mainly calcu
lated from only a few input-output pairs with large compatibility grades. In 
Fig. 10.3, simulation results for ^ = 0.1 and ^ = 10 are shown. From this 
figure, we can see that the fitting of linguistic rule-based systems to training 
data was improved by using a large value of ^. The idea of introducing ^ to 
modify the weight of each input-output pair as in (10.17) may be applied to 
the heuristic rule generation method in Chap. 8. 

10.2.2 Incremental Learning Algorithm 

The heuristic specification method in (10.5) can be implemented as an incre
mental learning algorithm for handling a dynamical situation where a target 
nonlinear function gradually changes over time. Let (xt^yt) be the input-
output pair obtained at time t (t = 1,2,...). In this case, the consequent real 
number bq is updated as 
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Fig. 10.3. Fuzzy reasoning results by 
the generalized heuristic specification 
method 

LNCW {1 - a ' fiAAxt)) h^^^ -^ a ' IIAAXI) ' yt, (10.18) 

where h^^^ is the value of the consequent real number hq after the update 
using the input-output pair (xt^yt), ^^^^ is the value of bq before the update, 
and a is a learning rate. We can rewrite (10.18) as 

V = ( l - A ) - ^ ( t - i ) + A - 2 / t , (10.19) 

where bqt is the value of bq after the update using the ^-th input-output pair 
{xt.yt) and 

pt = a'fiA,{xt)' (10-20) 

From (10.19) and (10.20), we can see that the incremental learning algorithm 
is a kind of weighted exponential smoothing of compatible input-output pairs. 

When the ^-th input-output pair (xt^yt) is presented to the linguistic rule-
based system, all compatible linguistic rules are adjusted by the update rule 
in (10.18). The amount of modification of the consequent real number of each 
linguistic rule is proportional to the compatibility grade of the input vector 
with the antecedent part. When the input vector Xt has a large compatibility 
grade with the antecedent part Aq of the q-th linguistic rule Rq, the amount 
of modification of the consequent real number bq is large. On the other hand, 
when the input vector Xt is not compatible with Aq of Rq (i.e., when the 
compatibility grade is zero), the consequent real number bq is not modified. 

The heuristic specification method in (10.5) corresponds to a special case 
of the incremental learning algorithm. Let us consider the case where the 
value of a is specified in (10.18) as 

a=- ^ . (10.21) 
E f^A,{Xp) 

p=i 

In this case, /3t in (10.20) is 

^AAxt) 
A = (10.22) 

^Xp) 
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Thus we can solve (10.19) as 

bat = 
p=i 

E fJ^A,{Xp) 
p=l 

(10.23) 

This equation is the same as the heuristic specification method in (10.5). We 
can easily see that (10.23) is obtained from (10.19) and (10.22) by iteratively 
calculating bqt from the case of ^ = 1. 

In Fig. 10.4, we show simulation results using the incremental learning 
algorithm for the five linguistic rules in (10.12)-(10.16). First we specified 
the initial value of each consequent real number as 0.5. The straight line 
y = 0.5 in Fig. 10.4 corresponds to the initial situation. Then we updated 
each consequent real number by the incremental learning algorithm using the 
20 input-output pairs. The learning rate a was specified as a = 0.9. In the 
execution of the incremental learning algorithm, we presented each of the 
20 input-output pairs to the linguistic rule-based system three times (i.e., 
three epochs). In each epoch, the 20 input-output pairs were presented in 
a random order. The fuzzy reasoning result after each epoch is shown as a 
piece-wise linear curve in Fig. 10.4. 

After three epochs 

After two epochs 

After a single epoch Fig. 10.4. Simulation results 
by the incremental learning al
gorithm based on the concept 
of local learning 

10.3 Global Learning 

In global learning, the total squared error is usually used as a global error 
measure to be minimized as 

Minimize z - ^(y(a?p) - 2/p)^/2, (10.24) 

where y{Xp) is the estimated output value for the input vector x^ of the 
input-output pair (xp^yp). The objective function in (10.24) is the same as 
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the first objective / i (5) in the three-objective optimization problem discussed 
in Chap. 9. 

10.3.1 Incremental Learning Algorithm 

Ichihashi & Watanabe [60] proposed the following incremental learning algo
rithm of the consequent real number bq of each linguistic rule Rq in (10.1): 

Sk 
^ N e w ^ ^ 0 1 d _ ^ . ^ ^ (10.25) 

where 

zt^{y{xt)-yt)V2. (10.26) 

Using (10.2) for y{xt) in (10.26), we can rewrite (10.25) as 

hT^ = &r - «• ^ \ L ^ • ivi^t) - yt)^ (10-27) 
Roes 

where 5 is a rule set (i.e., linguistic rule-based system). 
When the t-th input-output pair (xt^yt) is presented to the linguistic rule-

based system 5, all compatible linguistic rules are adjusted by the update 
rule in (10.27). As in the incremental learning algorithm in (10.18) based on 
the concept of local learning, the amount of modification in (10.27) for the 
consequent real number bq of the q-th linguistic rule Rq is proportional to 
the compatibility grade fiAqixt) of the input vector Xt with the antecedent 
part Aq. When the input vector Xt is not compatible with Aq of Rq (i.e., 
when the compatibility grade is zero), the consequent real number bq is not 
modified. This is because linguistic rules that are not compatible with the 
input vector Xt have no effects on the calculation of the estimated output 
value y{xt). That is, the consequent real numbers of those linguistic rules 
have no effects on the squared error zt in (10.26) to be minimized by the 
incremental learning algorithm. 

The steepest descent learning scheme in (10.25) can also be used for the 
learning of antecedent linguistic terms. Actually many learning algorithms of 
fuzzy rule-based systems have been proposed in the framework of steepest 
descent learning. The incremental learning algorithm in (10.27) is the simplest 
one among those studies. 

In Fig. 10.5, we show simulation results using the incremental learning 
algorithm in (10.27) for the five linguistic rules in (10.12)-(10.16). As in the 
computer simulation using local learning in Fig. 10.4 of the previous section, 
first we specified the initial value of each consequent real number as 0.5. 
The straight line i/ == 0.5 in Fig. 10.5 corresponds to the initial situation. 
Then we updated each consequent real number by the incremental learning 
algorithm in (10.27) using the 20 input-output pairs. The learning rate a was 
specified as a = 0.1. In the execution of the incremental learning algorithm, 
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we presented each of the 20 input-output pairs in a random order to the 
linguistic rule-based system 100 times (i.e., 100 epochs). The fuzzy reasoning 
results after a single, ten, and 100 epochs are shown as piece-wise linear 
curves in Fig. 10.5. 

1̂ ^ After a single epoch 

1^ After 10 epochs 

[^ After 100 epochs 

1.0 

Fig. 10.5. Simulation results 
by the incremental learning al
gorithm based on the concept 
of global learning 

The heuristic specification method in the previous section can be used for 
specifying the initial value of each consequent real number, which is to be 
further adjusted by the global learning scheme. The heuristic specification 
of initial values usually improves the learning speed and sometimes improves 
the generalization ability of adjusted linguistic rule-based systems. The effect 
of the heuristic specification of initial values on the learning of linguistic rule-
based systems was examined in [82, 133]. 

10.3.2 Comparison Between Two Learning Schemes 

Local learning minimizes the diflFerence between the consequent real number 
and the actual output value of each input-output pair while global learning 
minimizes the diflference between the estimated output value and the actual 
output value. That is, local learning does not try to minimize the approx
imation error. This often results in large approximation errors of linguistic 
rule-based systems obtained by local learning as we have already shown in 
Fig. 10.2 and Fig. 10.4. On the other hand, global learning always tries to 
minimize the approximation error. Thus better fitting to training data will 
always be obtained from global learning than local learning. 

As pointed out by Yen & Wang [187], one diflaculty of global learning is 
the interpretability of each linguistic rule. They pointed out this diflftculty 
for the Takagi-Sugeno model with consequent linear functions. More specif
ically, they demonstrated that the fitting of each consequent linear function 
to training data is not always good even when the total squared error (i.e., 
global error measure) is very small. This difficulty of global learning exists not 
only in the Takagi-Sugeno model but also in linguistic rule-based systems. 

For simplicity of explanation, let us assume that we have only two input-
output pairs (0.45,0.45) and (0.55,0.55) in the two-dimensional input-output 



208 10. Linguistic Rules with Consequent Real Numbers 

space [0,1] X [0,1]. We also assume that two linguistic terms small and large 
are given to describe the input variable x as shown in Fig. 10.6. In this case, 
we have the following two linguistic rules: 

Ri: If X is small then y is bi^ (10.28) 

R2: If X is large then 1/ is &2- (10.29) 

> X Fig. 10.6. Two linguistic terms small 
1.0 and large 

Since the line y — x has no approximation errors for the two input-
output pairs (0.45,0.45) and (0.55,0.55), the optimal linguistic rules in global 
learning are as follows: 

Ri: If X is small then y is 0, (10.30) 

R2: If X is large then y is 1. (10.31) 

The fuzzy reasoning result by these two linguistic rules corresponds to the 
line y = X d,s shown in Fig. 10.7. On the other hand, the following two 
linguistic rules are obtained from the heuristic specification method based on 
the concept of local learning in (10.5): 

Ri'.lix is small then y is 0.495, (10.32) 

R2\ If X is large then y is 0.505. (10.33) 

The fuzzy reasoning result by these two linguistic rules is shown in Fig. 10.8. 
The diff'erence between global learning and local learning is clearly shown in 
Fig. 10.7 and Fig. 10.8. 

10.4 Effect of the Use of Consequent Real Numbers 

In this section, we discuss the effect of using real numbers instead of linguistic 
terms in the consequent part of linguistic rules. 

10.4.1 Resolution of Adjustment 

As we have already explained, we used the same fuzzy reasoning method in 
(10.2) for linguistic rules with consequent linguistic terms and for those with 
consequent real numbers. The value of hq in the fuzzy reasoning method is 
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Fig. 10.7. Illustration of global learning. The 
line shows the fuzzy reasoning result by the two 
linguistic rules in (10.30) and (10.31) 

Fig. 10.8. Illustration of local learning. The line 
shows the fuzzy reasoning result by the two lin
guistic rules in (10.32) and (10.33) 

discrete in the case of consequent linguistic terms while it is continuous in 
the case of consequent real numbers. When we use the five linguistic terms 
for the output variable as in Fig. 10.1, the value of bq is one of the following 
five real numbers: 0, 0.25, 0.5, 0.75, 1. Thus the fine tuning of the estimated 
value y{x) is impossible. For example, the value of y{x) may be increased 
by replacing the consequent linguistic term medium of a linguistic rule with 
medium large. By this replacement, the value of bq of the adjusted linguistic 
rule is increased from 0.5 to 0.75. It is impossible to increase the value of 
bq to a real number between 0.5 and 0.75 (e.g., 0.6) when we use the five 
linguistic terms for the output variable as in Fig. 10.1. When we use a coarser 
fuzzy partition for the output variable, the adjustment of linguistic rules also 
becomes coarser. For example, when we use the three linguistic terms small, 
medium, and large, the possible values of bq are 0, 0.5, and 1. It is impossible 
to use other values for bq in the fuzzy reasoning method in (10.2). On the 
other hand, when we use a finer fuzzy partition for the output variable, the 
adjustment resolution of linguistic rules also becomes finer. For example, if 
we use a homogeneous fuzzy partition into eleven linguistic terms for the 
output variable, the possible values of bq are 0,0.1,0.2,. . . , 1. On the other 
hand, we can use any value for bq in the case of consequent real numbers. 
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Thus the use of consequent real numbers corresponds to the use of an infinite 
number of consequent linguistic terms. 

10.4.2 Simulation Results 

To examine the approximation ability of linguistic rule-based systems with 
consequent linguistic terms, we applied the genetic algorithm-based rule se
lection method in Chap. 9 to the gas furnace data of Box and Jenkins [15]. 
This data set has been frequently used to evaluate the approximation ability 
of fuzzy rule-based systems in the literature. Reported results in the liter
ature are shown in Table 10.1 where the MSE (mean squared error) is the 
following global error measure: 

^ m 

MSE = - Y^ivi^p) - ypf' (10-34) 

The modeling task is to identify the following nonlinear function using the 
given training data: 

y{t) = f{u{t)Mt - 1 ) , . . . , 2/(̂  - 1), 2/(t - 2) , . . . ) , (10.35) 

where u{t) is the gas flow rate at the t-th. time step, and y{t) is the CO2 
concentration at the t-th time step. 

Table 10.1. Reported results on training data of the gas furnace data of Box and 
Jenkins in the literature. Methods are sorted in descending order of MSE 

Fuzzy models Number of inputs Number of rules MSE 
Tong (1980) [166] 
Xu & Lu (1987) [180] 
Pedrycz (1984) [136] 
Yoshinari et al. (1993) [188] 
Sugeno & Yasukawa (1993) [159] 
Emami et al. (1998) [42] 
Lin & Cunnigham (1995) [120] 
Sugeno & Tanaka (1991) [158] 
Wang & Langari (1995) [173] 
Kim et al. (1997) [109] 
Kim et al. (1998) [111] 

In our computer simulation, we used only two input variables u{t — ^) and 
y{t — l) which were often selected for the gas furnace data set in the literature. 
All input and output values in the gas furnace data set were normalized into 
real numbers in the unit interval [0,1]. For each of the two input and single 
output variables, we used the five linguistic terms as in Fig. 10.1. The genetic 
algorithm-based rule selection method with the standard fuzzy reasoning in 
(10.2) found a rule set with five linguistic rules in Table 10.2. The MSE by 

2 
2 
2 
3 
3 
3 
5 
6 
6 
6 
6 

19 
25 
81 
6 
6 
6 
4 
2 
2 
2 
2 

0.469 
0.328 
0.320 
0.299 
0.190 
0.158 
0.071 
0.068 
0.066 
0.055 
0.048 
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this rule set was 0.419. This MSE of 0.419 by the five linguistic rules with 
the two input variables is good if compared with the reported results in the 
1980s in Table 10.1. It is, however, inferior to recently developed methods 
in Table 10.1. Good results in Table 10.1 were obtained using the Takagi-
Sugeno model. Thus each fuzzy rule is not always interpret able. For example, 
Kim et al. [ I l l ] found two fuzzy rules with very good fitting to training da ta 
(i.e., the MSE was 0.048). The obtained fuzzy rules in Kim et al. [ I l l ] have 
the following consequent linear functions: 

2/1 (t) = 3.350750 + 0.067303 • u{t) - 0.155765 • u{t - 1) 

-0 .159554 . u{t - 2) + 2.028533 • y{t - 1) 

-1 .523993 • y{t - 2) -f 0.433772 • y(t - 3), (10.36) 

y^(t) = 11.122767 - 0.398395 • u{t) + 1.317115 • u{t - 1) 

-1 .545791 • u{t - 2) + 1.061814 • y{t - 1) 

-0 .152195 • y{t - 2) - 0.119401 • y{t - 3). (10.37) 

It is not easy to intuitively understand the meaning of fuzzy rules with these 
consequent linear functions. On the other hand, the interpretation of the five 
linguistic rules in Table 10.2 is very easy. 

Table 10.2. Five linguistic rules selected by the genetic algorithm-based rule se
lection method. Linguistic rules are sorted according to their consequent linguistic 
terms. In this table, "-" denotes don^t care 

Rule 
Antecedent Consequent 

u{t - 4) y{t - 1) y{t) 

1 - small small 
2 medium, large - medium small 
3 medium medium medium 
4 - medium large medium large 
5 

To improve the fitting ability of our five linguistic rules in Table 10.2, 
we replaced their consequent linguistic terms with the corresponding real 
numbers (e.g., 0.25 for medium smalt). Then we adjusted the consequent real 
numbers using the steepest descent learning in (10.27) with a — 0.01. After 
100 epochs, the MSE decreased from 0.419 to 0.356. This result shows tha t 
the fitting ability of linguistic rules can be improved by using adjustable 
consequent real numbers instead of fixed consequent linguistic terms. 

10.5 Twin-Table Approach 

In this section, we show tha t a linguistic rule table with consequent real 
numbers can be equivalently represented by two rule tables with consequent 
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linguistic terms. This idea was proposed in Nozaki et al. [133]. The same idea 
was used in Cordon & Herrera [23]. 

10.5.1 Basic Idea 

As we have already explained, the approximation ability of linguistic rules 
with consequent linguistic terms is inferior to those with consequent real 
numbers. This is because the resolution of adjustment is very coarse in the 
case of consequent linguistic terms. Let us consider the case where we have 
five consequent linguistic terms in Fig. 10.9. In this case, linguistic rules with 
consequent linguistic terms are the same as those with only five discrete 
consequent values: 0, 0.25, 0.5, 0.75, and 1.0. Thus the maximum absolute 
error by a linguistic rule-based system with the five consequent linguistic 
terms seems to be about 0.125 (0.125 is half of the difference between the 
adjacent discrete values). 

/̂ 5*(̂ ) h V / ' " 

S jUB-.(b)V'/-\-

Fig. 10.9. Determination of two 
consequent linguistic terms from 
a single consequent real number 

The basic idea of the twin-table approach is to use two linguistic rules 
with consequent linguistic terms to represent a single linguistic rule with a 
consequent real number. For example, let us consider the following linguistic 
rule: 

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn then y is 0.45. (10.38) 

The consequent real number 0.45 is between medium small (i.e., 0.25) and 
medium (i.e., 0.5). Thus we use two linguistic rules with medium small and 
medium as consequent linguistic terms to represent the linguistic rule in 
(10.38). Since medium has a larger compatibility grade with 0.45 than medium 
small, the linguistic rule with the consequent linguistic term medium has a 
larger rule weight than that with medium small We use the compatibility 
grade of the consequent real number with each consequent linguistic term as 
the rule weight of the corresponding linguistic rule. As a result, we have the 
following two linguistic rules from the single linguistic rule in (10.38): 

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn 

then y is medium small with 0.2, (10.39) 
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Rule Rq-. If xi is Aqi and . . . and Xn is Aqn 

then y is medium with 0.8. (10.40) 

10.5.2 Determination of Consequent Linguistic Terms 

Let us consider the following linguistic rule with a consequent real number b: 

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn then y is h. (10.41) 

When the domain interval of the output variable is partitioned by linguistic 
terms with triangular membership functions as in Fig. 10.9, the consequent 
real number h is compatible with two linguistic terms. Let 5* and 5** be the 
linguistic terms with larger and smaller compatibility grades with 6, respec
tively. In Fig. 10.9, 5* and 5** are medium and medium small, respectively. 
Using the two linguistic terms B* and 5**, we generate the following two 
linguistic rules: 

Rule Rq: If xi is Aqi and . . . and Xn is Aqn 

then y is ^* with /i^* (&), (10.42) 

Rule jR**: If xi is Aqi and . . . and Xn is Aqn 

then y is 5** with fiB**{b), (10.43) 

where the compatibility grades iiB*{b) and fiB**{b) are used as the rule 
weights. In some special cases (e.g., b = 0.5 in Fig. 10.9), the consequent 
real number b is compatible with only a single linguistic term. In this case, 
5** is not specified. Thus we only generate a single linguistic rule with the 
consequent linguistic term B*. 

Let b* and 6** be representative real numbers for B* and ^**, respectively 
(e.g., 0.25 for medium small). When B* and B** have triangular membership 
functions as in Fig. 10.9, the following relations hold: 

fiB.ib)-h fiB..{b) = h (10.44) 

b*'fiB.{b) + b**'^B..{b) = b. (10.45) 

For example, fimediumib) = 0.8 and iimedium smaii{b) = 0.2 when b = 0.45 in 
Fig. 10.9. Thus we can see that (10.45) holds as follows: 

0.5 • 0.8 + 0.25 • 0.2 = 0.45. (10.46) 

From (10.45), we can see that the consequent real number b can be repre
sented by the two linguistic terms J5* and 5**. 

When a linguistic rule-based system with consequent real numbers is 
given, we generate two linguistic rules with consequent linguistic terms from 
each rule with a consequent real number as shown in (10.42) and (10.43). 
The generated linguistic rule with a larger rule weight (i.e., R* in (10.42)) is 
included in a main rule table. The other linguistic rule (i.e., R** in (10.43)) 
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is included in a secondary rule table. In this manner, we construct two rule 
tables with consequent linguistic terms from a single rule table with conse
quent real numbers. It should be noted tha t all the three rule tables have the 
same antecedent structure. 

Let us assume tha t a linguistic rule-based system with fuzzy rules of the 
form in (10.1) is given. Two rule tables with consequent linguistic terms 
are generated from the given fuzy rule-based system with consequent real 
numbers. The main rule table consists of linguistic rules of the following 
form: 

Rule R*: If xi is Aqi and . . . and Xn is Aqn 

then y is J5* with ^/;*, (10.47) 

where B* is the linguistic term with the largest compatibility grade with the 
consequent real number bq of the linguistic rule Rq, and the rule weight w* 
is specified from bq as 

^v;=^lB*{b,). (10.48) 

On the other hand, the secondary rule table consists of linguistic rules of the 
following form: 

Rule J?**: If xi is Aqi and . . . and Xn is Aqn 

then y is 5** with w;**, (10.49) 

where B** is the linguistic term with the second largest compatibility grade 
with bq, and the rule weight w** is specified as 

^ , * * = / i B j * ( M - (10-50) 

The fuzzy reasoning method in (10.2) is extended to the case of the two 
linguistic rule tables as 

^ E [MA, (X) • 6* • w; + MA, (x) • 6** • «;**] 

^^"^^ " E [ / i A , ( x ) - « ; ; + / i A , ( x ) - M ; - ] • ^^^-^^^ 
RgES 

From (10.44), (10.45), (10.48), and (10.50), the following relations hold: 

< + < * = l , (10.52) 

b;-w; + b;*-w;* = b,. (10.53) 

Thus (10.51) can be rewritten as follows: 
E /̂ Ag (X) • bq 

m = "^-" i . ^̂  . . . (10.54) 
Z^ /^A,(XJ 

Rqes 
This is exactly the same as the fuzzy reasoning method in (10.2). This means 
tha t a single rule table with consequent real numbers can be equivalently 
represented by two rule tables with consequent linguistic terms. 
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10 .5 .3 N u m e r i c a l E x a m p l e 

As a numerical example, let us consider the following nonlinear function [159]: 

2/ = ( l + ^ ^ ) , 1 < x i < 5 , 1 <a;2 < 5. (10.55) 

This nonlinear function is shown in Fig. 10.10. As training data , we generated 
441 input -ou tput pairs {xpi^Xp2^yp)^ P = 1,2, . . . , 4 4 1 , using the uniformly 
divided 21 x 21 grid where Xpi = 1 .0 ,1 .2 , . . . , 5.0, Xp2 = 1 .0 ,1 .2 , . . . , 5.0, and 
yp was calculated from (10.55). 

10.0 

y 5.0 

5.0 1.0 
Fig. 10.10. 
(10.55) 

Nonlinear function in 

First we generated a linguistic rule-based system using the heuristic rule 
generation method described in Chap. 8. The generated linguistic rule-based 
system is shown in Fig. 10.11. As shown in this figure, we used five linguistic 
terms for each of the two input variables. We also used five linguistic terms for 
the output variable, which are shown in Fig. 10.12. The MSE on the training 
da ta in (10.34) was 0.349 by the linguistic rule-based system in Fig. 10.11. 

5.0 

^2 

1.0 > 

MLy |MS| S I S I S I S 
y^/////////y^/////////A^^^ 

MsJ s | s | s j s 

M | MS I MS I S I S 

yiiyss> I M% I MS |MS[ 

l > ^ ^ > ^ ^ ^ H ^ ^ ^^ *̂ 10.11. Generated linguistic rule-based 
50 system using the heuristic rule generation 

•̂ 1 method in Chap. 8 
1.0 
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Fig. 10.12. Five linguistic terms used 
for the output variable 

We also generated a linguistic rule-based system with consequent real 
numbers from the training data using the same antecedent structure as in Fig. 
10.11. The consequent real number of each linguistic rule was first specified 
by the heuristic specification method in Sect. 10.2. The generated linguistic 
rule-based system is shown in Fig. 10.13. The MSE on the training data 
was 0.150. This is better than the result by the linguistic rule-based system 
with consequent linguistic terms in Fig. 10.11 (i.e., the MSE was improved 
from 0.349 to 0.150). Then each consequent real number was adjusted by 
the global learning scheme in Sect. 10.3. The incremental learning algorithm 
was iterated ten times for each input-output pair (i.e., ten epochs) using 
the learning rate a = 0.1. In each epoch, the 441 input-output pairs were 
presented to the linguistic rule-based system in a random order. The adjusted 
linguistic rule-based system is shown in Fig. 10.14. The MSE on the training 
data was improved from 0.150 to 0.104 by the global learning scheme. 

From the adjusted linguistic rule table with consequent real numbers in 
Fig. 10.14, we generated two rule tables using the twin-table approach in this 
section. The generated rule tables are shown in Fig. 10.15 and Fig. 10.16. 
We can see that the main rule table in Fig. 10.15 is almost the same as the 
rule table in Fig. 10.11 generated by the heuristic rule generation method in 
Chap. 8. The MSE by the main rule table in Fig. 10.15 was 0.278, which is 
slightly better than the MSE by the heuristic rule table in Fig. 10.11 (i.e., 
0.349). On the other hand, the MSE by the secondary rule table in Fig. 10.16 
was 1.895, which is much worse than the results by the other rule tables. 

5.0 

^2 

1.0 
\/s\ 

3.27 

3.38 

3.64 

4.39 

6.07 

1.93 

2.01 

2.22 

2.82 

4.20 

1.48 

1.55 

1.74 

2.27 

3.53 

1.35 

1.42 

1.60 

2.11 

3.34 

L3l| 

1.38 

1.55 

2.06 

3.27 

^ ^ ^ ^ I v ^ ^ l ^ ^ 

1.0 
1̂ 

5.0 

Fig. 10.13. Generated linguistic rule-based 
system using the heuristic specification 
method of consequent real numbers in Sect. 
10.2 
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| J X ^ > ^ M ] X ^ ^ Fig. 10.14. Adjusted linguistic rule-based 
5 0 system using the global learning scheme in 
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11. Handling of Linguistic Rules in Neural 
Networks 

Various hybrid models of fuzzy logic and neural networks have been proposed 
in the literature. These models are often called fuzzy neural networks. The 
main line of fuzzy neural networks concerns a class called neuro-fuzzy models. 
Fuzzy neural networks in this class are basically fuzzy rule-based systems 
that are adjustable using descent learning algorithms [60, 130]. Neuro-fuzzy 
models are often represented in neural network structures [10, 58, 99, 128]. 
They are used as approximators of nonlinear mappings from input vectors to 
output values. Another class of fuzzy neural networks is neural networks for 
fuzzy reasoning, which map antecedent linguistic terms to consequent linguis
tic terms. That is, neural networks are used as approximators of nonlinear 
mappings from linguistic vectors to linguistic terms. This chapter describes 
fuzzy neural networks of this class. The learning of neural networks from 
linguistic rules is discussed in the next chapter. 

In this chapter, linguistic rules of the following form are approximately 
realized by neural networks: 

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn then y is Bq, (H-l) 

where Aqi is an antecedent linguistic term and Bq is a consequent linguistic 
term. Linguistic rules of the same form were used in Chaps. 8 and 9 for 
modeling problems. One approach to the handling of linguistic rules is to use 
preprocessors to transform linguistic terms into real vectors. In this approach, 
linguistic rules are handled as numerical input-output pairs. There exist two 
methods in this approach. One method is based on membership values of 
linguistic terms. The other method is based on upper and lower limits of 
level sets of linguistic terms. Another approach to the handling of linguistic 
rules is to use fuzzy arithmetic in neural networks. In this approach, linguistic 
rules are handled as linguistic input-output pairs while they are handled as 
numerical input-output pairs in the first approach. The input-output relation 
of each unit in neural networks is extended to the case of linguistic inputs 
using fuzzy arithmetic. These two approaches are explained in this chapter. 
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11.1 Problem Formulation 

11.1.1 Approximation of Linguistic Rules 

Let us assume that we have N linguistic rules Rq, q = 1, 2, . . . , N. These 
linguistic rules can be viewed as linguistic input-output pairs {Aq, Bq), q = 
1, 2, . . . , A ,̂ where Aq — (A^i, . . . , Aqn). A simple example of a set of given 
linguistic rules is as follows: 

Ri : If X is small then y is large, 

R2 : li X is medium then y is m^edium, 

Rs : li X is large then y is small. 

(11.2) 

(11.3) 

(11.4) 

These linguistic rules are viewed as the three linguistic input-output pairs 
{small, large), {medium, medium), and {large, small). Each linguistic input-
output pair {Aq, Bq) is depicted in the input-output space [0, 1] x [0, 1] in 
Fig. 11.1 where squares and closed circles correspond to level sets (i.e., a-
cuts) of the fuzzy set Aq x Bq for five levels 0.2, 0.4, 0.6, 0.8, and 1.0. In 
Fig. 11.1, the membership function of the fuzzy set Aq x Bq is defined as 

IJ^AaxB^x, y) =mm{iiAAx), fiB,{y)}- (11.5) 

The concept of level sets is explained later in this chapter. In Fig. 11.1, each 
linguistic input-output pair is illustrated as a pyramid-shaped fuzzy set on 
the two-dimensional input-output space [0, 1] x [0, 1]. 

PT — 1 — 

[- MM] A 

-H 
SXMSX M X M L X L 

0.0 1.0 

Fig. 11.1. Three linguistic input-output 
pairs: {small, large), {medium, medium), 
and {large, small) 

Our task in this chapter is to approximately realize the given N linguistic 
rules of the form in (11.1) using neural networks. This task is rephrased 
as approximately realizing the given N linguistic input-output pairs {Aq, 
Bq), q = 1, 2, . . . , N. Thus neural networks are used as approximators of 
nonlinear mappings from n-dimensional linguistic vectors to linguistic terms. 



s 11.1 Problem Formulation 221 

As in standard learning tasks of neural networks from numerical input-output 
pairs, there are two issues to be taken into account: 

(1) Fitting ability of neural networks. This ability is evaluated by presenting 
each linguistic input vector Aq in the given linguistic input-output pairs 
to a trained neural network. The point is whether the actual output 
from the trained neural network is close to the target linguistic term Bq 
or not. In the case of the above example with the three linguistic rules in 
(11.2)-(11.4), the three linguistic input terms small, medium, and large 
are presented to the trained neural network to check whether the actual 
outputs are close to the target linguistic terms large, medium, and small, 
respectively. 

(2) Generalization ability of neural networks. This ability is evaluated for 
new linguistic input vectors that have not been used in the learning of 
the trained neural network. The point is whether the actual output from 
the trained neural network is intuitively acceptable or not. For example, 
medium small and medium large are presented to the trained neural net
work in the case of the above example. We may intuitively think from 
Fig. 11.1 that the corresponding outputs should be medium large and 
medium small, respectively. When we have many linguistic input-output 
pairs, cross-validation techniques (e.g., the leaving-one-out procedure and 
the 10-fold cross-validation procedure [178]) can be used in the same man
ner as in the case of numerical input-output pairs. 

11.1.2 Multi-Layer Feedforward Neural Networks 

We explain some approaches to the handling of linguistic rules by standard 
feedforward neural networks to which the back-propagation algorithm [146] 
can be naturally applied. For simplicity of explanation, let us consider a 
three-layer feedforward neural network, though we can use neural networks 
with more than three layers in the same manner. We denote the number of 
input units, hidden units, and output units by n/, n^ , and no^ respectively. 
When an n/-dimensional input vector Xq = (xqi, . . . , Xqm) is presented to 
the neural network, the input-output relation of each unit is written as follows 
[146]: 

Input units: Oqi = Xqi, i = 1, 2, . . . , n/ . (11-6) 

Hidden units: Oqj = f{netqj), j = 1, 2, . . . , TIH-, (H- '^) 
ni 

'^^^qj = X^^i^ • ^qi + ^3- (11-8) 
i=l 

Output units: Oqk — f{netqk). A: = 1, 2, . . . , no , (11-9) 
riH 

netqk = ^ujkj ' Oqj + 9k. (11.10) 
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In this formulation, Wji is the connection weight from the i-th input unit 
to the j - th hidden unit, 9j is the bias to the j - th hidden unit, Wkj is the 
connection weight from the j - th hidden unit to the A:-th output unit, and 
9k is the bias to the k-th output unit. The weights and biases are adjusted 
by the learning of the neural network. As in Rumelhart et al. [146], we use 
the following sigmoidal function as the activation function at the hidden and 
output units: 

/ (^) = -. —^ T- (11.11) 
-^^ ^ l + exp(-x) ^ ^ 

The three-layer feedforward neural network in (11.6)-(11.11) is known as 
a universal approximator of nonlinear functions [47, 59, 179] when we can 
use an arbitrary number of hidden units. Linguistic rule-based systems are 
also universal approximators of nonlinear functions [116, 175] when we can 
use an arbitrary fine fuzzy partition for each input (and output) variable. 

11.2 Handling of Linguistic Rules Using Membership 
Values 

11.2.1 Basic Idea 

Standard feedforward neural networks cannot directly handle linguistic input-
output pairs. Thus the neural network structure or the data structure should 
be modified to handle linguistic rules in neural networks. One idea is to repre
sent a linguistic term using its membership values at some discretized points. 
This idea was proposed by Keller et al. [107, 108]. When the domain inter
val [0, 1] is discretized into eleven points, a linguistic term is represented by 
an 11-dimensional numerical vector. For example, medium is represented as 
follows (see Fig. 11.2) using its membership values at the eleven points 0.0, 
0.1,0.2, . . . , 1.0: 

medium = (0.0, 0.0, 0.0, 0.2, 0.6, 1.0, 0.6, 0.2, 0.0, 0.0, 0.0). (11.12) 

Fig. 11.2. Representation of the linguistic 
term medium using its membership values 
at the eleven points in the domain interval 
[0,1] 
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11.2.2 Network Architecture 

Since each linguistic term is represented by a numerical vector, we can use 
standard feedforward neural networks. For simplicity of explanation, let us 
assume that the domain interval of each linguistic term is discretized into the 
eleven points as shown in Fig. 11.2. In this case, the n-dimensional linguis
tic input vector Aq — (^^i, . . . , ^gn) is represented by an 1 In-dimensional 
numerical vector. The corresponding linguistic output Bq is represented as 
an 11-dimensional target vector. Thus we use a standard feedforward neu
ral network with l l n input units and 11 output units (i.e., nj — \\n and 
no = 11 in (11.6)-(11.10)). 

In Fig. 11.3, we show a three-layer feedforward neural network for the 
handling of the linguistic input-output pair {medium^ medium) corresponding 
to the linguistic rule "If x is medium then y is medium^\ In this case, the 11-
dimensional numerical vector corresponding to medium is presented to the 
neural network. The target vector is the 11-dimensional numerical vector 
corresponding to medium. 

6-6-^ 

Target vector 

< b - ^ i ^ ^ 
T f T l l l f f f f I 

0.0 0.0 0.0 0.2 0.6 1.0 0.6 0.2 0.0 0.0 0.0 

i 1 i i 1 i i i i n 

11111111111 
0.0 0.0 0.0 0.2 0.6 1.0 0.6 0.2 0.0 0.0 0.0 

^y-^>-^ JiM •6-^^^ 

Input vector 

Fig. 11.3. Illustration of the learning of 
neural networks from the linguistic input-
output pair {medium, medium) using the 
membership values of each linguistic term 

11.2.3 Computer Simulation 

We trained a three-layer feedforward neural network with eleven input units, 
five hidden units, and eleven output units using the three linguistic rules in 
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(11.2)-(11.4). Each linguistic rule, which is a linguistic input-output pair, 
was handled as a numerical input-output pair of an 11-dimensional input 
vector and an 11-dimensional target vector. That is, three numerical input-
output pairs were obtained from the three linguistic rules. We used the back-
propagation algorithm with the momentum term [146]. This algorithm is 
explained in the next chapter. The learning rate and the momentum term 
were specified as 0.25 and 0.9, respectively. The back-propagation algorithm 
was iterated 1000 times over the three numerical input-output pairs (i.e., 
1000 epochs). We calculated the total squared error 

^ 3 11 

p=i k=i 

where Opk is the actual output value from the k-th output unit, and tpk is 
the corresponding target output. After 1000 epochs, the value of the total 
squared error E in (11.13) was 0.0011. This indicates that good fitting to 
the three input-output pairs was obtained. For example. Fig. 11.4 shows the 
actual output vector from the trained neural network for the linguistic input 
medium. We can see that the fitting of the actual output vector in Fig. 11.4 
to the linguistic target medium is very good. 

Fig. 11.4. The actual output vector from 
the trained neural network for the linguistic 
input medium. The corresponding linguistic 
target is medium 

To examine the generalization ability of the trained neural network, we 
presented an 11-dimensional input vector corresponding to the linguistic term 
medium small. The actual output vector from the trained neural network for 
this input vector is depicted in Fig. 11.5. From intuitive interpolation of the 
two linguistic rules "If x is small then y is large^^ and "If x is medium then 
y is medium^\ we think that the linguistic output should be medium large 
for the linguistic input medium small. It is, however, difficult to interpret the 
actual output vector in Fig. 11.5 as medium large. 

The main difficulty in the membership value-based method is that actual 
output vectors from trained neural networks are not always interpreted as 
linguistic terms. They usually do not represent normal fuzzy sets (i.e., fuzzy 
sets whose maximum membership value is 1). In many cases, actual output 
vectors represent membership functions with multiple peaks (i.e., non-convex 
fuzzy sets). In Fig. 11.5, the membership function constructed by the actual 
output vector is not normal or convex. 
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Fig. 11.5. The actual output vector from 
the trained neural network for the linguistic 
input medium sm,all 

11.3 Handling of Linguistic Rules Using Level Sets 

11.3.1 Basic Idea 

Another trick for transforming a linguistic term into a numerical vector is to 
use the upper and lower limits of its level sets (i.e., its a-cuts). The /i-level 
set of a linguistic term A (i.e., the a-cut of Aior a = h) is a closed interval, 
which is defined as follows (see Fig. 11.6): 

[A]h = {x I IIA{X) > /i, X G 3?} for 0 < /i < 1, (11.14) 

where 5R is the set of real numbers. In the case of /i = 0 in (11.14), the /i-level 
set is the same as 3?. To avoid such a meaningless result, (11.14) is not applied 
to the case of /i = 0. The /i-level set of 4̂ for /i = 0 is usually defined as an 
open interval in the following manner: 

[A]h = {x I iJLx{x) > /i, X e 5R} for /i = 0. (11.15) 

We denote the level set using its lower and upper limits as 

[A]H = 
[[A]i,[A]][] f o r O < / i < l , 

{[A]i,[Arj iovh = 0, 
(11.16) 

where the superscripts L and U represent the lower and upper limits of the 
level set, respectively. 

Fig. 11.6. Illustration of the /i-level set of 
a linguistic term A 

The idea of decomposing a linguistic term into the upper and lower limits 
of its level sets was proposed by Uehara & Fujise [168]. Figure 11.7 illustrates 
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the decomposition of the linguistic term medium into its six h-level sets for 
h=0.0, 0.2, 0.4, 0.6, 0.8, 1.0. In the case of Fig. 11.7, the linguistic term 
medium is represented by a 12-dimensional numerical vector using the lower 
and upper limits of its six level sets as 

medium = (0.25,0.75,0.3,0.7,0.35,0.65,0.4,0.6,0.45,0.55,0.5,0.5). 

(11.17) 

Fig. 11.7. Representation of the linguistic 
term medium using its six /i-level sets for 
/i=0.0, 0.2, 0.4, 0.6, 0.8, 1.0 

11.3.2 Network Architecture 

As in the case of the membership value-based method in the previous sec
tion, each linguistic term is represented by a numerical vector in the level 
set-based method. Thus we can use standard feedforward neural networks. 
When we use the six level sets of each linguistic term as in Fig. 11.7, the 
n-dimensional linguistic input vector Aq = (Agi, . . . , Aqn) is represented by 
a 12n-dimensional numerical vector. The corresponding linguistic output Bq 
is represented by a 12-dimensional target vector. Thus we use a standard 
feedforward neural network with 12n input units and 12 output units (i.e., 
m = 12n and no = 12 in (11.6)-(11.10)). 

11.3.3 Computer Simulation 

We trained a three-layer feedforward neural network with 12 input units, 
five hidden units, and 12 output units using the three linguistic rules in 
(11.2)-(11.4). Each linguistic rule was handled as a numerical input-output 
pair of a 12-dimensional input vector and a 12-dimensional target vector. 
Thus three numerical input-output pairs were used as training data. The 
learning of the neural network was performed using the back-propagation 
algorithm with the momentum term [146] in the same manner as in the 
previous section. After 1000 epochs, the total squared error was 0.0014. This 
indicates that good fitting to the three input-output pairs was obtained. For 
example. Fig. 11.8 shows the actual output vector from the trained neural 
network for the linguistic input medium. We can see from Fig. 11.8 that the 
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fitting of the actual output vector to the linguistic target medium is very 
good. 

Fig. 11.8. The actual output vector from 
the trained neural network for the linguistic 
input medium. The corresponding linguistic 
target is medium 

To examine the generalization ability of the trained neural network, we 
presented a 12-dimensional input vector corresponding to the linguistic term 
medium small. The actual output vector from the trained neural network for 
this input vector is depicted in Fig. 11.9. The intuitively acceptable linguistic 
output is medium large for the linguistic input medium small. It is, however, 
difficult to interpret the actual output vector in Fig. 11.9 as medium large. 

§ 0.2 h 
'^ 0.0 

Fig. 11.9. The actual output vector from 
the trained neural network for the linguistic 
input medium, small 

The main difficulty in the level set-based approach is that actual output 
vectors from trained neural networks do not always construct legal fuzzy sets. 
That is, the following inclusion relation is not always satisfied: 

[B]h^[B]kifh<k, (11.18) 

where [B]h and [B]k are level sets obtained as output values from trained 
neural networks. In (11.18), B is a fuzzy set constructed from level sets. It 
should be noted that (11.18) always holds for any fuzzy set. When (11.18) is 
not satisfied, B cannot be viewed as a fuzzy set. In Fig. 11.9, the membership 
function constructed by the actual output vector from the trained neural 
network does not satisfy (11.18). 
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11.4 Handling of Linguistic Rules Using Fuzzy 
Ari thmet ic 

We have already explained two methods for handling linguistic rules in neural 
networks. These methods are based on preprocessors that transform linguistic 
terms into numerical vectors. In this section, we explain another approach 
where linguistic terms are directly handled in neural networks using fuzzy 
arithmetic. 

11.4.1 Basic Idea 

As shown in the previous sections, good fitting to given linguistic rules was 
obtained by the two methods based on preprocessors. The generalization abil
ity of trained neural networks, however, was not good in those methods. This 
is because many input and output units were used to handle a single lin
guistic term. As a result, neural network structures were very complicated in 
comparison with the complexity of linguistic rules. For example, neural net
works with more than ten input and output units were used in the previous 
computer simulations to handle linguistic rules describing a single-input and 
single-output nonlinear mapping. In the handling of numerical data by neural 
networks, the number of input (output) units is the same as the dimension
ality of the input (output) space. A fuzzy arithmetic-based approach to the 
handling of linguistic rules extends neural networks for numerical data to the 
case of linguistic rules without modifying their network structures. That is, a 
single input (output) unit is used to handle a single input (output) variable. 
A linguistic term is presented to each input unit. The corresponding output 
from each output unit is calculated as a fuzzy set using fuzzy arithmetic. The 
fuzzy arithmetic-based approach to the handling of linguistic rules by neural 
networks was proposed in Ishibuchi et al. [63]. The interpolation ability of 
trained neural networks was examined in [87]. 

The fuzzy arithmetic-based approach [63, 87] is a special case of fuzzified 
neural networks. In general, multi-layer feedforward neural networks can be 
fuzzified by using fuzzy numbers as their inputs, connection weights, and/or 
targets [16]. Fuzzy numbers (e.g., about 2, approximately 12, etc.) are normal 
and convex fuzzy sets on the real axis Ji [106]. Linguistic terms such as 
small and large can also be viewed as fuzzy numbers. In Hayashi et al. [52], 
the back-propagation algorithm was directly fuzzified. Learning of fuzzified 
neural networks was studied by some authors [39, 40, 64]. 

11.4.2 Fuzzy Arithmetic 

Before describing neural networks that can directly handle linguistic rules, we 
briefly explain fuzzy arithmetic. Fuzzy arithmetic is an extension of standard 
arithmetic on real numbers to the case of fuzzy numbers. Fuzzy arithmetic 



11.4 Handling of Linguistic Rules Using Fuzzy Arithmetic 229 

is mathematically defined by the extension principle of Zadeh [191] and nu
merically executed using interval arithmetic [6, 126] on level sets of fuzzy 
numbers. 

In fuzzified neural networks, the following addition and multiplication on 
fuzzy numbers are used: 

MA+B(^) = max{/iyi(a:) A jUBiy) \x-{-y = z, x E ^, y e ^}, (11.19) 

f^A-B{z) = max{^A(^) AfiB{y)\x'y = z,xe^,yeU}, (11.20) 

where upper-case letters (i.e., A and B) are fuzzy numbers, lower-case letters 
(i.e., X, 2/, and z) are real numbers, and A is the minimum operator. These 
two operations on fuzzy numbers are illustrated in Fig. 11.10 and Fig. 11.11, 
respectively. 

i h 
A-^B 

0 1 2 3 4 5 6 7 

Fig. 11.10. Illustration of the sum A -f- 5 of two fuzzy numbers A and B 

Fig. 11.11. Illustration of the product A- B oi two fuzzy numbers A and B 

The activation function in (11.11) is extended to the case of a fuzzy input 
Net as 

l^f{Net){z) = m3.yi{llNet{x) \ Z = / ( x ) , X G 3?}. (11.21) 

The nonlinear fuzzy mapping from the fuzzy number Net to the fuzzy number 
f{Net) is illustrated in Fig. 11.12. 

As shown in (11.6)-(11.10), the input-output relation of each unit in stan
dard feedforward neural networks is defined by the addition, multiplication, 
and activation function. Thus we can define the fuzzy version of the input-
output relation using (11.19)-(11.21). Since the exact calculation of fuzzy 
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Net Fig. 11.12. Fuzzy activation function at hidden 
and output units 

arithmetic using the extension principle is not easy, interval arithmetic on 
multiple level sets of fuzzy numbers is usually used in numerical calculations. 
The interval versions of (11.19)-(11.21) are written as 

A + B^ [a^, a^] + [6^, h^] = [a^ + b^, a^ + b% (11.22) 

A'B = [a^,a^]'[b^,b^] 

= [mm{a^'b^, a^-b^, cF-b^, a^-&^}, 

max{a^-6^, a^-b^, oF-b^ ^•^^}], 
f{Nei) = / ( M ^ , net^]) = [/(nef^), / (net^)] , 

(11.23) 

(11.24) 

where upper-case letters (i.e., A, B^ and Nei) are intervals, and superscripts 
L and C/ denote the lower and upper limits of intervals, respectively. Fuzzy 
arithmetic can be numerically executed by applying interval arithmetic to 
level sets of fuzzy numbers. For example. Fig. 11.12 was drawn by applying 
(11.24) to the /i-level sets of iVet for 50 levels (i.e., /i=0.02, 0.04, . . . , 1.00). 

11.4.3 Network Architecture 

Since each linguistic term is handled by a single unit, we use a three-layer 
feedforward neural network with n input units and a single output unit to 
handle the linguistic rule Rq in (11.1). The number of hidden units, which is 
denoted by nH-> can be arbitrarily specified. The linguistic rule Rq is handled 
as the linguistic input-output pair (A^, Bq). Thus the linguistic vector Aq — 
(Agi, . . . , Agn) is presented to the neural network. In this case, the input-
output relation of each unit is written as follows: 

Input units: Oqi — Aqi, i = 1, 2, . . . , n. 

Hidden units: Oqj = f{Netqj), j — 1, 2, 
n 

Netqj = ^ Wji • Oqi + dj. 
i=l 

Output unit: Oq = f{Netq), 

, nB, 

(11.25) 

(11.26) 

(11.27) 

(11.28) 
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riH 

Netq = ^Wj- Oqj + 0. (11.29) 

In (11.25)-(11.29), fuzzy numbers are denoted by upper-case letters such as 
•Aqi^ Oqi^ and Netqj. While the input vector is fuzzified as Aq = (^^i , . . . 
,Aqn), the connection weights Wji, Wj and the biases 9j, 9 are still real 
numbers. Fuzzified neural networks with fuzzy connection weights and fuzzy 
biases will be explained in Chap. 14. 

We illustrate the above fuzzification of neural networks using a simple 
three-layer feedforward neural network in Fig. 11.13 where connection weights 
and biases are shown as real numbers. Our task in this figure is to calculate 
the fuzzy output from the output unit when the linguistic vector {small, 
medium) is presented. 

QQ jQ Fig. 11.13. A three-layer feedfor-
small medium ward neural network and a linguis

tic input vector {small, medium) 

The fuzzy output from each input unit is the same as the linguistic input 
to that unit as shown in (11.25). Thus the fuzzy outputs from the input units 
A and B in Fig. 11.13 are small and medium, respectively. At the hidden unit 
C, the following fuzzy arithmetic is performed to calculate the fuzzy output 
Oc: 

Netc — —5 • small — 5 • medium — 2, (11.30) 

Oc = /(iVetc). (11.31) 

The membership functions of Oc and Netc are shown in Fig. 11.14. The fuzzy 
output OD from the hidden unit D is calculated as follows (see Fig. 11.15): 

Netj) = 1 • sm^all — 3 • m^edium. + 2, (11.32) 
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0.15 

Netc 

Input value 
Fig. 11.14. Fuzzy input-output relation at the hid
den unit C 

OD = /(A^etD). (11.33) 

Using the fuzzy outputs Oc and O D from the hidden units, the fuzzy output 
O E from the output unit E is calculated as follows (see Fig. 11.16): 

iVe^E = 5 - O c - 3 - O D + l , 

O E = / ( iVe te ) . 

(11.34) 

(11.35) 

1.00 

0 Net^ 3 

Input value 
Fig. 11.15. Fuzzy input-output relation at the hid
den unit D 

0.50 

Input value 
Fig. 11.16. Fuzzy input-output relation at the out
put unit E 
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The numerical calculation of fuzzy arithmetic in the neural network in 
(11.25)-(11.29) is executed using interval arithmetic on level sets of the 
linguistic input vector Aq = (Agi, . . . , Aqn)- Actually, we used interval 
arithmetic for 50 /i-level sets (i.e., h=0.02, 0.04, . . . , 1.00) in Figs. 11.14 
- 11.16. The input-output relation in (11.25)~(11.29) for the linguistic in
put vector Aq = {Aqi, . . . , Aqn) is rewritten for the interval input vector 
Xq = {Xqi^ . . . , Xqn) as follows (thc lutcrval Xqi corresponds to the level 
set of "the linguistic term Aqi): 

Input units: [o^,, o ,̂] = X,i = [x^., x%i = l,2,..., n. (11.36) 

Hidden units: [o^j, ô .̂] = [finet^j), f{net^j)], 

j = 1,2, ...,nH, (11.37) 
n n 

^ < = E ^i^-^^i+ J2 ^Ji-o'^i + Oj, (11.38) 

Wji > 0 Wji < 0 

n 

' ^ < = E '^Ji-4+ E Wji-o^, + 0j. (11.39) 

Wji > 0 Wji < 0 

Output unit: [o^, o^] = [/(net^), finet^)], (11.40) 

n e t ^ = J2 ^ro^,j+ E « ^ i - o « + ^ ' (11-41) 
j = 1 j = 1 

Wj > 0 lOj < 0 

riH riH 

net^= Y, yJj-o^j+ J2 ^J-o^j+0. (11.42) 
j = 1 J = 1 

Wj > 0 Wj < 0 

11AA Computer Simulation 

As in the previous sections, we used the three linguistic rules in (11.2)-
(11.4) as training data. These rules were handled as linguistic input-output 
pairs (small, large), {medium, medium), and {large, small). A single-input and 
single-output three-layer feedforward neural network with five hidden units 
was used to handle such a linguistic input-output pair. That is, the network 
structure of the neural network is 1 x 5 x 1 while it was 11 x 5 x 11 and 
1 2 x 5 x l 2 i n the previous sections for handling the same linguistic rules. In 
the learning of the neural network, we used the /i-level sets of each linguistic 
input-output pair for eleven levels (i.e., h=0.0, 0.1, 0.2, . . . , 1.0). That is, 
we generated eleven interval input-output pairs from each linguistic input-
output pair. In the next chapter, we explain how a learning algorithm of 
neural networks can be derived for interval input-output pairs. The learning 
of the neural network was terminated after 1000 epochs. In each epoch, 33 
interval input-output pairs were used as training data. 
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In Fig. 11.17, we show the actual fuzzy output from the trained neural 
network for the linguistic input medium. This figure is depicted using 51 /i-
level sets of the linguistic input medium for /i=0.00, 0.02, 0.04, . . . , 1.00. We 
can see that the fuzzy output in Fig. 11.17 is similar to the target output 
medium. While the fitting of the actual fuzzy output in Fig. 11.17 is not bad, 
it is inferior to the previous results in Fig. 11.4 and Fig. 11.8. This is because 
the neural network structure is very simple in this section (i.e., 1 x 5 x 1) 
while it was much more complicated in the previous sections (i.e., 1 1 x 5 x 1 1 
and 12 X 5 X 12). 

— Actual output 
— Target output 

Fig. 11.17, The actual fuzzy output from 
the trained neural network for the linguistic 
input medium. The corresponding linguistic 
target is medium, 

To examine the generalization ability of the trained neural network, we 
presented the linguistic term medium small. The corresponding fuzzy output 
from the trained neural network is shown in Fig. 11.18 using 51 level sets 
of the linguistic input medium small. We can see that the fuzzy output in 
Fig. 11.18 can be interpreted as medium large. From the three linguistic rules 
(see Fig. 11.1), we intuitively think that the output for the linguistic input 
medium small should be medium large. The actual fuzzy output in Fig. 11.18 
coincides with this intuition. 

From the simulation results in this chapter, we can conclude that the fuzzy 
arithmetic-based method has lower fitting ability and higher generalization 
ability than the other methods with preprocessors. Fuzzy outputs from neural 
networks in the fuzzy arithmetic-based method are always normal and convex 
fuzzy sets (i.e., fuzzy numbers) when linguistic terms are used as inputs. This 
feature of fuzzy outputs is easily proven using the characteristic features of 
fuzzy arithmetic. 

Fig. 11.18. The actual output vector from 
the trained neural network for the linguistic 
input medium small 



12. Learning of Neural Networks from 
Linguistic Rules 

In this chapter, we extend the back-propagation algorithm to the case where 
Hnguistic rules instead of numerical data are given as training data. We use 
the fuzzy arithmetic-based method in Sect. 11.4 to handle linguistic rules. 
First we explain the learning of standard feedforward neural networks from 
linguistic rules of the following form for pattern classification problems: 

Rule Rq : If xi is Aqi and . . . and Xn is Aqn then Class Cq. (12.1) 

In this case, target vectors are binary (e.g., (0,1,0) for Class 2 in three-class 
problems) because the consequent part of each linguistic rule is a class label. 
Then we explain the learning of neural networks from linguistic rules of the 
following form for modeling problems: 

Rule Rq : If xi is Aqi and . . . and Xn is Aqn then y is Bq. (12.2) 

In this case, linguistic terms are used as targets as well as inputs. 

12.1 Back-Propagation Algori thm 

Before discussing the learning of neural networks from linguistic rules, we 
explain the back-propagation algorithm [146] for the learning of standard 
feedforward neural networks from numerical input-output pairs. Let us as
sume that we have m input-output pairs {Xp^ tp) where Xp = {Xpi, . . . , Xpm) 
and tp = {tpi, . . . , tpno) cire an n/-dimensional input vector and an no-
dimensional target vector, respectively. We have already shown the input-
output relation of each unit in the three-layer feedforward neural network for 
the input vector Xp in (11.6)-(11.11) of the previous chapter. 

In the back-propagation algorithm, a cost function to be minimized is 
defined for the input-output pair (Xp, tp) as the squared error between the 
actual output vector Op = (opi, . . . , Opno) from the neural network and the 
target vector tp = (t^i, . . . , tpno) ^ •̂ 

-j rio 

ep = - Y^itpk - Opkf. (12.3) 
k=i 

The connection weight Wkj from the j - th hidden unit to the A:-th output 
unit is updated by the steepest descent scheme as 
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.. .New _ Old _ . ^^P /-, r> A^ 

where r̂  is a positive constant (i.e., 0 < rj) called the learning rate. The partial 

derivative in (12.4) is calculated from (12.3) as follows (see [146] for details): 

Be 
— = —{tpk — Opk) ' Opk ' (1 — Opk) ' Opj 

= -Spk • Opj, (12.5) 

where 

Spk = (tpk — Opk) • Opk • (1 - Opk). (12.6) 

Thus the update rule for Wkj is rewritten as 

< ' " = < ' + ^ - < ^ p f e - O p i - (12-7) 

The update rule for the bias Ok to the A:-th output unit is the same as (12.7) 
with Opj — 1. 

In the same manner, the update rule for the connection weight Wji from 
the i-th input unit to the j - t h output unit is written as 

dwji 

= wf^'' + Tj • 5pj • Opi, (12.8) uji -r // upj wpi, 

where 
de. 

- -6pj - Opi, (12.9) 
dwji 

no 
Spj = Opj ' (1 - Opj) '^Spk ' Wkj. (12.10) 

k=l 

The update rule for the bias 6j to the j - t h hidden unit is the same as (12.8) 

with Opi = 1. 
Usually the momentum term is added to the update rules in (12.7) and 

(12.8). Let us write the update rules for Wkj and Wji as 

Wkj(t + l) = Wkj{t) + Awkj{t), (12.11) 

Wji{t + 1) = Wji{t) + Awjiit), (12.12) 

where t indexes the number of updates . Using the momentum term, Awkj{t) 
and Awji{t) are specified as 

de 
Awkj{t) = -T]' - - ^ + a ' Awkj{t - 1), (12.13) 

awkj 

de 
Awjiit) = -T]' —^ + a ' Awji{t - 1), (12.14) 

OWji 

where a is a non-negative constant less than 1 (i.e., 0 < a < 1) called the 
momentum constant. The biases 9k and Oj are updated in the same manner 
as the connection weights Wkj and Wji, respectively. 
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12.2 Learning from Linguistic Rules for Classification 
Problems 

In this section, we discuss the learning of standard multi-layer feedforward 
neural networks from linguistic rules of the form (12.1) for pattern classifica
tion problems. We use a three-layer feedforward neural network with n input 
units and M output units where M is the number of classes. 

12.2.1 Linguistic Training Data 

Let us assume that we have m linguistic rules i^^, g = 1, 2, . . . , m, of the 
form (12.1). As we have already explained in Sect. 11.4, the antecedent part 
of each linguistic rule is presented to the neural network. That is, the n-
dimensional linguistic vector Aq = (^^i, • • •, Aqn) is presented. The input-
output relation of each unit is defined by fuzzy arithmetic as in Sect. 11.4. 
The corresponding fuzzy output vector Oq = {Oqi, . . . , OqM) is numerically 
calculated by interval arithmetic on levels sets of Aq = (^gi, . . . , Aqn). The 
target vector tq — (t^i, . . . , tqM) is defined from the consequent class Cq of 
the linguistic rule Rq as 

{ 1, if Ca = Class k, 
' A: = 1,2, . . . ,M. (12.15) 

0, otherwise, 
In this manner, m input-output pairs (A^, t^), q = 1, 2, . . . , m, are gener
ated from the m linguistic rules i?g, q — 1,2,... ,m, of the form (12.1) as 
training data. 

12.2.2 Cost Function 

The /z-level set of the fuzzy output vector Oq = (Ogi, . . . , OqM) is calculated 
by interval arithmetic from the /i-level set of the linguistic input vector Aq = 
(Agi, . . . , Aqn) in the numerical calculation of Oq. We define a cost function 
Cqh for the /i-level set of Oq as 

^ M ^ M 

e,h = 2 J2(*,k - [0,k]f:r + 2 Y.(t,k - [0,,]'if, (12.16) 
k=l k=l 

where [Oqk]^ cind [O^^]^ are the lower and upper limits of the h-level set 
[Oqk]h of the fuzzy output Oqk from the k-th output unit, respectively. The 
first and second terms in (12.16) are the squared errors for the lower and 
upper limits of the h-level set [O f̂c]̂ , respectively. In Ishibuchi et al. [63], the 
following cost function was used: 

1 ^ 
^9^ ^ 2 ^ max{(t^fc - Oqk)'^ \ Oqk G [Oqk]h}' (12.17) 

k=l 
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Since the derivation of a learning algorithm is easier from (12.16) than from 
(12.17), we use the cost function in (12.16). 

The cost function for the input-output pair {Aq, tq) is defined as 

e, = ^ / i - e , , „ (12.18) 
h 

where h assumes a pre-specified set of real numbers in the unit interval [0, 1]. 
We use ten values of h in computer simulations in this chapter: /i=0.1, 0.2, 
. . . , 1.0. In (12.18), the cost function Cqh for the /i-level set is weighted by the 
value of h. We can also use the following cost function without this weighting 
scheme: 

e, = ^ e , ^ . (12.19) 
h 

In the computer simulation of Sect. 11.4, we used this cost function with 
eleven values of h: /^=0.0, 0.1, 0.2, . . . , 1.0. 

12.2.3 Extended Back-Propagation Algorithm 

The learning of the neural network is performed to minimize the cost function 
Cqh in (12.16). The amount of modification for each connection weight is 
written as follows: 

Awkjit) = -rj-h' — ^ + aAwkjit - 1), (12.20) 
OWkj 

Awji{t) = -r]'h' - r - ^ + aAwjiit - 1), (12.21) 
OWji 

where we assume the use of the weighting scheme by the value of h in (12.18). 
When we use (12.19) instead of (12.18), rj-h is replaced with rj. The biases 6k 
and 6j are updated in the same manner as the connection weights Wkj and 
Wji, respectively. 

For simplicity of notation, we denote the /i-level set [Aq]h of the linguis
tic input vector Aq by the interval input vector Xq = {Xqi, . . . , Xqn) as 
in (11.36)-(11.42) of Sect. 11.4. Let Oq = (O^i, . . . , OqM) be the interval 
output vector calculated by interval arithmetic from Xq. In this case, Cqh in 
(12.16) is rewritten as 

^ M ^ M 

e,H = 2 Yl(^,k - o^,f + - Y^it,, - o ,̂)2, (12.22) 
k=l k=l 

where the interval output Oqk from the ^-th output unit is calculated as 

Hk, o'^,] = [finet^,), /(net^fe)], (12.23) 

riH riH 

^ < f c = E ^kJ'Oqj+ ^ Wkj-o'^j+ek, (12.24) 
j = 1 j = i 

Wkj > 0 Wkj < 0 
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^ < f c = I ] ^ i ^ i - < i + £ Wkj'O^j+Ok. (12.25) 
i = 1 i = 1 

lUfcj > 0 Wkj < 0 

From (12.24) and (12.25), we can see that the calculation of Oqk depends on 
the sign of Wkj. As a result, the calculation of the partial derivative deqh/dwkj 
also depends on the sign of Wkj. When Wkj is non-negative (i.e., Wkj > 0), 
deqh/dwkj is calculated from (12.22)-(12.25) as 

= ~S^k-o^i-S^,-o^., (12.26) 

where 

•̂gyb = ( V - </fc) • <ft • (1 - <fc), (12.27) 

S^k = ( V - o,"!) • o^k • (1 - < J - (12.28) 

On the other hand, deqh/dwkj is calculated as follows when Wkj is negative 
(i .e . , Wkj < 0 ) : 

dwkj 
-S^k'0^,-S^,-o^^. (12.29) 

The calculation of the partial derivative deqh/dwji depends on the sign of 
Wji because the interval output Oqj from the j - th hidden unit is calculated 
as follows: 

[o^j, o«] = [ / ( « < ) ' / ( " < ) ] > (12.30) 

n n 

« < • = E ^ii-o^,i+ E ^3^-o"i+0i, (12.31) 

lOji > 0 Wji < 0 

n n 

^ < i = E ^ i ^ - < i + E ^ji-o^qi-^e^, (12.32) 
i = 1 i = 1 

i(;ji > 0 Wji < 0 

When Wji is non-negative (i.e., Wji > 0), dcqh/dwji is calculated from 
(12.22)-(12.25) and (12.30)-(12.32) as 

r. M M 

^'^ k = l k = l 
Wkj > 0 Wkj < 0 

(12.33) 

where 
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^ , " = S^k • mj • o^j • (1 - o^j), (12.34) 

<fc^ = S^k • wkj • o,̂ - • (1 - o,̂ ,.), (12.35) 

P'^k] = ,̂"1 • wui • ô ,- • (1 - o^,.), (12.36) 

P!ikj = S^k • y^kj • ô ,- • (1 - o,̂ ,.)- (12.37) 

On the other hand, dcqh/dwji is calculated as follows when Wji is negative 
(i.e., Wji < 0): 

M M 

k = l k = 1 
dwji 

Wkj > 0 Wkj < 0 

(12.38) 

When m input-output pairs (Ag, tg),g = l , 2 , . . . , m , are given as training 
data, the learning of the neural network is performed using ten levels (i.e., 
/i=0.1, 0.2, . . . , 1.0) as follows: 

Step 0: Randomly specify initial values of the connection weights and biases. 
Let t :^ 1. 

Step 1: Let h := 0.1. 
Step 2: Let q := 1. 
Step 3: Update the connection weights and biases using (12.20) and (12.21). 
Step 4: Let t:=t+l. 
Step 5: Let q := q -\- 1. If q < m then go to Step 3. 
Step 6: Let h := /i + 0.1. If h < 1.0 then go to Step 2, otherwise go to Step 

1. 

This algorithm is iterated until a pre-specified stopping condition is satisfied. 
As an example, let us assume that we have nine linguistic rules in Fig. 12.1 

where the consequent class of each linguistic rule is CI, C2, or C3 (i.e., Class 
1, Class 2, or Class 3). We trained a three-layer feedforward neural network 
with two input, five hidden, and three output units using the nine linguistic 
rules. The learning rate rj and the momentum constant a were specified as 
rj = 0.25 and a — 0.9. The above learning algorithm was terminated when 
it was iterated 1000 times (i.e., 1000 epochs). The trained neural network 
can be used to classify an arbitrary input vector x = (a:i, 0:2) in the pat
tern space [0, 1] X [0, 1]. The classification is performed by identifying the 
winner output unit with the maximum output value among the three out
put units. Figure 12.2 shows the classification boundary obtained from the 
trained neural network together with the 0.6-level sets of the linguistic input 
vector Aqi x Aq2 corresponding to each linguistic rule. From this figure, we 
can see that an intuitively acceptable result was obtained by the learning of 
the neural network from the nine linguistic rules. 
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- tjri 
0.0 Xj 

S X M S X M X M L X L 

1.0 Fig. 12.1. Nine linguistic rules for a pat
tern classification problem 

I Class 1 Class 3 

Fig. 12.2. Classification boundary and 
nine linguistic rules 

12.2.4 Learning from Linguistic Rules and Numerical Data 

The learning algorithm of neural networks from linguistic rules can be used 
in the case where both linguistic rules and numerical data are available. 
Let us assume that a linguistic rule R^ of the form (12.1) is given. As 
we have already explained, this linguistic rule is handled as a linguistic 
pattern Aq — (^gi, . . . , Aq^)- We also assume that a numerical pattern 
Xy — (a^pi, . . . , â pn) from Class Cp is given. These two patterns can be 
treated in the same framework because both real numbers and linguistic 
terms are special cases of fuzzy numbers. That handled as a fuzzy 
pattern A^ — (Api, . . . , A^^) where each element A^^i is viewed as a fuzzy 
number with the following membership function: 

l^A^X^) ^ 
J. 5 n X — **-"pi 5 

0, otherwise. 
(12.39) 
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From this membership function, the /i-level set of Api is calculated as 

[Api]h = [xpu Xpi] for 0 < /i < 1. (12.40) 

Using (12.39) and (12.40), linguistic rules and numerical data can be simul
taneously used as fuzzy training data in the learning algorithm for linguistic 
rules. 

As an example, let us assume that numerical data in Fig. 12.3 are given. 
Using 30 numerical patterns in this figure, we trained a three-layer feedfor
ward neural network with two input, five hidden, and three output units 
by the standard back-propagation algorithm with the learning rate 0.25 and 
the momentum constant 0.9. The classification boundary in Fig. 12.3 was 
obtained from the trained neural network after 1000 epochs. 

o Class 2 A Class 3 

^2 0.5 

Fig. 12.3. Classification boundary ob
tained from the learning of the neural net
work using only the 30 numerical patterns 
in this figure 

We also assume that the following linguistic rules are given in addition to 
the 30 numerical patterns in Fig. 12.3: 

If xi is medium and X2 is m^edium then Class 1, 

If X2 is large then Class 2. 

(12.41) 

(12.42) 

These two linguistic rules are shown in Fig. 12.4. The first linguistic rule is 
handled as a linguistic pattern {medium, medium). Since the first antecedent 
condition of the second linguistic rule is don't care, this linguistic rule is 
handled as a linguistic pattern {don't care, large). This pattern is the same 
as ([0, 1], large) because the domain interval of the first input variable xi 
is [0, 1]. We used the two linguistic patterns together with the 30 numerical 
patterns in the learning of the same neural network as in Fig. 12.3. The 
learning of the neural network was performed using the learning algorithm 
for linguistic rules. Figure 12.5 shows the classification boundary obtained 
from the trained neural network after 1000 epochs. From this figure, we can 
see that the classification boundary follows the two linguistic rules as well 
as the 30 numerical patterns. The difference between Fig. 12.3 and Fig. 12.5 
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corresponds to the effect of the two linguistic rules on the learning of the 
neural network. 

Fig. 12.4. Two linguistic rules 

• Class 1 o Class 2 A Class 3 
l.Or 

^2 0.5 k 

Fig. 12.5. Classification boundary ob
tained from the learning of the neural net
work using both the 30 numerical patterns 
and the two linguistic rules 

Further we assume that the following linguistic rule is given in addition to 
the two linguistic rules in Fig. 12.4 and the 30 numerical patterns in Fig. 12.3: 

If xi is large then Class 3. (12.43) 

This linguistic rule is partially inconsistent with the linguistic rule "If X2 is 
large then Class 2" in (12.42). In the same manner as in the previous computer 
simulation in Fig. 12.5, we trained the same neural network using the three 
linguistic rules and the 30 numerical patterns. The obtained classification 
boundary after 1000 epochs is shown in Fig. 12.6. From this figure, we can 
see that the partial inconsistency was resolved by finding a good compromise 
among the linguistic rules with different consequent classes. 
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• Class 1 o Class 2 A Class 3 
l.Or 

•̂ 2 0.5 

X i 

Fig. 12.6. Classification boundary ob
tained from the learning of the neural net
work using both the 30 numerical patterns 
and the three linguistic rules 

In our learning algorithm for linguistic rules, we can assign a different 
grade of importance (i.e., weight or strength) to each linguistic rule. Let ujq 
be the importance of the linguistic rule Rq. In this case, the update rules in 
(12.20) and (12.21) are modified as 

AWkj (t) = -(jJq -7] ' h 
de qh 

dWkj 

dCqh 

^a- Awkj{t-l) 

Awji{t) = —ujq • rj • h • -^—h a • Awji{t — 1) 

(12.44) 

(12.45) 

We specified the importance of the last linguistic rule "If a:i is large then 
Class 3" in (12.43) as 2. The importance of the other linguistic rules and the 
30 numerical patterns was specified as 0.5. Using the modified update rules in 
(12.44)-(12.45), we trained the same neural network in the same manner as 
in the previous computer simulation in Fig. 12.6. The obtained classification 
boundary is shown in Fig. 12.7. From the comparison between Fig. 12.6 and 
Fig. 12.7, we can see that the difference in the importance of each linguistic 
rule had an effect on the classification boundary. More specifically, a larger 
area around the top-right corner was classified as Class 3 in Fig. 12.7 than 
Fig. 12.6. 

As shown in the above computer simulations, the learning algorithm of 
multi-layer feedforward neural networks in this section can be applied to 
general situations where both linguistic rules and numerical data are avail
able. Moreover, the learning algorithm can handle a different grade of im
portance attached to each piece of available information. The ability of the 
learning algorithm to simultaneously handle linguistic rules and numerical 
data is essential when we cannot construct classification systems with high 
classification performance by utilizing only one of the two kinds of available 
information. Better results are usually obtained by simultaneously utilizing 
linguistic rules and numerical data than utilizing only one of the two kinds 
of available information [80]. 
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• Class 1 o Class 2 A Class 3 

•^2 0.5h-

Fig. 12.7. Classification boundary ob
tained from the learning of the neural net
work using both the 30 numerical pat
terns and the three linguistic rules. A much 
higher grade of importance was assigned to 
the third linguistic rule "If â i is large then 
Class 3" than the other linguistic rules 

12.3 Learning from Linguistic Rules for Modeling 
Problems 

In this section, we discuss the learning of s tandard multi-layer feedforward 
neural networks from linguistic rules of the form (12.2) for modeling problems. 
A learning algorithm for this task was derived in Ishibuchi et al. [87]. In 
this section, we explain their learning algorithm for a three-layer feedforward 
neural network with n input units and a single output unit. 

12 .3 .1 Linguis t ic D a t a 

Let us assume tha t we have m linguistic rules Rq^q — 1, 2, . . . , m, of the form 
(12.2). From the m linguistic rules, we have m linguistic inpu t -ou tpu t pairs 
( A „ Bq), g = 1, 2, where Aq = {A qli Aqn)' These linguistic 
inpu t -ou tpu t pairs are used as training data . When the n-dimensional lin
guistic vector Aq = {Aqi, . . . , Aqn) is presented to the neural network, the 
corresponding fuzzy output Oq is numerically calculated by interval arith
metic on level sets of the linguistic input Aq = {Aqi, . . . , Aqn) as in the 
previous section. 

12 .3 .2 Cos t Func t ion 

The aim of learning is to minimize the difference between the actual fuzzy 
output Oq and the linguistic target Bq. As in the previous section, a cost 
function to be minimized is defined using the /i-level sets of Oq and Bq as 

= Y^h'Cqh, (12.46) 

where 
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e,H = \{[B,f, - [0,]j:f + i ( [B , ]^ - [O.f.f. (12.47) 

In the computer simulation of Chap. 11, we did not use the weighting scheme 
by the level h in (12.46). In this section, we use the cost function in (12.46) 
with the weighting scheme. 

12.3.3 Extended Back-Propagation Algorithm 

In the same manner as in the previous section, we can derive a learning 
algorithm from the cost function Cqh in (12.47). That is, we can use the 
update rules in (12.20)-( 12.21). Since we have only a single output unit, 
these update rules are rewritten as 

deqh 
dwj 

Awj{t) = -Tj'h' - ^ + a • Awj{t - 1), (12.48) 

Awji(t) = -r]'h' ^ + a . Awjiit - 1), (12.49) 

where Wj is the connection weight from the j - th hidden unit to the single 
output unit. 

As in the previous section, let us denote the h-level set [Aq]h of the 
linguistic input vector Aq by the interval input vector Xq = (X^i, . . . , Xqn) 
for simplicity of notation. The corresponding interval output Oq = [o^, o^] 
is calculated by interval arithmetic from Xq as shown in (11.36)-(11.42) of 
Chap. 11. We also denote the h-level set [Bq]h of the linguistic target Bq by 
the interval Tq = [f̂ , t^]. This interval is the target for the interval output 
Oq. In this case, Cqh is rewritten as 

e<,k = lit^-o^f + l{t^-o^f. (12.50) 

In the same manner as in the previous section, the partial derivative 
dcqh/dwj is calculated from (12.50) as 

(12.51) 

where 

6^, = (i^ - o^) • o ^ (1 - o^), (12-52) 

'5.'' = ( * ^ - < ) - < - ( l - < ) - (12-53) 
The partial derivative deqh/dwji is calculated as follows: 

o^i - P]^^ if Wj > 0 and Wji > 0, 

• 13^ - o^i • P^f' if Wj > 0 and Wji < 0, degh _ ^ 

dwji 

-0% 

-0% 

\-o\. 

.RVV 

.RLU 

Pi"- - 0% • P\f if Wj < 0 and w,, > 0, 

o^. • p^/- if Wj < 0 and Wji < 0, 

(12.54) 
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where 

(12.55) 

(12.56) 

(12.57) 

(12.58) 

As an example, let us assume that we have five linguistic rules in Fig. 12.8. 
These linguistic rules are handled as the following linguistic input-output 
pairs: {{small, small), small), {{small, large), medium), {{medium, medium), 
small), {{large, small), medium), {{large, large), large). We trained a three-
layer feedforward neural network with two input, five hidden, and single out
put units using the five linguistic input-output pairs. In the learning of the 
neural network, we used the update rules in (12.48)-(12.49) for ten levels (i.e., 
h=0.1, 0.2, . . . , 1.0) as in the computer simulations in the previous section 
for pattern classification problems. Figure 12.9 shows the nonlinear function 
obtained by the trained neural network after 1000 epochs. From the com
parison between Fig. 12.8 and Fig. 12.9, we can see that the fitting of the 
obtained nonlinear function to the given linguistic rules is very good. 

Fig. 12.8. Five linguistic rules for a mod
eling problem 

12.3.4 Learning from Linguistic Rules and Numerical Data 

As we have already explained in the previous section, linguistic rules and 
numerical data can be simultaneously handled in the learning of multi-layer 
feedforward neural networks because real numbers as well as linguistic terms 
are special cases of fuzzy numbers. As an example, let us assume that we 
have two numerical input-output pairs {{{xpi, Xp2),yp)} = {((0.8, 1.0), 0.7), 
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; ; 0.5 

Fig. 12.9. The nonlinear function 
depicted by the trained neural net
work. The learning of the neural net
work was performed using the five 
linguistic rules in Fig. 12.8 

((1.0, 0.8), 0.7)}. We trained the same neural network as in Fig. 12.9 us
ing these two numerical inpu t -ou tpu t pairs together with the five linguistic 
rules in Fig. 12.8. Figure 12.10 shows the nonlinear function obtained by the 
trained neural network after 1000 epochs. The difference between Fig. 12.9 
and Fig. 12.10 corresponds to the eflFect of the two numerical inpu t -ou tpu t 
pairs on the learning of the neural network. In Fig. 12.10, we obtained good 
fitting to the two numerical inpu t -ou tpu t pairs as well as the five linguistic 
rules. 

y 0.5 

Fig. 12.10. The nonlinear function 
depicted by the trained neural net
work. The learning of the neural 
network was performed by simulta
neously utilizing the five linguistic 
rules in Fig. 12.8 and the two nu
merical input-output pairs 

As in the previous section, the learning algorithm for linguistic rules in this 
section can handle linguistic rules and numerical da ta with different grades 
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of importance. As an example, let us assume that we have six linguistic rules 
in Fig. 12.11 including the following two linguistic rules of length 1: 

If xi is large then y is small, 

If X2 is large then y is large. 

(12.59) 

(12.60) 

These two linguistic rules are inconsistent with each other around the top-
right corner of the two-dimensional input space [0, 1] x [0, 1] where both xi 
and X2 are large. In addition to the six linguistic rules, we also assume that 
a single input-output pair ((1.0, 1.0), 0.7) is given. 

Fig. 12.11. Six linguistic rules for a 
modeling problem 

We trained a neural network in the situation where the linguistic rule 
"If xi is large then y is smalV^ in (12.59) is much more important than the 
other linguistic rules and the numerical input-output pair. The grade of im
portance of this linguistic rule was specified as 2. The importance grade 0.1 
was assigned to the other linguistic rules and the numerical input-output 
pair. A neural network with two input, five hidden, and single output units 
was trained using the six linguistic values and the single input-output pair 
with different grades of importance in the same manner as in the previous 
computer simulations. The obtained nonlinear function after 1000 epochs is 
shown in Fig. 12.12. In this figure, the output value around the top-right cor
ner is small. This is because the linguistic rule in (12.59) has a higher grade 
of importance than the other pieces of available information in the learning 
of the neural network. We also performed the same computer simulation in 
a different situation where the numerical input-output pair ((1.0, 1.0), 0.7) 
is much more important than the other pieces of available information. The 
grade of importance of the numerical input-output pair was specified as 2. 
The importance grade 0.1 was assigned to all the linguistic rules. The ob
tained nonlinear function after 1000 epochs is shown in Fig. 12.13. In this 
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figure, the output value around the top-right corner is about 0.7. This is be
cause the numerical inpu t -ou tpu t pair had a higher grade of importance than 
the linguistic rules in the learning of the neural network. From the simulation 
results in Fig. 12.12 and 12.13, we can see tha t the learning algorithm for 
linguistic rules can take into account the importance of each piece of available 
information. 

y 0.5 \ 

Fig. 12.12. The nonlinear function 
depicted by the trained neural net
work. A much higher grade of impor
tance was assigned to the linguistic 
rule "If â i is large then y is smalV 

y 0.5 r 

Fig. 12.13. The nonlinear function 
depicted by the trained neural net
work. A much higher grade of impor
tance was assigned to the numerical 
input-output pair ((1.0, 1.0), 0.7) 



13. Linguistic Rule Extraction from Neural 
Networks 

We have already explained the learning of standard feedforward neural net
works from linguistic rules. In this chapter, we describe a fuzzy arithmetic-
based approach to linguistic rule extraction from trained neural networks [72]. 
The main characteristic feature of this approach is its applicability to arbi
trarily trained feedforward neural networks. Usually simplification methods 
of neural networks such as optimal brain damage [27] and structure learning 
with forgetting [97] are involved in rule extraction methods. That is, rule 
extraction methods usually simplify the structure of neural networks. On the 
contrary, the fuzzy arithmetic-based approach tries to extract linguistic rules 
without modifying the structure of given neural networks. 

Many approaches have been proposed for the extraction of logical rules 
from neural networks [46, 149, 167]. Andrews et al. [7] and Duch et al. 
[38] include good surveys in this research field. Since the work of Hayashi 
[51], fuzzy rule extraction methods from neural networks have also been pro
posed [98, 104, 105, 169]. Many fuzzy rule extraction methods are based on 
neuro-fuzzy models, which are fuzzy rule-based systems with neural network 
structures. In this chapter, we use standard feedforward neural networks for 
linguistic rule extraction. First we explain how linguistic rules of the fol
lowing form can be extracted from arbitrarily trained neural networks for 
n-dimensional modeling problems: 

Rule Rqi If xi is Aqi and . . . and Xn is Aqn then y is Bq. (13.1) 

In the fuzzy arithmetic-based approach, the antecedent part of each linguistic 
rule is presented to the trained neural network as a linguistic input vector 
Aq = {Aqi^ . . . , Aqn) to calculatc the corresponding fuzzy output value Oq 
by fuzzy arithmetic. The consequent part Bq is specified based on the fuzzy 
output value Oq corresponding to the linguistic input vector Aq. Next we 
explain how linguistic rules of the following form can be extracted for M-
class pattern classification problems with n attributes: 

Rule Rqi If xi is Aqi and . . . and Xn is Aqn 

then Class Cq with CFq. (13.2) 

The consequent class Cq and the rule weight (i.e., certainty grade) CFq are 
specified based on the fuzzy output vector Oq — {Oqi, . . . , OqAi) calculated 
for the linguistic input vector Aq by fuzzy arithmetic. 



252 13. Linguistic Rule Extraction from Neural Networks 

13.1 Neural Networks and Linguistic Rules 

In Fig. 13.1, we show relations among numerical data, neural networks, lin
guistic rules, and human experts. We briefly explain each relation among 
them (i.e., each arrow in this figure). 

Human Experts —)• Linguistic Rules: In early studies on fuzzy control, 
fuzzy rules were usually obtained from human experts as linguistic knowledge. 
The ability to utilize linguistic knowledge is an advantage of fuzzy rule-based 
systems over other information processing systems. 

Human Experts —>• Neural Networks: The learning of neural networks in
volves many parameter specifications such as the number of hidden layers, the 
number of units in each hidden layer, the learning rate, the momentum con
stant, and the stopping condition. These parameters are specified by human 
experts (or users). 

Numerical Data -^ Linguistic Rules: Recently many approaches have been 
proposed for automatically extracting and adjusting linguistic rules from nu
merical data. The arrow from numerical data to linguistic rules is the main 
line of recent studies on fuzzy rule-based systems. 

Numerical Data -^ Neural Networks: The main advantage of neural net
works over other information processing systems is their high ability to han
dle numerical data. Almost all learning algorithms of neural networks are for 
handling numerical data. The arrow from numerical data to linguistic rules 
has been the main line of studies on neural networks. 

Linguistic Rules -> Neural Networks: This arrow corresponds to the learn
ing of neural networks from linguistic rules, which has been explained in 
Chap. 12. Only a few approaches have been proposed in this direction. As 
shown in Chap. 12, numerical data and linguistic rules can be simultaneously 
used in the learning of neural networks. 

Neural Networks -> Linguistic Rules: This arrow corresponds to the lin
guistic rule extraction from neural networks, which is described in this chap
ter. As shown in Fig. 13.1, linguistic rules can be obtained from three differ
ent kinds of sources: human experts, numerical data, and neural networks. 
All the obtained linguistic rules can be used in a single linguistic rule-based 
system. It is also possible to apply a rule selection method to the obtained 
linguistic rules to design a smaller linguistic rule-based system with a higher 
performance. 

13.2 Linguistic Rule Extract ion for Modeling Problems 

In this section, we explain the fuzzy arithmetic-based approach to linguis
tic rule extraction for modeling problems. Linguistic rules of the form in 
(13.1) are extracted from arbitrarily trained multi-layer feedforward neural 
networks. We assume that a three-layer feedforward neural network with n 
input units and a single output unit is given. Our task is to extract linguistic 
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Fig. 13.1. Relations among 
numerical data, neural net
works, linguistic rules, and 
human experts 

rules from the given neural network. As in the other chapters of this book, 
we assume that a set of linguistic terms is given for each of the n input and 
single output variables. We also assume that the input space and the out
put space are the n-dimensional unit hypercube [0, 1]"̂  and the unit interval 
[0, 1], respectively. 

13.2.1 Basic Idea 

The antecedent part of each linguistic rule is constructed by combining given 
linguistic terms. For simplicity of explanation, let us assume that K linguistic 
terms are given for each input variable. In this case, there are K^ combina
tions of antecedent linguistic terms. That is, there are K^ cells in a simple 
grid-type linguistic rule table. When we use don^t care for each input vari
able in addition to the K linguistic terms, the total number of combinations 
of antecedent linguistic terms is (K -\- 1)^. Each combination of antecedent 
linguistic terms corresponds to the antecedent part of a single linguistic rule. 

The antecedent part of each linguistic rule is presented to the given neural 
network as a linguistic input vector Aq — {Aq\, . . . , ^^n)- The corresponding 
fuzzy output Oq from the neural network is calculated by fuzzy arithmetic as 
shown in Chap. 11. The consequent part Bq is specified by choosing a single 
consequent linguistic term from the given ones. This selection is based on the 
difference between the actual fuzzy output Oq and each candidate linguistic 
term. 

13.2.2 Extraction of Linguistic Rules 

Let Oq be the fuzzy output from the neural network when the linguistic vector 
Aq — (Agi, . . . , Aqry) is prcscntcd. Our task is to specify the consequent 
part Bq of the linguistic rule Rq with the antecedent part Aq using the 
fuzzy output Oq. Let us assume that we have K linguistic terms i^i, D25 
. . . , DK to describe the output variable. As in Chap. 12, let us define the 
difference between Dj and Oq using their /i-level sets [-Dj]̂  = [[i^ 
and[0,] ; , = [ [ 0 , ] ^ [ 0 , j , j for pre-specified values of h as 
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d{Dj^ O,) = ^ / i . d{[Dj]n, [0,]H), (13.3) 
h 

where 

di[Dj]H, [0,]H) = \i[Dj]i - [0,]if + li[D,]^ - [0,]Yr. (13.4) 

In computer simulations in this section, we use ten values of /i in (13.3) as in 
the previous chapter: h = 0.1, 0.2, . . . , 1.0. 

The consequent part Bq of the linguistic rule Rq with the antecedent part 
Aq is specified as 

d{Bq, Oq) = mm{d{Dj, O,) | j = 1, 2, . . . , K}. (13.5) 

That is, the consequent part Bq is the linguistic term with the minimum dif
ference from the actual fuzzy output Oq. For each combination of antecedent 
linguistic terms (i.e., for each linguistic vector Aq), the corresponding conse
quent part Bq is specified by (13.5). 

13.2.3 Computer Simulations 

We illustrate the fuzzy arithmetic-based approach to linguistic rule extraction 
from trained neural networks for modeling problems using some computer 
simulations. First we consider the neural network that was trained from the 
five linguistic rules in Fig. 12.8 in Chap. 12. The nonlinear function realized 
by the trained neural network was shown in Fig. 12.9. As in Fig. 12.8, we 
assume that the five linguistic terms are given for each of the two input 
variables. We also assume that the same five linguistic terms are given for 
the output variable. 

When we do not use don^t care, the number of combinations of antecedent 
linguistic terms is 25. Each combination is presented to the trained neural 
network as a linguistic input vector Aq = {Aqi, Aq2). The corresponding 
fuzzy output Oq is calculated by fuzzy arithmetic. This calculation is numer
ically performed for the /i-level sets of Aq for h = 0.1, 0.2, . . . , 1.0. The fuzzy 
output Oq is compared with each of the five linguistic terms using (13.3). 
The linguistic term with the minimum difference from the fuzzy output Oq is 
chosen as the consequent part Bq of the linguistic rule Rq with the antecedent 
part Aq. For example, let us consider the following linguistic rule: 

Rule Rq'. If xi is medium and X2 is sm^all then ^ is Bq. (13.6) 

To determine the consequent part Bq, the antecedent part of the linguistic 
rule Rq is presented to the trained neural network as the linguistic input 
vector {medium, smalt). The corresponding fuzzy output Oq is calculated as 
shown in Fig. 13.2. For illustration purposes, the fuzzy output Oq is depicted 
using the /i-level sets of Aq for 100 values of h (i.e., h = 0.01, 0.02, . . . , 1.00). 
We do not have to perform interval arithmetic on the /i-level sets for such a 
large number of different values of h for rule extraction purposes. We use only 
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ten levels (i.e., h = 0.1, 0.2, . . . , 1.0) in (13.3) to determine the consequent 
part Bq. The difference between the fuzzy output Oq and each of the five 
linguistic terms is calculated as follows: 

d{small, Oq) = 0.0299, (13.7) 

d{medium small, Oq) = 0.5738, (13.8) 

d{medium, Oq) = 1.0544, (13.9) 

d{medium large, Oq) = 4.5037, (13.10) 

d{large, Oq) = 6.7851. (13.11) 

Since small has the minimum difference among the five linguistic terms, the 
consequent part Bq of the linguistic rule î ^ in (13.6) with the antecedent part 
{medium, small) is specified as small. Thus we have the following linguistic 
rule: 

Rule Rqi If xi is medium and X2 is sm^all then y is sm^alL 

(13.12) 

From Fig. 12.9 in Chap. 12, we can see that the extracted linguistic rule 
correctly describes the trained neural network (i.e., the nonlinear function in 
Fig. 12.9). 

Fig. 13.2. Fuzzy output from the trained 
neural network for the linguistic input vec
tor {medium, small) 

In the same manner, we determined the consequent linguistic term for 
each of the 25 combinations of the antecedent linguistic terms. The extracted 
25 linguistic rules are summarized in Fig. 13.3. From the comparison between 
Fig. 12.9 in Chap. 12 and Fig. 13.3, we can see that the extracted 25 linguistic 
rules describe the trained neural network very well (i.e., they are consistent 
with the nonlinear function in Fig. 12.9). We can also see from the comparison 
between Fig. 12.8 in Chap. 12 and Fig. 13.3 that the incomplete linguistic 
rule-based system in Fig. 12.8 was completed by the linguistic rule extraction 
method. 

Next we applied the linguistic rule extraction method to the trained neural 
network in Fig. 12.10 of Chap. 12. The trained neural network is similar to 
that in the above computer simulation because both neural networks were 
trained using the same five linguistic rules in Fig. 12.8 of Chap. 12. While 
only the five linguistic rules were used in the learning of the neural network in 
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the above computer simulation, the two numerical inpu t -ou tpu t pairs ((0.8, 
1.0), 0.7) and ((1.0, 0.8), 0.7) were also used in the learning of the neural 
network in this computer simulation. The extracted linguistic rules from the 
trained neural network in Fig. 12.10 are summarized in Fig. 13.4. From the 
comparison between Fig. 13.3 and Fig. 13.4, we can see tha t some linguistic 
rules are different between these two figures. This means tha t the output 
values from the two neural networks are different in such an input region. 
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Fig. 13.4. Extracted linguistic rules 
from the trained neural network in 
Fig. 12.10 

The linguistic rule extraction method can be used to extract linguistic 
rules with don^t care conditions. For example, let us consider the extraction 
of the following linguistic rule from the trained neural network in Fig. 12.9 
of Chap. 12: 

Rule Rq-. If x\ is small then y is Bq^ (13.13) 
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where the antecedent condition on the second input variable X2 is don^t care. 
Since the domain interval of X2 is the unit interval [0, 1], don^t care is rep
resented by [0, 1]. Thus the linguistic vector {small, [0, 1]) is presented to 
the trained neural network in Fig. 12.9 of Chap. 12. Figure 13.5 shows the 
corresponding fuzzy output Oq calculated by interval arithmetic on the 100 
h-level sets of Aq for h = 0.01, 0.02, . . . , 1.00. The consequent part Bq is 
specified as medium small by calculating the difference between the fuzzy 
output Oq and each linguistic term. The difference between Oq and medium, 
small, however, is not small: 

d{medium small, Oq) = 0.2242. (13.14) 

This is much larger than the minimum difference 0.0299 in the case of the 
antecedent part {medium, small) in (13.7). This is because the fuzzy output 
in Fig. 13.5 is not similar to any linguistic term. 

Fig. 13.5. Fuzzy output from the trained 
neural network for the linguistic input vec
tor {small, don^t care) 

To determine the consequent part Bq of the linguistic rule Rq in (13.13), 
we also examine a union of multiple adjacent linguistic terms (e.g., small or 
medium small) as a candidate consequent part Dj in (13.3). The minimum 
difference from the fuzzy output Oq is obtained by ^^small or medium small or 
medium^^ among all the possible combinations of multiple adjacent linguistic 
terms as 

d{small or medium small or medium, Oq) — 0.0953. (13.15) 

Thus we can extract the following linguistic rule from the trained neural 
network: 

Rule Rq\ If xi is small then 

y is small or medium small or medium. (13.16) 

In the calculation of the difference from the fuzzy output Oq, a union of 
multiple linguistic terms is handled as a trapezoidal fuzzy set as shown in 
Fig. 13.6. 

Unions of multiple adjacent linguistic terms can be used not only in the 
consequent part but also in the antecedent part of each linguistic rule. For 
example, let us consider the following linguistic rule: 
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Fig. 13.6. Trapezoidal fuzzy set corre
sponds to ^^small or medium small or 
medium^^ 

Rule Rq-. If xi is small or medium small and 

X2 is sm,all or medium,sm,all then y is 5^. (13.17) 

In this case, the linguistic vector {small or medium, small^ small or medium 
small) is presented to the trained neural network. The fuzzy output Oq from 
the trained neural network is calculated as shown in Fig. 13.7. The consequent 
part Bq is specified from the fuzzy output Oq as 

Rule Rq'. If xi is sm,all or medium, sm,all and 

X2 is sm,all or m,edium, sm,all then y is sm,alL (13.18) 

Fig. 13.7. Fuzzy output from the trained 
neural network for the linguistic input 
vector (small or medium small, small or 
medium small) 

13.3 Linguistic Rule Extract ion for Classification 
Problems 

In this section, we explain the fuzzy arithmetic-based approach to linguistic 
rule extraction for pattern classification problems. Linguistic rules of the form 
in (13.2) are extracted from arbitrarily trained multi-layer feedforward neural 
networks. We assume that a three-layer feedforward neural network with n 
input units and M output units is given where M is the number of classes. 
Our task is to extract linguistic rules from the given neural network. As in 
the previous section, we assume that a set of linguistic terms is given for 
each of the n input variables. We also assume that the input space is the 
n-dimensional unit hypercube [0, 1]". 
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13.3.1 Basic Idea 

As in the case of modeling problems in the previous section, the antecedent 
part of each linguistic rule is presented to the given neural network as a 
linguistic input vector Aq = {Aqi, . . . , Aqn)- The corresponding fuzzy output 
vector Oq = (Ogi, . . . , OqM) from the neural network is calculated by fuzzy 
arithmetic. The consequent class Cq and the rule weight (i.e., certainty grade) 
CFq are determined using the fuzzy output vector Oq. 

When a numerical input vector Xp = {xpi, . . . , Xpn) is presented to the 
trained neural network, the corresponding numerical output vector Op = 
{opi, . . . , OpM) is calculated. Then the input vector Xp is classified by finding 
the maximum output value in the output vector Op. That is, we usually use 
the following decision rule based on the single winner output unit: 

If ^k {k ^ z),Opk < Opz, then Xp is Class z. (13.19) 

The determination of the consequent class Cq is based on the same idea. 
That is, the consequent class Cq is determined by finding the maximum 
fuzzy output in the fuzzy output vector Oq — {Oqi, -•., Oqu)- The rule 
weight CFq is calculated from the overlap between the largest fuzzy output 
and the second largest fuzzy output. 

13.3.2 Extraction of Linguistic Rules 

By directly extending the decision rule in (13.19) to the case of the linguistic 
input vector Aq, we have the following decision rule: 

If "^k {k^z), Oqk < Oqz, then Aq is Class z. (13.20) 

To apply this decision rule to the linguistic input vector Aq, we have to define 
the inequality relation Oqk < Oqz between fuzzy numbers. For this purpose, 
we use the necessity grade of the inequality between fuzzy numbers that was 
introduced by Dubois & Prade [33] for ranking fuzzy numbers. The necessity 
grade of the inequality Oqk < Oqz is written as follows: 

Ness(0^fc <Oqz) = 1- Foss{Oqk > Oqz) 

= 1 - sup{/io,fc(x) A fio,,{y)\x>y, X e^,y e 5R}, 
(13.21) 

where Ness{Oqk < Oqz) is the necessity grade of Oqk < Oqz, and Foss{Oqk > 
Oqz) is the possibility grade of Oqk > Oqz- This definition of the necessity 
grade is illustrated in Fig. 13.8. Some examples are shown in Fig. 13.9 to 
illustrate the definition of the necessity grade. 

Using the necessity grade of Oqk < Oqz, let us define the necessity grade 
that the linguistic input vector Aq belongs to Class z as follows: 

Ness(A^ e Class z) = min{Ness(Ogfc < Oqz) \ 

A; = l, 2, . . . , M, A : / ^ } . (13.22) 
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Fig. 13.9, Illustration of the definition of the necessity grade for some different 
situations 

This definition is illustrated in Fig. 13.10 where only Class 3 has a positive 
necessity grade (the necessity grades of the other classes are zero). 

From the relation between possibility and necessity [33, 36], the following 
relation holds for the necessity grade of the inequality relation between fuzzy 
numbers: 

Ness(0,fc < Og^) • Ness(Og^ < Oqh) = 0. (13.23) 

Tha t is, both Oq^ < Oqz and Oqz < Oqk cannot simultaneously have positive 
necessity grades (see Fig. 13.9). Now let us assume tha t Class z has a positive 
necessity grade for the linguistic input vector Aq (i.e., Ness(Ag G Class z) > 
0). From the definition in (13.22), we have 
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Ness(A^ G Class 3) 

Fig. 13.10. The necessity grade that 
the linguistic input belongs to Class 3 

Ness(Ag G Class 2;) > 0 <̂ =̂  Ness(Oqk < Oqz) > 0 

for k=: 1,2, ..., M.k^z. (13.24) 

From (13.23) and (13.24), we can see that the following relation holds: 

Ness(0^^ < Oqk) =0 for k= 1,2, ..,, M,k^z, (13.25) 

Thus from (13.22) we have 

Ness(Ag G Class A:) = 0 for A: = 1, 2, . . . , M, A; / 2;. (13.26) 

This means that only a single class has a positive necessity grade for the 
linguistic input vector Aq. When the necessity grade Ness(Ag G Class z) is 
positive for Class z, we generate a linguistic rule with Aq in the antecedent 
part and Class z in the consequent part. We also use the necessity grade 
Ness(Ag G Class z) as the rule weight CFq. Thus we generate the following 
linguistic rule when Ness(A^ G Class z) > 0: 

If xi is Aqi and . . . and Xn is Aqn 

then Class z with CFq = Ness(A^ G Class z). (13.27) 

There are many cases where no class has a positive necessity grade (see 
Fig. 13.11). In these cases, we do not generate any linguistic rules with the an
tecedent part Aq because we cannot specify the consequent class Cq uniquely. 

Fig. 13.11. An example of a fuzzy out
put vector from which the consequent class 
cannot be uniquely specified 

In this subsection, we have already described the fuzzy arithmetic-based 
approach to linguistic rule extraction for classification problems using the 
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concept of possibility and necessity. This rule extraction method can also be 
described using the /i-level set [Aq]h of the linguistic input vector Aq. When 
the /i-level set [Aq]h is presented to the trained neural network, the h-level 
set [Oq]h of the fuzzy output vector O^ is calculated by interval arithmetic. 
The decision rule in (13.19) for the real input vector Xp is extended to the 
case of the h-level set [Aq]h of the linguistic input vector Aq as 

If ^k {k / z), [Oqk]h < [Oqz]h, then [Aq]h is Class z. (13.28) 

We define the inequality relation [Oqk]h < [Oqz]h between the /i-level sets 
[Oqk]h and [Oqz]h as 

[Oqk]h < [Oqz]h ^ ^ [Oqk]^ < [Oqz]t (13.29) 

where [-J^ and [-J^ are the lower and upper limits of the h-level set. This 
inequality relation is illustrated in Fig. 13.12. 

(a) [Oqk]h < [Oqz]h holds (b) [Oqk]h < [Oqz]h does not hold 

Fig. 13.12. Illustration of the inequality relation between the h-level sets [Oqk]h 
and [Oqz]h 

When the decision rule (13.28) for the h-level set [Aq]h of the linguistic 
input vector Aq holds for Class z^ we generate the following interval rule: 

If xi is [^gi]^ and . . . and Xn is [^gn]/i then Class z. (13.30) 

As shown in Fig. 13.13, there is the lower limit h* of h for which the 
decision rule (13.28) holds. That is, /i* is defined as 

h* = ini{h \^k{k^ z), [Oqk]h < [Oqz]h\0 < /i < 1}. (13.31) 

When the set of h in the righthand side of (13.31) is empty (i.e., there is no h 
that satisfies the decision rule in (13.28)), we cannot define /i*. In this case, 
we do not extract the linguistic rule with the antecedent part Aq because 
the consequent class Cq cannot be uniquely specified (see Fig. 13.11). When 
the value of /i* can be defined by (13.31), the rule weight CFq is specified as 
follows: 

CFq = 1 / l* (13.32) 
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The consequent class Cq is Class z that satisfies the decision rule (13.28). In 
this manner, we extract the following linguistic rule from the trained neural 
network. 

If xi is Aqi and . . . and Xn is Aqn then Class z with CFq — 1 — h*. 

(13.33) 

As we can see from Fig. 13.10 and Fig. 13.13, the rule weight CFq defined 
by the necessity grade Ness(Ag G Class z) is the same as 1 — /i* calculated 
from the /i-level set of the linguistic input vector Aq. 

1.0 Fig. 13.13. Definition of /i* 

13.3.3 Computer Simulations 

Using the trained neural network in Fig. 12.2 of Chap. 12, we illustrate the 
fuzzy arithmetic-based approach to linguistic rule extraction for classification 
problems. In Chap. 12, the neural network was trained from the nine linguistic 
rules in Fig. 12.1. We assume that the five linguistic terms are given for each 
of the two input variables as in Fig. 12.1 and Fig. 12.2. We examine all the 
25 combinations of the five linguistic terms as linguistic input vectors. For 
example, let us consider the following linguistic rule: 

Rule Rqi If xi is small and X2 is medium then Class Cq with CFq. 

(13.34) 

To determine the consequent class Cq and the rule weight CFq, the linguistic 
input vector {sm,aU, medium) is presented to the trained neural network. The 
corresponding fuzzy output vector Oq = (Ogi, Oq2, Oqs) from the neural 
network is calculated as shown in Fig. 13.14. 

From the fuzzy output vector Oq = {Oqi, Oq2, Oqs) in Fig. 13.14, the 
necessity grade that the linguistic input vector Aq={small, medium) belongs 
to each class is calculated as follows: 

Ness(Ag G Class 1) = 0.76, (13.35) 

Ness(Ag G Class 2) = 0.00, (13.36) 

Ness(Ag G Class 3) = 0.00. (13.37) 

Thus we extract the following linguistic rule: 
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Fig. 13.14. Fuzzy output vector from the trained neural network corresponding to 
the linguistic input vector {small, medium) 

If xi is small and X2 is medium then Class 1 with 0.76. (13.38) 

This linguistic rule is intuitively acceptable from the locations of the nine 
linguistic rules in Fig. 12.1 used in the learning of the neural network. The 
extracted linguistic rule is also consistent with the classification boundary by 
the trained neural network in Fig. 12.2. 

Let us consider another linguistic input vector {medium, medium small). 
This linguistic input vector corresponds to the following linguistic rule: 

Rule Rq : If xi is m^edium. and X2 is m^edium. sm^all 

then Class Cq with CFq. (13.39) 

We cannot intuitively specify the consequent class Cq of this linguistic 
rule from the nine linguistic rules in Fig. 12.1. The linguistic input vector 
Aq—{medium, medium small) is presented to the trained neural network. 
The corresponding fuzzy output vector Oq = {Oqi, 0^2, Oqs) is calculated 
as shown in Fig. 13.15. We can see that the fuzzy outputs Oqi and Oqs have 
a large overlap. This indicates that the linguistic input vector is located near 
the classification boundary between Class 1 and Class 3. From the fuzzy out
put vector in Fig. 13.15, the necessity grade that the linguistic input vector 
Aq={medium, medium small) belongs to each class is calculated as follows: 

Ness(A^ G Class 1) = 0.00, 

Ness(Ag G Class 2) = 0.00, 

Ness(A5 G Class 3) = 0.43. 

Thus we extract the following linguistic rule: 

If xi is m^edium. and X2 is m^edium. sm^all 

then Class 3 with 0.43. 

(13.40) 

(13.41) 

(13.42) 

(13.43) 

The rule weight of the extracted linguistic rule is small. This indicates that 
the extracted linguistic rule is located near the classification boundary. 

In the same manner, we examined all the 25 combinations of the five lin
guistic terms. The consequent class of each of the extracted linguistic rules 
is shown in Fig. 13.16. Note that each linguistic rule in Fig. 13.16 has a dif
ferent rule weight as shown in (13.38) and (13.43). The extracted linguistic 
rules can be viewed as a linguistic rule-based system. In Fig. 13.17, we show 
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Fig. 13.15. Fuzzy output vector from the trained neural network corresponding to 
the linguistic input vector (medium, m,edium small) 

the classification boundary depicted by the extracted linguistic rules. From 
the comparison between Fig. 13.17 and Fig. 12.2, we can see that the classi
fication boundary by the extracted linguistic rules is similar to that by the 
trained neural network. 
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Fig. 13.16. Extracted linguistic rules 
from the trained neural network in 
Fig. 12.2 

We also extract linguistic rules from the trained neural networks in 
Fig. 12.3 and Fig. 12.5. In Fig. 12.3, 30 numerical patterns were used as train
ing data. On the other hand, the neural network in Fig. 12.5 was trained from 
the two linguistic rules in Fig. 12.4 in addition to the same 30 patterns. The 
classification boundary in Fig. 12.5 is not the same as that in Fig. 12.3 be
cause the two linguistic rules were used only in Fig. 12.5. Extracted linguistic 
rules from each neural network are shown in Fig. 13.18 and Fig. 13.19. From 
these figures, we can see that the difference between Fig. 12.3 and Fig. 12.5 
leads to the difference between Fig. 13.18 and Fig. 13.19. 

13.3.4 Rule Extraction Algorithm 

In the previous subsection, we used 100 /i-level sets \A^h of the linguistic 
input vector A^ to calculate the fuzzy output vector Oq (e.g.. Fig. 13.14 and 



266 13. Linguistic Rule Extraction from Neural Networks 

Class 1 Class 3 

Fig. 13.17. Classification boundary 
obtained from the extracted linguistic 
rules in Fig. 13.16 
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Fig. 13.18. Extracted linguistic rules 
from the trained neural network in 
Fig. 12.3 

Fig. 13.15). The use of such a large number of level sets was mainly to illus
trate the fuzzy arithmetic-based approach to linguistic rule extraction. Each 
linguistic input vector can be examined more efficiently for determining the 
consequent class and the rule weight of the corresponding linguistic rule in 
the following manner: 

Step 1: Examine the /i-level set of the linguistic input vector A^ioi h — X. 
If the decision rule in (13.28) does not hold, stop the examination of Aq. 
In this case, we do not generate the corresponding linguistic rule. If (13.28) 
holds, the consequent class of the linguistic rule is specified as Class z that 
satisfies (13.28). 
Step 2: Examine the /i-level set of A^ for /i = 0. If the decision rule in 
(13.28) holds, stop the examination of Aq. In this case, the rule weight of 
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Fig. 13.19. Extracted linguistic rules 
from the trained neural network in 
Fig. 12.5 

the corresponding linguistic rule is specified as 1. If (13.28) does not hold for 
/i = 0, let /i = 0.5 and Ah = 0.25. 
S t e p 3: Examine the /i-level set of Aq. If the decision rule in (13.28) holds, 
update the value of h diS h = h — Ah. If (13.28) does not hold, upda te h as 
h = h-\- Ah, 
S t e p 4: If a pre-specified stopping condition is satisfied, stop the examina
tion of Aq. In this case, we specify the rule weight of the linguistic rule as 
1 — h. Otherwise, update the value of Ah as Ah := Ah x 0.5 and return to 
Step 3. 

In this algorithm, the value of Ah is exponentially decreased asZ\/ i = 0 .25x 
(0.5)*~^ where t is the number of iterations of the algorithm. For example, 
the termination after nine iterations is equivalent to the stopping condition 
Ah < 0.001. 

13.3 .5 D e c r e a s i n g t h e M e a s u r e m e n t Cos t 

The fuzzy arithmetic-based approach to linguistic rule extraction for clas
sification problems can be viewed as a classification method of uncertain 
pat terns by trained neural networks. Such a classification method can be 
used to decrease the measurement cost for each new pat tern to be classi
fied. The decrease in the measurement cost is realized in the following two 
tricks: to perform a rough measurement of each input variable and to omit 
the measurement of some input values. 

We illustrate each trick using a neural network with the classification 
boundary in Fig. 13.20, which is actually the same as the trained neural 
network in Fig. 12.5 used in the previous subsection. When a new pat te rn 
Xp = {xpi, Xp2) is to be classified, Xp is presented to the neural network 
as an input vector. Then Xp is classified by finding the maximum output 
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value Opz in the output vector Op = (o^i, 0^2, Ops) from the neural network, 
that is, by the decision rule in (13.19). Let us consider the situation where 
the precise measurement of the exact values of 2̂ 1 and X2 involves a large 
measurement cost. In this case, one may try to classify Xp without measuring 
the exact values of Xpi and Xp2. We assume that the measurement cost of Xp 
as an interval vector Xp = (X^i, Xp2) is inexpensive in comparison with the 
measurement of the exact values of Xpi and Xp2- In Fig. 13.20, we show two 
examples of Xp and Xp. As shown in Fig. 13.20, we assume that Xp G Xp 
(i.e., Xpi e Xpi and Xp2 E Xp2)-

1.0 

0.0 

[ 

[ 

Class 2 

• 

1 

Class 1 

§ 
f 

XB^ 

1 

Clasj 

0.0 1.0 Fig. 13.20. Classification boundary of a 
trained neural network and new patterns 
represented by interval input vectors 

In Fig. 13.20, we intuitively think that the new input vector XA can 
be classified by the trained neural network using its interval estimation XA 
without measuring the exact values of a^ î and XA2' On the contrary, the clas
sification of the new input vector XB niay require its precise measurement 
because its interval estimation XB overlaps with the classification bound
ary. These intuitive discussions can be mathematically described using the 
following decision rule for the interval input vector Xp-. 

lf'^k{ky^Z),Opk<Op then Xp is Class z, (13.44) 

where the inequality relation between the interval outputs Opk — [of'̂ , or^] 

pz 1 o^A is defined as 

pz ^pk < o. pz' (13.45) 

and Opz — [o. 

Opk < O. 

The decision rule in (13.44) for the interval input vector Xp is basically the 
same as that for the h-level set [Aq]h of the linguistic input vector Aq illus
trated in Fig. 13.12. When the interval input vector Xp can be classified by 
the decision rule in (13.44), the precise measurement of Xp is not necessary. 
This is because any input vector Xp in Xp (i.e., ^Xp G Xp) is always classified 
as Class z when Xp is classified as Class z by the decision rule in (13.44). For 
any numerical input vector Xp and any interval input vector Xp such that 
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Xp G Xp, the inclusion relation Op E Op always holds for the correspond
ing numerical output vector Op = (opi, . . . , OpM) and interval output vector 
Op = (Opi, . . . , Opu) from the inclusion monotonicity of interval arithmetic 
[6, 126]. From Op G Op, the following relation holds: 

Opk < Opz =^ Opk < Opz. (13.46) 

This means that Xp is always classified as Class z when Xp is classified as 
Class z by the decision rule in (13.44). 

In Fig. 13.21, we show the interval output vectors OA and OB from 
the trained neural network in Fig. 13.20 corresponding to the interval input 
vectors XA and XB, respectively. From this figure, we can see that XB is 
not classifiable by the decision rule in (13.44) while XA is classifiable. Thus 
the precise measurement is necessary only for XB- This result coincides with 
our intuition obtained from Fig. 13.20. 
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(a) Interval output vector OA (b) Interval output vector OB 

Fig. 13.21. Interval output vectors corresponding to the interval input vectors XA 
and XB 

The decision rule for interval input vectors can also be used to classify 
incomplete input patterns. In Fig. 13.22, we show an incomplete pattern (?, 
0.95) where the first input value has not been measured. Since the pattern 
space is the unit square [0, 1] x [0, 1], this incomplete input pattern is rep
resented as an interval input vector Xp == ([0, 1], [0.95, 0.95]). When Xp is 
presented to the trained neural network, the corresponding interval output 
vector Op is calculated as shown in Fig. 13.23 (a). Thus Xp is classified as 
Class 2 by the decision rule in (13.44). It should be noted that an arbitrary 
numerical input vector Xp in Xp (i.e., Xp G -^p) IS always classified as Class 
2 because Op G Op holds. This means that the measurement of the first input 
vector is not necessary for classifying the incomplete pattern (?, 0.95). On 
the other hand, no incomplete patterns of the form {xpi, ?) can be classified 
in Fig. 13.22. For example. Fig. 13.23 (b) shows the interval output vector 
corresponding to the incomplete pattern (0.5, ?). Only when the second input 
value is first measured, there is a possibility that the measurement cost can 
be decreased in the classification phase for new patterns. The determination 
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of the measurement orders was studied in [76] where the decrease in the mea
surement cost was demonstrated using some real-world pat tern classification 
problems. 
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Fig. 13.22. Incomplete pattern (?, 0.95) 
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Fig. 13.23. Interval output vectors corresponding to incomplete input patterns 

13.4 Difficulties and Extensions 

We have already explained the fuzzy arithmetic-based approach to linguistic 
rule extraction for modeling problems and classification problems. One char
acteristic feature of the fuzzy arithmetic-based approach is its applicability to 
arbitrarily trained neural networks. It does not require any particular learning 
algorithm. It does not require numerical training data, either. Thus we can 
apply the fuzzy arithmetic-based approach to arbitrarily trained multi-layer 
feedforward neural networks. The high applicability of the fuzzy arithmetic-
based approach, however, does not necessarily mean its high performance. In 
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this section, we explain two difficulties: poor scalability to high-dimensional 
problems and undesirable increase of the excess fuzziness in fuzzy outputs. 

13.4.1 Scalability to High-Dimensional Problems 

When a trained neural network and linguistic terms are given, the fuzzy 
arithmetic-based approach examines each combination of linguistic terms. If 
we have K linguistic terms for each of n input variables, the total number 
of combinations of linguistic terms is {K + 1)^ when don^t care is used as an 
additional antecedent fuzzy set. When n is large, it is impossible to examine 
all the {K -h l)'^ combinations. Since the available information is only the 
trained neural network, we cannot evaluate the importance of each combina
tion of antecedent linguistic terms. We cannot find only a small number of 
significant combinations, either. A simple idea for handling high-dimensional 
problems is to examine only short linguistic rules with many don^t care con
ditions, which was used in Chap. 4. Another idea is to use numerical data to 
find only a small number of significant combinations of antecedent linguistic 
terms. We may be able to identify some combinations of antecedent linguistic 
terms that cover many training patterns. This idea is somewhat different from 
the original task of linguistic rule extraction from trained neural networks in 
this chapter. It is rather referred to as linguistic rule extraction from trained 
neural networks and numerical data. 

13.4.2 Increase of Excess Fuzziness in Fuzzy Outputs 

An essential difficulty in the fuzzy arithmetic-based approach is the existence 
of excess fuzziness in fuzzy outputs. In the fuzzy arithmetic-based approach, 
the fuzzy output vector Oq from the trained neural network is calculated 
by fuzzy arithmetic for the linguistic input vector Aq. The linguistic rule 
extraction is totally based on the calculated fuzzy output vector Oq as we 
have already explained. The problem is that the fuzzy output vector Oq 
includes a lot of excess fuzziness. 

As shown in Chap. 11, the addition, multiplication, and nonlinear map
ping by the activation function are defined by the extension principle for 
fuzzy numbers. This means that the extension principle is locally applied 
to the input-output relation of each unit as shown in Fig. 13.24. Since the 
extension principle is locally applied to the input-output relation of each 
unit, neural networks for linguistic input vectors have the same advantage as 
standard multi-layer feedforward neural networks: suitability for parallel dis
tributed calculation. At the same time, the local application of the extension 
principle leads to the existence of excess fuzziness in fuzzy outputs. 

Let Gk{Aq) be the fuzzy output Oqk from the A:-th output unit when the 
linguistic input vector Aq is presented. The fuzzy output vector Oq from 
the neural network is written as Oq — G{Aq) = (Gi(Ag),.. . ,GM(^g))-
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I 1 Application area of the extension principle 

G(X) 

Fig. 13.24. Local application of the ex
tension principle to each unit 

In the same manner, let gk{xp) be the output Opk from the k-th output 
unit when the numerical input vector Xp = {xpi^ . . . , Xpn) is presented to 
the same neural network. The output vector Op from the neural network is 
written as Op = 9{xp) — {gi{xp), . . . , guixp)). If we globally apply the 
extension principle to the mapping g{Xp) = (^i(xp), . . . , guixp)) as shown 
in Fig. 13.25, the exact fuzzy output gk{Aq) from the k-th output unit is 
defined for the linguistic input vector Aq = (^gi, • • •, Aqn) as 

i^9k{A,){y) = m^x{fiA,i{xi) A... A|J^A,r^{xn) \y = gk{x), X e 5R''}. 
(13.47) 

This global application of the extension principle defines the exact shape of 
the fuzzy output when the linguistic input vector Aq is presented to the 
nonlinear function gk{x). That is, the global application of the extension 
principle exactly describes the mapping of the fuzzy input vector Aq by 
the nonlinear function gk{x). The calculation of the fuzzy output gk{Aq) in 
(13.47), however, is not easy because gkix) is highly nonlinear. That is, the 
calculation in (13.47) involves nonlinear optimization. 

The following relation always holds between the fuzzy output Gk{Aq) 
defined by fuzzy arithmetic (i.e., the local application of the extension prin
ciple) and the fuzzy output gk{Aq) defined by the global application of the 
extension principle: 

gk{Aq)CGk{Aq). (13.48) 

The problem is that the equality between Gk{Aq) and gk{Aq) does not hold 
in general. That is, Gk{Aq) defined by fuzzy arithmetic is not the same as 
gk{Aq) defined by the global application of the extension principle. This is 
because the definition of Gk(Aq) is based on the local application of the 
extension principle. 
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I Application area of the extension principle 

g(x) 

Fig. 13.25. Global application of the 
extension principle to the entire neural 
network 

Let us explain the difference between the global and local applications of 
the extension principle. In the neural network based on fuzzy arithmetic (i.e., 
the local application of the extension principle), the total fuzzy input to the 
k-th output unit is calculated as 

Netk = Wkl ' Oql +Wk2'Oq2-\- •.. + Wknn ' Oqnn + ^k, (13.49) 

where O^i, 0^2, •••5 Oqu^ ^^^ fuzzy outputs from hidden units. In fuzzy 
arithmetic in (13.49), Ogi, Oq2, . •., Oqnn t̂re handled as independent fuzzy 
numbers. These fuzzy numbers, however, are not independent because they 
are written as 

Oqj = ~ , J = 1, 2, . . . , riH. (13.50) 
l + exp(- E ^ i i '^qi -Sj) 

i=l 

That is, all the fuzzy numbers Oqi, 0^2, • • •, Oqnn ^^^ calculated from the 
same linguistic input vector Aq = (Agi, . . . , Aqn)- In fuzzy arithmetic in 
(13.49), this dependence among the fuzzy numbers O^i, 0^2, • • •, Oqnn is not 
taken into account. Thus the corresponding fuzzy output Gk{Aq) calculated 
by fuzzy arithmetic has larger fuzziness than the fuzzy output gk{Aq) defined 
by the global application of the extension principle. 

For illustration purposes, let us consider a neural network with a fuzzy 
input vector Aq = (3, 2) in Fig. 13.26. For simplicity of explanation, we 
assume that all the input, hidden, and output units of this neural network 
have the linear activation function: f{x) = x. That is, the output from each 
unit is the same as the total input to that unit. When the fuzzy input vector 
Aq — (3, 2) is presented to the neural network, the fuzzy output from each 
hidden unit is calculated as follows: 

Hidden unit C: Oc - / ( I • 3 + 1 • 2 + 0) = 5, (13.51) 

Hidden unit D: OD = / ( I • 3 - 1 • 2 + 0) = 1. (13.52) 
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These two fuzzy numbers 5 and 1 are shown in Fig. 13.27. Then the fuzzy 
output from the output unit is calculated as follows: 

Output unit: OE = G(3, 2) = / ( I • 5 - 1 • 1 + 0) = 4. (13.53) 

This fuzzy output G(3, 2) calculated by fuzzy arithmetic is shown in Fig. 13.28 
(a). 
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(b) Hidden unit D 

On the other hand, the exact fuzzy output g{Aq) with no excess fuzziness 
is defined by globally applying the extension principle to the entire neural 
network. While the calculation oi g{Aq) is very difficult in general, it is easy 
in Fig. 13.26 because all the input, hidden, and output units of the neural 
network have the linear activation function f{x) = x. The mapping g{Xp) 
realized by the neural network is calculated as 

g{xp) = 1 • (1 • â pi + 1 • Xp2 + 0) - 1 • (1 • Xpi - 1 • a:p2 + 0) = 2 • Xp2' 

(13.54) 
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(a) Local application 

0 1 2 3 4 5 6 7 

(b) Global application 
Fig. 13.28. Comparison of fuzzy outputs from the neural network between the 
local and global applications of the extension principle 

Thus the exact fuzzy output ^(3, 2) with no excess fuzziness is 2-2, which is 
shown in Fig. 13.28 (b). The difference between Fig. 13.28 (a) and Fig. 13.28 
(b) is the excess fuzziness involved in the fuzzy output G(3, 2) in Fig. 13.28 
(a). 

Excess fuzziness in fuzzy arithmetic corresponds to excess width in inter
val arithmetic [6, 126]. Calculation of more accurate intervals with less excess 
width has been studied in the literature. Methods for decreasing excess width 
such as a subdivision method [126] can be used in the fuzzy arithmetic-based 
approach to linguistic rule extraction from trained neural networks because 
fuzzy output vectors are numerically calculated by interval arithmetic on level 
sets of linguistic input vectors [79]. 



 

 

 

 

 



14. Modeling of Fuzzy Input-Output Relations 

In this chapter, we explain various topics related to the handling of fuzzi-
fied systems with fuzzy inputs and/or fuzzy outputs. First we describe some 
approaches to the modeling of fuzzy number-valued functions. A fuzzy num
ber-valued function with n input variables is written as 

y-fix)^ (14.1) 

where ^ is a fuzzy output (i.e., fuzzy number), /(•) is a fuzzy number-valued 
function, and x — (xi, . . . , Xn) is an n-dimensional non-fuzzy input vector. 
In this chapter, we use "~" to clearly denote fuzzy numbers (e.g., y in (14.1)). 
We also use "^" for fuzzy number-valued functions such as /(•). Real numbers 
are denoted by lower-case letters without "^". 

Next we describe some approaches to the modeling of fuzzy mappings 
from fuzzy vectors to fuzzy numbers. A fuzzy mapping with n fuzzy inputs 
is written as 

y = / ( * ) , (14.2) 

where x = {xi,... ,Xn) is an n-dimensional fuzzy vector. Neural networks 
described in Chap. 11 can be viewed as approximators of f{x) in (14.2). 

Then we describe fuzzy pattern classification where input vectors and/or 
classification results are fuzzy. Neural networks used for linguistic rule ex
traction in Chap. 13 are an example of classification systems for fuzzy input 
vectors where classification results are not fuzzy. In addition to non-fuzzy 
classification of fuzzy input vectors, we explain fuzzy classification of non-
fuzzy, interval, and fuzzy input vectors where classification results are fuzzy. 

14.1 Modeling of Fuzzy Number-Valued Functions 

In this section, we explain some approaches to the modeling of fuzzy number-
valued functions of the form in (14.1). Fuzzy number-valued functions are 
realized by linear fuzzy models, fuzzy rule-based systems, fuzzified Takagi-
Sugeno models, and fuzzified neural networks. 
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14.1.1 Linear Fuzzy Regression Models 

The main line in fuzzy system research has been fuzzy modeling of nonlinear 
functions where fuzzy rule-based systems are used as approximators of non
linear mappings from non-fuzzy input vectors to non-fuzzy output values. A 
large number of fuzzy modeling methods of real number-valued functions have 
been proposed in the literature. On the other hand, much fewer approaches 
have been proposed for fuzzy modeling of fuzzy number-valued functions of 
the form in (14.1). 

An early approach to fuzzy modeling of fuzzy number-valued functions 
is the fuzzy regression analysis of Tanaka et al. [163, 164]. They used the 
following linear fuzzy model: 

y{x) = do + ai ' xi -h ... + cin ' Xn, (14.3) 

where x = {xi^ . . . , Xn) is an n-dimensional non-fuzzy input vector, di is a 
fuzzy coefficient (i.e., di is a fuzzy number), and y(x) is the fuzzy output 
from the linear fuzzy model corresponding to the input vector x. The right 
hand side of (14.3) is calculated by fuzzy arithmetic [106]. 

The membership function of the fuzzy output y{x) can be easily calculated 
when each fuzzy coefficient di is specified by a parameterized membership 
function. Since triangular fuzzy coefficients have been traditionally used in 
fuzzy regression analysis [163, 164], we also assume that each di is a triangular 
fuzzy number. As shown in Fig. 14.1, a triangular fuzzy number d is denoted 
by its lower limit a^, center a^, and upper limit a^ as a = (a^, a^, a^). In 
the same manner, the fuzzy coefficient di is denoted as 

a, = ( a f , a f , a f ) , i = 0 ,1 , . . . , n . (14.4) 

In this case, the fuzzy output y{x) is calculated as a triangular fuzzy number 
using fuzzy arithmetic: 

y{x) = (/(x), y'^ix), y^ix)), (14.5) 

where 

xi>0 Xi<0 

n 

2/^(a;)=a^ + ^ a f - X i , (14.7) 

Xi>Q Xi<0 

A single-input and single-output linear fuzzy model is written as 

y{x) ^ do -\-dix. (14.9) 

An example of a linear fuzzy model of this form is shown in Fig. 14.2 where 

file://-/-dix
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Fig. 14.1. A triangular fuzzy number a 
(a^ a^, a^) 

ao = (1, 1.5, 2) and di = (1, 2, 3). (14.10) 

Three lines in Fig. 14.2 correspond to the lower limit y^{x) = 1 + x, center 
y^{x) = 1.5 + 2rc, and upper limit y^ {x) = 2 + 3x. Each triangle corresponds 
to the membership function of the fuzzy output y{x) for x=1.0, 2.0, 3.0. For 
example, y{x) is calculated for a: = 3 as ^(3) == (4, 7.5, 11). 

Input value 
Fig. 14.2. An example of a 
linear fuzzy model y(x) = 
(1, 1.5, 2) + (l, 2, 3)x 

The linear fuzzy model in (14.3) is determined from numerical input-
output pairs using linear programming. Let us assume that we have m input-
output pairs (iCp, ^p), p = 1, 2, . . . , m, where Xp = (xpi, . . . , Xpn)- The 
following linear programming problem is used to determine the linear fuzzy 
model from the given input-output pairs: 

Minimize Y^{y^{Xp) - y^{xp)), 

subject to yp E [y(xp)]h, p = 1, 2, . . . , m. 

(14.11) 

(14.12) 

The objective function is to minimize the total fuzziness of the estimated 
fuzzy output y{xp) over the m input-output pairs. The constraint condition 
means that the /i-level set of the linear fuzzy model should include all the 
given m input-output pairs. This linear programming problem is easily solved 



280 14. Modeling of Fuzzy Input-Output Relations 

when all the fuzzy coefficients di are symmetric (i.e., when we have an addi
tional constraint condition af = {af + a^)/2 for z=0, 1, . . . , n). When fuzzy 
coefficients are asymmetric triangular fuzzy numbers, they are not uniquely 
determined from the linear programming problem in (14.11)-(14.12) while 
their /i-level sets are uniquely determined. Thus symmetric triangular fuzzy 
numbers have been traditionally used in fuzzy regression analysis [163, 164]. 
Fuzzy regression analysis was extended to the case of asymmetric triangular 
and trapezoidal fuzzy coefficients [75] where input-output pairs with dif
ferent importance grades were used as training data. Input-output pairs of 
non-fuzzy inputs and fuzzy outputs can also be handled by the linear fuzzy 
model [75, 163]. 

14.1.2 Fuzzy Rule-Based Systems 

In Chap. 8, we used linguistic rules of the following type for modeling prob
lems of n-input and single-output nonlinear functions: 

Rule Rqi If xi is Aqi and . . . and Xn is Aqn then y is Bq^ (14.13) 

where Aqi is an antecedent linguistic term and Bq is a consequent linguistic 
term. As we suggested at the end of Chap. 8, linguistic rules can be used 
for modeling problems of fuzzy number-valued functions using the following 
fuzzy reasoning method [78]: 

E /^A,ix) Bq 

where S is the linguistic rule-based system (i.e., rule set), and fiAq{x) is the 
compatibility grade of the input vector x with the antecedent part Aq. In 
this formulation, the calculation of y{x) is performed using fuzzy arithmetic 
[106]. When the consequent part Bq of each linguistic rule is a triangular fuzzy 
number (& ,̂ 6^, 6^), the estimated fuzzy output y{x) is also calculated as a 
triangular fuzzy number y{x)={y^{x), y^{x), y^{x)) in the same manner as 
(14.5)-(14.8): 

y^{x)= ^ / i X ( ^ ) - ^ ^ (14-15) 
RqES 

Rqes 

y^ix)= 5 ] /zXW-^^ (14-17) 

(14.18) 

where / i^ S^) 
(x)--

RqES 

is the normalized 

_ fJ^Aqjx) 

E MA,(^)' 
RqES 

compatibility grade: 
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Since /x^ (x) is non-negative, the calculation of the estimated triangular 

fuzzy number y{x) = (y^{x), y^{x)^ y^{x)) is simple in (14.15)-(14.17). 
The objective function in (14.11) and the constraint condition in (14.12) in 

fuzzy regression analysis will be utilized to determine the consequent part Bq 
of each linguistic rule Rq. The consequent part Bq will also be specified in a 
heuristic manner from compatible input-output pairs with the corresponding 
antecedent part Aq. Many issues are left for future research, which include 
the learning of fuzzy rules for modeling problems of nonlinear fuzzy number-
valued functions. 

14.1.3 Fuzzified Takagi—Sugeno Models 

Fuzzy rules in the Takagi-Sugeno model have linear functions in their conse
quent parts. We extend consequent linear functions to fuzzy number-valued 
linear functions. That is, we use fuzzy rules of the following type for modeling 
problems of fuzzy number-valued nonlinear functions: 

Rule Rq'. If Xi is Aqi and . . . and Xn is Aqn 

then yq{x) = bqo-{-bqi'Xi + ...-\- bqn • Xn, (14.19) 

where bqi is a fuzzy number coefficient. The estimated fuzzy output y{x) for 
the input vector x = (a^i, . . . , x^) is calculated as 

E ^A,{x)'yq{x) 

RqES 

= E f^lM)'y,i^)- (14.20) 
Rqes 

When each fuzzy number coefficient bqi in (14.19) is a triangular fuzzy number 
i^qi^ 6^, 6^), the estimated fuzzy output y{x) is also calculated as a triangular 
fuzzy number y{x)=(y^{x), y^{x), y^{x)) where 

y^{x)= 5 ] / x X W - \b^+Y,bf-x,+ Y,bf-xA, (14.21) 
RqES \ Xi>0 Xi<0 

y^' (x) = E ^X (̂ ) • ?̂ + E ^^ ^0 ' (14-22) 
Rqes \ i=i / 

y^ix) = Yl i'AM) • ho'+E ''^ ^̂  + E ^^ ̂ 0 • ^̂ -̂̂ ^̂  
Rq^S \ Xi>0 Xi<0 J 

As an example, let us consider the following two fuzzy rules: 
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Rule i^i: If X is Ai then yi{x) = (10, 11, 12) + (0.5, 1, l.b)x, (14.24) 

Rule i^2: If ^ is ^2 then y2{x) = (2, 4, 6) + (0, 0.25, 0.5)a:. (14.25) 

The consequent linear fuzzy models in (14.24) and (14.25) are shown in 
Fig. 14.3. As in Fig. 14.2, each linear fuzzy model in Fig. 14.3 is represented 
by three lines: the lower limit, center, and upper limit. When the antecedent 
fuzzy sets Ai and A2 have the membership functions in Fig. 14.4, the fuzzy 
rule-based system with the above two fuzzy rules represents the nonlinear 
fuzzy number-valued function y{x) in Fig. 14.5. In this figure, three thick 
curves show the lower limit, center, and upper limit of y{x) while thin lines 
show the consequent linear fuzzy models in Fig. 14.3. From Fig. 14.5, we can 
see that the extended Takagi-Sugeno model in (14.19)-(14.20) is a combina
tion of multiple linear fuzzy models. 

Input value 
Fig. 14.3. Consequent linear fuzzy 
models yi{x) and y2{x) 

Input value 
Fig. 14.4. Membership functions of the an
tecedent fuzzy sets Ai and A2 
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Fig. 14.5. Nonlinear fuzzy num
ber-valued function y{x) realized 
by the two fuzzy rules 

14 .1 .4 Fuzzif ied N e u r a l N e t w o r k s 

Modeling problems of nonlinear fuzzy number-valued functions can also be 
handled by multi-layer feedforward neural networks with fuzzy connection 
weights [75]. As in Chap. 11, we use a three-layer feedforward neural network 
with n input units and a single output unit to handle modeling problems of 
n-input and single-output fuzzy number-valued functions. The inpu t -ou tpu t 
relation of each unit of the neural network is fuzzified as follows for the non-
fuzzy input vector Xp = {xpi, 

Input units: Or)i — Jur) 

X 

i = 1 

pn)' 

2 , . n. (14.26) 

Hidden units: Opj — f{netpj), j = 1, 2, . . . , TIH, (14.27) 

n 

netpj — ^ w ) j i • Opi + dj. (14.28) 
i-=^\ 

Output unit: bp — f{netp)^ 

netp — 2_,'^j ' Opj + 0. 
3 = 1 

(14.29) 

(14.30) 

The connection weights Wji^ Wj and biases 9j, 6 are fuzzy numbers in (14.26)-
(14.30). As a result, the activation function / (•) at the hidden and output 
units is extended to the fuzzy activation function as in Chap. 11. Fuzzy num
bers with parameterized membership functions (e.g., tr iangular and t rape
zoidal membership functions) are often used as connection weights and bi
ases. 

The fuzzified neural network can be trained from numerical inpu t -ou tpu t 
pairs (Xp, i/p), p = 1, 2, . . . , m, so tha t the following relation is approximately 
satisfied [75]: 
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Vp e [Op]h, p = 1, 2, . . . , m, (14.31) 

where [dp]h is the /i-level set of the fuzzy output dp from the fuzzified neural 
network when the input vector Xp is presented. The inclusion relation in 
(14.31) is rewritten as 

{5p]i <yp< [op]^, (14.32) 

where [ • ]^ and [ • ]^ denote the lower and upper limits of the /i-level set. The 
following cost function is used for the /i-level set [dp]h of the fuzzy output dp: 

^ph = \- '^ph • iVp - [optf + \ • <ft • {Vp - [5p\l)\ (14.33) 

where u^^ and uj^^ can be viewed as the penalties related to the squared 
errors for the lower and upper limits of the /i-level set [o^]^, respectively. The 
values of 00^^^ and UJ^^ are specified as follows depending on whether the two 
inequalities in (14.32) are satisfied or not: 

{^ph^ ^ph) 

(1,6), iiyp< [dp]i<[dp]l, 

{e.e), inop]k<yv<[op]l^ (14.34) 

{e, 1), inop\h<[op\l<yp. 

where £ is a small positive constant (i.e., 0.01). The specification of (ct;̂ ,̂ oo^j^) 
in (14.34) means that the penalty is high only when the corresponding in
equality is not satisfied in (14.32). A learning algorithm can be derived for the 
fuzzy connection weights and biases from the cost function (14.33). When the 
inequality relation in (14.32) is satisfied for an input-output pair, the penal
ties u^^ and CJK are very small. Thus the adjustment of the fuzzy connection 
weights and biases is also very small. The learning of the fuzzified neural 
network is significant only when the input-output pair does not satisfy the 
inequality relation in (14.32). In this manner, the learning of the fuzzified 
neural network leads to approximate satisfaction of the inequality relation in 
(14.32). 

Using 51 input-output pairs in Fig. 14.6, we trained a fuzzified neural 
network with a single input unit, five hidden units, and a single output unit. 
Asymmetric triangular fuzzy numbers were used as connection weights and 
biases. The learning of the fuzzified neural network was performed using the 
cost function in (14.33) for h = 0.2 and h = 1. That is, the cost function for 
the input-output pair (cCp, yp) was 

e p = o • ^pO.2 • iVp - [Op]o.2? + 7; ' ^pO.2 • iVp - [Op]o.2? 

+ 0 • < • (yp - [^]i)' + o • < i • (yp - [^]i)'' (14.35) ~-W^l-(t /p-[0p]f)2 + i 

Since we used asymmetric triangular fuzzy numbers for connection weights 
and biases, the 1-level set of the fuzzy output bp had no width (i.e., [o^Jf 
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— [^p]F)- Thus ujpf^ and cj^^ were always specified as cj^^ = 1 and a;̂ ^ = 1 
for h = 1. This means that the standard squared error was used for the 
learning of the fuzzified neural network for the 1-level set of the fuzzy output 
dp. On the other hand, the learning for the 0.2-level set was performed so 
that the input-output pair is approximately included in the 0.2-level set of 
the fuzzy output. For details of the learning algorithm, see Ishibuchi & Nii 
[75]. Three curves in Fig. 14.6 show the 1-level set and the 0.2-level set of 
the nonlinear fuzzy number-valued function obtained by the learning of the 
fuzzified neural network. From this figure, we can see that the 1-level set is 
similar to simulation results using the standard back-propagation algorithm 
[146]. We can also see that the 0.2-level set approximately includes all the 
given input-output pairs. 

y 
A 

1.0 

> 

| H 0.5 

o 

0.2-level 

0.2-level 

0.0 »— 
0.0 0.5 

Input value 
1.0 

-^x 
Fig. 14.6. Nonlinear fuzzy 
number-valued function ob
tained by the learning of a 
fuzzified neural network 

14.2 Modeling of Fuzzy Mappings 

In this section, we explain the approximate realization of fuzzy mappings 
from fuzzy input vectors to fuzzy output values. Such a fuzzy mapping is 
obtained by extending the non-fuzzy input vector x — (a^i, . . . , Xn) in the 
previous section to the fuzzy input vector x •= {xi^ . . . , Xn)-

14.2.1 Linear Fuzzy Regression Models 

Sakawa & Yano [148] extended the linear fuzzy model in (14.3) to the case 
of the fuzzy input vector x = (xi, . . . , x^) as 

y[x) = ao + ai • xi -F . . . -h a„ (14.36) 
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This model can be viewed as an approximator of fuzzy mappings from fuzzy 
input vectors to fuzzy numbers. The fuzzy output y{x) in (14.36) is calculated 
by fuzzy arithmetic. Since the calculation of the fuzzy output y{x) involves 
the product of fuzzy numbers (i.e., â  • x«), the membership function of y{x) 
cannot be written in a parameterized form even when both Xi and â  are 
triangular fuzzy numbers (see Fig. 14.7). To numerically calculate the mem
bership function of y{x)^ interval arithmetic is used on the /i-level set of the 
fuzzy input vector x as in fuzzified neural networks. 

Fig. 14.7. Product of two fuzzy 
numbers 

14.2.2 Fuzzy Rule-Based Systems 

Nonlinear fuzzy number-valued functions are approximately realized by lin
guistic rules in (14.13) using the fuzzy reasoning method in (14.14). The 
non-fuzzy input vector x in the fuzzy reasoning method in (14.14) can be 
extended to the fuzzy input vector x as 

where /i^g (x) is the compatibility grade of the fuzzy input vector x with the 
antecedent part Aq of the linguistic rule Rq in (14.13). Since the compatibility 
grade JULA (^) is a non-negative real number, the membership function of 
the fuzzy output y(x) can be represented in a parameterized form as in 
(14.15)-(14.17) when the consequent linguistic term Bq has a parameterized 
membership function. 

There are many issues to be discussed in future studies. One issue is 
the definition of the compatibility grade /lAq (^) of the fuzzy input vector x 
with the antecedent part Aq of the linguistic rule Rq. Another issue is rule 
generation for modeling problems of fuzzy mappings. 

14.2.3 Fuzzified Takagi-Sugeno Models 

The fuzzified Takagi-Sugeno model in (14.19)-(14.20) for modeling problems 
of nonlinear fuzzy number-valued functions can be further extended to handle 
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fuzzy mappings. Fuzzy rules of the form in (14.19) are further fuzzified as 

Rule Rqi If xi is Aqi and . . . and Xn is Aqn 

then yq{x) = bqo + bqi-xi-\-... + bqn • Xn- (14.38) 

As a result, the fuzzy reasoning method in (14.20) is modified as 

E fJ^A,{x) 'Vqix) 

y{x) = ^ ^ - ^ . (14.39) 

Rqes 

Since the membership function of the fuzzy output from the consequent lin
ear fuzzy model yq{x) cannot be represented in a parameterized form, the 
calculation of the fuzzy output y{x) from the fuzzy rule-based system is nu
merically performed on level sets of the fuzzy input vector x. 

14.2.4 Fuzzified Neural Networks 

The fuzzified neural network with the non-fuzzy input vector x in the previous 
section can be extended to the case of the fuzzy input vector x = {xi,... ^Xn) 
as 

Input units: ô ^ = ^g^, i = 1, 2, . . . , n. (14.40) 

Hidden units: Oqj = f{netqj), j = 1, 2, . . . , UH^ (14.41) 

n 

'^^tqj = X^^i« ' ^qi + ^i- (14.42) 
i=l 

Output unit: Oq = f{netq)^ (14.43) 

riH 

netq = ^Wj ' Oqj -I- 9. (14.44) 

Fuzzified neural networks of this type are trained using input-output pairs 
of fuzzy inputs and fuzzy outputs. A learning method similar to the back-
propagation algorithm was proposed in [64] for adjusting the fuzzy connection 
weights and fuzzy biases. The learning was performed by tuning each parame
ter of the parameterized membership function of each fuzzy connection weight 
and bias. The learning of fuzzified neural networks was numerically examined 
in [77] where linguistic rules were used as training data. 

14.3 Fuzzy Classification 

In this section, we explain fuzzy classification by multi-layer feedforward 
neural networks. In addition to fuzzy classification of fuzzy patterns, we 
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also explain fuzzy classification of non-fuzzy and interval patterns. For an 
n-dimensional pattern classification problem with M classes, we use a three-
layer feedforward neural network with n input units and M output units. 

14.3.1 Fuzzy Classification of Non-Fuzzy Patterns 

A non-fuzzy input vector Xp — {x^i, . . . , Xpn) is usually classified by finding a 
single winner output unit with the maximum output value in the correspond
ing output vector Op — {opi, . . . , O^M) from the trained neural network. Each 
output value Opk can be interpreted as the grade that the input vector Xp 
belongs to each class. When only a single element of the output vector Op 
is approximately equal to 1 and all the other (M — 1) elements are approxi
mately equal to 0, we may have high confidence about the classification result 
of the input vector Xp. On the other hand, the confidence about the classifi
cation result is low when no element is close to 1. The confidence is also low 
when many elements are close to 1. 

Two rejection methods examined in Cordelia et al. [22] correspond to the 
above intuitive discussions on the confidence about the classification result 
of the input vector Xp, One rejection method is to introduce a minimum 
requirement /Smax on the maximum output value. That is, the classification 
of Xp is rejected when the following condition does not hold: 

Opk* = max{Opi , Op2, . . . ,Opfc} > ^max- (14.45) 

The other method is to introduce a minimum requirement /̂ difference on the 
difference between the largest and second largest output values. That is, the 
classification of Xp is rejected when the following condition does not hold: 

Opk* — Opk** > /^difference, (14.46) 

where Opk* is the largest output value and Opk** is the second largest output 
value. When we use a rejection method such as (14.45) and (14.46), the 
pattern space is divided into (M+l) subspaces that correspond to M decision 
regions and a single rejection region. 

These two rejection methods are based on standard feedforward neural 
networks. Special neural network structures and/or learning algorithms were 
also proposed for performing pattern classification with a reject option [8, 
62, 142]. We explain a simple modification of the back-propagation algorithm 
by Ishibuchi et al. [62] using the two-class pattern classification problem in 
Fig. 14.8 where 21 patterns are given in the unit interval [0, 1]. We trained a 
three-layer feedforward neural network with a single input unit, five hidden 
units, and a single output unit. The target tp was specified for the input Xp 
as 

{ 1, if Xo is from Class 1, 
(14.47) 

0, if Xp is from Class 2. 
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The standard back-propagation algorithm was used for the learning of the 
neural network using the learning rate 0.25 and the momentum constant 0.9. 
Figure 14.8 shows the output from the trained neural network after 1000 
epochs. From this figure, we can see that the output is not close to 0 or 1 for 
the input in the overlap region [0.30, 0.65] of patterns from diflFerent classes. In 
this case, rejection methods may work well for identifying the overlap region. 
Learning results of neural networks strongly depend on parameter specifica
tions such as the number of hidden units and the stopping condition. Figure 
14.9 shows a simulation result after 50000 epochs using a three-layer feed
forward neural network with 50 hidden units. In this case, rejection methods 
do not work well for identifying the overlap region of patterns from different 
classes. 

•: Class 1 (target =1) O : Class 2 (target = 0) 

0.5 
Input value 

Fig. 14.8. A simulation result 
after 1000 epochs using a three-
layer feedforward neural net
work with five hidden units 
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Fig. 14.9. A simulation re
sult after 50000 epochs using 
a three-layer feedforward neural 
network with 50 hidden units 

Ishibuchi et al. [62] slightly modified the back-propagation algorithm for 
determining the lower limit o^ and the upper limit o^ of the output Op, which 
are illustrated in Fig. 14.10. When they determine the lower limit o^, they 
use the following cost function in the learning of a neural network: 
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4 = \-^i-{tp-o';?, (14.48) 

where o^ is the output from the neural network for the input vector Xp, and 
(jjp is specified using a positive small real number e as 

(14.49) 

On the other hand, they use the following cost function in the learning of 
another neural network when we determine the upper limit o^: 

s'' = ^ - < - ( * p - 0 ' ' (14.50) 

where o^ is the output from the neural network for the input vector Xp and 

I, iitr> = 1, 
< = < ( ' ' ^' (14.51) 

£, if tp = 0. 

The basic idea of the above weighting scheme in (14.48)-(14.51) is to 
approximately include the input-output pair (xp, tp) in the interval [o^ , o^]. 
We have already explained the same idea for the learning of fuzzified neural 
networks in Sect. 14.1. It was shown that good results were obtained by 
gradually decreasing e from 1 during the learning of neural networks. In the 
above explanation, two independent neural networks are used to represent 
the interval [o^ , o^]. It is also possible to use a single interval neural network 
[86]. 

• : Class 1 (target =1) O : Class 2 (target = 0) 
A 

1.0 I— 

1 

o 
O.OQOCboeo ' o ' o I o l o • — I — I — 1 ^ . X 

^'^ ^-^ . ^'^ Fig. 14.10. Lower and upper 
Input value Yimits of the output o^ 

As shown in Fig. 14.10, the output interval [o^, o^] in the overlap region 
of patterns from different classes is approximately equal to [0, 1]. Thus we can 
use the following decision rules with a rejection option for two-class pattern 
classification problems: 
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If ^{Op + o^) > 0.75 then Xp is Class 1, (14.52) 

If ^(Op + Op) < 0.25 then Xp is Class 2, (14.53) 

If 0.25 < l{o^+o^)<0.75 

then the classification of x^ is rejected, (14.54) 

where 0.25 and 0.75 are user-definable threshold values (we can use other 
combinations of threshold values, e.g., 0.1 and 0.9, 0.4 and 0.6, etc.). These 
decision rules can be easily extended to a more general case with multiple 
classes. 

14.3.2 Fuzzy Classification of Interval Patterns 

We have already explained the learning of standard feedforward neural net
works using interval input vectors for pattern classification problems in Sect. 
12.3. We have also explained the classification of interval input vectors us
ing trained neural networks. Let O^ — (Opi, . . . , Opu) be the interval 
output vector from a trained neural network for the interval input vector 
Xp = (Xpi, . . . , Xpn)- When the following relation holds for Class z, the 
interval input vector Xp is classified as Class z: 

If "^k {ki^z), ô fc < o^^, then Xp is Class z, (14.55) 

where o^^ is the upper limit of the interval output Opk from the k-ih. output 
unit, and o^^ is the lower limit of the interval output Opz from the ^-th output 
unit. If there is no class satisfying this relation, the classification of Xp is 
rejected. 

When the classification of Xp is rejected, we can specify a set of possible 
classes using the following decision rule. 

If ^k,o^^ < Opj^, then Xp is not Class z. (14.56) 

For example, let us consider the interval vector Xp in Fig. 14.11 where the 
classification boundary is also shown using a trained neural network. The 
corresponding output vector from the trained neural network is shown in 
Fig. 14.12. Since no class satisfies the condition in (14.55), the classification 
of Xp is rejected. The set of possible classes is identified as Class 2 and Class 
3 because we know from the decision rule in (14.56) that Xp is not Class 1. 

14.3.3 Fuzzy Classification of Fuzzy Patterns 

We have already explained the learning of standard feedforward neural net
works using linguistic input vectors for pattern classification problems in 
Sect. 12.2. We have also explained the classification of linguistic input vec
tors using trained neural networks in Sect. 13.3. Let dp = (dpi, . . . , O^M) be 
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the fuzzy output vector from a trained neural network for the fuzzy input 
vector Xp = {xpi, . . . , Xpn)- The classification of the fuzzy input vector Xp is 
performed using the procedure in Sect. 13.3.4. The classification procedure 
is based on the following decision rule on the /i-level set of the fuzzy input 
vector Xpi 

If ^k{k ^ z), [dpk]h < [opz]h, then [xp]h is Class z, (14.57) 

where [5^^]^ is the upper limit of the /i-level set [dpk]h of the fuzzy output 
Opk from the fc-th output unit, and [dpz]^ is the lower limit of the /i-level 
set [dpz]h of the fuzzy output Opz from the z-ih output unit. The confidence 
of the classification is specified as (1 — /i*) where /i* is the minimum level 
for which (14.57) holds. By introducing the minimum requirement for the 
confidence, we can reject the classification of patterns with low confidence. 

14.3.4 Effect of Fuzzification of Input Patterns 

It was suggested in [74] that fuzzification of training patterns leads to higher 
generalization ability of trained neural networks in some cases. Let us assume 
that we have m training patterns Xp = (xpi, . . . , Xpn),p = 1, 2, . . . , m. Each 
attribute value Xpi is fuzzified as a symmetric triangular fuzzy number Xpi 
as shown in Fig. 14.13 where Atraining is a small real number that controls 



14.3 Fuzzy Classification 293 

the amount of the at tached fuzziness. Figure 14.14 demonstrates the effect of 
fuzzification of training pat terns . Non-fuzzy training pat terns were used in the 
learning of a three-layer feedforward neural network by the back-propagation 
algorithm in Fig. 14.14 (a). On the other hand, fuzzified training pat terns 
with Atraining = 0.1 wcrc uscd in Fig. 14.14 (b). The 0-level sets of the fuzzified 
training pat terns are depicted by squares in Fig. 14.14 (b) for four pat terns . 
It should be noted tha t not only the four pat terns but also the other training 
pat terns in Fig. 14.14 (b) were fuzzified in the learning of the neural network. 
Fuzzification can also be used in the classification phase of new pat terns by 
trained neural networks. 

Fig. 14.13. Fuzzification of each input 
value Xpi to a symmetric triangular fuzzy 
number Xpi 
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