

Advanced Information Processing

Series Editor
Lakhmi C. Jain

Advisory Board Members
Endre Boros

Clarence W. de Silva
Stephen Grossberg

Robert J. Hewlett
Michael N. Huhns

Paul B. Kantor
Charles L. Karr

Nadia Magenat-Thalmann
Dinesh P.Mital
Toyoaki Nishida

Klaus Obermayer
Manfred Schmitt

Hisao Ishibuchi • Tomoharu Nakashima
Manabu Nii

Classification and
Modeling with
Linguistic Information
Granules
Advanced Approaches
to Linguistic Data Mining

With 217 Figures and 72 Tables

^ Spri rineer

Hisao Ishibuchi

Department of Computer Science
and Intelligent Systems
Osaka Prefecture University
1-1 Gakuen-cho, Sakai
Osaka 599-8531, Japan
email: hisaoi@cs.osakafu-u.ac.jp

Tomoharu Nakashima

Department of Computer Science
and Intelligent Systems
Osaka Prefecture University
1-1 Gakuen-cho, Sakai
Osaka 599-8531, Japan
email: nakashi@cs.osakafu-u.ac.jp

Manabu Nii

Department of Electrical Engineering
and Computer Sciences
Graduate School of Engineering
University of Hyogo
2167Shosha, Himeji
Hyogo 671-2201, Japan
e-mail: nii@eng.u-hyogo.ac.jp

Library of Congress Control Number: 2004114623

ACM Subject Classification (1998): 1.2

ISBN 3-540-20767-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in
databanks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9,1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronHne.com

© Springer-Verlag BerHn Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Typesetting: by the Authors
Cover design: KiinkelLopka, Heidelberg
Production: LE-TeX Jelonek, Schmidt & Vockler GbR, Leipzig
Printed on acid-free paper 45/3142/YL - 5 4 3 210

mailto:hisaoi@cs.osakafu-u.ac.jp
mailto:nakashi@cs.osakafu-u.ac.jp
mailto:nii@eng.u-hyogo.ac.jp
http://springeronHne.com

Preface

Many approaches have already been proposed for classification and modeling
in the literature. These approaches are usually based on mathematical mod
els. Computer systems can easily handle mathematical models even when
they are complicated and nonlinear (e.g., neural networks). On the other
hand, it is not always easy for human users to intuitively understand mathe
matical models even when they are simple and linear. This is because human
information processing is based mainly on linguistic knowledge while com
puter systems are designed to handle symbolic and numerical information.
A large part of our daily communication is based on words. We learn from
various media such as books, newspapers, magazines, TV, and the Inter
net through words. We also communicate with others through words. While
words play a central role in human information processing, linguistic models
are not often used in the fields of classification and modeling. If there is no
goal other than the maximization of accuracy in classification and model
ing, mathematical models may always be preferred to linguistic models. On
the other hand, linguistic models may be chosen if emphasis is placed on
interpretability.

The main purpose in writing this book is to clearly explain how classifi
cation and modeling can be handled in a human understandable manner. In
this book, we only use simple linguistic rules such as "// the 1st input is large
and the 2nd input is small then the output is large^^ and "// the 1st attribute is
small and the 2nd attribute is medium then the pattern is Class ^". These lin
guistic rules are extracted from numerical data. In this sense, our approaches
to classification and modeling can be viewed as linguistic knowledge extrac
tion from numerical data (i.e., linguistic data mining). There are many issues
to be discussed in linguistic approaches to classification and modeling. The
first issue is how to determine the linguistic terms used in linguistic rules. For
example, we have some linguistic terms such as young, middle-aged, and old
for describing our ages. In the case of weight, we might use light, middle, and
heavy. Two problems are involved in the determination of linguistic terms.
One is to choose linguistic terms for each variable, and the other is to define
the meaning of each linguistic term. The choice of linguistic terms is related
to linguistic discretization (i.e., granulation) of each variable. The definition
of the meaning of each linguistic term is performed using fuzzy logic. That is,
the meaning of each linguistic term is specified by its membership function.
Linguistic rules can be viewed as combinations of linguistic terms for each

VI Preface

variable. The main focus of this book is to find good combinations of linguis
tic terms for generating linguistic rules. Interpret ability as well as accuracy
are taken into account when we extract linguistic rules from numerical data.
Various aspects are related to the interpretability of linguistic models. In this
book, the following aspects are discussed:

• Granulation of each variable (i.e., the number of linguistic terms).
• Overlap between adjacent linguistic terms.
• Length of each linguistic rule (i.e., the number of antecedent conditions).
• Number of linguistic rules.

The first two aspects are related to the determination of linguistic terms. We
examine the effect of these aspects on the performance of linguistic models.
The other two aspects are related to the complexity of linguistic models. We
examine a tradeoff between the accuracy and the complexity of linguistic
models. We mainly use genetic algorithms for designing linguistic models.
Genetic algorithms are used as machine learning tools as well as optimization
tools. We also describe the handling of linguistic rules in neural networks.
Linguistic rules and numerical data are simultaneously used as training data
in the learning of neural networks. Trained neural networks are used to extract
linguistic rules.

While this book includes many state-of-the-art techniques in soft com
puting such as multi-objective genetic algorithms, genetics-based machine
learning, and fuzzified neural networks, undergraduate students in computer
science and related fields may be able to understand almost all parts of this
book without any particular background knowledge. We make the book as
simple as possible by using many examples and figures. We explain fuzzy
logic, genetic algorithms, and neural networks in an easily understandable
manner when they are used in the book. This book can be used as a textbook
in a one-semester course. In this case, the last four chapters can be omitted
because they include somewhat advanced topics on fuzzified neural networks.
The first ten chapters clearly explain linguistic models for classification and
modeling.

I would like to thank Prof. Lakhmi C. Jain for giving me the opportunity
to write this book. We would also like to thank Prof. Witold Pedrycz and
Prof. Francisco Herrera for their useful comments on the draft version of
this book. Special thanks are extended to people who kindly assisted us in
publishing this book. For example, Mr. Ronan Nugent worked hard for the
copy-editing of this book. Ms. Ulrike Strieker gave us helpful comments on
the layout and production. And general comments are given by Mr. Ralf
Gerstner, who patiently and kindly contacted us. Some simulation results
in this book were checked by my students. It is a pleasure to acknowledge
the help of Takashi Yamamoto, Gaku Nakai, Teppei Seguchi, Yohei Shibata,
Masayo Udo, Shiori Kaige, and Satoshi Namba.

Sakai, Osaka, March 2003 Hisao Ishibuchi

Contents

1. Linguistic Information Granules 1
1.1 Mathematical Handling of Linguistic Terms 2
1.2 Linguistic Discretization of Continuous Attributes 4

2. Pattern Classification with Linguistic Rules 11
2.1 Problem Description 11
2.2 Linguistic Rule Extraction for Classification Problems 12

2.2.1 Specification of the Consequent Class 13
2.2.2 Specification of the Rule Weight 17

2.3 Classification of New Patterns by Linguistic Rules 20
2.3.1 Single Winner-Based Method 20
2.3.2 Voting-Based Method 22

2.4 Computer Simulations 25
2.4.1 Comparison of Four Definitions of Rule Weights 26
2.4.2 Simulation Results on Iris Data 29
2.4.3 Simulation Results on Wine Data 32
2.4.4 Discussions on Simulation Results 35

3. Learning of Linguistic Rules 39
3.1 Reward-Punishment Learning 39

3.1.1 Learning Algorithm 39
3.1.2 Illustration of the Learning Algorithm Using Artificial

Test Problems 41
3.1.3 Computer Simulations on Iris Data 45
3.1.4 Computer Simulations on Wine Data 47

3.2 Analytical Learning 47
3.2.1 Learning Algorithm 48
3.2.2 Illustration of the Learning Algorithm Using Artificial

Test Problems 50
3.2.3 Computer Simulations on Iris Data 54
3.2.4 Computer Simulations on Wine Data 56

3.3 Related Issues 57
3.3.1 Further Adjustment of Classification Boundaries 57
3.3.2 Adjustment of Membership Functions 62

VIII Contents

4. Input Selection and Rule Selection 69
4.1 Curse of Dimensionality 69
4.2 Input Selection 70

4.2.1 Examination of Subsets of Attributes 70
4.2.2 Simulation Results 71

4.3 Genetic Algorithm-Based Rule Selection 75
4.3.1 Basic Idea 76
4.3.2 Generation of Candidate Rules 77
4.3.3 Genetic Algorithms for Rule Selection 80
4.3.4 Computer Simulations 87

4.4 Some Extensions to Rule Selection 89
4.4.1 Heuristics in Genetic Algorithms 90
4.4.2 Prescreening of Candidate Rules 93
4.4.3 Computer Simulations 96

5. Genetics-Based Machine Learning 103
5.1 Two Approaches in Genetics-Based Machine Learning 103
5.2 Michigan-Style Algorithm 105

5.2.1 Coding of Linguistic Rules 105
5.2.2 Genetic Operations 105
5.2.3 Algorithm 107
5.2.4 Computer Simulations 108
5.2.5 Extensions to the Michigan-Style Algorithm I l l

5.3 Pittsburgh-Style Algorithm 116
5.3.1 Coding of Rule Sets 117
5.3.2 Genetic Operations 117
5.3.3 Algorithm 119
5.3.4 Computer Simulations 119

5.4 Hybridization of the Two Approaches 121
5.4.1 Advantages of Each Algorithm 121
5.4.2 Hybrid Algorithm 124
5.4.3 Computer Simulations 125
5.4.4 Minimization of the Number of Linguistic Rules 126

6. Multi-Objective Design of Linguistic Models 131
6.1 Formulation of Three-Objective Problem 131
6.2 Multi-Objective Genetic Algorithms 134

6.2.1 Fitness Function 134
6.2.2 Elitist Strategy 135
6.2.3 Basic Framework of Multi-Objective Genetic Algorithms 135

6.3 Multi-Objective Rule Selection 136
6.3.1 Algorithm 136
6.3.2 Computer Simulations 136

6.4 Multi-Objective Genetics-Based Machine Learning 139
6.4.1 Algorithm 139

Contents IX

6.4.2 Computer Simulations 139

7. Comparison of Linguistic Discretization with Interval Dis
cretization 143
7.1 Effects of Linguistic Discretization 144

7.1.1 Effect in the Rule Generation Phase 144
7.1.2 Effect in the Classification Phase 146
7.1.3 Summary of Effects of Linguistic Discretization 147

7.2 Specification of Linguistic Discretization from Interval Dis
cretization 147
7.2.1 Specification of Fully Fuzzified Linguistic Discretization 147
7.2.2 Specification of Partially Fuzzified Linguistic Discretiza

tion 150
7.3 Comparison Using Homogeneous Discretization 151

7.3.1 Simulation Results on Iris Data 151
7.3.2 Simulation Results on Wine Data 154

7.4 Comparison Using Inhomogeneous Discretization 155
7.4.1 Entropy-Based Inhomogeneous Interval Discretization . 156
7.4.2 Simulation Results on Iris Data 157
7.4.3 Simulation Results on Wine Data 158

8. Modeling with Linguistic Rules 161
8.1 Problem Description 161
8.2 Linguistic Rule Extraction for Modeling Problems 162

8.2.1 Linguistic Association Rules for Modeling Problems . . 163
8.2.2 Specification of the Consequent Part 165
8.2.3 Other Approaches to Linguistic Rule Generations 166
8.2.4 Estimation of Output Values by Linguistic Rules 169
8.2.5 Standard Fuzzy Reasoning 169
8.2.6 Limitations and Extensions 172
8.2.7 Non-Standard Fuzzy Reasoning Based on the Speci

ficity of Each Linguistic Rule 174
8.3 Modeling of Nonlinear Fuzzy Functions 177

9. Design of Compact Linguistic Models 181
9.1 Single-Objective and Multi-Objective Formulations 181

9.1.1 Three Objectives in the Design of Linguistic Models . . 181
9.1.2 Handling as a Single-Objective Optimization Problem. 182
9.1.3 Handling as a Three-Objective Optimization Problem . 183

9.2 Multi-Objective Rule Selection 185
9.2.1 Candidate Rule Generation 185
9.2.2 Candidate Rule Prescreening 185
9.2.3 Three-Objective Genetic Algorithm for Rule Selection. 187
9.2.4 Simple Numerical Example 189

9.3 Fuzzy Genetics-Based Machine Learning 190

X Contents

9.3.1 Coding of Rule Sets 192
9.3.2 Three-Objective Fuzzy GBML Algorithm 192
9.3.3 Simple Numerical Example 194
9.3.4 Some Heuristic Procedures 194

9.4 Comparison of Two Schemes 196

10. Linguistic Rules with Consequent Real Numbers 199
10.1 Consequent Real Numbers 199
10.2 Local Learning of Consequent Real Numbers 201

10.2.1 Heuristic Specification Method 201
10.2.2 Incremental Learning Algorithm 203

10.3 Global Learning 205
10.3.1 Incremental Learning Algorithm 206
10.3.2 Comparison Between Two Learning Schemes 207

10.4 Effect of the Use of Consequent Real Numbers 208
10.4.1 Resolution of Adjustment 208
10.4.2 Simulation Results 210

10.5 Twin-Table Approach 211
10.5.1 Basic Idea 212
10.5.2 Determination of Consequent Linguistic Terms 213
10.5.3 Numerical Example 215

11. Handling of Linguistic Rules in Neural Networks 219
11.1 Problem Formulation 220

11.1.1 Approximation of Linguistic Rules 220
11.1.2 Multi-Layer Feedforward Neural Networks 221

11.2 Handling of Linguistic Rules Using Membership Values 222
11.2.1 Basic Idea 222
11.2.2 Network Architecture 223
11.2.3 Computer Simulation 223

11.3 Handling of Linguistic Rules Using Level Sets 225
11.3.1 Basic Idea 225
11.3.2 Network Architecture 226
11.3.3 Computer Simulation 226

11.4 Handling of Linguistic Rules Using Fuzzy Arithmetic 228
11.4.1 Basic Idea 228
11.4.2 Fuzzy Arithmetic 228
11.4.3 Network Architecture 230
11.4.4 Computer Simulation 233

12. Learning of Neural Networks from Linguistic Rules 235
12.1 Back-Propagation Algorithm 235
12.2 Learning from Linguistic Rules for Classification Problems . . . 237

12.2.1 Linguistic Training Data 237
12.2.2 Cost Function 237

Contents XI

12.2.3 Extended Back-Propagation Algorithm 238
12.2.4 Learning from Linguistic Rules and Numerical Data . . 241

12.3 Learning from Linguistic Rules for Modeling Problems 245
12.3.1 Linguistic Data 245
12.3.2 Cost Function 245
12.3.3 Extended Back-Propagation Algorithm 246
12.3.4 Learning from Linguistic Rules and Numerical Data . . 247

13. Linguistic Rule Extraction from Neural Networks 251
13.1 Neural Networks and Linguistic Rules 252
13.2 Linguistic Rule Extraction for Modeling Problems 252

13.2.1 Basic Idea 253
13.2.2 Extraction of Linguistic Rules 253
13.2.3 Computer Simulations 254

13.3 Linguistic Rule Extraction for Classification Problems 258
13.3.1 Basic Idea 259
13.3.2 Extraction of Linguistic Rules 259
13.3.3 Computer Simulations 263
13.3.4 Rule Extraction Algorithm 265
13.3.5 Decreasing the Measurement Cost 267

13.4 Difficulties and Extensions 270
13.4.1 Scalability to High-Dimensional Problems 271
13.4.2 Increase of Excess Fuzziness in Fuzzy Outputs 271

14. Modeling of Fuzzy Input-Output Relations 277
14.1 Modeling of Fuzzy Number-Valued Functions 277

14.1.1 Linear Fuzzy Regression Models 278
14.1.2 Fuzzy Rule-Based Systems 280
14.1.3 Fuzzified Takagi-Sugeno Models 281
14.1.4 Fuzzified Neural Networks 283

14.2 Modeling of Fuzzy Mappings 285
14.2.1 Linear Fuzzy Regression Models 285
14.2.2 Fuzzy Rule-Based Systems 286
14.2.3 Fuzzified Takagi-Sugeno Models 286
14.2.4 Fuzzified Neural Networks 287

14.3 Fuzzy Classification 287
14.3.1 Fuzzy Classification of Non-Fuzzy Patterns 288
14.3.2 Fuzzy Classification of Interval Patterns 291
14.3.3 Fuzzy Classification of Fuzzy Patterns 291
14.3.4 Effect of Fuzzification of Input Patterns 292

Index 304

1. Linguistic Information Granules

In this book, we handle classification and modeling as linguistic rule extrac
tion from numerical data. When rule extraction problems involve continuous
attributes such as height, weight, and length, those attributes are usually
discretized into several intervals in the field of machine learning [30]. In some
situations, human knowledge exactly corresponds to interval discretization
of continuous attributes. For example, the domain of age is divided into two
intervals by the threshold age 20 in the following knowledge: "People under
20 are not allowed to smoke". Many laws are related to interval discretiza
tion of age. Various fare systems are also based on interval discretization of
age (e.g., the bus fare for children between the ages of 6 and 12 is half of
that for adults). Other familiar examples of interval discretization are weight
divisions in boxing, wrestling, and judo. In these sports, weight is divided
into some intervals (e.g., heavyweight, cruiserweight, light heavyweight, su
per middleweight, middleweight, etc.). Matchmaking is usually done within
the same weight division. While we can show many examples of interval
discretization, all of them come from artificially specified systems. In our ev
eryday conversations, we usually do not use interval discretization. Instead of
interval discretization, we use fuzzy discretization with no sharp boundaries.
For example, let us consider the situation where a girl tells us that her father
is tall. In this situation, we do not know the exact height of her father. We
do not know the exact range (i.e., interval) of the height of her father, either.
We just know that her father is tall. While the statement that her father
is tall is vague, it gives us significant information about the height of her
father. In this example, we do not have any exact interval corresponding to
the linguistic term tall but have a vague range. Almost all linguistic terms
in everyday conversations are related to vague ranges (not exact intervals).
We can give many examples of linguistic terms with vague ranges. For ex
ample, the following statements include linguistic terms with vague ranges:
she can run fast, his house is large, and my blood pressure is high. In these
statements, fast, large, and high are not related to any exact intervals with
clear boundaries.

We construct if-then rules using linguistic terms to handle classification
and modeling problems. Linguistic rules for classification problems have lin
guistic conditions in the antecedent part and a class label in the consequent

2 1. Linguistic Information Granules

part. When our classification problem involves two continuous attributes of
length and width, an example of linguistic rules is "If the length is large and
the width is large then Class 1". On the other hand, linguistic rules for mod
eling problems have linguistic conditions in the antecedent part and linguistic
terms in the consequent part. When our modeling problem involves two in
put variables and a single output variable, an example of linguistic rules is
"If the first input is small and the second input is large then the output
is mediurri\ Throughout this book, we show how these linguistic rules can
be generated from numerical data. We also examine the classification and
modeling performance of linguistic rules. We expect that the performance of
linguistic models (i.e., linguistic rule-based systems) is inferior to complicated
nonlinear mathematical models. For improving the performance of linguistic
models, we examine some tricks such as assigning a certainty factor to each
rule and replacing a consequent linguistic term with a real number. Through
computer simulations on simple numerical examples and real-world data sets,
it is shown that the performance of Hnguistic models is significantly improved
by such tricks.

The main advantage of using linguistic terms with vague ranges is the in
tuitive interpretability of linguistic rules. We can easily understand linguistic
rules because they are based on linguistic terms as in our everyday conversa
tions. While complicated nonlinear mathematical models such as neural net
works are usually handled as black-box models, linguistic rule-based systems
are transparent models. In this book, emphasis is placed on interpretability as
well as accuracy when we tackle classification and modeling problems. That
is, we try to design linguistic models with high interpretability as well as
high accuracy. In addition to the performance of linguistic rules, we discuss
their interpretability in this book. The design of linguistic models is viewed
as finding a good tradeoff between interpretability and accuracy. Some users
may prefer somewhat complicated linguistic models with high accuracy while
other users may prefer very simple ones with high interpretability. Thus the
design of linguistic models is also treated in the framework of multi-objective
optimization. Multi-objective genetic algorithms are used to find a number
of alternative rule-based systems with different accuracy and interpretability.

1.1 Mathemat ical Handling of Linguistic Terms

A mathematical framework for handling linguistic terms is fuzzy logic pro
posed by Zadeh in 1965 [190]. The concept of linguistic terms was introduced
by Zadeh [191]. Recently fuzzy logic has been recognized as a useful mathe
matical tool for handling continuous attributes in rule-based systems [147].
Fuzzy rule-based systems have been successfully applied to various applica
tion fields such as control, modeling, and classification [117, 118, 119, 156].

1.1 Mathematical Handling of Linguistic Terms 3

A fuzzy set is a generalized concept of a standard non-fuzzy set. First let
us consider a standard non-fuzzy set. For example, let A be a set of positive
integers less than or equal to 5. The standard non-fuzzy set A is written as

A = {1,2,3,4,5}. (1.1)

All positive integers less than or equal to 5 are included in A and any other
integers are excluded from A. In this case, the membership of each integer in
A is clear. That is, we know whether each integer is included in A or excluded
from A. Now let us consider a set of small positive integers. We denote this
set by B. We may be sure that the smallest positive integer "1" is included
in B. We may also be sure that large integers such as "100" are not included
in B. Let us assume that a small positive integer x (e.g., 1) is included in B.
In this case, we may think that the next integer a; -h 1 is also included in B
because the difference between x and a: -h 1 is only 1. In the same manner,
we may also think that a: + 2 is included in B because a; -h 1 is in J5 and
the difference between x + I and a; -h 2 is only 1. This leads to the counter
intuitive result that all positive integers are included in the set B of small
positive integers. If we try to define the set B using interval discretization, we
have to specify a threshold integer 0 such that 6 is included in B while ^ + 1
is not included in B. The use of such a threshold value is counter-intuitive
because the difference between 0 and ^ -h 1 is only 1. For example, it is not
natural to think that "6" is not a small positive integer when we think that
"5" is a small positive integer.

The difficulty in handling the set B of small positive integers within the
framework of the standard set theory stems from the fact that the linguistic
term small cannot be specified by interval discretization. In fuzzy logic (more
specifically, fuzzy set theory), the set B of small positive integers is handled as
a fuzzy set. It is assumed that each integer has a different grade of membership
in the fuzzy set B. We may think that "1" and "2" have the maximum grade
of membership (i.e., grade 1.0) in the fuzzy set B while "3" has a slightly
smaller grade of membership (e.g., 0.9) than "1" and "2". Table 1.1 shows the
membership grade of each integer in the fuzzy set B. We intuitively specify
those grades of membership in Table 1.1. Readers may assign a different grade
to each integer depending on their subjective understanding of the linguistic
term small The fuzzy set B specified by the membership grades in Table 1.1
is written as follows:

B
- ih9. 1:0 2:9 0^ 05 0^ OTi
" l l ' 2 ' 3 ' 4 ' 5 ' 6 ' 7 j * ^ ^ ^

As shown in (1.2), fuzzy sets are denoted in the form of {membership
grade/element}. Elements with no membership grade (i.e., grade 0.0) are
omitted. In (1.2), integers larger than 7 have no membership grade in the
fuzzy set B. As shown in Table 1.1, the maximum and minimum member
ship grades are 1.0 and 0.0 in fuzzy logic, respectively.

4 1. Linguistic Information Granules

Table 1.1. Examples of membership grades in the fuzzy set B of small positive
integers

Integer

Membership

1

1.0

2

1.0

3

0.9

4

0.8

5

0.5

6

0.2

7

0.1

8

0.0

9

0.0

10

0.0

When we have a fuzzy concept on a continuous attribute, we cannot write
all elements with positive membership grades in the same manner as (1.2). For
handling such a situation, fuzzy logic uses a membership function for defining
a fuzzy concept. In Fig. 1.1, we show an example of a membership function
that defines the fuzzy concept tall We intuitively define this membership
function on the continuous domain of height (i.e., the horizontal axis of Fig.
1.1). Readers may have different membership functions for the fuzzy concept
tall In fuzzy logic, membership functions are usually denoted by yu(-). Let us
denote the height by x as in Fig. 1.1. Then the membership function of the
fuzzy concept tall in Fig. 1.1 is mathematically written as

r 0, for X < 170,
fJ^taiiix) = { {x- 170)/10, for 170 < a: < 180, (1.3)

[1, for 180 < X.

The subscript tall of the membership function jutaiii') denotes the label of
the fuzzy set. This membership function specifies a membership grade of
every particular value of height to the fuzzy concept tall For example, the
membership grade of the height 176 cm can be calculated from (1.3) as 0.6.
As shown in Fig. 1.1, a membership function on a continuous attribute can
be viewed as a mapping from its domain interval to the unit interval [0,1].
Usually the domain on which a membership function is defined is referred to
as the universe of discourse in fuzzy logic.

- J — • x
200 Fig. 1.1. An example of a member-
Height [cm] ship function

1.2 Linguistic Discretization of Continuous Attributes

We use some linguistic terms for describing a continuous attribute. For ex
ample, we may use the three linguistic terms of light, middle, and heavy

1.2 Linguistic Discretization of Continuous Attributes 5

for describing weight. This means that the domain interval of weight is dis-
cretized into the three hnguistic terms light, middle, and heavy. Figure 1.2
shows membership functions of these three hnguistic terms, which are in
tuitively specified based on our subjective understanding of these linguistic
terms. When the linguistic discretization into the three linguistic terms in
Fig. 1.2 is given, we only use those three linguistic terms in our fuzzy models
for describing weight. That is, numerical information with respect to weight
is granulized into those three linguistic terms.

—̂̂ X Fig. 1.2. Linguistic discretiza
tion of weight into three linguistic

Weight [kg] ^erms

The membership function of each linguistic term mathematically specifies
its meaning. As we have already mentioned, the membership function is de
termined according to our subjective understanding of each linguistic term.
Readers may assign a different membership function to each linguistic term
in Fig. 1.2. Of course, the meaning of each linguistic term depends on the
situation. For example, the meaning of the linguistic term heavy with respect
to high school students is different from its meaning in the context of heavy
professional wrestlers. Moreover, readers may have a different number of lin
guistic terms. The number of linguistic terms depends on the situation. It also
depends on the culture. For example, there exist many linguistic terms for
describing rain in Japanese. Some languages spoken in dry regions with little
rain may have far fewer linguistic terms for describing rain than Japanese.

While people do not always have the same understanding of each linguis
tic term, we can usually communicate with each other using linguistic terms
without mentioning their exact definitions. This is because our everyday con
versations usually do not require any exact definition of each linguistic term.
Everyone has a vague understanding of each linguistic term. This corresponds
to linguistic discretization with fuzzy boundaries in Fig. 1.2. While people
may depict different membership functions for the same linguistic term, they
may have large overlaps. Thanks to such overlaps in our understanding of
each linguistic term, we can communicate with each other using linguistic
terms.

To illustrate linguistic rule extraction from numerical data based on lin
guistic discretization, let us consider the situation where we ask eleven ex
aminees whether they feel comfortable in a small car or not. Suppose that we

6 1. Linguistic Information Granules

have the responses in Table 1.2 from the eleven examinees on the comfort
ableness of the small car. Numerical data in Table 1.2 are depicted in Fig. 1.3
together with the linguistic discretization of weight into the three linguistic
terms. From Fig. 1.3, we can extract the following linguistic rules:

If the weight is heavy then they do not feel comfortable in a small car.
If the weight is middle then they do not feel comfortable in a small car.
If the weight is light then they feels comfortable in a small car.

We explain formal mathematical procedures for linguistic rule extraction in
the next chapter for classification problems. Here we show these linguistic
rules just to illustrate the relation between linguistic discretization and rule
extraction.

Table 1.2. Responses from eleven examinees (artificial data for illustration pur
poses)

Examinee (p)

Weight (xp)

Comfortableness

1

45

yes

2

50

yes

3

55

yes

4

60

no

5

65

yes

6

70

no

7

75

no

8

80

no

9

85

no

10

90

no

11

95

no

O: Comfortable
•: Not Comfortable

Weight [kg]
Fig. 1.3. Responses from eleven
examinees in Table 1.2

Of course, different linguistic rules have been obtained from different lin
guistic discretization. In this book, we assume that linguistic discretization
of the domain interval of each attribute is given. That is, we assume that a
set of linguistic terms is given for describing each attribute. This assumption
corresponds to the fact that we usually use a fixed number of linguistic terms
to describe each attribute in our everyday conversations. In many machine
learning techniques for handling continuous attributes such as decision trees
[143], the domain interval of each continuous attribute is discretized into sev
eral intervals according to some performance criterion using numerical data.
That is, threshold values are specified or adjusted using numerical data. On
the contrary, we use a given set of linguistic terms for each attribute. In
some cases, linguistic discretization of each attribute may be obtained from

1.2 Linguistic Discretization of Continuous Attributes 7

human users or domain experts. There are, however, other cases where no
hnguistic discretization is available for each a t t r ibute . In these cases, we have
to specify a set of linguistic terms for each a t t r ibute . We use homogeneous
discretization of the domain interval because such discretization is more eas
ily understood by human users than inhomogeneous discretization. Figure
1.4 shows some examples of homogeneous discretization of the domain inter
val [0,1] into several linguistic terms with tr iangular membership functions.
On the other hand, Fig. 1.5 shows an example of inhomogeneous discretiza
tion. From the comparison between Fig. 1.4 and Fig. 1.5, we can see tha t
homogeneous discretization is much more interpretable than inhomogeneous
discretization. The interpret ability of linguistic discretization (or fuzzy dis
cretization in general) has been discussed in many studies. For example, see
Oliveira [134], Pedrycz & Oliveira [140], and Suzuki & Furuhashi [161]. While
we do not discuss the determination of membership functions from numerical
data , we examine the effect of the granularity (i.e., resolution of linguistic
discretization: the number of linguistic terms K in Fig. 1.4) on the perfor
mance of linguistic models through computer simulations. We also compare
linguistic models based on linguistic discretization with non-fuzzy rule-based
systems based on interval discretization. These computer simulations will
clearly demonstrate some characteristic features of linguistic models. Further
more we demonstrate the effect of using a certainty factor (i.e., rule weight)
for each linguistic rule on the performance of linguistic models.

(a) ^ = 2 (b)^=3

(c)^=4 {&)K=5

Fig. 1.4. Examples of homogeneous linguistic discretization of the domain interval
[0,1]. The meaning of each label is as follows: S: small, MS: medium small, M:
medium, ML: medium large, and L: large. The superscript on each label denotes
the granularity of the corresponding linguistic discretization (i.e., the number of
linguistic terms: K)

1. Linguistic Information Granules

Fig. 1.5. Example of inhomogeneous dis
cretization

In the case of modeling problems, we assume that linguistic discretization
is given for each of the input and output variables. Figure 1.6 illustrates a
single-input and single-output modeling problem where five linguistic terms
(i.e., S: small, MS: medium small, M: medium, ML: medium large, and L:
large) are given to describe both the input variable x and the output variable
y. From this figure, we can generate the following five linguistic rules by
choosing a consequent linguistic term for each antecedent condition:

If X is small then y is large.
If X is medium small then y is medium.
If X is medium then y is medium.
If X is medium large then y is medium large.
If X is large then y is medium.

We explain formal mathematical procedures for linguistic rule extraction in
a later chapter for modeling problems. We also use a different form of lin
guistic rules where the consequent part is defined by real numbers instead of
linguistic terms (e.g., "If x is small then y is 0.95").

Fig. 1.6. Linguistic discretization of the
input-output space and numerical data

As shown in Fig. 1.6, linguistic rules for modeling problems correspond to
cells (i.e., patches) in grid spaces defined by linguistic discretization of input
and output variables. Linguistic rule extraction can be viewed as the choice of
such cells. The point is that each attribute is discretized into several linguistic
terms for generating linguistic rules. This corresponds to our knowledge and

1.2 Linguistic Discretization of Continuous Attributes 9

memory in everyday situations. For example, when we talk about our friends,
we usually do not mention the exact values of their height, weight, salary, age,
etc. Instead, we describe them using linguistic terms (e.g., she is tall). In many
cases, we do not know the exact values of those attributes for our friends.
We may, however, have linguistic knowledge about these attributes. This
contrasts with information processing in computer systems where exact values
are stored and processed. In this book, we intend to handle classification and
modeling problems using linguistic terms in a similar manner to our everyday
information processing. Since we use only a small number of pre-specified
linguistic terms, the performance of linguistic rules seems to be inferior to that
of complicated nonlinear mathematical models. On the other hand, linguistic
rules have high interpretability. We do not try to design mathematical models
with high accuracy but design linguistic models with high interpretability.
We do not adjust (i.e., modify) the membership function of each linguistic
term. This is because the adjustment of the membership function leads to the
modification of the meaning of each linguistic term. We try to improve the
performance of linguistic models by finding good linguistic rules. This involves
not only the specification of the consequent part but also input selection and
rule selection. Through the use of computer simulations in this book, the
classification and modeling performance of linguistic models are examined.
Simulation results show that linguistic models have high performance while
we may expect low performance of linguistic models from the fact that we
use a small number of pre-specified linguistic terms without modifying their
membership functions.

This book can be viewed as an attempt to summarize a part of recent
studies in a rapidly emerging field of computer science called "computing
with words". We concentrate our attention on classification and modeling
using linguistic rules. For more general discussions on the field of computing
with words, see the edited books by Wang [177] and Zadeh & Kacprzyk [192].
Shanahan [152] discussed Cartesian granule models from the viewpoints of
fuzzy set theory, fuzzy logic, probability theory, machine learning, and data
mining. The edited books by Casillas et al. [18, 19] include various topics
related to the accuracy, complexity, and interpretability of fuzzy rule-based
models. These books may be good choices for advanced readers after reading
this book.

2. Pat tern Classification with Linguistic Rules

In this chapter, we describe a heuristic approach to hnguistic rule extraction
from numerical data for pattern classification problems. We also explain a
single winner-based fuzzy reasoning method for classifying new patterns by
generated linguistic rules. Learning of linguistic rules is discussed in the next
chapter. Handling of high-dimensional classification problems is discussed
in later chapters where input selection, rule selection, and genetics-based
machine learning techniques are described.

2.1 Problem Description

Let us assume that we have m labeled patterns Xp = {xpi,... ,Xpn), p =
1, 2 , . . . , m, from M classes for an n-dimensional pattern classification prob
lem where Xpi is the attribute value of the i-th attribute in the p-th. pattern
Xp. Each attribute is in general continuous (i.e., each attribute value Xpi is a
real number). Each attribute, however, can be discrete (i.e., binary, ternary,
etc.). We also assume that a set of linguistic terms is given for describing
each attribute. Our task is to generate linguistic rules (i.e., to construct a
linguistic rule-based system) from the given numerical data using the given
linguistic terms. Figure 1.3 in the previous chapter is an example of our lin
guistic rule extraction problem where eleven patterns from two classes and
three linguistic terms for each attribute are given in a single-dimensional
continuous pattern space.

For simplicity of explanation, we assume that each attribute value is nor
malized into a real number in the unit interval [0,1]. This means that the
n-dimensional pattern space of our pattern classification problem is normal
ized into the n-dimensional unit hypercube [0,1]"^. In computer simulations
in this book, this normalization is performed as a preprocessing procedure.
An example of our pattern classification problem is shown in Fig. 2.1 where
30 patterns from two classes and three linguistic terms for each attribute are
given in the two-dimensional pattern space [0,1]^.

Linguistic rules for our n-dimensional pattern classification problem are
written in the following form:

Rule Rqi If xi is Aqi and . . . and Xn is Aqn then Class Cg, (2.1)

12 2. Pattern Classification with Linguistic Rules

•: Class 1 O: Class 2

Fig. 2.1. A simple example
of our linguistic rule extraction
problem where 30 patterns are
given from two classes (15 pat
terns from each class). The nor
malized domain interval [0,1] of
each attribute is discretized into
three linguistic terms

where Rq is the label of the q-th linguistic rule, x = (x i , . . . ,Xn) is an n-
dimensional pattern vector, Aqi is a linguistic term given for the i-th at
tribute, and Cq is a consequent class. When K linguistic terms are given for
each of the n attributes, we have K^ linguistic rules of the form (2.1). In Fig.
2.1, we have nine linguistic rules (e.g., "If xi is small and X2 is small then
Class 1").

We also use linguistic rules of the following form with a rule weight:

Rule Rqi If xi is Aqi and . . . and Xn is Aqn

then Class Cq with CFq, (2.2)

where CFq is a rule weight (i.e., certainty factor) of the q-th linguistic rule Rq.
The effect of using rule weights on the performance of linguistic rule-based
classification systems was discussed in Ishibuchi & Nakashima [67]. The rule
weight CFq, which is a real number in the unit interval [0,1], denotes the
strength of the linguistic rule Rq. Linguistic rules with the maximum rule
weight 1.0 have the largest effect on the classification of new patterns. On
the other hand, linguistic rules with the minimum rule weight 0.0 have no
effect on the classification of new patterns. Heuristic specification methods of
rule weights are discussed later in this chapter. Learning algorithms of rule
weights are described in the next chapter.

2.2 Linguistic Rule Extract ion for Classification
Problems

We describe how the consequent class and the rule weight of each linguistic
rule can be specified from numerical data. The consequent class of each lin-

2.2 Linguistic Rule Extraction for Classification Problems 13

guistic rule is uniquely determined from training patterns compatible with its
antecedent part. There are, however, several alternative definitions of its rule
weight. Roughly speaking, the consequent class of each linguistic rule is the
dominant class in the cell corresponding to its antecedent part. For example,
the consequent class for the antecedent part "If xi is small and X2 is large^^
is determined as Class 1 in Fig. 2.1 because there are many closed circles
(i.e., Class 1 patterns) and no open circles (i.e.. Class 2 patterns) around the
top-left corner of the pattern space [0,1]^. When all patterns compatible with
the antecedent part are from a single class (i.e., the consequent class of the
linguistic rule), the rule weight is its maximum value (i.e., 1.0). The larger
is the ratio of compatible patterns from the consequent class to all compat
ible patterns, the higher is the rule weight. In this section, we describe a
heuristic specification method of the consequent class. We also describe four
alternative heuristic definitions of the rule weight of each linguistic rule.

2.2.1 Specification of the Consequent Class

When we use interval discretization for each attribute, it is easy to count
the number of patterns compatible with the antecedent part of each rule. On
the other hand, we have to take into account a compatibility grade of each
pattern with the antecedent part in the case of linguistic discretization. To
calculate the compatibility grade of the pattern Xp = (xpi , . . . , Xpn) with the
antecedent part of the linguistic rule Rq, first the compatibility grade of each
attribute value Xpi with the corresponding linguistic term Aqi is calculated as
MA i {xpi) where IIA i (•) is the membership function of the linguistic term Aqi.
Then the compatibility grade of the pattern Xp with the antecedent part of
Rq is calculated from the compatibility grade /LLA^iixpi). In many studies on
fuzzy rule-based systems, the minimum operator and the product operator
have been used to calculate the compatibility grade with the antecedent part.
When the minimum operator is used, the compatibility grade is calculated
as

/iAg {Xp) = min {/iA,i (xpi),..., /i^,^ {xpn)} , (2.3)

where Aq = {Aqi,..., Aqn)- For simplicity of notation, Aq is used to denote
the antecedent part "If xi is Aqi and . . . and Xn is Aqn^ of the linguistic rule
Rq in this book. On the other hand, the compatibility grade is calculated as
follows when the product operator is used:

fJ^A,{Xp) = fiA,i{Xpl) X . . . X llA,^{Xpn). (2.4)

Traditionally the minimum operator has often been used in the litera
ture. Recently the product operator has been frequently used especially in
adaptive fuzzy rule-based systems. This is because the derivation of learning
algorithms is easier for the product operator than for the minimum operator.
We illustrate the difference in the compatibility grade between these two op
erators in Fig. 2.2 and Fig. 2.3. Let us consider the pattern Xp = (0.25,0.25)

14 2. Pattern Classification with Linguistic Rules

denoted by a closed circle in these figures. The compatibility grade of this
pattern with the antecedent part "If xi is medium and X2 is medium^^ is
calculated using the minimum operator as

I^Aq{Xp) = mm{llmedium{0.2b),flmedium{0.2b)}

= min{0.5,0 .5}

= 0.5, (2.5)

where Aq = {medium^ medium). On the other hand, the compatibility grade
is calculated using the product operator as

(0.25) -̂ /^medium (0.25)

= 0.5 X 0.5

= 0.25. (2.6)

Figure 2.2 and Fig. 2.3 show contour lines of the compatibility grade for
the cases of the minimum operator and the product operator, respectively.
Contour lines are square in the case of the minimum operator in Fig. 2.2 while
they are somewhat circular in the case of the product operator in Fig. 2.3. In
almost all computer simulations in this book, we use the product operator.
The minimum operator is used only when these two operators are compared
with each other.

Fig. 2.2. Contour lines of the
compatibility grade with the an
tecedent part "If xi is medium.
and X2 is medium^^ in the case of
the minimum operator

Let D be the set of the given training patterns: D = (a^i,... ^Xm)- The
cardinality of D ism (i.e., \D\ = m). Let D{Aq) be the fuzzy set of compatible
training patterns with the antecedent part Aq of the linguistic rule Rq. Then
the total compatibility grade with the antecedent part Aq is calculated as

2.2 Linguistic Rule Extraction for Classification Problems 15

Fig. 2 .3. Contour lines of the
compatibility grade with the an
tecedent part "If xi is medium
and X2 is medium^^ in the case of
the product operator

\D{Aq)\ = Y^/j.A,{xp). (2.7)

|Z)(A^)| can be viewed as the cardinality of the fuzzy set D{Aq). In the case
of interval discretization (i.e., in the case where Aqi is an interval), |D(A^)|
is the number of compatible training patterns with the antecedent part Aq.

Using (2.4), we can define the compatibility grade of each training pattern
Xp with the linguistic rule Rq (i.e., with both the antecedent part Aq and
the consequent class Cq) as

luiA,{xp), if pe Class Cq,
if p ^ Class Cq.

(2.8)

Let D{Aq) n D{Cq) be the fuzzy set of compatible training patterns with
both the antecedent part Aq and the consequent class Cq. Then the total

(i.e., with both Aq and Cq)

(2.9)

compatibility grade with the linguistic rule Rq
is calculated as

p=l pGClass Cq

\D{Aq) n D{Cq)\ can be viewed as the total compatibility grade of training
patterns from Class Cq with the antecedent part Aq. In the case of interval
discretization, \D{Aq)nD{Cq)\ is the number of compatible training patterns
from Class Cq with the antecedent part Aq.

In the field of data mining, two measures are often used to evaluate as
sociation rules [4, 5]. They are "confidence" and "support". These concepts
can be easily extended to the case of linguistic rules [57, 95]. We use the
confidence to describe four heuristic definitions of the rule weight of each
linguistic rule.

16 2. Pattern Classification with Linguistic Rules

The linguistic rule Rq in (2.1) can be viewed as a linguistic association
rule Aq =^ Cq. The confidence c{Aq ^ Cq) of the linguistic association rule
Aq ^ Cq is defined as

C^Aq^Lq)- _ (2.1U)

The confidence c(Ag =^ C^) is the ratio of compatible patterns with both the
antecedent part Aq and the consequent class Cq to compatible patterns with
the antecedent part Aq. The confidence c{^Aq ^ Cq) measures the validity of
the linguistic association rule Aq ^ Cq. The confidence can be viewed as the
fuzzy conditional probability of Class Cq [171]. Note that the definition of
the confidence c{Aq =^ Cq) in (2.10) can be used for linguistic discretization
and interval discretization.

On the other hand, the support s{Aq => Cq) of the association rule Aq :=^
Cq is defined as

siA, => C,) = l^(-^.)nI>(C.)l ^ ^ ^ ^ • - ' ^ ^ ' . (2.11)

The support s{Aq => Cg) is the ratio of compatible patterns with both the
antecedent part Aq and the consequent class Cq to the given m training
patterns. The support s{Aq ^ Cq) measures the coverage of training patterns
by the linguistic association rule Aq ^ Cq. As the confidence in (2.10), the
definition of the support s{Aq ^ Cq) in (2.11) can be used for linguistic
discretization and interval discretization.

To illustrate these two measures (i.e., confidence and support) of linguistic
association rules, let us again consider the two-class pattern classification
problem in Fig. 1.3 of the previous chapter. First we show how c{middle ^
uncomfortable) and s{middle ^ uncomfortable) are calculated. The fuzzy set
D(middle) of examinees compatible with the linguistic term middle in Fig.
1.3 is explicitly written as

Dimzddle) - I ^ ^ , - ^ , — , — , — , ^7^ , - ^ } , (2.12)
55 ' 60 ' 65 ' 70 ' 75 ' 80 ' 85

where the denominator and the numerator show the weight Xp of each exam
inee and its membership value jUmiddieixp), respectively. As we have already
explained in the previous chapter, each element in (2.12) should not be viewed
as a fraction but as a pair consisting of an element and its membership value.
The total compatibility grade with the linguistic term middle is calculated
from (2.12) as

\D{middle)\ = 0.33 -h 0.67 + 1.0 + 1.0 -h 1.0 -h 0.67 -h 0.33 = 5.0. (2.13)

From Fig. 1.3, the total compatibility grade \D{middle) f) D(uncomfortable)\
is calculated as

2.2 Linguistic Rule Extraction for Classification Problems 17

\D{middle) H D{uncomfotahle)\ = 0.67 + 1.0 + 1.0 + 0.67 + 0.33

= 3.67. (2.14)

Thus the confidence and the support are calculated as

c{middle => uncomfortable) = —-— = 0.734, (2.15)
o.u

s(middle ^ uncomfortable) — —j—- = 0.334. (2.16)

In the same manner, the confidence and the support of the linguistic
association rule ^'middle ^ comfortable^^ are calculated as

1 33
c{middle ^ comfortable) = —— = 0.266, (2.17)

o.u

1 33
s{middle => comfortable) = —— = 0.121. (2.18)

Since c{middle => uncomfortable) is larger than c{middle •=^ comfortable),
we choose the linguistic association rule ''middle => uncomfortable^^ rather
than ''middle => comfortable^^ In the same manner, we can choose the con
sequent class for each of the other antecedent linguistic terms. That is, we
can generate linguistic association rules "light ^ comfortable^^ and "heavy ^
uncomfortable^^ in addition to "middle => uncomfortable^^

As shown in the above example, it is natural to choose the consequent
class Cq with the maximum confidence for the antecedent part A^ as

c{Aq ^Cq) =max{c(A^ ^ Class/i)|/i = 1 , 2 , . . . , M } . (2.19)

Note that the same consequent class Cq is obtained if we use the support s{-)
instead of the confidence c(-) in (2.19). When multiple classes have the same
maximum confidence (i.e., when Cq cannot be uniquely specified), we do not
generate any linguistic rule with the antecedent part Aq. Using (2.19), we
determine the consequent class for each of the nine cells in Fig. 2.1. Gener
ated linguistic rules are summarized in Fig. 2.4. The same consequent class is
specified for each linguistic rule independent of the choice between the min
imum operator and the product operator in this numerical example. From
the comparison between Fig. 2.1 and Fig. 2.4, we can see that the dominant
class in each cell is chosen as the consequent class for the corresponding lin
guistic rule. It should be noted that the dotted lines in these figures are not
sharp boundaries but fuzzy boundaries between cells because we use linguistic
discretization.

2.2.2 Specification of the Rule Weight

The confidence c{Aq => Cq) can be directly used as the rule weight CFq of
the linguistic rule Rq in (2.2) as in Cordon et al. [26]. That is, the rule weight
CFq of the linguistic rule Rq in (2.2) is specified as

18 2. Pattern Classification with Linguistic Rules

Class 1

Class 1

Class 1

Class 1

Class 2

Class 2

Class 2

Class 2

Class 2

Fig. 2.4. Nine linguistic rules
generated from numerical data in
Fig. 2.1

CF] = c{A, ^ C,). (2.20)

The superscript "I" shows that (2.20) is the first alternative definition of the
rule weight CFq.

Ishibuchi et al. [81] used a different heuristic definition of the rule weight
CF,:

^^q — ^\^q ^ ^q) ^Average? (2.21)

where CAverage IS the average confidence over linguistic rules with the same
antecedent part Aq but different consequent classes:

^Average
1

M

M -1
Y^ c{Aq =^ Class h) (2.22)
h = i

This definition of CFq can be easily understood if we consider the case of
M = 2 (i.e., two-class pattern classification problems). In this case, CFq is
calculated as follows when the consequent class is Class 1 (i.e., when c{Aq =^
Class 1) > c{Aq => Class 2)):

CFl^ = c{Aq ^ Class 1) - c{Aq => Class 2). (2.23)

When the consequent class is Class 2 (i.e., when c{Aq =^ Class 1) < c{Aq =^
Class 2)), CFq is calculated as

CFl^ = c{Aq :=^ Class 2) - c{Aq => Class 1). (2.24)

As we can see from (2.23) and (2.24), the rule weight CFq by the second
definition is a real number such that 0 < CF^^ < 1. On the other hand, the
rule weight CFq by the first definition is always larger than 0.5 in the case of
two-class pattern classification problems: 0.5 < CF^ < 1 when M = 2. The

2.2 Linguistic Rule Extraction for Classification Problems 19

difference between these two definitions is illustrated in Fig. 2.5. In this figure,
the value of CFq calculated by each definition is shown in the corresponding
cell. The first and second values in each cell are the values of the rule weight
calculated by the first and second definitions for the corresponding linguistic
rule, respectively. From this figure, we can see that the rule weight of each
linguistic rule is larger in the case of the first definition than the case of
the second definition. We can also see that the rule weights of linguistic rules
around the class boundary are smaller than those far from the class boundary.

I: 0.984
II: 0.968

I: 0.853
II: 0.705

I: 0.885
II: 0.769

I: 0.763
II: 0.526

I: 0.727
II: 0.453

I: 0.506
11:0.013

I: 0.787
II: 0.574

I: 0.956
11:0.911

I: 0.995
II: 0.990

Fig. 2.5. Rule weights of the nine
linguistic rules in Fig. 2.4 calcu
lated by the two definitions from
numerical data in Fig. 2.1. The
product operator was used to cal
culate the compatibility grade of
each pattern

Other definitions of the rule weight CFq are possible. For example, the
following definition is simpler and more intuitively understandable than the
second definition in (2.21):

C F f I = c{Aq ^ Cq) - CSecond, (2 . 2 5)

where csecond is the second largest confidence among M linguistic rules with
the antecedent part Aqi

csecond = max{c(A^ =^ Class /i)|/i = 1,2,... ,M,/i / Cq} . (2.26)

In the third definition in (2.25), the rule weight is defined as the difference
between the largest confidence and the second largest confidence. Note that
Aq ^ Cq always has the maximum confidence among the M linguistic rules
with the antecedent part Aq from the specification of the consequent class

c,.
The following definition is also possible:

CFl'' = ciAg ^ C,) - csum, (2.27)

where csum is the sum of the confidence over linguistic rules with the same
antecedent part Aq but different consequent classes from Cq:

20 2. Pattern Classification with Linguistic Rules

M

h=i
h^Cq

While CFq is always positive in the first three definitions, CF^ can be nega
tive even when the consequent class Cq is uniquely determined by (2.19). We
do not use linguistic rules with negative rule weights (i.e., negative certainty
grades) in linguistic models. Thus some linguistic rules may be removed from
linguistic models when we use the fourth definition of the rule weight CF^.

Note that the third and fourth definitions in (2.25) and (2.27) are ex
actly the same as the second definition in (2.21) when our pattern classifi
cation problem involves only two classes (i.e., when M = 2). In this case,
CAverage = Csecond = csum iH (2.22), (2.26), and (2.28). The difference among
these definitions becomes significant when the number of classes is large. This
is illustrated in a later section of this chapter. The second definition becomes
similar to the first definition when the number of classes is very large. We
can see that the following relation holds among the four definitions:

CFf^ < CF™ < CFf < CFl (2.29)

Linguistic rules with no rule weights in (2.1) can be viewed as a special
case of linguistic rules with rule weights in (2.2). Linguistic rules with the
same rule weight (e.g., CFq = 1.0, ^q) are actually the same as Hnguistic
rules with no rule weights in (2.1). Hereafter we use linguistic rules with
rule weights in (2.2) to illustrate linguistic rule-based systems for pattern
classification problems.

2.3 Classification of New Pa t t e rns by Linguistic Rules

We describe two fuzzy reasoning methods for classifying new patterns using
linguistic rules. One is a single winner-based method where a single winner
rule is used for classifying each pattern. The other is a voting-based method
where the classification of each pattern is performed through a voting proce
dure by all linguistic rules. Various fuzzy reasoning methods for classification
problems were discussed in Cordon et al. [26] and Ishibuchi et al. [68].

2.3.1 Single Winner-Based Method

Let 5 be a set of linguistic rules of the form (2.2). The rule set S can be
viewed as a linguistic rule-based classification system. The single winner rule
R^o in the rule set S is determined for a new pattern Xp = (x^ i , . . . , Xpn) as

fiA^ixp) ' CF^ = max{/XA,(a^p) • CFq\Rq e S} . (2.30)

That is, the winner rule has the maximum product of the compatibility grade
and the rule weight. If multiple linguistic rules have the same maximum prod
uct but different consequent classes for the new pattern Xp, the classification

2.3 Classification of New Patterns by Linguistic Rules 21

of Xp is rejected. The classification is also rejected if no linguistic rule is
compatible with the new pattern Xp. When we use the single winner-based
method, each linguistic rule has its decision region. That is, each linguistic
rule is responsible for the classification of new patterns in its decision region.
This leads to high transparency of the classification process of new patterns.
Since we know which linguistic rule classifies a new pattern, we can explain
why that pattern is classified as a particular class by our linguistic rule-based
classification system. This is an advantage of the single winner-based method
over other fuzzy reasoning methods such as a voting-based method by mul
tiple linguistic rules.

In Fig. 2.6, we show the decision region of each linguistic rule in Fig.
2.4. The boundary between decision regions of linguistic rules with different
consequent classes corresponds to the classification (i.e., decision) boundary
between two classes, which is depicted by bold lines in Fig. 2.6. As we can see
from Fig. 2.6, the classification boundary is not always parallel to each axis
of the pattern space. This contrasts with classification results by rule-based
systems with interval discretization where the classification boundary is al
ways parallel to each axis. Generally speaking, the larger is the rule weight in
linguistic rule-based classification systems, the larger is the decision region.
The rule weight of each linguistic rule is specified by the first definition in
Fig. 2.6. On the other hand. Fig. 2.7 shows the decision region of each lin
guistic rule when its rule weight is specified by the second definition. From
the comparison between Fig. 2.6 and Fig. 2.7, we can see that different clas
sification boundaries are obtained from the two definitions of the rule weight
of each linguistic rule. This suggests the possibility that the performance of
linguistic rule-based classification systems can be improved by adjusting the
rule weight of each linguistic rule.

• : Class 1 O:

•
•

• 4

• 1
• 1

•

• •

• • .

o o
o

o °
o

Sn P
1 o 1

1 • 1

Class 2

1 ^
1 oj

o

o

0 °

Fig. 2.6. Decision regions of the
nine linguistic rules in Fig. 2.4.
We used the first definition to
specify the rule weight of each
linguistic rule. The rule weight
of each linguistic rule is shown
in the corresponding cell in Fig.
2.5. The bold line shows the clas
sification boundary between two
classes

22 2. Pattern Classification with Linguistic Rules

•: Class 1 O: Class 2

1* i • h !
pi Ho ^ o 1

•
o ^ 1

Fig. 2.7. Decision regions of the
nine linguistic rules. In this fig
ure, the second definition is used
to specify the rule weight of each
linguistic rule

As shown in Kuncheva [117], the classification region of each linguistic
rule is rectangular when we use linguistic rules with no rule weights (or
equivalently linguistic rules with the same rule weight). This situation is
illustrated in Fig. 2.8. The same decision region of each linguistic rule as
in Fig. 2.8 can be generated from interval discretization of each axis of the
pattern space. This is illustrated in Fig. 2.9. This observation suggests that
the rule weight of each linguistic rule plays an important role in linguistic
rule-based classification systems. Classification results by linguistic rule-based
systems with no rule weights are sometimes exactly the same as those based
on interval discretization. We compare linguistic discretization with interval
discretization in detail in a later chapter.

2.3.2 Voting-Based M e t h o d

When we use a voting-based method to classify a new pattern Xp^ each lin
guistic rule votes for its consequent class. The product of the compatibility
grade and the rule weight is used as the importance (i.e., strength) of the
vote by each linguistic rule. When the new pattern Xp is to be classified by
the linguistic rule set S using the voting-based method, the total vote for
each class is calculated as follows:

Vblass h^" Yl I^-^MP) ' ^^Q' (2.31)
Rqes
C Q =h .

While a single responsible linguistic rule is identified for the classification of
each pattern in the case of the single winner-based method, all compatible
linguistic rules are responsible for the classification of each pattern with dif
ferent grades of responsibility. This makes it difficult to explain why a new
pattern is classified as a particular class by the linguistic rule set S.

2.3 Classification of New Patterns by Linguistic Rules 23

: Class 1 O: Class 2
1 1 1 • • • °

• • • o
-J^ I I
• o ^ o

• I o
o ^

• I o o

~T^—T^

>: Class 1 O: Class 2

• CI

Fig. 2.8. Decision regions of the
nine linguistic rules with no rule
weights

1.0

X2

^0.0

0.0 1.0
Xi

Fig. 2.9. Decision regions
of the nine rules generated
from interval discretization of
each axis of the pattern space.
Threshold values in interval
discretization are the same as
crossing points of neighboring
membership functions in lin
guistic discretization

To illustrate the difference between the single winner-based method and
the voting-based method, let us consider the following four linguistic rules,
which are also shown in Fig. 2.10 (a).

Ri: If xi is small and X2 is small then Class 1 with CFi — 1.0,
i?2* If xi is small and X2 is large then Class 1 with CF2 = 1.0,
R^: If Xi is large and X2 is small then Class 2 with CF^ = 1.0,
R4: If Xi is large and X2 is large then Class 1 with CF4 = 1.0.

24 2. Pattern Classification with Linguistic Rules

Figure 2.10 (a) shows the decision region of each linguistic rule and the classi
fication boundary when we use the single winner-based method. On the other
hand, the classification boundary by the voting-based method is shown in Fig.
2.10 (b). As shown in Fig. 2.10, the classification boundary by the voting-
based method is smooth while that by the single winner-based method is
piece-wise linear. Higher classification performance is obtained by the voting-
based method in some cases and by the single winner-based method in other
cases. In this book, we use the single winner-based method because it leads to
higher interpret ability of classification results. As shown in the next chapter,
the implementation of learning algorithms of rule weights is much easier for
the single winner-based method. This is because a single responsible linguis
tic rule is identified for the classification of each pattern. By the same reason,
the design of genetics-based machine learning algorithms is much easier for
the single winner-based method as shown in a later chapter.

1.0

X2

0.0

R2. Class 1

Ri: Class 1

RA. Class 1

i?3:Class2

\ ^ / \ ^
\ -3 /

/ 1 \

(a) Single winner-based method. (b) Voting-based method.

Fig. 2.10. Comparison of the single winner-based method with the voting-based
method. The product operator is used to calculate the compatibility grade

Using the same four linguistic rules, we illustrate the eflfect of the rule
weight CFq of each linguistic rule Rq on the classification boundary. First we
decrease the rule weights of the three linguistic rules i?i, -R2, and R^ with
Class 1 in the consequent part. We specify the rule weight of each linguistic
rule as

CFi = CF2 = CF4 = 0.5, CF3 1.0. (2.32)

The classification boundary is shown in Fig. 2.11. Since the relative weight
of î 3 with Class 2 in the consequent part is large, the region of Class 2 is
also large in Fig. 2.11. Another example is shown in Fig. 2.12 where the rule
weight of each linguistic rule is specified as

CFi = 0.7, CF2 = 0.3, CF3 - 0.9, CF4 = 0.2. (2.33)

2.4 Computer Simulations 25

From Fig. 2.11 and Fig. 2.12, we can see tha t the rule weight of each linguistic
rule has a large effect on the classification boundary. Note tha t we did not
modify the membership function of each linguistic term in these figures.

1.0

X2

0.0

(a) Single winner-based method. (b) Voting-based method.

Fig. 2.11. Classification boundary when the relative rule weight of R^ with Class
2 in the consequent part is large

1.0

X2

0.0

(a) Single winner-based method. (b) Voting-based method.

Fig. 2.12. Classification boundary when different weights are assigned to the four
linguistic rules

2.4 Computer Simulations

We compare the four definitions of rule weights with one another through
computer simulations on a class of simple artificial test problems and two
well-known real-world da ta sets: iris da ta and wine data . We also examine

26 2. Pattern Classification with Linguistic Rules

the effect of the granularity of linguistic discretization (i.e., the number of
linguistic terms) on the performance of linguistic rule-based systems.

2.4.1 Comparison of Four Definitions of Rule Weights

Using simple artificial test problems, we illustrate the difference among the
four definitions of rule weights. Let us consider a two-class pattern classifica
tion problem on the unit interval [0,1]. We assume that an infinite number
of training patterns are uniformly distributed in the pattern space [0,1]. We
also assume that each training pattern Xp belongs to Class 1 or Class 2 de
pending on its location as shown in Fig. 2.13: \i Xp < 9 then Xp belongs to
Class 1 otherwise Xp belongs to Class 2. In Fig. 2.13, the threshold value 0
is specified as ^ = 0.47. To generate linguistic rules, we use three linguistic
terms in Fig. 2.14 (i.e., small, medium, and large).

> X

Pattern space
Fig. 2.13. Distribution of training pat
terns in an artificial test problem

0.5

Pattern space
Fig. 2.14. Linguistic discretization with
three linguistic terms

Using the uniform distribution of training patterns in Fig. 2.13 and the
three linguistic terms in Fig. 2.14, we can generate the following linguistic
rules:

Ri: If X is small then Class 1 with CFi,
R2: If X is medium then Class 2 with CF2,
Rs: If ar is large then Class 2 with CFs.

Rule weights of these linguistic rules are calculated from the uniform distri
bution of training patterns as

2.4 Computer Simulations 27

CFl = 0.996, CFl = 0.558, CF^ - l.OOO, (2.34)

CFi" = 0.993, CF2" = 0.116, CF3" = 1.000, (2.35)

CFi"^ = 0.993, C F P = 0.116, C F ^ = 1.000, (2.36)

CFi^v ^ Q 993^ ^ ^ w ^ Q -̂̂ ĝ ^ ^ i v ^ ;|̂ QQQ ^2.37)

Since our test problem is a two-class pattern classification problem (i.e.,
M = 2), the second definition is exactly the same as the third and fourth
definitions. We can observe a large difference in the rule weight CF2 of the
second linguistic rule R2 between the first definition and the other definitions.
The confidence is calculated for this linguistic rule and the other linguistic
rule '^medium =^ Class 1" with the same antecedent linguistic term medium
and a different consequent class as

c{medium => Class 1) = 0.442, (2.38)

c{medium => Class 2) = 0.558. (2.39)

Thus the rule weight CF2 of the linguistic rule "i?2: medium ^ Class 2" is
very small in the last three definitions. On the other hand, the rule weight CF2
is not small in the first definition because the confidence c{medium ^ Class 2)
is directly used as the rule weight.

Using the three linguistic rules, we estimate the class boundary between
the two classes. The estimated class boundary 0 is calculated as follows:
0 = 0.320 by the first definition and 9 = 0.448 by the other definitions.
The estimated class boundary 6 has a large error in the case of the first
definition while it is close to the actual threshold 0.47 in the case of the other
definitions. The large error in the case of the first definition is due to the large
rule weight CF2 of the second linguistic rule R2. Since the rule weight CF2
is not negligible, the second linguistic rule R2 has a significant effect on the
classification of new patterns around the center of the pattern space [0,1].
That is, the second linguistic rule R2 has a large decision region in which
i?2 is selected as the winner rule. As a result, the estimated class boundary
9 is pushed to ^ = 0.320. On the other hand, the rule weight CF2 is very
small when we use the other definitions. Thus the second linguistic rule R2
has a very small decision region. As a result, the estimated class boundary
9 is close to the boundary between the two dominant rules Ri and Rs (i.e.,
: r - 0 . 5) .

In the same manner, we calculate the estimated class boundary 9 between
the two classes for our test problem with various specifications of the actual
threshold value 9. We examine 51 versions of our test problem with different
values of 9: 9 = 0.25,0.26,0.27,.. .,0.75. Simulation results are summarized
in Fig. 2.15. This figure shows the relation between the actual threshold 9
and the estimated class boundary 9. The line in this figure shows the desired
ideal relation 9 — 9. From the figure, we can see that the difference between

28 2. Pattern Classification with Linguistic Rules

0 and 0 is very large in the case of the first definition. On the other hand,
the estimated class boundary 0 is almost the same as the actual threshold 0
when we use the other definitions. This figure suggests that the direct use of
the confidence c{Aq ^ C^) as the rule weight CFq (i.e., the first definition
CFq) may lead to large classification errors.

It should be noted that our simulation results in Fig. 2.15 were obtained
using the single winner-based method. Different results can be derived from
other fuzzy reasoning methods (see, for example. Berg et al. [171]).

w

0.75

0.5

0.25.

• 1 St definition

-

J.

O 2nd definition
1 J.

7

1
0.25 0.5

Actual threshould 0
0.75

Fig. 2.15. Simulation results by the
four definitions of rule weights for the
two-class artificial test problem in Fig.
2.13. Results by the last three definitions
are the same

Let us extend our test problem in Fig. 2.13 to an M-class pattern classifi
cation problem (M > 2). For simplicity of discussion, we assume that the unit
interval [0,1] in Fig. 2.13 is a part of a larger entire pattern space. We also
assume that training patterns from the other classes (i.e., Class 3, . . . , Class
M) exist in the other region of the pattern space. From these assumptions,
we can discuss the specification of rule weights locally in the unit interval
[0,1]. In this situation, the increase in the number of classes has no effect on
the rule weight specification except for the second definition. Only the second
definition depends on the number of classes (i.e., M) as shown in (2.22). Thus
the second definition is not the same as the third and fourth definitions when
pattern classification problems involve more than two classes. For example,
the rule weights of the three linguistic rules are calculated from the second
definition for the case of M = 5 and ^ — 0.47 as

CFi" = 0.996, CF2" = 0.448, CF3" = 1.000. (2.40)

The class boundary between the two classes is calculated as ^ = 0.345 by
the second definition while the actual threshold is ^ = 0.47. Note that the
class boundary was calculated as ^ = 0.448 from the second definition when
M = 2. This result suggests that the increase in the number of classes has a
bad effect on the classification performance of linguistic rule-based systems
constructed by the second definition of rule weights.

2.4 Computer Simulations 29

In the same manner as Fig. 2.15, we calculate the estimated class bound
ary 6 using the second definition of rule weights for three specifications of
M (i.e., M = 2,5,10). Simulation results are summarized in Fig. 2.16. From
this figure, we can see that the diflFerence between the actual threshold 6 and
the estimated class boundary 6 increases as the value of M increases. This is
because the rule weight CF^ of the second linguistic rule R2 becomes unnec
essarily large when our test problem involves more than two classes as shown
in (2.40).

O M=2 n M=5 A M=10

0.75

W
0.25

0.25 0.5
Actual threshould 0

0.75
Fig. 2.16. Simulation results by the sec
ond definition of rule weights for M-class
test problems

2.4.2 Simulation Results on Iris Data

The iris data set is one of the most frequently used data sets in the lit
erature. This data set is a three-class pattern classification problem in
volving 150 samples (50 samples from each class) with four continuous at
tributes. The data set is available from the UCI Machine Learning Repository
(http://www.ics.uci.edu/^mlearn/MLRepository.html). It is known that lin
ear models work very well on the iris data set. Weiss & Kulikowski [178]
examined the classification performance of nine classification methods (e.g.,
nearest neighbor and neural networks) where the highest classification rate
(i.e., 98.0%) on test patterns was obtained by linear models.

Through computer simulations on the iris data set, we compare the four
definitions of rule weights. We also examine the effect of the granularity of lin
guistic discretization on the classification performance of linguistic rule-based
systems. Furthermore we compare the product operator with the minimum
operator. In our computer simulations, the granularity of linguistic discretiza
tion means the number of linguistic terms in Fig. 1.4 of Chap. 1. First all the
attribute values were normalized into real numbers in the unit interval [0,1].
This means that the iris data set was handled as a three-class pattern classi
fication problem in the four-dimensional unit hypercube [0,1]^. This pattern

http://www.ics.uci.edu/%5emlearn/MLRepository.html

30 2. Pattern Classification with Linguistic Rules

space was discretized into K x K x K x K cells using K linguistic terms on
each axis of the pattern space. We examined four different sets of linguistic
terms in Fig. 1.4 of Chap. 1 (i.e., K — 2,3,4,5). For example, each axis of
the pattern space was discretized into two linguistic terms as in Fig. 2.12
when ET = 2. In this case, the pattern space was discretized into 2 x 2 x 2 x 2
cells. A linguistic rule was generated for each cell using a heuristic method
described in this chapter. When there was no compatible training pattern in
a cell, the corresponding linguistic rule was not generated.

First we examined the performance of linguistic rule-based systems on
training patterns. All the 150 samples were used as training patterns for
generating linguistic rules, and the same 150 samples were used for calculat
ing the performance of generated linguistic rules. Table 2.1 summarizes the
number of generated linguistic rules, the number of cells, and the rate of the
number of generated linguistic rules to the number of cells when we used the
first definition of rule weights and the product operator. From Table 2.1, we
can see that many rules could not be generated when linguistic discretization
was fine (e.g., K = 5). This is because there were no compatible patterns in
many small cells constructed from fine linguistic discretization. At the same
time, we can also see from Table 2.1 that the number of generated linguistic
rules was very large, especially when linguistic discretization was fine. Rule
selection is discussed in a later chapter of this book for finding only a small
number of important linguistic rules.

The number of generated linguistic rules in the cases of the second and
third definitions is always the same as the case of the first definition. Only
in the case of the fourth definition may rule weights of some linguistic rules
be negative for multi-class pattern classification problems with more than
two classes. Linguistic rules with negative rule weights were removed from
linguistic rule-based systems in our computer simulations in this book. Table
2.2 shows the number of linguistic rules where we used the fourth definition
and the product operator. From the comparison between Table 2.1 and Table
2.2, we can see that some rules were removed when linguistic discretization
was coarse (i.e., K — 2^. This is because large cells constructed from coarse
linguistic partitions tend to include training patterns from multiple classes.
On the contrary, small cells are not likely to include training patterns from
more than two classes. When each linguistic rule does not have compatible
patterns from more than two classes, the fourth definition of rule weights is
the same as the third definition independent of the total number of classes
involved in pattern classification problems.

We examined four granularities of linguistic discretization (i.e., K —
2,3,4, 5) and the four definitions of rule weights. We also examined the case
of no rule weight. Table 2.3 shows the classification rate on training patterns
for each combination of the granularity and the rule weight definition where
the product operator was used to calculate the compatibility grade. From
this table, we can see that higher classification rates were obtained from finer

2.4 Computer Simulations 31

Table 2.1. Relation between the number of generated linguistic rules and the gran
ularity of linguistic discretization in the case of the first definition of rule weights.
The same results are obtained with respect to the number of generated linguistic
rules from the second and third definitions of rule weights

Granularity

of generated rules

of cells: K^

Rate of generated rules

K = 2

16

16

1.00

K = ^

62

81

0.77

K = A

133

256

0.52

K = b

186

625

0.30

Table 2.2. Relation between the number of generated linguistic rules and the
granularity of linguistic discretization in the case of the fourth definition of rule
weights. Linguistic rules with negative weights are removed from Table 2.1

Granularity

of generated rules

of cells: K^

Rate of generated rules

K = 2

12

16

0.75

K = 3

62

81

0.77

K = A

133

256

0.52

K = 5

186

625

0.30

linguistic discretization. Tha t is, high classification rates on training pat terns
v^ere realized by dividing the pa t te rn space into many small cells. In Table
2.3, the highest classification rate in each row is highlighted by bold letters.
The highest classification rate in Table 2.3 is indicated by *. For comparison,
Table 2.4 shows the simulation results when we used the minimum operator.

Table 2.3. Classification rates on training patterns in the iris data set. All the 150
samples in the iris data set were used for generating linguistic rules of length 4.
The product operator was used to calculate the compatibility grade

Granularity

K = 2
K = 3
K = 4
K = 5

No weight

71.3%
92.0%
80.0%
94.7%

Rule

1st def.

70.7%
92.7%
90.7%
96.0%

weight definition

2nd def.

67.3%
94.0%
92.7%
96.0%

3rd def.

68.0%
94.0%
97.3%*
96.7%

4th def.

66.0%
94.0%
97.3%*
96.7%

* Best result in this table

We also examined the performance of linguistic rule-based systems on
test pat terns . We used the leaving-one-out technique [178] where the 150
samples in the iris da ta set were divided into 149 training pat terns and a
single test pat tern . The design of a linguistic rule-based system using 149
training pat terns and the performance evaluation of the designed system
using a single test pat tern were iterated 150 times so tha t all the 150 samples
were used as test pat terns just once. In general, the number of iterations of
such a design-evaluation trial in the leaving-one-out technique is the same as
the number of given samples.

32 2. Pattern Classification with Linguistic Rules

Table 2.4. Classification rates on training patterns in the iris data set. The mini
mum operator was used to calculate the compatibility grade

Granularity

K = 2
K = 3
K = 4:
K = b

No weight

68.7%
91.3%
82.0%
94.7%

Rule ^

1st def.

80.7%
96.7%*

88.7%
96.0%

A êight definit

2nd def.

91 .3%
96.0%
92.0%
96.0%

;ion

3rd def.

75.3%
94.7%
95 .3%
96.0%

4th def.

70.7%
90.0%
95.3%
96.0%

* Best result in this table

Simulation results on the iris da ta using the leaving-one-out technique are
summarized in Table 2.5 where the product operator was used to calculate the
compatibility grade. For comparison, Table 2.6 shows the simulation results
when we used the minimum operator.

Table 2.5. Classification rates on test patterns in the iris data set. The leaving-
one-out technique was used to examine the generalization ability of linguistic rule-
based classification systems. In each trial of the leaving-one-out technique, 149
samples were used as training patterns for generating linguistic rules of length 4.
The product operator was used to calculate the compatibility grade

Granularity

K = 2
K = 3
K = 4
K = b

No weight

71.3%
92.0%
78.7%
94.7%

Rule

1st def.

70.0%
92.0%
88.7%

95 .3%*

weight definition

2nd def.

67.3%
93 .3%
89.3%

95 .3%*

3rd def.

68.0%
93 .3%
94.0%

95 .3%*

4th def.

66.0%
93 .3%
94.0%

95 .3%*
* Best result in this table

Table 2.6. Classification rates on test patterns in the iris data set. The minimum
operator was used to calculate the compatibility grade

Granularity

K = 2
K = 3
K = 4
K = 5

No weight

68.7%
91.3%
80.7%
94.7%

Rule weight definition

1st def.

79.3%
93.3%
86.7%

96.0%*

2nd def.

88.0%
95 .3%
91.3%
95.3%

3rd def.

72.3%
94.0%
94.7%
95.3%

4th def.

69.3%
90.0%
94.7%
95.3%

* Best result in this table

2.4 .3 S i m u l a t i o n R e s u l t s o n W i n e D a t a

The wine da ta set is a 13-dimensional pa t te rn classification problem with
178 samples from three classes. We chose this da ta set because it involves

2.4 Computer Simulations 33

many continuous attributes. This data set is also available from the UCI Ma
chine Learning Repository, like the iris data set. We first normalized each
attribute value into a real number in the unit interval [0,1]. Thus the pattern
space of the wine data was normalized into the 13-dimensional unit hyper-
cube [0,1]^^. Then we calculated average classification rates on test patterns
as well as training patterns. All the given 178 samples were used as train
ing patterns when we examined the classification performance of linguistic
rule-based systems on training patterns. On the other hand, we used the
leaving-one-out technique when we examined the classification performance
on test patterns as in our previous computer simulations on the iris data. In
the leaving-one-out technique, the given 178 samples were divided into 177
training patterns and a single test pattern. The product operator was used
to calculate the compatibility grade in our computer simulations on the wine
data.

As in the previous computer simulations, we examined the four granular
ities (i.e., K = 2,3,4,5) and the five specifications of rule weights (i.e., their
four definitions and the case of no rule weights). Since it is difficult to examine
K^^ cells in the 13-dimensional pattern space corresponding to the linguistic
discretization of each axis into K linguistic terms, we only generated short
linguistic rules with a few antecedent conditions. The number of antecedent
conditions is referred to as the rule length in this book. For example, the
length of the following linguistic rule is two:

Rule Rq-. If Xi is Aqi and Xj is Aqj then Class Cq with CFq^ (2.41)

where xi and Xj are two attributes chosen from the 13 attributes in the
wine data (i.e., i , j G {1 ,2 , . . . , 13}). The total number of combinations of
antecedent linguistic terms for generating linguistic rules of the length L is
calculated as I^CL X K^ where I^CL is the number of combinations of choos
ing L attributes from the 13 attributes and K^ is the number of combinations
of K linguistic terms for the selected K attributes. Table 2.7 summarizes the
number of generated linguistic rules when all the 178 samples were used as
training patterns. In this table, the first definition of rule weights was used
(the same results were obtained from the second and third definitions as we
have already explained). It should be noted that the number of short linguis
tic rules is much smaller than the number of combinations of linguistic terms
for generating linguistic rules of length 13 (i.e., K^"^).

We can construct a linguistic rule-based classification system using all or
some of linguistic rules in Table 2.7. As an example, we constructed a linguis
tic rule-based system using linguistic rules of length 2 for each specification
of the granularity of linguistic discretization. Classification rates of such a
linguistic rule-based system on training patterns are summarized in Table
2.8 where the five specifications of rule weights and the four granularities of
linguistic discretization are examined. In the same manner, we examined the
performance of linguistic rules of length 2 on test patterns using the leaving-

34 2. Pattern Classification with Linguistic Rules

Table 2.7. The number of generated linguistic rules of each length from the 178
training patterns in the wine data. The first definition of rule weights was used in
this table. The same results were obtained with respect to the number of generated
linguistic rules from the second and third definitions

Length of linguistic rules (L)
^crranuiarity

K = 2
K = 3
K = 4
K = 5

Length 0

1
1
1
1

Length 1

26
39
52
65

Length 2

312
701

1201
1768

Length 3

2288
7585

15766
25589

Length 4

11440
54633

129624
220876

one-out technique. Classification rates on test pat terns are summarized in
Table 2.9.

Table 2.8. Classification rates on training patterns in the wine data set. All the
178 samples in the wine data set were used to generate linguistic rules of length 2

Granularity

K = 2
K = 3
K = 4
K = 5

No weight

84.8%
70.2%
71.9%
74.7%

Rule

1st def.

90.4%
94.9%
96.6%
94.4%

weight definition

2nd def.

94.9%
96.6%
97.2%
97.2%

3rd def.

92.7%
96.6%
98.3%

98.9%*

4th def.

92.7%
94.4%
97.8%
97.8%

Best result in this table

Table 2.9. Classification rates on test patterns in the wine data set. The leaving-
one-out technique was used to examine the generalization ability of linguistic rule-
based classification systems. In each trial of the leaving-one-out technique, 177
samples were used as training patterns for generating linguistic rules of length 2

Granularity

K = 2
K = 3
K = 4
K = 5

No weight

80.3%
68.0%
68.5%
69.7%

Rule

1st def.

90.4%
93.3%
93.3%
89.9%

weight definition

2nd def.

92.7%
95.5%*
94.9%
92.7%

3rd def.

91.6%
95.5%*
94.9%
93.3%

4th def.

90.4%
93.3%
94.9%
93.8%

* Best result in this table

In Table 2.8 and Table 2.9, we used a large number of linguistic rules.
From the viewpoint of interpretability, rule-based systems with only a small
number of rules are desirable. While we discuss rule selection in detail in a
later chapter, here we show simulation results using a simple heuristic rule
selection method for comparing the five specifications of rule weights. In the
computer simulations, first we generated linguistic rules of length 3 or less

2.4 Computer Simulations 35

from training patterns. We used all the 14 linguistic terms in Fig. 1.4 of Chap.
1 for generating linguistic rules. That is, we simultaneously used linguistic
terms with different granularities. In this case, the total number of combina
tions of antecedent linguistic terms for generating linguistic rules of length L
is calculated as ISCL X 14^. The generated linguistic rules were divided into
three groups according to their consequent classes. Linguistic rules in each
group were sorted in descending order of a rule selection criterion. We used
the product of the confidence c(-) and the support s{-) as the rule selection
criterion in our computer simulations in this subsection. When multiple lin
guistic rules had the same value with respect to the rule selection criterion,
they were randomly sorted (i.e., random tiebreak). We constructed a linguis
tic rule-based system by choosing the first N rules from each group. Using
various values of N (i.e., N = 1,2,.. . , 10), we examined the classification
performance of linguistic rule-based systems with different sizes. For decreas
ing the effect of the random tiebreak, we calculated average results over 1000
iterations of our computer simulation to evaluate the performance on train
ing patterns. By the same reason, the leaving-one-out technique was iterated
20 times (i.e., 20 x 178 trials) to evaluate the performance on test patterns.
Simulation results on training patterns and test patterns are summarized in
Table 2.10 and Table 2.11, respectively. In these tables, the best result in
each row and the best result in each table are indicated by bold type and *,
respectively.

Table 2.10. Classification rates on training patterns in the wine data set. First
linguistic rules of length 3 or less were generated. Then a pre-specified number
of linguistic rules were selected from the generated rules using a rule selection
criterion. The product of the confidence and the support was used as the rule
selection criterion

of rules

3
6
9
12
15
18
21
24
27
30

No weight

89.89%
91.01%
93.26%
93.26%
88.76%
91.01%
91.01%
92.13%
90.45%
90.45%

1st def.

89.89%
91.57%
93.82%
93.82%
92.70%
91.57%
91.57%
92.13%
92.13%
92.13%

2nd def.

89.89%
91.01%
92.13%
92.70%
92.13%
92.70%
92.70%
92.70%
92.70%
92.70%

3rd def.

89.33%
92.13%
93.82%

94.94%*
94.94%*
94.94%*
94.38%
94.38%
94.38%

94.94%*

4th def.

89.89%
91.01%
93.82%

94.94%*
94.94%*

94.38%
93.82%
93.82%
93.82%
93.82%

* Best result in this table

2.4.4 Discussions on Simulation Results

From the simulation results in this section, we can see that the best results
were obtained from the third definition of rule weights on the average. This

36 2. Pattern Classification with Linguistic Rules

Table 2.11. Classification rates of small linguistic rule-based systems on test pat
terns in the wine data set. Linguistic rule-based systems were designed in the same
manner as Table 2.9

of rules

3
6
9
12
15
18
21
24
27
30

No weight

89.89%
80.34%
88.76%
93.26%
88.76%
88.20%
89.33%
88.20%
88.20%
90.45%

1st def.

89.89%
83.15%
91.57%
93.26%
91.57%
89.89%
89.33%
89.33%
89.89%
90.45%

2nd def.

89.89%
85.96%
92.13%
92.70%
91.57%
89.89%
89.33%
89.33%
90.45%
91.01%

3rd def.

89.33%
84.83%
93.26%
93.26%

94.38%*
92.13%
91.57%
91.57%
92.70%
93.26%

4th def.

89.89%
85.39%
93.26%
93.26%
93.26%
91.01%
91.01%
91.01%
91.57%
92.13%

* Best result in this table

coincides with the discussions in the previous section using a class of arti
ficial test problems. Hereafter we use the third definition of rule weights in
this book. We can also see from the simulation results that the use of rule
weights improved the performance of linguistic rule-based systems. In the
next chapter, we present two learning schemes of rule weights. The perfor
mance of linguistic rule-based systems is further improved by the adjustment
of rule weights.

In this section, we also examined the relation between the granularity
of linguistic discretization and the performance of linguistic rule-based sys
tems. In general, higher classification rates on training patterns are obtained
from finer linguistic discretization. Classification rates on test patterns are not
monotonic with respect to the granularity of linguistic discretization (e.g., see
Table 2.9). While coarse linguistic discretization cannot approximate desir
able classification boundaries very well, fine linguistic discretization is likely
to fit training patterns excessively (i.e., overfitting training patterns). Too
fine linguistic discretization usually leads to very high classification rates on
training patterns but low classification rates on test patterns. In this book,
we assume that a set of linguistic terms is given for each attribute by human
users or domain experts according to their knowledge and intuition. Our ap
proaches in this book use the given set of linguistic terms for each attribute.
Thus the above discussions on the relation between the granularity of lin
guistic discretization and the performance of linguistic rule-base systems are
useful only when linguistic terms are not given (i.e., when we have to specify
linguistic discretization for each attribute).

Slightly better results were obtained from the product operator than the
minimum operator in our computer simulations on the iris data. Hereafter
we use the product operator to calculate the compatibility grade. In recent
studies on fuzzy rule-based systems, the product operator has often been used
instead of the minimum operator.

2.4 Computer Simulations 37

In the computer simulations on the wine data, we used a heuristic rule
selection method for choosing a tractable number of linguistic rules. In the
first computer simulation, we used all linguistic rules of length 2. In the sec
ond computer simulation, the product of the confidence and the support was
used to select a small number of rules from linguistic rules of length 3 or less.
Simulation results in this section can be improved by using more sophisti
cated techniques for selecting linguistic rules. In a later chapter, we discuss
other heuristic rule selection criteria. For various rule selection criteria, see
Ishibuchi & Yamamoto [93]. We also describe a genetic algorithm-based ap
proach to linguistic rule selection.

3. Learning of Linguistic Rules

In this chapter, we describe two approaches to the learning of rule weights.
One is a reward-punishment learning scheme and the other is an analytical
learning scheme. We also mention the adjustment of the membership function
of each linguistic term. As in the previous chapter, we use linguistic rules of
the following form for our n-dimensional pattern classification problem:

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn

then Class Cq with CFq. (3.1)

3.1 Reward—Punishment Learning

A simple approach to the learning of rule weights is a reward-punishment
learning scheme [132]. The basic idea of this learning scheme is to increase or
decrease the rule weight of a winner rule according to the classification result
(i.e., correct classification or misclassification) of each training pattern.

3.1.1 Learning Algorithm

Let 5 be a set of linguistic rules with rule weights in the form (3.1). The
rule set S can be viewed as a linguistic rule-based system. In the learning of
rule weights, each training pattern Xp is presented to the linguistic rule-based
system S. Since we use the single winner-based method, a single winner rule
is identified for each training pattern. When a training pattern is correctly
classified by the winner rule R^^ its rule weight CFuj is increased as the
reward of the correct classification in the following manner:

where 77+ is a positive constant for increasing the rule weight (0 < 77+ < 1).
Note that the updated rule weight by (3.2) is always a real number in the unit
interval [0,1] when its initial value is a real number in [0,1]. If the update rule
in (3.2) is iteratively applied to the rule weight of a particular linguistic rule
(i.e., if the linguistic rule continues to correctly classify training patterns), its
rule weight gradually approaches the maximum value of 1.0.

40 3. Learning of Linguistic Rules

On the other hand, when a training pattern is misclassified by the winner
rule R^, its rule weight CF^ is decreased as the punishment of the misclas-
sification in the following manner:

where ri~ is a positive constant for decreasing the rule weight {0 < rj~ < 1).
As in (3.2), the updated rule weight by (3.3) is always a real number in the
unit interval [0,1] when its initial value is a real number in [0,1]. If the update
rule in (3.3) is iteratively applied to the rule weight of a particular linguistic
rule (i.e., if the linguistic rule continues to misclassify training patterns), its
rule weight gradually approaches the minimum value of 0.0.

Only the rule weight of the winner rule is adjusted in the learning for each
training pattern depending on its classification result (i.e., correct classifica
tion or misclassification). Since the number of correctly classified training
patterns is usually much larger than that of misclassified training patterns,
a much smaller value is assigned to the learning rate rj^ for increasing rule
weights than the learning rate r]~ for decreasing rule weights (e.g., rj'^ = 0.001
and rj" = 0.1). When the classification of a training pattern is rejected, rule
weights of no linguistic rules are adjusted. The classification of a training
pattern is rejected when no linguistic rules are compatible with the pattern.
The rejection also happens when multiple linguistic rules with different con
sequent classes have the same maximum product of the compatibility grade
and the consequent rule weight (i.e., when there exist multiple winner rules
with different classes for a training pattern). In the latter case, the pattern is
located on the classification boundary generated by the linguistic rule-based
system.

The reward-punishment learning scheme can be written as the following
algorithm:

[Reward—Punishment Learning Algorithm]

Step 1: Choose a single training pattern.
Step 2: Classify the training pattern by the linguistic rule-based system.
Step 3: If the training pattern is correctly classified, increase the rule weight

of the winner rule using (3.2). If the training pattern is misclassified,
decrease the rule weight of the winner rule using (3.3). When the
classification of the training pattern is rejected, do not change the
rule weights of any linguistic rules.

Step 4: If a pre-specified stopping condition is satisfied, terminate this algo
rithm. Otherwise, return to Step 1.

Learning results of the reward-punishment learning scheme depend on
the order of training patterns to be presented to the linguistic rule-based
system. Usually all the given training patterns are presented to the linguis
tic rule-based system in a random order. After all the training patterns are
examined, they are presented again in a random order. The presentation of

3.1 Reward-Punishment Learning 41

all the training patterns is referred to as a single epoch (or a single sweep).
In this book, we use the term "epoch" to describe the number of iterations
of the learning algorithm. The upper bound of epochs can be used as a stop
ping condition of the learning algorithm. Of course, the learning algorithm is
usually terminated when all training patterns are correctly classified.

In computer simulations in this book, we handle the two learning rates rj^
and 7y~ as constant. In real-world applications, the use of variable learning
rates may improve the performance of adjusted linguistic rule-based systems.
That is, the values of 77+ and r]~ can be gradually decreased during the
iterative execution of the reward-punishment learning scheme. They can also
be adjusted during the learning according to the classification rate of the
linguistic rule-based system.

3.1.2 Illustration of the Learning Algorithm Using Artificial Test
Problems

For visually illustrating the reward-punishment learning scheme, we applied
the learning algorithm to a linguistic rule-based system with the following
four linguistic rules for a simple two-dimensional pattern classification prob
lem in Fig. 3.1:

Ri: If xi is small and X2 is small then Class 1 with CFi,

R2: If xi is small and X2 is large then Class 1 with CF2,

JR3: If xi is large and X2 is small then Class 1 with CF3,

R4: If xi is large and X2 is large then Class 2 with (7F4.

Together with 20 training patterns. Fig. 3.1 shows the classification boundary
when all the four linguistic rules have the same rule weight (their initial rule
weights were specified as CFq = 0.5 for q — 1,2,3,4). In this figure, three
patterns are misclassified by the linguistic rule-based system with the four
linguistic rules whose rule weights are the same. For applying the learning
algorithm to the linguistic rule-based system, first we randomly specified
an order of the given 20 patterns. Then we iteratively presented the given
patterns in the specified order to the linguistic rule-based system. The first
four patterns are indicated in Fig. 3.1 for illustration purposes. The values
of the learning rates r]^ and r]~ were specified as 77+ — 0.001 and r]~ = 0 . 1
in this computer simulation.

As shown in Fig. 3.1, the first pattern a:;i is correctly classified by the
linguistic rule R\. Thus the rule weight CF\ of R\ is increased by (3.2) as

CFi = 0.5 + 0.001 • (1 - 0.5) = 0.5005. (3.4)

The second pattern X2 is misclassified by the linguistic rule Rz. Thus the rule
weight CF3 of i?3 is decreased by (3.3) as

CF3 = 0.5 - 0.1 • 0.5 = 0.45. (3.5)

42 3. Learning of Linguistic Rules

I: Class 1 o: Class 2

• •

•

•

^1
•
•̂ 1 •

1 ° o-^4o|

• °

* i?3

•
•

1.0

X2

0.0

Fig. 3 .1 . A two-dimensional test
problem with 20 training patterns.
The decision region of each linguistic
rule and the classification boundary
correspond to the case with the same
rule weight

The third pa t tern x^ is correctly classified by the same rule R^. Thus the
rule weight CF^ is increased by (3.2) as

CFs = 0.45 + 0.001 • (1 - 0.45) = 0.45055. (3.6)

The fourth pat tern X4, is correctly classified by the linguistic rule R4,. Thus
the rule weight (7^4 is increased by (3.2) as

CF4 = 0.5 + 0.001 • (1 - 0.5) = 0.5005. (3.7)

In this manner, the rule weight of each linguistic rule is updated by presenting
all the given training pat terns to the linguistic rule-based system. In Fig. 3.2,
we show the classification boundaries after a single epoch and seven epochs.
As shown in Fig. 3.2, three pat terns are misclassified after a single epoch and
all the given pat terns are correctly classified after seven epochs. Table 3.1
shows the values of the rule weights and the number of misclassified training
pat terns after each epoch.

Table 3 .1 . Simulation results by the reward-punishment learning algorithm on the
artificial test problem in Fig. 3.1. The second row "Errors" shows the number of
misclassified training patterns

Epoch

Errors

CFi
CF2
CFs
CF4

0

3

0.5000
0.5000
0.5000
0.5000

1

3

0.5015
0.5015
0.4066
0.4541

2

3

0.5030
0.5030
0.3311
0.4131

3

2

0.5045
0.5045
0.2999
0.3770

4

1

0.5065
0.5065
0.2713
0.3826

5

2

0.5084
0.5080
0.2456
0.3498

6

1

0.5104
0.5099
0.2225
0.3557

7

0

0.5124
0.5119
0.2240
0.3621

We also applied the learning algorithm to the following three linguistic
rules tha t were used for our single-dimensional artificial test problem in Fig.

3.1 Reward-Punishment Learning 43

•: Class 1 o: Class 2

<-After 1 epoch
<-After 7 epochs

Fig. 3.2. Classification bound
aries after a single epoch and
seven epochs

2.13 of Chap. 2:

Ri: If X is small then Class 1 with CFi,

R2: If X is medium then Class 2 with CF2,

Rs: If X is large then Class 2 with CF^.

Note that the membership function of each linguistic term in these linguistic
rules (i.e., Fig. 2.14) is different from the above computer simulation (i.e.,
Fig. 3.1).

We adjusted the rule weights of the three linguistic rules using the
reward-punishment learning scheme. The initial rule weights were specified
as CFi = CF2 — CF3 — 0.5. Training patterns were randomly generated
from the pattern space [0,1] in Fig. 2.13 according to the uniform distri
bution in the pattern space [0,1]. The execution of the learning algorithm
was iterated until 10000 training patterns were examined. The values of the
learning rates r;+ and r]~ were specified as rj^ — 0.0005 and r]~ — 0.2. In
Fig. 3.3, we show how the rule weights were updated during the iterative
execution of the learning algorithm. On the other hand. Fig. 3.4 shows how
the estimated class boundary was adjusted. The estimated class boundary
was calculated as ^ = 0.25 by the linguistic rules with the initial rule weights
CFi = CF2 = CF3 = 0.5. Since the actual threshold 0 in Fig. 2.13 is 6> = 0.47
in our single-dimensional artificial test problem, training patterns in the in
terval [0,0] were misclassified by the second linguistic rule R2 in the early
stage of the learning. Thus the value of CF2 was rapidly decreased by the
learning algorithm as shown in Fig. 3.3. At the same time, the values of CFi
and CFs were gradually increased because the first and third linguistic rules
always correctly classified training patterns in their decision regions. Since
compatible training patterns with the third linguistic rule are always Class
2 patterns (i.e., training patterns in the interval [0.5,1.0] are always from
Class 2; see Fig. 2.13), CF^ continued to be increased during the execution
of the leaning algorithm. On the other hand, we can observe some drops in
the value of CFi in Fig. 3.3. When the estimated class boundary 0 became

44 3. Learning of Linguistic Rules

larger than the actual class boundary 9 — 0.47 (i.e., when 6 < 9), training
pat terns in the interval [9^9] were misclassified by the first linguistic rule Ri.
Thus the value of CFi was decreased. This happened only when the weight
CFi of the first linguistic rule Ri became much larger than the weight CF2
of the second linguistic rule R2 (i.e., only when CF2 < CFi).

10 100 1000
Number of presented patterns

10000

Fig. 3.3. Rule weight update
during the iterative execution of
the reward-punishment learning
scheme

10 100 1000

Number of presented patterns
10000

Fig. 3.4. Adjustment of the
estimated class boundary dur
ing the iterative execution of
the reward-punishment learning
scheme

Learning results of the reward-punishment learning scheme strongly de
pend on the values of the learning rates 77+ and rj~. To demonstrate this
dependency, we performed the same computer simulation as in Fig. 3.3 and
Fig. 3.4 using various specifications of 77+ and rj~. Since learning results also
depend on the order of training pat terns , we performed our computer simu
lation 20 times for each combination of 77+ and r]~. In each trial, a different
set of randomly generated 10000 training pat terns was used in the learning
of the rule weights. Tha t is, we used 20 sets of 10000 training pat terns in
our computer simulations. Table 3.2 summarizes the average value of the es
t imated class boundary 9 after the presentation of 10000 training pat terns
over 20 trials for each combination of 77+ and 77". From this table, we can see
tha t the estimated class boundary 9 was far from the actual threshold value
9 = 0.47 when the specifications of 77+ and 77" were not appropriate.

3.1 Reward-Punishment Learning 45

Table 3.2. Average values of the estimated class boundary 0. The actual threshold
^ is ^ = 0.47. The derivation \9 — 0\ can be viewed as an error measure. Reasonable
specifications of 7/"̂ and r]~ satisfy the inequality relation rj^ <C 77"

+
77^

0.1
0.01

0.001
0.0001

0.1

0.309
0.421
0.463
0.470

r]

0.01

0.259
0.315
0.422
0.460

-

0.001

0.251
0.259
0.314
0.379

0.0001

0.250
0.251
0.257
0.270

3.1.3 Computer Simulations on Iris Data

For examining the effect of the rule weight learning on the performance of lin
guistic rule-based classification systems, we applied the reward-punishment
learning scheme to the iris data. As in Sect. 2.4.2, we discretized the nor
malized pattern space [0,1]^ into K x K x K x K cells using K linguistic
terms on each attribute. We examined four values of K: K — 2,3,4,5. Lin
guistic discretization corresponding to each value of K is shown in Fig. 1.4
of Chap. 1. For specifying initial rule weights, we used the third definition
of rule weights. We also examined the case with the same initial rule weight
for all linguistic rules (i.e., CFq — 0.5, ^g). In computer simulations, training
patterns were presented in a random order. The values of r]^ and 77~ were
specified as 7/+ = 0.001 and rj" = 0 . 1 .

In Table 3.3, we show simulation results on training patterns using the
initial weights specified by the third definition. Average classification rates
were calculated for each value of K over 20 independent trials with differ
ent orders of presentation of the 150 training patterns. The learning of rule
weights in each trial was iterated for 100 epochs even when all training pat
terns were correctly classified before the 100th epoch. On the other hand,
Table 3.4 shows simulation results on training patterns in the case of the
same initial rule weight for all linguistic rules. These tables show that the
learning of rule weights significantly improved classification rates on train
ing patterns, especially when we used coarse linguistic discretization (e.g.,
K = 2). When linguistic discretization was fine (e.g., if = 5), classification
rates were already high before the learning algorithm was applied to linguis
tic rule-based systems. Thus the effect of the rule weight learning was not so
significant compared with the case of coarse discretization. From the com
parison between Table 3.3 and Table 3.4, we can see that similar results were
obtained after enough iterations of the learning algorithm independent of the
initial specifications of rule weights (except for the case of K = 2).

We also examined classification rates on test patterns using the leaving-
one-out technique. This technique was iterated ten times using different or
ders of presentation of 149 training patterns. Simulation results are summa
rized in Table 3.5 and Table 3.6. As we have already mentioned, the increase

46 3. Learning of Linguistic Rules

Table 3.3. Classification rates on training patterns in the iris data set. Rule weights
were adjusted by the reward-punishment learning scheme from their initial values
heuristically specified by the third definition

Granularity

K = 2
K = 3
K = 4
K = 5

0

68.0%
94.0%
97.3%
96.7%

1

78.2%
95.1%
97.3%
96.7%

Number of epochs

2 5 10

84.7% 90.2% 91.5%
96.1% 96.4% 96.7%
97.3% 98.0% 98.0%
96.2% 96.0% 97.0%

50

92.7%
98.3%
99.9%
99.3%

100

92.0%
98.2%
99.5%
99.7%

Table 3.4. Classification rates on training patterns in the iris data set. Rule weights
were adjusted by the reward-punishment learning scheme from their common initial
value of 0.5

Granularity

K = 2
K = 3
K = A
K = 5

0

71.3%
92.0%
82.7%
94.7%

1

86.4%
95.0%
88.0%
95.2%

Number of epochs

2 5 10

92.7% 93.7% 95.3%
96.8% 96.5% 97.0%
91.8% 95.5% 96.5%
95.4% 94.7% 95.5%

50

96.7%
97.3%
99.9%
99.4%

100

96.7%
97.8%
99.9%
99.4%

in classification rates on training patterns does not always lead to the in
crease in classification rates on test patterns. In Table 3.5 and Table 3.6, the
rule weight learning significantly improved the generalization ability of lin
guistic rule-based systems on test patterns when linguistic discretization was
coarse (e.g., K = 2). We can also observe overfitting of linguistic rule-based
systems to training patterns. For example, the average classification rate in
the case of K = 5 in Table 3.6 was first improved during the learning of
rule weights. After reaching its peak value (i.e., 95.3% classification rate),
the average classification rate was decreased by further learning. From the
comparison between Table 3.5 and Table 3.6, we can see that similar results
were obtained on test patterns after enough iterations of the learning algo
rithm independent of the initial specifications of rule weights as in Table 3.3
and Table 3.4 on training patterns (except for the case of K = 2).

Table 3.5. Classification rates on test patterns in the iris data set. Rule weights
were adjusted by the reward-punishment learning scheme from their initial values
heuristically specified by the third definition

Granularity

K = 2
K = 3

K = 5

0

68.0%
93.3%
94.0%
95.3%

1

80.2%
95.6%
96.0%
94.7%

Number of epochs

2 5 10

83.9% 89.5% 89.0%
96.6% 96.6% 95.3%
96.0% 96.3% 95.8%
94.7% 94.7% 94.0%

50

89.1%
94.9%
96.0%
95.3%

100

88.7%
95.2%
96.0%
96.1%

3.2 Analytical Learning 47

Table 3.6. Classification rates on test patterns in the iris data set. Rule weights
were adjusted by the reward-punishment learning scheme from their common initial
value of 0.5

Granularity

K = 2
K = 3
K = 4
K = 5

0

71.3%
92.0%
81.3%
94.7%

1

90.8%
96.5%
88.3%
95.3%

Number of epochs

2 5 10

93.0% 92.9% 92.5%
96.1% 96.4% 96.3%
88.7% 91.4% 92.3%
95.3% 94.7% 94.7%

50

93.2%
95.0%
96.2%
94.5%

100

93.2%
95.0%
96.6%
94.1%

3.1.4 Compu te r Simulations on Wine Da ta

The wine data set was also used to examine the effect of the rule weight
learning on the classification performance of linguistic rule-based systems. We
applied the learning algorithm to linguistic rule-based systems constructed
in Table 2.10 and Table 2.11 in the previous chapter. Linguistic rule-based
systems in those tables were constructed by choosing a small number of lin
guistic rules of length 3 or less using the product of the confidence and the
support as a rule selection criterion. Candidate rules from which linguistic
rules were selected were generated using all the 14 linguistic terms with dif
ferent granularities in Fig. 1.4 of Chap. 1.

We used the third definition for specifying the initial rule weight of each
linguistic rule. Simulation results on training patterns and test patterns are
summarized in Table 3.7 and Table 3.8. From these tables, we can see that
the classification performance of linguistic rule-based systems on the wine
data was improved by the rule weight learning. When the number of linguistic
rules was very small (e.g., only three rules), the rule weight learning could not
improve classification rates on training patterns as well as test patterns. On
the other hand, the eff'ect of the rule weight learning was significant when the
number of linguistic rules was not too small. This is because the rule weight
learning cannot adjust the classification boundary when there is no overlap
between linguistic rules with different consequent classes. The adjustment of
the classification boundary can be performed only in the overlapping region
of such linguistic rules in the pattern space. When the number of linguistic
rules is very small, there seems to be no large overlapping region in which
the classification boundary can be adjusted.

3.2 Analytical Learning

The reward-punishment learning scheme gradually adjusts the rule weight of
each linguistic rule. Thus many epochs are usually required for the adjustment
of rule weights, especially when the learning rates are small. In this section,
we explain an analytical learning scheme.

48 3. Learning of Linguistic Rules

Table 3.7. Classification rates on training patterns in the wine data set. Rule
weights were adjusted by the reward-punishment learning scheme from their initial
values specified by the third definition

of rules

3
6
9
12
15
18
21
24
27
30

0

89.3%
92.1%
93.8%
94.9%
94.9%
94.9%
94.4%
94.4%
94.4%
94.9%

1

89.1%
91.5%
93.9%
94.4%
94.7%
95.6%
95.3%
95.3%
95.3%
95.7%

Number of epochs

2

89.0%
91.6%
94.3%
94.7%
95.1%
96.4%
96.2%
96.2%
96.2%
95.8%

5

88.8%
92.4%
95.0%
94.3%
95.4%
98.3%
98.3%
98.3%
98.3%
98.2%

10

89.0%
90.3%
95.6%
94.4%
97.0%
98.7%
98.9%
98.9%
98.3%
98.2%

50

89.1%
91.1%
93.8%
95.7%
95.6%
98.7%
98.7%
98.2%
97.9%
98.3%

100

89.1%
91.1%
93.8%
96.0%
95.7%
98.4%
98.4%
98.1%
98.3%
97.8%

Table 3.8. Classification rates on test patterns in the wine data set. Rule weights
were adjusted by the reward-punishment learning scheme from their initial values
specified by the third definition

of rules

3
6
9
12
15
18
21
24
27
30

0

89.3%
84.8%
93.3%
93.3%
94.4%
92.1%
91.6%
91.6%
92.7%
93.3%

1

88.3%
86.2%
93.7%
93.8%
93.8%
93.2%
91.6%
92.1%
93.2%
93.8%

Number of epochs

2

88.5%
87.2%
92.9%
93.5%
94.4%
93.7%
92.5%
92.8%
92.2%
93.5%

5

88.2%
87.6%
91.7%
93.0%
93.5%
93.6%
94.1%
93.7%
93.8%
94.4%

10

88.2%
86.7%
91.9%
92.4%
92.9%
93.8%
95.5%
94.4%
94.8%
94.4%

50

88.4%
87.1%
92.4%
93.7%
92.7%
95.1%
93.3%
94.0%
93.7%
94.1%

100

88.4%
87.3%
92.5%
93.5%
93.6%
94.4%
95.3%
95.0%
93.9%
93.4%

3.2 .1 Learning A l g o r i t h m

When a training pat tern Xp is classified by our linguistic rule-based system
5 , the single winner-based method identifies a single winner rule R^ tha t
has the maximum product of the compatibility grade and the rule weight
among linguistic rules in S. Let tp be the actual class (i.e., target class) of
Xp. When the consequent class Cw of the winner rule Ryj is the same as tp^ Xp
is correctly classified. Otherwise, it is misclassified. From the definition of the
winner rule R^, the following relation holds when Xp is correctly classified:

max{/iA,(a^p) • CFq\Cq = tp.Rq G 5 } = /iA^(xp) • CF^. (3.8)

On the other hand, the following relation holds when Xp is misclassified:

max{//A,(a^p) • CFq\Cq = tp.Rq G 5 } < IIAA^P) ' CF^. (3.9)

3.2 Analytical Learning 49

Let Rq:^ be the linguistic rule with the maximum value in the left hand
side of (3.9). Rq^ can be viewed as the most promising linguistic rule for
correctly classifying the training pattern Xp. Using Rq^^ (3.9) is rewritten as

/iA,, {xp) • CFq^ < fiA^ (xp) • CF^. (3.10)

In this formulation, the consequent class C^ of the winner rule is different
from the actual class of Xp (i.e., C^ i^ tp) because Xp is misclassified. For
correctly classifying Xp, it is required to reverse the inequality in (3.10) by
adjusting our linguistic rule-based system so that the following inequality
holds:

MA,, (Xp) • CFq^ > flA^ (Xp) • CF^. (3.11)

When the left hand side of (3.10) is zero (i.e., when Xp is not covered by
any linguistic rule with the same consequent class as the actual class of x^),
we do not try to correctly classify Xp. In this case, the misclassification of
Xp does not invoke any modification procedure of our linguistic rule-based
system. In the following explanations, we assume that Xp is covered by at
least one linguistic rule with the same consequent class as the actual class of
Xp (i.e., the left hand size of (3.10) is positive).

There are two alternative ways in the adjustment of rule weights for re
versing the inequality in (3.10):

(1) To increase the rule weight CFq^ of the linguistic rule Rq^ in the left
hand side of (3.10) as

j iNew

^A,, (Xp)
CF^:-^ = ^^-^^7; . CFS'^ -f- e, (3.12)

where e is a very small positive real number. The inequality relation (3.11)
holds after this modification. This adjustment is not always possible.
When the right hand side of (3.12) is larger than 1, we do not adopt this
adjustment.

(2) To decrease the rule weight CF^ of the winner rule Rw in the right hand
side of (3.10) as

pNew _ MAg, [Xp) ^ ^ o i d

[^A^ \Xp)

When the right hand side of (3.13) is smaller than 0, we specify CF^^^ as
Qjp^ew __ Q rpĵ ^ inequality relation (3.11) holds after this modification.
If î g* becomes the new winner rule after the adjustment of CF^^ based on
(3.13), Xp is correctly classified. On the other hand, Xp is still misclassified
if another linguistic rule becomes the new winner rule. In the latter case,
(3.13) is applied to the new winner rule again. This procedure is iterated
until î g* becomes the winner rule (i.e., until Xp is correctly classified).

50 3. Learning of Linguistic Rules

When Xp is misclassified, our linguistic rule-based system is modified by
(3.12) or (3.13). We calculate the classification rate of each of the three alter
natives (i.e., the current linguistic rule-based system before the modification
and two modified ones) on training patterns. Then we replace the current
linguistic rule-based system with the best one among the three alternatives.
When all the given training patterns are correctly classified, the analytical
learning scheme no longer changes the current linguistic rule-based system.
Even when some training patterns are misclassified, the current linguistic
rule-based system is not modified if no improvement in the classification rate
can be achieved. The classification rate on training patterns is monotonically
improved during the rule weight learning based on the analytical learning
scheme.

The analytical learning scheme can be written as the following algorithm:

[Analytical Learning Algorithm]

Step 1: Choose a single training pattern.
Step 2: Classify the training pattern by the linguistic rule-based system.
Step 3: When the training pattern is misclassified, perform the following pro

cedures. Otherwise, go to Step 4.
(1) Examine the classification performance on training patterns of

the three alternative linguistic rule-based systems: the current
one and its two modified versions by (3.12) and (3.13). Note that
the modification by (3.13) is iterated until the current training
pattern chosen in Step 1 is correctly classified. If no modified
versions outperform the current one, go to Step 4.

(2) Replace the current linguistic rule-based system with the better
modified version. If the two modified versions have the same clas
sification rate on training patterns, randomly choose one version.

Step 4: If a pre-specified stopping condition is satisfied, terminate this algo
rithm. Otherwise, return to Step 1.

Learning results of the analytical learning scheme depend on the order of
training patterns to be presented to the linguistic rule-based system as in the
case of the reward-punishment learning scheme. When there are no misclas
sified training patterns, rule weights are no longer adjusted by the analytical
learning scheme. On the contrary, the reward-punishment learning scheme
continues to change the rule weight of the winner rule because the reward is
given to the winner rule when a training pattern is correctly classified.

3.2.2 Illustration of the Learning Algorithm Using Artificial Test
Problems

For visually illustrating the analytical learning scheme, let us again consider
the two-dimensional pattern classification problem in Fig. 3.1. We adjusted
the rule weights of the four linguistic rules in Fig. 3.1 using the analytical

3.2 Analytical Learning 51

learning scheme. As in the case of the reward-punishment learning scheme,
we specified the initial rule weights as CFq — 0.5 for all the four linguistic
rules. Figure 3.1 shows the classification boundary by the initial linguistic
rule-based system. The value of e was specified as e = 0.001 in computer
simulations.

Since the first training pattern X\\VL Fig. 3.1 is correctly classified by the
initial linguistic rule-based system, no rule weights are modified. As shown
in Fig. 3.1, the second pattern x^ is misclassified by the linguistic rule i^s.
Thus i?3 is the winner rule R^ for x^ in (3.10). Since the actual class of x^
is Class 2, î 4 is chosen as the most promising linguistic rule i?^* in (3.10)
for correctly classifying the training pattern x^. One modified version of
the current linguistic rule-based system is constructed by increasing the rule
weight of the most promising linguistic rule Rq^ (i.e., R/^ using (3.12) as

^0 .944x0 .555
0.944 X 0.445

Pd 0.625. (3.14)

The rule weights of the other linguistic rules are not adjusted (i.e., CF\ —
CF2 = CF3 = 0.5). The classification boundary by this modified linguistic
rule-based system is shown in Fig. 3.5. As shown in this figure, the training
pattern X2 is correctly classified. The classification boundary is close to X2
because e is very small. Note that X2 is located on the classification bound
ary when e is zero. Some issues related to the location of the classification
boundary are discussed in a later section of this chapter.

Another alternative linguistic rule-based system is constructed by decreas
ing the rule weight of the winner rule R^^ for X2 (i.e., i^s) using (3.13) as

^|'AAx2)
^0 .944x0 .445

0.944 X 0.555
^ 0.400. (3.15)

The rule weights of the other linguistic rules are not adjusted (i.e., CFi =
CF2 = CF4 — 0.5). The classification boundary by this modified linguistic
rule-based system is shown in Fig. 3.6. As shown in this figure, the train
ing pattern X2 is correctly classified. In Fig. 3.6, two training patterns are
misclassified while three training patterns are misclassified in Fig. 3.5. Since
three training patterns are misclassified by the current linguistic rule-based
system in Fig. 3.1, the second modification in Fig. 3.6 is adopted. That is,
the rule weights of the four linguistic rules are updated as

CFi = CF2 = CF^ = 0.5, (3.16)

52 3. Learning of Linguistic Rules

CFs = 0.400. (3.17)

After the learning for the second training pattern X2, the current situation
is Fig. 3.6. The third training pattern Xs in Fig. 3.6 is correctly classified.
Thus no rule weights are modified. The fourth training pattern X4 is also
correctly classified. Thus Fig. 3.6 is still the current situation after the pre
sentation of CC4.

• : Class 1 o: Class 2

• L
V

Ri
• 1

V
•

R\
•
X\ ^

0 o^4o 1
• ^

0^ °
^ 4 ,

° 0
0

•
S 0 1 X3 ° ^2

•
i?3

1 •

1.0

X2

0.0

Fig. 3.5. Classification boundary
by the modified linguistic rule-based
system using (3.12)

• : Class 1

• J
Ri
•

•

Ri
•
Xi ^

0: Class 2

0 o^4o

0
•

V Q

|A;3 0 -̂ 2

* ^ 3

1 *

1.0

X2

0.0

Fig. 3.6. Classification boundary
by the modified linguistic rule-based
system using (3.13)

In this manner, the rule weight of each linguistic rule is updated by pre
senting each training pattern to the linguistic rule-based system. In Fig. 3.7,

3.2 Analytical Learning 53

we show the classification boundary after a single epoch. As shown in Fig.
3.7, all the given patterns are correctly classified after a single epoch. Table
3.9 shows the values of the rule weights and the number of misclassified train
ing patterns after each epoch. As shown in this table, the analytical learning
scheme needs far fewer epochs than the reward-punishment learning scheme.
This is because the amount of adjustment is analytically calculated for up
dating the rule weight of each linguistic rule in the analytical learning scheme
while the weight is incrementally updated without considering the effect of
the modification on the classification performance of the linguistic rule-based
system in the reward-punishment learning scheme. Of course, much more
computation time is required for a single epoch by the analytical learning
scheme than the reward-punishment learning scheme.

1.0

Xi

0.0
0.0

• : Class 1

• •

•
<

•

•
•

o: Class 2

° o ol
o o

1

0 °
•

•
• J

Xi

-After 1 epoch

1.0 Fig. 3.7. Classification boundary
after a single epoch

Table 3.9. Simulation results by the analytical learning scheme on the artificial
test problem in Fig. 3.1. The second row "Errors" shows the number of misclassified
training patterns

Epoch

Errors

CFi
CF2
CFs
CF4

0

3

0.5000
0.5000
0.5000
0.5000

1

0

0.5000
0.6638
0.3254
0.5000

We also applied the analytical learning scheme to the single-dimensional
artificial test problem in Fig. 2.13. Since Fig. 2.13 is an online-type classifica
tion problem where the number of training patterns incrementally increases
over time, the application of the analytical learning scheme is not straightfor
ward. In our computer simulation, all the generated training patterns were
used to examine the classification performance of the linguistic rule-based

54 3. Learning of Linguistic Rules

system. That is, all the available p patterns xi,X2,... ,Xp are used for the
performance evaluation in the learning for the p-th training pattern Xp. In
real-world applications, it is more natural to use a pre-specified number of
recent training patterns in the learning. That is, only recent training patterns
in a moving window are used in the learning.

We adjusted the rule weights of the three linguistic rules for the single-
dimensional artificial test problem using the analytical learning scheme from
their initial specifications CFi = CF2 = CFs = 0.5. Training patterns
were randomly generated from the pattern space [0,1] in Fig. 2.13 according
to the uniform distribution as in the computer simulation by the reward-
punishment learning scheme in the previous section. The execution of the
learning algorithm was iterated until 10000 training patterns were examined.
The values of e was specified as e = 0.001. In Fig. 3.8, we show how the rule
weights were updated during the iterative execution of the learning algorithm.
On the other hand. Fig. 3.9 shows how the estimated class boundary was ad
justed. Note that the actual threshold ^ is ^ = 0.47 in our single-dimensional
artificial test problem. From Fig. 3.9, we can see that the estimated class
boundary monotonically approaches the actual threshold value of 0.47 from
the initial value of 0.25. From the comparison between Fig. 3.9 and Fig.
3.4, we can see that the analytical learning scheme required far fewer epochs
than the reward-punishment learning scheme for driving the estimated class
boundary to its desired value of 0.47.

1.0

i
•5 0.5
0

s
>

n A

CFi, CF3

\

\ CF'l
, 1 , , 1 Fig. 3.8. Rule weight update
10 100 1000 10000 ^^^i^g ^^^ .^^^^^.^^ execution of

Number of presented patterns the analytical learning scheme

3.2.3 Computer Simulations on Iris Data

In the same manner as the computer simulations on the iris data using the
reward-punishment learning scheme in Sect. 3.1.3, we applied the analytical
learning scheme to the iris data set. We examined the four granularities of
linguistic discretization (i.e., K = 2,3,4,5) and the two initial rule weight
specifications (i.e., CFq = 0.5, ^g, and the heuristic specification using the
third definition).

3.2 Analytical Learning 55

10 100 1000

Number of presented patterns
10000

Fig. 3.9. Adjustment of the es
timated class boundary during
the iterative execution of the an
alytical learning scheme

Average classification rates on training pat terns were calculated over 20
independent trials for each combination of the granularity and the initial rule
weight specification. Simulation results on training pat terns are summarized
in Table 3.10 for the heuristic rule weight specification and Table 3.11 for
the initial rule weight 0.5. From these tables, we can see tha t the analytical
learning scheme required only a few epochs to reach to high classification
rates on training pat terns .

Table 3.10. Classification rates on training patterns in the iris data set. Rule
weights were adjusted by the analytical learning scheme from their initial values
heuristically specified by the third definition

Granularity

K = 2
K = 3
K = 4
K = 5

0

68.0%
94.0%
97.3%
96.7%

Number of epochs

1 2

94.5% 95.9%
97.7% 98.0%
98.0% 98.0%
98.7% 98.7%

3

96.2%
98.0%
98.0%
98.7%

Table 3.11. Classification rates on training patterns in the iris data set. Rule
weights were adjusted by the analytical learning scheme from their common initial
value of 0.5

Granularity

K = 2
K = 3
K = 4
K = 5

0

71.3%
92.0%
82.7%
94.7%

Number of epochs

1 2

95.4% 95.6%
98.0% 98.0%
95.4% 95.8%
97.0% 97.0%

3

95.7%
98.0%
95.8%
97.0%

We also examined classification rates on test pat terns using the leaving-
one-out technique. This technique was i terated ten times using different or-

56 3. Learning of Linguistic Rules

ders of presentation of 149 training patterns. Simulation results are summa
rized in Table 3.12 and Table 3.13. As in Table 3.5 and Table 3.6 using the
reward-punishment learning scheme, the rule weight learning significantly
improved the generalization ability of linguistic rule-based systems on test
patterns when linguistic discretization was coarse (e.g., K = 2). We can also
observe overfitting of linguistic rule-based systems to training patterns in
some cases.

Table 3.12. Classification rates on test patterns in the iris data set. Rule weights
were adjusted by the analytical learning scheme from their initial values heuristi-
cally specified by the third definition

Granularity

K = 2
K = 3
K = 4
K = 5

Number of epochs

0 1 2

68.0% 91.5% 93.6%
93.3% 95.9% 96.3%
94.0% 96.0% 96.0%
95.3% 94.6% 94.6%

Table 3.13. Classification rates on test patterns in the iris data set. Rule weights
were adjusted by the analytical learning scheme from their common initial value of
0.5

Granularity

K = 2
K = 3
K = 4
K = 5

Number of epochs

0 1 2

71.3% 93.6% 93.6%
92.0% 96.7% 96.7%
81.3% 89.4% 90.1%
94.7% 94.0% 94.0%

3.2.4 Computer Simulations on Wine Data

We also performed computer simulations on the wine data using the ana
lytical learning scheme in the same manner as the computer simulations in
Sect. 3.1.4 using the reward-punishment learning scheme. Simulation results
on training patterns and test patterns are summarized in Table 3.14 and
Table 3.15, respectively. As in the case of the iris data, the analytical learn
ing scheme required only a few epochs to reach high classification rates on
training patterns. As we have already mentioned in the previous section, the
improvement of classification rates on training patterns does not always mean
an improvement on test patterns.

3.3 Related Issues 57

Table 3.14. Classification rates on training patterns in the wine data set. Rule
weights were adjusted by the analytical learning scheme from their initial values
specified by the third definition

of rules

3
6
9
12
15
18
21
24
27
30

0

89.3%
92.1%
93.8%
94.9%
94.9%
94.9%
94.4%
94.4%
94.4%
94.9%

Number of epochs

1

90.5%
94.0%
96.5%
96.5%
96.6%
98.2%
98.1%
98.4%
98.3%
98.0%

2

90.5%
94.1%
96.8%
96.6%
96.6%
98.2%
98.1%
98.5%
98.3%
98.2%

3

90.5%
94.1%
96.8%
96.6%
96.6%
98.2%
98.1%
98.5%
98.4%
98.2%

Table 3.15. Classification rates on test patterns in the wine data set. Rule weights
were adjusted by the analytical learning scheme from their initial values specified
by the third definition

of rules

3
6
9
12
15
18
21
24
27
30

0

89.3%
84.8%
93.3%
93.3%
94.4%
92.1%
91.6%
91.6%
92.7%
93.3%

Number of epochs

1

88.9%
84.6%
93.7%
94.0%
94.2%
93.5%
93.5%
93.7%
92.1%
92.8%

2

88.9%
84.6%
93.7%
94.0%
94.2%
93.5%
93.4%
96.7%
92.3%
93.0%

3

88.9%
84.6%
93.7%
94.0%
94.2%
93.5%
93.4%
93.7%
92.3%
93.0%

3.3 Related Issues

In this section, we discuss two issues related to the learning of rule weights.
One is additional learning when all the training pat terns are correctly classi
fied. The other is the learning of the membership function of each linguistic
term.

3.3.1 Further A d j u s t m e n t of Class i f icat ion B o u n d a r i e s

As shown in the previous section, the classification boundary obtained by the
analytical learning scheme is always close to the training pat tern tha t was
used in the final adjustment of rule weights. This is because the value of e
in the update rules (3.12) and (3.13) is very small. For examining the effect
of the value of e on the location of the classification boundary, we performed

58 3. Learning of Linguistic Rules

computer simulations on the two-dimensional test problem in Fig. 3.1 using
various values ofe: e = 0.001,0.1,0.3. In Fig. 3.7, we have already shown the
classification boundary obtained from e = 0.001. Simulation results obtained
from e = 0.1 and e = 0.3 are shown in Fig. 3.10 and Fig. 3.11, respectively. In
the case of e = 0.1 in Fig. 3.10, the classification boundary is not very close
to any training patterns compared with the case of e = 0.001 in Fig. 3.7.
On the other hand, all the training patterns could not be correctly classified
in the case of e == 0.3 in Fig. 3.11. This is because the value of e (i.e., the
amount of adjustment of rule weights) is too large.

•: Class 1 o: Class 2
1.0

X2

0.0

•

•

•

•

•

•
4

^ o o
o 0

o

n

»

• •
0.0

Xi
1.0 Fig. 3.10. Classification boundary obtained

by the analytical learning scheme with e = 0.1

1.0

Xi

0.0

•: Class 1

• •

•

o: Class 2

^ o o
o o

o o
o

•

•N.
• ^

• •!
0.0

Xi
1.0 Fig. 3.11. Classification boundary obtained

by the analytical learning scheme with e = 0.3

As the above simulation results on the two-dimensional test problem sug
gest, large values of e make successful execution of the analytical learning
scheme very difficult. On the other hand, the classification boundary is very
close to training patterns in the case of small values of e.

When we use the reward-punishment learning scheme, we cannot adjust
the location of the classification boundary. The rule weight of the winner rule

3.3 Related Issues 59

is increased or decreased depending on the classification result (i.e., correct
classification or misclassification) of each training pattern. The classification
rate of the linguistic rule-based system after the rule weight adjustment is
not taken into account in the reward-punishment learning scheme.

Let us consider a very simple single-dimensional pattern classification
problem in Fig. 3.12 where ten patterns from two classes are given together
with three linguistic terms. Training patterns from Class 1 and Class 2 are
depicted by closed circles and open circles in Fig. 3.12, respectively. As in the
case of the single-dimensional artificial test problem in the previous computer
simulations, we use the following three linguistic rules:

Ri: If X is small then Class 1 with CFi,
R2: If X is medium then Class 2 with CF2,
i?3: If X is large then Class 2 with CF^.

Xi X2 X2 X4 X5

• • • • •

0.0

Xs Xq
o o

Xg X9

o o

0.5

Pattern space

X\Q

o
I I I I I I I I I I I

1.0
Fig. 3.12. A simple single-
dimensional test problem

In Fig. 3.13, we show simulation results (i.e., classification boundaries) by
the reward-punishment learning scheme with 77+ =0.001 and r/~ = 0 . 1 , and
the analytical learning scheme with e = 0.001. The learning of the rule weights
based on each scheme was iterated from their initial values CFi — CF2 =
CFs = 0 . 5 until all the training patterns were correctly classified. The ten
training patterns a^i,X2,. •.,Xio were presented in this order in the learning.
As we can see from Fig. 3.13, the classification boundaries in both cases are
very close to the fifth training pattern x^ = 0.3. This training pattern was
used in the final rule weight adjustment in the analytical learning scheme.

Intuitively we think that the actual class boundary in the simple single-
dimensional pattern classification problem in Fig. 3.12 may be around x = OA
because the largest attribute value from Class 1 is a: = 0.3 and the smallest
attribute value from Class 2 is a; = 0.5. To drive the classification boundary
of the linguistic rule-based system to such an intuitive location, an idea of
additional learning was proposed in [132]. The additional learning scheme
was utilized when all the training patterns were correctly classified using

60 3. Learning of Linguistic Rules

0.3018 by the reward-punishment learning scheme

>^5 l l I 1^6

"olT 04 05
0.3004 by the analytical learning scheme

Fig. 3.13. Simulation results by the reward-punishment learning scheme and the
analytical learning scheme

the reward-punishment learning scheme. In the following, we explain this
additional learning scheme.

Let us assume that a training pattern Xp is correctly classified as Class tp
by the linguistic rule-based system S. That is, we assume that Xp is correctly
classified by the winner rule R^ satisfying the following relation:

fiA^{xp) ' CFyj = m8ix{fiAq{xp) ' CFq\Cq = tp}. (3.18)

Let Rw:^ be the linguistic rule with the maximum product of the compati
bility grade and the rule weight among those rules whose consequent class is
different from the actual class tp of Xp. That is, Ryj:^ is defined as

I^A^A^p) • CF,^^ = max{/iAg(xp) • CFq\Cq 7̂ tp}. (3.19)
RqES

Since the training pattern Xp is correctly classified as Class tp by the winner
rule Ruj, the following relation holds:

MA *̂ (xp) • CF^^ < fiA^ (xp) ' CF^. (3.20)

In Fig. 3.13, the rule weights of the three linguistic rules updated by the
analytical learning scheme were as follows:

CFi = 0.5000, CF2 = 0.3323, CF3 = 0.5000. (3.21)

In Fig. 3.14, we depict the value of fiAgi^) • CFq for each linguistic rule where
Aq is small, medium, or large. The first linguistic rule Ri with small in the
antecedent part is the winner rule R^ for the fifth training pattern x^ and
the second linguistic rule R2 with medium is R^*-

Let us define ap as

^P = f^A^ (xp) • CF^ - /LLA^^ (Xp) • CF^*. (3.22)

As we can see from Fig. 3.14, the smaller is the value of ap, the closer is
the training pattern Xp to the classification boundary. The basic idea of the
additional learning scheme is to drive the classification boundary to the center
of two training patterns from different classes by making the value of ap large.
In each epoch of the additional learning scheme, first a training pattern Xp^
with the minimum value of ap is selected as

ap:^^ = mm{ap\p = 1 , 2 , . . . , m}. (3.23)

3.3 Related Issues 61

^^ small

0.0 ""p / \ 05

j^ = 0 3 Classification boundary

Fig. 3.14. Shape of the product of the compatibility grade and the rule weight for
each linguistic rule. The membership function of each linguistic term is shown by
dashed lines

Then R^ in (3.18) and R^^ in (3.19) are found for the training pattern x
To increase the value cr̂ *, CFyj is increased and CF^^ is decreased as

p * .

CF,

iNew 01d\ CFr^+77-(l-CFr<^),
iNew CF: lOld

(3.24)

(3.25)

where ry is a positive real number (e.g., TJ = 0.05). While we treat ry as a
constant parameter in the following computer simulations, it is possible to
treat 77 as a variable control parameter. That is, r] can be decreased during
the iterative execution of the additional learning scheme.

We applied the additional learning scheme with rj — 0.05 to the three
linguistic rules for the simple single-dimensional test problem in Fig. 3.12
after all the training patters were correctly classified by the analytical learning
scheme. Table 3.16 shows how the classification boundary was adjusted by
the analytical learning scheme (the first epoch) and the additional learning
scheme (the other epochs). From this table, we can see that the classification
boundary gradually approached the intuitively acceptable boundary of 0.4.

Table 3.16. The location of the classification boundary after each epoch of the
analytical learning scheme and the additional learning scheme

Epoch

Boundary

0

0.250

1

0.3004

2

0.3122

3

0.3233

4

0.3336

5

0.3433

10

0.3829

62 3. Learning of Linguistic Rules

We also applied the additional learning scheme with ry = 0.01 to the four
linguistic rules for the two-dimensional test problem in Fig. 3.1 after all the
training patters were correctly classified by the analytical learning scheme.
Figure 3.15 shows simulation results by the analytical learning scheme and
the additional learning scheme. The additional learning scheme was iterated
100 times (i.e., 100 epochs) after all the training patterns were correctly
classified by the analytical learning scheme. From Fig. 3.15, we can see that
the classification boundary was driven to the center of two adjacent training
patterns from different classes by the additional learning scheme, while it
was very close to some training patterns when all the training patterns were
correctly classified by the analytical learning scheme.

1.0

X2

0.0

•: Class 1 (

• •

•
•

y. Class 2

f o o
o o

o

1 ^
V °

•
•

0.0
Xi

Analytical learning
*~" Additional learning

1.0

Fig. 3.15. Simulation results by
the analytical learning scheme
and the additional learning
scheme

As we illustrated through the computer simulations on the simple test
problems, the additional learning scheme tries to improve the generaliza
tion ability of linguistic rule-based systems after all the training patterns are
correctly classified. High classification rates on test patterns were reported
in Nozaki et al. [132] using a hybrid algorithm of the reward-punishment
learning scheme and the additional learning scheme. For example, a 98.0%
classification rate on test patterns was obtained for the iris data set using the
leaving-one-out technique.

3.3.2 Adjustraent of Membership Functions

In this book, we use a set of given linguistic terms for each attribute without
modifying their membership functions for constructing linguistic rule-based
systems. This means that we use simple grid-type fuzzy partitions of the pat
tern space for generating linguistic rule-based systems. An example of a sim
ple grid-type fuzzy partition is shown in Fig. 3.16 where the two-dimensional
pattern space is discretized into 5 x 3 cells. In each cell, a single linguistic
rule is to be generated from training patterns.

In some studies on fuzzy rule-based classification systems, fuzzy parti
tions are adjusted (e.g., see [128]). That is, the membership function of each

3.3 Related Issues 63

[s>kMS^^^

\ ŝ /

W

(^)
\ Cli /

1.0

0.0
Xi

1.0

X2

0.0

Fig. 3.16. An example of a simple
grid-type fuzzy partition

linguistic term is adjusted. An example of an adjustable grid-type fuzzy parti
tion is shown in Fig. 3.17. As we have already discussed in Chap. 1, linguistic
interpretation of adjusted membership functions is not always easy. In this
book, we use given linguistic terms without adjusting their membership func
tions for constructing linguistic rule-based systems with high interpretability.
In the following, we briefly discuss the adjustment of membership functions.

^x^^x
j

1.0

X2

0.0

0.0
Xi

1.0 Fig. 3.17. An example of an ad
justable grid-type fuzzy partition

The basic idea of the reward-punishment learning scheme can be applied
to the learning of membership functions. When a training pattern Xp is cor
rectly classified by the winner rule, the compatibility grade of the training
pattern Xp with the winner rule is increased as the reward for the correct clas
sification. This can be implemented by moving the center of the antecedent
part of the winner rule toward the training pattern Xp in the n-dimensional

64 3. Learning of Linguistic Rules

pattern space as shown in Fig. 3.18. Usually the neighboring membership
functions of the adjusted ones are also modified according to some constraint
conditions. For example, the sum of adjacent membership functions is often
maintained as 1 for covering the entire pattern space by the membership
functions after their adjustment (see Fig. 3.17). On the other hand, when
a training pattern Xp is misclassified by the winner rule, the compatibility
grade of the training pattern Xp with the winner rule is decreased as the
punishment of the misclassification. This can be implemented by moving the
center of the antecedent part of the winner rule in the opposite direction of
the training pattern shown in Fig. 3.19.

ZE37

i ^ ^ " ^

Fig. 3.18. Adjustment of the antecedent
part of the winner rule for increasing
the compatibility grade with the training
pattern denoted by a closed circle

i ^ ^ ^ ^
Fig. 3.19. Adjustment of the antecedent
part of the winner rule for decreasing
the compatibility grade with the training
pattern denoted by an open circle

The basic idea of the analytical learning scheme can also be applied to
the adjustment of the compatibility grade of each linguistic rule. That is,

3.3 Related Issues 65

instead of adjusting rule weights, it is possible to adjust compatibility grades
for correctly classifying a misclassified training pattern. By the same idea as
the update rule for increasing the rule weight of the most promising linguistic
rule Rq^ in (3.12), the update rule for increasing the compatibility grade of
Rq^ can be written as

M^::(^p) = 1 ^ • i^Ti^p)+«• (3-26)

This can be implemented by moving the center of the antecedent part of Rq^
toward the training pattern Xp as shown in Fig. 3.18. On the other hand, the
update rule for decreasing the compatibility grade of the winner rule Ryj can
be written as follows from the same idea as (3.13):

M ! l r K) = § ^ - < l (^ p) - e - (3-27)

This can be implemented by moving the center of the antecedent part of R^
in the opposite direction of the training pattern Xp as shown in Fig. 3.19.

The main drawback of grid-type fuzzy partitions is that the number of
linguistic rules (or fuzzy rules)increases exponentially with the dimensional
ity of the pattern space. This is often called the "curse of dimensionality".
One popular approach for handling high-dimensional problems is to use scat
tered fuzzy partitions. Examples of scattered fuzzy partitions are shown in
Fig. 3.20 and Fig. 3.21. The main characteristic feature of scattered fuzzy
partitions is that each fuzzy rule does not use linguistic discretization of each
attribute. Instead, each fuzzy rule has its own multi-dimensional antecedent
fuzzy set. In Fig. 3.20, multi-dimensional antecedent fuzzy sets are decom
posable into single-dimensional antecedent fuzzy sets while those in Fig. 3.21
are not decomposable. Scattered fuzzy partitions were used in many studies
on fuzzy rule-based pattern classification [1]. When we use scattered fuzzy
partitions, the number of fuzzy rules is independent of the dimensionality of
the pattern space. Since there is no interaction between antecedent fuzzy sets
of different fuzzy rules, the adjustment of the antecedent part of each fuzzy
rule has high flexibility. Thus we can expect high classification performance
of fuzzy rule-based systems with scattered partitions. The interpret ability of
such fuzzy rule-based systems, however, is usually low. It is not easy to un
derstand the meaning of the antecedent part of each fuzzy rule in Fig. 3.20
and Fig. 3.21.

Another approach to the handling of high-dimensional pattern classifi
cation problems is the use of tree-type fuzzy partitions. Figure 3.22 shows
an example of a tree-type fuzzy partition. This fuzzy partition corresponds
to the tree structure in Fig. 3.23. Fuzzy rule-based systems with tree-type
fuzzy partitions are often called "fuzzy decision trees". Fuzzy decision trees
can be viewed as an extension of non-fuzzy standard decision trees [143]. See
Janikow [100] for the design of fuzzy decision trees.

66 3. Learning of Linguistic Rules

Fig. 3.20. An example of a scat
tered fuzzy partition with decom
posable multi-dimensional antecedent
fuzzy sets. Each multi-dimensional
antecedent fuzzy set has a pyramidal
shape

Fig. 3.21. An example of a scattered fuzzy
partition with non-decomposable multi
dimensional antecedent fuzzy sets. Each
multi-dimensional antecedent fuzzy set has
an ellipsoidal shape

Multi-layer structures are also used in fuzzy modeling for high-dimensional
problems. An example of a multi-layer structure is shown in Fig. 3.24. A hi
erarchical fuzzy rule-based system consists of multiple subsystems that are
hierarchically combined. Each subsystem is usually a low-dimensional fuzzy
rule-based system with grid-type fuzzy partitions. Since each subsystem has
only a few input variables, the exponential increase in the number of fuzzy
rules can be avoided by the use of multi-layer structures. From the view
point of interpretability, multi-layer structures have an inherent drawback in
that the interpretation of intermediate variables is very difficult. Intermedi
ate variables are the subsystem's input (or output) variables that are not
the input (or output) variables of the entire rule-based system. The design of
multi-layer structures of fuzzy rule-based systems was discussed in Ishigami
et al. [96] and Shimojima et al. [153].

3.3 Related Issues 67

small / \ large

0.0 X\

1.0

> N ^2

0.0

1.0 Fig. 3.22. An example of a tree-type
fuzzy partition

Xi is small X\ is large

X2 is /arge

Fig. 3.23. Tree structure correspond
ing to Fig. 3.22

Subsystem

t
Subsystem

t
Subsystem

T
Xi

t

t
Subsystem

T
Subsystem

Xi
t
X3

>

^

^

4
Fig. 3.24. An example of the multi-layer
structure of fuzzy rule-based systems

4. Input Selection and Rule Selection

In this chapter, we explain how hnguistic rule-based systems with simple
grid-type fuzzy partitions can be extended to the case of high-dimensional
pattern classification problems. First we mention input selection. Then we
describe a genetic algorithm-based approach to rule selection.

4.1 Curse of Dimensionality

As we have already mentioned in the previous section, the main difficulty in
applying grid-type fuzzy partitions to high-dimensional pattern classification
problems stems from the curse of dimensionality: the exponential increase in
the number of linguistic rules with the number of attributes. Let Ki be the
number of linguistic terms given for the i-th attribute {i = 1,2,.. . , n). Then
the total number of cells in a grid-type fuzzy partition of the n-dimensional
pattern space is Xi x K2 x . . . x Kn- For example, there are more than 1
billion cells when five linguistic terms are given for each of the 13 attributes
of the wine data set. Thus it is unrealistic to use grid-type fuzzy partitions
for high-dimensional pattern classification problems.

From the viewpoint of interpret ability of linguistic rule-based systems,
the use of grid-type fuzzy partitions can be recommended only for two-
dimensional pattern classification problems. In this case, linguistic rule-based
systems are concisely written in a two-dimensional tabular form as in Fig.
2.4 of Chap. 2. On the other hand, three-dimensional linguistic rule tables
cannot be written in a human understandable manner. For example, let us
consider a three-dimensional pattern classification problem with five linguis
tic terms for each attribute. In this case, the pattern space was discretized
into 125 cells by a grid-type fuzzy partition. While computer systems can
easily handle 125 linguistic rules with no difficulty, it is not an easy task for
human users to intuitively understand a linguistic rule-based system with 125
linguistic rules.

70 4. Input Selection and Rule Selection

4.2 Input Selection

A straightforward approach to the design of interpret able linguistic rule-
based systems is input selection. Input selection has been discussed for many
years in the fields of pattern classification and machine learning. For general
discussions on input selection, see Blum & Langley [12], Kohavi & John
[115], and Liu & Motoda [122, 123]. It was shown in Holte [56] that very
good results were obtained for some data sets from the selection of only
a single attribute. The relation between the number of attributes and the
classification performance of linguistic rule-based systems was examined in
Ishibuchi & Yamamoto [91] using sequential feedforward input selection. In
this section, we examine the classification performance of linguistic rule-based
systems generated from simple grid-type fuzzy partitions with only a few
attributes. It is shown through computer simulations that more than two
attributes are necessary for designing linguistic rule-based systems with high
classification performance for the wine data set. This observation motivates
us to use a rule selection method for the wine data set in the next section.

4.2.1 Examination of Subsets of Attributes

The total number of subsets of n attributes is 2'^ including the two extreme
cases: the whole set with all attributes and an empty set with no attributes.
It is possible to find the best subset of attributes by examining all the 2^
subsets only when the following conditions are satisfied:

(a) The design of a classification system using each subset is not time-
consuming.

(b) The evaluation of a classification system is not time-consuming.
(c) The number of attributes is small.

Let us consider the wine data set with 13 attributes. The total number
of subsets is calculated as 2^^ = 8192. If the examination of each subset
needs 1 second on the average, the examination of 8192 subsets needs about
2 hours. Thus the examination of all subsets is realistic. Such an enumeration
method, however, is impractical when the design of classification systems is
time-consuming (e.g., the learning of multi-layer feedforward neural networks
with a large number of training patterns). The enumeration of all subsets is
also impractical when the number of attributes is large.

While the examination of all subsets is difficult in the case of linguistic
rule-based systems for high-dimensional pattern classification problems, small
subsets with a few attributes can be efficiently examined. This is because
the size of linguistic rule-based systems with a few attributes is very small
compared with those with many attributes. Note that the number of linguistic
rules increases exponentially with the number of attributes. The number
of subsets including k attributes out of the given n attributes is nCk- For
example, the number of subsets with two attributes is calculated for the wine

4.2 Input Selection 71

da ta set with 13 at t r ibutes as 13C2 = 78. This is much smaller than the total
number of subsets 8192. In the next subsection, we examine all subsets of
the four at t r ibutes in the iris da ta set. In the case of wine da ta set with 13
at t r ibutes, we examine only small subsets with a few at t r ibutes .

4.2 .2 S i m u l a t i o n R e s u l t s

For the iris da ta set, we examined all subsets of the four at t r ibutes . The
number of examined subsets is 2^ — 1 = 15 excluding an empty set. Simu
lation results on training pat terns and test pat terns are summarized in Ta
ble 4.1 and Table 4.2, respectively. In computer simulations, each linguistic
rule-based system was generated using the third definition of rule weights
and a simple grid-type fuzzy parti t ion with the three linguistic terms small^
medium^ and large as in Fig. 2.1 of Chap. 2. The leaving-one-out technique
was used to examine the performance of each subset of the four at t r ibutes on
test pat terns . From Table 4.1 and Table 4.2, we can see tha t the subset with
the single a t t r ibute X4, has bet ter classification ability (i.e., 96.0% on training
pat terns and test pat terns) than all the four at t r ibutes in the iris da ta set
(i.e., 94.0% on training pat terns and 93.3% on test pat terns) . We can also see
tha t the classification ability of some subsets is very poor when inappropriate
at tr ibutes are selected (see the row labeled "Worst classification ra te") .

Table 4 . 1 . Simulation results on training patterns in the iris data set. All subsets
of the four attributes are examined for input selection

Number of a t t r ibu tes : k

Number of cells: 3^
Average number of rules
Best classification ra te
Average classification ra te
Worst classification ra te
Best combinat ion

1

3
3.0

96.0%
77.3%
55.3%
{X4}

2

9
8.7

96.7%
88.9%
66.7%

{XI.XA}

3

27
23.8

96.7%
94.2%
92.7%

{XI,X2,XA} {xi

4

81
62.0

94.0%
94.0%
94.0%

,X2,X^,XA}

Table 4.2. Simulation results on test patterns in the iris data set. All subsets of
the four attributes are examined for input selection

Number of attributes: A; 1 2 3 4

Number of cells: 3^
Average number of rules
Best classification rate
Average classification rate
Worst classification rate
Best combination

3
3.0

96.0%
76.5%
52.0%
{XA}

9
8.7

95.3%
88.0%
64.7%

{X2,XA}

27
23.7

96.0%
93.2%
90.0%

{XI,X2,XA} {xi

81
62.0

93.3%
93.3%
93.3%

,X2,X2„XA}

72 4. Input Selection and Rule Selection

For visually illustrating the effect of input selection, we show the nor
malized 150 patterns in the iris data set using the two-dimensional attribute
space with xi and x^ in Fig. 4.1. That is, this figure shows the projection of
the normalized 150 patterns onto the xi~X4 space. The classification bound
ary in this figure was depicted by the linguistic rule-based system generated
from all the 150 patterns using the two attributes xi and x^. For comparison,
we also show the projection onto the xi-a;2 space in Fig. 4.2. The worst clas
sification rates on training patterns and test patterns were obtained by the
two attributes xi and X2 for the case of A: = 2 in Table 4.1 and Table 4.2 (i.e.,
66.7% and 64.7%), respectively. The classification boundary in Fig. 4.2 was
depicted by the linguistic rule-based system with the two attributes xi and
X2- The comparison between Fig. 4.1 and Fig. 4.2 clearly shows the impor
tance of choosing good attributes for designing linguistic rule-based systems
with high classification ability.

• : Class 1 o: Class 2 A : Class 3
A

A A

A AAA A
A

o

o

o o ^^SA
OO OftOiODOO ^

o
CO oooo

Fig. 4.1. Projection of the nor
malized 150 patterns in the iris
data set onto the xi-x^ space and
the classification boundary by the
linguistic rule-based system with
these two attributes in the an
tecedent part

In Fig. 4.1, only eight linguistic rules were generated. These linguistic
rules are shown in Fig. 4.3. We can easily understand the linguistic rule-based
system in Fig. 4.3 because the number of linguistic rules is small and each
linguistic rule has only two attributes in its antecedent part. As shown in Fig.
4.3, we can generate linguistic rule-based systems with high interpret ability
by choosing two attributes.

We also examined linguistic rule-based systems with only a few attributes
for the wine data set. For each attribute, we used the three linguistic terms
small, medium, and large as in the above computer simulations on the iris
data set. Since the wine data set has 13 attributes, the number of linguistic
rule-based systems with k attributes is isCk- The number of combinations
of antecedent linguistic terms in each linguistic rule-based system with k

4.2 Input Selection 73

y. Class 1 o: Class 2 : Class 3

Fig. 4.2. Projection of the nor
malized 150 patterns in the iris
data set onto the a:i-X2 space and
the classification boundary by the
linguistic rule-based system with
these two attributes in the an
tecedent part

Fig. 4 .3 . Eight linguistic rules
generated from the 150 training
patterns in the iris data set using
the three linguistic terms small,
medium, and large for xi and
X4. The other two attributes are
removed. In each cell, the cor
responding consequent class and
rule weight are shown

at t r ibutes is 3^ (i.e., 3^ is the number of cells in each of the isCk grid-type
fuzzy part i t ions). When k is small, it is easy to generate linguistic rules for
designing a linguistic rule-based system by examining all the 3^ combinations.
The number of linguistic rule-based systems (i.e., isCk) is also small when k
is small. On the contrary, 3^ is huge when k is large. This means tha t it takes
a long computat ion time to examine isCk linguistic rule-based systems when
the number of selected at tr ibutes is large. At the same time, linguistic rule-
based systems are not interpretable when the number of selected at t r ibutes
is large. Thus we only examined linguistic rule-based systems with three or
less a t t r ibutes . Simulation results on training pat terns and test pat terns are
summarized in Table 4.3 and Table 4.4, respectively. The leaving-one-out

74 4. Input Selection and Rule Selection

technique was used to calculate the performance of each subset of the 13
at tr ibutes on test pat terns .

Table 4 .3 . Simulation results on training patterns in the wine data set. All subsets
including three or less attributes are examined for input selection

Number of a t t r ibu tes : k

Number of cells: 3^
Average number of rules
Best classification r a t e
Average classification r a t e
Worst classification r a t e

Best combinat ion

1

3
3.0

68.0%
55.4%
43.3%

{xis}

2

9
8.9

91.0%
70.3%
54.5%

{a:i2,xi3}

3

27
26.5

95.5%
79.9%
61.8%

{xr.xio.xis}
{X7,X11,X13}

3
3

67.4%
52.3%
27.0%

{^i}

9
8.9

90.5%
68 .1%
50.6%

{a:i2,a:i3}

27
26.5

94.9%
77.8%
56.2%

{X7,X10,X13}
{a;7,icii, 3:̂ 13}

Table 4.4. Simulation results on test patterns in the wine data set. All subsets
including three or less attributes are examined for input selection

Number of attributes: A; 1 2 3

Number of cells: 3^
Average number of rules
Best classification rate
Average classification rate
Worst classification rate

Best combination

When the number of at t r ibutes was two, the highest classification rate on
training pat terns was obtained from a;i2 and xis in Table 4.3 and Table 4.4.
Figure 4.4 shows the corresponding classification boundary together with the
normalized 178 training pat terns in the Xi2-a:^i3 space. On the other hand,
Fig. 4.5 shows the corresponding linguistic rule table. The linguistic rule-
based system in Fig. 4.5 can be easily understood because it consists of nine
linguistic rules with only two antecedent conditions. The classification ability
of this linguistic rule-based system, however, is not high (i.e., classification
rates are 91.0% on training pat terns and 90.5% on test pat terns) . From Table
4.3 and Table 4.4, we can see tha t any linguistic rule-based systems with two
at t r ibutes do not have high classification ability (compare the third column
of each table for two at t r ibutes with the fourth column for three at t r ibutes) .
This suggests tha t a linguistic rule-based system with both high comprehen-
sibility and high classification ability cannot be obtained for the wine da ta
set by input selection. In the next section, we show how such a linguistic
rule-based system can be obtained by rule selection.

4.3 Genetic Algorithm-Based Rule Selection 75

: Class 1 o: Class 2 Class 3

Fig. 4.4. Projection of the nor
malized 178 patterns in the wine
data set onto the xi2-a^i3 space
and the classification boundary
by the linguistic rule-based sys
tem with these two attributes in
the antecedent part

Fig. 4.5. Nine linguistic rules
generated from the 178 training
patterns in the wine data set us
ing the three linguistic terms on
a: 12 and xis. The other eleven at
tributes are removed

4.3 Genetic Algorithm-Based Rule Selection

The use of genetic algorithms [48, 55] for selecting a small number of linguis
tic rules from a large number of candidate rules was proposed in Ishibuchi
et al. [83, 84]. This idea was extended to the case of two-objective rule se
lection in [65] for explicitly examining the tradeoff between the number of
linguistic rules and the classification ability of linguistic rule-based systems.
Genetic algorithm-based rule selection was further extended to the case of
three-objective rule selection in [71, 94] by considering the length of each lin
guistic rule together with the above-mentioned two objectives. In this section,
we explain rule selection in the framework of single-objective optimization.
Multi-objective rule selection is explained in a later chapter.

76 4. Input Selection and Rule Selection

4.3.1 Basic Idea

A genetic algorithm-based rule selection method consists of two phases. The
first phase is the generation of candidate rules using the heuristic rule genera
tion method in Chap. 2. The second phase is the selection of a small number
of linguistic rules from a large number of candidate rules using a genetic
algorithm.

We explain the basic idea of the genetic algorithm-based rule selection
method using the simple two-dimensional pattern classification problem in
Fig. 2.1 of Chap. 2. As we have already shown in Fig. 2.4 of Chap. 2, nine
linguistic rules are generated using the grid-type 3 x 3 fuzzy partition with
the three linguistic terms small, medium, and large for each attribute. All
the nine linguistic rules have two antecedent conditions. While the linguistic
rule-based system with the nine linguistic rules is simple, we can construct a
simpler linguistic rule-based system by considering linguistic rules with only
a single antecedent condition in addition to those with two conditions. In
fact, the two-dimensional pattern classification problem in Fig. 2.1 can be
handled by the following four linguistic rules:

If xi is large then Class 2 with 0.839,
If X2 is medium then Class 2 with 0.255,
If X2 is large then Class 1 with 0.428,
If xi is small and X2 is medium then Class 1 with 0.705.

The rule weight of each linguistic rule is calculated using the third defini
tion (the same rule weight is also obtained for each linguistic rule from the
second and fourth definitions because the number of classes is two in Fig.
2.1). The first linguistic rules can be viewed as having a don^t care condition
on the second attribute X2. Similarly, a don't care condition is used on the
first attribute xi in the second and third linguistic rules. The classification
boundary by these four linguistic rules is shown in Fig. 4.6. From the com
parison between Fig. 4.6 with the four linguistic rules and Fig. 2.7 with the
nine linguistic rules in Chap. 2, we can see that almost the same classification
boundaries were obtained by the two linguistic rule-based systems in Fig. 2.7
and Fig. 4.6. This observation suggests that we may be able to construct sim
pler linguistic rule-based systems using short linguistic rules (e.g., the first
three linguistic rules in the above four rules) than simple grid-type fuzzy par
titions without significant deterioration in their classification performance.

In the genetic algorithm-based rule selection method, we use as candi
date rules short linguistic rules with some don't care conditions as well as
standard linguistic rules with no don't care conditions. In the case of the
two-dimensional pattern classification problem in Fig. 4.6, we examine 16
cells in the four fuzzy partitions in Fig. 4.7 for generating candidate rules.
The bottom-right figure is the standard simple grid-type fuzzy partition. In
the bottom-left figure, the antecedent condition on the second attribute X2 is
don't care. On the other hand, the antecedent condition on the first attribute

4.3 Genetic Algorithm-Based Rule Selection 77

• : Class 1 o: Class 2

L • ^

•
•

•

•

•

o P o
n r /

o / o

L/vj
Fig. 4.6. Decision regions of the four
linguistic rules and the classification
boundary

Xi is don^t care in the top-right figure. The single linguistic rule in the top-left
figure has two don't care conditions (i.e., has no antecedent condition). The
shaded regions in Fig. 4.7 correspond to the above-mentioned four linguistic
rules in Fig. 4.6.

For high-dimensional pattern classification problems, we only generate
short linguistic rules using many don't care conditions. We have already em
ployed this trick in the computer simulations on the wine data set in Chaps.
2 and 3. Only short linguistic rules are used as candidate rules in the genetic
algorithm-based rule selection method for designing linguistic rule-based sys
tems with high interpretability and high classification ability.

The inclusion or exclusion of each candidate rule is represented by a sin
gle binary variable. As a result, any subset of candidate rules is represented
by a binary string. The length of the binary string is the same as the num
ber of candidate rules. Genetic algorithms are used to handle such a binary
string. The fitness value of each subset is calculated from its classification
performance and its cardinality (i.e., the number of linguistic rules). In the
following subsections, we explain the genetic algorithm-based rule selection
method in detail.

4.3.2 Generation of Candidate Rules

Let Ki be the number of linguistic terms given for the i-th attribute of an
n-dimensional pattern classification problem. In addition to the Ki linguistic
terms, ^^don't care'^ is also used for each attribute as an additional antecedent
linguistic term (i.e., an additional antecedent fuzzy set) for generating candi
date rules. The membership value of don't care is always unity in the domain
interval of each attribute as shown in Fig. 4.7. The total number of combina
tions of antecedent fuzzy sets is {Ki + 1) x {K2 + 1) x . . . x {Kn + 1). In Fig.

78 4. Input Selection and Rule Selection

• : Class 1 o: Class 2 • : Class 1 o; Class 2

1 • • • o
• o ^ o

• o
o <̂

• O o

• ° ' o
. • . <'°

don 't care

\ 1

X\

• : Class 1 o: Class 2

X2

: Class 1 o: Class 2

Xl

Fig. 4.7. Four fuzzy partitions of the two-dimensional pattern space [0,1] x [0,1].
All the 16 cells in the four fuzzy partitions are used for generating candidate rules.
Shaded regions correspond to the four linguistic rules in Fig. 4.6

4.7 with the three linguistic terms for each of the two attributes, the total
number of combinations of antecedent fuzzy sets is (3 + 1) x (3 + 1) = 16.
Each combination of antecedent fuzzy sets corresponds to a single cell in the
four fuzzy partitions of the pattern space in Fig. 4.7.

For low-dimensional pattern classification problems, we can examine all
combinations of antecedent fuzzy sets for generating candidate rules. The
consequent class for each combination is determined by the heuristic rule
generation method in Chap. 2. The rule weight of each candidate rule is de
termined by the third definition in Chap. 2. All the generated rules are used
as candidate rules in the genetic algorithm-based rule selection method. For
example, 16 combinations of antecedent fuzzy sets are examined for generat
ing candidate rules for the two-dimensional pattern classification problem in
Fig. 4.7. Table 4.5 shows the generated candidate rules. All the 15 linguistic

4.3 Genetic Algorithm-Based Rule Selection 79

rules in Table 4.5 are used as candidate rules. It should be noted that the
linguistic rule with the antecedent part "If xi is don^t care and X2 is don't
care^^ is not generated as a candidate rule in Table 4.5. For this linguistic
rule with no antecedent condition (i.e., with two don't care conditions), all
the training patterns are fully compatible. In Fig. 4.7, the number of Class 1
patterns is the same as that of Class 2 patterns. Thus the consequent class
of this linguistic rule cannot be uniquely specified by the heuristic rule gen
eration method in Chap. 2. As a result, this linguistic rule is not generated
in Table 4.5.

Table 4.5. Candidate rules for the two-dimensional pattern classification problem
in Fig. 4.7

Rule

Ri
R2
Rs
R4

Rs
Re
R7
Rg
Rg
Rio
Rii
R12
Rl3
Rl4
Rl5

Xl

small
medium

large
don't care
don't care
don't care

small
small
small

medium
medium
medium

large
large
large

X2

don't care
don't care
don't care

small
medium

large
small

medium
large
small

medium
large
small

medium
large

Consequent

Class 1
Class 2
Class 2
Class 2
Class 2
Class 1
Class 1
Class 1
Class 1
Class 2
Class 2
Class 1
Class 2
Class 2
Class 2

Weight

0.808
0.049
0.839
0.074
0.255
0.428
0.769
0.705
0.968
0.013
0.453
0.526
0.990
0.911
0.574

On the other hand, it is impractical to examine all combinations of
antecedent fuzzy sets for generating candidate rules in the case of high-
dimensional pattern classification problems. Thus we only generate short lin
guistic rules with many don't care conditions as candidate rules. The shortest
linguistic rule for an n-dimensional pattern classification problem has the
following form:

If (no condition) then Class Cq with CFq (4.1)

This linguistic rule is the same as the following linguistic rule with n don't
care conditions:

If Xl is don't care and . . . and Xn is don't care

then Class Cq with CFq. (4.2)

All training patterns are fully compatible with the antecedent part of this
linguistic rule because there is no antecedent condition. This linguistic rule

80 4. Input Selection and Rule Selection

corresponds to the top-left figure in Fig. 4.7. In the case of Fig. 4.7, we cannot
generate the linguistic rule with no antecedent condition because the number
of Class 1 patterns is the same as that of Class 2 patterns (see Table 4.5).

The second shortest linguistic rule with a single antecedent condition has
the following form:

If Xi is Aqi then Class Cq with CFq. (4.3)

The number of linguistic rules of this form is Ki + i^2 + • • • + ^n- The
compatibility grade of each training pattern with the antecedent part of the
linguistic rule in (4.3) is the same as that with the linguistic term Aqi because
there is only a single antecedent condition. The first six candidate rules in
Table 4.5, which correspond to the top-right figure and the bottom-left figure
in Fig. 4.7, are linguistic rules of this form.

Linguistic rules with two antecedent conditions have the following form:

If Xi is Aqi and Xj is Aqj then Class Cq with CFq. (4.4)

The number of linguistic rules of this form is X^̂ <;j KiKj. When Ki = K for
all i, this is calculated as nC2 • K'^. In the same manner, we can generate lin
guistic rules with three antecedent conditions. Generated linguistic rules with
three or less antecedent conditions are used as candidate rules in this chapter.
When the number of attributes is large (i.e., when n is large), linguistic rules
with three antecedent conditions are not examined for generating candidate
rules. In this case, linguistic rules with two or less antecedent conditions are
used as candidate rules.

4.3.3 Genetic Algorithms for Rule Selection

Let N be the number of candidate rules. Any subset S of the N candidate
rules can be represented by a binary string of length N as

S = siS2 ...SN. (4.5)

In (4.5), Sq = 1 means that the q-th candidate rule Rq is included in the
subset S while Sq = 0 means that Rq is not included in S. For example, any
subset S of the 15 candidate rules in Table 4.5 is represented by a binary
string of length 15 (i.e., S — siS2 - • - si^). The number of linguistic rules in S
(i.e., the cardinality of S) is denoted by \S\. The cardinality l^l is the same
as the number of I's in the binary string S. For example, the subset including
the four linguistic rules in the shaded regions of Fig. 4.7 is represented as

S = 001011010000000. (4.6)

This binary string shows the following subset of the 15 candidate rules in
Table 4.5:

5 = {i?3,i?5,i^6,i^8}. (4.7)

4.3 Genetic Algorithm-Based Rule Selection 81

Each binary string S can be viewed as a linguistic rule-based system.
For assigning a fitness value to the string 5, training patterns are classified
by linguistic rules in S. Let NCP{S) be the number of correctly classified
training patterns by S. The fitness value of 5 is defined as

fitness{S) = NCP{S) - w^si • \S\, (4.8)

where l^l is the number of linguistic rules in S and w^s\ is a positive con
stant. The second term is added as the penalty with respect to the number
of linguistic rules in order to find a small number of linguistic rules with
high classification ability. A genetic algorithm is used to search for the op
timal subset with the maximum fitness value among the 2^ subsets of the
N candidate rules. Of course, the obtained optimal subset depends on the
specification of the positive constant w^s\' In the field of evolutionary com
putation, an objective function to be maximized is referred to as a fitness
function. In this chapter, fitness{S) in (4.8) is the fitness function in rule
selection.

While we consider two diff'erent criteria (i.e., classification ability and the
number of linguistic rules) in (4.8), they are treated within the framework
of single-objective optimization because w^s\ is a pre-specified constant. In
a later chapter, we explain how rule selection can be treated within in the
framework of multi-objective optimization.

Since each feasible solution S (i.e., each subset S) is represented by a
binary string with a scalar fitness value, we can directly apply genetic algo
rithms [48, 55] to the maximization problem of the fitness function in (4.8).
First a pre-specified number of initial strings of length N are randomly gen
erated. An initial population consists of the generated strings. It is possible
to use some heuristic procedures for generating initial strings. We will use
such a heuristic in later chapters. An example of a randomly generated ini
tial population is shown in Table 4.6 where ten binary strings of length 15
are randomly generated for the two-dimensional pattern classification prob
lem in Fig. 4.7. For explanation purposes, the generated strings are sorted
in descending order of their fitness values in Table 4.6. The value oi w\s\ in
the fitness function in (4.8) is specified as w\s\ = 0 . 1 . The number of strings
in each population is referred to as the population size, which is denoted as
Â pop in this book. The population size of the initial population in Table 4.6
is ten (i.e., Â pop = 10).

The search for good strings is performed by generating new strings from
existing ones in the current population using genetic operations called selec
tion, crossover, and mutation. The point is to use good strings for generating
new strings. Selection is a genetic operation that selects a pair of good parent
strings from which new strings are generated. Crossover is a genetic operation
that combines two parent strings for generating new strings. Mutation is a
genetic operation that partially and randomly modifies each string.

Traditionally, roulette wheel selection has been used to select parent
strings. In this selection scheme, the selection probability of each string is

82 4. Input Selection and Rule Selection

Table 4.6. A randomly generated initial population for the two-dimensional pat
tern classification problem in Fig. 4.7. The value of w\s\ is specified as w\s\ = 0.1
for calculating the fitness value of each string

String

Si
S2
Ss
54
55
56
57
58
59
5io

Binary code

000011010100011
100100011111011
101111110100100
111111101001001
101001111111100
111010001001000
100011000011111
100000001011000
111000111010011
010110010110101

NCP{S)
28
28
28
28
28
27
27
26
25
22

1̂1
6
9
9
10
10
6
8
4
9
8

fitness{S)
27.4
27.1
27.1
27.0
27.0
26.4
26.2
25.6
24.1
21.2

proportional to its fitness value. That is, a string Sk in the population ^ has
the following selection probability:

PiSu) = f"";!'^'"^.,. (4.9)
2^ jitness{Sj)

Roulette wheel selection seems to have two drawbacks. One is the slow con
vergence in the late stage of evolution. Let us consider a situation where the
fitness values of ten strings are {96, 94, 93, 93, 92, 90, 90, 88, 87, 85}. In this
case, the selection probabilities of these strings are almost the same. Thus
the selection pressure toward good strings is very low. The other drawback
is the premature convergence in the early stage of evolution. Let us consider
another situation where the fitness values of ten strings are {50, 4, 4, 3, 2, 2,
2, 2, 1, 1}. In this case, the first string has a much larger selection probability
than the other strings. Thus the selection pressure toward this string is very
high. As a result, the first string is frequently selected as parent strings. This
leads to the next population consisting of similar strings generated from the
first string with the largest fitness value in the previous population.

In the genetic algorithm-based rule selection method in Ishibuchi et al.
[83, 84], roulette wheel selection with linear scaling was used as

fitnessjSk) - /min(^) ..^^.
^^ '' - E IfitnessiS,) - UUn' ^ ^ ^

where /min(^) is the worst fitness value in the current population y^:

U,r.m = mm{fitness{Sk)\Sk G ^ } . (4.11)

Recently binary tournament selection with replacement has often been used
in genetic algorithms. In this selection scheme, two strings are randomly
selected with replacement. These two strings can be the same (i.e., a single
string can be selected twice). The better string with the higher fitness value

4.3 Genetic Algorithm-Based Rule Selection 83

is selected as a parent string. The selection probability of each string can be
analytically calculated for binary tournament selection with replacement. In
the case of Table 4.6 with ten strings, the selection probability of the best
string ^i is calculated as

The denominator is the total number of combinations of selecting two strings
from ten strings with replacement. The first term of the numerator is also
the total number of combinations of two strings. The second term is the
total number of combinations of two strings excluding the best string ^ i . In
the same manner, the selection probability of the second best string S2 is
calculated as

9 x 9 - 8 x 8
^^^^) ^ 10x10 • ^ ' - ' '^

While roulette wheel selection depends on the fitness value of each string,
tournament selection depends on only the order of the fitness value of each
string.

In Table 4.7, we compare the above-mentioned three schemes (i.e., roulette
wheel selection, roulette wheel selection with linear scaling, and binary tour
nament selection with replacement) with one another using the ten strings in
Table 4.6. Table 4.7 clearly shows the effect of the linear scaling on the selec
tion probability of each string. This table also shows the diff'erence between
roulette wheel selection and binary tournament selection. In this chapter, we
use binary tournament selection with replacement in genetic algorithms for
rule selection.

Table 4.7. Selection probability of each string in Table 4.6

String

Si
52
S3
54
56
56
57
58
59
5*10

fitness{S)

27.4
27.1
27.1
27.0
27.0
26.4
26.2
25.6
24.1
21.2

Roulette wheel selection

No scaling

0.106
0.105
0.105
0.104
0.104
0.102
0.101
0.099
0.093
0.082

Scaling

0.132
0.125
0.125
0.123
0.123
0.110
0.106
0.093
0.062
0.000

Binary

tournament

0.190
0.160
0.160
0.120
0.120
0.090
0.070
0.050
0.030
0.010

After a pair of parent strings is selected from the current population, a
crossover operation is used to generate new strings from the selected parent
strings. One-point crossover, two-point crossover, and uniform crossover have

84 4. Input Selection and Rule Selection

frequently been used for binary strings in genetic algorithms. These crossover
operations are illustrated in Figs. 4.8 - 4.10 where Si and 52 in Table 4.6 are
used as parent strings for illustration purposes.

Crossover point

Si IQIOIOIO

Si l l l O l O l l

IQIOIOIO

I I I O I O I I

Si lOlOlOlO

52 I I I O I O I I

foToToTo

nioToTT

l I l l O l l l O l l l O I O I O I l l l l

OlOlll l l l l l l l lOll l l l

iIoioiiiiiiiiflTol IIJJ

1|Q| 1 |Q| 1 |Q|Q|Q| 1| 11 Yig. 4.8. One-point crossover operation

Crossover points

iTiloiiloii loToioiil i l

OlOlOllllllllTllOlllll

iIo|o|i|i|i|iIo|oIIII]

oTilQliloiiloTiTol 1 1 Fig. 4.9. Two-point crossover operation

In the one-point crossover operation in Fig. 4.8, a single crossover point is
randomly selected. A different crossover point is selected for a different pair
of parent strings. Each parent string is divided into two parts by the single
crossover point. Then the right hand side of one parent string is interchanged
with the corresponding part of the other parent string.

On the other hand, two crossover points are randomly selected in the two-
point crossover operation in Fig. 4.9. Each parent string is divided into three
parts by the two crossover points. The substring between the two crossover
points of one parent string is interchanged with the corresponding part of the
other parent string.

In the uniform crossover operation in Fig. 4.10, locations (i.e., loci) are
randomly chosen for crossover. These locations are indicated by * in Fig.
4.10. We randomly assign * to each location with the probability 0.5 for
implementing the uniform crossover operation. Values (i.e., genes) in the
selected locations of one parent string are exchanged with those of the other
parent string. In this chapter, we use the uniform crossover operation because

4.3 Genetic Algorithm-Based Rule Selection 85

^1 |Q|0|0|0|l|l|Q|l|0|l|Q|Q|OTnn

& lllOlOlllOlOlOlllllllllllOlllll

IIIOIOIOIIIOIOIIIQIIIOIQIOIIIII

|0 |0 |0 |1 |0 |1 |Q|1 |1 |1 |1 |1 |0 |1 |1 | Fig. 4.10. Uniform crossover operation

this operation is independent of the order of rules located in each string. On
the other hand, the other crossover operations depend on the order of rules
(e.g., offspring are likely to inherit adjacent rules from their parents by the
one-point and two-point crossover operations).

The uniform crossover operation is applied to each pair of parent strings
with a pre-specified crossover probability. This means that the crossover op
eration is not applied to some pairs of parent strings. In this case, parent
strings are not modified by the crossover operation.

A mutation operation is applied to each string after the crossover opera
tion. We use a simple flip-flop mutation operation. This mutation operation is
illustrated in Fig. 4.11 where mutated values are indicated by shaded boxes.
The mutation operation is applied to each location in each string with a
pre-specified mutation operation.

I I I O I O I O I I I O I O I I I O I I I O I O I O I I I I I

| 1 |0 |0 |0B0|0 |1 |0 |1 |0 |1 |0 |1 |1 | Fig. 4.11. Mutation operation

The best string in the current population is inherited by the next popula
tion with no modification. This is referred to as an elitist strategy or elitism.
We use this strategy in genetic algorithms for rule selection. In the case of
Table 4.7, the best string 5i is inherited by the next population (see Table
4.8).

As we have explained, the next population is generated from the cur
rent one using binary tournament selection with replacement, the uniform
crossover, the flip-flop mutation, and the elitist strategy. This is illustrated
in Table 4.8 for the current population in Table 4.7. The first column of Table
4.8 shows five pairs of parent strings that are selected by binary tournament
selection with replacement. The second column shows new strings after the
crossover operation. The crossover operation is not applied to the second pair
of parent strings. The best string in Table 4.7 is inserted in the bottom row
of the third column as the elite string. The third column shows strings after

86 4. Input Selection and Rule Selection

the mutation operation. Mutated values are underlined in this column. The
next population consists of the ten strings in the third column. It should be
noted that the elite string is handed down from the current population to
the next population with no modification.

Table 4.8. Next population generated from the current population in Table 4.7

Si
Sr

Ss
Si

Se
S4

54
S4

S5
S2

Parent strings

000011010100011
100011000011111

101111110100100
000011010100011

111010001001000
111111101001001

111111101001001
111111101001001

101001111111100
100100011111011

After crossover

lOOOllOlOlOOOll
000011000011111

101111110100100
000011010100011

IIIOIIIOIOOIOOO
111110001001001

111111101001001
111111101001001

100101111111011
Elite string (^i)

After mutation

100011010100011
000111001011111

101111100100100
001011010100011

IIIOIIIOIOOIOOO
lOlllOOOlOOlOOl

IIIOIIIOIOOIOOO
111110111001001

lOOlOOll l l l lOl l
000011010100011

The above-mentioned genetic operations (i.e., selection, crossover, muta
tion, and elitist strategy) are iterated to find the optimal rule set with the
highest fitness value. Since good strings with high fitness values are selected
from the current population for generating the next population, we expect
that better strings are obtained through the iterations of the genetic opera
tions. Our genetic algorithm for rule selection can be written as follows:

[Genetic Algorithm for Rule Selection]

Step 0: Parameter Specification. Specify the population size Npop^ the cross
over probability Pc, the mutation probability pm^ and the stopping
condition.

Step 1: Initialization. Randomly generate Â pop binary strings of length N
as the initial population.

Step 2: Genetic Operations. Calculate the fitness value of each string in the
current population. Store the best string as the elite string. Gener
ate (A p̂op — 1) strings using selection, crossover, and mutation from
the current population. The current population is replaced with the
newly generated (A p̂op — 1) strings.

Step 3: Elitist Strategy. Add the elite string stored in Step 2 to the current
population.

Step 4: Termination Test. If the stopping condition is not satisfied, return
to Step 2. Otherwise terminate the execution of the algorithm. The
best string in the current population is the obtained solution of the
rule selection problem.

4.3 Genetic Algorithm-Based Rule Selection 87

4.3.4 Computer Simulations

We applied the genetic algorithm-based rule selection method to the two-
dimensional test problem in Fig. 4.7 with the 15 candidate rules in Table 4.5.
Each subset of the candidate rules was denoted by a binary string of length
15. The value of w\s\ in the fitness function (4.8) was specified as w\s\ = 0-1.
This specification means that the first objective (i.e., the number of correctly
classified training patterns) is more important than the second objective (i.e.,
the number of selected linguistic rules). The sensitivity of obtained rule sets to
the specification ofw\s\ is examined later in this subsection through computer
simulations with various values of w\s\-

In Step 0 of the genetic algorithm for rule selection in the previous sub
section, we have to specify some parameter values. In computer simulations
on the two-dimensional test problem, we used the following parameter spec
ifications:

Population size: Â pop = 10,
Crossover probability: Pc = 0.8,
Mutation probability: Pm — l/(string length) = 1/15,
Stopping condition: 500 iterations (i.e., 500 generation updates).

Since the string length is small (i.e., the search space is small), the population
size and the total number of iterations are also small. The above specification
of the mutation probability means that each string has a single occurrence of
mutation on the average. From the population size and the stopping condi
tion, we can see that 5000 subsets were examined among 2^^ = 32768 subsets
of the 15 candidate rules. In Step 1, ten strings were randomly generated. We
have already shown the generated strings in Table 4.6. The next population
was generated by selection, crossover, and mutation in Step 2 and the elitist
strategy in Step 3. We have already shown the updated population in Table
4.8. The generation update (i.e., generating the next population from the cur
rent one) was iterated 500 times. Then the genetic algorithm was terminated.
The following string was obtained as the best string in the final population:

S = 001011010000000. (4.14)

This string corresponds to the following rule set:

S = {i?3,i^5,i^6,i^8}. (4.15)

We have already used this rule set to explain rule selection in this chapter
(see Fig. 4.6 and Fig. 4.7).

We performed the same computer simulation 20 times using different ini
tial populations. The rule set in (4.15) was obtained from 14 trials (out of
the 20 trials). To examine the optimality of this rule set, we calculated the
fitness values of all the 2^^ — 32768 subsets of the 15 candidate rules. From
those exhaustive calculations, we confirmed that the rule set in (4.15) is one
of the two optimal solutions with the maximum fitness value. The other op
timal solution was found from the remaining six trials in the above computer

88 4. Input Selection and Rule Selection

simulations. This means that the genetic algorithm could find the optimal
solution by examining 5000 solutions among 32768 possible solutions.

Figure 4.12 shows the average classification rate of the elite string at
each generation over the 20 trials. From this figure, we can see that the
average classification rate was rapidly improved by the genetic algorithm
during the first 100 generations. On the other hand, Fig. 4.13 shows the
average cardinality of the elite string at each generation over the 20 trials.
From the comparison between Fig. 4.12 and Fig. 4.13, we can see that the
decrease in the number of linguistic rules was slower than the increase in the
classification rate. This is because the value ofw\s\ was small (i.e., w^s\ = 0-1)
in the fitness function (4.8).

100 200 300 400
Number of generations

500

Fig. 4.12. The average classi
fication rate of the elite string
at each generation over the 20
trials in the case of wis\ = 0.1

100 200 300 400
Number of generations

500

Fig. 4.13. The average cardi
nality of the elite string at each
generation over the 20 trials in
the case of w\s\ =0.1

We also performed the same computer simulation using a large value for
w^si in the fitness function (4.8). The value of w^si was specified as w\s\ =
2. This means that the minimization of the number of linguistic rules is
more important than the maximization of the number of correctly classified
training patterns. Average simulation results over 20 trials are summarized
in Fig. 4.14 and Fig. 4.15. From these figures, we can see that the increase
in the number of correctly classified training patterns in Fig. 4.14 was slower
than the decrease in the number of linguistic rules in Fig. 4.15. We can also

4.4 Some Extensions to Rule Selection 89

see that the average classification rate deteriorated from Fig. 4.12 to Fig.
4.14 on increasing the value of w\s\- At the same time, the average number
of linguistic rules was decreased from Fig. 4.13 to Fig. 4.15 by increasing
w\s\' The following rule set was obtained from all the 20 trials when w\s\ was
specified as w\s\ = 2:

S = {R^,Rs,Ri2}- (4.16)

This rule set is the optimal solution in the case ofw]^s\ = 2. Figure 4.16 shows
the decision region of each linguistic rule in the rule set (4.16) together with
the classification boundary.

u
100 200 300 400

Number of generations
500

Fig. 4.14. The average classi
fication rate of the elite string
at each generation over the 20
trials in the case of it;|5| = 2

100 200 300 400
Number of generations

500

Fig. 4.15. The average cardi
nality of the elite string at each
generation over the 20 trials in
the case of w\s\ = 2

4.4 Some Extensions to Rule Selection

We have already explained the structure of the genetic algorithm-based
rule selection method. While the genetic algorithm worked well on the two-
dimensional test problem, some extensions are required to improve its effi
ciency and applicability when it is applied to real-world pattern classification
problems with many attributes. In this section, we present some heuristics for

90 4. Input Selection and Rule Selection

•: Class 1 o: Class 2

Fig. 4.16. Decision region of each lin
guistic rule in the rule set in (4.16)
and the classification boundary

improving the efficiency and the applicability of the genetic algorithm-based
rule selection method.

4.4.1 Heuristics in Genetic Algorithms

One heuristic is the removal of unnecessary linguistic rules from each string
S (i.e., each rule set S). Since we use the single winner-based method, the
classification of each pattern by the rule set S is performed by finding a
single winner rule with the maximum product of the rule weight and the
compatibility grade with that pattern as we have already explained in Chap.
2. There may be a case where some linguistic rules in S are not chosen as
winner rules for any patterns. We can remove these linguistic rules from S
without causing any changes in the classification results by S. That is, the
removal of those linguistic rules does not decrease the number of correctly
classified training patterns by S. At the same time, the number of linguis
tic rules is decreased by removing unnecessary linguistic rules. This leads to
an improvement in the fitness value of S. Thus we remove all linguistic rules
that are not selected as winner rules for any patterns from the rule set S. The
removal of those linguistic rules is performed for each string of the current
population by changing the corresponding I's to O's. This heuristic proce
dure can be viewed as a kind of local search because each string is modified
to improve its fitness value. The removal of unnecessary linguistic rules is
performed when the fitness value is calculated (i.e., between the calculation
of the number of correctly classified training patterns and the calculation of
the number of linguistic rules).

For example, let us consider the following two linguistic rules in Table 4.5
for the two-dimensional test problem in Fig. 4.7:

4.4 Some Extensions to Rule Selection 91

Ri: If xi is small and X2 is don^t care then Class 1 with 0.808,
Rs'. If xi is small and X2 is medium then Class 1 with 0.705.

When these two linguistic rules are included in the rule set S, Rsis never cho
sen as the winner rules of any patterns because both the compatibility grade
and the rule weight of Ri are always larger than Rg. Thus we can remove Rs
from the rule set S without causing any changes in the classification results
by S when both Ri and Rs are included in 5. In this case, the removal of Rs
from S improves the fitness value of S.

Another heuristic is the use of biased mutation probabilities. For effi
ciently decreasing the number of linguistic rules in each rule set (i.e., the
number of I's in each string), we assign a higher probability to the mutation
from 1 to 0 than the mutation from 0 to 1. We briefly explain here the effect
of the unbiased mutation on the number of linguistic rules. Let N and pm be
the number of candidate rules (i.e., string length) and the mutation proba
bility, respectively. The number of I's and O's in the string S are written as
\S\ and Â — |5 | , respectively. Thus the expected number of I's to be mutated
to 0 is written for the string S as

Nm{l -^ 0) = \S\ - Pm- (4.17)

On the other hand, the expected number of O's to be mutated to 1 is written
as

Nm{0-^ 1) = {N - \S\) ' Pm- (4.18)

Since initial strings are randomly generated, jS'l is almost the same as A^—15|.
Thus the mutation operation does not change the number of linguistic rules
on the average in the initial stage of evolution. Since the goal of rule selection
is to find a small number of linguistic rules from a large number of candidate
rules, 151 should be much smaller than N in the late stage of evolution. Thus,
| 5 | should be much smaller than N - \S\. In this case, Nm{0 -^ 1) in (4.18)
is much larger than Nm{l —>• 0) in (4.17). This means that the mutation
operation increases the number of linguistic rules on the average while the
goal of rule selection is to find a small number of linguistic rules. The aim of
using biased mutation probabilities is twofold. One is to rapidly decrease the
number of linguistic rules in the initial stage of evolution where the number
of I's is almost the same as the number of O's in each string. The other is
to prevent the mutation operation from increasing the number of linguistic
rules in the late stage of evolution where the number of I's is much smaller
than the number of O's.

For simplicity of explanation, let us consider a rule set S with TV == 1010
and \S\ = 10. In this case, the number of I's is 10 and the number of O's
is 1000. When we use an unbiased mutation probability pm, the expected
number of I's to be mutated to 0 is calculated as

Nm{l -^ 0) = | 5 | 'Pm = 10 'Pm- (4.19)

92 4. Input Selection and Rule Selection

On the other hand, the expected number of O's to be mutated to 1 is calcu
lated as

NmiO ^1) = {N- \S\) -pm = 1000 . p ^ . (4.20)

Thus we have the following relation:

Nmil ^ 0) = Y^A^m(0 -^ 1). (4.21)

From this relation, we can see that the mutation operation almost always
increases the number of linguistic rules.

We examined the effect of the two heuristics (i.e., the removal of unnec
essary linguistic rules and the use of biased mutation probabilities) through
computer simulations on the iris data set. First we generated linguistic rules
by examining all combinations of the four antecedent fuzzy sets (i.e., small,
medium, large, and don't care) for each of the four attributes (i.e., 4^ = 256
combinations). Using all the 150 samples in the iris data set as training pat
terns, 221 linguistic rules were generated. The other linguistic rules were not
generated because their consequent classes could not be uniquely determined
by the heuristic rule generation method in Chap. 2. All the generated lin
guistic rules were used as candidate rules in rule selection.

We used the following four versions of the genetic algorithm-based rule
selection method:

GA: Original algorithm in the previous selection with no extension,
R-GA: Modified algorithm with the removal of unnecessary linguistic rules,
B-GA: Modified algorithm with biased mutation probabilities,
RB-GA: Modified algorithm with both heuristics.

These algorithms were applied to the iris data set using the following param
eter specifications:

The value of w\s\' ^ | 5 | = 0.1,
Population size: Â pop = 50,
Crossover probability: pc = 0.8,
Mutation probability: pm = l/(string length) = 1/221,
Stopping condition: 1000 generation updates.

In the two versions with biased mutation probabilities, the above mutation
probability was biased as

Pm{0 ^ 1) = l/(string length) = 1/221,
P m (1 ^ 0) = 0 . 1 .

We applied each algorithm to the iris data set 20 times using different
initial populations. Simulation results over 20 trials of each algorithm are
summarized in Fig. 4.17 and Fig. 4.18. Figure 4.17 shows the average classi
fication rate by the elite string at each generation. The difference among the
four algorithms is not clear in this figure. This is because the two heuristics
did not improve the classification performance of each string. On the other

4.4 Some Extensions to Rule Selection 93

hand, Fig. 4.18 shows the average number of linguistic rules in the elite string
at each generation. From this figure, we can see tha t each of the two heuristics
had a large effect on the decrease in the number of linguistic rules.

97.5|

U

» GA o R-GA A B-GA ^RB-GA

97.0

i--0-0--C<^0-<><>-0--0-<><>-C5^0K><>^^

500

Number of generations
1000

Fig. 4.17. The average classifi
cation rate of the elite string at
each generation over the 20 tri
als of each version in computer
simulations on the iris data set

• GA o R-GA A B-GA ^RB-GA

500

Number of generations
1000

Fig. 4.18. The average cardi
nality of the elite string at each
generation over the 20 trials of
each version in computer simu
lations on the iris data set

Since the number of linguistic rules in each string was rapidly decreased by
the two heuristics as shown in Fig. 4.18, computation t ime was also decreased.
The average CPU time of each algorithm over 20 trials is shown in Table 4.9.
The average CPU time was measured for each algorithm implemented in the
C language on a P C with an Intel Pentium IV 1.5 GHz processor.

Table 4.9. The average CPU time

Algorithm GA R-GA B-GA

CPU time (s) 50.6 27.5 51.1

RB-GA

31.1

4.4 .2 P r e s c r e e n i n g of C a n d i d a t e R u l e s

The efficiency of the genetic algorithm-based rule selection method strongly
depends on the number of candidate rules. It is very difficult for genetic

94 4. Input Selection and Rule Selection

algorithms to efficiently find a small number of linguistic rules with high
classification ability when the number of candidate rules is huge. The size
of the search space in rule selection is 2^ where N is the number of candi
date rules. That is, the search space expands exponentially as the number of
candidate rules increases. If we can find only good candidate rules by pre-
screening, the efficiency of genetic algorithms can be significantly improved.
In this subsection, we explain such a prescreening procedure.

In the computer simulations on the wine data set in Chap. 2 (i.e.. Table
2.10 and Table 2.11), we designed linguistic rule-based systems using a heuris
tic rule selection method where the product of the confidence c(-) in (2.10)
and the support s(-) in (2.11) was used as a rule selection criterion. In this
subsection, we use the same heuristic method as a prescreening procedure
of candidate rules. As in Chapter 2, generated linguistic rules are divided
into M groups according to their consequent classes where M is the number
of classes. Linguistic rules in each group were sorted in descending order of
the product of the confidence and the support. When multiple linguistic rules
have the same product, they are randomly sorted (i.e., random tiebreak). The
first N/M rules from each group are chosen as candidate rules for finding N
candidate rules in total. While we use the product of the confidence and the
support as a rule selection criterion in this book, better results have been
reported for some tet problems by more complicated criteria in [93]

We examined the effectiveness of this prescreening procedure of candidate
rules through computer simulations on the wine data set. First we generated
linguistic rules with three or less antecedent conditions (i.e., with ten or
more don^t care conditions) using the three linguistic terms small, medium,
and large. All the 178 samples in the wine data set were used as training
patterns. Table 4.10 summarizes the number of generated linguistic rules.

Table 4.10. The number of generated linguistic rules with each number of an
tecedent conditions. The three linguistic terms small, medium, and large were used
to generate linguistic rules

Number of antecedent conditions

0 1 2 3

1 39 701 7585

Total

8326

Using the prescreening procedure, we found a set of candidate rules. Table
4.11 shows the relation between the number of candidate rules and their clas
sification ability on training patterns. For comparison. Table 4.11 also shows
the classification ability of candidate rules obtained by other rule selection
criteria (i.e., confidence and support). To decrease the effect of the random
tiebreak, the average classification rate was calculated over 100 computer
simulations for each case. Note that classification rates in Table 4.11 were
measured on training patterns for the candidate rules before rule selection.

4.4 Some Extensions to Rule Selection 95

From Table 4.11, we can see that the highest classification rates were obtained
when candidate rules were prescreened using the product of the confidence
and the support.

Table 4.11. Classification rates on training patterns of candidate rules obtained
by the prescreening procedure for the wine data set

Number of

candidate rules

3
6
9

30
60
90

300
600
900

Rule selection criterion

Product

68.0%
94.4%
92.7%
95.5%
95.5%
95.5%
96.1%
96.1%
96.1%

Confidence

16.2%
28.6%
36.4%
59.1%
64.9%
68.1%
76.1%
79.6%
91.3%

Support

43.3%
42.1%
53.9%
78.1%
93.3%
93.8%
95.5%
95.5%
95.5%

We applied the genetic algorithm-based rule selection method to 900 can
didate rules obtained by the product criterion. We used the genetic algorithm
with the two heuristics (i.e., removal of unnecessary rules and biased muta
tion probabilities) in the same manner as in the computer simulation on the
iris data set in the previous subsection. This computer simulation was per
formed 20 times using different initial populations. For comparison, we also
performed the same computer simulation with no prescreening procedure.
That is, all the generated 8326 linguistic rules in Table 4.10 were used as can
didate rules. Average simulation results are summarized in Table 4.12. From
this table, we can see that almost the same results were obtained from the
two cases: with prescreening and without prescreening. We can also see that
the prescreening procedure significantly decreased the average CPU time.

Table 4.12. Average results on the wine data set by the genetic algorithm-based
rule selection method with/without the prescreening procedure

Genetic algorithm-based rule selection method
With prescreening Without prescreening

Classification rate 100% 100%
Number of rules 6.9 7.0
CPU times (s) 119.8 546.3

From the comparison between Table 4.11 and Table 4.12, we can see that
the genetic algorithm-based rule selection method significantly improved the
classification ability of candidate rules. The average classification rate 96.1%
of 900 candidate rules in Table 4.11 was improved to 100% by selecting 6.9

96 4. Input Selection and Rule Selection

linguistic rules on the average in Table 4.12. We can also see from Table
4.11 that small rule sets designed by the prescreening procedure have lower
classification rates than the average result of the genetic algorithm-based
rule selection method in Table 4.12. This is because the classification accu
racy of rule sets is taken into account in the genetic algorithm-based rule
selection method while the classification ability of individual linguistic rules
is independently evaluated in the prescreening procedure using a heuristic
rule evaluation criterion. This observation shows the advantage of the ge
netic algorithm-based rule selection method over heuristic rule selection. Of
course, it should be noted that the prescreening procedure is used to find
a tractable number of candidate rules in the genetic algorithm-based rule
selection method in this chapter.

4.4.3 Computer Simulations

We further examine the genetic algorithm-based rule selection method through
computer simulations on the iris data set and the wine data set. We have used
the three linguistic terms small, medium, and large in the previous computer
simulations of this chapter. That is, we have used the same fuzzy partition
into the three linguistic terms for all attributes of each data set. In this sub
section, we use the four fuzzy partitions with different granularities in Fig. 1.4
of Chap. 1. That is, we use the 14 antecedent fuzzy sets in Fig. 1.4 and don't
care for each attribute. This is to demonstrate how the genetic algorithm-
based rule selection method can be employed in the case where we do not
know an appropriate fuzzy partition for each attribute. The total number of
combinations of antecedent fuzzy sets is (14-1-1)"^ in an n-dimensional pattern
classification problem. Thus far more candidate rules are generated in com
puter simulations of this subsection than the case with the three linguistic
terms in the previous computer simulations.

In the application of the genetic algorithm-based rule selection method
to the iris data set, we generated 32840 linguistic rules by examining all the
(14-1-1)^ combinations of antecedent fuzzy sets for generating candidate rules.
While it is not impossible to use all the generated 32840 linguistic rules as
candidate rules with no prescreening, a long computation time is required to
find good rule sets. Thus we chose 900 candidate rules using the prescreening
procedure. We applied the genetic algorithm with the two heuristics to the 900
candidate rules in the same manner as in the previous computer simulations
on the iris data set. We examined four specifications of w^s]' ̂ \s\ =0.1,0 .5 ,1 ,
and 5. Note that the value oi w\s\ can be viewed as the penalty with respect
to the number of linguistic rules. A large value oi w^s\ tends to decrease the
number of linguistic rules at the expense of the classification ability of rule
sets. On the other hand, a small value of w\s\ may lead to relatively large
rule sets with high classification ability.

For each specification of w^s\^ the computer simulation was iterated 20
times. Average simulation results are summarized in Table 4.13. This table

4.4 Some Extensions to Rule Selection 97

clearly shows the effect of the value of w^s\ on ^he characteristic features of
obtained rule sets. When w\s\ is very large (i.e., w\s\ — 5), only three linguistic
rules were selected. That is, only a single linguistic rule was selected for each
class. On the other hand, many linguistic rules with high classification ability
were selected when w\s\ is very small (i.e., 1̂ 151 = 0.1).

Table 4.13. Simulation results on training patterns of the iris data set using various
specifications of the penalty with respect to the number of linguistic rules in the
fitness function

Value of :!ML 0.1 0.5 1
Classification rate 99.3% 98.7% 98.0% 97.7%
Number of rules 5.5 4.7 3.3 3.0

As shown in Table 4.13, rule sets with different sizes can be obtained
from multiple runs of the genetic algorithm-based rule selection method using
different specifications of w^sy Iii ^ later chapter, we discuss the handling
of rule selection in the framework of multi-objective optimization where a
number of rule sets can be obtained from a single run of a multi-objective
genetic algorithm.

In Fig. 4.19, we show an example of a rule set with three linguistic rules
selected by the genetic algorithm-based rule selection method with w\s\ — 5
(i.e., a large penalty value with respect to the number of linguistic rules).
Each shaded triangle shows an antecedent fuzzy set. Each real number in
parentheses is the rule weight of the corresponding linguistic rule. This rule
set can correctly classify 146 training patterns (i.e., 97.3% of the 150 samples
in the iris data set). We can see from Fig. 4.19 that very simple linguistic
rules were selected. Thus this rule set is easily understood by human users.
While we did not use input selection in an explicit manner, the selected three
linguistic rules do not have antecedent conditions on x\ and xi-

Ri

R3

Xi X2 X3 X4

1 DC 1 1 DC 1 1 DC 1 KXXI

1 DC 11 DC 1 Km Km

1 DC 1 1 DC 1 I X ^ 1 DC 1

Consequent

Class 1
(1.00)

Class 2
(0.94)

Class 3
(0.61)

Fig. 4.19. An example of a rule
set with three linguistic rules se
lected by the genetic algorithm-
based rule selection method with
w\s\ = 5 for the iris data set

In Fig. 4.20, we show an example of an obtained rule set in the case of
a small penalty value with respect to the number of linguistic rules (i.e.,
w^s\ — O-l)- This rule set can correctly classify 150 training patterns (i.e.,

98 4. Input Selection and Rule Selection

100% of the 150 samples). The classification rate of the rule set in Fig. 4.20
is higher than that of the rule set in Fig. 4.19 (i.e., 97.3%). At the same
time, the rule set in Fig. 4.20 is more complicated than that in Fig. 4.19. The
rule set in Fig. 4.20 includes more linguistic rules, and each linguistic rule
has more antecedent conditions. From the comparison between Fig. 4.19 and
Fig. 4.20, we can see a tradeoff between the classification ability of each rule
set and its complexity. This tradeoff is handled by the value of w^s\ ^^ the
genetic algorithm-based rule selection method in this chapter. The tradeoff
is further discussed in a later chapter in the framework of multi-objective
optimization.

^ 1

^ 2

^ 3

R4

Rs

Re

Ri

Xi X2 X3 X4

r ^ [^ m) ^ r ^
^ ^ X) ^ ^ ^
[^^i^^^
^ [^ ^ K ^
r^r^t^tx::^
[^r^Kjr^
r^^)^t><:^r^

Consequent

Class 1
(1.00)

Class 2
(0.58)

Class 2
(0.55)

Class 2
(0.25)

Class 3
(0.82)

Class 3
(0.68)

Class 3
(0.57)

Fig. 4.20. An example of a
rule set obtained by the ge
netic algorithm-based rule selec
tion method with W\Q\ = 0.1 for
the iris data set

s\

To examine the generalization ability (i.e., classification rates on test pat
terns), we used the leaving-one-out technique for the iris data set as in the
computer simulations on test patterns in the previous chapters. The pre-
screening of candidate rules and the selection from candidate rules were per
formed in the same manner as in the computer simulation for Table 4.13
using 149 training patterns. The remaining single pattern was used as a test
pattern. The whole leaving-one-out procedure (i.e., 150 runs) was iterated
ten times. Simulation results are summarized in Table 4.14. Since we did not
use any trick to improve the generalization ability of selected linguistic rules
during the evolution of rule sets in the genetic algorithm-based rule selection
method, the classification rates of selected linguistic rules on test patterns
are not so high in Table 4.14. The fitness function in (4.8) of this chapter
was designed to maximize the classification rate on training patterns and
minimize the number of linguistic rules. Thus it may be necessary to change

4.4 Some Extensions to Rule Selection 99

the fitness function if our goal is to find a rule set with high generalization
ability. Discussions on the adjustment of classification boundaries in Sect. 3.3
may be useful for modifying the fitness functions.

Table 4.14. Average simulation results on test patterns of the iris data set

Value of ;̂|5I 0.1 0.5 1 5
Classification rate 93.5% 93.3% 93.2% 93.8%
Number of rules 5.2 4.6 3.5 3.0

We also applied the leaving-one-out procedure to the wine data set using
the 14 antecedent fuzzy sets and don^t care as in the above computer simu
lations on the iris data set. The total number of combinations of antecedent
fuzzy sets is (14 + 1)^^, which is much larger than (14 + 1)^ in the case of
the iris data set. It is impractical to generate candidate rules by examining
all the 15^^ combinations of antecedent fuzzy sets. Thus we only examined
short linguistic rules with three or less antecedent conditions (i.e., with ten or
more don^t care conditions). The number of generated candidate rules of each
length is summarized in Table 4.15. We selected 900 candidate rules from the
generated 711716 candidate rules using the prescreening procedure. In Table
4.16, we show the relation between the number of candidate rules and their
classification performance on training patterns. We used the product of the
confidence and the support as the prescreening criterion of candidate rules.

Table 4.15. The number of generated linguistic rules using 14 antecedent fuzzy
sets and don't care for each attribute of the wine data set

Length of rules

Number of rules

0

1

1

182

2

14781

3

696752

Total

711716

The genetic algorithm with the two heuristics was used to select a small
number of linguistic rules from the 900 candidate rules. We used the same
parameter specifications as in the previous computer simulations on the iris
data set for Table 4.13. Simulation results are summarized in Table 4.17.
From this table, we can see that rule sets with high classification rates were
obtained by selecting a small number of linguistic rules from the 900 candidate
rules. Note that the classification rate of the 900 candidate rules is 96.1% (see
Table 4.16). Figure 4.21 and Fig. 4.22 show examples of obtained rule sets
in the cases oi w\s\ = 5 and w\s\ = 0 . 1 , respectively. From these figures and
Table 4.17, we can see that rule sets with different sizes were obtained from
various specifications of w^s]- The rule set in Fig. 4.21 can correctly classify
174 patterns (i.e., 97.8% of the 178 samples of the wine data set). This rule
set has high interpretability because the number of rules is very small and
each rule has only a few antecedent conditions. While we did not use input

100 4. Input Selection and Rule Selection

Table 4.16. Classification rates on training patterns of candidate rules obtained
by the prescreening procedure for the wine data set

Number

candidate

3
6
9

30
60
90

300
600
900

of

rules

Rule selection criterion

Product

89.3%
92.1%
93.8%
94.9%
94.4%
96.1%
96.1%
96.6%
96.1%

Confidence

11.0%
17.8%
21.3%
28.7%
30.3%
32.0%
32.4%
71.3%
98.2%

Support

60.7%
52.2%
61.2%
88.2%
86.5%
88.2%
96.6%
96.1%
96.1%

selection in an explicit manner, only a few at t r ibutes are used in the obtained
rule set in Fig. 4.21. It should be noted tha t all the 13 at t r ibutes were used
for generating candidate rules. On the other hand, the rule set in Fig. 4.22
can correctly classify 178 training pat terns (i.e., 100% of the 178 samples).
This rule set has higher classification ability and lower interpretability than
the rule set in Fig. 4.21.

Table 4.17. Simulation results on training patterns of the wine data set using
various specifications of the penalty with respect to the number of linguistic rules
in the fitness function

Value of ti;|5[0.1 0.5

Classification rate 100% 100% 99.9% 98.7%
Number of rules 5.6 5.1 3.2 3.0

Ri

Ri

Xio Xl3 Consequent

^ : i
DC

1 ^ [W]

S kXl
^3 [̂
[^ ^]

1^ [K] X̂l B

Class 1
(0.54)

Class 2
(0.65)

Class 3
(0.89)

Fig. 4.21. An example of a
rule set obtained by the ge
netic algorithm-based rule selec
tion method with it;|5| = 5 for the
wine data set

We also examined the average classification rate on test pat terns of the
wine da ta set using the leaving-one-out technique in the same manner as the
previous computer simulations on the iris da ta set for Table 4.14. The whole
leaving-one-out procedure (i.e., 178 runs) was iterated ten times. Simulation
results are summarized in Table 4.18. From the comparison between Table
4.17 and Table 4.18, we can see tha t there are differences of about 5% between

4.4 Some Extensions to Rule Selection 101

Xi XA Xe Xi Xio Xii Xi2 Xi3

DC ^;)^ ^T] [^ [^ [^ DC \m
^

1^
1 DC 1

^c]
1 DC 1

DC 1

DC 1

DC 1

DC 1

DC 1

\m. DC

I DC I I DC I I DC

DC DC DC

!££] y ^ [^

" ^ k>d r^

DC

\m
DC KA

^ [^ [^ ["BTI

DC DC DC

\m ̂ A
DC DC

DC

Consequent

Class 1
(0.95)

Class 1
(0.82)

Class 2
(0.90)

Class 2
(0.86)

Class 2
(0.63)

Class 3
(0.73)

Fig. 4.22. An example of a rule set obtained by the genetic algorithm-based rule
selection method with w\s\ — 0.1 for the wine data set

simulation results on training patterns and test patterns. This observation
suggests the overfitting to training patterns of rule sets obtained by the ge
netic algorithm-based rule selection method. As we have already mentioned
with respect to the simulation results on the iris data set where there were
also differences of about 5% between training set performance (Table 4.13)
and test set performance (Table 4.14), it may be necessary to change the fit
ness function if our goal is to find a rule set with high generalization ability.
It is interesting to note that the increase in the number of linguistic rules did
not always lead to an increase in the classification rate on test patterns in
Table 4.14 and Table 4.18.

Table 4.18. Average simulation results on test patterns of the wine data set

Value of If 15 L5L 0.1 0.5
Classification rate 94.7% 95.4% 95.7% 94.4%
Number of rules 5.6 5.2 4.3 3.0

5. Genetics-Based Machine Learning

In the previous chapter, genetic algorithms were used as an optimization tool
for rule selection. In this chapter, genetic algorithms are used as a machine
learning tool for designing linguistic rule-based classification systems. While
a rule set was represented as a binary string in the previous chapter, each lin
guistic rule is coded using its antecedent fuzzy sets in this chapter. Genetic
algorithms for machine learning are referred to as genetics-based machine
learning (GBML) algorithms. GBML algorithms are usually divided into two
categories: Michigan approach and Pittsburgh approach. Each rule is repre
sented by a string and handled as an individual in the Michigan approach. A
population of strings corresponds to a rule set. On the other hand, a rule set
is represented by a concatenated string and handled as an individual in the
Pittsburgh approach. In this chapter, we first explain GBML algorithms in
these two approaches for designing linguistic rule-based classification systems.
Then we describe the hybridization of these two approaches into a single hy
brid GBML algorithm. For further discussions on fuzzy GBML algorithms,
see Cordon et al. [24] where various fuzzy GBML algorithms are described.

As in the previous chapter, we use linguistic rules of the following form
for our n-dimensional pattern classification problem:

Rule Rqi If xi is Aqi and . . . and Xn is Aqn

then Class Cq with CFq. (5.1)

It is assumed that m training patterns Xp = (x^ i , . . . , Xpn)^ p = 1,2, . . . ,m,
are given from M classes as in the previous chapter.

5.1 Two Approaches in Genetics-Based Machine
Learning

Genetics-based machine learning (GBML) algorithms categorized as the
Michigan approach are often referred to as classifier systems [14]. It should be
noted that classifier systems are totally different from classification systems.
Classifier systems are genetic algorithms for generating rules (i.e., designing
rule-based systems) while classification systems are computer systems that
perform pattern classification. The main characteristic feature of Michigan-
style GBML algorithms is the handling of a single rule as an individual (i.e.,

104 5. Genetics-Based Machine Learning

as a string). Thus a fitness value is assigned to a single rule. A population
of individuals corresponds to a single rule set. The performance of a rule set
(i.e., population) is not utilized in the evolution of rules. This means that
rule sets are not directly optimized. On the other hand, GBML algorithms
categorized as Pittsburgh approach [155] handle a rule set as an individual.
A rule set is represented by a concatenated string where each substring de
notes a single rule. A population of strings corresponds to multiple rule sets.
A fitness value is assigned to a rule set. Thus rule sets are directly optimized
through the maximization of their fitness values in the evolution of rule sets.
The performance of each rule in a rule set is not utilized in the evolution
of rule sets in Pittsburgh-style GBML algorithms. Differences between the
Michigan and Pittsburgh approaches are summarized in Table 5.1.

Table 5.1. Differences between Michigan approach and Pittsburgh approach

Michigan approach Pittsburgh approach
Individual A single rule A single rule set
Population A single rule set Multiple rule sets
Evaluation of each rule Yes No
Evaluation of each rule set No Yes
Fitness calculation For each rule For each rule set
Selection Good rules Good rule sets
Crossover Between rules Between rule sets

Since the early 1990s, genetic algorithms have been used for the design of
fuzzy rule-based systems mainly in the area of fuzzy control. Fuzzy GBML
algorithms have also been proposed for pattern classification problems. Ex
amples of recent fuzzy GBML algorithms for pattern classification problems
are Castillo et al. [20], Ishibuchi et al. [71], and Setnes & Roubos [151].
Many fuzzy GBML algorithms have been proposed in the framework of the
Pittsburgh approach [17, 54, 138]. This is because Pittsburgh-style GBML
algorithms can directly optimize fuzzy rule-based systems (i.e., rule sets). Ex
amples of early studies on fuzzy GBML algorithms categorized as the Pitts
burgh approach are Karr [102], Nomura et al. [131], and Thrift [165]. Fuzzy
GBML algorithms categorized as the Michigan approach have also been pro
posed since the early 1990s. Those algorithms are often referred to as fuzzy
classifier systems. Examples of early studies on fuzzy classifier systems are
Parodi & BonelH [135] and Valenzuela-Rendon [170]. In Cordon et al. [24],
fuzzy GBML algorithms in a different approach called iterative rule learning
are described as well as those in the Pittsburgh and Michigan approaches.

5.2 Michigan-Style Algorithm 105

5.2 Michigan-Style Algorithm

A Michigan-style fuzzy GBML algorithm (i.e., fuzzy classifier system) was
proposed by Ishibuchi et al. [69] for designing linguistic rule-based systems
for high-dimensional pattern classification problems. Its search ability to find
good rule sets was examined in [66, 70]. In this subsection, we explain their
Michigan-style GBML algorithm.

5.2.1 Coding of Linguistic Rules

In the Michigan-style GBML algorithm in [69], each linguistic rule is repre
sented by a string and handled as an individual. A population consists of
a pre-specified number of linguistic rules. Because the consequent class and
the rule weight of each linguistic rule can be easily specified from the given
training patterns by the heuristic rule generation procedure in Chap. 2, they
are not used in the coding of each linguistic rule (i.e., they are not included in
a string). Each linguistic rule is represented by a string using its antecedent
fuzzy sets. For explanation purposes, we assume that all the n attributes of
our n-dimensional pattern classification problem have three linguistic terms
small, medium, and large. As in the previous chapter, we also use don^t care
in addition to these three linguistic terms as antecedent fuzzy sets. The total
number of combinations of these antecedent fuzzy sets is (3 + 1)" .̂ Each com
bination of antecedent fuzzy sets (i.e., each linguistic rule) is represented by
a string of length n written in an alphabet with four symbols. Each symbol
denotes an antecedent fuzzy set (i.e., one of the three linguistic terms or don't
care). We use the following four symbols to denote the four antecedent fuzzy
sets:

1: small,
2: medium,
3: large,
: don't care.

For example, the following linguistic rule for a five-dimensional pattern clas
sification problem is coded as "#1#23":

Rule Rq: If X2 is small and X4 is medium and X5 is large
then Class Cq with CFq,

where xi and xs have don't care conditions. It should be noted that the
consequent class Cq and the rule weight CFq are not included in the string
"# 1:̂ ^23". They are specified by the heuristic rule generation procedure in
Chap. 2.

5.2.2 Genetic Operations

First the Michigan-style GBML algorithm randomly generates a pre-specified
number of linguistic rules (say, iVruie linguistic rules) as an initial population.

106 5. Genetics-Based Machine Learning

For our n-dimensional pattern classification problem, Â ruie strings of the
length n are generated by randomly choosing each of the four symbols with
the probability 1/4.

Next the fitness value of each linguistic rule in the current population
is evaluated. Let S be the set of linguistic rules in the current population.
The evaluation of each linguistic rule is performed by classifying all the given
training patterns by the rule set S using the single winner-based method
described in Chap. 2. In the single winner-based method, only a single winner
rule is responsible for the classification of each training pattern. The winner
rule receives a unit reward when it correctly classifies a training pattern. After
all the given training patterns are classified by the rule set 5, the fitness value
fitness{Rq) of each linguistic rule Rq in S is calculated as

fitness{Rq) = NCP{Rq), (5.2)

where NCP{Rq) is the number of correctly classified training patterns by Rq.
It should be noted that the following relation holds between the classifica
tion performance NCP{Rq) of each linguistic rule Rq and the classification
performance NCP{S) of the rule set S used in the fitness function in Chap.
4:

NCP(S) - J2 NCP{Rq). (5.3)
Rqes

The Michigan-style fuzzy GBML algorithm is implemented so that only
a single copy is selected as a winner rule when multiple copies of the same
linguistic rule are included in the rule set S. In genetic algorithms for opti
mization problems, multiple copies of the same string usually have the same
fitness value. This often leads to undesired early convergence of the current
population to a single solution. In the Michigan-style fuzzy GBML algorithm
in this section, only a single copy can have a positive fitness value and the
other copies have zero fitness. This prevents the current population from
being dominated by many copies of a single or few linguistic rules.

Then new linguistic rules are generated from linguistic rules in the current
population using genetic operations. As parent strings, two linguistic rules
are selected from the current population. As in the genetic algorithm for
rule selection in the previous chapter, we use binary tournament selection
with replacement. That is, two linguistic rules are randomly selected from
the current population and the better rule with the higher fitness value is
chosen as a parent string. A pair of parent strings is chosen by iterating this
procedure twice. While the original fuzzy classifier system in Ishibuchi et al.
[69] used the roulette wheel selection, we use binary tournament selection
with replacement in this chapter as in the genetic algorithm for rule selection
in the previous chapter.

From the selected pair of parent strings, two new strings are generated by a
crossover operation. As in the previous chapter, we use the uniform crossover

5.2 Michigan-Style Algorithm 107

operation, which is illustrated in Fig. 5.1 for a five-dimensional pattern clas
sification problem. Crossover positions indicated by "*" are randomly chosen
for each pair of parent strings. The crossover operation is applied to each pair
of parent strings with a pre-specified crossover probability. After new strings
are generated by the crossover operation, each symbol of the generated strings
is randomly replaced with a different symbol by a mutation operation with
a pre-specified mutation probability. Usually the same mutation probability
is assigned to every position of each string. The mutation operation is illus
trated in Fig. 5.2 where mutated values are indicated by an underline. The
selection, crossover, and mutation are iterated until a pre-specified number
of new strings (say, A r̂epiace strings) are generated.

Parent 1

Parent 2

* *
1 1 I 2 I 2 I 3

l # | 2 | 3 | 1

*
#1
2 | 0 Child 1

Child 2

l # | 2 | 2 | 1 | 2 1

| 1 | 2 | 3 | 3 | # |

Fig. 5.1. Illustration of the uniform crossover in the Michigan-style fuzzy GBML
algorithm

C> # 2 3 1 #

Fig. 5.2. Illustration of the mutation operation in the Michigan-style fuzzy GBML
algorithm. This mutation is also used in the Pittsburgh-style fuzzy GBML algorithm

Finally the worst A r̂epiace strings with the smallest fitness values in the
current population are removed, and the newly generated iVrepiace strings
are added to the remaining strings to form a new population. Because the
number of removed strings is the same as the number of added strings, every
population consists of the same number of strings. That is, every rule set has
the same number of linguistic rules. This generation update can be viewed
as the elitist strategy where the number of elite strings is (iVmie — ^replace)-

The above procedures are applied to the new population again. The gen
eration update is iterated until a pre-specified stopping condition is satisfied.
In the computer simulations of this chapter, we use the total number of itera
tions (i.e., the total number of generation updates) as the stopping condition
as in the genetic algorithm for rule selection in the previous chapter.

5.2.3 Algorithm

The Michigan-style fuzzy GBML algorithm for designing a linguistic rule-
based system can be written as follows:

108 5. Genetics-Based Machine Learning

[Michigan-Style Fuzzy GBML Algorithm]

Step 0: Parameter Specification. Specify the number of hnguistic rules A r̂uie,
the number of replaced rules A/'repiace, the crossover probability pc,
the mutation probability Pm, and the stopping condition.

Step 1: Initialization. Randomly generate Â ruie linguistic rules (i.e., A r̂uie
strings of length n) as an initial population.

Step 2: Genetic Operations. Calculate the fitness value of each linguistic rule
in the current population. Generate A r̂epiace linguistic rules using
selection, crossover, and mutation from existing linguistic rules in
the current population.

Step 3: Generation Update (Elitist Strategy). Remove the worst A r̂epiace lin
guistic rules from the current population and add the newly gener
ated iVrepiace Huguistic rulcs to the current population.

Step 4: Termination Test. If the stopping condition is not satisfied, return
to Step 2. Otherwise terminate the execution of the algorithm.

During the execution of the Michigan-style fuzzy GBML algorithm, we
monitor the classification rate of the current population on the given training
patterns. The rule set (i.e., population) with the highest classification rate is
chosen as the final solution by this algorithm.

In this section, we explain the simplest version of the Michigan-style
fuzzy GBML algorithm. Many heuristics can be combined with the above-
mentioned algorithm. For example, the search ability of this algorithm can be
improved by adding a misclassification penalty term to the fitness function in
(5.2), using a tailored initial population, and generating new linguistic rules
from misclassified or rejected training patterns [66, 70]. Some heuristics are
explained in a later subsection.

5.2.4 Computer Simulations

We applied the Michigan-style fuzzy GBML algorithm to the wine data set
using the three linguistic terms and don^t care for each of the 13 attributes.
The total number of combinations of antecedent fuzzy sets is (3 -h 1)^^. Each
combination of antecedent fuzzy sets (i.e., each Hnguistic rule) is denoted
by a string of length 13. It should be noted that we do not have to use
any prescreening procedure. The search space in the Michigan-style GBML
algorithm consists of all the (3 -h 1)^^ linguistic rules.

In Step 0 of the algorithm in the previous subsection, we have to specify
some parameter values. In our computer simulations, they were specified as
follows:

5.2 Michigan-Style Algorithm 109

Number of linguistic rules: Â ruie = 10,
Number of replaced rules: A r̂epiace = 2,
Crossover probability: Pc = 0.8,
Mutation probability: Pm = 1/(string length) = 1/13,
Stopping condition: 1000 iterations

(i.e., 1000 generation updates).

From these parameter specifications, we can see that 1000 rule sets with ten
linguistic rules were examined in our computer simulation. It should be noted
that the total number of rule sets with ten linguistic rules is ATCIO where
N = {3 -\- 1)^^. Among such a huge number of rule sets, we only examined
1000 combinations in our computer simulation.

In Step 1, ten linguistic rules were randomly generated. The generated
linguistic rules and their fitness values are shown in Table 5.2. The fitness
value of each linguistic rule was calculated by classifying all the 178 samples in
the wine data set using the ten linguistic rules in the current population. For
explanation purposes, the generated linguistic rules are sorted in descending
order of their fitness values in Table 5.2. Since the initial linguistic rules
were randomly generated, the fitness values of many linguistic rules are zero
in Table 5.2. These linguistic rules did not correctly classify any training
patterns. The rule set in Table 5.2 can correctly classify 54 training patterns
(i.e., 30.3% of the 178 samples in the wine data set). This number is the sum
of the fitness values of all the ten linguistic rules in Table 5.2.

Table 5.2. Ten randomly generated initial linguistic rules for the wine data set
with 13 attributes. Each linguistic rule is denoted by a string of length 13

Rule

Ri
R2
Rs
RA

R5
RQ

Rv
Rg
RQ

Rio

String

2 # 2 # # 2 1 2 1 2 2 2 1
3 2 3 1 2 2 2 1 1 1 3 3 2
2 1 2 1 2 1 1 # # 2 1 1
1 3 2 # 1 # 2 2 2 # 1 1 1
3 1 3 3 2 3 # 3 # 2 1 # 2
1 # 1 3 # 2 # # 2 # 3 # #
1 # 2 3 3 2 3 2 1 # 3 3 3
1 1 # 2 2 1 # 3 3 3 2 3 #
2 1 1 3 3 1 1 2 # 3 2 2 #
2 3 3 2 1 1 # 1 3 1 # 3 #

fitness{Rq)

42.0
6.0
2.0
2.0
1.0
1.0
0.0
0.0
0.0
0.0

In Step 2, two new linguistic rules were generated from the ten linguistic
rules in the current population using the selection, crossover, and mutation
operations. The generation of new linguistic rules is illustrated in Table 5.3.
In Step 3, the two worst linguistic rules were removed from the current pop
ulation in Table 5.2 and the newly generated linguistic rules were added.
The new population is shown in Table 5.4 where the newly generated linguis-

110 5. Genetics-Based Machine Learning

tic rules are inserted into the last two rows. The rule set in Table 5.4 can
correctly classify 55 training patterns (i.e., 30.9% of the 178 samples).

Table 5.3. Generating new linguistic rules from the linguistic rules in the current
population in Table 5.2

Parent strings J^
KG

After crossover

After mutation

1
1

1
1

1
1

3

3

3

2
1

1
2

1
2

3

3

3

1

1

1

2

2

2

2

2

2

2

2

3

2
2

2
2

2
2

2

1
3

3
1

3
1

1

1

1

1

1

1

Table 5.4. Ten linguistic rules after a single iteration of the Michigan-style fuzzy
GBML algorithm. Two newly generated rules are inserted into the last two rows as
Rii and R12

Rule

Ri
R2
Rs
R4

Rs
Re
Rj
Rg

Rii

R12

String

2 # 2 # # 2 1 2 1 2 2 2 1
3 2 3 1 2 2 2 1 1 1 3 3 2
2 1 2 1 2 1 1 # # 2 1 1
1 3 2 # 1 # 2 2 2 # 1 1 1
3 1 3 3 2 3 # 3 # 2 1 # 2
1 # 1 3 # 2 # # 2 # 3 # #
1 # 2 3 3 2 3 2 1 # 3 3 3
1 1 # 2 2 1 # 3 3 3 2 3 #
1 # 1 # 1 # # 3 2 2 3 1 #
1 3 2 3 # 2 2 # 2 # 1 # 1

fitness{Rq)

40.0
6.0
2.0
2.0
1.0
1.0
0.0
0.0
0.0
3.0

In Fig. 5.3, we show how the classification rate of each population (i.e.,
each rule set) was improved by the evolution of linguistic rules in the
Michigan-style fuzzy GBML algorithm. Figure 5.3 simultaneously shows sim
ulation results of three trials from different initial populations. From this
figure, we can see that the classification rate was rapidly improved in the
early stage of evolution. We can also see that the classification rate did not
increase monotonically (i.e., there were ups and downs). This is because the
classification performance of each population was not used for the evolution
of hnguistic rules by the Michigan-style fuzzy GBML algorithm.

We also performed the same computer simulations as in Fig. 5.3 using five
linguistic terms (i.e., small, medium small, medium, medium large, and large)
and don^t care for each of the 13 attributes of the wine data set. The mem
bership function of the antecedent fuzzy set corresponding to each linguistic
term is shown in the bottom-right figure of Fig. 1.4 of Chap. 1. Simulation
results are shown in Fig. 5.4. From the comparison between Fig. 5.3 and Fig.
5.4, we can see that the classification rate of each population deteriorated sig-

5.2 Michigan-Style Algorithm 111

500

Number of generations
1000

Fig. 5.3. Simulation results of
three trials of the Michigan-style
fuzzy GBML algorithm on the
wine data set using three linguis
tic terms. The classification rate
on training patterns of the cur
rent population at each gener
ation is shown for each of the
three trials

nificantly by the use of the fine fuzzy parti t ion with the five linguistic terms,
especially in the early stage of evolution. This is because the antecedent par t
of each linguistic rule covers a much smaller portion of the pa t te rn space in
Fig. 5.4 than Fig. 5.3. Thus the chance tha t a randomly generated linguistic
rule covers some training pat terns is much smaller in Fig. 5.4 than in Fig.
5.3. Actually, the classification rates of initial populations were zero in all tri
als in Fig. 5.4. This means tha t no initial linguistic rules correctly classified
any training pat terns in all trials. Thus all the initial linguistic rules had the
same fitness value (i.e., zero fitness). In this case, the genetic search in the
Michigan-style fuzzy GBML algorithm was the same as the random search
for linguistic rules. When some linguistic rules with positive fitness values
were included in the current population, the genetic search tried to find good
rules using those linguistic rules as parent strings.

500
Number of generations

1000

Fig. 5.4. Simulation results of
three trials of the Michigan-style
fuzzy GBML algorithm on the
wine data set using five linguistic
terms. The classification rate on
training patterns of the current
population at each generation is
shown for each of the three trials

5.2.5 E x t e n s i o n s t o t h e Mich igan-S ty l e A l g o r i t h m

As shown in Fig. 5.4, randomly generated initial linguistic rules with fine
fuzzy parti t ions usually do not classify many training pat terns in high-
dimensional pat tern classification problems. This is because each linguistic
rule covers a very small portion of the pa t tern space. When we use the five

112 5. Genetics-Based Machine Learning

linguistic terms and don^t care as antecedent fuzzy sets, each antecedent fuzzy
set covers the following portion of the domain interval (see the bottom-right
figure of Fig. 1.4 of Chap. 1):

small, large: 1/4,
medium small, medium, m,edium large: 1/2,
don't care: 1.

Thus a randomly selected antecedent fuzzy set covers 1/2 of the domain
interval of each attribute on the average where

i x 2 + i x 3 + l x l) - 6 = i . (5.4)

As a result, a randomly generated initial linguistic rule for the wine data
set with 13 attributes covers (1/2)^^ = 1/8192 of the pattern space. Such a
linguistic rule is not likely to cover any of the 178 samples in the wine data
set.

A simple trick for expanding the covered area by each initial linguistic rule
is to increase the selection probability of don't care among the six antecedent
fuzzy sets. Let Pdon't care bc the selection probability of don't care when initial
linguistic rules are generated. In this case, the selection probability of each of
the other five antecedent fuzzy sets is (1 —pdon't care)/^- A randomly selected
antecedent fuzzy set with those selection probabilities covers the following
portion of the domain interval of each attribute (i.e., (5.4) is modified as
follows):

-'- r» , o \ \ Pdon't care) , -, -,
- X 2 - f - - X 3 j X ^ '- + 1 X 1 X Pdon't care

= "̂ H~ "̂ >̂ Pdon't care- \^'^)

Thus the portion of the pattern space covered by each initial linguistic rule
can be increased from (1/2)^^ to 1 by increasing the selection probability of
don't care from 1/6 to 1.

This simple trick has a significant effect on the search ability of the
Michigan-style fuzzy GBML algorithm. In the same manner as in Fig. 5.4
except for the selection probability Pdon't care of don't care, we applied the
Michigan-style fuzzy GBML algorithm to the wine data set three times. The
selection probability was specified as Pdon't care = 3/4. In this case, the se
lection probability of each of the other five antecedent fuzzy sets was 1/20.
Simulation results are shown in Fig. 5.5. It should be noted that Fig. 5.4
and Fig. 5.5 used the same parameter specifications except for the selection
probability Pdon't care of don't care for generating initial linguistic rules (i.e.,
Pdon't care = 3/4 iu Fig. 5.5 wMlc Pdon't care = 1/6 iu Fig. 5.4). From the
comparison between these two figures, we can see that the classification abil
ity of randomly generated initial linguistic rules was significantly improved.

5.2 Michigan-Style Algorithm 113

As a result, the Michigan-style fuzzy GBML algorithm efficiently found good
rule sets with high classification rates in the early stage of evolution.

Fig. 5.5. Simulation results of
three trials of the Michigan-style
fuzzy GBML algorithm on the
wine data set using five linguistic
terms. The selection probability
of don't care for generating ini
tial linguistic rules was increased

500 1000 from 1/6 in Fig. 5.4 to 3/4 in this
Number of generations figure

A more straightforward trick for generating initial linguistic rules with
high classification ability is to use training patterns for specifying their an
tecedent fuzzy sets [66]. To generate an initial population of Â ruie linguistic
rules, first we randomly select Â ruie training patterns. Next we choose the
combination of the most compatible linguistic terms with each training pat
tern. For example, the combination {small, medium, large) is chosen for a
three-dimensional training pattern (0.03, 0.52, 0.98). Note that don^t care is
not used in this stage because any attribute values are fully compatible with
don't care (i.e., because don't care is always chosen as the most compatible
antecedent fuzzy set for any attribute values). Each linguistic term in the
selected combination is replaced with don't care using the selection probabil
ity Pdon't care- The Combination of the linguistic terms after this replacement
is used as the antecedent part of an initial linguistic rule. This procedure is
applied to all the randomly selected A r̂uie training patterns for generating an
initial population of Â mie linguistic rules.

In the same manner as in Fig. 5.4 and Fig. 5.5 except for the initial pop
ulations, we applied the Michigan-style fuzzy GBML algorithm to the wine
data set. In each trial, ten training patterns were randomly selected for gen
erating an initial population of ten linguistic rules. The selection probability
Pdon't care of don't carc was specified as Pdon't care = 1/2. This means that
half of the antecedent fuzzy sets in the initial linguistic rules were replaced
with don't care on the average. Simulation results are shown in Fig. 5.6. From
the comparison of Fig. 5.6 with Fig. 5.4 and Fig. 5.5, we can see that the
direct specification of antecedent fuzzy sets from training patterns improved
the performance of rule sets in late generations as well as early generations.

The specification of antecedent fuzzy sets from training patterns can be
utilized not only for generating an initial population but also for updating the
current population. When a training pattern is misclassified or its classifica
tion is rejected by the current population, the generation of a new linguistic

114 5. Genetics-Based Machine Learning

500
Number of generations

1000

Fig. 5.6. Simulation results of
three trials of the Michigan-style
fuzzy GBML algorithm on the
wine data set using five linguis
tic terms. The initial population
in each trial was generated from
randomly selected ten training
patterns

rule from the misclassified or rejected training pat tern may improve the clas
sification ability of the current population. In the above computer simulations
on the wine da ta set, two linguistic rules were generated using the genetic
operations for updat ing the current population. We modify this generation
update procedure as follows. We generate a single linguistic rule using the
genetic operations and another linguistic rule from a misclassified or rejected
training pat tern. When all the training pat terns are correctly classified, two
linguistic rules are generated using the genetic operations. In the same man
ner as in Fig. 5.6, we applied the Michigan-style fuzzy GBML algorithm with
the modified generation update scheme to the wine da ta set. Simulation re
sults are shown in Fig. 5.7. From the comparison between Fig. 5.6 and Fig.
5.7, we can see tha t the modification of the generation update scheme im
proved the search ability of the Michigan-style fuzzy GBML algorithm to find
good linguistic rules in two of the three trials.

One may think tha t the genetic operations may be unnecessary in the
modified generation update scheme. Figure 5.8 shows simulation results where
no linguistic rules were generated using the genetic operations. Two linguistic
rules were generated for the generation update from misclassified or rejected
training pat terns . When all the training pat terns were correctly classified, the
execution of the algorithm was to be terminated in Fig. 5.8. The comparison
between Fig. 5.7 and Fig. 5.8 shows the necessity of the genetic operations.
While the generation of linguistic rules from misclassified or rejected training
pat terns is a good idea as shown in Fig. 5.7, the genetic operations are also
necessary for designing linguistic rule-based systems with high classification
ability. This means tha t the combination of the most compatible antecedent
fuzzy sets with a misclassified or rejected training pat tern is not always a
good choice for generating a new linguistic rule, though it works very well in
many cases.

Another extension to the Michigan-style fuzzy GBML algorithm is the
introduction of a penalty term with respect to the number of misclassified
training pat terns to the fitness function in (5.2) as follows:

fitness{Rq) = NCP{Rq) - WNMP • NMP{Rq), (5.6)

5.2 Michigan-Style Algorithm 115

500
Number of generations

1000

500
Number of generations

1000

Fig. 5.7. Simulation results of
three trials of the Michigan-style
fuzzy GBML algorithm on the
wine data set using five linguis
tic terms. The initial population
in each trial was generated from
ten randomly selected training
patterns. For the generation up
date, a single linguistic rule was
generated from a misclassified
or rejected training pattern, and
another linguistic rule was gen
erated by the genetic operations

Fig. 5.8. Simulation results of
three trials of the Michigan-style
fuzzy GBML algorithm on the
wine data set using five linguis
tic terms. The initial population
in each trial was generated from
randomly selected ten training
patterns. For the generation up
date, two linguistic rules were
generated from misclassified or
rejected training patterns, and
no linguistic rule was generated
by the genetic operations

where NMP{Rq) is the number of misclassified training pat terns and WNMP
is a positive constant. The fitness function in (5.2) can be viewed as a special
case of (5.6) with WNMP = 0. In (5.6), NCP{Rq) and NMP{Rq) are cal
culated by classifying all the training pat terns by the current population S
including the linguistic rule Rq. To understand the effect of the second term
of (5.6) on the evolution of linguistic rules, let us consider a linguistic rule
tha t correctly classifies ten pat terns and misclassifies three pat terns . If the
misclassification penalty is zero (i.e., if WNMP = 0), the fitness value of this
linguistic rule is 10. Thus this linguistic rule is not likely to be removed from
the current population. As a result, the three misclassified pat terns will also
be misclassified in the next population. On the other hand, the fitness value
of this linguistic rule is negative (i.e., —5) when WNMP = 5. In this case,
this linguistic rule will be removed from the current population. As a result,
the three misclassified pat terns may be correctly classified by other linguistic
rules or their classification may be rejected in the next population. From this
discussion, we can see tha t the introduction of the misclassification penalty
to the fitness function may improve the search ability of the Michigan-style
fuzzy GBML algorithm to find rule sets with high classification ability.

In the same manner as the computer simulation for Fig. 5.7, we per
formed computer simulations using the Michigan-style fuzzy GBML algo-

116 5. Genetics-Based Machine Learning

rithm with the misclassification penalty. We examined three specifications of
WNMP' U)NMP = 0,3,10. For each value of WNMP, the computer simulation
was iterated 20 times. It should be noted that the computer simulation with
u)NMP = 0 is the same as Fig. 5.7. The average classification rate at each
generation over the 20 trials for each value of WNMP is shown in Fig. 5.9.
From this figure, we can see that the average classification rate was slightly
improved by increasing the value of WNMP from 0 to 3 while it deteriorated
on further increasing the value from 3 to 10.

•u)m4p-0 - o - ^ i V M p - 3 -WNMP- 10
^ 1 0 0

500
Number of generations

Fig. 5.9. The average classi
fication rate over 20 trials of
the Michigan-style fuzzy GBML
algorithm with various specifi
cations of the misclassification
penalty. Computer simulations
were performed on the wine data
set using five linguistic terms in
the same manner as Fig. 5.7

The effect of the misclassification penalty on the evolution of linguistic
rules is more significant when we use coarse fuzzy partitions. In this case,
each linguistic rule covers a larger portion of the pattern space than the case
of fine fuzzy partitions. As a result, more patterns are correctly and wrongly
classified by each linguistic rule. Figure 5.10 shows the simulation results
when we used the three linguistic terms for each attribute instead of the five
linguistic terms. Computer simulations were performed in the same manner
as in Fig. 5.9 except for the fuzzy partition of each attribute. We can observe
in Fig.5.10 a large deterioration in the average classification rate when the
misclassification penalty WNMP was large (i.e., WNMP = 10).

5.3 Pittsburgh-Style Algorithm

It is possible to use the Pittsburgh approach to design linguistic rule-based
classification systems with high classification ability and high interpretability.
In this section, we explain a Pittsburgh-style fuzzy GBML algorithm. Its char
acteristic features are explained in comparison with the Michigan-style fuzzy
GBML algorithm in the previous section. While the above-mentioned exten
sions to the Michigan-style algorithm can also be utilized in our Pittsburgh-
style algorithm, we describe its simplest version with no extensions in this
section to maintain the simplicity of explanation.

5.3 Pittsburgh-Style Algorithm 117

1000

Fig. 5.10. The average classi
fication rate over 20 trials of
the Michigan-style fuzzy GBML
algorithm with various specifi
cations of the misclassification
penalty. Computer simulations
were performed on the wine data
set using three linguistic terms

500
Number of generations

5.3.1 C o d i n g of R u l e Se t s

As in the Michigan-st}^le fuzzy GBML algorithm in the previous section, let
A r̂uie be the number of linguistic rules in a rule set S. In our Pittsburgh-style
fuzzy GBML algorithm in this section, the rule set S is represented by a con
catenated string where each substring of length n denotes a single linguistic
rule for our n-dimensional pat tern classification problem. The coding of each
linguistic rule using its antecedent fuzzy sets is the same as the coding in the
Michigan-style algorithm. The length of the string S including A r̂uie linguis
tic rules is n • A^mie- For simplicity of explanation, we assume tha t all the n
at t r ibutes of our n-dimensional pa t te rn classification problem have the three
linguistic terms small, medium, and large. We also use don't care as an addi
tional antecedent fuzzy set. These antecedent fuzzy sets are denoted in the
same manner as in the Michigan-style algorithm (i.e., 1: small, 2: medium, 3:
large, and # : don't care). For example, a rule set of the following four linguis
tic rules for a five-dimensional pat tern classification problem is represented
by a string " # 1 # 2 # 2 2 # # # # # # # 1 3 # # # 3 " of length 20:

Rule Ri: If X2 is small and X4 is medium then Class Ci with CFi,
Rule R2: If xi is medium and X2 is medium then Class C2 with CF2,
Rule Rs: If x^ is small then Class Cs with CF3,
Rule R4: If xi is large and x^ is large then Class C4 with CF4.

As in the Michigan-style algorithm, the consequent class Cq and the rule
weight CFq of each linguistic rule are not included in the string. They are
specified by the heuristic rule generation procedure in Chap. 2.

5.3.2 G e n e t i c O p e r a t i o n s

In our Pit tsburgh-style fuzzy GBML algorithm, first a pre-specified number
of rule sets (say, iVpop rule sets) with iV^uie linguistic rules are generated
by randomly specifying their antecedent fuzzy sets. An initial population is
composed of the generated A p̂op rule sets where A p̂op is the population size.

118 5. Genetics-Based Machine Learning

Next each rule set is evaluated by classifying the given training patterns.
The fitness value of each rule set Si in the current population is calculated
as follows after all the given training patterns are classified by Sf.

fitness{Si) = NCP{Si), z = 1,2,... ,7Vp (5.7)

where NCP{Si) is the number of correctly classified training patterns by the
rule set Si. This fitness function of the rule set Si can be rewritten using the
fitness function of each linguistic rule Rq in Sii

fitness{Si) = E
RqeSi

fitness{Rq)^ i = 1,2, ,iV. pop- (5.8)

Next new rule sets are generated from the existing rule sets in the cur
rent population by genetic operations. As parent strings, two rule sets are
selected from the current population using binary tournament selection with
replacement. From the two selected strings, two new strings are generated
by the uniform crossover operation with a pre-specified crossover probability.
The uniform crossover operation in the Pittsburgh-style algorithm exchanges
substrings between the two parent strings. This crossover operation is illus
trated in Fig. 5.11 for rule sets with four linguistic rules for a five-dimensional
pattern classification problem. Then each symbol of the new strings gener
ated by the crossover operation is randomly replaced with a diff"erent symbol
using a pre-specified mutation probability as in the Michigan-style algorithm.
The selection, crossover, and mutation are iterated until (iVpop — 1) rule sets
are generated. Finally the best rule set in the current population is added to
the newly generated rule sets as an elite rule set to form a new population
including Â pop rule sets.

^
1 |1|2|3|1|#

2 |#|3|2|#|2
" V '

#|2| 1 |2|#

3|#|3|1|2
^ y '

^
3|1|2|#|3

2|3|#|3|#
^ V '

#|1|3|2|2|

2|#|1|#|2|
^ V '

Rulel Rule 2 Rule 3 Rule 4

<?
Child 1 | # | 3 | 2 | # | 2

Child 2 | 1 | 2 | 3 | 1 | #

I 2 I 1 I 2 I #"

3|^|3|1|2

2 I 3 I # I 3 I #"

3|1|2|#|3

^|i|3|2|2|

2|#|1|#|2|

Fig. 5.11. Illustration of the uniform crossover operation in the Pittsburgh ap
proach

The generation update is iterated until a pre-specified stopping condition
is satisfied. As in the Michigan-style algorithm in the previous section and

5.3 Pittsburgh-Style Algorithm 119

the genetic algorithm for rule selection in Chap. 4, we use the total number
of iterations as the stopping condition.

5.3.3 Algorithm

Our Pittsburgh-style fuzzy GBML algorithm can be written as follows:

[Pittsburgh-Style Fuzzy GBML Algorithm]

Step 0: Parameter Specification. Specify the population size A p̂op, the num
ber of linguistic rules A r̂uie, the crossover probability pc, the mutation
probability Pm: and the stopping condition.

Step 1: Initialization. Randomly generate Â pop rule sets with Â ruie linguistic
rules (i.e., Â pop strings of length n • iVruie) as an initial population.

Step 2: Genetic Operations. Calculate the fitness value of each rule set in
the current population. Generate (A p̂op — 1) rule sets using selec
tion, crossover, and mutation from existing rule sets in the current
population.

Step 3: Generation Update (Elitist Strategy). Add the best rule set in the
current population to the newly generated (A p̂op — 1) rule sets to
form the next population of the population size A p̂op.

Step 4: Termination Test. If the stopping condition is not satisfied, return
to Step 2. Otherwise terminate the execution of the algorithm. The
final solution is the best rule set in the final population because the
best rule set in the current population is always handed down to the
next population by the elitist strategy.

5.3.4 Computer Simulations

To compare the two fuzzy GBML algorithms with each other, we performed
computer simulations on the wine data set using the Pittsburgh-style fuzzy
GBML algorithm in the same manner as the computer simulations in Sect.
5.2.4 using the Michigan-style fuzzy GBML algorithm with no extensions.
Parameter specifications in these two algorithms are summarized in Table 5.5.
As the parameter values in Table 5.5 show, our task is to design a classification
system with ten linguistic rules. From Table 5.5, we can see that only 1000
rule sets were examined in a single trial of the Michigan-style algorithm while
50000 rule sets were examined in the Pittsburgh-style algorithm.

The average classification rate and the average CPU time of each algo
rithm over five trials are summarized in Table 5.6 for the case of the three
linguistic terms and Table 5.7 for the case of the five linguistic terms. Each
algorithm was implemented in the C language and executed on a personal
computer with a 1.5 GHz Pentium IV processor. From these tables, we can
see that slightly better rule sets were obtained by the Pittsburgh-style algo
rithm than the Michigan-style algorithm in the case of the three linguistic

120 5. Genetics-Based Machine Learning

Table 5.5. Parameter values in each algorithm

Michigan Pittsburgh
Number of linguistic rules
Number of rule sets
Crossover probability
Mutation probability
Number of replaced rules
Stopping condition (generations)

10
1

0.8
1/13

2
1000

10
50
0.8

1/13
N.A.
1000

terms. On the other hand, the performance of the Michigan-style algorithm
is clearly better than the Pittsburth-style algorithm in the case of the five
linguistic terms. This is because the difference in the search ability between
different algorithms is likely to become clear when the search space is large.
In both tables, CPU time for the Michigan-style algorithm is much less than
the Pittsburgh-style algorithm.

Table 5.6. Average classification rate and average CPU time of each algorithm in
the case of the three linguistic terms

Michigan Pittsburgh
Classification rate 97.1% 97.3%
CPU time (s) L6 303.5

Table 5.7. Average classification rate and average CPU time of each algorithm in
the case of the five linguistic terms

Michigan Pittsburgh
Classification rate 96.0% 75.4%
CPU time (s) L5 236.6

One may think that the rule exchange-type uniform crossover operation
in Fig. 5.11 had a bad effect on the search ability of the Pittsburgh-style algo
rithm. We also performed the same computer simulations using the standard
(i.e., gene exchange-type) uniform crossover operation shown in Fig. 5.12.
Simulation results are summarized in Table 5.8. From the comparison of Ta
ble 5.8 with Table 5.6 and Table 5.7, we can see that the average classification
rate by the Pittsburgh-style algorithm for the case of the five linguistic terms
was much lower than that by the Michigan-style algorithm independent of
the choice of crossover operation. In the following computer simulations, we
use the rule exchange-type uniform crossover operation in Fig. 5.11 in the
Pittsburgh-style algorithm.

5.4 Hybridization of the Two Approaches 121

Table 5.8. Average classification rates by the two versions of the Pittsburgh-style
algorithm with different crossover operations

Number of Crossover operation
linguistic terms Rule exchange Gene exchange

Three
Five

97.3%
75.4%

94.5%
62.2%

• ^ ^
1 |1|2|3|1|#

2 |#|3|2|#|2
^ y '

•
#|2| 1 |2|#

3|#|3|1|2

• * sH
3|1|2|#|3

2|3|#|3|#
V \ V

* *
#|1|3|2|2|

2|#|1|#|2|
V /

Rulel Rule 2 Rules Rule 4

o
Child 1 |#|2|3|#|2

Child 2 |1|3|2|1|#

#|#|1|2|#

3|2|3|1|2

2| 1 |#|#|#

3|3|2|3|3

#|#|3|#|2|

2|1|1|2|2|

Fig. 5.12. Standard uniform crossover where genes at randomly selected positions
are exchanged between two parents

5.4 Hybridization of the Two Approaches

In this section, first we explain the advantages of each of the two fuzzy GBML
algorithms through computer simulations. Then we combine the two algo
ri thms into a single hybrid algorithm. Finally we extend the hybrid algorithm
to simultaneously perform the maximization of the classification accuracy and
the minimization of the number of linguistic rules as in the genetic algorithm
for rule selection in Chap. 4.

5.4.1 A d v a n t a g e s of Each A l g o r i t h m

To further compare the Pittsburgh-style algorithm with the Michigan-style
algorithm, we examined the performance of these two algorithms through
computer simulations on the wine da ta set using various stopping conditions.
The simplest version of each algorithm with no extensions was used in the
computer simulations of this subsection as in the previous computer simula
tions in Sect. 5.3.4 for comparing the two algorithms. Simulation results are
summarized in Fig. 5.13 for the case of the five linguistic terms and Fig. 5.14
for the case of the three linguistic terms. It should be noted tha t the horizontal
axis of these figures is the number of examined rule sets, which is the same as
the number of generations in the case of the Michigan-style algorithm. Each
figure shows the average classification rate over five trials of each algorithm.

122 5. Genetics-Based Machine Learning

The average classification rate at each generation was calculated using the
best rule set obtained until that generation in each trial. The best rule set
is not always the current population in the Michigan-style algorithm while it
is always the elite rule set in the current population in the Pittsburgh-style
algorithm. From these figures, we can see that the Michigan-style algorithm
has a much higher search ability to efficiently find good linguistic rules in
the early stage of evolution than the Pittsburgh-style algorithm. That is, the
average classification rate was rapidly improved by the Michigan-style algo
rithm. This improvement was not observed after a certain number of rule
sets were examined (e.g., about 10000 rule sets in Fig. 5.13). In the long
run, the Pittsburgh-style algorithm will outperform the Michigan-style algo
rithm in Fig. 5.13 if we continue the iterative execution of these algorithms
much further. This is because the Michigan-style algorithm does not have
the direct optimization ability of rule sets. The evolution of rule sets in the
Michigan-style algorithm corresponds to the search of good linguistic rules
while in the Pittsburgh-style algorithm it corresponds to the optimization
of rule sets. This optimization of rule sets is indirectly performed by finding
good linguistic rules in the Michigan-style algorithm.

Michigan-style - Pittsburgh-style

100 1000 10000 100000 1000000 10000000

Number of examined rule sets

Fig. 5.13. Average simulation
results on the wine data set with
the five linguistic terms over five
trials of each algorithm with var
ious stopping conditions

In order to examine why the Michigan-style algorithm has a high search
ability to efficiently find good linguistic rules, we performed computer simu
lations using partially modified variants of the algorithm. We examined the
following three variants of the Michigan-style algorithm.

Entire replacement. In this variant, all linguistic rules in the current
population are entirely replaced with newly generated linguistic rules. The
entire replacement variant is implemented from our original Michigan-style
algorithm by setting the number of replaced rules (i.e., iVrepiace) equal to the
number of linguistic rules in the current population. In computer simulations,
we specified iVrepiace as A r̂epiace = 10 (scc Table 5.5).

5.4 Hybridization of the Two Approaches 123

Michigan-style - Pittsburgh-style

c3
O

^
10000 100000 1000000 10000000

Number of examined rule sets

Fig. 5.14. Average simulation
results on the wine data set with
the three linguistic terms over
five trials of each algorithm with
various stopping conditions

Random removal. In this variant, randomly selected rules are removed
from the current population and replaced with newly generated ones in the
generation update procedure. While the worst iVrepiace rules are removed
from the current population in our original Michigan-style algorithm, the
selection of linguistic rules to be removed in the random removal variant is
randomly performed regardless of the fitness value of each rule. In computer
simulations, we specified the number of replaced rules as TVrepiace = 2 as in
our original algorithm (see Table 5.5).

Random selection. In this variant, parent strings are randomly selected
from the current population regardless of their fitness values. That is, the
selection probability of each linguistic rule is defined in the random selection
variant as P{Rq) = l/Nmie where Â mie is the number of linguistic rules in
the current population.

We applied these three variants to the wine data set. Average simulation
results over five trials of each variant are summarized in Table 5.9. In this
table, the performance of the random selection variant was the worst among
the four algorithms. From this poor performance of the random selection
variant, we can see that the rule generation from good linguistic rules is an
important characteristic feature of the Michigan-style algorithm. On the other
hand, the difference in the performance between the original algorithm and
the other two variants (i.e., entire replacement and random removal) suggests
that the inheritance of good linguistic rules from the current population to the
next population is also an important characteristic feature of the Michigan-
style algorithm. It should be noted that the Pittsburgh-style algorithm has
none of these two characteristic features (i.e., the rule generation from good
rules and the inheritance of good rules). In the Pittsburgh-style algorithm,
the best rule set is handed down from the current population to the next
population as an elite rule set. If good linguistic rules are included in a poor
rule set, they are not likely to survive the generation update because poor
rule sets do not have high selection probabilities. In the Pittsburgh-style

124 5. Genetics-Based Machine Learning

algorithm, new rule sets are generated from good rule sets. This does not
mean tha t new rules are generated from good rules because the performance
of each linguistic rule is not taken into account in the evolution of rule sets
in the Pit tsburgh-style algorithm.

Table 5.9. Average classification rate over five trials of each variant of the
Michigan-style algorithm on the wine data set

Three linguistic terms Five linguistic terms

Original algorithm 97.1% 96.0%
Entire replacement 89.9% 44.7%
Random removal 89.7% 33.7%
Random selection 60.7% 6.5%

From the simulation results in this subsection, we can see tha t the
Michigan-style algorithm has a high search ability to efficiently find good lin
guistic rules in the early stage of evolution. The performance of the Michigan-
style algorithm deteriorated when we removed the following two characteristic
features:

(1) To generate new rules from good rules in the current population.
(2) To pass down good rules from the current population to the next popu

lation.

The Pittsburgh-style algorithm has none of these two characteristic features.
The search ability of the Pit tsburgh-style algorithm to find good linguistic
rules in the large search space is inferior to tha t of the Michigan-style algo
ri thm. The advantage of the Pittsburgh-style algorithm is

(3) To directly optimize rule sets.

The Michigan-style algorithm cannot directly optimize rule sets because the
evolution of rule sets is driven only by the performance of each linguistic rule.

5.4.2 H y b r i d A l g o r i t h m

The aim of the hybridization of the two algorithms is to implement a single
hybrid algorithm tha t has all the above three advantages. Our hybrid algo
r i thm can directly optimize rule sets because its basic framework is the same
as the Pit tsburgh-style algorithm. The Michigan-style algorithm is used as a
mutat ion operation for partially modifying each string (i.e., each rule set).
Our hybrid algorithm can be written as follows:

[Hybrid Fuzzy G B M L A l g o r i t h m]

Step 0: Parameter Specification. Specify the population size A^pop, the num
ber of linguistic rules A^ruie, the number of replaced rules iVrepiace, the

5.4 Hybridization of the Two Approaches 125

crossover probability Pcp in the Pittsburgh part, the crossover prob-
abihty pc^ in the Michigan part, the mutation probabihty Prnp in
the Pittsburgh part, the mutation probabihty PmM i^ ^^^ Michigan
part, and the stopping condition.

Step 1: Initialization. Randomly generate iVpop rule sets with Â ruie linguistic
rules (i.e., Â pop strings of length n • -/Vruie) as an initial population.

Step 2: Genetic Operations. Calculate the fitness value of each rule set in
the current population. Generate (A p̂op — 1) mle sets using selec
tion, crossover, and mutation from existing rule sets in the current
population. The selection and crossover operations are the same as
those in the Pittsburgh-style algorithm. The single iteration of the
Michigan-style algorithm (i.e., the rule generation and the replace
ment) is applied as a mutation operation to each of the generated
rule sets by the selection and crossover operations in the Pittsburgh
part. The mutation probability Pmp is used for the application of the
Michigan-style algorithm as a mutation operation. That is, Pmp is
the application probability of the Michigan-style algorithm to each
rule set.

Step 3: Generation Update (Elitist Strategy). Add the best rule set in the
current population to the newly generated (iVpop — 1) rule sets to
form the next population of the population size A p̂op-

Step 4: Termination Test. If the stopping condition is not satisfied, return
to Step 2. Otherwise terminate the execution of the algorithm. The
final solution is the best rule set in the final population because the
best rule set in the current population is always handed down to the
next population by the elitist strategy.

5.4.3 Computer Simulations

We applied our hybrid algorithm to the wine data set in the same manner as
in the previous computer simulations using the following parameter values:

Number of linguistic rules: Â ruie = 10?
Number of rule sets: A'pop — 50,
Crossover probabilities: Pcp — 0.8 in the Pittsburgh part,

p^^ — 0.8 in the Michigan part,
Mutation probabilities: pmp = 0.8 in the Pittsburgh part,

p^^ = 1/13 in the Michigan part,
Stopping condition: 1000 iterations (i.e., 1000 generations),
Number of replaced linguistic rules in the Michigan part:

-^^replace — •̂ *

It should be noted that the mutation probability of 0.8 in the Pittsburgh
part is defined for each string (i.e., for each rule set) while the mutation
probability of 1/13 in the Michigan part is defined for each gene (i.e., for
each antecedent fuzzy set).

126 5. Genetics-Based Machine Learning

Average simulation results over five trials of the hybrid algorithm are sum
marized in Table 5.10 and Table 5.11 where we also cite the corresponding
simulation results by the original Michigan-style and Pittsburgh-style algo
rithms with no modifications. Table 5.10 and Table 5.11 show the average
classification rate and the average CPU time of each algorithm, respectively.
We can see from Table 5.10 that the hybrid algorithm outperformed the two
fuzzy GBML algorithms. This observation suggests that we can successfully
implement the advantages of the two algorithms in a single hybrid algorithm.
The average CPU time of the hybrid algorithm is of the same order as that
of the Pittsburgh-style algorithm. This is because the basic framework of the
hybrid algorithm is the Pittsburgh-style algorithm.

Table 5.10. Average classification rate over five trials of each algorithm

Three linguistic terms Five linguistic terms
Michigan 97.1% 96.0%
Pittsburgh 97.3% 75.4%
Hybrid algorithm 100.0% 100.0%

Table 5.11. Average CPU time over five trials of each algorithm (seconds)

Three linguistic terms Five linguistic terms
1.5
237
246

5.4.4 Minimization of the Number of Linguistic Rules

We have already examined the three fuzzy GBML algorithms: the Michigan-
style algorithm, the Pittsburgh-style algorithm, and their hybrid algorithm.
In these algorithms, the number of linguistic rules in each rule set was always
constant. That is, the population size in the Michigan-style algorithm and
the string length of the other algorithms were fixed. In this subsection, we
extend the hybrid algorithm to the case of variable string length to simulta
neously perform the minimization of the number of linguistic rules and the
maximization of the classification ability of rule sets.

The extended hybrid algorithm is the same as the hybrid algorithm in
the previous section except for its crossover operation and fitness function.
The main difference is that the string length (i.e., the number of linguistic
rules) is not fixed in the extended hybrid algorithm. The number of linguistic
rules is changed when new rule sets are generated from parent rule sets by
a crossover operation. We use a one-point crossover operation with different

Michigan
Pittsburgh
Hybrid algorithm

1.6
304
345

5.4 Hybridization of the Two Approaches 127

crossover points in Fig. 5.15. To decrease the effect of the order of hnguistic
rules in each string on the genetic search in the extended hybrid algorithm
(i.e., to mix up linguistic rules), linguistic rules on one side of one parent
are combined with those on the same side of the other parent to form a new
string as shown in Fig. 5.15. Since the crossover point in one parent is not
always the same as that in the other parent, the string length of new strings
is not always the same as that of their parent strings.

Rule 1 1
Parent 1 | 1 | 2 | 3 | 1 | #

Rule A
Parent2 |#|3|2|#|2

r Rule 2
#|2|1|2|#

RuleB
3|#|3|1|2

A

Rules
3|1|2|#|3

RuleC
2|3|#|3|#

L

Rule 4
#|1|3|2|2|

RuleD
2|#|1|#|2|

o
Rulel

IM2|3|1|#
Rule A

#|3|2|#|2
RuleB

3|^|3|1|2|

Child or
Rule 2

|#|2|1|2|#
Rule 3

3|1|2|#|3
Rule 4

#1 1 |3|2|2
RuleC

2|3|#|3|#
RuleD

2|#|1|#|2|

Fig. 5.15. One-point crossover operation with different crossover points. This
crossover operation is used in the extended hybrid algorithm to simultaneously
perform the minimization of the number of linguistic rules and the maximization
of the classification ability of linguistic rules

In the extended hybrid algorithm, we use the following fitness function to
evaluate each rule set S:

fitness(S) = NCP{S) - w^si • \S\. (5.9)

This fitness function was also used in the genetic algorithm for rule selection
in Chap. 4. This means that the task of the extended hybrid algorithm is the
same as that of the genetic algorithm-based rule selection method: to find a
small number of linguistic rules with a high classification ability.

We applied the extended hybrid algorithm with w^s\ — 1 to the wine data
set. We used the same parameter specifications as in the previous computer
simulations with the hybrid algorithm in terms of the number of rule sets
(i.e., population size), the crossover probabilities, the mutation probabilities,
and the stopping condition. The number of linguistic rules was specified as 10
in initial rule sets, which was changed by the crossover operation during the
iterative execution of the extended hybrid algorithm. The number of replaced
linguistic rules in the Michigan part was not specified as a constant value. In
the Michigan part, 20% of linguistic rules in each rule set were replaced (i.e.,
-̂ replace = [0*2 X \SW whcrc \x\ deuotes the minimum integer that is larger

128 5. Genetics-Based Machine Learning

than or equal to x). This is because the number of Hnguistic rules in each
rule set was not constant.

Average simulation results over five trials of the extended hybrid algo
rithm are shown in Table 5.12. To compare the extended hybrid algorithm
with the other three fuzzy GBML algorithms in Table 5.10 and Table 5.11,
we did not use any extensions or modifications described in the previous sec
tions. From the comparison of Table 5.12 with Table 5.10 and Table 5.11,
we can see that a smaller number of linguistic rules with a high classification
ability were obtained by the extended hybrid algorithm than by each indi
vidual algorithm. The average number of linguistic rules in the case of the
three linguistic terms was smaller than that in the case of the five linguistic
terms in Table 5.12. This is because each linguistic rule in the former case
can cover a larger portion of the pattern space than in the latter case. From
the comparison between Table 5.12 and Table 5.10 with ten linguistic rules,
we can see that the extended hybrid algorithm found smaller rule sets with
lower classification rates due to the penalty term in (5.9) with respect to the
number of fuzzy rules.

Table 5.12. Average simulation results over five trials of the extended hybrid
algorithm

Three linguistic terms Five linguistic terms
Classification rate 97.5% 97.3%

CPU time (s) 688 688
Number of rules 5.2 7.2

The extended hybrid algorithm uses the same fitness function but a dif
ferent coding scheme as the genetic algorithm for rule selection in Chap. 4.
To compare these two algorithms, we applied the extended hybrid algorithm
to the wine data set using the 14 antecedent fuzzy sets in Fig. 1.4 of Chap.
1 and don^t care as in the computer simulations with the genetic algorithm
for rule selection in Chap. 4. While the genetic algorithm-based rule selection
method used a prescreening procedure for decreasing the number of candidate
rules, the extended hybrid algorithm does not use any trick for decreasing
the search space. That is, it tries to maximize the fitness function in the
search space with (14 + 1)^^ combinations of antecedent fuzzy sets for the
13-dimensional wine data set. In computer simulations, we used the following
two extensions described for the Michigan-style algorithm:

(1) Specification of antecedent fuzzy sets of initial linguistic rules from train
ing patterns.

(2) Generation of new linguistic rules from misclassified or rejected training
patterns.

As in the computer simulations on the wine data set using the genetic
algorithm for rule selection in Chap. 4 (i.e.. Table 4.17), four values of w^s\

5.4 Hybridization of the Two Approaches 129

were used: w^s\ =0.1,0.5,1,5. The average simulation results over five trials
of the extended hybrid algorithm are shown in Table 5.13 where the sim
ulation results in Table 4.17 by the genetic algorithm-based rule selection
method are also cited. The CPU time for the genetic algorithm-based rule
selection method is for both the candidate rule prescreening and the execu
tion of the genetic algorithm. From Table 5.13, we can see that better results
were obtained by the genetic algorithm-based rule selection. This may be
because the search space of the extended hybrid algorithm is much larger.

Table 5.13. Comparison between the genetic algorithm-based rule selection
method and the extended hybrid algorithm of the two fuzzy GBML algorithms

GBML algorithm

Rule selection

Value of w\s\

Classification rate
Number of rules

CPU time (s)

Classification rate
Number of rules

CPU time (s)

0.1

100%
18.8
2032

100%
5.6
193

0.5

99.6%
10.2
750

100%
5.1
180

1

97.3%
7.0
498

99.9%
3.2
193

5

90.8%
3.2
261

98.7%
3.0
162

We can use the extended hybrid algorithm and the genetic algorithm-
based rule selection method for the same task: to find a small number of
linguistic rules with a high classification ability. As shown in Table 5.13,
somewhat better results were obtained from rule selection. The question is
which method should be used for a particular pattern classification problem.
There is no general answer to this question. The main difference between
these two approaches is that the prescreening procedure of candidate rules
is used for decreasing the search space in the genetic algorithm-based rule
selection method while the entire search space is handled in the extended
hybrid algorithm. Thus the performance of the genetic algorithm-based rule
selection method strongly depends on the prescreening procedure. If good
linguistic rules are not included in candidate rules, the genetic algorithm for
rule selection cannot find good rule sets. On the other hand, the extended
hybrid algorithm does not use any prescreening procedure. Thus the search
space is not heuristically reduced. While good rule sets were obtained by the
extended hybrid algorithm in Table 5.13 for the wine data set, there may be
many cases where the extended hybrid algorithm cannot find good rule sets
because the search space is too large. In those cases, the genetic algorithm-
based rule selection may find good rule sets if the prescreening procedure
works well.

6. Multi-Objective Design of Linguistic Models

The extended hybrid fuzzy GBML algorithm in the previous chapter was
designed to find a small number of linguistic rules with a high classification
ability. The genetic algorithm-based rule selection method in Chap. 4 also
tackled the same task. These two algorithms used the same fitness function
to simultaneously perform the maximization of classification ability and the
minimization of the number of linguistic rules. The minimization of the num
ber of linguistic rules is used to design linguistic rule-based systems with
high interpretability. There is a tradeoff between the accuracy and the inter-
pretability of linguistic rule-based systems [18, 19]. istic rule-based systems
with both high accuracy and high interpretability. This tradeoff is illustrated
in Fig. 6.1. The error on training patterns is monotonically decreased by in
creasing the complexity of linguistic rule-based systems. On the other hand,
the error on test patterns is first decreased and then increased after reach
ing the minimum error at S*. Thus the rule set S* is optimal with respect
to the accuracy of linguistic rule-based systems. The accuracy of linguistic
rule-based systems deteriorates on decreasing the complexity (i.e., improv
ing the interpretability) from S*. In some cases, human users may prefer
simpler rule-based systems with higher interpretability than 5* even if the
classification accuracy deteriorates. That is, the rule set S* with the high
est generalization ability is not always preferred when the interpretability of
linguistic rule-based systems is taken into account in addition to the classifica
tion accuracy. Recently, several approaches have been proposed for designing
fuzzy rule-based systems with high interpretability as well as high accuracy
[18, 19, 101, 145, 150, 151]. In this chapter, we discuss the design of linguis
tic rule-based systems for pattern classification problems in the framework
of multi-objective optimization to handle the tradeoff between accuracy and
interpretability. Our task in this chapter is not to find a single optimal rule
set (e.g., 5* in Fig. 6.1) but to find multiple non-dominated rule sets with
respect to the two criteria of accuracy and interpretability.

6.1 Formulation of Three-Objective Problem

While only the number of linguistic rules was considerd in the genetic
algorithm-based rule selection method in Chap. 4 and the extended hybrid

132 6. Multi-Objective Design of Linguistic Models

" Fig. 6.1. Relation between the
^ _ error and the complexity of lin-

Complexity guistic rule-based systems

fuzzy GBML algorithm in Chap. 5, there are a number of issues that are
related to the interpret ability of linguistic rule-based systems. For example:

(1) Comprehensibility of fuzzy partitions (e.g., interpretability of each an
tecedent fuzzy set, separation of neighboring antecedent fuzzy sets, the
number of antecedent fuzzy sets for each attribute).

(2) Simplicity of linguistic rule-based systems (e.g., the number of attributes,
the number of linguistic rules).

(3) Simplicity of linguistic rules (e.g., type of linguistic rules, the number of
antecedent conditions in each linguistic rule).

(4) Simplicity of a classification method (e.g., selection of a single winner
rule, voting by multiple rules).

As in the previous chapters, we use the single winner-based method in
classification systems with linguistic rules of the following form:

Rule Rqi If xi is Aqi and . . . and x„ is Aqn

then Class Cq with CFq. (6.1)

It is assumed that linguistic terms are given for each attribute. Thus we
do not discuss the first issue: comprehensibility of fuzzy partitions. We do
not discuss the last issue, either (i.e., we always use the single winner-based
method in this chapter). We measure the simplicity of linguistic rule-based
systems by the number of linguistic rules as in Chaps. 4 and 5. That is, the
number of linguistic rules is taken into account with respect to the second
issue: simplicity of linguistic rule-based systems. Moreover, the number of
antecedent conditions of each linguistic rule (i.e., rule length) is taken into
account with respect to the third issue: simplicity of linguistic rules.

Ishibuchi et al. [71] formulated the design of linguistic rule-based classifi
cation systems as the following three-objective optimization problem:

Maximize /i(5'), minimize /2(5'), and minimize fsiS), (6.2)

where / i (5) is the number of correctly classified training patterns by a rule
set S (i.e., NCP{S)), f2{S) is the number of linguistic rules in S (i.e., |5|),

6.1 Formulation of Three-Objective Problem 133

and f3{S) is the total rule length of linguistic rules in S. Usually there is no
optimal rule set with respect to all the above three objectives due to the exis
tence of the above-mentioned tradeoff between accuracy and interpretability.
Thus our task is to find multiple rule sets that are not dominated by any
other rule sets. A rule set SB is said to dominate another rule set SA (i.e.,
SB is better than SA- SA ̂ SB) if all the following inequalities hold:

MSA) < MSB), f2iSA}>f2{SB), f3{SA)>f3{SB), (6.3)

and at least one of the following inequalities holds:

fliSA)<hiSB), f2iSA)>MSB), fz{SA)>f3{SB). (6.4)

The first condition (i.e., all the three inequalities in (6.3)) means that no
objective of SB is worse than SA (i-e., SB is not worse than SA)- The second
condition (i.e., one of the three inequalities in (6.4)) means that at least one
objective of SB is better than SA- When a rule set S is not dominated by any
other rule sets, S is said to be a Pareto-optimal solution of the three-objective
optimization problem in (6.2).

It should be noted that the third objective fsiS) is not the average rule
length but the total rule length. Let us consider another three-objective opti
mization problem with /i(5'), /2(5'), and f3*{S) where f3*{S) is the average
rule length of linguistic rules in S. This three-objective optimization problem
is the same as the original formulation in (6.2) except for the third objective.
Let us consider a rule set S where the average rule length is larger than 1:
/3*(5) > 1 (e.g., the rule set with the three linguistic rules in Fig. 4.21 of
Chap. 4). We add another linguistic rule of length 1 to this rule set to con
struct an enlarged rule set S+. Since /s* (S) > 1 and the length of the added
linguistic rule is 1, the following relation always holds with respect to the
average rule length between S and 5+:

/ 3 - (5 +) < / 3 . (5) , (6.5)

while the following relation holds with respect to the total rule length:

/3(5+) > faiS). (6.6)

This means that the average rule length /s* (5) is improved by adding another
linguistic rule of length 1 to the rule set S while the complexity of the rule
set S is increased. Even if the added linguistic rule does not improve the
classification accuracy of the rule set S (i.e., fi{S) > / i (5+)) , 5"^ is not
dominated by S when we use the average rule length f3*{S) as the third
objective instead of the total rule length f3{S). This discussion shows that
the average rule length is not an appropriate criterion for measuring the
simplicity of linguistic rules in the context of multi-objective optimization.
Thus we use the total rule length as the third objective f3{S) in (6.2).

134 6. Multi-Objective Design of Linguistic Models

6.2 Multi-Objective Genetic Algorithms

To find non-dominated rule sets of the three-objective optimization problem
in (6.2), we use a three-objective genetic algorithm. In this section, we explain
its basic framework, which can be used to extend both the genetic algorithm-
based rule selection method and the extended hybrid fuzzy GBML algorithm.
Recently many evolutionary multi-objective optimization (EMO) algorithms
have been proposed [21, 28, 193, 194]. Those EMO algorithms can be ap
plied to the three-objective optimization problem in (6.2). In this section,
we explain a slightly modified version of a multi-objective genetic algorithm
(MOGA) in [71] because it is easily implemented by simply modifying stan
dard single-objective genetic algorithms. This MOGA has two characteristic
features. One is to use a scalar fitness function with random weights to evalu
ate each solution (i.e., each rule set). Random weights are updated whenever
a pair of parent solutions is selected for crossover. That is, the selection of
each pair of parent solutions is governed by different weights. A genetic search
mechanism in various directions in the three-dimensional objective space is
realized by this random weighting scheme. The other characteristic feature
is to store all non-dominated solutions as a secondary population separately
from the current population. The secondary population is updated at every
generation. A small number of non-dominated solutions are randomly chosen
from the secondary population and their copies are added to the current pop
ulation as elite solutions. The convergence speed of the current population to
Pareto-optimal solutions is improved by this elitist strategy. Other parts of
our MOGA in this chapter are the same as standard single-objective genetic
algorithms. The search ability of our three-objective genetic algorithm, which
is based on a simple EMO algorithm [127], is not always comparable to that
of state-of-the-art EMO algorithms such as NSGA-II [29] and SPEA [194].
In Ishibuchi & Yamamoto [88, 91, 94], the NSGA-II algorithm was used to
efficiently find non-dominated rule sets of the three-objective optimization
problem in (6.2).

6.2.1 Fi tness Funct ion

The fitness value of each string S (i.e., each rule set S) in the current popu
lation is defined by the three objectives as

fitness{S) = wi • fi{S) - W2 - f2{S) - ws • fsiS), (6.7)

where w;i, W2, and w^ are weights satisfying the following conditions:

Wi,W2,lV3 > 0, (6.8)

wi + W2 + ws = 1. (6.9)

As we have already mentioned, one characteristic feature of our MOGA in this
chapter is to randomly specify the weights whenever a pair of parent strings

6.2 Multi-Objective Genetic Algorithms 135

is selected from the current population. We use binary tournament selection
with replacement for the selection of parent strings. Thus we calculate the
fitness function in (6.7) for only four rule sets in the current population using
the randomly specified weights when a pair of parent strings is selected. When
another pair of parent strings is selected, the three weights are randomly
updated. That is, the selection of each pair of parent strings is governed by
a different weight vector. A pre-specified number of pairs are selected from
the current population. New strings are generated from each pair of parent
strings using crossover and mutation as in standard single-objective genetic
algorithms.

6.2.2 Elitist Strategy

A secondary population stores non-dominated rule sets among examined ones
during the execution of our MOGA. The secondary population is updated at
every generation so that it includes all non-dominated rule sets and it does
not include any dominated ones. Each rule set in the current population is ex
amined to see if it is dominated by any rule sets in the secondary population.
If a rule set is not dominated, its copy is added to the secondary popula
tion. All solutions in the secondary population dominated by the added copy
are removed. In this manner, the secondary population is updated at every
generation.

Each non-dominated rule set in the secondary population can be viewed
as a kind of elite solution because it is not dominated by any examined
rule sets. A pre-specified number (say A/'eiite) of non-dominated rule sets are
randomly selected from the secondary population and their copies are added
to the current population as elite solutions. This is a simple elitist strategy in
EMO algorithms. It is shown in [193, 194] that the use of elitism is essential
for designing EMO algorithms with high search ability. Most of the recently
proposed EMO algorithms use some form of elitism (see [21, 28]).

6.2.3 Basic Framework of Multi-Objective Genetic Algorithms

The basic framework of our MOGA, which is used in the genetic algorithm-
based rule selection method and the extended hybrid fuzzy GBML algorithm,
can be written as follows:

[Multi-Objective Genetic Algorithm]

Step 0: Parameter Specification. Specify the population size A p̂op, the num
ber of elite solutions A êiite, the parameter values for genetic opera
tions, and the stopping condition.

Step 1: Initialization. Randomly generate iVpop rule sets as an initial popu
lation. Find non-dominated rule sets in the initial population by cal
culating the three objectives of each rule set. Construct a secondary
population using copies of those non-dominated rule sets.

136 6. Multi-Objective Design of Linguistic Models

Step 2: Genetic Operations. Generate (iVpop — -/Veiite) I'ule sets using genetic
operations (i.e., selection, crossover, and mutation) from the current
population. The selection of parent rule sets is performed by iterating
the following procedures:
(a) Randomly specify the three weights as

Wi = randomi/{randomi + random2 + random^),

i = 1,2,3,(6.10)
where randorrii is a non-negative random real number.

(b) Select a pair of parent rule sets using binary tournament selection
with replacement. The fitness value of each rule set is calculated
by the fitness function in (6.7) using the current weight values
specified in (6.10).

Step 3: Evaluation, Calculate the three objectives of each of the newly gen
erated {Npop — Neiite) rule sets.

Step 4: Secondary Population Update. Update the secondary population by
examining whether each of the newly generated (A p̂op — A êiite) rule
sets is dominated by any rule sets in the secondary population.

Step 5: Generation Update (Elitist Strategy). Randomly select iVeiite non-
dominated rule sets from the secondary population and add their
copies to the newly generated (iVpop — A êiite) rule sets to form the
next population of the population size Npop.

Step 6: Termination Test. If the stopping condition is not satisfied, return
to Step 2. Otherwise terminate the execution of the algorithm. All
the non-dominated rule sets among the examined ones during the
execution of the algorithm are stored in the secondary population.

6.3 Multi-Objective Rule Selection

6.3.1 Algorithm

The genetic algorithm for rule selection in Chap. 4 can be directly extended to
the case of three-objective rule selection using the framework of our MOGA
(and other EMO algorithms) described in Sect. 6.2. The binary coding of each
rule set and the genetic operations for generating new rule sets in Chap. 4
can be used in the three-objective genetic algorithm for rule selection with no
modifications. As we have already explained in Chap. 4, unnecessary linguistic
rules are removed from each rule set. The second and third objectives are
calculated for each rule set after unnecessary linguistic rules are removed.

6.3.2 Computer Simulations

We applied the three-objective genetic algorithm for rule selection to the wine
data set. We used the 14 antecedent fuzzy sets in Fig. 1.4 of Chap. 1 and

6.3 Multi-Objective Rule Selection 137

don't care for generating linguistic rules. As in the computer simulations in
Sect. 4.4, we generated linguistic rules of length 3 or less (i.e., linguistic rules
with three or less antecedent conditions). The number of generated linguistic
rules was 711716. We selected 900 candidate rules from the 711716 linguistic
rules using the candidate rule prescreening procedure as in Sect. 4.4

The three-objective genetic algorithm for rule selection was used to find
non-dominated rule sets from the 900 candidate rules. Parameter values were
specified as follows.

Population size: Â pop = 50,
Number of elite solutions: A êiite = 5,
Crossover probability: p^ = 0.8,
Mutation probability: ^,^(0 -^ 1) = 1/900,

p^{l -> 0) = 0.1,
Stopping condition: 1000 population updates.

We used the same parameter specifications as in the computer simulations in
Sect. 4.4 using the genetic algorithm-based rule selection method. It should be
noted that we do not have to specify the weight values in the fitness function
in (6.7). This is because we use the three-objective genetic algorithm with
variable weights. If we pre-specify the weight values, single-objective genetic
algorithms can be utilized to maximize the fitness function in (6.7) with the
constant weights.

Table 6.1 shows non-dominated rule sets obtained by a single run of the
three-objective genetic algorithm for rule selection. It should be noted that
only 50000 rule sets were examined by the three-objective genetic algorithm
for finding the rule sets in Table 6.1. To clearly demonstrate the tradeoff
between the accuracy and the interpretability of linguistic rule-based sys
tems, each rule set in Table 6.1 is depicted in the two-dimensional space with
the total rule length and the error rate in Fig. 6.2. Some rule sets are not
shown because they are out of the range of this figure. The figure clearly
shows the tradeoff between the total rule length (i.e., complexity of linguistic
rule-based systems) and the error rate (i.e., classification performance). The
improvement in the error rate leads to an increase in the total rule length.

Since genetic algorithms are based on a stochastic search mechanism, the
obtained rule sets are not always true Pareto-optimal solutions. Thus better
solutions may be obtained from multiple runs of the three-objective genetic
algorithm for rule selection. Better rule sets may also be obtained by in
creasing the population size and/or the number of iterations. The increase
in the number of candidate rules also increases the chance of finding better
rule sets, though it also increases the difficulty of finding good rule sets due
to the exponential increase in the size of the search space for rule selection.
Table 6.2 shows the simulation results of a single run of the three-objective
genetic algorithm for rule selection with a population size of 500 and 10000
iterations. This means that the computation load in Table 6.2 is 100 times as
large as in Table 6.1 with a population size of 50 and 1000 iterations. From

138 6. Multi-Objective Design of Linguistic Models

Table 6.1. Non-dominated rule sets obtained by a single run of the three-objective
genetic algorithm for rule selection with population size of 50 and 1000 iterations

Rule set

^1

52
Ss
S4
55
56
57
58
59
'S'lo
5 i i
Sl2
Sl3
Sl4
Sl5

Classification ra te

100.0%
98.9%
98.3%
97.8%
97.2%
96 .1%
95.5%
93.8%
88.8%
71.9%
70.2%
69 .1%
68.0%
39.9%
39.3%

Number of rules

4
4
4
4
3
3
3
3
3
2
2
2
2
1
1

Average length

2.50
2.25
2.00
1.75
2.33
2.00
1.67
1.33
1.00
2.50
2.00
1.50
1.00
2.00
1.00

10

o

0

o

o
o o

o
• J — 0 - ^

2 3 4 5 6 7 8 9 10
Total rule length J-QJ. J-^^Q

Fig. 6.2. Obtained rule sets in
the two-dimensional space with
the total rule length and the er-

the comparison between Table 6.1 and Table 6.2, we can see tha t simula
tion results were slightly improved by increasing the computation load. As
mentioned in Chap. 4, the efficiency of genetic algorithm-based rule selection
strongly depends on the prescreening of candidate rules.

For further discussions on multi-objective genetic rule selection and other
simulation results, see Ishibuchi & Yamamoto [94, 88, 89].

6.4 Multi-Objective Genetics-Based Machine Learning 139

Table 6.2. Non-dominated rule sets obtained by a single run of the three-objective
genetic algorithm for rule selection with a population size of 500 and 10000 itera
tions

Rule set

5 i
52
S3
S4
55
56
57
58
59
Sio
5 i i
'S'l2
'S'i3
Sl4

Classification ra te

100.0%
99.4%
98.3%
97.2%
96 .1%
96 .1%
94.9%
88.2%
73.0%
72.5%
71.9%
69.7%
67.4%
39.9%

Number of rules

3
3
3
4
3
4
3
3
2
2
2
2
2
1

Average length

2.33
2.00
1.67
1.00
1.33
0.75
1.00
0.67
2.50
2.00
1.50
1.00
0.50
0.00

6.4 Multi-Objective Genetics-Based Machine Learning

6.4.1 Algorithm

The extended hybrid fuzzy GBML algorithm in Chap. 5 can also be easily
adapted to the case of three-objective optimization using the framework of the
MOGA described in Sect. 6.2. The coding of each rule set using antecedent
fuzzy sets and the genetic operations for generating new rule sets in Chap. 5
can be used in three-objective fuzzy GBML with no modifications. The num
ber of linguistic rules in each rule set is changed by the one-point crossover
operation with different crossover points as in Chap. 5. Our three-objective
fuzzy GBML algorithm is a hybrid algorithm of the Michigan approach and
the Pittsburgh approach. We use the following two heuristics in the three-
objective fuzzy GBML algorithm (see Chap. 5).

(1) Heuristic generation of an initial population.
(2) Rule generation from misclassified or rejected training patterns.

6.4.2 Computer Simulations

We applied the three-objective fuzzy GBML algorithm to the wine data set.
As in the previous section, we used the 14 antecedent fuzzy sets in Fig. 1.4
of Chap. 1 and don^t care. The total number of combinations of antecedent
fuzzy sets for generating linguistic rules is (14 -h 1)^^. The three-objective
fuzzy GBML algorithm was used to construct non-dominated rule sets from
such a huge number of possible linguistic rules.

The three-objective fuzzy GBML algorithm was applied to the wine data
set using the following parameter specifications:

140 6. Multi-Objective Design of Linguistic Models

Number of linguistic rules in initial rule sets: A r̂uie = 10,
Number of rule sets: Â pop = 50,
Crossover probabilities: Pcp = 0.8 in the Pittsburgh part,

PcM = 0.8 in the Michigan part,
Mutation probabilities: Pmp = 0.8 in the Pittsburgh part,

PrriM — 1/1^ i^ the Michigan part,
Number of elite solutions: A êiite = 5,
Stopping condition: 1000 iterations,
Number of replaced linguistic rules: 20% of existing rules.

The same parameter specifications were used in the computer simulations
in Sect. 5.4 using the extended hybrid fuzzy GBML algorithm. As in the
case of the three-objective genetic algorithm for rule selection in the previous
section, we do not have to specify the weight values in the fitness function in
(6.7).

Table 6.3 shows non-dominated rule sets obtained by a single run of the
three-objective fuzzy GBML algorithm. As in Table 6.1, only 50000 rule sets
were examined by the three-objective fuzzy GBML algorithm for finding the
rule sets in Table 6.3. From the comparison between Table 6.1 and Table
6.3, we can see that larger rule sets were obtained from the three-objective
fuzzy GBML algorithm. That is, many rule sets in Table 6.3 are inferior to
those in Table 6.1 with respect to the comprehensibility of rule sets. This is
because the search space in Table 6.1 (i.e., 2^°^) is much smaller than that
in Table 6.3 (i.e., 2^ where N = 15^^). We also applied the three-objective
fuzzy GBML algorithm to the wine data set using a greater computation load
than in Table 6.3. That is, the population size and the stopping condition
were specified as 500 rule sets and 10000 iterations, respectively. Simulation
results are summarized in Table 6.4. From the comparison between Table 6.4
and Table 6.3, we can see that better rule sets were obtained in Table 6.4.
Simulation results in Table 6.4, however, are still inferior to those in Table
6.1 by rule selection. This suggests that a greater computation load may be
required for finding good rule sets in the huge search space.

6.4 Multi-Objective Genetics-Based Machine Learning 141

Table 6.3. Non-dominated rule sets obtained by a single run of the three-objective
fuzzy GBML algorithm with a population size of 50 and 1000 iterations

Rule set

5 i
52
S3
S4
Se
Se
Sr
Ss
59
5io
5 i i
Sl2
Sis
Si4
Sl5
Sl6
Su

Classification ra te

100.0%
99.4%
98.9%
98.3%
97.8%
97.2%
96.6%
96 .1%
96 .1%
94.9%
93.3%
91.6%
68.0%
65.7%
65.2%
60 .1%
39.9%

N u m b e r of rules

11
9
9
9
7
6
5
4
5
4
4
3
3
2
2
2
1

Average length

2.00
2.22
2.00
1.78
1.86
1.67
1.80
1.75
1.20
1.25
1.00
1.00
0.67
2.00
1.00
0.50
0.00

Table 6.4. Non-dominated rule sets obtained by a single run of the three-objective
fuzzy GBML algorithm with a population size of 500 and 10000 iterations

Rule set

5 i
52
53
54
55
56
57
58
59
5io
5 i i
Sl2
Sis
Sl4
Sl5
Sl6
Sir
Sl8

Classification ra te

100.0%
100%
99.4%
99.4%
98.9%
98.3%
98.3%
97.8%
97.2%
96 .1%
93.8%
93.3%
92.7%
88.2%
70.2%
69.7%
67.4%
39.9%

N u m b e r of rules

6
7
5
6
5
4
5
4
4
4
3
3
3
3
2
2
2
1

Average length

2.67
1.71
2.20
1.67
1.40
1.75
1.00
1.25
1.00
0.75
1.67
1.33
1.00
0.67
1.50
1.00
0.50
0.00

7. Comparison of Linguistic Discretization
with Interval Discretization

We have already explained several approaches to the design of linguistic rule-
based systems for pattern classification problems. In this chapter, we compare
linguistic discretization with interval discretization to clearly illustrate char
acteristic features of linguistic rule-based classification systems. For such a
comparison, we specify linguistic discretization in a different manner from the
previous chapters. While we assumed in the previous chapters that linguistic
discretization is given for each attribute by human users or domain experts,
in this chapter we construct linguistic discretization from interval discretiza
tion. Figures 7.1 and 7.2 are examples of linguistic discretization generated
from interval discretization. Interval discretization in Fig. 7.1 is homogeneous
(i.e., five intervals have the same width) while it is inhomogeneous in Fig.
7.2.

Fig. 7.1. Homogeneous interval
discretization into five intervals
with the same width and the corre
sponding linguistic discretization

Fig. 7.2. Inhomogeneous inter
val discretization into five inter
vals with different widths and
the corresponding linguistic dis
cretization

144 7. Comparison of Linguistic Discretization with Interval Discretization

7.1 Effects of Linguistic Discretization

7.1.1 Effect in the Rule Generation Phase

The main characteristic feature of Hnguistic discretization is the overlap be
tween adjacent antecedent fuzzy sets (i.e., adjacent linguistic terms). This
means that many linguistic rules overlap with each other in the pattern space.
On the other hand, there is no overlap of rules in the case of interval dis
cretization. This difference is illustrated in Fig. 7.3. In Fig. 7.3 (a), an input
pattern denoted by the closed circle in the pattern space is covered by four
linguistic rules corresponding to the four shaded cells. In general, an input
pattern in the n-dimensional pattern space is covered by 2^ linguistic rules.
On the other hand, an input pattern is covered by only a single rule in the
case of interval discretization as shown in Fig. 7.3 (b).

1.0

0.0

[[• J

0.0

1.0

0.0
1.0 0.0

m
I A

1.0

S ^!dvisXMXML% L

I S . LMS.I. M |UML.i L

'\\y \\y \\,y \l/

/ \ / \ /\ / \

(a) Linguistic discretization (b) Interval discretization

Fig. 7.3. Difference between fuzzy discretization and interval discretization. Each
axis is homogeneously divided into five linguistic terms (S: small^ MS: medium
small, M: medium, ML: medium large, and L: large) and five intervals

As shown in Fig. 7.3 (a), an input pattern in the pattern space is covered
by multiple linguistic rules. This means that each training pattern is involved
in the generation of multiple linguistic rules. On the other hand, each training
pattern is involved in the generation of a single rule in the case of interval
discretization. This difference in the rule generation phase is significant when
training patterns are sparse and discretization is fine. In Fig. 7.4, the two-
dimensional pattern space is divided into 25 cells. From the given 14 training
patterns (i.e., seven closed circles and seven open circles), 22 linguistic rules
in the shaded region in Fig. 7.4 (a) can be generated. On the other hand,
only nine rules can be generated in the case of interval discretization in Fig.
7.4 (b).

7.1 Effects of Linguistic Discretization 145

1.0
Class 1 O Class 2

0.0

r \

#,

f""
1

M s

= '"0

• f " •

........

J O
^

o

•

s

i
f"^

]

• 1

J

0.0 ! ! ! I 1.0

1.0
• Class 1 O Class 2

0.0
0.0

O-O-

EM
MS J. M

./^^../\A...A

m

I 1.0
ML,!. L

..:^. .:*«rf: :&*: :>^.

(a) Linguistic discretization (b) Interval discretization

Fig. 7.4. Training patterns and generated rules

It should be noted that each training pattern has a different influence
(i.e., different importance) in the rule generation phase according to its com
patibility grade to each linguistic rule. Let us consider the following linguistic
rule at the center of the pattern space in Fig. 7.4 (a):

If xi is medium and X2 is medium then Class 1 with CF = 0.17. (7.1)

The consequent class and the rule weight of this linguistic rule were de
termined from four training patterns in the large dotted square at the center
of the pattern space in Fig. 7.4 (a). In the rule generation phase of this lin
guistic rule, one training pattern from Class 1 near the center of the pattern
space has a larger compatibility grade than two training patterns from Class
2 near the sides of the small cell at the center of the pattern space. The com
patibility grades of the four compatible patterns are 0.90 (Class 1 pattern
near the center of the pattern space), 0.52 (Class 2 pattern), 0.30 (Class 2
pattern), and 0.26 (Class 1 pattern). The sum of the compatibility grades
over the two training patterns from Class 2 is smaller than that of the two
Class 1 patterns. As a result, the consequent of the linguistic rule in (7.1) is
Class 1.

The corresponding rule was generated in Fig. 7.4 (b) in the case of interval
discretization as

If xi is medium and X2 is medium then Class 2 with CF = 0.33. (7.2)

This rule was generated from three compatible training patterns that are
located in the small cell at the center of the pattern space in Fig. 7.4 (b). Note
that the linguistic rule in (7.1) and the interval rule in (7.2) have different
consequent classes.

146 7. Comparison of Linguistic Discretization with Interval Discretization

7.1.2 Effect in the Classification Phase

The characteristic features of linguistic discretization in the classification
phase also stem from the fact that multiple linguistic rules overlap with each
other in the pattern space. The decision region of each linguistic rule in the
case of linguistic discretization is usually different from the corresponding
cell in the case of interval discretization (see Fig. 7.5 (a)). This is because the
size of the decision region of each linguistic rule depends on its rule weight
(i.e., its certainty grade). The location of the classification boundary can
be adjusted using the rule weight of each linguistic rule as shown in Chap.
3 [67, 132]. On the other hand, the location of the classification boundary
is determined by the threshold values on each axis in the case of interval
discretization as shown in Fig. 7.5 (b). This is because the decision region of
each interval rule is uniquely determined by the threshold values on each axis.
Note that no rules are generated in the two cells shaded in Fig. 7.5 (b). From
these discussions, we expect that good results can be obtained by linguistic
rules even when the linguistic discretization of each axis is not appropriately
specified. On the other hand, each axis should be appropriately discretized
into intervals for generating interval rules with high classification ability.

• Class 1 1.0
• Class 1 O Class 2

Wl

o
o o

o o o

o o o o
o o

• •

• •

0.0

1.0
0.0

o , Q ,^ I

m
-A:

m
sy^Ms^^

MS, M

1 yCiCxx i
ML!. L

. .••••

1.0

(a) Linguistic discretization (b) Interval discretization

Fig. 7.5. Decision region of each rule and the classification boundary

Linguistic rules have larger decision regions than the corresponding inter
val rules when rules are sparse. If there are no adjacent linguistic rules around
the linguistic rule in (7.1) with the antecedent part {medium, medium), its
decision region is the dotted square in Fig. 7.4 (a). On the other hand, the
decision region of the corresponding interval rule is always the corresponding
cell at the center of Fig. 7.4 (b). That is, the size of the decision region is
independent of the existence of adjacent interval rules in the case of interval

7.2 Specification of Linguistic Discretization from Interval Discretization 147

discretization. The size of the decision region of each hnguistic rule, however,
depends on the existence of adjacent linguistic rules. Thus a small number
of sparsely located linguistic rules can classify far more patterns than the
corresponding interval rules. In the case of interval discretization, the classi
fication of many patterns will be rejected if the number of interval rules is
very small. From these discussions, we expect that a small number of linguis
tic rules have higher classification ability than the same number of interval
rules.

7.1.3 Summary of Effects of Linguistic Discretization

In this section, we have illustrated some effects of linguistic discretization
in the rule generation phase and the pattern classification phase. The main
positive effects of linguistic discretization on the classification performance
of linguistic rule-based systems are summarized as follows:

(1) Multiple linguistic rules can be generated from a single training pattern
while only a single rule can be generated in the case of interval dis
cretization. This may lead to better results by linguistic discretization
than interval discretization when the number of training patters is very
small (i.e., when training patterns are sparse).

(2) The location of the classification boundary can be adjusted using the rule
weight of each linguistic rule while it is determined by the specification
of threshold values in the case of interval discretization. This may lead
to better results by linguistic discretization than interval discretization
when the discretization of each axis is not tuned appropriately.

(3) Each linguistic rule can classify a larger region than the corresponding
interval rule. This may lead to better results by linguistic discretization
than interval discretization when the number of rules is very small (i.e.,
when rules are sparse).

7.2 Specification of Linguistic Discretization from
Interval Discretization

7.2.1 Specification of Fully Fuzzified Linguistic Discretization

The membership function of each fuzzy set in Fig. 7.1 and Fig. 7.2 was
generated from the corresponding interval based on the following constraint
conditions:

(a) Membership functions are linear (i.e., triangular or trapezoidal).
(b) The sum of neighboring membership functions is 1.
(c) Crossing points of neighboring membership functions coincide with thresh

old values for interval discretization (see Fig. 7.1 and Fig. 7.2).

148 7. Comparison of Linguistic Discretization with Interval Discretization

(d) The membership value of each intermediate fuzzy set (e.g., MS: medium
small, M: medium, and ML: medium large in Fig. 7.1) is 1 at the midpoint
of the corresponding interval. The membership value of the smallest fuzzy
set (e.g., S: small in Fig. 7.1) is 1 at the smallest input value 0 in the
domain interval [0,1]. The membership value of the largest fuzzy set (e.g.,
L: large in Fig. 7.1) is 1 at the largest input value 1 in the domain interval
[0,1].

It should be noted that linguistic discretization is not uniquely specified by
these constraint conditions from interval discretization. For example, Fig.
7.6 satisfies these constraint conditions as well as Fig. 7.1. While Fig. 7.1
shows fully fuzzified linguistic discretization, Fig. 7.6 shows partially fuzzified
linguistic discretization.

Fig. 7.6. Partially fuzzified lin
guistic discretization

To represent the grade of fuzzification, let us introduce the fuzzification
grade F. When F = 1, linguistic discretization is fully fuzzified under the
above constraint conditions as shown in Fig. 7.1 and Fig. 7.2. On the other
hand, F = 0 corresponds to interval discretization with no fuzzification (i.e.,
no overlap between adjacent fuzzy sets). From fully fuzzified linguistic dis
cretization with F = 1 and interval discretization with F = 0, we can generate
partially fuzzified linguistic discretization with arbitrary grades of fuzzifica
tion.

Before explaining the specification of partially fuzzified linguistic dis
cretization, we first show how fully fuzzified linguistic discretization (e.g.,
Fig. 7.1 and Fig. 7.2) can be obtained from interval discretization based on
the above-mentioned four constraint conditions. Let us assume that the unit
interval [0,1] is discretized into K intervals / i , / 2 , . . . , / x as shown in Fig.
7.7. We denote each interval Ij by its lower limit Lj and upper limit Uj as
Ij = [Lj,Uj], j = 1,2,.. . , K. For these intervals, the following relations hold
(see Fig. 7.7):

Li =0,UK = 1,

U, ^i+i for i = l , 2 , . . . , i ^ ~ l .

(7.3)

(7.4)

Our task is to derive the fully fuzzified linguistic discretization with K fuzzy
sets from the interval discretization with those K intervals. Let ^ i , A2 , . . . , AK
be the K fuzzy sets corresponding to the K intervals / i , / 2 , . . . , I ^ .

7.2 Specification of Linguistic Discretization from Interval Discretization 149

IK

L, = 0 Ui = L2 U2 = L, UK-I = LK UK= I

Fig. 7.7. Interval discretization of the unit interval [0,1] into K intervals

As shown in Fig. 7.1 and Fig. 7.2, each fuzzy set Aj is in general t rape
zoidal from the first constraint condition (a). A triangular fuzzy set can be
viewed as a special case of a trapezoidal fuzzy set. We denote the trapezoidal
fuzzy set Aj by its four parameters as Aj = (aj^bj^Cj^dj). This notation is
illustrated in Fig. 7.8. It should be noted tha t the fuzzy set Aj is triangular
when bj = Cj.

Fig. 7.8. Adjacent trapezoidal
fuzzy sets

From the second constraint condition (b), we have the following relations
(see Fig. 7.8):

ttj+i = Cj and bj-^i = dj for j = 1, 2 , . . . , jff — 1. (7.5)

In this case, we can see from Fig. 7.8 tha t the following relation holds:

fXAj (x) + fj.Aj+1 (x) = 1 for Cj <x < dj, J = 1 ,2 , . . . , i^ - 1. (7.6)

From the fourth constraint condition (d), the left hand side slope of the
first fuzzy set Ai (e.g., S in Fig. 7.1) is specified as

ai=bi= 0. (7.7)

The right hand side slope of the last fuzzy set AK (e.g., L in Fig. 7.1) is
specified as

CK = dK = 1. (7.8)

From (7.5), (7.7), and (7.8), we can see tha t the fuzzy discretization with
^ 1 , ^2 5 • • • 5 AK is uniquely specified by determining the values of Cj and dj
for j = 1 ,2 , . . . , K — 1. In the following, we show how these parameters can
be determined from the interval discretization with / i , / 2 , . . . , / ^ .

The third constraint condition (c) requires the following relation:

t̂ . = ^4^fori = l,2,.. ,K (7.9)

150 7. Comparison of Linguistic Discretization with Interval Discretization

To handle the fourth constraint condition (d), let us define Mj where the
membership value of Aj should be 1 as follows:

f 0, if j = 1,
Mj = I (Lj + Uj)/2, ifl<j<K, (7.10)

(1, if J = K.

The fourth constraint condition (d) requires the following relation:

Mj < Cj < dj < Mj^i for i =̂ 1,2,.. . , K - 1. (7.11)

The specification of the fully fuzzified linguistic partition means the min
imization of Cj and the maximization of dj under the constraint conditions
in (7.9) and (7.11). This optimization problem can be easily solved as follows:

Case 1 (Fig. 7.9 (a)): When Uj < {Mj + Mj+i)/2, then

Cj = Mj and dj = Uj + {Uj - Mj).

Case 2 (Fig. 7.9 (b)): When Uj > {Mj + M^+i)/2, then

Cj = Uj - {Mj^i - Uj) and dj M. j+ i -

(7.12)

(7.13)

Using (7.12) and (7.13), we can specify Cj and dj for j = 1,2,..., if — 1.
Then aj and hj are specified from (7.5) for j = 2 , 3 , . . . , if. The other param
eters have already been specified by (7.7) and (7.8). In this manner, we can
specify the fully fuzzified linguistic discretization of the domain interval [0,1]
with the K fuzzy sets from the interval discretization with the K intervals.

d r ^^—

1

MJ

i
^

^ " ^ • r /

M>i M, UJ

(a) Case 1 (b) Case 2

Fig. 7.9. Illustration of the specification of Cj and dj

7.2.2 Specification of Partially Fuzzified Linguistic Discretization

Now we show how we can specify the partially fuzzified linguistic discretiza
tion with the fuzzification grade F . Let us denote the partially fuzzified trape
zoidal fuzzy set Aj with the fuzzification grade F as Af = {aJ,bj,cj,dj)
where 0 < F < 1. Note that we have already obtained the fully fuzzified
trapezoidal fuzzy set Aj — (a],6],cj,(ij) with the maximum fuzzification
grade (i.e., F = 1) in the previous subsection. On the other hand, the trape
zoidal fuzzy set J^j — (a^, 6^,c^,d^) with no fuzzification is the same as the
interval F :

7.3 Comparison Using Homogeneous Discretization 151

a^.=lP.=Lj, (7.14)

c° = rfO = Uj. (7.15)

Using the interpolation between A^ and A], we specify Aj = (aj", bf^cf,
dj) as follows:

af = a''j + {a]-a^j)F, (7.16)

^f = ^i + (^i - ^ i)^ ' (7-17)

"̂" = ^' + (4 - ^ ') ^ ' (^-IS)

df = d^'j + (4 - d^j)F. (7.19)

From these formulations, we can generate partially fuzzy linguistic discretiza
tion with arbitrary fuzzification grades when the interval discretization is
given. Figure 7.6 was drawn using these formulations for F = 0.5.

7.3 C o m p a r i s o n Us ing H o m o g e n e o u s D i s c r e t i z a t i o n

Through computer simulations on the iris data set and the wine data set, we
compare linguistic discretization with interval discretization when the domain
interval of each attribute is homogeneously divided into multiple intervals
with the same width.

7.3.1 Simulation Results on Iris Data

In this subsection, we present simulation results on the iris data set. As in
the previous chapters, the iris data set was treated as a three-class pattern
classification problem in the four-dimensional unit hypercube [0,1]^.

First we examined the classification performance of linguistic rule-based
systems in the case of sparse training patterns. We randomly selected only
five samples from each class as training patterns. Thus the total number of
training patterns was 15. These training patterns were used to design a lin
guistic rule-based system. The other 135 samples were used as test patterns
to evaluate the generalization ability of the designed linguistic rule-based
system. In our computer simulations in this subsection, the domain interval
[0,1] of each attribute was uniformly divided into K intervals with the same
width. The linguistic discretization with K fuzzy sets of the fuzzification
grade F was generated from the interval discretization with the K intervals.
To generate linguistic rules, K^ combinations of K antecedent fuzzy sets for
each of the four attributes were examined using the heuristic rule generation
procedure in Chap. 2. There were many combinations for which linguistic
rules could not be generated. This is because training patterns were sparse.

152 7. Comparison of Linguistic Discretization with Interval Discretization

We examined four parameter specifications of K: K = 2,3,4,5. For each
specification of K, we examined eleven parameter specifications of the fuzzi-
fication grade F : F = 0,0.1,0.2,. . . , 1. For each combination of K and F , we
calculated the average classification rate on test patterns over 500 trials with
different choices of 15 training patterns (i.e., different partitions of the 150
samples into 15 training patterns and 135 test patterns). Simulation results
are summarized in Fig. 7.10.

o

U

Fuzzification grade (F)

Fig. 7.10. Average classification
rates on test patterns. Only 15
samples in the iris data set were
used as training patterns

From Fig. 7.10, we can see that the fuzzification of interval discretization
improved the generalization ability of linguistic rule-based systems. The main
reason for the poor generalization ability of interval discretization (i.e., poor
results in Fig. 7.10 in the case of no fuzzification: F = 0) is that only a small
number of rules were generated from sparse training patterns. As a result,
the classification of many test patterns was rejected. The average number of
generated linguistic rules is summarized in Table 7.1. From this table, we can
see that much far rules were generated in the case of linguistic discretization
than interval discretization. We also calculated the average rejection rate for
each combination ofK and F . Simulation results are summarized in Fig. 7.11.
From this figure, we can see that the classification of many test patterns was
rejected in the case of a large K (i.e., fine partition) and a small F (i.e., small
fuzzification grade). The combination of a large K and a small F means a
small decision region of each linguistic rule. Such a small decision region has
two negative effects on the classification performance in the case of sparse
training patterns. One is that the number of generated rules is small. The
other is that each rule can classify only a small number of test patterns. As
a result, many test patterns cannot be classified in the case of fine partitions
and small fuzzification grades.

Next we examined the classification performance of linguistic rule-based
systems in the case of sparse rules. We used the 10-fold cross-validation
(lOCV) technique to estimate the generalization ability of linguistic rule-
based systems. In the lOCV technique, the 150 samples in the iris data set

7.3 Comparison Using Homogeneous Discretization 153

Table 7.1. Number of generated rules

Partition

Granularity

of rules

Interval discretization {F = 0)

2 3 4 5

6.5 9.0 14.4 11.8

Partition

Granularity

of rules

Linguistic discretization (F = 1)

2 3 4 5

16.0 40.3 65.5 87.2

o

Pi

Fuzzification grade (F)

Fig. 7.11. Average rejection
rates on test patterns. Only 15
samples in the iris data set were
used as training patterns

were randomly divided into ten subsets with five samples from each class (i.e.,
15 samples in each subset). Nine subsets were used as training patterns and
the remaining subset was used as test patterns. This was iterated ten times so
that all subsets were used once as test patterns. The whole lOCV procedure
was iterated 50 times using different partitions of the 150 samples into ten
subsets for each combination of granularity K and fuzzification grade F. In
each trial in the lOCV procedure, K^ combinations of K antecedent fuzzy
sets for each of the four attributes were examined to generate linguistic rules.
From the generated linguistic rules, N linguistic rules were selected using the
rule prescreening procedure in Chap. 4. Simulation results are summarized in
Fig. 7.12 for the case of Â = 3 (i.e., only a single rule for each class) and Fig.
7.13 for the case of Â = 30 (i.e., ten rules for each class). These figures show
the average classification rate on test patterns for each specification for the
granularity K, the fuzzification grade F , and the number of linguistic rules
N. From Fig. 7.12, we can see that the effect of fuzzification on the classifi
cation performance of linguistic rule-based systems was significant when the
number of linguistic rules was very small. On the other hand, this effect was
not so significant when the number of linguistic rules was large as shown in
Fig. 7.13.

154 7. Comparison of Linguistic Discretization with Interval Discretization

Fuzzification grade (F)

K = 3 OK = 4 mK = 5

Fig. 7.12. Average classification
rates on test patterns obtained
from the lOCV procedure for the
iris data set using three linguistic
rules (i.e., a single linguistic rule
for each class)

Fuzzification grade (F)

Fig. 7.13. Average classification
rates on test patterns obtained
from the lOCV procedure for the
iris data set using 30 linguistic
rules (i.e., ten linguistic rules for
each class)

7.3.2 Simulation Results on Wine Data

In this subsection, we present simulation results on the wine data set. As in
the previous chapters, the wine data set was treated as a three-class pattern
classification problem in the 13-dimensional unit hypercube [0,1]^^. In our
computer simulations in this subsection, we only generated linguistic rules of
length of 2 or less.

Using linguistic rules of this length, we performed almost the same com
puter simulations on the wine data set as in the previous subsection on the
iris data set. First we examined the classification performance of linguistic
rule-based systems in the case of sparse training patterns. About 10% of the
given samples were randomly selected as training patterns from the wine data
set: six samples from Class 1 with 59 samples, seven samples from Class 2
with 71 samples, and five samples from Class 3 with 48 samples. Thus the
total number of training patterns was 18. These training patterns were used
to design a linguistic rule-based system. The other 160 samples were used as
test patterns to evaluate the generalization ability of the designed linguistic
rule-based system. For each specification of the granularity K and the fuzzifi
cation grade F , we calculated the average classification rate on test patterns
over 500 trials with different choices of the 18 training patterns. Simulation

7.4 Comparison Using Inhomogeneous Discretization 155

results are summarized in Fig. 7.14. From this figure, we can see that the
fuzzification of interval discretization significantly improved the generaliza
tion ability of linguistic rule-based systems as in Fig. 7.10 on the iris data set
when training patterns were sparse.

100
n-K = 2 mK = 3 OK = 4 mK = 5

Fuzzification grade (F)

Fig. 7.14. Average classification
rates on test patterns. Only 18
samples in the wine data were
used as training patterns

Next we examined the classification performance of linguistic rule-based
systems in the case of sparse rules. As in the previous subsection, we used the
lOCV technique to estimate the generalization ability of linguistic rule-based
systems. The whole lOCV procedure was iterated 50 times using different
partitions of the wine data set into ten subsets for each specification of the
granularity K and the fuzzification grade F. Simulation results are summa
rized in Fig. 7.15 for the case of Â == 3 (only a single linguistic rule from
each class) and Fig. 7.16 for the case of iV = 30 (ten linguistic rules from
each class). From Fig. 7.15, we can see that the effect of fuzzification on the
performance of linguistic rule-based systems was significant when the number
of linguistic rules was very small. On the other hand, this effect was not so
significant in Fig. 7.16 where the number of fuzzy rules was large. The same
observations were obtained from the previous computer simulations on the
iris data set (i.e.. Fig. 7.12 and Fig. 7.13).

7.4 Comparison Using Inhomogeneous Discretization

In the previous computer simulations, we used homogeneous interval dis
cretization for generating linguistic discretization with arbitrary fuzzifica
tion grades. Since the location of classification boundaries totally depends on
threshold values in the case of interval discretization, generalization ability
can be improved by carefully choosing threshold values for each attribute. In
this section, we specify interval discretization using the entropy measure as
in Fayyad & Irani [45] and Quinlan [143].

156 7. Comparison of Linguistic Discretization with Interval Discretization

K = 3> OK = A %K=5

Fuzzification grade {F)

Fig. 7.15. Average classification
rates on test patterns obtained
from the lOCV procedure for the
wine data set using three linguis
tic rules (i.e., a single linguistic
rule for each class)

i: = 3 0 ^ =

Fuzzification grade (F)

Fig. 7.16. Average classification
rates on test patterns obtained
from the lOCV procedure for the
wine data set using 30 linguistic
rules (i.e., ten linguistic rules for
each class)

7.4.1 E n t r o p y - B a s e d I n h o m o g e n e o u s Interval D i s c r e t i z a t i o n

In computer simulations in this section, the domain interval of each a t t r ibute
was discretized independently of the other at t r ibutes. When the domain inter
val of an a t t r ibute was discretized into K intervals / i , / 2 , . . . , //^ using {K — 1)
threshold values, the threshold values were selected from (m — 1) candidates.
Each candidate was the midpoint of a pair of neighboring a t t r ibute values in
the given m t raining pat terns . All the m-iCK-i combinations were examined
to select (K — 1) threshold values from (m — 1) candidates (for more efficient
discretization methods, see [41]). The entropy was calculated for each combi
nation of {K — 1) threshold values (i.e., for each discretization). Let D be the
set of given training pat terns . Using (K — l) threshold values on the a t t r ibute
to be discretized (i.e., using K intervals J i , /2 , • • •, ^ K on tha t a t t r ibute) , the
da ta set D is divided into K subsets i ^ i ,D2 , •. • , D K where Dj is the set of
training pat terns in the interval Ij. According to the class of each training
pat tern , each subset Dj is further divided into M subsets Dji,Dj2,..., DJM
where Djh is the set of training pat terns from Class h in the interval Ij. The
entropy measure i J (/ i , / 2 , . . . , / K) is defined for the interval discretization
J i , / 2 , . . . , / x as

7.4 Comparison Using Inhomogeneous Discretization 157

K

H{h,h....jK) = -Y.
\Dj\
m

M

L. p . | A-g2 |̂ .̂| (7.20)

The combination of {K — 1) threshold values with the minimum entropy
was selected for each attribute. We discretized the domain interval of each
attribute in this manner as a preprocessing procedure before designing lin
guistic rule-based systems. From the inhomogeneous interval discretization
generated in this manner, we generated the corresponding fully fuzzified
linguistic discretization as shown in Fig. 7.2. Then we generated partially
fuzzified linguistic discretization with various fuzzification grades F from the
inhomogeneous interval discretization and the corresponding fully fuzzified
linguistic discretization.

7.4.2 Simulation Results on Iris Data

As in Sect. 7.3.1, we examined the classification performance of linguistic rule-
based systems in the case of sparse training patterns (i.e., 15 training patterns
from the iris data set). Simulation results are summarized in Fig. 7.17. From
this figure, we can see that the classification performance of linguistic rule-
based systems on test patterns was improved by increasing the fuzzification
grade. This improvement was more significant in the case of fine discretization
(e.g., K = 5) than coarse discretization (e.g., K = 2).

nK = 2 mK=3 OK=4 mK = 5

o

U

Fuzzification grade (F)

Fig. 7.17. Average classification
rates on test patterns in the case
of inhomogeneous discretization.
Only 15 samples in the iris data
set were used as training patterns

We also examined the classification performance of linguistic rule-based
systems in the case of sparse rules. As in Sect. 7.3.1, we used the lOCV
technique. Simulation results are summarized in Fig. 7.18 for the case of
N = 3 (i.e., only a single linguistic rule from each class) and Fig. 7.19 for
the case of Â = 30 (i.e., ten linguistic rules from each class). From these
figures, we can see that the classification performance of linguistic rule-based
systems on test patterns was improved by increasing the fuzzification grade.
This improvement was more significant in Fig. 7.18 with only three linguistic

158 7. Comparison of Linguistic Discretization with Interval Discretization

rules than Fig. 7.19 with 30 linguistic rules. In the case of i f = 3 in Fig. 7.19
(i.e., closed squares), we can observe no improvement in the classification rate
by the increase of the fuzzification grade.

nK = 2 mK = 3 OK = 4

Fuzzification grade (F)

Fig. 7.18. Average classification
rates on test patterns obtained
from the lOCV procedure for the
iris data set using three linguis
tic rules (i.e., a single linguistic
rule for each class). Inhomoge-
neous discretization was used

Fuzzification grade (7^

Fig. 7.19. Average classification
rates on test patterns obtained
from the lOCV procedure for the
iris data set using 30 linguistic
rules (i.e., ten linguistic rules for
each class). Inhomogeneous dis
cretization was used

7.4.3 S i m u l a t i o n R e s u l t s o n W i n e D a t a

In the same manner as in Sect. 7.3.2, we performed computer simulations
on the wine da ta set using inhomogeneous discretization. Linguistic rules of
length of 2 or less were used. First we examined the classification performance
of linguistic rule-based systems in the case of sparse training pat terns (i.e.,
only 18 training pat terns) . Simulation results are summarized in Fig. 7.20.
From Fig. 7.20, we can see tha t the classification performance of linguistic
rule-based systems was improved by increasing the fuzzification grade when
they were generated from sparse training pat terns . The same observation was
obtained from the previous computer simulations on the iris da ta set.

7.4 Comparison Using Inhomogeneous Discretization 159

Fuzzification grade (F)

Fig. 7.20. Average classification
rates on test patterns using in-
homogeneous discretization. Only
18 samples in the wine data set
were used as training patterns

Next we examined the classification performance of linguistic rule-based
systems in the case of sparse rules using the lOCV technique. Simulation
results are summarized in Fig. 7.21 for N = 3 (i.e., only a single linguistic
rule for each class) and Fig. 7.22 for N = 30 (i.e., ten linguistic rules for
each class). From Fig. 7.21, we can see tha t the classification performance
of linguistic rule-based systems was improved by increasing the fuzzification
grade when the number of linguistic rules was very small. The same obser
vation was obtained from the previous computer simulations on the iris da ta
set. On the other hand, the classification performance was impaired by the
fuzzification of interval discretization in Fig. 7.22. Only this figure among
simulation results in this chapter shows a clear deterioration in the classi
fication performance by the fuzzification of interval discretization. Thus we
conclude tha t the fuzzification of interval discretization can have a negative
eff'ect on the classification performance of rule-based systems when the fol
lowing conditions are satisfied: the number of training pat terns is not too
small, the number of rules is not too small, and threshold values for interval
discretization are appropriately specified.

100 r-r
nK = 2 *K = 3 0 ^ = 4 %K = 5

Fuzzification grade (F)

Fig. 7.21. Average classification
rates on test patterns obtained
from the lOCV procedure for the
wine data set using three linguis
tic rules (i.e., a single linguistic
rule for each class). Inhomoge
neous discretization was used

160 7. Comparison of Linguistic Discretization with Interval Discretization

^K = 2 » ^ = 3 OK = 4 mK^5

Fuzzification grade (F)

Fig. 7.22. Average classification
rates on test patterns obtained
from the lOCV procedure for the
wine data set using 30 linguistic
rules (i.e., ten linguistic rules for
each class). Inhomogeneous dis
cretization was used

8. Modeling with Linguistic Rules

We have already explained how linguistic rules can be used for pattern clas
sification problems. In this chapter, we discuss modeling problems using lin
guistic rules. Our task in this chapter is to extract linguistic rules (i.e., to
design a linguistic rule-based system) from numerical data to approximately
realize an unknown nonlinear function. First we describe a heuristic approach
to linguistic rule extraction from numerical data for modeling problems. Then
we explain a fuzzy reasoning method for calculating an output value for an
input vector using linguistic rules. In later chapters, we explain rule selection,
genetics-based machine learning, and learning of linguistic rules for modeling
problems.

8.1 Problem Description

Let us assume that we have m input-output pairs (Xp, yp),p = 1,2,.. . , m, as
training data where Xp = {xpi,Xp2^..., Xpn) is an n-dimensional input vector
and ijp is the corresponding output value. We also assume that linguistic
terms are given for describing the input and output variables. This means
that a fuzzy partition of the input-output space is given. Our task is to
design a linguistic rule-based system to approximately realize an unknown
n-input and single-output nonlinear function using the given training data
and the given linguistic terms. For simplicity of explanation, we assume that
the n-dimensional input space and the single-dimensional output space are
normalized into the n-dimensional unit hypercube [0,1]^ and the unit interval
[0,1], respectively. In Fig. 8.1, we show a simple example of our modeling
problem where 20 input-output pairs are given in a two-dimensional input-
output space [0,1] X [0,1]. Five linguistic terms (i.e., S: small, MS: medium
small, M: medium, ML: medium large, and L: large) are given for both the
input and output variables in Fig. 8.1.

The linguistic rules for approximately realizing an n-input and single-
output function are written in the following form:

Rule Rqi If xi is Aqi and . . . and Xn is Aqn then y is Bq, (8.1)

where Rq is the label of the q-th linguistic rule, x = {xi,... ,Xn) is an n-
dimensional input vector, Aqi is a linguistic term given for the i-th input

162 8. Modeling with Linguistic Rules

Fig. 8.1. A simple example of our
modeling problem where 20 input-
output pairs are given. The two-
dimensional input-output space is dis-
cretized into 25 fuzzy subspaces by
five linguistic terms for the input and
output variables

variable Xi (i.e., Aqi is an antecedent fuzzy set), y is an output variable, and
Bq is a linguistic term for the output variable (i.e., Bq is a consequent fuzzy
set). When K linguistic terms are given for each of the n input and single
output variables (e.g., K = 5 in Fig. 8.1), the total number of combinations
of antecedent and consequent fuzzy sets is K^'^-^ in (8.1). Our task in this
chapter is to generate a linguistic rule-based system, which is a subset of the
j{ri+i combinations of antecedent and consequent fuzzy sets. When we use
a grid-type fuzzy partition to generate a linguistic rule table, the number of
linguistic rules is K^ because a single linguistic rule is generated for each
combination of antecedent fuzzy sets (i.e., for each fuzzy subspace in the n-
dimensional input space). In Fig. 8.2, we show an example of a 5 x 5 fuzzy
rule table. This table consists of the following 25 linguistic rules:

If xi is small and X2 is small then y is small, (8-2)

If xi is small and X2 is medium small then y is medium small, (8.3)

If xi is large and X2 is large then y is small. (8.4)

Figure 8.3 shows the corresponding nonlinear function generated by the
fuzzy rule table in Fig. 8.2. In this chapter, we explain how linguistic rules
(e.g., Fig. 8.2) can be extracted from training data. We also explain how
nonlinear functions (e.g.. Fig. 8.3) can be depicted from linguistic rule-based
systems.

8.2 Linguistic Rule Extract ion for Modeling Problems

When the number of input variables is small (e.g., n = 2), we can use a
linguistic rule-based system in a tabular form as Fig. 8.2. In this case, the

8.2 Linguistic Rule Extraction for Modeling Problems 163

1.0

^2

0.0

S p M S p M p M S p S

Msi L I ML I L |MS

yj^//////////y^//////////^

Mi ML i ML i ML $M
%

msi L i ML I L iv
^ ^ I ^

S I MS
7//4f//////////yw/' y//Z/A

^ • • £ M S | S

0.0
XI

1.0

l ^x^^^>^ j>^^

CML.

CMS.

Fig . 8 .2 . An example of a 5 x 5 fuzzy
rule table

y 0.5

0.0
0.0

1.0 0.0

Fig. 8.3. The nonlinear function de
picted by the fuzzy rule table in Fig.
8.2. The calculation of the output
value for each input vector is ex
plained in Sect. 8.2.4

antecedent part of each linguistic rule is specified by the combination of
given linguistic terms. The number of linguistic rules is the same as the
number of combinations of linguistic terms for the n input variables in the
antecedent part. In this section, we explain a heuristic method for determining
the consequent part of each linguistic rule. Our heuristic method for modeling
problems is similar to the heuristic rule generation method in Chap. 2 for
pattern classification problems.

8.2.1 Linguistic Association Rules for Modeling Problems

The linguistic rule R^ in (8.1) can be viewed as a linguistic association rule
Aq ^ Bq where Aq = (Agi, . . . ,^^n)- While the consequent part is a class
label in the pattern classification problems in Chap. 2, 5^ is a linguistic term
in the modeling problems in this chapter. We extend the two measures (i.e.,
confidence and support) in data mining to the case of the linguistic association
rule Aq ^ Bq in the same manner as in Chap. 2 [57, 95].

164 8. Modeling with Linguistic Rules

Let us denote the given training data hj D: D = {(xi, ^ i) , . . . , {Xm^ym)}-
The cardinality of D is m (i.e., \D\ = m). Let D{Aq) be the fuzzy set of
compatible training data with the antecedent part Aq of the linguistic rule Rq.
Then the total compatibility grade with the antecedent part Aq is calculated
as

m

\D{Aq)\=J2^^A^P^- (^•^)
p=l

As in Chap. 2, the compatibility grade fiAq{xp) of Xp with Aq is defined
by the minimum operator or the product operator (see (2.3) and (2.4) of
Chap. 2). In this book, we use the product operator. In (8.5), |D(Ag)| is the
cardinality of the fuzzy set D{Aq).

Using the product operator, the compatibility grade fiR^{xp,yp) of the
input-output pair (xp^yp) with the linguistic rule Rq (i.e., with both the
antecedent part Aq and the consequent part Bq) is defined as

I^RMP^VP) = ^^Aq{xp) X fiB,{yp)' (8.6)

It is possible to use the minimum operator instead of the product operator in
(8.6). Let D{Aq) U D{Bq) be the fuzzy set of compatible training data with
both the antecedent part Aq and the consequent part Bq. Then the total
compatibility grade with the linguistic rule Rq (i.e., with both Aq and Bq)
is calculated as

m m

p=l p=l

As in Chap. 2 for pattern classification problems, the two measures (i.e.,
confidence and support) in the field of data mining [4, 5] can be defined for
the linguistic association rule Aq ̂ Bq [57, 95]. The confidence c{Aq ^ Bq)
of the linguistic association rule Aq =^ Bq is defined as

m

l n / 4 M , r . / D M ^ f^A.iXp) XfiB,{yp)
. . ^ O X \D{Aq)UD{Bq)\ _p=l

' ^ '^' Ef^A,{Xp)
p=l

The confidence c{Aq ^ Bq) is the ratio of compatible training data with both
the antecedent part Aq and the consequent part Bq to compatible training
data with the antecedent part Aq. The confidence c{Aq ^ Bq) measures the
validity of the linguistic association rule Aq ̂ Bq.

On the other hand, the support s{Aq ^ Bq) of the linguistic association
rule A^ =^ Bq is defined as

m

s{Ag ^ Bg) - r^i — . (8.9)

8.2 Linguistic Rule Extraction for Modeling Problems 165

The support s{Aq ^ Bq) is the ratio of compatible training data with both
the antecedent part Aq and the consequent part Bq to the given training
data. The support s{Aq ^ Bq) measures the coverage of training data by
the linguistic association rule Aq ^ Bq.

8.2.2 Specification of the Consequent Part

As in the heuristic rule generation method in Chap. 2 for pattern classifica
tion problems, we choose the consequent linguistic term with the maximum
confidence for the antecedent part Aq as

c{Aq => Bq) = m3.x{c{Aq ^ Bk)\k = l,2,...,K}, (8.10)

where Bk, k = 1,2^... ,K, are linguistic terms given for the output variable.
In Chap. 2, the consequent part of each linguistic rule was specified as the
consequent class with the maximum confidence.

We illustrate the heuristic rule generation method in (8.10) using the
simple numerical example in Fig. 8.1. The location of each input-output pair
in Fig. 8.1 is shown in Table 8.1. Let us consider the specification of the
consequent part of the linguistic rule "If x is small then y is Bq^\ As shown
in Fig. 8.1, five linguistic terms are given for the output variable. Thus Bq
is one of those five linguistic terms (i.e., S: small, MS: medium small, M:
medium, ML: medium large, and L: large). The membership function of each
linguistic term is as follows:

fis{y) =max{0, 1 - 4

fJ^Msiy) = max{0, 1 - 4

fiM{y) =max{0, 1 - 4

fJ^Miiy) = max{0, 1 - 4

fiiiy) = max{0, 1 - 4

The five linguistic terms for t
membership functions as (8.11)-(8.15).

•\y\},

•10.25-2/1},
•10.5-2/1},
•10.75-2/1},

•\i-y\}-

he input variable x in Fig

(8.11)

(8.12)

(8.13)

(8.14)

(8.15)

. 8 . 1 have the same

Table 8.1.

P 1
Xp 0.01
yp 0.77

p 11

Xp 0.59
yp 0.74

Input-output

2

0.05
0.63

12

0.64
0.77

3

0.12
0.59

13

0.71
0.73

pairs in

4

0.14
0.49

14

0.74
0.55

Fig. 8.1

5

0.22
0.44

15

0.79
0.65

6

0.26
0.48

16

0.82
0.54

7

0.29
0.56

17

0.85
0.35

8

0.39
0.53

18

0.89
0.44

9

0.43
0.63

19

0.91
0.28

10

0.53
0.64

20

0.98
0.21

To determine the consequent part Bq of the linguistic rule "If x is small
then y is Bq^ using (8.10), the confidence for each of the five consequent
linguistic terms is calculated as

166 8. Modeling with Linguistic Rules

c{small ^ small) = 0.000, (8.16)

c{small ^ medium sm^all) = 0.016, (8.17)

c{sm.all ^ m^edium) — 0.433, (8.18)

c{sm,all =^ m^edium. large) = 0.523, (8.19)

c{small ^ large) = 0.027. (8.20)

Since medium large has the maximum confidence among the five consequent
linguistic terms, the consequent part is specified as medium large for the
antecedent linguistic term small. In the same manner, we can generate the
following five linguistic rules for the simple numerical example in Fig. 8.1:

If X is small then y is medium large^ (8.21)

If X is medium small then y is medium^ (8.22)

If X is medium then y is medium large, (8.23)

If X is medium large then y is medium large, (8.24)

If X is large then y is medium small. (8.25)

If we try to intuitively generate linguistic rules from the given training
data in Fig. 8.1, we are likely to generate the same five linguistic rules. That
is, our heuristic rule generation method determines the consequent part of
each linguistic rule in an intuitively acceptable manner.

To further illustrate our heuristic rule generation method, we applied it
to 441 input-output pairs obtained from a nonlinear function in Fig. 8.4. The
441 input-output pairs correspond to the 441 grid points of the uniformly
divided 21 x 21 grid of the two-dimensional input space [0,1] x [0,1]. Our
task is to approximately represent the nonlinear function in Fig. 8.4 using
linguistic rules. When five linguistic terms are given for each of the two input
variables as in Fig. 8.2, 25 linguistic rules are to be generated from the 441
input-output pairs. The generated linguistic rules using five linguistic terms
for the output variable are shown in Fig. 8.5. From the comparison between
Fig. 8.4 and Fig. 8.5, we can see that intuitively acceptable linguistic rules
were generated by the heuristic rule generation method.

8.2.3 Other Approaches to Linguistic Rule Generations

Since Mamdani's pioneering work [124], fuzzy rule-based systems have been
mainly applied to control problems [118, 119, 156]. In early studies, fuzzy
rules were obtained from human experts in the form of linguistic knowledge.
Many studies have been proposed for automatically generating fuzzy rules
from numerical data. Takagi & Sugeno [162] proposed the well-known Takagi-
Sugeno model where a linear function instead of a linguistic term was used
in the consequent part as follows:

8.2 Linguistic Rule Extraction for Modeling Problems 167

y 0.5

0.0
0.0

1.0 0.0

Fig. 8.4. Nonlinear function from
which 441 input-output pairs are ob
tained for generating a linguistic rule-
based system

1.0

•̂ 2

0.0

Ms! s I s I s ps

MSp S I S I S ^ .

i I I I
Y////i^/////////A^^

u4. ^ i ^ i ^ h
Y////^/////////A^^

|MSp S
y/4f//////////y^ %JiJ^%%;i^gj%^;^^% W///A

M l S i S I S | S

0.0
XI

1.0

|jX^^^X?i>^><|
Fig. 8.5. Linguistic rule-based system
generated to approximately realize the
nonlinear function in Fig. 8.4

R(^'. If x\ is Aq\ and . . . and Xn is Aq

then yq(x) = a^o + CLqi^i + . . . + a^ (8.26)

where aqi is an adjustable parameter (real number) . They proposed a fuzzy
modeling method for determining the membership function of each an
tecedent fuzzy set and the consequent linear function of each fuzzy rule.

For determining fuzzy rules of the form in (8.1), clustering techniques have
been used in many fuzzy modeling methods [150, 151, 159]. In clustering-
based methods, antecedent and consequent fuzzy sets are usually generated
by the projection of each cluster (i.e., multi-dimensional fuzzy set) onto input
and output variables. Tha t is, usually clustering-based methods (as well as
the Takagi-Sugeno model) do not assume tha t linguistic terms are given for
input and output variables.

Wang & Mendel [176] proposed a rule generation method tha t used given
linguistic terms. In their method, it is assumed tha t the input -ou tput space
has already been divided into fuzzy subspaces by given linguistic terms as
in Fig. 8.1. First the linguistic rule with the highest compatibility grade for

168 8. Modeling with Linguistic Rules

each input-output pair is identified. That is, m linguistic rules are generated
from the given m input-output pairs. Of course, the same linguistic rule may
be generated from multiple input-output pairs. The compatibility grade of
each linguistic rule with the corresponding input-output pair (i.e., the input-
output pair that generates the linguistic rule) is used as the rule weight of
the linguistic rule. When there exist inconsistent linguistic rules (i.e., linguis
tic rules with the same antecedent part but different consequent linguistic
terms), the linguistic rule with the largest rule weight is chosen to resolve
the inconsistency. Rule weights are used only for resolving the inconsistency
in the rule generation method of Wang & Mendel (i.e., rule weights are not
used in fuzzy reasoning).

We illustrate the rule generation method of Wang & Mendel using the
simple numerical example in Fig. 8.1. From each input-output pair in Fig.
8.1 (i.e., in Table 8.1), the following 20 linguistic rules are generated:

1st pair: If x is small then y is medium large (weight: 0.883), (8.27)

2nd pair: If x is small then y is medium large (weight: 0.416), (8.28)

3rd pair: If x is small then y is medium (weight: 0.333), (8.29)

4th pair: If x is medium small then y is medium (weight: 0.538), (8.30)

20th pair: If x is large then y is medium small (weight: 0.773). (8.31)

From the first three input-output pairs, linguistic rules with the same an
tecedent part "If X is small" are generated. These linguistic rules are incon
sistent. Thus the linguistic rule with the largest weight (i.e., (8.27) generated
from the first input-output pair) is chosen. In this manner, we have five
linguistic rules for the simple numerical example in Fig. 8.1 using the rule
generation method of Wang & Mendel. The generated five linguistic rules are
the same as those by our heuristic rule generation method in the previous
subsection.

The difference between our heuristic method and the rule generation
method of Wang & Mendel can be clearly illustrated using Fig. 8.6. In this fig
ure, a single input-output pair (0.49,0.24) is added to the 20 input-output
pairs in Fig. 8.1. Our heuristic method generates the same five linguistic
rules for Fig. 8.6 as those for Fig. 8.1. On the other hand, the rule generation
method of Wang & Mendel generates the linguistic rule "If x is medium then
y is medium smaW for Fig. 8.6 while it generates "If x is medium then y
is medium large^^ for Fig. 8.1. This is because the consequent linguistic term
of each linguistic rule is determined by a single input-output pair with the
highest compatibility grade in the rule generation method of Wang & Mendel.
On the other hand, it is determined by all the compatible input-output pairs
with the antecedent part in our heuristic method.

8.2 Linguistic Rule Extraction for Modeling Problems 169

K^><SxS><l
0.0 1.0

Fig. 8.6. A slightly modified example.
A single input-output pair (0.49, 0.24)
is added to the 20 input-output pairs
in Fier. 8.1

8.2.4 Estimation of Output Values by Linguistic Rules

Fuzzy reasoning for modeling problems in this chapter is to infer an output
value for an input vector using linguistic rules. Many fuzzy reasoning meth
ods have been proposed in the literature. They can be classified into two
categories: FATI (first aggregate then infer) and FITA (first infer then aggre
gate). In fuzzy reasoning methods in the FATI category, first an aggregated
fuzzy set on the output variable is constructed by combining the consequent
part of each linguistic rule. Then a final inferred output value is calculated
from the aggregated fuzzy set constructed in the first phase. On the other
hand, first a real number is calculated for the consequent part of each lin
guistic rule in fuzzy reasoning methods in the FITA category. Then a final
inferred output value is calculated from the real number for each linguistic
rule obtained in the first phase. Fuzzy reasoning methods in the FATI cate
gory such as the center-of-gravity method were mainly used in early studies
on fuzzy rule-based systems. Recently fuzzy reasoning methods in the FITA
category have been frequently used. In this chapter, we use a simple fuzzy
reasoning method in the FITA category. See Emami et al. [44] and Cordon
et al. [25] for details of these two categories of fuzzy reasoning methods.

8.2.5 Standard Fuzzy Reasoning

Let 5 be a set of linguistic rules of the form (8.1). The rule set S can be
viewed as a linguistic rule-based system. The estimated output value y{x)
is calculated from the linguistic rule-based system S for an input vector
X = {xi,X2,...,Xn) as

E fJ^A,{x) 'bq

y{x) =
RqES

ROES

(8.32)

170 8. Modeling with Linguistic Rules

where /x^g (x) is the compatibility grade of the input vector x with the an
tecedent part Aq, and bq is a representative real number for the consequent
linguistic term Bq of the g'-th linguistic rule Rq. We use the output value
with the maximum membership of the triangular membership function as
bq for Bq (e.g., 0 for small, 0.25 for medium small, 0.5 for medium, 0.75 for
medium large, and 1 for large in the case of the five linguistic terms on the
unit interval [0,1]).

The fuzzy reasoning method in (8.32) can be viewed as a simplified version
of the Takagi-Sugeno model with the following fuzzy reasoning method:

E I^A,{x)-yq{x)

RgES

where yq{x) is the consequent linear function of the q-th fuzzy rule Rq in
(8.26).

In Fig. 8.7, we show the estimated output by the five linguistic rules in
(8.21)-(8.25) for the simple numerical example in Fig. 8.1. The bold lines in
Fig. 8.7 are the input-output relation obtained from the five linguistic rules
using the fuzzy reasoning method in (8.32).

For the five linguistic terms for the input variable in Fig. 8.7, the following
relation holds for any input value x in the domain interval [0,1]:

fis{x) + /iMs(^) + I~IM{X) + /XML(^) + f^hix) = 1. (8.34)

Thus (8.32) can be rewritten for the five linguistic rules in (8.21)-(8.25) as

y{x) = 0.75 X fisix) + 0.5 x fiMs{x)

+0.75 X /jiuix) + 0.75 X /iML(^) + 0.25 x /XL(^). (8.35)

Using the membership function of each linguistic term, this formulation is
further rewritten as

f 0.75 • 4(0.25 -x)-\- 0.5 • 4x, if 0 < x < 0.25,
0.5 • 4(0.5 - x) + 0.75 • 4(x - 0.25), if 0.25 <x< 0.5, . .
0.75 • 4(0.75 -x)+ 0.75 • 4{x - 0.5), if 0.5 < a: < 0.75, ^ ^ ^

[0.75 • 4(1 - x) + 0.25 • 4:{x - 0.75), if 0.75 <x<\.

The bold lines in Fig. 8.7 correspond to this piece-wise linear function. As
shown in Fig. 8.7 and (8.36), we can see that the input-output relation real
ized from the five linguistic rules is the linear interpolation of the represen
tative real numbers for the consequent linguistic terms of adjacent linguistic
rules.

Another example of a fuzzy reasoning result is shown in Fig. 8.8. This
figure shows the estimated input-output relation from the 25 linguistic rules
in Fig. 8.5. From the comparison between Fig. 8.5 and Fig. 8.8, we can see
that the fuzzy reasoning result in Fig. %.% is intuitively acceptable.

y^x)

8.2 Linguistic Rule Extraction for Modeling Problems 171

y 0.5

0.0
0.0

Fig. 8.7. The estimated input-output
relation from the five linguistic rules
with no rule weights

1.0 0.0

Fig. 8.8. The input-output relation
obtained from the 25 linguistic rules
in Fig. 8.5

While the rule weight of each linguistic rule has a large effect on the
location of the classification boundary in the application to pattern classifi
cation problems in Chap. 2, the rule weight has only a limited effect on the
input-output relation realized by the fuzzy reasoning method. Let us consider
linguistic rules with rule weights of the following form:

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn

then y is Bq with CFq^ (8.37)

where CFq is the rule weight of the linguistic rule Rq. In this case, the fuzzy
reasoning method in (8.32) is modified as

y{x)

J2 CFq • /iA, (X) • bq
Rqes

E CFq^f,A,{x) '
Roes

(8.38)

172 8. Modeling with Linguistic Rules

As shown in Fig. 8.7, some input values (vectors) are compatible with only a
single linguistic rule. For each of these input values (vectors), the estimated
output value is calculated as the representative real number of the consequent
linguistic term of the single compatible rule. Thus the rule weight of each
linguistic rule has no effect on the calculation of the estimated output values
for those input values (vectors).

The bold lines in Fig. 8.7 (i.e., the input-output relation obtained from
the five linguistic rules) are determined by the following five points:

y{x) = 0.75 for x = 0, (8.39)

y{x) = 0.5 for x = 0.25, (8.40)

y{x) = 0.75 for x = 0.5, (8.41)

y{x) = 0.75 for x = 0.75, (8.42)

y{x) = 0.25 for x = 1. (8.43)

Each of these five points is calculated from the corresponding single compat
ible linguistic rule. Thus the locations of these five points are independent
of the rule weight of each linguistic rule. The rule weight has an effect only
on the interpolation between these five points. For example, if we assign a
rule weight 0.2 to the second linguistic rule "If x is medium small then y is
medium^^ and 1.0 to all the other four linguistic rules, the estimated input-
output relation from the five linguistic rules is calculated as shown in Fig.
8.9. See [129] for further discussions on the effect of rule weights on fuzzy
reasoning results in modeling problems.

Fig. 8.9. The estimated input-output
relation from the five linguistic rules
with rule weights. The rule weight of
the second linguistic rule is 0.2 and
those of the other linguistic rules are
1.0

8.2.6 Limitations and Extensions

As shown in Fig. 8.7 and Fig. 8.8, fuzzy reasoning results (i.e., input-output
relations realized by linguistic rules) are piece-wise linear lines (planes, hyper-

8.2 Linguistic Rule Extraction for Modeling Problems 173

planes). Since we use given linguistic terms for input and output variables,
it is difficult to perform the fine tuning of linguistic rule-based systems. The
adjustment of linguistic rule-based systems in a tabular form is performed by
replacing the consequent linguistic term of each linguistic rule with another
one. Since we use only a small number of linguistic terms for the output vari
able, the adjustment of linguistic rules by replacing their consequent linguistic
terms with other ones is very coarse. In Fig. 8.7, we observe large errors be
tween the given input-output pairs and the estimated input-output relation
for medium large x. One may think that these errors would be decreased by
using a different consequent linguistic term for the fourth linguistic rule. In
Fig. 8.10, we show the estimated input-output relation when we use medium
instead of medium large in the consequent part of the fourth linguistic rule.
As shown in this figure, the accuracy of the five linguistic rules deteriorates
from Fig. 8.7 to Fig. 8.10 on replacing the consequent linguistic term. While
the desired input-output relation is somewhere between Fig. 8.7 and Fig.
8.10, we cannot realize such an input-output relation using the given five
linguistic terms. This discussion shows that the adjustment of the member
ship function of each linguistic term is necessary to improve the accuracy of
linguistic rule-based systems. Many learning methods based on neural net
works and genetic algorithms have been proposed to improve the accuracy of
fuzzy rule-based systems [119]. In Chap. 10, we will show how the accuracy
of linguistic rule-based systems can be improved by using an adjustable real
number in the consequent part of each linguistic rule instead of a linguistic
term.

Fig. 8.10. The estimated input-
output relation from the five linguis
tic rules after replacing the consequent
linguistic term of the fourth linguistic
rule (i.e., medium large) with medium

Another limitation of linguistic rule-based systems in a tabular form is the
scalability to high-dimensional problems with many input variables. As we
have already explained for pattern classification problems, the number of lin
guistic rules in a rule table is K^ when we have K linguistic terms for each of

174 8. Modeling with Linguistic Rules

the n input variables. This means that the number of linguistic rules increases
exponentially as the number of input variables increases. Thus we cannot use
Hnguistic rule-based systems in a tabular form for high-dimensional prob
lems. As in the case of pattern classification problems, we use short linguistic
rules with many don^t care conditions to handle high-dimensional modeling
problems. In Chap. 9, we will explain genetic algorithm-based rule selection
and GBML for modeling problems.

8.2.7 Non-Standard Fuzzy Reasoning Based on the Specificity of
Each Linguistic Rule

When we simultaneously use general linguistic rules and specific linguistic
rules in a single linguistic rule-based system, counter-intuitive fuzzy reason
ing results are often obtained [61, 92]. Let us consider the following three
linguistic rules for a modeling problem with two input variables xi and X2:

Ri: If xi is small and X2 is small then y is medium,

i?2* If xi is small then y is medium small,

R3: y is small.

(8.44)

(8.45)

(8.46)

The first linguistic rule has two antecedent conditions while the second rule
has only a single antecedent condition. The third rule has no antecedent
condition (i.e., has two don't care conditions). The estimated input-output
function is depicted in Fig. 8.1L This figure is obtained from the three lin
guistic rules using the standard fuzzy reasoning method in (8.32).

y 0.5

0.0
0.0

1.0 0.0

Fig. 8.11. The input-output rela
tion obtained from the three linguistic
rules using the standard fuzzy reason
ing method in (8.32)

The point is whether the nonlinear function in Fig. 8.11 coincides with our
intuition or not (i.e., whether an intuitively constructed nonlinear function
from the three linguistic rules is similar to Fig. 8.11 or not). Let us consider
the estimated output value for a small xi and a small X2. For example, all

8.2 Linguistic Rule Extraction for Modeling Problems 175

the three linguistic rules are fully compatible with the input vector x =
(0,0). Thus the estimated output value for this input vector is calculated
as y{x) = 0.25 as the interpolation of the three linguistic terms medium,
medium small, and small It seems that the estimated output value 0.25 does
not coincide with our intuition. When the three linguistic rules in (8.44)-
(8.46) are given, usually we intuitively think that the output value would
be medium for a small xi and a small x^- This is because we usually use
the most specific rule (i.e., (8.44)) when multiple rules are applicable to a
current situation. On the other hand, fuzzy reasoning is usually based on the
interpolation of compatible rules. As a result, fuzzy reasoning results are often
counter-intuitive when general rules (i.e., short rules with many don^t care
conditions) and specific rules (long rules with many antecedent conditions)
are simultaneously used in a single linguistic rule-based system.

One might think that the three linguistic rules in (8.44)-(8.46) should
not be used in a single rule-based system because they are inconsistent with
each other. Several approaches have been proposed for finding inconsistent
rules in fuzzy rule-based systems [11, 125, 172, 186]. In those studies, it was
implicitly assumed that the inconsistency in fuzzy rule-based systems should
be removed or resolved. Recently the importance of outliers and exception
rules was recognized in some studies on data mining [113, 114, 160]. This
is because interesting rules are likely to be generated from exceptions in
many cases. The handling of inconsistent rules has also been studied in the
field of default reasoning [9, 49, 141, 144, 147]. Many studies on default
reasoning espouse some form of preference for more specific information [9].
When two inconsistent rules are applicable to a current situation, the more
specific rule is usually used in the reasoning for this situation. In a data
mining algorithm for finding exception rules [160], more specific rules (i.e.,
exception rules) are implicitly assumed to have priority over general rules.
Default reasoning has also been discussed in the framework of possibility
theory (for details, see Dubois et al. [31, 32], Dubois & Prade [34, 35, 37],
and Yager [182, 183, 184, 185]).

The preference for more specific information is frequently explained in the
literature using the following simple example. Let us consider the reasoning
about a penguin x using the following three rules:

Rule Rr. Birds fiy, (8.47)

Rule R\\\ Penguins are birds, (8.48)

Rule R\\\\ Penguins do not fly. (8.49)

If we use the first two rules Ri and R\\, we conclude that x flies. We usually
conclude, however, that x does not fly using the third rule R\\\. This is
because the third rule R\\\ is more specific than the first rule Ri.

In order to implement the preference for more specific information, the
following non-standard fuzzy reasoning method was proposed in [61, 92] based
on the specificity of each linguistic rule:

176 8. Modeling with Linguistic Rules

RqES

This formulation is the same as the standard fuzzy reasoning method in (8.32)
when w{Rq,x) = 1. In this formulation, w{Rq^x) is a rule weight determined
by the relative specificity of the linguistic rule Rq. When Rq includes more
specific rules, the rule weight w{Rq,x) of Rq for x is discounted in the fuzzy
reasoning method in (8.50) as follows:

w{R„x)= n il-i,Adx)). (8.51)
Rj^CRq

kjtq

On the other hand, w{Rq,x) is defined as w{Rq^x) — 1 when no rule is
included in Rq. This means that the non-standard fuzzy reasoning method in
(8.50) is the same as the standard fuzzy reasoning method (8.32) when they
are used for linguistic rule-based systems in the standard tabular form (e.g.,
Fig. 8.5). This is because all linguistic rules in the standard tabular form
have the same specificity (i.e., no inclusion relations hold among linguistic
rules). Different results are obtained from the two fuzzy reasoning methods
only when the inclusion relation holds among linguistic rules. Note that the
inclusion relation between linguistic rules is defined by their antecedent parts
as

RkCRq^ Aki C A,i for i = 1,2,.. . , n. (8.52)

Let us illustrate the non-standard fuzzy reasoning method using the three
linguistic rules in (8.44)-(8.46). Among the three linguistic rules, the inclusion
relation Ri C R2 C R^ holds. Thus w(Rq^x) is calculated as

w{Ri,x)=:l, (8.53)

w{R2,x) = 1 - fiAiix)

= l - / i s (x i) . / i s (a :2) , (8.54)

w{Rs,x) = (1 - flAiix)) X {1- flA2{x))

= {I- fis(xi) - /xs(^2)) X (1 - /is(^i)). (8.55)

From (8.55), we can see that the rule weight of the most general rule (i.e.,
Rs: y is small) is discounted when the input vector is compatible with the
other rules. The weight of R2 is discounted in (8.54) when the input vector is
compatible with the most specific rule Ri. In Fig. 8.12, we show the input-
output relation obtained from the three linguistic rules in (8.44)-(8.46) using
the non-standard fuzzy reasoning method. We can see from Fig. 8.12 that
the non-standard fuzzy reasoning method successfully implements the pref
erence for more specific information through the weighting mechanism using
w{Rq,x). For example, the estimated output value y{x) for the input vector
X = (0,0) is 0.5 in Fig. 8.12 with the non-standard fuzzy reasoning method

8.3 Modeling of Nonlinear Fuzzy Functions 177

while it was 0.25 in Fig. 8.11 with the standard fuzzy reasoning method.
This is because the estimated output value (i.e., y{x) = 0.5) is calculated
only from the most specific linguistic rule Ri in the case of the non-standard
fuzzy reasoning method in Fig. 8.12 while it was calculated as the interpola
tion of all three linguistic rules compatible with the input vector x = (0,0)
in the case of the standard fuzzy reasoning method in Fig. 8.11.

From the comparison between Fig. 8.12 and Fig. 8.8, we can see that very
similar results are obtained from the three linguistic rules in (8.44)-(8.46)
and from the 25 linguistic rules in Fig. 8.5. That is, the three linguistic rules
with the non-standard fuzzy reasoning method played a very similar role as
the 25 linguistic rules in Fig. 8.5 with the standard fuzzy reasoning method.
The non-standard fuzzy reasoning method in (8.50) is an attempt to handle
linguistic rule-based systems that consist of general and specific linguistic
rules. The formulation in (8.50) may need modifications and/or extensions
in future studies.

y 0.5

1.0 0.0

Fig. 8.12. The input-output rela
tion obtained from the three linguis
tic rules using the non-standard fuzzy
reasoning method in (8.50)

8.3 Modeling of Nonlinear Fuzzy Functions

In the previous section, we discussed the estimation of the output value y{x)
from a linguistic rule-based system for an input vector x. That is, the linguis
tic rule-based system was used as an approximator of a nonlinear function. In
this section, we briefly discuss the modeling of fuzzy functions using linguistic
rule-based systems. This topic will be further discussed in Chap. 14 where
fuzzified neural networks are used to approximately realize fuzzy functions.

A function with non-fuzzy input and fuzzy output values is referred to
as a fuzzy function in this section. That is, a fuzzy function is a mapping
from a non-fuzzy input vector x = (xi,X2,. . . ^Xn) to a fuzzy number y{x).

178 8. Modeling with Linguistic Rules

The fuzzy reasoning method in (8.32) is modified to approximately realize a
nonlinear fuzzy function as

Kx) =
E fJ^A,{x)-Bq

Rqes

Rges

(8.56)

In this formulation, the calculation of y{x) is performed using fuzzy arith
metic [106]. We will explain fuzzy arithmetic in detail in Chap. 11 in the con
text of fuzzification of neural networks. Since the approximation of non-fuzzy
functions has been the main research topic in the field of fuzzy rule-based
systems, there are not many studies on the approximation of fuzzy functions
[78].

Using the five linguistic rules in Fig. 8.7 (i.e., in (8.21)-(8.25)), we illus
trate the difference between (8.32) for calculating the estimated real number
and (8.56) for calculating the estimated fuzzy number. When the input value
X — 0.125 is presented to the linguistic rule-based system with the five lin
guistic rules, the estimated real number y{x) is calculated from (8.32) as

y{^)
/j.s{x) '0.75 + fiMsjx) -0.5

fisix) + fJ^Msix)
0.5 • 0.75-h 0.5-0.5

0.5-h 0.5
= 0.625. (8.57)

On the other hand, the estimated fuzzy number y{x) is calculated for the
input value x = 0.125 from (8.56) as

jj^six) ' medium large + /iMs(^) * m^edium.
y{x) =

lis{x) +/iMs(^)
= 0.5 • m^edium. large + 0.5 • medium. (8.58)

Intuitively, y{x) is a fuzzy number between medium, large and medium. More
specifically, y{x) is the weighted average of medium large and medium. Using
fuzzy arithmetic, the membership function y{x) in (8.58) is calculated as
shown in Fig. 8.13.

Fig. 8.13. Membership func
tion of y(x) in (8.58)

8.3 Modeling of Nonlinear Fuzzy Functions 179

A fuzzy rule-based system can also be used as an approximator of a fuzzy
mapping from a fuzzy input vector to a fuzzy output value. When a fuzzy
input vector x = (^i,:r2,. . . ,^n) is presented to a fuzzy rule-based system,
(8.56) is further extended to calculate the estimated fuzzy output y{x) as

where fiAq (^) is the compatibility grade of the fuzzy input vector x with
the antecedent part Aq of the linguistic rule Rq. Using fuzzy arithmetic, the
estimated fuzzy output y{x) is calculated from (8.59) in the same manner as
illustrated in (8.58). The problem in (8.59) is the definition of the compati
bility grade JIA^ (^) of the fuzzy input vector x with the antecedent part Aq.
There may be many alternative definitions. One definition is based on the
possibility measure [36] as follows:

IJiAq{x) =: P0SS(ylg i ,Xi) X . . . X V0Ss{Aqr^,Xn), (8.60)

where

Vos^{Aqi,Xi) •= max{/x^^.(a:) A/i^.(x)|a; G 3?}. (8.61)

In (8.61), A is the minimum operator (i.e., a Ab = min{a, 6}). Of course,
we can use the minimum operator instead of the product operator in (8.60).
Other measures may be used in (8.60) instead of the possibility measure.
The approximation of fuzzy functions and fuzzy mappings will be further
discussed in Chap. 14.

9. Design of Compact Linguistic Models

As in the case of pattern classification problems, genetic algorithm-based
rule selection and genetics-based machine learning can be applied to the
design of linguistic rule-based systems for modeling problems [85, 90]. These
two schemes for pattern classification problems are slightly modified in this
chapter to apply them to modeling problems. As in the previous chapter, we
use linguistic rules of the following form to approximately realize an n-input
and single-output nonlinear function:

Rule Rq-. If xi is Aqi and . . . and x^ is Aqn then y is Bq. (9.1)

Our task in this chapter is to design a linguistic rule-based system from
the given m input-output pairs {Xp,yp)^ p = 1,2, . . . ,m, where Xp =
{xpi, Xp2,..., Xpn) is an n-dimensional input vector and yp is the correspond
ing output value. For simplicity of explanation, we assume that the input-
output space has already been normalized into the unit hypercube [0,1]"^"^ .̂
We also assume that K linguistic terms are given for each of the n input and
single output variables.

9.1 Single-Objective and Multi-Objective Formulations

9.1.1 Three Objectives in the Design of Linguistic Models

In Chap. 6, we explained the three-objective optimization problem in the
design of linguistic rule-based systems for pattern classification problems.
The three objectives were the classification accuracy, the number of linguistic
rules, and the total rule length of linguistic rules. The first objective should
be modified for modeling problems while the other two objectives can be used
with no modifications.

Let A? be a set of linguistic rules of the form (9.1). In addition to the given
K linguistic terms, we use don^t care as an antecedent fuzzy set (i.e., Aqi in
(9.1)). This special fuzzy set is not used as a consequent fuzzy set (i.e., Bq
in (9.1)) because linguistic rules with don't care in the consequent part are
meaningless. Thus the total number of possible linguistic rules is K{K + 1)'^.
The rule set 5 is a subset of these linguistic rules. The rule set S can be
viewed as a fuzzy rule-based system for our modeling problem.

182 9. Design of Compact Linguistic Models

We measure the accuracy of the rule set S by the total squared error as
m

fi{S) = ^{y{x,)-y,r/2, (9.2)
p=i

where y{xp) is the estimated output value for the input vector Xp =
(xpi, Xp2,..., Xpn) by the rule set 5. We can use any fuzzy reasoning method
for the calculation ofy{x). In this chapter, we use the non-standard fuzzy rea
soning method in (8.50) of the previous chapter. Note that the non-standard
fuzzy reasoning method is the same as the standard fuzzy reasoning method
in (8.32) when no inclusion relation holds among linguistic rules in the rule
set S.

Since S is an arbitrary subset of the K{K -\-l)'^ linguistic rules, there are
many cases where the entire input space is not covered by the rule set S.
This means that the estimated output value y{x) is not always calculated for
an arbitrary input vector x = (ari,X2,... ,Xn)- When there is no compatible
linguistic rule in S for the input vector Xp, the corresponding estimated
output value y{xp) cannot be calculated from S. In this case, the squared
error for the input-output pair {xp,yp) cannot be calculated in (9.2), either.
Thus we use a pre-specified penalty value as the squared error when y{xp)
cannot be calculated:

{y{xp)-ypf=S\ (9.3)

where S is a. pre-specified positive constant. In our computer simulations in
this chapter, we specified the penalty value as {y{xp) — ypY = 1 because the
output value yp is normalized into a real number in the unit interval [0,1].

As in Chap. 6 for pattern classification problems, the second objective
/2(5) and the third objective fsiS) are the number of linguistic rules in S
(i.e., \S\) and the total rule length of linguistic rules in 5, respectively.

Using the three objectives, the design of linguistic rule-based systems for
modeling problems is formulated as

Minimize /i(5'), minimize /2(5'), and minimize fsiS). (9.4)

Note that all three objectives are to be minimized. In Chap. 6, the first ob
jective was to be maximized because it was the number of correctly classified
training patterns by the rule set S. In this chapter, / i (5) should be minimized
because it is the total squared error.

9.1.2 Handling as a Single-Objective Optimization Problem

When the weight for each objective is available from a human user, the three
objectives in (9.4) can be combined into a single scalar objective function as

Minimize f{S) = wi • / i (5) -f W2 • f2{S) + ws • fsiS), (9.5)

where wi, W2^ and ws are non-negative real numbers. The three weights
wi, W2, and ws should be specified according to the user's preference with

9.1 Single-Objective and Multi-Objective Formulations 183

respect to the three objectives. We assume that the weight values are given
by the human user. The minimization problem in (9.5) can be treated in
the framework of single-objective optimization. Thus standard optimization
techniques are applicable to the design of linguistic rule-based systems. This
is an advantage of the single-objective formulation in (9.5) over the multi-
objective formulation in (9.4).

The main drawback of the single-objective formulation is related to the
specification of the weight values with respect to the three objectives. It is not
easy for the human user to appropriately specify the weight values according
to their preference with respect to the three objectives. Moreover, the final
solution (i.e., the obtained rule set) strongly depends on the specification of
the weight values. This dependency is illustrated in Fig. 9.1. For simplicity
of explanation, the three-dimensional objective space is represented as a two-
dimensional objective space in Fig. 9.1 where the ellipsoidal region shows all
subsets (i.e., all rule sets) of the linguistic rules. Figure 9.1 shows the relation
between the search direction and the obtained rule set. The search direction
is specified by the three weights wi, W2, and ws. When the weight wi with
respect to the total squared error is much larger than the other two weights
W2 and ws, a complicated rule set with high accuracy will be obtained (e.g.,
the rule set Sa will be obtained from the search direction Wa in Fig. 9.1).
In this case, the obtained rule set may consist of a large number of long
linguistic rules. On the other hand, when the two weights W2 and ws with
respect to the complexity of rule sets are much larger than the other weight
wi for the total squared error, a simple rule set with low accuracy may be
obtained (e.g., the rule set Sb will be obtained from the search direction
Wb). In this case, the obtained rule set may consist of a small number of
short linguistic rules. When the three weights are of the same magnitude, a
compromise solution may be obtained (e.g., the rule set Sc will be obtained
from the search direction Wc). From these discussions, we can see that the
obtained rule set from the single-objective formulation strongly depends on
the specification of the three weight values. In real-world applications, the
single-objective optimization problem in (9.5) will be solved several times
using diflFerent weight vectors to find a number of alternative rule sets.

9.1.3 Handling as a Three-Objective Optimization Problem

As in Chap. 6, we can use multi-objective optimization algorithms to find
non-dominated rule sets with respect to the three objectives in (9.4). Let us
briefly review the concept of non-dominated rule sets for the three-objective
optimization problem in (9.4). A rule set SB is said to dominate another rule
set SA (i-e., SB is better than SA) if all the following inequalities hold:

fliSA)>hiSB), / 2 (5 A) > / 2 (5 B) , /3(5^) > / 3 (5 B) , (9.6)

and at least one of the following inequalities holds:

184 9. Design of Compact Linguistic Models

fiiS), MS)

X
CD

I
o
U

^ / i (^

Error

Fig. 9 .1 . Relation between the
search direction and the ob
tained rule set in the multi
dimensional objective space.
The bold curve shows the
Pareto front of the multi-
objective optimization problem

h{SA)>h{SB), f2iSA)>f2{SB), fsiSA) > fsiSe). (9.7)

The first condition (i.e., all three inequalities in (9.6)) means tha t no ob
jective of SB is worse than SA (i-e., SB is not worse than SA)- The second
condition (i.e., one of the three inequalities in (9.7)) means tha t at least one
objective of SB is bet ter than SA- When a rule set S is not dominated by any
other rule set, 5 is said to be a Pareto-optimal solution of the three-objective
optimization problem in (9.4). In Fig. 9.1, Pareto-optimal solutions are rule
sets on the bold curve. The above conditions in (9.6)-(9.7) are slightly dif
ferent from Chap. 6. This is because the first objective is to be minimized in
this chapter while it was to be maximized in Chap. 6.

When the search space is not large, it may be easy to find all the Pareto-
optimal solutions of the three-objective optimization problem in (9.4). On
the other hand, when the search space is huge, it is impractical to t ry to find
t rue Pareto-optimal solutions. In this case, multi-objective optimization al
gorithms try to find near-optimal solutions. Non-dominated solutions among
examined ones are presented to the human user as search results.

In this chapter, we use the multi-objective genetic algorithm (MOGA) in
Sect. 6.2 after modifying the definition of the fitness function. For the three-
objective optimization problem in (9.4), the fitness value of each rule set S
is defined as

fitnessiS) = -wi • A (5) - W2 • f2{S) - ws • MS), (9.8)

where wi, W2, and w^ are weights satisfying the following conditions:

Wi,W2,W3 > 0, (9.9)

wi + W2 -\- w^ = 1. (9.10)

Since all three objectives are to be minimized, a negative sign is added to
each weight in the fitness function in (9.8). The fitness function is supposed

9.2 Multi-Objective Rule Selection 185

to be maximized. The other parts of the MOGA in Sect. 6.2 are used for
modeling problems with no modifications.

9.2 Multi-Objective Rule Selection

As we have already explained in Chaps. 4 and 6 for pattern classification
problems, genetic algorithm-based rule selection consists of two phases: can
didate rule generation and rule selection. In the first phase, a large number of
candidate rules are generated. When too many candidate rules are generated,
prescreening is used to decrease the number of candidate rules. In the second
phase, a small number of linguistic rules are selected from a large number
of candidate rules to design a linguistic rule-based system. In the frame
work of single-objective optimization, a single rule set is obtained. On the
other hand, multiple rule sets are obtained as non-dominated solutions of the
three-objective optimization problem in (9.4) when we used the MOGA. In
this section, we explain a genetic algorithm-based rule selection method that
is designed to find multiple non-dominated rule sets of the three-objective
optimization problem in (9.4).

9.2.1 Candidate Rule Generation

As we have explained, the total number of combinations of antecedent and
consequent fuzzy sets is K{K -\-1)^ when we use K linguistic terms and don^t
care for each of the n input variables and K linguistic terms for the single
output variable. Thus the total number of linguistic rules is also K{K +
1)'^. For low-dimensional modeling problems, we can use all the K{K + 1)^
linguistic rules as candidate rules in rule selection.

Let us consider a two-input and single-output nonlinear function in Fig.
9.2. This nonlinear function was depicted using nine linguistic rules in Fig.
9.3. When the three linguistic terms (i.e., S: small, M: medium, and L: large)
are given for the two input and single output variables as in Fig. 9.3, the
total number of combinations of antecedent and consequent fuzzy sets is
3 X (3 + 1)^ = 4 8 . Thus the total number of possible linguistic rules is also
48. Genetic algorithms can easily handle such a small number of linguistic
rules as candidate rules.

9.2.2 Candidate Rule Prescreening

Candidate rule prescreening is a procedure for decreasing the number of can
didate rules in a heuristic manner. As we have explained in Chap. 4, candidate
rule prescreening significantly improves the efficiency of genetic algorithm-
based rule selection. A simple prescreening procedure for modeling problems
is to remove linguistic rules with no compatible training data. That is, this

186 9. Design of Compact Linguistic Models

y 0.5

0.0
0.0

1.0 0.0

1.0

^2

y///////////y^//////////^^^^

M i M s

y//////////A^/////////^^^^

M

Fig. 9.2. A nonlinear function used
as a numerical example. This nonlin
ear function was depicted from the
nine linguistic rules in Fig. 9.3

Fig. 9.3. Nine linguistic rules used for
depicting the nonlinear function in Fig.
9.2

prescreening procedure removes linguistic rules that satisfy the following re
lation:

mA^p^Vp) =^^ p = l , 2 , . . . , m . (9.11)

The compatibility grade of each input-output pair {xp, yp) with the linguistic
rule Rq is defined by its antecedent part Aq and the consequent part Bq as

mMp^Vp) = ^^AMP) ^ ^B.ivp)' (9.12)

Let us assume that 441 input-output pairs are generated as training data
from the nonlinear function in Fig. 9.2 using the uniformly divided 21x21 grid
of the two-dimensional input space [0,1] x [0,1]. While we can generate the
48 candidate rules by considering all the possible combinations of antecedent
and consequent fuzzy sets, some rules have no compatible training data. For
example, we can see from Fig. 9.2 that the following linguistic rule has no
compatible training data:

If â i is large and X2 is large then y is large. (9.13)

9.2 Multi-Objective Rule Selection 187

Among the possible 48 candidate rules, 8 rules have no compatible training
data. Thus the removal of these rules is likely to have no bad effect on the
performance of the rule sets finally obtained by genetic algorithm-based rule
selection.

For high-dimensional problems, we cannot examine all the K{K + 1)"̂
combinations of antecedent and consequent fuzzy sets for generating candi
date rules. This is because the number of these combinations {i.e.^ K{K+1)'^)
increases exponentially as the number of input variables (i.e., n) increases.
As in Chap. 4, we can use the rule length as a heuristic prescreening criterion
for decreasing the number of examined linguistic rules. The total number of
possible linguistic rules of length L for an n-input and single-output nonlinear
function is K-JICL 'K^ where K is the number of consequent linguistic terms,
^CL is the number of combinations of choosing L out of n input variables,
and K^ is the number of combinations of K antecedent linguistic terms for
L input variables. The number of short linguistic rules is not large even when
the total number of linguistic rules is huge (i.e., K -UCL * K^ is not large for
a small L even when i^(iir -h 1)^ is huge).

The fuzzy versions of the two rule evaluation measures (i.e., confidence
and support) described in the previous chapter can be used for candidate rule
prescreening. As in Chap. 4 for pattern classification problems, we can find an
arbitrary number of candidate rules for modeling problems using a heuristic
prescreening criterion. First we generate linguistic rules of length L or less.
The confidence and the support are calculated for each of the generated lin
guistic rules. When L is too large, we are not likely to complete the generation
of linguistic rules within the available computation time. On the other hand,
when L is too small, we are not likely to generate a large number of good
linguistic rules. The value of L should be specified by taking into account
various factors such as the available computation time, the number of input
variables, the number of given input-output pairs, the number of linguistic
terms for input and output variables, etc. As in Chap. 4, the product of the
confidence and the support is used as a heuristic prescreening criterion for
choosing an arbitrary number of candidate rules from the generated linguistic
rules.

9.2.3 Three-Objective Genetic Algorithm for Rule Selection

Let N be the number of candidate rules. As in Chaps. 4 and 6, any subset S
of the N candidate rules can be represented by a binary string of length N
as

S = S1S2 • • • SN, (9.14)

where Sq = 1 and Sq = 0 represent the inclusion of the g-th candidate rule
Rq in S and the exclusion of Rq from 5, respectively.

First a pre-specified number (say iVpop) of binary strings of length Â
are randomly generated as an initial population. The three objectives of each

188 9. Design of Compact Linguistic Models

string S (i.e., rule set S) are evaluated. Copies of non-dominated rule sets are
stored as a secondary population separately from the current population. In
the application of genetic algorithm-based rule selection to pattern classifica
tion problems in Chap. 4, unnecessary rules were removed from each rule set
S. While only a single winner rule was used to classify each training pattern
in the case of pattern classification problems, all compatible rules are used
to calculate the estimated output value for each input vector in modeling
problems. If a linguistic rule in S has no compatible input vector, that rule
has no effect on the calculation of the estimated output for any input vector
in the training data. This means that the removal of such a linguistic rule
does not change the value of the first objective / i (5) . Thus we can remove
all linguistic rules that satisfy the following condition:

l2A,{xp)=0, p = l , 2 , . . . , m . (9.15)

The removal of these linguistic rules improves the second objective /2(5')
and the third objective fsiS). Usually linguistic rules satisfying (9.15) have
already been removed from candidate rules by a prescreening procedure. This
is because the prescreening criterion (9.11) always holds if (9.15) holds. Thus
we do not use the rule removal procedure based on (9.15) in the genetic
algorithm-based rule selection method for modeling problems.

For selecting a pair of parent strings from the current population, the
three weights in the fitness function (9.8) are randomly specified as

Wi = randorriiI{randorrii -f- random2 + randoms)^ i = 1, 2,3, (9.16)

where randorrii is a non-negative random real number. Using binary tour
nament selection with replacement, a pair of parent strings is selected from
the current population based on the fitness function (9.8) with the randomly
specified weight values in (9.16). When another pair of parent strings is se
lected from the current population, the three weights are randomly updated
by (9.16). That is, the selection of each pair of parent strings is governed
by a different weight vector. From each pair of parent strings, we gener
ate new strings by the uniform crossover and the biased mutation as in the
case of pattern classification problems in Chap. 4. By iteratively executing
the genetic operations (i.e., selection, crossover, and mutation), we generate
(^pop — ^eiite) i"ule sets. The secondary population of non-dominated rule
sets is updated using the newly generated rule sets. If a newly generated rule
set is not dominated by any other rule sets in the current and secondary pop
ulations, its copy is added to the secondary population and all the solutions
dominated by the added one are removed from the secondary population.
Finally a pre-specified number (say A êiite) of non-dominated rule sets are
randomly selected from the secondary population and their copies are added
to the newly generated (iVpop — ^eiite) rule sets to form the next population
of Â pop rule sets. In this manner, the next population is generated from cur
rent and secondary populations using the selection, crossover, mutation, and

9.2 Multi-Objective Rule Selection 189

elitism. The generation update is iterated until a pre-specified stopping con
dition is satisfied. At each generation, the secondary population is updated
to include all the non-dominated rule sets among the examined ones.

9.2 .4 S i m p l e N u m e r i c a l E x a m p l e

We applied the three-objective genetic algorithm for rule selection to the 441
inpu t -ou tpu t pairs generated from Fig. 9.2. As in Fig. 9.3, we used the three
linguistic terms (i.e., small, medium, and large) for each of the two input and
single output variables. The number of possible combinations of antecedent
and consequent fuzzy sets is 48. Since the number of possible combinations
is very small, we can use all the 48 linguistic rules as candidate rules. In
this case, each rule set is represented by a binary string of length 48. The
task of the three-objective genetic algorithm for rule selection is to find non-
dominated rule sets from the 48 candidate rules. Our computer simulation
was performed using the following parameter specifications:

Population size: iVpop = 50,
Number of elite solutions: A^eiite = 5,
Crossover probability: pc = 0.8,
Mutat ion probability: Pm(0 ^ 1) = 1/48,

P m (l - ^ 0) = 0.1,
Stopping condition: 1000 populations.

After 1000 iterations of the population update using the genetic opera
tions, five rule sets were obtained (i.e., these rule sets were included in the
secondary population after the 1000th generation). The obtained rule sets
are shown in Table 9.1.

Table 9.1. Non-dominated rule sets for the nonlinear function in Fig. 9.2

Rule set

Si
52
Ss
S4
55

Total squared

441
27.6
7.4
3.7
0.0

error Number of rules

0
1
2
3
4

Average rule length
-

0.0
0.5
1.0

1.25

The simplest rule set ^2 (excluding an empty set Si) in Table 9.1 includes
only a single linguistic rule of length 0. The linguistic rule is

Ri: y is medium. (9-17)

This is a very rough description of the nonlinear function in Fig. 9.2. The
second simplest rule set 53 includes the following linguistic rule in addition
to Ri in (9.17).

190 9. Design of Compact Linguistic Models

R2: If Xi is large then y is small (9.18)

In Fig. 9.4, we show the nonHnear function depicted from the rule set
53 — {Ri,R2} using the non-standard fuzzy reasoning method. From the
comparison between Fig. 9.4 and Fig. 9.2, we can see that the rule set S^ is
a rough approximation of the nonlinear function in Fig. 9.2. The accuracy
of approximation can be improved by increasing the number of linguistic
rules. For example, the rule set ^5 in Table 9.1 includes four linguistic rules,
which are shown in Fig. 9.5. The corresponding estimated nonlinear function
is shown in Fig. 9.6. From the comparison between Fig. 9.6 and Fig. 9.2, we
can see that the rule set ^5 with the four linguistic rules in Fig. 9.5 approxi
mates the nonlinear function in Fig. 9.2 very well (actually the total squared
error is zero as shown in Table 9.1). As we can see from Table 9.1, there exists
a tradeoff between the accuracy and the complexity of linguistic rule-based
systems.

y 0.5

Fig. 9.4. Estimated nonlinear func-
1-̂ -̂̂ tion from the obtained rule set ^3

In the above computer simulation, we used all the 48 linguistic rules as
candidate rules for rule selection. As we have already explained, eight linguis
tic rules have no compatible input-output pairs. Thus these linguistic rules
can be removed from candidate rules. We performed the same computer sim
ulation using the remaining 40 linguistic rules as candidate rules. Exactly the
same rule sets as Table 9.1 were obtained from this computer simulation.

9.3 Fuzzy Genetics-Based Machine Learning

In the application of linguistic rule-based systems to pattern classification
problems, it is easy to implement a Michigan-style genetics-based machine
learning (GBML) algorithm as shown in Chap. 5. This is because a single
winner rule is responsible for the classification of each training pattern. A

9.3 Fuzzy Genetics-Based Machine Learning 191

1.0

•̂ 2

0.0

M DC

DC

0.0
^1

1.0

Fig. 9.5. Obtained rule set S5 with four Unguistic rules in Table 9.1 for the non
linear function in Fig. 9.2

y

1.0 0.0

Fig. 9.6. Estimated nonlinear func
tion from the obtained rule set ^5 in
Fig. 9.5

reward or penalty will be given to the single winner rule depending on the
classification result (i.e., correct classification or misclassification). On the
other hand, the definition of a fitness function for each linguistic rule is not
easy in modeling problems because multiple linguistic rules are involved in
the calculation of the estimated output value for each input vector. Moreover,
the evaluation of the estimated output value is not easy, while the evalua
tion of the classification result is straightforward (i.e., correct classification or
misclassification). In this section, we implement a Pittsburgh-style GBML al
gorithm for the design of linguistic rule-based systems for modeling problems.
See [13] for recent developments of Michigan-style fuzzy GBML algorithms
(i.e., fuzzy classifier systems).

192 9. Design of Compact Linguistic Models

9.3.1 Coding of Rule Sets

For simplicity of explanation, let us assume that we have the three linguistic
terms (i.e., small, medium, and large) for each of the n input and single
output variables as in Fig. 9.3. In the same manner as in Chap. 5, we use the
following four symbols to denote the four antecedent fuzzy sets:

1: small,
2: medium,
3: large,
: don't care.

It should be noted that don't care is not used as a consequent fuzzy set (i.e.,
it is used only in the antecedent part). The total number of combinations
of antecedent and consequent fuzzy sets is (3 + l)'^ • 3. Each combination
corresponds to a single linguistic rule. In Pittsburgh-style fuzzy GBML al
gorithms, each linguistic rule Rq in (9.1) is coded as a substring of length
(n -h 1) using its antecedent and consequent fuzzy sets as AqiAq2 .. .AqnBq.
For example, a substring "1##232" denotes the following linguistic rule for
a modeling problem with five input variables:

Rule Ri: If xi is small and X4 is medium and X5 is large

then y is medium. (9.19)

Each rule set S including Â ruie hnguistic rules is represented by a con
catenated string of length (n -h 1) • iVruie and handled as an individual in
our Pittsburgh-style fuzzy GBML algorithm. For example, a rule set of the
following four linguistic rules for a modeling problem with five input vari
ables is represented by a concatenated string "1##232 2 2 # # # 1 # # # # 1 2
3 # # # 3 3 " of length 24:

Rule Ri: If xi is small and x^ is medium and x^ is large

then y is medium, (9.20)

Rule R2: If xi is medium and X2 is medium then y is small, (9.21)

Rule Rs: If x^ is small then y is medium, (9.22)

Rule R4: If xi is large and x^ is large then y is large. (9.23)

9.3.2 Three-Objective Fuzzy GBML Algorithm

In our three-objective fuzzy GBML algorithm for approximately realizing an
n-input and single-output function, each rule set including iV ûie Hnguistic
rules is represented by a string of length (n + 1) • iVruie- First we randomly
generate a pre-specified number (say A p̂op) of strings of length (n +1) • A r̂uie-
Then the three objectives of each string S (i.e., rule set S) are evaluated.
Copies of non-dominated rule sets are stored as a secondary population sep
arately from the current population.

9.3 Fuzzy Genetics-Based Machine Learning 193

The selection operation of parent strings is the same as the previous sec
tion. That is, the three weights in the fitness function (9.8) are randomly
specified for selecting a pair of parent strings as shown in (9.16). We use
binary tournament selection with replacement. When another pair of parent
strings is selected from the current population, the three weights are ran
domly updated by (9.16).

From each pair of parent strings, we generate new strings using crossover
and mutation. We use the one-point crossover operation with different
crossover points as in Chap. 5. This crossover operation is illustrated in Fig.
9.7 (also see Fig. 5.15).

R\\R2\R3\R4\R5\R6

RA\RB\RC\RD\RE\RP

^

Ri Ri iRA|i?B|i?c| or \RI>\RA\R5\R6\RD\R^\RF

Fig. 9.7. One-point crossover
operation with different
crossover points

Two mutation operations are applied to each of the generated new strings
by the crossover operation. One mutation operation randomly replaces an an
tecedent or consequent fuzzy set with another one. Note that don^t care is not
used as a consequent fuzzy set, though it is used as an antecedent fuzzy set.
This mutation operation is applied to each antecedent or consequent fuzzy set
with a pre-specified mutation probability. The other mutation operation is to
randomly remove linguistic rules from each rule set. This mutation operation
is applied to each linguistic rule with a pre-specified mutation probability.
These mutation operations can also be used in the fuzzy GBML algorithms
in Chaps. 5 and 6 for classification problems.

By iteratively executing the genetic operations (i.e., selection, crossover,
and mutation), we generate (-/Vpop — ^eiite) I'ule sets. The secondary popu
lation of non-dominated rule sets is updated using the newly generated rule
sets. Finally a pre-specified number (say A êiite) of non-dominated rule sets
are randomly selected from the secondary population and their copies are
added to the newly generated (A p̂op — ^eiite) rule sets to form the next pop
ulation of Â pop rule sets. In this manner, the next population is generated
from the current and secondary populations using selection, crossover, mu
tation, and elitism. The generation update is iterated until a pre-specified
stopping condition is satisfied. At each generation, the secondary population
is updated to include all the non-dominated rule sets among the examined
ones.

194 9. Design of Compact Linguistic Models

9.3.3 Simple Numerical Example

We applied the three-objective fuzzy GBML algorithm to the 441 input-
output pairs generated from Fig. 9.2 to design linguistic rule-based systems.
As in the previous computer simulation in Sect. 9.2.4, we used the three
linguistic terms (i.e., small, medium, and large) for each of the two input and
single output variables. Our computer simulation was performed using the
following parameter specifications:

Population size: 50,
Number of linguistic rules in each initial rule set: 10,
Number of elite solutions: 5,
Crossover probability: 0.8,
Mutation probability: 0.05 for replacement of each fuzzy set,

0.05 for removal of each linguistic rule,
Stopping condition: 1000 populations.

After 1000 iterations of the population update using the genetic opera
tions, five rule sets were obtained (i.e., these rule sets were included in the
secondary population after the 1000th generation). The obtained rule sets
are exactly the same as those in Table 9.1.

9.3.4 Some Heuristic Procedures

As we have already mentioned, the total number of possible linguistic rules
is K • {K + 1)'^ when K linguistic terms are given for each of the n input and
single output variables. Each substring of length (n + 1) corresponds to one
of the K • {K + 1)^ linguistic rules. Since each rule set S (i.e., each string S)
is a subset of the K - {K -h 1)^ linguistic rules, the size of the search space
is 2^ where N = K - (K -\-1)^. This means that the size of the search space
rapidly increases as the number of input variables increases. Thus the three-
objective fuzzy GBML algorithm in this section does not always work well
on high-dimensional problems while it worked well on the simple numerical
example in the previous computer simulation.

We explain two heuristic procedures [85] for improving the search ability
of the three-objective fuzzy GBML algorithm to find good rule sets for high-
dimensional modeling problems. Both heuristic procedures are applied to rule
sets generated by the genetic operations in each generation.

One is a heuristic replacement procedure of the consequent linguistic term
of each linguistic rule. Since the genetic operations do not take into account
the given input-output pairs, each linguistic rule does not always have an
appropriate consequent linguistic term. The heuristic replacement procedure
probabilistically replaces the consequent linguistic term of each linguistic rule
with a more appropriate one using the information about the given input-
output pairs. The replacement probability for each linguistic term from the
current one is defined using the confidence as

9.3 Fuzzy Genetics-Based Machine Learning 195

piB,) = ; ^ ^ - ^ ^ - ^ , (9.24)
E c(A, => Bk)

k=l

where K is the number of Hnguistic terms for the output variable. This pro
cedure is apphed to each Hnguistic rule with a pre-specified probability. In
the computer simulations in the next section, the application probability is
specified as 0.5.

Let us consider a linguistic rule of the form "If xi is small and X2 is small
then y is 5^" for the simple numerical example in Fig. 9.2 with the 441 input-
output pairs. The confidence of each linguistic rule with the antecedent part
{small^ small) is calculated as

c{{small^ small) => small) = 0.49, (9.25)

c{{sm.all, sm.all) => m,edium) — 0.51, (9.26)

c{{small, small) => large) = 0.00. (9.27)

Thus the consequent part of a linguistic rule of the form "If â i is small and
X2 is small then y is ^g" is replaced with small or medium when the heuristic
replacement procedure is applied to the linguistic rule. The replacement prob
abilities of small and medium are 0.49 and 0.51, respectively. That is, small
and medium are chosen as the consequent fuzzy set with the probabilities of
0.49 and 0.5, respectively.

The other heuristic procedure is to generate a linguistic rule from an
input-output pair with the maximum error. A similar idea was explained for
pattern classification problems in Chap. 5. In this procedure, first the squared
error for each input-output pair is calculated using each rule set in the current
population after the replacement procedure. Next an input-output pair with
the maximum error is identified for each rule set. Let {xp,yp) be the input-
output pair with the maximum error for the rule set S. Then a linguistic rule
is generated from this input-output pair. Its antecedent and consequent parts
are determined by the most compatible linguistic terms with the input and
output values (xp^yp). For example, if Xp — (0.12,0.48,0.97) and yp = 0.57,
then the following linguistic rule is generated:

If xi is small and x^ is medium and x^ is large

then y is medium.. (9.28)

Each antecedent linguistic term is replaced with don^t care using a pre-
specified probability. This probability is specified as 0.5 in the computer
simulations in the next section. The generated linguistic rule is added to
the rule set S. This procedure is applied to each rule set with a pre-specified
probability (0.1 in the computer simulations in the next section) after the
above-mentioned replacement procedure.

196 9. Design of Compact Linguistic Models

9.4 Comparison of Two Schemes

We compared the following four algorithms with each other through computer
simulations on numerical examples:

(1) The genetic algorithm-based rule selection method with no prescreening
procedure.

(2) The genetic algorithm-based rule selection method with a heuristic pre
screening procedure.

(3) The fuzzy GBML algorithm with no heuristic procedure.
(4) The fuzzy GBML algorithm with the two heuristic procedures in Sect.

9.3.4.

In the second algorithm, 100 candidate rules were selected using the product
of the confidence and the support as a heuristic prescreening criterion. When
the total number of candidate rules was not more than 100, all candidate
rules were used in rule selection.

Since the evaluation of simulation results by multi-objective optimization
methods is not easy, we used these four algorithms as single-objective opti
mization methods by specifying the three weights as wi = 100, tt;2 = 1, and
Ws = 1. That is, we used the following fitness function in the four algorithms:

fitnessiS) = -lOOhiS) - /2(5) - MS). (9.29)

As training data, we generated 441 input-output pairs {xpi,Xp2,yp)j
p = 1,2, . . . , 441 , from the nonlinear function in Fig. 9.8 using the uni
formly divided 21 x 21 grid of the input space [0,1] x [0,1]. That is,
Xpi = 0.00,0.05,..., 1.00, Xp2 = 0.00,0.05,..., 1.00, and the value of yp
was calculated from Fig. 9.8. For each of the two input and single output
variables, we used five linguistic terms (i.e., small, medium small, medium,
medium large, and large).

We also generated a test problem with three input variables by adding an
additional input variable Xs to the test problem with the two input variables.
The value of xs in each of the 441 input-output pairs {xpi,Xp2,Xps,yp), p =
1,2, . . . ,441, was randomly specified as a real number in the unit interval
[0,1]. In the same manner, we also generated test problems with four and
five input variables.

The length of bit strings in the genetic algorithm-based rule selection
(i.e., the first algorithm) becomes extremely long as the number of input
variables increases. This is because the number of candidate rules exponen
tially increases as the number of input variables increases. It is impractical to
directly apply the first algorithm to the problems with three and more input
variables. Thus, we modify the initialization process of the first algorithm.
We pre-specified the probability of Si = 1 for i = 1 , . . . , Â" in (9.14) as 0.1
in the case of the three and the four input variables and 0.001 in the case
of the five input variables. This modification reduces the CPU time of the

9.4 Comparison of Two Schemes 197

algorithm since the number of selected rules in the initial population does
not become large.

y 0.5

1.0 0.0 Fig. 9.8. A test problem

We applied each of the four algorithms to each of the four test problems
ten times. Average simulation results are summarized in Tables 9.2 - 9.5. In
these tables, each algorithm was implemented in the C language and exe
cuted on a PC with a Pentium IV 2.80 GHz processor. From the comparison
between Table 9.2 and Table 9.3, we can see that the prescreening proce
dure of candidate rules significantly decreased the CPU time of the genetic
algorithm-based rule selection method. As we have already demonstrated in
Chapt. 4 for pattern classification problems, candidate rule prescreening is
necessary in rule selection for handling high-dimensional problems. However,
the performance of the genetic algorithm-based rule selection method with
the prescreening procedure is significantly worse than that with no prescreen
ing procedure in some cases. This is because we cannot always successfully
select important linguistic rules as candidate rules for the genetic algorithm-
based rule selection method by the prescreening procedure. For example, in
the case of the four input variables, we did not select the following linguistic
rule as a candidate rule:

If xi is small and X2 is small then y is large. (9.30)

The product of the support and the confidence of this linguistic rule is 0.001.
This value is the 974th largest in the entire set of the generated linguistic
rules. It should be noted that 100 candidate rules were selected in the com
puter simulations for Table 9.3.

From the comparison between Table 9.4 and Table 9.5, we can see that
the search ability of the fuzzy GBML algorithm was improved by the two
heuristic procedures. We can also see from Tables 9.2-9.5 that better results
were obtained by the fuzzy GBML algorithm in Table 9.4 and Table 9.5 than
the rule selection method in Table 9.2 and Table 9.3.

198 9. Design of Compact Linguistic Models

Table 9.2. Average simulation results over ten trials for each test problem using the
genetic algorithm-based rule selection method with no candidate rule prescreening
procedure

Number of
input variables

2
3
4
5

Total squared
error

0.019
0.114
0.197
1.074

Number of
rules

3.4
4.5
4.1
7.8

Average rule
length

1.03
1.18
1.10
2.08

CPU time
(s)

250.2
1006.7

12103.1
35316.8

Table 9.3. Average simulation results over ten trials for each test problem using
the genetic algorithm-based rule selection method with the prescreening procedure

Number of
input variables

2
3
4
5

Total squared
error

0.0
0.833
0.870
8.596

Number of
rules

3.0
3.0
2.0
1.0

Average rule
length

1.00
1.00
0.50
0.00

CPU time
(s)

163.6
155.2
146.8
102.5

Table 9.4. Average simulation results over ten trials for each test problem using
the fuzzy GBML algorithm with no heuristic procedure

Number of
input variables

2
3
4
5

Total squared
error

0.0
0.072
0.051
0.190

Number of
rules

3.0
3.7
3.1
3.7

Average rule
length

1.00
1.11
0.97
1.16

CPU time
(s)

72.5
269.5
505.6
1243.6

Table 9.5. Average simulation results over ten trials for each test problem using
the fuzzy GBML algorithm with the two heuristic procedures

Number of
input variables

2
3
4
5

Total squared
error

0.0
0.0
0.0

0.026

Number
rules

3.0
3.0
3.2
3.2

of Average rule
length

1.00
1.00
1.13
1.13

CPU time
(s)

597.3
4829.2
8330.3
11010.0

10. Linguistic Rules with Consequent Real
Numbers

In this chapter, we use hnguistic rules of the following form to approximately
realize an n-input and single-output nonlinear function:

Rule Rq-. If xi is Aqi and . . . and Xn is Aqn then y is bq^ (10-1)

where bq is an adjustable real number. As in Chaps. 8 and 9, we assume
that m input-output pairs (xp^pp)^ p = 1,2, . . . ,m, are given as training
data in the normalized input-output space [0,1]^^+ .̂ We also assume that K
linguistic terms are given for each of the n input variables. The estimated
output value y{x) is calculated for the input vector x as

E fJ^A,{x) 'bq

RgSS

where 5 is a set of linguistic rules of the form (10.1). This formulation is the
same as the standard fuzzy reasoning method in Chap. 8. We can also use the
non-standard fuzzy reasoning method in Chap. 8 when S includes linguistic
rules with different specificity levels.

10.1 Consequent Real Numbers

Linguistic rules with consequent real numbers in (10.1) can be viewed as a
simplified version of the following rule in the Takagi-Sugeno model [162] with
a consequent linear function:

Rule Rq : If xi is Aqi and . . . and Xn is Aqn

then 2/g(x) = a^o + ctqiXi + . . . + aqnXn, (10.3)

where aqi is an adjustable real number. In Chaps. 8 and 9, we used the
representative real number bq in fuzzy reasoning for the consequent linguistic
term Bq of the linguistic rule Rq of the following form:

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn then y is Bq. (10.4)

This means that we actually used linguistic rules with consequent real num
bers of the form (10.1) in fuzzy reasoning while linguistic rules with con
sequent linguistic terms of the form (10.2) were used in rule generation in

200 10. Linguistic Rules with Consequent Real Numbers

Chaps. 8 and 9. Wang & Mendel [176] also used real numbers for consequent
Hnguistic terms in fuzzy reasoning while consequent linguistic terms played an
important role in their rule generation method. Fuzzy rules with consequent
real numbers have often been used in adjustable fuzzy rule-based systems as
in Ichihashi & Watanabe [60] and Nomura et al. [130]. This is because fuzzy
reasoning and rule adjustment are implemented more easily for consequent
real numbers than for consequent linguistic terms.

The accuracy of linguistic rule-based systems can be significantly im
proved by replacing a fixed consequent linguistic term with an adjustable
consequent real number. This is illustrated in Fig. 10.1 where the thick and
thin lines are fuzzy reasoning results using fixed consequent linguistic terms
and adjustable consequent real numbers, respectively. In Chaps. 8 and 9,
the consequent part of each linguistic rule was selected from a set of given
linguistic terms. Thus the adjustment of linguistic rule-based systems was
very coarse. As a result, good fitting to training data was not always ob
tained as shown by the thick lines in Fig. 10.1. On the other hand, adjustable
consequent real numbers can be tuned to improve the fitting of linguistic
rule-based systems to training data as shown by the thin lines in Fig. 10.1. In
this chapter, we show how the consequent real number of each linguistic rule
of the form (10.1) can be specified and adjusted from training data. We will
not discuss the adjustment of antecedent linguistic terms in this book. This
is because such adjustment often leads to difficulties in the interpretation
of adjusted linguistic rules. Various approaches have been proposed for ad
justing antecedent and consequent parts of fuzzy rules using neural learning
schemes and genetic algorithms (e.g., [53, 58, 99, 103, 151]).

Fig. 10.1. Comparison in fuzzy rea
soning results between fixed conse
quent linguistic terms (thick lines) and
adjustable consequent real numbers
(thin lines)

10.2 Local Learning of Consequent Real Numbers 201

10.2 Local Learning of Consequent Real Numbers

The basic idea of local learning is to adjust the consequent part of each linguis
tic rule using compatible training data independently of other linguistic rules.
On the other hand, global learning tries to minimize a global error measure
(e.g., total squared error) between the actual output value of each input-
output pair and the corresponding estimated output value by a linguistic
rule-based system. The difference between local learning and global learning
was demonstrated in Ishibuchi et al. [82], Nozaki et al. [133], and Yen & Wang
[187]. The main advantage of local learning over global learning is that the
learning of each linguistic rule can be performed independently of the learn
ing of other linguistic rules. Another advantage is that local learning usually
improves the interpret ability of each linguistic rule. Sometimes global learn
ing leads to meaningless results from the viewpoint of interpretability even
if a global error measure is very small. In this section, we explain two meth
ods based on the concept of local learning: a heuristic specification method
and an incremental learning algorithm of the consequent real number of each
linguistic rule.

10.2.1 Heuristic Specification Method

A heuristic method for specifying the consequent real number of each linguis
tic rule from compatible input-output pairs was proposed in Ishibuchi et al.
[82]. In their heuristic method, the consequent real number is specified as the
weighted average of output values of compatible input-output pairs as

m

K = ^ (10.5)
E fJ^A,{Xp)

p=l

where JJ^A (xp) is the compatibility grade of the input vector Xp with the
antecedent part Aq of the linguistic rule Rq in (10.1). This formulation can
be understood more easily by rewriting it as

m

bq = Y^WqiXp) 'Vp, (10.6)
p=l

where

- . (^p) = J!^'^""'^ . (10.7)
E f^A.iXp)

p=l

m

Y,w,{x^) = l. (10.8)
p=i

202 10. Linguistic Rules with Consequent Real Numbers

In (10.6), Wq{Xp) can be viewed as the weight of the p-th input-output pair
(Xp^ijp) in the specification of the consequent real number bq of the q-th
linguistic rule Rq. From (10.6)-(10.8), we can see that the consequent real
number bq is the weighted average of yp over compatible input-output pairs
where the weight of each output value yp is proportional to the compatibility
grade fiAqi^p) of the corresponding input vector Xp with the antecedent
part Aq of the linguistic rule Rq. It should be noted that the consequent real
number bq is specified independently of other linguistic rules.

Let us consider the following minimization problem:
m

Minimize z = "^i2A,{Xp) • fe - bqf/2. (10.9)
p=i

The objective function is a local error measure for the linguistic rule Rq, which
is defined independently of other linguistic rules. More specifically, it is the
weighted total squared error between the consequent real number bq and the
output value yp of each input-output pair (Xp,yp). The weight of each input-
output pair (xp^yp) is the compatibility grade fiAqiXp) of the input vector
Xp with the antecedent part Aq of the linguistic rule Rq. The optimal value
of bq of this minimization problem is obtained from the following equation:

This equation is rewritten from (10.9) as
m

Y,f^AAxp)'(yp-bq)=0. (10.11)
p=i

From this equation, we have the heuristic specification method of bq in (10.5).
That is, bq in (10.5) is the optimal solution of the minimization problem in
(10.9) of the weighted total squared error between the consequent real number
and the output value of each input-output pair.

We applied the heuristic specification method in (10.5) to the 20 input-
output pairs in Fig. 10.1 (i.e., in Table 8.1). The consequent real number of
each linguistic rule was specified as follows:

If X is small then y is 0.640, (10.12)

If X is medium small then y is 0.522, (10.13)

If X is medium then y is 0.652, (10.14)

If X is medium large then y is 0.573, (10.15)

If X is large then y is 0.343. (10.16)

The fuzzy reasoning result by these five linguistic rules is shown in Fig. 10.2.
The result is not good from the viewpoint of the fitting of the estimated
output values to the given input-output pairs. This is because the heuristic
specification method (i.e., local learning) does not try to minimize the total

10.2 Local Learning of Consequent Real Numbers 203

squared error between the estimated output values and the given input-
output pairs.

Fig. 10.2. Fuzzy reasoning result using the five
linguistic rules obtained by the heuristic specifi
cation method of consequent real numbers

As shown in Nozaki et al. [133], the fitting of linguistic rule-based systems
to training data can be improved by generalizing the heuristic specification
method in (10.5) as

p=i
m
E[MA,(X,)F

p=l

(10.17)

When the value of ^ is very small (e.g., P — 0.01), the weights of all compati
ble input-output pairs are close to 1 (i.e., [//^^(^p)]^ — 1 \i[lA^^p^p) > 0). In
this case, the value oihq in (10.17) is almost the same as the simple average
of y^ over compatible input-output pairs. On the other hand, when the value
of /? is very large (e.g., /3 = 100), the weights of almost all input-output pairs
become very small. In this case, the value oihq in (10.17) is mainly calcu
lated from only a few input-output pairs with large compatibility grades. In
Fig. 10.3, simulation results for ^ = 0.1 and ^ = 10 are shown. From this
figure, we can see that the fitting of linguistic rule-based systems to training
data was improved by using a large value of ^. The idea of introducing ^ to
modify the weight of each input-output pair as in (10.17) may be applied to
the heuristic rule generation method in Chap. 8.

10.2.2 Incremental Learning Algorithm

The heuristic specification method in (10.5) can be implemented as an incre
mental learning algorithm for handling a dynamical situation where a target
nonlinear function gradually changes over time. Let (xt^yt) be the input-
output pair obtained at time t (t = 1,2,...). In this case, the consequent real
number bq is updated as

204 10. Linguistic Rules with Consequent Real Numbers

Fig. 10.3. Fuzzy reasoning results by
the generalized heuristic specification
method

LNCW {1 - a ' fiAAxt)) h^^^ -^ a ' IIAAXI) ' yt, (10.18)

where h^^^ is the value of the consequent real number hq after the update
using the input-output pair (xt^yt), ^^^^ is the value of bq before the update,
and a is a learning rate. We can rewrite (10.18) as

V = (l - A) - ^ (t - i) + A - 2 / t , (10.19)

where bqt is the value of bq after the update using the ^-th input-output pair
{xt.yt) and

pt = a'fiA,{xt)' (10-20)

From (10.19) and (10.20), we can see that the incremental learning algorithm
is a kind of weighted exponential smoothing of compatible input-output pairs.

When the ^-th input-output pair (xt^yt) is presented to the linguistic rule-
based system, all compatible linguistic rules are adjusted by the update rule
in (10.18). The amount of modification of the consequent real number of each
linguistic rule is proportional to the compatibility grade of the input vector
with the antecedent part. When the input vector Xt has a large compatibility
grade with the antecedent part Aq of the q-th linguistic rule Rq, the amount
of modification of the consequent real number bq is large. On the other hand,
when the input vector Xt is not compatible with Aq of Rq (i.e., when the
compatibility grade is zero), the consequent real number bq is not modified.

The heuristic specification method in (10.5) corresponds to a special case
of the incremental learning algorithm. Let us consider the case where the
value of a is specified in (10.18) as

a=- ^ . (10.21)
E f^A,{Xp)

p=i

In this case, /3t in (10.20) is

^AAxt)
A = (10.22)

^Xp)

10.3 Global Learning 205

Thus we can solve (10.19) as

bat =
p=i

E fJ^A,{Xp)
p=l

(10.23)

This equation is the same as the heuristic specification method in (10.5). We
can easily see that (10.23) is obtained from (10.19) and (10.22) by iteratively
calculating bqt from the case of ^ = 1.

In Fig. 10.4, we show simulation results using the incremental learning
algorithm for the five linguistic rules in (10.12)-(10.16). First we specified
the initial value of each consequent real number as 0.5. The straight line
y = 0.5 in Fig. 10.4 corresponds to the initial situation. Then we updated
each consequent real number by the incremental learning algorithm using the
20 input-output pairs. The learning rate a was specified as a = 0.9. In the
execution of the incremental learning algorithm, we presented each of the
20 input-output pairs to the linguistic rule-based system three times (i.e.,
three epochs). In each epoch, the 20 input-output pairs were presented in
a random order. The fuzzy reasoning result after each epoch is shown as a
piece-wise linear curve in Fig. 10.4.

After three epochs

After two epochs

After a single epoch Fig. 10.4. Simulation results
by the incremental learning al
gorithm based on the concept
of local learning

10.3 Global Learning

In global learning, the total squared error is usually used as a global error
measure to be minimized as

Minimize z - ^(y(a?p) - 2/p)^/2, (10.24)

where y{Xp) is the estimated output value for the input vector x^ of the
input-output pair (xp^yp). The objective function in (10.24) is the same as

206 10. Linguistic Rules with Consequent Real Numbers

the first objective / i (5) in the three-objective optimization problem discussed
in Chap. 9.

10.3.1 Incremental Learning Algorithm

Ichihashi & Watanabe [60] proposed the following incremental learning algo
rithm of the consequent real number bq of each linguistic rule Rq in (10.1):

Sk
^ N e w ^ ^ 0 1 d _ ^ . ^ ^ (10.25)

where

zt^{y{xt)-yt)V2. (10.26)

Using (10.2) for y{xt) in (10.26), we can rewrite (10.25) as

hT^ = &r - «• ^ \ L ^ • ivi^t) - yt)^ (10-27)
Roes

where 5 is a rule set (i.e., linguistic rule-based system).
When the t-th input-output pair (xt^yt) is presented to the linguistic rule-

based system 5, all compatible linguistic rules are adjusted by the update
rule in (10.27). As in the incremental learning algorithm in (10.18) based on
the concept of local learning, the amount of modification in (10.27) for the
consequent real number bq of the q-th linguistic rule Rq is proportional to
the compatibility grade fiAqixt) of the input vector Xt with the antecedent
part Aq. When the input vector Xt is not compatible with Aq of Rq (i.e.,
when the compatibility grade is zero), the consequent real number bq is not
modified. This is because linguistic rules that are not compatible with the
input vector Xt have no effects on the calculation of the estimated output
value y{xt). That is, the consequent real numbers of those linguistic rules
have no effects on the squared error zt in (10.26) to be minimized by the
incremental learning algorithm.

The steepest descent learning scheme in (10.25) can also be used for the
learning of antecedent linguistic terms. Actually many learning algorithms of
fuzzy rule-based systems have been proposed in the framework of steepest
descent learning. The incremental learning algorithm in (10.27) is the simplest
one among those studies.

In Fig. 10.5, we show simulation results using the incremental learning
algorithm in (10.27) for the five linguistic rules in (10.12)-(10.16). As in the
computer simulation using local learning in Fig. 10.4 of the previous section,
first we specified the initial value of each consequent real number as 0.5.
The straight line i/ == 0.5 in Fig. 10.5 corresponds to the initial situation.
Then we updated each consequent real number by the incremental learning
algorithm in (10.27) using the 20 input-output pairs. The learning rate a was
specified as a = 0.1. In the execution of the incremental learning algorithm,

10.3 Global Learning 207

we presented each of the 20 input-output pairs in a random order to the
linguistic rule-based system 100 times (i.e., 100 epochs). The fuzzy reasoning
results after a single, ten, and 100 epochs are shown as piece-wise linear
curves in Fig. 10.5.

1̂ ^ After a single epoch

1^ After 10 epochs

[^ After 100 epochs

1.0

Fig. 10.5. Simulation results
by the incremental learning al
gorithm based on the concept
of global learning

The heuristic specification method in the previous section can be used for
specifying the initial value of each consequent real number, which is to be
further adjusted by the global learning scheme. The heuristic specification
of initial values usually improves the learning speed and sometimes improves
the generalization ability of adjusted linguistic rule-based systems. The effect
of the heuristic specification of initial values on the learning of linguistic rule-
based systems was examined in [82, 133].

10.3.2 Comparison Between Two Learning Schemes

Local learning minimizes the diflFerence between the consequent real number
and the actual output value of each input-output pair while global learning
minimizes the diflference between the estimated output value and the actual
output value. That is, local learning does not try to minimize the approx
imation error. This often results in large approximation errors of linguistic
rule-based systems obtained by local learning as we have already shown in
Fig. 10.2 and Fig. 10.4. On the other hand, global learning always tries to
minimize the approximation error. Thus better fitting to training data will
always be obtained from global learning than local learning.

As pointed out by Yen & Wang [187], one diflaculty of global learning is
the interpretability of each linguistic rule. They pointed out this diflftculty
for the Takagi-Sugeno model with consequent linear functions. More specif
ically, they demonstrated that the fitting of each consequent linear function
to training data is not always good even when the total squared error (i.e.,
global error measure) is very small. This difficulty of global learning exists not
only in the Takagi-Sugeno model but also in linguistic rule-based systems.

For simplicity of explanation, let us assume that we have only two input-
output pairs (0.45,0.45) and (0.55,0.55) in the two-dimensional input-output

208 10. Linguistic Rules with Consequent Real Numbers

space [0,1] X [0,1]. We also assume that two linguistic terms small and large
are given to describe the input variable x as shown in Fig. 10.6. In this case,
we have the following two linguistic rules:

Ri: If X is small then y is bi^ (10.28)

R2: If X is large then 1/ is &2- (10.29)

> X Fig. 10.6. Two linguistic terms small
1.0 and large

Since the line y — x has no approximation errors for the two input-
output pairs (0.45,0.45) and (0.55,0.55), the optimal linguistic rules in global
learning are as follows:

Ri: If X is small then y is 0, (10.30)

R2: If X is large then y is 1. (10.31)

The fuzzy reasoning result by these two linguistic rules corresponds to the
line y = X d,s shown in Fig. 10.7. On the other hand, the following two
linguistic rules are obtained from the heuristic specification method based on
the concept of local learning in (10.5):

Ri'.lix is small then y is 0.495, (10.32)

R2\ If X is large then y is 0.505. (10.33)

The fuzzy reasoning result by these two linguistic rules is shown in Fig. 10.8.
The diff'erence between global learning and local learning is clearly shown in
Fig. 10.7 and Fig. 10.8.

10.4 Effect of the Use of Consequent Real Numbers

In this section, we discuss the effect of using real numbers instead of linguistic
terms in the consequent part of linguistic rules.

10.4.1 Resolution of Adjustment

As we have already explained, we used the same fuzzy reasoning method in
(10.2) for linguistic rules with consequent linguistic terms and for those with
consequent real numbers. The value of hq in the fuzzy reasoning method is

10.4 Effect of the Use of Consequent Real Numbers 209

Fig. 10.7. Illustration of global learning. The
line shows the fuzzy reasoning result by the two
linguistic rules in (10.30) and (10.31)

Fig. 10.8. Illustration of local learning. The line
shows the fuzzy reasoning result by the two lin
guistic rules in (10.32) and (10.33)

discrete in the case of consequent linguistic terms while it is continuous in
the case of consequent real numbers. When we use the five linguistic terms
for the output variable as in Fig. 10.1, the value of bq is one of the following
five real numbers: 0, 0.25, 0.5, 0.75, 1. Thus the fine tuning of the estimated
value y{x) is impossible. For example, the value of y{x) may be increased
by replacing the consequent linguistic term medium of a linguistic rule with
medium large. By this replacement, the value of bq of the adjusted linguistic
rule is increased from 0.5 to 0.75. It is impossible to increase the value of
bq to a real number between 0.5 and 0.75 (e.g., 0.6) when we use the five
linguistic terms for the output variable as in Fig. 10.1. When we use a coarser
fuzzy partition for the output variable, the adjustment of linguistic rules also
becomes coarser. For example, when we use the three linguistic terms small,
medium, and large, the possible values of bq are 0, 0.5, and 1. It is impossible
to use other values for bq in the fuzzy reasoning method in (10.2). On the
other hand, when we use a finer fuzzy partition for the output variable, the
adjustment resolution of linguistic rules also becomes finer. For example, if
we use a homogeneous fuzzy partition into eleven linguistic terms for the
output variable, the possible values of bq are 0,0.1,0.2,. . . , 1. On the other
hand, we can use any value for bq in the case of consequent real numbers.

210 10. Linguistic Rules with Consequent Real Numbers

Thus the use of consequent real numbers corresponds to the use of an infinite
number of consequent linguistic terms.

10.4.2 Simulation Results

To examine the approximation ability of linguistic rule-based systems with
consequent linguistic terms, we applied the genetic algorithm-based rule se
lection method in Chap. 9 to the gas furnace data of Box and Jenkins [15].
This data set has been frequently used to evaluate the approximation ability
of fuzzy rule-based systems in the literature. Reported results in the liter
ature are shown in Table 10.1 where the MSE (mean squared error) is the
following global error measure:

^ m

MSE = - Y^ivi^p) - ypf' (10-34)

The modeling task is to identify the following nonlinear function using the
given training data:

y{t) = f{u{t)Mt - 1) , . . . , 2/(̂ - 1), 2/(t - 2) , . . .) , (10.35)

where u{t) is the gas flow rate at the t-th. time step, and y{t) is the CO2
concentration at the t-th time step.

Table 10.1. Reported results on training data of the gas furnace data of Box and
Jenkins in the literature. Methods are sorted in descending order of MSE

Fuzzy models Number of inputs Number of rules MSE
Tong (1980) [166]
Xu & Lu (1987) [180]
Pedrycz (1984) [136]
Yoshinari et al. (1993) [188]
Sugeno & Yasukawa (1993) [159]
Emami et al. (1998) [42]
Lin & Cunnigham (1995) [120]
Sugeno & Tanaka (1991) [158]
Wang & Langari (1995) [173]
Kim et al. (1997) [109]
Kim et al. (1998) [111]

In our computer simulation, we used only two input variables u{t — ^) and
y{t — l) which were often selected for the gas furnace data set in the literature.
All input and output values in the gas furnace data set were normalized into
real numbers in the unit interval [0,1]. For each of the two input and single
output variables, we used the five linguistic terms as in Fig. 10.1. The genetic
algorithm-based rule selection method with the standard fuzzy reasoning in
(10.2) found a rule set with five linguistic rules in Table 10.2. The MSE by

2
2
2
3
3
3
5
6
6
6
6

19
25
81
6
6
6
4
2
2
2
2

0.469
0.328
0.320
0.299
0.190
0.158
0.071
0.068
0.066
0.055
0.048

10.5 Twin-Table Approach 211

this rule set was 0.419. This MSE of 0.419 by the five linguistic rules with
the two input variables is good if compared with the reported results in the
1980s in Table 10.1. It is, however, inferior to recently developed methods
in Table 10.1. Good results in Table 10.1 were obtained using the Takagi-
Sugeno model. Thus each fuzzy rule is not always interpret able. For example,
Kim et al. [I l l] found two fuzzy rules with very good fitting to training da ta
(i.e., the MSE was 0.048). The obtained fuzzy rules in Kim et al. [I l l] have
the following consequent linear functions:

2/1 (t) = 3.350750 + 0.067303 • u{t) - 0.155765 • u{t - 1)

-0 .159554 . u{t - 2) + 2.028533 • y{t - 1)

-1 .523993 • y{t - 2) -f 0.433772 • y(t - 3), (10.36)

y^(t) = 11.122767 - 0.398395 • u{t) + 1.317115 • u{t - 1)

-1 .545791 • u{t - 2) + 1.061814 • y{t - 1)

-0 .152195 • y{t - 2) - 0.119401 • y{t - 3). (10.37)

It is not easy to intuitively understand the meaning of fuzzy rules with these
consequent linear functions. On the other hand, the interpretation of the five
linguistic rules in Table 10.2 is very easy.

Table 10.2. Five linguistic rules selected by the genetic algorithm-based rule se
lection method. Linguistic rules are sorted according to their consequent linguistic
terms. In this table, "-" denotes don^t care

Rule
Antecedent Consequent

u{t - 4) y{t - 1) y{t)

1 - small small
2 medium, large - medium small
3 medium medium medium
4 - medium large medium large
5

To improve the fitting ability of our five linguistic rules in Table 10.2,
we replaced their consequent linguistic terms with the corresponding real
numbers (e.g., 0.25 for medium smalt). Then we adjusted the consequent real
numbers using the steepest descent learning in (10.27) with a — 0.01. After
100 epochs, the MSE decreased from 0.419 to 0.356. This result shows tha t
the fitting ability of linguistic rules can be improved by using adjustable
consequent real numbers instead of fixed consequent linguistic terms.

10.5 Twin-Table Approach

In this section, we show tha t a linguistic rule table with consequent real
numbers can be equivalently represented by two rule tables with consequent

212 10. Linguistic Rules with Consequent Real Numbers

linguistic terms. This idea was proposed in Nozaki et al. [133]. The same idea
was used in Cordon & Herrera [23].

10.5.1 Basic Idea

As we have already explained, the approximation ability of linguistic rules
with consequent linguistic terms is inferior to those with consequent real
numbers. This is because the resolution of adjustment is very coarse in the
case of consequent linguistic terms. Let us consider the case where we have
five consequent linguistic terms in Fig. 10.9. In this case, linguistic rules with
consequent linguistic terms are the same as those with only five discrete
consequent values: 0, 0.25, 0.5, 0.75, and 1.0. Thus the maximum absolute
error by a linguistic rule-based system with the five consequent linguistic
terms seems to be about 0.125 (0.125 is half of the difference between the
adjacent discrete values).

/̂ 5*(̂) h V / ' "

S jUB-.(b)V'/-\-

Fig. 10.9. Determination of two
consequent linguistic terms from
a single consequent real number

The basic idea of the twin-table approach is to use two linguistic rules
with consequent linguistic terms to represent a single linguistic rule with a
consequent real number. For example, let us consider the following linguistic
rule:

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn then y is 0.45. (10.38)

The consequent real number 0.45 is between medium small (i.e., 0.25) and
medium (i.e., 0.5). Thus we use two linguistic rules with medium small and
medium as consequent linguistic terms to represent the linguistic rule in
(10.38). Since medium has a larger compatibility grade with 0.45 than medium
small, the linguistic rule with the consequent linguistic term medium has a
larger rule weight than that with medium small We use the compatibility
grade of the consequent real number with each consequent linguistic term as
the rule weight of the corresponding linguistic rule. As a result, we have the
following two linguistic rules from the single linguistic rule in (10.38):

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn

then y is medium small with 0.2, (10.39)

10.5 Twin-Table Approach 213

Rule Rq-. If xi is Aqi and . . . and Xn is Aqn

then y is medium with 0.8. (10.40)

10.5.2 Determination of Consequent Linguistic Terms

Let us consider the following linguistic rule with a consequent real number b:

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn then y is h. (10.41)

When the domain interval of the output variable is partitioned by linguistic
terms with triangular membership functions as in Fig. 10.9, the consequent
real number h is compatible with two linguistic terms. Let 5* and 5** be the
linguistic terms with larger and smaller compatibility grades with 6, respec
tively. In Fig. 10.9, 5* and 5** are medium and medium small, respectively.
Using the two linguistic terms B* and 5**, we generate the following two
linguistic rules:

Rule Rq: If xi is Aqi and . . . and Xn is Aqn

then y is ^* with /i^* (&), (10.42)

Rule jR**: If xi is Aqi and . . . and Xn is Aqn

then y is 5** with fiB**{b), (10.43)

where the compatibility grades iiB*{b) and fiB**{b) are used as the rule
weights. In some special cases (e.g., b = 0.5 in Fig. 10.9), the consequent
real number b is compatible with only a single linguistic term. In this case,
5** is not specified. Thus we only generate a single linguistic rule with the
consequent linguistic term B*.

Let b* and 6** be representative real numbers for B* and ^**, respectively
(e.g., 0.25 for medium small). When B* and B** have triangular membership
functions as in Fig. 10.9, the following relations hold:

fiB.ib)-h fiB..{b) = h (10.44)

b*'fiB.{b) + b**'^B..{b) = b. (10.45)

For example, fimediumib) = 0.8 and iimedium smaii{b) = 0.2 when b = 0.45 in
Fig. 10.9. Thus we can see that (10.45) holds as follows:

0.5 • 0.8 + 0.25 • 0.2 = 0.45. (10.46)

From (10.45), we can see that the consequent real number b can be repre
sented by the two linguistic terms J5* and 5**.

When a linguistic rule-based system with consequent real numbers is
given, we generate two linguistic rules with consequent linguistic terms from
each rule with a consequent real number as shown in (10.42) and (10.43).
The generated linguistic rule with a larger rule weight (i.e., R* in (10.42)) is
included in a main rule table. The other linguistic rule (i.e., R** in (10.43))

214 10. Linguistic Rules with Consequent Real Numbers

is included in a secondary rule table. In this manner, we construct two rule
tables with consequent linguistic terms from a single rule table with conse
quent real numbers. It should be noted tha t all the three rule tables have the
same antecedent structure.

Let us assume tha t a linguistic rule-based system with fuzzy rules of the
form in (10.1) is given. Two rule tables with consequent linguistic terms
are generated from the given fuzy rule-based system with consequent real
numbers. The main rule table consists of linguistic rules of the following
form:

Rule R*: If xi is Aqi and . . . and Xn is Aqn

then y is J5* with ^/;*, (10.47)

where B* is the linguistic term with the largest compatibility grade with the
consequent real number bq of the linguistic rule Rq, and the rule weight w*
is specified from bq as

^v;=^lB*{b,). (10.48)

On the other hand, the secondary rule table consists of linguistic rules of the
following form:

Rule J?**: If xi is Aqi and . . . and Xn is Aqn

then y is 5** with w;**, (10.49)

where B** is the linguistic term with the second largest compatibility grade
with bq, and the rule weight w** is specified as

^ , * * = / i B j * (M - (10-50)

The fuzzy reasoning method in (10.2) is extended to the case of the two
linguistic rule tables as

^ E [MA, (X) • 6* • w; + MA, (x) • 6** • «;**]

^^"^^ " E [/ i A , (x) - « ; ; + / i A , (x) - M ; -] • ^^^-^^^
RgES

From (10.44), (10.45), (10.48), and (10.50), the following relations hold:

< + < * = l , (10.52)

b;-w; + b;*-w;* = b,. (10.53)

Thus (10.51) can be rewritten as follows:
E /̂ Ag (X) • bq

m = "^-" i . ^̂ . . . (10.54)
Z^ /^A,(XJ

Rqes
This is exactly the same as the fuzzy reasoning method in (10.2). This means
tha t a single rule table with consequent real numbers can be equivalently
represented by two rule tables with consequent linguistic terms.

10.5 Twin-Table Approach 215

10 .5 .3 N u m e r i c a l E x a m p l e

As a numerical example, let us consider the following nonlinear function [159]:

2/ = (l + ^ ^) , 1 < x i < 5 , 1 <a;2 < 5. (10.55)

This nonlinear function is shown in Fig. 10.10. As training data , we generated
441 input -ou tput pairs {xpi^Xp2^yp)^ P = 1,2, . . . , 4 4 1 , using the uniformly
divided 21 x 21 grid where Xpi = 1 .0 ,1 .2 , . . . , 5.0, Xp2 = 1 .0 ,1 .2 , . . . , 5.0, and
yp was calculated from (10.55).

10.0

y 5.0

5.0 1.0
Fig. 10.10.
(10.55)

Nonlinear function in

First we generated a linguistic rule-based system using the heuristic rule
generation method described in Chap. 8. The generated linguistic rule-based
system is shown in Fig. 10.11. As shown in this figure, we used five linguistic
terms for each of the two input variables. We also used five linguistic terms for
the output variable, which are shown in Fig. 10.12. The MSE on the training
da ta in (10.34) was 0.349 by the linguistic rule-based system in Fig. 10.11.

5.0

^2

1.0 >

MLy |MS| S I S I S I S
y^/////////y^/////////A^^^

MsJ s | s | s j s

M | MS I MS I S I S

yiiyss> I M% I MS |MS[

l > ^ ^ > ^ ^ ^ H ^ ^ ^^ *̂ 10.11. Generated linguistic rule-based
50 system using the heuristic rule generation

•̂ 1 method in Chap. 8
1.0

216 10. Linguistic Rules with Consequent Real Numbers

Fig. 10.12. Five linguistic terms used
for the output variable

We also generated a linguistic rule-based system with consequent real
numbers from the training data using the same antecedent structure as in Fig.
10.11. The consequent real number of each linguistic rule was first specified
by the heuristic specification method in Sect. 10.2. The generated linguistic
rule-based system is shown in Fig. 10.13. The MSE on the training data
was 0.150. This is better than the result by the linguistic rule-based system
with consequent linguistic terms in Fig. 10.11 (i.e., the MSE was improved
from 0.349 to 0.150). Then each consequent real number was adjusted by
the global learning scheme in Sect. 10.3. The incremental learning algorithm
was iterated ten times for each input-output pair (i.e., ten epochs) using
the learning rate a = 0.1. In each epoch, the 441 input-output pairs were
presented to the linguistic rule-based system in a random order. The adjusted
linguistic rule-based system is shown in Fig. 10.14. The MSE on the training
data was improved from 0.150 to 0.104 by the global learning scheme.

From the adjusted linguistic rule table with consequent real numbers in
Fig. 10.14, we generated two rule tables using the twin-table approach in this
section. The generated rule tables are shown in Fig. 10.15 and Fig. 10.16.
We can see that the main rule table in Fig. 10.15 is almost the same as the
rule table in Fig. 10.11 generated by the heuristic rule generation method in
Chap. 8. The MSE by the main rule table in Fig. 10.15 was 0.278, which is
slightly better than the MSE by the heuristic rule table in Fig. 10.11 (i.e.,
0.349). On the other hand, the MSE by the secondary rule table in Fig. 10.16
was 1.895, which is much worse than the results by the other rule tables.

5.0

^2

1.0
\/s\

3.27

3.38

3.64

4.39

6.07

1.93

2.01

2.22

2.82

4.20

1.48

1.55

1.74

2.27

3.53

1.35

1.42

1.60

2.11

3.34

L3l|

1.38

1.55

2.06

3.27

^ ^ ^ ^ I v ^ ^ l ^ ^

1.0
1̂

5.0

Fig. 10.13. Generated linguistic rule-based
system using the heuristic specification
method of consequent real numbers in Sect.
10.2

10.5 Twin-Table Approach 217

3.75

3.84

4.11

k43

7.78

1.93

2.02

2.22

2.82

4.20

1.48

1.55

1.74

2.27

3.53

1.35

1.42

1.60

2.12

3.34

TJvi

1.38

1.55

2.06

3.271

| J X ^ > ^ M] X ^ ^ Fig. 10.14. Adjusted linguistic rule-based
5 0 system using the global learning scheme in

^1 Sect. 10.3

5.0 1

^2

1.0'

. M ,

s I s p s ps ,

y sj si sis
Fs| s I s I s | s
Y////^/////////A^^^^

^ S i s M i MS i MS i
V//^/. y//^///////////^A

|VIL| M I MS I MS |MS|

' ' X , ' • ' Fig. 10.15. Main rule table

5.0 1

^2

1.0 1

MP MS p MS p MS pMSl

M | MS I MS I MS |MS

Mp MS I MS p MS pMS

iMsi S ' s p MS IMSI

' L | MS I M I M | M ^

1° ;ci 5° Fig. 10.16. Secondary rule table

11. Handling of Linguistic Rules in Neural
Networks

Various hybrid models of fuzzy logic and neural networks have been proposed
in the literature. These models are often called fuzzy neural networks. The
main line of fuzzy neural networks concerns a class called neuro-fuzzy models.
Fuzzy neural networks in this class are basically fuzzy rule-based systems
that are adjustable using descent learning algorithms [60, 130]. Neuro-fuzzy
models are often represented in neural network structures [10, 58, 99, 128].
They are used as approximators of nonlinear mappings from input vectors to
output values. Another class of fuzzy neural networks is neural networks for
fuzzy reasoning, which map antecedent linguistic terms to consequent linguis
tic terms. That is, neural networks are used as approximators of nonlinear
mappings from linguistic vectors to linguistic terms. This chapter describes
fuzzy neural networks of this class. The learning of neural networks from
linguistic rules is discussed in the next chapter.

In this chapter, linguistic rules of the following form are approximately
realized by neural networks:

Rule Rq'. If xi is Aqi and . . . and Xn is Aqn then y is Bq, (H-l)

where Aqi is an antecedent linguistic term and Bq is a consequent linguistic
term. Linguistic rules of the same form were used in Chaps. 8 and 9 for
modeling problems. One approach to the handling of linguistic rules is to use
preprocessors to transform linguistic terms into real vectors. In this approach,
linguistic rules are handled as numerical input-output pairs. There exist two
methods in this approach. One method is based on membership values of
linguistic terms. The other method is based on upper and lower limits of
level sets of linguistic terms. Another approach to the handling of linguistic
rules is to use fuzzy arithmetic in neural networks. In this approach, linguistic
rules are handled as linguistic input-output pairs while they are handled as
numerical input-output pairs in the first approach. The input-output relation
of each unit in neural networks is extended to the case of linguistic inputs
using fuzzy arithmetic. These two approaches are explained in this chapter.

220 11. Handling of Linguistic Rules in Neural Networks

11.1 Problem Formulation

11.1.1 Approximation of Linguistic Rules

Let us assume that we have N linguistic rules Rq, q = 1, 2, . . . , N. These
linguistic rules can be viewed as linguistic input-output pairs {Aq, Bq), q =
1, 2, . . . , A ,̂ where Aq — (A^i, . . . , Aqn). A simple example of a set of given
linguistic rules is as follows:

Ri : If X is small then y is large,

R2 : li X is medium then y is m^edium,

Rs : li X is large then y is small.

(11.2)

(11.3)

(11.4)

These linguistic rules are viewed as the three linguistic input-output pairs
{small, large), {medium, medium), and {large, small). Each linguistic input-
output pair {Aq, Bq) is depicted in the input-output space [0, 1] x [0, 1] in
Fig. 11.1 where squares and closed circles correspond to level sets (i.e., a-
cuts) of the fuzzy set Aq x Bq for five levels 0.2, 0.4, 0.6, 0.8, and 1.0. In
Fig. 11.1, the membership function of the fuzzy set Aq x Bq is defined as

IJ^AaxB^x, y) =mm{iiAAx), fiB,{y)}- (11.5)

The concept of level sets is explained later in this chapter. In Fig. 11.1, each
linguistic input-output pair is illustrated as a pyramid-shaped fuzzy set on
the two-dimensional input-output space [0, 1] x [0, 1].

PT — 1 —

[- MM] A

-H
SXMSX M X M L X L

0.0 1.0

Fig. 11.1. Three linguistic input-output
pairs: {small, large), {medium, medium),
and {large, small)

Our task in this chapter is to approximately realize the given N linguistic
rules of the form in (11.1) using neural networks. This task is rephrased
as approximately realizing the given N linguistic input-output pairs {Aq,
Bq), q = 1, 2, . . . , N. Thus neural networks are used as approximators of
nonlinear mappings from n-dimensional linguistic vectors to linguistic terms.

s 11.1 Problem Formulation 221

As in standard learning tasks of neural networks from numerical input-output
pairs, there are two issues to be taken into account:

(1) Fitting ability of neural networks. This ability is evaluated by presenting
each linguistic input vector Aq in the given linguistic input-output pairs
to a trained neural network. The point is whether the actual output
from the trained neural network is close to the target linguistic term Bq
or not. In the case of the above example with the three linguistic rules in
(11.2)-(11.4), the three linguistic input terms small, medium, and large
are presented to the trained neural network to check whether the actual
outputs are close to the target linguistic terms large, medium, and small,
respectively.

(2) Generalization ability of neural networks. This ability is evaluated for
new linguistic input vectors that have not been used in the learning of
the trained neural network. The point is whether the actual output from
the trained neural network is intuitively acceptable or not. For example,
medium small and medium large are presented to the trained neural net
work in the case of the above example. We may intuitively think from
Fig. 11.1 that the corresponding outputs should be medium large and
medium small, respectively. When we have many linguistic input-output
pairs, cross-validation techniques (e.g., the leaving-one-out procedure and
the 10-fold cross-validation procedure [178]) can be used in the same man
ner as in the case of numerical input-output pairs.

11.1.2 Multi-Layer Feedforward Neural Networks

We explain some approaches to the handling of linguistic rules by standard
feedforward neural networks to which the back-propagation algorithm [146]
can be naturally applied. For simplicity of explanation, let us consider a
three-layer feedforward neural network, though we can use neural networks
with more than three layers in the same manner. We denote the number of
input units, hidden units, and output units by n/, n^ , and no^ respectively.
When an n/-dimensional input vector Xq = (xqi, . . . , Xqm) is presented to
the neural network, the input-output relation of each unit is written as follows
[146]:

Input units: Oqi = Xqi, i = 1, 2, . . . , n/ . (11-6)

Hidden units: Oqj = f{netqj), j = 1, 2, . . . , TIH-, (H- '^)
ni

'^^^qj = X^^i^ • ^qi + ^3- (11-8)
i=l

Output units: Oqk — f{netqk). A: = 1, 2, . . . , no , (11-9)
riH

netqk = ^ujkj ' Oqj + 9k. (11.10)

222 11. Handling of Linguistic Rules in Neural Networks

In this formulation, Wji is the connection weight from the i-th input unit
to the j - th hidden unit, 9j is the bias to the j - th hidden unit, Wkj is the
connection weight from the j - th hidden unit to the A:-th output unit, and
9k is the bias to the k-th output unit. The weights and biases are adjusted
by the learning of the neural network. As in Rumelhart et al. [146], we use
the following sigmoidal function as the activation function at the hidden and
output units:

/ (^) = -. —^ T- (11.11)
-^^ ^ l + exp(-x) ^ ^

The three-layer feedforward neural network in (11.6)-(11.11) is known as
a universal approximator of nonlinear functions [47, 59, 179] when we can
use an arbitrary number of hidden units. Linguistic rule-based systems are
also universal approximators of nonlinear functions [116, 175] when we can
use an arbitrary fine fuzzy partition for each input (and output) variable.

11.2 Handling of Linguistic Rules Using Membership
Values

11.2.1 Basic Idea

Standard feedforward neural networks cannot directly handle linguistic input-
output pairs. Thus the neural network structure or the data structure should
be modified to handle linguistic rules in neural networks. One idea is to repre
sent a linguistic term using its membership values at some discretized points.
This idea was proposed by Keller et al. [107, 108]. When the domain inter
val [0, 1] is discretized into eleven points, a linguistic term is represented by
an 11-dimensional numerical vector. For example, medium is represented as
follows (see Fig. 11.2) using its membership values at the eleven points 0.0,
0.1,0.2, . . . , 1.0:

medium = (0.0, 0.0, 0.0, 0.2, 0.6, 1.0, 0.6, 0.2, 0.0, 0.0, 0.0). (11.12)

Fig. 11.2. Representation of the linguistic
term medium using its membership values
at the eleven points in the domain interval
[0,1]

11.2 Handling of Linguistic Rules Using Membership Values 223

11.2.2 Network Architecture

Since each linguistic term is represented by a numerical vector, we can use
standard feedforward neural networks. For simplicity of explanation, let us
assume that the domain interval of each linguistic term is discretized into the
eleven points as shown in Fig. 11.2. In this case, the n-dimensional linguis
tic input vector Aq — (^^i, . . . , ^gn) is represented by an 1 In-dimensional
numerical vector. The corresponding linguistic output Bq is represented as
an 11-dimensional target vector. Thus we use a standard feedforward neu
ral network with l l n input units and 11 output units (i.e., nj — \\n and
no = 11 in (11.6)-(11.10)).

In Fig. 11.3, we show a three-layer feedforward neural network for the
handling of the linguistic input-output pair {medium^ medium) corresponding
to the linguistic rule "If x is medium then y is medium^\ In this case, the 11-
dimensional numerical vector corresponding to medium is presented to the
neural network. The target vector is the 11-dimensional numerical vector
corresponding to medium.

6-6-^

Target vector

< b - ^ i ^ ^
T f T l l l f f f f I

0.0 0.0 0.0 0.2 0.6 1.0 0.6 0.2 0.0 0.0 0.0

i 1 i i 1 i i i i n

11111111111
0.0 0.0 0.0 0.2 0.6 1.0 0.6 0.2 0.0 0.0 0.0

^y-^>-^ JiM •6-^^^

Input vector

Fig. 11.3. Illustration of the learning of
neural networks from the linguistic input-
output pair {medium, medium) using the
membership values of each linguistic term

11.2.3 Computer Simulation

We trained a three-layer feedforward neural network with eleven input units,
five hidden units, and eleven output units using the three linguistic rules in

224 11. Handling of Linguistic Rules in Neural Networks

(11.2)-(11.4). Each linguistic rule, which is a linguistic input-output pair,
was handled as a numerical input-output pair of an 11-dimensional input
vector and an 11-dimensional target vector. That is, three numerical input-
output pairs were obtained from the three linguistic rules. We used the back-
propagation algorithm with the momentum term [146]. This algorithm is
explained in the next chapter. The learning rate and the momentum term
were specified as 0.25 and 0.9, respectively. The back-propagation algorithm
was iterated 1000 times over the three numerical input-output pairs (i.e.,
1000 epochs). We calculated the total squared error

^ 3 11

p=i k=i

where Opk is the actual output value from the k-th output unit, and tpk is
the corresponding target output. After 1000 epochs, the value of the total
squared error E in (11.13) was 0.0011. This indicates that good fitting to
the three input-output pairs was obtained. For example. Fig. 11.4 shows the
actual output vector from the trained neural network for the linguistic input
medium. We can see that the fitting of the actual output vector in Fig. 11.4
to the linguistic target medium is very good.

Fig. 11.4. The actual output vector from
the trained neural network for the linguistic
input medium. The corresponding linguistic
target is medium

To examine the generalization ability of the trained neural network, we
presented an 11-dimensional input vector corresponding to the linguistic term
medium small. The actual output vector from the trained neural network for
this input vector is depicted in Fig. 11.5. From intuitive interpolation of the
two linguistic rules "If x is small then y is large^^ and "If x is medium then
y is medium^\ we think that the linguistic output should be medium large
for the linguistic input medium small. It is, however, difficult to interpret the
actual output vector in Fig. 11.5 as medium large.

The main difficulty in the membership value-based method is that actual
output vectors from trained neural networks are not always interpreted as
linguistic terms. They usually do not represent normal fuzzy sets (i.e., fuzzy
sets whose maximum membership value is 1). In many cases, actual output
vectors represent membership functions with multiple peaks (i.e., non-convex
fuzzy sets). In Fig. 11.5, the membership function constructed by the actual
output vector is not normal or convex.

11.3 Handling of Linguistic Rules Using Level Sets 225

Fig. 11.5. The actual output vector from
the trained neural network for the linguistic
input medium sm,all

11.3 Handling of Linguistic Rules Using Level Sets

11.3.1 Basic Idea

Another trick for transforming a linguistic term into a numerical vector is to
use the upper and lower limits of its level sets (i.e., its a-cuts). The /i-level
set of a linguistic term A (i.e., the a-cut of Aior a = h) is a closed interval,
which is defined as follows (see Fig. 11.6):

[A]h = {x I IIA{X) > /i, X G 3?} for 0 < /i < 1, (11.14)

where 5R is the set of real numbers. In the case of /i = 0 in (11.14), the /i-level
set is the same as 3?. To avoid such a meaningless result, (11.14) is not applied
to the case of /i = 0. The /i-level set of 4̂ for /i = 0 is usually defined as an
open interval in the following manner:

[A]h = {x I iJLx{x) > /i, X e 5R} for /i = 0. (11.15)

We denote the level set using its lower and upper limits as

[A]H =
[[A]i,[A]][] f o r O < / i < l ,

{[A]i,[Arj iovh = 0,
(11.16)

where the superscripts L and U represent the lower and upper limits of the
level set, respectively.

Fig. 11.6. Illustration of the /i-level set of
a linguistic term A

The idea of decomposing a linguistic term into the upper and lower limits
of its level sets was proposed by Uehara & Fujise [168]. Figure 11.7 illustrates

226 11. Handling of Linguistic Rules in Neural Networks

the decomposition of the linguistic term medium into its six h-level sets for
h=0.0, 0.2, 0.4, 0.6, 0.8, 1.0. In the case of Fig. 11.7, the linguistic term
medium is represented by a 12-dimensional numerical vector using the lower
and upper limits of its six level sets as

medium = (0.25,0.75,0.3,0.7,0.35,0.65,0.4,0.6,0.45,0.55,0.5,0.5).

(11.17)

Fig. 11.7. Representation of the linguistic
term medium using its six /i-level sets for
/i=0.0, 0.2, 0.4, 0.6, 0.8, 1.0

11.3.2 Network Architecture

As in the case of the membership value-based method in the previous sec
tion, each linguistic term is represented by a numerical vector in the level
set-based method. Thus we can use standard feedforward neural networks.
When we use the six level sets of each linguistic term as in Fig. 11.7, the
n-dimensional linguistic input vector Aq = (Agi, . . . , Aqn) is represented by
a 12n-dimensional numerical vector. The corresponding linguistic output Bq
is represented by a 12-dimensional target vector. Thus we use a standard
feedforward neural network with 12n input units and 12 output units (i.e.,
m = 12n and no = 12 in (11.6)-(11.10)).

11.3.3 Computer Simulation

We trained a three-layer feedforward neural network with 12 input units,
five hidden units, and 12 output units using the three linguistic rules in
(11.2)-(11.4). Each linguistic rule was handled as a numerical input-output
pair of a 12-dimensional input vector and a 12-dimensional target vector.
Thus three numerical input-output pairs were used as training data. The
learning of the neural network was performed using the back-propagation
algorithm with the momentum term [146] in the same manner as in the
previous section. After 1000 epochs, the total squared error was 0.0014. This
indicates that good fitting to the three input-output pairs was obtained. For
example. Fig. 11.8 shows the actual output vector from the trained neural
network for the linguistic input medium. We can see from Fig. 11.8 that the

11.3 Handling of Linguistic Rules Using Level Sets 227

fitting of the actual output vector to the linguistic target medium is very
good.

Fig. 11.8. The actual output vector from
the trained neural network for the linguistic
input medium. The corresponding linguistic
target is medium

To examine the generalization ability of the trained neural network, we
presented a 12-dimensional input vector corresponding to the linguistic term
medium small. The actual output vector from the trained neural network for
this input vector is depicted in Fig. 11.9. The intuitively acceptable linguistic
output is medium large for the linguistic input medium small. It is, however,
difficult to interpret the actual output vector in Fig. 11.9 as medium large.

§ 0.2 h
'^ 0.0

Fig. 11.9. The actual output vector from
the trained neural network for the linguistic
input medium, small

The main difficulty in the level set-based approach is that actual output
vectors from trained neural networks do not always construct legal fuzzy sets.
That is, the following inclusion relation is not always satisfied:

[B]h^[B]kifh<k, (11.18)

where [B]h and [B]k are level sets obtained as output values from trained
neural networks. In (11.18), B is a fuzzy set constructed from level sets. It
should be noted that (11.18) always holds for any fuzzy set. When (11.18) is
not satisfied, B cannot be viewed as a fuzzy set. In Fig. 11.9, the membership
function constructed by the actual output vector from the trained neural
network does not satisfy (11.18).

228 11. Handling of Linguistic Rules in Neural Networks

11.4 Handling of Linguistic Rules Using Fuzzy
Ari thmet ic

We have already explained two methods for handling linguistic rules in neural
networks. These methods are based on preprocessors that transform linguistic
terms into numerical vectors. In this section, we explain another approach
where linguistic terms are directly handled in neural networks using fuzzy
arithmetic.

11.4.1 Basic Idea

As shown in the previous sections, good fitting to given linguistic rules was
obtained by the two methods based on preprocessors. The generalization abil
ity of trained neural networks, however, was not good in those methods. This
is because many input and output units were used to handle a single lin
guistic term. As a result, neural network structures were very complicated in
comparison with the complexity of linguistic rules. For example, neural net
works with more than ten input and output units were used in the previous
computer simulations to handle linguistic rules describing a single-input and
single-output nonlinear mapping. In the handling of numerical data by neural
networks, the number of input (output) units is the same as the dimension
ality of the input (output) space. A fuzzy arithmetic-based approach to the
handling of linguistic rules extends neural networks for numerical data to the
case of linguistic rules without modifying their network structures. That is, a
single input (output) unit is used to handle a single input (output) variable.
A linguistic term is presented to each input unit. The corresponding output
from each output unit is calculated as a fuzzy set using fuzzy arithmetic. The
fuzzy arithmetic-based approach to the handling of linguistic rules by neural
networks was proposed in Ishibuchi et al. [63]. The interpolation ability of
trained neural networks was examined in [87].

The fuzzy arithmetic-based approach [63, 87] is a special case of fuzzified
neural networks. In general, multi-layer feedforward neural networks can be
fuzzified by using fuzzy numbers as their inputs, connection weights, and/or
targets [16]. Fuzzy numbers (e.g., about 2, approximately 12, etc.) are normal
and convex fuzzy sets on the real axis Ji [106]. Linguistic terms such as
small and large can also be viewed as fuzzy numbers. In Hayashi et al. [52],
the back-propagation algorithm was directly fuzzified. Learning of fuzzified
neural networks was studied by some authors [39, 40, 64].

11.4.2 Fuzzy Arithmetic

Before describing neural networks that can directly handle linguistic rules, we
briefly explain fuzzy arithmetic. Fuzzy arithmetic is an extension of standard
arithmetic on real numbers to the case of fuzzy numbers. Fuzzy arithmetic

11.4 Handling of Linguistic Rules Using Fuzzy Arithmetic 229

is mathematically defined by the extension principle of Zadeh [191] and nu
merically executed using interval arithmetic [6, 126] on level sets of fuzzy
numbers.

In fuzzified neural networks, the following addition and multiplication on
fuzzy numbers are used:

MA+B(^) = max{/iyi(a:) A jUBiy) \x-{-y = z, x E ^, y e ^}, (11.19)

f^A-B{z) = max{^A(^) AfiB{y)\x'y = z,xe^,yeU}, (11.20)

where upper-case letters (i.e., A and B) are fuzzy numbers, lower-case letters
(i.e., X, 2/, and z) are real numbers, and A is the minimum operator. These
two operations on fuzzy numbers are illustrated in Fig. 11.10 and Fig. 11.11,
respectively.

i h
A-^B

0 1 2 3 4 5 6 7

Fig. 11.10. Illustration of the sum A -f- 5 of two fuzzy numbers A and B

Fig. 11.11. Illustration of the product A- B oi two fuzzy numbers A and B

The activation function in (11.11) is extended to the case of a fuzzy input
Net as

l^f{Net){z) = m3.yi{llNet{x) \ Z = / (x) , X G 3?}. (11.21)

The nonlinear fuzzy mapping from the fuzzy number Net to the fuzzy number
f{Net) is illustrated in Fig. 11.12.

As shown in (11.6)-(11.10), the input-output relation of each unit in stan
dard feedforward neural networks is defined by the addition, multiplication,
and activation function. Thus we can define the fuzzy version of the input-
output relation using (11.19)-(11.21). Since the exact calculation of fuzzy

230 11. Handling of Linguistic Rules in Neural Networks

Net Fig. 11.12. Fuzzy activation function at hidden
and output units

arithmetic using the extension principle is not easy, interval arithmetic on
multiple level sets of fuzzy numbers is usually used in numerical calculations.
The interval versions of (11.19)-(11.21) are written as

A + B^ [a^, a^] + [6^, h^] = [a^ + b^, a^ + b% (11.22)

A'B = [a^,a^]'[b^,b^]

= [mm{a^'b^, a^-b^, cF-b^, a^-&^},

max{a^-6^, a^-b^, oF-b^ ^•^^}],
f{Nei) = / (M ^ , net^]) = [/(nef^), / (net^)] ,

(11.23)

(11.24)

where upper-case letters (i.e., A, B^ and Nei) are intervals, and superscripts
L and C/ denote the lower and upper limits of intervals, respectively. Fuzzy
arithmetic can be numerically executed by applying interval arithmetic to
level sets of fuzzy numbers. For example. Fig. 11.12 was drawn by applying
(11.24) to the /i-level sets of iVet for 50 levels (i.e., /i=0.02, 0.04, . . . , 1.00).

11.4.3 Network Architecture

Since each linguistic term is handled by a single unit, we use a three-layer
feedforward neural network with n input units and a single output unit to
handle the linguistic rule Rq in (11.1). The number of hidden units, which is
denoted by nH-> can be arbitrarily specified. The linguistic rule Rq is handled
as the linguistic input-output pair (A^, Bq). Thus the linguistic vector Aq —
(Agi, . . . , Agn) is presented to the neural network. In this case, the input-
output relation of each unit is written as follows:

Input units: Oqi — Aqi, i = 1, 2, . . . , n.

Hidden units: Oqj = f{Netqj), j — 1, 2,
n

Netqj = ^ Wji • Oqi + dj.
i=l

Output unit: Oq = f{Netq),

, nB,

(11.25)

(11.26)

(11.27)

(11.28)

11.4 Handling of Linguistic Rules Using Fuzzy Arithmetic 231

riH

Netq = ^Wj- Oqj + 0. (11.29)

In (11.25)-(11.29), fuzzy numbers are denoted by upper-case letters such as
•Aqi^ Oqi^ and Netqj. While the input vector is fuzzified as Aq = (^^i , . . .
,Aqn), the connection weights Wji, Wj and the biases 9j, 9 are still real
numbers. Fuzzified neural networks with fuzzy connection weights and fuzzy
biases will be explained in Chap. 14.

We illustrate the above fuzzification of neural networks using a simple
three-layer feedforward neural network in Fig. 11.13 where connection weights
and biases are shown as real numbers. Our task in this figure is to calculate
the fuzzy output from the output unit when the linguistic vector {small,
medium) is presented.

QQ jQ Fig. 11.13. A three-layer feedfor-
small medium ward neural network and a linguis

tic input vector {small, medium)

The fuzzy output from each input unit is the same as the linguistic input
to that unit as shown in (11.25). Thus the fuzzy outputs from the input units
A and B in Fig. 11.13 are small and medium, respectively. At the hidden unit
C, the following fuzzy arithmetic is performed to calculate the fuzzy output
Oc:

Netc — —5 • small — 5 • medium — 2, (11.30)

Oc = /(iVetc). (11.31)

The membership functions of Oc and Netc are shown in Fig. 11.14. The fuzzy
output OD from the hidden unit D is calculated as follows (see Fig. 11.15):

Netj) = 1 • sm^all — 3 • m^edium. + 2, (11.32)

232 11. Handling of Linguistic Rules in Neural Networks

0.15

Netc

Input value
Fig. 11.14. Fuzzy input-output relation at the hid
den unit C

OD = /(A^etD). (11.33)

Using the fuzzy outputs Oc and O D from the hidden units, the fuzzy output
O E from the output unit E is calculated as follows (see Fig. 11.16):

iVe^E = 5 - O c - 3 - O D + l ,

O E = / (iVe te) .

(11.34)

(11.35)

1.00

0 Net^ 3

Input value
Fig. 11.15. Fuzzy input-output relation at the hid
den unit D

0.50

Input value
Fig. 11.16. Fuzzy input-output relation at the out
put unit E

11.4 Handling of Linguistic Rules Using Fuzzy Arithmetic 233

The numerical calculation of fuzzy arithmetic in the neural network in
(11.25)-(11.29) is executed using interval arithmetic on level sets of the
linguistic input vector Aq = (Agi, . . . , Aqn)- Actually, we used interval
arithmetic for 50 /i-level sets (i.e., h=0.02, 0.04, . . . , 1.00) in Figs. 11.14
- 11.16. The input-output relation in (11.25)~(11.29) for the linguistic in
put vector Aq = {Aqi, . . . , Aqn) is rewritten for the interval input vector
Xq = {Xqi^ . . . , Xqn) as follows (thc lutcrval Xqi corresponds to the level
set of "the linguistic term Aqi):

Input units: [o^,, o ,̂] = X,i = [x^., x%i = l,2,..., n. (11.36)

Hidden units: [o^j, ô .̂] = [finet^j), f{net^j)],

j = 1,2, ...,nH, (11.37)
n n

^ < = E ^i^-^^i+ J2 ^Ji-o'^i + Oj, (11.38)

Wji > 0 Wji < 0

n

' ^ < = E '^Ji-4+ E Wji-o^, + 0j. (11.39)

Wji > 0 Wji < 0

Output unit: [o^, o^] = [/(net^), finet^)], (11.40)

n e t ^ = J2 ^ro^,j+ E « ^ i - o « + ^ ' (11-41)
j = 1 j = 1

Wj > 0 lOj < 0

riH riH

net^= Y, yJj-o^j+ J2 ^J-o^j+0. (11.42)
j = 1 J = 1

Wj > 0 Wj < 0

11AA Computer Simulation

As in the previous sections, we used the three linguistic rules in (11.2)-
(11.4) as training data. These rules were handled as linguistic input-output
pairs (small, large), {medium, medium), and {large, small). A single-input and
single-output three-layer feedforward neural network with five hidden units
was used to handle such a linguistic input-output pair. That is, the network
structure of the neural network is 1 x 5 x 1 while it was 11 x 5 x 11 and
1 2 x 5 x l 2 i n the previous sections for handling the same linguistic rules. In
the learning of the neural network, we used the /i-level sets of each linguistic
input-output pair for eleven levels (i.e., h=0.0, 0.1, 0.2, . . . , 1.0). That is,
we generated eleven interval input-output pairs from each linguistic input-
output pair. In the next chapter, we explain how a learning algorithm of
neural networks can be derived for interval input-output pairs. The learning
of the neural network was terminated after 1000 epochs. In each epoch, 33
interval input-output pairs were used as training data.

234 11. Handling of Linguistic Rules in Neural Networks

In Fig. 11.17, we show the actual fuzzy output from the trained neural
network for the linguistic input medium. This figure is depicted using 51 /i-
level sets of the linguistic input medium for /i=0.00, 0.02, 0.04, . . . , 1.00. We
can see that the fuzzy output in Fig. 11.17 is similar to the target output
medium. While the fitting of the actual fuzzy output in Fig. 11.17 is not bad,
it is inferior to the previous results in Fig. 11.4 and Fig. 11.8. This is because
the neural network structure is very simple in this section (i.e., 1 x 5 x 1)
while it was much more complicated in the previous sections (i.e., 1 1 x 5 x 1 1
and 12 X 5 X 12).

— Actual output
— Target output

Fig. 11.17, The actual fuzzy output from
the trained neural network for the linguistic
input medium. The corresponding linguistic
target is medium,

To examine the generalization ability of the trained neural network, we
presented the linguistic term medium small. The corresponding fuzzy output
from the trained neural network is shown in Fig. 11.18 using 51 level sets
of the linguistic input medium small. We can see that the fuzzy output in
Fig. 11.18 can be interpreted as medium large. From the three linguistic rules
(see Fig. 11.1), we intuitively think that the output for the linguistic input
medium small should be medium large. The actual fuzzy output in Fig. 11.18
coincides with this intuition.

From the simulation results in this chapter, we can conclude that the fuzzy
arithmetic-based method has lower fitting ability and higher generalization
ability than the other methods with preprocessors. Fuzzy outputs from neural
networks in the fuzzy arithmetic-based method are always normal and convex
fuzzy sets (i.e., fuzzy numbers) when linguistic terms are used as inputs. This
feature of fuzzy outputs is easily proven using the characteristic features of
fuzzy arithmetic.

Fig. 11.18. The actual output vector from
the trained neural network for the linguistic
input medium small

12. Learning of Neural Networks from
Linguistic Rules

In this chapter, we extend the back-propagation algorithm to the case where
Hnguistic rules instead of numerical data are given as training data. We use
the fuzzy arithmetic-based method in Sect. 11.4 to handle linguistic rules.
First we explain the learning of standard feedforward neural networks from
linguistic rules of the following form for pattern classification problems:

Rule Rq : If xi is Aqi and . . . and Xn is Aqn then Class Cq. (12.1)

In this case, target vectors are binary (e.g., (0,1,0) for Class 2 in three-class
problems) because the consequent part of each linguistic rule is a class label.
Then we explain the learning of neural networks from linguistic rules of the
following form for modeling problems:

Rule Rq : If xi is Aqi and . . . and Xn is Aqn then y is Bq. (12.2)

In this case, linguistic terms are used as targets as well as inputs.

12.1 Back-Propagation Algori thm

Before discussing the learning of neural networks from linguistic rules, we
explain the back-propagation algorithm [146] for the learning of standard
feedforward neural networks from numerical input-output pairs. Let us as
sume that we have m input-output pairs {Xp^ tp) where Xp = {Xpi, . . . , Xpm)
and tp = {tpi, . . . , tpno) cire an n/-dimensional input vector and an no-
dimensional target vector, respectively. We have already shown the input-
output relation of each unit in the three-layer feedforward neural network for
the input vector Xp in (11.6)-(11.11) of the previous chapter.

In the back-propagation algorithm, a cost function to be minimized is
defined for the input-output pair (Xp, tp) as the squared error between the
actual output vector Op = (opi, . . . , Opno) from the neural network and the
target vector tp = (t^i, . . . , tpno) ^ •̂

-j rio

ep = - Y^itpk - Opkf. (12.3)
k=i

The connection weight Wkj from the j - th hidden unit to the A:-th output
unit is updated by the steepest descent scheme as

236 12. Learning of Neural Networks from Linguistic Rules

.. .New _ Old _ . ^^P /-, r> A^

where r̂ is a positive constant (i.e., 0 < rj) called the learning rate. The partial

derivative in (12.4) is calculated from (12.3) as follows (see [146] for details):

Be
— = —{tpk — Opk) ' Opk ' (1 — Opk) ' Opj

= -Spk • Opj, (12.5)

where

Spk = (tpk — Opk) • Opk • (1 - Opk). (12.6)

Thus the update rule for Wkj is rewritten as

< ' " = < ' + ^ - < ^ p f e - O p i - (12-7)

The update rule for the bias Ok to the A:-th output unit is the same as (12.7)
with Opj — 1.

In the same manner, the update rule for the connection weight Wji from
the i-th input unit to the j - t h output unit is written as

dwji

= wf^'' + Tj • 5pj • Opi, (12.8) uji -r // upj wpi,

where
de.

- -6pj - Opi, (12.9)
dwji

no
Spj = Opj ' (1 - Opj) '^Spk ' Wkj. (12.10)

k=l

The update rule for the bias 6j to the j - t h hidden unit is the same as (12.8)

with Opi = 1.
Usually the momentum term is added to the update rules in (12.7) and

(12.8). Let us write the update rules for Wkj and Wji as

Wkj(t + l) = Wkj{t) + Awkj{t), (12.11)

Wji{t + 1) = Wji{t) + Awjiit), (12.12)

where t indexes the number of updates . Using the momentum term, Awkj{t)
and Awji{t) are specified as

de
Awkj{t) = -T]' - - ^ + a ' Awkj{t - 1), (12.13)

awkj

de
Awjiit) = -T]' —^ + a ' Awji{t - 1), (12.14)

OWji

where a is a non-negative constant less than 1 (i.e., 0 < a < 1) called the
momentum constant. The biases 9k and Oj are updated in the same manner
as the connection weights Wkj and Wji, respectively.

12.2 Learning from Linguistic Rules for Classification Problems 237

12.2 Learning from Linguistic Rules for Classification
Problems

In this section, we discuss the learning of standard multi-layer feedforward
neural networks from linguistic rules of the form (12.1) for pattern classifica
tion problems. We use a three-layer feedforward neural network with n input
units and M output units where M is the number of classes.

12.2.1 Linguistic Training Data

Let us assume that we have m linguistic rules i^^, g = 1, 2, . . . , m, of the
form (12.1). As we have already explained in Sect. 11.4, the antecedent part
of each linguistic rule is presented to the neural network. That is, the n-
dimensional linguistic vector Aq = (^^i, • • •, Aqn) is presented. The input-
output relation of each unit is defined by fuzzy arithmetic as in Sect. 11.4.
The corresponding fuzzy output vector Oq = {Oqi, . . . , OqM) is numerically
calculated by interval arithmetic on levels sets of Aq = (^gi, . . . , Aqn). The
target vector tq — (t^i, . . . , tqM) is defined from the consequent class Cq of
the linguistic rule Rq as

{ 1, if Ca = Class k,
' A: = 1,2, . . . ,M. (12.15)

0, otherwise,
In this manner, m input-output pairs (A^, t^), q = 1, 2, . . . , m, are gener
ated from the m linguistic rules i?g, q — 1,2,... ,m, of the form (12.1) as
training data.

12.2.2 Cost Function

The /z-level set of the fuzzy output vector Oq = (Ogi, . . . , OqM) is calculated
by interval arithmetic from the /i-level set of the linguistic input vector Aq =
(Agi, . . . , Aqn) in the numerical calculation of Oq. We define a cost function
Cqh for the /i-level set of Oq as

^ M ^ M

e,h = 2 J2(*,k - [0,k]f:r + 2 Y.(t,k - [0,,]'if, (12.16)
k=l k=l

where [Oqk]^ cind [O^^]^ are the lower and upper limits of the h-level set
[Oqk]h of the fuzzy output Oqk from the k-th output unit, respectively. The
first and second terms in (12.16) are the squared errors for the lower and
upper limits of the h-level set [O f̂c]̂ , respectively. In Ishibuchi et al. [63], the
following cost function was used:

1 ^
^9^ ^ 2 ^ max{(t^fc - Oqk)'^ \ Oqk G [Oqk]h}' (12.17)

k=l

238 12. Learning of Neural Networks from Linguistic Rules

Since the derivation of a learning algorithm is easier from (12.16) than from
(12.17), we use the cost function in (12.16).

The cost function for the input-output pair {Aq, tq) is defined as

e, = ^ / i - e , , „ (12.18)
h

where h assumes a pre-specified set of real numbers in the unit interval [0, 1].
We use ten values of h in computer simulations in this chapter: /i=0.1, 0.2,
. . . , 1.0. In (12.18), the cost function Cqh for the /i-level set is weighted by the
value of h. We can also use the following cost function without this weighting
scheme:

e, = ^ e , ^ . (12.19)
h

In the computer simulation of Sect. 11.4, we used this cost function with
eleven values of h: /^=0.0, 0.1, 0.2, . . . , 1.0.

12.2.3 Extended Back-Propagation Algorithm

The learning of the neural network is performed to minimize the cost function
Cqh in (12.16). The amount of modification for each connection weight is
written as follows:

Awkjit) = -rj-h' — ^ + aAwkjit - 1), (12.20)
OWkj

Awji{t) = -r]'h' - r - ^ + aAwjiit - 1), (12.21)
OWji

where we assume the use of the weighting scheme by the value of h in (12.18).
When we use (12.19) instead of (12.18), rj-h is replaced with rj. The biases 6k
and 6j are updated in the same manner as the connection weights Wkj and
Wji, respectively.

For simplicity of notation, we denote the /i-level set [Aq]h of the linguis
tic input vector Aq by the interval input vector Xq = {Xqi, . . . , Xqn) as
in (11.36)-(11.42) of Sect. 11.4. Let Oq = (O^i, . . . , OqM) be the interval
output vector calculated by interval arithmetic from Xq. In this case, Cqh in
(12.16) is rewritten as

^ M ^ M

e,H = 2 Yl(^,k - o^,f + - Y^it,, - o ,̂)2, (12.22)
k=l k=l

where the interval output Oqk from the ^-th output unit is calculated as

Hk, o'^,] = [finet^,), /(net^fe)], (12.23)

riH riH

^ < f c = E ^kJ'Oqj+ ^ Wkj-o'^j+ek, (12.24)
j = 1 j = i

Wkj > 0 Wkj < 0

12.2 Learning from Linguistic Rules for Classification Problems 239

^ < f c = I] ^ i ^ i - < i + £ Wkj'O^j+Ok. (12.25)
i = 1 i = 1

lUfcj > 0 Wkj < 0

From (12.24) and (12.25), we can see that the calculation of Oqk depends on
the sign of Wkj. As a result, the calculation of the partial derivative deqh/dwkj
also depends on the sign of Wkj. When Wkj is non-negative (i.e., Wkj > 0),
deqh/dwkj is calculated from (12.22)-(12.25) as

= ~S^k-o^i-S^,-o^., (12.26)

where

•̂gyb = (V - </fc) • <ft • (1 - <fc), (12.27)

S^k = (V - o,"!) • o^k • (1 - < J - (12.28)

On the other hand, deqh/dwkj is calculated as follows when Wkj is negative
(i .e . , Wkj < 0) :

dwkj
-S^k'0^,-S^,-o^^. (12.29)

The calculation of the partial derivative deqh/dwji depends on the sign of
Wji because the interval output Oqj from the j - th hidden unit is calculated
as follows:

[o^j, o«] = [/ (« <) ' / (" <)] > (12.30)

n n

« < • = E ^ii-o^,i+ E ^3^-o"i+0i, (12.31)

lOji > 0 Wji < 0

n n

^ < i = E ^ i ^ - < i + E ^ji-o^qi-^e^, (12.32)
i = 1 i = 1

i(;ji > 0 Wji < 0

When Wji is non-negative (i.e., Wji > 0), dcqh/dwji is calculated from
(12.22)-(12.25) and (12.30)-(12.32) as

r. M M

^'^ k = l k = l
Wkj > 0 Wkj < 0

(12.33)

where

240 12. Learning of Neural Networks from Linguistic Rules

^ , " = S^k • mj • o^j • (1 - o^j), (12.34)

<fc^ = S^k • wkj • o,̂ - • (1 - o,̂ ,.), (12.35)

P'^k] = ,̂"1 • wui • ô ,- • (1 - o^,.), (12.36)

P!ikj = S^k • y^kj • ô ,- • (1 - o,̂ ,.)- (12.37)

On the other hand, dcqh/dwji is calculated as follows when Wji is negative
(i.e., Wji < 0):

M M

k = l k = 1
dwji

Wkj > 0 Wkj < 0

(12.38)

When m input-output pairs (Ag, tg),g = l , 2 , . . . , m , are given as training
data, the learning of the neural network is performed using ten levels (i.e.,
/i=0.1, 0.2, . . . , 1.0) as follows:

Step 0: Randomly specify initial values of the connection weights and biases.
Let t :^ 1.

Step 1: Let h := 0.1.
Step 2: Let q := 1.
Step 3: Update the connection weights and biases using (12.20) and (12.21).
Step 4: Let t:=t+l.
Step 5: Let q := q -\- 1. If q < m then go to Step 3.
Step 6: Let h := /i + 0.1. If h < 1.0 then go to Step 2, otherwise go to Step

1.

This algorithm is iterated until a pre-specified stopping condition is satisfied.
As an example, let us assume that we have nine linguistic rules in Fig. 12.1

where the consequent class of each linguistic rule is CI, C2, or C3 (i.e., Class
1, Class 2, or Class 3). We trained a three-layer feedforward neural network
with two input, five hidden, and three output units using the nine linguistic
rules. The learning rate rj and the momentum constant a were specified as
rj = 0.25 and a — 0.9. The above learning algorithm was terminated when
it was iterated 1000 times (i.e., 1000 epochs). The trained neural network
can be used to classify an arbitrary input vector x = (a:i, 0:2) in the pat
tern space [0, 1] X [0, 1]. The classification is performed by identifying the
winner output unit with the maximum output value among the three out
put units. Figure 12.2 shows the classification boundary obtained from the
trained neural network together with the 0.6-level sets of the linguistic input
vector Aqi x Aq2 corresponding to each linguistic rule. From this figure, we
can see that an intuitively acceptable result was obtained by the learning of
the neural network from the nine linguistic rules.

12.2 Learning from Linguistic Rules for Classification Problems 241

- tjri
0.0 Xj

S X M S X M X M L X L

1.0 Fig. 12.1. Nine linguistic rules for a pat
tern classification problem

I Class 1 Class 3

Fig. 12.2. Classification boundary and
nine linguistic rules

12.2.4 Learning from Linguistic Rules and Numerical Data

The learning algorithm of neural networks from linguistic rules can be used
in the case where both linguistic rules and numerical data are available.
Let us assume that a linguistic rule R^ of the form (12.1) is given. As
we have already explained, this linguistic rule is handled as a linguistic
pattern Aq — (^gi, . . . , Aq^)- We also assume that a numerical pattern
Xy — (a^pi, . . . , â pn) from Class Cp is given. These two patterns can be
treated in the same framework because both real numbers and linguistic
terms are special cases of fuzzy numbers. That handled as a fuzzy
pattern A^ — (Api, . . . , A^^) where each element A^^i is viewed as a fuzzy
number with the following membership function:

l^A^X^) ^
J. 5 n X — **-"pi 5

0, otherwise.
(12.39)

242 12. Learning of Neural Networks from Linguistic Rules

From this membership function, the /i-level set of Api is calculated as

[Api]h = [xpu Xpi] for 0 < /i < 1. (12.40)

Using (12.39) and (12.40), linguistic rules and numerical data can be simul
taneously used as fuzzy training data in the learning algorithm for linguistic
rules.

As an example, let us assume that numerical data in Fig. 12.3 are given.
Using 30 numerical patterns in this figure, we trained a three-layer feedfor
ward neural network with two input, five hidden, and three output units
by the standard back-propagation algorithm with the learning rate 0.25 and
the momentum constant 0.9. The classification boundary in Fig. 12.3 was
obtained from the trained neural network after 1000 epochs.

o Class 2 A Class 3

^2 0.5

Fig. 12.3. Classification boundary ob
tained from the learning of the neural net
work using only the 30 numerical patterns
in this figure

We also assume that the following linguistic rules are given in addition to
the 30 numerical patterns in Fig. 12.3:

If xi is medium and X2 is m^edium then Class 1,

If X2 is large then Class 2.

(12.41)

(12.42)

These two linguistic rules are shown in Fig. 12.4. The first linguistic rule is
handled as a linguistic pattern {medium, medium). Since the first antecedent
condition of the second linguistic rule is don't care, this linguistic rule is
handled as a linguistic pattern {don't care, large). This pattern is the same
as ([0, 1], large) because the domain interval of the first input variable xi
is [0, 1]. We used the two linguistic patterns together with the 30 numerical
patterns in the learning of the same neural network as in Fig. 12.3. The
learning of the neural network was performed using the learning algorithm
for linguistic rules. Figure 12.5 shows the classification boundary obtained
from the trained neural network after 1000 epochs. From this figure, we can
see that the classification boundary follows the two linguistic rules as well
as the 30 numerical patterns. The difference between Fig. 12.3 and Fig. 12.5

12.2 Learning from Linguistic Rules for Classification Problems 243

corresponds to the effect of the two linguistic rules on the learning of the
neural network.

Fig. 12.4. Two linguistic rules

• Class 1 o Class 2 A Class 3
l.Or

^2 0.5 k

Fig. 12.5. Classification boundary ob
tained from the learning of the neural net
work using both the 30 numerical patterns
and the two linguistic rules

Further we assume that the following linguistic rule is given in addition to
the two linguistic rules in Fig. 12.4 and the 30 numerical patterns in Fig. 12.3:

If xi is large then Class 3. (12.43)

This linguistic rule is partially inconsistent with the linguistic rule "If X2 is
large then Class 2" in (12.42). In the same manner as in the previous computer
simulation in Fig. 12.5, we trained the same neural network using the three
linguistic rules and the 30 numerical patterns. The obtained classification
boundary after 1000 epochs is shown in Fig. 12.6. From this figure, we can
see that the partial inconsistency was resolved by finding a good compromise
among the linguistic rules with different consequent classes.

244 12. Learning of Neural Networks from Linguistic Rules

• Class 1 o Class 2 A Class 3
l.Or

•̂ 2 0.5

X i

Fig. 12.6. Classification boundary ob
tained from the learning of the neural net
work using both the 30 numerical patterns
and the three linguistic rules

In our learning algorithm for linguistic rules, we can assign a different
grade of importance (i.e., weight or strength) to each linguistic rule. Let ujq
be the importance of the linguistic rule Rq. In this case, the update rules in
(12.20) and (12.21) are modified as

AWkj (t) = -(jJq -7] ' h
de qh

dWkj

dCqh

^a- Awkj{t-l)

Awji{t) = —ujq • rj • h • -^—h a • Awji{t — 1)

(12.44)

(12.45)

We specified the importance of the last linguistic rule "If a:i is large then
Class 3" in (12.43) as 2. The importance of the other linguistic rules and the
30 numerical patterns was specified as 0.5. Using the modified update rules in
(12.44)-(12.45), we trained the same neural network in the same manner as
in the previous computer simulation in Fig. 12.6. The obtained classification
boundary is shown in Fig. 12.7. From the comparison between Fig. 12.6 and
Fig. 12.7, we can see that the difference in the importance of each linguistic
rule had an effect on the classification boundary. More specifically, a larger
area around the top-right corner was classified as Class 3 in Fig. 12.7 than
Fig. 12.6.

As shown in the above computer simulations, the learning algorithm of
multi-layer feedforward neural networks in this section can be applied to
general situations where both linguistic rules and numerical data are avail
able. Moreover, the learning algorithm can handle a different grade of im
portance attached to each piece of available information. The ability of the
learning algorithm to simultaneously handle linguistic rules and numerical
data is essential when we cannot construct classification systems with high
classification performance by utilizing only one of the two kinds of available
information. Better results are usually obtained by simultaneously utilizing
linguistic rules and numerical data than utilizing only one of the two kinds
of available information [80].

12.3 Learning from Linguistic Rules for Modeling Problems 245

• Class 1 o Class 2 A Class 3

•^2 0.5h-

Fig. 12.7. Classification boundary ob
tained from the learning of the neural net
work using both the 30 numerical pat
terns and the three linguistic rules. A much
higher grade of importance was assigned to
the third linguistic rule "If â i is large then
Class 3" than the other linguistic rules

12.3 Learning from Linguistic Rules for Modeling
Problems

In this section, we discuss the learning of s tandard multi-layer feedforward
neural networks from linguistic rules of the form (12.2) for modeling problems.
A learning algorithm for this task was derived in Ishibuchi et al. [87]. In
this section, we explain their learning algorithm for a three-layer feedforward
neural network with n input units and a single output unit.

12 .3 .1 Linguis t ic D a t a

Let us assume tha t we have m linguistic rules Rq^q — 1, 2, . . . , m, of the form
(12.2). From the m linguistic rules, we have m linguistic inpu t -ou tpu t pairs
(A „ Bq), g = 1, 2, where Aq = {A qli Aqn)' These linguistic
inpu t -ou tpu t pairs are used as training data . When the n-dimensional lin
guistic vector Aq = {Aqi, . . . , Aqn) is presented to the neural network, the
corresponding fuzzy output Oq is numerically calculated by interval arith
metic on level sets of the linguistic input Aq = {Aqi, . . . , Aqn) as in the
previous section.

12 .3 .2 Cos t Func t ion

The aim of learning is to minimize the difference between the actual fuzzy
output Oq and the linguistic target Bq. As in the previous section, a cost
function to be minimized is defined using the /i-level sets of Oq and Bq as

= Y^h'Cqh, (12.46)

where

246 12. Learning of Neural Networks from Linguistic Rules

e,H = \{[B,f, - [0,]j:f + i ([B ,]^ - [O.f.f. (12.47)

In the computer simulation of Chap. 11, we did not use the weighting scheme
by the level h in (12.46). In this section, we use the cost function in (12.46)
with the weighting scheme.

12.3.3 Extended Back-Propagation Algorithm

In the same manner as in the previous section, we can derive a learning
algorithm from the cost function Cqh in (12.47). That is, we can use the
update rules in (12.20)-(12.21). Since we have only a single output unit,
these update rules are rewritten as

deqh
dwj

Awj{t) = -Tj'h' - ^ + a • Awj{t - 1), (12.48)

Awji(t) = -r]'h' ^ + a . Awjiit - 1), (12.49)

where Wj is the connection weight from the j - th hidden unit to the single
output unit.

As in the previous section, let us denote the h-level set [Aq]h of the
linguistic input vector Aq by the interval input vector Xq = (X^i, . . . , Xqn)
for simplicity of notation. The corresponding interval output Oq = [o^, o^]
is calculated by interval arithmetic from Xq as shown in (11.36)-(11.42) of
Chap. 11. We also denote the h-level set [Bq]h of the linguistic target Bq by
the interval Tq = [f̂ , t^]. This interval is the target for the interval output
Oq. In this case, Cqh is rewritten as

e<,k = lit^-o^f + l{t^-o^f. (12.50)

In the same manner as in the previous section, the partial derivative
dcqh/dwj is calculated from (12.50) as

(12.51)

where

6^, = (i^ - o^) • o ^ (1 - o^), (12-52)

'5.'' = (* ^ - <) - < - (l - <) - (12-53)
The partial derivative deqh/dwji is calculated as follows:

o^i - P]^^ if Wj > 0 and Wji > 0,

• 13^ - o^i • P^f' if Wj > 0 and Wji < 0, degh _ ^

dwji

-0%

-0%

\-o\.

.RVV

.RLU

Pi"- - 0% • P\f if Wj < 0 and w,, > 0,

o^. • p^/- if Wj < 0 and Wji < 0,

(12.54)

5 " = ^^

= ^^

= ^f
= ^^

Wj

'Wj

'Wj

Wj

•o^j

•ol
• « « •

- ," .

(1 -

• (1 -

• (1 -

(1 -

-««•),

-0^).

-««•) '

-S)-

12.3 Learning from Linguistic Rules for Modeling Problems 247

where

(12.55)

(12.56)

(12.57)

(12.58)

As an example, let us assume that we have five linguistic rules in Fig. 12.8.
These linguistic rules are handled as the following linguistic input-output
pairs: {{small, small), small), {{small, large), medium), {{medium, medium),
small), {{large, small), medium), {{large, large), large). We trained a three-
layer feedforward neural network with two input, five hidden, and single out
put units using the five linguistic input-output pairs. In the learning of the
neural network, we used the update rules in (12.48)-(12.49) for ten levels (i.e.,
h=0.1, 0.2, . . . , 1.0) as in the computer simulations in the previous section
for pattern classification problems. Figure 12.9 shows the nonlinear function
obtained by the trained neural network after 1000 epochs. From the com
parison between Fig. 12.8 and Fig. 12.9, we can see that the fitting of the
obtained nonlinear function to the given linguistic rules is very good.

Fig. 12.8. Five linguistic rules for a mod
eling problem

12.3.4 Learning from Linguistic Rules and Numerical Data

As we have already explained in the previous section, linguistic rules and
numerical data can be simultaneously handled in the learning of multi-layer
feedforward neural networks because real numbers as well as linguistic terms
are special cases of fuzzy numbers. As an example, let us assume that we
have two numerical input-output pairs {{{xpi, Xp2),yp)} = {((0.8, 1.0), 0.7),

248 12. Learning of Neural Networks from Linguistic Rules

; ; 0.5

Fig. 12.9. The nonlinear function
depicted by the trained neural net
work. The learning of the neural net
work was performed using the five
linguistic rules in Fig. 12.8

((1.0, 0.8), 0.7)}. We trained the same neural network as in Fig. 12.9 us
ing these two numerical inpu t -ou tpu t pairs together with the five linguistic
rules in Fig. 12.8. Figure 12.10 shows the nonlinear function obtained by the
trained neural network after 1000 epochs. The difference between Fig. 12.9
and Fig. 12.10 corresponds to the eflFect of the two numerical inpu t -ou tpu t
pairs on the learning of the neural network. In Fig. 12.10, we obtained good
fitting to the two numerical inpu t -ou tpu t pairs as well as the five linguistic
rules.

y 0.5

Fig. 12.10. The nonlinear function
depicted by the trained neural net
work. The learning of the neural
network was performed by simulta
neously utilizing the five linguistic
rules in Fig. 12.8 and the two nu
merical input-output pairs

As in the previous section, the learning algorithm for linguistic rules in this
section can handle linguistic rules and numerical da ta with different grades

12.3 Learning from Linguistic Rules for Modeling Problems 249

of importance. As an example, let us assume that we have six linguistic rules
in Fig. 12.11 including the following two linguistic rules of length 1:

If xi is large then y is small,

If X2 is large then y is large.

(12.59)

(12.60)

These two linguistic rules are inconsistent with each other around the top-
right corner of the two-dimensional input space [0, 1] x [0, 1] where both xi
and X2 are large. In addition to the six linguistic rules, we also assume that
a single input-output pair ((1.0, 1.0), 0.7) is given.

Fig. 12.11. Six linguistic rules for a
modeling problem

We trained a neural network in the situation where the linguistic rule
"If xi is large then y is smalV^ in (12.59) is much more important than the
other linguistic rules and the numerical input-output pair. The grade of im
portance of this linguistic rule was specified as 2. The importance grade 0.1
was assigned to the other linguistic rules and the numerical input-output
pair. A neural network with two input, five hidden, and single output units
was trained using the six linguistic values and the single input-output pair
with different grades of importance in the same manner as in the previous
computer simulations. The obtained nonlinear function after 1000 epochs is
shown in Fig. 12.12. In this figure, the output value around the top-right cor
ner is small. This is because the linguistic rule in (12.59) has a higher grade
of importance than the other pieces of available information in the learning
of the neural network. We also performed the same computer simulation in
a different situation where the numerical input-output pair ((1.0, 1.0), 0.7)
is much more important than the other pieces of available information. The
grade of importance of the numerical input-output pair was specified as 2.
The importance grade 0.1 was assigned to all the linguistic rules. The ob
tained nonlinear function after 1000 epochs is shown in Fig. 12.13. In this

250 12. Learning of Neural Networks from Linguistic Rules

figure, the output value around the top-right corner is about 0.7. This is be
cause the numerical inpu t -ou tpu t pair had a higher grade of importance than
the linguistic rules in the learning of the neural network. From the simulation
results in Fig. 12.12 and 12.13, we can see tha t the learning algorithm for
linguistic rules can take into account the importance of each piece of available
information.

y 0.5 \

Fig. 12.12. The nonlinear function
depicted by the trained neural net
work. A much higher grade of impor
tance was assigned to the linguistic
rule "If â i is large then y is smalV

y 0.5 r

Fig. 12.13. The nonlinear function
depicted by the trained neural net
work. A much higher grade of impor
tance was assigned to the numerical
input-output pair ((1.0, 1.0), 0.7)

13. Linguistic Rule Extraction from Neural
Networks

We have already explained the learning of standard feedforward neural net
works from linguistic rules. In this chapter, we describe a fuzzy arithmetic-
based approach to linguistic rule extraction from trained neural networks [72].
The main characteristic feature of this approach is its applicability to arbi
trarily trained feedforward neural networks. Usually simplification methods
of neural networks such as optimal brain damage [27] and structure learning
with forgetting [97] are involved in rule extraction methods. That is, rule
extraction methods usually simplify the structure of neural networks. On the
contrary, the fuzzy arithmetic-based approach tries to extract linguistic rules
without modifying the structure of given neural networks.

Many approaches have been proposed for the extraction of logical rules
from neural networks [46, 149, 167]. Andrews et al. [7] and Duch et al.
[38] include good surveys in this research field. Since the work of Hayashi
[51], fuzzy rule extraction methods from neural networks have also been pro
posed [98, 104, 105, 169]. Many fuzzy rule extraction methods are based on
neuro-fuzzy models, which are fuzzy rule-based systems with neural network
structures. In this chapter, we use standard feedforward neural networks for
linguistic rule extraction. First we explain how linguistic rules of the fol
lowing form can be extracted from arbitrarily trained neural networks for
n-dimensional modeling problems:

Rule Rqi If xi is Aqi and . . . and Xn is Aqn then y is Bq. (13.1)

In the fuzzy arithmetic-based approach, the antecedent part of each linguistic
rule is presented to the trained neural network as a linguistic input vector
Aq = {Aqi^ . . . , Aqn) to calculatc the corresponding fuzzy output value Oq
by fuzzy arithmetic. The consequent part Bq is specified based on the fuzzy
output value Oq corresponding to the linguistic input vector Aq. Next we
explain how linguistic rules of the following form can be extracted for M-
class pattern classification problems with n attributes:

Rule Rqi If xi is Aqi and . . . and Xn is Aqn

then Class Cq with CFq. (13.2)

The consequent class Cq and the rule weight (i.e., certainty grade) CFq are
specified based on the fuzzy output vector Oq — {Oqi, . . . , OqAi) calculated
for the linguistic input vector Aq by fuzzy arithmetic.

252 13. Linguistic Rule Extraction from Neural Networks

13.1 Neural Networks and Linguistic Rules

In Fig. 13.1, we show relations among numerical data, neural networks, lin
guistic rules, and human experts. We briefly explain each relation among
them (i.e., each arrow in this figure).

Human Experts —)• Linguistic Rules: In early studies on fuzzy control,
fuzzy rules were usually obtained from human experts as linguistic knowledge.
The ability to utilize linguistic knowledge is an advantage of fuzzy rule-based
systems over other information processing systems.

Human Experts —>• Neural Networks: The learning of neural networks in
volves many parameter specifications such as the number of hidden layers, the
number of units in each hidden layer, the learning rate, the momentum con
stant, and the stopping condition. These parameters are specified by human
experts (or users).

Numerical Data -^ Linguistic Rules: Recently many approaches have been
proposed for automatically extracting and adjusting linguistic rules from nu
merical data. The arrow from numerical data to linguistic rules is the main
line of recent studies on fuzzy rule-based systems.

Numerical Data -^ Neural Networks: The main advantage of neural net
works over other information processing systems is their high ability to han
dle numerical data. Almost all learning algorithms of neural networks are for
handling numerical data. The arrow from numerical data to linguistic rules
has been the main line of studies on neural networks.

Linguistic Rules -> Neural Networks: This arrow corresponds to the learn
ing of neural networks from linguistic rules, which has been explained in
Chap. 12. Only a few approaches have been proposed in this direction. As
shown in Chap. 12, numerical data and linguistic rules can be simultaneously
used in the learning of neural networks.

Neural Networks -> Linguistic Rules: This arrow corresponds to the lin
guistic rule extraction from neural networks, which is described in this chap
ter. As shown in Fig. 13.1, linguistic rules can be obtained from three differ
ent kinds of sources: human experts, numerical data, and neural networks.
All the obtained linguistic rules can be used in a single linguistic rule-based
system. It is also possible to apply a rule selection method to the obtained
linguistic rules to design a smaller linguistic rule-based system with a higher
performance.

13.2 Linguistic Rule Extract ion for Modeling Problems

In this section, we explain the fuzzy arithmetic-based approach to linguis
tic rule extraction for modeling problems. Linguistic rules of the form in
(13.1) are extracted from arbitrarily trained multi-layer feedforward neural
networks. We assume that a three-layer feedforward neural network with n
input units and a single output unit is given. Our task is to extract linguistic

13.2 Linguistic Rule Extraction for Modeling Problems 253

Fig. 13.1. Relations among
numerical data, neural net
works, linguistic rules, and
human experts

rules from the given neural network. As in the other chapters of this book,
we assume that a set of linguistic terms is given for each of the n input and
single output variables. We also assume that the input space and the out
put space are the n-dimensional unit hypercube [0, 1]"̂ and the unit interval
[0, 1], respectively.

13.2.1 Basic Idea

The antecedent part of each linguistic rule is constructed by combining given
linguistic terms. For simplicity of explanation, let us assume that K linguistic
terms are given for each input variable. In this case, there are K^ combina
tions of antecedent linguistic terms. That is, there are K^ cells in a simple
grid-type linguistic rule table. When we use don^t care for each input vari
able in addition to the K linguistic terms, the total number of combinations
of antecedent linguistic terms is (K -\- 1)^. Each combination of antecedent
linguistic terms corresponds to the antecedent part of a single linguistic rule.

The antecedent part of each linguistic rule is presented to the given neural
network as a linguistic input vector Aq — {Aq\, . . . , ^^n)- The corresponding
fuzzy output Oq from the neural network is calculated by fuzzy arithmetic as
shown in Chap. 11. The consequent part Bq is specified by choosing a single
consequent linguistic term from the given ones. This selection is based on the
difference between the actual fuzzy output Oq and each candidate linguistic
term.

13.2.2 Extraction of Linguistic Rules

Let Oq be the fuzzy output from the neural network when the linguistic vector
Aq — (Agi, . . . , Aqry) is prcscntcd. Our task is to specify the consequent
part Bq of the linguistic rule Rq with the antecedent part Aq using the
fuzzy output Oq. Let us assume that we have K linguistic terms i^i, D25
. . . , DK to describe the output variable. As in Chap. 12, let us define the
difference between Dj and Oq using their /i-level sets [-Dj]̂ = [[i^
and[0,] ; , = [[0 ,] ^ [0 , j , j for pre-specified values of h as

254 13. Linguistic Rule Extraction from Neural Networks

d{Dj^ O,) = ^ / i . d{[Dj]n, [0,]H), (13.3)
h

where

di[Dj]H, [0,]H) = \i[Dj]i - [0,]if + li[D,]^ - [0,]Yr. (13.4)

In computer simulations in this section, we use ten values of /i in (13.3) as in
the previous chapter: h = 0.1, 0.2, . . . , 1.0.

The consequent part Bq of the linguistic rule Rq with the antecedent part
Aq is specified as

d{Bq, Oq) = mm{d{Dj, O,) | j = 1, 2, . . . , K}. (13.5)

That is, the consequent part Bq is the linguistic term with the minimum dif
ference from the actual fuzzy output Oq. For each combination of antecedent
linguistic terms (i.e., for each linguistic vector Aq), the corresponding conse
quent part Bq is specified by (13.5).

13.2.3 Computer Simulations

We illustrate the fuzzy arithmetic-based approach to linguistic rule extraction
from trained neural networks for modeling problems using some computer
simulations. First we consider the neural network that was trained from the
five linguistic rules in Fig. 12.8 in Chap. 12. The nonlinear function realized
by the trained neural network was shown in Fig. 12.9. As in Fig. 12.8, we
assume that the five linguistic terms are given for each of the two input
variables. We also assume that the same five linguistic terms are given for
the output variable.

When we do not use don^t care, the number of combinations of antecedent
linguistic terms is 25. Each combination is presented to the trained neural
network as a linguistic input vector Aq = {Aqi, Aq2). The corresponding
fuzzy output Oq is calculated by fuzzy arithmetic. This calculation is numer
ically performed for the /i-level sets of Aq for h = 0.1, 0.2, . . . , 1.0. The fuzzy
output Oq is compared with each of the five linguistic terms using (13.3).
The linguistic term with the minimum difference from the fuzzy output Oq is
chosen as the consequent part Bq of the linguistic rule Rq with the antecedent
part Aq. For example, let us consider the following linguistic rule:

Rule Rq'. If xi is medium and X2 is sm^all then ^ is Bq. (13.6)

To determine the consequent part Bq, the antecedent part of the linguistic
rule Rq is presented to the trained neural network as the linguistic input
vector {medium, smalt). The corresponding fuzzy output Oq is calculated as
shown in Fig. 13.2. For illustration purposes, the fuzzy output Oq is depicted
using the /i-level sets of Aq for 100 values of h (i.e., h = 0.01, 0.02, . . . , 1.00).
We do not have to perform interval arithmetic on the /i-level sets for such a
large number of different values of h for rule extraction purposes. We use only

13.2 Linguistic Rule Extraction for Modeling Problems 255

ten levels (i.e., h = 0.1, 0.2, . . . , 1.0) in (13.3) to determine the consequent
part Bq. The difference between the fuzzy output Oq and each of the five
linguistic terms is calculated as follows:

d{small, Oq) = 0.0299, (13.7)

d{medium small, Oq) = 0.5738, (13.8)

d{medium, Oq) = 1.0544, (13.9)

d{medium large, Oq) = 4.5037, (13.10)

d{large, Oq) = 6.7851. (13.11)

Since small has the minimum difference among the five linguistic terms, the
consequent part Bq of the linguistic rule î ^ in (13.6) with the antecedent part
{medium, small) is specified as small. Thus we have the following linguistic
rule:

Rule Rqi If xi is medium and X2 is sm^all then y is sm^alL

(13.12)

From Fig. 12.9 in Chap. 12, we can see that the extracted linguistic rule
correctly describes the trained neural network (i.e., the nonlinear function in
Fig. 12.9).

Fig. 13.2. Fuzzy output from the trained
neural network for the linguistic input vec
tor {medium, small)

In the same manner, we determined the consequent linguistic term for
each of the 25 combinations of the antecedent linguistic terms. The extracted
25 linguistic rules are summarized in Fig. 13.3. From the comparison between
Fig. 12.9 in Chap. 12 and Fig. 13.3, we can see that the extracted 25 linguistic
rules describe the trained neural network very well (i.e., they are consistent
with the nonlinear function in Fig. 12.9). We can also see from the comparison
between Fig. 12.8 in Chap. 12 and Fig. 13.3 that the incomplete linguistic
rule-based system in Fig. 12.8 was completed by the linguistic rule extraction
method.

Next we applied the linguistic rule extraction method to the trained neural
network in Fig. 12.10 of Chap. 12. The trained neural network is similar to
that in the above computer simulation because both neural networks were
trained using the same five linguistic rules in Fig. 12.8 of Chap. 12. While
only the five linguistic rules were used in the learning of the neural network in

256 13. Linguistic Rule Extraction from Neural Networks

Mf

MSp

M I M i ML i L

s i

I % t .
MS i MS i M pML|

I S i MS |M
y//4m///M ' WMWA

S I S I MS | M

S I MS | M

S X M S X M X M L X L

0.0
•^1

1.0
Fig. 13.3. Extracted linguistic rules
from the trained neural network in
Fig. 12.9

the above computer simulation, the two numerical inpu t -ou tpu t pairs ((0.8,
1.0), 0.7) and ((1.0, 0.8), 0.7) were also used in the learning of the neural
network in this computer simulation. The extracted linguistic rules from the
trained neural network in Fig. 12.10 are summarized in Fig. 13.4. From the
comparison between Fig. 13.3 and Fig. 13.4, we can see tha t some linguistic
rules are different between these two figures. This means tha t the output
values from the two neural networks are different in such an input region.

M i M i M i ML pML

Msi MS i MS i M | M

si s 1 s IMSJMS

S 1 S 1 S i MS | M S

p i l l
w/m///////M^^^

S | S 1 S 1 MS |MS ^xgxgxg><
0.0

•̂ 1
1.0

Fig. 13.4. Extracted linguistic rules
from the trained neural network in
Fig. 12.10

The linguistic rule extraction method can be used to extract linguistic
rules with don^t care conditions. For example, let us consider the extraction
of the following linguistic rule from the trained neural network in Fig. 12.9
of Chap. 12:

Rule Rq-. If x\ is small then y is Bq^ (13.13)

13.2 Linguistic Rule Extraction for Modeling Problems 257

where the antecedent condition on the second input variable X2 is don^t care.
Since the domain interval of X2 is the unit interval [0, 1], don^t care is rep
resented by [0, 1]. Thus the linguistic vector {small, [0, 1]) is presented to
the trained neural network in Fig. 12.9 of Chap. 12. Figure 13.5 shows the
corresponding fuzzy output Oq calculated by interval arithmetic on the 100
h-level sets of Aq for h = 0.01, 0.02, . . . , 1.00. The consequent part Bq is
specified as medium small by calculating the difference between the fuzzy
output Oq and each linguistic term. The difference between Oq and medium,
small, however, is not small:

d{medium small, Oq) = 0.2242. (13.14)

This is much larger than the minimum difference 0.0299 in the case of the
antecedent part {medium, small) in (13.7). This is because the fuzzy output
in Fig. 13.5 is not similar to any linguistic term.

Fig. 13.5. Fuzzy output from the trained
neural network for the linguistic input vec
tor {small, don^t care)

To determine the consequent part Bq of the linguistic rule Rq in (13.13),
we also examine a union of multiple adjacent linguistic terms (e.g., small or
medium small) as a candidate consequent part Dj in (13.3). The minimum
difference from the fuzzy output Oq is obtained by ^^small or medium small or
medium^^ among all the possible combinations of multiple adjacent linguistic
terms as

d{small or medium small or medium, Oq) — 0.0953. (13.15)

Thus we can extract the following linguistic rule from the trained neural
network:

Rule Rq\ If xi is small then

y is small or medium small or medium. (13.16)

In the calculation of the difference from the fuzzy output Oq, a union of
multiple linguistic terms is handled as a trapezoidal fuzzy set as shown in
Fig. 13.6.

Unions of multiple adjacent linguistic terms can be used not only in the
consequent part but also in the antecedent part of each linguistic rule. For
example, let us consider the following linguistic rule:

258 13. Linguistic Rule Extraction from Neural Networks

Fig. 13.6. Trapezoidal fuzzy set corre
sponds to ^^small or medium small or
medium^^

Rule Rq-. If xi is small or medium small and

X2 is sm,all or medium,sm,all then y is 5^. (13.17)

In this case, the linguistic vector {small or medium, small^ small or medium
small) is presented to the trained neural network. The fuzzy output Oq from
the trained neural network is calculated as shown in Fig. 13.7. The consequent
part Bq is specified from the fuzzy output Oq as

Rule Rq'. If xi is sm,all or medium, sm,all and

X2 is sm,all or m,edium, sm,all then y is sm,alL (13.18)

Fig. 13.7. Fuzzy output from the trained
neural network for the linguistic input
vector (small or medium small, small or
medium small)

13.3 Linguistic Rule Extract ion for Classification
Problems

In this section, we explain the fuzzy arithmetic-based approach to linguistic
rule extraction for pattern classification problems. Linguistic rules of the form
in (13.2) are extracted from arbitrarily trained multi-layer feedforward neural
networks. We assume that a three-layer feedforward neural network with n
input units and M output units is given where M is the number of classes.
Our task is to extract linguistic rules from the given neural network. As in
the previous section, we assume that a set of linguistic terms is given for
each of the n input variables. We also assume that the input space is the
n-dimensional unit hypercube [0, 1]".

13.3 Linguistic Rule Extraction for Classification Problems 259

13.3.1 Basic Idea

As in the case of modeling problems in the previous section, the antecedent
part of each linguistic rule is presented to the given neural network as a
linguistic input vector Aq = {Aqi, . . . , Aqn)- The corresponding fuzzy output
vector Oq = (Ogi, . . . , OqM) from the neural network is calculated by fuzzy
arithmetic. The consequent class Cq and the rule weight (i.e., certainty grade)
CFq are determined using the fuzzy output vector Oq.

When a numerical input vector Xp = {xpi, . . . , Xpn) is presented to the
trained neural network, the corresponding numerical output vector Op =
{opi, . . . , OpM) is calculated. Then the input vector Xp is classified by finding
the maximum output value in the output vector Op. That is, we usually use
the following decision rule based on the single winner output unit:

If ^k {k ^ z),Opk < Opz, then Xp is Class z. (13.19)

The determination of the consequent class Cq is based on the same idea.
That is, the consequent class Cq is determined by finding the maximum
fuzzy output in the fuzzy output vector Oq — {Oqi, -•., Oqu)- The rule
weight CFq is calculated from the overlap between the largest fuzzy output
and the second largest fuzzy output.

13.3.2 Extraction of Linguistic Rules

By directly extending the decision rule in (13.19) to the case of the linguistic
input vector Aq, we have the following decision rule:

If "^k {k^z), Oqk < Oqz, then Aq is Class z. (13.20)

To apply this decision rule to the linguistic input vector Aq, we have to define
the inequality relation Oqk < Oqz between fuzzy numbers. For this purpose,
we use the necessity grade of the inequality between fuzzy numbers that was
introduced by Dubois & Prade [33] for ranking fuzzy numbers. The necessity
grade of the inequality Oqk < Oqz is written as follows:

Ness(0^fc <Oqz) = 1- Foss{Oqk > Oqz)

= 1 - sup{/io,fc(x) A fio,,{y)\x>y, X e^,y e 5R},
(13.21)

where Ness{Oqk < Oqz) is the necessity grade of Oqk < Oqz, and Foss{Oqk >
Oqz) is the possibility grade of Oqk > Oqz- This definition of the necessity
grade is illustrated in Fig. 13.8. Some examples are shown in Fig. 13.9 to
illustrate the definition of the necessity grade.

Using the necessity grade of Oqk < Oqz, let us define the necessity grade
that the linguistic input vector Aq belongs to Class z as follows:

Ness(A^ e Class z) = min{Ness(Ogfc < Oqz) \

A; = l, 2, . . . , M, A : / ^ } . (13.22)

260 13. Linguistic Rule Extraction from Neural Networks

1.0

0.0

^

A

o,uy

Ness(0,,<0,,)

^ '

\ *̂A
_ \ V L ^

0.0 1.0

0.0 1.0

Ness(O,,<O,,)-1.0

Ness(O,,<O,,) = 0.0

Fig. 13.8. Definition of the necessity grade
of the inequality relation between fuzzy
numbers

0.0 1.0

Ness((9,,<O^,) = 0.7

Ness(O^,<O,,)-^0.0

0.0 1.0
Ness(O,,<O,,)==0.0

Ness(O,,<O,,) = 0.6

0.0 1.0

Ness((9,,<O,,) = 0.0

Ness(O,,<O,,)-1.0

Fig. 13.9, Illustration of the definition of the necessity grade for some different
situations

This definition is illustrated in Fig. 13.10 where only Class 3 has a positive
necessity grade (the necessity grades of the other classes are zero).

From the relation between possibility and necessity [33, 36], the following
relation holds for the necessity grade of the inequality relation between fuzzy
numbers:

Ness(0,fc < Og^) • Ness(Og^ < Oqh) = 0. (13.23)

Tha t is, both Oq^ < Oqz and Oqz < Oqk cannot simultaneously have positive
necessity grades (see Fig. 13.9). Now let us assume tha t Class z has a positive
necessity grade for the linguistic input vector Aq (i.e., Ness(Ag G Class z) >
0). From the definition in (13.22), we have

13.3 Linguistic Rule Extraction for Classification Problems 261

Ness(A^ G Class 3)

Fig. 13.10. The necessity grade that
the linguistic input belongs to Class 3

Ness(Ag G Class 2;) > 0 <̂ =̂ Ness(Oqk < Oqz) > 0

for k=: 1,2, ..., M.k^z. (13.24)

From (13.23) and (13.24), we can see that the following relation holds:

Ness(0^^ < Oqk) =0 for k= 1,2, ..,, M,k^z, (13.25)

Thus from (13.22) we have

Ness(Ag G Class A:) = 0 for A: = 1, 2, . . . , M, A; / 2;. (13.26)

This means that only a single class has a positive necessity grade for the
linguistic input vector Aq. When the necessity grade Ness(Ag G Class z) is
positive for Class z, we generate a linguistic rule with Aq in the antecedent
part and Class z in the consequent part. We also use the necessity grade
Ness(Ag G Class z) as the rule weight CFq. Thus we generate the following
linguistic rule when Ness(A^ G Class z) > 0:

If xi is Aqi and . . . and Xn is Aqn

then Class z with CFq = Ness(A^ G Class z). (13.27)

There are many cases where no class has a positive necessity grade (see
Fig. 13.11). In these cases, we do not generate any linguistic rules with the an
tecedent part Aq because we cannot specify the consequent class Cq uniquely.

Fig. 13.11. An example of a fuzzy out
put vector from which the consequent class
cannot be uniquely specified

In this subsection, we have already described the fuzzy arithmetic-based
approach to linguistic rule extraction for classification problems using the

262 13. Linguistic Rule Extraction from Neural Networks

concept of possibility and necessity. This rule extraction method can also be
described using the /i-level set [Aq]h of the linguistic input vector Aq. When
the /i-level set [Aq]h is presented to the trained neural network, the h-level
set [Oq]h of the fuzzy output vector O^ is calculated by interval arithmetic.
The decision rule in (13.19) for the real input vector Xp is extended to the
case of the h-level set [Aq]h of the linguistic input vector Aq as

If ^k {k / z), [Oqk]h < [Oqz]h, then [Aq]h is Class z. (13.28)

We define the inequality relation [Oqk]h < [Oqz]h between the /i-level sets
[Oqk]h and [Oqz]h as

[Oqk]h < [Oqz]h ^ ^ [Oqk]^ < [Oqz]t (13.29)

where [-J^ and [-J^ are the lower and upper limits of the h-level set. This
inequality relation is illustrated in Fig. 13.12.

(a) [Oqk]h < [Oqz]h holds (b) [Oqk]h < [Oqz]h does not hold

Fig. 13.12. Illustration of the inequality relation between the h-level sets [Oqk]h
and [Oqz]h

When the decision rule (13.28) for the h-level set [Aq]h of the linguistic
input vector Aq holds for Class z^ we generate the following interval rule:

If xi is [^gi]^ and . . . and Xn is [^gn]/i then Class z. (13.30)

As shown in Fig. 13.13, there is the lower limit h* of h for which the
decision rule (13.28) holds. That is, /i* is defined as

h* = ini{h \^k{k^ z), [Oqk]h < [Oqz]h\0 < /i < 1}. (13.31)

When the set of h in the righthand side of (13.31) is empty (i.e., there is no h
that satisfies the decision rule in (13.28)), we cannot define /i*. In this case,
we do not extract the linguistic rule with the antecedent part Aq because
the consequent class Cq cannot be uniquely specified (see Fig. 13.11). When
the value of /i* can be defined by (13.31), the rule weight CFq is specified as
follows:

CFq = 1 / l* (13.32)

13.3 Linguistic Rule Extraction for Classification Problems 263

The consequent class Cq is Class z that satisfies the decision rule (13.28). In
this manner, we extract the following linguistic rule from the trained neural
network.

If xi is Aqi and . . . and Xn is Aqn then Class z with CFq — 1 — h*.

(13.33)

As we can see from Fig. 13.10 and Fig. 13.13, the rule weight CFq defined
by the necessity grade Ness(Ag G Class z) is the same as 1 — /i* calculated
from the /i-level set of the linguistic input vector Aq.

1.0 Fig. 13.13. Definition of /i*

13.3.3 Computer Simulations

Using the trained neural network in Fig. 12.2 of Chap. 12, we illustrate the
fuzzy arithmetic-based approach to linguistic rule extraction for classification
problems. In Chap. 12, the neural network was trained from the nine linguistic
rules in Fig. 12.1. We assume that the five linguistic terms are given for each
of the two input variables as in Fig. 12.1 and Fig. 12.2. We examine all the
25 combinations of the five linguistic terms as linguistic input vectors. For
example, let us consider the following linguistic rule:

Rule Rqi If xi is small and X2 is medium then Class Cq with CFq.

(13.34)

To determine the consequent class Cq and the rule weight CFq, the linguistic
input vector {sm,aU, medium) is presented to the trained neural network. The
corresponding fuzzy output vector Oq = (Ogi, Oq2, Oqs) from the neural
network is calculated as shown in Fig. 13.14.

From the fuzzy output vector Oq = {Oqi, Oq2, Oqs) in Fig. 13.14, the
necessity grade that the linguistic input vector Aq={small, medium) belongs
to each class is calculated as follows:

Ness(Ag G Class 1) = 0.76, (13.35)

Ness(Ag G Class 2) = 0.00, (13.36)

Ness(Ag G Class 3) = 0.00. (13.37)

Thus we extract the following linguistic rule:

264 13. Linguistic Rule Extraction from Neural Networks

A
0 . 1 0

$-1

B (D

So.o

0^1

A

1 .& -̂̂
t/3 j

^

s <D

'<0.o'

<^g2

Q.

en
Ut

X)

a (D

^ j S
0.0

i.oh
a ^q3

1.0 0.0 1.0 0.0 1.0

Fig. 13.14. Fuzzy output vector from the trained neural network corresponding to
the linguistic input vector {small, medium)

If xi is small and X2 is medium then Class 1 with 0.76. (13.38)

This linguistic rule is intuitively acceptable from the locations of the nine
linguistic rules in Fig. 12.1 used in the learning of the neural network. The
extracted linguistic rule is also consistent with the classification boundary by
the trained neural network in Fig. 12.2.

Let us consider another linguistic input vector {medium, medium small).
This linguistic input vector corresponds to the following linguistic rule:

Rule Rq : If xi is m^edium. and X2 is m^edium. sm^all

then Class Cq with CFq. (13.39)

We cannot intuitively specify the consequent class Cq of this linguistic
rule from the nine linguistic rules in Fig. 12.1. The linguistic input vector
Aq—{medium, medium small) is presented to the trained neural network.
The corresponding fuzzy output vector Oq = {Oqi, 0^2, Oqs) is calculated
as shown in Fig. 13.15. We can see that the fuzzy outputs Oqi and Oqs have
a large overlap. This indicates that the linguistic input vector is located near
the classification boundary between Class 1 and Class 3. From the fuzzy out
put vector in Fig. 13.15, the necessity grade that the linguistic input vector
Aq={medium, medium small) belongs to each class is calculated as follows:

Ness(A^ G Class 1) = 0.00,

Ness(Ag G Class 2) = 0.00,

Ness(A5 G Class 3) = 0.43.

Thus we extract the following linguistic rule:

If xi is m^edium. and X2 is m^edium. sm^all

then Class 3 with 0.43.

(13.40)

(13.41)

(13.42)

(13.43)

The rule weight of the extracted linguistic rule is small. This indicates that
the extracted linguistic rule is located near the classification boundary.

In the same manner, we examined all the 25 combinations of the five lin
guistic terms. The consequent class of each of the extracted linguistic rules
is shown in Fig. 13.16. Note that each linguistic rule in Fig. 13.16 has a dif
ferent rule weight as shown in (13.38) and (13.43). The extracted linguistic
rules can be viewed as a linguistic rule-based system. In Fig. 13.17, we show

13.3 Linguistic Rule Extraction for Classification Problems 265

a.1.0

CD | \

0.0

a 'g2

1.0

Fig. 13.15. Fuzzy output vector from the trained neural network corresponding to
the linguistic input vector (medium, m,edium small)

the classification boundary depicted by the extracted linguistic rules. From
the comparison between Fig. 13.17 and Fig. 12.2, we can see that the classi
fication boundary by the extracted linguistic rules is similar to that by the
trained neural network.

| C l | C2 i C2 i C2 iC2 |

C l i C2 i C2 i C2 i C 2
\ V ^ ^ P

%,

Y////y-

C l i CI i CI C3 i C 3

W/A

C3 | C 3 C l | CI p C3

C l j C3 i C3 i C3 i C 3 '

S X M S X M X M L X L

0.0 1.0
Fig. 13.16. Extracted linguistic rules
from the trained neural network in
Fig. 12.2

We also extract linguistic rules from the trained neural networks in
Fig. 12.3 and Fig. 12.5. In Fig. 12.3, 30 numerical patterns were used as train
ing data. On the other hand, the neural network in Fig. 12.5 was trained from
the two linguistic rules in Fig. 12.4 in addition to the same 30 patterns. The
classification boundary in Fig. 12.5 is not the same as that in Fig. 12.3 be
cause the two linguistic rules were used only in Fig. 12.5. Extracted linguistic
rules from each neural network are shown in Fig. 13.18 and Fig. 13.19. From
these figures, we can see that the difference between Fig. 12.3 and Fig. 12.5
leads to the difference between Fig. 13.18 and Fig. 13.19.

13.3.4 Rule Extraction Algorithm

In the previous subsection, we used 100 /i-level sets \A^h of the linguistic
input vector A^ to calculate the fuzzy output vector Oq (e.g.. Fig. 13.14 and

266 13. Linguistic Rule Extraction from Neural Networks

Class 1 Class 3

Fig. 13.17. Classification boundary
obtained from the extracted linguistic
rules in Fig. 13.16

C l i C2 i C2 i C2 i C 3
w//m'/////////M^^

Cl| C2 1 C2 1 C3 |C3

VM^//////////^^

Qxf CI ^ CI 1 C3 i c 3

"1
w//m,

ci p CI i

CI i CI i

C3 pC3

W///MW//^
C3 i C 3

S X M S X M X M L X L

0.0 \ 1.0
Fig. 13.18. Extracted linguistic rules
from the trained neural network in
Fig. 12.3

Fig. 13.15). The use of such a large number of level sets was mainly to illus
trate the fuzzy arithmetic-based approach to linguistic rule extraction. Each
linguistic input vector can be examined more efficiently for determining the
consequent class and the rule weight of the corresponding linguistic rule in
the following manner:

Step 1: Examine the /i-level set of the linguistic input vector A^ioi h — X.
If the decision rule in (13.28) does not hold, stop the examination of Aq.
In this case, we do not generate the corresponding linguistic rule. If (13.28)
holds, the consequent class of the linguistic rule is specified as Class z that
satisfies (13.28).
Step 2: Examine the /i-level set of A^ for /i = 0. If the decision rule in
(13.28) holds, stop the examination of Aq. In this case, the rule weight of

13.3 Linguistic Rule Extraction for Classification Problems 267

C2i C2 i C2 i C2 iC2|

^ ^ #
C2i C2 I C2 I C2 iC2|

% VA %

i
C l | CI

^ #
C l | CI I CI I C3 |C3

fe^

CI I C3 | C 3

y///A

Cl i Cl i C3 iC3

S X M S X M X M L X L

0.0
•^1

1.0
Fig. 13.19. Extracted linguistic rules
from the trained neural network in
Fig. 12.5

the corresponding linguistic rule is specified as 1. If (13.28) does not hold for
/i = 0, let /i = 0.5 and Ah = 0.25.
S t e p 3: Examine the /i-level set of Aq. If the decision rule in (13.28) holds,
update the value of h diS h = h — Ah. If (13.28) does not hold, upda te h as
h = h-\- Ah,
S t e p 4: If a pre-specified stopping condition is satisfied, stop the examina
tion of Aq. In this case, we specify the rule weight of the linguistic rule as
1 — h. Otherwise, update the value of Ah as Ah := Ah x 0.5 and return to
Step 3.

In this algorithm, the value of Ah is exponentially decreased asZ\/ i = 0 .25x
(0.5)*~^ where t is the number of iterations of the algorithm. For example,
the termination after nine iterations is equivalent to the stopping condition
Ah < 0.001.

13.3 .5 D e c r e a s i n g t h e M e a s u r e m e n t Cos t

The fuzzy arithmetic-based approach to linguistic rule extraction for clas
sification problems can be viewed as a classification method of uncertain
pat terns by trained neural networks. Such a classification method can be
used to decrease the measurement cost for each new pat tern to be classi
fied. The decrease in the measurement cost is realized in the following two
tricks: to perform a rough measurement of each input variable and to omit
the measurement of some input values.

We illustrate each trick using a neural network with the classification
boundary in Fig. 13.20, which is actually the same as the trained neural
network in Fig. 12.5 used in the previous subsection. When a new pat te rn
Xp = {xpi, Xp2) is to be classified, Xp is presented to the neural network
as an input vector. Then Xp is classified by finding the maximum output

268 13. Linguistic Rule Extraction from Neural Networks

value Opz in the output vector Op = (o^i, 0^2, Ops) from the neural network,
that is, by the decision rule in (13.19). Let us consider the situation where
the precise measurement of the exact values of 2̂ 1 and X2 involves a large
measurement cost. In this case, one may try to classify Xp without measuring
the exact values of Xpi and Xp2. We assume that the measurement cost of Xp
as an interval vector Xp = (X^i, Xp2) is inexpensive in comparison with the
measurement of the exact values of Xpi and Xp2- In Fig. 13.20, we show two
examples of Xp and Xp. As shown in Fig. 13.20, we assume that Xp G Xp
(i.e., Xpi e Xpi and Xp2 E Xp2)-

1.0

0.0

[

[

Class 2

•

1

Class 1

§
f

XB^

1

Clasj

0.0 1.0 Fig. 13.20. Classification boundary of a
trained neural network and new patterns
represented by interval input vectors

In Fig. 13.20, we intuitively think that the new input vector XA can
be classified by the trained neural network using its interval estimation XA
without measuring the exact values of a^ î and XA2' On the contrary, the clas
sification of the new input vector XB niay require its precise measurement
because its interval estimation XB overlaps with the classification bound
ary. These intuitive discussions can be mathematically described using the
following decision rule for the interval input vector Xp-.

lf'^k{ky^Z),Opk<Op then Xp is Class z, (13.44)

where the inequality relation between the interval outputs Opk — [of'̂ , or^]

pz 1 o^A is defined as

pz ^pk < o. pz' (13.45)

and Opz — [o.

Opk < O.

The decision rule in (13.44) for the interval input vector Xp is basically the
same as that for the h-level set [Aq]h of the linguistic input vector Aq illus
trated in Fig. 13.12. When the interval input vector Xp can be classified by
the decision rule in (13.44), the precise measurement of Xp is not necessary.
This is because any input vector Xp in Xp (i.e., ^Xp G Xp) is always classified
as Class z when Xp is classified as Class z by the decision rule in (13.44). For
any numerical input vector Xp and any interval input vector Xp such that

13.3 Linguistic Rule Extraction for Classification Problems 269

Xp G Xp, the inclusion relation Op E Op always holds for the correspond
ing numerical output vector Op = (opi, . . . , OpM) and interval output vector
Op = (Opi, . . . , Opu) from the inclusion monotonicity of interval arithmetic
[6, 126]. From Op G Op, the following relation holds:

Opk < Opz =^ Opk < Opz. (13.46)

This means that Xp is always classified as Class z when Xp is classified as
Class z by the decision rule in (13.44).

In Fig. 13.21, we show the interval output vectors OA and OB from
the trained neural network in Fig. 13.20 corresponding to the interval input
vectors XA and XB, respectively. From this figure, we can see that XB is
not classifiable by the decision rule in (13.44) while XA is classifiable. Thus
the precise measurement is necessary only for XB- This result coincides with
our intuition obtained from Fig. 13.20.

i . O
(D
^

13 >
• 4 — >

US
Cu

^ — > ^
O

0.0

X

1st
UI lit

»
2nd
Ul lit

— 1 1

:t 1
3rd
Ul lit

l . U

>

O
0.0

1

1st
Ul lit

2nd
Ul lit

3rd
unit

(a) Interval output vector OA (b) Interval output vector OB

Fig. 13.21. Interval output vectors corresponding to the interval input vectors XA
and XB

The decision rule for interval input vectors can also be used to classify
incomplete input patterns. In Fig. 13.22, we show an incomplete pattern (?,
0.95) where the first input value has not been measured. Since the pattern
space is the unit square [0, 1] x [0, 1], this incomplete input pattern is rep
resented as an interval input vector Xp == ([0, 1], [0.95, 0.95]). When Xp is
presented to the trained neural network, the corresponding interval output
vector Op is calculated as shown in Fig. 13.23 (a). Thus Xp is classified as
Class 2 by the decision rule in (13.44). It should be noted that an arbitrary
numerical input vector Xp in Xp (i.e., Xp G -^p) IS always classified as Class
2 because Op G Op holds. This means that the measurement of the first input
vector is not necessary for classifying the incomplete pattern (?, 0.95). On
the other hand, no incomplete patterns of the form {xpi, ?) can be classified
in Fig. 13.22. For example. Fig. 13.23 (b) shows the interval output vector
corresponding to the incomplete pattern (0.5, ?). Only when the second input
value is first measured, there is a possibility that the measurement cost can
be decreased in the classification phase for new patterns. The determination

270 13. Linguistic Rule Extraction from Neural Networks

of the measurement orders was studied in [76] where the decrease in the mea
surement cost was demonstrated using some real-world pat tern classification
problems.

1.0

^2

0.0

Class 2

Class 1

0.0

Fig. 13.22. Incomplete pattern (?, 0.95)

>

OH

o

1.0

0.0

1.0

>

O

1st
unit

2nd
unit

3rd
unit

0.0
1st
unit

2nd
unit

3rd
unit

(a) Interval output vector for (?, 0.95) (b) Interval output vector for (0.5, ?)

Fig. 13.23. Interval output vectors corresponding to incomplete input patterns

13.4 Difficulties and Extensions

We have already explained the fuzzy arithmetic-based approach to linguistic
rule extraction for modeling problems and classification problems. One char
acteristic feature of the fuzzy arithmetic-based approach is its applicability to
arbitrarily trained neural networks. It does not require any particular learning
algorithm. It does not require numerical training data, either. Thus we can
apply the fuzzy arithmetic-based approach to arbitrarily trained multi-layer
feedforward neural networks. The high applicability of the fuzzy arithmetic-
based approach, however, does not necessarily mean its high performance. In

13.4 Difficulties and Extensions 271

this section, we explain two difficulties: poor scalability to high-dimensional
problems and undesirable increase of the excess fuzziness in fuzzy outputs.

13.4.1 Scalability to High-Dimensional Problems

When a trained neural network and linguistic terms are given, the fuzzy
arithmetic-based approach examines each combination of linguistic terms. If
we have K linguistic terms for each of n input variables, the total number
of combinations of linguistic terms is {K + 1)^ when don^t care is used as an
additional antecedent fuzzy set. When n is large, it is impossible to examine
all the {K -h l)'^ combinations. Since the available information is only the
trained neural network, we cannot evaluate the importance of each combina
tion of antecedent linguistic terms. We cannot find only a small number of
significant combinations, either. A simple idea for handling high-dimensional
problems is to examine only short linguistic rules with many don^t care con
ditions, which was used in Chap. 4. Another idea is to use numerical data to
find only a small number of significant combinations of antecedent linguistic
terms. We may be able to identify some combinations of antecedent linguistic
terms that cover many training patterns. This idea is somewhat different from
the original task of linguistic rule extraction from trained neural networks in
this chapter. It is rather referred to as linguistic rule extraction from trained
neural networks and numerical data.

13.4.2 Increase of Excess Fuzziness in Fuzzy Outputs

An essential difficulty in the fuzzy arithmetic-based approach is the existence
of excess fuzziness in fuzzy outputs. In the fuzzy arithmetic-based approach,
the fuzzy output vector Oq from the trained neural network is calculated
by fuzzy arithmetic for the linguistic input vector Aq. The linguistic rule
extraction is totally based on the calculated fuzzy output vector Oq as we
have already explained. The problem is that the fuzzy output vector Oq
includes a lot of excess fuzziness.

As shown in Chap. 11, the addition, multiplication, and nonlinear map
ping by the activation function are defined by the extension principle for
fuzzy numbers. This means that the extension principle is locally applied
to the input-output relation of each unit as shown in Fig. 13.24. Since the
extension principle is locally applied to the input-output relation of each
unit, neural networks for linguistic input vectors have the same advantage as
standard multi-layer feedforward neural networks: suitability for parallel dis
tributed calculation. At the same time, the local application of the extension
principle leads to the existence of excess fuzziness in fuzzy outputs.

Let Gk{Aq) be the fuzzy output Oqk from the A:-th output unit when the
linguistic input vector Aq is presented. The fuzzy output vector Oq from
the neural network is written as Oq — G{Aq) = (Gi(Ag),.. . ,GM(^g))-

272 13. Linguistic Rule Extraction from Neural Networks

I 1 Application area of the extension principle

G(X)

Fig. 13.24. Local application of the ex
tension principle to each unit

In the same manner, let gk{xp) be the output Opk from the k-th output
unit when the numerical input vector Xp = {xpi^ . . . , Xpn) is presented to
the same neural network. The output vector Op from the neural network is
written as Op = 9{xp) — {gi{xp), . . . , guixp)). If we globally apply the
extension principle to the mapping g{Xp) = (^i(xp), . . . , guixp)) as shown
in Fig. 13.25, the exact fuzzy output gk{Aq) from the k-th output unit is
defined for the linguistic input vector Aq = (^gi, • • •, Aqn) as

i^9k{A,){y) = m^x{fiA,i{xi) A... A|J^A,r^{xn) \y = gk{x), X e 5R''}.
(13.47)

This global application of the extension principle defines the exact shape of
the fuzzy output when the linguistic input vector Aq is presented to the
nonlinear function gk{x). That is, the global application of the extension
principle exactly describes the mapping of the fuzzy input vector Aq by
the nonlinear function gk{x). The calculation of the fuzzy output gk{Aq) in
(13.47), however, is not easy because gkix) is highly nonlinear. That is, the
calculation in (13.47) involves nonlinear optimization.

The following relation always holds between the fuzzy output Gk{Aq)
defined by fuzzy arithmetic (i.e., the local application of the extension prin
ciple) and the fuzzy output gk{Aq) defined by the global application of the
extension principle:

gk{Aq)CGk{Aq). (13.48)

The problem is that the equality between Gk{Aq) and gk{Aq) does not hold
in general. That is, Gk{Aq) defined by fuzzy arithmetic is not the same as
gk{Aq) defined by the global application of the extension principle. This is
because the definition of Gk(Aq) is based on the local application of the
extension principle.

13.4 Difficulties and Extensions 273

I Application area of the extension principle

g(x)

Fig. 13.25. Global application of the
extension principle to the entire neural
network

Let us explain the difference between the global and local applications of
the extension principle. In the neural network based on fuzzy arithmetic (i.e.,
the local application of the extension principle), the total fuzzy input to the
k-th output unit is calculated as

Netk = Wkl ' Oql +Wk2'Oq2-\- •.. + Wknn ' Oqnn + ^k, (13.49)

where O^i, 0^2, •••5 Oqu^ ^^^ fuzzy outputs from hidden units. In fuzzy
arithmetic in (13.49), Ogi, Oq2, . •., Oqnn t̂re handled as independent fuzzy
numbers. These fuzzy numbers, however, are not independent because they
are written as

Oqj = ~ , J = 1, 2, . . . , riH. (13.50)
l + exp(- E ^ i i '^qi -Sj)

i=l

That is, all the fuzzy numbers Oqi, 0^2, • • •, Oqnn ^^^ calculated from the
same linguistic input vector Aq = (Agi, . . . , Aqn)- In fuzzy arithmetic in
(13.49), this dependence among the fuzzy numbers O^i, 0^2, • • •, Oqnn is not
taken into account. Thus the corresponding fuzzy output Gk{Aq) calculated
by fuzzy arithmetic has larger fuzziness than the fuzzy output gk{Aq) defined
by the global application of the extension principle.

For illustration purposes, let us consider a neural network with a fuzzy
input vector Aq = (3, 2) in Fig. 13.26. For simplicity of explanation, we
assume that all the input, hidden, and output units of this neural network
have the linear activation function: f{x) = x. That is, the output from each
unit is the same as the total input to that unit. When the fuzzy input vector
Aq — (3, 2) is presented to the neural network, the fuzzy output from each
hidden unit is calculated as follows:

Hidden unit C: Oc - / (I • 3 + 1 • 2 + 0) = 5, (13.51)

Hidden unit D: OD = / (I • 3 - 1 • 2 + 0) = 1. (13.52)

274 13. Linguistic Rule Extraction from Neural Networks

These two fuzzy numbers 5 and 1 are shown in Fig. 13.27. Then the fuzzy
output from the output unit is calculated as follows:

Output unit: OE = G(3, 2) = / (I • 5 - 1 • 1 + 0) = 4. (13.53)

This fuzzy output G(3, 2) calculated by fuzzy arithmetic is shown in Fig. 13.28
(a).

2- Xo

bias

0 ;
bias

^
1

Q V
(0^

1 ^
_ \ bias

B)

2 3 4 1 2 3
Fig. 13.26. A neural network with the
linear activation function

1 2 3 4 5 6 7 8

(a) Hidden unit C

Fig. 13.27. Fuzzy outputs from hidden units

- 3 - 2 - 1 0 1 2 3 4 5

(b) Hidden unit D

On the other hand, the exact fuzzy output g{Aq) with no excess fuzziness
is defined by globally applying the extension principle to the entire neural
network. While the calculation oi g{Aq) is very difficult in general, it is easy
in Fig. 13.26 because all the input, hidden, and output units of the neural
network have the linear activation function f{x) = x. The mapping g{Xp)
realized by the neural network is calculated as

g{xp) = 1 • (1 • â pi + 1 • Xp2 + 0) - 1 • (1 • Xpi - 1 • a:p2 + 0) = 2 • Xp2'

(13.54)

13.4 Difficulties and Extensions 275

1 2 3 4 5 6 7

(a) Local application

0 1 2 3 4 5 6 7

(b) Global application
Fig. 13.28. Comparison of fuzzy outputs from the neural network between the
local and global applications of the extension principle

Thus the exact fuzzy output ^(3, 2) with no excess fuzziness is 2-2, which is
shown in Fig. 13.28 (b). The difference between Fig. 13.28 (a) and Fig. 13.28
(b) is the excess fuzziness involved in the fuzzy output G(3, 2) in Fig. 13.28
(a).

Excess fuzziness in fuzzy arithmetic corresponds to excess width in inter
val arithmetic [6, 126]. Calculation of more accurate intervals with less excess
width has been studied in the literature. Methods for decreasing excess width
such as a subdivision method [126] can be used in the fuzzy arithmetic-based
approach to linguistic rule extraction from trained neural networks because
fuzzy output vectors are numerically calculated by interval arithmetic on level
sets of linguistic input vectors [79].

14. Modeling of Fuzzy Input-Output Relations

In this chapter, we explain various topics related to the handling of fuzzi-
fied systems with fuzzy inputs and/or fuzzy outputs. First we describe some
approaches to the modeling of fuzzy number-valued functions. A fuzzy num
ber-valued function with n input variables is written as

y-fix)^ (14.1)

where ^ is a fuzzy output (i.e., fuzzy number), /(•) is a fuzzy number-valued
function, and x — (xi, . . . , Xn) is an n-dimensional non-fuzzy input vector.
In this chapter, we use "~" to clearly denote fuzzy numbers (e.g., y in (14.1)).
We also use "^" for fuzzy number-valued functions such as /(•). Real numbers
are denoted by lower-case letters without "^".

Next we describe some approaches to the modeling of fuzzy mappings
from fuzzy vectors to fuzzy numbers. A fuzzy mapping with n fuzzy inputs
is written as

y = / (*) , (14.2)

where x = {xi,... ,Xn) is an n-dimensional fuzzy vector. Neural networks
described in Chap. 11 can be viewed as approximators of f{x) in (14.2).

Then we describe fuzzy pattern classification where input vectors and/or
classification results are fuzzy. Neural networks used for linguistic rule ex
traction in Chap. 13 are an example of classification systems for fuzzy input
vectors where classification results are not fuzzy. In addition to non-fuzzy
classification of fuzzy input vectors, we explain fuzzy classification of non-
fuzzy, interval, and fuzzy input vectors where classification results are fuzzy.

14.1 Modeling of Fuzzy Number-Valued Functions

In this section, we explain some approaches to the modeling of fuzzy number-
valued functions of the form in (14.1). Fuzzy number-valued functions are
realized by linear fuzzy models, fuzzy rule-based systems, fuzzified Takagi-
Sugeno models, and fuzzified neural networks.

278 14. Modeling of Fuzzy Input-Output Relations

14.1.1 Linear Fuzzy Regression Models

The main line in fuzzy system research has been fuzzy modeling of nonlinear
functions where fuzzy rule-based systems are used as approximators of non
linear mappings from non-fuzzy input vectors to non-fuzzy output values. A
large number of fuzzy modeling methods of real number-valued functions have
been proposed in the literature. On the other hand, much fewer approaches
have been proposed for fuzzy modeling of fuzzy number-valued functions of
the form in (14.1).

An early approach to fuzzy modeling of fuzzy number-valued functions
is the fuzzy regression analysis of Tanaka et al. [163, 164]. They used the
following linear fuzzy model:

y{x) = do + ai ' xi -h ... + cin ' Xn, (14.3)

where x = {xi^ . . . , Xn) is an n-dimensional non-fuzzy input vector, di is a
fuzzy coefficient (i.e., di is a fuzzy number), and y(x) is the fuzzy output
from the linear fuzzy model corresponding to the input vector x. The right
hand side of (14.3) is calculated by fuzzy arithmetic [106].

The membership function of the fuzzy output y{x) can be easily calculated
when each fuzzy coefficient di is specified by a parameterized membership
function. Since triangular fuzzy coefficients have been traditionally used in
fuzzy regression analysis [163, 164], we also assume that each di is a triangular
fuzzy number. As shown in Fig. 14.1, a triangular fuzzy number d is denoted
by its lower limit a^, center a^, and upper limit a^ as a = (a^, a^, a^). In
the same manner, the fuzzy coefficient di is denoted as

a, = (a f , a f , a f) , i = 0 ,1 , . . . , n . (14.4)

In this case, the fuzzy output y{x) is calculated as a triangular fuzzy number
using fuzzy arithmetic:

y{x) = (/(x), y'^ix), y^ix)), (14.5)

where

xi>0 Xi<0

n

2/^(a;)=a^ + ^ a f - X i , (14.7)

Xi>Q Xi<0

A single-input and single-output linear fuzzy model is written as

y{x) ^ do -\-dix. (14.9)

An example of a linear fuzzy model of this form is shown in Fig. 14.2 where

file://-/-dix

14.1 Modeling of Fuzzy Number-Valued Functions 279

Fig. 14.1. A triangular fuzzy number a
(a^ a^, a^)

ao = (1, 1.5, 2) and di = (1, 2, 3). (14.10)

Three lines in Fig. 14.2 correspond to the lower limit y^{x) = 1 + x, center
y^{x) = 1.5 + 2rc, and upper limit y^ {x) = 2 + 3x. Each triangle corresponds
to the membership function of the fuzzy output y{x) for x=1.0, 2.0, 3.0. For
example, y{x) is calculated for a: = 3 as ^(3) == (4, 7.5, 11).

Input value
Fig. 14.2. An example of a
linear fuzzy model y(x) =
(1, 1.5, 2) + (l, 2, 3)x

The linear fuzzy model in (14.3) is determined from numerical input-
output pairs using linear programming. Let us assume that we have m input-
output pairs (iCp, ^p), p = 1, 2, . . . , m, where Xp = (xpi, . . . , Xpn)- The
following linear programming problem is used to determine the linear fuzzy
model from the given input-output pairs:

Minimize Y^{y^{Xp) - y^{xp)),

subject to yp E [y(xp)]h, p = 1, 2, . . . , m.

(14.11)

(14.12)

The objective function is to minimize the total fuzziness of the estimated
fuzzy output y{xp) over the m input-output pairs. The constraint condition
means that the /i-level set of the linear fuzzy model should include all the
given m input-output pairs. This linear programming problem is easily solved

280 14. Modeling of Fuzzy Input-Output Relations

when all the fuzzy coefficients di are symmetric (i.e., when we have an addi
tional constraint condition af = {af + a^)/2 for z=0, 1, . . . , n). When fuzzy
coefficients are asymmetric triangular fuzzy numbers, they are not uniquely
determined from the linear programming problem in (14.11)-(14.12) while
their /i-level sets are uniquely determined. Thus symmetric triangular fuzzy
numbers have been traditionally used in fuzzy regression analysis [163, 164].
Fuzzy regression analysis was extended to the case of asymmetric triangular
and trapezoidal fuzzy coefficients [75] where input-output pairs with dif
ferent importance grades were used as training data. Input-output pairs of
non-fuzzy inputs and fuzzy outputs can also be handled by the linear fuzzy
model [75, 163].

14.1.2 Fuzzy Rule-Based Systems

In Chap. 8, we used linguistic rules of the following type for modeling prob
lems of n-input and single-output nonlinear functions:

Rule Rqi If xi is Aqi and . . . and Xn is Aqn then y is Bq^ (14.13)

where Aqi is an antecedent linguistic term and Bq is a consequent linguistic
term. As we suggested at the end of Chap. 8, linguistic rules can be used
for modeling problems of fuzzy number-valued functions using the following
fuzzy reasoning method [78]:

E /^A,ix) Bq

where S is the linguistic rule-based system (i.e., rule set), and fiAq{x) is the
compatibility grade of the input vector x with the antecedent part Aq. In
this formulation, the calculation of y{x) is performed using fuzzy arithmetic
[106]. When the consequent part Bq of each linguistic rule is a triangular fuzzy
number (& ,̂ 6^, 6^), the estimated fuzzy output y{x) is also calculated as a
triangular fuzzy number y{x)={y^{x), y^{x), y^{x)) in the same manner as
(14.5)-(14.8):

y^{x)= ^ / i X (^) - ^ ^ (14-15)
RqES

Rqes

y^ix)= 5] /zXW-^^ (14-17)

(14.18)

where / i^ S^)
(x)--

RqES

is the normalized

_ fJ^Aqjx)

E MA,(^)'
RqES

compatibility grade:

14.1 Modeling of Fuzzy Number-Valued Functions 281

Since /x^ (x) is non-negative, the calculation of the estimated triangular

fuzzy number y{x) = (y^{x), y^{x)^ y^{x)) is simple in (14.15)-(14.17).
The objective function in (14.11) and the constraint condition in (14.12) in

fuzzy regression analysis will be utilized to determine the consequent part Bq
of each linguistic rule Rq. The consequent part Bq will also be specified in a
heuristic manner from compatible input-output pairs with the corresponding
antecedent part Aq. Many issues are left for future research, which include
the learning of fuzzy rules for modeling problems of nonlinear fuzzy number-
valued functions.

14.1.3 Fuzzified Takagi—Sugeno Models

Fuzzy rules in the Takagi-Sugeno model have linear functions in their conse
quent parts. We extend consequent linear functions to fuzzy number-valued
linear functions. That is, we use fuzzy rules of the following type for modeling
problems of fuzzy number-valued nonlinear functions:

Rule Rq'. If Xi is Aqi and . . . and Xn is Aqn

then yq{x) = bqo-{-bqi'Xi + ...-\- bqn • Xn, (14.19)

where bqi is a fuzzy number coefficient. The estimated fuzzy output y{x) for
the input vector x = (a^i, . . . , x^) is calculated as

E ^A,{x)'yq{x)

RqES

= E f^lM)'y,i^)- (14.20)
Rqes

When each fuzzy number coefficient bqi in (14.19) is a triangular fuzzy number
i^qi^ 6^, 6^), the estimated fuzzy output y{x) is also calculated as a triangular
fuzzy number y{x)=(y^{x), y^{x), y^{x)) where

y^{x)= 5] / x X W - \b^+Y,bf-x,+ Y,bf-xA, (14.21)
RqES \ Xi>0 Xi<0

y^' (x) = E ^X (̂) • ?̂ + E ^^ ^0 ' (14-22)
Rqes \ i=i /

y^ix) = Yl i'AM) • ho'+E ''^ ^̂ + E ^^ ̂ 0 • ^̂ -̂̂ ^̂
Rq^S \ Xi>0 Xi<0 J

As an example, let us consider the following two fuzzy rules:

282 14. Modeling of Fuzzy Input-Output Relations

Rule i^i: If X is Ai then yi{x) = (10, 11, 12) + (0.5, 1, l.b)x, (14.24)

Rule i^2: If ^ is ^2 then y2{x) = (2, 4, 6) + (0, 0.25, 0.5)a:. (14.25)

The consequent linear fuzzy models in (14.24) and (14.25) are shown in
Fig. 14.3. As in Fig. 14.2, each linear fuzzy model in Fig. 14.3 is represented
by three lines: the lower limit, center, and upper limit. When the antecedent
fuzzy sets Ai and A2 have the membership functions in Fig. 14.4, the fuzzy
rule-based system with the above two fuzzy rules represents the nonlinear
fuzzy number-valued function y{x) in Fig. 14.5. In this figure, three thick
curves show the lower limit, center, and upper limit of y{x) while thin lines
show the consequent linear fuzzy models in Fig. 14.3. From Fig. 14.5, we can
see that the extended Takagi-Sugeno model in (14.19)-(14.20) is a combina
tion of multiple linear fuzzy models.

Input value
Fig. 14.3. Consequent linear fuzzy
models yi{x) and y2{x)

Input value
Fig. 14.4. Membership functions of the an
tecedent fuzzy sets Ai and A2

14.1 Modeling of Fuzzy Number-Valued Functions 283

>

t
O

1

20

10

0

y

^^ -^C*

^ ^ ^ ^^.^ ' '""^

" L~>
10

Input value

Fig. 14.5. Nonlinear fuzzy num
ber-valued function y{x) realized
by the two fuzzy rules

14 .1 .4 Fuzzif ied N e u r a l N e t w o r k s

Modeling problems of nonlinear fuzzy number-valued functions can also be
handled by multi-layer feedforward neural networks with fuzzy connection
weights [75]. As in Chap. 11, we use a three-layer feedforward neural network
with n input units and a single output unit to handle modeling problems of
n-input and single-output fuzzy number-valued functions. The inpu t -ou tpu t
relation of each unit of the neural network is fuzzified as follows for the non-
fuzzy input vector Xp = {xpi,

Input units: Or)i — Jur)

X

i = 1

pn)'

2 , . n. (14.26)

Hidden units: Opj — f{netpj), j = 1, 2, . . . , TIH, (14.27)

n

netpj — ^ w) j i • Opi + dj. (14.28)
i-=^\

Output unit: bp — f{netp)^

netp — 2_,'^j ' Opj + 0.
3 = 1

(14.29)

(14.30)

The connection weights Wji^ Wj and biases 9j, 6 are fuzzy numbers in (14.26)-
(14.30). As a result, the activation function / (•) at the hidden and output
units is extended to the fuzzy activation function as in Chap. 11. Fuzzy num
bers with parameterized membership functions (e.g., tr iangular and t rape
zoidal membership functions) are often used as connection weights and bi
ases.

The fuzzified neural network can be trained from numerical inpu t -ou tpu t
pairs (Xp, i/p), p = 1, 2, . . . , m, so tha t the following relation is approximately
satisfied [75]:

284 14. Modeling of Fuzzy Input-Output Relations

Vp e [Op]h, p = 1, 2, . . . , m, (14.31)

where [dp]h is the /i-level set of the fuzzy output dp from the fuzzified neural
network when the input vector Xp is presented. The inclusion relation in
(14.31) is rewritten as

{5p]i <yp< [op]^, (14.32)

where [•]^ and [•]^ denote the lower and upper limits of the /i-level set. The
following cost function is used for the /i-level set [dp]h of the fuzzy output dp:

^ph = \- '^ph • iVp - [optf + \ • <ft • {Vp - [5p\l)\ (14.33)

where u^^ and uj^^ can be viewed as the penalties related to the squared
errors for the lower and upper limits of the /i-level set [o^]^, respectively. The
values of 00^^^ and UJ^^ are specified as follows depending on whether the two
inequalities in (14.32) are satisfied or not:

{^ph^ ^ph)

(1,6), iiyp< [dp]i<[dp]l,

{e.e), inop]k<yv<[op]l^ (14.34)

{e, 1), inop\h<[op\l<yp.

where £ is a small positive constant (i.e., 0.01). The specification of (ct;̂ ,̂ oo^j^)
in (14.34) means that the penalty is high only when the corresponding in
equality is not satisfied in (14.32). A learning algorithm can be derived for the
fuzzy connection weights and biases from the cost function (14.33). When the
inequality relation in (14.32) is satisfied for an input-output pair, the penal
ties u^^ and CJK are very small. Thus the adjustment of the fuzzy connection
weights and biases is also very small. The learning of the fuzzified neural
network is significant only when the input-output pair does not satisfy the
inequality relation in (14.32). In this manner, the learning of the fuzzified
neural network leads to approximate satisfaction of the inequality relation in
(14.32).

Using 51 input-output pairs in Fig. 14.6, we trained a fuzzified neural
network with a single input unit, five hidden units, and a single output unit.
Asymmetric triangular fuzzy numbers were used as connection weights and
biases. The learning of the fuzzified neural network was performed using the
cost function in (14.33) for h = 0.2 and h = 1. That is, the cost function for
the input-output pair (cCp, yp) was

e p = o • ^pO.2 • iVp - [Op]o.2? + 7; ' ^pO.2 • iVp - [Op]o.2?

+ 0 • < • (yp - [^]i)' + o • < i • (yp - [^]i)'' (14.35) ~-W^l-(t /p-[0p]f)2 + i

Since we used asymmetric triangular fuzzy numbers for connection weights
and biases, the 1-level set of the fuzzy output bp had no width (i.e., [o^Jf

14.2 Modeling of Fuzzy Mappings 285

— [^p]F)- Thus ujpf^ and cj^^ were always specified as cj^^ = 1 and a;̂ ^ = 1
for h = 1. This means that the standard squared error was used for the
learning of the fuzzified neural network for the 1-level set of the fuzzy output
dp. On the other hand, the learning for the 0.2-level set was performed so
that the input-output pair is approximately included in the 0.2-level set of
the fuzzy output. For details of the learning algorithm, see Ishibuchi & Nii
[75]. Three curves in Fig. 14.6 show the 1-level set and the 0.2-level set of
the nonlinear fuzzy number-valued function obtained by the learning of the
fuzzified neural network. From this figure, we can see that the 1-level set is
similar to simulation results using the standard back-propagation algorithm
[146]. We can also see that the 0.2-level set approximately includes all the
given input-output pairs.

y
A

1.0

>

| H 0.5

o

0.2-level

0.2-level

0.0 »—
0.0 0.5

Input value
1.0

-^x
Fig. 14.6. Nonlinear fuzzy
number-valued function ob
tained by the learning of a
fuzzified neural network

14.2 Modeling of Fuzzy Mappings

In this section, we explain the approximate realization of fuzzy mappings
from fuzzy input vectors to fuzzy output values. Such a fuzzy mapping is
obtained by extending the non-fuzzy input vector x — (a^i, . . . , Xn) in the
previous section to the fuzzy input vector x •= {xi^ . . . , Xn)-

14.2.1 Linear Fuzzy Regression Models

Sakawa & Yano [148] extended the linear fuzzy model in (14.3) to the case
of the fuzzy input vector x = (xi, . . . , x^) as

y[x) = ao + ai • xi -F . . . -h a„ (14.36)

286 14. Modeling of Fuzzy Input-Output Relations

This model can be viewed as an approximator of fuzzy mappings from fuzzy
input vectors to fuzzy numbers. The fuzzy output y{x) in (14.36) is calculated
by fuzzy arithmetic. Since the calculation of the fuzzy output y{x) involves
the product of fuzzy numbers (i.e., â • x«), the membership function of y{x)
cannot be written in a parameterized form even when both Xi and â are
triangular fuzzy numbers (see Fig. 14.7). To numerically calculate the mem
bership function of y{x)^ interval arithmetic is used on the /i-level set of the
fuzzy input vector x as in fuzzified neural networks.

Fig. 14.7. Product of two fuzzy
numbers

14.2.2 Fuzzy Rule-Based Systems

Nonlinear fuzzy number-valued functions are approximately realized by lin
guistic rules in (14.13) using the fuzzy reasoning method in (14.14). The
non-fuzzy input vector x in the fuzzy reasoning method in (14.14) can be
extended to the fuzzy input vector x as

where /i^g (x) is the compatibility grade of the fuzzy input vector x with the
antecedent part Aq of the linguistic rule Rq in (14.13). Since the compatibility
grade JULA (^) is a non-negative real number, the membership function of
the fuzzy output y(x) can be represented in a parameterized form as in
(14.15)-(14.17) when the consequent linguistic term Bq has a parameterized
membership function.

There are many issues to be discussed in future studies. One issue is
the definition of the compatibility grade /lAq (^) of the fuzzy input vector x
with the antecedent part Aq of the linguistic rule Rq. Another issue is rule
generation for modeling problems of fuzzy mappings.

14.2.3 Fuzzified Takagi-Sugeno Models

The fuzzified Takagi-Sugeno model in (14.19)-(14.20) for modeling problems
of nonlinear fuzzy number-valued functions can be further extended to handle

14.3 Fuzzy Classification 287

fuzzy mappings. Fuzzy rules of the form in (14.19) are further fuzzified as

Rule Rqi If xi is Aqi and . . . and Xn is Aqn

then yq{x) = bqo + bqi-xi-\-... + bqn • Xn- (14.38)

As a result, the fuzzy reasoning method in (14.20) is modified as

E fJ^A,{x) 'Vqix)

y{x) = ^ ^ - ^ . (14.39)

Rqes

Since the membership function of the fuzzy output from the consequent lin
ear fuzzy model yq{x) cannot be represented in a parameterized form, the
calculation of the fuzzy output y{x) from the fuzzy rule-based system is nu
merically performed on level sets of the fuzzy input vector x.

14.2.4 Fuzzified Neural Networks

The fuzzified neural network with the non-fuzzy input vector x in the previous
section can be extended to the case of the fuzzy input vector x = {xi,... ^Xn)
as

Input units: ô ^ = ^g^, i = 1, 2, . . . , n. (14.40)

Hidden units: Oqj = f{netqj), j = 1, 2, . . . , UH^ (14.41)

n

'^^tqj = X^^i« ' ^qi + ^i- (14.42)
i=l

Output unit: Oq = f{netq)^ (14.43)

riH

netq = ^Wj ' Oqj -I- 9. (14.44)

Fuzzified neural networks of this type are trained using input-output pairs
of fuzzy inputs and fuzzy outputs. A learning method similar to the back-
propagation algorithm was proposed in [64] for adjusting the fuzzy connection
weights and fuzzy biases. The learning was performed by tuning each parame
ter of the parameterized membership function of each fuzzy connection weight
and bias. The learning of fuzzified neural networks was numerically examined
in [77] where linguistic rules were used as training data.

14.3 Fuzzy Classification

In this section, we explain fuzzy classification by multi-layer feedforward
neural networks. In addition to fuzzy classification of fuzzy patterns, we

288 14. Modeling of Fuzzy Input-Output Relations

also explain fuzzy classification of non-fuzzy and interval patterns. For an
n-dimensional pattern classification problem with M classes, we use a three-
layer feedforward neural network with n input units and M output units.

14.3.1 Fuzzy Classification of Non-Fuzzy Patterns

A non-fuzzy input vector Xp — {x^i, . . . , Xpn) is usually classified by finding a
single winner output unit with the maximum output value in the correspond
ing output vector Op — {opi, . . . , O^M) from the trained neural network. Each
output value Opk can be interpreted as the grade that the input vector Xp
belongs to each class. When only a single element of the output vector Op
is approximately equal to 1 and all the other (M — 1) elements are approxi
mately equal to 0, we may have high confidence about the classification result
of the input vector Xp. On the other hand, the confidence about the classifi
cation result is low when no element is close to 1. The confidence is also low
when many elements are close to 1.

Two rejection methods examined in Cordelia et al. [22] correspond to the
above intuitive discussions on the confidence about the classification result
of the input vector Xp, One rejection method is to introduce a minimum
requirement /Smax on the maximum output value. That is, the classification
of Xp is rejected when the following condition does not hold:

Opk* = max{Opi , Op2, . . . ,Opfc} > ^max- (14.45)

The other method is to introduce a minimum requirement /̂ difference on the
difference between the largest and second largest output values. That is, the
classification of Xp is rejected when the following condition does not hold:

Opk* — Opk** > /^difference, (14.46)

where Opk* is the largest output value and Opk** is the second largest output
value. When we use a rejection method such as (14.45) and (14.46), the
pattern space is divided into (M+l) subspaces that correspond to M decision
regions and a single rejection region.

These two rejection methods are based on standard feedforward neural
networks. Special neural network structures and/or learning algorithms were
also proposed for performing pattern classification with a reject option [8,
62, 142]. We explain a simple modification of the back-propagation algorithm
by Ishibuchi et al. [62] using the two-class pattern classification problem in
Fig. 14.8 where 21 patterns are given in the unit interval [0, 1]. We trained a
three-layer feedforward neural network with a single input unit, five hidden
units, and a single output unit. The target tp was specified for the input Xp
as

{ 1, if Xo is from Class 1,
(14.47)

0, if Xp is from Class 2.

14.3 Fuzzy Classification 289

The standard back-propagation algorithm was used for the learning of the
neural network using the learning rate 0.25 and the momentum constant 0.9.
Figure 14.8 shows the output from the trained neural network after 1000
epochs. From this figure, we can see that the output is not close to 0 or 1 for
the input in the overlap region [0.30, 0.65] of patterns from diflFerent classes. In
this case, rejection methods may work well for identifying the overlap region.
Learning results of neural networks strongly depend on parameter specifica
tions such as the number of hidden units and the stopping condition. Figure
14.9 shows a simulation result after 50000 epochs using a three-layer feed
forward neural network with 50 hidden units. In this case, rejection methods
do not work well for identifying the overlap region of patterns from different
classes.

•: Class 1 (target =1) O : Class 2 (target = 0)

0.5
Input value

Fig. 14.8. A simulation result
after 1000 epochs using a three-
layer feedforward neural net
work with five hidden units

I
>

1

1.0

0.0 <

• : Class 1 (targ

Tl"fT"

)0(bQc!)0 'VJ 'V!

et = l) O : Class 2 (tar^

^ . _ . .

ly-U' 1 1 i>

= 0)

0.0 0.5
Input value

1.0

Fig. 14.9. A simulation re
sult after 50000 epochs using
a three-layer feedforward neural
network with 50 hidden units

Ishibuchi et al. [62] slightly modified the back-propagation algorithm for
determining the lower limit o^ and the upper limit o^ of the output Op, which
are illustrated in Fig. 14.10. When they determine the lower limit o^, they
use the following cost function in the learning of a neural network:

290 14. Modeling of Fuzzy Input-Output Relations

4 = \-^i-{tp-o';?, (14.48)

where o^ is the output from the neural network for the input vector Xp, and
(jjp is specified using a positive small real number e as

(14.49)

On the other hand, they use the following cost function in the learning of
another neural network when we determine the upper limit o^:

s'' = ^ - < - (* p - 0 ' ' (14.50)

where o^ is the output from the neural network for the input vector Xp and

I, iitr> = 1,
< = < (' ' ^' (14.51)

£, if tp = 0.

The basic idea of the above weighting scheme in (14.48)-(14.51) is to
approximately include the input-output pair (xp, tp) in the interval [o^ , o^].
We have already explained the same idea for the learning of fuzzified neural
networks in Sect. 14.1. It was shown that good results were obtained by
gradually decreasing e from 1 during the learning of neural networks. In the
above explanation, two independent neural networks are used to represent
the interval [o^ , o^]. It is also possible to use a single interval neural network
[86].

• : Class 1 (target =1) O : Class 2 (target = 0)
A

1.0 I—

1

o
O.OQOCboeo ' o ' o I o l o • — I — I — 1 ^ . X

^'^ ^-^ . ^'^ Fig. 14.10. Lower and upper
Input value Yimits of the output o^

As shown in Fig. 14.10, the output interval [o^, o^] in the overlap region
of patterns from different classes is approximately equal to [0, 1]. Thus we can
use the following decision rules with a rejection option for two-class pattern
classification problems:

14.3 Fuzzy Classification 291

If ^{Op + o^) > 0.75 then Xp is Class 1, (14.52)

If ^(Op + Op) < 0.25 then Xp is Class 2, (14.53)

If 0.25 < l{o^+o^)<0.75

then the classification of x^ is rejected, (14.54)

where 0.25 and 0.75 are user-definable threshold values (we can use other
combinations of threshold values, e.g., 0.1 and 0.9, 0.4 and 0.6, etc.). These
decision rules can be easily extended to a more general case with multiple
classes.

14.3.2 Fuzzy Classification of Interval Patterns

We have already explained the learning of standard feedforward neural net
works using interval input vectors for pattern classification problems in Sect.
12.3. We have also explained the classification of interval input vectors us
ing trained neural networks. Let O^ — (Opi, . . . , Opu) be the interval
output vector from a trained neural network for the interval input vector
Xp = (Xpi, . . . , Xpn)- When the following relation holds for Class z, the
interval input vector Xp is classified as Class z:

If "^k {ki^z), ô fc < o^^, then Xp is Class z, (14.55)

where o^^ is the upper limit of the interval output Opk from the k-ih. output
unit, and o^^ is the lower limit of the interval output Opz from the ^-th output
unit. If there is no class satisfying this relation, the classification of Xp is
rejected.

When the classification of Xp is rejected, we can specify a set of possible
classes using the following decision rule.

If ^k,o^^ < Opj^, then Xp is not Class z. (14.56)

For example, let us consider the interval vector Xp in Fig. 14.11 where the
classification boundary is also shown using a trained neural network. The
corresponding output vector from the trained neural network is shown in
Fig. 14.12. Since no class satisfies the condition in (14.55), the classification
of Xp is rejected. The set of possible classes is identified as Class 2 and Class
3 because we know from the decision rule in (14.56) that Xp is not Class 1.

14.3.3 Fuzzy Classification of Fuzzy Patterns

We have already explained the learning of standard feedforward neural net
works using linguistic input vectors for pattern classification problems in
Sect. 12.2. We have also explained the classification of linguistic input vec
tors using trained neural networks in Sect. 13.3. Let dp = (dpi, . . . , O^M) be

292 14. Modeling of Fuzzy Input-Output Relations

Xo

X i
Fig. 14.11. Interval vector and classifica
tion boundary

l . U

1
-3

O
0.0

— 1 1

^
1st
UI lit

— 1 1 —

1
2nd
Ul lit

^

, j

3rd
Ul lit

Fig. 14.12. Interval output vector from the
trained neural network with three output units

the fuzzy output vector from a trained neural network for the fuzzy input
vector Xp = {xpi, . . . , Xpn)- The classification of the fuzzy input vector Xp is
performed using the procedure in Sect. 13.3.4. The classification procedure
is based on the following decision rule on the /i-level set of the fuzzy input
vector Xpi

If ^k{k ^ z), [dpk]h < [opz]h, then [xp]h is Class z, (14.57)

where [5^^]^ is the upper limit of the /i-level set [dpk]h of the fuzzy output
Opk from the fc-th output unit, and [dpz]^ is the lower limit of the /i-level
set [dpz]h of the fuzzy output Opz from the z-ih output unit. The confidence
of the classification is specified as (1 — /i*) where /i* is the minimum level
for which (14.57) holds. By introducing the minimum requirement for the
confidence, we can reject the classification of patterns with low confidence.

14.3.4 Effect of Fuzzification of Input Patterns

It was suggested in [74] that fuzzification of training patterns leads to higher
generalization ability of trained neural networks in some cases. Let us assume
that we have m training patterns Xp = (xpi, . . . , Xpn),p = 1, 2, . . . , m. Each
attribute value Xpi is fuzzified as a symmetric triangular fuzzy number Xpi
as shown in Fig. 14.13 where Atraining is a small real number that controls

14.3 Fuzzy Classification 293

the amount of the at tached fuzziness. Figure 14.14 demonstrates the effect of
fuzzification of training pat terns . Non-fuzzy training pat terns were used in the
learning of a three-layer feedforward neural network by the back-propagation
algorithm in Fig. 14.14 (a). On the other hand, fuzzified training pat terns
with Atraining = 0.1 wcrc uscd in Fig. 14.14 (b). The 0-level sets of the fuzzified
training pat terns are depicted by squares in Fig. 14.14 (b) for four pat terns .
It should be noted tha t not only the four pat terns but also the other training
pat terns in Fig. 14.14 (b) were fuzzified in the learning of the neural network.
Fuzzification can also be used in the classification phase of new pat terns by
trained neural networks.

Fig. 14.13. Fuzzification of each input
value Xpi to a symmetric triangular fuzzy
number Xpi

•:Class 1 O :Class 2 A :Class3

^2 0.5 h

••.Class 1 O :Class 2 A :Class3

l.Or

^2 0.5

0.0

1 • • 1 1 t I
1 • 1 • 1 ^

1 1 ' • • 1 A • A

r o o , — ,

o I I
, o o|

0.0 0.5 1.0

(a) Learning from non-fuzzy patterns (b) Learning from fuzzified patterns

Fig. 14.14. Comparison between the learning from non-fuzzy training patterns
and the learning from fuzzified training patterns

References

1. Abe, S., Lan, M.-S. (1995): A Method for Fuzzy Rules Extraction Directly from
Numerical Data and Its Application to Pattern Classification. IEEE Transac
tions on Fuzzy Systems, 3(1), 18-28

2. Abe, S., Lan, M.-S., Thawonmas, R. (1996): Tuning of a Fuzzy Classifier Derived
from Data. International J of Approximate Reasoning, 14(1), 1-24

3. Abe, S., Thawonmas, R. (1997): A Fuzzy Classifier with Ellipsoidal Regions.
IEEE Transactions on Fuzzy Systems, 5(3), 358-368

4. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I. (1996):
Fast Discovery of Association Rules. In Fayyad, U.M., Piatetsky-Shapiro, G.,
Smyth, P., Uthurusamy, R., eds.. Advances in Knowledge Discovery &; Data
Mining, 307-328. AAAI Press, Menlo Park

5. Agrawal, R., Srikant, R. (1994): Fast Algorithms for Mining Association Rules.
In Proceedings of 20th International Conferencerence on Very Large Data Bases,
487-499. Expanded version is available as IBM Research Report RJ9839

6. Alefeld, G., Herzberger, J. (1983): Introduction to Interval Computations. Aca
demic Press, New York

7. Andrews, R., Diederich, J., Tickele, A.B. (1995): Survey and Critique of
Techniques for Extracting Rules from Trained Artificial Neural Networks.
Knowledge-Based Systems, 8(6), 373-389

8. Archer, N.P., Wang, S. (1991): Fuzzy Set Representation of Neural Network
Classification Boundary. IEEE Transactions on Systems, Man, and Cybernetics,
21(4), 735-742

9. Bacchus, F., Grove, A.J., Halpern, J.Y., Koller, D. (1996): From Statistical
Knowledge Bases to Degrees of Belief. Artificial Intelligence, 87(1-2), 75-143

10. Berenji, H.R., Khedkar, P. (1992): Learning and Tuning Fuzzy Controllers
Through Reinforcements. IEEE Tran on Neural Networks, 3(5), 724-740

11. Bien, Z., Yu, W. (1995): Extracting Core Information from Inconsistent Fuzzy
Control Rules. Fuzzy Sets and Systems, 71(1), 95-111

12. Blum, A.L., Langley, P. (1997): Selection of Relevant Features and Examples
in Machine Learning. Artificial Intelligence, 97(1-2), 245-271

13. Bonarini, A. (1999): Comparing Reinforcement Learning Algorithms Applied
to Crisp and Fuzzy Learning Classifier Systems. In Proceedings of the Genetic
and Evolutionary Computation Conferencerence, 52-67

14. Booker, L.B., Goldberg, D.E., Holland, J.H. (1989): Classifier Systems and
Genetic Algorithms. Artificial IntelHgence, 40(1-3), 235-282

15. Box, G.E.P., Jenkins, G.M. (1970): Time Series Analysis: Forecasting and
Control. Holden-Day, San Francisco

16. Buckley, J.J., Hayashi, Y. (1994): Fuzzy Neural Networks: a Survey. Fuzzy
Sets and Systems, 66(1), 1-13

17. Carse, B., Fogarty, T.C., Munro, A. (1996): Evolving Fuzzy Rule Based Con
trollers Using Genetic Algorithms. Fuzzy Sets and Systems, 80(3), 273-293

296 References

18. Casillas, J., Cordon, O., Herrera, F., Magdalena, L., eds. (2003): Accuracy
Improvements in Linguistic Fuzzy Modeling. Physica-Verlag, Heidelberg

19. Casillas, J., Cordon, O., Herrera, F., Magdalena, L., eds. (2003): Interpretabiity
Issues in Fuzzy Modeling. Physica-Verlag, Heidelberg

20. Castillo, L., Gonzalez, A., Perez, P. (2001): Including a Simplicity Criterion in
the Selection of the Best Rule in a Genetic Fuzzy Learning Algorithm. Fuzzy
Sets and Systems, 120(vol 2), 309-321

21. Coello Coello, C.A., van Veldhuizen, D.A., Lamont, G.B. (2002): Evolutionary
Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers,
Boston

22. Cordelia, L.P., Stefano, C. De, Tortorella, F., Vento, M. (1995): A Method for
Improving Classification Reliability of Multilayer Perceptrons. IEEE Transac
tions on Neural Networks, 6(5), 1140-1147

23. Cordon, O., Herrera, F. (2000): A Proposal for Improving the Accuracy of
Linguistic Modeling. IEEE Transactions on Fuzzy Systems, 8(3), 335-344

24. Cordon, O., Herrera, F., Hoffmann, F., Magdalena, L. (2001): Genetic Fuzzy
Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge Bases. World
Scientific Publishers, Singapore

25. Cordon, O., Herrera, F., Peregrin, A. (1997): Applicability of the Fuzzy Oper
ations in the Design of Fuzzy Logic Controllers. Fuzzy Sets and Systems, 86,
15-41

26. Cordon, O., Jesus, M.J. Del, Herrera, F. (1999): A Proposal on Reasoning
Methods in Fuzzy Rule-based Classification Systems. International Journal of
Approximate Reasoning, 20, 21-45

27. Cun, Y. Le, Denker, J.S., Solla, S.A. (1990): Optimal Brain Damage. In
Touretzky, D.S., ed.. Advances in Neural Information Proceedingsssing Systems
2, 598-605. Morgan Kaufmann, San Mateo

28. Deb, K. (2001): Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, Chichester

29. Deb, K., Pratap, A., Agrawal, S., Meyarivan, T. (2002): A Fast and Elitist Mul-
tiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2), 182-197

30. Dougherty, J., Kohavi, R., Sahami, M. (1995): Supervised and Unsupervised
Discretization of Continuous Features. In Proceedings of 12th International
Conferencerence on Machine Learning, 194-202

31. Dubois, D., Lang, J., Prade, H. (1994): Automated Reasoning Using Possi-
bilistic Logic: Semantics, Brief Revision, and Variable Certainty Weights. IEEE
Transactions on Knowledge and Data Engineering, 6(1), 64-71

32. Dubois, D., Lang, J., Prade, H. (1994): Possibilistic Logic. In Gabbay, D.M.,
Hogger, C.J., Robinson, J.A., eds., Handbook of Logic in Artificial Intelligence
and Logic Programming, Volume 3: Nonmonotonic Reasoning and Uncertain
Reasoning, 439-513. Oxford University Press, Oxford

33. Dubois, D., Prade, H. (1983): Ranking Fuzzy Numbers in the Setting of Pos
sibility theory. Information Sciences, 30(3), 183-224

34. Dubois, D., Prade, H. (1987): The Principle of Minimum Specificity as a Basis
for Evidential Reasoning. In Bouchon, B., Yager, R.R., eds., Uncertainty in
Knowledge Based Systems (Lecture Notes in Computer Science 286), 75-84.
Springer-Verlag, Berlin

35. Dubois, D., Prade, H. (1988): Default Reasoning and Possibility Theory. Ar
tificial Intelligence, 35(2), 243-257

36. Dubois, D., Prade, H. (1988): Possibility theory. Plenum Press, New York
37. Dubois, D., Prade, H. (1996): What Are Fuzzy Rules and How To Use Them.

Fuzzy Sets and Systems, 84(2), 169-185

References 297

38. Duch, W., Adamczak, R., Grabczewski, K. (2001): A New Methodology of
Extraction Optimization and Application of Crisp and Fuzzy Logical Rules.
IEEE Transactions on Neural Networks, 12(2), 277-306

39. Dunyak, J.P., Wunsch, D. (1999): Fuzzy Number Neural Networks. Fuzzy Sets
and Systems, 108(1), 49-58

40. Dunyak, J.P., Wunsch, D. (2000): Fuzzy Regression by Fuzzy Number Neural
Networks. Fuzzy Sets and Systems, 112(3), 371-380

41. Elomaa, T., Rousu, J. (1999): General and Efficient Multisplitting of Numerical
Attributes. Machine Learning, 36(3), 201-244

42. Emami, M.R., Turksen, LB., Goldenberg, A.A. (1998): Development of a Sys
tematic Methodology of Fuzzy Logic ModeHng. IEEE Transactions on Fuzzy
Systems, 6(3), 346-361

43. Emami, M.R., Turksen, LB., Goldenberg, A.A. (1998): Development of a Sys
tematic Methodology of Fuzzy Logic Modeling. IEEE Transactionsctions on
Fuzzy Systems, 6(3), 346-361

44. Emami, M.R., Turksen, LB., Goldenberg, A.A. (1999): A Unified Parameter
ized Formulation of Reasoning in Fuzzy Modeling and Control. Fuzzy Sets and
Systems, 108, 59-81

45. Fayyad, U.M., Irani, K.B. (1993): Multi-interval Discretization of Continuous-
valued Attributes for Classification Learning. In Proceedings of 13th Interna
tional Joint Conferencerence on Artificial Intelligence, 1022-1027

46. Fu, L. (1994): Rule Generation from Neural Networks. IEEE Transactions on
Systems, Man, and Cybernetics, 24(8), 1114-1124

47. Funahashi, K. (1989): On the Approximate Realization of Continuous Map
pings by Neural Networks. Neural Networks, 2, 183-192

48. Goldberg, D.E. (1989): Genetic Algorithms in Search Optimization and Ma
chine Learning. Addison-Wesley, Reading, MA

49. Goldszmidt, M., Pearl, J. (1996): Qualitative Probabilities for Default Rea
soning, Belief Revision and Causal Modeling. Artificial Intelligence, 84(1-2),
57-112

50. Halgamuge, S.K., Glesner, M. (1994): Neural Networks in Designing Fuzzy
Systems for Real World Applications. Fuzzy Sets and Systems, 65(1), 1-12

51. Hayashi, Y. (1991): A Neural Expert System with Automated Extraction
of Fuzzy If-Then Rules and Its Application to Medical Diagnosis. In Lipp-
mann, R.P., Moody, J.E., Touretzky, D.S., eds.. Advances in Neural Information
Proceedingsssing Systems 3, 578-584. Morgan Kaufmann, San Mateo

52. Hayashi, Y., Buckley, J.J., Czogala, E. (1993): Fuzzy Neural Network with
Fuzzy Signals and Weights. International Journal of Intelligent Systems, 8(4),
527-537

53. Herrera, F., Lozano, M., Verdegay, J.L. (1995): Tuning Fuzzy Logic Con
trollers by Genetic Algorithms. International Journal of Approximate Rea
soning, 12(3/4), 299-315

54. Herrera, F., Verdegay, J.L., eds. (1996): Genetic Algorithms and Soft Comput
ing. Physica-Verlag, Heidelberg

55. Holland, J.H. (1975): Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor

56. Holte, R.C. (1993): Very Simple Classification Rules Perform Well on Most
Commonly Used Dataset. Machine Learning, 11, 63-91

57. Hong, T.-P., Kuo, C.-S., Chi, S.-C. (2001): Trade-off Between Computation
Time and Number of Rules for Fuzzy Mining from Quantitative Data. Interna
tional Journal of Uncertainty Fuzziness and Knowledge-Based Systems, 9(5),
587-604

298 References

58. Horikawa, S., Furuhashi, T., Uchikawa, Y. (1992): On Fuzzy Modeling Using
Fuzzy Neural Networks with the Back-propagation Algorithm. IEEE Transac
tions on Neural Networks, 3(5), 801-806

59. Hornik, K. (1989): Multilayer Feedforward Networks Are Universal Approxi
mators. Neural Networks, 2, 359-366

60. Ichihashi, H., Watanabe, T. (1990): Learning Control by Fuzzy Models Using
a Simplified Fuzzy Reasoning. Journal of Japan Society for Fuzzy theory and
Systems, 2(3), 429-437

61. Ishibuchi, H. (1999): A Fuzzy Reasoning Method for Handling Fuzzy Rules
with Different Specificity Levels. In Proceedings of 18th International Confer-
encerence of the North American Fuzzy Information Proceedingsssing Society,
110-114

62. Ishibuchi, H., Fujioka, R., Tanaka, H. (1992): Possibility and Necessity Pattern
Classification Using Neural Networks. Fuzzy Sets and Systems, 48(3), 331-340

63. Ishibuchi, H., Fujioka, R., Tanaka, H. (1993): Neural Networks that Learn from
Fuzzy If-Then Rules. IEEE Transactions on Fuzzy Systems, 1(2), 85-97

64. Ishibuchi, H., Morioka, K., Turksen, LB. (1995): Learning by Fuzzified Neural
Networks. International Journal of Approximate Reasoning, 13(4), 327-358

65. Ishibuchi, H., Murata, T., Turksen, LB. (1997): Single-objective and Two-
objective Genetic Algorithms for Selecting Linguistic Rules for Pattern Classi
fication Problems. Fuzzy Sets and Systems, 89(2), 135-149

66. Ishibuchi, H., Nakashima, T. (1999): Improving the Performance of Fuzzy Clas
sifier Systems for Pattern Classification Problems with Continuous Attributes.
IEEE Transactions on Industrial Electronics, 46(6), 157-168

67. Ishibuchi, H., Nakashima, T. (2001): Effect of Rule Weights in Fuzzy Rule-based
Classification Systems. IEEE Transactions on Fuzzy Systems, 9(4), 506-515

68. Ishibuchi, H., Nakashima, T., Morisawa, T. (1999): Voting in Fuzzy Rule-based
Systems for Pattern Classification Problems. Fuzzy Sets and Systems, 103(2),
223-238

69. Ishibuchi, H., Nakashima, T., Murata, T. (1995): A Fuzzy Classifier System
that Generates Fuzzy If-Then Rules for Pattern Classification Problems. In
Proceedings of 2nd IEEE International Conferencerence on Evolutionary Com
putation, 759-764

70. Ishibuchi, H., Nakashima, T., Murata, T. (1999): Performance Evaluation of
Fuzzy Classifier Systems for Multi-dimensional Pattern Classification Problems.
IEEE Transactions on Systems, Man, and Cybernetics, 29(5), 601-618

71. Ishibuchi, H., Nakashima, T., Murata, T. (2001): Three-objective Genetics-
based Machine Learning for Linguistic Rule Extraction. Information Sciences,
136(1-4), 109-133

72. Ishibuchi, H., Nii, M. (1996): Generating Fuzzy If-Then Rules from Trained
Neural Networks: Linguistic Analysis of Neural Networks. In Proceedings of
1996 IEEE International Conferencerence on Neural Networks, 1133-1138

73. Ishibuchi, H., Nii, M. (1998): Fuzzification of Input Vectors for Improving
the Generalization Ability of Neural Networks. In Proceedings of 1998 IEEE
International Conferencerence on Fuzzy Systems, 1153-1158

74. Ishibuchi, H., Nii, M. (2000): Neural Networks for Soft Decision Making. Fuzzy
Sets and Systems, 115(1), 121-140

75. Ishibuchi, H., Nii, M. (2001): Fuzzy Regression Using Asymmetric Fuzzy Co
efficients and Fuzzified Neural Networks. Fuzzy Sets and Systems, 119(2),
273-290

76. Ishibuchi, H., Nii, M. (2001): Minimizing the Measurement Cost in the Classi
fication of New Samples by Neural-network-based Classifiers. In Pal, N.R., ed.,

References 299

Pattern Recognition in Soft Computing Paradigm, 225-248. World Scientific
Publishers, Singapore

77. Ishibuchi, H., Nii, M. (2001): Numerical Analysis of the Learning of Fuzzified
Neural Networks from Fuzzy If-Then Rules. Fuzzy Sets and Systems, 120(2),
281-307

78. Ishibuchi, H., Nii, M., Oh, C.H. (1999): Approximate Realization of Fuzzy
Mappings by Regression Models, Neural Networks and Rule-based Systems. In
Proceedings of 1999 IEEE International Conferencerence on Fuzzy Systems,
939-944

79. Ishibuchi, H., Nii, M., Tanaka, K. (1999): Subdivision Methods for Decreasing
Excess Fuzziness of Fuzzy Arithmetic in Fuzzified Neural Networks. In Proceed
ings of 18th International Conference of the North American Fuzzy Information
Processing Society, 448-452

80. Ishibuchi, H., Nii, M., Turksen, LB. (1998): Bidirectional Bridge Between Neu
ral Networks and Linguistic Knowledge: Linguistic Rule Extraction and Learn
ing from Linguistic Rules. In Proceedings of 1998 IEEE International Confer
encerence on Fuzzy Systems, 1112-1117

81. Ishibuchi, H., Nozaki, K., Tanaka, H. (1992): Distributed Representation of
Fuzzy Rules and Its Application to Pattern Classification. Fuzzy Sets and
Systems, 52(1), 21-32

82. Ishibuchi, H., Nozaki, K., Tanaka, H., Hosaka, Y., Matsuda, M. (1994): Em
pirical Study on Learning in Fuzzy Systems by Rice Taste Analysis. Fuzzy Sets
and Systems, 64(2), 129-144

83. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H. (1994): Construction
of Fuzzy Classification Systems with Rectangular Fuzzy Rules Using Genetic
Algorithms. Fuzzy Sets and Systems, 65(2/3), 237-253

84. Ishibuchi, H., Nozaki, K., Yamamoto, N., Tanaka, H. (1995): Selecting Fuzzy
If-Then Rules for Classification Problems Using Genetic Algorithms. IEEE
Transactions on Fuzzy Systems, 3(3), 260-270

85. Ishibuchi, H., Takeuchi, D., Nakashima, T. (2001): GA-based Approaches to
Linguistic Modeling of Nonlinear Functions. In Proceedings of 9th IPSA World
Congress and 20th NAFIPS International Conferencerence, 1229-1234

86. Ishibuchi, H., Tanaka, H., Okada, H. (1993): An Architecture of Neural Net
works with Interval Weights and Its Application to Fuzzy Regression Analysis.
Fuzzy Sets and Systems, 57(1), 27-39

87. Ishibuchi, H., Tanaka, H., Okada, H. (1994): Interpolation of Fuzzy If-Then
Rules by Neural Networks. International Journal of Approximate Reasoning,
10(1), 3-27

88. Ishibuchi, H., Yamamoto, T. (2003): Effects of Three-Objective Genetic Rule
Selection on the Generalization Ability of Fuzzy Rule-Based Systems. In
Proceedings of Second International Conferencerence on Evolutionary Multi-
Criterion Optimization, 608-622

89. Ishibuchi, H., Yamamoto, T. (2003): Evolutionary Multiobjective Optimization
for Generating an Ensemble of Fuzzy Rule-Based Classifiers. In Proceedings of
2003 Genetic and Evolutionary Computation Conferencerence, 1077-1088

90. Ishibuchi, H., Yamamoto, T. (2003): Interpret ability Issues in Fuzzy Genetics-
Based Machine Learning for Linguistic Modelling. In Lecture Notes in Artificial
Intelligence, 2873, 209-228. Springer-Verlag, Berlin

91. Ishibuchi, H., Yamamoto, T. (2003): Tradeoff Between the Number of Fuzzy
Rules and Their Classification Performance. In Casillas, J., Cordon, O., Her-
rera, F., Magdalena, L., eds., Accuracy Improvements in Linguistic Fuzzy Mod
eling, 72-99. Physica-Verlag, Heidelberg

300 References

92. Ishibuchi, H., Yamamoto, T. (2004): An Approach to Fuzzy Default Reasoning
for Function Approximation. Soft Computing Journal

93. Ishibuchi, H., Yamamoto, T. (2004): Comparison of Heuristic Criteria for Fuzzy
Rule Selection in Classification Problems. Fuzzy Optimization and Decision
Making, 3(2), 119-139

94. Ishibuchi, H., Yamamoto, T. (2004): Fuzzy Rule Selection by Multi-Objective
Genetic Local Search Algorithms and Rule Evaluation Measures in Data Min
ing. Fuzzy Sets and Systems, 141(1), 59-88

95. Ishibuchi, H., Yamamoto, T., Nakashima, T. (2001): Fuzzy Data Mining: Effect
of Fuzzy Discretization. In Proceedings of 1st IEEE International Conferencer-
ence on Data Mining, 241-248

96. Ishigami, H., Fukuda, T., Shibata, T., Aral, F. (1995): Structure Optimization
of Fuzzy Neural Network by Genetic Algorithm. Fuzzy Sets and Systems, 71(3),
257-264

97. Ishikawa, M. (1996): Structural Learning with Forgetting. Neural Networks,
9(3), 509-521

98. Jagielska, I., Matthews, C , Whitfort, T. (1999): An Investigation into the Ap
plication of Neural Networks Fuzzy Logic Genetic Algorithms and Rough Sets
to Automated Knowledge Acquisition for Classification Problems. Neurocom-
puting, 24, 37-54

99. Jang, J.-S.R. (1993): ANFIS: Adaptive-network-based Fuzzy Inference System.
IEEE Transactions on Systems, Man, and Cybernetics, 23(3), 665-685

100. Janikow, C.Z. (1998): Fuzzy Decision Trees: Issues and Methods. IEEE Trans
actions on Systems, Man, and Cybernetics, 28(1), 1-14

101. Jin, Y. (2000): Fuzzy Modeling of High-dimensional Systems: Complexity Re
duction and Interpret ability Improvement. IEEE Transactions on Fuzzy Sys
tems, 8(2), 212-221

102. Karr, C.L. (1991): Design of an Adaptive Fuzzy Logic Controller Using a
Genetic Algorithm. In Proceedings of 4th International Conferenceon Genetic
Algorithms, 450-457

103. Karr, C.L., Gentry, E.J. (1993): Fuzzy Control of PH Using Genetic Algo
rithms. IEEE Transactions on Fuzzy Systems, 1(1), 46-53

104. Kasabov, N.K. (2001): On-line Learning Reasoning Rule Extraction and Ag
gregation in Locally Optimized Evolving Fuzzy Neural Networks. Neurocom-
puting, 41(1), 25-45

105. Kasabov, N.K., Kim, J., Kozma, R. (1998): A Fuzzy Neural Network for
Knowledge Acquisition in Complex Time Series. Control and Cybernetics,
27(4), 593-611

106. Kaufmann, A., Gupta, M.M. (1985): Introduction to Fuzzy Arithmetic. Van
Nostrand Reinhold, New York

107. Keller, J.M., Tahani, H. (1992): Backpropagation Neural Networks for Fuzzy
Logic. Information Sciences, 62(3), 205-221

108. Keller, J.M., Yager, R.R., Tahani, H. (1992): Neural Network Implementation
of Fuzzy Logic. Fuzzy Sets and Systems, 45(1), 1-12

109. Kim, E., Park, M., Ji, S., Park, M. (1997): A New Approach to Fuzzy Mod
eling. IEEE Transactions on Fuzzy Systems, 5(3), 328-337

110. Kim, E., Park, M., Ji, S., Park, M. (1997): A New Approach to Fuzzy Mod
eling. IEEE Transactionsctions on Fuzzy Systems, 5(3), 328-337

111. Kim, E., Park, M., Kim, S., Park, M. (1998): A Transactionsormed Input-
domain Approach to Fuzzy Modeling. IEEE Transactions on Fuzzy Systems,
6(4), 596-604

References 301

112. Kim, E., Park, M., Kim, S., Park, M. (1998): A Transactionsormed Input-
Domain Approach to Fuzzy Modeling. IEEE Transactionsctions on Fuzzy Sys
tems, 6(4), 596-604

113. Knorr, E.M., Ng, R.T. (1999): Finding Intentional Knowledge of Distance-
based Outliers. In Proceedings International Conferencerence on Very Large
Data Bases, 211-222

114. Knorr, E.M., Ng, R.T., Tucakov, V. (2000): Distance-based Outliers: Algo
rithms and Applications. International Journal on Very Large Data Bases, 8(3),
237-253

115. Kohavi, R., John, G.H. (1997): Wrappers for Feature Subset Selection. Arti
ficial Intelligence, 97(1-2), 273-324

116. Kosko, B. (1994): Fuzzy Systems as Universal Approximators. IEEE Trans
actions on Computers, 43(11), 1329-1332

117. Kuncheva, L.I. (2000): Fuzzy Classifier Design. Physica-Verlag, Heidelberg
118. Lee, C.C. (1990): Fuzzy Logic in Control Systems: Fuzzy Logic Controller

Part I and Part II. IEEE Transactions on Systems, Man, and Cybernetics,
20(2), 404-435

119. Leondes, C.T., ed. (1999): Fuzzy theory Systems: Techniques and Applica
tions. Academic Press, San Diego

120. Lin, Y., Ill, G.A.Cunningham. (1995): A New Approach to Fuzzy-neural
System Modeling. IEEE Transactions on Fuzzy Systems, 3(2), 190-197

121. Lin, Y., Ill, G.A.Cunningham. (1995): A New Approach to Fuzzy-Neural
System Modeling. IEEE Transactionsctions on Fuzzy Systems, 3(2), 190-198

122. Liu, H., Motoda, H., eds. (1998): Feature Extraction, Construction and Se
lection: a Data Mining Perspective. Kluwer Academic Publishers, Boston

123. Liu, H., Motoda, H. (1998): Feature Selection for Knowledge Discovery and
Data Mining. Kluwer Academic Publishers, Boston

124. Mamdani, E.H., Assilian, S. (1975): An Experiment in Linguistic Synthesis
with a Fuzzy Logic Controller. International Journal of Man-Machine Studies,
7(1), 1-13

125. Mees, W. (1999): Detection of Defects in a Fuzzy Knowledge Base. In Pro
ceedings of 8th IEEE International Conferencerence on Fuzzy Systems, 204-209

126. Moore, R.E. (1979): Methods and Apphcations of Interval Analysis. SIAM,
Philadelphia

127. Murata, T., Ishibuchi, H. (1995): MOGA: Multi-Objective Genetic Algo
rithms. In Proceedings of 2nd IEEE International Conferencerence on Evolu
tionary Computation, 289-294

128. Nauck, D., Kruse, R. (1997): A Neuro-fuzzy Method to Learn Fuzzy Classifi
cation Rules from Data. Fuzzy Sets and Systems, 89(3), 277-288

129. Nauck, D., Kruse, R. (1998): How the Learning of Rule Weights Affects the
Interpret ability of Fuzzy Systems. In Proceedings of 7th IEEE International
Conferencerence on Fuzzy Systems, 1235-1240

130. Nomura, H., Hayashi, I., Wakami, N. (1992): A Learning Method of Fuzzy
Inference Rules by Descent Method. In Proceedings of 1st IEEE International
Conferencerence on Fuzzy Systems, 203-210

131. Nomura, H., Hayashi, I., Wakami, N. (1992): A Self-tuning Method of Fuzzy
Reasoning by Genetic Algorithm. In Proceedings of 1992 International Fuzzy
Systems and Intelligent Control Conferencerence, 236-245

132. Nozaki, K., Ishibuchi, H., Tanaka, H. (1996): Adaptive Fuzzy Rule-based
Classification Systems. IEEE Transactions on Fuzzy Systems, 4(3), 238-250

133. Nozaki, K., Ishibuchi, H., Tanaka, H. (1997): A Simple but Powerful Heuristic
Method for Generating Fuzzy Rules from Numerical Data. Fuzzy Sets and
Systems, 86(3), 251-270

302 References

134. Oliveira, V. De (1999): Semantic Constraints for Membership Function Opti
mization. IEEE Transactions on Systems, Man, and Cybernetics, 29(1), 128-
138

135. Parodi, A., Bonelli, P. (1993): A New Approach to Puzzy Classifier Systems.
In Proceedings of 5th International Conferenceon Genetic Algorithm, 223-230

136. Pedrycz, W. (1984): An Identification Algorithm in Fuzzy Relational Systems.
Fuzzy Sets and Systems, 13(2), 153-167

137. Pedrycz, W. (1984): An Identification Algorithm in Fuzzy Relational Systems.
Fuzzy Sets and Systems, 13(2), 153-167

138. Pedrycz, W., ed. (1997): Fuzzy Evolutionary Computation. Kluwer Academic
Publishers, Boston

139. Pedrycz, W., ed. (2001): Granular Computing. Physica-Verlag, Heidelberg
140. Pedrycz, W., Oliveira, V. De (1996): Optimization of Fuzzy Models. IEEE

Transactions on Systems, Man, and Cybernetics, 26(4), 627-637
141. Poole, D. (1991): The Effect of Knowledge on Belief: Conditioning Specificity

and the Lottery Paradox in Default Reasoning. Artificial Intelligence, 49(1-3),
281-307

142. Purushothaman, G., Karayiannis, N.B. (1997): Quantum Neural Networks
(QNN's): Inherently Puzzy Feedforward Neural Networks. IEEE Transactions
on Neural Networks, 8(3), 679-693

143. Quinlan, J.R. (1993): C4.5: Programs for Machine Learning. Morgan Kauf-
mann Publishers, San Mateo

144. Reiter, R. (1980): A Logic for Default Reasoning. Artificial Intelligence,
13(1/2), 81-132

145. Roubos, H., Setnes, M. (2001): Compact and Transactionsarent Fuzzy Models
and Classifiers Through Iterative Complexity Reduction. IEEE Transactions on
Fuzzy Systems, 9(4), 516-524

146. Rumelhart, D.E., Hint on, G.E., Williams, R.J. (1986): Learning Internal Rep
resentations by Error Propagation. In Rumelhart, D.E., MaClelland, J.L., eds.,
Parallel Distributed Proceedingsssing, Volume 1, 318-362. MIT Press, Cam
bridge, MA

147. Russell, S.J., Norvig, P. (1995): Artificial IntelHgence: a Modern Approach.
Prentice Hall, Upper Saddle River

148. Sakawa, M., Yano, H. (1989): Multiobjective Fuzzy Linear Regression Analysis
for Puzzy Input-Output Data. Journal of Japan Society for Fuzzy theory and
Systems, 1(1), 107-116 (in Japanese)

149. Sestito, S., Dillon, T. (1993): Knowledge Acquisition of Conjunctive Rules Us
ing Multilayered Neural Networks. International Journal of Intelligent Systems,
8, 779-805

150. Setnes, M., Babuska, R., Verbruggen, B. (1998): Rule-based Modeling: Pre
cision and Transactionsarency. IEEE Transactions on Systems, Man, and Cy
bernetics, 28(1), 165-169

151. Setnes, M., Roubos, H. (2000): GA-based Modeling and Classification: Com
plexity and Performance. IEEE Transactions on Fuzzy Systems, 8(5), 509-522

152. Shanahan, J.G. (2000): Soft Computing for Knowledge Discovery: Introducing
Cartesian Granule Features. Kluwer Academic Publishers, Boston

153. Shimojima, K., Fukuda, T., Hasegawa, Y. (1995): Self-tuning Fuzzy Modeling
with Adaptive Membership Function Rules and Hierarchical Structure Based
on Genetic Algorithm. Fuzzy Sets and Systems, 71(3), 295-309

154. Simpson, P.K. (1992): Fuzzy Min-max Neural Networks - Part I: Classification.
IEEE Transactions on Neural Networks, 3(5), 776-786

155. Smith, S.F. (1980): A Learning System Based on Genetic Algorithms. PhD
dissertation. University of Pittsburgh, Pittsburgh

References 303

156. Sugeno, M. (1985): An Introductory Survey of Fuzzy Control. Information
Sciences, 36(1/2), 59-83

157. Sugeno, M., Tanaka, K. (1991): Successive Identification of a Fuzzy Model and
Its Application to Prediction of a Complex System. Fuzzy Sets and Systems,
42(3), 315-334

158. Sugeno, M., Tanaka, K. (1991): Successive Identification of a Fuzzy Model and
Its Applications to Prediction of a Complex System. Fuzzy Sets and Systems,
42(3), 315-334

159. Sugeno, M., Yasukawa, T. (1993): A Fuzzy-logic-based Approach to Qualita
tive Modeling. IEEE Transactions on Fuzzy Systems, 1(1), 7-31

160. Suzuki, E., Kodratoff, Y. (1998): Discovery of Surprising Exception Rules
Based on Intensity of Implication. In Zytkow, J.M., Quafafou, M., eds.. Princi
ples of Data Mining and Knowledge Discovery (PKDD). Springer-Verlag, Hei
delberg

161. Suzuki, T., Furuhashi, T. (2001): Evolutionary Algorithm Based Fuzzy Mod
eling Using Conciseness Measure. In Proceedings of Joint IFSA and NAFIPS
International Conferencerence, 1575-1580

162. Takagi, T., Sugeno, M. (1985): Fuzzy Identification of Systems and Its Ap
plications to Modeling and Control. IEEE Transactions on Systems, Man, and
Cybernetics, 15(1), 116-132

163. Tanaka, H., Hayashi, I., Watada, J. (1989): Possibilistic Linear Regression
Analysis for Fuzzy Data. European Journal of Operational Research, 40(3),
389-396

164. Tanaka, H., Uejima, S., Asai, K. (1982): Linear Regression Analysis with
Fuzzy Model. IEEE Transactions on Systems, Man, and Cybernetics, 12(6),
903-907

165. Thrift, P. (1991): Fuzzy Logic Synthesis with Genetic Algorithms. In Pro
ceedings of 4th International Conferenceon Genetic Algorithms, 509-513

166. Tong, P.M. (1980): The Evaluation of Fuzzy Models Derived from Experi
mental Data. Fuzzy Sets and Systems, 4(1), 1-12

167. Towell, G., Shavlik, J.W. (1993): Extracting Refined Rules from Knowledge-
based Neural Networks. Machine Learning, 13, 71-101

168. Uehara, K., Fujise, M. (1990): Learning of Fuzzy-inference Criteria with Ar
tificial Neural Network. In Proceedings of 1st International Conferencerence on
Fuzzy Logic and Neural Networks: IIZUKA'90, 193-198

169. Umano, M., Fukunaka, S., Hatono, I., Tamura, H. (1997): Acquisition of Fuzzy
Rules Using Fuzzy Neural Networks with Forgetting. In Proceedings of 1997
IEEE International Conferencerence on Neural Networks, 2369-2373

170. Valenzuela-Rendon, M. (1991): The Fuzzy Classifier System: a Classifier Sys
tem for Continuously Varying Variables. In Proceedings of 4th International
Conferenceon Genetic Algorithms, 346-353

171. Berg, J. van den, Kaymak, U., Bergh, W.-M. van den (2002): Fuzzy Classi
fication Using Probability-Based Rule Weighting. In Proceedings International
Conferencerence on Fuzzy Systems, 991-996

172. Viaene, S., Wets, G., Vanthienen, J. (2000): A Synthesis of Fuzzy Rule-based
System Verification. Fuzzy Sets and Systems, 113(2), 253-265

173. Wang, L., Langari, R. (1995): Building Sugeno-type Models Using Fuzzy
Discretization and Orthogonal Parameter Estimation Techniques. IEEE Trans
actions on Fuzzy Systems, 3(4), 454-458

174. Wang, L., Langari, R. (1995): Building Sugeno-type Models using Fuzzy Dis
cretization and Orthogonal Parameter Estimation Techniques. IEEE Transac-
tionsctions on Fuzzy Systems, 3(4), 454-458

304 References

175. Wang, L.-X. (1992): Fuzzy Systems Are Universal Approximators. In Proceed
ings of 1st IEEE International Conferencerence on Fuzzy Systems, 1163-1170

176. Wang, L.X., Mendel, J.M. (1992): Generating Fuzzy Rules by Learning from
Examples. IEEE Transactions on Systems, Man, and Cybernetics, 22(6), 1414-
1427

177. Wang, P., ed. (2001): Computing with Words. John Wiley & Sons, New York
178. Weiss, S.M., Kulikowski, C.A. (1991): Computer Systems That Learn. Morgan

Kaufmann Publishers, San Mateo
179. White, H. (1990): Connectionist Nonparametric Regression: Multilayer Feed

forward Networks Can Learn Arbitrary Mappings. Neural Networks, 3, 535-549
180. Xu, C.W., Lu, Y.Z. (1987): Fuzzy Model Identification and Self-learning

for Dynamic Systems. IEEE Transactions on Systems, Man, and Cybernet
ics, 17(4), 683-689

181. Xu, C.W., Lu, Y.Z. (1987): Fuzzy Model Identification and Self-Learning for
Dynamic-Systems. IEEE Transactionsctions on Systems, Man, and Cybernetics,
17(4), 683-689

182. Yager, R.R. (1987): Possibilistic Qualification and Default Rules. In Bou-
chon, B., Yager, R.R., eds., Uncertainty in Knowledge Based Systems (Lecture
Notes in Computer Science 286), 41-57. Springer-Verlag, Berlin

183. Yager, R.R. (1987): Using Approximate Reasoning to Represent Default
Knowledge. Artificial Intelhgence, 31(1), 99-112

184. Yager, R.R. (1988): A Generalized View of Non-monotonic Knowledge: A
Set of Theoretic Perspectives. International Journal of General Systems, 14,
251-265

185. Yager, R.R. (1988): A Mathematical Programming Approach to Inference
with the Capability to Implement Default Rules. International Journal of Man-
Machine Studies, 29, 685-714

186. Yager, R.R., Larsen, H.L. (1991): On Discovery Potential Inconsistencies in
Validating Uncertain Knowledge Bases by Reflecting on the Input. IEEE Trans
actions on Systems, Man, and Cybernetics, 21(4), 790-801

187. Yen, J., Wang, L. (1998): Improving the Interpretability of TSK Fuzzy Models
by Combining Global Learning and Local Learning. IEEE Transactions on
Fuzzy Systems, 6(4), 530-537

188. Yoshinari, Y., Pedrycz, W., Hirota, K. (1993): Construction of Fuzzy Models
Through Clustering Techniques. Fuzzy Sets and Systems, 54(2), 157-165

189. Yoshinari, Y., Pedrycz, W., Hirota, K. (1993): Construction of Fuzzy Models
through Clustering Techniques. Fuzzy Sets and Systems, 54(2), 157-165

190. Zadeh, L.A. (1965): Fuzzy Sets. Information and Control, 8, 338-353
191. Zadeh, L.A. (1975): The Concept of a Linguistic Variable and Its Application

to Approximate Reasoning: Part I; Part II; Part HI. 8, 199-249;, 8 301-357; 9,
43-80;

192. Zadeh, L.A., Kacprzyk, J. (1999): Computing with Words in Informa
tion/Intelligent Systems, Vol 1: Foundations, Vol 2: Applications

193. Zitzler, E., Deb, K., Thiele, L. (2000): Comparison of Multiobjective Evolu
tionary Algorithms: Empirical Results. Evolutionary Computation, 8(2), 173-
195

194. Zitzler, E., Thiele, L. (1999): Multiobjective Evolutionary Algorithms: a Com
parative Case Study and the Strength Pareto Approach. IEEE Transactions on
Evolutionary Computation, 3(4), 257-271

Index

additional learning, 61
analytical learning, 47
association rule, 15, 163
asymmetric triangular fuzzy number,

280, 284

back-propagation algorithm, 221, 224,
226, 228, 235, 242, 285, 287-289, 293

biased mutation, 188
binary string, 77, 189

center-of-gravity method, 169
certainty factor, 7, 12
classifier system, 103
compatibility grade, 13
computing with words, 9
confidence, 15, 94, 163, 164, 187
consequent class, 13, 17
continuous attribute, 4
cross-validation techniques, 221
crossover, 81, 126
curse of dimensionality, 65, 69

data mining, 15, 163, 164, 175
decision region, 146
default reasoning, 175
don't care, 76, 79, 105, 112, 117, 174
dynamical situation, 203

elitist strategy, 85
entire replacement, 122
entropy measure, 155
evolutionary multi-objective optimiza

tion, 134
exception rule, 175
excess fuzziness, 271, 274, 275
extension principle, 229, 230, 271-275
extracted linguistic rule, 255, 256, 264,

265

first aggregate and then infer (FATI),
169

first infer and then aggregate (FITA),
169

fitness
- function, 81, 88, 101, 114, 118, 126,

131, 188, 191
- value, 81, 106, 118
flip-flop mutation, 85
fuzzification grade, 148
fuzzification of training pattern, 292,

293
fuzzy
- arithmetic, 219, 228, 230, 231,

233-235, 237, 251-254, 258, 259, 261,
263, 266, 267, 270-275, 278, 280, 286

- bias, 231, 287
- classification, 277, 287, 288
- connection weight, 231, 283, 284, 287
- decision tree, 65
- function, 177
- neural network, 219
- number, 177, 228-231, 234, 241, 247,

259, 260, 271, 273, 274, 277-286, 292,
293

- output, 231, 232, 234, 237, 245, 251,
253-255, 257-259, 261-265, 271-275,
277-281, 284-287, 292

- reasoning, 20, 169, 199, 208, 214,
219, 280, 286, 287

- regression analysis, 278, 280, 281
- rule extraction, 251
- rule table, 162
- rule-based system, 219, 251, 252, 277,

278, 282, 287
- set, 3
fuzzy
- number, 305

gas furnace data, 210
generalization ability, 224, 227, 228,

234, 292
genetic

306 Index

- algorithm, 75, 80, 86, 99, 103, 173,
200

- algorithm-based rule selection, 75,
89, 181, 185, 196, 210

- operation, 81
genetics-based machine learning, 103,

181
global application, 272, 273, 275
global learning, 201, 205
grid-type fuzzy partition, 62, 76, 162

homogeneous
- discretization, 7
- fuzzy partition, 209
hybrid algorithm, 124, 126, 139

inclusion relation, 176
incremental learning algorithm, 203,

206
inhomogeneous discretization, 7, 155
input selection, 70
interval arithmetic, 229, 230, 233, 237,

238, 245, 246, 254, 257, 262, 269,
275, 286

interval discretization, 143
iris data, 29

leaving-one-out, 31, 33
level set-based approach, 227
linguistic
- discretization, 5, 6, 17, 143
- rule, 8, 20, 103, 132, 145, 161, 168,

181, 199, 212, 219-224, 226, 228,
230, 233-235, 237, 240-245, 247-259,
261-267, 270, 271, 275, 277, 280, 281,
286, 287

- rule extraction, 12
- term, 2, 6, 219-228, 230, 233-235,

241, 247, 253-255, 257, 258, 263, 264,
271, 280, 286

linguistic
- rule, 305
local application, 271-273
local learning, 201

main rule table, 213
mean squared error (MSE), 210
measurement cost, 267-270
membership function, 4, 5, 62, 147, 173
Michigan
- approach, 103, 139
Michigan-style
- algorithm, 105, 126
- GBML, 190

minimization problem, 202
minimum operator, 13, 164, 179
modeling problem, 161, 174, 181
multi-layer structure, 66
multi-objective genetic algorithm, 134,

184
multi-objective optimization method,

196
mutation, 81, 85, 107, 193

near-optimal solution, 184
necessity grade, 259-261, 263, 264
neural
- learning, 200
- network, 173
neuro-fuzzy model, 219, 251
non-dominated
- rule set, 183
- solution, 134
non-standard fuzzy reasoning, 174, 175,

182
normalization, 11

objective function, 202, 205
one-point crossover, 83, 84, 126, 139,

193
optimal solution, 202
outlier, 175

Pareto-optimal solution, 133, 137, 184
pattern classification, 11
pattern classification problem, 235, 237,

241, 247, 251, 258, 270, 288, 290, 291
Pittsburgh
- approach, 103, 139
Pittsburgh-style
- algorithm, 116, 126
- GBML, 191
population size, 81
possibility grade, 259
possibility measure, 179
prescreening procedure, 186
product operator, 13, 164, 179

random
- removal, 123
- selection, 123
rejection method, 288, 289
reward-punishment learning, 39
roulette wheel selection, 81, 106
rule
- generation method, 167
- length, 33
- prescreening, 185

Index 307

- weight, 7, 12, 17, 21, 24, 26, 76, 171,
213

scattered fuzzy partition, 65
secondary
- population, 134, 188, 192
- rule table, 214
selection, 81
- pressure, 82
- probability, 82, 83
single winner-based method, 20, 24, 90
single-objective optimization, 81, 182
single-objective optimization method,

196
standard feedforward neural network,

221, 223, 226, 229, 235, 251, 288, 291
subdivision method, 275
support, 15, 94, 163, 164, 187
symmetric triangular fuzzy number,

280, 284, 292, 293, 305

three-layer feedforward neural network,
221-223, 226, 230, 231, 233, 235, 237,
240, 242, 245, 247, 252, 258, 283,
288, 289, 293

three-objective
- genetic algorithm, 137
- optimization, 132, 134, 181, 183, 206
tournament selection, 82, 106, 188
tradeoff, 98, 131, 190
training pattern, 14
trapezoidal fuzzy set, 149, 257
tree-type fuzzy partition, 65
triangular fuzzy set, 149
twin-table approach, 211
two-point crossover, 83, 84

UCI Machine Learning Repository, 29
uniform crossover, 83, 84, 106, 118, 188
upper and lower limits, 219, 225

voting-based method, 20, 22

Takagi-Sugeno model, 166, 199, 207,
211

10-fold cross validation, 152

wine data, 32
winner rule, 20, 90, 190

	Front Matter
	Linguistic Information Granules
	Pattern Classification with Linguistic Rules
	Learning of Linguistic Rules
	Input Selection and Rule Selection
	Genetics-Based Machine Learning
	Multi-Objective Design of Linguistic Models
	Comparison of Linguistic Discretization with Interval Discretization
	Modeling with Linguistic Rules
	Design of Compact Linguistic Models
	Linguistic Rules with Consequent Real Numbers
	Handling of Linguistic Rules in Neural Networks
	Learning of Neural Networks from Linguistic Rules
	Linguistic Rule Extraction from Neural Networks
	Modeling of Fuzzy Input—Output Relations
	Back Matter

	Blank Page: This page intentionally blank

