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Interest in developing an effective communication in-

terface connecting the human brain and a computer has 

grown rapidly over the past decade. A brain-computer 

interface (BCI) would allow humans to operate comput-

ers, wheelchairs, prostheses, and other devices, using 

brain signals only. BCI research may someday provide 

a communication channel for patients with severe physi-

cal disabilities but intact cognitive functions, a working 

tool in computational neuroscience that contributes to 

a better understanding of the brain, and a novel inde-

pendent interface for human-machine communication 

that offers new options for monitoring and control. This 

volume presents a timely overview of the latest BCI 

research, with contributions from many of the impor-

tant research groups in the field.

 The book covers a broad range of topics, describing 

work on both noninvasive (that is, without the implanta-

tion of electrodes) and invasive approaches. Other chap- 

ters discuss relevant techniques from machine learning 

and signal processing, existing software for BCI, and pos-

sible applications of BCI research in the real world.
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berger, Dennis J. McFarland, Klaus-Robert Müller, eds., 2007
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and Christa Neuper



vi Contents

5 The Berlin Brain-Computer Interface: Machine Learning-Based Detection

of User Specific Brain States . . . . . . . . . . . . . . . . . . . . . . . . . 85

Benjamin Blankertz, Guido Dornhege, Matthias Krauledat,
Volker Kunzmann, Florian Losch, Gabriel Curio,
and Klaus-Robert Müller

6 The IDIAP Brain-Computer Interface: An Asynchronous Multiclass

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
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Foreword

The advances in brain-computer interfaces in this book could have far-reaching conse-
quences for how we interact with the world around us. A communications channel that
bypasses the normal motor outflow from the brain will have an immediate benefit for
paraplegic patients. Someday the same technology will allow humans to remotely con-
trol agents in exotic environments, which will open new frontiers that we can only dimly
imagine today.

The earliest systems to be developed were based on noninvasive electroencephalo-
graphic (EEG) recordings. Because these systems do not require invasive surgical implants,
they can be used for a wide range of applications. The disadvantage is the relatively low
rate of signaling that can be achieved. Nonetheless, advances in signal processing tech-
niques and the development of dry electrodes make this an attractive approach.

Three separate research areas have contributed to major advances in invasive brain-
computer interfaces. First, the neural code for motor control was uncovered based on
recordings from single neurons in different cortical areas of alert primates. The second was
the development of mathematical algorithms for converting the train of spikes recorded
from populations of these neurons to an intended action, called the decoding problem.
Third, it was necessary to achieve stable, long-term recordings from small, cortical neurons
in a harsh aqueous environment.

For both invasive and noninvasive BCIs interdisciplinary teams of scientists and engi-
neers needed to work closely together to create successful systems.

Success in brain-computer interfaces has also depended on the remarkable ability of the
brain to adapt to unusual tasks, none more challenging than “mind control” of extracorpo-
real space. We are still at an early stage of development, but the field is moving forward
rapidly and we can confidently expect further advances in the near future.

Terrence J. Sejnowski

La Jolla, CA





Preface

The past decade has seen a fast growing interest to develop an effective communication
interface connecting the human brain to a computer, the “brain-computer interface” (BCI).
BCI research follows three major goals: (1) it aims to provide a new communication
channel for patients with severe neuromuscular disabilities bypassing the normal output
pathways, (2) it provides a powerful working tool in computational neuroscience to con-
tribute to a better understanding of the brain, and finally (3)—often overseen—it provides
a generic novel independent communication channel for man-machine interaction, a di-
rection that is at only the very begining of scientific and practical exploration. During a
workshop at the annual Neural Information Processing Systems (NIPS) conference, held
in Whistler, Canada, in December 2004, a snapshot of the state of the art in BCI research
was recorded. A variety of people helped in this, especially all the workshop speakers and
attendees who contributed to lively discussions. After the workshop, we decided that it
would be worthwhile to invest some time to have an overview about current BCI research
printed.

We invited all the speakers as well as other researchers to submit papers, which were
integrated into the present collection. Since BCI research has previously not been covered
in an entire book, this call has been widely followed. Thus, the present collection gathers
contributions and expertise from many important research groups in this field, whom we
wholeheartedly thank for all the work they have put into our joint effort. Note, of course,
that since this book is the outcome of a workshop, it cannot cover all groups and it may—
clearly unintentionally—contain some bias.

However, we are confident that this book covers a broad range of present BCI research:
In the first part we are able to present overviews about many important noninvasive (that
is, without implanting electrodes) BCI groups in the world. We have been also able to win
contributions from a few of the most important invasive BCI groups giving an overview
of the current state of the invasive BCI research. These contributions are presented in
the second part. The book is completed by three further parts, namely an overview of
state-of-the-art techniques from machine learning and signal processing to process brain
signals, an overview about existing software packages in BCI research, and some ideas
about applications of BCI research for the real world.



xii Preface

It is our hope that this outweighs the shortcomings of the book, most notably the fact
that a collection of chapters can never be as homogeneous as a book conceived by a
single author. We have tried to compensate for this by writing an introductory chapter
(see chapter 1) and prefaces for all five parts of the book. In addition, the contributions
were carefully refereed.

Guido Dornhege, José del R. Millán, Thilo Hinterberger, Dennis J. McFarland, and

Klaus-Robert Müller

Berlin, Martigny, Tübingen, Albany, August 2006
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1 An Introduction to Brain-Computer Interfacing

Andrea Kübler
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Klaus-Robert Müller
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Kekuléstr. 7, 12489 Berlin, Germany

Technical University Berlin
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10 623 Berlin, Germany

1.1 Abstract

We provide a compact overview of invasive and noninvasive brain-computer interfaces
(BCI). This serves as a high-level introduction to an exciting and active field and sets the
scene for the following sections of this book. In particular, the chapter briefly assembles
information on recording methods and introduces the physiological signals that are being
used in BCI paradigms. Furthermore, we review the spectrum from subject training to
machine learning approaches. We expand on clinical and human-machine interface (HMI)
applications for BCI and discuss future directions and open challenges in the BCI field.

1.2 Overview

Translating thoughts into actions without acting physically has always been material of
which dreams and fairytales were made. Recent developments in brain-computer interface
(BCI) technology, however, open the door to making these dreams come true. Brain-
machine interfaces (BMI1) are devices that allow interaction between humans and artificial
devices (for reviews see e.g. Kübler et al. (2001a); Kübler and Neumann (2005); Lebedev
and Nicolelis (2006); Wolpaw et al. (2002)). They rely on continuous, real-time interaction
between living neuronal tissue and artificial effectors.

Computer-brain interfaces2 are designed to restore sensory function, transmit sensory
information to the brain, or stimulate the brain through artificially generated electrical sig-
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nals. Examples of sensory neuroprostheses are the retina implant (e.g. Eckmiller (1997);
Zrenner (2002)) and the cochlear implant, which circumvents the nonfunctioning audi-
tory hair cells of the inner ear by transmitting electrically processed acoustic signals via
implanted stimulation electrodes directly to the acoustic nerve (e.g., Zenner et al. (2000);
Merzenich et al. (1974); Pfingst (2000)). Further, with an implanted stimulating neuropros-
thesis, hyperactivity of the subthalamic nuclei can be inhibited to improve Parkinsonian
symptoms (e.g., Mazzone et al. (2005); Benabid et al. (1991)).

Brain-computer interfaces provide an additional output channel and thus can use the
neuronal activity of the brain to control artificial devices, for example, for restoring
motor function. Neuronal activity of few neurons or large cell assemblies is sampled and
processed in real-time and converted into commands to control an application, such as a
robot arm or a communication program (e.g., Birbaumer et al. (1999); Müller-Putz et al.
(2005b); Taylor et al. (2002); Hochberg et al. (2006); Santhanam et al. (2006); Lebedev and
Nicolelis (2006); Haynes and Rees (2006); Blankertz et al. (2006a); Müller and Blankertz
(2006)).

Brain activity is either recorded intracortically with multielectrode arrays or single
electrodes, epi- or subdurally from the cortex or from the scalp. From the broad band
of neuronal electrical activity, signal detection algorithms filter and denoise the signal of
interest and decoded information is commuted into device commands.

Over the past twenty years, increased BCI research for communication and control has
been driven by a better understanding of brain function, powerful computer equipment, and
by a growing awareness of the needs, problems, and potentials of people with disabilities
(Wolpaw et al. (2002); Kübler et al. (2001a)). In addition to addressing clinical and quality
of life issues, such interfaces constitute powerful tools for basic research on how the
brain coordinates and instantiates human behavior and how new behavior is acquired and
maintained. This is because a BCI offers the unique opportunity to investigate brain activity
as an independent variable. In traditional psychophysiological experiments subjects are
presented with a task or stimuli (independent variables), and the related brain activity
is measured (dependent variable). Conversely, with neurofeedback by means of a BCI,
subjects can learn to deliberately increase or decrease brain activity (independent variable)
and changes in behavior can be measured accordingly (dependent variable). Studies on
regulation of slow cortical potentials, sensorimotor rhythms, and the BOLD response
(see below) yield various specific effects on behavior, such as decreased reaction time
in a motor task after activation of contralateral motor cortex (Rockstroh et al. (1982)),
faster lexical decisions (Pulvermüller et al. (2000)), or improved memory performance as
a function of deactivation of the parahippocampal place area (Weiskopf et al. (2004b)).
In these examples, the link between activation and deactivation of a specific cortical
area and changes in behavior is quite evident. More general effects on learning such as
better musical performance in music students (techniques and subjective interpretation)
and better dancing performance in dance students (technicality, flair, overall execution)
were observed after regularization of alpha and theta activity (Gruzelier and Egner (2005);
Raymond et al. (2005))

An often overlooked direction of BCI applications beyond clinical and basic research
aspects is the yet unexplored use of BCI as an additional independent channel of man-



1.3 Approaches to BCI Control 3

machine interaction (see chapters 23, 24 and 25 for first examples in this direction of
research). In particular, brain signals can provide direct access to aspects of human brain
state such as cognitive workload, alertness, task involvement, emotion, or concentration.
The monitoring of these will allow for a novel technology that directly adapts a man-
machine interface design to the inferred brain state in real-time.

Furthermore, BCI technology can in the near future serve as an add-on when devel-
oping new computer games, for example, fantasy games that require the brain-controlled
mastering of a task for advancing to the next game level.

A variety of technologies for monitoring brain activity may serve as a BCI. In addi-
tion to electroencephalography (EEG) and invasive electrophysiological methods, these in-
clude magnetoencephalography (MEG), positron emission tomography (PET), functional
magnetic resonance imaging (fMRI), and optical imaging (functional near infrared spec-
troscopy, fNIRS). As MEG, PET, and fMRI are demanding, tied to the laboratory, and
expensive, these technologies are more suitable to address basic research questions and
short-term intervention for location of sources of brain activity and alteration of brain ac-
tivity in diseases with known neurobiological dysfunction. In contrast, EEG, NIRS, and
invasive devices are portable, and thus may offer practical BCIs for communication and
control in daily life.

Current BCIs for human users have been mainly used for cursor control and communi-
cation by means of selection of letters or items on a computer screen (e.g., Birbaumer et al.
(1999); Blankertz et al. (2006a); Hochberg et al. (2006); Obermaier et al. (2003); Wolpaw
and McFarland (2004)). An overview of BCI applications in clinical populations is given
in chapter 22.

Interfaces between machine and the animal brain have been used to control robotic
arms (e.g., Taylor et al. (2002); Wessberg et al. (2000), and for a review, see Lebedev
and Nicolelis (2006)). However, before BCIs can be utilized across a wide range of
clinical or daily life settings, many open technological issues must be resolved. Sensors
are the bottleneck of todays invasive and noninvasive BCIs: invasive sensors can last only
a limited time before they lose signal (Hochberg et al. (2006); Nicolelis et al. (2003)),
and noninvasive sensors need long preparation time due to the use of conductive gel.
More neurobiological and psychological research is necessary to understand the interaction
between neurons and behavior related to the use of BCIs. Already machine learning and
advanced signal processing methods play a key role in BCI research as they allow the
decoding of different brain states within the noise of the spontaneous neural activity in
real-time (see chapters 9, 11, 12, 13, 14, 15, 16, and 18). There is, however, a need for
continuous improvement; in particular, higher robustness, online adaptation to compensate
for nonstationarities, sensor fusion strategies, and techniques for transferring classifier or
filter parameters from session to session are among the most burning topics.

1.3 Approaches to BCI Control

Two separate approaches to BCI control exist, while almost all BCIs realize a mix-
ture of both approaches: (1) Learning to voluntarily regulate brain activity by means of
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neurofeedback and operant learning principles. Following subject training, in which the
subject learns to regulate a specific brain activity by means of feedback, different brain
states can be produced on command and, thus, become suitable as control commands. (2)
Machine learning procedures that enable the interference of the statistical signature of spe-
cific brain states or intentions within a calibration session (see chapter 5).

1.3.1 The Biofeedback Approach—Voluntary Control of the Brain Response

Biofeedback is a procedure that, by means of feedback of a (seemingly) autonomous
parameter, aims at acquiring voluntary control over this parameter. Participants receive
visual, auditory, or tactile information about their cardiovascular activity (heartrate, blood
pressure), temperature, skin conductance, muscular activity, electrical brain activity (EEG,
MEG), or the blood oxygen level dependent (BOLD) response (with fMRI). In discrete or
continuous trials, the participants are presented with the task to either increase or decrease
the activity of interest. By means of the feedback signal, participants receive continuous
information about the alteration of the activity. At the end of the trial, participants are
informed about their performance (e.g., by highlighting a correctly hit target) and correct
trials may be positively reinforced by a smiling face (Kübler et al. (1999); see also
chapter 3) or by earning tokens that can be exchanged later for toys (e.g., training of
children with ADHD in first author’s affiliation). If participants are repeatedly trained,
they learn to manipulate the activity of interest, which is then—at least to a certain extent—
under voluntary or conscious (cortical) control.

1.3.2 The Machine Learning Approach—Detection of the Relevant Brain Signal

A somewhat opposite approach3 is the machine learning approach to BCI, where the train-
ing is relocated from the subject to the learning algorithm. Thus, decoding algorithms are
individually adapted to the users that perform the task. For obtaining a qualitative impres-
sion about the variability that is to be compensated, see chapter 13, figures 13.1 and 13.2,
where different individuals perform finger tapping or motor imagery. Note that even the
intraindividual variance between sessions is high. Learning algorithms require examples
from which they can infer the underlying statistical structure of the respective brain state.
Therefore, subjects are first required to repeatedly produce a certain brain state during a
calibration session (e.g., for the BBCI, this calibration session takes approximately twenty
minutes, see chapter 5). Even from such a small amount of data, current learning machines
can extract spatiotemporal blueprints of these brain states, which are readily usable in the
subsequent feedback session. The tackling of the enormous trial-to-trial variability is a ma-
jor challenge in BCI research. We believe that advanced techniques for machine learning
are an essential tool in this endeavor. The use of state-of-the-art learning machines enables
not only the achievement of high decision accuracies for BCI (e.g., chapters 5, 6, 9, 12,
13, and 14), but also, as a by-product of the classification, the few most salient features for
classification are found, which can then be matched with neurophysiological knowledge.
In this sense, machine learning approaches are useful beyond the pure classification or
adaptive spatiotemporal filtering step, as they can contribute to a better interpretation and
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understanding of a novel paradigm per se (see Blankertz et al. (2006b)). Thus, machine
learning can be usefully employed in an exploratory scenario, where (1) a new paradigm
is tested that also could generate unexpected neurophysiological signals, (2) a hypothesis
about underlying task relevant brain processes is generated automatically by the learning
machine through feature extraction, and (3) the paradigm can be refined, and thus a better
understanding of the brain processes could be achieved (see figure 13.8). In this sense, a
machine learning method offering explanation can be of great use in the semiautomatic ex-
ploration loop for testing new paradigms. Note that this holds also for data analysis beyond
decoding of brain signals.

1.3.3 Integration of the Two Approaches

The two last paragraphs reflect opposite positions. In practice, BCIs will neither rely solely
on feedback learning of the users nor only on machine learning. For example, in the BBCI
(see chapter 5) that has no explicit user biofeedback training, a user’s brain activity will
adapt to the settings of the decoding algorithm when using the BCI in feedback mode,
such that the most successful EEG activity pattern will be repeatedly produced. Thus, a
coadaptation of the learning user and algorithm occurs inevitably. However, it remains
unclear how to optimally bring these two interacting learning systems into synchrony; a
thorough study is still missing. Experimentally, the two learning systems can be coupled
using online learning (see chapter 18 for discussion).

It is furthermore important to note that in a proportion of the subject population, typically
in 20 percent of the users, one is unable to successfully classify the brain activation
patterns. We refer to this group as the BCI illiterates. This finding holds no matter whether
machine learning or biofeedback is used to train the subjects. Further research is needed to
fully understand and overcome the BCI illiteracy phenomenon.

1.4 Clinical Target Groups—Individuals in Need of a BCI for Motor Control and Communication

A variety of neurological diseases such as motor neuron diseases, spinal cord injury, stroke,
encephalitis, or traumatic brain injury may lead to severe motor paralysis, which may also
include speech. Patients may have only a few muscles to control artificial devices for
communicating their needs and wishes and interacting with their environment. We refer
to the locked-in state if some residual voluntary muscular movement, such as eye or lip
movement, is still possible. People who lost all voluntary muscular movement are referred
to as being in the complete locked-in state (see also chapter 22 and Birbaumer (2006a)). In
the realm of BCI use, it is of particular importance how and how much the brain is affected
by disease. To provide a detailed discussion of all diseases that may lead to the locked-in
syndrome would go beyond the scope of this introduction. Thus, we will refer to only those
diseases that have been repeatedly reported in the BCI literature, that is amyotrophic lateral
sclerosis, high spinal cord injury, and stroke; all three diseases have quite different effects
on the brain.
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1.4.1 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease involving
the first and second motoneurons and the central nervous system (see also chapter 22).
Patients with ALS show global brain atrophy with regional decreases of grey matter
density being highest in right-hemispheric primary motor cortex and left-hemispheric
medial frontal gyrus (Kassubek et al. (2005)). White matter reduction is found along the
corticospinal tracts, in the corpus callosum, and in frontal and parietal cortices. Clinical
symptoms are atrophic paresis with fasciculations mostly starting in hands and lower arms.
With progressive neuronal degeneration, patients become severely physically impaired. In
later stages of the disease, speech, swallowing, and breathing are also affected. Patients
succumb to respiratory failure unless they choose artificial ventilation via tracheotomy.
Patients with tracheotomy may render the locked-in state with only residual muscular
movement or even the completely locked-in state. Cognitive impairment has been reported
repeatedly (Hanagasi et al. (2002); Ringholz et al. (2005)), but improved learning has
also been shown (Lakerfeld et al. (submitted); Rottig et al. (2006)). Emotional processing
seems to be altered such that positive and negative extremes are attenuated (Lulé et al.
(2005)). Quality of life in ALS patients is surprisingly high and within the range of
patients with nonfatal diseases such as diabetes or irritable bowl syndrome (Kübler et al. (in
preparation)). One important component of individual quality of life repeatedly mentioned
by patients, specifically as the disease progresses, is the ability to communicate.

1.4.2 Cervical Spinal Cord Injury

Most often spinal cord injury follows trauma. It may also occur due to acute ischaemia in
the arteria spinalis-anterior or acute compression. Acute symptoms are spinal shock with
atonic paresis below the lesion, atonic bladder, paralysis of the rectum, disturbed sensitivity
in all qualities (pain, pressure, temperature) and vegetative dysfunction. These symptoms
continue into the post-traumatic phase and are endorsed by painful, involuntary stretching
and bending of extremities (so-called spinal automatisms). Cervical spinal cord injury has
been shown to be accompanied by local cortical grey matter reduction in somatosensory
areas (S1) bilaterally located posterior to the hand region in M1. Atrophy also occurred
in the right leg area and extended to parietal BA5 in the left hemisphere (Jurkiewicz et al.
(2006)). Several years post trauma, patients may be well adapted to a life with impairment,
experience a balanced emotional life, and lead an intact social life. Pain contributes to
poorer quality of life, and gainful employment is related to high quality of life (Lundqvist
et al. (1991)). Clinically relevant symptoms of depression occur specifically in the first year
post injury (Hancock et al. (1993)).

1.4.3 Brain Stem Stroke

The classic locked-in syndrome as defined by Bauer and colleagues is characterized by
total immobility except for vertical eye movement and blinking (Bauer et al. (1979); Smith
and Delargy (2005)). Most often the locked-in syndrome is of cerebrovascular origin such
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that thrombotic occlusion of the arteria basilaris leads to infarction in the ventral pons
(Katz et al. (1992); Patterson and Grabois (1986)). As a result, corticobulbar and cortical
spinal tracts are interrupted as are both the supranuclear and postnuclear oculomotor fibers.
If movements other than vertical eye movement is preserved, the locked-in syndrome is
referred to as incomplete, and if no movement, and thus no communication, is possible as
total (Bauer et al. (1979)). Higher cortical areas or subcortical areas besides the brain stem
are not affected. Consequently, consciousness and cognition are usually unimpaired in such
patients. A survey on quality of life in chronic locked-in patients (more than one year after
diagnosis) with no major motor recovery, revealed no differences to healthy controls in the
perception of mental and general health (Laureys et al. (2005)). In a survey (N = 44) by
Leon-Carrion et al., less than 20 percent of the patients described their mood as bad (5
percent) or reported to be depressed (12.5 percent) and 81 percent met with friends more
than twice a month (Leon-Carrion et al. (2002)). Many locked-in patients return home from
hospital and start a different but meaningful life (Laureys et al. (2005)).

1.5 Brain-Computer Interfaces for Healthy Subjects

Applications of BCI technology go beyond rehabilitation. Although BCI for healthy sub-
jects is pursued much less, it is of high industrial relevance. It is less the desire to com-
municate for the healthy: this is much more easily done via keyboard, computer mouse,
speech, or gesture recognition devices. It is this additional independent channel “BCI” for
man-machine interaction (see chapters 23, 24 and 25 for first examples in this direction
of research) that has remained unexplored. Brain signals read in real-time on a single trial
basis could provide direct access to human brain states, which can then be used to adapt
the man-machine interface on the fly. One application field could be monitoring tasks such
as alertness monitoring, where the brain holds the key to access information that can oth-
erwise not be easily acquired. Signals of interest to be inferred from brain activity are
cognitive workload, alertness, task involvement, emotion, or concentration. For instance,
workload could be assessed in behavioral experiments by measuring reaction times. How-
ever, this would give very indirect and therefore imprecise measures with respect to tem-
poral resolution, quality, and context. The online monitoring of cognitive workload could
contribute to construct better systems in safety critical applications (see chapter 24). A fur-
ther direction is the direct use of brain states in computer applications or as novel features
for computer gaming (see figure 1.1). The latter is an interesting challenge since the game
interfaces should be able to compensate for the imperfect signal of a BCI. In other words,
if the classification rate of a BCI is 95 percent, then the respective computer game interface
will have to be robust with respect to the 5 percent errors that will inevitably occur. Tetris,
although already successfully played with the BBCI system, is a good example of a game
where small errors can seriously spoil the course of the game.

The current state of EEG sensor technology and the price of EEGs are major obstacles
for a broad use of BCI technology for healthy users. However, once fashionable, cheap,
contactless EEG caps are available—for example, in the shape of baseball caps—a wide
market and application perspective will immediately open.
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Figure 1.1 The simple game of Pong is revived in a new technological context: imagination of the
right hand moves the cursor to the right, imagination of the left hand pushes the cursor to the left. In
this manner, the ball that is reflected from the sides of the game field can be hit by the brain-racket.
Thus, the user can use his intentions to play “Brain Pong.” Dornhege (2006); Krepki (2004); Krepki
et al. (2007).

1.6 Recording Methods, Paradigms, and Systems for Brain-Computer Interfacing

Current BCIs differ in how the neural activity of the brain is recorded, how subjects
(humans and animals) are trained, how the signals are translated into device commands,
and which application is provided to the user. An overview of current noninvasive BCIs is
provided in chapters 2–7, while invasive BCIs are discussed in chapters 8–12. An overview
of existing software packages is found in chapters 20 and 21.

1.6.1 Noninvasive Recording Methods for BCI

The electrical activity of the brain can be recorded noninvasively with electroencephalogra-
phy (EEG) (e.g., Birbaumer et al. (1999); Pfurtscheller et al. (2000b); Wolpaw et al. (2003);
Blankertz et al. (2006a)). The current produced by neural activity induces a magnetic
field that can be recorded with magnetoencephalography (MEG) (Birbaumer and Cohen
(2005)). Increased neural activity is accompanied by locally increased glucose metabolism,
resulting in increased glucose and oxygene consumption. As a consequence of glucose con-
sumption, cranial arteries dilate, allowing for increased blood flow, that results in hyper-
oxygenation of the active tissue. Imaging techniques make use of the different magnetic
and optical properties of oxygenated and deoxygenated hemoglobin. The different mag-
netic properties of the ferrous on the heme of oxy- and deoxyhemoglobin are the basis of
the blood oxygen level dependent (BOLD) response measured with functional magnetic
resonance imaging (fMRI) (Chen and Ogawa (2000)). Oxy- and deoxyhemoglobin have
different optical properties in the visible and near infrared range. The changes in the ratio
of oxygenated hemoglobin to blood volume due to neural activity is measured with near
infrared spectroscopy (NIRS) (Bunce et al. (2006)). In the following sections, we briefly
review noninvasive BCIs categorized according to the recording techniques.
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Figure 1.2 Generic noninvasive BCI setup: signals are recorded, e.g., with EEG, meaningful
features are extracted and subsequently classified. Finally, a signal is extracted from the classifier
that provides the control signal for some device or machine.

1.6.1.1 Brain Signals Recorded from the Scalp (EEG-BCIs)

In a typical BCI setting, participants are presented with stimuli or are required to perform
specific mental tasks while the electrical activity of their brains is being recorded by EEG
(see figure 1.2 for a general setup of a noninvasive BCI). Extracted and relevant EEG
features can then be fed back to the user by so-called closed-loop BCIs. Specific features of
the EEG are either regulated by the BCI user (slow cortical potentials (SCP), sensorimotor
rhythms (SMR)) or are elicited by visual, tactile, or auditory stimulation (event-related
potentials, namely the P300 or steady-state [visually-]evoked potentials (SS[V]EP)). In the
following paragraphs we provide a short description of the physiology of these features
and their use for brain-computer interfacing.

Slow Cortical Potentials (SCP)

Research over the past thirty years on SCPs and their regulation led to the excitation-
threshold-regulation theory (Birbaumer et al. (1990, 2003); Strehl et al. (2006)). The
vertical arrangement of pyramidal cells in the cortex is essential for the generation of SCP
(see figure 1.3). Most apical dendrites of pyramidal cells are located in cortical layers I and
II. Depolarization of the apical dendrites giving rise to SCP is dependent on sustained
afferent intracortical or thalamocortical input to layers I and II, and on simultaneous
depolarization of large pools of pyramidal neurons. The SCP amplitude recorded from
the scalp depends upon the synchronicity and intensity of the afferent input to layers I and
II (Speckmann et al. (1984)). The depolarization of cortical cell assemblies reduces their
excitation threshold such that firing of neurons in regions responsible for specified motor or
cognitive tasks is facilitated. Negative amplitude shifts grow with increasing attentional or
cognitive resource allocation. Cortical positivity may result from active inhibition of apical
dendritic neural activity or simply from a reduction of afferent inflow and subsequent
reduced postsynaptic activity. In any case, positive SCPs are considered to increase the
excitation threshold of upper cortical layers via a negative feedback loop involving the
basal ganglia and the reticular nucleus of the thalamus. Increasing cortical negativity is
accompanied by increased activation of inhibitory striatal nuclei that leads to an increase
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Figure 1.3 Negative slow cortical potentials at the surface of the cortex originate from afferent
thalamic or cortical input to the apical dendrites in layers I and II. The extracellular surrounding
of the dendrites is electrically negative, leading to current flow into the cell mediated by positive
sodium ions (sink). Intracellularly, the current flows toward the soma (source). This fluctuation of
ions generates field potentials that can be recorded by electrodes on the scalp (from Kübler et al.
(2001a), figure 4, with permission).

of the excitation threshold of upper cortical layers, thereby preventing overexcitation
(Birbaumer et al. (2003); Hinterberger et al. (2003c); Strehl et al. (2006)).

A strong relationship among self-induced cortical negativity, reaction time, signal detec-
tion, and short-term memory performance has been reported in several studies in humans
and monkeys (Lutzenberger et al. (1979, 1982); Rockstroh et al. (1982)). Tasks requir-
ing attention are performed significantly better when presented after spontaneous or self-
induced cortical negativity.

Slow Cortical Potentials as Input for a BCI (SCP-BCI)

The SCP-BCI requires users to achieve voluntary regulation of brain activity. Typically,
the SCP-BCI presents users with the traditional S1-S2 paradigm, which in the sixties led
Walter and colleagues to the detection of the contingent negative variation (CNV) (Walter
et al. (1964)): a negative SCP shift seen after a warning stimulus (S1) two to ten seconds
before an imperative stimulus (S2) that requires participants to perform a task (e.g., a
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Figure 1.4 Course of slow cortical potentials (SCP) averaged across 600 trials (amplitude as a
function of time). The grey line shows the course of SCP when cortical negativity has to be produced
to move the cursor toward the target at the top of the screen, the black line when cortical positivity is
required to move the cursor toward the bottom target. Negative and positive SCP amplitudes clearly
differ between the two tasks providing a binary response. At the beginning of a trial the task is
presented, accompanied by a high-pitched tone (S1—warning stimulus) indicating that two seconds
later the active phase will start providing SCP feedback to the user. The active phase is introduced
by a low-pitched tone (S2—imperative stimulus). Between S1 and S2 a contingent negative variation
(CNV) develops, which indicates that the user is preparing to perform the task.

button press or cursor movement). The CNV (see figure 1.4) indicates depolarization and,
thus, resource allocation for task performance as described above. Similarly, the SCP-BCI
presents users with a high-pitched tone (S1) that indicates to the user that two seconds
later, simultaneously with a low-pitched tone (S2), feedback of SCPs will start either
visually as cursor movement on a monitor or by auditory means with instrumental sounds
(Hinterberger et al. (2004a); Kotchoubey et al. (1997); Kübler et al. (1999)). Users are
presented with two tasks, for example, cursor movement into targets either at the top or
bottom of the screen, or an increase or decrease in the pitch of tones. To perform the
task, BCI users have to produce positive and negative SCP amplitude shifts as compared
to a baseline (see figure 1.4). SCP amplitude shifts must be above or below a predefined
threshold to be classified as negative or positive. Severely paralyzed patients communicated
extended messages with the SCP-BCI (Birbaumer et al. (1999); Neumann et al. (2003))
(see chapter 3).

Sensorimotor Rhythms (SMR)

Sensorimotor rhythms include an arch-shaped μ-rhythm (see figure 1.5), usually with
a frequency of 10 Hz (range 8–11 Hz), often mixed with a β (around 20 Hz) and a γ

component (around 40 Hz) recorded over somatosensory cortices, most preferably over
C3 and C4. Spreading to parietal leads is frequent and also is seen in patients with
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Figure 1.5 Upper trace: μ-rhythm over sensory motor areas. Lower trace: desynchronization of
μ-rhythm through movement imagery.

amyotrophic lateral sclerosis (Kübler et al. (2005a)). Recently, an ALS patient showed
left-hand movement-imagery-related SMR modulation at P4, which is in accordance with
increased parietal activation during hand movement imagery in ALS patients as measured
with functional magnetic resonance imaging (Kew et al. (1993); Lulé et al. (in press)). The
SMR is related to the motor cortex with contributions of somatosensory areas such that the
beta component arises from the motor and the alphoid μ-component from sensory cortex.
SMR is blocked by movements, movement imagery, and movement preparation; thus, it is
seen as an “idling” rhythm of the cortical sensory region. In cats, μ-rhythm-like activity has
been shown to originate from the nucleus ventralis posterior of the thalamus. Usually μ-
rhythm activity is not readily seen in scalp-recorded spontaneous EEG activity and it thus
historically has been believed to occur in only a small number of adult persons. However,
with better signal processing it has been shown to be ubiquitous in adults. Immediately,
scalp-detectable μ-rhythm may, however, be an indicator of pathology. It was reported
to accompany autonomic and emotional dysfunction such as migrane, bronchial asthma,
tinnitus, anxiety, aggressiveness, and emotional instability. It is also often seen in patients
with epilepsy. Three theories for the neurophysiological basis of the μ-rhythm exist: (1) it
could be the correlate of neuronal hyperexcitability as specifically expressed in pathology,
(2) it could be a sign of cortical inhibition, which would explain the blocking of μ-rhythm
by movement or movement imagery, or (3) it may be interpreted as somatosensory “cortical
idling,” adding the component of afferent input (summarized according to Niedermeyer
(2005b)).

Sensorimotor Rhythms as Input for a BCI (SMR-BCI)

Sensorimotor rhythms (SMR) decrease or desynchronize with movement or preparation for
movement and increase or synchronize in the postmovement period or during relaxation
(Pfurtscheller et al. (1999)). Furthermore, and most relevant for BCI use by locked-
in patients, they also desynchronize with motor imagery. Thus, to modulate the SMR
amplitude no actual movement is required. Many BCI groups choose SMR as input
signal because—at least in healthy participants—they are easy to regulate by means of
motor imagery (see figure 1.6 and chapters 2–5). Modulation of SMR can be achieved
within the first training session where the subjects are instructed to imagine left and
right hand and foot movement (e.g., Blankertz et al. (2006a), see also chapter 5). After
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Figure 1.6 EEG frequency spectrum of an ALS patient at electrode position Cp4 as a function of
amplitude averaged over about 160 trials. The grey line shows the averaged EEG when the cursor
has to be moved into the top target at the right-hand-side margin of the screen, the black line
when the cursor has to be moved into the bottom target. Downward cursor movement is achieved
by motor imagery (in this case left-hand movement leading to SMR modulation at Cp4), upward
cursor movement by “thinking of nothing.” During downward cursor movement, the SMR amplitudes
decrease (desynchronize) in the α and β band leading to a binary signal.

subsequent machine learning (about two minutes on a standard PC) and visual inspection,
individualized spatiotemporal filters and classifiers are ready to be used for feedback.
Good subjects are then able to achieve information transfer rates of fifty bits per minute in
asynchronous BCI mode (for a comparison of different evaluation criteria, see chapter 19).
Even under the extremely challenging conditions of life demonstrations at CeBit 2006 in
Hanover, Germany, subjects were able to achieve on average a selection rate of five to eight
letters per minute in a spelling task (see chapter 5 and Müller and Blankertz (2006)).

To achieve similar EEG patterns of imagined movements as compared to actual move-
ments, it is important to instruct participants to imagine movement kinesthetically, meaning
to “feel and experience” the movement instead of simply visualizing a movement (Neuper
et al. (2005)). As with the SCP-BCI, to operate the SMR-BCI subjects are required to reg-
ulate the SMR amplitude and are thus provided with visual (Pfurtscheller et al. (2006c);
Wolpaw et al. (2003)) or auditory feedback (Hinterberger et al. (2004a); Nijboer et al. (in
press)) (see also chapter 3). Typically, subjects are shown two or more targets on a monitor
in which the cursor has to be moved by means of SMR amplitude modulation (see also
chapters 2, 4, and 5). In a recent study with four ALS patients, it was shown that SMR
regulation is possible despite considerable degeneration of cortical and spinal motor neu-
rons (Kübler et al. (2005a)). However, the SMR amplitude is much lower in patients as
compared to healthy individuals.
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Event-Related Potentials

Event-related potentials (ERPs) are electrocortical potentials that can be measured in the
EEG before, during, or after a sensory, motor, or psychological event. They have a fixed
time delay to the stimulus and their amplitude is usually much smaller than the ongoing
spontaneous EEG activity. The amplitudes are smaller because ERPs are more localized
in the corresponding cortical areas. They are less frequent than the spontaneous EEG
waves with similar shape and amplitude (Birbaumer and Schmid (2006)). To detect ERPs,
averaging techniques are used. An averaged ERP is composed of a series of large, biphasic
waves, lasting a total of five hundred to thousand milliseconds. Error monitoring of the
brain is also accompanied by evoked potentials referred to as error related potentials. These
deflections in the EEG may be used for error detection in a BCI (see chapter 17). In the
following two paragraphs, a short overview is provided of the P300 component of the
event-related potential and the visually (and sensorily) evoked potential for BCI use. BCIs
on the basis of visually evoked potentials and visual P300 require intact gaze.

P300

The P300 is a positive deflection in the electroencephalogram (EEG) time-locked to
auditory or visual stimuli (see figure 1.7). It is typically seen when participants are required
to attend to rare target stimuli presented within a stream of frequent standard stimuli
(Squires et al. (1977)), an experimental design referred to as the oddball paradigm (Fabiani
et al. (1987)). The P300 amplitude varies as a function of task characteristics such as
discriminability of standard and target stimuli (Johnson and Donchin (1978)), loudness of
tones (Squires et al. (1977)), overall probability of the target stimuli, the preceding stimulus
sequence (Squires et al. (1976)), and the electrode position (Squires et al. (1977)). Mostly
observed in central and parietal regions, it is seen as a correlate of an extinction process in
short-term memory when new stimuli require an update of representations.

P300 as Input Signal for a BCI (P300-BCI)

As early as the late eighties, Farwell and Donchin had shown that the P300 component of
the event-related potential can be used to select items displayed on a computer monitor
(Farwell and Donchin (1988)). The authors presented their participants with a 6 x 6 matrix
where each of the 36 cells contained a character or a symbol. This design becomes an
oddball paradigm by first intensifying resp. flashing each row and column for 100 ms in
random order and second by instructing participants to focus attention to only one of the
36 cells. Thus, in one sequence of 12 flashes (6 rows and 6 columns are highlighted), the
target cell will flash only twice, constituting a rare event compared to the 10 flashes of all
other rows and columns and therefore eliciting a P300 (see figure 1.7). Selection occurs by
detecting the row and column that elicit the largest P300 (see also chapter 2). The P300-
BCI does not require self-regulation of the EEG. All that is required from users is that they
are able to focus attention and gaze on the target letter albeit for a considerable amount of
time.

Over the past five years, the P300 has received increasing amounts of attention as a BCI
control signal. For example, a number of offline studies have been conducted to improve
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Figure 1.7 Averaged EEG at the vertex electrode (Cz) of an ALS patient using a 7 x 7 P300 spelling
matrix. The black line indicates the EEG response to 2448 standard stimuli and the grey line to 51
target letters (oddball) that have to be selected from the spelling matrix. A positive deflection as a
response to targets can be seen in the time window between 200 and 500 ms.

the classification rate of the P300 Speller (Kaper et al. (2004); Serby et al. (2005); Xu
et al. (2004); He et al. (2001); Thulasidas et al. (2006)). Using a support vector machine
classifier, Thulasidas et al. report online selection of three characters per minute with 95
percent accuracy (Thulasidas et al. (2006)). Bayliss showed that the P300 also can be
used to select items in a virtual apartment, provided presentation of targets constitute an
oddball paradigm (Bayliss et al. (2004)). In 2003, Sellers, Schalk, and Donchin published
the first results of an ALS patient using the P300 Speller (Sellers et al. (2003)). In recent
studies, Sellers et al. and Nijboer et al. presented results of the P300 speller used by ALS
patients indicating that ALS patients are able to use the P300-BCI with accuracies up to 100
percent (Nijboer et al. (submitted); Sellers et al. (2006b)). It was also shown that the P300
response remains stable over periods of twelve to more than fifty daily sessions in healthy
volunteers as well as in ALS-patients (Nijboer et al. (submitted); Sellers and Donchin
(2006)). Piccione et al. tested the P300 as a control signal for a BCI in seven healthy and
five paralyzed patients (Piccione et al. (2006)). As in the other studies, task completion
and good performance was achieved after little time, thus there was no need for time-
consuming training. However, the patients’ performance (68.6 percent) was worse than that
of healthy participants (76.2 percent). In particular, those patients who were more impaired
performed worse than did healthy participants, whereas there was no difference between
less impaired patients and healthy participants (Piccione et al. (2006)). Recently, Vaughan
et al. introduced a P300-BCI for daily use in a patient’s home environment (Vaughan et al.
(2006)). Auditorily presented oddball paradigms may be used for patients with restricted
or lost eye movement and are currently being investigated (Sellers and Donchin (2006);
Hill et al. (2005)).
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SSVEP

After visual stimulation (e.g., an alternating checkerboard), evoked potentials can be
recorded from the visual cortex in the occipital lobe (O1, O2, Oz—according to the
international 10-20 system). A visually evoked potential becomes steady if the presentation
rate of stimuli is above 6 Hz (Gao et al. (2003b)). When participants focus their gaze on
a flickering target, the amplitude of the steady-state visually evoked potential (SSVEP)
increases at the fundamental frequency of the target and second and third harmonics (Wang
et al. (2006); Müller-Putz et al. (2005b)). Amplitude and phase of the SSVEP depend on
stimulus parameters such as repetition rate and contrast. The frequency resolution of the
SSVEP is about 0.2 Hz and the bandwidth in which the SSVEP can be detected reliably is
between 6 and 24 Hz (Gao et al. (2003b)).

SSVEPs as Input Signal for a BCI (SSVEP-BCI)

Like the P300-BCI, the SSVEP-BCI requires attention and intact gaze but no user train-
ing as the cortical response is elicited via external stimulation (see chapter 4). To elicit
SSVEPs, targets with different flickering frequencies are presented on a monitor (Wang
et al. (2006)) or on a board with light emitting diodes (LED) (Müller-Putz et al. (2005b);
Gao et al. (2003b)). The number of targets realized in a BCI varies from 4 (Müller-Putz
et al. (2005b)) up to 48 (Gao et al. (2003b)). Classification accuracies of more than 90
percent correct are often reported (Kelly et al. (2005); Nielsen et al. (2006); Trejo et al.
(2006)). In a 9-target SSVEP-BCI, healthy participants spelled out their phone number and
birth date with a spelling rate of 7.2–11.5 selections per minute (information transfer rate
of 18.37–27.29 bits/min) (Nielsen et al. (2006)), and in an 11-target SSVEP-BCI with an
average accuracy of 83.3 percent (23.06 bits/min) (Lee et al. (2006)).

A caveat of all SSVEP approaches to BCI control is their dependence on intact gaze,
which renders them unsuitable for patients with restricted eye movement. Two studies
address this issue. Kelly et al. investigated classification accuracies when users were not
required to focus gaze on the flickering targets but on a fixation cross between two targets—
a condition the authors refer to as covert attention (Kelly et al. (2005)). A decrease in
accuracy was observed from about 95 percent when targets were fixated directly to about
70 percent in the covert attention condition. Thus, at least a rather simple two-target SSVEP
paradigm might be used by locked-in patients albeit with reduced accuracy. A BCI based on
steady-state evoked potentials completely independent of vision was introduced by Müller-
Putz and colleagues (Müller-Putz et al. (2006)). The authors used vibratory stimulation
of left- and right-hand fingertips to elicit somatosensory steady-state evoked potentials
(SSSEP, see figure 1.8). The EEG was recorded from central electrodes (C3, Cz, and
C4—according to the international 10-20 system). In each trial, both index fingers were
stimulated simultaneously at different frequencies and participants were instructed via
arrows on a computer screen to which finger they should pay attention. Online accuracies
of four participants varied between 53 (chance level) and 83 percent correct, but offline
classification was between 65 and 88 percent correct. Albeit not yet as reliable as the
SSVEP-BCI the SSSEP-BCI may become an option for patients with impaired vision.
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Figure 1.8 Peak at 31 Hz recorded at C3 when focusing attention on stimulation of right index
finger (left panel) and 26 Hz at C4 when focusing on stimulation of left index finger. Both peaks
reflect the stimulation frequency correctly (We thank Dr. Gernot Müller-Putz from the Laboratory of
Brain-Computer Interfaces Institute for Knowledge Discovery at the Technical University of Graz,
Austria, for this picture and the permission of reproduction).

1.6.1.2 Combinations of Signals

It is a well-known fact that different physiological phenomena, for example, slow corti-
cal potential shifts such as the premovement Bereitschaftspotenzial or differences in spa-
tiospectral distributions of brain activity (i.e., focal event-related desynchronizations), code
for different aspects of a subject’s intention to move. While papers noted the potential of
combining these multiple modalities, it was first explored systematically by Dornhege et
al. (2004a). Their work showed that BCI information transfer rates can be boosted signif-
icantly when combining different EEG features. From a theoretical point of view, feature
combination is most beneficial if the features of the single modalities have maximal statis-
tical independence. High mutual independence can be measured in EEG features and thus
subject dependent improvements of up to 50 percent relative classification performance
gain are observed when using combined features in an offline evaluation (Dornhege et al.
(2004a); Dornhege (2006)). The use of robust well-regularized classifiers is mandatory in
this “sensor-fusion” process because otherwise the model complexity is hard to control in
such high dimensional feature spaces (see chapter 13). We conjecture that not only combi-
nations between different EEG modalities but also between different recording technolo-
gies will be useful in the future, for example, between fMRI and EEG, or between local
field potentials and spike data. Machine learning will be challenged by fusing different
time-scales and their underlying statistical processes.

1.6.1.3 The Magnetic Activity of the Brain

The magnetic field generated by electrical brain activity can be measured by means of
magnetoencephalography (MEG). To date, this method is used only in laboratory settings
and is consequently not suitable for a BCI for communication and control in the patient’s
home environment. However, the advantages of MEG as compared to EEG, namely better
spatial resolution leading to a precise localization of cortical activation related to a specific
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task or sensory stimulation and higher signal-to-noise ratio, especially for higher frequency
activity like gamma band activity, render it a viable tool for short-term intervention and
rehabilitation (see chapter 14). In a study with three tetraplegic patients after cervical spinal
cord injury, Kauhanen et al. achieved the same classification accuracies in MEG data as
compared to EEG data (Kauhanen et al. (2006)). The patient’s task was to attempt finger
movement, and data were analyzed offline. Lal et al. showed that regulation of the magnetic
activity of the brain by means of motor imagery can be used to select letters on a computer
screen, but participants were not yet provided with online feedback of MEG activity;
instead they were provided with feedback of results, that is, a smiling face after correct
classification or selection of the correct letter (Lal et al. (2005b)). Mellinger et al. even
provide online MEG feedback for healthy participants during motor imagery (Mellinger
et al. (under revision)). Three of five participants achieved cursor control of 90 percent
accuracy or more within the first training session. Thus, learning to regulate brain activity
by means of MEG feedback and achieved accuracies were comparable to EEG (Blankertz
et al. (2006a)). MEG may be used to localize the focus of activity during motor imagery
if EEG provides no clear results (see chapter 22). Currently, MEG feedback during motor
imagery is used to train chronic stroke patients to reactivate the paralyzed limb provided
that not the entire motor cortex or pyramidal tracts are lesioned. Chronic stroke patients
undergo an MEG feedback training such that their paralyzed limb is provided with an
orthosis that opens and closes the paralyzed hand (Birbaumer and Cohen (2005)). Motor
imagery opens the orthosis whereas relaxation (thinking of nothing) closes it. This training
provides the patients with self-induced sensory feedback of the paralyzed limb. The idea
behind this being that activation of a sensorimotor network enables patients to relearn
motor functions (Braun et al. (submitted)) (see also chapter 22).

1.6.1.4 The Blood Oxygen Level Dependent Response (BOLD)

For the past approximately five years it has been possible to use the blood oxygen level de-
pendent (BOLD) response as input signal for a BCI. Local concentration of deoxygenated
hemoglobin in brain tissue depends on neuronal activity and metabolism and changes can
be measured with functional magnetic resonance imaging (fMRI). Compared to EEG,
fMRI allows spatial resolution in the range of millimeters and a more precise allocation
of neuronal activity. Additionally, activation in subcortical areas can be recorded. Due to
recent advances in acquisition techniques, computational power, and algorithms, the func-
tional sensitivity and speed of fMRI was increased considerably (Weiskopf et al. (2004b))
and the delay of feedback could be reduced to below two seconds (Weiskopf et al. (2003)),
which allows the use of this technique as real-time fMRI. Target areas for feedback were
sensory (S1, e.g., Yoo et al. (2004)) and motor areas (M1, e.g., DeCharms et al. (2004);
SMA Weiskopf et al. (2004b)), the parahippocampal place area (Weiskopf et al. (2004b)),
the affective and cognitive subdivision of the anterior cingulate cortex (ACC) (Weiskopf
et al. (2003)), and rostral ACC (DeCharms et al. (2005)). Learning of self-regulating the
BOLD response was reported in all studies that included subject training to regulate the
BOLD response, and some reported behavioral effects in relation to activation or deacti-
vation of target areas: Increase of activation in the affective subdivision of the ACC led to
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higher valence and arousal ratings of the subjective affective state (Weiskopf et al. (2003)).
Better encoding of words after down regulation of the parahippocampal place area (as
compared to the supplementary motor area) and decreased reaction time in a motor task
after upregulation of the supplementary motor area (as compared to the parahippocam-
pal place area) was demonstrated (Weiskopf et al. (2004b)). Regulation of the insula, an
area involved in emotional processing, also proved possible and was shown to increase the
negative valence of participants when confronted with negative stimuli such as pictures
of violence or mutilated bodies (Sitaram et al. (2006)). Recently, specific effects on pain
perception as a function of self-regulation of the rostral part of the ACC was reported in
the first clinical study including patients with chronic pain. In healthy subjects, the au-
thors controlled for effects of repeated practice, brain region, feedback, and intervention.
In chronic pain patients, only feedback was controlled such that one group received feed-
back of the BOLD response in the rostral ACC and another of skin conductance, heart
rate, and respiration. Healthy participants were presented with nociceptive heat stimuli.
Only in those healthy participants and pain patients who received real-time feedback of the
BOLD response in the rostral ACC, an area known to be involved in pain perception, were
changes in pain ratings found (DeCharms et al. (2005)). This study already demonstates
the possible power of the fMRI-BCI for treating clinical groups if the neurobiological basis
of the disorder is known. For example, hypoactivation in orbitofrontal and limbic areas in-
volved in emotional processing were found in psychopaths (Birbaumer et al. (2005)), and
hypofunction in dorsolateral and dorsomedial prefrontal cortex and the pregenual part of
the ACC is consistently found in depressed patients (Davidson et al. (2002)). Even more
complex cognitive functions as needed for the game of paper, rock, and scissors could be
decoded successfully with fMRI by Kamitani and Tong (2005). Most recently, Owen et al.
successfully distinguished activation patterns to motor imagery (playing tennis) and spatial
navigation (through one’s own house starting at the front door) in a patient diagnosed with
persistent vegetative state, and could thus show that she was consciously aware (Owen
et al. (2006)). For further reference, see also the review by Haynes and Rees (2006).

1.6.1.5 Near Infrared Spectroscopy (NIRS) as a Recording Method for BCI

The advantage of functional MRI as compared to EEG is its 3D spatial resolution. How-
ever, fMRI is expensive and bound to the laboratory. Near infrared spectroscopy offers a
comparable spatial resolution albeit restricted to cortical areas (depth 1–3 cm) with much
less technical effort and costs. Moreover the NIRS-BCI is portable and could thus be used
in a patient’s home environment.

The NIRS-BCI system presented by Sitaram and colleagues incorporates the so-called
continuous wave technique. Regional brain activation is accompanied by increases in
regional cerebral blood flow (rCBF) and the regional cerebral oxygen metabolic rate
(rCMRO2). The increase of rCBF exceeds that of rCMRO2 resulting in a decrease of
deoxygenated hemoglobin in venous blood. Thus, the ratio of oxygenated to deoxygenated
hemoglobin is expected to increase in active brain areas and is measured with NIRS.
The continuous wave approach uses multiple pairs or channels of light sources and light
detectors operating at two or more discrete wavelengths. The light source may be a
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Figure 1.9 Exemplary data from a healthy participant performing motor imagery (right hand
movement). The solid line indicates course of oxygenated (Oxy HB; HB = hemoglobin) and the
dashed line of deoxygenated hemoglobin (Deoxy HB) averaged across a full session (80 trials) from
channel 7 on the contralateral (left) hemisphere (close to the C3 electrode position as per the 10-20
system) for the duration 0–140 time points after stimulus presentation. 140 time points are equal to
10 s of execution of the motor imagery task at a sampling rate of 14 Hz. (We thank Ranganatha
Sitaram from the Institute of Medical Psychology and Behavioural Neurobiology, University of
Tübingen, for this picture and the permission of reproduction).

laser or a light emitting diode (LED). The optical parameter measured is attenuation of
light intensity due to absorption by the intermediate tissue. The concentration changes of
oxygenated and deoxygenated hemoglobin are computed from the changes in the light
intensity at different wavelengths (Sitaram et al. (2007)). It has been shown already that
brain activation in response to motor movement and imagery can be readily detected with
NIRS (see figure 1.9, Coyle et al. (2004); Sitaram et al. (2005, 2007)).

1.6.2 Invasive Recording Methods for BCI

Invasive recording methods either measure the neural activity of the brain on the cortical
surface (electrocorticography, ECoG) or intracortically from within the (motor) cortex
(see figure 1.10 for general setup). These methods have strong advantages in terms of
signal quality and dimensionality. However, they require surgery and the issues of long-
term stability of implants and protection from infection arise (Hochberg et al. (2006)).
The decision of a BCI user for the one method over the other will strongly depend on
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Figure 1.10 Generic setup of an invasive BCI (left) and picture of an array electrode placed into
the monkey cortex (right). Figure (b) from Nicolelis (2001) by permission.

the purpose of BCI use; for example, multidirectional neuroprosthesis control may only be
possible with intracortical recordings, whereas communication at a speed of approximately
ten selections per minute can be achieved with noninvasive methods. We might speculate
that invasive methods have to proof substantially better than noninvasive methods to
become attractive for possible users.

1.6.2.1 Brain Signals Recorded from the Surface of the Cortex (ECoG)

The electrocorticogram (ECoG) uses epidural or subdural electrode grids or strips to record
the electrical activity of the cortex. It is an invasive procedure that requires craniotomy for
implantation of electrodes (see Leuthardt et al. (2006b)). However, the procedure becomes
less invasive when less electrodes are required (strips instead of grids) because strips may
be inserted via a small hole in the scalp. The main advantages of ECoG are a higher spatial
resolution than the EEG (tenths of millimeters versus centimeters), broader bandwidth (0–
200 Hz versus 0–40 Hz) that allows also recording of γ band activity, and higher amplitude
(50–100 μV versus 5–20 μV) and less vulnerability to artifacts such as electromyogram
(Leuthardt et al. (2004)). Commonly, ECoG is used to localize seizure activity in patients
with epilepsy before they undergo surgery. Studies on the feasibility of ECoG for BCI were
thus largely conducted with epilepsy patients and are reviewed in detail in chapter 8. To
our knowledge, only one ALS patient consented to grid implantation for the purpose of
controlling a BCI for communication, but communication was not achieved (Birbaumer
(2006a,b), see chapter 22). Most of these studies performed offline open-loop analysis
of ECoG data (Huggins et al. (1999); Levine et al. (1999)). Using Distinction Sensitive
Learning Vector Quantization (DSLVQ) for offline classification of data recorded during
self-paced middle finger extension, Scherer et al. reported accuracies between 85 and 91
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percent (Scherer et al. (2003)). Hill et al. applied autoregressive models and support vector
machine classification to data obtained during motor imagery and achieved accuracies
around 75 percent (Hill et al. (2006)). Few studies closed the loop and provided feedback
of ECoG to the participants (Felton et al. (2005); Leuthardt et al. (2004, 2006a); Wilson
et al. (2006)). In each study by Leuthardt et al., the ECoG of four patients was recorded
with electrode grids or strips over prefrontal, temporal, sensorimotor, and speech areas.
Patients were required to perform and imagine motor and speech tasks such as opening
and closing the right or left hand, protruding the tongue, shrugging shoulders, or saying
the word move. Each task was associated with a decrease in μ- and β-rhythm and an
increase of gamma-rhythm amplitudes over prefrontal, premotor, sensorimotor, or speech
areas. The spatial and spectral foci of task-related ECoG activity were similar for action
and imagery. Frequency bands in the gamma range were most often chosen for online
control, and during movement imagery accuracies achieved within a brief training of 3–
24 minutes were between 73 and 98 percent. Wilson et al. proposed to use multimodal
imagery for cursor control and showed that cursor control can be achieved with nonmotor
imagery such as auditory imagery (a favorite song, voices, phone) (Wilson et al. (2006)).
In a completely paralyzed ALS patient implanted with a 32-electrode grid, classification of
signals related to motor imagery was at the chance level (Birbaumer (2006a); Hill et al.
(2006); see also chapter 22). More than one year after implantation approximately 50
percent of the electrodes provide stable and clear signal recording (unpublished data from
first author’s affiliation).

1.6.2.2 Brain Signals Recorded from Within the Cortex

Intracortical signal acquisition can be realized with single, few, or multiple electrodes
(arrays) that capture the action potentials of individual neurons. Electrode tips have to be
in close proximity to the signal source and the arrays have to be stable over a long period
of time. With two exemplary ALS patients, Kennedy and Bakay showed that humans are
able to modulate the action potential firing rate when provided with feedback (Kennedy
and Bakay (1998)). The authors implanted into the motor cortex a single electrode with
a glass tip containing neurotrophic factors. Adjacent neurons grew into the tip and after
a few weeks, action potentials were recorded. One patient was able to move a cursor on
a computer screen to select presented items by modulating his action-potential firing rate
(Kennedy et al. (2000, 2004)). In Mehring et al. (2003), it was demonstrated that hand
movements could be estimated from local field potentials.

Multielectrode arrays for intracortical recording are still to be improved for clinical
application (Nicolelis (2003); Nicolelis et al. (2003), see figure 1.10). They have been used
in animals with stable recordings for up to two years (Nicolelis et al. (2003); Donoghue
(2002)). Recent results by Hochberg et al. (2006) for human patients show that stable
long-term recordings are possible but at the expense of losing signal at a large number
of electrodes. Several groups use multielectrode recording to detect activation patterns
related to movement execution in animals (Carmena et al. (2003); Paninski et al. (2004);
Taylor et al. (2003); Chapin et al. (1999)). The action-potential firing rate in motor areas
contains sensory, motor, perceptual, and cognitive information that allows the estimation
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of a subject’s intention for movement execution, and it was shown that 3D hand trajectories
can be derived from the activity pattern of neuronal cell assemblies in the motor cortex by
appropriate decoding (Serruya et al. (2002)). For example, Taylor et al. realized brain-
controlled cursor and robot arm movement using recordings from a few neurons (18
cells) in the motor cortex only (Taylor et al. (2002)). Rhesus macaques learned first
to move a cursor into eight targets located at the corners of an imaginary cube with
real hand movements. Accompanying neural activity patterns were recorded and used to
train an adaptive movement prediction algorithm. After sufficient training of subjects and
algorithm, subjects’ arms were restricted and cursor movement was performed by brain
control. Similarly, rhesus monkeys were trained to move a brain-controlled robot arm in
virtual reality (Taylor et al. (2003)) and then to feed themselves with a real robot arm
(Schwartz (2004b)).

Recently, Musallam et al. presented data from three monkeys that were implanted with
electrode arrays in the parietal reach area, area 5, and the dorsal premotor cortex (Musallam
et al. (2004)). Subjects were first trained to reach for targets at different positions on
a screen after a delay of 1.2 to 1.8 seconds following cue presentation. Neural activity
during the memory period was correctly decoded with an accuracy of about 64 percent.
The authors then trained subjects to associate visual cues with the amount, probability, or
type of reward (orange juice versus water). Neural activity was then found to alter as a
function of expected reward and thus represented additional information for classification.
Accordingly, classification results could be improved by 12 percent.

Santhanam et al. (2006) used a 96-electrode array implanted in the monkey dorsal
premotor cortex and report selection rates of 6.5 bits per second. This astonishing high
information transfer rate was achieved in an instructed delay reach task with ultra-short
trial lengths around 250 ms. Integration over spike activity in very short time windows was
enough for these excellent decoding results.

Hochberg et al. (2006) report on a study where an array of 96 electrodes was implanted
in a human subject diagnosed with tetraplegia three years after high spinal cord injury.
With the array position being the primary motor cortex, it could be demonstrated that spike
patterns were modulated by hand movement intention. A decoding algorithm based on a
linear filter provided a “neural cursor” to the subject, who was then able to operate the
TV, to open or close a prosthetic hand even while in a conversation, or to accomplish
other tasks. The authors furthermore report a considerable loss of recorded units after 6.5
months, which again underlines the necessity to advance sensor technology. It is important
to note that this was the first pilot clinical trial with an intracortical array implantation in
humans.

These and other experimental works reveal that it is possible to derive limb or cursor
movement directly from the neural activity patterns of the cortex with appropriate decoding
algorithms (see also Lebedev and Nicolelis (2006)).

Finally, a simultaneous stimulation of the reward area and the sensory area in the rat
allowed the control over movement patterns of the rat (Talwar et al. (2002)). A more recent
work by Chapin studies how to perform a stimulation of the sensory areas to ultimately
supply artificial sensory feedback for neuroprosthetics (Chapin (2006)).
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1.7 Concluding Discussion

Brain-Machine Interfacing—be it invasive or noninvasive—has witnessed a recent explo-
sion of research. The reason for this increased activity is the wide application potential
that the field is bearing. (1) Clinical applications of BCI (such as those outlined in chap-
ter 22) become evident, and work in the invasive BMI community shows the potential for
future use in neuroprosthetics (Leuthardt et al. (2006a)). This is in particular underlined
by the first successful human clinical trial reported by Hochberg et al. or a recent monkey
study by Santhanam et al. that explores the “speed-limit” of invasive brain-computer inter-
facing (Hochberg et al. (2006); Santhanam et al. (2006)). Similar success can be seen in
noninvasive BCIs, where two-dimensional cursor control allows a richer repertoire of com-
munication and higher information transfer rates (ITR) (Wolpaw and McFarland (2004)).
The Berlin BCI system is now able to almost completely dispense with subject training, an
important progress that nevertheless has yet to be verified for disabled users. Event-related
potentials such as the P300 and the steady-state visually evoked potential provide to date
the highest ITR for noninvasive BCIs (Nijboer et al. (submitted); Nielsen et al. (2006); Lee
et al. (2006)). The Tübingen, Albany, and Graz BCIs are used for rehabilitation in exem-
plary patients. Overall, there is about a factor of ten in information transfer rate between
invasive and noninvasive BCIs and it will depend on each individual patient whether the
risk of surgery and potential inflammation incurred in the invasive methods will justify this
gain. (2) Although clinical application in rehabilitation will always serve as a main motiva-
tion and driving force for BCI research, it is the fascination for the brain itself and the urge
to better understand its function that also drives BCI researchers. In fact, BCIs are a unique
new tool that have emerged over the past years to analyze seminal questions in brain re-
search such as plasticity, dynamics, representation, neural coding, intention, planing, and
learning in a very direct manner. Invasive BMIs can now record from several hundreds
of electrodes and can thus directly study, for example, the change of neural code during
learning. Noninvasive BCIs allow researchers to watch how the brain alters and instantiates
behavior and cognition in real-time. (3) Finally, there is a variety of applications that in-
corporate advanced signal processing, such that single trial data can be classified robustly.
This step forward allows BCI researchers to contribute to general topics in the domain of
human-machine interaction. The exploration of the novel independent communication and
control channel BCI to assess the users state in a direct manner opens a broad field and
it remains to be seen how far the BCI channel will prove to be useful when considering
typical HMI applications like assessment of cognitive workload (see chapter 24), alert-
ness, task involvement, emotion, or concentration. Clearly new systems that can use BCI
for navigating or gaming in virtual worlds (see chapter 23) and for enhancing and improv-
ing man-machine interaction are on the way (see chapter 24). It is important to note that
the above applications will be limited to the noninvasive EEG based systems due to their
comparatively low risk and cost.

Many open problems remain on the path toward better brain-computer interfacing and
broader applicability of the BCI technology. As very extensively outlined by, for exam-
ple, Lebedev and Nicolelis (2006); Nicolelis (2001) and Nicolelis et al. (2003), it will be
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important to advance recording and transmission technology such that chronical implants
become possible that can persist for a long time with very low risk and telemetrically trans-
mit signals to BCI. A better understanding of basic neuroscience issues like representation,
plasticity, and learning will allow the construction of better BMIs. Similar reasoning also
holds for noninvasive BCIs where contactless wearable sensors are a necessary condition
for a wide applicability of BCIs even outside medical domains, for example, for com-
puter gaming and general man-machine interfacing applications such as usability studies.
Overall, it will be essential to advance signal processing and machine learning technology
to build faster, better, more adaptive, and most important more robust systems. What we
defined as the phenomenon of BCI-illiteracy has to be investigated in more depth to un-
derstand whether there will always be a part of the population that is unable to operate a
BCI and for what reasons. Knowing the amazing possibility of humans to learn a task and
observing the considerable inter- and intraindividual signal variances, it seems reasonable
to make BCIs fully adaptive. Unsolved, however, is how we can get these two complex
learning systems—the machines and the human brains—in synchronicity such that stable
BCI control becomes the rule and not the exception. To investigate long-term stability of
BCI systems clearly, more long-term clinical trials are necessary. Gradual improvement in
all these directions will be indispensible for the future success of this lively and vigorous
field.
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Notes

(1) BCI and BMI are used as synonyms.
(2) We distinguish here between brain-computer interfaces that listen to the neural code

and computer-brain interfaces that are also able to transmit information from the
computer toward the brain.

(3) Popularized under the slogan “let the machines learn” by the Berlin Brain-Computer
Interface group (BBCI).
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Introduction

This part provides an insight into a representative variety of BCI systems that are currently
being pursued in research labs.

A distinctive feature in BCI studies is the paradigm used for the interaction between
user and computer. On one hand there are systems that require an active and voluntary
strategy for generating a specific regulation of an EEG parameter such as the motor-related
μ-rhythm or the self-regulation of slow cortical potentials (SCP). On the other hand there
are passive paradigms, where participants only have to passively view an item for selection.
Those systems detect the evoked responses such as P300 as presented in chapter 2 or make
use of steady-state evoked potentials (SSVEP) as presented in chapter 4.

Finally, one distinction between BCI labs is based on the realization of the system. Most
groups, as introduced in chapters 2, 3, and 7, use extensive subject training. So, users have
to adapt their brain signals to a fixed decoding algorithm, that is, the learning is on the
subject side. Over the past five years, the Berlin group has established a paradigm change,
where learning is now done by the computer, following the motto “let the machines learn.”
Now several groups have adopted this principle. Examples for this approach are discussed
in chapters 4, 5, and 6. Note that even if a pure machine learning approach was intended,
the subject will inevitably learn once feedback has started, so in principle BCI systems will
always have both aspects: subject and machine training.

In this section six major BCI labs introduce their systems. For further ideas we refer to
Babiloni et al. (2004), Gao et al. (2003b), Sykacek et al. (2003), Thulasidas et al. (2006),
Kauhanen et al. (2006), and Kaper et al. (2005). Note that this list can never be complete.

Chapter 2 outlines the Albany BCI, where a user is trained to manipulate his μ and
β rhythms to control a cursor in 1- or 2D. Furthermore, BCI control based on the P300
paradigm is shown.

Similar to Albany, the Tübingen BCI, outlined in chapter 3, train their subjects to
adapt to the system using slow cortical potentials. The group uses BCI as a means for
communication of ALS patients with the outside world and as the design of this interaction.
Further BCI systems discussed in the chapter are P300 and μ-rhythm-based BCIs, an
interesting new BCI paradigm based on auditory stimulation and the use of invasive
techniques like ECoG for BCI.

In chapter 4 the main research directions of the Graz BCI are depicted. The group is
broadly exploring the whole BCI field from sensors, feedback strategies, and cognitive
aspects to novel signal processing methods, with excellent results. The Graz BCI is shown
to be not only of use for patients but also it contributes to general man-machine interaction
as demonstrated for a moving in a VR environment. Typically, only a few electrodes and
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machine learning techniques combined with user adaptation are employed to achieve BCI
control.

Chapter 5 introduces the Berlin BCI. Compared to training times of weeks or even
months in other BCIs, the BBCI allows for subject control after 30 minutes. This drastic
decrease in training time became possible by virtue of advanced machine learning and
signal processing technology. The chapter presents online feedback studies based on the
physiological signals’ preparatory potential and μ-rhythm modulation. The study shows
that after less than one hour, five of six untrained subjects were able to achieve high
performances when operating a variety of different feedbacks.

Similar to the Berlin approach, the Martigny BCI introduced in chapter 6 tries to relocate
the effort from the subject training to the machine by using machine learning techniques
and online adaptation to realize a BCI. In particular, online adaptation is an important
direction to compensate for the intrinsic nonstationarities found in EEG signals.

Finally, the ideas of the Vancouver BCI are introduced in chapter 7. The main focus
here is to establish an asynchronous BCI for patients, that is, a system that detects whether
a user is intending something or not. To achieve this goal, the authors also use machine
learning techniques that adapt the machine to the user.

The cheapest, most popular, and thus most commonly used measuring device for non-
invasive BCI is certainly EEG, but recently also BCI experiments using fMRI (cf., e.g.,
Weiskopf et al. (2004a); Kamitani and Tong (2005)) and MEG were conducted success-
fully (cf. Mellinger et al. (2005); Kauhanen et al. (2006)). So far fMRI and MEG are too
expensive for a broad use in BCI, but they have been very important for a better under-
standing of the physiological phenomena in the context of BCI control (cf. Haynes and
Rees (2006)).

Thilo Hinterberger, Guido Dornhege, and Klaus-Robert Müller
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2.1 Abstract

The primary goal of the Wadsworth Center brain-computer interface (BCI) program is to
develop electroencephalographic (EEG) BCI systems that can provide severely disabled
individuals with an alternative means of communication and/or control. We have shown
that people with or without motor disabilities can learn to control sensorimotor rhythms
recorded from the scalp to move a computer cursor in one or two dimensions and we have
also used the P300 event-related potential as a control signal to make discrete selections.
Overall, our research indicates there are several approaches that may provide alternatives
for individuals with severe motor disabilities. We are now evaluating the practicality and
effectiveness of a BCI communication system for daily use by such individuals in their
homes.

2.2 Introduction

Many people with severe motor disabilities require alternative methods for communica-
tion and control because they are unable to use conventional means that require voluntary
muscular control. Numerous studies over the past two decades indicate that scalp-recorded
EEG activity can be the basis for nonmuscular communication and control systems, com-
monly called brain-computer interfaces (BCIs) (Wolpaw et al. (2002)). EEG-based BCI
systems measure specific features of EEG activity and translate these features into de-
vice commands. The most commonly used features have been sensorimotor rhythms (Wol-
paw et al. (1991, 2002); Wolpaw and McFarland (2004); Pfurtscheller et al. (1993)), slow
cortical potentials (Birbaumer et al. (1999, 2000); Kübler et al. (1998)), and the P300
event-related potential (Farwell and Donchin (1988); Donchin et al. (2000); Sellers and
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Donchin (2006)). Systems based on sensorimotor rhythms or slow cortical potentials use
components in the frequency or time domain that are spontaneous in the sense that they
are not dependent on specific sensory events. Systems based on the P300 response use
time-domain EEG components that are elicited by specific stimuli.

At the Wadsworth Center, our goal is to develop a BCI that is suitable for everyday use by
severely disabled people at home or elsewhere. Over the past 15 years, we have developed
a BCI that allows people, including those who are severely disabled, to move a computer
cursor in one or two dimensions using μ and/or β rhythms recorded over sensorimotor
cortex. More recently, we have expanded our BCI to include use of the P300 response that
was originally described by Farwell and Donchin (1988). Fundamental to the efficacy of
our system has been BCI2000 (Schalk et al. (2004)), the general-purpose software system
that we developed and that is now used by more than one hundred BCI laboratories around
the world (see chapter 21 for a complete description of the BCI2000 system).

2.3 Sensorimotor Rhythm-Based Cursor Control

Users learn during a series of training sessions to use sensorimotor rhythm (SMR) am-
plitudes in the μ (8–12 Hz) and/or β (18–26 Hz) frequency bands over left and/or right
sensorimotor cortex to move a cursor on a video screen in one or two dimensions (Wolpaw
and McFarland (1994, 2004); McFarland et al. (2003)). This is not a normal function of this
brain signal, but rather the result of training. The SMR-based system uses spectral features
extracted from the EEG that are spontaneous in the sense that the stimuli presented to the
subject provide only the possible choices and the contingencies are arbitrary.

The SMR-based system relies on improvement of user performance as a result of prac-
tice (McFarland et al. (2003)). This approach views the user and system as the interaction
of two dynamic processes (Taylor et al. (2002); Wolpaw et al. (2000a)), and can be best
conceptualized as coadaptive. By this view, the goal of the BCI system is to vest control in
those signal features that the user can most accurately modulate and optimize the transla-
tion of these signals into device control. This optimization is presumed to facilitate further
learning by the user.

Our first reports of SMR use to control a BCI used a single feature to control cursor
movement in one dimension to hit a target located at the top or bottom edge of a video
monitor (Wolpaw et al. (1991)). In 1993 we demonstrated that users could learn to control
the same type of cursor movement to intercept targets starting at a variable height and
moving from left to right across the screen (McFarland et al. (1993)). Subsequently, we
used two channels of EEG to control cursor movement independently in two dimensions
so users could hit targets located at one of the four corners of the monitor (Wolpaw and
McFarland (1994)). We also evaluated using one-dimensional cursor control with two to
five targets arranged along the right edge of the monitor (McFarland et al. (2003)). This
task is illustrated in figure 2.1a. Cursor control in these examples was based on a weighted
sum of one or two spectral features for each control dimension. For example, an increase in
the amplitude of the 10Hz μ rhythm, located over the sensorimotor cortex (electrode C3),
could move the target up and a decrease in the amplitude of this μ-rhythm could serve to
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Figure 2.1 (a) One-dimensional four-target SMR control task (McFarland et al. (2003)). (b) Two-
dimensional eight target SMR control task (Wolpaw and McFarland (2004)). (1) The target and cursor
are present on the screen for 1 s. (2a) The cursor moves steadily across the screen for 2 s with its
vertical movement controlled by the user. (2b) The cursor moves in two dimensions with direction
and velocity controlled by the user until the user hits the target or 10 s have elapsed. (3) The target
flashes for 1.5 s when it is hit by the cursor. If the cursor misses the target, the screen is blank for 1.5
s. (4) The screen is blank for a 1-s interval. (5) The next trial begins.

move the target down. In this case, feature selection was based on inspection of univariate
statistics.

We found that a regression approach is well suited to SMR cursor movement since
it provides continuous control in one or more dimensions and generalizes well to novel
target configurations. The utility of a regression model is illustrated in the recent study of
SMR control of cursor movement in two dimensions described in Wolpaw and McFarland
(2004). An example trial is shown in figure 2.1b. A trial began when a target appeared at
one of eight locations on the periphery of the screen. Target location was block-randomized
(i.e., each occurred once every eight trials). One second later, the cursor appeared in the
middle of the screen and began to move in two dimensions with its movement controlled
by the user’s EEG activity. If the cursor reached the target within 10 s, the target flashed
as a reward. If it failed to reach the target within 10 s, the cursor and the target simply
disappeared. In either case, the screen was blank for one second, and then the next trial
began. Users initially learned cursor control in one dimension (i.e., horizontal) based on a
regression function. Next they were trained on a second dimension (i.e., vertical) using a
different regression function. Finally the two functions were used simultaneously for full
two-dimensional control. Topographies of Pearson’s r correlation values for one user are
shown in figure 2.2, where it can be seen that two distinct patterns of activity controlled
cursor movement. Horizontal movement was controlled by a weighted difference of 12-Hz
μ-rhythm activity between the left and right sensorimotor cortex (see figure 2.2, left
topography). Vertical movement was controlled by a weighted sum of activity located
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Figure 2.2 Scalp topographies (nose at top) of Pearson’s r values for horizontal (x) and vertical (y)
target positions. In this user, horizontal movement was controlled by a 12-Hz μ-rhythm and vertical
movement by a 24-Hz β-rhythm. Horizontal correlation is greater on the right side of the scalp,
whereas vertical correlation is greater on the left side of the scalp. The topographies are for R rather
than R2 to show the opposite (i.e., positive and negative, respectively) correlations of right and left
sides with horizontal target level (Wolpaw and McFarland (2004)).

over left and right sensorimotor cortex in the 24-Hz β-rhythm (see figure 2.2, right
topography). This study illustrated the generalizability of regression functions to varying
target configurations.

This 2004 study also determined how well users could move the cursor to novel loca-
tions. Targets were presented at sixteen possible locations consisting of the original eight
targets and eight additional targets that were on the periphery in the spaces between the
original eight and not overlapping with them. Target location was block-randomized (i.e.,
each occurred once in sixteen trials). The average movement times to the original locations
was compared with the average movement times to the novel locations. In the first of these
sessions, movement time was slightly but not significantly longer for the novel targets,
and this small difference decreased with practice. These results illustrated that ordinary
least-squares regression procedures provide efficient models that generalize to novel tar-
get configurations. Regression provides an efficient means to parameterize the translation
algorithm in an adaptive manner that smoothly transfers to different target configurations
during the course of multistep training protocols. This study clearly demonstrated strong
simultaneous independent control of horizontal and vertical movement. This control was
comparable in accuracy and speed to that reported in studies using implanted intracortical
electrodes in monkeys (Wolpaw and McFarland (2004)).

We have also evaluated various regression models for controlling cursor movement
acquired from a four-choice, one-dimensional cursor movement task (McFarland and
Wolpaw (2005)). We found that using more than one EEG feature improved performance
(e.g., C4 at 12Hz and C3 at 24Hz). In addition, we evaluated nonlinear models with linear
regression by including cross-product (i.e., interaction) terms in the regression function.
While the translation algorithm could be based on either a classifier or a regression
function, we concluded that a regression approach was more appropriate for the cursor
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Figure 2.3 Comparison of regression and classification for feature translation. For the two-target
case, both methods require only one function. For the five-target case, the regression approach still
requires only a single function, while the classification approach requires four functions (see text for
full discussion).

movement task. Figure 2.3 compares the classification and regression approaches. For the
two-target case, both the regression approach and the classification approach require that
the parameters of a single function be determined. For the five-target case, the regression
approach still requires only a single function when the targets are distributed along a single
dimension (e.g., vertical position on the screen). In contrast, for the five-target case the
classification approach requires that four functions be parameterized. With even more and
variable targets, the advantage of the regression approach becomes increasingly apparent.
For example, the positioning of icons in a typical mouse-based graphical user interface
would require a bewildering array of classifying functions, while with the regression
approach, two dimensions of cursor movement and a button selection serve all cases.

We have conducted preliminary studies that suggest users are also able to accurately
control a robotic arm in two dimensions by applying the same techniques used for cursor
control. A more recent study shows that after encountering a target with the cursor, users
are able to select or reject the target by performing or withholding hand-grasp imagery
(McFarland et al. (2005)). This imagery evokes a transient response that can be detected
and used to improve the overall accuracy by reducing unintended target selections. As
these results illustrate, training of SMRs has the potential to be extended to a variety of
applications, and the control obtained for one task can transfer directly to another task.

Our current efforts toward improving the SMR paradigm are refining the one- and two-
dimensional control procedures with the intention of progressing to more choices and
to higher dimensional control. This includes the identification or transformation of EEG
features so that the resulting control signals are as independent, trainable, stable, and



36 Noninvasive Brain-Computer Interface Research at the Wadsworth Center

a b

Figure 2.4 (a) A 6 × 6 P300 matrix display. The rows and columns are randomly highlighted as
indicated by column 3. (b) Average waveforms for each of the 36 cells contained in the matrix from
electrode Pz. The target letter “O” (thick waveform) elicited the largest P300 response, and a smaller
P300 response is evident for the other characters in column 3 or row 3 (medium waveforms) because
these stimuli are highlighted simultaneously with the target. All other cells indicate nontarget stimuli
(thin waveforms). Each response is the average of 30 stimulus presentations.

predictable as possible. With control signals possessing these traits, the user and system
adaptations should be superior, and thus the required training time should be reduced and
overall performance improved.

2.4 P300-Based Communication

We have also begun to use and further develop the potential of the P300 class of BCI
systems. In the original P300 matrix paradigm introduced by Farwell and Donchin (1988),
the user is presented with a 6 × 6 matrix containing 36 symbols. The user focuses
attention on the desired symbol in the matrix while the rows and columns of the matrix
are highlighted in a random sequence of flashes. A P300 response occurs when the desired
symbol is highlighted. To identify the desired symbol, the classifier determines the row and
the column that the user is attending to (i.e., the symbol that elicited a P300) by weighting
specific spatiotemporal features that are time-locked to the stimulus. The intersection of
this row and column defines the selected symbol. Figure 2.4 shows a typical P300 matrix
display and the averaged event-related potential responses to the intensification of each
cell. The cell containing the letter “O” was the target cell and elicited the largest P300
response when highlighted. To a lesser extent the other characters in the row or the column
containing the O also elicited a P300 because these cells are simultaneously highlighted
with the target cell.

Our focus has been on improving matrix speller classification. These studies examined
variables related to stimulus properties, presentation rate, classification parameters, and
classification methods. Sellers et al. (2006a) examined the effects of matrix size and
interstimulus interval (ISI) on classification accuracy using two matrix sizes (3 × 3 and
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Figure 2.5 Montages used to derive SWDA classification coefficients. Data were collected from
all 64 electrodes; only the indicated electrodes were used to derive coefficients (see text).

6 × 6), and two ISIs (175 and 350 ms). The results showed that the amplitude of the
P300 response for the target items was larger in the 6 × 6 matrix condition than in the
3 × 3 matrix condition. These results are consistent with a large number of studies that
show increased P300 amplitude with reduced target probability (e.g., Duncan-Johnson and
Donchin (1977)).

Our lab has tested several variables related to classification accuracy using the stepwise
discriminant analysis (SWDA) method (Krusienski et al. (2005)). We examined the effects
of channel set, channel reference, decimation factor, and the number of model features
on classification accuracy (Krusienski et al. (2005)). The factor of channel set was the
only factor to have a statistically significant effect on classification accuracy. Figure 2.5
shows examples of each electrode set. Set 1 (Fz, Cz, and Pz) and set 2 (PO7, PO8, and
Oz) performed equally, and significantly worse than set 3 (set 1 and set 2 combined). In
addition, set 4 (which contained 19 electrodes) was no better than set 3 (which contained
6 electrodes).

These results demonstrate at least two important points: First, 19 electrode locations
appear to provide no more useful information beyond that provided by the 6 electrodes
contained in set 3. Second, electrode locations other than those traditionally associated with
the P300 response provide unique information for classification of matrix data. Occipital
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Figure 2.6 (a) Example waveforms for target (black) and nontarget (grey) stimuli for electrodes
PO7, Pz, and PO8. The target waveform represents the average of 480 stimuli and the nontarget
waveform represents the average of 2400 stimuli. The P300 response is evident at Pz and a negative
deflection preceding the P300 is evident at PO7 and PO8. (b) r2 values that correspond to the
waveforms shown in panel a.

electrodes (e.g., Oz, PO7, and PO8) have previously been included in matrix speller data
classification (Kaper et al. (2004); Meinicke et al. (2002)). In addition, Vaughan et al.
(2003a) showed that these electrode locations discriminate target from nontarget stimuli, as
measured by r2, but the nature of the information provided by the occipital electrodes has
not been rigorously investigated. Examination of the waveforms suggests that a negative
deflection preceding the P300 response provides this additional unique information (see
figure 2.6a).

While a relationship to gaze cannot be ruled out at this time, it is likely that the essential
classification-specific information recorded from the occipital electrodes is not produced
because the user fixates the target item. An exogenous response to a stimulus occurs
within the first 100 ms of stimulus presentation and appears as a positive deflection in
the waveform (Skrandies (2005)). In contrast, the response observed at PO7 and PO8
is a negative deflection that occurs after 200 ms. The r2 values remain near zero until
approximately 200 ms, also suggesting a negligible exogenous contribution. Moreover,
whether or not this negativity is specific to the matrix style display or also present in
standard P300 tasks is yet to be determined.

While it is reasonable to assume that the user must be able to fixate for the response
to be elicited, Posner (1980) has shown that nonfixated locations can be attended to. To
our knowledge, P300-BCI studies that examine the consequences of attending to a location
other than the fixated location have not been conducted. Furthermore, one may also assume
that fixating a nontarget location may have a deleterious effect on performance because it
is harder to ignore distractor items located at fixation than it is to ignore distractor items
located in the periphery (Beck and Lavie (2005)). At the same time, fixation alone is not
sufficient to elicit a P300 response. Evidence for this is provided by studies that present
target and nontarget items at fixation in a Bernoulli series (e.g., Fabiani et al. (1987)).
If fixation alone were responsible for the P300, both the target and nontarget items would
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produce equivalent responses because all stimuli are presented at fixation. Hence, we argue
that a visual P300-BCI is not classifying gaze in a fashion analogous to the Sutter (1992)
steady-state visually evoked potential system.

To be useful a BCI must be accurate. Accurate classification depends on feature extrac-
tion and the translation algorithm being used for classification (Krusienski et al. (2005)).
Currently, we are testing several alternative classification methods in addition to SWDA.
To date, we have tested classifiers derived from linear support vector machines, Gaussian
support vector machines, Pearson’s correlation method, Fisher’s linear discriminant, and
SWDA. The preliminary results reveal minimal differences among several different classi-
fication algorithms. The SWDA method we have been using for our online studies perform
as well as, or better than, any of the other solutions we have tested offline (Krusienski et al.
(2006)).

2.5 A Portable BCI System

In addition to refining and improving SMR- and P300-BCI performance we are also
focused on developing clinically practical BCI systems. We are beginning to provide
severely disabled individuals with BCI systems to use in their daily lives. Our goals are
to demonstrate that the BCI systems can be used for everyday communication and that
using a BCI has a positive impact on the user’s quality of life (Vaughan et al. (2006)).
In collaboration with researchers at the University of Tübingen and the University of
South Florida, we have conducted many experimental sessions at the homes of disabled
individuals (e.g., Kübler et al. (2005a); Sellers and Donchin (2006); Sellers et al. (2006c)).
This pilot work has identified critical factors essential for moving out of the lab and into
a home setting where people can use a BCI in an autonomous fashion. The most pressing
needs for a successful home BCI system are developing a more compact system, making
the system easy to operate for a caregiver, and providing the user with effective and reliable
communication applications.

The current home system includes a laptop computer, a flat panel display, an eight-
channel electrode cap, and an amplifier with a built in A/D board. The amplifier has been
reduced to 15 × 4 × 9 cm, and we anticipate a smaller amplifier in the future. We have
addressed making the system more user-friendly by automating some of the processes
in the BCI2000 software and employing a novice user level that allows the caregiver to
start the program with a short series of mouse clicks. Thus, the caregiver’s major task
is placing and injecting gel into the electrode cap, which takes about five minutes. We
have also modified the BCI2000 software to include a menu-driven item selection structure
that allows the user to navigate various hierarchical menus to perform specific tasks (e.g.,
basic communication, basic needs, word processing, and environmental controls) in a more
expedient manner than earlier versions of the SMR (Vaughan et al. (2001)) and P300
(Sellers et al. (2006c)) software. In addition, we incorporated a speech output option for
users who desire this ability. A more complete description of the system is provided in
Vaughan et al. (2006).
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Finally, we have provided one severely disabled user with an in-home P300 system that
he uses for daily work and communication tasks. He is a 48-year-old man with amyotrophic
lateral sclerosis (ALS) who is totally paralyzed except for some eye movement. Since
installation, the BCI has been used at least five times per week for up to eight hours per
day. The format is a 9 × 8 matrix of letters, numbers, and function calls that operates as
a keyboard and makes the computer and Windows-based programs (e.g., Eudora, Word,
Excel, PowerPoint, Acrobat) completely accessible via EEG control. The system uses an
ISI of 125 ms with a stimulus duration of 62.5 ms, and each series of intensifications lasts
for 12.75 s. On a weekly basis the data is uploaded to an ftp site and analyzed in the lab,
and classification coefficients are updated via our previously described SWDA procedure
(Krusienski et al. (2005); Sellers and Donchin (2006); Sellers et al. (2006a)). The user’s
average classification accuracy for all experimental sessions has been 88 percent. These
results have demonstrated that a P300-BCI can be of practical value for individuals with
severe motor disabilities, and that caregivers who are unfamiliar with BCI devices and EEG
signals can be trained to operate and maintain a BCI (Sellers et al. (2006c)). We plan to
enroll additional users in the coming months.

2.6 Discussion

The primary goal of the Wadsworth BCI is to provide a new communication channel for
severely disabled people. As demonstrated here, the SMR and P300 systems employ very
different approaches to achieve this goal. The SMR system relies on EEG features that
are spontaneous in the sense that the stimuli presented to the user provide information
regarding SMR modulation. In contrast, the P300 response is elicited by a stimulus con-
tained within a predefined set of stimuli and depends on the oddball paradigm (Fabiani
et al. (1987)). The SMR system uses features extracted by spectral analysis while the P300
system uses time-domain features. While the P300 can be characterized in the frequency
domain (e.g., Cacace and McFarland (2003)), to our knowledge, this has not been done for
P300-BCI use.

We use regression analysis with the SMR system and classification for the P300 system.
The regression approach is well suited to the SMR cursor movement application since it
provides continuous control in one or more dimensions and generalizes well to novel target
configurations (McFarland and Wolpaw (2005)). In contrast, the classification approach
is well suited to the P300 system where the target is treated as one class and all other
alternatives are treated as the other class. Done in this way, a single discriminant function
generalizes well to matrices of differing sizes.

Finally, these two BCI systems differ in terms of the importance of user training. BCI
users can learn to control SMRs to move a computer cursor to hit targets located on a
computer screen. This is not a normal function of this brain signal, but, rather, is the
result of training. In contrast, the P300 can be used for communication purposes without
extensive training. The SMR system relies on improvement of user performance as a result
of practice (McFarland et al. (2003)), while the P300 system uses a response that appears
to remain relatively constant across trials in terms of waveform morphology (Cohen
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Figure 2.7 Three concepts of BCI operation. The arrows through the user and/or the BCI system
indicate which elements adapt in each concept.

and Polich (1997); Fabiani et al. (1987); Polich (1989)) and classification coefficient
performance (Sellers and Donchin (2006); Sellers et al. (2006a)). An SMR-BCI system
is more suitable for continuous control tasks such as moving a cursor on a screen; although
Piccione et al. (2006) have shown that a P300 system can be used to move a cursor in
discrete steps, albeit more slowly than with an SMR system.

While most BCI researchers agree that coadaptation between user and system is a central
concept, BCI systems have been conceptualized in at least three ways. Blankertz et al.
(e.g., Blankertz et al. (2003)) view BCI to be mainly a problem of machine learning;
this view implicitly sees the user as producing a predictable signal that needs to be
discovered. Birbaumer et al. (e.g., Birbaumer et al. (2003)) view BCI to be mainly an
operant conditioning paradigm, in which the experimenter, or trainer, guides or leads the
user to encourage the desired output by means of reinforcement. Wolpaw et al. (2000a)
and Taylor et al. (2002) view the user and BCI system as the coadaptive interaction of two
dynamic processes. Figure 2.7 illustrates these three views of BCI. The Wadsworth Center
SMR system falls most readily into the coadaptive class, while the Wadsworth Center P300
system is most analogous to the machine learning model. Ultimately, determining which
of these views (or other conceptualizations of BCI systems) is most appropriate must be
empirically evaluated for each BCI paradigm.

We feel that one should allow the characteristics of the EEG feature(s) to dictate the
BCI system design and this will determine the most effective system for a given user.
We currently test users on the SMR- and P300-based BCI systems and then select the
most appropriate system based on analyses of speed, accuracy, bit rate, usefulness, and
likelihood of use (Nijboer et al. (2005)). This may prove to be the most efficient model as
we move BCI systems into people’s homes.
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3.1 Abstract

An overview of different approaches to brain-computer interfaces (BCIs) developed in our
laboratory is given. An important clinical application of BCIs is to enable communication
or environmental control in severely paralyzed patients. The BCI “Thought-Translation
Device (TTD)” allows verbal communication through the voluntary self-regulation of brain
signals (e.g., slow cortical potentials (SCPs)), which is achieved by operant feedback train-
ing. Humans’ ability to self-regulate their SCPs is used to move a cursor toward a target
that contains a selectable letter set. Two different approaches were followed to develop Web
browsers that could be controlled with binary brain responses. Implementing more power-
ful classification methods including different signal parameters such as oscillatory features
improved our BCI considerably. It was also tested on signals with implanted electrodes.

Most BCIs provide the user with a visual feedback interface. Visually impaired patients
require an auditory feedback mode. A procedure using auditory (sonified) feedback of
multiple EEG parameters was evaluated. Properties of the auditory systems are reported
and the results of two experiments with auditory feedback are presented. Clinical data of
eight ALS patients demonstrated that all patients were able to acquire efficient brain control
of one of the three available BCI systems (SCP, μ-rhythm, and P300), most of them used
the SCP-BCI. A controlled comparison of the three systems in a group of ALS patients,
however, showed that P300-BCI and the μ-BCI are faster and more easily acquired than
SCP-BCI, at least in patients with some rudimentary motor control left. Six patients who
started BCI training after entering the completely locked-in state did not achieve reliable
communication skills with any BCI system. One completely locked-in patient was able to
communicate shortly with a ph-meter, but lost control afterward.

3.2 Introduction

Investigating the ability of humans to voluntarily regulate their own slow cortical potentials
(SCPs) has been a major research focus in Tübingen since the eighties. The positive
results obtained from initial experiments led to the development of clinical applications.
An initial application was found in epilepsy therapy, training patients to voluntarily down-
regulate their brain potentials toward a positive amplitude to reduce the amount of epileptic
seizures (Kotchoubey et al. (1996)). The idea of developing a brain-computer interface
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(BCI) for communication with patients suffering from “locked-in syndrome” was another
challenging project, which started in 1996. A system was needed that allowed people to
spell out letters with single trial responses given by the electroencephalographic (EEG)
signals. This system was called the Thought-Translation Device (TTD), a BCI developed to
enable severely paralyzed patients, for example, people diagnosed with amyotrophic lateral
sclerosis (ALS), to communicate through self-regulation of SCPs (Birbaumer et al. (1999);
Kübler et al. (1999); Hinterberger et al. (2003b)) (sections 3.3.3–3.3.4) and chapter 22.

In contrast to our method of using SCPs, other groups have mostly followed the approach
of using brain oscillations, such as the μ-rhythm activity of 8 to 15 Hz, recorded over the
motor areas for brain-computer communication (Wolpaw and McFarland (1994); Sterman
(1977); Pfurtscheller et al. (1995)). When performing or imagining a movement, the μ-
rhythm activity desynchronizes over the corresponding brain area (e.g., hand or tongue)
(Sterman (1977)). Besides using SCPs to operate the TTD, our group developed an ap-
proach using oscillatory components as well. Instead of calculating an estimate of the spec-
tral band power in a certain predefined frequency range, as most of the μ-rhythm-driven
BCIs do, we attempted to classify the coefficients of an autoregressive model, which was
sensitive to the predominant rhythmic activity. Using this approach, communication exper-
iments were performed with signals from EEG, MEG, and ECoG derived from implanted
electrodes (see sections 3.3.6–3.3.8) and chapter 14.

So far, the TTD and most of the other BCIs have been operated with visual feedback.
Providing auditory feedback overcomes the limitations of visual feedback for patients in
an advanced stage of ALS. Some of these patients have difficulties focusing their gaze;
however, their audition remains intact, making auditory feedback the preferential feedback
mode. Therefore, the TTD was modified to be entirely operated by brain signals as a
voluntary response to auditory instructions and feedback. In section 3.3.4, we report the
principles and experimental testing of a fully auditorily controlled BCI.

3.3 Methods

3.3.1 BCI Software

The Thought-Translation Device was first designed to train completely paralyzed patients
to self-regulate their SCPs to enable verbal communication. The hardware of the device
consists of an EEG amplifier, which is connected to a PC equipped with two monitors:
one for the operator to supervise the brain-computer communication training, and one for
the patient to receive feedback. For acquisition of the EEG, the TTD can be interfaced
with a variety of EEG amplifiers that offer a high time constant (Tc≥10 s) such as the
EEG8 system (Contact Precision Instruments, Inc.) in connection with a 16 bit A/D con-
verter (PCIM-DAS1602/16 from Measurement Computing, Inc.), the g.tec amplifiers, or
the BrainAmp system (Brainproducts, Munich). Alternatively, interfaces exist for EEG am-
plifiers to be used in the MRI as well as MEG systems. For most of the BCI experiments,
the EEG signal was sampled at 256 Hz and digitized with 16 bits/sample within an ampli-
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Figure 3.1 The TTD as a multimedia feedback and communication system. The EEG is amplified
and sent to the PC with an A/D converter board. The TTD software performs online processing,
storage, display, and analysis of the EEG. It provides feedback on a screen for self-regulation of
various EEG components (e.g., SCPs) in a paced paradigm and enables a well-trained person to
interface with a variety of tasks, e.g., a visual or auditory speller for writing messages or a Web
browser for navigating through the World Wide Web using brain potentials only. All feedback
information can be given auditorily to enable visually impaired patients to communicate with brain
signals only.

tude range of at least ± 1 mV. The amplifier’s low frequency cutoff was set to 0.01 Hz (i.e.,
a time constant of 16 s) and the high frequency cutoff to 40 to 70 Hz.

The current version of the TTD software derived from the BCI2000 standard (see
chapter 21). The parameter handling, state information, and file format is identical to the
definitions in the BCI2000 description. The available filters can be freely wired together
and configured by the user during run-time and the data source is chosen at run-time
as well. Spatial, temporal, and spectral filters are available for signal processing. Online
artifact detection and correction can be performed. Classification can be done either by
linear discriminant analysis (LDA), simple threshold classification, or by using a support
vector machine (SVM) classifier. Several applications are available with the TTD: a two-
dimensional feedback task, a spelling interface to write letters and messages (Perelmouter
et al. (1999)), an interface to select Web pages from the Internet (Mellinger et al. (2003)),
and interfaces to control external devices, such as switches, a robot, or orthosis. To
economize the development of algorithms, a socket interface to MATLAB is available to
exchange data at run-time that allows for performing calculations with MATLAB routines.

The paradigm of the SCP control for brain-computer communication is also imple-
mented in the BCI2000 software (Schalk et al. (2004)). A detailed description of the
BCI2000 is given in chapter 21.
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3.3.2 Self-Regulation of Slow Cortical Potentials

SCPs are brain potential changes below 1 Hz, which up to several seconds and are gener-
ated in the upper cortical layers. Negative potential shifts (negativity) represent increased
excitability of neurons (e.g., readiness) while a positive shift (positivity) is recorded during
the consumption of cognitive resources or during rest. Healthy subjects, as well as locked-
in patients, can learn to produce positive or negative SCP shifts when they are provided
with visual feedback of their brain potentials and when potential changes in the desired
direction are reinforced.

For SCP self-regulation training the recording site for the feedback signal was usually
Cz (international 10-20 system) with the references at both mastoids. EEG was usually
recorded from 3 to 7 Ag/AgCl-electrodes placed at Cz, C3, C4, Fz, and Pz and the mas-
toids. Additionally, one bipolar channel was used to record the vertical electrooculogram
(vEOG) for online and offline artifact correction. For EOG correction, a fixed percentage
(between 10 and 15 percent) of the vEOG signal was subtracted from the SCP signal at Cz.
Furthermore, to prevent participants from controlling the cursor with their eye movements,
the feedback signal was set to baseline in case the signal used for EOG correction exceeded
the actual SCP changes (Kotchoubey et al. (1997)). Feedback was provided from Cz refer-
enced to the mastoids and was updated sixteen times per second to provide a smooth cursor
movement. SCPs were calculated by applying a 500 ms moving average to the EEG sig-
nal. The SCP value, taken immediately before the feedback started, served as the baseline,
defining the center cursor position on the feedback screen. The baseline was subtracted
from all SCP values. All trials with strong movement artifacts (SCP variations exceeding
200 mV within one trial and vEOG variations exceeding 800 mV) led to an invalid trial.

With the visual feedback modality, participants or patients viewed the course of their
SCPs as the vertical movement of a feedback cursor on the screen. Vertical cursor move-
ment corresponded to the SCP amplitude. Their task was to move the cursor toward the
polarity indicated by a red rectangle at the top or bottom half of the screen.

Figure 3.2 (top) illustrates the different phases of the training process in a trial. The
first 2–4 s of a trial consisted of a target presentation interval during which the target was
illuminated in red, indicating the feedback task for this trial, and allowing the person to
prepare for the corresponding SCP regulation. In the following selection interval, feedback
was provided by the vertical position of a steady horizontally moving cursor. Cortical neg-
ativity moved the cursor up; positivity moved the cursor down. The center of the screen
corresponded to the baseline level. The task was to move the cursor into the red area. A re-
sponse was classified as correct if the average potential during the response interval carried
the correct polarity or was inside the target boundaries of the required goal. Additionally,
automatic classification algorithms, such as a linear discriminant classification or SVM,
can be used for improvement of the correct response rate (Lal et al. (2004)). At the end of
the selection interval the selected target was illustrated with blinking. Finally, during the
response interval a smiley face combined with a sound of chimes rewarded a correct trial.

Performance was measured by the percentage of correct responses on valid trials. After a
rate of 75 percent correct responses was reached, patients were trained to select letters and
write messages using their self-regulative abilities for spelling (Birbaumer et al. (1999);
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Figure 3.2 Illustration of the visual feedback information during SCP self-regulation training. Each
trial is subdivided into intervals for target presentation, selection with feedback, and the report of the
response.

Perelmouter et al. (1999)). Patients typically reach such levels of proficiency after one to
five months of training, with one to two training days per week. A training day comprises
seven to twelve runs, and a run comprises between 70 and 100 trials. With patients suffering
from ALS, operant feedback training was conducted at the patients’ homes with the users
seated in wheelchairs or lying in bed.

The applications that will be described in the following paragraphs are a language
support program including an advanced dictionary option, a fast communication program
for basic desires, and an Internet browser. All these programs are driven by simple yes or
no responses that serve as “select” or “reject” commands. These types of brain-computer
communication also require three intervals in one trial: (1) the target presentation interval
for presentation of the letter set, which was displayed in the target rectangle on the screen;
(2) the selection interval, during which feedback was provided, and where self-regulation
of SCP amplitudes was used to select or reject the letter set; and (3) a response interval
indicating to the user the result of the selection. Selection errors require correction steps in
the decision tree that were presented as “go back” options (see also figure 3.3).

3.3.3 Spelling by Brain-Computer Communication

The spelling device allows the user to select letters from a language alphabet, including
punctuation marks, and to combine letters into words and sentences. Because the number
of characters in an alphabet (typically about thirty) exceeds the number of brain response
classes (two) that the user can produce, the selection of a letter must be broken down
into a sequence of binary selections. This leads to the concept of presenting the alphabet’s
letters in a dichotomous decision tree, which the user navigates by giving brain responses
(Perelmouter et al. (1999)). This concept was realized in a module called “language support
program.” Figure 3.3 shows the structure of the decision process.

The presentation of letters for spelling is realized with a binary letter selection procedure
as illustrated in figure 3.3. Each box contains a letter set that can be selected or rejected.
In each, trial a single letter or a set of letters can be selected or rejected by a binary brain
response that corresponds to a cortical negative or positive potential shift. The letters are
arranged in a way that facilitates the selection of the more frequent letters, whereas the less
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Figure 3.3 Schematic structure of the language support program. Boxes show letter sets offered
during one trial; solid arrows show the subsequent presentation when a select response is produced;
dotted arrows show the presentation following a reject response. When the level of single letters is
reached, selection leads to the presentation of this letter at the top of the screen. Texts can thus be
generated by adding letter to letter. At all except the uppermost level, failure to select one of the two
choices results in the presentation of a “go back” option taking the user back to the previous level.
At the top level, double rejection and selection of the delete function results in the deletion of the last
written letter.

frequent letters require more steps to select. A selection will split the current letter set into
two halves and present the first half for selection during the next trial (dotted arrows). A
rejection response will present the second half for selection or proceed to the “go back”
option (bold arrows). At the final level, the selection of a single letter will spell it. This
paradigm can be used similarly for visual and auditory spelling.

In this system, writing the most conveniently situated letter, “E,” takes five trials, that
is, 20–25 s depending on the duration of a trial; whereas, writing the most remote sign
takes nine trials, that is, 36–45 s. In an attempt to make free spelling less time-consuming,
a simple personal dictionary has been introduced in which the experimenter may enter
words that are frequently used by the patients (Hinterberger et al. (2001); Kübler et al.
(2001b)). With the dictionary option, a complete word is suggested after at least two letters
have been written and a corresponding word is available. This word can then be chosen
with a single selection response.
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3.3.4 Approaches for Brain-Controlled Web Surfing

3.3.4.1 Initial Approach: “Descartes”

The methods described above help the patients to express their ideas, thoughts, and needs.
The Internet offers instantaneous access to desired information. Providing paralyzed pa-
tients with a BCI, which allows them to navigate through the World Wide Web by brain
responses, would enable them to take part in the information exchange of the whole world.
Therefore, a special Web browser named “Descartes” was developed (Hinterberger et al.
(2001)).

Descartes can be controlled by binary decisions as they are created in the feedback
procedure described in section 3.3.3. The browser functions are arranged in a decision tree,
as previously described for the spelling of words. At the first level the patients can choose
whether to write letters, to write an e-mail, or to surf the Web. When they decide to write an
e-mail, the e-mail address is spelled in the first line using this language support program.
When the patients decide to surf the Web, they first receive a number of predefined links
arranged in the dichotomous decision tree. Each Web page that the patients have selected
with their brain signals will be shown for a predefined time of one to two minutes. The
wait-dialog indicates the remaining viewing time for the page, after which the feedback
procedure will continue to select a related page. After the viewing time is over, the current
page is analyzed for links on it. Then a dichotomous decision tree is dynamically produced,
containing all links to related sites, and so the trials continue. The patients now have the
option to select a link out of this tree in a similar manner to the spelling task. The links are
sorted alphabetically so the desired link in the new tree can be found quickly. For example,
they are first presented with the links between A and K, and then with the links between L
and Z, and if both were ignored they receive a cancel option for returning to the prior level.
The lowest level contains the name of the single links loaded after selection (figure 3.4).

3.3.4.2 An Improved Graphical Brain-Controllable Browser Approach: “Nessi”

The spelling concept was also used for a hypertext (Web) browser. Instead of selecting
letters from a natural language alphabet, sequences of brain responses are used to select
hyperlinks from Web pages. In the previous project (Descartes), links were extracted and
presented on the feedback targets. The current approach uses graphical markers “in-place,”
that is, on the browser’s Web page display (see figure 3.5) (Mellinger et al. (2003)). Colored
frames are placed around user selectable items, circumventing any need to maintain a
separate presentation of choices. The frame colors are assigned to the possible brain
responses. By default, red frames are selected by producing cortical negativity and green
frames are selected by the production of cortical positivity. As an aid, feedback is displayed
at the left rim of the screen by depicting the vertical movement of a cursor that can be
moved upward into a red area or downward into a green area. The user simply has to watch
the current color of the desired link’s frame that indicates the brain responses that have
to be produced for its selection. By presenting a series of brain responses, as indicated
by the changing color of the frame around that link, the link can be chosen with binary
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Figure 3.4 After an Internet page is loaded, a dichotomous decision tree is dynamically produced,
containing all links to related sites. During the ongoing selection procedure, the patient has the option
to select a link out of this tree. The links are sorted alphabetically. In this figure, the patient can decide
whether to choose one of the six links named from “Info” to “Studienb...,” or one of the five links
named from “Studiere...” to “Wissensc. ...”

decisions, neglecting any knowledge about its position in a selection tree. Besides links,
other interactive elements on Web pages are accessible to the user, particularly text fields,
for which a virtual keyboard is provided, opening up a wide range of hypertext-based
applications. In addition, the user can read and write e-mails. Care was taken to keep
the graphical e-mail interface very simple to speed up the communication process: Four
sections of the e-mail window show user commands (reply, compose, next), incoming e-
mail list, text of current e-mail, and a section for the user’s reply text, respectively. E-mail
addresses can be predefined for faster selection and text is entered on a virtual keyboard. To
record the user’s advances when browsing with the graphical brain-controllable browser,
Nessi, a task-based browsing mode is available. The supervisor highlights a link and the
user’s task is to select that link as quickly as possible. Nessi records the number of correct
choices made for later analysis by the supervisor. Similarly to the spelling task, the user
must manage a dual task situation: figuring out the task and performing the corresponding
brain response. Initial tests with this system revealed difficulties only when a Web page
contains too many links. One of our almost completely locked-in patients managed to
navigate to sites of his favorite soccer team in the first runs with the system.

3.3.5 An Auditory-Controlled BCI

A limitation was soon evident with the visual version of the TTD. For patients in an
advanced stage of the disease, focusing gaze to sufficiently process the visual feedback or
read the letters in the verbal communication paradigm is no longer possible. In this case, a
nonvisual feedback modality such as auditory or tactile feedback had to be implemented.
The implementation of auditory feedback is shown in the following section.
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Figure 3.5 A screenshot of the Nessi browser. On the left, the feedback window is displayed with a
red and a green field for the two brain responses. All links on the browser window have frames with
one of the two colors that might change from trial to trial. By concentrating, viewing a specific link,
and giving the corresponding brain response, the computer can identify the desired link and open it
within only a few trials.

3.3.5.1 Auditory Brain-Computer Communication Paradigms

Figure 3.6 (bottom) describes the transformation of the visual feedback information to
the auditory channel. For auditory feedback, the SCP amplitude shifts were coded in the
pitch of MIDI sounds that were presented with sixteen notes, or “touches,” per second.
High-pitched tones indicated cortical negativity, low-pitched tones cortical positivity. The
task was presented by a prerecorded voice spelling “up” or “down” to indicate that the
patient has to increase or decrease the pitch of the feedback sound. If the result was
correct, a harmonious jingle was presented at the end of the feedback period as positive
reinforcement. In addition, the TTD can be operated providing combined visual and
auditory feedback. For this purpose, the same instructions, feedback, and reinforcement
as used for visual or auditory feedback were employed but presented simultaneously in
both modalities. Successful regulation of an auditorily presented SCP or μ-feedback signal
enables a locked-in patient to communicate verbally.

Figure 3.6 demonstrates four experimental paradigms that were tested with ALS pa-
tients: (1) the copy-spelling task in which a predefined word has to be spelled—the task is
presented visually and visual feedback is provided; (2) training of self-regulation of SCPs
in the auditory mode; (3) spelling in a completely auditory mode according to the selection
paradigm; and (4) the question-answering paradigm for receiving yes/no answers in less
skilled patients.
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Figure 3.6 Visual feedback information for operation of the TTD has been transformed into voices
and sounds to operate the TTD auditorily. Four communication paradigms are illustrated. For training
a “locked-in” patient with the copy-spelling mode a predefined word has to be spelled. a) shows
the visual stimuli for spelling. b) shows the stimuli for the auditory training of self-regulation of
auditory displayed SCPs. c) depicts the stimuli in an auditory spelling system for brain-computer
communication. In each trial a single letter or a set of letters can be selected or rejected by a binary
brain response that corresponds to a cortical negative or positive potential shift. A voice informs the
user at the end of a trial by saying “selected” or “rejected.” In the auditory mode, a patient can spell
words by responding to the suggested letter sets trial by trial. d) The question-answering paradigm
allows for receiving yes/no answers even in less skilled patients.

In the auditory mode, the letter sequence to be selected is presented by a prerecorded,
computer-generated voice at the beginning of the preparation interval. After the feedback
period, the selection or rejection response is confirmed by a voice saying “selected” or
“rejected,” respectively. Words are spelled by responding to the suggested letter sets trial
by trial until all letters of the word to be spelled have been selected. The auditory letter-
selection communication paradigm was tested with a completely paralyzed patient without
any other means of communication. Despite the fact that his performance for SCP self-
regulation was at average only about 60 percent, he could spell words using a set of eight
letters. To keep the patient motivated it was important to start spelling with personally
meaningful words or ask personally relevant questions. However, to achieve a reliable
answer from the less-skilled patients, a question-answering paradigm was developed that
presented questions instead of letters (figure 3.6d). Repetitions of the same question allow
detection of a statistically significant brain response and thus a reliable answer. The
presentation of almost 500 questions to this patient showed that even with unreliable brain
control (55 percent performance) a significant answer can be obtained after averaging the
responses of all identical questions (t(494) = 2.1, p< 0.05) (Hinterberger et al. (2005a)).
In other words, this equals an information transfer rate of 1 bit per 140 trials.
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Figure 3.7 Comparison of performance of SCP self-regulation with visual, auditory, and combined
visual and auditory feedback. The correct response rate (chance level 50 percent) is depicted for the
third training day (session 3) for each of the 18 subjects per group. The grey bars indicate that the
standardized mean differentiation of the two tasks of the EOG exceeds the differentiation of the SCP
and could therefore be responsible for the SCP regulation effect as an artifact. The graph shows
that visual feedback is superior in learning SCP self-regulation compared to auditory feedback, but
successful SCP regulation can be achieved with auditory feedback as well.

3.3.5.2 Comparison between Visual and Auditory Feedback

An experiment was carried out to investigate the use of auditory feedback for controlling
a brain-computer interface. The results of this study were reported in Hinterberger et al.
(2004a) and Pham et al. (2005). Three groups of healthy subjects (N = 3∗18) were trained
over three sessions to learn SCP self-regulation by either visual, auditory, or combined
visual and auditory feedback. The task to produce cortical positivity or negativity was
randomly assigned. Each session comprised 10 runs with 50 trials each. Each trial of
6 s duration consists of a 2 s preparation interval and a 3.5 s selection interval followed
by 0.5 s for presentation of the result and the reinforcing smiley associated with a jingle
sound. As shown in figure 3.2, the task was presented either by an illuminated red or blue
rectangle into which the feedback cursor should be moved, by a voice telling whether the
feedback sound (the pitch reflected by the SCP-amplitude) should be high or low, or by
the combination of both modalities. The performance of the third session was analyzed for
each subject for each feedback condition. The results in terms of the correct response rate
(chance level is 50 percent) are shown in figure 3.7.

All groups showed significant learning for their modality for the majority of the subjects.
More than 70 percent correct responses in the third session were achieved by six (out of
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eighteen) subjects with visual feedback, by five subjects with auditory, and only by two
with combined feedback. The average correct response rate in the third session was 67
percent in the visual condition, 59 percent in the auditory, and 57 percent in the combined
condition. Overall, visual feedback is significantly superior to the auditory and combined
feedback modality. The combined visual and auditory modality was not significantly worse
than the auditory feedback alone (Hinterberger et al. (2004a)). The results suggest that the
auditory feedback signal could disturb or negatively interfere with the strategy to control
SCPs leading to a reduced performance when auditory feedback is provided.

3.3.6 Functional MRI and BCI

3.3.6.1 Investigating Brain Areas Involved in SCP-Regulation

To uncover the relevant areas of brain activation during regulation of SCPs, the BCI was
combined with functional MRI. EEG was recorded inside the MRI scanner in twelve
healthy participants who learned to regulate their SCP with feedback and reinforcement.
The results demonstrated activation of specific brain areas during execution of the brain-
regulation task allowing a person to activate an external device: successful positive SCP
shift compared to a negative shift was closely related to an increase of the blood oxygen
level dependent (BOLD) response in the anterior basal ganglia. Successful negativity was
related to an increased BOLD in the thalamus compared to successful positivity. The
negative SCP during the self-regulation task was accompanied by an increased blood flow
mainly around central cortical areas as described by Nagai et al. (2004).

These results may indicate learned regulation of a cortico-striatal-thalamic loop modu-
lating local excitation thresholds of cortical assemblies. The data support the assumption
that human subjects learn the regulation of cortical excitation thresholds of large neuronal
assemblies as a prerequisite for direct brain communication using an SCP-driven BCI.
This skill depends critically on an intact and flexible interaction between the cortico-basal
ganglia-thalamic-circuits.

The BOLD activation pattern during preparatory neuroelectric signals that was supposed
to reflect the SCP was at the vertex (in line with Nagai et al. (2004)), in the midline medial
prefrontal cortex, including the SMA, and cingulate cortex. Activations in our study were
focused on the SMA, the precentral gyrus, and the inferior frontal gyrus and the thalamus.
BOLD activation at vertex corresponded with the position of the electrode used for training
where the strongest slow potential shifts were expected. These results demonstrated that the
negative SCP reflects an anticipatory activation of premotor and motor areas independent
of whether a motor act was required or not. In the present experiment, no overt motor
response was observed; subjects prepared for a cognitive task only. The positioning of the
electrodes at central regions of the scalp was therefore also supported by fMRI data.

3.3.6.2 Real-Time Feedback of fMRI Data

Real-time functional magnetic resonance imaging allows for feedback of the entire brain
with a high spatial resolution. A noninvasive brain-computer interface (BCI) based on
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fMRI was developed by Weiskopf et al. (2003, 2004a). Data processing of the hemody-
namic brain activity could be performed within 1.3 s to provide online feedback. In a dif-
ferential feedback paradigm, self-regulation of the supplementary motor area (SMA) and
parahippocampal place area (PPA) was realized using this technique. The methodology al-
lowed for the study of behavioral effects and strategies of local self-regulation in healthy
and diseased subjects.

3.3.7 Support-Vector-Machine Classification of Autoregressive Coefficients

In contrast to the SCPs that are defined by the frequency range below 1 Hz and classified
according to their time-domain representation, EEG correlates of an imagined-movement
are generally best represented by considering the amplitude of oscillatory components at
higher frequencies in the 8–15 and 20–30 Hz ranges, which are modulated due to the
desynchronization of the μ-rhythm over motor areas when imagining movements. For
this, we use the coefficients of a fitted autoregressive (AR) model, which can capture the
dominant peaks in the amplitude spectrum of a signal adaptively. While in the SCP training,
the SCP constitutes one parameter whose behavior should be influenced in a predefined
manner (producing positivity or negativity); the AR coefficients are a multidimensional
feature representation whose numerical values are not related to fixed time- or frequency-
domain features in a straightforward way. Therefore, a classifier must be trained to identify
how the AR coefficients change during two or more tasks (e.g., imagination of finger
movement versus tongue movement). We used a regularized linear support vector machine
(SVM) classifier for classification of the AR coefficients.

Before these methods were included in the TTD, a real-time socket connection to
MATLAB was established to let MATLAB do the job of calculating the AR model from
the received EEG-data, classifying the coefficients and then sending the result back to the
TTD that controls the application (e.g., spelling interface). Later, after the approach had
been successfully tested, the AR module and SVM were included in the TTD so that the
MATLAB environment was no longer needed (see figure 3.8).

This approach was applied successfully to signals from EEG (Lal (2005); Lal et al.
(2005a)), ECoG (Lal et al. (2005a)), and MEG (Lal et al. (2005b)). A comparison of these
datasets, and more details on the automatic classification approaches we have applied to
them, is given in chapter 14 by Hill et al.

3.3.8 Brain-Computer Communication Using ECoG Signals

BCIs can be used for verbal communication without muscular assistance by voluntary
regulation of brain signals such as the EEG. The limited signal-to-noise ratio in the EEG
is one reason for the slow communication speed. One approach to improve the signal-
to-noise ratio can be attempted by the use of subdural electrodes that detect the ECoG
signal directly from the cortex. ECoG signals show an amplitude up to 10 times higher
with a broader frequency range (0.016 to approximately 300 Hz, sampled at 1000 Hz)
from a more focused area than EEG signals. The increased signal-to-noise ratio of invasive
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Figure 3.8 Interfacing MATLAB with a real-time cortical system: At the beginning of the exper-
iments the calculation of the AR-coefficients as well as the SVM-classifier was not included in the
TTD. A TCP/IP socket connection between the TTD and the MATLAB application allowed real-
time data exchange and classification with MATLAB. After successful testings the algorithms were
inserted into the TTD application. Online classification and training of the classifier now does no
longer require MATLAB.

electrocorticographic signals (ECoG) is expected to provide a higher communication speed
and shorter training periods.

Here, it is reported how three out of five epilepsy patients were able to spell their names
within only one or two training sessions. The ECoG signals were derived from a 64-
electrode grid placed over motor-related areas. Imagery of finger or tongue movements
was classified with support-vector classification of autoregressive coefficients of the ECoG
signal (see 3.3.7). In each trial, the task was presented to the patient for four seconds by
an image of either Einstein’s tongue or a finger (see figure 3.9).

The first stage of the session consisted of a training phase of at least 100 trials. The
data between second 1.5 and 5 were used to calculate 3 AR-coefficients for each of the
64 channels. After training of the SVM classifier, the binary responses could be used for
selection of letters. Before that, in the second stage, the classifier was tested by displaying
the task images in the same way as in the training but with immediate feedback (correct
or incorrect) after each trial. In the letter selection paradigm, two boxes were shown, one
associated with the tongue picture and one associated with the finger picture. The sets
of letters offered to be selected in a certain trial were displayed inside the box with the
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Figure 3.9 Overview of the trial structure during the data collection phase. Each trial started with a
one second resting period. During the following four seconds imagination phase a picture of Einsteins
tongue or a hand was shown as a cue to inform about the task. The period used for classification
started 0.5 seconds after the cue onset. Each trial ended with a two seconds resting period.

Sub- Sess- Training Testing with online Spelling with online

ject ions classification classification

Trials CRR % Trials CRR % Trials CRR % Letters

spelled

1 1 210 74 120+8 94 - -

1 2 378 87 78+20 80 157 64 “ANGELO”

2 1 100 63 - - - - -

2 2 100 60 100 56 244 73 “MOMO”

4 1 200 74 - - 164 77 “SUSANNE”

4 2 164 88 - - 73 88 “THÖRNER”

Table 3.1 Bold: actual online performance. Italic: offline SVM cross-validation result.

finger picture. Therefore, patients had to imagine a finger movement in order to select a
letter. The dichotomous letter selection procedure as described in section 3.3.3 was used.
As the patients were not accustomed to the unusual order of the letters they were helped by
indicating the imaginary task by highlighting the corresponding box. This assisted-spelling
paradigm is referred to as copy spelling. Table 3.1 shows the correct response rate (CRR)
for those patients who succeeded writing their names in the first two sessions.

Five epilepsy patients were trained in one or two sessions for only spelling with ECoG
signals from their motor area. Three of them could write their name successfully within
the first two sessions. The short training periods offer completely paralyzed patients the
opportunity to regain communication using a BCI with invasive ECoG signals. However,
this highly invasive method is suggested to be applied only to paralyzed patients without
success in EEG-driven BCI training.
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3.3.9 Comparison of Noninvasive Input Signals for a BCI

Although invasive brain-computer interfaces are thought to be able to deliver real-time
control over complex movements of a neuroprosthesis, several studies have shown that
noninvasive BCIs can provide communication and environmental control for severely par-
alyzed patients (Birbaumer et al. (1999); Wolpaw and McFarland (2004); Kübler et al.
(2005a)). Most current noninvasive BCIs use sensorimotor rhythms (SMR), slow cortical
potentials (SCPs), or the P300-evoked potential as input signals. Although these signals
have been studied extensively in healthy participants and to a lesser extent in neurological
patients, it remains unclear which signal is best suited for a BCI. For this reason, we com-
pared BCIs based on slow cortical potentials (SCPs), sensorimotor rhythms (SMR), and
the P300-evoked potential in a within-subject design in collaboration with the Wadsworth
Center in Albany, New York (Schalk et al. (2004); Wolpaw et al. (2002)). A patient’s best
signal was chosen to serve as input signal for a BCI with which the patient could spell,
so-called Free Spelling. Previous research has shown that a minimal performance of 70
percent correct is needed for communication (Kübler et al. (2001b)) (see also chapter 22).

Eight severely paralyzed patients (five men and three women) with amyotrophic lateral
sclerosis were recruited. Background information of the patients can be found in figure 3.2.
Eight patients participated in twenty sessions of SMR training. Six patients had ten sessions
with the P300 BCI. In addition, five patients participated in twenty sessions of SCP
training, whereas data from two other patients (D and G) were taken from previous studies
(Kübler et al. (2004)). All patients but one were trained at home. For an overview of the
design see figure 3.3. During each trial in SCP training, the patient was confronted with
an active target at either the top or the bottom of a computer screen. A cursor moved
steadily across the screen, with its vertical movement controlled by the SCP amplitude.
The patient’s task was to hit the target. Successful SCP regulation was reinforced by an
animated smiling face and a chime. During each trial of SMR training, the patient was
presented with a target consisting of a red vertical bar that occupied the top or bottom half
of the right edge of the screen. The cursor moved steadily from left to right. Its vertical
movement was controlled by SMR amplitude. During each trial of P300 training, the
patient was presented with a matrix containing the alphabet (Farwell and Donchin (1988)).
Rows and columns flashed randomly and sequentially, and the participant was asked to
count the number of flashes of a certain target symbol (e.g., the letter “p”). Target flashes
elicit a large P300 response while nontarget flashes do not.

Results show that although one patient (D) was able to learn successfully to self-
regulate his SCP amplitude, performance was not sufficient for communication (Kübler
et al. (2004)). None of the seven patients had a sufficient performance for communication
after twenty sessions of SCP training. In contrast, half the patients (n = 8) learned to
control their SMR amplitude with an accuracy ranging from 71 to 81 percent over the last
three sessions (Kübler et al. (2005a)). Performance with the P300 ranged from 31.7 to 86.3
percent as an average over the last three sessions. Only two patients were able to achieve
an online performance over 70 percent correct (patient A and G).

These data suggested that a brain-computer interface (BCI) based on sensorimotor
rhythm (SMR) is the best choice for our sample of ALS patients. However, after evalu-
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Patient Age Sex ALS Time since Artificial Limb Speech

type diagnosis function

(months) Nutrition Ventilation

A 67 M bulbar 17 yes no yes no

B 47 F spinal 24 yes yes none slow

C 56 M spinal 9 yes yes none slow

D 53 M spinal 48 no no weak yes

E 49 F spinal 12 no no weak slow

F 39 M spinal 36 yes no none slow

G 36 F spinal 96 no no minimal slow

H 46 M spinal 120 yes yes none no

Table 3.2 Background information for all patients: patient code, age in years, sex, type of ALS,
time since diagnosis in months, artificial nutrition and ventilation, limb function, and speech ability.
Weak limb function refers to a patient who can still walk although very slowly and with risk of
falling. Minimal limb function means that the patient already is in a wheelchair, but has some residual
movement left in one foot or hand. Slow speech refers to a patient who speaks slowly and needs to
repeat often what he or she says.

SMR study SCP study P300 study Free Spelling

Number of
20 20 10 undefinded

sessions

Task
one-dimensional one-dimensional copy-spelling a 51-

Free Spelling
cursor control cursor control character sequence

Patients A,B,C,D,E,F,G,H A,B,C,D,E,F,G A,B,D,E,F,G A,B,E,G

Table 3.3 Within-subject cross-over design of the comparison study. Undefined number of sessions
means that the sessions are still ongoing.

ating the P300 data again with new classification methods (Sellers et al. (2006a)) it was
found that performance could improve significantly by changing the configuration of the
electrodes, the number of electrodes included into the online analysis, and the number of
features of the signals.

The P300 matrix configuration was changed to a 7 × 7 format with more characters
(i.e., the German letters ä, ö, ü, comma, and full stop). An “end” button was inserted to
terminate the run. Four patients (A, B, E, and G) continued with the P300 sessions after
completion of the study. These patients now achieve more than 70 percent correct and use
the P300-BCI for Free Spelling, that is, they write words or short messages. For example,
one patient (G) wrote: “Ich war am Samstag in Freiburg. Ich habe neue Klamotten gekauft”
(translating to: I was in Freiburg last Saturday. I bought new clothes). These two sentences
needed 76 selections (including correction of 4 errors). For this patient we reduced the
number of sequences to 5, meaning that the columns and rows flashed 5 times leading to
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10 flashes of the target character. The total time needed for writing these sentences was
13.3 minutes.

These results suggest that the P300-BCI might be the most efficient BCI for ALS
patients, and it has the advantage of no training. However, most current BCIs require intact
vision, which may be a problem for patients in the late stages of their diseases. For this
reason, we are also investigating the feasibility of auditory BCIs.

3.3.10 Auditory BCI Systems Based on SMR and P300

Recently, we compared auditory and visual SMR feedback in a group of sixteen healthy
subjects. They received auditory or visual feedback of SMR in three consecutive daily
sessions comprising nine blocks of eight runs each (three blocks per daily session). High-
SMR amplitude (relaxation, thinking of nothing in particular) was fed back by harp sound
and low-SMR (movement imagery) by bongo sound. The intensity of the sounds was
proportional to the alteration of SMR. Participants who received visual feedback were
significantly better compared to those who received auditory feedback. Most interestingly,
participants provided with visual feedback started in the first session with an accuracy of
already 70 percent, whereas in the auditory group performance was at chance level. Later,
training led to an improvement of performance in seven of eight participants in the auditory
group, so that after three daily sessions no performance difference was found between the
visual and the auditory group.

Taken together these results indicate that with visual feedback, participants have strate-
gies immediately available to regulate SMR, whereas auditory feedback seems to retard
learning. We speculate that this may be due to an increased demand for attentional re-
sources in auditory feedback as compared to visual feedback. Learning to regulate SMR is
possible, however, when provided with auditory feedback only.

We recently implemented an auditory P300 into the BCI2000 because patients in the
locked-in state have difficulties looking at the entire P300 matrix and fixating on a target
long enough to detect a P300. We provide such patients with an auditory P300 BCI, which
will allow them to answer yes or no questions.

3.4 Summary and Conclusion

This chapter focussed on a number of different aspects that help develop BCI systems to
be of use for paralyzed patients in a locked-in state. As illustrated in figure 3.10, different
approaches aim at the improvement of the signal type, signal analysis, different designs of
user applications, the patient-system interaction, and finally the understanding of the brain
mechanisms underlying the successful regulation of SCPs. The major results of these five
aspects of successful SCP-driven brain-computer communication are summarized.

(1) BCI systems were tested with a variety of different types of data sources. Besides
the standard applications in which ALS patients use EEG signals, BCI approaches
using classification of oscillatory activity were also carried out in the MEG, and with
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Figure 3.10 For successful brain-computer communication using SCPs, not only the properties of
the system as a signal translation device must be investigated but also the interaction between the user
and the system and finally the brain mechanisms themselves responsible for the systems’ behavior.

ECoG in epilepsy patients implanted with electrode grids prior to surgery. In all these
setups, users could operate a copy-spelling system by the use of motor-related μ-
rhythm. FMRI feedback required a different software approach and was not used with
a spelling application or environmental control.

(2) Signal processing and classification: In SCP self-regulation training, the computer
does not adapt dynamically to the EEG response curve of a desired negative or positive
potential shift. It requires the subjects’ learning to produce reliable SCP shifts in
both polarities. After the patient has reached a certain performance level without
further improvement, the computer could optimize the number of correct responses
by adapting to the response curve for example, by using additional classification
algorithms. An improvement in the information transfer rate from 0.15 to 0.20 could
be reached on average (Hinterberger et al. (2004b)). However, many of the highly
successful SCP regulators adapt to the task without the need of further classification.
Classification of autoregressive parameters using an SVM classifier was implemented
as a method of classifying oscillatory activity of sensorimotor rhythm (SMR).

(3) Advanced applications from spelling to Web surfing: A wide range of applications
have been developed that allow patients to communicate even in a locked-in state. A
language support program with a dictionary enables paralyzed patients to communi-
cate verbally. Patients can switch the system on and off without assistance from others,
which provides the option to use the system twenty-four hours per day (Kaiser et al.
(2001)). An environment-control unit allows the patients to control devices in their
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environment. All applications are independent of muscular activity and are operated
by self-control of slow cortical potentials only. A further improvement of the quality
of life in locked-in patients can be provided by voluntary control of information avail-
able through the World Wide Web. Two types of binary controllable Web browsers
were developed allowing the access to Web sites by a selection procedure using SCP
feedback (Hinterberger et al. (2001)). In the “Nessi” browser based on the open source
browser Mozilla, all links on a site were marked with a colored frame. Each color was
associated with a brain response (e.g., green for cortical positivity and red for nega-
tivity). This program created a hidden internal binary selection tree and changed the
colors of the links accordingly each trial. The task for the patient was simply to view
the desired link and respond to the current color frame with the associated brain re-
sponse (Mellinger et al. (2003)). Nessi was successfully tested in two ALS patients
with remaining vision. The modular design of this system and its compatibility with
both the TTD and the BCI2000 means that it can be used easily with more than two
response conditions and with brain responses other than SCPs.

(4) Visual versus auditory feedback: As locked-in patients such as patients in end-stage
ALS are sometimes no longer able to focus visually on a computer screen, a BCI
should have the option to be controlled auditorily. Therefore, the TTD was modified
to present all information necessary for brain-computer communication in the audi-
tory channel. To investigate how well SCP regulation can be achieved with auditory
feedback compared to visual feedback and combined visual and auditory feedback, a
study with eighteen healthy subjects and each of the three modalities was carried out.
The result showed that auditory feedback enabled most of the subjects to learn SCP
self-regulation within three sessions. However, their performance was significantly
worse than for participants who received visual feedback. Simultaneous visual and
auditory feedback was significantly worse than visual feedback alone (Hinterberger
et al. (2004a)).

(5) Brain mechanisms for successful SCP regulation: Two studies with functional MRI
were carried out to investigate the blood oxygen level dependent (BOLD) activity dur-
ing SCP control. In the first study, the patients were asked to apply the strategy they
used for SCP regulation in the MRI scanner. In a second study, the EEG was measured
and the SCP fed back in real time inside the scanner. A sparse sampling paradigm
allowed simultaneous measurement of EEG and BOLD activity. An online pulse ar-
tifact correction algorithm in the TTD allowed undisturbed feedback of the SCP in
the scanner (Hinterberger et al. (2004c)). Twelve trained subjects participated. Suc-
cess in producing a positive SCP shift compared to a negative shift was related to an
increase of the BOLD response in the basal ganglia. Successful negativity was related
to an increased BOLD in the thalamus compared to successful positivity. These results
may indicate the learned regulation of a cortico-striatal-thalamic loop modulating local
excitation thresholds of cortical assemblies. The initial contingent negative variation
(readiness potential) as a major component of the SCP was associated with an acti-
vation at the vertex where the feedback electrode was located. The data support the
conclusion that human subjects learn the regulation of cortical excitation thresholds of
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large neuronal assemblies as a prerequisite for direct brain communication using an
SCP-driven BCI (Hinterberger et al. (2005b)).
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4.1 Abstract

A brain-computer interface (BCI) transforms signals originating from the human brain
into commands that can control devices or applications. In this way, a BCI provides a new
nonmuscular communication channel and control technology for those with severe neuro-
muscular disorders. The immediate goal is to provide these users, who may be completely
paralyzed, or “locked in,” with basic communication capabilities so they can express their
wishes to caregivers or even operate word processing programs or neuroprostheses. The
Graz-BCI system uses electroencephalographic (EEG) signals associated with motor im-
agery, such as oscillations of β or μ rhythms or visual and somatosensory steady-state
evoked potentials (SSVEP, SSSEP) as input signal. Special effort is directed to the type
of motor imagery (kinesthetic or visual-motor imagery), the use of complex band power
features, the selection of important features, and the use of phase-coupling and adaptive au-
toregressive parameter estimation to improve single-trial classification. A new approach is
also the use of steady-state somatosensory evoked potentials to establish a communication
with the help of tactile stimuli. In addition, different Graz-BCI applications are reported:
control of neuroprostheses, control of a spelling system, and first steps toward an asyn-
chronous (uncued) BCI for navigation in a virtual environment.

4.2 Background

Event-related desynchronization (ERD) was introduced for the first time in the seventies
and used to quantify the dynamics of sensorimotor rhythms including μ and central β

rhythms in a motor task (Pfurtscheller and Aranibar (1977)). In the following years,
ERD became an important tool for studying the time-behavior of brain rhythms during
motor, sensory, and cognitive processing (for review, see Pfurtscheller and Lopes da Silva
(1999)). The area of brain-computer interface (BCI) research started at the Graz University
of Technology with ERD classification in single electroencephalographic (EEG) trials
during motor execution and motor imagery (Flotzinger et al. (1994); Kalcher et al. (1996);
Pfurtscheller et al. (1996)). At the same time, a number of basic studies were conducted
together with Dr. Wolpaw’s BCI lab in Albany, New York (Pfurtscheller et al. (1995);
Wolpaw et al. (1997, 1998)).

4.3 Components of Graz-BCI

When designing a BCI, several issues must be considered (figure 4.1): the mode of oper-
ation, the type of input signal, the mental strategy, and feedback. Two distinct operating
modes, cued (synchronous) and uncued (asynchronous), are possible. In the case of a syn-
chronous BCI, the mental task must be performed in predefined time windows following
visual, auditory or tactile cue stimuli. The time periods during which the user can affect
control, for example, by producing a specific mental state, are determined by the system.



4.3 Components of Graz-BCI 67

Figure 4.1 Components of a brain-computer interface.

Furthermore, the processing of the data is limited to these fixed periods. By contrast, an
asynchronous BCI allows the user to determine an operation independently of any external
cue stimulus. This implies that the time windows of the intended mental activities are un-
known, and therefore the signal has to be analyzed continuously (Mason and Birch (2000);
Millán and Mouriño (2003)). The majority of work on the Graz-BCIs is based on the syn-
chronous mode (for review see Pfurtscheller et al. (2005a)), but systems operating in an
asynchronous mode also have been implemented (Scherer et al. (2004a); Müller-Putz et al.
(2005b)).

The electrical potentials (EEG) used for the Graz-BCI are recorded noninvasively from
the scalp. In addition to EEG, studies on electrocorticographic (ECoG) signals recorded
during self-paced movements have also been performed. The goal of these studies was
to detect the motor action in single ECoG trials (Graimann et al. (2003)). In both studies
(EEG and ECoG), the dynamics of oscillations, such as μ or β rhythms are analyzed and
classified (Pfurtscheller et al. (2005b)). Additionally, two types of event-related potentials,
the visual and somatosensory steady-state potentials (SSVEP, SSSEP) were used as input
signal for the Graz-BCI (Müller-Putz et al. (2005a, 2006)).

Basically, three mental strategies can be distinguished: (1) operant conditioning, (2) pre
defined mental task, and (3) attention to an externally paced stimulus. Operant condition-
ing, or self-regulation of slow cortical potentials (SCPs), in BCI research was intensively
studied by Birbaumer’s lab in Tübingen over the past twenty-five years (e.g., Birbaumer
et al. (1990, 1999)). Using the strategy of a predefined mental task, specifically motor im-
agery and more recently attention to an externally paced visual stimulus, is characteristic
for the Graz-BCI. In the case of motor imagery the user is previously instructed to imagine
the movement of a specific body part, for example, left or right hand, both feet, or tongue.
The basis of this strategy is that imagination of movement activates similar cortical areas
and shows similar temporal characteristics to the execution of the same movement (e.g.,
Decety et al. (1994)); for details, see section 4.4.2). The use of steady-state evoked po-
tentials (SSEPs) is based on direct recognition of a specific electrocortical response and
generally does not require extensive training (for details, see section 4.4.8).
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The feedback of performance is an important feature of each BCI system, since the
users observe the executed commands (i.e., cursor movement or selected letters) almost
simultaneously with the brain response produced. In the Graz-BCI, different types of
feedback (FB) are used. Delayed (discrete) FB provides information of a correct versus
incorrect response at the end of a trial, while continuous FB indicates immediately the
discrimination ability of brain patterns. A recent study has shown that continuous visual
FB can have benefits as well as detrimental effects on EEG control and that these effects
vary across subjects (McFarland et al. (1998)). Recently, virtual reality has been employed
in the Graz-BCI as a FB method (for details, see chapter 23).

4.4 Graz-BCI Basic Research

4.4.1 Graz-BCI Control with Motor Imagery

The Graz-BCI uses motor imagery and associated oscillatory EEG signals from the senso-
rimotor cortex for device control (Pfurtscheller and Neuper (2001)). The well-established
desynchronization (i.e., ERD) of μ and β rhythms at the time of movement onset, and their
reappearance (i.e., event-related synchronization, ERS) when the movement is complete,
forms the basis of this sensorimotor-rhythm-controlled BCI. The major frequency bands
of cortical oscillations considered here are μ (8–12 Hz), sensorimotor rhythm (12–15 Hz),
and β (15–30 Hz).

Most relevant for BCI use is the fact that no actual movement is required to modulate the
sensorimotor rhythms (Pfurtscheller and Neuper (1997)). There is increasing evidence that
characteristic, movement-related oscillatory patterns may also be linked to motor imagery,
defined as mental simulation of a movement (Jeannerod and Frak (1999)). By means of
quantification of temporal-spatial ERD (amplitude decrease) and ERS (amplitude increase)
patterns (Pfurtscheller and Lopes da Silva (1999)), it has been shown that motor imagery
can induce different types of activation patterns, for example: (1) desynchronization (ERD)
of sensorimotor rhythms (μ rhythm and central β oscillations) (Pfurtscheller and Neuper
(1997)), (2) synchronization (ERS) of the μ rhythm (Neuper and Pfurtscheller (2001)), and
(3) short-lasting synchronization (ERS) of central β oscillations after termination of motor
imagery (Pfurtscheller et al. (2005b)).

To control an external device based on brain signals, it is essential that imagery related
brain activity can be detected in real time from the ongoing EEG. Even though it has
been documented that the imagination of simple movements elicits predictable temporally
stable changes in the sensorimotor μ and β bands (i.e., small intrasubject variability;
for a review, see Neuper and Pfurtscheller (1999)), there are also participants who do
not show the expected imagination-related EEG changes. Moreover, a diversity of time-
frequency patterns (i.e., high intersubject variability), especially with respect to the reactive
frequency components, was found when studying the dynamics of oscillatory activity
during movement imagination (cf. Wang et al. (2004); Pfurtscheller et al. (2005b)).

These differences in imagination-related EEG changes may be partly explained by
varieties of motor imagery (Annett (1995); Curran and Stokes (2003)). In case there is
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Figure 4.2 Experimental tasks and timing: The four tasks (OOM, MIV, ME, MIK) were presented
in separate runs of fourty trials: Each started with the presentation of a fixation cross at the center of
the monitor (0 s). A beep tone (2 s) indicated the beginning of the respective task: Subjects should
either watch the movements of the animated hand, or perform movements themselves, or imagine
hand movements until a double beep tone marked the end of the trial (7 s). A blank screen was
shown during the intertrial period varying randomly between 0.5 and 2.5 s (modified from Neuper
et al. (2005)).

no specific instruction, subjects may, for example, either imagine self-performed action
with an “intrinsic view” or, alternatively, imagine themselves or another person performing
actions in a “mental video” kind of experience. Whereas the first type of imagery is
supposed to involve kinesthetic feelings, the second one may be based primarily on
visual parameters. There is converging evidence that imagining is functionally equivalent
to brain processes associated with real perception and action (Solodkin et al. (2004)).
The different ways how subjects perform motor imagery are very likely associated with
dissimilar electrophysiological activation patterns (i.e., in terms of time, frequency, and
spatial domains).

In a recent study, we investigated the influence of the kind of imagery, involving
kinesthetic and visual representations of actions (Neuper et al. (2005)). Participants were
instructed either to create kinesthetic motor imagery (first-person process; MIK) or visual
motor imagery (third-person process; MIV). In the so-called “first-person” process the
subjects had to imagine a self-performed action whereas in the “third-person” process
a mental image of a previously viewed “actor” had to be performed. Additionally, in a
control condition, “real movements” were examined (i.e., the motor execution (ME) and
visual observation (OOM) of physical hand movements, respectively); see figure 4.2.

The results of fourteen right-handed participants based on multichannel EEG recordings
were applied to a learning classifier, the distinction-sensitive learning vector quantization
(DSLVQ) (Pregenzer et al. (1996)), to identify relevant features (i.e., electrode locations
and reactive frequency components) for recognition of the respective mental states. This
method uses a weighted distance function and adjusts the influence of different input
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Figure 4.3 Topographical map of grand average classification accuracies (N=14) plotted at the
corresponding electrode positions (linear interpolation), separately for the four experimental con-
ditions (ME, OOM, MIK, MIV). Black areas indicate the most relevant electrode positions for the
recognition of the respective task. Scaling was adjusted to minimum and maximum values obtained
for each condition (ME (min/max%): 53/76; OOM (min/max%): 56/77; MIK (min/max%): 51/64;
MIV(min/max%): 51/61); modified from Neuper et al. (2005).

features (e.g., frequency components) through supervised learning. This procedure was
used to distinguish dynamic episodes of specific processing (motor execution, imagery, or
observation) from hardly defined EEG patterns during rest.

The results revealed the highest classification accuracies, on average close to 80 percent,
for real conditions (i.e., ME and OOM), both at the corresponding representation areas.
Albeit a great variability among participants during the imagery tasks existed, the classifi-
cation accuracies obtained for the kinesthetic type of imagery (MIK; 66%) were in average
better than the results of the visual motor imagery (MIV; 56%). It is important to note that
for the recognition of both, the execution (ME) and the kinesthetic motor imagery (MIK)
of right-hand movement, electrodes close to position C3 provided the best input features
(figure 4.3). Whereas the focus of activity during visual observation (OOM) was found
close to parieto-occipital cortical areas, visual motor imagery (MIV) did not reveal a clear
spatial pattern and could not be successfully detected in single-trial EEG classification.

These data confirm previous studies that motor imagery, specifically by creating kines-
thetic feelings, can be used to “produce” movement-specific and locally restricted patterns
of the oscillatory brain activity. Moreover, we can expect that specific instructions on how
to imagine actions, along with careful user training, may contribute to enhance activation
in primary sensorimotor cortical areas (Lotze et al. (1999b)) and furthermore improve BCI
control. The potential that subjects may be able to learn to increase motor cortex activation
during imagined movement has been demonstrated in a recent neurofeedback study using
real-time functional magnetic resonance imaging (fMRI; DeCharms et al. (2004)). How-
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ever, our data suggested a higher efficiency of kinesthetic imagery compared to the visual
form; the parameters sensitive for certain mental states still should be optimized for each
individual to accommodate for subject-specific variability.

4.4.2 μ-rhythm (De)synchronization and Single-Trial EEG Classification Accuracy

The (de)synchronization pattern displays a great inter- and intrasubject variability during
motor imagery. Therefore, it is of interest whether μ-rhythm synchronization or μ ERS
contribute to single-EEG trial classification and to discrimination between four different
motor imagery tasks (left hand, right hand, both feet, and tongue). Time-frequency maps
were calculated and used for selection of the α (μ) band rhythms (for details see Graimann
et al. (2002)) with the most significant bandpower increase (ERS) or decrease (ERD)
during motor imagery tasks at the central electrode positions C3, Cz, and C4.

Adaptive autoregressive (AAR) parameters were estimated for each of the sixty mono
polar channels and every possible combination of bipolar channels. Accordingly, 1,830
single channel AAR estimates were obtained using the Kalman filtering algorithm. Next,
the AAR estimates from each trial were divided into short segments. For each segment, a
minimum Mahalanobis distance (MDA) classifier across all trials was calculated and ap-
plied to the same segment. Accordingly, an average measure for the classification accuracy
of the four-class problem (four motor imagery tasks) was obtained for each segment. To
measure distinctiveness the “kappa” coefficient (for details, see Schlögl et al. (2005)) was
used:

κ =
acc − n−1

1 − n−1
,

where acc is the accuracy and n is the number of classes (number of trials for each class is
equal). Within the trial length of 7 s, the segment with the largest kappa value was used to
set up the classifier. The classifier was cross-validated using the leave-one-out method and
the maximal kappa value determined.

From all ERD/ERS numbers (three central electrode positions, four tasks) obtained in
one subject, the standard deviation was calculated and termed “intertask variability” (ITV)
(Pfurtscheller et al. (2006a)). A low ITV indicates an ERD on all central electrode positions
during all motor tasks. In the case of a high ITV, the ERD was dominant during only
hand motor imagery, whereas ERS was frequently found during foot and/or tongue motor
imagery.

Figure 4.4 displays the relationship between ITV and best single-trial classification
accuracy expressed by kappa in nine subjects. It shows that the power of single-trial
discrimination among four different motor tasks increases when the ITV is high. This is
not surprising because it is nearly impossible to discriminate among four motor imagery
tasks when every task displays approximately similar central-localized ERD patterns.

During performance of different motor imagery tasks, a great intersubject variability
and a considerable intrasubject variability concerning the reactivity of μ components was
found. Such a diversity of ERD/ERS patterns during different imagery tasks is a prerequi-
site for an optimal distinctiveness among different motor imagery tasks when single trials
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Figure 4.4 Relationship between ITV and kappa during motor imagery in nine able-bodied subjects
(modified from Pfurtscheller et al. (2006a)).

are analyzed. That is, it is very hard to discriminate among more than two mental states
and a small number of EEG channels when only imagery-induced ERD patterns are avail-
able because a number of psychophysiological variables related to perceptual and memory
processes and task complexity also result in a desynchronization of alpha band rhythms.

4.4.3 Adaptive Autoregressive (AAR) Parameters

It is well known that the spectral properties of the EEG are a useful feature for BCI ex-
periments. However, due to the use of fast fourier transform (FFT), the feature extraction
was block-based and the feedback could not be presented continuously in time. Another
method for spectral estimation is the autoregressive model. Besides stationary estima-
tors (like Yule-Walker, Levinson-Durbin, Burg), adaptive estimation algorithms like the
least-mean-squares (LMS), the recursive-least-squares (RLS), and Kalman filtering also
are available. Adaptively estimated autoregressive model parameters (AAR parameters)
are obtained with a time-resolution as high as the sampling rate. Accordingly, it was pos-
sible to provide continuous feedback in real time. The first online experiment is reported
in the work of Schlögl et al. (1997b) using the LMS algorithm for AAR estimation. In
parallel, the more advanced RLS method was also investigated in offline studies (Schlögl
et al. (1997a); Pfurtscheller et al. (1998)) and the limitations due to the principle of uncer-
tainty in nonstationary spectral analysis were investigated (Schlögl (2000a); Schlögl and
Pfurtscheller (1998)). Based on these works, the estimation algorithms were also imple-
mented in the new real-time platform using MATLAB/Simulink (Guger et al. (2001)), and
the advantages of continuous feedback could be demonstrated (Neuper et al. (1999)).

With the advent of AAR parameters, the classifiers also have changed. Before, neural
network classifiers commonly were applied, and with the introduction of AAR parameters
linear discrimant analysis (LDA) was used mostly. Firstly, the use of LDA was motivated
by pragmatic reasoning for its more simple and fast training procedure. However, LDA
provided further advantages: It was robust, it provided a continuous discrimination func-
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tion, and it needed less data for training. Thus, it became the standard classifier for AAR
parameters. In particular, the continuous discrimination function was useful for providing
a feedback that was continuous in magnitude. Thus, the combination of AAR and LDA
provided an analysis system that was continuous in time and magnitude (Schlögl et al.
(1997b); Schlögl (2000a)). Later, other feature extraction methods with continuous esti-
mation also were used, for example, adaptive Hjorth and adaptive Barlow parameters, as
well as bandpower estimates based on filtering, squaring, and smoothing (Guger et al.
(2001)). Especially, the bandpower method in combination with subject-specific selection
of the frequency bands has been widely applied.

More recently, AAR parameters have been used to compare different classifiers (Schlögl
et al. (2005)). For this purpose, sixty channel EEG data during four different motor imagery
movement tasks (left hand, right hand, foot, tongue) were used and the AAR parameters,
using a model order of p=3, were estimated. The following classification systems have been
applied to the AAR(3) parameters of all sixty monopolar channels: (1) a neural network
based on k-nearest neighbor (kNN), (2) support vector machines (SVM), and (3) LDA. The
best results were obtained with SVM, followed by LDA; kNN showed the worst results.

Another important spin-off is the application of adaptive concept for adaptive classifiers
(see Vidaurre et al. (2005, 2006) and section 4.4.6).

4.4.4 Complex Band Power Features

Bandpower features have long been recognized as important for classification of brain
patterns. In the past, phase information often has been incorporated indirectly as a conse-
quence of other features, but not explicitly extracted and used directly as a feature. Tra-
ditionally, bandpower features are produced in the time domain by squaring the values of
the samples and then smoothing the result. But it is also possible to produce these fea-
tures directly in the frequency domain by performing a fast Fourier transform (FFT) of the
EEG. Applying this technique produces complex results consisting of imaginary and real
parts that capture not only bandpower (which may be derived from the magnitude) but also
explicit phase information. Augmenting bandpower with explicit phase information has
been shown to produce improved classification results. Given the nature of their deriva-
tion, these phase and amplitude features together have been named complex bandpower
(CBP) features (Ramoser et al. (2000)).

To test the importance of phase, movement imagery data in a four-class paradigm was
recorded from several subjects. Sixty electrodes were used with an interelectrode spacing
of 2.5 cm. Signals from all electrodes were recorded to generate classification results using
the method of common spatial patterns (CSP). Only fifteen electrodes most central to C3,
C4, and Cz were used to generate CBP features.

The results discussed here were based on features generated by using a 250 ms sliding
hamming window where the FFT of the signal was calculated. Thereafter, the results were
smoothed using a one-second moving average filter. The phase information produced by
the CBP method was differentiated to produce a result that captured the direction and
amount of phase shift present in various frequency bands. Eight equally spaced frequency
bands between 4 and 35 Hz were used to derive the CBP features for this study. A total of
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480 CBP features were produced and a subset of eight were selected using the sequential
floating forward selection (SFFS) feature selection method (Pudil et al. (1994); Graimann
et al. (2005)).

The classification results generated from CBP features were compared to results gen-
erated by the CSP method and found to be comparable or superior. Additionally, another
advantage of CBP over CSP is not only that it works well in the presence of artifacts, but
that it requires far fewer electrodes than CSP. Furthermore, CBP requires far less training
data than CSP to achieve good results. In tests it was found that CBP required approxi-
mately half the amount of training data compared with CSP to obtain similar or better re-
sults. Time courses showing average classification accuracy over the duration of the trials
were generated to compare CBP and CSP and showed that superior results were generated
by the use of CBP over CSP. The data was partitioned into all possible combinations of
testing and training data in the way that all available runs preceding each test run were
used as training data. On average, the “kappa” (details in Schlögl et al. (2005)) calculated
for CBP was 0.11 higher than for CSP.

From the data available, various combinations of testing and training data were used.
It was determined that the best general results were produced when all previously avail-
able data was used for training and the final experimental run was used as unseen data
for testing. The results were computed for a group of four test subjects with and without
the phase component of the signal to determine the importance of the phase information.
It was found that the inclusion of phase information improved the classification accuracy
expressed in kappa by 0.17±0.1 (mean±SD). The conclusion was that phase information
is an important and useful feature to consider in BCI research and incorporating such in-
formation leads to improved classification results (for details, see Townsend et al. (2006)).

4.4.5 Phase Synchronization Features

Currently, almost all BCIs ignore the relationships between EEG signals measured at
different electrode recording sites. The vast majority of BCI systems rely on univariate
feature vectors derived from, for example, logarithmic bandpower features or adaptive
autoregressive parameters. However, there is evidence that additional information can be
obtained by quantifying the relationships among the signals of single electrodes, which
might provide innovative features for future BCI systems.

A method to quantify such relationships, the so-called phase locking value (PLV),
already has been implemented and used to analyze ECoG signals in an offline study
(Brunner et al. (2005)). The PLV measures the level of phase synchronization between
pairs of EEG signals (Lachaux et al. (1999))

PLV =
1

N

∣∣∣∣∣
N∑

n=1

exp(j {φ1(n) − φ2(n)})
∣∣∣∣∣ .

Here, φi(n) is the instantaneous phase of the corresponding electrode i = {1, 2} at time
instant n calculated using either a Gabor wavelet or the Hilbert transform. The average can
be calculated over different trials or, in case of a single-trial analysis, over several time
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Figure 4.5 Most prominent phase couplings for three examplary subjects. Solid lines represent PLV
features in a broad frequency range; dashed lines are narrow-band features (modified from Brunner
et al. (in revision)).

samples. A PLV value of 1 means that the two channels are highly synchronized, whereas
a value of 0 implies no phase synchronization at all. Basically, this method is similar to
the cross-spectrum with the difference that PLV does not consider the signal amplitudes.
This might be a more appropriate measure when studying synchronization phenomena in
electrocorticographic signals since it directly captures the synchronization of the phases.

For single-trial classification in BCIs, offline analyses have been conducted by, for
example, Gysels and Celka (2004) and also at our lab, which demonstrated that there
is additional information in the PLV as opposed to classical univariate features already
mentioned. More specifically, several PLV-based features were acquired from a number
of subjects and the optimal feature set was selected for each subject individually by a
feature selection algorithm. For example, we were using four monopolar EEG channels
over C3, Cz, C4, and Fz—the PLV values were calculated within broad frequency ranges
and computed for four different electrode pairs, namely, Fz-C3, Fz-C4, C3-Cz, and Cz-C4.

An interesting result of this feature selection process was the topographical position
of the important synchronization features. Interhemispheric electrode pairs were rarely
selected and couplings within one hemisphere were dominant in all subjects. Moreover,
couplings involving the frontal electrode location occurred more often than the occipital
region. Exemplarily, feature subsets showing the most important couplings for different
subjects are illustrated in figure 4.5.

In a next step, an online model of the PLV was implemented and included in the Graz-
BCI system. The three online sessions (each consisting of four to six runs, thirty trials
per run) with three trained subjects were recorded. All subjects were able to control three
mental states (motor imagery of left hand, right hand, and foot, respectively) with single-
trial accuracies between 60 and 67 percent (33 percent would be expected by chance)
throughout the whole session.

4.4.6 Adaptive Classifier

Usually, new classifiers or thresholds obtained from the data are applied and manually
updated after a certain period of time, depending on the experience of the operator. The aim
of our adaptive online classifier was to automatically adapt changes in the EEG patterns
of the subject and to deal with their long-term variations (nonstationarities). In Graz,
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two different types of adaptive classifiers were tested in online experiments, ADIM and
ALDA (Vidaurre et al. (2006)). ADIM is a classifier that estimates online the Information
Matrix (Adaptive Information Matrix) to compute an adaptive version of the quadratic
discriminant analysis (QDA). ALDA is an adaptive linear discriminant analysis based
on Kalman filtering. Both classifiers were analyzed with different types of features using
adaptive autoregressive (AAR) parameters, logarithmic bandpower, and the concatenation
of both in one vector. The design of the experiments followed another idea different from
the classical. The traditional scheme consisted of training sessions without feedback, the
computation of a classifier using this nonfeedback data, and the performance of feedback
sessions. The new adaptive system allowed starting immediately in the very first session
with feedback by using a predefined subject-unspecific classifier. Afterward, it was updated
online resulting in a subject-specific classifier. Thus, the subject could find a motor imagery
strategy based only on the response of the system from the very first session.

Experiments were performed with eighteen naive subjects; six of them used AAR
features and ADIM, another six used BP estimates, and the last six used the concatenation
of AAR and BP combined with ALDA. This last group of subjects showed a clear reduction
of the classification error from 28.0±3.8 over session two (21.4±4.0) to session three
(16.0±2.5). For further details, see chapter 18.

4.4.7 Importance of Feature Selection

Many feature extraction methods have been proposed for brain-computer communication.
Some are known to be robust and have been applied successfully depending on the
experimental strategy used. An example of such a robust method is bandpower, which
extracts features for specific frequency ranges and is often used when motor imagery is
performed. However, new feature extraction methods are continuously being investigated.
For instance, features that do not represent only second order statistics from single channels
are currently investigated in our lab (see below) and elsewhere. These methods often
require parameters such as window length, frequency, and topography of channels. for
which the ideal settings are unknown. Feature selection methods may be applied to find
such settings by defining a subset of features out of a large pool of features calculated
from different feature extraction methods with various parameter settings and different
channels. In this way, feature selection can be employed to find suitable feature extraction
methods and their parameter settings, and also to identify appropriate electrode positions.
There are a large number of feature selection methods available, which can be subdivided
into filter methods (e.g., Fisher distance, r2), wrapper methods (e.g., genetic algorithms,
heuristic search strategies), and so-called embedded algorithms (e.g., linear programming).
Distinction sensitive learning vector quantization (DSLVQ) is another example of an
embedded algorithm, which was designed in the Graz-BCI for the selection of electrode
positions (Pregenzer et al. (1994)) and frequency components (Pregenzer and Pfurtscheller
(1999); Scherer et al. (2003)). Wrapper methods like genetic algorithms are very flexible
and generally applicable, but they are usually also computationally demanding. We used
genetic algorithms for finding suitable wavelet features in ECoG data (Graimann et al.
(2004)) and for the design of an asynchronously controlled EEG-based virtual keyboard
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(Scherer et al. (2004a)). Sequential floating forward selection (SFFS) suggested by Pudil
et al. (1994) represents a good trade-off between selection performance and computational
effort. Because of its simplicity (no parameters have to be selected) and good performance,
SFFS has been used for various feature selection tasks in our lab (Townsend et al. (2006);
Graimann et al. (2005)).

Often only a rather small amount of training data is available for offline analysis. In such
cases, the generalization of offline results may be difficult. In fact, it can become even more
difficult if feature selection is involved. Currently, we are investigating the generalization
capability of various combinations of feature selection and classification methods and their
small sample performance.

4.4.8 Steady-State Evoked Potentials

Repetitive visual or somatosensory stimulation can elicite steady-state visually evoked po-
tentials (SSVEPs) or steady-state somatosensory evoked potentials (SSSEPs), respectively.
Both sensory systems respond in individual so-called “resonance-like” frequency regions.
The visual system can be subdivided into three parallel flicker visually evoked potential
subsystems. The greatest SSVEP amplitudes are observed near 10 Hz (low frequency re-
gion) and followed by 16–18 Hz (peak of the medium frequency region). The high fre-
quency subsystem has its resonance-like peak frequencies near 40–50 Hz and shows the
smallest response. The somatosensory resonance-like frequency region is in the EEG β

range having a peak frequency around 27 Hz (Müller et al. (2001)).
The SSVEP experiments were performed on ten subjects. A self-constructed stimulation

unit (SU) was used for visual stimulation. It consisted of 32 LED bars whose flickering
frequencies could be varied independently by a microcontroller. The LED bars were
arranged in eight columns and four rows. The SU was mounted above the screen and the
four LED bars of the SU’s lower row were programmed to flicker with 6, 7, 8, and 13 Hz
(Müller-Putz et al. (2005a)).

In a first experiment without feedback, the impact of harmonic components (first,
second, and third) was studied. After computation of the spectral components by applying
discrete Fourier transformation (DFT), six one versus one LDA classifiers were used to
cover all combinations of classes in this four-class system. A class was then detected by
applying majority voting. It was found that the average classification accuracy with the
first harmonic was 53.1 percent, while the combination of three harmonics enhanced the
accuracy significantly up to 63.8 percent.

Five subjects participated in online experiments with feedback with four flicker frequen-
cies (6, 7, 8, and 13 Hz). After the training session (SS1), the classifier (SSVEP amplitudes
obtained from a lock-in analyzer (Müller-Putz et al. (2005a))) was calculated out of the
data. For the second session (SS2), feedback was delivered to the subjects while a cockpit
of an aircraft was displayed on the screen. Every trial started with a beep tone. After 2 s,
four bars were displayed at the upper part of the monitor (horizon). One of these bars was
highlighted, indicating the LED bar the subject had to focus on. Simultaneously, a ball dis-
playing the current classification result started to move from the bottom to the top of the
screen. Three seconds later, a “hit” was indicated by a single beep tone. In the case of a



78 Graz-Brain-Computer Interface: State of Research

Figure 4.6 Stimulation units SSSEP-based BCI systems. Black discs symbolize the transducers
that provide the stimulation with specific frequencies fT1 and fT2 (modified from Müller-Putz et al.
(2006)).

miss, no tone was presented. The third session (SS3) was performed on a separate day us-
ing a new classifier (from SS2). Avoiding interference by complex visual input, the cockpit
and the moving feedback ball were removed for SS4. In this last session, the background
screen remained totally black. Only the four bars were displayed and the single feedback
beep tone was delivered as described earlier.

Each subject performed four sessions totaling in 960 trials. Offline results from session
SS1 (training session) ranged from 50.8 to 93.3 percent. In the feedback experiment
(sessions SS2, SS3, and SS4), subjects reached a classificaton accuracy between 42.5 and
94.4 percent.

It can be summarized that the use of high harmonics as features for classification
improves the classification accuracy of a four-class BCI and therefore can provide a system
with a high information transfer rate (ITR). The highest ITR obtained was 31.5 bit/min
(shortened trial length; for details, see Müller-Putz et al. (2005a)).

In another study we investigated the usability of SSSEPs for a brain-computer interface.
Specifically, the following questions remain to be answered: Are SSSEP amplitudes con-
stant and strong enough? Do they get mentally modulated and detected on a single-trial
basis?

Transducers (12 mm, QMB-105 Star Inc., Edision, USA) have been used for the stimu-
lation of both index fingers using tactile stimulation in the resonance-like frequency range
of the somatosensory system (Müller et al. (2001)). A PC was set up to generate stimu-
lation patterns (figure 4.6), with subject-specific frequencies (fT1, fT2) intensified with
audio amplifiers.
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Subjects were stimulated with their specific stimulation frequency (fT1) on their right
index fingers (Müller et al. (2001)). On their left index fingers a different stimulation
frequency (fT2 = fT1 − 5Hz) was applied. Stimulation frequencies were in a range from
25 to 31 Hz (fT1) and from 20 to 26 Hz (fT2). The stimulator for fT1 was set to ∼90 μm
stimulation amplitude and stimulation strength of fT2 was individually set so the subject
found it equal to fT1. For stimulation a sinusoidal character was used, producing a kind of
weak tap stimulation. The subjects wore the finger parts of a rubber glove on their index
fingers to prevent any electrical influences from the stimulators.

During the individual runs, acoustic noise was presented to the subjects to mask the
stimulator noise. Subjects were asked to focus attention on the finger stimulation as
indicated by the visual cue and to count appearing twitches at the desired index finger.
The counting of the amplitude twitches should force the subjects to focus on the desired
stimulation. After a training session, an LDA classifier was computed and used in feedback
(discrete feedback in form of a tone at the end of a trial) sessions.

Four subjects participated in the BCI experiments. Two of them were unable to focus
their attention during an entire session (usually 160 trials), which might have been due to
concentration problems. Because of the simultaneous stimulation of both fingers, focusing
on one specific finger was more difficult than, for example, gazing at one flickering light
(out of two) as in the case of a SSVEP-based BCI. In the first case, the subjects must focus
mentally on one target, whereas in the second case, the eye position primarily determines
the target. However, a selection of runs with good performances leads to offline results of
about 73 percent in this two-class problem.

The performance of the two remaining subjects was more promising. One subject could
increase her performance from session to session. Her online accuracy of the last session
was best with 71.7 percent (offline 75.0 percent). The other subject was even able to
focus her attention from the beginning. Online performances ranged between 79.4 and 83.1
percent (offline accuracies between 83.8 and 88.1 percent) (Müller-Putz et al. (2006)).

It essentially was shown that it is possible to set up an SSSEP-based BCI. The main
questions of amplitude stability and constancy of SSSEPs, the possibility of getting them
modulated during focusing attention, and, not at least, the question of single-trial separa-
bility can be answered positively.

4.5 Graz-BCI Applications

4.5.1 Control of Neuroprostheses

The realization of a BCI that may help humans with paralyzed limbs to restore their grasp
function is not unreachable anymore. It could be shown that during a number of training
sessions subjects learn to establish separable brain patterns by the imagination of, for
example, hand or foot movements. Furthermore, functional electrical stimulation (FES) can
be used for the restoration of motor function. A small number of surface electrodes were
placed near the motor point of the muscle or electrodes were implanted subcutaneously.
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By applying stimulation pulses, action potentials are elicited leading to the contraction of
the innervated muscle fibres.

At this time we have experience with an uncued (asynchronous) BCI in two male persons
with high spinal cord injury (SCI). Both have been equipped with a neuroprosthesis. For
one patient (30 years) suffering from a SCI at level C5 the hand grasp function of his left
hand was restored with an FES using surface electrodes. During a long BCI-training period
of four months in 1999, he learned to induce 17-Hz oscillations, which had been very
dominant, and he retained this special skill over years so that a threshold detector could be
used for the realization of a brain switch in 2003. The trigger signal generated was used to
switch between grasp phases implemented into a stimulation unit. Three FES channels,
provided by surface electrodes placed at the forearm and hand, were used for grasp
restoration (in collaboration with the Orthopedic University Hospital II of Heidelberg).
With this grasp he was able to hold, for example, a drinking glass (Pfurtscheller et al.
(2003b)). The second patient (42 years, SCI sub C5) got a Freehand system implanted
in his right hand and arm (Keith et al. (1989)) at the Orthopedic University Hospital II
of Heidelberg in 2000. In 2004, he learned within a short training period of only three
days to reliably produce a significant power decrease of EEG-amplitudes during left hand
movement imagination. In this case, the BCI system emulated the shoulder joystick that
is usually used. With the combination of the BCI-controlled Freehand system, he could
successfully perform a part of a hand grasp performance test (Müller-Putz et al. (2005b)).

These results showed that in the future, BCI systems will be an option for the control
of neuroprostheses in high SCI patients. Nevertheless, further research is necessary to
minimize technical equipment and increase the number of degrees of freedom.

4.5.2 Control of a Spelling Application

Here we report the case of a 60-years-old male patient who suffered from amyotrophic
lateral sclerosis (ALS) for more than five years. The goal of the study was to enable the
patient to operate the cue-based two-class “virtual keyboard” (Obermaier et al. (2003))
spelling application. At the time the BCI-training started, the patient was already artifi-
cially ventilated, totally paralyzed, and almost had lost his ability to communicate. The
training was undertaken at the patient’s home in Vienna and supervised from Graz by tele-
monitoring (figure 4.7a) (Müller et al. (2003b, 2004b); Lahrmann et al. (2005)).

Two bipolar EEG channels were recorded from four gold electrodes placed over the left
and right sensorimotor area, according to the international 10-20 system. The electrodes
were placed 2.5 cm anterior and posterior to position C3 and C4. Position Fz was used as
ground. The EEG was amplified (sensitivity 50μV ), analog filtered between 5 and 30 Hz
(filter order 2 with an attenuation of 40 dB) and sampled at a rate of 128 Hz.

To set up the online system, the training sessions were performed without feedback. The
training consisted of a repetitive process of cue-based motor imagery trials. The duration
of each trial varied randomly between 8 and 10 s and started with a blank screen. At
second 2, a short warning tone was presented and a fixation cross appeared in the middle
of the screen. From second 3 to 7 an arrow (cue) was shown indicating the mental task
to be performed. Exemplarily, an arrow pointing to the left or to the right indicated the
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imagination of a left hand or right hand movement, respectively. The order of appearance
of the arrows was randomized and at second 7 the screen was cleared. The feedback for
online experiments was computed by applying LDA to logarithmic bandpower features
extracted from the ongoing EEG. The BP estimate was computed sample-by-sample by
digitally bandpass filtering the EEG, squaring the signal and averaging the samples over a
1-s period. The most reactive frequency components were selected by visually inspecting
the ERD/ERS time-frequency maps (Graimann et al. (2002)). Two frequency bands were
selected and extracted from each EEG channel. With the resulting four BP features,
individual LDA classifiers were trained at different time points with the same latency
within a trial (from second 0 to 8 every 0.5 s). For a better generalization, 10 × 10 cross-
validation was used. For the online feedback, training the classifier at the time point with
the best classification accuracy was chosen.

The basket paradigm (Krausz et al. (2003)) was selected to train the patient to reliably
reproduce two different EEG patterns. The aim of the paradigm was to direct a ball, falling
with a constant speed from the top of the screen, into the target (basket) positioned at
the bottom of the screen (see figure 4.7b). The classification result was mapped to the
horizontal position of the ball. After 82 feedback runs (one run consisted of 40 trials)
recorded in 17 training days the classification accuracy increased from 49.3 percent (mean
over 23 runs recorded during the first two days) to 82.6 percent (mean over 22 runs
performed from day 11 to 17). The first of the two EEG patterns was characterized by
a broad-banded ERD, the second by a narrow-banded ERS in the alpha band.

The BCI control achieved enabled the patient to use the two-class virtual keyboard
(see figure 4.7c). After several copy spelling training runs, the patient also succeeded in
free spelling. The patient voluntarily spelled “MARIAN,” the name of his caregiver. The
selection process is summarized in the table shown in the lower part of figure 4.7.

4.5.3 Uncued Navigation in a Virtual Environment

Three able-bodied subjects took part in these experiments. Before the asynchronous exper-
iments could begin, subjects had to perform an intensive cue-based three-class feedback
training in order to achieve reliable control of their own brain activity. The exercise was
to move a “smiley” from the center of the screen toward the target located at one of the
borders of the screen. Three bipolar EEG channels, filtered between 0.5 and 100 Hz, were
recorded from hand and foot representation areas with a rate of 250 Hz. The discrimination
among the three motor imagery tasks (CFR1) was performed by applying LDA to the spec-
tral components (bandpower features). For more details on the three-class discrimination,
see Scherer et al. (2004a). Since artifacts are crucial in BCI research, methods for muscle
artifact detection, based on inverse filtering, and electrooculogram (EOG) reduction, based
on regression analysis, were used during online experiments. Each time an artifact was
detected a message was presented to the subject for a 1-s period.

To achieve asynchronous classification, a second classifier (CFR2) was calculated to
discriminate between motor imagery (intentional control) and the noncontrol state. The
latter was defined by extracting features from a recording where the subjects were sitting
in front of a computer screen with eyes open and without performing motor imagery. Each
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Figure 4.7 Upper part: a) ALS patient during BCI training at home. b) Basket paradigm. The
task was to move the falling ball into the given target. c) Copy-spelling. By splitting iteratively the
alphabet into two halves the selected letter can be isolated. Lower part: Abstract of the letter selection
process that shows the spelling steps needed to write “MARIAN,” the name of the patient’s caregiver.
The word was correctly spelled after canceling wrong selections (row 6 and 7).

time the classifier output of CFR2 exceeded a subject-specific threshold for a certain time, a
change between control and noncontrol state did occur. In figure 4.8a, the Simulink model
used for the online experiments is shown.

The task of the asynchronous paradigm, called “freeSpace,” was to navigate through a
virtual environment. Each user was placed into a virtual park composed of one tree and
a number of hedges (figure 4.8b). The exercise was to pick up three items (coins) within
three minutes. From a randomly selected starting point, the subjects could explore the park
in the following way: Left or right-hand motor imagery resulted in a rotation to the left
or right whereas foot or tongue motor imagery resulted in a forward motion. With this
method, each part of the park could be reached. The subjects got instructions how to reach
the targets. The selected path was solely dependent on the will of the subjects. Figure
4.8c shows pursued pathways for each subject from the same starting position. While two
subjects were able to collect the three coins in 146 s and 153 s respectively, the third subject
succeeded in picking up only two coins within the 3-minute period.

With these experiments we have shown for the first time that voluntary (free will,
uncued) BCI-based control in virtual environment is possible when only the dynamics of
10-Hz and 20-Hz oscillations in three EEG derivations are analyzed. Further results about
the use of virtual reality and feedback experiments can be found in Pfurtscheller et al.
(2006b) and in chapter 23.
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Figure 4.8 a) Simulink model used for online feedback experiments. One important feature of
the system is online EOG reduction and muscle artifact detection. The combination of the two
classifiers CFR1 (discrimination among motor imagery tasks) and CFR2 (discrimination between
intended control and noncontrol state) allows an uncued (asynchronous) classification of the EEG. b)
Feedback presented to the subjects. The screenshot shows a tree and hedges distributed in the virtual
park. The size of the arrows indicates the detected mental activity and consequently the navigation
command (turn left/right or move forward). If no motor imagery pattern is detected, the arrows have
the same size and no navigation is performed. The dark round object on the left side represents a
coin to collect. In the left upper corner is the number of collected coins and in the right upper corner
is the time needed. c) Bird-view of the park showing the performance of a park walk from all three
subjects with the same starting point (cross). The dark rectangles indicate the hedges and the circles
the coins. Two subjects successfully collected all three coins (continuous and dotted line). The third
subject (dashed line) picked up only two coins in three minutes.

4.6 Conclusion and Outlook

At present our work is partially focused to investigate the impact of different types of visual
feedback on the classification accuracy (Pfurtscheller et al. (2006b)). In detail, moving
virtual body parts and non-body parts are studied. It is expected that the observation of
moving body parts can interfere with motor imagery and either improve or degrade the
BCI performance.

Another point of research is to realize a so-called “brain-switch.” This is a BCI system
based on only one (or two) EEG recordings able to well discriminate between intentional
control states and noncontrol or resting states. Here it is of importance to incorporate
knowledge about the behavior of spatiotemporal ERD/ERS patterns during different mental
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strategies. Such a brain-switch can be combined with an SSVEP (SSSEP)-based BCI
system to obtain a high information transfer rate. Last but not least we will realize an optical
BCI prototype within the EU-project PRESENCCIA and validate this online system with
a commercial multichannel Near Infrared Systems (NIRS).
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Hindenburgdamm 30, 12200 Berlin, Germany

5.1 Abstract

The Berlin Brain-Computer Interface (BBCI) project develops an EEG-based BCI system
that uses machine learning techniques to adapt to the specific brain signatures of each user.
This concept allows to achieve high quality feedback already in the very first session with-
out subject training. Here we present the broad range of investigations and experiments
that have been performed within the BBCI project. The first kind of experiments analyzes
the predictability of performing limbs from the premovement (readiness) potentials in-
cluding successful feedback experiments. The limits with respect to the spatial resolution
of the somatotopy are explored by contrasting brain patterns of movements of (1) left vs.
right foot, (2) index vs. little finger within one hand, and (3) finger vs. wrist vs. elbow
vs. shoulder within one arm. A study of phantom movements of patients with traumatic
amputations shows the potential applicability of this BCI approach. In a complementary
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approach, voluntary modulations of sensorimotor rhythms caused by motor imagery (left
hand vs. right hand vs. foot) are translated into a proportional feedback signal. We report
results of a recent feedback study with six healthy subjects with no or very little experience
with BCI control: Half of the subjects achieved an information transfer rate above 35 bits
per minute (bpm). Furthermore, one subject used the BBCI to operate a mental typewriter
in free spelling mode. The overall spelling speed was 4.5 letters per minute including the
time needed for the correction errors. These results are encouraging for an EEG-based BCI
system in untrained subjects that is independent of peripheral nervous system activity and
does not rely on evoked potentials.

5.2 Introduction

A brain-computer interface (BCI) is a man-to-machine communication channel operating
solely on brain signatures of voluntary commands independent from muscular output;
see Wolpaw et al. (2002); Kübler et al. (2001a); and Curran and Stokes (2003) for a
broad overview. The Berlin Brain-Computer Interface (BBCI) is a noninvasive, EEG-based
system whose key features are (1) the use of well-established motor competences as control
paradigms, (2) high-dimensional features derived from 128-channel EEG, (3) advanced
machine learning techniques, and—as a consequence—(4) no need for subject training.
Point (3) contrasts with the operant conditioning variant of BCI, in which the subject learns
by neurofeedback to control a specific EEG feature that is hard-wired in the BCI system
(Elbert et al. (1980); Rockstroh et al. (1984); Birbaumer et al. (2000)). According to the
motto “let the machines learn,” our approach minimizes the need for subject training and
copes with one of the major challenges in BCI research: the huge intersubject variability
with respect to patterns and characteristics of brain signals.

We present two aspects of the main approach taken in the BBCI project. The first is based
on the discriminability of premovement potentials in voluntary movements. Our initial
studies (Blankertz et al. (2003)) show that high information transfer rates can be obtained
from single-trial classification of fast-paced motor commands. Additional investigations
point out ways of improving bit rates further, for example, by extending the class of
detectable movement-related brain signals to the ones encountered, for example, when
moving single fingers on one hand. A more recent study showed that it is indeed possible
to transfer the results obtained with regard to movement intentions in healthy subjects to
phantom movements in patients with traumatic amputations.

In a second step we established a BCI system based on motor imagery. A recent
feedback study (Blankertz et al. (2006a)) demonstrated with six healthy subjects, with no
or very little experience with BCI control, the power of the BBCI approach: Three subjects
achieved an information transfer rate above 35 bits per minute (bpm) and two subjects
above 24 and 15 bpm, while one subject could not achieve any BCI control. A more
thorough neurophysiological analysis can be found in Blankertz et al. (2007). These results
are encouraging for an EEG-based BCI system in untrained subjects that is independent of
peripheral nervous system activity even when compared to results with very well-trained
subjects operating other BCI systems.
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In section 5.3, we present our single-trial investigations of premovement potentials,
including online feedback (5.3.3), a study of “phantom movements” in amputees (5.3.4),
and an exploration of the limits of discriminability of premovement potentials (5.3.5). In
section 5.4 we present our BBCI feedback system based on motor imagery and the results
of a systematic feedback study (5.4.3). Section 5.4.4 gives evidence that the control is
solely dependent on central nervous system activity. In section 5.5 we point out lines of
further improvement before the concluding discussion in 5.6.

5.3 Premovement Potentials in Executed and Phantom Movements

In our first approach we studied the premovement potentials in overlearned movements,
like typewriting on a computer keyboard. Our aim here was to build a classifier based
on the Bereitschaftspotenzial (readiness potential) that is capable of detecting movement
intentions and predicting the type of intended movement (e.g., left vs. right hand) before
EMG onset. The basic rationale behind letting healthy subjects actually perform the
movements in contrast to movement imagination is that the latter poses a dual task (motor
command preparation plus vetoing the actual movement). This suggests that movement
imagination by healthy subjects might not guarantee an appropriate correspondence to
paralyzed patients as the latter will emit the motor command without veto (but see Kübler
et al. (2005a) for a study showing that ALS patients can indeed use modulations of
sensorimotor rhythms for BCI control). To allow a safe transfer of the results in our setting
to paralyzed patients it is essential to make predictions about imminent movements prior to
any EMG activity to exclude a possible confound with afferent feedback from muscle and
joint receptors contingent upon an executed movement. On the other hand, being able to
predict movements in real time before EMG activity starts opens interesting perspectives
for assistance of action control in time-critical behavioral contexts, an idea further pursued
in Krauledat et al. (2004).

5.3.1 Left vs. Right Hand Finger Movements

Our goal is to predict in single-trials the laterality of imminent left vs. right finger move-
ments at a time point prior to the start of EMG activity. The specific feature that we use is
the readiness potential (RP or Bereitschaftspotenzial), which is a transient postsynaptic re-
sponse of main pyramidal pericentral neurons (Kornhuber and Deecke (1965)). It leads to
a pronounced cortical negativation that is focused in the corresponding motor area, that is,
contralateral to the performing limb reflecting movement preparation; see figure 5.1. Neu-
rophysiologically, the RP is well investigated and described (cf. Kornhuber and Deecke
(1965); Lang et al. (1988); Cui et al. (1999)). New questions that arise in this context are
(1) can the lateralization be discriminated on a single-trial basis, and (2) does the refractory
behavior allow to observe the RP also in fast motor sequences? Our investigations provided
positive answers to both questions.

In a series of experiments, healthy volunteers performing self-paced finger-movements
on a computer keyboard with approximate tap-rates of 30, 45, 60, and 120 taps per
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Figure 5.1 Response averaged event-related potentials (ERPs) of one right-handed subject in a left-
hand vs. right-hand finger tapping experiment (N =275 resp. 283 trials per class). Finger movements
were executed self-paced, i.e., without any external cue, in an approximate intertrial interval of
2 seconds. The two scalp plots show a topographical mapping of scalp potentials averaged within the
interval -220 to -120 ms relative to keypress (time interval shaded in the ERP plots). Larger crosses
indicate the position of the electrodes CCP3 and CCP4 for which the time course of the ERPs is
shown in the subplots at both sides. For comparison, time courses of EMG activity for left and right
finger movements are added. EMG activity starts after -120 ms and reaches a peak of 70 μV at -
50 ms. The readiness potential is clearly visible, a predominantly contralateral negativation starting
about 600 ms before movement and raising approximately until EMG onset.

minute (tpm). EEG was recorded from 128 Ag/AgCl scalp electrodes (except for some
experiments summarized in figure 5.2 that were recorded with 32 channels). To relate the
prediction accuracy with the timing of EMG activity we recorded electromyogram (EMG)
from M. flexor digitorum communis from both sides. Also electrooculogram (EOG) was
recorded to control for the influence of eye movements; compare figure 5.4. No trials have
been discarded from analysis.

The first step toward RP-based feedback is evaluating the predictability of the laterality
of upcoming movements. We determined the time point of EMG onset by inspecting
classification performance based on EMG-signals (as in figure 5.4) and used it as an
end point of the windows from which features for the EEG-based classification analysis
were extracted. For the data set shown in figure 5.1 the chosen time point is -120 ms,
which is in coincidence with the onset seen in averaged EMG activity. The choice of the
relative position of the classification window with respect to the keypress makes sure
that the prediction does not rely on brain signals from afferent nerves. For extracting
the RP features and classification we used our approved BBCI method as described in
the next section, 5.3.2. The result of EEG-based classification for all subjects is shown
in figure 5.2 where the cross-validation performance is quantified in bits per minute
(according to Shannon’s formula) to trade-off accuracy versus decision speed. A discussion
of the possible influence of noncentral nervous system activity on the classfication can be
found in section 5.3.3, especially in figure 5.4.

The results indicate that the refractory period of the RP is short enough to effectively
discriminate premovement potentials in finger movement sequences as fast as two taps per
second. On the other hand, it turned out that the performance of RP-based premovement
potential detection in a self-paced paradigm is highly subject-specific. Further investigation
will study event-related desynchronization (ERD) effects in the μ and β frequency range
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Figure 5.2 Tapping rates [taps per minute] vs. information transfer rate as calculated by Shannon’s
formula from the cross-validation error for different subjects peforming self-paced tapping at differ-
ent average tapping rates with fingers of the left and the right hand. The results of the best subject
(marked by triangles) were confirmed in several experiments.

(cf. Pfurtscheller and Lopes da Silva (1999)), compare systematically the discriminability
of different features and combined RP+ERD features (cf. Dornhege et al. (2004a)), and
search for modifications in the experimental setup in order to gain high performance for a
broader range of subjects.

5.3.2 Preprocessing and Classification

The following feature extraction method is specifically tailored to extract information from
the readiness potential. The method extracts the low-frequency content with an emphasis
on the late part of the signal, where the information content can be expected to be largest in
premovement trials. Starting points are epochs of 128 samples (i.e., 1280 ms) of raw EEG
data as depicted in figure 5.3a for one channel. To emphasize the late signal content, the
signal is convoluted with one-sided cosine window (figure 5.3b)

w(n) := 1 − cos(nπ/128) for n = 0, . . . , 127,

before applying a Fourier transform (FT) filtering technique: From the complex-valued
FT coefficients all are discarded but the ones in the pass-band (including the negative
frequencies, which are not shown) (figure 5.3c). Transforming the selected bins back into
the time domain gives the smoothed signal of which the last 200 ms are subsampled at
20 Hz, resulting in four feature components per channel (figure 5.3d). The full (RP) feature
vector is the concatenation of those values from all channels for the given time window.
For online operation those features are calculated every 40 ms from sliding windows.

Due to our observation that RP features under particular movement conditions are nor-
mally distributed with equal covariance matrices (Blankertz et al. (2003)), the classification
problem meets the assumption of being optimally separated by a linear hyperplane. The
data processing described above preserves gaussianity, hence we classify with regularized
linear discriminant analysis (RLDA, see Friedman (1989)). Regularization is needed to
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Figure 5.3 This example shows the feature calculation in one channel of a premovement trial
[−1400 − 120] ms with keypress at t = 0 ms. The pass-band for the FT filtering is 0.4–3.5 Hz
and the subsampling rate is 20 Hz. Features are extracted only from the last 200 ms (shaded) where
most information on the upcoming movement is expected.

avoid overfitting since we are dealing with a high-dimensional dataset with only few sam-
ples available. Details can be found in Blankertz et al. (2002, 2003).

5.3.3 RP-Based Feedback in Asynchronous Mode

The general setting is the following. An experimental session starts with a short period
during which the subject performs self-paced finger movements. This session is called
calibration session, and the data is used to train a classifier, which is then used to make
instantaneous predictions on whether the subject intends a hand movement and what its
laterality will be.

Although the results of the preceding section demonstrate that an effective discrimina-
tion of left-hand versus right-hand finger movements is possible well before keypress, it
remains a challange to build a system that predicts movement intentions from ongoing
EEG. One point that made the previous classification task easier was that the single trials
were taken from intervals in fixed-time relation to the keypress. For the implementation of
a useful continuous feedback in an asynchronous mode (meaning without externally con-
trolled timing), we need two more things: (1) the classifier must work reasonably well not
only for one exact time point but for a broader interval of time, and (2) the system needs to
detect the buildup of movement intentions such that it can trigger BCI commands without
externally controlled timing.



5.3 Premovement Potentials in Executed and Phantom Movements 91

−600 −500 −400 −300 −200 −100 0 100
0

10

20

30

40

50

Time point of causal classification [ms]

E
rr

or
 [%

]
EEG
EMG
EOG

30

20

15

10

5

[B
its

 p
er

 m
in

ut
e]

−600 −500 −400 −300 −200 −100 0 100
0

10

20

30

40

50

Time point of causal classification [ms]

E
rr

or
 [%

]

EEG
EMG
EOG

40

30

20

15

10

5

[B
its

 p
er

 m
in

ut
e]

Figure 5.4 Comparison of EEG-, EMG-, and EOG-based classification with respect to the endpoint
of the classification interval with t = 0 ms being the time point of keypress. For the left plot,
classifiers were trained in a leave-one-out fashion and applied to a window sliding over the respective
left-out trials on data of the calibration measurement. For the right plot, a classifier (for each type of
signal) was trained on data of the calibration measurement and applied to a window sliding over all
trials of a feedback session. Note that the scale of the information transfer rate [bits per minute] on
the right is different due to a higher average tapping speed in the feedback session.

With respect to the first issue we found that a quite simple strategy (jittering) leads to
satisfying results: Instead of taking only one window as training samples, ones extracts
several with some time jitter between them. More specifically, we extracted two samples
per keypress of the calibration measurement, one from a window ending at 150 the
other at 50 ms before keypress. This method makes the resulting classifier somewhat
invariant to time shifts of the samples to be classified, that is, better suited for the online
application to sliding windows. Using more than two samples per keypress event did not
improve classification performance further. Extracting samples from windows ending at
50 ms before keypress may seem critical since EMG activity start at about 120 ms before
keypress. But what matters is that the trained classifier is able to make predictions before
EMG activity starts no matter what signals it was trained on. That this is the case can be
seen in figure 5.4 in which EEG-, EMG-, and EOG-based classification is compared in
relation to the time point of classification. The left plot shows a leave-one-out validation
of the calibration measurement, while the right plot shows the accuracy of a classifier
trained on the calibration measurement applied to signals of the feedback session, both
using jittered training.

To implement the detection of upcoming movements, we train a second classifier as
outlined in Blankertz et al. (2002). Technically, the detector of movement intentions was
implemented as a classifier that distinguishes between motor preparation intervals (for left
and right taps) and “rest” intervals that were extracted from intervals between movements.
To study the interplay of the two classifiers, we pursued exploratory feedback experiments
with one subject, selected for his good offline results. Figure 5.5 shows a statistical
evaluation of the two classifiers when applied in sliding windows to the continuous EEG.

The movement discriminator in the left plot of figure 5.5 shows a pronounced separation
during the movement (preparation and execution) period. In other regions there is a con-
sidereable overlap. From this plot it becomes evident that the left/right classifier alone does
not distinguish reliably between movement intention and rest condition by the magnitude
of its output, which explains the need for a movement detector. The elevation for the left
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Figure 5.5 Classifiers were trained in a leave-one-out fashion and applied to windows sliding over
unseen epochs yielding traces of graded classifier outputs. The tubes show the 10, 20, 30 resp. 90, 80,
and 70 percentile values of those traces. On the left, the result is shown of the left vs. right classifier
with tubes calculated separately for left and right finger tapping. The subplot on the right shows the
result for the movement detection classifier.

class is a little less pronounced (e.g., the median is −1 at t =0 ms compared to 1.25 for
right events). The movement intention detector in the right plot of figure 5.5 brings up the
movement phase while giving (mainly) negative output to the postmovement period.

These two classifiers were used for an exploratory feedback in which a cross was moving
in two dimensions; see the left plot of figure 5.6. The position on the x-axis was controlled
by the left/right movement discriminator, and the vertical position was determined by
the movement intention detector. Obviously, this is not an independent control of two
dimensions. Rather the cursor was expected to stay in the middle of the lower half during
rest and it should move to the upper left or right field when a movement of the left resp.
right hand was prepared. The red and green colored fields are the decision areas that only
have a symbolic meaning in this application because no further actions are triggered. In
a case study with one subject the expected behavior was indeed found. Although the full
flavor of the feedback can be experienced only by watching it, we tried to demonstrate its
dynamics by showing the traces of the first 100 trials of the feedback in the right plot of
figure 5.6. Each trace displays an interval of the feedback signal -160 to -80 ms relative to
keypress. The last 40 ms are intensified and the end point of each trace is marked by a dot.

5.3.4 Detection of ‘Phantom Limb Commands’

One of the major goals of BCI research is to improve autonomy of people with severe
motor disabilities by new communication and control options through interfacing the
impaired connection from their intact command center, the brain, to its natural actuator
organs, the muscles. Amputees might use BCIs, for example, to trigger movements of
an electromechanical prosthesis. Accordingly, we elaborated on the BBCI paradigm to
extend also to patients with traumatic amputations of one arm or hand. Specifically, we
searched readiness potentials and event-related (de)synchronization (ERD/ERS) associated
with real finger movements (intact side) and phantom (disabled side) finger movements.
An ERD (ERS) is the attenuation (amplification) of pericentral μ and β rhythms in the



5.3 Premovement Potentials in Executed and Phantom Movements 93

Figure 5.6 Left panel: In a BCI feedback experiment, a cursor was controlled by two classifiers.
The output of a classifier trained to discriminate left-hand versus right-hand finger movements deter-
mined the x-coordinate, while a classifier trained to detect upcoming finger movements determined
the y-coordinate. Accordingly, the cursor should stay in the lower center area when the subject is at
rest while approaching one of the target fields upon movement intentions. This behavior was indeed
achieved as can be seen in the right panel: Traces of feedback control. Each trace displays an interval
of the feedback signal -160 to -80 ms relative to keypress. The last 40 ms are drawn with a thicker line
and the end point of each trace is marked by a dot. Traces are shown in darker grey for subsequent
left-hand finger taps.

corresponding motor areas. With respect to unilateral hand movements these blocking
effects are visible bilaterally but with a clear predominance contralateral to the performing
hand (cf. Pfurtscheller and Lopes da Silva (1999)).

One problem when trying to use the approach of section 5.3.1 is the lack of a time
marker signal such as a keypress when acquiring premovement brain activity of phantom
movements. For the sake of transfering the classifier from the calibration measurement to
the detection of spontaneous motor intentions in an asynchronous feedback we refrained
from using a cued reaction paradigm. Instead, we acquired calibration data in the following
way: The patients listened to an electronic metronome with two tones of alternating pitch.
While the deep sound indicated rest, concomitant with the higher sound they had to
perform either a finger tap on a keyboard using the healthy hand or a phantom movement
with a phantom finger. Accordingly the absence of a keypress around a high beat tone
allows the post-hoc identification of a spontaneous phantom finger movement intention
and its approximate timing (time of metronome beat).

We studied eight patients (1 women, 7 men; ages 37–74 years) with amputations be-
tween 16 and 54 years ago. Here, we report first results concerning the ERD. Remark-
ably, we found that all eight patients showed significant (p < 0.05 according to t-tests)
“phantom-related” ERD/ERS of μ- and/or β-frequencies (interval: -600 to 0 ms relative to
the beat) at the primary motor cortex. See examples in figure 5.7.

These preliminary results encouraged the ongoing further analyses on RP of phantom
movements and on error rates of offline single-trial classifications, which eventually could
form a basis for BCI-control of a prosthesis driven by phantom limb motor commands.
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Figure 5.7 Scalp topographies of ERD. Signed r2 values of the differences in ERD curves between
phantom movement and rest. Upper row: an example for contralateral ERD of μ-activity (subject bf
with right hand amputation). Lower row: an example for an ipsilateral ERD of β-activity (subject bg
with left hand amputation). In these subjects, no ERS was observed.

5.3.5 Exploring the Limits of Single-Trial Classification with Fine Spatial Resolution

The information transmission rate of BCIs can be improved if single-trial analyses of
movement-related scalp EEG parameters could reflect not only the gross somatotopic
arrangement of, for example, hand versus foot, but also, for example, the finely graded
representation of individual fingers, potentially enabling a kind of “mental typewriting.”
To examine the discriminability of BCI signals from close-by brain regions, we recorded
128-channel EEGs of healthy volunteers during self-paced movements of various limbs.
The premovement potential topographies are shown in figure 5.8, analog to the maps in
figure 5.1. The corresponding r2-values are comparably low, but their consistent topogra-
phies suggests that the found differences indeed significantly reflect specific activations in
sensorimotor cortices.

The fact that it is in principle possible to distinguish the noninvasively recorded RPs
associated with movements of limbs represented closely on the cortex in single-trial
analysis encourages us in our efforts to improve the technical facilities necessary to gather
these existing physiological informations properly and noninvasively.

5.4 BCI Control-Based on Imagined Movements

The RP feature presented in the previous section allows an early distinction among motor-
related mental activities since it reflects movement intent. But even in repetitive move-
ments, the discrimination decays already after about 1 s (cf. Dornhege (2006)). Accord-
ingly, we take an alternative approach for the design of proportional BCI control, such as
continuous cursor control. Here we focus on modulations of sensorimotor rhythms evoked
by imagined movements. Our first feedback study (Blankertz et al. (2005)) demonstrates
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Figure 5.8 Upper two rows of topographies show averaged premovement potential patterns of one
subject each in different self-paced limb moving tasks. The lower row visualizes r2-values (squared
biserial correlation coefficient) indicating significant differences at expected locations in all cases.
The rightmost column shows the focal area and its peak of the RP for two experiments. Note that due
to the slanted orientation, the contralateral foot areas project to ipsilateral scalp positions.

that it is possible to do so following our philosophy of minimal subject training while still
obtaining high information transfer rates.

5.4.1 Experimental Setup

We designed a setup for a feedback study with six subjects who all had no or very little
experience with BCI feedback. Brain signals were measured from 118 electrodes mounted
on the scalp. To exclude the possibility of influence from non-central nervous system
activity, EOG and EMG were recorded additionally; see section 5.4.4. Those channels
were not used to generate the feedback signal.

Each experiment began with a calibration measurement (also called training session,
but note that this refers to machine training) in which labeled trials of EEG data during
motor imagery were gathered. This data is used by signal processing and machine learning
techniques to estimate parameters of a brain-signal to control-signal translation algorithm.
This algorithm can be applied online to continuously incoming signals to produce an
instantaneous feedback.

In the training sessions, visual stimuli indicated for 3.5 s which of the following three
motor imageries the subject should perform: (L) left hand, (R) right hand, or (F) right foot.
The presentation of target cues was interrupted by periods of random length, 1.75 to 2.25 s,
in which the subject could relax.

Then the experimenter investigated the data to adjust subject-specific parameters of the
data processing methods and identified the two classes that gave best discrimination. See
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Figure 5.9 The upper two rows show a topographic display of the energy in the specific frequency
band that was used for feedback (as baseline the energy in the interstimuli intervals was subtracted).
Darker shades indicate lower energy resp. ERD. From the calibration measurement with three types
of motor imagery, two were selected for feedback. Energy plots are shown only of those two selected
conditions as indicated by the letters (L) left hand, (R) right hand, and (F) foot. The lower row shows
the r2 differences between the band energy values of the two classes demonstrating that distinctive
information found over from (sensori-) motor cortices.

figure 5.9 for band-energy mappings of five successful subjects and r2 maps showing that
discriminative activity is found over (sensori-) motor cortices only. When the discrimina-
tion was satisfactory, a binary classifier was trained and three different kinds of feedback
application followed. This was the case for five of six subjects who typically performed
eight runs of twenty-five trials each for each type of feedback application.

During preliminary feedback experiments we realized that the initial classifier often was
performing suboptimal, such that the bias and scaling of the linear classifier had to be
adjusted. Later investigations have shown that this adaption is needed to account for the
different experimental condition of the (exciting) feedback situation as compared to the
calibration session. This issue will be discussed extensively in a forthcoming paper.

In the first feedback application (position-controlled cursor), the output of the classifier
was directly translated to the horizontal position of a cursor. There were target fields at
both sides, one of which was highlighted at the beginning of a trial. The cursor started in
a deactivated mode (in which it could move but not trigger a target field) and became
activated after the user has held the cursor in a central position for 500 ms. The trial
ended when the activated cursor touched a target field that was then colored green or red,
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depending on whether it was the correct target or not. The cursor was deactivated and the
next target appeared.

The second feedback application (rate-controlled cursor) was very similar, but the con-
trol of the cursor was relative to the actual position, that is, at each update step a fraction
of the classifier output was added to the actual cursor position. Each trial started by setting
the cursor to the middle of the screen and releasing it after 750 ms.

The last feedback application (basket game) operated in a synchronous mode and is
similar to what is used in Graz (cf. Krausz et al. (2003)). A ball was falling down at constant
speed while its horizontal position was controlled by the classifier output. At the bottom
of the screen there were three target fields, the outer having half the width of the middle
fields to account for the fact that outer positions were easier to hit.

5.4.2 Processing and Classification

The crucial point in the data processing is to extract some spatial filters that optimize the
discriminability of multichannel brain signals based on ERD/ERS effects of the (sensori-)
motor rhythms. Once these filters have been determined, features are calculated as the
log of the variance in those surrogate channels. In our experience, those features can
best be classified by linear methods; we use linear discriminant analysis (LDA). For
online operation, features are calculated every 40 ms from sliding windows of 250 to
1000 ms (subject-specific). The spatial filters are calculated individually for each subject
on the data of the calibration measurement by common spatial pattern (CSP) analysis (see
Fukunaga (1990) and chapter 13). Details about the processing methods and the selection
of parameters can be found in Blankertz et al. (2005).

5.4.3 Results

To compare the results of the different feedback sessions we use the information transfer
rate (ITR, Wolpaw et al. (2002)) measured in bits per minute (bpm). We calculated this
measure for each run according to the following formula:

ITR =
# of decisions

duration in minutes
·
(

p log2(p) + (1 − p) log(
1 − p

N − 1
) + log2(N)

)
(5.1)

where p is the accuracy in decisions between N classes (N = 2 for cursor control and
N = 3 for the basket game). Note that the duration in minutes refers to the total duration
of the run including all intertrial intervals. In contrast to error rates or ROC curves, the
ITR takes into account different duration of trials and different number of classes. The ITR
of a random classifier is 0. Table 5.1 summarizes the information transfer rates that were
obtained by the five subjects in the three feedback sessions. Highest ITRs were obtained in
the “rate-controlled cursor” scenario, which has an asynchronous protocol.

One point that is, to our knowledge, special about the BBCI is that it can be operated at
a high decision speed, not only theoretically, but also in practice. In the absolute cursor
control the average trial length was 3 s, in rate-controlled cursor 2.5 s. In the basket
feedback the trial length is constant (synchronous protocol) but was individually selected
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Table 5.1 The first two columns compare the accuracy as calculated by cross-validation on the
calibration data with the accuracy obtained online in the feedback application “rate-controlled
cursor.” Columns three to eight report the information transfer rates (ITR) measured in bits per minute
as obtained by Shannon’s formula, cf. (5.1). For each feedback application, the first column reports
the average ITR of all runs (of 25 trials each), while the second column reports the peak ITR of all
runs. Subject 2 did not achieve BCI control (64.6% accuracy in the calibration data).

acc [%] cursor pos. ctrl cursor rate ctrl basket
cal. fb. overall peak overall peak overall peak

1 95.4 80.5 7.1 15.1 5.9 11.0 2.6 5.5
3 98.0 98.0 12.7 20.3 24.4 35.4 9.6 16.1
4 78.2 88.5 8.9 15.5 17.4 37.1 6.6 9.7
5 78.1 90.5 7.9 13.1 9.0 24.5 6.0 8.8
6 97.6 95.0 13.4 21.1 22.6 31.5 16.4 35.0

∅ 89.5 90.5 10.0 17.0 15.9 27.9 8.2 15.0

for each subject, ranging from 2.1 to 3 s. The fastest subject was subject 4, who performed
at an average speed of one decision every 1.7 s. The most reliable performance was
achieved by subject 3: only 2 percent of the total 200 trials in the rate-controlled cursor
were misclassified at an average speed of one decision per 2.1 s. Note that in our notion a
trial is ranging from one target presentation to the next including the “noncontrol” period
during which the selected field was highlighted.

In a later experiment subject 3 operated a mental typewriter based on the second feed-
back application. The alphabet (including a space and a deletion symbol) was split into two
parts and those groups of characters were placed on the left resp. right side of the screen.
The user selects one subgroup by moving the cursor to the respective side and the process
is iterated until a “group” of one character is selected. The splitting was done alphabeti-
cally based on the probabilities of the German alphabet, but no elaborated language model
was used. In a free-spelling mode, subject 3 spelled three German sentences with a total
of 135 characters in 30 minutes, which is a typing speed of 4.5 letters per minute. Note
that all errors have been corrected by using the deletion symbol. For details, see Dornhege
(2006).

5.4.4 Investigating the Dependency of BCI Control

The fact that it is in principle possible to voluntarily modulate motorsensory rhythms
without concurrent EMG activity was studied in Vaughan et al. (1998). Nevertheless, it
must be checked for every BCI experiment involving healthy subjects. For this reason we
always record EMG signals even though they are not used in the online system. On one
hand, we investigated classwise averaged spectra, their statistical significant differences,
and the scalp distributions and time courses of the power of the μ and β rhythm. The
results substantiated that differences of the motor imagery classes indeed were located in
sensorimotor cortices and had the typical time courses (except for subject 2 in whom no
consistent differences were found) (cf. figure 5.9). On the other hand, we compared how
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Figure 5.10 These plots show EEG- vs. EMG-control for three subjects. Classifiers were trained on
EEG- resp. on EMG-signals of the calibration measurement and applied to the data of the feedback
sessions. In each panel, the classifier output based on EEG is plotted (on the x-axis) against the output
of the EMG classifier (on the y-axis). These plots show that minimal EMG-activity occasionally
occurring in motor imagery does not correlate with the EEG-based classifier. This is also true for the
other subjects whose data are not shown here.

much variance of the classifier output and how much variance of the EMG signals can be
explained by the target class. Much in the spirit of Vaughan et al. (1998), we made the
following analysis using the squared biserial correlation coefficient r2. The r2-value was
calculated for the classifier output and for the bandpass filtered and rectified EMG signals
of the feedback sessions. Then the maximum of those time series was determined resulting
in one r2-value per subject and feedback session for EMG resp. for the BCI-classifier
signal. The r2 for EMG was in the range 0.01 to 0.08 (mean 0.04±0.03), which is very low
compared to the r2 for the BCI-classifier signal that was in the range 0.36 to 0.79 (mean
0.52±0.15). Figure 5.10 shows for three subjects a scatter plot of the output of the EEG-
based classifier that was used in the feedback session and the output of an EMG-based
classifier providing evidence that the occurrence of minimal EMG activity in some trials
does not correlate with the EEG-based classifier. The fact that the BBCI works without
being dependent on eye movements or visual input was additionally verified by letting two
subjects control the BBCI with closed eyes, which resulted in a comparable performance
as in the closed loop feedback.

5.5 Lines of Further Improvement

5.5.1 CSSSP: CSP with Simultaneous Spectral Optimization

One drawback of the CSP algorithm is that its performance strongly depends on the choice
of the bandpass filter that needs to be applied to the EEG data in advance. Although Müller-
Gerking et al. (1999) found evidence that a broadband filter is the best general choice,
subject-specific choices can mostly enhance the results. Our common sparse spectral
spatial pattern (CSSSP) algorithm (Dornhege et al. (2006a)) eludes to the problem of
manually selecting the frequency band by simultaneously optimizing a temporal and a
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Figure 5.11 Subfigure (a) shows the differences in band energy from three feedback runs to the
data of the calibration measurement as signed r2-values. The decrease of occipital alpha is most
likely due to the increase visual input during BCI feedback. Subfigure (b) shows the difference in
band energy of one feedback run (2 and 3) to its predecessor run. The important obervation here is
that the r2-values for the differences between runs is 50 times smaller compared to (a).

spatial filter, that is, the method not only outputs optimized spatial filters, as the usual CSP
technique, but also a temporal finite impulse reponse (FIR) filter that jointly enhance the
discriminability of different brain states. Our investigation involving sixty BCI data sets
recorded from twenty-two subjects show a significant superiority of the proposed CSSSP
algorithm over classical CSP. Apart from the enhanced classification, the spatial and/or the
spectral filter that are determined by the algorithm also can be used for further analysis of
the data, for example, for source localization of the respective brain rhythms.

5.5.2 Investigating the Need for Adaptivity

Nonstationarities are ubiquitous in EEG signals. The questions that are relevant in BCI
research are (1) how much of this nonstationarity is reflected in the EEG features, which
are used for BCI control, (2) how strongly is the classifier output affected by this change
in class distributions, and (3) how can this be remedied. We quantified the shifting of the
statistical distributions in particular in view of band energy values and the features one gets
from CSP analysis. In contrast to several studies, Millán (2004), Vidaurre et al. (2004a),
andWolpaw and McFarland (2004) that found substantial nonstationarities that need to be
accounted for by adaptive classification, our investigations lead to results of a somewhat
different flavor. Notably, the most serious shift of the distributions of band energy features
occurred between the initial calibration measurement and online operation. In contrast, the
differences during online operation from one run to another were rather inconsequential in
most subjects, see figure 5.11. In other subjects those shifts were largely compensated for
by the CSP filters or the final classifier. The good news with respect to the observed shift of
distributions is that a simple adaption of classification bias successfully cured the problem.
A thorough description of this study including new techniques for visualization and a
systematic comparison of different classification methods coping with shifting distributions
can be found in Shenoy et al. (2006) and forthcoming papers.
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5.6 Discussion and Outlook

The Berlin Brain-Computer Interface project makes use of a machine learning approach
toward BCI. Working with high dimensional, complex features obtained from 128-channel
EEG allows the system a distinguished flexibility for adapting to the specific individual
characteristics of each user’s brain. This way the BBCI system can provide feedback
control even for untrained users typically after a twenty-minute calibration measurement
that is used for the training of the machine learning algorithms.

In one line of investigation, we studied the detectability of premovement potentials
in healthy subjects. It was shown that high bit rates in single-trial classifications can be
achieved by fast-paced motor commands. An analysis of motor potentials during move-
ments with different limbs, for example, finger II and V on one hand, exposed a possible
way of further enhancement. A preliminary study involving patients with traumatic ampu-
tations showed that the results can in principle be expected to transfer to phantom move-
ments. A restriction seems to be that the detection accuracy decreases with longer loss of
the limb.

In a second approach, we investigated the possibility of establishing BCI control based
on motor imagery without subject training. The result from a feedback study with six
subjects impressively demonstrates that our system (1) robustly transfers the discrimination
of mental states from the calibration to the feedback sessions, (2) allows a very fast
switching between mental states, and (3) provides reliable feedback directly after a short
calibration measurement and machine training without the need for the subject to adapt to
the system, all at high information transfer rates; see table 5.1.

Recent BBCI activities comprise (1) mental typewriter experiments, with an integrated
detector for the error potential, an idea that has be investigated offline in several studies
(cf. Blankertz et al. (2003); Schalk et al. (2000); Parra et al. (2003); Ferrez and Millán
(2005) and chapter 17), (b) the online use of combined feature and multiclass paradigms,
and (3) real-time analysis of mental workload in subjects engaged in real-world cognitive
tasks, for example, in driving situations.

Our future studies will strive for 2D cursor control and robot arm control, still maintain-
ing our philosophy of minimal subject training.
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José del R. Millán, Pierre W. Ferrez, and Anna Buttfield
IDIAP Research Institute
1920 Martigny, Switzerland

Ecole Polytechnique Fédérale de
Lausanne (EPFL), Switzerland

6.1 Abstract

In this chapter, we give an overview of our work on a self-paced asynchronous BCI that
responds every 0.5 seconds. A statistical Gaussian classifier tries to recognize three dif-
ferent mental tasks; it may also respond “unknown” for uncertain samples as the classifier
incorporates statistical rejection criteria. We report our experience with different subjects.
We also describe three brain-actuated applications we have developed: a virtual keyboard,
a brain game, and a mobile robot (emulating a motorized wheelchair). Finally, we discuss
current research directions we are pursuing to improve the performance and robustness of
our BCI system, especially for real-time control of brain-actuated robots.

6.2 Introduction

Over the past ten years we have developed a portable brain-computer interface (BCI) sys-
tem based on the online analysis of spontaneous electroencephalogram (EEG) signals mea-
sured with scalp electrodes, which is able to recognize three mental tasks. Our approach
relies on an asynchronous protocol where the subject decides voluntarily when to switch
between mental tasks and uses a statistical Gaussian classifier to recognize, every 0.5 sec-
onds, the mental task on which the subject is concentrating. Our subjects have been able
to operate three brain-actuated devices: a virtual keyboard (Millán et al. (2004b); Millán
(2003)), a video game (or brain game) (Millán (2003)), and a mobile robot (emulating a
motorized wheelchair) (Millán et al. (2004a,b)) .

Like some of the other BCIs reported in the literature, our BCI is based on the analysis
of EEG rhythms associated with spontaneous mental activity. In particular, we look at
variations of EEG rhythms over several cortical areas related to different cognitive mental
tasks such as imagination of movements, arithmetic operations, or language. The approach
aims at discovering task-specific spatiofrequency patterns embedded in the continuous



104 The IDIAP Brain-Computer Interface: An Asynchronous Multiclass Approach

EEG signal, that is, EEG rhythms over local cortical areas that differentiate the mental
tasks (Anderson (1997); Millán et al. (2004b); Roberts and Penny (2000)).

In the next sections, we review the main components of our BCI system and report the
main findings of our experience with different subjects. We also describe the three brain-
actuated applications we have developed. Finally, we discuss current research directions
we are pursuing to improve the performance and robustness of our BCI system, especially
for real-time control of brain-actuated robots.

6.3 Operant Conditioning and Machine Learning

Birbaumer et al. (1999) as well as Wolpaw et al. (2000b) have demonstrated that some
subjects can learn to control their brain activity through appropriate, but lengthy, training
to generate fixed EEG patterns that the BCI transforms into external actions. In both cases,
subjects are trained over several months to modify the amplitude of the EEG component
they are learning to control. Other groups follow machine learning approaches to train the
classifier embedded in the BCI (Anderson (1997); Blankertz et al. (2003); Millán (2003);
Millán et al. (2004b); Pfurtscheller and Neuper (2001); Roberts and Penny (2000) and
chapter 5). Most of these approaches, as ours, are based on a mutual learning process
where the user and the brain interface are coupled together and adapt to each other.
This should accelerate the training time. Thus, our approach allows subjects to achieve
good performances in just a few hours of training in the presence of feedback (Millán
(2003); Millán et al. (2004b)). In this case, analysis of learned EEG patterns confirms that
for subjects to operate satisfactorily their personal BCIs, the BCI must fit the individual
features of its owner (Millán et al. (2002a,c)).

Most of these works deal with the recognition of just two mental tasks (Babiloni et al.
(2000); Birbaumer et al. (1999); Birch et al. (2002); Pfurtscheller and Neuper (2001);
Roberts and Penny (2000) and chapter 5), or report classification errors higher than 15
percent for three or more tasks (Anderson (1997); Kalcher et al. (1996)). Some of the
subjects who follow Wolpaw’s approach are able to control their μ/β rhythm amplitude
at four different levels and/or have simultaneous control of two rhythms (Wolpaw and
McFarland (2004); Wolpaw et al. (2000b)). Our approach achieves error rates below 5
percent for three mental tasks, but correct recognition is 70 percent (Millán (2003); Millán
et al. (2004b)). In the remaining cases (around 20–25%), the classifier doesn’t respond,
since it considers the EEG samples as uncertain.

The incorporation of rejection criteria to avoid making risky decisions, such as in the
case of Millán’s approach, is an important concern in BCI. The system of Roberts and
Penny (2000) applies Bayesian techniques for rejection purposes, too. This is an alternative
method of incorporating rejection rules into the classifier in a principled way. From a
practical point of view, a low classification error is a critical performance criterion for
a BCI; otherwise, users can become frustrated and stop utilizing the interface.
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6.4 Synchronous vs. Asynchronous BCI

EEG-based BCIs are limited by a low channel capacity.1 Most of the current systems have a
channel capacity below 0.5 bits/s (Wolpaw et al. (2002)). One of the main reasons for such
a low bandwidth is that current systems are based on synchronous protocols where EEG
is time-locked to externally paced cues repeated every 4–10 s and the response of the BCI
is the overall decision over this period (Birbaumer et al. (1999); Pfurtscheller and Neuper
(2001); Roberts and Penny (2000); Wolpaw et al. (2000b)). Such synchronous protocols
facilitate EEG analysis since the starting time of mental states are precisely known and
differences with respect to background EEG activity can be amplified. Unfortunately, they
are slow and BCI systems that use them normally recognize only two mental states.

On the contrary, other BCIs use more flexible asynchronous protocols where the subject
makes self-paced decisions on when to stop doing a mental task and immediately start the
next one (Birch et al. (2002); Millán (2003); Millán et al. (2004b,a); Scherer et al. (2004a)).
In such asynchronous protocols, the subject can voluntarily change the mental task being
executed at any moment without waiting for external cues. The time of response of an
asynchronous BCI can be below 1 s. For instance, in our approach the system responds
every 0.5 s. The rapid responses of asynchronous BCIs, together with their performance,
give a theoretical channel capacity between 1 and 1.5 bits/s. However, this bit rate was
rarely achieved in practice for long periods. The important point is that whenever the
subject needs to operate the brain-actuated device at high speed, for instance, to steer a
wheelchair in a difficult part of the environment, the BCI enables the subject to deliver a
rapid and accurate sequence of mental commands.

It is worth noting that the use of statistical rejection criteria, discussed in section 6.3,
also helps to deal with an important aspect of a BCI, namely “idle” states where the user is
not involved in any particular mental task. In an asynchronous protocol, idle states appear
during the operation of a brain-actuated device while the subject does not want the BCI to
carry out any action. Although the classifier is not explicitly trained to recognize those idle
states, the BCI can process them adequately by giving no response.

6.5 Spatial Filtering

EEG signals are characterized by a poor signal-to-noise ratio and spatial resolution. Their
quality is greatly improved by means of a surface laplacian (SL) derivation, which requires
a large number of electrodes (normally 64–128). The SL estimate yields new potentials
that represent better the cortical activity originated in radial sources immediately below the
electrodes. Alternatively, raw EEG potentials can be transformed to the common average
reference (CAR), which consists of removing the average activity of all the electrodes. For
other spatial filtering algorithms see chapter 13.

The superiority of SL- and/or CAR-transformed signals over raw potentials for the
operation of a BCI has been demonstrated in different studies (Babiloni et al. (2000);
McFarland et al. (1997a); Mouriño (2003)). SL filtering can be done either globally or
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locally. In the former case, the raw EEG potentials are first interpolated using spherical
splines of order order and then the second spatial derivative is taken which is sensitive to
localized sources of electrical activity (Perrin et al. (1989, 1990)). The second derivative is
evaluated only at the locations of the desired electrodes. In the local method, the average
activity of neighboring electrodes—normally four—is subtracted from the electrode of
interest. Normally, the SL is estimated with a high number of electrodes. But Babiloni et al.
(2001) have shown that, for the operation of a BCI, global SL waveforms with either a low
or a high number of electrodes give statistically similar classification results. Millán et al.
(2004b,a) compute SL derivations from a few electrodes using local methods. Mouriño
et al. (2001) compare different ways to compute the SL based on a few electrodes.

6.6 Experimental Protocol

After a short evaluation, users select the three mental tasks that they find easier from
the following set: “relax”; imagination of “left” and “right” hand (or arm) movements;
“cube rotation”; “subtraction”; or “word association.” More specifically, the tasks consist
of relaxing, imagining repetitive self-paced movements of the limb, visualizing a spinning
cube, performing successive elementary subtractions by a fixed number (e.g., 64−3 = 61,
61 − 3 = 58, etc.), and generating words that begin with the same letter.

In a given training session, a subject participates in several consecutive training trials
(normally four), each lasting approximately 5 min, and separated by breaks of 5 to 10 min.
The subject is seated and performs the selected task for 10 to 15 s. Then, the operator
indicates the next mental task randomly. With this protocol, the nature of the acquisition is
such that there is a time-shift between the moment the subject actually starts performing
a task and the moment the operator introduces the label for the subsequent period. Thus,
the acquired EEG data is not time-locked to any kind of event in accordance with the
principle of asynchronous BCI. While operating a brain-actuated application, the subjects
do essentially the same as during the training trial, the only difference being that now they
switch to the next mental task as soon as the desired action has been carried out.

During the training trials, users receive feedback through three buttons on the computer
screen, each a different color and associated with one of the mental tasks to be recognized.
A button lights up when an arriving EEG sample is classified as belonging to the corre-
sponding mental task. After each training session, the statistical classifier, see section 6.7,
is optimized offline.

EEG potentials are recorded at a variable number of locations, from 8 to 64. The raw
EEG potentials are first transformed by means of a surface Laplacian (SL). Then, we
extract relevant features from a few EEG channels (from 8 to 15) and the corresponding
vector is used as input to the statistical classifier. To compute the features, we use the Welch
periodogram algorithm to estimate the power spectrum of each selected SL-transformed
channel over the last second. We average three 0.5-s segments with 50 percent overlap,
which gives a frequency resolution of 2 Hz. The values in the frequency band 8–30 Hz are
normalized according to the total energy in that band. The periodogram, and hence an EEG
sample, is computed every 62.5 ms (i.e., 16 times per second). The resulting EEG sample
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is analyzed by the statistical classifier. No artifact rejection algorithm (for removing or
filtering out eye or muscular movements) is applied, and all samples are kept for analysis.
Each session has 4,800 samples approximately.

6.7 Statistical Gaussian Classifier

This is a short summary of the classifier we use in our BCI. For more details, see Millán
et al. (2004a) and also chapter 16. We use a Gaussian classifier to separate the signal into
the different classes of mental task. Each class is represented by a number of Gaussian pro-
totypes, typically less than four. That is, we assume that the class-conditional probability
function of class Ck is a superposition of Nk Gaussian prototypes. We also assume that
all classes have equal prior probability. All classes have the same number of prototypes
Np, and for each class each prototype has equal weight 1/Np. Thus, the activity ai

k of the
ith prototype of class Ck for a given sample x is the value of the Gaussian with centre μi

k

and covariance matrix Σi
k. From this we calculate the posterior probability yk of the class

Ck: It is the sum of the activities of all the prototypes of class k divided by the sum of the
activities of all the prototypes of all the classes.

The classifier output for input vector x is now the class with the highest probability
provided that the probability is above a given threshold, otherwise the result is “unknown.”
This rejection criterion gives the BCI the flexibility to not make a decision at any point
without explicitly modeling an idle state. The choice of this probability threshold was
guided by a receiver operating characteristic (ROC) study (Hauser et al. (2002)); the actual
value is selected based on the performance of the each subject during the initial period of
training.

Usually each prototype of each class would have an individual covariance matrix Σi
k,

but to reduce the number of parameters, the model has a single diagonal covariance matrix
common to all the prototypes of the same class. During offline training of the classifier, the
prototype centers are initialized by a clustering algorithm, generally self-organizing maps
(Kohonen (1997)). This initial estimate is then improved by stochastic gradient descent to
minimize the mean square error E = 1

2

∑
k(yk − tk)2, where t is the target vector in the

form 1-of-C; that is, if the second of three classes was the desired output, the target vector
is (0, 1, 0). The covariance matrices are computed individually and are then averaged over
the prototypes of each class to give Σk.

6.8 Brain-Actuated Prototypes

BCI systems are being used to operate a number of brain-actuated applications that aug-
ment people’s communication capabilities, provide new forms of entertainment, and also
enable the operation of physical devices.

Our asynchronous BCI can be used to select letters from a virtual keyboard on a
computer screen and to write a message (Millán (2003); Millán et al. (2004b)). Initially,
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the whole keyboard (twenty-six English letters plus the space to separate words, for a total
of twenty-seven symbols organized in a matrix of three rows by nine columns) is divided
in three blocks, each associated to one of the mental tasks. The association between blocks
and mental tasks is indicated by the same colors as during the training phase. Each block
contains an equal number of symbols, namely nine at this first level (three rows by three
columns). Then, once the statistical classifier recognizes the block on which the subject is
concentrating, this block is split into three smaller blocks, each having three symbols this
time (one row). As one of this second-level blocks is selected, it is again split into three
parts. At this third and final level, each block contains a single symbol. Finally, to select the
desired symbol, the user concentrates on the symbol’s associated mental task as indicated
by the color of the symbol. This symbol goes to the message and the whole process starts
again. Thus, the process of writing a single letter requires three decision steps.

The actual selection of a block incorporates some additional reliability measures (in
addition to the statistical rejection criteria). In particular, a part of the keyboard is selected
only when the corresponding mental task is recognized three times in a row. Also, in the
case of an eventual wrong selection, users can undo it by concentrating immediately on one
of the mental tasks of their choice. Thus, the system waits a short time after every selection
(3.5 s) before going down to the next level. The mental task used to undo the selection
is that for which the user exhibits the best performance. For our trained subjects, it takes
22.0 s on average to select a letter. This time includes recovering from eventual errors.

Millán (2003) illustrates the operation of a simple computer game, but other educational
software could have been selected instead. Other “brain games” have been developed by
the Berlin team (Krepki et al. (2007)). In our case, the “brain game” is the classical Pac-
man. For the control of Pac-man, two mental tasks are enough to make it turn left or right.
Pac-man changes direction of movement whenever one of the mental tasks is recognized
twice in a row. In the absence of further mental commands, Pac-man moves forward until
it reaches a wall, where it stops and waits for instructions.

Finally, it is also possible to make a brain-controlled hand orthosis open and close
(Pfurtscheller and Neuper (2001)). Wolpaw and McFarland (2004) have recently demon-
strated how subjects can learn to control two independent EEG rhythms and move a com-
puter cursor in two dimensions. Despite these achievements, EEG-based BCIs are still
considered too slow for controlling rapid and complex sequences of movements. But re-
cently, Millán et al. (2004b,a) have shown for the first time that asynchronous analysis of
EEG signals is sufficient for humans to continuously control a mobile robot—emulating
a motorized wheelchair—along nontrivial trajectories requiring fast and frequent switches
between mental tasks. Two human subjects learned to mentally drive the robot between
rooms in a house-like environment visiting three or four rooms in the desired order. Fur-
thermore, mental control was only marginally worse than manual control on the same
task. A key element of this brain-actuated robot is shared control between two intelligent
agents—the human user and the robot—so the user only gives high-level mental commands
that the robot performs autonomously. In particular, the user’s mental states are associated
with high-level commands (e.g., “turn right at the next occasion”) and the robot executes
these commands autonomously using the readings of its on-board sensors. Another critical
feature is that a subject can issue high-level commands at any moment. This is possible
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because the operation of the BCI is asynchronous and, unlike synchronous approaches,
does not require waiting for external cues. The robot relies on a behavior-based controller
to implement the high-level commands to guarantee obstacle avoidance and smooth turns.
In this kind of controller, on-board sensors are read constantly and determine the next ac-
tion to take (Arkin (1998)). For details of the behavior-based controller embedded in the
brain-actuated mobile robot, see Millán et al. (2004a).

6.9 Discussion

For brain-actuated robots, distinguished from augmented communication through BCI,
fast decision-making is critical. In this sense, real-time control of brain-actuated devices,
especially robots and neuroprostheses, is the most challenging application for BCI.

While brain-actuated robots have been demonstrated in the laboratory, this technology
is not yet ready to be taken out and used in real-world situations. For this reason, we
are working to improve our initial demonstrator, in collaboration with several European
groups, along four lines. The first is the development of a more powerful adaptive shared
autonomy framework for the cooperation of the human user and the robot in achieving the
target. The second line is how to get a better picture of electrical activity all across the brain
with high spatial accuracy without implanting electrodes but rather by a noninvasive esti-
mation from scalp EEG signals. Local field potentials (LFP) are produced by the electrical
activity of small groups of neurons. Recent developments in electrical neuroimaging al-
low the transformation of scalp-recorded EEG into estimated local field potentials (eLFP)
as though they were directly recorded within the brain (Grave de Peralta Menendez et al.
(2004)). Noninvasive eLFP has the potential to unravel scalp EEG signals, attributing to
each brain area its own temporal (spectral) activity. Preliminary results have shown signif-
icant improvements in the classification of bimanual motor tasks using eLFP with respect
to scalp EEG (Grave de Peralta Menendez et al. (2005b)). It is worth noting that through
this technique we also could gain a better understanding of the nature of the brain activity
driving the BCI. For more details on this research line, see chapter 16.

The third research line seek to improve the robustness of a BCI. Thus, a direction of
research is online adaptation of the interface to the user to keep the BCI constantly tuned
to its owner (Buttfield et al. (2006); Millán (2004)). The point here is that as subjects
gain experience they develop new capabilities and change their brain activity patterns. In
addition, brain signals change naturally over time. In particular, this is the case from one
session to the next, where we train the classifier on the first session and apply it to the
second. Thus, online learning can be used to adapt the classifier throughout its use and
keep it tuned to drifts in the signals it is receiving in each session. Preliminary work shows
the feasibility and benefits of this approach (Buttfield et al. (2006)). For more details on
this research line, see chapter 18.

The fourth research line is the analysis of neural correlates of high-level cognitive states
such as errors, alarms, attention, frustration, and confusion. Information about these states
is embedded in the EEG with the mental commands intentionally generated by the user.
The ability to detect and adapt to these states would enable the BCI to interact with the
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user in a much more meaningful way. One of these high-level states is the awareness of
erroneous responses, whose neural correlate arises in the millisecond range. Thus, user’s
commands are executed only if no error is detected in this short time. Recent results have
shown satisfactory single-trial recognition of errors that leads to significant improvement
of the BCI performance (Ferrez and Millán (2005)). In addition, this new type of error
potential—which is generated in response to errors made by the BCI rather than by the
user—may provide feedback on the BCI performance that, in combination with online
adaptation, could allow us to improve the BCI while it is being used. For more details on
this research line, see chapter 17.
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7.1 Abstract

The concept of self-paced control has recently emerged from within the general field of
brain-computer interface research. The use of assistive devices in real-world environments
is best served by interfaces operated in an asynchronous manner. This self-paced or asyn-
chronous mode of device control is more natural than the more commonly studied synchro-
nized control mode whereby the system dictates the control of the user. The Neil Squire
Society develops asynchronous, direct brain-switches for self-paced control applications.
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Our latest switch design operated with a mean activation rate of 73 percent and false posi-
tive error rates of 2 percent. This report provides an introduction to asynchronous control,
summarizes our results to date, and details some key issues that specifically relate to brain
interface design for asynchronous control.

7.2 Introduction

Within the context of general brain interface (BI) technology research, The Neil Squire
Brain Interface lab has focused on BI system design specifically for asynchronous control
environments. This focus has arisen from our experience in the more general field of
assistive technology research in which emphasis is placed on the use of assistive devices
in real-world environments (Mason and Birch (2003); Mason et al. (2005b); Birch et al.
(1995)). These environments are ones in which the most natural mode of device control
is self-paced or asynchronous, in contrast to synchronized control environments where
the system dictates the control of the user. Much of the BI research reported to date has
been evaluated only during synchronized activities—thus, these results make it difficult
to predict the usability of such systems in more typical control situations. The goal of
our brain interface project is to develop a robust multistate, asynchronous brain-controlled
switch for evaluation and operation in the most natural manner in real-world environments.
This chapter intends to present an overview of asynchronous control, a summary of our
efforts to develop asynchronous BI systems, as well as a discussion of several major issues
that have arisen from asynchronous BI development.

7.3 Asynchronous Control

Asynchronous (and self-paced) control refers to the type of control where output signal
levels are changed or commands are issued only when control is intended. We differentiate
periods of intentional control (IC) from periods when there is no intention to control, a pe-
riod which we refer to as the no control (NC) state. During the NC state, one would expect
the system output to remain neutral or unchanged. Examples of NC periods are when a
user is talking, daydreaming, thinking about a problem, or simply observing whatever ap-
plication they are controlling. In many applications, people are more frequently in an NC
state than actually intending control. Typical examples of this type of asynchronous con-
trol are turning on lights, changing television channels, and interacting with a computer.
Asynchronous control is characteristic of most real-world control applications and is what
most people expect from interface technology. For instance, when you remove your hand
from your computer mouse, you enter an NC state and the mouse output remains stable
and unchanged—that is, the mouse pointer does not continue to move on the computer
screen. The mouse is then available for control simply by replacing your hand. In short,
asynchronous control allows the user to define when things happen.
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Figure 7.1 Schematic representation of different BI control paradigms. System operating
paradigms in which intentional control and idle support are available are either asynchronous or
system-paced paradigms. A synchronous paradigm assumes expected control during its periods of
availability and does not support periods of no control. The arrows indicate system-driven cues,
which need to be displayed to alert the user that a period of control availability is about to occur.

The neutral or unchanging system output response desired during periods of NC is what
we call “system idling.” Brain interface technology must support idling for effective and
sophisticated control to be realized. This is analogous to a car engine in that when no gas is
applied (the NC state), the engine idles at a stable rpm. If the car engine in this example was
poor at idling, engine RPM would fluctuate, perhaps even stall. In the context of a discrete
single-state BI switch, poor idling is indicated by false switch activations during periods
of NC. Often how well BI transducers idle are measured by reporting the rate of false
activations (or false positive (FP) error rates for examples of two-class discrete switches).
However, BI transducer idling characteristics have not been reported in most BI research
publications to date. Most publications report only true switch activations or true positives
(TPs), the performance metric for measuring switch accuracy during the IC state. A more
complete measure of asynchronous control would use both true and false activation rates
as performance metrics.

In contrast to asynchronous operation, most BI transducers are only tested in synchro-
nized (or synchronous) control environments. After a synchronized BI system is turned
on, the user is regularly prompted for input and is allowed to control the assistive device
only during specific periods explicitly defined by the system, as shown in figure 7.1. This
is a system-driven control strategy, which is thought to be an awkward mode of interaction
for most typical applications and can cause significant user frustration and fatigue. The
differences between synchronous and asynchronous control are exemplified in a simple
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example of watching TV. An asynchronous TV controller allows users to simply change
channels at any time they wish, and the channel selection is stable during the lengthy pe-
riods the users are watching TV (an NC state). In contrast, a synchronous TV controller
would regularly poll the users to ask if they would like to change the channel. Synchronous
TV control renders the changing of channels to specific periods of time set by the system,
perhaps interrupting the users’ viewing. This has the following two serious drawbacks: (1)
the BI transducer will make a control decision regardless of whether the person is actually
intending control, thus there is the possibility of accidentally changing channels; and 2) the
fact that the users cannot change channels at their whim signifies that users would need to
wait for the system polling period to occur in order to engage the BI transducer. Figure 7.1
provides a graphical representation of the various temporal control paradigms.

From our experience with assistive device development, two factors capture the essence
of the temporal control paradigms used in BI technology (as well as other biometric-based
interface technology): the previously mentioned idle support and system availability (Ma-
son and Birch (2005)). Availability defines when the interface device allows user con-
trol and can be broadly categorized as continuously available (always on) or periodically
available. Continuously available control is what we experience with standard computer
interface devices: The device is always ready for the user to initiate control. Periodically
available control is used (1) for initial trial-based technology development or (2) for re-
stricting the signal processing complexity in real-world operation. It is assumed that for
the periods between control periods, the interface device blocks a user’s attempt to control,
and outputs a value representing “no control is possible at this time.”

As discussed, “idle support” indicates if the interface device will support idling. Control
paradigms that do not support idling will produce an unintended action (i.e., an error)
if and when the user enters the NC state. Given human nature, this will undoubtedly
happen, although the frequency will depend on the user and the application. The problem
with interface technology that does not support idling is referred to as the “Midas touch
problem” by the eye-tracking community (Jacob (1990); Yamato et al. (2000)) since the
system translates every “touch” (with the eyes/gaze) into some action, even if not intended.

Given these definitions, four primary control paradigms can be defined (Table 7.1) based
on their idle support and availability. A more thorough discussion of these paradigms has
been published (Mason and Birch (2005)). To summarize, they are asynchronous (or self-
paced), synchronous, system-paced, and constantly engaged. The latter paradigm is an
impractical mode of operation where the user is continuously controlling the interface
without a break and any NC activity will cause an error; thus, it is not found in typical
applications. Although four general operating paradigms have been identified, we feel that
a BI system that operates in a true asynchronous mode would provide the most natural

Availability
Idle Support

No idle support Idle support

Periodically Synchronous (synchronized) System-paced

Continuously Constantly engaged Asynchronous (self-paced)

Table 7.1 Control paradigms.
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assistive device operation and greatly impact the independence of people with severe motor
disabilities.

7.4 EEG-Based Asynchronous Brain-Switches

Asynchronous or self-paced control applications that require idle support and concomitant
low FP rates need specific signal processing algorithms to handle the NC state. Not only
must the TP rate of a BI system be optimized to accurately detect IC, focus must also be
placed on the minimization of FP rates during periods when the user is not controlling the
interface. As detailed in section 7.5, there is a trade-off between TP accuracy and FP rates;
thus, the specific characteristics of an application need to be considered when optimizing
asynchronous BI system performance.

The first asynchronous BI technology triggered from spontaneous electroencephalog-
raphy (EEG) was our brain-switch based on the outlier processing method (OPM) signal
processing (Birch et al. (1993)). The OPM used robust, statistical signal processing meth-
ods to extract single-trial voluntary movement-related potentials (VMRPs) from EEG re-
lated to finger movement. The accuracy of the OPM brain-switch was very high, with TP
rates greater than 90 percent. However, the relatively poor performance during system idle
periods with FP rates between 10 and 30 percent limits the usefulness of the OPM as an
asynchronous switch. (Although we believe that the EEG feature extraction algorithms of
the OPM will be useful in the development of a multiposition asynchronous brain-switch.)

A search for a set of EEG features more appropriate for asynchronous control was then
conducted. This work also focused on attempted VMRPs because voluntary movement
control is an existing and natural internal control system in humans that seems ideally
suited as a neural mechanism for a BI transducer. We use the term “attempted” here to
emphasize that individuals with spinal cord injury (SCI) attempt to move their fingers
to control our transducers in the same manner that able-bodied people make real move-
ments during our BI experiments. The only difference between the people with SCI and
those without are the actual physical movements that may or may not occur during their
attempted finger movement. It should also be noted that many labs use motor imagery
instead of real or attempted movements, possibly a very different neural mechanism.

From a time-frequency analysis of EEG patterns elicited from NC states versus VMRP
states, it was observed that the relative power in the 1–4 Hz band from ensemble VMRP
data increased compared to data from the NC state (Mason and Birch (2000)). Thus, our
attention was focused on this low frequency band. A wavelet analysis exposed a set of
relatively stable spatiotemporal features from EEG channels over the supplementary motor
area (SMA) and primary motor area (MI). Using this new feature set, the low-frequency
asynchronous switch design, or LF-ASD, was developed as a new asynchronous brain-
switch (Mason and Birch (2000)).

Our most recent online study using the LF-ASD demonstrated TP rates of 30 to 78
percent during IC states in combination with very low FP rates of 0.5 to 2 percent
during NC, when used by both able-bodied and spinal cord injured subjects (Birch et al.
(2002)). Note, as explained in section 7.5, the performance characteristics of a given
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asynchronous control design can vary over its receiver operating curve (ROC). In this study,
we intentionally operated the system toward the lower end of FP activations because our
subjects found the brain-switch frustrating to use if the FP rate was too high (usually over
2 percent from our experience).

Since the initial design, several offline studies have been performed that incorporated
additional signal processing steps in order to improve the performance of the LF-ASD
(Bashashati et al. (2005); Borisoff et al. (2004); Mason et al. (2004); Birch et al. (2003)).
The addition of EEG signal normalization, switch output debounce, and feature set dimen-
sionality reduction blocks produced design improvements that increased the TP rate by an
average of 33 percent over the previous version (Borisoff et al. (2004)). Importantly, this
performance gain was seen in both able-bodied subjects and subjects with high-level SCI
(Borisoff et al. (2004)). We have also observed that there is valuable information in the
temporal path with which the feature vectors navigate the feature space. We have created a
new design using this information with preliminary results from four subjects of a mean TP
rate of 73 percent for an FP rate of 2 percent (Bashashati et al. (2005)). These performance
metrics represented a total system classification accuracy of more than 97 percent when
the system is evaluated during continuous use. This brain-switch represents the state of the
art in asynchronous BI switch technology, although more improvements are underway.

Despite the need for idle support in most real-world applications, few other BI laborato-
ries have performed work on asynchronous transducers. The other notable players in this
specific BI field are Levine and Huggins, who have been working in this area since the
mid-1990s (Levine et al. (2000)); and Millán et al. (2004a), Yom-Tov and Inbar (2003),
and Townsend et al. (2004), who have joined this effort more recently. Perhaps because of
the relatively few long-term participants in asynchronous BI design, the terminology and
evaluation methods used by these groups vary significantly. Fortunately, this is becoming
more standardized as interest in this field grows, as seen at the Third International Meeting
on Brain-Computer Interface Technology in Albany, New York, June 2005.

7.5 Asynchronous Control Design Issues

Our experience with asynchronous BI design and testing over the past several years
has revealed many issues about the human-technology interface specific to asynchronous
control that need to be addressed when studying this mode of control.

The first design issue is quite apparent: False positive rates during the NC state must
be very low. From our experience, relatively high FP error rates cause undue user frus-
tration with the interface. This invariably leads to poorer performance, concentration, and
motivation over time. We have found that a subject would rather experience more trouble
performing accurate hits (i.e., a low TP rate), which naturally forces more concentration
and is challenging to the user, than have a high rate of seemingly haphazard false activa-
tions, which appear uncontrollable to the user.

One method of evaluating asynchronous control that considers both TP and FP rates
is the use of receiver operating characteristic (ROC) curves. An example is shown in
figure 7.2a with an expanded section highlighting low FP rates shown in figure 7.2b.
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Figure 7.2 Asynchronous BI performance expressed with receiver operating characteristic (ROC)
curves. The curve on the right is an exploded view of the 1–6% FP rate in the ROC curve on the left.
The shaded regions depict targeted operating zones for various applications.

Because of the importance in operating BI transducers with low FP error rates, it may
be beneficial to just focus on the right-most ROC curve shown. This focuses the design on
performance metrics in which FP rates are relatively low (figure 7.2b). This also leads to
another use for ROC curves: ROC curves reveal clues about “tuning” the performance of
asynchronous controls. The ROC curve shows the entire scope of possible operating setups
for a particular asynchronous BI device. By tuning various parameters in a BI design, one
can force BI transducer operation to a desired operating point along the ROC curve. In
the example of our two-state LF-ASD brain-switch (analogous to a toggle switch—either
pulsed “on” or else in idle mode), the appropriate tuning is performed by scaling the relative
magnitudes of NC state feature vectors versus intentional control state feature vectors in
a subject’s classification codebook (Borisoff et al. (2004)). In our online experiments, we
tune our classifiers to operate the LF-ASD at an FP rate under 2 percent. Interestingly,
with the LF-ASD, FP rates well under 1 percent seem necessary to keep average periods of
time between FPs in the range of 30 seconds or more. These levels are depicted as shaded
regions in figure 7.2.

Another possible caveat to this treatment of FP rates was revealed in our online exper-
iments. We have shown that FPs typically clump together in a string of multiple, closely
spaced false activations (Borisoff et al. (2004)). On a positive note, this clumping of FPs
often leaves large periods of system idle time free of FPs. One simple method to deal with
this performance issue is the use of switch-output jitter reduction methods. We recently
added a switch debounce block to the signal processing stream in the LF-ASD to signif-
icantly improve error rates by reducing the FP jitter in the switch output (Borisoff et al.
(2004)). The trade-off in this approach is transducer availability. Increasing the debounce
time will decrease the time the transducer is available for classification (and thus control).
An appropriate balance in these two effects would most likely be dependent on specific
applications.
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FP Rate (%) Seconds Minutes

2.00 3.1 0.05

1.00 6.3 0.10

0.50 12.5 0.21

0.25 25.0 0.42

0.10 62.5 1.04

0.01 625 10.4

Table 7.2 Intra-False Positive Rates: FP = false positive. Time is calculated from the average
number of false positives when a BI transducer is outputting classifications at every 1/16th second.
An FP rate below 0.25% is needed for periods of time between FPs that approach more than half a
minute. The goal target zone for operation of the LF-ASD is shown in the shaded boxes.

As alluded to in the above paragraphs, another design issue regarding false positive
rates is simply that not all reported FP rates are equal. The actual rate of error occurrences
(in terms of a user’s time) is completely dependent upon the output classification rate of
a particular transducer. For example, the LF-ASD brain-switch produces a classification
output every 1/16th of a second. At an operating FP rate of 1 percent, this rate corresponds
to an FP every 6.3 seconds on average (assuming a uniform distribution of FPs). For
another system that generates an output every 1 second, a 1 percent FP rate represents
an FP every 100 seconds. A summary of how percentage FP rates translate to actual time
between errors is shown in table 7.2 for a transducer that outputs every 1/16th of a second.
Average time between errors greater than 30 seconds, which seems to be a reasonable
design goal to aim for, require an FP rate of under 0.25 percent! Thus, false activation rates
should probably be reported as time rates along with raw percentages.

Another issue related to FP rates and asynchronous control is the reporting methodology
for experiments in which BI transducers are tested in synchronous environments. It is diffi-
cult, if not impossible, to determine if technology tested only in synchronized environments
would be potentially useful for natural self-paced (asynchronous) control applications. As
such, it would be beneficial to the community if researchers working with synchronized
testing environments would report their transducer’s response during NC states. Actually,
it may be beneficial to report this regardless of potential asynchronous control use, as this
characterizes the potential errors that would occur when a user is accidentally in an NC
state (i.e., not paying attention) instead of an IC state when intentional control is expected.

The next asynchronous design issue follows from a simple application analysis that
estimates the temporal characteristics of NC and IC states for specific applications. For
instance, environmental controllers may have periods of time ranging from several seconds
to tens of minutes between the issuance of IC commands (figure 7.3). In contrast, the
neural control of a robotic device would typically have intercontrol times on the order of
fractions of seconds during periods of intense usage (figure 7.3). These two applications
with very different usage profiles could conceivably use the same BI transducer with
different tuning characteristics (i.e., different TP and FP rates, or a different operating
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Figure 7.3 Usage profiles as represented by probability distributions of NC periods. Different
applications have distinct usage profiles. Some applications have long periods of no control states,
while other applications have a more constant level of control activity. Often it is beneficial to put
the system into a sleep mode (lighter shades) during long periods of inactivity to minimize false
positives.

point on an ROC curve). Thus, the usage profile of a specific application should drive the
level of BI transducer performance needed.

A related issue is the ubiquitous ON/OFF problem in biometric-based assistive technol-
ogy design. Developing an automated switch to turn a BI system ON is recognized as a dif-
ficult problem similar to the open microphone problem with speech recognition. For users
that lack a means to do this physically, the technology requires a mechanism and method
for users to turn the system on and off by themselves. Turning the system off is assumed
to be one of the control options available to users once the system has been turned on. An
automated BI-controlled mechanism to turn a system ON is actually one that must operate
in awake versus sleep mode rather than on and off mode. Generally, such a controller has to
differentiate between all possible innate brain states and the system awake state. Practically,
the mechanism probably could be implemented as a sequence of commands, where each
step in the sequence confirms user intent to turn the system to the awake mode. Developing
this concept further in regards to application usage profiles, an application in which very
long periods of NC states are inherent (such as watching television) could include an oper-
ating mode in which the BI device is put into sleep mode (figures 7.3 and 7.4). This would
eliminate FPs during this period and only require a simple sequence of commands to step
the transducer back to full awake mode whereby IC is again available (figures 7.3 and 7.4).
Another factor to consider here is the ease (or difficulty) of correcting a mistake, and the
cost of such a mistake. If an application has profound costs associated with an FP (an ex-
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Figure 7.4 Control system operating modes. Once the device is physically turned ON (perhaps by
an attendant), device operation may cycle between intentional control states and no control states.
Device operation may also cycle between awake and sleep modes to minimize false positives (FPs).
A discrete transducer is prone to false activations or FPs during the no control (NC) periods in awake
mode, while a continuous transducer may be prone to unstable output during NC. To eliminate FPs
or unstable output during long periods of NC, the device may be alternatively put into a sleep mode.

ample such as launching nuclear missiles is given here somewhat facetiously, however, it
demonstrates this issue quite clearly), FPs could be greatly minimized by including mul-
tiple operating levels of the sleep mode. Stepping the system to full awake mode would
require the system to sequence through successively higher modes, each of which has the
characteristic of higher FP rates, and which requires intentional command sequences to
access. Conversely, applications in which the costs of FPs are low and easily corrected
may be operated with higher FP rates and less intricate sequences of sleep/awake levels.
Thus, the seemingly simple observation of the differences in applications can lead to quite
complex design criteria when optimizing BI systems.

The last design issue discussed here relates to the challenge inherent in the testing
and evaluation of online, asynchronous systems designed for self-paced IC states and
long periods of NC. The issue is one of how to structure tasks during customization,
training, and testing phases in a manner that fulfills the needs of each specific phase.
The initial customization of a BI transducer requires accurate time-stamping for system
calibration and classifier training. This may necessitate the use of system-guided and
system-paced tasks where the system knows exactly what the user intended and when.
However, this may result in diminished transducer performance: For instance, a particular
cuing mechanism used during the customization phase may cause visual and/or some
other cognitively evoked potential. Thus, the brain signals recorded during customization
may be different from the signals recorded during a true online asynchronous application
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run without the cueing mechanism. If possible, it would be beneficial to train and test
on systems in very similar control environments. Another consideration is the apparatus
necessary for data markup and synchronization. Online asynchronous evaluations using
self-guided and self-paced tasks require the subject to self-report errors because the system
is otherwise not aware of their intentions. In the past, we have employed a sip and puff
mechanism for subject self-report of errors (i.e., false positives and false negatives). Since
the subject is the only one aware of what has occurred, this method is a necessary one.
The downside is that the data collected during periods of self-report are contaminated with
various artifacts resulting from the act of reporting. Compared to synchronous BI system
evaluations, an accurate assessment of asynchronous system performance is difficult with
several considerations that may impact the evaluation.

7.6 Conclusion

Asynchronous brain interface design is a difficult, though rewarding, path as asynchronous
control is the most natural and user-friendly mode of device control. A successful asyn-
chronous BI design will enable sophisticated and effective control of many useful devices
for a host of individuals with significant motor impairments. We have developed a two-
state brain-switch prototype for asynchronous control applications that operates with total
system classification accuracies of more than 97 percent when used by both able-bodied
subjects and subjects with high-level spinal cord injuries. This typically represents a false
positive activation rate of less than 2 percent during periods of no control, a performance
that somewhat mitigates user frustration and enables rudimentary control. These brain-
switches could be used with scanning menu systems in devices such as environmental
controllers or virtual keyboards. However promising, these error rates are still too high for
real-world use; thus, we continue to make improvements to our BI designs. We also strive
to solve many of the other issues associated with asynchronous control design, especially
those associated with system evaluations. We hope this approach provides a strong foun-
dation for continued efforts to build a critically needed device for asynchronous control
applications.
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Introduction

Brain-computer interfaces, or brain-machine interfaces, can use neural activity recorded
from the surface, such as EEG, or neural activity recorded from inside the skull or brain,
such as ECoG or single- resp. multiunit activity. The chapters in this part consist of studies
that use invasive recording methods to acquire BCI signals. As pointed out by Huggins
et al. (see chapter 8), invasive techniques such as ECoG have several advantages relative
to noninvasive methods such as EEG. These include the fact that they are permanently
available and do not require application of electrodes prior to each recording session.
ECoG provides a signal of broader bandwidth, which includes the interesting gamma
frequency band. Invasive methods also provide more localized signals, which can translate
into more distinct spatial input channels. Finally, invasive methods have a better signal-to-
noise ratio since noise sources such as EMG or ocular artifacts are much less prominent.
These advantages must, however, be weighed against the risk of surgery and the potential
development of complications such as infection. In addition, problems that develop with
the recording electrodes over time require either additional surgeries or a termination
of device use. This is an ongoing discussion that is far from conclusive at this point
(e.g., Lebedev and Nicolelis (2006); Berger and Glanzman (2005); Hochberg et al. (2006),
see chapters 1 and 22). For example, Huggins et al. suggest that ECoG provides a good
balance between the fidelity associated with more invasive techniques, such as implanted
electrodes, and the safety associated with EEG.

In chapter 8, Huggins et al. provide empirical evidence that greater classification accu-
racy can be obtained with ECoG as compared to EEG. The data were collected in human
patients being evaluated for surgery to treat epilepsy and were analyzed offline. This find-
ing is important since many researchers claim that their methods are superior while not
providing such explicit comparison.

Michael Black and John Donoghue (chapter 9) develop simple linear models for real-
time control of cursor movement from a high-density microelectrode array implanted in
monkey motor cortex. Black and Donoghue note that simple linear models are desirable
because of ease of implementation and interpretability of results. In addition, the contin-
uous output produced by a Kalman filter may be more appropriate for control of motor
tasks than the output of discrete classifiers. His model is consistent with the known cosine
tuning properties of motor cortex neurons. Since research has shown that motor units are
tuned to several dimensions of movement, Black and Donoghue include position, velocity,
and acceleration in this dynamic model and provide a proof of concept.

Dawn Taylor (chapter 10) discusses functional electrical stimulation for restoration of
movement. The chapter describes random and systematic prediction errors that occur when
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units recorded from monkey motor cortex are used to predict arm movements with an open-
loop paradigm. When animals receive visual feedback, the system becomes coadaptive. As
a result, the animals are able to make use of the inherent ability of their nervous systems
to make feedforward adjustments and to correct for consistent errors in the executed motor
plan. In addition, feedback allows online corrections of random errors in the execution of
the motor plan, and an increase in the information content of the recorded neural signals.

Nenadic et al. (chapter 11) also report on the offline analysis of field potentials recorded
from human patients evaluated for epilepsy surgery. Depth recording electrodes were used
in this case. Nenadic et al. used a novel feature extraction method, information discriminant
analysis, to project a large number of features onto a smaller dimensional space, making
the classification problem more computationally manageable. The authors conclude that
local field potentials are suitable signals for neuroprosthetic use.

Shpigelman et al. (chapter 12) introduce kernel-based methods for predicting trajectories
from spike data. An important point is the use of a novel kernel function—the spike
kernel—that allows the combination of a nonlinear observation to state mapping with a
linear state mapping. They refer to this model as a discriminative dynamic tracker (DDT).
This model thus combines techniques from support vector regression and Kalman filtering.

The chapters in this part raise a number of interesting issues. Is the increased risk
inherent with invasive recordings offset by improved performance? Do the demands of
real-time performance with high-density recordings require simple models? Does the
inherent closed-loop nature of communication and control impose additional requirements
on system design? At present, the answers to these and many other questions about BCI
system designs are not known. Many studies to date have provided proofs of principle.
However, answering these fundamental questions about optimal system design will require
further comparative studies that provide empirical support.

The relative advantage in signal quality of invasive recordings over noninvasive record-
ings will depend upon future developments in sensor technology in both of these areas.
Currently, degradation of performance over time is a serious problem with chronic unit
recording, although potential solutions to this problem are being investigated (e.g., Spataro
et al. (2005)). Likewise research continues aimed at improving surface recording technol-
ogy (e.g., Harland et al. (2002)), and new modalities may enter this field (e.g., Frances-
chini et al. (2003)). Computational demands imposed by more complex models for decod-
ing continue to become less eminent with the development of faster computer hardware.
However, different issues related to model complexity, such as the stability of dynamic
coadapting systems, still remain and require dedicated research efforts.
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The chapters in this part provide an interesting sample of approaches in the rapidly de-
veloping field of brain-machine communication and control. Though not exhaustive, they
give some perspective on the diversity of approaches currently being explored. For further
reading, we make reference to a number of important contributions to invasive BCI sys-
tems (e.g., Tillery and Taylor (2004); Carmena et al. (2003); Serruya et al. (2002); Nicolelis
(2001); Shenoy et al. (2003); Hochberg et al. (2006); Kamitani and Tong (2005); Mehring
et al. (2003); Leuthardt et al. (2004); Hill et al. (2006)) and recent reviews (e.g., Nicolelis
(2001); Lebedev and Nicolelis (2006); Haynes and Rees (2006); Berger and Glanzman
(2005)).

Dennis J. McFarland and Klaus-Robert Müller





8 Electrocorticogram as a Brain-Computer
Interface Signal Source

Jane E. Huggins and Simon P. Levine
Departments of Physical Medicine and Rehabilitation and Biomedical Engineering
University of Michigan, Ann Arbor
1500 East Medical Center Drive, Ann Arbor
MI 48109-0032, USA

Bernhard Graimann
Laboratory of Brain Computer Interfaces
Graz University of Technology
Graz, Austria

Se Young Chun and Jeffrey A. Fessler
Department of Electrical Engineering and Computer Science
University of Michigan
Ann Arbor, USA

8.1 Abstract

The use of electrocorticogram (ECoG) as the signal source for brain-computer interfaces
(BCIs) has advantages for both the potential BCI user and the BCI researcher. However,
research using ECoG can be logistically challenging. Visualization of time- and frequency-
based characteristics of movement-related potentials in ECoG illustrates the features avail-
able for detection by a BCI and their spatial distribution. A quantitative comparison of the
detection possible with EEG and ECoG verifies the signal quality advantages of ECoG and
the utility of spatial filtering for improving detection. A quadratic detector based on a two-
covariance signal model is presented as the basis for a BCI using ECoG, and the detection
achieved by the quadratic detector is compared to BCI methods based on cross-correlation
and bandpower. The quadratic detector provides dramatically improved detection and re-
sponse time over the cross-correlation-based method.
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8.2 Introduction

Electrocorticogram (ECoG) is recorded by electrodes implanted inside the skull but not
penetrating the brain, providing a unique balance between invasiveness and signal quality.
Interest in ECoG as a control source for brain-computer interfaces (BCIs) has grown dra-
matically over the past decade. When the University of Michigan Direct Brain Interface
(UM-DBI) project started in 1994, BCI research was focused almost entirely on electroen-
cephalogram (EEG) in humans (Birch et al. (1993); Pfurtscheller et al. (1995); Wolpaw
et al. (1991)), and intracerebral recordings in animals (Drake et al. (1988); Georgopoulos
et al. (1988)). Apart from one report of an eye-gaze-controlled system in which intracranial
electrodes were employed to avoid artifacts during daily interface use (Sutter (1992)), no
other researchers were pursuing ECoG for development of an interface. In recent years,
interest in ECoG as a signal source for BCIs has intensified. At the Third International
Meeting on BCI Technology in 2005, 16 out of 120 abstracts included references to ECoG
(Brain-Computer Interface Technology: Third International Meeting (2005)) compared to
1 abstract out of 23 at the First International BCI Meeting in 1999 (Brain-Computer Inter-
face Technology: Theory and Practice—First International Meeting Program and Papers
(1999)).

ECoG provides a number of practical benefits both to the BCI user and researcher. For
a BCI user, the use of implanted electrodes (whether ECoG or intracerebral) provides the
potential for the interface to be permanently available, eliminating both the need to have
an assistant apply the electrodes whenever use of the interface is desired and variations
in electrode placement that could affect performance. Implanted electrodes also reduce
the visibility of the interface by minimizing or eliminating the need to wear external
components. For the BCI researcher, there is the advantage of working with electrode
technology that is in routine clinical use as well as many advantages in signal quality.
Subdural ECoG electrodes have been shown to be anatomically and electrophysiologically
stable (Margalit et al. (2003)), unlike intracerebral microelectrodes (Liu et al. (1999);
Kipke et al. (2003)). ECoG avoids problems with muscular and ocular artifacts (Sutter
(1992); Zaveri et al. (1992)) and offers greater localization of the origin of the signals
(Salanova et al. (1993)) as well as a wider range of available frequencies (Leuthardt et al.
(2004)) and higher signal-to-noise ratio as compared to EEG recordings (Margalit et al.
(2003)). For both the BCI user and researcher, there is the potential benefit of shorter
training times for BCI control with ECoG (Leuthardt et al. (2004)) in comparison to the
prolonged training required by some EEG-based systems (Wolpaw et al. (2002)).

Disadvantages of ECoG electrodes for the subject include the risks of surgery, recovery
time, and the necessity of a repeat surgery if replacement of the electrodes is required. For
the researcher, the disadvantages of working with ECoG are the limited access to human
subjects, the constraints on working in an acute care setting, and the lack of control over
certain aspects of the experiment. Typically, human ECoG is available only when people
have electrodes implanted as part of treatment for another condition such as intractable
epilepsy. Clinical considerations for the treatment of this condition therefore take priority
over research. While this is entirely appropriate, scheduling difficulties and the challenges
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of working in an acute hospital setting often limit time with the subject and introduce
uncontrollable variability in experimental protocols.

ECoG subjects are selected based entirely on the availability of implanted electrodes.
Variations in subject attention, concentration, and interest have the potential to affect sub-
ject performance. Some subjects are excited by the opportunity to participate in research,
want to understand everything, and are highly motivated to succeed. Other subjects view
participation as a minor variation in a generally boring day, but do not have a particular in-
terest in the research or a desire to do well. All subjects are recovering from a recent surgery
for electrode implantation and are experiencing varying degrees of pain and fatigue, and
some may be recovering from a recent seizure. Some subjects have chronic memory prob-
lems or other impairments associated with their epilepsy. Further, access to the patients
must be scheduled around clinically necessary procedures. Patient care activities such as
taking pain medications may interrupt data collection sessions, though these can be done
during breaks between data runs. Further, subjects in an epilepsy surgery program naturally
will be anxious about their upcoming surgery and its potential benefit for their condition.
Many subjects will have had changes to their normal medications for seizure suppression.
In some cases, data collection sessions can be scheduled only at times when subjects have
been sleep deprived in an attempt to precipitate a seizure for diagnostic purposes. Interrup-
tions of experimental sessions that have psychological impact for the patient/subject are
also possible. In one instance, a surgeon asked us to step out while he talked to the patient.
When we resumed data collection, we found that the patient had been informed that he
would not be able to be helped by the surgery. The patient chose to end the data collection
session soon afterward.

The locations of ECoG electrodes implanted as part of the standard epilepsy surgery
procedures are not under the control of the BCI researcher. Instead, electrode coverage is
tailored to the epileptic symptoms of individual subjects with electrode placements being
those that target typical regions of epileptic foci such as temporal lobe. Electrode coverage
ranges from a few temporal strips accompanying temporal depth electrodes to bilateral
grids over motor cortex.

These logistical constraints on experimental work emphasize factors for creating clini-
cally accepted BCI systems that are frequently overlooked during the development process.
The limited time with the ECoG subjects only allows for short training periods during a
data collection session. Likewise, if any daily configuration was necessary in a clinical
BCI, brevity would be an important factor. Epilepsy surgery subjects have many concerns
and distractions apart from the BCI experiment. Likewise, in daily use, BCI operation must
not require so much attention that the subject cannot think about the task for which the BCI
is being used. As researchers, we attempt to reduce distractions and maximize time with
the subjects. However, it is important to realize that many of the issues encountered during
research in an acute care setting will reappear when BCIs move out of the experimental
environment and into daily use. When developing a BCI for use in either an experimental
or eventual clinical setting, practical considerations compel us to put a priority on not only
reliable detection, but also on real-time system implementation, rapid interface response
time, and short configuration and training periods.
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8.3 Subjects and Experimental Setup

The subjects for this research were patients in an epilepsy surgery program either at the
University of Michigan Health System, Ann Arbor, or Henry Ford Hospital, Detroit, who
required implanted ECoG electrodes as part of surgical treatment for epilepsy. For these
subjects, electrodes and electrode locations were chosen for clinical purposes without
regard for research concerns. Subjects gave informed consent and the research protocols
were approved by the appropriate institutional review boards. The electrodes were made
of platinum or stainless steel and were 4 mm in diameter arranged in grids and strips
with center-to-center distances of 10 mm in a flexible silicone substrate. Grid electrodes
were implanted subdurally through a craniotomy while the patients were under general
anesthesia. Some subjects also had cylindrical depth electrodes that penetrated the cortex.
Depth electrodes had six to eight platinum contacts that were 2.3 mm wide and placed
10 mm apart on a closed plastic, 0.8 mm tube. Strip and depth electrodes could be
placed through 14 mm burrholes under fluoroscopic guidance. Electrode location was
documented using X-ray or CT and MRI scans before the patients were connected for
clinical monitoring.

Recordings were made from up to 126 subdural electrodes implanted on the surface
of the cerebral cortex. Subjects participated in one-two hour data collection sessions
while seated in their hospital beds. Each subject performed sets of approximately fifty
repetitions of a simple movement task. The recordings from all electrodes during one set
of repetitions of a particular task by a particular subject is defined as one dataset. Some
subjects performed up to four sets of the same task (four datasets) for a total of up to
200 repetitions. The task repetitions were self-paced and separated by approximately five
seconds. Variability in electrode placement required selecting the task to be performed
by the subject based on the available electrode locations. To maximize experimental
uniformity, tasks were chosen from a standard set including tongue, lip, finger, pinch,
and ankle tasks to correspond to electrode placements. Further customization of the task
performed was sometimes necessary to accommodate electrode placement or a subject’s
physical limitations. Actual movements were used instead of imagined movements so
that electromyography (EMG) from the self-paced tasks would produce a record of the
time of each repetition of the task. Points of EMG onset (triggers) were determined using
filtering, thresholding, and task repetitions with an unclear onset marked for exclusion from
experimental trials. Most of the data were collected at a sampling rate of 200 Hz, with some
at 400 Hz. During recording, the 20-Hz data was bandpass-filtered between 0.55 and 100
Hz while the 400-Hz data was bandpass-filtered between 0.5 and 150 Hz. The UM-DBI
project has collected data from more than forty subjects in over 350 datasets with up to
126 ECoG electrode channels per dataset, which results in more than 15,000 channels of
recorded ECoG. However, the selection of electrode locations solely for clinical purposes
related to epilepsy means that the ECoG in these datasets may not include brain activity
related to the task being performed.
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8.4 Visualization of Movement-Related Patterns in ECoG

Visualization of the ECoG characteristics can be helpful in understanding the features
available for detection by a BCI. Our initial approach to visualizing event-related activity
in ECoG was to perform triggered averaging (Levine et al. (1999)). However, the event-
related potentials (ERPs) revealed by triggered averaging include only activity phase-
locked to the triggers (time domain features). Visualizing the oscillatory activity around
the time of the triggers can reveal event-related changes in the frequency domain such
as event-related desynchronization (ERD) and event-related synchronization (ERS) that
otherwise might be overlooked. ERD/ERS maps arranged in the spatial configuration of
the electrode arrays allow the visualization of statistically significant frequency changes
around the events as well as their spatial distribution (Graimann et al. (2002)).

Figure 8.1 shows electrode locations and time and frequency domain features for subject
C17, a 19-year-old female, performing middle finger extension (parts a and d) and tongue
protrusion (parts b and e). The location of ERPs for the two tasks overlap (figure 8.1a and
b), with the ERPs for the tongue protrusion task centered just above the sylvian fissure
and the ERPs for the finger task superior to it, as would be expected. The ERD/ERS maps
show the high frequency activity that is one of the key benefits of ECoG. Comparison of
the ERP locations with the ERD/ERS for the two tasks shows a similar spatial distribution
of the significant ERD/ERS activity. However, the locations of the strongest ERPs and the
strongest ERD/ERS do not necessarily coincide. Indeed, both datasets include locations
where there are minimal ERPs, but strong ERD/ERS. This implies that a brain-computer
interface detection method designed around only ERPs or only ERD/ERS may be discard-
ing useful data.

For the finger extension task, ERD/ERS activity begins well before movement onset (as
documented by the onset of EMG activity). The early onset of spectral changes is also
visible in individual trials (Fessler et al. (2005)). This proximity of the spectral changes to
the trigger time could support a rapid interface response time.

In scalp EEG, self-paced movements are accompanied by three different types of
ERD/ERS patterns: (1) contralateral dominant alpha and beta ERD prior to movement;
(2) bilateral symmetrical alpha and beta ERD during execution of movement; and (3)
contralateral dominant beta ERS after movement offset (Pfurtscheller and Lopes da Silva
(1999)). In ECoG, ERD/ERS patterns can be found over a much broader frequency range.
Short duration gamma bursts (gamma ERS) can be found in postcentral and parietal ar-
eas, which is most interesting since these patterns are usually not recorded by scalp EEG
(Pfurtscheller et al. (2003a)). Figure 8.2 shows ERD/ERS maps of four postcentral chan-
nels from different subjects performing the same palmar pinch task. The same movement
task induced different types of reactivity patterns. Figure 8.2a shows almost no alpha ac-
tivity but gamma ERS embedded in beta ERD. Figure 8.2b displays much more prominent
ERD/ERS patterns. Similar to figure 8.2a, there is hardly any postmovement beta ERS. In
figure 8.2c, there is no gamma ERS. In contrast to figure 8.2a and b, figure 8.2c and d show
very prominent postmovement ERS. Such a variety in activity patterns has important im-
plications for the detection of these patterns. The detection system must find the set of the
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Figure 8.1 Time and frequency domain features from ECoG electrodes over sensorimotor cortex
locations shown in c. ERPs for middle finger extension from 49 repetitions a and tongue protrusion
from 46 repetitions b and ERD/ERS for finger from 47 repetitions d and tongue from 45 repetitions
e.
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Figure 8.2 ERD/ERS maps for single electrodes over the postcentral gyrus in four different
subjects performing a palmar pinch task.

most discriminating signal features for each subect-task combination individually. Or, in
a model-based approach, the model parameters should be separately determined for each
subject-task combination to obtain optimal results.

8.5 Quantitative Comparison of EEG and ECoG

EEG electrodes are seldom used in conjunction with ECoG; therefore, opportunities for
direct comparison of EEG and ECoG are rare. Further, direct comparison would be con-
traindicated when the task performed was tongue or lip protrusion because of the suscepti-
bility of EEG to contamination with EMG and/or movement artifact.

As an initial evaluation of the relative utility of EEG and ECoG, we performed a
classification experiment (Graimann et al. (2005)) on segments of data from either event or
idle (rest) periods in EEG and ECoG recorded under similar paradigms but with different
subjects. Approximately 150 self-paced finger movements were performed by each of six
subjects while EEG was recorded and by each of six epilepsy surgery patients while ECoG
was recorded. EEG subjects were healthy and experienced in the movement task, and had
a grid of 59 electrodes spaced approximately 2.5 cm apart. ECoG subjects were epilepsy
surgery patients whose electrode locations were chosen for clinical purposes, resulting in
variable electrode coverage. Artifact-free event periods from -1 to 0 s (AP00) and -0.5 and
0.5 s (AP05) relative to movement onset were extracted. Artifact-free idle periods were
from 3.5 to 4.5 s after movement onset. Training was performed on the first 70 percent of
the trials and testing on the remaining 30 percent. A 2 × 5 cross-validation was performed
on the training data for feature selection. Classification between idle and AP00 or idle and
AP05 was performed using a linear classifier calculated from Fisher linear discriminant
analysis (FDA) with no spatial prefiltering (NSPF), using independent component analysis
(ICA) and common spatial patterns (CSP). For the CSP conditions, spatial prefiltering was
performed separately on delta, alpha/beta, and gamma activity prior to feature extraction.
Spatial filters were calculated from the training data.

The actual classification results reported in table 8.1 were calculated from the test data
(the 30 percent that was not used for feature selection). An outer cross-validation was not
performed because the results on the test data were in line with the cross-validation results
for feature selection. As shown in table 8.1, classification results on ECoG always exceeded
the classification results on EEG. Spatial prefiltering brought the results on EEG to a level
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NSPF with ICA with CSP
AP00 AP05 AP00 AP05 AP00 AP05

EEG 0.63 ± 0.08 0.67 ± 0.12 0.72 ± 0.05 0.76 ± 0.10 0.71 ± 0.08 0.81 ± 0.11
ECoG 0.70 ± 0.07 0.83 ± 0.10 0.78 ± 0.04 0.90 ± 0.04 0.81 ± 0.06 0.94 ± 0.02

Table 8.1 The mean and standard deviation over all subjects of the percentage of event periods
correctly classified for EEG and ECoG.

equivalent to that found on ECoG without spatial prefiltering. However, spatial prefiltering
of the ECoG achieved a similar improvement in classification results. Therefore, in all
cases, ECoG proved superior to EEG for classification of brain activity as event periods or
idle periods. In fact, we expect that the differences between EEG and ECoG are even more
pronounced, since in practice we would have artifacts in EEG and the ECoG electrodes
would cover more appropriate electrode locations.

8.6 Shared Analysis and Evaluation Methods

The self-paced tasks performed by our subjects resulted in ECoG recordings labeled at
only one instant per event (by the EMG triggers). We quantify the performance of a
detection method by comparing the detections produced by the method to the event triggers
labeling the ECoG data. A detection acceptance window relative to each trigger is used to
define a valid detection (hit). All other detections are classified as false positives. The
acceptance window typically includes time both before and after the trigger. The length
of the acceptance window after each EMG trigger specifies the maximum-allowed delay
between the actual occurrence of an event and its detection. Performance metrics are the
hit percentage, which is the percentage of the triggers that were detected, and the false
positive percentage, which is the percentage of the detections that were false. Calculating
the false positive percentage as a percentage of the detections puts greater emphasis on
the cost of false positives than would be the case in a sample-based calculation. For ease
of comparison, the hit and false positive percentages were combined using an equally
weighted cost function to create a statistic we called the “HF-difference,” the difference
between the hit percentage and the false positive percentage. The HF-difference varies
between ±100 with 100 being perfect detection.

Although there are more than 350 datasets (containing recordings from all electrodes for
one subject-task-repetition set), the lack of experimental control over electrode placement
means that many of these datasets do not contain any channels that produce a good HF-
difference for any detection method, nor would they be expected to, given the electrode
locations. A representative subset of datasets (the test set) was therefore selected for
method development and testing that produced a “good” HF-difference (defined for this
purpose as > 50) on at least one channel for at least one detection method. Twenty
datasets from ten subjects were selected for the test set that provided ECoG related to a
variety of tasks both within and across subjects, relatively well-defined trigger channels,
and examples of good and challenging channels for all the detection methods under
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development at the time. Each dataset contained ECoG channels from 30 to 126 electrodes
for a total of 2,184 channels. The twenty datasets in the representative test set contain a
total of 120 minutes of recording time (average 6.00 ± 2) and each dataset has an average
of 49 ± 3 repetitions of a particular task.

The ECoG containing the first half of the repetitions in each channel is used for algo-
rithm training, and the remaining half for testing. For the data of the test set, there were an
average of 24 ± 2 repetitions in the training data for each channel with 25 ± 2 repetitions
in the testing data. The test set contained a total of 62.1 minutes of recording time (average
3.1 ± 1). Each method discussed in sections 8.7–8.9 generates a specific decision feature
(with a decision rate identical to the sampling rate) and detections are marked based on
comparison of this decision feature to a hysteresis threshold. A detection is marked when
the decision feature first rises above the upper threshold, whose value is optimized to max-
imize the HF-difference over the training data. No further detections are possible until the
decision feature falls below the lower threshold, which is the mean of the decision feature
over the entire course of the training data.

Although we have shown that analysis of multiple channels produces better detection
than single-channel analysis for at least one method (Balbale et al. (1999)), for simplicity,
the work presented here focuses on detecting event-related changes in ECoG recorded from
individual electrodes.

8.7 Cross-Correlation Template Matching

Initially, our group used a cross-correlation template matching (CCTM) method for signal
detection (Huggins et al. (1999)). For CCTM, we compute an ERP template using triggered
averaging of the training data. Normalized cross-correlation between an ERP template
with the ECoG of the test data forms the decision feature. Detections are determined and
performance evaluated as described in the previous sections. Because a significant portion
of the ERP template energy occurs after the trigger, the CCTM method typically uses
templates that extend well after the trigger. However, this characteristic creates undesirable
delay in the detection of events.

The CCTM approach is equivalent to a likelihood ratio test under a simple two-
hypothesis statistical detection model. Let x denote one block of, say, 2 s of ECoG data,
and suppose that x arises from one of the following pair of hypotheses:

H0 : x ∼ Normal(0, σ2I) “rest”

H1 : x ∼ Normal(μ, σ2I) “task/event,”
(8.1)

where μ denotes the ERP template, σ2 is the noise variance assuming white noise, and I

denotes the identity matrix. For this model, the Neyman-Pearson optimal detector, formed
from the likelihood ratio, is the inner product x′μ. In practice, we must choose between
rest and task not just once, but at each time point, so we slide the signal block x along
the ECoG data, applying the template to each block. The resulting decision feature is the
output of the CCTM method.
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8.8 The Two-Covariance Signal Model and the Quadratic Detector

The “white noise” signal model (8.1) underlying CCTM ignores event-related changes
in the signal power spectrum. As an alternative to (8.1) that accounts for power spectra
changes, we have developed a quadratic detector based on a two-covariance signal model
(Fessler et al. (2005)). We assume that each ECoG signal block x arises from one of the
following two classes:

H0 : x ∼ Normal(0,K0) “rest”

H1 : x ∼ Normal(0,K1) “task/event,”
(8.2)

where K0 and K1 are the signal covariance matrices in the rest state and task state,
respectively, and we ignore the ERP component μ for simplicity. By the Neyman-Pearson
lemma, the most powerful test for such a detection problem is given by the likelihood
ratio. Under model (8.2), the likelihood ratio simplifies (to within irrelevant constants) to
the following quadratic form:

Λ(x) = x′(K−1
0 − K−1

1 )x. (8.3)

We slide the signal block along the ECoG data to form the decision feature, and then
apply the detection and performance evaluation process described above.

8.8.1 Training

The covariance matrices K0 and K1 in (8.2) are unknown a priori, so one must estimate
them from training data. If the length of the signal block is, say, 100 samples, correspond-
ing to 0.5 s of ECoG data, then each covariance matrix is 100×100—too many parameters
to estimate from limited training data. Therefore, we assume a pth order autoregressive
(AR) parametric model for the signal power spectrum as follows:

x[n] = −
p∑

m=1

aq[m]x[n − m] + u[n], (8.4)

where n is the sample index, the square brackets [n] denote discrete time signals, and
n > p, q = 0, 1 (each hypothesis) and

u[n] ∼ Normal(0, σ2
q ). (8.5)

As usual, we assume that the u[n] are independent and identically distributed (i.i.d.).
Based on past work (Schlögl (2000b)), we currently use p = 6, although this has not
been optimized. Thus, for a 6th order AR model, we must estimate 6 AR coefficients
(aq[m]) and a driving noise variance σ2

q for each of the two signal states, for a total of 14
unknown parameters. If each ECoG training data sample point were labeled as coming
from a “rest” or “task” state, then it would be straightforward to find the maximum-
likelihood (ML) estimates of the AR coefficients and driving noise variances using the
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Yule-Walker equations (Kay (1988)). However, our ECoG experiments are unprompted
with subjects performing self-paced tasks and our data is labeled by EMG onset at only
a single time instant per event. This incomplete labeling complicates the training process.
To label our training data for the purposes of estimating the AR model parameters, we
must estimate which ECoG samples correspond to which state. We assume that the brain
is in the “task” state for some (unknown) period before and after each EMG signal trigger.
We parameterize these task-state intervals using a variable w that describes the width of
the task interval around each EMG trigger and a variable c that describes the location of
the center of each task-state interval relative to each EMG trigger time point. We assume
that the remainder of the training data belongs to the “rest” state. (One could alternatively
discard data in transition windows around the task-state intervals.) With this model we
construct a joint probability density function for training data by adapting the procedure in
Kay (1988):

log p(x1,k,x0,k,∀k;a1, σ2
1 ,a0, σ2

0 , c, w)

≈ − 1

2σ2
1
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u2
1,k[n; c, w] − 1

2σ2
0

K∑
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u2
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−
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√

2πσ2
1 −

K∑
k=1

(N0,k(c, w) − p) log
√

2πσ2
0 , (8.6)

where Nq,k(c, w) denotes the number of samples in the kth block under hypothesis q, and
xq,k[n; c, w] indicates the nth data sample in the kth data block under hypothesis q. By
construction, N1,k(c, w) = w. For q = 0, 1:

uq,k[n; c, w] � xq,k[n; c, w] +

p∑
m=1

aq[m]xq,k[n − m; c, w]. (8.7)

The approximation in (8.6) is reasonable when Nq,k(c, w) is large relative to p. Based on
this model, we use a joint ML estimation procedure to estimate simultaneously the AR
parameters and the center c and width w of the task-state interval as follows:

(ĉ, ŵ) = arg max
c,w

max
a1,σ2

1 ,a0,σ2
0

log Pr(x1,k,x0,k,∀k;a1, σ2
1 ,a0, σ2

0 , c, w).
(8.8)

This joint labeling and training procedure requires an iterative search over the center c and
width w parameters (outer maximization). The inner maximization has a simple analytical
solution based on modified Yule-Walker equations to find the AR parameters.
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Figure 8.3 Quadratic detector implementation where FIR indicates the finite impulse response filter
for each model.

8.8.2 Quadratic Detector Implementation

Implementing the quadratic detector (8.3) directly would be inefficient due to the large
matrix sizes. Fortunately, for AR signal models one can implement (8.3) using simple FIR
filters:

Λ(x) = Λ0(x) − Λ1(x), (8.9)

where

Λq(x) �
1

σ2
q

N∑
n=p+1

uq[n]2, q = 0, 1 (8.10)

where N denotes the number of samples in a signal block and the innovation signals are
defined by

uq[n] � x[n] +

p∑
m=1

aq[m]x[n − m]. (8.11)

The block diagram in figure 8.3 summarizes the implementation of the quadratic detec-
tor (8.9). The ECoG signal is passed through two FIR filters, each the inverse of the
corresponding AR model. Then a moving sum-of-squares computes the power of the in-
novation signal, which is normalized by the ML estimates of the driving variances. The
difference operation that produces the decision feature in essence compares “which model
fits better.”

Figure 8.4 illustrates how the variance of the innovations process works as a decision
feature by plotting individually the normalized innovation variances Λ0(x) (“rest class”)
and Λ1(x) (“event class”). Near the trigger point the signal power spectrum becomes that
of the event class, so the event-class innovations variance decreases whereas the rest-class
innovations variance increases, leading to a large decision feature value.

8.9 Bandpower (BP) Method

While the quadratic detector was explicitly derived from a model of the signal and noise
characteristics, many methods achieve good detection with a feature-based approach. A
bandpower method was selected as a representative feature-based method for comparison
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Figure 8.4 Average of variance of innovations process of each class around the trigger point.

with the quadratic detector because power values in specific frequency bands are one of the
standard methods for extracting features describing oscillatory activity (Pfurtscheller et al.
(2005a)). An additional advantage of using bandpower is that oscillatory activity in specific
frequency bands are associated with specific cognitive or mental tasks in well-known brain
areas (Pfurtscheller et al. (2003a)), although we do not present such a spatiotemporal
analysis here.

Bandpower features were extracted by filtering the data with Butterworth filters of fourth
order for the following frequency bands: 0–4, 4–8, 8–10, 10–12, 8–12, 10–14, 16–24,
20–34, 65–80, 80–100, 100–150, 150–200, 100–200 Hz. The last three bands were used
only for datasets having a sampling rate of 400 Hz. The filtered signals were squared
and smoothed by a 0.75 and 0.5 s moving average filter. The latter is used for frequency
bands in the gamma range. To produce a one-dimensional decision feature for detection
performance analysis, the signals were linearly combined by an evolutionary algorithm.
An advantage of this approach is the fact that point-by-point class labels are not needed for
training. The evolutionary algorithm uses the HF-difference directly to optimize the linear
combination on the training set. (See Graimann et al. (2004) for details.)
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Figure 8.5 The number of channels for the quadratic, BP, and CCTM detection methods at each
level of detection performance for a maximum allowed delay of 1 s. The average length of the test
data for each channel is 3.1 ± 1 minutes. Columns are labeled with the number of subjects the
channels represent.

8.10 Results

We compared the CCTM method, the BP method, and the quadratic detector using the
test set of twenty datasets described in section 8.6 above. The results were evaluated for
detection acceptance windows extending from 0.5 s before to 0.25, 0.5, or 1 s after each
EMG trigger. These detection acceptance windows allowed us to examine the behavior
of the methods under different delay constraints, since the reduction of delay in response
time is a priority for use of these detection methods in real-time experiments. Figure 8.5
compares the HF-differences of the CCTM, BP, and quadratic detectors when the delay
is constrained to be at most 1 s. The quadratic method and the BP method have many
more viable channels and worked for all ten subjects, with the quadratic method reaching
all subjects at a slightly higher performance level than the BP method. Figure 8.6 shows
the maximum 0.5 s delay case. For this shortened delay, detection performance degrades
considerably, yet there are still many viable channels for the quadratic and BP detectors,
although not for all subjects. Figure 8.7 shows performance for the quadratic detector at
all delays, showing that even with a maximum delay of 0.25 s there are still some viable
channels for some subjects.
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Figure 8.6 The number of channels for the quadratic, BP, and CCTM detection methods at each
level of detection performance for a maximum allowed delay of 0.5 s. The average length of the
test data for each channel is 3.1 ± 1 minutes. Columns are labeled with the number of subjects the
channels represent.

8.11 Discussion

Appropriate metrics for reporting BCI performance are currently a topic of much discus-
sion in the BCI community, especially for interfaces where the user operates the BCI in
a self-paced manner. The incompletely labeled data resulting from self-paced experiments
and the low probability of the event class makes classical metrics such as receiver op-
erating characteristic (ROC) analysis (see chapter 19) and mutual information or bit-rate
(see chapter 19) seem unfeasible. Further, for many assistive technology applications, the
consequences of a false positive are difficult to reverse, making false positives very costly
and therefore severely restricting the area of interest on an ROC curve. While the even-
tual range and capabilities of BCIs may be limited only by the imagination, it is important
to realize that for some people even a simple binary output would break the barriers to
communication that define their world. However, as the primary means of self expression,
the reliability of the interface would be of vital interest. Thus, a reliable BCI with limited
capabilities may be preferred to a multifunctional BCI with limited reliability.

The HF-difference is a novel metric for quantifying detection accuracy that is based
on an underlying philosophy that the user of an interface is primarily interested in the
reliability and trustworthiness of the interface. The HF-difference is independent of the
sample rate and only indirectly related to the time between events. The hit percentage
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Figure 8.7 The number of channels at each level of detection performance for the quadratic
detector at differing maximum allowed delays. The average length of the test data for each channel
is 3.1 ± 1 minutes. Columns are labeled with the number of subjects the channels represent.

provides a measure of the reliability with which the interface can detect the events.
The false positive percentage, which is calculated as a percentage of the detections,
gives a measure of the trustworthiness of the interface output. This formula for the false
positive percentage is intended to reflect the practical utility of the detection method better
than a more traditional sample-by-sample measure. On the other hand, the HF-difference
ignores several important characteristics of detection performance. The formula for the HF-
difference does not include the time over which the measurement was made. So, while an
HF-difference of 80 percent for five events over a 10-second period and over a 10-minute
period are described by the same number, this level of performance over the longer period
means a much larger number of correctly classified nonevent samples. Therefore, when
using the HF-difference, it is important to report the time over which it was calculated.

We have described a quadratic detector for classifying ECoG signals. The quadratic
detector is based on a two-covariance signal model that captures event-related changes in
the power spectrum of the signal. The detector has a simple implementation that is suitable
for real-time use. Empirical results on real ECoG data showed that the quadratic detector
offers improved detection accuracy relative to the CCTM method and can provide reduced
detection delay and therefore improved interface response time. The BP method also offers
improved detection accuracy relative to the CCTM method, confirming that capturing
spectral changes in the signal is important for detection. While the number of subjects for
which good HF-differences were found with the different methods is an interesting result,
it should not be considered predictive of the likelihood of good detection for subjects in
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general. The test set was selected to include datasets that produced good results on at least
one channel and to include data to test the performance of various methods. However,
appropriate anatomical location of electrodes was not considered, and instances of good
detection in unlikely places and poor detection in likely places are sometimes seen.

We have recently implemented the quadratic detector in our real-time system, and
studies with subject feedback and with imagined movements are forthcoming. There are
several opportunities to improve the detection method further. Thus far, the quadratic
detector ignores the ERP component. Determination of the AR order p is also an important
issue. The optimality of the likelihood ratio is applicable to prompted experiments with
a predetermined block of data, but is not necessarily optimal when applied with a sliding
window. It would therefore be desirable to develop “optimal” detectors for unprompted
experiments. Further, the use of a single event class may be an oversimplification. The
power spectra shown in figures 8.1 and 8.2 suggest there are at least two distinct sets
of spectral characteristics related to the event in addition to those related to the rest
state. Separating these components rather than lumping them into single event and rest
classes may improve performance. Alternatively, time-varying models (e.g., statespace or
hidden Markov methods) might better capture how the spectral properties evolve over time
(Foffani et al. (2004)). Finally, multichannel analysis is expected to produce improved
detection accuracy, while simultaneously posing challenges to training in the context of a
single experimental session.

Despite the challenges to doing research with ECoG, the high quality of the signals
offers great potential for an accurate BCI for the operation of assistive technology. Methods
incorporating both spectral and temporal changes related to voluntarily produced events
will be key in producing reliable BCIs with rapid response times.
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Daniela Minecan, Lori Schuh, and Erasmo Passaro for assistance in collecting and inter-
preting ECoG data, and the many epilepsy surgery patients whose participation provided
us with access to this data. The work was supported by R01EB002093 from the National
Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, USA.

Notes

E-mail for correspondence: janeh@umich.edu





9 Probabilistically Modeling and Decoding
Neural Population Activity in Motor Cortex
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9.1 Abstract

This chapter introduces and summarizes recent work on probabilistic models of motor
cortical activity and methods for inferring, or decoding, hand movements from this activity.
A simple generalization of previous encoding models is presented in which neural firing
rates are represented as a linear function of hand movements. A Bayesian approach is taken
to exploit this generative model of firing rates for the purpose of inferring hand kinematics.
In particular, we consider approximations of the encoding problem that allow efficient
inference of hand movement using a Kalman filter. Decoding results are presented and the
use of these methods for neural prosthetic cursor control is discussed.

9.2 Introduction

One might think of the computer in this case as a prosthetic device. Just as a man who has his

arm amputated can receive a mechanical equivalent of the lost arm, so a brain-damaged man can

receive a mechanical aid to overcome the effects of brain damage. It makes the computer a high-class

wooden leg.
Michael Crichton, The Terminal Man (1972)

Two fundamental shifts in neuroscience have recently led to a deeper understanding of
the neural control of movement and are enabling the development of neural prosthesis
that can assist the severely disabled by directly connecting their central nervous systems
with assistive devices internal or external to the body. The first of these shifts is the result
of new electrode array technology that allows the chronic implantation of hundreds of
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Figure 9.1 The problem of motor cortical modeling for prosthetic applications can be viewed
as one of learning the joint probability of neural population activity and motor behavior. Neural
data might correspond to spikes, firing rates, local field potentials, or electrocorticograms. Motor
behaviors might correspond to joint angles, muscle activation, limb pose, or kinematic parameters.
Here we focus on probabilistically modeling motor cortical firing rates and hand kinematics (position,
velocity, and acceleration).

microelectrodes in the cortex that can sense and ultimately transmit outside the body the
activity of populations of neurons. The second shift is part of a movement toward the study
of more natural stimuli and behaviors. In contrast to previous work in neuroscience in
which the activity of a single cell is correlated with a simple (e.g., one-dimensional) change
in behavior, today neuroscientists can observe large populations of cortical cells and how
they respond during rich behavioral tasks. With richness comes the cost of complexity that
makes modeling and understanding the relationship between neural activity and behavior
challenging. Neural population recordings can be thought of as a high dimensional time-
varying signal while motor behavior can similarly be thought of as a high-dimensional time
series corresponding to the biomechanical parameters of body pose and motion. We view
the problem of modeling the neural code for prosthetic applications as one of learning a
probabilistic model relating these high dimensional signals.

This approach is summarized in figure 9.1. We focus here on neural firing rates zt =

[z1,t . . . zn,t] of a population of n cells recorded in primary motor cortex in monkeys and
relate this activity to a vector of kinematics xt representing the monkey’s hand pose and
movement at an instant in time t.1 More generally, we want to know the relationship
between an entire sequence of firing rates Zt = [zt . . . z1] and hand movements Xt =

[xt . . . x1] from time 1 to t. In general, we see the problem as one of modeling the joint
probability p(Zt,Xt) of neural activity and hand motion. From such a general model a
variety of quantities can be computed and statistical properties of the model analyzed.
Here we focus on the problem of decoding, or inference, of hand kinematics from firing
activity. The probabilistic approach allows us to exploit a variety of well understood and
powerful tools for probabilistic inference.

The probabilistic modeling problem, however, is made challenging by the dimension-
ality of the neural population and the hand kinematics. Consequently, we will make a
number of explicit approximations that will make modeling the probabilistic relationships
tractable. In particular, we will exploit lower dimensional parametric models and assump-
tions of conditional independence. These will lead us to an efficient decoding algorithm



9.3 Sensing Neural Activity 149

that takes as input a sequence of neural firing rates and returns a sequence of probabil-
ity distributions representing possible hand motions. This decoding algorithm is used in
a neural motor prosthesis that directly connects the motor cortex of a monkey to a com-
puter cursor and enables the monkey to move the cursor under brain control. Such a device
provides the foundation for a new class of cortical brain-machine interfaces (BMIs) for
the severely disabled and, in the near future, may be used to control other external devices
such as robot arms or even the patient’s own limbs through functional electrical stimulation
(Lauer et al. (2000)).

This chapter introduces and summarizes recent work on probabilistically decoding
motor cortical population activity. It briefly summarizes the major issues in the field:
sensing neural activity, models of cortical coding, probabilistic decoding algorithms, and
applications to neural prostheses. In particular, we start with the standard models of motor
cortical tuning (e.g., directional tuning) and then show that these are narrow instantiations
of a more general linear model relating hand motion and neural firing rates. From this
generalization, we show that a well motivated decoding algorithm emerges based on
Bayesian probability that provides a principled approach to decoding hand motions. One
advantage of this Bayesian approach is that the assumptions made along the way are
explicit in a way they are often not in competing approaches. Each of these assumptions
provide an opportunity to improve the model and already there have been many such
improvements that are beyond the scope of this introduction.

9.3 Sensing Neural Activity

Now listen to me closely, young gentlemen. That brain is thinking. Maybe it’s thinking about music.

Maybe it has a great symphony all thought out or a mathematical formula that would change the

world or a book that would make people kinder or the germ of an idea that would save a hundred

million people from cancer. This is a very interesting problem, young gentlemen, because if this brain

does hold such secrets, how in the world are we ever going to find out?
Dalton Trumbo, Johnny Got His Gun (1982)

A variety of sensing technologies allow the recording of neural activity with varying
levels of temporal and spatial resolution. To record the action potentials of individual cells,
we use the Cyberkinetics/Bionic/Utah microelectrode array shown in figure 9.2a, which
consists of a 10 × 10 grid of electrodes (Maynard et al. (1997)). The array is implanted
in the arm area of the primary motor cortex (MI) in macaque monkeys as illustrated in
figure 9.2b and data is transferred out of the brain through a percutaneous connector shown
in figure 9.2c.

The implant area satisfies a number of constraints. First, our goal is to restore movement
to people who have lost the ability to control their bodies directly. It long has been known
that the activity of cells in this area of the brain is modulated by arm and hand movements
(Georgopoulos et al. (1982, 1986)). While it may be possible to train people to use other
brain regions to control movement, our working hypothesis is that it will be more “natural”
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a b c
Figure 9.2 Implantable electrode array and connector. (a) Cyberkinetics/Bionic/Utah electrode
array and example waveforms recorded for one cell. (b) Sketch of the implanted array and connector.
(c) Size of array along with a percutaneous connector in reference to a U.S. penny.
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Figure 9.3 Experimental paradigm. Neural signals are recorded while hand motion controls a
computer cursor to hit targets presented at successive random locations on a computer monitor.

and hence easier to learn to control the movement of cursors or other devices using a
region of the brain already related to movement control. Second, this region is surgically
accessible and on the surface of cortex facilitating implantation.

Each electrode may record the activity of zero or more neurons. The activity on each
channel (electrode) is filtered and thresholded to detect action potentials. If the activity
of multiple cells (units) is detected on a single channel, the action potentials may be
sorted based on their waveform shape and other properties using manual or automatic spike
sorting techniques. A representative example of waveforms detected for an individual unit
using the device is shown in figure 9.2a. It is common to recorded from 40 to 50 distinct
cells from a single array. We have found however that, for neural prosthetic applications,
careful spike sorting may not be necessary and it may be sufficient to use the multiunit
activity of all cells recorded on a given channel (Wood et al. (2004)).

To model the relationship between neural firing rates and behavior we used neural
spiking activity recorded while a monkey performed a 2D cursor control task (Serruya et al.
(2002)). The monkey’s hand motion and neural activity were recorded simultaneously and
were used to learn a probabilistic model as described in section 9.4. The task involved
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moving a manipulandum on a 2D plane to control the motion of a feedback cursor
displayed on a computer monitor (figure 9.3). In contrast to previous studies that focused
on center-out reaching tasks (Carmena et al. (2003); Taylor et al. (2002)), this data was
from a sequential random tracking task in which a target appeared on the screen and the
monkey was free to move the feedback cursor as it liked to “hit” the target. When a target
was acquired it disappeared and a new target appeared in a new random location. Target
locations were drawn independently and identically from a uniform distribution over the
2D range of the 30 cm × 30 cm workspace. See Serruya et al. (2002) for more information
on the sequential random tracking task.

9.4 Encoding

If spikes are the language of the brain, we would like to provide a dictionary . . . perhaps even . . .

the analog of a thesaurus.
Rieke et al. (1999)

To model what aspects of movement are represented (encoded) by the brain, we adopt a
probabilistic approach and learn a generative model of neural activity. In particular, we
seek a function f(·) of the hand kinematics, xt at time t, that “explains” the observed
neural firing rates

zt = f(xt) + qt (9.1)

where we expect the firing activity zt to be noisy observations of a stochastic process and
where qt is a noise vector drawn from some distribution. Note that this generative model is
descriptive rather than mechanistic—it does not say how the spatiotemporal dynamics of
neural networks encode movement.

With the generative approach, the problem of modeling the neural code has four com-
ponents:

(1) What neural data should be modeled (e.g., spikes, rates, local field potentials)?
(2) What behavioral variables are important (e.g., joint angles, torques, muscle activation,

hand direction)?
(3) What functional relationship between behavior and neural activity is appropriate (e.g.,

linear or any number of nonlinear functions)?
(4) What model of “noise” should be used (noise may arise from the stochastic nature of

the neurons as well as electrical noise, failures in spike detection/sorting, and more
amorphous inadequacies of the functional model)?

In addressing the first question, here we focus on firing rates computed from spike counts
in nonoverlapping 70 ms time bins. Firing rates of cells in MI long have been known to
be modulated by hand motions and provide a reasonable input signal for neural decod-
ing. While we could work with spike trains, this complicates the probabilistic modeling
problem (Wood et al. (2006)).
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The next choice pertains to the behavioral variables xt we wish to model. Candidates
here might include limb joint angles, torques, or muscle activity. While each of these has
been shown to be correlated with neural firing rates, there is a simpler representation for
the control of computer cursors: hand position, velocity, and acceleration. These kinematic
parameters also have been shown to be related to modulation of firing rates. The choice
here, however, is not completely independent of the next problem, which is the choice of
the function f .

While f could be an arbitrary function (e.g., as embodied in an artificial neural network
(ANN) (Wessberg et al. (2000))), we can impose some constraints on its choice. Low-
dimensional parametric models, particularly linear ones, are desirable because they are
easy to fit to relatively small amounts of data without overfitting. A second design criterion
might be “interpretability,” which ANN’s lack.

In terms of interpretability, linear models have a distinct advantage in that they are a
generalization of well known models of motor cortical coding. One of the hallmarks of
cells in the arm area of MI is that they are “directionally tuned” (Georgopoulos et al.
(1982); Schwartz et al. (1988)). This theory of motor cortical coding suggests that cells
have a preferred direction, and when the hand moves in this direction a cell’s firing
rate is maximal. This is illustrated in figure 9.4 for a representative cell from our data.
Mathematically, the firing rate zt of a cell at time t can be expressed as the following
function of hand direction θt:

zt = h0 + h cos(θt − θ) = h0 + hx cos(θt) + hy sin(θt) (9.2)

where the hi are scalar values that can be fitted to the data for a particular cell. Note that
this equation is in the same form as our generative model above but that there is no explicit
model of the noise.

The story does not end with directional tuning, however. Moran and Schwartz (1999),
for example, noted that firing rates of MI cells increase with the speed at which a hand
movement is performed; that is,

zt = st(h0 + h cos(θt − θ)) = h∗
0 + h∗

xvt,x + h∗
yvty

(9.3)
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Figure 9.4 Cosine tuning. The firing rate of a cell (jagged curve) as a function of hand direction θt.
This data is well fit by a so-called cosine tuning function (smooth curve). The direction of maximal
firing, θ, is referred to as the preferred direction.
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Figure 9.5 Linear tuning functions. (a) Firing rate as a function of hand velocity for one cell. Light
colors correspond to higher firing rates than dark colors. Note that black corresponds to regions of
velocity space that were never observed. On the left of (a) is a normalized histogram of the firing
rates while on the right is the linear fit to this data. (b) A different cell shows approximately linear
tuning with respect to hand position on a 2D plane.

where the h∗
i are, once again, scalar values and vt,x and vt,y represent the velocity of

the hand in the x and y direction, respectively. Figure 9.5a illustrates this roughly linear
velocity tuning for one motor cortical neuron.

Equation (9.3) then suggests that the firing rate of these cells is simply a linear function
of hand velocity. Again, this is not the whole story. Firing rates of these cells also may
be linearly tuned to hand position (Kettner et al. (1988)), hand acceleration, (Flament and
Hore (1988)) and possibly even higher order derivatives of the hand motion (Wu et al.
(2005)). Figure 9.5b shows the firing activity of a cell that is roughly linearly tuned to
position. For a thorough treatment, see Paninski et al. (2004).

Taken together these findings suggest that firing rates may be approximated as a linear
combination of simple hand kinematics (position, velocity, and acceleration); that is,

zt = Hxt (9.4)

where, if zt is a vector of n cells’ firing rates and xt = [xt, yt, vt,x, vt,y, at,x, at,y]T

contains the hand kinematics at time t, H is an n×6 matrix that relates hand pose/motion to
firing rates. The inclusion of all these kinematic terms (position, velocity, and acceleration)
in the model turns out to be important. It has been noted that not all cells in primary motor
cortex are equally tuned to each of these variables; some cells are modulated more by one
variable than another (Paninski et al. (2004)).

It is important to note that this model is a strict generalization of the traditional model of
directional tuning. Previous decoding models such as the population vector method rely on
tuning for direction or speed and direction (Schwartz et al. (1988, 2001)). These parameters
are included in the linear model along with position and acceleration.

We now come to the final design choice in the generative framework; namely, what
noise model should we use? Note first that firing rates are strictly positive and, over
relatively small time windows, exhibit a roughly Poisson distribution. As a mathematical
convenience, however, we would prefer to model the noise as Gaussian which will admit
efficient inference algorithms as described in the following section 9.5. To facilitate such
a model, we first center the firing rates by subtracting the vector of mean firing rates from
all the data; the firing rates are no longer strictly positive. We do the same for the hand
kinematics. We then approximate the noise as Gaussian; that is, qt ∼ N(0, Q).
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Unlike previous approaches, this generative model explicitly (if only approximately)
models the noise in the observations. In particular, we take Q to be a full error covariance
matrix that models correlations in the noise among the cells. This is critical for accurate
modeling since any model is going to be an approximation to the truth and there may
be other hidden causes of firing rate modulation that may cause correlated errors in the
observed firing rates.

9.5 Decoding

If I could find . . . a code which translates the relation between the reading of the encephalograph

and the mental image . . . the brain could communicate with me.

Curt Siodmak, Donovan’s Brain (1942).

The goal of motor-cortical decoding is to recover the intended movement, for example,
hand kinematics xt, given a sequence of observed firing rates Zt = [zt . . . z1]. Probabilis-
tically, we would like to represent the a posteriori probability of the hand motion p(xt|Zt).
To represent this probability, we first make a few simplifying assumptions that prove quite
reasonable in practice. For example, we assume that the hand kinematics at time t are in-
dependent of those at time t− 2 and earlier conditioned on xt−1. This gives a simple form
for the a priori probability of hand kinematics

p(xt|Xt−1) = p(xt|xt−1, . . . , x1) = p(xt|xt−1). (9.5)

We also assume that, given the kinematics xt at time t, the firing rates at time t are
conditionally independent of the hand kinematics at earlier times. This gives a simple form
for the likelihood of firing rates conditioned on hand kinematics

p(zt|Xt) = p(zt|xt). (9.6)

With these assumptions, Bayes’ rule can be used to derive an expression for the posterior
probability in terms of the likelihood and the prior

p(xt|Zt) ∝ p(zt|xt)

∫
p(xt|xt−1)p(xt−1|Zt−1)dxt−1. (9.7)

A “decoded” value for xt can then be obtained by either computing the expected value or
the maximum a posteriori value of p(xt|Zt).

This Bayesian formulation is very general and the likelihood and prior can be arbitrary.
In the general case, the integral in (9.7) is problematic and must be computed using Monte
Carlo sampling methods. For the recursive estimation of p(xt|Zt), this inference takes the
form of a “particle filter” that has been applied to neural decoding (Brockwell et al. (2004);
Gao et al. (2002, 2003a)). These methods, however, are computationally intensive and not
yet appropriate for real-time decoding.
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By making a few more simplifying assumptions, however, inference with this Bayesian
formulation becomes straightforward. In particular, we observe that the prior probability
of hand motions in our task is well approximated by a linear Gaussian model; that is,

xt = Axt−1 + wt (9.8)

where A is known as a state matrix that models the change in kinematics from one time
to the next, and the noise, wt ∼ N(0,W ), is normally distributed with mean zero and
covariance W .

Assuming that the kinematics x0 is normally distributed at time 0, then xt is normally
distributed. This is convenient since it implies that firing rates zt = Hxt + qt conditioned
on xt are also normally distributed. While this assumption of Gaussian-distributed firing
rates is only an approximation, performing a square-root transformation of the firing rates
improves the approximation; for more details, see Gao et al. (2003a) and Wu et al. (2005).

With these assumptions, the likelihood term in (9.7) becomes

p(zt|xt) ∝ exp

(
−1

2
(zt − Hxt)

T Q−1(zt − Hxt)

)
. (9.9)

The assumptions tell us how firing rates are generated from intended hand movements.
Bayes’ rule tells us how to take such a generative model of firing rates and “turn it around”
for the purpose of decoding hand kinematics from observed firing rates.

The linear and Gaussian assumptions mean that fitting the parameters H , Q, A, and W

is straightforward via least-squares regression on training data (Wu et al. (2005)). Also,
given linear Gaussian expressions for the likelihood and prior, the resulting posterior is
also Gaussian. Estimating this Gaussian posterior can be done very easily and efficiently
using the Kalman filter (Kalman (1960); Welch and Bishop (2001)) since the update of the
posterior at each time instant can be performed in closed form. For details of the algorithm
and its implementation for neural decoding, see Wu et al. (2005).

A few example reconstructions of hand trajectories are shown in figure 9.6 in which
we display the expected hand kinematics, xt, at each time instant computed from test
data not used to train the model. Reconstructed hand trajectories qualitatively match the
true trajectories and quantitatively compare favorably to the state of the art (see Wu et al.
(2005)). The Kalman filter provides a computationally efficient and accurate method for

Figure 9.6 Reconstructed trajectories (portions of 1min test data – each plot shows 50 time instants
(3.5s)): true target trajectory (dashed) and reconstruction using the Kalman filter (solid); from Wu
et al. (2005).
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neural decoding directly derived from our models of the neural code. Experiments in
monkeys show that the method provides effective online cursor control (Wu et al. (2004b)).
In particular, Wu et al. (2004b) showed a 50 percent improvement in the number of targets
a monkey could hit in a given period of time using the Kalman filter as compared with a
more traditional, non-generative, linear regression method (Carmena et al. (2003); Serruya
et al. (2002)).

There is one additional detail that is relevant for accurate decoding: Changes in the firing
rates of the cells tend to precede the observed activity. Consequently, it is appropriate to
train the model with a built in lag j such that

zt−j = Hxt + qt. (9.10)

A fixed lag of approximately 140 ms improves decoding accuracy. The lag for each cell,
however, may differ, and fitting individual lags improves decoding further but complicates
learning the model parameters (Wu et al. (2005)). Wu et al. (2005) found that the Kalman
filter with a 140 ms lag reconstructed hand trajectories for this data with a mean squared
error (MSE) in hand position of 5.87 cm2, while a nonuniform lag, optimized for each cell,
reduced the MSE to 4.76 cm2.

They also observed the value of representing a full error covariance matrix in the
generative model. Using only a diagonal covariance matrix, which assumes conditional
independence of the firing rates of different cells, resulted in an increase in the MSE from
5.87 cm2 to 6.91 cm2.

9.6 Interfaces

The big machine . . . . Operated by remote control . . . . Operated by the electromagnetic impulses
of individual Krell brains.

W. J. Stuart, The Forbidden Planet (1956)

There have now been numerous demonstrations of neural control of devices using different
recording technologies and different decoding algorithms (Carmena et al. (2003); Tillery
et al. (2000); Schwartz et al. (2001); Serruya et al. (2002); Taylor et al. (2002); Wu et al.
(2004b)). In the case of cortical implants, these methods can be classified according to two
kinds of interfaces: discrete and continuous.

In the discrete task, a monkey has one of a fixed number of targets they must select by
either direct arm motion or neural signals (Musallam et al. (2004); Shenoy et al. (2003)).
Neural decoding in this case reduces to a discrete classification task. Furthermore, in
the case that all the targets are equally likely (i.e., the prior is uninformative), Bayesian
classification reduces to maximum-likelihood classification. Given a population of neurons
in primary motor cortex or premotor areas, this classification task can be performed
extremely accurately. In fact, monkeys can respond more rapidly under brain control than
by making actual arm motions, and they quickly learn to perform target selection without
moving their arm (Musallam et al. (2004); Shenoy et al. (2003)).
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Figure 9.7 Closed-loop neural cursor control. Neural signals directly control cursor motion while
subjects receive feedback about the cursor position through their visual systems. In our case, the
neural signals are population firing rates and the decoding algorithm is the Kalman filter.

A variety of interfaces have been developed for disabled people using discrete selection
such as this (though using EEG and not neural implants). Interfaces based on selection
of a small number of states (e.g., binary) can be cumbersome to use. It is not yet known,
however, how many discrete states can be recognized from a neural population of a given
size.

The alternative we have pursued here is to recover a continuous control signal. The
closed-loop control task is illustrated in figure 9.7 where the brain controls a 2D cursor
position on a computer screen and a monkey (or human) receives visual feedback by
viewing the cursor on a monitor. We suspect that for robot control tasks (e.g., moving a
wheelchair or robot arm), continuous control will be preferable because it is inherently
more flexible. It is also, however, more noise-prone, so there is a trade-off that gives
higher spatial resolution with less accuracy. The trade-offs between discrete and continuous
methods and their relevance for rehabilitation applications deserve further study.

One promising direction combines discrete and continuous control in a single interface
(Wood et al. (2005)). The Bayesian decoding framework easily can accommodate a mixed
state space with both continuous (2D) and discrete (task-oriented) parameters. The genera-
tive model then involves first selecting the task (continuous or discrete) and then generating
the observations conditioned on the task. Decoding is slightly more complicated but can be
achieved using a switching Kalman filter (Wu et al. (2004a)) or particle filter (Brockwell
et al. (2004); Gao et al. (2002)). Recently, Wood et al. (2005) used such an approach to
decode whether or not a monkey was performing a 2D control task and, if so, to decode
the hand state with a linear Gaussian model. Such an approach holds promise for flexible
brain-machine interfaces in which the user can switch between a variety of functions or
control modes.
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9.7 Discussion and Conclusions

The probabilistic modeling of the neural code presents many challenges. Beyond the simple
linear Gaussian models explored here, there is likely an advantage in modeling the non-
Gaussian and nonlinear nature of neural activity (Gao et al. (2003a); Kim et al. (2006);
Wu et al. (2004a)). Beyond firing rates, we may wish to formulate probabilistic models
of spike trains (Truccolo et al. (2005)). Efficient learning and decoding methods, however,
do not currently exist for non-Gaussian, nonlinear models of point processes. There is
an opportunity here to develop new machine learning methods for capturing the high-
dimensional relationship between motor behavior and neural firing.

Moreover, here we consider only information from primary motor cortex. Additional
information may be obtained from premotor and parietal areas. The Bayesian framework
we have proposed provides a solid foundation to integrate sources of information from
various brain areas in a principled way.

The approach does not, however, necessarily provide any new insight into how the brain
controls movement. Like the approaches it generalizes (e.g., the population vector method),
the relationships between firing rates and kinematics are purely descriptive. One cannot
infer, for example, that the brain is somehow implementing a Kalman filter. Rather, all
these methods describe attributes of the neural computation and not the computation itself.

This chapter only hints at the prosthetic applications of these methods. While Bayesian
methods have been used for closed-loop neural control of cursors by monkeys (Wu et al.
(2005)), the use of this or any decoding method in paralyzed humans remains to be
explored. Particularly important in the case of paralyzed humans will be the issue of
training and adaptation. Training data for the encoding model here, for example, will have
to rely on imagined movement. Whether human users will be able to adapt their neural
signals to improve control with a given decoder remains to be seen and may prove critical
for practical motor-cortical control of devices.

While current methods provide a proof of concept that cortical implants can provide
reliable control signals over extended periods of time, there is still much work to be
done. Current continuous decoding results provide a somewhat “jerky” reconstruction—
new decoding and control algorithms for damping the cursor reconstruction may enable a
wider range of applications. The great challenge, however, is to move beyond simple 2D
or 3D cursor control to ultimately give patients high-dimensional control of devices such
as dexterous robot hands.
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(1) While here we focus on firing rates, the probabilistic modeling framework is more
general and equally well applies to spike trains or other neural signals such as local
field potentials. Focusing on rates, however, will simplify our probabilistic modeling
problem. The same can be said for hand kinematics; for example, instead, we might
model biomechanical properties of the arm dynamics.
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10.1 Abstract

Intended movement can now be decoded in real time from neural activity recorded via
intracortical microelectrodes implanted in motor areas of the brain. This opens up the
possibility that severely paralyzed individuals may be able to use their extracted movement
commands to control various assistive devices directly. Even direct control of one’s own
paralyzed limbs may be possible by combining brain recording and decoding technologies
with functional electrical stimulation systems that generate movement in paralyzed limbs
by applying low levels of current to the peripheral nerves. However, the microelectrode
arrays can record only a small fraction of the neurons that normally are used to control
movement, and we are unable to decode the user’s desired movement without errors. This
chapter discusses experiments in which a monkey used its cortical signals to control the
movements of a 3D cursor and a robotic arm in real time. Both consistent errors and
random errors were seen when decoding intended movement. However, the animal learned
to compensate for consistent decoding errors by making feed-forward adjustments to its
motor plan. The animal also learned to compensate for random decoding errors by using
visual feedback to make online error corrections to the evolving movement trajectories.
This ability to compensate for imperfect decoding suggests intracortical signals may be
quite useful for assistive device control even if the current technology does not perfectly
extract the users native movement commands.
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10.2 Introduction

Brain-computer and brain-machine interfaces (BCIs and BMIs) detect neural activity from
the brain and use those signals in real time to drive a computer or some other assistive
device. These technologies have the potential to help people with severe motor disabilities
by enabling them to control various devices directly with their neural activity. Creative
researchers have used many different aspects of natural neural processing as a means
to command assistive technologies. For example, some labs have used the involuntary
neural responses that arise when people focus their attention on a desired letter, icon,
or flashing cue on a screen (P300 (Donchin et al. (2000)), or visually evoked potentials
(Gao et al. (2003b))). However, a large number of systems under development used neural
signals involved with sensorimotor processing that accompany imagined or attempted
movements of paralyzed limbs. These systems are most useful for individuals where: (1)
the sensorimotor-related brain areas are still intact, and (2) the command signals needed by
the assistive device are movement-related, such as the desired motion of a computer cursor
or of an assistive robot. For movement-related devices, visual feedback plays a critical role
in learning to use brain signals to control device functions.

One promising use of these brain-derived movement commands is in restoring control of
arm and hand function to people with high-level spinal cord injuries. Implanted functional
electrical stimulation (FES) technology has been around for decades and is used to activate
paralyzed muscles in a coordinated fashion by applying controlled levels of electrical
current to the peripheral nerves (Kilgore and Kirsch (2004)). These systems can restore
a wide variety of functions in people with different levels of paralysis due to spinal cord
injury. Commercial systems, such as the Freehand system, have restored hand grasp to
hundreds of individuals with spinal cord injuries at the C5 to C6 level (Peckham et al.
(2001)), and systems such as Vocare bladder system have restored bladder function to
many others. FES systems are being developed to restore a paraplegic’s ability to stand,
transfer in and out of a bed or a wheelchair, and even walk using a walker. For people with
high-level spinal cord injuries, FES now can restore independent breathing by activating
the diaphragm muscles, thus freeing a person from dependence on a ventilator (for a review
of clinical applications of FES, see Creasey et al. (2004); for consumer information, see
FES, Neurotech Network of the Society to Increase Mobility).

However, the most likely FES technologies to be integrated with command signals
from the brain are those that restore arm and hand function to individuals with spinal
cord injuries at the C4 level or above. People with these high-level injuries are limited to
generating command signals from the neck up. Their FES systems will need to activate
many degrees of freedom to move and orient the arm and hand in a way that will generate
useful function. Although a person could direct the complex movements of the full limb via
non-brain-based commands generated from the face and neck, practical issues associated
with this make using brain signals a more desirable option. Alternatives, such as mouth-
operated joysticks, tongue-touch keypads, voice commands, facial movement commands,
and eye-gaze commands, can be effective, but interfere with talking, eating, and normal
social interaction. Accessing desired arm and hand movements directly from the brain will
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enable these individuals to direct the movements of their FES-activated arm and hand while
still retaining normal use of their remaining head and neck functions.

Although the use of EEG signals to command the simple opening and closing of an
FES hand-grasp system has been demonstrated (Pfurtscheller et al. (2003b)), work toward
continuous control of the multidimensional movements needed for more complex arm
and hand functions has been demonstrated only in other non-FES venues such as control
of a robotic arm (Taylor et al. (2003); Carmena et al. (2003)) or of a computer cursor
representing arm movements (Taylor and Schwartz (2001); Taylor et al. (2002); Serruya
et al. (2002)). However, a closer look at these other studies provides evidence that the use
of recorded brain activity is a viable option for command of these more complex upper-
limb FES systems. This evidence comes in three forms, all of which have, so far, relied
exclusively on visual feedback. First is the inherent ability of our nervous system to adjust
and correct for consistent errors in the executed motor plan. Second is the ability to make
online corrections to random errors in the execution of the motor plan, and the third is the
ability of the brain to increase the useful information content of the recorded neural signals.

10.3 Decoder Limitations in BCIs/BMIs

With current technology, it is impossible to detect the firing activity of every neuron in-
volved with executing a movement. In practice, implanted intracortical microelectrode ar-
rays can detect the activity of, at most, only hundreds or even thousands of individual
neurons; this is still only a very small fraction of the neurons actually involved with move-
ment generation. With larger macroelectrodes used for electroencephalograms (EEGs) or
electrocorticograms (ECoGs), the electrodes detect field potentials that reflect the average
activity or net fields generated by all the neurons in the vicinity of these recording elec-
trodes. These different recording options inevitably lead to gross under-sampling or else
over-averaging of the true neural activity generated each time a person attempts to execute
a movement command.

The true relationship between neural activity and intended movement is complex,
stochastic in nature, and nonstationary over many different time scales. However, we are
confronted with the task of developing practical decoding functions that extract intended
movement from the limited recorded signals in a computationally efficient way. Fortu-
nately, many standard engineering tools, such as linear filters and artificial neural networks,
have been successful at approximating this complex input-output relationship to a level
that has enabled some practical implementation of BCI and BMI technologies. However,
these imperfect decoders still result in two types of errors: (1) relatively consistent errors
that result in a similar deviation from the intended device movement path each time the
movement is attempted; these errors stem from using an oversimplified and/or inaccurate
decoding model to translate neural activity to desired device output; and (2) random er-
rors that result from the stochastic nature of the neural firing processes as well as random
errors resulting from the variability of the assistive device and/or in its interactions with
the biological system. For BMI/BCI technologies to be effective, the user must learn to
compensate for both consistent and random errors.
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10.4 Feed-Forward Adjustment to Imperfect Decoders

Many motor control studies have shown that both humans and nonhuman primates rapidly
learn to adjust their motor output if a predictable perturbation is applied during point-to-
point reaching movements. This phenomenon has been demonstrated when real perturba-
tions are physically applied to the arm in a predictable way (Gandolfo et al. (2000); Hwang
et al. (2003); Singh and Scott (2003); Klassen et al. (2005)), and when perturbations are ap-
plied only to the visual feedback the subject receives about their movements (Cunnigham
and Welch (1994); Kagerer et al. (1997); Wigmore et al. (2002); Bock et al. (2001); Miall
et al. (2004)). In both cases, subjects learn to make feed-forward modifications to their mo-
tor output to correct for these errors even when the perturbations are complex functions of
the actual hand movement, such as when cursor deviation is proportional and perpendicular
to actual hand velocity.

In much the same way, inaccuracies in the decoding function in a BCI/BMI can result
in consistent perturbations of the assistive device motion that the user observes. This is
especially true in BMIs where an additional layer of errors is added to the observed
movement due to inaccuracies of the device control system itself. However, visual feedback
enables users to identify these consistent decoding and device errors and then compensate
for the errors by modifying their motor plan. These principles of feed-forward adjustments
are demonstrated in the following experiment where the activity of a few dozen neural
units recorded via microwires in the arm area of the motor or premotor cortex was used to
directly control the movements of a virtual cursor to eight different targets in a 3D center-
out movement task (Taylor et al. (2002)).

Rhesus macaques were chronically implanted with stainless steel microwire arrays in
motor and premotor cortical areas associated with proximal arm movements. An infrared
position sensor (Optotrak, Northern Digital, Inc.) was placed on the animals’ wrists and
provided current wrist position information to the computer every 30 ms. A stereo monitor
was used to project to the animal a 3D image of a moving cursor that was initially
controlled by the animal’s actual wrist position. The animal could not see its own arm,
but instead saw the cursor that tracked its wrist position as the animal moved its arm
throughout the workspace (figure 10.1a). The animal was trained to move this cursor (i.e.,
its wrist) from a center start position to one of eight different targets that would appear
radially at the corners of a virtual cube (figure 10.1b). The animal received a liquid reward
for successfully moving the cursor from the center start position to an outer target within a
short 800 ms time limit.

Once the animal was trained to do this task, cursor movements were switched from being
driven by the actual wrist position to being driven by the predicted wrist position, based on
the real-time decoding of the firing rates of a few dozen neural units. Any random and/or
consistent errors in our real-time decoder would result in deviations of the cursor from the
actual trajectory of the wrist.

The decoding function used in this study was a simplistic “population vector”-type
decoder where the change in cursor position [ΔX(t),ΔY (t),ΔZ(t)] every 30 ms was
based on a weighted sum of the normalized firing rates, Ri(t)′, of all units (i = 1 to n), as
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Figure 10.1 3D virtual testing environment used for the eight-target center-out movement task. The
animal sees only a 3D stereo image of a cursor sphere and various targets—it cannot see its own arm.
During training, the cursor sphere initially tracks the animal’s arm movements, which are detected
by a position sensor taped to the animal’s wrist. However, once the animal is familiar with the task,
the cursor sphere is moved based on the animal’s neural activity, which is decoded into ΔX , ΔY ,
and ΔZ every 30 ms. In this center-out experiment, the animal is rewarded for moving the cursor
sphere radially from a center start position to various targets that appear in the workspace. Part (a)
shows the animal in the virtual training environment. Part (b) illustrates the 3D center-out task where
movements start at a central target and go to one of eight outer targets located at the corners of an
imaginary cube (used by permission, D. M. Taylor).

shown in (10.1). Normalization, as indicated by the prime notation, included subtracting
each unit’s mean firing rate and dividing by its standard deviation.

X(t) =
n∑

i=1

CiXRi(t)′

Y (t) =

n∑
i=1

CiY Ri(t)′ (10.1)

Z(t) =

n∑
i=1

CiZRi(t)′

It has been well documented that most arm area motor cortical cells have firing rates that
are, at least in part, linearly related to intended movement direction. That is, neural firing
rate R(t) can be significantly fit to equation (10.2) below were Mx(t), My(t), and Mz(t)

make up a unit vector pointing in the desired movement direction at time t, and Bx, By,
and Bz make up a vector pointing in the cells “preferred direction” (i.e., the direction
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of movement during which that cell’s firing rate tends to be the highest) (Schwartz et al.
(1988)).

R(t) = Bo + BxMx(t) + ByMy(t) + BzMz(t) (10.2)

The real-time decoding equation used in this experiment, (10.1), has been shown to be ef-
fective at predicting intended movement direction when neural firing patterns fit the linear
relationship shown in (10.2), and enough neurons are used, and the preferred directions
of those neurons are uniformly distributed throughout the workspace (Georgopoulos et al.
(1988)). However, many other studies have shown neural firing activity has a much more
complex relationship to intended movement than is captured by the decoding equation
used here. Neural firing rates also have been shown to be related to position (Kettner et al.
(1988); Caminiti et al. (1990); Paninski et al. (2004)), force (Evarts (1968); Ashe (1997)),
joint kinematics (Fu et al. (1995)), and muscle activation (Morrow and Miller (2003)). Most
important for this example is that neural firing rates also are related strongly to movement
speed as well as direction (Moran and Schwartz (1999)). This relationship is more accu-
rately captured by (10.3) where ||V || represents the magnitude of the movement velocity
(i.e., speed) and Θ represents the angle between the movement direction and the cell’s
preferred direction (Moran and Schwartz (1999)).

R(t) = K0 + K1||V (t)|| + K2||V (t)|| cos(Θ(t)) (10.3)

This aspect of neural firing was particularly important in this experiment because the short
800 ms time limit for the movement resulted in ballistic arm movements that spanned a
large range of speeds throughout each movement trajectory. This, in effect, resulted in a
speed-dependent perturbation of the brain-controlled cursor movements as the mismatch
between decoding model, represented by (10.1) and (10.2), and the actual firing patterns,
more accurately represented by (10.3), increased with the speed of the actual arm move-
ments.

Figure 10.2a and 10.2b show examples of the animal’s brain-controlled cursor move-
ments to all eight targets in this ballistic control task where a simple population vector,
(10.1), was used to translate neural activity into cursor movements in real time. Three-
dimensional trajectories to all eight targets are shaded to match intended target (outer cir-
cles) and are plotted in two groups of four targets for easier 2D viewing. Figure 10.2c and
10.2d show the actual hand paths the animal made during the same brain-controlled cursor
movements plotted in figure 10.2a and b.

Note the substantial difference in the actual hand trajectories in 10.2c and 10.2d com-
pared with their associated brain-controlled cursor trajectories shown in 10.2a and 10.2b.
The consistent deviations in the actual hand paths to each target in this ballistic movement
task indicate that the animal learned to make feed-forward corrections in its motor output to
compensate for the gross inadequacies of the simplistic decoding function used. Although
the actual hand paths span only a limited section of the workspace, the distribution of tra-
jectories intended for each target are still well differentiated within this limited area. This
suggests the animal learned some very specific new motor output patterns that enabled it
to move the brain-controlled cursor as needed in the larger 3D workspace.
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Figure 10.2 Cursor and hand paths during a ballistic 3D center-out movement task to eight different
targets in a virtual environment. The animal’s goal was to move the cursor from the center start
position to one of eight radial targets within an 800 ms time limit. Brain-controlled cursor movements
were generated in real-time from the recorded neural activity, which was decoded into intended
movements using a simple population vector algorithm, (10.1). Trajectories are shaded to match
their intended targets (outer circles). 3D trajectories to each of the eight different targets are plotted
in two sets of four for easier 2D viewing. Plots (a) and (b) show the movement paths of the brain-
controlled cursor. Plots (c) and (d) show the actual hand paths the animal made while making the
brain-controlled cursor movements shown in (a) and (b).
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This task was repeated over twenty days, and the animal showed significant improve-
ment in the percentage of targets hit each day as a function of the number of days of practice
(improvement of 0.9 percent per day, p < 0.0009). Although the animal effectively learned
through trial and error how to move its actual arm in order to get the brain-controlled cur-
sor to most of the targets within this short training time, the animal was unable to find an
actual arm path that would be effective at consistently getting the cursor to the lower left
targets (see figure 10.2a and 10.2b). This problem can arise when the decoding function
requires a neural modulation pattern that does not normally occur with any generated arm
movements, as in this monkey’s case, or with any imagined or attempted movement, as
would be the case in a paralyzed individual. In this situation, the decoding function would
need to be modified to one that can extract a full range of movements using only the reper-
toire of firing patterns that the user can easily generate. Alternatively, it may be possible
for the user to learn to generate these new neural patterns with more extensive training via
learning-induced synaptic changes in the underlying network structure.

10.5 Real-Time Adjustments to Random Variability in the Motor System and in the Assistive

Device

Although feed-forward adjustments can be made if consistent errors occur when inade-
quate decoding models are used to convert neural activity to desired device motions, ran-
dom errors will still occur due to the stochastic nature of neural processing and our limited
ability to access the firing activity of the full neural ensemble. Therefore, these errors can-
not be predicted and cannot be preemptively corrected by the user. In this case, visual
feedback can be used to correct the random decoding errors only after they occur. While
devices such as a brain-controlled computer cursor will go exactly where the output of the
neural decoder dictates, other technologies do not function quite so perfectly. The assis-
tive device itself can add additional random movement errors on top of those due to the
stochastic nature of the neural signals. Incorporating accurate sensors into the device con-
trol system would enable the device to automatically detect and correct its own movement
errors. However, accurate sensors are not currently incorporated into many assistive tech-
nologies that are prone to this kind of variability. Therefore, the subject has to use visual
feedback to make an online correction for both sources of random errors.

An FES system that generates arm and hand movements by stimulating the peripheral
nerves is a prime example of a system that adds additional variability into the movement.
Although stimulators can be programmed to reproducibly generate the same pattern of
current pulses needed to generate a specific movement, the resulting limb movement many
differ each time due to the unobservable differences in the state of the peripheral nerves
and muscles at the cellular level at the time of stimulation. Currently, most upper limb FES
systems do not use position sensors on the limbs to detect and correct mismatches between
the generated movement and the movement command sent to the FES system controller.
However, there is a move toward incorporating sensors and feedback control into newer
FES systems. Until then, current FES users will have to rely on visual feedback to make
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real-time adjustments to their movements to correct for both random decoding errors and
error in the generation of the limb movement via FES.

The ability to exclusively use visual feedback to correct for both random decoding errors
and random device errors was demonstrated in a second study where monkeys controlled
the 3D movements of a robotic arm in space. This was an extension of the monkey study
described earlier. However, in this phase of the study, both of the animal’s arms were
restrained throughout the experiment, but the animal still controlled the 3D movements of
a virtual cursor or robot with firing activity from its arm-related motor cortical areas. In
this case, the decoding algorithm was adaptively determined as the animal attempted to
move the virtual cursor to the targets by modulating its neural activity without making
arm movements. The decoding function was similar to that shown in (10.1) with the
coefficients [CiX , CiX , CiX ] iteratively refined based on decoding errors seen in recent
movement attempts. This adaptive process rapidly converged to a new decoding function
that enabled the animal to make long continuous sequences of highly accurate cursor
movements to different targets distributed throughout the 3D workspace. Details of this
adaptive algorithm have been reported elsewhere (Taylor et al. (2002)).

Once the animal was proficient in moving the virtual cursor to targets distributed
throughout the workspace, we tested the animal’s ability to similarly control the 3D
endpoint of a six-degree-of-freedom robotic arm. To aid in this transition, the animal
still viewed the movements through the same virtual interface it had been using in all
previous experiments (figure 10.1). However, instead of controlling the cursor directly,
the decoded neural activity was used to direct the movements of the robotic arm, and
a position sensor on the end of the robot determined the position of the cursor in the
animal’s 3D virtual workspace. Whereas the cursor alone reflected consistent and random
errors due only to errors in the decoding function, the robot added additional consistent
and random errors that the animal had to compensate for via additional feed-forward
modifications to the neural output and via online adjustments based only on real-time visual
feedback. Although this robot had built-in sensors that enabled its internal control system
to accurately move the endpoint to whatever position the command signal dictated, we
implemented a control system that effectively added movement errors at each time step
that would accumulate over the course of the movement. This was done by implementing
an asynchronous “velocity mode” control algorithm for the robot.

In the plain cursor control task, the neural activity was decoded into the desired ΔX ,
ΔY , and ΔZ at each 30 ms time step, and those changes in cursor position were perfectly
executed to build up a trajectory that precisely represented the time series of decoded sig-
nals. However, with the robot, the velocity command [ΔX/30ms,ΔY/30ms, ΔZ/30ms]
was passed to the robot approximately every 30 ms, but the inherent jitter and the inertial
properties of the robot prevented it from instantaneously achieving the assigned velocity.
Therefore, when the new velocity command was given after 30 ms, the robot did not always
achieve the appropriate ΔX , ΔY , and ΔZ before the new velocity command took effect.
Thus, the intended and actual [ΔX,ΔY,ΔZ] differed at each time step, and movement
errors accumulated as the trajectory evolved. This form of control reflected the random er-
rors that could accumulate in a trajectory, such as when using an FES system without limb
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position sensors where there is no way to ensure the evolving limb trajectory matched the
trajectory sent to it by the neural decoder.

In spite of the added variability to the movement output, the animal was able to use visual
feedback to make real-time corrections to the random trajectory deviations. Figure 10.3a
shows trajectories of the brain-controlled robot in the eight-target 3D center-out task (plot-
ted here again in two sets of four for easier 2D viewing). Although the trajectories of the
brain-controlled robot were noisier than those made when using neural signals to control
the 3D cursor directly, the animal was equally successful at getting the robot trajectory to
the desired target (plots of brain-controlled cursor movements using an equivalent adap-
tively determined decoding function can be found in Taylor et al. (2002), and comparisons
of the brain-controlled trajectories with and without the robot can be found in Taylor et al.
(2003)).

To assess the practical application of this brain-controlled robot system in a self-feeding
task, we trained the animal to use the robot to acquire moving and stationary bits of
food located throughout the workspace and then bring the food to its mouth. Our initial
attempts to have the animal retrieve food by direct viewing of the robot and food were
unsuccessful presumably because the animal didn’t realize that he was able to remotely
direct the movements of this unfamiliar machine. Therefore, to ease the transition, we first
had the animal retrieve and deliver food to its mouth by viewing the activities in the familiar
virtual environment of targets and cursors. Two position sensors were used in this task. One
sensor was located on a spoon that was attached to the end of the robot arm. This sensor
determined the cursor position in the animal’s virtual display. Due to physical obstruction
by the virtual reality support frame, the robot could not be placed within reach of the
animal’s mouth. Therefore, the spoon was attached to the robot by a long, approximately
30-cm, rod. Due to some play in the mounting hardware used to attach the rod to the robot,
the spoon had excessive vertical jitter as the robot moved. This resulted in yet another
source of random variability in the brain-controlled trajectory of the robot-driven spoon.

The second position sensor was attached to a pair of tongs that were used to hold the food
in different locations throughout the workspace. This sensor location was displayed as the
target during the first phase of each feeding movement. The monkey would have to move
the robot (viewed as cursor) to the food (viewed as target). When the cursor hit the target,
the person holding the food heard a beep and knew to release the food into the spoon.
A second stationary target located directly in front of the animal’s mouth then appeared
in the virtual workspace. The animal then had to move the brain-controlled robot to the
mouth target. If the spoon made it to the mouth target, the spoon automatically rotated; the
food fell into a funnel and was pneumatically swept through a tube, around the virtual
reality viewing screen, and into the animal’s mouth. On some trials, the experimenter
would move the food to new locations just before the robot got to it, thus requiring the
animal to perform a sequential tracking task where it would chase the food throughout
the workspace. Figure 10.3b illustrates the stationary food retrieval and delivery task.
Figure 10.3c shows an example of the nonstationary food tracking task. Note the additional
vertical oscillation in the trajectory due to vibrations of the spoon attached to the robot. In
spite of the inaccuracies added to the movements by the robot, the animal easily retrieved
bits of food throughout the workspace and delivered them to its mouth target. Further work



10.5 Real-Time Adjustments to Random Variability in the Motor System and in the Assistive Device 171
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Figure 10.3 Movements of a brain-controlled robot viewed by the monkey through a virtual reality
interface. Neural activity was used to direct the 3D movements of the robotic arm in real time. A
position sensor on the end of the robot determined the movement of the virtual cursor. (a) Robot
trajectories to eight targets in a 3D center-out task (plotted in two sets of four for easier 2D viewing).
Trajectories are shaded to match their intended target. Black dots indicate when the virtual target
was hit. (b) Robot trajectories from a stationary food retrieval task (overhead view). Trajectories
(black) start from the center of the workspace and go to food targets located at various positions in
the workspace (stars). Once the food is obtained, trajectories (grey) go to the “mouth” target located
over a funnel (circle). Food is deposited into the funnel once this mouth target is reached. (c) Robot
trajectory (black) from a moving food tracking and retrieval task. The spoon on the robot starts at
point 0 and goes toward the food target at location 1. The food target is then moved to location 2
and then 3 as the robot follows. At point 3, the food is deposited into the spoon. Next a mouth target
appears at point 4 and the animal moves the spoon to the mouth target. Once the spoon is over the
funnel, the food is released into the funnel and pneumatically brought to the animal’s mouth.(by
permission, D.M.Taylor (2002))
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by others in this area have now demonstrated that monkeys can retrieve food and bring it
to their mouths by direct viewing of a brain-controlled robot without the use of the virtual
reality interface (Spalding et al. (2005)).

10.6 Implications for Restoration of Arm and Hand Function

These and other studies illustrate the ability to use small numbers of neural signals recorded
via intracortical microelectrodes to direct the continuous 2D (Serruya et al. (2002)) and
3D movements of computer cursors (Taylor and Schwartz (2001); Taylor et al. (2002))
and robotic devices (Taylor et al. (2003); Carmena et al. (2003)). Although our natural
biological systems make use of somatosensory feedback to guide movement and correct
errors, these studies suggest visual feedback alone enabled individuals to learn the con-
sistent errors in decoding and device execution, thus allowing them to make appropriate
feed-forward corrections in their neuromotor output. Therefore, it may not be necessary to
generate complex decoders that accurately represent how intended movement is encoded
in our recorded neural signals. Users can learn to modify their neural output to generate the
desired movement via the imposed decoding scheme as long as the neural patterns needed
to do so are within the subject’s normal repertoire.

Visual feedback alone also was sufficient to enable subjects to correct for the type of
random variability seen in the neural signals and in the execution of robot movements via
an imperfect open-loop control system. Therefore, brain-based signals may be an effec-
tive means to command a wide range of assistive technologies including noisy physical
systems, such as assistive robots, and FES systems that restore upper limb function.

It is likely that BMI function can be further improved by incorporating sensors on these
assistive devices and feeding back that information to both the device control system
directly and to the user via stimulation of the somatosensory cortex or through other
neural pathways. This will be particularly useful for aspects of movement that are not
easily visualized such as grip force or object slip. Work is underway by many groups
to quantify the resolution and accuracy of the perceived somatosensory information that
can be conveyed via microstimulation of the somatosensory cortex. Coarse movement
information (e.g., left vs. right) has been successfully conveyed via cortical stimulation
(Talwar et al. (2002)), but conveying finely graded continuous movement information is
still an active area of research.

Current non-brain-based means of directing the movements of assistive devices (e.g.,
mouth-operated joysticks, tongue-touch keypads, sip-n-puff devices, voice recognition
systems) also successfully rely primarily on visual feedback to enable the user to track
and modify the resulting device movements. Somatosensory feedback is not currently part
of most assistive devices for the severely paralyzed. Yet the available technologies, such
as assistive robotic aids and FES systems, still can provide an increase in function and
in the quality of life for the severely paralyzed individual. By using brain-based signals
to command such devices in the future, people with high-level spinal cord injuries may
regain the ability to reach and manipulate objects in a more natural way than with the other
mouth- or face-based command options.
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Our monkey experiments show that the individual neurons used for controlling the vir-
tual or robotic movements became better at conveying the needed movement information
to the decoder with regular practice (details reported elsewhere (Taylor et al. (2002))). The
firing rates of the individual recorded units took on the imposed linear decoding function
assigned to them by the decoder. They also increased their effective signal-to-noise ratio;
that is, they increased their modulation ranges across movements in different directions
while maintaining or reducing the variability in their firing rates during repeated move-
ments to the same target directions. This improvement in the information conveyed by the
neurons occurred with about an hour of practice a day only and with three to five days of
practice a week only. Once practice was reduced to once every one to two weeks, these
improvements started to decline. Reinstating practice three to five times a week resulted
in a return of the improvement trend. It is likely that, once practical BCI/BMI systems are
taken out of the lab and into the homes of paralyzed individuals, the improvements in the
quality of the neurally controlled movements will be substantially greater than what has
been shown so far in the animal studies, especially as these individuals learn to use and
rely on these devices throughout their daily activities.
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11.1 Abstract

We give an overview of recent advances in cognitive-based neural prostheses, and point
out the major differences with respect to commonly used motor-based brain-machine inter-
faces. While encouraging results in neuroprosthetic research have demonstrated the proof
of concept, the development of practical neural prostheses is still in the phase of infancy.
To address complex issues arising in the development of practical neural prostheses we
review several related studies ranging from the identification of new cognitive variables to
the development of novel signal processing tools.

In the second part of this chapter, we discuss an information-theoretic approach to
the extraction of low-dimensional features from high-dimensional neural data. We argue
that this approach may be better suited for certain neuroprosthetic applications than the
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traditionally used features. An extensive analysis of electrical recordings from the human
brain demonstrates that processing data in this manner yields more informative features
than off-the-shelf techniques such as linear discriminant analysis. Finally, we show that
the feature extraction is not only a useful dimensionality reduction technique, but also that
the recognition of neural data may improve in the feature domain.

11.2 Introduction

The prospect of assisting disabled individuals by using neural activity from the brain to
control prosthetic devices has been a field of intense research activity in recent years.
The nature of neuroprosthetic research is highly interdisciplinary, with the brain-machine
interfaces (BMIs) playing the central role. Although the development of BMIs can be
viewed largely as a technological solution for a specific practical application, it also
represents a valuable resource for studying brain mechanisms and testing new hypotheses
about brain function.

Up to date, the majority of neuroprosthetic research studies have focused on deriving
hand trajectories by recording their neural correlates, primarily, but not exclusively, from
the motor cortex (Wessberg et al. (2000); Serruya et al. (2002); Taylor et al. (2002); Car-
mena et al. (2003); Mussa-Ivaldi and Miller (2003)). The trajectory information contained
in the action potentials of individual neurons is decoded and the information is used to drive
a robotic manipulator or a cursor on a computer screen. We refer to this neuroprosthetic
approach as “motor-based.” Additionally, progress has been made in interfacing electroen-
cephalographic (EEG) signals and assistive devices for communication and control (Wol-
paw et al. (2002)). These noninvasive techniques are commonly termed brain-computer
interfaces (BCIs) (Wolpaw and McFarland (2004); Pfurtscheller et al. (2003c)).

While remarkable success in the development of BMIs has been achieved over the
past decade, practical neural prostheses are not yet feasible. Building a fully operational
neuroprosthetic system presents many challenges ranging from long-term stability of
recording implants to development of efficient neural signal processing algorithms. Since
the full scope of prosthetic applications is still unknown and it is unlikely that a single
BMI will be optimal for all plausible scenarios, it is important to introduce new ideas
about the types of signals that can be used. It is also important to address the many
technological challenges that are currently impeding the progress toward operational neural
prostheses. To this end, the neuroprosthetic research effort of our group spans several
related directions including cognitive-based BMIs, decoding from local field potentials
(LFPs), identification of alternative cognitive control signals, electrophysiologic recording
advances, and development of new decoding algorithms.

In section 11.3, we give a brief overview of these research efforts. More details can
be found in the relevant literature cited. In section 11.4, we discuss novel information-
theoretic tools for extraction of useful features from high-dimensional neural data. Ex-
perimental results with electrically recorded signals from the human brain are presented
in section 11.5, and the advantages of our technique over traditional ones are discussed.
Concluding remarks are given in section 11.6.
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11.3 Advances in Cognitive Neural Prosthesis

The motor-based approach, although predominantly used, is certainly not the only way
of using brain data for neuroprosthetic applications. Shenoy et al. (2003) argue that neural
activity present before or even without natural arm movement provides an important source
of control signals. In nonhuman primates, these types of neural signals can be found,
among other areas, in parietal reach region (PRR) of the posterior parietal cortex (PPC).
PPC is an area located at an early stage in the sensory-motor pathway (Andersen et al.
(1997)), and is involved in transforming sensory inputs into plans for actions, so-called
“sensory-motor integration.” In particular, PRR was shown to exhibit directional selectivity
with respect to planned reaching movements (Snyder et al. (1997)). Moreover, these
plans are encoded in visual coordinates (also called retinal or eye-centered coordinates)
relative to the current direction of gaze (Batista et al. (1999)), thus providing extrinsic
spatial information and underscoring the cognitive nature of these signals. We refer to this
approach to neural prostheses as “cognitive-based.” The human homologue of PRR has
recently been identified in functional-magnetic-resonance imaging experiments (Connolly
et al. (2003)).

11.3.1 Cognitive-Based Brain-Machine Interfaces

The cognitive-based approach to neural prostheses does not require the execution of arm
movements; its true potential lies in assisting paralyzed individuals who are unable to
reach but who are capable of making reaching plans. It has been shown through a series of
experiments (Musallam et al. (2004)) that monkeys easily learn to control the location of a
computer cursor by merely thinking about movements. Briefly, the monkeys were shown a
transient visual cue (target) at different screen locations over multiple trials. After the target
disappeared, the monkeys were required to plan a reach movement to the target location
without making any arm or eye movements. This stage of the experiment is referred to as
the “delay” or “memory period.” The action potentials (spike trains) of individual neurons
from PRR were collected during the memory period and were decoded in real time to
predict the target location. If the correct location was decoded, a feedback was provided to
the animals by illuminating the target location and the animals were rewarded. The trials
were aborted if the animals made eye or arm movements during the memory period. This
ensured that only cognitive and not motor-related signals were used for decoding, thus
underscoring the potential of the cognitive-based approach for severely paralyzed patients.

With vision being the main sensory modality of the posterior parietal cortex (Blatt et al.
(1990); Johnson et al. (1996)), PRR is likely to continue receiving appropriate error signals
after paralysis. In the absence of proprioceptive and somatosensory feedback (typically lost
due to paralysis), visual error signals become essential in motor learning. Musallam et al.
(2004) have shown that the performance of a PRR-operated prosthesis improved over the
course of several weeks. Presumably, the visual feedback allowed the monkeys to learn
how to compensate for decoding errors.
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After reaching goals are decoded, trajectories can be computed from low-level trajectory
instructions managed by smart output devices, such as robots, computers, or vehicles,
using supervisory control systems (Sheridan (1992)). For example, given the Cartesian
coordinates of an intended object for grasping, a robotic motion planner can determine
the detailed joint trajectories that will transport a prosthetic hand to the desired location
(Andersen et al. (2004a)). Sensors embedded in the mechanical arm can ensure that the
commanded trajectories are followed and obstacles are avoided, thereby replacing, at least
to some degree, the role of proprioceptive and somatosensory feedback.

11.3.2 Local Field Potentials

LFPs represent the composite extracellular potential from perhaps hundreds or thousands
of neurons around the electrode tip. In general, LFPs are less sensitive to relative movement
of recording electrodes and tissues; therefore, LFP recordings can be maintained for longer
periods of time than single cell recordings (Andersen et al. (2004b)). However, LFPs
have not been widely used in BMIs, perhaps because of the assumption that they do not
correlate with movements or movement intentions as well as single cell activity. Recent
experiments in monkey PPC, in particular the lateral intraparietal (LIP) area and PRR, have
demonstrated that valuable information related to the animal’s intentions can be uncovered
from LFPs. For example, it has been shown that the direction of planned saccades in
macaques can be decoded based on LFPs recorded from area LIP (Pesaran et al. (2002)).
Moreover, the performances of decoders based on spike trains and LFPs were found to
be comparable. Interestingly, the decoding of behavioral state (planning vs. execution of
saccades) was more accurate with LFPs than with spike trains. Similar studies have been
conducted in PRR. It was found that the decoding of the direction of planned reaches was
only slightly inferior with LFPs than with spike trains (Scherberger et al. (2005)). As with
LIP studies, it has also been shown that LFPs in this area provide better behavioral state
(planning vs. execution of reaching) decoding than do spike trains.

While the decoding of a target position or a hand trajectory provides information on
where to reach, the decoding of a behavioral state provides the information on when to
reach. In current experiments, the time of reach is controlled with experimental protocol by
supplying a “go signal.” Practical neural prostheses cannot rely on external cues to initiate
the movement; instead this information should be decoded from the brain, and future BMIs
are likely to incorporate the behavioral state information. Therefore, it is expected that
LFPs will play a more prominent role in the design of future neuroprosthetic devices.

11.3.3 Alternative Cognitive Control Signals

The potential benefits of a cognitive-based approach to neural prosthesis were demon-
strated first through offline analysis (Shenoy et al. (2003)) and subsequently through closed
loop (online) experiments (Musallam et al. (2004)). Motivated by previous findings of re-
ward prediction based on neural activity in various brain areas (Platt and Glimcher (1999);
Schultz (2004)), Musallam et al. (2004) have demonstrated that similar cognitive variables
can be inferred from the activity in the macaques’ PRR. In particular, they have found
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significant differences in cell activity depending on whether a preferred or nonpreferred
reward was expected at the end of a trial. The experiments included various preferred ver-
sus nonpreferred reward paradigms such as citrus juice versus water, large amount versus
small amount of reward, and high probability versus low probability of reward. On each
day, the animal learned to associate one cue with the expectation of preferred reward and
another cue with nonpreferred reward. The cues were randomly interleaved on a trial-by-
trial basis. This study demonstrated that the performance of brain-operated cursor control
increases under preferred reward conditions, and that both the reach goals and the reward
type can be simultaneously decoded in real time.

The ability to decode expected values from brain data is potentially useful for future
BMIs. The information regarding subjects’ preferences, motivation level, and mood could
be easily communicated to others in a manner similar to expressing these variables using
body language. It is also conceivable that other types of cognitive variables, such as the
patient’s emotional state, could be inferred by recording activity from appropriate brain
areas.

11.3.4 Neurophysiologic Recording Advances

One of the major challenges in the development of practical BMIs is to acquire meaningful
data from many recording channels over a long period of time. This task is especially
challenging if the spike trains of single neurons are used, since typically only a fraction
of the electrodes in an implanted electrode array will record signals from well-isolated
individual cells (Andersen et al. (2004b)). It is also hard to maintain the activity of isolated
units in the face of inherent tissue and/or array drifts. Reactive gliosis (Turner et al. (1999))
and inadequate biocompatibility of the electrode’s surface material (Edell et al. (1992))
may also contribute to the loss of an implant’s function over time.

Fixed-geometry implants, routinely used for chronic recordings in BMIs, are not well
suited for addressing the above issues. Motivated by these shortcomings, part of our re-
search effort has been directed toward the development of autonomously movable elec-
trodes that are capable of finding and maintaining optimal recording positions. Based on
recorded signals and a suitably defined signal quality metric, an algorithm has been devel-
oped that decides when and where to move the recording electrode (Nenadic and Burdick
(2006)). It should be emphasized that the developed control algorithm and associated signal
processing steps (Nenadic and Burdick (2005)) are fully unsupervised, that is, free of any
human involvement, and as such are suitable for future BMIs. Successful applications of
the autonomously movable electrode algorithm using a meso-scale electrode testbed have
recently been reported in Cham et al. (2005) and Branchaud et al. (2005).

The successful implementation of autonomously movable electrodes in BMIs will be
beneficial for several reasons. For example, electrodes can be moved to target specific neu-
ral populations that are likely to be missed during implantation surgery. Optimal recording
quality could be maintained and the effects of cell migration can be compensated for by
moving the electrodes. Finally, movable electrodes could break through encapsulation and
seek out new neurons, which is likely to improve the longevity of recording.
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Clearly, the integration of movable electrodes with BMIs hinges upon the development
of appropriate micro-electro-mechanical systems (MEMS) technology. Research efforts to
develop MEMS devices for movable electrodes are under way (Pang et al. (2005a,b)).

11.3.5 Novel Decoding Algorithms

In mathematical terms, the goal of decoding algorithms is to build a map between neural
patterns and corresponding motor behavior or cognitive processes. Because of the ran-
domness inherent in the neuro-motor systems, the appropriate model of this map is proba-
bilistic. In practical terms, decoding for cognitive-based BMIs entails the selection of the
intended reach target from a discrete set of possible targets. Consequently, the decoder is
designed as a classifier, where observed neural data is used for classifier training.

Recent advances in electrophysiologic recordings have enabled scientists to gather
increasingly large volumes of data over relatively short time spans. While neural data
ultimately is important for decoding, not all data samples carry useful information for the
task at hand. Ideally, relevant data samples should be combined into meaningful features,
while irrelevant data should be discarded as noise. For example, representing a finely
sampled time segment of neural data with a (low-dimensional) vector of firing rates, can
be viewed as an heuristic way of extracting features from the data. Another example is
the use of the spectral power of EEG signals in various frequency bands, for example, μ-
band or β-band (McFarland et al. (1997a); Pfurtscheller et al. (1997)), for neuroprosthetic
applications such as BCIs.

In the next section, we cast the extraction of neural features within an information-
theoretic framework and we show that this approach may be better suited for certain
applications than the traditionally used heuristic features.

11.4 Feature Extraction

Feature extraction is a common tool in the analysis of multivariate statistical data. Typi-
cally, a low-dimensional representation of data is sought so that features have some desired
properties. An obvious benefit of this dimensionality reduction is that data becomes com-
putationally more manageable. More importantly, since the number of experimental trials
is typically much smaller than the dimension of data (so-called small-sample-size problem
(Fukunaga (1990))), the statistical parameters of data can be estimated more accurately
using the low-dimensional representation.

Two major applications of feature extraction are representation and classification. Fea-
ture extraction for representation aims at finding a low-dimensional approximation of data,
subject to certain criteria. These criteria assume that data are sampled from a common
probability distribution, and so these methods are often referred to as blind or unsupervised.
Principal component analysis (PCA) (Jolliffe (1986)) and independent component analysis
(ICA) (Jutten and Herault (1991)) are the best-known representatives of these techniques.
In feature extraction for classification, on the other hand, each data point’s class member-
ship is known, and thus the method is considered supervised. Low-dimensional features
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are found that maximally preserve class differences measured by suitably defined criteria.
Linear discriminant analysis (LDA) (Duda et al. (2001)) is the best known representative
of these techniques. Once the features are extracted, a classifier of choice can be designed
in the feature domain.1

A common heuristic approach to feature extraction is to rank individual (scalar) fea-
tures according to some class separability criterion. For example, informative neural fea-
tures are those that exhibit stimulus-related tuning, that is, they take significantly different
values when conditioned upon different stimuli. The feature vector is then constructed
by concatenating the several most informative features. While seemingly reasonable, this
strategy is completely ignorant of the joint statistical properties of the features and may
produce highly suboptimal feature vectors. More elaborate algorithms exist for the selec-
tion of scalar features (Kittler (1978)), but they are combinatorially complex (Cover and
Campenhout (1977)) and their practical applicability is limited.

Another popular strategy for analyzing spatiotemporal neural signals is to separate the
processing in the spatial and temporal domain. Data are first processed spatially, typically
by applying off-the-shelf tools such as the Laplacian filter (McFarland et al. (1997a);
Wolpaw and McFarland (2004)), followed by temporal processing, such as autoregressive
frequency analysis (Wolpaw and McFarland (2004); Pfurtscheller et al. (1997)). However,
the assumption of space-time separability is not justified and may be responsible for
suboptimal performance. In addition, while spectral power features have clear physical
interpretation, there is no reason to assume that they are optimal features for decoding.
Rizzuto et al. (2005) have recently demonstrated that decoding accuracy with spectral
power features could be up to 20 percent lower than a straightforward time domain
decoding.

In the next two subsections, we introduce a novel information-theoretic criterion for fea-
ture extraction conveniently called “information-theoretic discriminant analysis” (ITDA).
We show that informative features can be extracted from data in a linear fashion, that is,
through a matrix manipulation.2 For spatiotemporal signals, the feature extraction matrix
plays the role of a spatiotemporal filter and does not require an assumption about the sep-
arability of time and space. Moreover, the features are extracted using their joint statistical
properties, thereby avoiding heuristic feature selection strategies and computationally ex-
pensive search algorithms.

11.4.1 Linear Supervised Feature Extraction

In general, linear feature extraction is a two-step procedure: (1) an objective function
is defined and (2) a full-rank feature extraction matrix is found that maximizes such an
objective. More formally, let R ∈ R

n be a random data vector with the class-conditional
probability density function (PDF) fR|Ω(r |ωi), where the class random variable (RV)
Ω = {ω1, ω2, · · · , ωc} is drawn from a discrete distribution with the probability P (ωi) �

P (Ω = ωi), ∀i = 1, 2, · · · , c. For example, R could be a matrix of EEG data from an
array of electrodes sampled in time and written in a vector form. The class variable could
be the location of a visual target, or some cognitive task such as imagination of left and
right hand movements (Pfurtscheller et al. (1997)). The features F ∈ R

m are extracted as
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Figure 11.1 (Left) Two Gaussian class-conditional PDFs with P (ω1) = P (ω2), represented by
3-Mahalanobis distance contours. The straight lines indicate optimal 1D subspace according to
different feature extraction methods: PCA, ICA, LDA, ITDA and approximate Chernoff criterion
(Loog and Duin (2004)) ACC. (Right) The PDFs of optimal 1D features extracted with ITDA and
LDA.

F = T R, where T ∈ R
m×n is a full-rank feature extraction matrix found by maximizing a

suitably chosen class separability objective function J(T).
Many objective functions have been used for supervised feature extraction purposes. In

its most common form, LDA, also known as the Fisher criterion (Fisher (1936)) or canon-
ical variate analysis, maximizes the generalized Rayleigh quotient (Duda et al. (2001)).
Under fairly restrictive assumptions, it can be shown that LDA is an optimal3 feature ex-
traction method. In practice, however, these assumptions are known to be violated, and
so the method suffers from suboptimal performance. A simple example where LDA fails
completely is illustrated in figure 11.1. Another deficiency of LDA is that the dimension of
the extracted subspace is at most c − 1, where c is the number of classes. This constraint
may severely limit the practical applicability of LDA features, especially when the number
of classes is relatively small.

Kumar and Andreou (1998) have developed a maximum-likelihood feature extraction
method and showed that these features are better suited for speech recognition than the
classical LDA features. Saon and Padmanabhan (2000) used both Kullback-Leibler (KL)
and Bhattacharyya distance as an objective function. However, both of these metrics are
defined pairwise, and their extension to multicategory cases is often heuristic. Loog and
Duin (2004) have developed an approximation of the Chernoff distance, although their
method seems to fail in some cases (see figure 11.1).

Mutual information is a natural measure of class separability. For a continuous RV R

and a discrete RV Ω, the mutual information, denoted by μI(R; Ω), is defined as

μI(R; Ω) � H(R) − H(R |Ω) = H(R) −
c∑

i=1

H(R |ωi)P (ωi) (11.1)
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where H(R) � − ∫ fR(r) log(fR(r)) dr is Shannon’s entropy. Generally, higher mutual in-
formation implies better class separability and smaller probability of misclassification. In
particular, it was shown in Hellman and Raviv (1970) that εR ≤ 1/2 [H(Ω) − μI(R; Ω)],
where H(Ω) is the entropy of Ω and εR is the Bayes error. On the other hand, the prac-
tical applicability of the mutual information is limited by its computational complexity,
also known as the curse of dimensionality, which for multivariate data requires numeri-
cal integrations in high-dimensional spaces. Principe et al. (2000) explored the alternative
definitions of entropy (Renyi (1961)), which, when coupled with Parzen window density
estimation, led to a computationally feasible mutual information alternative that was appli-
cable to multivariate data. Motivated by these findings, Torkkola developed an information-
theoretic feature extraction algorithm (Torkkola (2003)), although his method is computa-
tionally demanding and seems to be limited by the curse of dimensionality. Next, we intro-
duce a feature extraction objective function that is based on the mutual information, yet is
easily computable.

11.4.2 Information-Theoretic Objective Function

Throughout the rest of the article we assume, that the class-conditional densities are
Gaussian, that is, R |ωi ∼ N (mi,Σi), with positive definite covariance matrices. The
entropy of a Gaussian random variable is easily computed as

H(R |ωi) =
1

2
log((2πe)n|Σi|)

where |Σ | denotes for the determinant of the matrix Σ. To complete the calculations
required by (11.1), we need to evaluate the entropy of the mixture PDF fR(r) �∑

i fR|Ω(r |ωi)P (ωi). It is easy to establish that R ∼ (m,Σ), where

m =
c∑

i=1

miP (ωi) and Σ =
c∑

i=1

[
Σi + (mi − m)(mi − m)

T
]
P (ωi). (11.2)

Note that unless the class-conditional PDFs are completely overlapped, the RV R is non-
Gaussian. However, we propose a metric similar to (11.1) by replacing H(R) with the
entropy of a Gaussian RV with the same covariance matrix Σ:

μ(R; Ω) � Hg(R) −
c∑

i=1

H(R |ωi)P (ωi) =
1

2

[
log(|Σ|) −

c∑
i=1

log(|Σi|)P (ωi)

]
(11.3)

where Hg(R) is the Gaussian entropy. Throughout the rest of the article, we refer to this
metric as a μ-metric.

We will explain briefly why the μ-metric is a valid class separability objective. For a
thorough mathematical exposition, the reader is referred to Nenadic (in press). If the class-
conditional PDFs are fully overlapped, that is, m1 = · · · = mc and Σ1 = · · · = Σc, it
follows from (11.2) and (11.3) that μ(R; Ω) = 0. Also note that in this case R ∼ N (m,Σ),
thus μ(R; Ω) = μI(R; Ω). On the other hand, if the class-conditional PDFs are different, R

deviates from the Gaussian RV, so the μ-metric μ(R; Ω) can be viewed as a biased version
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of μI(R; Ω), where μ(R; Ω) ≥ μI(R; Ω) ≥ 0 because for a fixed covariance matrix,
Gaussian distribution maximizes the entropy [Hg(R) ≥ H(R)]. As the classes are more
separated, the deviation of R from a Gaussian RV increases, and the μ-metric gets bigger.
It turns out that this bias is precisely the negentropy defined as H̄(R) � Hg(R) − H(R),
which has been used as an objective function for ICA applications (see Hyvärinen (1999)
for survey). Therefore, ITDA can be viewed as a supervised version of ICA. Figure 11.1
confirms that ICA produces essentially the same result as our method (note the symmetry
of the example), although the two methods are fundamentally different (unsupervised vs.
supervised). Figure 11.1 also shows the μ-metric in the original space and subspaces
extracted by ITDA and LDA.

The μ-metric has some interesting properties, many of which are reminiscent of the
Bayes error εR and the mutual information (11.1). We give a brief overview of these
properties next. For a detailed discussion, refer to Nenadic (in press). First, if the class-
conditional covariances are equal, the μ-metric takes the form of the generalized Rayleigh
quotient; therefore, under these so-called homoscedastic conditions, ITDA reduces to the
classical LDA method. Second, for a two-class case with overlapping class-conditional
means and equal class probabilities (e.g., figure 11.1), the μ-metric reduces to the well
known Bhattacharyya distance. Like many other discriminant metrics, the μ-metric is
independent of the choice of a coordinate system for data representation. Moreover, the
search for the full-rank feature extraction matrix T can be restricted to the subspace of
orthonormal projection matrices without compromising the objective function. Finally, the
μ-metric of any subspace of the original data space is bounded above by the μ-metric of
the original space. These properties guarantee that the following optimization problem is
well posed. Given the response samples R ∈ R

n and the dimension of the feature space m,
we find an orthonormal matrix T ∈ R

m×n such that the μ–metric μ(F; Ω) is maximized

T∗ = arg max
T∈Rm×n

{μ(F; Ω) : F = T R} subject to TTT = I. (11.4)

Based on our discussion in section 11.4.2, it follows that such a transformation would find
an m-dimensional subspace, where the class separability is maximal. Interestingly, both the
gradient ∂μ(F; Ω)/∂T and the Hessian ∂2μ(F; Ω)/∂T2 can be found analytically (Nenadic
(in press)), so the problem (11.4) is amenable to Newton’s optimization method.

11.5 Experimental Results

In this section, we compare the performances of LDA and ITDA on a dataset adopted from
Rizzuto et al. (2005). The data represents intracranial encephalographic (iEEG) recordings
from the human brain during a standard memory reach task (see figure 11.2). It should be
noted that iEEG signals are essentially local field potentials (see section 11.3.2). At the
start of each trial, a fixation stimulus is presented in the middle of a touchscreen and the
participant initiates the trial by placing his right hand on the stimulus. After a short fixation
period, a target is flashed on the screen, followed by a memory period. After the memory
period, the fixation stimulus is extinguished, which signals the participant to reach to the
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Fixation on Target on Traget off Fixation off

Fixation Target ReachMemory

Figure 11.2 The timeline of experimental protocol.

memorized location (formerly indicated by the target). The duration of fixation, target, and
memory periods varied uniformly between 1 and 1.3 s. The subject had 8 electrodes im-
planted into each of the following target brain areas: orbital frontal cortex (OF), amygdala
(A), hippocampus (H), anterior cingulate cortex (AC), supplementary motor cortex (SM),
and parietal cortex (P). The total number of electrodes in both hemispheres was 96. The
targets were presented at 6 different locations: 0o, 60o, 120o, 180o, 240o, 300o; these lo-
cations respectively correspond to right, top right, top left, left, bottom left, and bottom
right position with respect to the fixation stimulus. The number of trials per stimulus var-
ied between 69 and 82, yielding a total of 438 trials. The electrode signals were amplified,
sampled at 200 Hz and bandpass filtered. Only a few electrodes over a few brain areas
showed stimulus-related tuning according to the location of the target. The goal of our
analysis is to decode the target location and the behavioral state based on the brain data.
Such a method could be used to decode a person’s motor intentions in real time, support-
ing neuroprosthetic applications. All decoding results are based on a linear, quadratic, and
support vector machine (SVM) classifier (Collobert and Bengio (2001)) with a Gaussian
kernel.

11.5.1 Decoding the Target Position

To decode the target position, we focused on a subset of data involving only two target
positions: left and right. While it is possible to decode all six target positions, the results
are rather poor, partly because certain directions were consistently confused. The decoding
was performed during the target, memory and reach periods (see figure 11.2). All decoding
results are based on selected subsegments of data within 1 s of the stimulus that marks the
beginning of the period. figure. 11.3 shows that only a couple of electrodes in both left and
right parietal cortex exhibit directional tuning, mostly around 200 ms after the onset of the
target stimulus. In addition, there is some tuning in the SM and OF regions. Similar plots
(not shown) are used for the decoding during memory and reach periods.

For smoothing purposes and to further reduce the dimensionality of the problem, the
electrode signals were binned using a 30 to 70 ms window. The performance (% error) of
the classifier in the feature domain was evaluated through a leave-one-out cross-validation;
the results are summarized in table 11.1. Note that the chance error is 50 percent for
this particular task. For a given classifier, the performance of the better feature extraction
method is shown in boldface, and the asterisk denotes the best performance per classifica-
tion task. Except for a few cases (mostly with the quadratic classifier), the performance of
the ITDA method is superior to that of LDA, regardless of the choice of classifier. More
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Figure 11.3 The distribution of the μ-metric over individual electrodes during the target period.
The results are for two-class recognition task, and are based on 162 trials (82 left and 80 right).
Different brain areas are: orbital frontal (OF), amygdala (A), hippocampus (H), anterior cingulate
(AC), supplementary motor (SM), and parietal (P), with the prefixes L and R denoting the left and
right hemisphere.

importantly, ITDA provides the lowest error rates in all but one case (target, SM), where
the two methods are tied for the best performance. We note that all the error rates are sig-
nificantly smaller (p < 0.001) than the chance error, including those during the memory
period, which was not demonstrated previously (Rizzuto et al. (2005)). Also note that, in
general, the SVM classifier is better combined with both ITDA and LDA features than are
the linear and quadratic classifiers.

11.5.2 Decoding the Behavioral State

As discussed in section 11.3.2, for fully autonomous neuroprosthetic applications it is not
only important to know where to reach, but also when to reach. Therefore, the goal is to
decode what experimental state (fixation, target, memory, reach) the subject is experienc-
ing, based on the brain data. To this end, we pooled the data for all six directions, with
438 trials per state, for a total of 1,752 trials. As with the target decoding, all the decoding
results are based on selected subsegments of data within 1 s of the stimulus that marks
the beginning of the period. Figure 11.4 shows that only a subset of electrodes exhibits
state tuning (mostly the electrodes in the SM area during the second part of the trial state
period). In addition, there is some tuning in the AC, H, and P areas. The data were further
smoothed by applying a 40 to 50 ms window. The performance (% error) of the classifier
in the feature space was evaluated through a stratified twenty-fold cross-validation (Kohavi
(1995)), and the results are summarized in table 11.2.
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Table 11.1 The average decoding errors and their standard deviations during the target, memory
and reach periods. The columns represent the brain area, the number of electrodes Ne, the period
(ms) used for decoding, the bin size (ms), the size of the data space (n), the type of the classifier
(L-linear, Q-quadratic, S-SVM). The size of the optimal subspace (m) is given in the parentheses.
Note that LDA is constrained to m = 1.

Period Area Ne Time Bin n Class. LDA (m) ITDA (m)

target OF 4 160–510 70 20 L 6.17 ± 0.24 (1) 4.94∗ ± 0.22 (1)
Q 6.17 ± 0.24 (1) 8.02 ± 0.27 (1)
S 6.17 ± 0.25 (1) 4.94∗ ± 0.22 (1)

P 2 150–450 50 12 L 7.41 ± 0.26 (1) 6.79∗ ± 0.25 (1)
Q 8.02 ± 0.27 (1) 7.41 ± 0.26 (1)
S 7.41 ± 0.26 (1) 6.79∗ ± 0.25 (2)

SM 2 100–450 70 10 L 14.20 ± 0.35 (1) 13.58∗ ± 0.34 (3)
Q 14.20 ± 0.35 (1) 13.58∗ ± 0.34 (2)
S 13.58∗ ± 0.34 (1) 13.58∗ ± 0.34 (3)

SM,P 2 120–520 40 20 L 5.56 ± 0.23 (1) 4.32∗ ± 0.20 (1)
Q 5.56 ± 0.23 (1) 5.56 ± 0.23 (1)
S 4.94 ± 0.22 (1) 4.32∗ ± 0.20 (1)

memory OF 3 240–330 30 6 L 29.63 ± 0.46 (1) 28.40∗ ± 0.45 (1)
Q 30.25 ± 0.46 (1) 28.40∗ ± 0.45 (2)
S 31.48 ± 0.47 (1) 29.01 ± 0.46 (1)

P 4 610–730 30 16 L 33.95 ± 0.48 (1) 32.72 ± 0.47 (1)
Q 33.33 ± 0.47 (1) 35.80 ± 0.48 (1)
S 31.48 ± 0.47 (1) 29.63∗ ± 0.46 (4)

SM 2 250–370 30 8 L 29.63 ± 0.45 (1) 29.01 ± 0.46 (6)
Q 29.63 ± 0.46 (1) 25.93 ± 0.44 (3)
S 29.63 ± 0.46 (1) 24.69∗ ± 0.43 (4)

SM, 3 620–680 30 6 L 28.40 ± 0.45 (1) 26.54∗ ± 0.44 (1)
P,A Q 27.16 ± 0.45 (1) 28.40 ± 0.45 (1)

S 27.16 ± 0.45 (1) 26.54∗ ± 0.44 (1)

reach OF 2 270–420 50 6 L 10.49 ± 0.31 (1) 9.26 ± 0.29 (1)
Q 10.49 ± 0.31 (1) 9.88 ± 0.30 (1)
S 9.88 ± 0.30 (1) 8.64∗ ± 0.28 (1)

OF 4 250–550 50 24 L 6.79 ± 0.25 (1) 6.17 ± 0.24 (1)
Q 6.79 ± 0.25 (1) 6.79 ± 0.25 (1)
S 6.17 ± 0.24 (1) 4.94∗ ± 0.22 (22)
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Figure 11.4 The distribution of the μ-metric over individual electrodes. The results are for four-
class recognition task based on 1,752 trials (438 trials per state).

Table 11.2 The average behavioral state decoding errors and their standard deviations with pooled
data (6 directions, 4 trial states). Note that LDA is constrained to m ≤ 3.

Area Ne Time Bin n Class. LDA (m) ITDA (m)

SM 4 500–1000 50 40 L 24.70 ±0.04 (3) 24.17 ±0.04 (4)
Q 24.82 ±0.04 (3) 24.58 ±0.04 (5)
S 24.76 ±0.04 (3) 23.99∗ ±0.04 (4)

SM 3 120–400 40 21 L 35.36 ±0.06 (3) 35.06 ±0.05 (9)
Q 36.25 ±0.05 (3) 31.31∗ ±0.05 (12)
S 35.42 ±0.06 (3) 31.43 ±0.06 (14)

SM, 4 250–500 50 20 L 29.23 ±0.06 (3) 28.75 ±0.06 (3)
AC,H Q 28.99 ±0.06 (3) 27.74∗ ±0.06 (5)

S 28.93 ±0.06 (3) 27.74∗ ±0.06 (5)

P 4 200–350 50 12 L 48.69 ±0.06 (3) 47.86 ±0.05 (10)
Q 48.99 ±0.07 (3) 50.89 ±0.05 (10)
S 49.70 ±0.05 (3) 47.68∗ ±0.04 (10)
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Note that the chance error is 75 percent for this particular task. Except for one case,
the classification accuracy with ITDA features is superior to LDA features, regardless of
the classifier choice. Additionally, the best single performance always is achieved with
the ITDA method. Note that the best decoding results are obtained from the SM area in
the interval [500–1000] ms. Interestingly, we were able to decode the trial states from the
parietal area, although the accuracy was considerably lower (just above 50 percent).

11.5.3 Discussion

Based on the analyzed data, we conclude that the classification with ITDA features is
more accurate than the classification with LDA features, with an improvement as high as 5
percent. In rare cases where LDA provides better performance, the quadratic classifier was
used. This could mean that LDA features fit the quadratic classifier assumptions (Gaussian
classes, different covariance matrices) better than do ITDA features. Nevertheless, ITDA
features are in general better coupled to the quadratic classifier than are LDA features. The
advantages are even more apparent when ITDA is used in conjunction with the linear and
SVM classifier. Similar behavior was observed when ITDA was tested on a variety of data
sets from the UCI machine learning repository (Hettich et al. (1998)). Details can be found
in Nenadic (in press).

In all cases, the best performance is achieved in a subspace of considerably lower di-
mension than the dimension of the original data space, n. Therefore, not only is the clas-
sification easier to implement in the feature space, but the overall classification accuracy
is improved. While theoretical analysis shows that dimensionality reduction cannot im-
prove classification accuracy (Duda et al. (2001)), the exact opposite effect is often seen in
dealing with finitely sampled data.

Like many other second-order techniques, for example, LDA or ACC, ITDA assumes
that the class-conditional data distribution is Gaussian. Although this assumption is likely
to be violated in practice, it seems that the ITDA method performs reasonably well. For
example, the performance in the original space with the SVM classifier is Gaussian-
assumption free, yet it is inferior to the SVM classifier performance in the ITDA feature
space. Likewise, it was found in Nenadic (in press) that unless data is coarsely discretized
and the Gaussian assumption is severely violated, the performance of ITDA does not
critically depend on the Gaussian assumption.

11.6 Summary

We have reviewed recent advances in cognitive-based neural prosthesis. The major differ-
ences between the cognitive-based and the more common motor-based approach to BMIs
have been discussed. To maximize information encoded by neurons, better understanding
of multiple brain areas and the types of signals the brain uses are needed. Part of our re-
search effort is to identify sources of information potentially useful for neuroprosthetic
applications. Other research efforts are focused on technological issues such as the stabil-
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ity of recording, the development of unsupervised signal analysis tools, or the design of
complex decoding algorithms.

The decoding of neural signals in cognitive-based BMIs reduces to the problem of
classification. High-dimensional neural data typically contains relatively low-dimensional
useful signals (features) embedded in noise. To meet computational constraints associated
with BMIs, it may be beneficial to implement the classifier in the feature domain. We
have applied a novel information-theoretic method to uncover useful low-dimensional
features in neural data. We have demonstrated that this problem can be posed within an
optimization framework, thereby avoiding unjustified assumptions and heuristic feature
selection strategies. Experimental results using iEEG signals from the human brain show
that our method may be better suited for certain applications than are the traditional
feature extraction tools. The study also demonstrates that iEEG signals may be a valuable
alternative to spike trains commonly used in neuroprosthetic research.
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(1) Consistent with engineering literature (Fukunaga (1990)), we consider the feature ex-
traction as a preprocessing step for classification. Some authors, especially those using
artificial neural networks, consider feature extraction an integral part of classification.

(2) Recently, a couple of nonlinear feature extraction methods have been proposed
(Roweis and Saul (2000); Tenenbaum et al. (2000)) where features reside on a low-
dimensional manifold embedded in the original data space. However, linear feature
extraction methods continue to play an important role in many applications, primarily
due to their computational effectiveness.

(3) Optimality is in the sense of Bayes.
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12.1 Abstract

We devise and experiment with a dynamical kernel-based system for tracking hand move-
ments from neural activity. The state of the system corresponds to the hand location, ve-
locity, and acceleration, while the system’s input are the instantaneous spike rates. The
system’s state dynamics is defined as a combination of a linear mapping from the previ-
ous estimated state and a kernel-based mapping tailored for modeling neural activities. In
contrast to generative models, the activity-to-state mapping is learned using discriminative
methods by minimizing a noise-robust loss function. We use this approach to predict hand
trajectories on the basis of neural activity in the motor cortex of behaving monkeys and
find that the proposed approach is more accurate than a static approach based on support
vector regression and the Kalman filter.
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12.2 Introduction

This chapter focuses on the problem of tracking hand movements, which constitute smooth
spatial trajectories, from spike trains of a neural population. We do so by devising a
dynamical system that employs a tailored kernel for spike rate patterns along with a
linear mapping corresponding to the states’ dynamics. Consider a situation where a subject
performs free hand movements during a task that requires high precision. In the lab, it
may be a constrained reaching task while in real life it may be an everyday task such as
eating. We wish to track the hand position given only spike trains from a recorded neural
population. The rationale of such an undertaking is twofold. First, this task can be viewed
as a step toward the development of a brain-machine interface (BMI), which is gradually
becoming a solution for motor-disabled patients. Recent studies of BMIs (Tillery et al.
(2003); Carmena et al. (2003); Serruya et al. (2002)) (being online and feedback-enabled)
show that a relatively small number of cortical units can be used to move a cursor or a
robot effectively, even without the generation of hand movements, and that training of
the subjects improves the overall success of the BMIs. Second, an open-loop (offline)
movement decoding (e.g., Isaacs et al. (2000); Brockwell et al. (2004); Wessberg et al.
(2000); Shpigelman et al. (2003); Mehring et al. (2003)), while inappropriate for BMIs, is
computationally less expensive, and easier to implement, and it allows repeated analysis,
providing a handle to understand neural computations in the brain.

Early studies (Georgopoulos et al. (1983)) show that the direction of arm movement
is reflected by the population vector of preferred directions weighted by current firing
rates, suggesting that intended movement is encoded in the firing rate, which, in turn,
is modulated by the angle between a unit’s preferred direction (PD) and the intended
direction. This linear regression approach is still prevalent and is applied, with some
variation of the learning methods, in closed and open-loop settings. There is relatively
little work on the development of dedicated nonlinear methods.

Both movement and neural activity are dynamic and therefore can be modeled naturally
by dynamical systems. Filtering methods often employ generative probabilistic models
such as the well known Kalman filter (Wu et al. (2005)) or more neurally specialized
models (Brockwell et al. (2004)) in which a cortical unit’s spike count is generated by
a probability function of its underlying firing rate that is tuned to movement parameters.
The movement, being a smooth trajectory, is modeled as a linear transition with (typically
additive Gaussian) noise. These methods have the advantage of using the smooth nature of
movement and provide models of what neurons are tuned to. However, the requirement of
describing a neural population’s firing probability as a function of movement state is hard
to satisfy without making costly assumptions. The most prominent are the assumptions of
conditional independence of cells given their movement and of their relation being linear
with Gaussian noise.

Kernel-based methods have been shown to achieve state-of-the-art results in many ap-
plication domains. Discriminative kernel methods such as support vector regression (SVR)
forgo the task of modeling neuronal tuning functions. Furthermore, the construction of
kernel-induced feature spaces lends itself to efficient implementation of distance measures
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over spike trains that are better suited to comparing two neural population trajectories than
to the Euclidean distance in the original space of spike counts per bins (Shpigelman et al.
(2003); Eichhorn et al. (2004)). However, SVR is a “static” method that does not take into
account the smooth dynamics of the predicted movement trajectory, which imposes a sta-
tistical dependency between consecutive examples (resulting in nonsmooth predictions).

This chapter introduces a kernel-based regression method that incorporates linear dy-
namics of the predicted trajectories. In section 12.3, we formally describe the problem set-
ting. We introduce the movement tracking model and the associated learning framework
in section 12.4. The resulting learning problem yields a new kernel for linear dynamical
systems. We provide an efficient calculation of this kernel and describe our dual space
optimization method for solving the learning problem. The experimental method is pre-
sented in section 12.5. Results, underscoring the merits of our algorithm are provided in
section 12.6, and conclusions are given in section 12.7.

12.3 Problem Setting

Our training set contains m trials. Each trial (typically indexed by i or j) consists of a

pair of movement and neural recordings designated by
{
Yi,Oi

}
. Yi =

{
yi

t

}ti
end

t=1
is a

time series of movement state values and yi
t ∈ Rd is the movement state vector at time

t in trial i. We are interested in reconstructing position; however, for better modeling, yi
t

may be a vector of position, velocity, and acceleration (as is the case in section 12.5). This

trajectory is observed during model learning and is the inference target. Oi = {ot}ti
end

t=1 is
a time series of neural spike counts and oi

t ∈ Rq is a vector of spike counts from q cortical
units at time t. We wish to learn a function zi

t = f
(
Oi

1:t

)
that is a good estimate (in a

sense formalized in the sequel) of the movement yi
t. Thus, f is a causal filtering method.

We confine ourselves to a causal setting since we plan to apply the proposed method in
a closed loop scenario where real-time output is required. In tasks that involve no hitting
of objects, hand movements are typically smooth. Endpoint movement in small time steps
is loosely approximated as having constant acceleration. On the other hand, neural spike
counts (which are typically measured in bins of 50–100 ms) vary greatly from one time step
to the next. In summary, our goal is to devise a dynamic mapping from sequences of neural
activities ending at a given time to the instantaneous hand movement characterization
(location, velocity, and acceleration).

12.4 Movement Tracking Algorithm

Our regression method is defined as follows: given a series O ∈ Rq×tend of observations
and, possibly, an initial state y0, the predicted trajectory Z ∈ Rd×tend is

zt = Azt−1 + Wφ (ot) , tend ≥ t > 0 , (12.1)
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where z0 = y0 (and zt is an estimate of yt), A ∈ Rd×d is a matrix describing linear
movement dynamics, and W ∈ Rd×q is a weight matrix. φ (ot) is a feature vector of
the observed spike trains at time t and is later replaced by a kernel operator (in the dual
formulation to follow). Thus, the state transition is a linear transformation of the previous
state with the addition of a nonlinear effect of the observation. Note that unfolding the
recursion in (12.1) yields

zt = Aty0 +

t∑
k=1

(
At−kWφ (ok)

)
.

Assuming that A describes stable dynamics (the eigenvalues of A are within a unit circle),
then the current prediction depends, in a decaying manner, on the previous observations.
We further assume that A is fixed and wish to learn W (we describe our choice of A in
section 12.5). In addition, ot may also encompass a series of previous spike counts in a
window ending at time t (as is the case in section 12.5). Also, note that this model (in its
non-kernelized version) has an algebraic form that is similar to the Kalman filter (to which
we compare our results later).

12.4.1 Primal Learning Problem

The optimization problem presented here is identical to the standard SVR learning problem
(e.g., Smola and Schölkopf (1998)) with the exception that zi

t is defined as in (12.1), while
in standard SVR, zt = Wφ (ot) (i.e., without the linear dynamics). Given a training set of
fully observed trials

{
Yi,Oi

}m

i=1
, we define the learning problem to be

min
W

1

2
‖W‖2

+ c

m∑
i=1

ti
end∑
t=1

d∑
s=1

∣∣(zi
t

)
s
− (yi

t

)
s

∣∣
ε

, (12.2)

where ‖W‖2
=
∑

a,b (W)
2
ab (the Frobenius norm). The second term is a sum of training

errors (in all trials, times, and movement dimensions). | · |ε is the ε insensitive loss and is
defined as |v|ε = max {0, |v| − ε}. The first term is a regularization term that promotes
small weights and c is a fixed constant providing a trade-off between the regularization
term and the training error. Note that to compensate for different units and scales of the
movement dimensions one could either define a different εs and cs for each dimension
of the movement or, conversely, scale the sth movement dimension. The tracking method
combined with the optimization specified here defines the complete algorithm. We name
this method the discriminative dynamic tracker (DDT).

12.4.2 A Dual Solution

The derivation of the dual of the learning problem defined in (12.2) is rather mundane (e.g.,
Smola and Schölkopf (1998)) and is thus omitted. Briefly, we replace the ε-loss with pairs
of slack variables. We then write a Lagrangian of the primal problem and replace zi

t with
its definition from (12.1). We then differentiate the Lagrangian with respect to the slack
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variables and W and obtain a dual optimization problem. We present the dual problem in
a top-down manner, starting with the general form and finishing with a kernel definition.
The form of the dual is

max
α,α∗

−1

2
(α∗ − α)

T G (α∗ − α) + (α∗ − α)
T

y − (α∗ + α)
T

ε

s.t. α,α∗ ∈ [0, c] . (12.3)

Note that the above expression conforms to the dual form of SVR. Let  equal the size of
the movement space (d), multiplied by the total number of time steps in all the training
trajectories. α,α∗ ∈ R� are vectors of Lagrange multipliers, y ∈ R� is a column

concatenation of all the training set movement trajectories

[(
y1

1

)T · · ·
(
ym

tm
end

)T
]T

, ε =

[ε, . . . , ε]T ∈ R�, and G ∈ R�×� is a Gram matrix (vT denotes transposition). One
difference between our setting and the standard SVR lies within the size of the vectors
and Gram matrix. In addition, a major difference is the definition of G. We define G here
in a hierarchical manner. Let i, j ∈ {1, . . . ,m} be trajectory (trial) indexes. G is built
from blocks indexed by Gij , which are in turn made from basic blocks, indexed by K

ij
tq as

follows

G =

⎛⎜⎜⎝
G11 · · · G1m

...
. . .

...

Gm1 · · · Gmm

⎞⎟⎟⎠ , Gij =

⎛⎜⎜⎜⎝
K

ij
11 · · · K

ij

1tj

end

...
. . .

...

K
ij
ti
end

1
· · · K

ij

ti
end

tj

end

⎞⎟⎟⎟⎠ ,

where block Gij refers to a pair of trials (i and j). Finally, each basic block K
ij
tq refers to a

pair of time steps t and q in trajectories i and j respectively. ti
end, tjend are the time lengths

of trials i and j. Basic blocks are defined as

K
ij
tq =

t∑
r=1

q∑
s=1

(
At−r

)
kij

rs

(
Aq−s

)T
, (12.4)

where kij
rs = k

(
oi

r,o
j
s

)
is a (freely chosen) basic kernel between the two neural observa-

tions oi
r and oj

s at times r and s in trials i and j, respectively. For an explanation of kernel
operators, we refer the reader to Vapnik (1995) and mention that the kernel operator can be
viewed as computing φ

(
oi

r

) · φ (oj
s

)
where φ is a fixed mapping to some inner product

space. The choice of kernel (being the choice of feature space) reflects a modeling decision
that specifies how similarities among neural patterns are measured. The resulting dual form
of the tracker is zt =

∑
k αkGtk where Gt is the Gram matrix row of the new example.

It is therefore clear from (12.4) that the linear dynamic characteristics of DDT result
in a Gram matrix whose entries depend on previous observations. This dependency is
exponentially decaying as the time difference between events in the trajectories grow.
Note that the solution of the dual optimization problem in (12.3) can be calculated by
any standard quadratic programming optimization tool. Also, note that direct calculation
of G is inefficient. We describe an efficient method in the sequel.
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12.4.3 Efficient Calculation of the Gram Matrix

Simple, straightforward calculation of the Gram matrix is time consuming. To illustrate
this, suppose each trial is of length ti

end = n; calculation of each basic block would take
Θ(n2) summation steps. We now describe a procedure based on a dynamic programming
method for calculating the Gram matrix in a constant number of operations for each basic
block.

Omitting the indexing over trials to ease notation, we are interested in calculating
the basic block Ktq. First, define Btq =

∑t
k=1 kkqA

t−k. The basic block Ktq can be
recursively calculated in three different ways from (12.4):

Ktq = Kt(q−1)A
T + Btq (12.5)

Ktq = AK(t−1)q + (Bqt)
T (12.6)

Ktq = AK(t−1)(q−1)A
T + (Bqt)

T
+ Btq − ktq . (12.7)

Thus, by adding (12.5) to (12.6) and subtracting (12.7) we get

Ktq = AK(t−1)q + Kt(q−1)A
T − AK(t−1)(q−1)A

T + ktqI .

Btq (and the entailed summation) is eliminated in exchange for a 2D dynamic program
with initial conditions

K1,1 = k11I , K1,q = K1(q−1)A
T + k1qI , Kt,1 = AK(t−1)1 + kt1I

12.4.4 Suggested Optimization Method

One possible way to solve the optimization problem (essentially, a modification of the
method described in Crammer and Singer (2001) for classification) is to sequentially solve
a reduced problem with respect to a single constraint at a time. Define

δi =

∣∣∣∣∣∣
∑

j

(
α∗

j − αj

)Gij − yi

∣∣∣∣∣∣
ε

− min
αi,α∗

i
∈[0,c]

∣∣∣∣∣∣
∑

j

(
α∗

j − αj

)Gij − yi

∣∣∣∣∣∣
ε

.

Then δi is the amount of ε-insensitive error that can be corrected for example i by keeping
all α

(∗)
j �=i constant and changing α

(∗)
i . Optimality is reached by iteratively choosing the

example with the largest δi and changing its α
(∗)
i within the [0, c] limits to minimize the

error for this example.

12.5 Experimental Setting

The data used in this work was recorded from the primary motor cortex of a rhesus (Macaca
Mulatta) monkey (˜4.5 kg). The monkey sat in a dark chamber and up to eight electrodes
were introduced into the MI area of each hemisphere. The electrode signals were amplified,
filtered, and sorted. The data used in this report were recorded on eight different days and
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include hand positions (sampled at 500 Hz), and spike times of single units (isolated by
signal fit to a series of windows) and multiunits (detection by threshold crossing) sampled
at 1 ms precision. The monkey used two planar-movement manipulanda to control two
cursors on the screen to perform a center-out reaching task. Each trial began when the
monkey centered both cursors on a central circle. Either cursor could turn green, indicating
the hand to be used in the trial. Then, one of eight targets appeared (go signal), the center
circle disappeared, and the monkey had to move and reach the target to receive liquid
reward. The number of multiunit channels ranged from 5 to 15, the number of single units
was 20 to 27, and the average total was 34 units per dataset. The average spike rate per
channel was 8.2 spikes/s. More information on the recordings can be found in Paz et al.
(2003).

The results we present here refer to prediction of instantaneous hand movements during
the period from “go signal” to “target reached” times of both hands in successful trials.
Note that some of the trials required movement of the left hand while keeping the right
hand steady, and vice versa. Therefore, although we considered only movement periods
of the trials, we had to predict both movement and nonmovement for each hand. The
cumulative time length of all the datasets was about 67 minutes. Since the correlation
between the movements of the two hands tend toward zero, we predicted movement for
each hand separately, choosing the movement space to be [x, y, vx, vy, ax, ay]

T for each of
the hands (preliminary results using only [x, y, vx, vy]

T were less accurate).
We preprocessed the spike trains into spike counts in a running window of 100 ms

(choice of window size is based on previous experience (Shpigelman et al. (2003))). Hand
position, velocity, and acceleration were calculated using the 500 Hz recordings. Both
spike counts and hand movement were then sampled at steps of 100 ms (preliminary results
with a step size of 50 ms were negligibly different for all algorithms). A labeled example{
yi

t,o
i
t

}
for time t in trial i consisted of the previous 10 bins of population spike counts

and the state, as a 6D vector for the left or right hand. Two such consecutive examples
would than have 9 time bins of spike count overlap. For example, the number of cortical
units q in the first dataset was 43 (27 single and 16 multiple) and the total length of all
the trials that were used in that dataset is 529 s. Hence, in that session there are 5,290
consecutive examples where each is a 43 × 10 matrix of spike counts along with two 6D
vectors of endpoint movement.

To run our algorithm we had to choose base kernels, their parameters, A and c (and θ, to
be introduced below). We used the Spikernel (Shpigelman et al. (2003)), a kernel designed
to be used with spike rate patterns, and the simple dot product (i.e., linear regression).
Kernel parameters and c were chosen (and subsequently held fixed) by fivefold cross-
validation over half of the first dataset only. We compared DDT with the Spikernel and
with the linear kernel to standard SVR using the Spikernel and the Kalman filter. We
also obtained tracking results using both DDT and SVR with the standard exponential
kernel. These results were slightly less accurate on average than with the Spikernel and are
therefore omitted here. The Kalman filter was learned assuming the standard state space
model (yt = Ayt−1 + η , ot = Hyt + ξ, where η, ξ are white Gaussian noise with
appropriate correlation matrices) such as in Wu et al. (2005). y belonged to the same 6D
state space as described in section 12.3. To ease the comparison, the same matrix A that
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Table 12.1 Mean R2, MAEε and MSE (across datasets, folds, hands, and directions) for each
algorithm.

R2 MAEε MSE
Algorithm pos. vel. accl. pos. vel. accl. pos. vel. accl.

Kalman filter 0.64 0.58 0.30 0.40 0.15 0.37 0.78 0.27 1.16
DDT-linear 0.59 0.49 0.17 0.63 0.41 0.58 0.97 0.50 1.23
SVR-Spikernel 0.61 0.64 0.37 0.44 0.14 0.34 0.76 0.20 0.98
DDT-Spikernal 0.73 0.67 0.40 0.37 0.14 0.34 0.50 0.16 0.91

was learned for the Kalman filter was used in our algorithm (though we show that it is
not optimal for DDT), multiplied by a scaling parameter θ. This parameter was selected to
produce best position results on the training set. The selected θ value is 0.8.

The figures that we show in section 12.6 are of test results in fivefold cross-validation on
the rest of the data. Each of the eight remaining datasets was divided into five folds. Four
fifths were used for training (with the parameters obtained previously and the remaining
one fifth as a test set). This process was repeated five times for each hand. Altogether we
had 8sets × 5folds × 2hands = 80 folds.

12.6 Results

We begin by showing average results across all datasets, folds, hands, and X/Y directions
for the four algorithms that are compared. Table. 12.1 shows mean correlation coefficients
(R2, between recorded and predicted movement values), mean ε insensitive absolute errors
(MAEε), and mean squared errors (MSE). R2 is a standard performance measure, MAEε

is the error minimized by DDT (subject to the regularization term), and MSE is minimized
by the Kalman filter. Under all the above measures the DDT-Spikernel outperforms the rest
with the SVR-Spikernel and the Kalman Filter alternating in second place.

To understand whether the performance differences are significant we look at the dis-
tribution of position (X and Y) R2 values at each of the separate tests (160 altogether).
Figure 12.1 shows scatter plots of R2 results for position predictions. Each plot compares
the DDT-Spikernel (on the Y axis) with one of the other three algorithms (on the X axes).
In spite of the large differences in accuracy across datasets, the algorithm pairs achieve
similar success, with the DDT-Spikernel achieving a better R2 score in almost all cases.

To summarize the significance of R2 differences, we computed the number of tests in
which one algorithm achieved a higher R2 value than another algorithm (for all pairs,
and in each of the position, velocity, and acceleration categories). The results of this
tournament among the algorithms are presented in figure 12.2 as winning percentages.
The graphs produce a ranking of the algorithms, and the percentages are the significances
of the ranking between pairs. The DDT-Spikernel is significantly better than the rest in
tracking position.

The matrix A in use is not optimal for our algorithm. The choice of θ scales its effect.
When θ = 0, we get the standard SVR algorithm (without state dynamics). To illustrate the
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Figure 12.1 Correlation coefficients (R2, of predicted and observed hand positions) comparisons
of the DDT-Spikernel versus the Kalman filter (left), DDT-linear (center), and SVR-Spikernel (right).
Each data point is the R2 value obtained by the DDT-Spikernel and by another method in one fold
of one of the datasets for one of the two axes of movement (circle/square) and one of the hands
(filled/nonfilled). Results above the diagonals are cases were the DDT-Spikernel outperforms.
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Figure 12.2 Comparison of R2-performance among algorithms. Each algorithm is represented by
a vertex. The weight of an edge between two algorithms is the fraction of tests in which the algorithm
on top achieves a higher R2 score than the other. A bold edge indicates a fraction higher than 95%.
Graphs from left to right are for position, velocity, and acceleration, respectively.

effect of θ, we present in figure 12.3 the mean (over five folds, X/Y direction, and hand) R2

results on the first dataset as a function of θ. The value chosen to minimize position error
is not optimal for minimizing velocity and acceleration errors. Another important effect
of θ is the number of the support patterns in the learned model, which drops considerably
(by about one third) when the effect of the dynamics is increased. This means that more
training points fall strictly within the ε-tube in training, suggesting the kernel that tacitly
results from the dynamical model is better suited for the problem. Lastly, we show a sample
of test tracking results for the DDT-Spikernel and SVR-Spikernel in figure 12.4. Note that
the acceleration values are not smooth and, therefore, are least aided by the dynamics of
the model. However, adding acceleration to the model improves the prediction of position.
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12.7 Conclusion

We described and reported experiments with a dynamical system that combines a linear
state mapping with a nonlinear observation-to-state mapping. The estimation of the sys-
tem’s parameters is transformed to a dual representation and yields a novel kernel for tem-
poral modeling. When a linear kernel is used, the DDT system has a similar form to the
Kalman filter as t → ∞. However, the system’s parameters are set to minimize the regu-
larized ε-insensitive 1 loss between state trajectories. DDT also bares similarity to SVR,
which employs the same loss yet without the state dynamics. Our experiments indicate that
by combining a kernel-induced feature space, and linear state dynamics with using a robust
loss we are able to leverage the trajectory prediction accuracy and outperform common ap-
proaches. Our next step toward an accurate brain-machine interface for predicting hand
movements is the development of a learning procedure for the state dynamic mapping A

and further developments of neurally motivated and compact representations.
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Introduction

The goal of brain-computer interface research is the development of suitable techniques
to map the high-dimensional brain signal into a control signal for a feedback application.
Generally, one can distinguish two ways to achieve this goal. In the operant conditioning
approach (e.g., Birbaumer et al. (1999)), a fixed translation algorithm is used. The user has
to learn how to control the application based on the observed feedback. Unfortunately,
this process requires extensive training for weeks or even months. On the other hand,
in the machine learning approach, a learning machine is adapted to the specific brain
signals of the user based on a calibration measurement in which the subject performs
well-defined mental tasks such as imagined movements (e.g., Blankertz et al. (2006a)).
Although not specifically required to, the subject inevitably also adapts to the system. This
process is often called coadaptation and usually gives rise to further improvement after
some time. Note that in most current BCI systems, elements of both strategies, that is,
operant conditioning and machine learning, can be found.

In this part of the book, we focus on techniques mainly for machine learning that allow us
to improve the decoding of the brain signal into a control signal. Here typically EEG is used
to examplify this process. It should be noted, however, that the data analysis approaches
outlined also can be used for invasive data or even data analysis beyond the field of BCI.

In chapter 13, we start by presenting several techniques from signal processing and
machine learning that are of use for BCI analysis. Furthermore, we address the topic of
generalization, that is, the question whether the performance of an algorithm evaluated on
some offline data will be representative also for future data, say, of a feedback experiment.

Chapter 14 discusses the question of which spatial filtering can be used profitably. The
problem is illuminated for different recording methods (ECoG, EEG, and MEG). Finally
the question of how many trials are needed to successfully train a classifier is addressed.

In the following chapters, two techniques for feature extraction will be introduced. First,
Anderson et al (chapter 15) describe their short-time PCA approach to process EEG signal.
In a second chapter by Menendez et al (chapter 16), local field potentials for feature
extraction are discussed.

In chapter 17, we introduce a method to process error potentials.
One major challenge in brain-computer interface research is to deal with the nonsta-

tionarity of the recorded brain signals caused, for example, by different mental states or
different levels of fatigue. One solution to this problem is the choice of features that are
invariant to nonstationarities. Another choice, which we discuss in chapter 18, is to contin-
uously adapt the classifier during the experiment to compensate for the changed statistics.
In this chapter, three views by the groups in Martigny, Graz, and Berlin are presented.
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Finally, we illuminate in chapter 19 the question of how we can compare different BCI
systems. To this end, different evaluation criteria such as information transfer rate and
kappa-value are introduced and compared.

Note that this part is intended to present an overview of existing data analysis methods
for BCI; it will inevitably remain somewhat biased and incomplete. For more details, the
reader is provided with many pointers to the literature.

Guido Dornhege and Klaus-Robert Müller
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13.1 Abstract

This chapter discusses signal processing and machine learning techniques and their appli-
cation to brain-computer interfacing. A broader overview of the general signal processing
and classification methods as used in single-trial EEG analysis is given. For more special-
ized algorithms, the reader is referred to the original publications. Furthermore, validation
techniques and robustification are discussed briefly.

13.2 Introduction

Brain-computer interface research essentially involves the development of suitable tech-
niques to map the high-dimensional EEG signal into a (typically one- to three-dimensional)
control signal for a feedback application. The operant conditioning approach (Birbaumer
et al. (1999); Elbert et al. (1980); Rockstroh et al. (1984)) uses a fixed translation algo-
rithm to generate a feedback signal from EEG. Users are instructed to watch a feedback
signal and to find out how to voluntarily control it. Successful operation is reinforced by
a reward stimulus. In such BCI systems the adaption of the user is crucial and typically
requires extensive training. On the other hand, machine learning oriented groups construct
user adapted systems to relieve a good amount of the learning load from the subject. Using
machine learning techniques, we adapt many parameters of a general translation algorithm
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to the specific characteristics of the user’s brain signals (Blankertz et al. (2002, 2006a);
Müller and Blankertz (2006); Millán et al. (2004a) and chapters 5 and 14). This is done
by a statistical analysis of a calibration measurement in which the subject performs well-
defined mental acts such as imagined movements. Here, in principle, no adaption of the
user is required, but it can be expected that users will adapt their behavior during feed-
back operation. Most BCI systems are somewhere between those extremes. Some of them
are continuously adapting the parameters of feature extraction or classification (see chap-
ter 18).

Starting with the unprocessed EEG data, one has to reduce the dimensionality of the
data without losing relevant information. Prominent techniques for this feature extraction
are presented in sections 13.3 and 13.4. These features then must be translated into a control
signal (see section 13.6). This can be done, for example, by a classifier, a regression, or a
filter. Here we do not distinguish between those types and we call them classifier. Linear
discriminant analysis (see section 13.6.2), for example, is derived as a classifier. But it is
equivalent to a least square regression (see section 13.6.4) on the class labels and could
be interpreted also as a kind of filter. The problem of how to estimate the performance
of a classifier on new data—the estimation of the generalization error—is discussed in
section 13.8. It should be mentioned that EEG data are usually distorted by artifacts whose
detrimental influence on the classifier may need to be reduced. We briefly discuss this
problem, called robustification, in section 13.9. Finally, because the EEG signal is highly
nonstationary, one needs either to process data in such a way that the output of a static
classifier is invariant to these changes or the classifier should adapt to the specific changes
over time. Adaptation methods are discussed in detail in chapter 18.

An alternative overview of possible machine learning techniques in the context of BCI
is given in Müller et al. (2004a).

13.2.1 Why Machine Learning for Brain-Computer Interfacing?

Traditional neurophysiology investigates the “average(d)” brain. As a simple example,
an investigation of the neural correlates of motor preparation of index finger movements
would involve a number of subjects repeatedly doing such movements. A grand average
over all trials and all subjects would then reveal the general result, a pronounced cortical
negativation focused in the corresponding (contralateral) motor area. On the other hand,
comparing intrasubject averages (cf. figure 13.1) shows a huge subject-to-subject variabil-
ity, which causes a large amount of variance in the grand average. Now let us go one step
further by restricting the investigation to one subject. Comparing the session-wide aver-
ages in two (motor imagery) tasks between the sessions recorded on different days, we
encounter again a huge variability (session-to-session variability) (cf. figure 13.2). This
suggests that an optimal system needs to be adapted to each new session and each individ-
ual user. When it comes to real-time feedback as in brain-computer interfaces, we still have
to go one step further. The system needs to be able to identify the mental state of a subject
based on one single trial (duration ≤ 1 s) of brain signals. Figure 13.3 demonstrates the
strong trial-to-trial variance in one subject in one session (the experiment being the same
as above). Nevertheless, our BBCI system (see chapter 5) was able to classify all those tri-
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Figure 13.1 Six subjects performed left- vs. right-hand index finger tapping. Even though the kind
of movement was very much the same in each subject and the task involves a highly overlearned
motor competence, the premovement potential maps (−200 to −100 ms before keypress; dark means
negative, light means positive potential) exhibit a great diversity among subjects.
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Figure 13.2 One subject imagined left- vs. right-hand movements on different days. The maps
show spectral power in the alpha frequency band. Even though the maps represent averages across
140 trials each, they exhibit an apparent diversity.

Figure 13.3 One subject imagined left- vs. right-hand movements. The topographies show spectral
power in the alpha frequency range during single trials of 3.5-s duration. These patterns exhibit an
extreme diversity although recorded from one subject on one day.
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als correctly. The tackling of the enormous trial-to-trial variability is a major challenge in
BCI research. Given the high subject-to-subject and session-to-session variability, it seems
appropriate to have a system that adapts to the specific brain signatures of each user in each
session. We believe that advanced techniques for machine learning are an essential tool in
coping with all kinds of variabilities demonstrated in this section.

13.2.2 Why Preprocessing?

Usually it is difficult for classification algorithms to extract relevant information if the di-
mensionality of the data (feature vector) compared to the number of existing examples is
high. This problem is called “Curse of Dimensionality” in the machine learning world. Ac-
cordingly, the dimensionality has to be reduced suitably in the sense that undiscriminative
information is eliminated whereas discriminative information remains. As a numeric ex-
ample, say that a BCI system should calculate a control signal from a 1-second window of
a 32-channel EEG sampled at 100 Hz. Then the number of dimensions of the raw features
is 3,200. Many classification algorithms are based on the estimation of a feature covari-
ance matrix, which has in this case more than 5,118,400 parameters. Traditional statistical
estimation methods need several times more samples than parameters to estimate, which
here would require an impossible amount of calibration data. Regularization techniques
can be used in cases where the number of training samples is less than the number of fea-
ture dimensions, but given the low signal-to-noise ratio in EEG, the gap for classifying
directly on raw data is suboptimal (see Blankertz et al. (2003) for quantitative results). Ac-
cordingly preprocessing steps that decrease the dimensionality of the features are needed.
While some processing methods rely on neurophysiological a priori knowledge (e.g., spa-
tial Laplace filtering at predefined scalp locations; see section 13.4.3), other methods are
automatic (e.g., spatial filters determined by a common spatial pattern analysis; see sec-
tion 13.4.6).

13.3 Spectral Filtering

13.3.1 Finite and Infinite Impulse Response Filter

If restrictions to some frequency band are reasonable, due to the chosen paradigm, one
can choose between several filter methods. A common approach is the use of a digital
frequency filter. Regarding the desired frequency range, two sequences a and b with length
na and nb are required, which can be calculated in several ways, for example, butterworth
or elliptic (cf. Oppenheim and Schafer (1989)). Afterward the source signal x is filtered to
y by

a(1)y(t) = b(1)x(t) + b(2)x(t − 1) + ... + b(nb)x(t − nb − 1)

− a(2)y(t − 1) − ... − a(na)y(t − na − 1)

for all t.
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The special case where na and a are constrained to be 1 is called the finite impulse
response (FIR) filter. The advantage of IIR filters is that they can produce steeper slopes
(between pass- and stop-bands), but it is more intricate to design them because they can
become unstable, while FIR filters are always stable.

13.3.2 Fourier-Based Filter

Another alternative for temporal filtering is Fourier-based filtering. By calculating the
short-time Fourier transformation (STFT) (see Oppenheim and Schafer (1989)) of a signal
one switches from the temporal to the spectral domain. The filtered signal is obtained
by choosing a suitable weighting of the relevant frequency components and applying the
inverse Fourier transformation (IFT). The length of the short time window determines the
frequency resolution. To filter longer signals, the overlap-and-add technique (Crochiere
(1980)) is used. The spectral leakage effect that can hamper Fourier-based techniques can
be reduced by the right choice of the window (cf. Harris (1978)).

13.4 Spatial Filtering

Raw EEG scalp potentials are known to be associated with a large spatial scale owing
to volume conduction. In a simulation in Nunez et al. (1997), only half the contribution
to one scalp electrode comes from sources within a 3 cm radius. This is in particular a
problem if the signal of interest is weak, for example, sensorimotor rhythms, while other
sources produce strong signals in the same frequency range like the α rhythm of the visual
system. Several spatial filtering techniques are used to get more localized signals, or signals
corresponding to single sources. Some of the prominent techniques are presented in this
section. As a demonstration of the importance of spatial filters, figure 13.4 shows spectra of
left vs. right hand motor imagery at the right hemispherical sensorimotor cortex. All plots
are calculated from the same data but using different spatial filters. While the raw channel
shows only a peak around 9 Hz but almost no discrimination between the two conditions,
the bipolar and the common average reference filter can improve a little. However, the
Laplace and much more so the CSP filter reveal a second spectral peak around 12 Hz with
strong discriminative power.

13.4.1 Bipolar Filtering

While in EEG recordings often all channels are measured as voltage potential relative to
a standard reference (referential recording), it also is possible to record all channels as
voltage differences between electrode pairs (bipolar recording). From referential EEG, one
can easily get bipolar channels by subtracting the respective channels, for example,

FC4 − CP4 = (FC4 − Ref) − (CP4 − Ref) = FC4Ref − CP4Ref.
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Figure 13.4 Spectra of left vs. right hand motor imagery. All plots are calculated from the same
dataset but using different spatial filters. The discrimination between the two conditions is quantified
by the r2-value (see section 13.5).

Bipolar filtering reduces the effect of spatial smearing by calculating the local voltage
gradient. This puts an emphasis on local activity while contributions of more distant
sources are attenuated.

13.4.2 Common Average Reference (CAR)

To obtain common average reference signals, the mean of all EEG channels is subtracted
from each individual channel. While the influence of far field sources is reduced, CAR may
introduce some undesired spatial smearing. For example, artifacts from one channel can be
spread into all other channels.

13.4.3 Laplace Filtering

More localized signals can be obtained by a Laplace filter. In a simple approximation,
Laplace signals are obtained by subtracting the average of surrounding electrodes from
each individual channel, for example,

C4Lap = C4Ref − 1

4
(C2Ref + C6Ref + FC4Ref + CP4Ref) .
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Data PCA−filtered data

Figure 13.5 On the left, Gaussian-distributed data are visualized. After applying PCA the source
signals on the right are retained. Each data point has the same grey level in both plots.

The choice of the set of surrounding electrodes determines the charateristics of the spatial
filters. Mostly used are small Laplacians (as in the example) and large Laplacians using
neighbors at 20 percent distance with distance as defined in the international 10-20 system.
See also the discussion in McFarland et al. (1997a).

13.4.4 Principal Component Analysis

Given some data xk ∈ IRm for k = 1, ..., n, PCA tries to reduce the dimensionality
of the feature space to p dimensions by finding an optimal approximation of the data
xk by xk ≈ b + Wak with b ∈ IRm, ak ∈ IRp, p ≤ m, and W ∈ IRm,p. If this
optimization is done by minimizing the squared error

∑
k=1,...,n||xk − (b + Wak)||2 and

simultaneously fixing the diagonal of W�W to 1, one finds the solution by choosing
b = 1

n

∑
k=1,...n xk, W by the eigenvectors of the highest p eigenvalues (suitably scaled)

of the so-called scatter matrix
∑

k=1,...,n(xk − b)(xk − b)� and ak = W�(xk − b).
Consequently, W consists of orthogonal vectors, describing the p-dimensional subspace of
IRm, which shows the best approximation to the data. For normal distributed data, one finds
the subspace by examining the covariance matrix, which indicates the direction with the
largest variation in the data. In figure 13.5 the principal components of a two-dimensional
Gaussian distribution are visualized. In this case the data were only rotated.

In Schölkopf et al. (1998) this idea is extended to nonlinear structures by kernelization
and is called kernel PCA (kPCA) and applied to denoising in Mika et al. (1999, 2003).

13.4.5 Independent Component Analysis

Suppose n recorded signals x(t) = (x1(t), ..., xn(t)) for t = 1, ..., T are given. The
basis assumption of ICA is that these n signals are modeled as stationary, instantaneous
linear combinations of n unknown source signals s(t) = (s1(t), ..., sn(t)) with xi(t) =∑n

j=1 ai,jsj(t) for i = 1, ..., n and t = 1, ..., T . This can be reformulated to x(t) = As(t)

with the so-called mixing matrix A = (ai,j)i,j=1,...,n, which is assumed to be square and
invertible. One needs further assumptions to be able to reconstruct A and s if both are
unknown. The key assumption of ICA is the independence of the source signals, that is,
that the time course of si(t) does not provide any information about the time course of
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Source signals Mixed signals Demixed signals

Figure 13.6 On the left, two independent source signals (Gaussian to the power of 3) are shown.
After multiplication of a mixing matrix the mixed signal in the middle is achieved. After applying
JADE the signals on the right are revealed. Each data point has the same grey level in both plots.

sj(t) for j = i. Thus, ICA tries to find a separating matrix B such that the resulting signals
ŝ(t) = Wx(t) are maximally independent.

Driven by this goal, one can find a solution (unique except for permutation and scaling)
if at most one source has a Gaussian distribution, the source signals have different spectra,
or the source signals have different variances. Tools from information geometry and the
maximum likelihood principle have been proposed to get an objective function for an
optimization approach (see Hyvarinen et al. (2001) for an overview).

Several algorithms exist that assume non-Gaussianity, for example, JADE (joint-
approximate diagonalization of eigenmatrices) (cf. Cardoso and Souloumiac (1993)),
FastICA (cf. Hyvärinen (1999)), or Infomax (cf. Bell and Sejnowski (1995)). If one as-
sumes time structure (like different spectra or variances), the prominent algorithms are
TDSEP (cf. Ziehe and Müller (1998)) and SOBI (cf. Belouchrani et al. (1997)). If one
assumes independent data (i.e., no time structure) but nonstationarity in the data, SEPA-
GAUS (cf. Pham (1996)) is also an interesting tool. All these algorithms use the linear
assumption x(t) = As(t).

In NGCA (cf. Blanchard et al. (2006)), a non-Gaussian subspace is estimated by linearly
projecting the noninformative, that is, Gaussian subspace that may even contain more than
one Gaussian source. For nonlinear extensions of the TDSEP algorithm by kernelization,
we refer to, for example, Harmeling et al. (2002, 2003).

The typical ICA situation is visualized in figure 13.6. Here two independent source
signals (Gaussian to the power of three) were mixed by a random nonorthogonal matrix to
get the mixed signals. Now the JADE algorithm was applied to the data so that the demixed
signals remain. After suitable reordering and scaling, they are very similar to the source
signal. PCA would fail here since the mixed signals are not orthogonal in general, which
is the key assumption for PCA.

13.4.6 Common Spatial Patterns

The CSP technique (see Fukunaga (1990)) allows us to determine spatial filters that
maximize the variance of signals of one condition (e.g., imagining a left-hand movement)
and at the same time minimize the variance of signals of another condition (e.g., imagining
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a right-hand movement). Since variance of bandpass filtered signals is equal to bandpower,
CSP filters are well suited to discriminate mental states that are characterized by ERD/ERS
effects (Koles and Soong (1998)). As such it has been well used in BCI systems (Guger
et al. (2000); Blankertz et al. (2006a)) where CSP filters are calculated individually for
each subject on the data of a calibration measurement.

Technically, CSP analysis goes as follows: Let X1 and X2 be the (time × channel)
data matrices of the bandpass filtered EEG signals (concatenated trials) under the two
conditions, and Σ1 and Σ2 be the corresponding estimates of the covariance matrices
Σi = X�

i Xi. These latter two matrices are simultaneously diagonalized in a way that
the eigenvalues of Σ1 and Σ2 sum to 1. Practically, this can be done by calculating the
generalized eigenvectors V :

V �Σ1V = D and V �(Σ1 + Σ2)V = I (13.1)

where I is the identity matrix and the diagonal matrix D contains the eigenvalues of Σ1.
The column vectors of V (eigenvectors) are the filters of the common spatial patterns.
Looking at one filter Vj (j-th row V ), the variance of the projected signals of condition 1 is
var(X1Vj) = V �

j Σ1Vj = dj (dj being the jth diagonal element of D, i.e., the eigenvalue
of Vj). From (13.1) we get

V �Σ2V = I − V �Σ1V = I − D (13.2)

so the variance of the projected signals of condition two is var(X2Vj) = 1−dj . This means
that the best contrast is provided by filters with high Σ1-eigenvalues (large variance for
condition one and small variance for condition two) and by filters with low Σ1-eigenvalues
(and vice versa). Accordingly, taking the six filters corresponding to the three largest and
the three smallest eigenvalues would be a reasonable choice. But when a large amount of
calibration data is not available it is advisable to use a more refined technique to select the
patterns or manually choose them by visual inspection.

Several extensions to the CSP algorithm have been proposed, for which we refer the
interested reader to the original publications. Extensions to multiclass algorithms are
discussed in Dornhege et al. (2004a,b). Separate CSPs in different frequency bands were
used in Blanchard and Blankertz (2004) to win the BCI Competition II for data set IIa.
Algorithms for the simultaneous optimization of spectral and spatial filters are proposed in
Lemm et al. (2005), Dornhege et al. (2006b), and Tomioka et al. (2006).

13.5 Discriminability of Features

When analyzing a new experimental paradigm, usually a larger variety of features is
derived. Measures of discriminability of the features may help to choose a subset of those
features for the actual BCI system in a semiautomatic manner. For techniques for automatic
feature selection, the reader is referred to Guyon et al. (2006b), Lal et al. (2004), Schröder
et al. (2005), and Müller et al. (2004a).
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One example for a measure of discriminability is the Fisher score. Given the labels, the
Fisher score for data (xk)k=1,...,N with labels (yk)k=1,...,N is defined for all dimensions i

by

si =
|μ(i)

1 − μ
(i)
−1|

σ
(i)
1 + σ

(i)
−1

with μ
(i)
y := 1

#{k:yk=−y}

∑
k:yk=−y xk,i and σ

(i)
y = 1

#{k:yk=y}

∑
k:yk=y(xk,i −μ

(i)
y )2 for

y = ±1. Alternatively, one could also choose students’ t-statistics or biserial correlation
coefficients (r- resp. r2-values, see Müller et al. (2004a)). See Guyon et al. (2006a) for
more scoring functions.

13.6 Classification

We start with n labeled trials in the form (xi, yi) for i = 1, ..., n with xi ∈ IRm as data
points in some Euclidean space and yi ∈ {1, ..., N} as class labels for N > 2 different
classes or yi ∈ {±1} as class labels for a binary problem. The goal of classification is
to find a function f : IRm → IRN resp. f : IRm → IR such that for an x ∈ IRm the
function argmax f(x) resp. sign f(x) is a good estimate for the true label. For example,
if the data can be described by a probability distribution X (for the data) and Y (for the
label), one would try to minimize the misclassification risk P (argmax f(X) = Y ) or
P (sign f(X) = Y ). Unfortunately, the probability distributions are usually not given;
only a finite number of samples coming from these distributions are presented. Thus, in
this case the probability distribution must be estimated.

It should be mentioned that in the following we use the one-dimensional classifier
f : IRm → IR instead of the two-dimensional classifier f : IRm → IR2 for binary
problems. Note that both formulations are equivalent since finding the maximum of two
values can be decided by the sign of the difference.

We first introduce quadratic discriminant analysis (QDA) (see section 13.6.1) and its
specialization linear discriminant analysis (LDA) (see section 13.6.2), which both start
with some assumptions concerning the probability distribution of the data and estimate all
model parameters. The classifier is then determined by the minimization of the misclassi-
fication risk. For practical cases, an important variant exists that takes care of overfitting
effects by suitable regularization called regularized (linear) discriminant analysis (RDA or
RLDA) (see section 13.6.3).

Afterward we discuss least qquare regression (LSR) (see section 13.6.4), Fisher dis-
criminant analysis (see section 13.6.5), support vector machines (see section 13.6.6), and
linear programming machines (LPM) (see section 13.6.7). Further methods can be found in
the literature, for example, Adaboost (Meir and Rätsch (2003)), Neural Networks (Bishop
(1995); Orr and Müller (1998)), or decision trees (Breiman et al. (1984); Friedman (1991)).

For nonlinear problems, kernel-based methods (Vapnik (1995); Schölkopf and Smola
(2002); Müller et al. (2001)) have proven to be very successful. However, nonlinear
methods need to estimate more parameters, so a larger training set is needed. Although
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the linear case is a special case of “nonlinear” classifiers, for data allowing approximately
a linear separation, linear classifiers are typically more robust (cf. Müller et al. (2003a)).

A further overview of existing classification methods for BCI can be found in Anderson
(2005).

13.6.1 Quadratic Discriminant Analysis

Let us consider the following situation, namely that the given data are normal distributed:

Theorem 13.6.1
Let X ∈ IRm, Y ∈ {1, ..., N} or Y ∈ {±1} random variables with m,N ∈ IN,N ≥ 2
fixed and (X|Y = y) ∼ N (μy,Σy) normal distributed for y = 1, ..., N or y = ±1 with
μy ∈ IRm and Σy ∈ IRm,m positive definite. Furthermore, define f̂ : IRm → IRN ,

x �→
„
−1

2
x�Σ−1

y x + μ�

y Σ−1
y x − 1

2
μ�

y Σ−1
y μy + log(P (Y = y)) − 1

2
log(det(Σy))

«
y=1,...,N

resp. f̂ : IRm → IR

x �→
„
−1

2
x�Σ−1

1 x + μ�

1 Σ−1

1 x − 1

2
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1 Σ−1
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«

−
„
−1
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−1Σ
−1

−1x − 1

2
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−1Σ
−1

−1μ−1 + log(P (Y = −1)) − 1

2
log(det(Σ−1))

«
.

Then for all functions f : IRm → {1, ..., N} or f : IRm → {±1} with f̄ := argmax(f)

or f̄ := sign(f) it holds true that

E(f(X) = Y ) ≤ E(f̄(X) = Y ).

In other words, f̄ is the Bayes optimal classifier for this problem.

See Duda et al. (2001) for the proof. These results can be further simplified if equal
class priors are assumed. This optimal classifier for normal-distributed data is called
Quadratic Discriminant Analysis (QDA). To use it, one must estimate the class covariance
matrices and the class means. This is usually done by μy = 1

#{j:yj=y}

∑
j:yj=y xj and

Σy = 1
#{j:yj=y}−1

∑
j:yj=y(xj − μy)(xj − μy)� if the data are given as column vectors.

Note that the optimality of the classifier can be granted only if the parameters of the
distribution are known. But if the distribution has to be estimated, which is usually the
case, the required classifier is typically not optimal anymore.

13.6.2 Linear Discriminant Analysis

Under specific assumptions, theorem 13.6.1 can be simplified as follows:
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Corollary 13.6.2
In the situation of theorem 13.6.1 with Σ = Σy for all y ∈ {1, ..., N} resp. y ∈ {±1} the
optimal function f̂ is given by

f̂(x) =

(
μ�

y Σ−1x − 1

2
μ�

y Σ−1μy + log(P (Y = y))

)
y=1,...,N

resp.

f̂(x) =

„
(μ1 − μ−1)

�Σ−1x − 1

2
(μ1 − μ−1)

�Σ−1(μ1 + μ−1) + log

„
P (Y = 1)

P (Y = −1)

««
.

This classifier is called linear discriminant analysis (LDA). Again one can simplify this
problem by assuming equal class priors. The parameters can be estimated as above where
Σ is estimated by the mean of the Σi, weighted by the class priors.

13.6.3 Regularized (Linear) Discriminant Analysis

In LDA and QDA one has to estimate mean and covariance of the data. Especially for
high-dimensional data with few trials this estimation is very imprecise, since the number
of unknown parameters is quadratic in the number of dimensions. Thus, overfitting and
loss of generalization can result from the wrong estimation. To improve the performance,
Friedman (1989) suggests the introduction of two parameters λ and γ into QDA. Both
parameters modify the covariance matrices because the risk of overfitting for the covariance
matrix is higher than for the means.

The first parameter λ tries to robustify the estimation of the covariances for each class
by taking the covariances for the other classes into account. If Σy denotes the estimated
covariance for class y = 1, ..., N resp. y = ±1, the overall covariance Σ can be defined
by Σ = 1

N

∑N
y=1 Σy resp. Σ = 0.5(Σ1 + Σ−1). Then λ is used to interpolate between Σy

and Σ in the following way:

Σ̂y = (1 − λ)Σy + λΣ

with λ ∈ [0, 1]. With λ = 0 RDA complies normal QDA and with λ = 1 normal LDA.
The second parameter γ ∈ [0, 1] works on the single covariances Σ̂y . First of all,

one should note that it is more probable for Gaussian distributions to overestimate the
directions coming from eigenvectors with high eigenvalues of Σy . Thus, one introduces the
parameter γ, which decreases the higher eigenvalues and increases the lower eigenvalues
of the estimated covariance matrix until with γ = 1 a sphere remains. One derives this
shrunken covariance matrix by

Σ̄y = (1 − γ)Σ̂y +
γ

m
trace

(
Σ̂y

)
I

with m as the dimensionality of the data. If Σ̂y = V �DV is the spectral decomposition of
Σ̂y with V �V = I one gets

Σ̄y = (1 − γ)V �DV +
γ

m
trace

(
Σ̂y

)
V �V = V �[(1 − γ)D +

γ

m
trace (D) I]V.
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Figure 13.7 Starting with two estimated covariances and parameters λ = γ = 0 (the QDA
situation) shown in the lower left plot, one is able to modify this estimation by two parameters.
With increasing λ the matrices are made more similar until with λ = 1 the same covariances are
achieved (LDA) (lower right). The second parameter γ shrinks each individual covariance matrix
until with γ = 1 a sphere remains (upper left). In the extreme case λ = γ = 1 two equal spheres
are achieved (upper right). If λ = 1 (right column) this algorithm is called RLDA, since a linear
classifier remains. In all cases the resulting classification hyperplane is visualized.

Thus, Σ̄y has the same eigenvectors with modified eigenvalues in the required form.
The above formal approach of introducing hyperparameters to avoid overfitting is called
regularization (see Schölkopf and Smola (2002)). QDA is applied with Σ̄y instead of Σy .
This modification is called regularized discriminant analysis. In the special case where
λ = 1 one calls this method regularized linear discriminant analysis. Figure 13.7 shows
the influence of the parameters λ and γ for a binary problem.

13.6.4 Least Square Regression

Although multiclass extensions exist for the following classifiers, we only introduce the
binary algorithms here.

Suppose an unknown function f projects elements of IRm to IR (possibly with some
noise). The idea of regression is to find a function g based on some given examples xi

and f(xi) that optimally matches the unknown function f . Usually g is chosen based
on some function class, for example, linear functions. One can use this approach for
classification, too. Here the function f describes the mapping from the data to their
class label. In least square regression (cf. Duda et al. (2001)) one tries to minimize the
squared error made between the realization and the estimation by the function g. If a linear
function class is assumed, one consequently minimizes g(w) =

∑
i(w

�xi + b − yi)
2

(or simplified g(w) =
∑

i(w
�xi − yi)

2 by appending ones to xi ([xi, 1]�) and the b to
w ([w, b]�)). If one defines x = [x1, ..., xn] and y = [y1, ..., yn]�, this can be written
as min g(w) = min||x�w − y||22. Taking the derivative with respect to w and setting it
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equal to zero one gets xx�w = xy, and if xx� is invertible w = (xx�)−1xy. If it is not
invertible, one can introduce a small value ε and use xx� + ε instead of xx�. Finally, one
can introduce regularization, too. To do so g is exchanged by g(w) = w�w + C||x� − y||22
with some C > 0 where the unregularized solution is achieved if C → ∞.

One can prove that the w calculated by this approach is equal to the w calculated by
LDA, but the bias b can differ. Furthermore, the regularization works similarly except that
range and scaling are different.

13.6.5 Fisher Discriminant Analysis

For some arbitrary w we define μy = 1
#{i|yi=y}

∑
i|yi=y xi, μ̃y(w) = w�μy and s̃2

y(w) =∑
i|yi=y(w�xi− μ̃y)2. Note that one can easily add a bias term such as LSR, too. The idea

of the Fisher discriminant analysis (cf. Duda et al. (2001)) is to maximize the difference
between the projected class means whereas the variance of the projected data is minimized.
In other words, one looks for the maximum of

g(w) :=
(μ̃1(w) − μ̃−1(w))2

s̃2
1(w) + s̃2

−1(w)
.

One can calculate that (μ̃1(w) − μ̃−1(w))2 = w�SBw with SB = (μ1 − μ−1)(μ1 −
μ−1)

� and s̃2
y(w) = w�Syw with Sy =

∑
i|yi=y(xi − μy)(xi − μy)�, and thus

s̃2
1(w) + s̃2

−1(w) = w�SW w with SW = S1 + S−1. SW is called the within-class scatter
matrix and SB the between-class scatter matrix. Consequently, g(w) = w�SBw

w�SW w
. This

quotient is the well known Rayleigh quotient. One can determine the maximum of g by
calculating the generalized eigenvalues λi and eigenvectors wi between SB and SW (i.e.,
SBwi = λiSW wi) and choosing the highest one λmax with corresponding eigenvector w

(i.e., SBw = λmaxSW w). An easier analytical solution can be obtained if SW is invertible.
Since SBw = c(μ1 − μ−1) with some real-valued constant c (SB has rank one), one gets
cS−1

W (μ1 − μ−1) = λmaxw. Since the value of g(w) does not depend on the scaling of
w, one can fix w = S−1

W (μ1 − μ−1) as a solution. Finally, one should note that the Fisher
discriminant can be regularized, too. Here one would exchange SW by SW +CI with some
constant C ≥ 0. Unregularized Fisher discriminant is then a special case of regularized
Fisher Discriminant for C = 0.

One can prove that the w calculated by this approach is the same as calculated by LDA,
but the bias b can differ.

Mika et al. (2001) presents a mathematical programming approach to calculate Fisher’s
discriminant. Although this method is computationally more demanding, the approach
allows one to derive several different variants, like sparse Fisher and kernelizations (see
section 13.6.8) thereof.

13.6.6 Support Vector Machine

Suppose the given data can be separated by a hyperplane perfectly, that is, a projection w

and a bias b can be found such that yi(w
�xi + b) > 0 for all i. Without loss of generality,

one can scale w and b such that mini|yi=y y(w�xi + b) = 1 for y = ±1. In this case the
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classifier is said to be in canonical form (Vapnik (1995)). With these values the distance
from the discriminating hyperplane to the closest point (which is called the margin) can
be determined to be 1

||w||2
. For different hyperplanes in canonical form, those with smaller

w and thus with higher margin should be preferred. Consequently, this can be formulated
mathematically in the following optimization problem:

min
1

2
||w||22 s.t. yi(w

�xi + b) ≥ 1 for all i. (13.3)

Unfortunately, perfect separation is usually not possible. Thus, one modifies this approach
and allows errors by modifying the constraint to yi(w

�xi + b) ≥ 1 − ξi for all i with
ξi ≥ 0 (soft margin) and additionally punishes the error made in the objective by adding
C
n

∑
i ξi with some constant C > 0. This machine is called C-SVM. By analyzing the dual

problem, one finds that w can be determined by w =
∑

i αiyixi with some real numbers
αi. For data points xi with yi(w

�xi + b) > 1, one additionally gets that αi = 0. Thus,
only a few data points (called support vectors) are required for calculating w. But note that
usually all points are required to get this set of support vectors.

A slightly different formulation of the C-SVM is given by the ν-SVM

min
w,ρ,b,ξ

1

2
||w||22−νρ+

∑
i

ξi s.t. ρ > 0, yi(w
�xi+b) ≥ ρ−ξi, ξi ≥ 0 for all i (13.4)

with some 0 ≤ ν < 1. One can prove that the solution to the ν-SVM is equal to the solution
of the C-SVM with C = 1

ρ .
The advantage of the ν-SVM consists of the fact that the parameter ν informs us about

the number of support vectors, namely that the fraction of margin errors (data points with
ξi > 0) is smaller than ν, which in turn is smaller than the fraction of support vectors.

A more detailed overview about support vector machines can be found in Vapnik (1995),
Schölkopf and Smola (2002), and Müller et al. (2001).

13.6.7 Linear Programming Machine (LPM)

In a support vector machine the trained hyperplane normal vector w usually has only
nonzero entries. To get a sparse solution for w, that is, with many entries equal to zeros, a
slight modification of the SVM approach is made in the following way:

min
1

m
||w||1 +

C

n

∑
i

ξi s.t. yi(w
�xi + b) ≥ 1 − ξi, ξi ≥ 0 for all i.

Here the 1-Norm for w is used instead of the 2-Norm. One can prove that with higher C

the number of zero entries in w increases. The sparsity of the hyperplane can be used, for
example, for feature extraction, that is, for excluding nonrelevant features.

As an example, we use an EEG dataset (see Dornhege et al. (2004a, 2006b)). Here
a subject was asked to imagine left hand movements or foot movements several times.
The spectrum between 6 and 30 Hz of this EEG data was calculated by usual FFT for all
channels for all trials. Then an LPM classifier was trained on these data. The weights of
this classifier are visualized in figure 13.8 on the left. As the feature extraction method, one
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Figure 13.8 On the left, the weights of an LPM during classification of imagined left hand and foot
movements on FFT features for all channels. On the top right, the sums of these weights for each
channel are shown as spatial distribution. In both figures dark points correspond to high weights,
whereas white points correspond to zero, i.e., less important features. On the bottom right, the sums
of the classifier weights for each frequency bin are shown. High values correspond to important
frequencies.

should use all nonzero entries, which would decrease the number of features from 1,534
to 55 in this case. The sums of weights for each channel and each frequency bin also are
visualized in figure 13.8. The spatial distribution is plotted on the top right and shows the
expected neurophysiological structure, namely that the channels about motor cortex are
most important. On the bottom right the sums of the frequency bins are visualized, which
show that the activity around 11–12 Hz is most important. This can be suitably interpreted
by neurophysiology since an ERD in the μ rhythm can be expected during imagination of
movements.

Note that analogously to the ν-SVM, a ν-LPM can be formulated. More information
about linear programming machines are found in Bennett and Mangasarian (1992) and
Campbell and Bennett (2001).

13.6.8 The Kernel Trick

The space of linear functions is very limited and cannot solve all existing classification
problems. Thus an interesting idea is to map all trials by a function φ from the data space
to some (maybe infinite-dimensional) feature space and apply a linear method there (see
Boser et al. (1992); Vapnik (1995); Schölkopf and Smola (2002); Müller et al. (2001)). The
mapping is realized by

Φ : IRN → F ,x �→ Φ(x),

that is, the data x1, . . . , xn ∈ IRN is mapped into a potentially much higher dimensional
feature space F .
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Figure 13.9 Two dimensional classification example. Using the second order monomials
x2

1,
√

2x1x2, and x2
2 as features, a separation in feature space can be found using a linear hyperplane

(right). In input space this construction corresponds to a nonlinear ellipsoidal decision boundary
(left). From Müller et al. (2001).

Although this sounds very complex, for some classification algorithms like SVM (cf.
Müller et al. (2001)), LPM (cf. Campbell and Bennett (2001)), or Fisher Discriminant
(cf. Mika (2002)) only the scalar product in feature space is required to set up a classifier
and be able to apply it. This scalar product in feature space is called the kernel function
K : IRm×IRm → IR, (x, y) �→ 〈φ(x), φ(y)〉. A large number of kernels exist like the RBF
kernel (K(x, y) = exp(− ||x−y||22

2σ2 )) or the polynomial kernel (K(x, y) = (〈x, y〉+c)k with
some further parameters. Kernels can be engineered and adapted to the problem at hand;
for the first engineered SVM kernel see Zien et al. (2000). Furthermore, there are theorems
about the existence for a feature mapping if a kernel function IRm × IRm → IR is given
(see Müller et al. (2001)). Thus, with the help of the kernel trick, more complex (nonlinear)
structures can be learned in an optimal manner.

As an example, we use two-dimensional data from two classes (see figure 13.9 on the
left). After suitable mapping the data can be classified linearly (see figure 13.9 on the right).

Note that the kernelization trick can also be applied to any scalar product-based linear
algorithm (cf. Schölkopf et al. (1998)), for example, to feature extraction methods like
PCA (cf. Schölkopf et al. (1998)) called kPCA, and ICA (cf. Harmeling (2005)).

A discussion of linear versus nonlinear classification methods in BCI context is found
in Müller et al. (2003a).

13.7 Technique to Combine Different Features

In the case of BCI analysis, one can potentially extract different features, for example, slow
cortical potentials and attenuation of oscillatory features for imagined or real movements.
If more than one feature can be used and evidence is given that they are independent of
each other, then the following algorithm PROB can be used effectively for classification.
This algorithm is presented in Dornhege et al. (2003b, 2004a). The question of whether
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slow cortical potentials and attenuation of oscillatory features during imagined movements
are uncorrelated is also discussed there.

We start with a set of N feature vectors xj ∈ Fj (n number of trials) described by
random variables Xj for j = 1, . . . , N with class labels Y ∈ {1, ...,M} (M number of
different classes). Furthermore, let us assume that functions fj : Fj → IRM are given
for all j such that the function argmax fj is the Bayes optimal classifier1 for each j,
which minimizes the misclassification risk. We denote by X = (X1, ...,XN ) the combined
random vector, by gj,y the densities of fj(Xj)|Y = y, by f the optimal classifier on the
combined feature vector space F = (F1, ...,FN ), and by gy the density of f(X)|Y = y.

For all j = 1, ..., N and all possible features z = (z1, ..., zN ) we get

argmax(fj(zj)) = argmaxy gj,y(zj)

argmax(f(z)) = argmaxy gy(z).

Let us assume that the features are independent. This assumption allows us to factorize
the combined density, that is, to compute gy(x) =

∏N
j=1 gj,y(xj) for the class labels

y = {1, ...,M}. This leads to the optimal decision function

f(z) = argmax
N∑

j=1

fj(zj).

If we additionally assume that all feature vectors Xj’s are Gaussian distributed with
equal covariance matrices, that is, P (Xj |Y = y) = N (μj,y,Σj), the following classifier

argmax f(x) = argmaxy(
N∑

j=1

[w�
j xj − 1

2
(μj,y)�wj ])

with wj := Σ−1
j μj,y is achieved.

In terms of LDA, this corresponds to forcing to zero the elements of the estimated co-
variance matrix that belong to different feature vectors. Consequently, since less parame-
ters have to be estimated, distortions by accidental correlations of independent variables
are avoided. It should be noted that analogously to quadratic discriminant analysis (QDA)
(see Friedman (1989)), one can formulate a nonlinear version of PROB with Gaussian
assumption but different covariance matrices for each class.

To avoid overfitting, PROB can be regularized, too. There are two possible ways: fitting
one parameter to all features or fitting one parameter for each feature.

13.8 Caveats in the Validation

The objective when evaluating offline classifications is to estimate the future performance
of the investigated methods, or in other words the generalization ability of the learning
machine. Note that the most objective report of BCI performance is the results of actual
feedback sessions. But in the development and enhancement of BCI systems it is essential
to make offline investigations. Making BCI feedback experiments is costly and time-
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consuming. So, when exploring new ways for processing or classifying brain signals, one
would first validate and tune the new methods before integrating them into an online system
and pursuing feedback experiments. Yet there are many ways that lead to an (unintentional)
overestimation of the generalization ability. In this section, we discuss what must be noted
when analyzing the methods presented in this chapter. A much more thorough discussion
of the evaluation methods for BCI classifications will be the subject of a forthcoming paper.

13.8.1 The Fundamental Problem

The essence in estimating the generalization error is to split the available labeled data
into training and test set, to determine all free hyperparameters and parameters on the
training set, and then to evaluate the method on the test data. To ensure that the estimation
of the error is unbiased, the test data must not have been used in any way before all
parameters have been calculated, all hyperparameters have been selected, and all other
selections have been made. In a cross-validation or a leave-one-out validation the data set
is split in many different ways into training and test set, the procedure as outlined above
is performed for each split, and finally the mean of all errors obtained for the test data is
taken as estimate for the generalization error. A common error in the evaluation of machine
learning techniques—not only in a BCI context—is that some preprocessing steps or some
parameter selections are performed on the whole data set before the cross-validation. If the
preprocessing acts locally on each sample, there is no problem, but if the preprocessing of
one sample depends somehow on the distribution of all samples, the basic principle that
the test set must remain unseen until all free parameters have been fixed, is violated. This
violation will very likely lead to a severe underestimation of the generalization error; of
course the degree of violation cannot be stated generally as it depends on many factors.

When enough data samples are available, the problem can be solved by having a
threefold split of the data into training, test, and validation set. All parameter settings from
which we intend to select would be trained on the training and applied to the validation set.
The setting with the best performance on the validation set is chosen and applied to the test
set. In a cross-validation, one has many of such threefold splits and the mean error on the
test set is taken as an estimate of the generalization error.

While this procedure is conceptually sound, it is often not a viable way in BCI context
where available labeled samples are very limited compared to the complexity of the data.
In such a setting, doing model selection on one fixed split is not robust. One can circumvent
this problem when sufficient computing resources (computing power or time) are available
by doing a nested cross-validation. While the outer cross-validation is used to get the
estimation of the generalization error, there is an inner cross-validation performed on each
training set of the outer validation to do the model selection (see Müller et al. (2001)).

13.8.2 Evaluating Classifiers with Hyperparameters

Machine learning classifiers have parameters whose values are adapted to given labeled
data (training data) by some optimization criterion, such as w, b, or ξ in SVMs (13.3).
Some classifiers also have some so-called hyperparameters, such as ν in the ν-SVM
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(13.4). These are parameters that also have to be adapted to the data, but for which
no direct optimization criterion exists. Typically, hyperparameters control the capacity
of the classifier or the raggedness of the separation surface. In the classifier presented
in section 13.6.7, the hyperparameter C controls the sparsity of the classifier (sparser
classifiers have less capacity). To validate the generalization ability of a classifier with
hyperparameters, one has to perform a nested cross-validation, as explained above. On
each training set of the outer cross-validation, an inner cross-validation is performed for
different values of the hyperparameters. The one with minimum (inner) cross-validation
error is selected and evaluated on the test set of the outer cross-validation.

13.8.3 Evaluating Preprocessing Methods

The fundamental problem discussed in section 13.8.1 appears when a preprocessing
method (such as CSP) is applied to the whole dataset before the cross-validation, such
a procedure would be “cheating.” Even a preprocessing that is not label-dependent can be
problematic when it operates nonlocally in the above sense. To make an unbiased valida-
tion nonlocal processings have to be performed within the cross-validation, whereby all
parameters have to be estimated from the training data. For example, a correct evaluation
of a method that uses ICA as preprocessing must calculate the projection matrix within the
cross-validation on each training set. Data of the test set are projected using that matrix.
While the bias introduced by applying ICA before the cross-validation can be expected to
be marginal, it is critical for the label-dependent method CSP.

13.8.4 Evaluating Feature Selection Methods

It is very tempting to evaluate feature selection methods by running the feature selection
on the whole dataset and then doing a cross-validation on the dataset of reduced features,
but again this would be cheating. Unfortunately, such a procedure is found in a number of
publications, but it is conceptually wrong and may very well lead to a severe underestima-
tion of the generalization error. As argued in section 13.8.3, a preprocessing such as feature
selection must be performed within the cross-validation. When the method has hyperpa-
rameters (like the number of features to extract) the selection of these hyperparameters has
to be done by an inner cross-validation (see section 13.8.2).

13.9 Robustification

Robustness is the ability of a system to cope with distorted or invalid input. Biomedical
signals such as EEG typically are contaminated by measurement artifacts and noise from
nonneurophysiological sources. Also, sources from the central nervous system that do not
contribute to the signal of interest typically are regarded as noise. Data points particularly
affected by those kinds of noise do not fit the model assumptions. In terminology of
machine learning, such data points are called outliers, see, for example, Barnett and Lewis
(1994); Huber (1981); Hampel et al. (1986); Birch et al. (1993); Schölkopf et al. (2001);
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Tax and Duin (2001); and Laskov et al. (2004). An effective discriminability of different
brain states requires an effective estimation of some properties of the data, such as mean or
covariance matrix. If outliers impede this estimation, a suboptimal or even highly distorted
classifier can be the consequence.

In the literature, many different methods can be found for how to identify outliers. A
common method is the definition of a distance function in connection with a threshold
criterion. The distance of each point from a common reference then can be interpreted as
a measure of “normality,” that is, points with an unusually high distance (e.g., exceeding
the predefined threshold) are then marked as outliers. As an example, the Mahalanobis
distance of the data point x from the mean μ is defined as

r2(x) = (x − μ)tΣ−1(x − μ),

where Σ denotes the covariance matrix.
A different distance, not relying on the estimation of parameters of the distribution, has

been suggested in Harmeling et al. (2006). The outlier index δ of the point x is defined as
the length of the mean of the vectors pointing from x to its k nearest neighbors, that is,

δ(x) = ||1
k

k∑
j=1

(x − zj(x))||,

where z1(x), . . . , zk(x) ∈ {x1, . . . , xn} are the k nearest neighbors of x.
Apart from the general issue of choosing an outlier detection method, it is also an

inherent property of multidimensional time series data like EEG that the dimensions of
the feature space may have different qualities: Usually, data points are given with a certain
number of repetitions (trials), and they contain channel information and the temporal
evolution of the signal. A natural approach is to specifically use this information to find
outliers within a certain dimension, that is, removing channels with an increased noise level
(due to high impedances at the specific electrode) or removing trials that are contaminated
by artifacts from muscular or ocular activity. In Krauledat et al. (2005), different methods
of dealing with outliers have been shown to improve classification performances on a large
number of datasets.

13.10 Practical Example

To end this chapter, we provide one worked-through example of applying signal processing
and machine learning methods composed of three parts to BCI data. First, we design
processing and classification methods for event-related potential shifts and then for power
modulations of brain rhythms. Both analyses are performed on the very same dataset so
we can, in a third step, fuse both approaches with a feature combination technique that
results in a very powerful classification as demonstrated in the BCI Competitions (see
section 13.10.5).
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Figure 13.10 Classwise averaged time course of event-related potentials related to left- vs. right-
hand finger movements (selected channels over motor cortex). The shaded rectangulars indicate the
period of baseline correction. The Fisher score quantifies the discriminability between the two classes
and is indicated below each channel in grey scale code.

13.10.1 Experimental Setup for the Worked-Through Example

A healthy subject performed self-paced finger movements on a computer keyboard with
an approximate tap-rate of 45 taps per minute. EEG was recorded from 52 Ag/AgCl scalp
electrodes during 677 finger movements. The goal of our analysis is to predict in single
trials the laterality of imminent left- versus right-hand finger movements at a time point
prior to the start of EMG activity. An analysis of simulatenously recorded EMG from
both forearms (M. flexor digitorum communis) found no significant EMG activity before
-120 ms relative to keypress (see section 5.3.1). Therefore, we design classification meth-
ods that classify windows ending 120 ms before keypress.

13.10.2 Classifying on Event-Related Potential Shifts

Our first approach to the given dataset is to look at the event-related potentials. As we are
interested in the premovement potentials that precede the actual movement execution, we
divide to epochs the data in time intervals from -1000 to 250 ms. (That is, each epoch is
a multichannel time course running from -1000 to 250 ms relative to one keypress.) To
obtain smoother curves, we apply a moving average low-pass filter with a window length
of 100 ms. This is a simple form of a FIR filter (see section 13.3). Furthermore, we subtract
from each epoch the average of the time interval -1000 to -800 ms (baseline correction).
To quantify the discriminative information, we calculate for each channel and each time
point the Fisher score (see section 13.5). Figure 13.10 shows the classwise (left-hand and
right-hand finger movements) averaged epochs with the Fisher score indicated in grey scale
code below each channel. The figure shows a pronounced negativation that grows stronger
contralateral to the performing limb when approaching the time point of keypress. For
more information on this readiness potential, see section 5.3 and references therein. A
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Figure 13.11 The Fisher scores that are calculated for each time point and each channel are
averaged across the indicated three time intervals and displayed as scalp patterns. The discrimination
between the brain potentials corresponding to the preparation of left vs. right hand movements
originates in the corresponding motor cortices. No contribution from task-related eye movements
is visible in the investigated time intervals.

further outcome of this analysis is that the difference of scalp potentials is not induced
by eye movements since the Fisher scores in the EOG channels are very small, especially
in the time interval of interest that ends 120 ms before keypress. Figure 13.11 visualizes
the Fisher score as scalp topographies. Here the Fisher score values for all channels are
averaged in the time intervals [-420 -320], [-320 -220], and [-220 -120] and are displayed
as scalp patterns. The foci in these patterns show that the difference in brain potentials
originates, as expected, in the respective motor areas.

After this visual inspection of the data, we design the feature extraction and the classi-
fication method. The patterns in figure 13.11 suggest that we can safely discard channels
that are very frontal (Fpz, AF3, AF4) and very occipital (O1, Oz, O2). Then, to classify on
the potential shifts it is desireable to get rid of the higher frequencies that are noise in this
respect. Since we see from figure 13.10 that the discrimination increases with time, we use
an STFT to accomplish the low-pass filtering (see section 13.3.2) using a window that puts
emphasis on the late part of the signal, namely a one-sided cosine window

w(n) := 1 − cos(nπ/100) for n = 0, . . . , 99

(see section 5.3.2 for details). This filter is applied to raw EEG epochs that are taken in the
one-second interval from -1120 to -120 ms relative to keypress. After applying the STFT,
the coefficients corresponding to the frequencies 1 to 4 Hz only are retained while the rest is
set to 0 and transformed back by IFT (see section 13.3.2). From these smoothed signals, the
last 200 ms are subsampled at 20 Hz resulting in four feature components per channel (see
the illustration in section 5.3.2). This results in a 184-dimensional feature vector (4 points
in time times 46 channels) for which we need to choose a classifier. In our experience this
readiness potential feature can very well be separated linearly (see Blankertz et al. (2003)).
Since the dimensionality of the features is relatively high compared to the number of
available training samples, we use a regularized linear discrimnant analysis2 classifier (see
section 13.6.3). For the evaluation of this processing/classification method, we perform
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Figure 13.12 Classwise averaged spectra of brain potentials during the preparation of left- vs.
right-hand finger movements (time interval -1120 to -120 ms). The Fisher score quantifies the
discriminability between the two classes and is indicated below each channel in grey scale code.
The shaded frequency band shows the best discrimination and is therefore used for further analysis
and classification.

a 10 × 10-fold cross-validation with an inner cross-validation loop on each training set
of the outer cross-validation to select the regularization parameter of the RLDA classifier
(see section 13.8.2). This way we obtained an estimated generalization error of 11 percent.
The usage of spatial filters (see sections 13.4.1, 13.4.3, and 13.4.2) did not result in better
performance.

13.10.3 Classifying on Modulations of Brain Rhythms

It is known that executed movements are not only preceded by movement-related readiness
potentials but also by event-related modulations of the sensorimotor rhythms (Pfurtscheller
and Lopes da Silva (1999). Here we investigate those modulations and design a classifica-
tion method based on this phenomenon. The first step is to look at the class-specific spectra
to find the frequency bands that show the best discrimination. To this end, we segment the
data into epochs of 1 s ending 120 ms before keypress (see section 13.10.1). Then we ap-
ply a spatial Laplace filter (see section 13.4.3) to obtain more localized signals that better
reveal the discriminative frequency bands (see figure 13.4). Analogous to section 13.5, we
calculate Fisher scores for each frequency bin and channel. Figure 13.12 shows the class-
wise averaged spectra with Fisher scores indicated by grey scale code. The large shaded
rectangules indicate the frequency band 11–30 Hz that shows the best discrimination ac-
cording to the Fisher scores. The next step is to investigate the time course of instantaneous
power in this frequency band. To this end, we take a butterworth IIR filter of order five
with bandpass 11–30 Hz (see section 13.3.1) and apply this filter to the raw EEG signals.
We epoch the signals in the time interval -1500 to 500 ms, apply a spatial Laplace filter
and calculate the envelope of the bandpass-filtered signals by a Hilbert transform. Finally,
we smooth the obtained time courses by a moving average filter with a 100 ms window.
For baseline correction we subtract in each channel the average across all epochs and the
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Figure 13.13 Classwise averaged instantaneous spectral power in the frequency band 11–30 Hz
related to left- vs. right-hand finger movements (selected channels over motor cortex). The Fisher
score quantifies the discriminability between the two classes and is indicated below each channel in
grey scale code.
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Figure 13.14 The Fisher scores that are calculated for each time point and each channel of the
curves shown in figure 13.13 are averaged across the indicated three time intervals and displayed as
scalp patterns. The discrimination between the time courses of bandpower during the preparation of
left vs. right hand movements originates in the corresponding motor cortices. No contribution from
task-related eye movements is visible in the investigated time intervals.

whole time interval. Again we calculate the Fisher score for each time point and chan-
nel of the resulting time series. The obtained curves in figure 13.13 show a bilateral but
mainly ipsilateral increase of band energy (event-related synchronization, ERS) starting at
about -1000 ms and a contralateral decrease of band energy (event-related desynchroniza-
tion, ERD) starting about 500 ms. The visualization of Fisher scores as scalp topographies
in figure 13.14 show a similar picture as for the event-related potentials (figure 13.11) but
with less symmetric foci that are more pronounced on the right hemisphere and the loca-
tion is more lateral. Again substantial contributions to the discrimination are located over
motor cortices.
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After a visual inspection of the data, we design the feature extraction and the classifi-
cation method. The patterns in figure 13.14 suggest that we can safely discard channels
that are very frontal (Fpz, AF3, AF4). For classification we apply the IIR bandpass filter
as we did to the raw EEG signals. The Fisher scores in figure 13.13 indicate that the dis-
crimination becomes good after 570 ms prior to movement. Accordingly, we collect epochs
corresponding to the time interval -570 to -120 ms. These are the features that are used by
a CSP/LDA classification method: Using a CSP analysis the data is reduced to the 6 CSP
channels corresponding to the three largest eigenvalues of each class (see section 13.4.6).
For these time series the variance is calculated in three equally sized subintervals (corre-
sponding to the same intervals that are displayed in figure 13.14). This gives an estimate
of the instantaneous bandpower at those three time intervals within each epoch. To make
the distribution of the resulting vectors more Gaussian (distribution assumption of LDA,
see section 13.6.2), we apply the logarithm. The dimensionality of the obtained vectors is
eighteen (three bandpower values in time for six CSP channels), that is, small enough that
we can classify them by LDA here even without regularization. The cross-validation that
we perform to estimate the generalization error needs to take into account that the CSP
analysis uses label information. So the calculation of CSP needs to be performed within
the cross-validation loop on each training set (see section 13.8.3). This way we obtained
an estimated generalization error of 21 percent.

13.10.4 Combination of Different Kinds of Features

In the two previous sections we derived two different kinds of features that both gave
good classification performance. The two features rely on different neurophysiological
phenomena, the readiness potential (RP feature), and event-related (de-)synchronization
(ERD feature). One further step in improving the classification accuracy is to combine
those two features. The straightforward way to accomplish this is to concatenate the two
feature vectors and classify as before. But neurophysiological studies suggest that the
RP and the ERD features reflect different aspects of sensorimotor cortical processes. In
the light of this a priori knowledge, the combination method presented in section 13.7
seems promising. Indeed, the cross-validation of the feature combination classifier PROB
obtained with 7.5 percent error has the best result. Here we used regularized PROB with
one single regularization parameter. For the cross-validation, the selection of this parameter
was done within the inner cross-validation loop.

13.10.5 A Final Remark

Concerning the generalization errors that have been estimated in the previous sections,
although the cross-validation that was used to estimate them was designed such that it is
not biased, the whole analysis still could be biased to underestimate the generalization
error. The visual inspection that was performed to design the feature extraction method
and some of its parameters (as the frequency band) used the whole dataset. Typically the
bias is not so severe when the twiddling in the manual tuning is not too heavy (provided
the estimation of the generalization error is technically sound; see section 13.8.3).
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A performance assessment that has no such bias can be obtained in BCI Competitions
(Blankertz (2005b)). Until submission deadline the labels of the test set are kept secret.3

The combination method of the previous section proved to be effective in the first BCI
Competition by winning the contest for dataset II (EEG-synchronized imagined-movement
task) (see Sajda et al. (2003)). Note that also in subsequent BCI Competitions, for several
datasets the winning teams use techniques that combined RP- and ERD-type features (BCI
Competition II, dataset V, see Zhang et al. (2004); Blankertz (2003); and BCI Competition
III, datasets I, IIIb, and IVa, see Blankertz et al. (2006c); Blankertz (2005a)).

13.11 Conclusion

The purpose of this chapter is to provide a broad overview of ML and SP methods for
BCI data analysis. When setting up a new paradigm, care has to be exercised, to use as
much medical prior knowledge for defining appropriate features. This modeling holds the
key to further processing. If possible, outliers need to be removed. Once the features are
specified, a regularized classifier is mandatory to control against overfitting and thus to
enhance the robustness of the BCI. Model selection and feature selection should be done
in a “clean” manner using nested cross-validation or hold-out sets, since “cheating” will in
practice inevitably lead to overoptimistic results.
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(1) At this point no assumptions about the distribution of the data are made.
(2) A model selection with a full RDA model (see section 13.6.3) resulted in choosing

λ = 1, that is, the linear case RLDA.
(3) Evaluations done after the publication of the test labels, however, are not safe from the

overfitting bias.
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Kekuléstr. 7, 12489 Berlin, Germany

Thilo Hinterberger
Institute of Medical Psychology and
Behavioural Neurobiology
Eberhard-Karls-University Tübingen
Gartenstr. 29
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14.1 Abstract

We present the results from three motor imagery-based brain-computer interface experi-
ments. Brain signals were recorded from eight untrained subjects using EEG, four using
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ECoG, and ten using MEG. In all cases, we aim to develop a system that could be used for
fast, reliable preliminary screening in the clinical application of a BCI, so we aim to obtain
the best possible classification performance in a short time. Accordingly, the burden of
adaptation is on the side of the computer rather than the user, so we must adopt a machine
learning approach to the analysis. We introduce the required machine-learning vocabulary
and concepts, and then present quantitative results that focus on two main issues. The first
is the effect of the number of trials—how long does the recording session need to be? We
find that good performance could be achieved, on average, after the first 200 trials in EEG,
75–100 trials in MEG, and 25–50 trials in ECoG. The second issue is the effect of spa-
tial filtering—we compare the performance of the original sensor signals with that of the
outputs of independent component Analysis and the common spatial pattern algorithm, in
each of the three sensor types. We find that spatial filtering does not help in MEG, helps
a little in ECoG, and improves performance a great deal in EEG. The unsupervised ICA
algorithm performed at least as well as the supervised CSP algorithm in all cases—the lat-
ter suffered from poor generalization performance due to overfitting in ECoG and MEG,
although this could be alleviated by reducing the number of sensors used as input to the
algorithm.

14.2 Introduction

Many different recording technologies exist today for measuring brain activity. In addi-
tion to electroencephalography (EEG) and invasive microelectrode recording techniques
that have been known for some time, research institutes and clinics now have access to
electrocorticography (ECoG), magnetoencephalography (MEG), near-infrared spectropho-
tometry (NIRS), positron emission tomography (PET), and functional magnetic resonance
imaging (fMRI), any of which might be potentially useful in the design and implemen-
tation of brain-computer interface systems. Each technology has its own particular set of
advantages and limitations with regard to spatial and temporal resolution as well as cost,
portability, and risk to the user. Comparative studies are required in order to guide devel-
opment, and to explore the trade-offs between these factors.

Bulky, expensive systems (PET, fMRI, MEG) cannot be deployed as day-to-day BCI
systems in users’ homes, but they may offer advantages in the early stages of BCI use.
For example, they may be valuable for conducting screening procedures, in which a
potential user is scanned for one or two sessions to ascertain what patterns of brain activity
can be most clearly measured and most easily modulated by voluntary intention. An
ideal screening would give clinicians the best possible basis on which to decide which
task/stimulus setting the user should invest time training with, and (if invasive methods
are being considered) where electrodes should be implanted. Regular periodic visits to the
scanner might also be a valuable part of early BCI training. However, to justify the cost
of screening and training in this way, we would need to know whether the technology
yields advantages, for example, in terms of signal quality, efficiency, or precision of source
localization, that could not otherwise be obtained with cheaper methods.
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Here we present a comparative study of motor-imagery BCI experiments based on EEG,
ECoG, and MEG. In all three, our goal is to develop techniques of analysis that could
be used for efficient screening using a simple binary synchronous (trial-based) paradigm,
to determine whether subsequent lengthy training in motor imagery might be worthwhile.
This requires that we obtain good classification performance as quickly as possible, ideally
within the duration of a single recording session. In longer-term user training regimes,
it might be desirable to fix the mapping between brain activity and output a priori, with
users learning to adjust their brain activity such that the mapped recordings meet the
desired output. However, in this shorter-term setting, users arrive untrained and do not
necessarily know how to control their brain activity in the optimal manner: the most
effective mental strategy may differ from person to person, and its subjective character
may not be easily describable in any case. Users have relatively little time to adjust and
optimize their performance, yet we must still achieve the best results we can. Therefore,
for current purposes the burden of adaptation in brain-computer communication lies on the
side of the computer—we follow the same principle of “letting the machines learn” that
guides the Berlin Brain-Computer Interface project (Krauledat et al. (2004)). We envisage
screening as consisting of multiple discrete trials in which the user is repeatedly asked
to produce brain-states of different classes. The mapping from brain states to the desired
output is not known and must be inferred from this limited set of example mappings—a
problem of empirical inference for which a machine learning approach is well suited.

After briefly describing the neurological basis of our studies, the recording technologies
and experimental setup, we introduce some of the machine learning concepts, terms, and
tools we need. We then describe our analysis procedure, present results, and conclude. In
particular, we are interested in the question of how many trials are necessary to yield good
classification performance—in other words, how soon could we have broken off the testing
session, and still have obtained comparable results?

14.3 Neurological Phenomena of Imagined Movement

When a person is neither moving nor about to move, the electrical activity of the motor
cortex is dominated by frequencies in the 8–12 Hz (α-band) and 18–22 Hz (β-band)
ranges. These signal components are often referred to as μ rhythms, or more generally
as sensorimotor rhythms (SMR).

At the beginning of the planning phase, about 1–1.5 s before a movement is executed,
the SMR gradually diminishes, an effect known as event-related desynchronization (ERD).
Slower shifts and deflections in electrical signal, known as movement-related potentials
(MRP), also can be observed at roughly the same time. Both neurological phenomena can
be recorded best over the motor cortex contralateral to the movement.

It is known that ERD is also present when movements are only imagined (e.g.,
Pfurtscheller et al. (1998)) or attempted (Kauhanen et al. (2004)). Unfortunately, not all
users show ERD in motor imagery, although it is possible to train healthy subjects (Guger
et al. (2003)) as well as patients with ALS (Kübler et al. (2005a)) to control their SMR such
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that the recorded activity becomes more classifiable. When present, ERD can be detected
relatively easily and is therefore used in the majority of BCI studies.

Using both aspects—MRP and ERD—of the recorded signal leads to improved classifi-
cation performance (Dornhege et al. (2003b)), a result supported by the work of Babiloni
et al. (1999) who argue that MRP and ERD represent different aspects of cortical pro-
cessing. In the current study, however, only a very small minority of our subjects showed
useable MRPs in our imagined movement task—for simplicity, we therefore focus our
attention on ERD.

14.4 Recording Technology

Since our focus is on ERD, we can consider only recording methods that have sufficient
temporal resolution to capture changes in the α and β bands. This rules out technologies
such as PET, fMRI, and NIRS that rely on the detection of regional changes in cerebral
blood oxygenation levels. We briefly introduce the three recording systems we have used:
EEG, ECoG, and MEG.

14.4.1 EEG

Extracranial electroencephalography is a well-studied recording technique for cerebral
activity that has been practiced since its invention by Hans Berger in 1929. It measures
electrical activity, mainly from the cortex, noninvasively: Electrical signals of the order of
10−4 volts are measured by passive electrodes (anything from a single electrode to about
300) placed on the subject’s head, contact being made between the skin and the electrode
by a conducting gel. EEG shows a very high temporal resolution of tens of milliseconds
but is limited in its spatial resolution, the signals being spatially blurred due to volume
conduction in the intervening tissue.

EEG experiments account for the large majority of BCI studies due to the hardware’s
low cost, risk, and portability. For a selection of EEG motor imagery studies, see Wolpaw
et al. (1997); Birch et al. (2003); McFarland et al. (1997a); Guger et al. (1999); Dornhege
et al. (2004a); Lal et al. (2004).

14.4.2 ECoG

Electrocorticography or intracranial EEG is an invasive recording technique in which an
array of electrodes, for example an 8 × 8 grid, is placed surgically beneath the skull,
either outside or underneath the dura. Strips containing smaller numbers of electrodes
also may be inserted into deeper regions of the brain. Unlike invasive microelectrode
recording techniques, ECoG measures activity generated by large cell populations—ECoG
measurements are thus more comparable to extracranial EEG, but the electrode’s close
proximity to the cortex and the lack of intervening tissue allows for a higher signal-to-noise
ratio, a better response at higher frequencies, and a drastic reduction in spatial blurring
between neighboring electrode signals and contamination by artifacts.
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Naturally, intracranial surgery is performed at some risk to the patient. Today, ECoG
implantation is not widespread, but is mostly carried out as a short-term procedure for the
localization of epileptic foci, prior to neurosurgical treatment of severe epilepsy. Patients
typically have electrodes implanted for one or two weeks for this purpose, a window of
opportunity that is being exploited to perform a variety of brain research including motor
imagery BCI (Graimann et al. (2004); Leuthardt et al. (2004); Lal et al. (2005a)).

14.4.3 MEG

Magnetoencephalography is a noninvasive recording technique for measuring the tiny
magnetic field fluctuations, of the order of 10−14 tesla, induced by the electrical activity of
populations of cerebral neurons—mainly those in the cortex, although it has been reported
that it is also possible to measure activity from deeper subcortical structures (Llinas et al.
(1999); Tesche and Karhu (1997); Baillet et al. (2001)). Relative to fMRI, the spatial
resolution of MEG is rather low due to the smaller number of sensors (100–300), but it
has a high temporal resolution comparable to that of EEG, in the tens of milliseconds.

Due to the extremely low amplitude of the magnetic signals of interest, MEG scanners
must be installed in a magnetically shielded room to avoid the signals being swamped by
the earth’s magnetic field, and the sensors must be cooled, usually by a large liquid helium
cooling unit. MEG scanners are consequently rather expensive and nonportable.

Kauhanen et al. (2004) presented an MEG study of sensorimotor rhythms during at-
tempted finger movements by tetraplegic patients. Very recently we introduced an online
motor imagery-based BCI using MEG signals (Lal et al. (2005b)).

14.5 Experimental Setup

Three experiments form the basis for this chapter: one using EEG (described in more
detail by Lal et al. (2004)), one using ECoG (Lal et al. (2005a)), and one based on MEG
recordings (Lal et al. (2005b)).

There were eight healthy subjects in the EEG experiment, seated in an armchair in front
of a computer monitor. Ten healthy subjects participated in the MEG experiment, seated
in the MEG scanner in front of a projector screen. In the ECoG experiment, four patients
with epilepsy took part, seated in their hospital beds facing a monitor.

Table 14.1 contains an overview of the three experimental setups. Depending on the
setup, subjects performed up to 400 trials. Each trial began with a small fixation cross
displayed at the center of the screen, indicating that the subject should not move and should
blink as little as possible. One second later the randomly chosen task cue was displayed for
500 ms, instructing the subject to imagine performing one of two movements: These were
left hand and right hand movement1 for the EEG study, and movement of either the left
little finger or the tongue2 for the MEG and the ECoG studies (ECoG grids were implanted
on the right cerebral hemisphere). The imagined movement phase lasted at least 3 s and
then the fixation point was extinguished, marking the end of the trial. Between trials was a
short relaxation phase of randomized length between 2 and 4 s.
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Table 14.1 Overview of the three experiments.

EEG ECoG MEG

Subjects 8 4 10
Trials per subject 400 100–200 200
Sensors 39 64–84 150
Sampling rate (Hz) 256 1000 625

14.6 Machine Learning Concepts and Tools

The problem is one of binary classification, a very familiar setting in machine learning.
Here we introduce some of the vocabulary of machine learning, in the context of BCI, to
explain the tools we use. For a more thorough introduction to machine learning in BCI, see
Müller et al. (2004a).

For each subject, we have a number of data points, each associated with one of two
target labels—this is just an abstract way of stating that we have a number of distinct trials,
each of which is an attempt by the subject to communicate one of two internal brain states.
Each data point is a numerical description of a trial, and its target label denotes whether the
subject performed, for example, imagined finger movement or imagined tongue movement
on that trial. Classification is the attempt to extract the relevant information from one
subset of the data points (the training subset, for which labels are given) to be able
to predict as accurately as possible the labels of another subset (the test subset, for
which label information is withheld until the time comes to evaluate final classification
accuracy). Extraction of the relevant information for prediction on unseen data is termed
generalization to the new data.

Each data point can be described by a large number of features, each feature being
(for the current purposes) a real number. The features are the dimensions of the space
in which the data points lie. We can choose the feature representation by selecting our
preprocessing: a single trial, measured and digitized as t time samples from each of s

sensors, may, for example, be fully described by the s times t discrete sample values,
and this feature representation may or may not be useful for classification. An alternative
feature representation might be the values that make up the amplitude spectra of the s

sensor readings—the same data points have now been mapped into a different feature
space, which may or may not entail an improvement in the ease of classification.

Note that both these feature representations specify the positions of data points in very
high-dimensional spaces. Successful generalization using a small number of data points in
a relatively high-dimensional space is a considerable challenge (Friedman (1988)).

14.6.1 Support Vector Machines

For classification, we choose a support vector machine (SVM), which has proven its worth
in a very diverse range of classification problems from medical applications (Lee et al.
(2000)) and image classifications (Chapelle et al. (1999)) to text categorization (Joachims
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Figure 14.1 Linear SVM. The data are separated by a hyperplane with the largest possible margin
γ. For the separable case (ignoring misclassified points xi and xj), the three-ringed points lying
exactly on the margin would be the support vectors (SVs). For nonseparable datasets, slack variables
ξk are introduced—depending on the scaling of these, more points will become SVs.

(1998)) and bioinformatics (Zien et al. (2000); Sonnenburg et al. (2005)). Its approach is
to choose a decision boundary between classes such that the margin, that is, the distance in
feature space between the boundary and the nearest data point, is maximized—intuitively,
one can see that this might result in a minimized probability that a point, its position
perturbed by random noise, will stray over onto the wrong side of the boundary. Figure 14.1
shows a two-dimensional (i.e., two-feature) example.

When one has more features to work on than data points, it is often all too easy to find
a decision boundary that separates the training data perfectly into two classes, but overfits.
This means that the capacity of the classifier (loosely, its allowable complexity; see Vapnik
(1998) for the theoretical background) is too large for the data, with the result that the
classifier then models too precisely the specific training data points it has seen, and does
not generalize well to new test data. Rather than attempt to separate all the data points
perfectly, we may obtain better generalization performance if we allow for the possibility
that some of the data points, due to noise in the measurement or other random factors,
are simply on the wrong side of the decision boundary. For the SVM, this leads to the
soft-margin formulation

f : R
d → {−1, 1}, x �→ sign(w∗ · x + b∗)

(w∗, b∗) = argmin
w∈Rd, b∈R

‖w‖2
2+C

n∑
k=1

ξ2
k subject to yk(w ·xk +b) ≥ 1−ξk, (k = 1, ..., n)

where xk is the d-dimensional vector of features describing the kth data point and yk is the
corresponding label, either −1 or +1. The classifying function f , whose parameters w (the
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normal vector to the separating hyperplane) and b (a scalar bias term) must be optimized.
The constraint yk(w · xk + b) ≥ 1 would result in a hard-margin SVM—the closest
point would then have distance ‖w‖−1 to the hyperplane, so minimizing ‖w‖ under this
constraint maximizes the margin. The solution for the hyperplane can be written in terms
of the support vectors, which, in the hard-margin case, are the points lying exactly on the
margin (highlighted points in figure 14.1). A soft margin is implemented by incorporating
a penalty term ξk for each data point that lies on the wrong side of the margin, and a
regularization parameter C, which specifies the scaling of these penalty terms relative to
the original criterion of margin maximization. Depending on C, the optimal margin will
widen and more points will become support vectors.

For a given C there is a unique SVM solution, but a suitable value for C must somehow
be chosen. This a question of model selection which often is addressed by cross-validation:
the available training data points are divided randomly into, for example, ten nonoverlap-
ping subsets of equal size. For each of these ten subsets (or test folds, the model is trained
on the other 90 percent (the training fold) and tested on the test fold. The average propor-
tion of mistakes made across the ten test folds is taken as the cross-validation error, and the
model (in this case, the choice of C) with the smallest cross-validation error wins.

One of the SVM’s noteworthy features is that it is a kernel algorithm (see Schölkopf
et al. (1998); Schölkopf and Smola (2002)), that is, one that does not require an explicit
representation of the features, but can work instead using only a kernel matrix, a symmetric
square matrix K with each element Kij equal to some suitable measure of similarity
between data point i and data point j. This has two advantages. The first is that the time and
memory requirements for computation depend more on the number of data points than on
the number of features—a desirable property in a trial-based BCI setting since recording
a few hundred trials is relatively time-consuming, whereas each trial may be described by
a relatively large number of features. The second advantage is that one may use nonlinear
similarity measures to construct K, which is equivalent to performing linear classification
on data points that have been mapped into a higher-dimensional feature space and which
can consequently yield a more powerful classifier, without the requirement that the feature-
space mapping be known explicitly (the so-called kernel trick). However, it has generally
been observed in BCI classification applications (e.g., see Müller et al. (2003a)) that, given
a well-chosen sequence of preprocessing steps (an explicit feature mapping), a further
implicit mapping is usually unnecessary: thus, a linear classifier, in which Kij is equal to
the dot product between the feature representations of data points i and j, performs about
as well as any nonlinear classifier one might attempt. This is often the case in situations in
which the number of data points is low, and indeed we find it to be the case in the current
application.

Thus, we use a linear SVM for the current study, and this has the advantage of inter-
pretability: The decision boundary is a hyperplane, so its orientation may be described by
its normal vector w, which is directly interpretable in the explicitly chosen feature space
(e.g., in the space of multichannel amplitude spectra). This vector gives us a measure of
the relative importance of our features3 and as such is useful in feature selection. In fig-
ure 14.1, where we have just two features, the horizontal component of the hyperplane
normal vector w is larger than the vertical, which tells us what we can already see from



14.6 Machine Learning Concepts and Tools 243

the layout of the points, namely that horizontal position (feature one) is more important
than vertical position (feature two) in separating the two classes. Some features may be
entirely irrelevant to classification (so the corresponding element of w should be close to
0). Although the SVM can be formulated as a kernel algorithm and thus does not require
explicit feature representation, the number of relevant features relative to the number of ir-
relevant features is still critical: We would prefer each dot product Kij to be dominated by
the sum of the products of relevant features, rather than this information being swamped
by the products of irrelevant (noise) features. When one has a large number of features,
good feature selection can make a large difference to classification performance.

See Burges (1998), Müller et al. (2001), and Schölkopf and Smola (2002) for a more
comprehensive introduction to SVMs.

14.6.2 Receiver Operating Characteristic Curves and the AUC Measure

A receiver operating characteristic (ROC) curve is a plot of a one-dimensional classifier’s
“hit” rate (e.g., probability of the correct identification of a finger-movement trial) against
its “false alarm” rate (e.g., probability of misidentification of a tongue trial as a finger
trial). As one varies the threshold of the classifier, one moves along a curve in this two-
dimensional space (a lower threshold for classifying trials as finger trials results in more
“hits,” but also more “false alarms”). The area under the curve (AUC) is a very informative
statistic for the evaluation of performance of classification and ranking algorithms, as well
as for the analysis of the usefulness of features. For example, we might order all our
data points according to their value on a particular single feature axis (say, the amount
of bandpower in a band centerd on 10 Hz, measured by a particular sensor at a particular
time after the start of the trial) and compute the AUC score of this ordering. An AUC of 1
indicates perfect separability: All the finger trials lie above the highest of the tongue trials
on this axis. An AUC of 0 also indicates perfect separability: All the finger trials lie below
the lowest of the tongue trials. Thus, a value close to 0 or 1 is desirable,4 whereas a value
of 0.5 would indicate that the chosen feature axis is entirely uninformative for the purposes
of separating the two classes.

ROC analysis gives rise to many attractive statistical results (for details and references
see Flach (2004)). One attractive property of the AUC score as a measure of feature
usefulness is that it is a bounded scale, on which the three values 0, 0.5, and 1 have
very clear intuitive interpretations. Another is that it is entirely insensitive to monotonic
transformations of the feature axis, relying only on the ordering of the points, and is thus
free of any parametric assumptions about the shapes of the class distributions.

Note, however, that we use AUC scores to evaluate features in isolation from each other,
which may not give the full picture: It is easy to construct situations in which two highly
correlated features each have AUC scores close to 0.5, but in which the sum of the two
features separates classes perfectly. Therefore, analysis of individual feature scores should
go hand-in-hand with the examination of optimal directions of separation in feature space,
by examining the weight vector of a suitably trained classifier. For the current datasets, we
find that the two views are very similar, so we plot only the AUC picture.
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14.7 Preprocessing and Classification

Starting 500 ms after offset of the visual task cue, we extract a window of length 2 s. For
each trial and each sensor, the resulting timeseries is low-pass-filtered by a zero-phase-
distortion method with a smooth falloff between 45 and 50 Hz, downsampled at 100 Hz,
and then linearly detrended.

Due to the downsampling, signal components at frequencies higher than 50 Hz are
no longer represented in the data. This is no great loss in EEG, since EEG cannot in
general be expected to yield much useful information at frequencies higher than this, but it
might have been possible to obtain good higher-frequency information in ECoG and MEG.
However, based on an examination of the AUC scores of individual frequency features in
each subject’s data set, and also of the weight vector of a linear classifier trained on the
data, we did not find any indication that this information helped in separating classes
in the current task. Figure 14.2 shows typical patterns of AUC scores before filtering
and downsampling (one representative subject for each of the three sensor types). For
all frequencies, there is some “noise” in the AUC values—depending on the number of
trials available, values between about 0.4 and 0.6 will be obtained by chance. For all three
sensor types, it is only below about 40–50 Hz that we see meaningful patterns in which
AUC scores differ significantly from 0.5. While the AUC representation considers each
feature only in isolation, an almost identical pattern was observed (for all subjects) in the
weights of the linear classifier, which takes linear combinations of features into account.

Therefore, our analysis is restricted to a comparison of the extent to which class-relevant
information in the 0–50 Hz range can be recovered using the different recording tech-
niques. It would certainly be interesting to examine the potential use of higher-frequency
information—perhaps class-relevant nonlinear combinations of high-frequency features
might be discovered using nonlinear classification techniques, or perhaps the higher fre-
quencies might be useful for classification when represented in different ways, other than
as amplitude spectra. However, such a study is likely to require considerably larger datasets
for individual subjects than those we currently have available, and is beyond the scope of
this chapter.

For each number of trials n from 25, in steps of 25, up to the maximum available, we
attempt to classify the first n trials performed by the subject. Classification performance is
assessed using tenfold cross-validation, conducted twice with different random seeds. On
each of these twenty folds, only the training fold (roughly 90 percent of the n trials) is used
for training and for feature and model selection—the label information from the remaining
n/10 trials is used only to compute a final test accuracy estimate for the fold. Where
necessary, model and feature selection was performed by a second level of tenfold cross-
validation, within the training fold of the outer cross-validation, as described by Müller
et al. (2004a), Lal et al. (2005a), and Lal et al. (2005b). Final performance is estimated by
averaging the proportion of correctly classified test trials across the twenty outer folds.

Before classification, a spatial filter is computed (see section 14.7.1) and applied to
both the training and test trials. Then, amplitude spectra are computed by the short-time
Fourier transform (STFT) method of Welch (1967): A time series is split into five segments
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Figure 14.2 AUC scores for multichannel amplitude spectra: representative examples from EEG,
ECoG, and MEG. Each curve shows the AUC scores corresponding to the frequency-domain features
from one of the available sensor outputs.
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each overlapping the next by 50 percent, a temporal Hanning window is applied to each,
and the absolute values of the discrete Fourier transforms of the five windowed segments
are averaged. For each trial, this gives us a vector of 65 values per sensor (or rather, per
spatially filtered linear combination of sensors, which we will call a “channel”) as inputs
to the classifier.

We use a linear support vector machine as the classifier. First, the regularization pa-
rameter is optimized using tenfold cross-validation within the training trial subset. Then
we employ the technique of recursive channel elimination (RCE) first described by Lal
et al. (2004). This is a variant of recursive feature elimination (RFE), an embedded feature-
selection method proposed by Guyon et al. (2002) in which an SVM is trained, its resulting
weight vector is examined, and the subset of features with the lowest sum squared weight
is eliminated (the features being grouped, in our case, into subsets corresponding to chan-
nels). Then the procedure is repeated, retraining and re-eliminating for ever-decreasing
numbers of features. We run RCE once on the complete training subset, the reverse or-
der of elimination giving us a rank order of channel importance. Then we perform tenfold
cross-validated RCE within the training subset, testing every trained SVM on the inner test
fold to obtain an estimate of performance as a function of the number of features. Based on
the rank order and the error estimates, we reduce the number of channels: We choose the
minimum number of channels for which the estimated error is within two standard errors
of the minimum (across all numbers of features). This procedure is described in more detail
in Lal et al. (2005b), and embedded feature selection methods are treated in more depth by
Lal et al. (in press). Finally, the regularization parameter is reoptimized on the dataset after
channel rejection and the classifier is ready to be trained on the training subset of the outer
fold in order to make predictions on the test subset.

We summarize the procedure in algorithm 14.1.

14.7.1 Spatial Filtering

A spatial filter is a vector of weights specifying a linear combination of sensor outputs.
We can represent our signals as an s-by-t matrix X , consisting of s time series, each of
length t, recorded from s different sensors. Spatial filtering amounts to a premultiplication
X ′ = WX , where W is an r-by-s matrix consisting of r different spatial filters. If an
appropriate spatial filter is applied before any nonlinear processing occurs (such as the
nonlinear step of taking the absolute values of a Fourier transform to obtain an amplitude
spectrum), then classification performance on the resulting features will often improve.
This is illustrated in figure 14.3, where the AUC scores of the amplitude spectra from one
subject in the EEG experiment are considerably better on both training and test folds if
the correct spatial filters have been applied. We compare three spatial filtering conditions:
no spatial filtering (where W is effectively the identity matrix, so we operate on the
amplitude spectra of the raw sensor outputs), independent components analysis (described
in section 14.7.1.1) and common spatial pattern filtering (described in section 14.7.1.2).
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Figure 14.3 Effects of spatial filtering on subject 104 in the EEG experiment. In the left-hand
column, we see AUC scores for the amplitude spectra of the odd-numbered trials (a total of 200),
and on the right we see AUCs on the even-numbered trials (also 200). In the top row there is no spatial
filtering, in the middle we have applied a square filter matrix W obtained by ICA (section 14.7.1.1)
on the odd-numbered trials, and in the bottom row we have applied a square W obtained by CSP
(section 14.7.1.2) on the odd-numbered trials.
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Algorithm 14.1 Summary of error estimation procedure using nested cross-validation.

Require: preprocessed data of one subject
1: for (n = 25 to maximum available in steps of 25) do

2: take first n trials performed by the subject
3: for (outer fold = 1 to 20) do

4: split data: 90% training set, 10% test set
5: with training set do:
6: compute spatial filter W
7: 10-fold inner CV: train SVMs to find regularization parameter C
8: 10-fold inner CV: RCE to estimate error as a function of number of channels
9: RCE on whole training set to obtain channel rank order
10: reduce number of channels
11: 10-fold inner CV: train SVMs to find regularization parameter C
12: train SVM S using best C
13: with test set do:
14: apply spatial filter W
15: reject unwanted channels
16: test S on test set
17: save error
18: end for

19: end for

Output: estimated generalization error (mean and standard error across outer folds)

14.7.1.1 Independent Component Analysis (ICA)

Concatenating the n available trials to form s long time series, we then compute a (usually
square) separating matrix W that maximizes the independence of the r outputs. This
technique is popular in the analysis of EEG signals because it is an effective means of
linear blind source separation, in which differently weighted linear mixtures of the signals
of interest (“sources”) are measured, and must be “demixed” to estimate the sources
themselves: Since EEG electrodes measure the activity of cortical sources through several
layers of bone and tissue, the signals are spatially quite “blurred” and the electrodes
measure highly correlated (roughly linear) mixtures of the signals of interest. To find a
suitable W , we use an ICA algorithm based on the Infomax criterion (as implemented in
EEGLAB—see Delorme and Makeig (2004)), which we find to be comparable to most
other available first-order ICA algorithms in terms of resulting classification performance,
while at the same time having the advantage of supplying more consistent spatial filters
than many others. Note that, due to the large amount of computation required in the
current study, we compute W based on all n trials rather than performing a separate
ICA for each outer training/test fold. Target label information is not used by ICA, so
there is no overfitting as such, but it could potentially be argued that the setting has
become unrealistically “semisupervised” since the (computationally expensive) algorithm
training cannot start until the novel input to be classified has been measured. However,
by performing a smaller set of pilot experiments (two values of n for each subject, and
only ten outer folds instead of twenty) in which ICA was recomputed on each outer fold,
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we were able to verify that this did not lead to any appreciable difference in performance,
either for individual subjects or on average.

14.7.1.2 Common Spatial Pattern (CSP) Analysis

This technique (due to Koles et al. (1990)) and related algorithms (Wang et al. (1999);
Dornhege et al. (2003a); Lemm et al. (2005); Dornhege et al. (2004b)) are supervised
methods for computing spatial filters whose outputs have maximal between-class differ-
ences in variance. For this to be useful, the input to the algorithm must be represented in
such a way that class-dependent changes in the signal are reflected in a change in signal
variance: For event-related desynchronization in motor imagery, this can be achieved by
applying a zero-phase-distortion bandpass filter that captures the part of the spectrum in
which sensorimotor rhythms are expressed. The variance of the filtered signal, which has
zero mean, is a measure of amplitude in the chosen band. Here we use a bandpass filter
between 7 and 30 Hz (we generally found that this broad band performed approximately
as well as any specifically chosen narrow band). Often, the variances of the spatially fil-
tered channels themselves (forming a feature vector v = [v1 . . . vr]) are used as features
for classification. This makes sense given that the algorithm aims specifically to maximize
class differences in this statistic, and it is a convenient way of reducing the dimensionality
of the classification problem. In section 14.8.3, we adopt this approach, discarding the sub-
sequent channel selection stage to save processing time. However, we were able to obtain
slightly better performance on the EEG datasets if we computed CSP spatial filters on the
temporally filtered timeseries, applied these the whole (temporally unfiltered) timeseries,
computed Welch spectra and classified them as described above. Therefore, we report the
latter results in section 14.8.1.

Since CSP uses label information, it must be performed once for each outer training/test
fold, using the training subset only. The drawback to CSP is its tendency to overfit, as
illustrated in figure 14.4 where we have taken 200 trials from one subject in the 39-channel
EEG experiment (upper panel), and 200 trials from the same subject in the 150-channel
MEG experiment (lower panel). In each case we have trained the CSP algorithm on half
of the available data, and applied the resulting spatial filters W to the other half. We retain
the maximum number of spatial patterns, r = s, and plot the AUC scores of the features
v1 . . . vr, lighter bars denoting separation of the training trials and darker bars denoting
separation of the test trials. In the lower panel we see that, when the algorithm is given
a larger number of channels to work with, it finds many linear combinations of channels
whose amplitude in the 7–30 Hz band separates the classes nearly perfectly (AUC scores
close to 0 or 1). However, the large majority of these patterns tells us nothing about the test
trials—only the last two spatial patterns separate the test trials well. In the EEG context,
we see that overfitting occurs, but to a lesser extent.5

The lines of crosses indicate the eigenvalues returned by the CSP algorithm’s diagonal-
ization of the whitened class covariance matrix (for an accessible account of the algorithm
details, see Müller-Gerking et al. (1999); Lemm et al. (2005)). These are in the range [0, 1]

and are an indicator of the amount of between-class difference in variance that each spatial
pattern is able to account for. Values close to 0.5 indicate the smallest differences and val-
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Figure 14.4 Large differences in performance of the CSP algorithm on training data (grey bars)
and test data (black bars), as indicated by an AUC measure of class separability computed separately
for the projected variance on each spatial pattern. This overfitting effect is extremely pronounced in
150-channel MEG (lower panel), and less so in 39-channel EEG (upper panel). Crosses show the
eigenvalues corresponding to each spatial pattern in the CSP decomposition.
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ues close to 0 or 1 denote the largest differences and therefore potentially the most useful
spatial patterns. The eigenvalues tell us something related, but not identical, to the AUC
scores. In the end, we are interested in the classifiability of single trials in as-yet-unseen
data. The eigenvalues are only an indirect measure of single-trial classifiability, since they
tell us about the fractions of variance accounted for across many trials. Variance is not
a robust measure, so a large eigenvalue could arise from very high SMR-modulation in
just a small minority of the trials, with the majority of the trials being effectively insep-
arable according to the spatial pattern in question. AUC scores, on the other hand, are a
direct measure of trial separability according to individual features. Hence, AUC scores on
the data that the CSP algorithm has not seen (black bars in figure 14.4) are our standard
for evaluating the generalization performance of each spatial pattern. By contrast, AUC
scores computed from the training trials alone (grey bars) show a grossly inflated estimate
of performance, which illustrates the overfitting effect. The eigenvalues show a somewhat
intermediate picture. On one hand, they are computed only on the training trials, and ac-
cordingly their magnitude is better predicted by looking at the AUC on training trials than
at the AUC on test trials. On the other hand, they also contain information that, in the cur-
rent examples, allows us to identify which components are really useful according to our
standard (tallest black bars). First, by sorting the spatial patterns by eigenvalue, we have
correctly sorted the useful components to the extreme ends of the plot. Second, the useful
patterns are identifiable by an acceleration in the eigenvalue spectrum toward the ends (c.f.
Wang et al. (1999)).

In practice, the eigenvalues are a fairly good and often-used predictor of the general-
ization performance of each spatial pattern. Some such predictor is necessary, since CSP’s
overfitting will often lead to poor generalization performance. Standard remedies for this
employ a feature selection stage after CSP, with the aim of retaining only those spatial pat-
terns that are likely to be useful. Selection strategies may vary: One common approach is
to take only the first k in patterns, in the order of preference indicated by the eigenvalues,
number k being either fixed or determined by cross-validation of the CSP algorithm within
the training set. The results reported in section 14.8.1 employ this strategy with k fixed at
five, which we found to produce results roughly as good as a cross-validation strategy.6

In section 14.8.3, we employ an additional tactic: Since the degree of overfitting is
determined largely by the number of free parameters in the optimization, and the algorithm
finds one scaling parameter per sensor in each spatial pattern, it makes sense to attempt to
reduce the number of sensors used as input to the CSP algorithm. We do this using a
preliminary step in which Welch spectra of the raw sensor outputs are computed, an SVM
is trained (cross-validating to find the best regularization parameter), and the weight vector
is used to provide a measure of relative channel importance, as in RCE. Going back to
the time-domain representation, the top 10, 25, 39, and (in ECoG and MEG) 55 sensors
found by this method were then passed into CSP. Spatial patterns were then chosen by
a cross-validation method: CSP was run on each of 10 inner training folds and variances
v1 . . . vr were computed on the corresponding test fold and saved. At the end of cross
validation, each trial then had a new representation v, and AUC scores corresponding to
each of these features could be computed on the whole outer training fold, and these are
useful for selection since they generally correlate well with the AUC scores on unseen
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data. The significance of the AUC values was expressed in terms of the standard deviation
expected from random orderings of a data set of the same size. Eigenvalue positions with
AUC scores more than two standard deviations away from 0.5 were retained in the outer
CSP.

14.8 Results

14.8.1 Performance of Spatial Filters Using All Available Sensors

In figure 14.5, classification accuracy is plotted as a function of n for each subject, along
with average performance in each of the three experiments (EEG, ECoG, and MEG). We
plot the time-course of the overall effectiveness of the experimental setup, subject, and
classifier taken all together: Our curves are obtained by computing performance on the
first 25 trials performed by the subject, then recomputing based on the first 50 trials, and
so on (instead of on a random 25 trials, then a random 50 trials). As a result, the observed
changes in performance with increasing n reflect not only the effect of the amount of input
on classifier performance, but also changes in the subjects’ performance, whether due to
practice, fatigue, or transient random influences.

Note that, for two out of eight subjects in the EEG condition (subjects 101 and 102),
and 1 out of 10 in MEG (subject 303), we were never able to classify at significantly better
than chance level. These subjects were omitted from the averaging process and from the
further analysis of section 14.8.3. The strength of sensorimotor rhythms and the degree
to which their modulation with imagined movement is measurable varies from person to
person. One must expect that some subjects will be unable to use a motor imagery-based
BCI at all, and that performance of the remainder will vary between individuals. Given the
necessarily small size of our three subject groups, we are unable to draw strong conclusions
as to the effect of recording technology on absolute performance level, to say, for example,
whether MEG is a significantly better option than EEG. Another effect of between-subject
variation is that, though we find certain individual subjects in all three groups who are able
to attain high performance levels (say, > 90%), average performance is poor. However,
it should be borne in mind that, with one exception,7 the subjects had never taken part
in a motor imagery BCI experiment before, and that performance is therefore based on a
maximum of three hours’ experience with the paradigm, and without feedback.

In the EEG experiment, both ICA (grey asterisks) and CSP (open diamonds) allow
very large improvements in performance relative to the condition in which no spatial
filtering was used (filled circles). This effect is clear in the averaged data as well as in
the individual subject plots. In ECoG, the difference between ICA and no spatial filtering
is slight, although ICA is at least as good as no spatial filtering for all four subjects; CSP is
consistently a little worse than both. In MEG, there is no consistent benefit or disadvantage
to ICA over the raw sensor outputs, and again CSP is worse, this time by a larger margin.

The failure of CSP in ECoG and MEG is likely to be related to the overfitting effect
already discussed. This is clearest for subject 310 when 200 trials are used: Although spa-
tial filters exist (and have been found by ICA) that can improve classification performance,
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Figure 14.5 For each subject, classification accuracy is plotted as a function of the number of
trials performed and the spatial filtering method employed: Filled circles denote no spatial filtering,
asterisks denote ICA, and open diamonds denote CSP. The last three plots show averages for the
EEG, ECoG, and MEG experiments, respectively, across all subjects for whom classification had
been possible at all.
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CSP fails to find any patterns that help to classify the data because useless (overfitted)
spatial patterns dominate the decomposition of the class covariance matrices.

Overall, maximum performance can be achieved using about 200 trials in EEG and 75–
100 trials in MEG. For ECoG, though it is harder to draw strong conclusions due to the
smaller number of subjects and trials, it generally appears that the curves are even flatter:
The best results already can be obtained with only 25–50 trials.

One curious feature of the results is the strikingly good performance without spatial
filtering for some subjects (103, 104, 107, 108, 302, and 308) when only the first 25 trials
are tested, quickly dropping to much poorer performance when more trials are taken. A
possible explanation for this is the test trials on each outer fold were drawn uniformly and
randomly from the first n trials—when n is very small, this means that the test trials were
performed, on average, closer in time to the training trials than when n is larger. If the
subjects’ signals exhibit properties that are nonstationary over time, this may lead to an
advantage when the training and test trials are closer together. Such effects merit a more
in-depth analysis, which is beyond the scope of this report.

14.8.2 Topographic Interpretation of Results

Figure 14.6 shows topographic maps of the features selected by our analysis for seven
of our subjects. Sensor ranking scores were obtained by recursive channel elimination
on data that had not been spatially filtered; each of the twenty outer training/test folds
of the analysis returned a channel ranking, and these ranks were averaged across folds
and then divided by their standard deviation across folds. The result indicates which
channels were ranked highly most consistently (darker colors indicating channels ranked
as more influential). We also plot spatially interpolated projected amplitudes8 for the top
two independent components (selected by recursive channel elimination in the first outer
training/test fold) and the first two spatial patterns (indicated by the best two eigenvalues
in the first outer fold).

In general, we see that ICA and CSP recover very similar patterns of activation that are
consistent with the modulation of activity in motor and premotor cortical areas. In EEG,
both algorithms recover patterns centerd on C4/CP4 in the right hemisphere (where we
would expect modulation associated with imagined left hand movement) and C3/CP3 in
the left (imagined right hand movement). In MEG, we see patterns consistent with parietal-
central and central-frontal dipoles in the right hemisphere where we would expect to see
modulation associated with imagined left hand movement. Subject 308 appears to use
sources in both hemispheres. In the ECoG, the top two independent components and the
top spatial pattern are all highly localized, activation in each case being focused on just
three or fewer electrodes located above the motor cortex.

For subjects 202, 304, and 306, the second spatial pattern shows a more complicated
topography. Given that CSP generally performs less well than ICA for these subjects, we
may suspect that this is a reflection of overfitting. Presented with a large number of sensors,
the algorithm can account for class differences in signal variance by combining sensors in
spatial configurations that are more complicated than necessary, which in turn results in
poorer generalization performance.
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Figure 14.6 Topographic maps showing the ranking or weighting of sensors at different spatial
locations for three EEG subjects, one ECoG subject, and three MEG subjects. Sensor ranking scores
(first column) are obtained by recursive channel elimination on the data when no spatial filtering
is used. The top two independent components (columns 2–3) are selected by recursive channel
elimination after independent component analysis. The top two spatial patterns (columns 4–5) are
selected using the eigenvalues returned by the CSP algorithm. Topographic maps are scaled from -1
(black) through 0 (grey) to 1 (white) according to the maximum absolute value in each map.
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Finally, we note that the ranking scores of the raw sensors, while presenting a somewhat
less tidy picture, generally show a similar pattern of sensor importance to that indicated by
the ICA and CSP maps (note that the ranking score patterns may reflect information from
influential sources beyond just the first two components we have shown). The sensors most
consistently ranked highly are to be found in lateralized central and precentral regions,
bilaterally for the EEG experiment and for subject 308, and with a right-hemisphere bias
for the others. For further examination of the performance of recursive channel elimination
in the identification of relevant source locations, see Lal et al. (2004, 2005a,b).

14.8.3 Effect of Sensor Subsetting

In figure 14.7 we show average classification accuracy at n = 25, 50, 100, and 200
(respectively in the four rows from top to bottom) for EEG, ECoG, and MEG (left to
right). Classification performance of CSP is shown as a function of the number of sensors
the algorithm is permitted to work with (“more” denoting the maximum available: 64, 74,
or 84 in ECoG, and 150 in MEG).

First we note that, in our EEG data, performance is better the more sensors are used,
up to the maximum of 39 available in the current study. For ECoG and MEG, this trend
is reversed when the number of available trials is small. This is in line with our intuition
about overfitting: We suffer when attempting to recombine too many channels based on
a small number of data points. For n = 25, s = 10 is the best number of sensors to
choose, and CSP performance may then equal (and even exceed, although the difference
is not significant) the best classification previously possible with ICA (in ECoG) or with
the raw sensors outputs (in MEG). As the number of trials n increases to 50 and beyond,
the peak shifts to the left (it is useful to have more sensors available as the number of trials
increases) and the slope becomes shallower as the difference between CSP and the raw
sensors diminishes (overfitting becomes less of an issue).

14.9 Summary

We have compared the classifiability of signals obtained by EEG, ECoG, and MEG in
a binary, synchronous motor imagery-based brain-computer interface. We held the time
interval, and (after failing to find any information useful for the classification in frequencies
above 50 Hz) also the sampling frequency constant across sensor types, and classified
event-related desynchronization effects in the signals’ amplitude spectra using regularized
support vector machines and automatic feature selection.

We varied the number of trials used in order to see how quickly we might reach max-
imum classification performance with our unpracticed subjects. Maximum performance,
averaged across subjects, was roughly equal across sensor types at around 80 percent, al-
though subject groups were small and between-subject variation was large, so we attach no
particular weight to this observation. Maximum performance was attained after about 200
trials in EEG, 75–100 trials in MEG, and 25–50 trials in ECoG.
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Figure 14.7 Filled triangles indicate average classification accuracy of the CSP algorithm for each
sensor type (EEG, ECoG, and MEG, respectively, in the three columns from left to right), as a
function of the number of sensors used as input to the algorithm, and the number of trials (25, 50,
100, and 200, respectively, in the four rows from top to bottom). For comparison, horizontal chains of
symbols denote the average performance levels reported in the previous analysis of figure 14.5: filled
circles for no spatial filtering, asterisks for ICA, and open diamonds for CSP with a fixed number of
patterns k = 5.
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Performance was affected by spatial filtering strategy in a way that depended on the
recording hardware. For EEG, where signals are highly spatially blurred, spatial filtering
is crucial; large gains in classification accuracy were possible using either first-order inde-
pendent component analysis or the common spatial pattern algorithm, the performance of
these two approaches being roughly equal. For ECoG and MEG, as one might expect from
systems that experience less cross-talk between channels, spatial filtering was less critical;
the MEG signals were the “cleanest” in this regard, in that there was no appreciable differ-
ence in performance between classification of the raw sensor outputs and classification of
any of the linear combinations of sensors we attempted. First-order spatial filtering would
appear to be become largely redundant for the detection of event-related desynchronization
as the volume conduction problem diminishes (down to the level at which it is still present
in ECoG and MEG).

Across all three conditions, ICA was the best (or roughly equal to best) spatial filtering
strategy. CSP suffered badly from overfitting in the ECoG and MEG conditions when large
numbers of sensors (> 40) were used, resulting in poor generalization performance. This
could be remedied by sparsification of the spatial filters, where a subset of the sensors was
selected and the rest discarded—a strategy that was particularly effective when the number
of trials was very small, but which never resulted in a significant overall win for optimized
spatial filters over raw sensor outputs. We did not find a convincing advantage, with any
of the three sensor types, of supervised optimization of the spatial filters over blind source
separation.
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(1) Visual cues: a small left- or right-pointing arrow, near the center of the screen.
(2) Visual cues: small pictures of either a hand with little finger extended or of Einstein

sticking his tongue out.
(3) Many authors use linear discriminant analysis for this purpose—we choose to use

weight vector from the SVM itself, appropriately regularized, since in theory the
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SVM’s good performance relies less on parametric assumptions about the distribution
of data points, and in practice this results in a better track record as a classifier.

(4) In most classical formulations, AUC scores are rectified about 0.5, there being no sense
in reporting that a classifier performs “worse than chance” with a score lower than 0.5.
However, since here it is entirely arbitrary to designate a “hit” as the correct detection
of a finger trial rather than a tongue trial, a value of 0 can be considered just as good as
a value of 1, and retaining the unrectified score in the range [0, 1] aids us in interpreting
the role of a given feature.

(5) The overfitting effect in EEG can also be seen by comparing the left and right panels
in the bottom row of figure 14.3, paying particular attention to the center of the desired
7–30 Hz band.

(6) One may also attempt to perform channel selection after CSP without using the eigen-
values or cross-validating the CSP algorithm itself, but this is hampered by the fact that
the training data have been transformed by an algorithm that overfits on them: Cross-
validation error rates in subsequent model and feature selection tend to be uninfor-
matively close to 0, and classifiers end up underregularized. To investigate a possible
workaround for this, we tried splitting each training set into two partitions: one to be
used as input to CSP to obtain spatial filters W , and the other to be transformed by W

and then used in channel selection and classifier training as described above. We ex-
perimented with a 25:75 percent partition, as well as 50:50 and 75:25, of which 50:50
was found to be the best for nearly all values of n. However, the resulting performance
was worse than in the simpler strategy of performing CSP on the whole training set
and taking the best five eigenvalues—the reduction in the number of trials available
for CSP exacerbates the overfitting problem to an extent that is not balanced by the
improvement in feature and model selection. The results of the partition experiments
are not shown.

(7) The exception is subject 308 in the MEG condition, who had previously taken part in
the EEG condition—106 and 308 are the same person.

(8) Each map is spline-interpolated from a single column of the mixing matrix W−1, the
inverse of the spatial filter matrix. The column corresponding to a given source tells us
the measured amplitude of that source as a function of sensor location.
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15.1 Abstract

Principal component analysis (PCA) is often used to project high-dimensional signals to
lower dimensional subspaces defined by basis vectors that maximize the variance of the
projected signals. The projected values can be used as features for classification problems.
Data containing variations of relatively short duration and small magnitude, such as those
seen in EEG signals, may not be captured by PCA when applied to time series of long
duration. Instead, PCA can be applied independently to short segments of data and the
basis vectors themselves can be used as features for classification. Here this is called
the short-time principal component analysis (STPCA). In addition, the time-embedding
of EEG samples is investigated prior to STPCA, resulting in a representation that captures
EEG variations in space and time. The resulting features of the analysis are then classified
via a standard linear discriminant analysis (LDA). Results are shown for two datasets of
EEG, one recorded from subjects performing five mental tasks, and one from the third
BCI Competition recorded from subjects performing one mental task and two imagined
movement tasks.
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15.2 Introduction

Principal component analysis (PCA) is commonly used to project data samples to a lower-
dimensional subspace that maximizes the variance of the projected data. For many datasets,
PCA is also used to isolate the information in the data into meaningful components,
such as “eigenfaces” (Turk and Pentland (1991)) and “eigenlips” (Kirby et al. (1993)) in
applications involving analysis of face images.

For classification problems, PCA is usually applied to a collection of samples from
all classes with the hope that the projection of new samples onto the PCA basis form
components whose amplitudes are related to the class. This approach may fail to capture
variations that appear in the data over short time intervals. Such variations contribute little
to the overall variance of the data, but may be critical in classifying samples into the correct
classes.

Features of short duration can be captured by applying PCA to short time windows
of data. This results in multiple bases, one for each window. To project data samples
using these multiple bases, they must somehow be combined into a single basis. An
alternative approach is used here. Rather than projecting the data to form features on which
classification is performed, the bases themselves are taken as the features. Our hypothesis is
that the directions of significant variation within each window will capture the information
needed to correctly classify the data in the window. We refer to this method as short-time
PCA, or STPCA.

A unique aspect of the representations studied here is that the EEG samples are aug-
mented by samples delayed in time, forming a time-embedded representation described in
the next section and in Kirby and Anderson (2003). With this modification, PCA becomes
a tool for simultaneously analyzing spatial and temporal aspects of the data, where the re-
sulting features are classified using linear discriminant analysis (LDA). A related approach
using common spatial patterns was recently described in Lemm et al. (2005).

Results are shown for classifying six-channel EEG recorded from subjects performing
five mental tasks. For this dataset, classification performance with other representations,
including signal fraction analysis (SFA) (Kirby and Anderson (2003)), is shown to be
considerably lower than in the short-term PCA analysis. This classification performance
is better than the results we have achieved previously with the same data using more
complex representations and classifiers (Garrett et al. (2003)), though recently we have
achieved similar performance with a complex process that combines a clustering process
with a decision tree classifier (Anderson et al. (2006)). The STPCA method is also applied
to Data Set V from the BCI Competition III (BCI Competition III (2005)).

Section 15.3 defines the EEG representations studied here including the short-time PCA,
the linear discriminant analysis (LDA) classifier, and the cross-validation procedure used
for training and evaluating the representations and classifier. Section 15.4 describes the data
used in our analysis, and section 15.5 presents the results of classification experiments that
are discussed in section 15.6. Conclusions are stated in section 15.7.
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15.3 Method

In this section, several EEG signal representations are defined including short-time PCA.
Linear discriminant analysis and the cross-validation training procedures are also de-
scribed.

15.3.1 EEG Signal Representations

Let xi(k) be the voltage sample at time index k from channel i. The d + 1-dimensional
time-embedded representation,

yi(k) = (xi(k), xi(k + 1), xi(k + 2), . . . , xi(k + d))

is created by combining samples at time k with d next samples for channel i (which we
might say is a lag-d representation). These time-embedded samples for all n channels are
concatenated into one column vector, e(k) = (y1(k), . . . , yn(k))T . So, for example, if we
have a 6-channel recording and use a lag of 3, then e(k) would have dimension 24 and
would represent a space-time snapshot of the EEG dynamics. Combining these column
vectors for all sample indices k results in a matrix X . For example, EEG in one trial for the
five-task dataset was recorded for 10 s at 250 Hz resulting in X = (e(1), . . . , e(2500−d)).
The data for task t and trial r will be designated X

(t,r)
d .

In this chapter, we compare the following transformations of X
(t,r)
d as feature represen-

tations with which data from different mental tasks are classified:

(1) samples with no further transformations, X
(t,r)
d ;

(2) projections of time-embedded samples onto the PCA basis, PV
(t,r)
d ;

(3) projections onto the signal-to-noise maximizing SFA basis, PS
(t,r)
d ;

(4) the short-time PCA bases, V
(t,r)
d ; and

(5) the short-time SFA bases, S
(t,r)
d .

These transformations are performed by the following procedures.
Let the matrix L be formed by collecting all time-lagged samples,

L =
[
X

(i,j)
d

]
i=1:Nt,j=1:Nr

where Nt is the number of tasks and Nr is the number of trials per task. If we have r

channels, the columns of L will have dimension r(d + 1). Given lagged EEG data X
(t,r)
d ,

the features PV
(t,r)
d are based on the projections of L onto the variance maximizing basis

given by the eigenvectors of the covariance of the lagged EEG data. The eigenvectors
V of the covariance of the lagged EEG data are found by the eigendecomposition D =

V T LLT V , where V is an orthonormal basis for samples L and D is the diagonal matrix
of eigenvalues. Before using V , the columns of V are ordered in decreasing order of their
corresponding eigenvalues. L may be mean centered by subtracting from each sample
(column) of L the mean of each component. The projections of lagged data for each trial
are formed by PV

(t,r)
d = V T X

(t,r)
d .
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Similarly, given lagged EEG data X
(t,r)
d , the features PS

(t,r)
d are based on the pro-

jections of L onto a signal-to-noise maximizing basis that is found by maximizing the
ratio of projected signal to projected noise. To do so, a characterization of noise is re-
quired. Assumptions described by Hundley et al. (2002) lead to an estimation of noise
covariance by the covariance of the difference between EEG samples at each electrode
and the samples shifted in time by one interval (Knight (2003)). Let S be an operator that
shifts all samples in a matrix by one time interval, so that the noise, N , of the signals in
X = (e(1), . . . , e(2500−d)) is given by N = X−S(X) or (e(2)−e(1), . . . , e(2500−d)−
e(2500− d− 1)). The desired basis is given by the solution to the generalized eigenvector
problem XXT V = NNT V D. Before using V , the columns of V are ordered according
to increasing order of their corresponding eigenvalues, and, as mentioned above, L may be
mean centered by subtracting from each sample (column) of L the mean of each compo-
nent. The projections of lagged data for each trial is formed by PS

(t,r)
d = V T X

(t,r)
d . This

representation is called signal fraction analysis, or SFA (Kirby and Anderson (2003)).
Representing signals from all trials by their projections onto the same basis may not

capture variations that appear during short time intervals and that are not similar to
other variations. One approach to capturing such short-term variations is to segment
each trial into short, possibly overlapping, windows and to calculate new bases for each
window. We construct windows of contiguous data from the time-lagged data so that
Wi = (e((i − 1)h + 1), . . . , e((i − 1)h + s)) are defined using s samples in time,
each window shifted by h samples for i = 1, . . . , w where w is the number of windows.
The samples in Wi may be mean centered by subtracting each sample from their mean.
The variance-maximizing basis for each window is given by Di = V T

i WiW
T
i Vi and

the sequence of these bases for one trial are collected into Ṽd

(t,r)
= (V1, . . . , Vw). In

addition, columns of Vi for which the first component is negative are multiplied by −1 to
remove the variation in sign of basis vectors over multiple windows that results from the
eigendecomposition algorithm. If we have r channels with lag d and we retain n basis
vectors, then V

(t,r)
d has dimension r(d + 1) × n, which we concatenate into a single

“point” that has dimension r(d + 1)n. This is the STPCA representation. We note for
future reference that by construction, all STPCA points have the same norm, and so we are
normalizing the data by putting them on the surface of a sphere of dimension r(d + 1)n.

An example of a short-time PCA representation is shown in figure 15.1 for data from the
first subject in the BCI Competition III, Data Set V (described in section 15.4), where we
have a 32-channel signal preprocessed as described later in this section so that one window
has 256 points, and three lags, and Wi has dimensions 96×256. PCA is performed on each
window independently and the first four eigenvectors are concatenated into one column
vector so that one STPCA “point” is a vector with 32 · 3 · 5 = 480 dimensions. We note
that a single data point is actually a summary of the variation in the space-time snapshots
for a particular window.

In figure 15.1, the numerical values of each STPCA point are represented by greyscale
patches. The data is sorted by task labels, which are plotted in the bottom graph. The
greyscale display provides only a rough indication of patterns that might correlate with
class; a reliable classification must take into account many of the components in each
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column. As described in section 15.5.2, approximately 62 percent of the windows from a
second trial of test data are correctly classified using linear discriminant analysis.

Similarly, the signal-to-noise maximizing basis of a window, Wi, is given by WiW
T
i Si =

NiN
T
i SiDi where Ni = S(Wi). The sequence of these bases for one trial are collected

into S̃d

(t,r)
= (S1, . . . , Sw), forming the short-time SFA representation.

As mentioned above, rather than using all basis vectors from each window for classifi-
cation, a subset is selected from each. In the following experiments, all sequences of basis
vectors are tested. A particular sequence is specified by the index of the first basis vector,
f , and the number of basis vectors, m. Letting Cf,m(Vi) be the selection operator that
extracts the columns f, . . . , f +m−1 from matrix V , the reduced data representations be-
come Ṽ

(t,r)
d = (Cf,m(V1), . . . , Cf,m(Vw)) and S̃

(t,r)
d = (Cf,m(S1), . . . , Cf,m(Sw)). We

first described these short-time representations and their use for mental-task EEG signals
in Kirby and Anderson (2003) and Anderson and Kirby (2003).

15.3.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a simple probabilistic approach to classification in
which the distribution of samples from each class are modeled by a normal distribution.
The parameters for the distribution of each class are estimated, and are combined with
Bayes’ Rule to form discriminant functions that are linear in the features used to represent
the data. LDA is summarized in this section; for a more detailed discussion, see Hastie
et al. (2001).

The probability that the correct class is k given a data sample x can be defined using
Bayes’ Rule in terms of other probabilities by

P (C = k|x) =
P (x|C = k)P (C = k)

P (x)
.

The classification of a data sample x is given by argmaxk P (C = k|x) over all classes k.
In this comparison, P (x) may be removed and P (C = k) may be removed as well if each
class is equally likely a priori, which is assumed to be true for the experiments reported
here. With these assumptions, argmaxk P (C = k|x) = argmaxk P (x|C = k).

In LDA, the normal distributions, P (x|C = k), for each class k are modeled using the
same covariance matrix, Σ, and are defined as

P (x|C = k) =
1

(2π)
p
2 |Σ| 12 e−

1
2 (x−μk)T Σ−1(x−μk).

Let Ck be the set of known samples from class k. The mean μk for each class and the
common covariance matrix Σ is estimated by

μk =
1

Nk

∑
x∈Ck

x

Σ =
1

N − K

K∑
k=1

∑
x∈Ck

(x − μk)T (x − μk)
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Figure 15.1 Example of STPCA representation. 32-channel EEG is augmented with three lagged
samples, segmented into 256-point windows, and PCA performed on each window, where the first 5
eigenvectors are retained. Thus, each STPCA “point” is a vector with 32 · 3 · 5 = 480 dimensions,
and the values are displayed here as a column of greyscale patches. The bottom graph shows the
corresponding class label indicating which mental task is being performed: 2 is imagined left hand
movement, 3 is imagined right hand movement, and 7 is word generation.
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where Nk is the number of samples in Ck, N is the total number of samples, and K is the
number of classes.

To simplify the determination of the maximum P (x|C = k), its logarithm is used. After
removing common terms, the resulting comparison involves linear discriminant functions
for each class of the form

δk(x) = xT Σ−1μk − 1

2
μT

k Σ−1μk.

Defining weights wk = Σ−1μk and bias bk = − 1
2μT

k Σ−1μk, each discriminant function
simplifies to δk(x) = xT wk + bk.

Alternatively, with uniform priors, we can view LDA as using the Mahalanobis distance,
where if we write the estimated covariance

Σ = RT R,

then

(x − μk)Σ−1(x − μk) = ‖R−1(x − μk)‖2,

so that if we transform the data by x̂ = R−1x, then the class identification is made by
finding the (transformed) class mean that is closest (for more details, see Duda et al. (2001),
for example).

15.3.3 Cross-Validation Training Procedure

The five representations defined previously depend on the following parameters: the num-
ber of lags, d; the first basis vector, f ; the number of basis vectors, m; and for the short-time
representations, the window size s for fixed h of 32. The following cross-validation pro-
cedure was used to choose the best values of these parameters for each partitioning of the
five trials into one test trial and four training trials.

For each set of parameter value to be tested, the training trials were randomly parti-
tioned into 80 percent for constructing the classifier and 20 percent for evaluating it. This
partitioning, construction, and evaluation process was repeated five times and the average
performance in terms of percent of validation samples correctly classified was recorded.
Once all parameter sets were tested, the parameter set resulting in the best validation per-
formance was used to construct a new classifier using all the data in all training trials. This
classifier was then applied to the data in the test trial.

15.4 Data

We are using two datasets for our analysis. The first dataset was provided by an earlier
study (Keirn and Aunon (1990)), and we refer to this as the “five-task set.” In this data,
EEG signals were recorded from subjects performing the following five mental tasks: (1)
resting task, in which subjects were asked to relax and think of nothing in particular; (2)
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mental letter writing, in which subjects were instructed to mentally compose a letter to a
friend without vocalizing; (3) mental multiplication of two multidigit numbers, such as 49
times 78; (4) visual counting, in which subjects were asked to imagine a blackboard and
to visualize numbers being written on the board sequentially; and (5) visual rotation of a
three-dimensional block of figures. For each task and trial, the recordings were from six
electrodes (C3, C4, P3, P4, O1, O2) for 10 s at 250 Hz, and each task was repeated five
times (for a total of five trials per task). The order in which tasks were performed was
randomized, and subjects did not practice the tasks beforehand.

The second dataset we use we refer to as the “three-task set.” In June 2005, the Third
International Brain-Computer Interface Meeting was held at Rensselaerville, New York.
One of the events at this meeting was the culmination of the BCI Competition III (BCI
Competition III (2005)) for which five datasets had been made publicly available and
entries were collected from participants who provided implementations of classification
schemes. The classifications schemes were then applied to test data that had not been
publicly available.

The three-task dataset is Data Set V from the BCI Competition III, provided by J. del
R. Millán of the IDIAP Research Institute, Martigny, Switzerland. It contains data from
three subjects performing three tasks: imagined left hand movements, imagined right hand
movements, and generation of words beginning with the same random letter. The subjects
performed a given task for about 15 s and then switched randomly to another task at the
operator’s request.

EEG signals were recorded at 512 Hz using a Biosemi system from electrodes at 32
positions: Fp1, AF3, F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3, Pz, PO3, O1, Oz, O2,
PO4, P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, F8, AF4, Fp2, Fz, and Cz. Approximately
four minutes of data was recorded, followed by approximately four minutes of rest, and
this was repeated to get three training sets and one test set of data.

15.5 Results

15.5.1 Five-Task Dataset

The resulting performance and chosen parameter values for the five-task dataset are shown
in table 15.1 for each representation. Two parameters not shown in the table were also
varied—the window size and whether data was mean centered. Sensitivity to these param-
eters is mentioned later in relation to figure 15.5.

Table 15.1 shows that the best results were obtained with the V
(t,r)
d representation

produced by the short-time PCA method with percentages of samples correctly classified
ranging from 67.5 percent for the first trial to 87.7 percent for the fourth trial. The second
best representation was short-time SFA with the highest percent correct being 64.8 percent.

The confusion matrix in table 15.2 shows the percent correct partitioned into actual and
predicted classes, averaged over all five test trials. The task most often classified correctly
is task 2, the mental letter writing task. Tasks 4 and 5, visual rotation and visual counting,
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Number Number Mean CV Mean test
Test of First of percent percent

Representation trial lags vector vectors correct correct

1 15 26.5 22.3
X 2 0 23.5 18.3

Untransformed X 3 0 23.0 21.0
time-embedded 4 0 23.6 17.1

5 1 23.3 17.9

1 6 2 18 (of 42) 26.8 22.1
PV 2 2 4 7 (of 18) 24.2 18.9

Projections 3 1 3 9 (of 12) 24.2 21.2
onto single 4 2 1 11 (of 18) 23.6 17.4
PCA basis 5 1 3 8 (of 12) 24.2 18.1

1 6 37 6 (of 42) 27.0 21.8
PS 2 4 19 12 (of 30) 23.8 17.7

Projections 3 1 4 7 (of 12) 23.6 19.9
onto single 4 2 4 15 (of 18) 23.6 17.2
SFA basis 5 2 12 7 (of 18) 23.5 17.8

1 2 1 18 (of 18) 94.9 67.5

V 2 3 2 22 (of 24) 93.7 72.3

Short-time 3 3 1 23 (of 24) 91.4 85.6

PCA 4 2 1 18 (of 18) 91.1 87.7

5 3 1 23 (of 24) 91.7 80.3

1 2 3 16 (of 18) 78.9 49.9
S 2 2 2 17 (of 18) 77.8 49.3

Short-time 3 2 3 16 (of 18) 74.5 64.8
SFA 4 2 3 16 (of 18) 73.8 64.8

5 2 1 18 (of 18) 75.5 62.9

Table 15.1 The last two columns show the validation and test percent correct for each represen-
tation and for each test trial. The values in bold face designate the best validation and test data
performance. Also shown are the numbers of lags, first basis vectors, and numbers of vectors (out of
total number of vectors) that resulted in the best validation performance.



270 Time-Embedded EEG Classification with Short-Time PCA

Actual
Task 1 Task 2 Task 3 Task 4 Task 5

Task 1 86.1 2.1 22.1 0.0 0.0
Task 2 1.1 94.7 5.9 0.0 0.5

Predicted Task 3 12.8 2.7 71.7 0.0 0.0
Task 4 0.0 0.3 0.0 72.3 30.9
Task 5 0.0 0.3 0.3 27.7 68.5

Table 15.2 Confusion matrix for short-time PCA representation, averaged over the five test trials.
Tasks are (1) resting, (2) mental letter writing, (3) mental multiplication, (4) visual rotation, and (5)
mental counting.

Number Number
of First of

Subject Lags Vector Vectors

1 2 1 5
2 2 1 4
3 3 1 5

Table 15.3 Best parameters for the Three-Task data set, from BCI Competition Data Set V.

are often misclassified as the other. Task 3, mental multiplication, is often misclassified as
task 1, the resting task.

To visualize the classification performed by the STPCA process, we can cluster the
data in each class and look at a low-dimensional representation. To cluster the data, we
used an Linde-Buzo-Gray (LBG) algorithm (Linde et al. (1980)) (or equivalently, a k-
means clustering) to obtain fifty cluster points per class. We then performed a Sammon
mapping (Sammon, Jr. (1969)) to get the low-dimensional visualization; the Sammon map
is appropriate since it tries to maintain interpoint distances. Figure 15.2 shows the class
separation for one particular trial.

15.5.2 Three-Task Dataset

We bandpass-filtered the data to 8–30 Hz and down-sampled to 128 Hz. The short-time
PCA representation was calculated for the training data for a range of lags, first basis
vectors, and numbers of vectors. One-second windows were used that overlap by one-
sixteenth of a second. LDA was used to classify the transformed data. The cross-validation
procedure described above was used to identify the best values for the number of lags,
number of vectors, and first vector. The values producing the best validation classification
accuracy were determined independently for the data from the three subjects. The resulting
values are shown in the first row of table 15.3.

Once these parameters were determined by the validation procedure, they were used
to obtain the short-time PCA representation of the test data. For each subject, an LDA
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Figure 15.2 A low-dimensional visualization of the mental tasks for a single trial in the five-task
set. Shown are the fifty cluster points per task, visualized using the Sammon map. Here we see that
STPCA does indeed perform a good class separation.

Subject 1 Subject 2 Subject 3 Average

Short-time PCA 62.3 57.6 47.5 55.8

S. Sun 74.3 62.3 52.0 62.8
A. Schlögl 69.0 57.1 32.3 52.7
E. Arbabi 55.4 51.8 43.6 50.2
A. Salehi 26.5 32.8 24.5 28.0

Table 15.4 Percent of test windows correctly classified. First row shows our result for short-time
PCA. The other four rows are for the only entries to the BCI Competition III that classified the raw
data from data set V.

classifier was calculated for all the training data and applied to the test data. As instructed
by the requirements of the BCI Competition III for Data Set V, the classification result
was smoothed by determining the most common predicted task label for eight consecutive
windows, the equivalent of one half second of data. The percent of one-half-second spans
of test data that were correctly classified is shown in table 15.4. This table also shows
results from the BCI Competition III entries. The average performance of short-time PCA
was within about 11 percent of the best approach submitted to the competition.

The submitted approaches are described at BCI Competition III (2005) and are sum-
marized here. Sun et al. removed the data for seven electrodes judged to contain artifacts.
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Figure 15.3 A low-dimensional visualization of the class separation for one training trial, subject
3, for the three-task dataset. Shown are twenty cluster points per task. The low-dimensional visu-
alization was performed via the Sammon map. We see that the STPCA method does indeed give a
good separation.

They were common-average referenced and bandpass filtered to 8–13 Hz for subjects 1
and 2 and to 11–15 Hz for subject 3. A multiclass approach to common spatial patterns
is used to extract features and support vector machines are used to classify. Schlögl et al.
down-sampled to 128 Hz, formed all bipolar channels and estimated autoregressive mod-
els for each channel, and also formed energy in α and β bands. The best single feature for
which a statistical classifier best classified the data was then selected. Arbabi et al. down-
sampled to 128 Hz and filtered to 0.5–45 Hz. Features based on statistical measures and on
parametric models of one-second windows were extracted and classified using a Bayesian
classifier. Best features were selected. Salehi used a combination of short-time Fourier
transform energy values and time-domain features that were classified using a Bayesian
classifier.

On average, the performance of the short-time PCA result surpasses all but one of the
submitted entries. Perhaps the short-time PCA performance would be higher if the steps of
electrode elimination and bandpass selection followed by the winning entry are similarly
performed.

We again can visualize the class separation for a single training set by performing a
clustering (20 clusters per task using the LBG algorithm discussed previously), and a low
dimensional visualization using the Sammon map (referenced earlier). Recall that once the
covariance matrix is estimated (section 15.3), we transform the data by x → R−1x. The
result of the Sammon mapping is shown in figure 15.3.
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Without smoothing With smoothing

Test trial 1 67.5 68.7
Test trial 2 72.3 74.9
Test trial 3 85.6 92.7
Test trial 4 87.7 92.7
Test trial 5 80.3 84.6

Mean 78.7 82.7

Table 15.5 Percent of test samples correctly classified without and with smoothing by binning
classifier output into sequences of five samples and finding majority class.

15.6 Analysis and Discussion

For the five-task dataset, an analysis of the time course of the classifier output suggests
that combining the output from successive samples might improve the performance. Fig-
ure 15.4 shows output of classifier versus sample index for each test trial for the short-time
PCA representation. Sample index here refers to 125-sample windows of data, each shifted
by 32 samples. Many of the incorrect classifications appear as single samples. One way to
combine n successive classifications is to pick the class that appears most often. The per-
cents of test samples correctly classified without and with this smoothing process for n = 5

are shown in table 15.5. Smoothing improves the mean percent correct from 78.7 percent to
82.7 percent. Since window size is 125 samples, or 1/2 second, and windows are shifted by
32 samples, or about 1/8 second, five successive classifier outputs cover 1/2 + 4(1/8) = 1

second of time.
Indications of the sensitivity of the classification results for short-time PCA to each

parameter are shown in figure 15.5. Each graph includes five curves showing the percent
correct averaged over the validation samples taken from the four training trials remaining
after choosing one of the five trials as the test trial. From the graphs we draw the following
conclusions.

When the number of lags, d, is zero, only the current time sample enters into the
representation. Including past samples improves performance. Results show that the best
numbers of lags are 2 or 3. Two window sizes s were tested, 62 and 125, or 1/4 and
1/2 second. Windows of 1/2 second were always better. Only one value, 32, of window
shift h was tested. The first basis vector used in the short-time PCA representation should
appear early in their order. Performance drops quickly past about the twentieth vector.
The performance versus the number of basis vectors climbs until about the twenty-second
vector. The subtraction of the mean has minor effect on the results.

The interpretation of the resulting LDA classifiers is not obvious, due to the high-
dimensional nature of the data resulting from the time-embedding. Here an initial analysis
is performed by considering the weights of the linear discriminant functions. Figure 15.6
shows the variance of the weights over the five discriminant functions for the classifier
trained on all but the first trial. The variance of weights corresponding to short-time PCA
components from the first and last few basis vectors are highest, suggesting that it is these
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Figure 15.4 Output of classifier for sequences of data from the five mental tasks, using short-
time PCA. The dashed line shows the true class index for each sample and the solid line shows the
classifier’s output. For each test trial, a classifier is trained on the remaining four trials and applied to
the test trial, resulting in the five separate graphs.
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Figure 15.5 Sensitivity of fraction of average validation samples correctly classified to parameter
values for short-time PCA representation.

components that most discriminate between the classes. The first few vectors indicate
the directions in which the data varies the most and it is not surprising that they help
discriminate, but the high variance of the last few vectors is intriguing—these low-variance
directions may be capturing small variations in the data that relate strongly to the mental
task being performed.

Another way to summarize the weights of the discriminant functions is to group them by
their corresponding electrode. Figure 15.7 shows the variance of the weights grouped this
way for a classifier trained on all but the first trial. For three of the trials, the P3 coefficients
vary the most, while for the fourth trial, P4 coefficients vary the most. This simple analysis
suggests that the parietal electrodes are most important for mental task discrimination.

15.7 Conclusion

Experiments showed that EEG representations based on short-time PCA can be classified
by simple linear discriminant analysis (LDA) with an accuracy of about 80 percent correct
classification of the correct mental task for the five-task dataset. This data was obtained
from a single subject; tests on additional subjects are warranted to investigate the generality
of this result. The three-task dataset—Data Set V from the BCI Competition III—includes
data from three subjects performing three tasks. On this data, short-time PCA with LDA
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Figure 15.6 Variance (on logarithmic scale) of the weights over the five discriminant functions for
the classifier trained on trials 2 through 4.
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resulted in about 55 percent correct classification, placing it second among four entries to
the competition. An analysis of the sensitivity of this result to the values of the representa-
tion parameters suggests that time-embedding is necessary for good performance and that
the discriminatory information is not isolated to a small number of basis vectors.

Analysis of the classifiers’ weights revealed that short-time PCA basis vectors late in
the sequence play significant roles, suggesting that the low-variance activity represented
by these vectors is strongly related to the mental task. This hypothesis warrants further
study.

Information gleaned from analyses like those summarized in figures 15.6 and 15.7 can
be used to select subsets of features to greatly reduce the dimensionality of the data and
possibly improve the generalization performance of the classifiers. Extending this analysis
to consider the time course of significant electrodes and basis vector directions could lead
to hypotheses of the underlying cognitive activity.
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16.1 Abstract

Recent experiments have shown the possibility of using the brain electrical activity to di-
rectly control the movement of robots or prosthetic devices in real time. Such neuropros-
theses can be invasive or noninvasive, depending on how the brain signals are recorded.
In principle, invasive approaches will provide a more natural and flexible control of neu-
roprostheses, but their use in humans is debatable given the inherent medical risks. Non-
invasive approaches mainly use scalp electroencephalogram (EEG) signals and their main
disadvantage is that these signals represent the noisy spatiotemporal overlapping of activ-
ity arising from very diverse brain regions, that is, a single scalp electrode picks up and
mixes the temporal activity of myriad neurons at very different brain areas. To combine
the benefits of both approaches, we propose to rely on the noninvasive estimation of local
field potentials (eLFP) in the whole human brain from the scalp-measured EEG data us-
ing a recently developed inverse solution (ELECTRA) to the EEG inverse problem. The
goal of a linear inverse procedure is to deconvolve or unmix the scalp signals attributing
to each brain area its own temporal activity. To illustrate the advantage of this approach,
we compare, using identical sets of spectral features, classification of rapid voluntary fin-
ger self-tapping with left and right hands based on scalp EEG and eLFP on three subjects
using different numbers of electrodes. It is shown that the eLFP-based Gaussian classifier
outperforms the EEG-based Gaussian classifier for the three subjects.
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16.2 Introduction

Recent experiments have shown the possibility of using the brain electrical activity to
directly control the movement of robots or prosthetic devices in real time (Wessberg et al.
(2000); Pfurtscheller and Neuper (2001); Taylor et al. (2002); Carmena et al. (2003);
Mehring et al. (2003); Millán et al. (2004a); Musallam et al. (2004)). Such a kind of brain-
controlled assistive system is a natural way to augment human capabilities by providing a
new interaction link with the outside world. As such, it is particularly relevant as an aid for
paralyzed humans, although it also opens up new possibilities in human-robot interaction
for able-bodied people.

Initial demonstrations of the feasibility of controlling complex neuroprostheses have
relied on intracranial electrodes implanted in the brains of monkeys (Wessberg et al.
(2000); Taylor et al. (2002); Carmena et al. (2003); Mehring et al. (2003); Musallam
et al. (2004)). In these experiments, one or more array of microelectrodes record the
extracellular activity of single neurons (their spiking rate) in different areas of the cortex
related to planning and execution of movements—motor, premotor, and posterior parietal
cortex. Then, from the real-time analysis of the activity of the neuronal population, it has
been possible to predict either the animal’s movement intention (Mehring et al. (2003);
Musallam et al. (2004)) or the monkey’s hand trajectory (Wessberg et al. (2000); Taylor
et al. (2002); Carmena et al. (2003)).

For humans, however, noninvasive methods based on electroencephalogram (EEG) sig-
nals are preferable because of ethical concerns and medical risks. The main source of the
EEG—the brain electrical activity recorded from electrodes placed over the scalp—is the
synchronous activity of thousands of cortical neurons. Thus, EEG signals suffer from a
reduced spatial resolution and increased noise due to measurements on the scalp. As a con-
sequence, current EEG-based brain-actuated devices are limited by a low channel capacity
and are considered too slow for controlling rapid and complex sequences of movements.
So far control tasks based on human EEG have been limited to exercises such as moving a
computer cursor to the corners of the screen (Wolpaw and McFarland (1994)) or opening
a hand orthosis (Pfurtscheller and Neuper (2001)). But recently, Millán et al. (2004a) have
shown for the first time that asynchronous analysis of EEG signals is sufficient for humans
to continuously control a mobile robot. Two human subjects learned to mentally drive the
robot between rooms in a house-like environment using an EEG-based brain interface that
recognized three mental states. Furthermore, mental control was only marginally worse
than manual control on the same task. A key element of this brain-actuated robot is a suit-
able combination of intelligent robotics, asynchronous EEG analysis, and machine learning
that requires only the user to deliver high-level commands, which the robot performs au-
tonomously, at any time. This is possible because the operation of the brain interface is
asynchronous and, unlike synchronous approaches (Wolpaw and McFarland (1994); Bir-
baumer et al. (1999); Donchin et al. (2000); Roberts and Penny (2000); Pfurtscheller and
Neuper (2001)), does not require waiting for external cues that arrive at a fixed pace of
4–10 s.
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Despite this latter demonstration of the feasibility of EEG-based neuroprostheses, it is
widely assumed that only invasive approaches will provide natural and flexible control
of robots (Nicolelis (2001); Donoghue (2002)). The rationale is that surgically implanted
arrays of electrodes will be required to properly record the brain signals because the non-
invasive scalp recordings with the EEG lack spatial resolution. However, recent advances
in EEG analysis techniques have shown that the sources of the electric activity in the brain
can be estimated from the surface signals with relatively high spatial accuracy. We believe
that such EEG source analysis techniques overcome the lack of spatial resolution and may
lead to EEG-based neuroprostheses that parallel invasive ones.

The basic question addressed in this chapter is the feasibility of noninvasive brain in-
terfaces to reproduce the prediction properties of the invasive systems evaluated in an-
imals while suppressing their risks. For doing that, we propose the noninvasive estima-
tion of local field potentials (eLFP) in the whole human brain from the scalp-measured
EEG data using a recently developed distributed linear inverse solution termed ELECTRA
(Grave de Peralta Menendez et al. (2000, 2004))). The use of linear inversion procedures
yields an online implementation of the method, a key aspect for real-time applications.

The development of a brain interface based on eLFP allows us to apply methods identical
to those used for EEG-based brain interfaces but with the advantage of targeting the activity
at specific brain areas. An additional advantage of our approach over scalp EEG is that the
latter represents the noisy spatiotemporal overlapping of activity arising from very diverse
brain regions, that is, a single scalp electrode picks up and mixes the temporal activity of
myriad neurons at very different brain areas. Consequently, temporal and spectral features,
which are probably specific to different parallel processes arising at different brain areas,
are intermixed on the same recording. This certainly complicates the classification task by
misleading even the most sophisticated analysis methods. For example, an electrode placed
on the frontal midline picks up and mixes activity related to different motor areas known
to have different functional roles such as the primary motor cortex, supplementary motor
areas, anterior cingulate cortex, and motor cingulate areas. On the other hand, eLFP has the
potential to unravel scalp signals, attributing to each brain area its own temporal (spectral)
activity.

The feasibility of this noninvasive eLFP approach is shown here in the analysis of single
trials recorded during self-paced finger tapping with right and left hands.1 To illustrate
the generalization of our approach and the influence of the number of electrodes, we
report results obtained with three normal volunteers using either 111 or 32 electrodes.
The capability to predict and differentiate the laterality of the movement using scalp EEG
is compared with that of eLFP.

16.3 Methods

16.3.1 Data Recording

Three healthy young right-handed subjects completed a self-paced finger-tapping task.
Subjects were instructed to press at their own pace the mouse button with the index finger of
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a given hand while fixating on a white cross at the middle of the computer screen. Subjects’
arms rested on the table with their hands placed over the mouse. The intervals between
successive movements were rather stable for the three subjects, namely around 500 ms for
subject A and 2000 ms for subjects B and C. Subjects performed several sessions of the
task with breaks of around 5–10 minutes in between.

The EEG was recorded at 1000 Hz from 111 scalp electrodes (Electric Geodesic Inc.
system, subject A and B) and at 512 Hz from 32 scalp electrodes (Biosemi ActiveTwo
system, subject C). Head position was stabilized with a head and chin rest. In the first case
(i.e., 111 electrodes) offline processing of the scalp data consisted uniquely in the rejection
of bad channels2 and their interpolation using a simple nearest-neighbor’s algorithm.
This procedure was not necessary with the 32-electrode system. Since digitized electrode
positions were not available, we used standard spherical positions and the 10-10 system.
These positions were projected onto the scalp of the segmented Montreal Neurological
Institute (MNI) average brain, in preparation for the ELECTRA method that estimates
local field potentials.

The pace selected by the subjects allowed for the construction of trials aligned by the
response consisting of 400 ms before key press. In this way, the analyzed time window
contains mainly the movement preparation excluding the movement onset. For subject A
we recorded 680 trials of the left index tapping and 634 trials of the right index tapping, for
subject B we recorded 179 left trials and 167 right trials, while for subject C we recorded
140 left trials and 145 right trials. We did not apply any visual or automatic artifact rejection
and so kept all trials for analysis. After a visual a posteriori artifact check of the trials,
we found no evidence of muscular artifacts that could have contaminated one condition
differently from the other.

16.3.2 Local Field Potentials Estimates from Scalp EEG Recordings

The electroencephalogram (EEG) measures the extracranial electric fields produced by
neuronal activity within a living brain. When the positions and orientations of the active
neurons in the brain are known, it is possible to calculate the patterns of electric potentials
on the surface of the head produced by these sources. This process is called the forward
problem. If instead the only available information is the measured pattern of electric poten-
tial on the scalp surface, then one is interested in determining the intracranial distribution
of neural activity. This is called the inverse problem or the source localization problem, for
which there is no unique solution. The only hope is that additional information can be used
to constrain the infinite set of possible solutions to a single one. Depending on the addi-
tional information added, different inverse solutions—that is, different reconstructions of
neural activities with different properties—can be obtained (van Oosterom (1991); Scherg
(1994)).

Classical constraints used to solve the EEG inverse problem rely on considering the
neural generators as current dipoles (Ilmoniemi (1993)). In this case, the magnitude to
estimate is the dipole model supposed to represent a current density vector that can
be distributed over the whole grey matter mantle or confined to a single point. When
the dipole is assumed to be confined to a single or a few brain sites, the task is to
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solve a nonlinear optimization problem aimed to find simultaneously the position and
dipolar model of the dipoles (Scherg (1992); Mosher et al. (1999)). When the dipoles
are distributed over a discrete set of solution points within the brain, the task is to find
the magnitude of the dipolar model for each dipole leading to an under-determined inverse
problem, which is usually solved by adding linear constraints such as minimum norm.
(Hamalainen and Ilmoniemi (1994); Grave de Peralta Menendez and Gonzalez Andino
(1998)). In both single-dipoles and distributed-dipole approaches the magnitude to be
estimated is a vector field commonly termed the current density vector. However, in the
approach with distributed models, the values of the current density vector are obtained for
the whole grey matter akin to the tomographic images produced by other modalities of
functional neuroimaging (fMRI, PET, or SPECT) but with temporal resolution in the order
of milliseconds.

A change in the formulation of the EEG inverse problem takes place when the fact
that neurophysiological currents are ohmic and can therefore be expressed as gradients of
potential fields is included as a constraint in the formalism of the problem (Grave de Per-
alta Menendez et al. (2000)). With this neurophysiological constraint, we can reformulate
the EEG inverse problem in more restrictive terms, providing the basis for the noninvasive
estimation of intracranial local field potentials (a scalar field) instead of the current den-
sity vector (a 3D vector field) (Grave de Peralta Menendez et al. (2004)). This solution is
termed ELECTRA.

ELECTRA can be described intuitively as the noninvasive estimation of local field
potentials by means of virtual intracranial electrodes. The advantages of this method are

(1) mathematical simplicity and computational efficiency compared to models based on
current density estimation, since the number of unknowns estimated by the inverse
model is threefold fewer—that is, the unknowns decrease from a vector field to a scalar
field;

(2) contrary to dipolar models, distributed linear solutions provide simultaneous temporal
estimates for all brain areas not being confined to a few sites;

(3) the temporal reconstructions provided by linear distributed inverse solutions are bet-
ter than those of discrete spatiotemporal models or L1-based reconstructions (Liu
et al. (1998)). A few comparisons with intracranial data are also extremely appealing
(Grave de Peralta Menendez et al. (2004)), systematically suggesting that temporal
reconstructions of the generators are more reliable than their spatial counterparts; and

(4) since these are linear methods, computation of the intracranial estimates reduces to a
simple inverse matrix by vector product, which warrants efficient online implementa-
tion.

The analysis that follows relies on the estimation for each single trial of the 3D distri-
bution of the local field potentials (eLFP) using the ELECTRA source model. The eLFP
were estimated at 4,024 voxels homogeneously distributed within the inner compartment
of a realistic head model (Montreal Neurological Institute average brain). The voxels are
restricted to the grey matter of this inner compartment and form an isotropic grid of 6 mm
resolution.
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16.3.3 Statistical Classifier

The different mental tasks are recognized by a Gaussian classifier trained to classify
samples (single trials) as class “left” or “right” (Millán et al. (2002c, 2004a)). The output
of this statistical classifier is an estimation of the posterior class probability distribution for
a sample, that is, the probability that a given single trial belongs either to class “left” or
class “right.”

In our statistical classifier, we have for each mental task a mixture of several Gaussian
units. We think of each unit as a prototype of one of the Nc mental tasks (or classes) to
be recognized. The challenge is to find the appropriate position of the Gaussian prototype
as well as an appropriate variance. We use several prototypes per mental task. We assume
that the class-conditional probability density function of class Ck is a superposition of Nk

Gaussians (or prototypes) and that classes have equal prior probabilities. In our case, all
the classes have the same number of prototypes. In addition, we assume that all prototypes
have an equal weight of 1/Nk. Then, dropping constant terms, the activity ai

k of the ith
prototype of the class Ck for the input vector, or sample, x derived from a trial is

ai
k(x) =

exp
(− 1

2 (x − μi
k)T (Σi

k)−1(x − μi
k)
)

|Σi
k|1/2

(16.1)

where μi
k is the center of the ith prototype of the class Ck, Σi

k is the covariance matrix
of the class Ck, and |Σk| is the determinant of that matrix. Usually, each prototype has
its own covariance matrix Σi

k. To reduce the number of parameters, we restrict our model
to a diagonal covariance matrix Σk that is common to all the prototypes of the class Ck.
Imposing diagonality equals an assumption of independence among the features. Even
though we do not believe this assumption holds for our experiments in a strict sense, this
has demonstrated to be a valid simplification of the model given the a posteriori good
performance of the system. Now, the posterior probability yk of the class Ck is

yk(x) = p(x|Ck) =
ak(x)

A(x)
=

∑Np

i=1 ai
k(x)∑Nc

k=1

∑Np

i=1 ai
k(x)

(16.2)

where ak is the activity of class Ck and A is the total activity of the network. The response
of the network for the input vector x is the class Ck with the highest posterior probability
provided that it is greater than a given probability threshold, otherwise the response is
classified as “unknown” so as to avoid making risky decisions for uncertain samples. This
rejection criterion keeps the number of errors (false positives) low, which is desired since
recovering from erroneous actions has a high cost. In the experiments reported below,
however, we do not use any rejection criterion because the probability threshold was put to
0.5, thus classifying all samples as belonging to one of the possible classes.

To initialize the center of the prototypes μi
k of the class Ck, we run a clustering

algorithm—typically, self-organizing maps (Kohonen (1997)). We then initialize the di-
agonal covariance matrix Σk of the class Ck by setting

Σk =
1

|Sk|
∑

x∈Sk

(x − μi∗

k )(x − μi∗

k )T (16.3)
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where Sk is the set of the training samples belonging to the class Ck, |Sk| is the cardinality
of this set, and i∗ is the nearest prototype of this class to the sample x. During learning
we improve these initial estimations iteratively by stochastic gradient descent so as to
minimize the mean square error3

E =
1

2

Nc∑
k=1

(yk − tk)2 (16.4)

where tk is the kth component of the target vector in the form 1-of-c, for example, the
target vector for class 2 is coded as (0, 1) if the number of classes Nc is 2. Taking the
gradients of the error function yields

Δμi
k(x) = α

∂E

∂μi
k

(x) =α
ai

k(x)

A(x)

x − μi
k

Σi
k

×
⎛⎝(yk(x) − tk(x)) −

Nc∑
j

yj(x)(yj(x) − tj(x))

⎞⎠ (16.5)
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(Σi
k)2

×
⎛⎝(yk(x) − tk(x)) −

Nc∑
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yj(x)(yj(x) − tj(x))

⎞⎠ (16.6)

where α and β are the learning rates. After updating μi
k and Σi

k for each training sample,
the covariance matrices of all prototypes of the same class are averaged to obtain the com-
mon class covariance matrix Σk. This simple operation leads to better performance than if
separate covariance matrices are kept for each individual prototype. The interpretation of
this rule is that, during training, the centers of the Gaussians are pulled toward the EEG
samples of the mental task they represent and are pushed away from EEG samples of other
tasks.

16.3.4 Feature Extraction

To test the capability of our eLFP approach to discriminate between left and right finger
movements, we have done a tenfold cross-validation study and also have compared the
performance of the eLFP-based classifier to an EEG-based classifier. This means that
all the available single trials of each class are split in ten different subsets, and then we
take nine of them to train the classifier and select the hyperparameters of the classifier
(learning rates and number of prototypes), whereas the remaining subset is used for testing
the generalization capabilities. This process is repeated ten times to get an average of the
performance of the classifier based on PSD features computed either on scalp EEG or
eLFP.

In the case of using scalp EEG signals, each single trial of 400 ms of raw EEG potentials
is first transformed to the common average reference (CAR)4 (removal of the average
activity over all the electrodes). The superiority of spatial filters and CAR over raw
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potentials for the operation of a brain interface has been demonstrated in different studies
(e.g., Babiloni et al. (2000)). Then the power spectral density (PSD) in the band 7.5–30
Hz with a resolution of 2.5 Hz, thus yielding ten values per channel, was estimated for the
10 channels CPz, Pz, FC3, FC4, C3, C4, CP3, CP4, P3, and P4, which cover the motor
cortex bilaterally. We have successfully used these PSD features in previous experiments
(Millán et al. (2002c, 2004a)). In particular, we have computed the PSD using modern
multitaper methods (Thomson (1982)). These methods have shown to be particularly well
suited for spectral analysis of short segments of noisy data, and have been successfully
applied to the analysis of neuronal recordings in behaving animals (e.g., Pesaran et al.
(2002)). Specifically, the PSD was estimated using seven Slepian data tapers.

In the case of the classifier based on eLFP, we also have computed the PSD in the band
7.5–30 Hz using multitaper methods with seven Slepian data tapers. In this case, we used
three values per channel to limit the dimensionality of the input space for the statistical
classifier. The PSD was estimated for each single trial of 400 ms on the 50 most relevant
voxels (out of 4,024) as selected by a feature selection algorithm that is a variant of the
so-called Relief method (Kira and Rendell (1992)). Relief has been successfully applied to
the selection of relevant spectral features for the classification of EEG signals (Millán et al.
(2002b)).

Feature selection was applied only to the eLFP because of the large number of potential
voxels that can be fed to the classifier. Feature selection was done on the training set of each
cross-validation step. In the case of scalp EEG, it has been widely shown that only channels
over the motor cortex suffice for good recognition of bimanual movements. Indeed, feature
selection on subject C yielded the before-mentioned channels as the most relevant ones,
and using more than ten channels did not improve performance. On the other hand, the
choice of fifty voxels as input to the eLFP classifier was motivated by the desire of keeping
the dimensionality similar to that of the scalp EEG classifier. A small comparative study on
subject B showed that the optimal number of voxels was around fifty, although differences
in performance were not highly statistically significant (especially when compared to larger
numbers of voxels).

16.4 Results

Table 16.1 shows the results of this comparative study based, as explained, in a tenfold
cross-validation using the Gaussian classifier to get an average of the performance of the
classifier based on PSD features computed either on scalp EEG or eLFP.

Classification based on scalp EEG achieves error rates similar to previous studies (10.8%
on average for the three subjects), and that despite the short time windows used to estimate
the PSD, namely 400 ms. In particular, performance is worse for subject A than for subjects
B and C (11.6% vs. 10.4% and 10.5%), which illustrates the difficulty of recognizing rapid
motor decisions (500 ms tapping pace vs. 2000 ms) based on short segments of brain
electrical activity.

On the contrary, the performance of the Gaussian classifier based on eLFP is extremely
good as it only makes 3.7 percent, 0.6 percent, and 4.9 percent errors for subjects A, B,
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Subject
Method A,111 elect B, 111 elect C, 32 elect

EEG 11.6% ± 2.7 10.4% ± 4.1 10.5% ± 3.7

LFP 3.7% ± 1.2 0.6% ± 1.2 4.9% ± 2.5

Table 16.1 Error rates (mean ± standard deviation) in the recognition of “left” versus “right” finger
movements for three subjects made by a Gaussian classifier based on PSD features computed either
on scalp EEG or noninvasive eLFP using the multitaper method. Results are the average of a tenfold
cross-validation.

Subjects and features
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r 
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Figure 16.1 Plot of all results in the tenfold cross-validation study, for each subject (A, B, C) and
type of features (s, scalp EEG, or e, eLFP). Circles indicate individual values, dotted lines show error
bars with unit standard deviation, and the solid line connects mean values.

and C, respectively. These performances are 3, 17, and 2 times better than when using scalp
EEG features, respectively, and are statistically significant (p = 0 for subjects A and B;
p < 0.001 for subject C). This is particularly the case for subject B for whom we recorded
from 111 electrodes. It is also worth noting that performance is still very good for subject
C even though eLFP were estimated from only 32 scalp electrodes.

Figure 16.1 shows a plot of all results in the tenfold cross-validation study, for each
subject and type of features, illustrating the amount of variation in the values.
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Regarding the spatial distribution of the voxels selected by the feature selection algo-
rithm, the voxels form clusters located on the frontal cortex with the tendency to have the
most relevant ones at the dorsolateral premotor cortex.

16.5 Discussion

The goal of a linear inverse procedure is to deconvolve or unmix the scalp signals at-
tributing to each brain area its own temporal activity. By targeting the particular tempo-
ral/spectral features at specific brain areas, we can select a low number of features that
capture information related to the state of the individual in a way that is relatively invari-
ant to time. Eventually, this may avoid long training periods and increase the reliability
and efficiency of the classifiers. For the case of paralyzed patients, the classification stage
can be improved by focusing on the specific brain areas known to participate and code
the different steps of voluntary or imagined motor action through temporal and spectral
features.

Distributed inverse solutions, as any other inverse method, suffer from limitations in-
herent to the ill-posed nature of the problem. The limitations of these methods have been
described already (Grave de Peralta Menendez and Gonzalez Andino (1998)) and basi-
cally concern: (1) errors on the estimation of the source amplitudes for the instantaneous
maps and (2) inherent blurring, that is, the spatial extent of the actual source is usually
overestimated. However, several theoretical and experimental studies showed that spectral
and temporal features are quite well preserved by these methods (Grave de Peralta Menen-
dez et al. (2000)) that surpass nonlinear and dipolar methods (Liu et al. (1998)). Con-
sequently, our approach relies on temporal and spectral features disregarding estimated
amplitudes so as to alleviate these limitations.

It is also worth noting that, since the head model is stable for the same subject over
time, the inverse matrix requires that it be computed only once for each subject and
is invariant over recording sessions. Online estimation of intracranial field potentials is
reduced to a simple matrix-by-vector product, a key aspect for real-time applications.
However, despite a careful positioning of the electrodes and the regularization5 used to deal
with the noise associated with electrode misplacement, the estimated activity might still be
displaced to a neighbor location out of the strict boundaries defined in the anatomical atlas.
This could happen because of the differences between the subject’s head and the average
MNI head model, or because of the differences in electrode locations from one session to
another. Based on the results of the extensive studies of presurgical evaluations of epileptic
patients, we should expect low errors using realistic head models based on a subject’s MRI.
However, since presurgical studies barely use more than one EEG recording session, the
second source of error requires further study.

Regarding the possibility of using biophysically constrained inverse solutions for brain-
computer interfaces, the results reported here are highly encouraging. They suggest that
recognition of motor intents is possible from nonaveraged inverse solutions and are supe-
rior to systems based on scalp EEG. While prediction of the upcoming movements’ direc-
tion is possible from invasive recordings from neuronal populations in the motor cortex of
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monkeys (Carmena et al. (2003)) as well as from local field potentials recorded from the
motor cortex of monkeys (Mehring et al. (2003); Musallam et al. (2004)), the possibility
of doing the same noninvasively is appealing for its much higher potential with humans.
Finally, the use of noninvasive estimations of local field potentials at specific brain areas
allows us to rely on features with a priori established neurophysiological information.

16.6 Conclusion

In conclusion, this study shows the advantage of using noninvasive eLFP over scalp
EEG as input for a brain-computer interface, as it considerably increases the accuracy
of classification. It also suggests that the prediction capabilities of brain interfaces based
on noninvasive eLFP might parallel those of invasive approaches. Moreover, it indicates
that eLFP can be reliably estimated even with a reduced number of scalp electrodes.

These conclusions are supported by other studies on tasks not related to brain-computer
interfaces, such as visuomotor coordination, with more than twenty-five subjects and
several experimental paradigms (Grave de Peralta Menendez et al. (2005a)). These studies
showed that the discriminative power of eLFP is higher than that of scalp EEG. Also, for a
couple of patients where it was possible to record intracranial potentials directly, eLFP and
intracranial potentials had similar predicting power, indicating that ELECTRA correctly
retrieves the main attributes of the temporal activity of different brain regions.
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(1) As described in section 16.3.1, the experimental setup in this chapter does not allow
us to implement an asynchronous BCI as used previously in our group because the
time window of EEG is time-locked to the response. However, subjects can still work
asynchronously since they decide the response time.

(2) Bad channels were detected by visual inspection combined with an automatic rejection
criterion based on their amplitudes.



290 Noninvasive Estimates of Local Field Potentials for Brain-Computer Interfaces

(3) An alternative to gradient descent for training the Gaussian classifier is expectation-
maximization (Hastie et al. (2001)). The former, however, is better suited for online
adaptation (see chapter 18).

(4) Studies comparing CAR and spatial filters like the Laplacian did not show any statis-
tical difference in classification performance between them.

(5) The regularization parameters were tuned during a previous study with epileptic data
where we dealt with the challenging problem of computing inverse solutions for
spontaneous EEG (in contrast to averaged EEG that is the standard and well known
problem).
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17.1 Abstract

Brain-computer interfaces (BCI), as any other interaction modality based on physiological
signals and body channels (e.g., muscular activity, speech, and gestures), are prone to errors
in the recognition of subject’s intent. An elegant approach to improve the accuracy of
BCIs consists in a verification procedure directly based on the presence of error-related
potentials (ErrP) in the EEG recorded right after the occurrence of an error. Most of these
studies show the presence of ErrP in typical choice reaction tasks where subjects respond
to a stimulus and ErrP arise following errors due to the subject’s incorrect motor action.
However, in the context of a BCI, the central question is: Are ErrP also elicited when
the error is made by the interface during the recognition of the subject’s intent? We have
thus explored whether ErrP also follow a feedback indicating incorrect responses of the
interface and no longer errors of the subjects themselves. Four healthy volunteer subjects
participated in a simple human-robot interaction experiment (i.e., bringing the robot to
either the left or right side of a room), which seemed to reveal a new kind of ErrP. These
“interaction ErrP” exhibit a first sharp negative peak followed by a broader positive peak
and a second negative peak (∼270, ∼400, and ∼ 550 ms after the feedback, respectively).
But to exploit these ErrP, we need to detect them in each single trial using a short window
following the feedback that shows the response of the classifier embedded in the BCI.
We have achieved an average recognition rate of correct and erroneous single trials of
83.7 percent and 80.2 percent, respectively. We also show that the integration of these ErrP
in a BCI, where the subject’s intent is not executed if an ErrP is detected, significantly
improves the performance of the BCI.
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17.2 Introduction

BCIs, as any other interaction modality based on physiological signals and body channels
(e.g., muscular activity, speech, and gestures), are prone to errors in the recognition of
subject’s intent, and those errors can be frequent. Indeed, even well-trained subjects rarely
reach 100 percent success. A possible way to reduce errors consists in a verification
procedure whereby each output consists of two opposite trials, and success is required on
both to validate the outcome (Wolpaw et al. (1998)). Even if this method greatly reduces the
errors, it requires much more mental effort from the subject and reduces the communication
rate.

In contrast to other interaction modalities, a unique feature of the “brain channel” is
that it conveys both information from which we can derive mental control commands
to operate a brain-actuated device as well as information about cognitive states that are
crucial for a purposeful interaction—all this on the millisecond range. One of these states
is the awareness of erroneous responses, which a number of groups have recently started
to explore as a way to improve the performance of BCIs (Schalk et al. (2000); Blankertz
et al. (2003); Parra et al. (2003)). Since the late 1980s, different physiological studies have
shown the presence of error-related potentials (ErrP) in the EEG recorded right after people
become aware that they have made an error (Gehring et al. (1990); Carter et al. (1998);
Falkenstein et al. (2000); Holroyd and Coles (2002)). Apart from Schalk et al. (2000)
who investigated ErrP in real BCI feedback, most of these studies show the presence
of ErrP in typical choice reaction tasks (Carter et al. (1998); Falkenstein et al. (2000);
Blankertz et al. (2003); Parra et al. (2003)). In this kind of task, the subject is asked to
respond as quickly as possible to a stimulus, and ErrP (sometimes referred to as “response
ErrP”) arise following errors due to the subject’s incorrect motor action (e.g., subjects
press a key with the left hand when they should have responded with the right hand).
The main components here are a negative potential showing up 80 ms after the incorrect
response followed by a larger positive peak showing up between 200 and 500 ms after
the incorrect response. More recently, other studies have shown the presence of ErrP in
typical reinforcement learning tasks where the subject is asked to make a choice and ErrP
(sometimes referred to as “feedback ErrP”) arise following the presentation of a stimulus
that indicates incorrect performance (Holroyd and Coles (2002)). The main component
here is a negative deflection observed 250 ms after presentation of the feedback indicating
incorrect performance. Finally, other studies reported the presence of ErrP (that we will
refer to as “observation ErrP) following observation of errors made by an operator during
choice reaction tasks (van Schie et al. (2004)) where the operator needs to respond to
stimuli. As in the feedback ErrP, the main component here is a negative potential showing
up 250 ms after the incorrect response of the subject performing the task. ErrP most
probably are generated in a brain area called anterior cingulate cortex (ACC), which is
crucial for regulating emotional responses (Holroyd and Coles (2002)).

An important aspect of the first two described ErrP is that they always follow an error
made by the subjects themselves. First the subjects make a selection, and then ErrP arise
either simply after the occurrence of an error (choice reaction task) or after a feedback
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Figure 17.1 Exploiting error-related potentials (ErrP) in a brain-controlled mobile robot. The
subject receives feedback indicating the output of the classifier before the actual execution of the
associated command (e.g., “TURN LEFT”). If the feedback generates an ErrP (left), this command
is simply ignored and the robot will keep executing the previous command. Otherwise (right), the
command is sent to the robot.

indicating the error (reinforcement learning task). However, in the context of a BCI or
human-computer interaction in general, the central question is: Are ErrP also elicited when
the error is made by the interface during the recognition of the subject’s intent?

To consider the full implications of this question, let’s imagine that the subject’s intent
is to make a robot reach a target to the left. What would happen if the interface fails to
recognize the intended command and the robot starts turning in the wrong direction? Are
ErrP still present even though the subject did not make any error but only perceives that
the interface is performing incorrectly?

The objective of this study is to investigate how ErrP could be used to improve the
performance of a BCI. Thus, we will first explore whether or not ErrP also follow a
feedback indicating incorrect responses of the interface and no longer errors of the subjects
themselves. If ErrP are also elicited in this case, then we could integrate them in a BCI in
the following way as shown in figure 17.1: After translating the subject’s intention into a
control command, the BCI provides a feedback of that command, which actually will be
executed only if no ErrP follows the feedback. This should greatly increase the reliability
of the BCI, as we see in section 17.4. Of course, this new interaction protocol depends on
the ability to detect ErrP no longer in averages of a large number of trials, but in each single
trial using a short window following the feedback that shows the response of the classifier
embedded in the BCI.

In this chapter, we report recently published results with volunteer subjects during a
simple human-robot interaction (i.e., bringing the robot to either the left or right side
of a room) that seem to reveal a new kind of ErrP, which is satisfactorily recognized in
single trials in Ferrez and Millán (2005). These recognition rates significantly improve the
performance of the brain interface.
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Figure 17.2 Left and right horizontal progress bars. The goal of an interaction experiment is to fill
one of the bars, which simulates a real interaction with a robot that needs to reach one side of a room
(left or right). The system fills the bars with an error rate of 20 percent; that is, at each step, there
was a 20 percent probability that the incorrect progress bar was filled.

17.3 Experimental Setup

To test the presence of ErrP after a feedback indicating errors made by the interface in
the recognition of the subject’s intent, we have simulated a real interaction with a robot
where the subject wishes to bring the robot to one side of a room (left or right) by
delivering repetitive commands until the robot reaches the target. This virtual interaction is
implemented by means of two horizontal progress bars made of ten steps each. One of the
bars goes from the center of the screen to the left side (left bar), and the other bar progresses
to the right side (right bar). Figure 17.2 shows the left and right horizontal progress bars
used as feedback.

To isolate the issue of the recognition of ErrP from the more difficult and general prob-
lem of a whole BCI where erroneous feedback can be due to nonoptimal performance of
both the interface (i.e., the classifier embedded into the interface) and the users themselves,
in the following experiments the subjects deliver commands manually and not mentally.
That is, they simply press a left or right key with the left or right hand. In this way, any
error feedback is due only to a wrong recognition of the interface of the subject’s intention.

Four healthy volunteer subjects participated in these experiments. The subjects press a
key after a stimulus delivered by the system (the word “GO” appears on the screen). The
system filled the bars with an error rate of 20 percent; that is, at each step, there was a
20 percent probability that the incorrect progress bar was filled. Subjects performed ten
series of five progress bars, the delay between two consecutive steps (two consecutive
GOs from the system) was 3–4 s (random delay to prevent habituation). Duration of each
interaction experiment (i.e., filling a progress bar) was about 40 s, with breaks of 5–10
minutes between two series but no break between interaction experiments of the same
series.

EEG potentials were acquired with a portable system (Biosemi ActiveTwo) by means
of a cap with 32 integrated electrodes covering the whole scalp and located according to
the standard 10-20 international system. The sampling rate was 512 Hz and signals were
measured at full DC. Raw EEG potentials were first spatially filtered by subtracting from
each electrode the average potential (over the 32 channels) at each time step. The aim of
this re-referencing procedure is to suppress the average brain activity, which can be seen as
underlying background activity, so as to keep the information coming from local sources
below each electrode. Then, we applied a 1–10 Hz bandpass filter, as ErrP are known to
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be a relatively slow cortical potential. Finally, EEG signals were subsampled from 512 Hz
to 128 Hz (i.e., we took 1 point out of 4) before classification, which was entirely based
on temporal features. Indeed, the actual input vector for the statistical classifier described
below is a 0.5-s window starting 150 ms after the feedback and ending 650 ms after the
feedback for channels Cz and Fz. The choice of these channels follows the fact that ErrP are
characterized by a fronto-central distribution along the midline. Thus, the dimensionality of
the input vector is 128, that is, concatenation of two windows of 64 points (EEG potentials)
each.

The two different classes are recognized by a Gaussian classifier trained to classify single
trials as “correct” or “error” (Millán et al. (2004a)). The output of the statistical classifier
is an estimation of the posterior class probability distribution for a single trial, that is,
the probability that a given single trial belongs to class “correct” or class “error.” In this
statistical classifier, every Gaussian unit represents a prototype of one of the classes to
be recognized, and we use several prototypes per class. During learning, the centers of
the classes of the Gaussian units are pulled toward the trials of the class they represent
and pushed away from the trials of the other class. For more details about this Gaussian
classifier, see chapter 16.

No artifact rejection algorithm (for removing or filtering out eye or muscular move-
ments) was applied and all trials were kept for analysis. It is worth noting, however, that
after a visual a posteriori check of the trials, we found no evidence of muscular artifacts
that could have contaminated one condition differently from the other.

17.4 Experimental Results

With this protocol, it is first necessary to investigate whether or not ErrP are present no
more in reaction to errors made by the subjects themselves, but in reaction to erroneous
responses made by the interface as indicated by the feedback visualizing the recognized
subjects’ intentions. Figure 17.3 shows the difference error-minus-correct for channel Cz
for the four subjects plus the grand average of the four subjects. A first sharp negative peak
(Ne) can be seen 270 ms after the feedback (except for subject 2). A later positive peak
(Pe) appears between 350 and 450 ms after the feedback. Finally, an additional negative
peak occurs ∼550 ms after the feedback. Figure 17.3 also shows the scalp potentials
topographies, for the grand average EEG of the four subjects, at the occurrence of the
maximum of the Ne, the Pe, and the additional negative peak: a first frontal negativity
appears after 270 ms, followed by a fronto-central positivity at 375 ms, followed by a
fronto-central negativity at 550 ms. All four subjects show very similar ErrP time courses
whose amplitudes slightly differ from one subject to the other. Indeed, subject 2 shows no
initial negative peak whereas subject 4 shows an important one. Subjects 3 and 4 show
a larger positive potential, but all four subjects show similar amplitudes for the second
negative peak.

These experiments seem to reveal a new kind of error-related potentials that, for con-
venience, we call “interaction ErrP.” The general shape of this ErrP is quite similar to the
shape of the response ErrP in a choice reaction task, whereas the timing is similar to the
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Figure 17.3 Left: Average EEG for the difference error-minus-correct at channel Cz for the four
subjects plus the grand average of them. Feedback is delivered at time 0 seconds. The negative (Ne)
and positive (Pe) peaks show up about 270 ms and between 350 and 450 ms after the feedback,
respectively. An additional negative peak occurs ∼550 ms after the feedback. Right: Scalp potentials
topographies, for the grand average EEG of the four subjects, at the occurrence of the peaks. Small
filled circles indicate positions of the electrodes (frontal on top), Cz being in the middle of the scalp.

feedback ErrP of reinforcement learning tasks and to observation ErrP. As in the case of
response ErrP, interaction ErrP exhibit a first sharp negative peak followed by a broader
positive peak. However, interaction ErrP are also characterized by a second negative peak
that does not appear in response ErrP. This is quite different from the shape of feedback
ErrP and observation ErrP that are only characterized by a small negative deflection. On
the other hand, the time course of the interaction ErrP bears some similarities to that of the
feedback ErrP and observation ErrP: In both cases, the first distinctive feature (negative
peak and negative deflection, respectively) appears ∼250 ms after feedback. This delay
represents the time required by the subject to “see” the feedback. The time course of re-
sponse ErrP is definitely different. The peaks show up much faster because the subjects
are aware of their errors before they perform the wrong actions. In this case, the real initial
time (t = 0) is internal and unknown to the experimenter.

17.5 Single-Trial Classification

To explore the feasibility of detecting single-trial erroneous responses, we have done a
tenfold cross-validation study where the testing set consists of one of the recorded sessions.
In this way, testing is always done on a different recording session to those used for training
the model.

Table 17.1 reports the recognition rates (mean and standard deviations) for the four
subjects plus the average of them. The different hyperparameters—that is, the learning rates
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Subject Error % Correct %

#1 87.3 ± 11.3 82.8 ± 7.2

#2 74.4 ± 12.4 75.3 ± 10.0

#3 78.1 ± 14.8 89.2 ± 4.9

#4 80.9 ± 11.3 87.3 ± 5.2

Average 80.2 ± 5.4 83.7 ± 6.2

Table 17.1 Percentages of correctly recognized error trials and correct trials for the four subjects
and the average of them.

of the centers and diagonal covariance matrices, number of prototypes, and common/single
covariance matrices for each class—were chosen by model selection in the training sets.
Regarding the learning rates, usual values were 10−4 to 10−6 for the centers and 10−6 to
10−8 for the variances, while the usual number of prototypes was rather small (from 2 to
4). These results show that single-trial recognition of erroneous responses is 80 percent on
average, while the recognition rate of correct responses is slightly better (83.7 percent).
Quite importantly, even for the subject with the worse detection rates, they are around
75 percent. Beside the crucial importance to integrate ErrP in the BCI in a way that the
subject still feels comfortable, for example, by reducing as much as possible the rejection
of actually correct commands, a key point for the exploitation of the automatic recognition
of interaction errors is that they translate into an actual improvement of the performance of
the BCI, which we can measure in terms of the bit rate.

17.6 Bit Rate Improvement

A traditional measure of the performance of a system is the bit rate, the amount of
information communicated per unit time. The bit rate usually is expressed in bits per trial
(bits per selection). If a single trial has Nc possible outcomes, if the probability p that this
outcome is correct (accuracy of the BCI), and if finally each of the other outcomes has the
same probability of selection (i.e., (1− p)/(Nc − 1)), then the information transfer rate in
bits per trial BpT is

BpT = log2(Nc) + p log2(p) + (1 − p) log2

(
1 − p

Nc − 1

)
. (17.1)

This formula makes the assumption that BCI errors and ErrP detection errors are indepen-
dent, which might not always be the case in particular situations like lack of concentration,
longer lasting artifacts, or fatigue. Let’s consider now how the performance of the BCI
changes after introducing ErrP, and that the system detects a proportion e of erroneous tri-
als and a proportion c of correct trials. In the general case, after detecting an erroneous trial
the outcome of the interface is simply stopped and not sent to the brain-actuated device.
The new accuracy p′ of the BCI becomes p′ = pc/pt where pt = pc + (1 − p)(1 − e)

is the proportion of the commands that are effectively sent to the device. Now the new
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Nc = 3 Nc = 2

Initial Stop Initial Stop Replace

Subject BpT BpT Gain BpT BpT Gain BpT Gain

1 0.66 0.91 37% 0.28 0.53 91% 0.36 29%
2 0.66 0.73 10% 0.28 0.40 42% 0.19 -32%
3 0.66 0.92 38% 0.28 0.52 86% 0.44 59%
4 0.66 0.91 37% 0.28 0.52 86% 0.42 50%

Average 0.66 0.86 30% 0.28 0.49 76% 0.34 23%

Table 17.2 Performances of the BCI integrating ErrP for the four subjects and the average of them.

information transfer rate in bits per trial, which takes into account the fact that there are
now fewer outcomes, becomes

BpT = pt

(
log2(Nc) + p′ log2(p

′) + (1 − p′) log2

(
1 − p′

Nc − 1

))
. (17.2)

In the case of a two-class BCI (Nc = 2), after detecting an erroneous trial, it could be
possible to replace the “wrong” outcome by the opposite one, what yields an accuracy
p′′ = pc + (1 − p)e. The information transfer rate in this case is calculated by replacing p

by p′′ in (17.1), because now there is no stopped outcome.
Table 17.2 reports the theoretical performances of a BCI that integrates ErrP for the four

subjects and the average of them, where we have assumed an accuracy of 80 percent the
recognition of the subject’s intent. These figures are to be compared to the performance of
a standard BCI (i.e., without integrating ErrP). We have also reported the performances in
the case Nc = 3, as the mind-controlled robot described by Millán et al. (2004a). In the
case of standard two-class and three-class BCI, their performances are 0.28 and 0.66 bits
per trial, respectively. Results indicate there is a significant improvement in performance
in the case of stopping outcomes, which is above 70 percent on average and higher than
90 percent for one of the subjects. Surprisingly, replacing the wrong outcome leads to
smaller improvements and, in the case of subject 2, even to a significant degradation.

17.7 Error-Related Potentials and Oddball N200 and P300

Since our protocol is quite similar to an oddball paradigm, the question arises of whether
the potentials we describe are simply oddball N200 and P300. An oddball paradigm is
characterized by an infrequent or especially significant stimulus interspersed with frequent
stimuli. The subject is accustomed to a certain stimulus and the occurrence of an infrequent
stimulus generates a negative deflection (N200) about 200 ms after the stimulus, followed
by a positive peak (P300) about 300 ms after the stimulus. Our protocol is very close to
an oddball paradigm in the sense that the subject is accustomed to seeing the increase in
stages of the “correct” progress bars, and the increase in stages of the “wrong” progress
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bar is the infrequent stimulus. To clarify this issue, we have run new series of experiments
for the ErrP study.

In the new series of experiments, the interface executed the subject’s command with an
error rate of 50 percent and, so, error trials are no longer less frequent than correct trials.
Analysis of the ErrP for different subjects using error rates of 20 and 50 percent show no
difference between them except that the amplitude of the potentials are smaller in the case
of an error rate of 50 percent, but the time course remains the same. This is in agreement
with all previous findings on ErrP that show that the amplitude is directly proportional to
the error rate. It is worthwhile to note that the average classification rate with an error rate
of 50 percent was 75. We can conclude then that, while we cannot exclude the possibility
that N200 and P300 contribute to the potentials in the case of an error rate of 20 percent,
the oddball N200 and P300 are not sufficient to explain the reported potentials.

17.8 Ocular Artifacts

In the reported experiments, subjects look in the middle of the two progress bars, awaiting
the central GO to press the key corresponding to the desired bar. After the feedback, the
subjects become aware of the correct or erroneous response and they will shift their gaze
to the side of the progress bar that has just been filled, so that there is a gaze shift in every
single trial. Nevertheless, it is possible that the subjects concentrate upon the side of the
progress bar they want to complete. After an erroneous trial, they will shift their gaze to
the other side, so that the gaze shift could be present in erroneous trials only. The statistical
classifier could therefore pick those gaze shifts since several prototypes per class were
used.

To demonstrate that there is no systematical influence of gaze shifts on the presented
ErrP as well as on classification results, we have calculated the different averages of the
single trials with respect to the side of the progress bar that was intended to be completed:
left error, right error, left correct, right correct. Figure 17.4 shows these four averages at
channel Cz. The top left graph shows the average of erroneous single trials when the left
progress bar was selected for the four subjects and the average of them. The top right graph
shows the average of erroneous single trials with respect to the right bar. The bottom left
and right graph show the average of correct trials with respect to the left and right progress
bar, respectively.

The left and right erroneous averages as well as the left and right correct averages are
very similar whereas the left erroneous and correct as well as the right erroneous and
correct are very different. So it appears that there is no systematical influence of gaze shifts
on the reported potentials.

Eye blinks are another potential source of artifacts. Indeed, it is conceivable that subjects
may blink more frequently after one of the two conditions, and so the classifier could partly
rely on eye blinks to discriminate error and correct trials. However, the scalp topographies
of figure 17.3 show that the three ErrP components do not have a front focus, which would
be expected in blink-related potentials. So, as for the gaze shifts, it appears that there is no
systematical influence of eye blinks on the reported results.
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Figure 17.4 Averages of the single trials at channel Cz with respect to the side of the progress
bar that was intended to be completed for the four subjects and the average of them. There are four
cases: erroneous trials when the left bar was selected (top left), erroneous trials with the right bar (top
right), correct trials with the left bar (bottom left), and correct trials with the right bar (bottom right).
The left and right erroneous averages as well as the left and right correct averages are very similar,
whereas the left erroneous and correct as well as the right erroneous and correct are very different.
This probably excludes any artifacts due to gaze shifts.

17.9 Discussion

In this study we have reported first results on the detection of the neural correlate of error
awareness for improving the performance and reliability of BCI. In particular, we have
found what seems to be a new kind of error-related potential elicited in reaction to an
erroneous recognition of the subject’s intention. An important difference between response
ErrP, feedback ErrP, and observation ErrP on one side and the reported interaction ErrP on
the other side is that the former involve a stimulus from the system for every single trial
whereas the latter involve a choice of a long-term goal made by the subjects themselves
(choice of the progress bar). More importantly, we have shown the feasibility of detecting
single-trial erroneous responses of the interface that lead to significant improvements of the
information transfer rate of a BCI even though these improvements are theoretical. Indeed,
the introduction of an automatic response rejection strongly interferes with the BCI.
The user needs to process additional information that induces higher workload and may
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considerably slow down the interaction. These issues will be investigated when running
online BCI experiments integrating automatic error detection.

Given the promising results obtained in a simulated human-robot interaction, we are
working on the actual integration of ErrP detection into our BCI system. In parallel, we
are exploring how to increase the recognition rate of single-trial erroneous and correct re-
sponses. A basic issue here is to find what kind of feedback elicits the strongest “interaction
ErrP.” The feedback can be of very different nature—visual, auditory, somatosensory, or
even a mix of these different types. More importantly, we will need to focus on alternative
methods to exploit at best the current “interaction ErrP.” In this respect, Grave de Per-
alta Menendez et al. (2004) have recently developed a technique that estimates the so-
called local field potentials (i.e., the synchronous activity of a small neuronal population)
in the whole human brain from scalp EEG. Furthermore, recent results show significant
improvements in the classification of bimanual motor tasks using estimated local field po-
tentials (LFP) with respect to scalp EEG (Grave de Peralta Menendez et al. (2005b)). Con-
sequently, we plan to use this method to best discriminate erroneous and correct responses
of the interface. As a matter of fact, a key issue for the success in the above-mentioned
study was the selection of those relevant voxels inside the brain whose estimated LFP were
most discriminant. It turns out that the sources of the ErrP seem to be very well localized
into the anterior cingulate cortex and thus we may well expect a significant improvement
in recognition rates by focusing on the LFP estimated in this specific brain area.

More generally, the work described here suggests that it could be possible to recognize in
real time high-level cognitive and emotional states from EEG (as opposed, and in addition,
to motor commands) such as alarm, fatigue, frustration, confusion, or attention that are
crucial for an effective and purposeful interaction. Indeed, the rapid recognition of these
states will lead to truly adaptive interfaces that customize dynamically in response to
changes of the cognitive and emotional/affective states of the user.
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18.1 Abstract

One major challenge in brain-computer interface (BCI) research is to cope with the inher-
ent nonstationarity of the recorded brain signals caused by changes in the subject’s brain
processes during an experiment. Online adaptation of the classifier embedded in the BCI
is a possible way of tackling this issue. In this chapter, we investigate the effect of adap-
tation on the performance of the classifier embedded in three different BCI systems, all of
them based on noninvasive electroencephalogram (EEG) signals. Through this adaptation
we aim to keep the classifier constantly tuned to the EEG signals it receives in the cur-
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rent session. Although the experimental results reported here show the benefits of online
adaptation, some questions still need to be addressed. The chapter ends discussing some of
these open issues.

18.2 Introduction

One major challenge in brain-computer interface (BCI) research is coping with the inherent
nonstationarity of the recorded brain signals caused by changes in the subject’s brain
processes during an experiment. The distribution of electrical brain signals varies between
BCI sessions and within individual sessions due to a number of factors including changes
in background brain activity, fatigue and concentration levels, and intentional change of
mental strategy by the subject. This means that a classifier trained on past EEG data
probably will not be optimal for following sessions. Even with a subject who has developed
a high degree of control of the EEG, there are variations in the EEG signals over a session.
In a subject who is first learning to use the BCI, these variations are going to be more
pronounced as the subject has not yet learned to generate stable EEG signals.

The need for adaptation in BCI has been recognized for some time (Millán (2002);
Wolpaw et al. (2002)); however, little research has been published in this area (Buttfield
et al. (2006); Millán (2004); Shenoy et al. (2006); Vidaurre et al. (2006)). In this chapter,
we investigate the effect of adaptation on the performance of the classifier embedded in
three different BCI systems, all of them based on noninvasive electroencephalogram (EEG)
signals. Through this adaptation we aim to keep the classifier constantly tuned to the EEG
signals it receives in the current session. In performing online adaptation (i.e., while the
subject is interacting with the BCI and receiving feedback), we are limited in both time and
computing resources. The BCI system classifies the incoming signals in real time, and we
do not want to reduce the rate at which we can sample data and make decisions by using
an adaptation strategy that takes too much time. So in most cases with online learning,
we will use each data sample only once and in chronological order, since we adapt the
classifier based on each new sample as it is presented and then discard the sample. This
is in contrast to techniques such as stochastic gradient descent, which also takes samples
individually but is not limited to taking samples in order and can reuse samples as many
times as necessary for convergence. A range of techniques has been developed to address
the problem of online learning (Saad (1998)).

During initial training, we know what class the subject is trying to generate at all times,
so we can use supervised methods to adapt the classifier at this stage. The same techniques
could be applied during ongoing use (where we don’t know the exact intention of the
subject) as a periodic recalibration step. In either case, the goal is to adapt the classifier to
compensate for the changes in the signal between sessions, and then track the signals as
they vary throughout the session.

In this chapter, we first examine data recorded during a text spelling experiment. For
this offline study, we propose several adaptive classification schemes and compare their
performances. An interesting result of this study is that most sources of nonstationarity
seem to be eliminated by the feature extraction method such that only slight, or even
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no, adaptivity is needed. Second, we suggest an approach to adapt online the classifier
embedded into a cue-based BCI. In this online study, we explore different methods to tune
a classifier based on discriminant analysis. A large comparative study shows that subjects
using an online adaptive classifier outperform those who do not. Finally, the third study
investigates online adaptation for asynchronous BCI based on stochastic gradient descent.
We discuss online experiments where the subject performed three mental tasks to mentally
control a simulated wheelchair. Experimental results show the feasibility and benefits of
the approach. A significant result is that online adaptation makes it possible to complete
the task from the very first trial.

18.3 Adaptation in CSP-Based BCI Systems

Matthias Krauledat, Pradeep Shenoy, Benjamin Blankertz, Rajesh P. N. Rao, Klaus-Robert
Müller.

18.3.1 Experimental Setup

We investigate data from a study of three subjects using the BBCI system with visual
feedback. The BBCI system was developed by Fraunhofer FIRST in cooperation with the
Department of Neurology of the Charité University Medicine Berlin (see also chapter 5).
For the translation of brain activity into device commands, we use features reflecting
changes of ongoing bandpower in subject-specific topographical patterns and subject-
specific frequency bands. These event-related (de)synchronization (ERD/ERS) phenomena
of sensorimotor rhythms (cf. Pfurtscheller and Lopes da Silva (1999)) are well-studied and
consistently reproducible features in EEG recordings, and are used in a number of BCI
systems (e.g., Guger et al. (2000); Dornhege et al. (2004a)).

We recorded data from three subjects, of which one subject was a naive BCI user and
the other two subjects had some previous experience. The experiments consisted of two
parts: a calibration measurement and a feedback period. In the calibration measurement,
visual stimuli L, R (for imagined left and right hand movement), and F (for imagined foot
movement) were presented to the subject. Based on recorded data from this measurement,
the parameters of a subject-specific translation algorithm were estimated (semiautomati-
cally): selection of two of the three imagery classes and frequency bands showing best
discriminability, common spatial pattern (CSP) analysis (Guger et al. (2000)) and selec-
tion of CSP filters, and calculation of a linear separation between bandpower values in the
surrogate CSP channels of the two selected classes by linear discriminant analysis (LDA).
Details can be found in chapter 5 and Blankertz et al. (2005).

The translation of ongoing EEG during the feedback period into a real-valued control
signal then proceeded as follows: EEG signals were acquired from 64 channels on the scalp
surface, at a sampling frequency of 100 Hz and bandpass-filtered to a specifically selected
frequency band. The common spatial filters, calculated individually from the calibration
data, were then applied. A measure of instantaneous bandpower in each of the surrogate
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Figure 18.1 This figure shows the shift in the power of the selected frequency band in terms of
r-values in one subject. Positive values indicate increased bandpower in the selected frequency band
in the calibration measurement compared to the feedback session.

CSP channels was estimated by calculating the log-variance in sliding windows of 750-
ms length. Finally, these values were linearly weighted by the LDA classifier generated
from the initial calibration session. The resulting real number was used to move a cursor
horizontally on the screen.

18.3.2 Lessons Learned from an Earlier Study

In our earlier BBCI feedback experiments (Blankertz et al. (2005)), we encountered in
many cases a strong shift in the features from training to feedback sessions as the major
detrimental influence on the performance of the classifier. Accordingly, we introduced an
adaptation of the classifier’s bias as a standard tool in our system. To investigate the cause
of this shift in data distributions, we compared the brain activity during calibration mea-
surement versus feedback situation using the biserial correlation coefficient r, which was
calculated between bandpower values of each channel. The topography of one representa-
tive subject shown in figure 18.1 suggests that in the former case a strong parietal α rhythm
(idle rhythm of the visual cortex) is present due to the decreased visual input during the
calibration measurement, while that rhythm activity is decreased in online operation due
to the increased demand for visual processing (Shenoy et al. (2006)).

18.3.3 Mental Typewriter Feedback

Since the mental engagement with an application is one additional possible source of non-
stationarity, we believe that the investigation of nonstationarity issues is most interesting
during the control of real applications. Therefore, we chose a mental typewriter application
that the subjects used for free spelling. Furthermore, this application has the benefit that
even in a free-operation mode it is possible to assign labels (i.e., subject had intended to
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Figure 18.2 The figure on the left is a screenshot of the feedback that was given to the subjects.
The position of the cross was controlled by the classification output of the current EEG signal. By
moving the cross into the right or left box, the respective set of letters was selected. To complete the
acronym BBCI, the subject would try to select the left box, since the letter I is associated with it. A
unique series of decisions (right–left–left–right) leads to the selection of this letter; this corresponds
to the binary decision tree shown in the right figure.

move the cursor left or right) to ongoing EEG in an a posteriori fashion: After the correct
completion of a word, one can decide for preceding trials the direction in which the subject
was trying to move the cursor. This also applies if the intended word is not known to the
experimenter beforehand.

There are various ways in which a one-dimensional continuous output of a BCI can
be used to enter text (e.g., Birbaumer et al. (1999); Wolpaw et al. (2000b); Obermaier
et al. (2003); Millán et al. (2004b)). The basis for our mental typewriter is a continuous
movement of the cursor in the horizontal direction. We use a “rate-controlled” scenario,
that is, at the beginning of each trial, the cursor is placed in a deactivated mode in the
middle of the screen. Every 40 ms, the current classifier output is added to the position
of the cursor, thus moving it left or right. The feedback enables the subjects to type letter
by letter on the basis of binary choices. The alphabet is divided into two contiguous sets
of letters with approximately equal probability of occurrence in the German language.
The first and last letter of each division appear in a rectangle on the left and right end of
the computer screen; see figure 18.2. By moving the cursor into one of the targets, the
subjects can choose the set of letters containing the one they wish to type. The chosen set
is then divided into smaller sets, until a single letter is selected. For correction purposes,
one further symbol (<) for deleting one letter is added to the alphabet. In the case of failing
to hit the correct letter, the subject can then try to select this deletion symbol to erase the
erroneous letter. Note that after an error of only one binary choice, it is impossible for the
subject to get back to the node of the decision tree containing the correct letter. Thus, a
wrong letter will be selected regardless of the next decisions. In our experiments, subjects
often used this period to relax or stretch. This period of the experiment, however, does not
contribute to the relearning schemes, since it does not contain useful information about the
intended task.
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18.3.3.1 Labeling Data from Online Feedback

The subjects were instructed to use the mental typewriter interface to write error-free
sentences over a period of 30 minutes. We recorded the data and assigned labels a posteriori
to the binary choices (trials), depending on the desired outcome of the letter.

Since we presented feedback in asynchronous mode (i.e., starting and end point of each
trial were not given at a fixed rate by the application, but were based solely on the output
of the classifier), the lengths of the trials range from less than one second up to tens of
seconds. For this analysis, we take into account only the last 750 ms before the completion
of the trial.

18.3.4 Adaptation Algorithms

The adaptive classification methods investigated are

ORIG: This is the unmodified classifier trained on data from the calibration ses-
sion, and serves as a baseline.

REBIAS: We use the continuous output of the unmodified classifier and shift the
output by an amount that would minimize the error on the labeled feedback
data.

RETRAIN: We use the features as chosen from the offline scenario, but retrain the
LDA classifier to choose the hyperplane that minimizes the error on la-
beled feedback data.

RECSP: We completely ignore the offline training data, and perform CSP feature
selection and classification training solely on the feedback data.

These schemes are listed in increasing order of change to the classifier. Note that
RETRAIN also includes the choice of a bias as in REBIAS, and RECSP requires the
retraining of the hyperplanes as in RETRAIN. In all adaptive methods, we need to make
a trade-off: Taking more training samples for retraining gives more stable estimates, but
on the other hand it makes the method less adaptive, that is, the policy should be to
take as little training samples for retraining as possible but enough to allow estimations
with reasonable stability. Here we estimate the number of training samples necessary for
retraining separately for each method and each subject.

18.3.5 Results

For validation of the proposed classification schemes, we select for each trial from the
feedback experiment a preceding window of specified size for retraining. Using the CSP
filters and the classifier from the calibration measurement and these new training trials, we
update the classifier and apply it to the current test trial. Then we compare the predicted
laterality with the actual labels. Figure 18.3 shows the influence of the number of training
trials on the accuracy of each adaptation method. In all methods under investigation, the
error rate decreases with the used amount of training data. The method RECSP, however,
does not produce satisfactory results when used with less than twenty training samples per
class. With more samples, the curve stabilizes at a low error rate for one subject, while
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Figure 18.3 The solid lines show the dependency of each algorithm on the number of training
samples. For each subject, a sliding window containing the indicated amount of training samples
per class (x-axis) was used for adaptation in the recording of the feedback session, and the resulting
classifier was applied to the current sample. The average classification error on the test samples
is shown on the y-axis in %, and the position of the optimal adaptation window is marked with a
cross. The dashed horizontal lines indicate the respective errors of the ORIG classifier, applied to all
samples of the feedback session.

Table 18.1 Validation errors for different adaptation methods, evaluated with a sliding window with
an individually chosen number of training trials. The error rates are given in percent. The number in
brackets denotes the optimal window size (trials per class) for each subject under each method. Only
the two numbers printed in bold differ significantly from the ORIG classifier.

Subject ORIG REBIAS RETRAIN RECSP

al 4.9 4.4 (15) 3.9 (40) 3.6 (40)

aw 6.2 6.6 (35) 7.0 (30) 9.7 (25)

VPt 7.6 6.0 (25) 6.6 (20) 16.7 (40)

mean 6.2 5.7 5.8 10.0

remaining far above the baseline of ORIG for the other two subjects. Methods REBIAS and
RETRAIN perform more stably, producing a reliable estimation with only a few adaptation
trials.

Table 18.1 shows the classification errors of all presented adaptation methods, evaluated
for a window size that is optimal in the sense that increasing the window sizes by up to ten
trials per class will not decrease the classification error. This window size is also denoted
in the table. For subject “al,” all suggested adaptation methods show an improvement over
the performance of the original classifier, where the gain is increasing with the complexity
of the adaptation. However none of these improvements reaches the level of significance
(using McNemar’s test, with a confidence level of α = 5%; see Fleiss (1981) for details).
For subject “aw,” the opposite effect can be observed. For the last subject, REBIAS and
RETRAIN again show some improvement while RECSP performs poorly. Taking into
account that in this analysis the window size for adaptation was chosen a posteriori to
fit optimally to the test (i.e., the evaluation is biased in favor of the adaptive methods), one
must conclude that in this data the original classifier can hardly be outperformed by any
relearning method.
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18.4 Adaptive Online Discriminant Analysis for Cue-Based BCI

Carmen Vidaurre, Alois Schlögl, Rafael Cabeza, Gert Pfurtscheller.

The top panel of figure 18.4 depicts a block diagram where the adaptation of the classifier
embedded into a cue-based BCI can be accomplished in a variety of ways. The adaptation
trigger is divided into two parameters: trigger start, or “initial time” (Tini in bottom panel
of figure 18.4), and trigger stop. The number of samples acquired between trigger start
and trigger stop is called “adaptation window” (N in bottom panel of figure 18.4). In this
diagram, the current samples are used to update the classifier. Adaptation starts at initial
time and stops after the adaptation window. As shown in figure 18.4, a delay of the updated
classifier is introduced to avoid overfitting in the classification of dependent samples. After
the delay, the old classifier is replaced by the updated one.

The initial time for the adaptation window Tini is estimated for each trial using an
online estimate of the maximum class-separability. This estimate is motivated by and
closely related to the mutual information (MI) (Schlögl et al. (2003)) because, unlike the
error rate, it also takes into account the magnitude of the output. The online estimation of
maximum class-separability, M̂It, is obtained using a moving average algorithm:

M̂It = mi · UCtini + M̂It−1 · (1 − UCtini) (18.1)

Tini = t|
max(dMIt)

(18.2)

where mi is the output of the classifier multiplied by the class label of the current trial, and
UCtini is an update coefficient, the speed of adaptation of mutual information. The time
when the maximum of M̂It appears is selected as Tini for the next trial.

The classifier is based on linear discriminant analysis (LDA). In such a classifier, the
decision rule for a new sample x is [wT · (x − b)] and its weight vector [b,wT ] can be
estimated online with Kalman filtering. The update equations for Kalman filtering can be
summarized as follows:

ek = yk − Hk · ŵk−1 (18.3)

Hk = [1, xT
k ] (18.4)

Qk = Hk · Ak−1 · HT
k + vk (18.5)

kk =
Ak−1 · HT

k

Qk
(18.6)

ŵk = ŵk−1 + kk · ek (18.7)

Ãk = Ak−1 − kk · Hk · Ak−1 (18.8)

Ak =
trace(Ãk) · UC

p
+ Ãk (18.9)

vk = 1 − UC (18.10)

where ek is the one-step prediction error, yk is the current class label, Hk is the mea-
surement matrix, ŵk is the state vector (the estimated weights for LDA), xk is the current
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Figure 18.4 Adaptation diagram for a cue-based BCI.

sample vector, Qk is the estimated prediction variance, Ãk is an intermediate value needed
to compute Ak (a priori state error correlation matrix), vk is the variance of the innovation
process, kk is the Kalman gain, p is the number of elements of ŵk, and UC is the update
coefficient (given in samples as it represents the “memory” of the process).

More details about this adaptive online LDA scheme, as well as comparison to other
adaptive and nonadaptive approaches based on discriminant analysis, can be found in
Vidaurre (2006).

18.4.1 Parameter Initialization and Features

The starting values for A0 and ŵ0 were computed from data previously recorded from
seven subjects in different sessions. As for the parameters UC, N , and UCtini, their values
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were obtained by optimization with prerecorded data from six naive subjects (different
from the previous seven). All these subjects performed feedback experiments of left- versus
right-hand motor imagery (Pfurtscheller and Neuper (2001)).

During the optimization procedure, the range of the parameters were 8 to 440,000 for
UC, changing in logarithmic scale in 25 steps, 1 to 128 for N , changing in logarithmic
scale in 7 steps, and 1/20 to 1/1024 for UCtini, changing in logarithmic scale in 9 steps.
Each parameter set was analyzed and the set of values that provided the maximum MI was
selected for running the online experiments.

The input to the adaptive classifier was a vector containing two types of features, namely
adaptive autoregressive parameters (AAR) and logarithmic bandpower estimates (BP). The
AAR model had order 3, found by optimization over the group of 6 subjects. To compute
the BP features, the EEG signals were bandpass-filtered in the bands 10–12 Hz and 16–
24 Hz. The filtered signal was squared and averaged over one second, then the logarithm
was taken.

18.4.2 Experimental Results

Experiments were carried out with six able-bodied naive subjects without previous BCI
experience, but started with seven subjects. One subject was rejected because he could
not avoid producing artifacts during the feedback period. They performed motor imagery
experiments using the “basket paradigm” (Krausz et al. (2003)). Each subject conducted
three different sessions, with 9 runs per session and 40 trials per run. For each of them,
1,080 trials were available (540 trials for each class). The system was a two-class cue-
based and EEG-based BCI and the subjects had to perform motor imagery of the left or
right hand depending on the cue. They were asked to maintain their strategy for at least
one run.

The recording was made using a g.tec amplifier (Guger Technologies OEG Austria) and
Ag/AgCl electrodes. Two bipolar EEG channels were measured 2.5 cm above and below
the positions C3 and C4. EEG signals were filtered between 0.5 and 30 Hz and sampled at
125 Hz.

In the basket paradigm, subjects sat on a relaxing chair with armrests. In each trial the
subject saw a black screen for a fixed period (3 s). Then two different colored baskets
(green and red) appeared at the bottom of the screen as did a little green ball at the top of
the screen. At second 4, the ball began to fall downward with constant speed for 3 s. The
horizontal position of the ball was directly controlled by the output of the classifier. The
duration of each trial was 7 s, with a random interval between trials from 1 to 2 s. The
order of the left and right cues was random.

The results were obtained by single trial analysis of the online classification output of
each experimental session. As performance measurements, the minimum error rate (ERR)
and maximum MI of such analysis were used. The learning process of the subjects was
analyzed by comparing sessions. To discover whether the differences between sessions
were statistically significant, the difference between the ERR and MI of each pair of
sessions was calculated for each subject and compared to 0. One sample parametric
and permutation tests were performed on these results. The α-level was corrected for
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multicomparison with αe where αe is the overall type I error fixed to 10 percent, resulting
in 3.45 percent. Each population for the statistical analyses had six observations (one from
each subject).

Table 18.2 reports the results of the experiments for the six subjects over the three
sessions. The last rows give the average and standard error of the mean of each session.
Subjects achieved stable results and improved from session 1 to session 3 a 12.04±3.32
[%] in ERR and a 0.290±0.091 [bits] in MI.

Looking at table 18.2, we see that all subjects improved in performance from session
1 to session 2 and from session 2 to session 3. This steady increase is expected when the
subject is able to learn, although, as reported in Guger et al. (2001) this does not always
occur. We also see that the time point when minimum ERR and maximum MI take place
varies from subject to subject and from session to session. This phenomenon could suggest
that an updating of the adaptation initial time is a good approach.

The last rows of table 18.2, illustrate the clear improvement of the subjects from session
1 to session 3, demonstrating the success of the feedback. Parametric tests found significant
differences among sessions with this system, particularly between sessions 1 and 3, and
2 and 3. The values for the comparison between sessions 1 and 2 are on the limit of
the significance level. Permutation tests found significant differences in all the possible
combinations. The result is an increase of the maximum MI and a decrease of the minimum
ERR, meaning that the data separability improves over time. It is therefore possible to run
successful experiments using this combined feature technique and online adaptive LDA
cue-based BCI system.

With regard to the time points between sessions, no significant difference was found
between them. It is interesting to see that the latest time for ERR was found in the first
session; nevertheless, the time difference between sessions is so small (7 ms) that the
subjects could not notice it. In the case of time points for MI, they slightly increased over
sessions (8 ms), but again the difference was too small to be noticed.

An important issue that arises when studying the topic of adaptive classifiers is whether
continuously adaptive classifiers are better than discontinuously adaptive ones. Discontin-
uously adaptive classifiers have always been used in BCI research, but the decision of when
to update them was mainly based on the researcher’s experience and the subject’s control;
therefore, it is not easy to simulate such a system, and online experiments are preferable.

Taking this into account, we performed online experiments with a discontinuously
adaptive LDA classifier, using again the basket paradigm. Six new subjects participated in
these experiments, all being naive. For these experiments, the general scheme for when to
update the discontinuously adaptive classifier was as follows: The first classifier used with
every subject was the general classifier. After three runs, the LDA classifier was updated
(using these three runs) and used for the next three runs. Then a classifier using the six
runs already recorded was calculated for the next three runs. For the next session, the
classifier of the session carried out the day before was calculated and used (nine runs).
The day after again three, six, and nine runs were used for the calculation of the classifier
and so on. However, this scheme could vary depending on the feedback received with the
updated classifier. When the feedback was worse and/or the subject felt less control with
the new than with the old classifier, the run was stopped and started again with the classifier
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Table 18.2 Experimental results, minimum ERR and maximum MI from single trial analysis of
each session of subjects S1 to S6.

Subject Session ERR[%] Time[s] MI[bits] Time[s]

1 38.06 4.29 0.033 4.23
S1 2 35.83 4.14 0.046 4.23

3 22.22 4.00 0.281 4.14

1 32.22 6.40 0.103 6.45
S2 2 14.72 5.87 0.536 6.64

3 08.06 6.33 0.786 6.50

1 33.33 5.24 0.094 5.06
S3 2 31.39 4.66 0.114 4.65

3 23.33 4.60 0.242 4.33

1 18.61 5.18 0.327 5.25
S4 2 18.33 5.28 0.433 5.26

3 15.83 5.39 0.472 5.50

1 31.67 4.73 0.074 4.81
S5 2 16.94 5.86 0.390 5.90

3 16.11 5.79 0.491 5.68

1 14.17 6.54 0.519 6.54
S6 2 11.39 6.15 0.599 5.96

3 10.28 5.90 0.616 6.74

Mean±SEM

Session 1 28.01±3.83 5.40±0.37 0.192±0.078 5.39±0.38
Session 2 21.43±4.01 5.33±0.32 0.353±0.092 5.44±0.37
Session 3 15.97±2.50 5.34±0.36 0.481±0.083 5.48±0.44

Session comparison, α-level=3.45%

Sess.1–2 Sess.1–3 Sess.2–3

Parametric test p-values ERR 4.20% 0.75% 2.17%
MI 3.55% 1.24% 1.16%

Permutation test p-values ERR 1.56% 1.56% 1.56%
MI 1.56% 1.56% 1.56%

Time points in session comparison, α-level=3.45%

Sess.1–2 Sess.1–3 Sess.2–3

Parametric test p-values ERR 39.98% 41.15% 46.91%
MI 42.13% 34.20% 40.63%

Permutation test p-values ERR 43.75% 42.19% 54.69%
MI 40.63% 29.69% 42.19%



18.4 Adaptive Online Discriminant Analysis for Cue-Based BCI 315

Table 18.3 Minimum ERR and maximum MI of online and discontinuously adaptive LDA classi-
fiers.

Subject Session ERR[%] MI[bit] Subject Session ERR[%] MI[bit]
1 40.00 0.011 1 38.06 0.033

D1 2 21.94 0.315 S13 2 35.83 0.046
3 18.06 0.349 3 22.22 0.281
1 21.67 0.321 1 32.22 0.103

D2 2 17.22 0.507 S14 2 14.72 0.536
3 20.28 0.351 3 08.06 0.786
1 25.28 0.234 1 33.33 0.094

D3 2 17.22 0.399 S15 2 31.39 0.114
3 21.11 0.351 3 23.33 0.242
1 40.56 0.022 1 18.61 0.327

D4 2 37.78 0.046 S16 2 18.33 0.433
3 35.56 0.041 3 15.83 0.472
1 41.39 0.021 1 31.67 0.074

D5 2 24.17 0.255 S17 2 16.94 0.390
3 17.78 0.391 3 16.11 0.491
1 38.61 0.020 1 14.17 0.519

D6 2 34.44 0.090 S18 2 11.39 0.599
3 38.61 0.041 3 10.28 0.616

Session ERR±SEM MI±SEM Session ERR±SEM MI±SEM
1 34.58±3.56 0.105±0.056 1 28.01±3.83 0.192±0.078

2 25.46±3.57 0.269±0.072 2 23.09±1.96 0.301±0.050

3 25.23±3.80 0.254±0.068 3 15.97±2.50 0.481±0.083

that seemed to provide better feedback. In any case, the minimum number of runs for the
calculation of the classifier was three.

The performance of these new six subjects (D1–D6) was then compared to that of the
subjects who used the online adaptive LDA classifier (S1–S6). Table 18.3 reports these
results.

In table 18.3, we see that subjects D1 and D5 could improve from session to session,
D4 improved a bit but with a poor performance. D2 performed similarly in sessions 1 and
3 but best was session 2; the same goes for D6 but this subject had a poor performance.
Finally, D3 performed best in session 2, although session 3 was better than session 1.
ERR and MI mean values of session 1 for the online adaptive system were better than
the ones obtained with the discontinuously adaptive system, but the difference was not
significant (see table 18.5); session 2 of both systems were very similar and finally session
3 of the online adaptive system showed better results than the manually adaptive system
(see table 18.5). Looking at the mean values of sessions 2 and 3 of the discontinuously
adaptive system, both performed similarly (see table 18.4). Contrarily to this trend, sessions
2 and 3 of the online adaptive system were significantly different (see table 18.2).
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Table 18.4 P-values from session comparison of discontinuously adaptive LDA classifiers.

P-values, α-level=3.45%

Session comparison Sess.1–2 Sess.1–3 Sess.2–3

Parametric test ERR 1.11% 4.12% 45.32%
MI 0.58% 3.76% 36.37%

Permutation test ERR 1.56% 3.13% 48.44%
MI 1.56% 1.56% 32.81%

Table 18.5 P-values from the comparison of discontinuously and online adaptive classifiers in each
session.

P-values, α-level=5%

Sess.1 Sess.2 Sess.3

Parametric test ERR 11.87% 23.51% 3.47%
MI 19.30% 24.38% 3.02%

Permutation test ERR 11.69% 23.27% 3.90%
MI 19.70% 23.81% 3.14%

Table 18.5 shows the difference between discontinuous and online updating of the
classifier over three sessions. Independent samples permutation and parametric tests were
performed in each session.

Table 18.5 shows that during the first and second sessions subjects performed similarly
with the two systems, whereas the last session (which also contains most of the information
about the learning process of the subjects) was significantly better with the online adaptive
system.

18.5 Online Classifier Adaptation in an Asynchronous BCI

Anna Buttfield, José del R. Millán.

As an initial experiment to test feasibility of supervised online adaptation in the IDIAP
BCI (see chapter 6), we have implemented basic gradient descent to adapt the classifier
during initial subject training. Previous preliminary work (Millán (2004)) evaluated the
advantages of using continued online learning with the basic gradient descent algorithm
on a Gaussian classifier. Since then we have been investigating extensions of the basic
gradient descent algorithm such as stochastic meta descent (Schraudolph (1999)), which
accelerates training by adapting individual learning rates for each parameter of the classi-
fier. BCI experiments at IDIAP generally are performed in an asynchronous or self-paced
paradigm—that is, the subjects are not tied to a cue from the system but perform the tasks
at their own pace, and the command signals are extracted from spontaneous brain activity.
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18.5.1 Statistical Gaussian Classifier

We use a Gaussian classifier to separate the signal into the different classes of mental
task. Each class is represented by a number of Gaussian prototypes, typically fewer than
four. That is, we assume that the class-conditional probability function of class Ci is a
superposition of Nj Gaussian prototypes. We also assume that all classes have equal prior
probability. All classes have the same number of prototypes Np, and for each class each
prototype has equal weight 1/Np.

Dropping the constant terms, we can define the posterior probability yc of the class c in
terms of the total activation of the classifier (A) and the activation of class c (ac):

A =

Nc∑
i=1

Np∑
j=1

aij (18.11)

ac =

Np∑
j=1

acj (18.12)

yc =
ac

A
(18.13)

where Nc is the number of classes and aij is the activation level of the jth prototype of
class Ci, with center μij and diagonal covariance matrix Σi, for a given sample x

aij =
1∏

k Σik
exp

(
−1

2

∑
k

(xk − μijk)
2

Σik

)
. (18.14)

In this equation, μijk is the kth element of the vector μij , and Σik is the element (k, k)

of the diagonal matrix Σi. Usually each prototype of each class would have an individual
covariance matrix Σij , but to reduce the number of parameters, the model uses a single
diagonal covariance matrix common to all the prototypes of the same class.

The decision of the classifier for input vector x is now the class with the highest
probability, provided that the probability is above a given threshold; otherwise the result is
“unknown.”

Training of the classifier starts from an initial model that can be either a previously
trained classifier or a new classifier created by estimating the prototype centers with a
clustering algorithm. This initial estimate is then improved by stochastic gradient descent
to minimize the mean square error given by

E =
1

2

Nc∑
i=1

(yi − ti)
2 (18.15)

where t is the target vector in the form 1-of-C, that is, if the second of three classes was
the desired output, the target vector is (0,1,0).
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This optimization is performed on the mean and covariance of each prototype. We cal-
culate the derivative of the error with respect to element l of the mean and the covariances
respectively, for prototype p of class c:

∂E(x)

∂μcpl
=

acp

A

[xl − μcpl]

Σcl

[
(yc − tc) −

Nc∑
i=1

(yi(yi − ti))

]
(18.16)

∂E(x)

∂Σcpl
=

1

2

acp

A

[xl − μcpl]
2 − Σcpl

(Σcl)2

[
(yc − tc) −

Nc∑
i=1

(yi(yi − ti))

]
. (18.17)

The gradient descent update equations are now defined as follows, with learning rates
for the centers and covariances α and β, respectively:

(μcpl)t+1 = (μcpl)t − α · ∂E (xt)

∂μcpl
(18.18)

(Σcpl)t+1 = (Σcpl)t − β · ∂E (xt)

∂Σcpl
. (18.19)

At each step, the updates to the covariance matrices are computed individually and then
averaged over the prototypes of each class to give Σc.

When updating the covariance matrices, it is important to ensure that they never become
negative. One way to do this is simply to impose a small positive lower limit on (Σcpl)t+1.
An alternative method is to use exponentiated gradient descent to update the covariances
(Kivinen and Warmuth (1995)), which ensures that the covariances are always positive:

(Σcpl)t+1 = (Σcpl)t · exp

(
−β · ∂E (xt)

∂Σcpl

)
. (18.20)

18.5.2 Stochastic Meta Descent

Stochastic meta descent (SMD) (Schraudolph (1999)) is an extension of gradient descent
that uses adaptive learning rates to accelerate learning. The SMD algorithm is a nonlinear
extension of earlier work (Sutton (1992)).

The SMD algorithm is applied to each parameter in the classifier separately (the center
and covariance of each Gaussian prototype), and each parameter maintains and adapts an
individual learning rate. This is in contrast to basic gradient descent, which uses a single
learning rate for all parameters. Thus, the parameters μij and Σij of prototype j of class i

have learning rates pij and qij , respectively; gradient traces vij and wij , respectively; and
gradients (δμij)t and (δΣij)t, respectively. For simplicity, the indices i and j have been
dropped from the following equations.

The equation for adapting the Gaussian prototype center μ with respect to the error
function E and input xt is

μt+1 = μt + pt · (δμ)t, where (δμ)t ≡ −∂E (xt)

∂μ
. (18.21)
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This equation is an extension of the gradient descent update rule, since if we replaced
the vector of learning rates pt with a scalar we have the basic gradient descent update rule.
We update the learning rates by exponentiated gradient descent, which allows the learning
rates to cover a large range of positive values:

pt = pt−1 · exp(α (δμ)t vt). (18.22)

In this equation, the term α is the meta-learning rate for the centers. The term vt is the
gradient trace, which projects forward into time the effect of a change in learning parameter
on the variables, and is defined as vt ≡ − ∂μt

∂ln(p)
. From this we can derive an iterative

update rule:

vt+1 = vt + pt

(
(δμ)t − (Hμ)tvt

)
(18.23)

where (Hμ)t is the Hessian matrix of E with respect to μ.
A similar system of equations is derived for the covariance updates. Using linear gradient

descent would give us a parallel system of equations to those for the centers. If we choose
to use exponentiated gradient descent, we need to derive a new set of equations:

Σt+1 = Σt · exp(qt(δΣ)t), where (δΣ)t ≡ −∂E (xt)

∂Σ
. (18.24)

The learning rate update for the covariance is then

qt = qt−1 · exp(β (δΣ)t wt) (18.25)

with β being the meta-learning rate for the covariances. The gradient trace w for the
covariance is derived as

wt+1 = exp(qt(δΣ)t) · [wt + Σtqt ((δΣ)t − (HΣ)twt)] (18.26)

where (HΣ)t is the Hessian matrix of E with respect to Σ.
The complicating factor when implementing SMD is the calculation of the Hessians in

(18.23) and (18.26). While there is a method of efficiently calculating the product of a
Hessian and a vector, this method is extremely cumbersome for a Gaussian classifier. An
alternative to using the exact Hessian is to use an approximation such as the Levenberg-
Marquardt or outer product approximation. This approximation is based on the properties
of the error function, (18.15). The elements of the Hessian with respect to the vector μ,
where μm and μn are the mth and nth elements of μ, can be approximated by

Hμ(m,n) =
∂2E

∂μm∂μn
≈
∑

k

∂yk

∂μm

∂yk

∂μn
. (18.27)

This approximation is valid only for a well trained network, since the elements that
it ignores are negligible only on a trained network but not on an untrained network. We
further simplify this approximation by neglecting the off-diagonal elements. A similar
approximation is obtained for HΣ.
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18.5.3 Experimental Results

The IDIAP BCI is based on a portable BioSemi acquisition system. The electrode caps
contain either 32 or 64 electrodes covering the whole scalp.

The IDIAP BCI uses EEG rhythm modulation as a control signal and operates asyn-
chronously. The subjects are trained to perform three mental tasks while being given feed-
back on their performance. The system analyzes the EEG signals to distinguish between
the tasks, which may include imagination of left and right hand movement, arithmetic
operations, rotation of geometrical objects, and language tasks. The most common com-
bination is imagination of left and right hand movement and a language task, specifically
a vocabulary search. Classification is performed by calculating the frequency components
on sliding half-second windows of a selection of electrodes (in between 8 and 12) over a
relevant feature band (typically between 8Hz and 30Hz, with a resolution of 2 Hz), and
passing these frequency features to the statistical Gaussian classifier. This system has been
used in the past to operate simple computer games, use a virtual keyboard, and navigate a
robot through a model house–like environment (Millán et al. (2004b,a)).

The experimental setup that we tested the system on was a computer simulation of
driving a wheelchair through a corridor while avoiding obstacles. A key aspect is the
combination of the subject’s high-level commands with advanced robotics that implement
those commands efficiently (Millán et al. (2004a)). The subject was guided by an operator
who told the subject which task to attempt to produce as the wheelchair moved through
the corridor. In this way the data was labeled with the target classes and the subject was
learning to generate the BCI tasks while becoming accustomed to the simulator interface.
In this task, samples are not necessarily balanced between classes, and the length of time
each class is generated for varies. The more complicated, “real-world” setup also makes it
more difficult for the subjects to concentrate on the mental tasks, as they can be distracted
by watching the wheelchair and anticipating its movements.

One performance measure used in this task was the time the subject took to steer the
wheelchair to the end of the corridor and back again. Times over a number of days are
shown in figure 18.5.

We want to compare the online classification results against the offline performance
of static classifiers. For these experiments we take an initial classifier, adapt it online
throughout the session, and produce the final classifier (which then becomes the initial
classifier for the next session). We measure the classification rates of the initial classifier
and the final classifier on this session, and compare with the online classification rate.
Tables 18.6 and 18.7 show the online classification rates of the classifier, compared to the
static initial and final adapted classifiers, in terms of bit rate1 and correct-error-rejection
rates, respectively. The online classification rates are much higher than the static classifiers.
Also, in each session the online adaptation produces a final classifier that outperforms the
initial classifier. A t-test on the bit rates shows that differences are statistically significant.

Figures 18.6 and 18.7 show the probabilities of each sample for session 4; figure 18.6 is
the online classification rate and figure 18.7 is the offline performance of the final classifier.
The online classification rates track the EEG signals well, with no clear bias between
classes. The final classifier can be seen to perform well on the last part of the session
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Figure 18.5 Times, in seconds, to navigate the wheelchair to the end of the corridor and back. The
wheelchair needs to avoid obstacles along the corridor.

Table 18.6 Classification of four sessions from Day 5—bit rate.

Session Initial classifier Online classification Final classifier

1 0.29 1.44 0.65

2 0.20 1.41 0.67

3 0.14 1.34 0.71

4 0.18 1.34 0.67

Average 0.20 ± 0.06 1.38 ± 0.05 0.67 ± 0.02

Table 18.7 Four sessions from Day 5—percentage of correct, error, and rejected trials.

Session Initial classifier Online classification Final classifier
Cor - Err - Rej Cor - Err - Rej Cor - Err - Rej

1 20.1 - 37.5 - 42.3 64.3 - 11.7 - 24.0 40.3 - 26.4 - 33.3

2 26.9 - 45.0 - 28.1 63.9 - 12.2 - 23.8 43.3 - 26.9 - 29.8

3 23.6 - 48.7 - 27.7 62.2 - 13.4 - 24.4 41.0 - 24.2 - 34.8

4 23.9 - 46.3 - 29.8 61.1 - 12.8 - 26.1 41.3 - 26.1 - 32.6

Av. Cor 23.6 ± 3.0 62.9 ± 1.5 41.4 ± 1.3

Av. Err 44.4 ± 5.3 12.5 ± 0.7 25.9 ± 1.2

Av. Rej 32.0 ± 8.0 24.6 ± 1.0 32.6 ± 2.1
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Figure 18.6 Probability of each of the classes (×, •, +) for each data sample when using online
adaptation (session 4 in tables 18.6 and 18.7). The target class is the symbol above the line at
probability 1, and points above the threshold (0.5) are decisions by the classifier. This shows the
classifier tracking the EEG signals throughout the session.

but less well on the early part of the session. This is consistent with drift in the signal,
which means that the final classifier is tuned to the later part of the session but does not
classify well on the different signals from the early part of the session.

In all the experiments, the online adaptation seems to be providing consistent feedback
to the subject, allowing for predictable responses from the classifier. This can be observed
in the consistent online classification rates and the stable time taken to complete the task.
Finally, it is worth noting that online adaptation makes it possible to complete the task from
the very first trial.

18.6 Discussion

Although the experimental results reported here show the benefits of online adaptation,
some questions still need to be addressed. The first of them is how to combine the strengths
of each of the approaches explored here for different scenarios. In this respect, a second
issue is a better understanding of EEG variation. We believe online classifier adaptation
would improve the performance of a BCI because of the high variability in EEG signals,
but no systematic study has been done to formally analyze the extent of signal variation
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Figure 18.7 Probability of each of the classes (×, •, +) for each data sample when using the final
classifier generated by online adaptation, measured without adaptation (session 4 in tables 18.6 and
18.7). Again, the target class is the symbol above the line at probability 1, and points above the
threshold (0.5) are decisions by the classifier. Inspection shows that the classification rate of this
static classifier is high toward the end of the session but lower toward the start. This supports the
hypothesis that adapting the classifier online tracks drifts in the signal, so the final classifier is tuned
to the data of the later part of the session but is not valid for the beginning.

through different stages in a subject’s usage of a BCI. Such a study would be helpful in
justifying the use of online adaptation and determining whether it is necessary in all cases.

In fact, as shown in section 18.3, adaptive methods such as readjusting bias and angle
of the LDA classifier using feedback data improve the classifier, but do not necessarily
result in a significant increase of the performance. Note that this by no means indicates
nonstationarities were absent in the EEG signals, but it indicates that the BBCI classifier
successfully extracted relevant information from sensorimotor areas while filtering out con-
tributions from sources of nonstationary characteristics like the visual cortex. Figure 18.1,
which shows an enormous difference between the brain activity during calibration mea-
surement and feedback operation, was calculated from one of the experiments of this study.

Based on the results presented here, one could conjecture that in the ideal case, feature
extraction and classification can be successful in extracting a control signal that is not
affected by the nonstationarities in the EEG. Nevertheless, experience with other data
has shown that change of mental state when turning from the calibration measurement
to online operation sometimes needs to be compensated by a robust adaptive method like
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bias correction or covariate shift compensation (Shenoy et al. (2006); Sugiyama and Müller
(2005)).

Finally, the main research issue is adaptation throughout ongoing use, where we don’t
have explicit information about which is the user’s intent. In this situation, we need to de-
velop other methods for online classifier adaptation that are not supervised. Reinforcement
learning (Sutton and Barto (1998)) is a framework that could be useful for this situation.
The problem that reinforcement learning attempts to address is that of learning when we
receive only occasional feedback on how well or poorly we are performing, rather than
explicitly being told what the correct response should have been for each sample. That is,
we could use whatever partial information we can glean about BCI performance during
ongoing use to improve the classifier. In particular, we can gain some partial information
by examining the EEG signals or examining how the BCI task is being performed. One
approach that might be able to give us some information about the performance of the
classifier is the recognition of cognitive error potentials (see chapter 17). Error potentials
are the reaction in the subject’s brain to a mistake made by the interface. Thus, if an error
potential is detected when the classifier makes a wrong classification, we know which class
the subject was not attempting to produce, even though we don’t know what the actual tar-
get was. If we can reliably recognize these error potentials, we know when the classifier has
made a mistake in the recognition of the subject’s intent, and we can update the classifier
based on this information. In this case, we have rapid feedback on whether a classification
was erroneous, and we can use this negative feedback to update the classifier. An alterna-
tive source of information is contextual information about how well the brain-controlled
device is operating, for example, evaluating the quality of the robot’s path in a robot nav-
igation problem or noting when the subject deletes letters in a keyboard application. An
example of this approach to determining the subject’s intent is the mental typewriter ap-
plication presented in section 18.3, where the labels are currently assigned through an a
posteriori analysis of the sequence of decisions. In these situations, we can only make oc-
casional guesses at the true intention of the subject, so we have only occasional feedback
on how well or poorly the classifier is performing, which is the type of situation addressed
by reinforcement learning.
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19.1 Abstract

To analyze the performance of BCI systems, some evaluation criteria must be applied. The
most popular is accuracy or error rate. Because of some strict prerequisites, accuracy is not
always a suitable criterion, and other evaluation criteria have been proposed. This chapter
provides an overview of evaluation criteria used in BCI research. An example from the
BCI Competition 2005 is used to display results using different criteria.

Within this chapter, evaluation criteria for BCI systems with more than two classes
are presented, criteria for evaluating discrete and continuous output are included, and
the problem of evaluating self-paced BCI operation is addressed. Special emphasis is put
on discussing different methods for calculating the information transfer rate. Finally, a
criterion for taking into account the response time is suggested.
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Generate feedback

(classification)
EEG processing

feature extraction

Figure 19.1 Scheme of a BCI. A typical BCI consists of the data acquisition, the feature extraction,
a classification system for combining the feature and generating the feedback, the actual presentation
of the feedback, and a (ideally motivated and cooperating) subject. The subjects receive real-time
feedback to train their own strategy for generating repeatable patterns.

19.2 Introduction

At present, the communication capacity (i.e., information tranfer rate) of current BCI sys-
tems is not sufficient for many real-world applications. To increase the information transfer
rate, possible improvements in signal processing and classification must be investigated
and compared. It is reasonable to assume that the quest for the best methods requires effi-
cient evaluation criteria.

The performance of BCI systems can be influenced by a large variety of methodolog-
ical factors: experimental paradigms and setups that include trial-based (system-paced)
or asynchronous (self-paced) modes of interaction; the type and number of EEG features
(e.g., spectral parameters, slow cortical potentials, spatiotemporal parameters, nonlinear
features); and the type of classifier (e.g., linear and quadratic discriminant analysis, support
vector machines, neural networks, or a simple threshold detection) and the target applica-
tion as well as the feedback presentation. BCI systems can consist of almost any arbitrary
combination of these methods. To compare different BCI systems and approaches, consis-
tent evaluation criteria are necessary.

Which criterion to use depends on what is being evaluated. The highest-level evaluation
studies the operation of useful BCI applications, like the evaluation of a spelling device
or a controlled wheelchair. Here, application-specific tests must be applied. For example,
the operation of a spelling device could be assessed by “letters per minute.” However, a
criterion of “letters per minute” has a different meaning depending on whether the speller
includes word prediction.

The evaluation of BCI systems is also complicated by the fact that most systems include
a feedback loop (see figure 19.1). Each component within this feedback loop can fail.
If one component fails (e.g., bad EEG features, bad classifier, low subject motivation,
or poor feedback presentation), the whole BCI system may not work. If this happens, it
can be very difficult to determine which component caused the problem. To address these
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Class Y N

Y Hits (TP) Misses (FN)

N FA (FP) CR (TN)

Table 19.1 Example of a confusion matrix with two states. If a two-class problem consists of one
active and one passive state, the terms true positives (TP), false negatives (FN), false positives (FP),
and true negative (TN) are used for hits, misses, false activation (FA), and correct rejection (CR),
respectively.

Class 1 2 3 4 Total

1 73 17 7 8 105
2 10 87 3 5 105
3 6 13 74 12 105
4 2 4 7 92 105

Total 91 121 91 117 420

Table 19.2 Example of a Confusion matrix for M = 4 classes. The result is one submission in the
BCI Competition 2005 for Data Set IIIa. More results are available in table 19.3.

difficulties, online and offline analysis must be performed. All of these analyses use criteria
for measuring the performance.

In this chapter, an overview of evaluation criteria used in BCI research is presented
and discussed. Three methods of estimating the information transfer are presented. Cue-
paced BCI data from the last BCI competition is used as an example. The shortcomings
of the most frequently used evaluation criterion—the error rate or accuracy—is discussed
and alternative criteria presented. Evaluation criteria of the response speed of BCIs and
the evaluation of asynchronous BCI data are presented, too. Note, the BioSig project at
http://biosig.sf.net provides a software library that contains the software implementation
of the evaluation criteria presented below.

19.3 The Confusion Matrix

For a M -class classification problem, the results are best described by a confusion matrix.
The confusion matrix shows the relationship between the output classes the user intended
(the true classes) and the actual output of the classifier (i.e., the predicted class). Two
examples of confusion matrices are shown in tables 19.1 and 19.2. If a two-class problem
consists of one active and one passive (no control) state, the terms true positives (TP), false
negatives (FN), false positives (FP), and true negative (TN) are used for hits, misses, false
activation (FA), and correct rejection (CR), respectively (see table 19.1). If the classes all
represent intentional control states, for example, 1 and 2, left and right, or more than two
classes, no special denotation is used for the fields of the confusion matrix (see table 19.2).
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The elements nij in the confusion matrix indicate how many samples of class i have
been predicted as class j. Accordingly, the diagonal elements nii represent the number
of correctly classified samples. The off-diagonal nij represent how many samples of
class i have been incorrectly classified as class j. The total number of samples is N =∑M

i=1

∑M
j=1 nij . Asymmetrical confusion matrices can be used to reveal a biased classifier.

Despite its advantages, the confusion matrices are rarely presented; usually some summary
statistic (see section 19.4) is calculated and presented. Partly, this can be explained by the
difficulty of comparing two confusion matrices.

19.4 Classification Accuracy and Error Rate

The classification accuracy (ACC) or the error rate (ERR = 1-ACC) are the most widely
used evaluation criteria in BCI research. Nine out of fourteen datasets in the BCI compe-
titions 2003 and 2005 used the accuracy or the error rate as the evaluation criterion. One
possible reason for its popularity is that it can be very easily calculated and interpreted.

However, it is important to note that the accuracy of a trivial (random) classifier is
already 100%/M , (e.g., for M = 2 classes 50% are correct just by chance). If the ACC

is smaller than this limit, an error occurred and further exploration is required. On the
other hand, the maximum accuracy can never exceed 100%. Sometimes, this could be a
disadvantage, especially when two classification systems should be compared and both
provide a result close to 100%.

ACC = p0 =

∑M
i=1 nii

N
(19.1)

The ACC also can be derived from the confusion matrix and has been called the overall
accuracy. Some limitations of accuracy as evaluation criterion are based on the facts that
(1) the off-diagonal values of the confusion matrix are not considered and (2) classification
accuracy of less frequent classes have smaller weight.

19.5 Cohen’s Kappa Coefficient

Cohen’s kappa coefficient κ addresses several of the critiques on the accuracy measure. The
calculation of κ uses the overall agreement p0 = ACC, which is equal to the classification
accuracy, and the chance agreement pe

pe =

∑M
i=1 n:ini:

N2
(19.2)
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with n:i and ni: are the sum of the ith column and the ith row, respectively. Note, n:i/N

and ni:/N are the a posteriori and a priori probability. Then, the estimate of the kappa
coefficient κ is

κ =
p0 − pe

1 − pe
(19.3)

and its standard error σe(κ) is obtained by

σe(κ) =

√
(p0 + p2

e −
∑M

i=1 [n:ini:(n:i + ni:)]/N3)

(1 − pe)
√

N
. (19.4)

The kappa coefficient is zero if the predicted classes show no correlation with the actual
classes. A kappa coefficient of 1 indicates perfect classification. Kappa values smaller than
zero indicate that the classifier suggests a different assignment between output and the true
classes.

Sometimes, the specific accuracy specACC for each class i is calculated, too.

specACCi =
2nii

ni: + n:i
(19.5)

For more details on Cohen’s kappa coefficient, see also Cohen (1960); Bortz and Lienert
(1998); Kraemer (1982). Cohen’s kappa coefficient addresses several of the criticisms of
the accuracy measure: (1) it considers the distribution of the wrong classifications (i.e.,
the off-diagonal elements of the confusion matrix); (2) the frequency of occurrence is
normalized for each class—classes with less samples get the same weight as classes with
many samples; and (3) the standard error of the kappa coefficient easily can be used for
comparing whether the results of distinct classification systems have statistically significant
differences.

If the actual (or the predicated) number of samples are equally distributed across classes,
the chance expected agreement is pe = 1/M , and the Kappa coefficient and the accuracy
are related by the following equalities:

κ =
p0 − pe

1 − pe
=

Mp0 − 1

M − 1
(19.6)

ACC = p0 =
Mκ − κ + 1

M
. (19.7)

The kappa coefficient has been used in Schlögl et al. (2005) and was also the evaluation
criterion for dataset IIIa of the BCI competition 2005 (BCI Competition III (2005a)). The
result of one submission is shown in figure 19.3; the kappa coefficient was calculated for
every point in time across all trials of the test set.
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19.6 Mutual Information of a Discrete Output

One of the ultimate goals of a BCI system is to provide an additional communication
channel from the subjects’ brains to their environment. Therefore, the communication
theory of Shannon and Weaver (1949) can be applied directly to quantify the information
transfer. Based on this idea, several attempts have been suggested.

Farwell and Donchin (1988) calculated the information transfer for M classes as

I = log2 (M). (19.8)

For example, a two-class system can provide one bit, a four-class system can provide two
bits. This information rate assumes an error-free system; it provides an upper limit for a
discrete M -class system. Therefore, this suggestion is not useful for comparing different
BCI systems.

Based on Pierce (1980), Wolpaw et al. (2000a) suggested the following formula for
calculating the information transfer rate for M classes and ACC = p0:

B[bits] = log2 (M) + p0 · log2 (p0) + (1 − p0) log2 (1 − p0)/(M − 1). (19.9)

The formula holds under the following conditions:

(1) M selections (classes) are possible,
(2) each class has the same probability,
(3) the specific accuracy (see section 19.4) is the same for each class, and
(4) each undesired selection must have the same probability of selection.

Often these assumptions are not fulfilled. In the example in table 19.2, the conditions (3)
and (4) are not fulfilled.

The information transfer rate can also be derived from the confusion matrix, which
provides a transition matrix of a communication channel between the input X and the
output Y . The random variable X models the user intention and can take M possible
values according to the selected tasks. The random variable Y models the classifier output
and can take M possible values, or M+1 if the clasifier supports trial rejection. The entropy
H(X) of a discrete random variable is defined as

H(X) = −
M∑

j=1

p(xj) · log2(p(xj)). (19.10)

Nykopp (2001) derived the information transfer for a general confusion matrix:

I(X;Y ) = H(Y ) − H(Y | X) (19.11)

H(Y ) = −
M∑

j=1

p(yj) · log2(p(yj)) (19.12)
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with

p(yj) =

M∑
1=1

p(xi) · p(yj | xi) (19.13)

H(Y | X) = −
M∑
i=1

M∑
j=1

p(xi) · p(yj | xi) · log2(p(yj | xi)) (19.14)

I(X;Y ) =
M∑
i=1

M∑
j=1

p(xi) · p(yj | xi) · log2(p(yj | xi))−
M∑

j=1

p(yj) · log2(p(yj)) (19.15)

where I(X;Y ) is the mutual information, p(xi) is the a priori probability for class xi, and
p(yj | xi) is the probability to classify xi as yj .

While the definition in (19.15) is more precise than (19.9), it is not frequently used in
practice because it requires the confusion matrix and the a priori class probabilities. The
prerequisites for (19.9) say p(xi) = 1/M (classes have the same a priori probability),
p(yi | xi) = p0 (accuracy for each class is equal), and for j = i is p(yj | xi) =

(1 − p0)/(M − 1) (each undesired selection is equally distributed); accordingly, the
entropies are H(Y ) = log2(M) and

H(Y | X) = −
M∑
i=1

1/M [p0 · log2(p0) +
∑
j �=i

(1 − p0)/(M − 1) · log2((1 − p0)/(M − 1))].

It follows that I(X;Y ) = log2(M) + p0 · log2(p0) + (1− p0) · log2((1 − p0)/(M − 1)),
which is equivalent to (19.9). Thus, equation (19.15) is a general version of equation (19.9)
(Kronegg and Pun (2005); Kronegg et al. (2005)).

These criteria have been applied mostly to BCI systems operating on a trial-by-trial
basis. In figure 19.3, these criteria were applied to each sample within the trial, providing
a time course of these criteria.

19.7 Mutual Information of a Continuous Output

The criteria in section 19.6 are based on discrete magnitudes of the BCI output. Evaluation
criteria are also needed for continuous magnitudes such as those to move a cursor in the
horizontal or vertical direction. The information content of such continuous output will
affect the subject’s training. BCI experiments with continuous (in time and magnitude)
feedback have been described in Neuper et al. (1999), BCI Competition III (2005b), and
Schlögl (2000a). Thus, quantifying this information content is of crucial interest.

Shannon’s communication theory (Shannon and Weaver (1949)) also is applicable to
these continuous signals. It is reasonable to assume that the BCI output Y is a stochastic
process. Moreover, the output can be decomposed into a signal component X and a noise
component Z. The signal component X is due to the will or deliberate action of the
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Criterion Measure Class 1 Class 2 Class 3 Class 4

Error 22.4 %
Accuracy 77.6 %
Specific Accuracy 74.5 77.0 75.5 82.9
Kappa 0.70 ± 0.05

I(Wolpaw) 0.88 bit
I(Nykopp) 0.92 bit
I(Continous) 1.24 bit 0.30 0.28 0.31 0.35
max. STMI 0.64 bit/s 0.21 0.18 0.14 0.14
SNR 0.51 0.48 0.53 0.63
Parametric correlation 0.67 0.69 0.68 0.77
Rank correlation 0.67 0.69 0.68 0.77
AUC 0.85 0.87 0.87 0.88

Table 19.3 Summary results. The results are derived from the time point with the largest κ at
t = 6.80s. The one-versus-rest results for each class are presented for the two-class criteria. The
time courses are shown in figure 19.3.

user, as it contains the user’s intention; the second component contains all uncorrelated
(noise) terms Z including the background brain activity, amplifier noise, etc. Implicitly,
it is assumed that the subject was motivated and deliberately performed the mental task.
If the subject was not cooperative, the subject’s activity would be counted as background
noise. The signal component can be obtained from the correlation between the output and
the actual class labels (intentional state); the noise is the component of the output that does
not contain any class-related information. Note, the signal and the noise are uncorrelated
and provide an additive noise model (see also Schlögl et al. (2002, 2003)).

According to communication theory, the entropy of the output H(Y ) is the sum of the
entropy of the input H(X) and the entropy of the (additive) noise H(Z). In other words,
the difference between the entropies of the output and the noise is the entropy of the input.
This entropy difference is also the mutual information between the input and the output,
also called the information transfer I(X;Y ). That is, the mutual information is the amount
of information that can be interfered with from the output.

The mutual information is

I(X;Y ) = H(X) − H(X|Y ) (19.16)

and can be alternatively written as

I(X;Y ) = H(Y ) − H(Y |X). (19.17)

The next step consists of estimating the entropy H(X) of a stochastic process X . The
entropy of a stochastic process with the probability distribution p(x) is

H(x) =

∫
x

p(x)log(p(x)). (19.18)
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Accordingly, the probability density of X must be known. The probability density can
be obtained empirically from the histogram of X . However, if the number of samples
is too small, it is reasonable to use second order statistics only; in this case, only the
mean and variance have to be estimated, assuming all higher order moments are zero.
This corresponds to the assumption of a Gaussian distribution.

The entropy of a Gaussian process with variance σ2
x is (Rieke et al. (1999) Appendix 9,

pp. 316–317)

H(X) =
1

2
log2 (2πeσ2

x). (19.19)

The entropy of the noise component H(Y | X) is based on within-class variance
σ2

withinclass (the variance when the input X , i.e., the class c, is fixed) of the system output.
The entropy of the total process H(Y ) is based on the total variance σ2

total of the output.
The difference in entropy indicates the information of the input X transferred to the output
Y .

I(X,Y ) = H(Y ) − H(Y | X) (19.20)

=
1

2
log2 (2πeσ2

total) −
1

2
log2 (2πeσ2

withinclass) (19.21)

=
1

2
log2 (

σ2
total

σ2
withinclass

) (19.22)

The mutual information indicates the input information that passes through a noisy com-
munication channel and can be obtained at the output.

The above formula can be rewritten such that the total variance is the sum of the noise
(i.e., within-class) variance and the signal variance, assuming that noise and signal are
uncorrelated. Accordingly, we get

I = H(Y ) − H(Y | X) =
1

2
log2 (

σ2
signal + σ2

noise

σ2
noise

) =
1

2
log2 (1 + SNR) (19.23)

whereas

SNR =
σ2

signal

σ2
noise

=
σ2

total

σ2
noise

− 1 (19.24)

indicates the signal-to-noise ratio.
Intuitively, the SNR also can be obtained visually, comparing the means and the vari-

ances of the output for each class. This approach has been proposed for evaluating cue-
based BCI with two classes (i.e., intentional control states) with a continuous output
(Schlögl (2000a); Schlögl et al. (2002, 2003)). For the interpretation of M -states, M dis-
criminant functions are obtained (using a one-versus-rest scheme), and each provides a
continuous output for which the mutual information can be obtained. The total amount of
information can be obtained by summing up the mutual information of the M one-versus-
rest outputs. This approach has been used in figure 19.3 for four-class data. Accordingly, it
is also possible to extend this approach toward M classes.
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Figure 19.2 Paradigm used for the experiment in BCI Competition III (2005a). Results are shown
in figure 19.3.

19.8 Criteria for Evaluating Self-Paced BCI Data

The previous criteria usually are applied to system outputs obtained in individual trials
sychronized to an external “go-now” cue. As such trial-based analysis has been referred to
as synchronous, cue-paced, or intermittent analysis. The results in figure 19.3 and tables
19.2 and 19.3 were obtained in this way.

For certain applications, we want subjects to operate the BCI in a self-paced (or asyn-
chronous) mode. To support this, the BCI system is specially designed to produce out-
puts in response to intentional control as well as periods of no control (Mason and Birch
(2000)). For investigations of self-paced control, we need to identify the subject’s intention
to control at arbitrary times and distinguish it from periods of no control. Thus, we need
to evaluate the continuous (nonstop) data stream produced by the BCI. The terms asyn-
chronous, self-paced, and continuous analysis have been used for this kind of evaluation.
(Remark: In this context the term continuous is used differently than in section 19.7, where
we used the terms continuous in magnitude and continuous in time within a trial).

Unlike intermittent analysis, where the timing of intended control is tied to experimental
cues, the identification of the intended output in continuous (nonstop) analysis is more
problematic. The intended output is often estimated from observations of the subject’s
behavior in relation to the experimental protocol or through subject self-report. This can
result in fuzzy time estimates, which impact the analysis. There is no strict algorithm for
defining the intended output sequence, and it remains up to the experimenter how to do this.
In any case, the method used to define the intended output sequence is essential information
and should be accurately reported in research papers.

19.8.1 HF-Difference

The University of Michigan group has developed a validation criterion for continuous
analysis called the HF-difference (Huggins et al. (1999)). The HF-difference is a cost
function that combines the likelihood of event detection and the accuracy of detected
events. The HF-difference has been used only in a single-event state-versus-idle/no-control
state discrimination task. The HF-difference is created by subtracting a false detection
percentage (F ) from a hit percentage (H). H is the percentage of events that are detected
within specified timing constraints. F is the percentage of detections that are not correct
and therefore is a measure describing the trustworthiness of the detections produced by
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Figure 19.3 Time course of various evaluation criteria. The accuracy and kappa (a), the area-under-
the-curve for each of the four one-versus-rest evaluation (b), Wolpaw’s and Nykopp’s discrete mutual
information together with the sum of the continuous mutual information (c), and the continuous
mutual information for each of the one-versus-rest evaluation together with its sum (d), the “steepness
of mutual information” I(t)/(t − t0, for the continuous “C,” Nykopp’s “N” and Wolpaw’s “W”
formula (e), and finally the parametric correlation coefficient (f) are shown. Before cue-onset (at
t0 = 3s), no separability is observed, the accuarcy is 1/4=25%, kappa is 0, AUC is 0.5, I=0 bit, and
the correlation is 0. After the cue onset, the separability increases.
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the method. The H and F percentages are subtracted to produce the HF-difference, which
varies between 100 percent for perfect detection and -100 percent. Equal weighting of the
H and F metrics are used typically.

The hit rate H (also called Sensitivity Se or Recall) is defined as

H = Se =
TP

TP + FN
. (19.25)

The false detection rate F is defined as

F =
FP

TP + FP
. (19.26)

Note, 1 − F (also called the positive predictive value or Precision Pr) is not the same
as the specificity (Sc = TN

TN+FP ). In asynchronous mode, the specificity Sc cannot
be obtained because the number of true negatives TN is not defined. In the field of
information retrieval (Rijsbergen (1979)), the harmonic mean of Precision and Recall

is called the F1-measure

F1 = 2
Se · Pr

Se + Pr
=

2 · TP

2 · TP + FN + FP
. (19.27)

In the field of BCI research, the Hit/False–difference has been more used widely and is
defined as

HFdiff = H − F =
TP

TP + FN
− FP

TP + FP
= Se + Pr − 1. (19.28)

Computing false detections in this way emphasizes the operational cost of false positives
(to the user of the interface) more than sample-based metrics. For example, suppose a 100-
second segment of data sampled at 200 Hz and containing 20 event triggers was used as
the test data and a detection method produced 20 detections, of which 10 were wrong.
With a sample-by-sample classification, 10 false detections in 100 s would yield a false
positive rate of 10/(100 * 200) = 0.05%, giving a false sense of confidence in a method that
was wrong half the time. However, the HF-difference calculation would produce an H of
50% (half of the events detected), an F of 50% (half of the detections incorrect) and an
HF-difference of 0.

On the other hand, the HF-difference ignores important timing characteristics such as
the time over which the measurement was made and the time between events. So, while
the same HF-difference may describe the performance for 5 events over a 10 second period
and over a 10 minute period, this level of performance over the longer period means a much
larger number of correctly classified nonevent samples. Further, the HF-difference formula
does not specify the criteria by which a detection is classified as a hit or a false detection,
allowing the adjustment of these criteria for the particular application under consideration.

As a cost function, the HF-difference provides a user-centered evaluation criteria. How-
ever, HF-difference values can be directly compared only when the criteria used to define
a hit are the same and over data with similar event spacing.
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19.8.2 Confusion Matrix for Self-Paced Data

Because of the limitations of the HF-difference and the lack of an alternative, there is
currently no commonly accepted criterion available for evaluating self-paced BCI data. An
important step toward such a standard is the paper of Mason et al. (submitted) defining
the relevant terms and providing some cornerstones for such criterion. Currently, there are
two approaches under consideration—both are confusion matrices (Mason et al. (2005a)).
In the first approach, the confusion matrix is obtained on a sample-per-sample basis. Each
sample of the BCI output is compared with the label of the intended output for that sample.
The second approach is a transition-based confusion matrix. Each transition of the BCI
output is compared to the intended output to determine whether it is a desired or undesired
transition. Currently, there is no consensus on how to create the confusion matrix and the
issue is an ongoing research topic.

19.9 Other Criteria

19.9.1 Receiver-Operator Characteristics (ROC)

There are several other criteria that can be used; one is the receiver-operator characteristics
(ROC) curve. The ROC curve obtained by varying the detection threshold and plotting the
Sensitivity (fraction of true positives) versus 1 − Specificity (fraction of false positives).
Several summary statistics can be derived from ROC curves. A-prime (A′) and d-prime
(d′) describe the separability of the data and are based on a detection threshold (Pal
(2002)), whereas no detection threshold is needed for the area under the (ROC) curve
AUC. ROC curves also have other interesting properties (for more details, see Stanislaw
and Todorow (1999)). ROC-based criteria have been used for evaluating different artifact
detection methods (Schlögl et al. (1999a,b)), in the BCI competition 2005 for feature
selection (Lal et al. (2005b)), and by Rohde et al. (2002) for self-paced evaluation using
AUC for comparing different detectors and for selecting detection thresholds.

19.9.2 Correlation Coefficient

The correlation coefficient is used sometimes for feature extraction or for validation. The
Pearson correlation (i.e., the parametric correlation) is defined as

r =

∑
i (yi − ȳ)(xi − x̄)√

(
∑

i (yi − ȳ)2)(
∑

i (xi − x̄)2)
(19.29)

where xi is the class label, yi is the output value, and x̄i and ȳi denote the mean values
of xi and yi, respectively. Alternatively, the rank correlation is computed by replacing the
sample values xi and yi by its ranks rank(xi) and rank(yi) (19.29). The rank correlation
should be used for non-Gaussian data, while for Gaussian data the parametric correlation
is recommended. The correlation coefficient r can range from −1 to 1 with an r = 0

indicating no correlation between the output and the class label. The time courses of the
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parametric and the rank correlation are presented in figure 19.3. The squared correlation
coefficient r2 has been used by Wolpaw’s group (Wolpaw et al. (2000b)) for selecting the
electrode position and the frequency band. The correlation coefficient can be computed for
two classes, and also for more classes if the classes are ordered (e.g., if more than two
target classes are available on a one-dimensional scale). The dataset used in table 19.2
and figure 19.3 does not provide such an ordering; therefore, the results of the two-
class correlation coefficient are presented only for each of the individual one-versus-rest
comparisons.

19.9.3 Evaluation of Continuous-Input and Continuous-Output Systems

So far, all the presented evaluation criteria require a discrete target class for reference.
However, BCI systems with continuous output information have been developed recently
by groups such as Donoghue et al. at Brown University (Gao et al. (2003a); Wu et al.
(2004a, 2005)). Within the evalution of these systems, the task of the subject is to track a
target in a two-dimensionsional space. The reference information (the 2D position of the
target) as well as the BCI output are continuous variables. For the evaluation of this type
of BCI system, the mean squared prediction error (MSE)

MSE = 1/N ·
N∑

t=1

((xt − x̂t)
2 + (yt − ŷt)

2) (19.30)

and the correlation coefficient in the x and y direction have been used

CCx =

∑
i (xi − x̄)(x̂i − ¯̂x)√

(
∑

i (xi − x̄)2)(
∑

i (x̂i − ¯̂x)2)
(19.31)

CCy =

∑
i (yi − ȳ)(ŷi − ¯̂y)√

(
∑

i (yi − ȳ)2)(
∑

i (ŷi − ¯̂y)2)
(19.32)

in several works (Gao et al. (2003a); Wu et al. (2004a, 2005)) for comparing different
decoding algorithms. Here, (x, y) and (x̂, ŷ) indicate the position target and the output,
respectively. Note, the correlation coefficient here is the same in (19.29), only the symbols
are used differently. Here, the two-dimensional input and output are denoted by (x, y) and
(x̂, ŷ), respectivly; in (19.29), the one-dimensional input and ouput are denoted by x and
y, respectively.

However, they recommend the MSE over the correlation coefficients, because “MSE
is more meaningful for prosthetic applications, where the subjects need precise control of
cursor positions; [they] observed decoding results with relatively high correlation coeffi-
cients that were sometimes far from 2D hand trajectory” (Wu et al. (2005)(pp. 93–94)).

19.9.4 Response Time

The previous paragraphs were dedicated to evaluation criteria that measure the separability
of the data (through accuracy, mutual information, etc.). However, what happens if the
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perfect data processing method has been developed, but the result is obtained one hour
after the subject actually performed the action? Even if we could speed up the method to a
one-minute delay, the BCI will not be accepted by users. In other words, the response time
is also a crucial parameter in assessing the performance of a BCI.

To take into account not only the separability but also the response time, the maximum
steepness of the mutual information has been used as the evaluation criterion in BCI
Competition III (2005b).

STMI(t) =
I(t)

t − t0
(19.33)

whereas t0 is the time for the cue onset and I(t) is the continuous mutual information.
The maximum mutual information is the slope of that tangent on the curve I(t) that goes
through point (t, I) = [t0, 0].

The results in figure 19.3 provide some information about time course of the detection
accuracy. The data were recorded according to a cue-based paradigm (figure 19.2) with the
cue presented at time t0 = 3s; afterward the separability (figure 19.3) increases up to a
maximum time t = 7.0s giving a response time of 4.0s for optimum accuracy. However,
the maximum steepness of 0.64bit/s is obtained at t = 4.2s.

The steepness can also be calculated for any other criterion; for the BCI competition, the
steepness of the mutual information was chosen because the mutual information provides
a smooth curve and is, therefore, most suitable.

The BCI system with the largest maximum steepness provides the fastest and most
accurate feedback at the output. The steepness will be especially useful for investigating
signal processing and feature extraction methods. For example, it can be used to identify
the optimum window length (trade-off between estimation accuracy and delay time).
Furthermore, the steepness of the mutual information also provides an upper limit of the
theoretical information transfer rate (amount of information per time unit) of a specific BCI
design.

19.10 Discussion

Three approaches (19.9), (19.15), and (19.23) for estimating the mutual information have
been described. The first approach uses the (overall) accuracy, the second approach uses
the confusion matrix to estimate the mutual information, and the third approach evaluates
the information content of the continuous output. All approaches were derived from the
communication theory of Shannon and Weaver (1949). The differences in the results (see
figure 19.3 and table 19.3) are due to different a priori assumptions, which are not always
fulfilled. Especially (19.9) has some strong preconditions (e.g., equal distribution of wrong
classifications), which are rarely fulfilled. Consequently, methods taking into account the
whole confusion matrix should be preferred in case of a discrete output. For the evaluation
of continuous BCI output, the mutual information for continuous output is recommended;
it does not require thresholding, and the magnitude information is taken into account. The
derivation of the equations also points out the possibility of a more refined analysis, for
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Criterion Units # classes min/chance/max Threshold
required

ERR % M 0/ M−1

M
100%/100% YES

ACC % M 0/ 100%

M
/100% YES

Kappa [1] M -1/0/1 YES
IWolpaw [bit] M 0/0/ log2 (M) YES
INykopp [bit] M 0/0/ log2 (M) YES
IContinuous [bit] 2, M1 0/0/ inf NO
STMI [bit/s] 2 0/0/ inf NO
SNR 1 2 0/0/ inf NO
Correlation r [1] 2, M2, cont.4 −1/0/1 NO
AUC [1] 2 0/0.5/1 NO
A′ [1] 2 0/0.5/1 YES
d′ [1] 2 − inf /0/ inf YES
F1 [1] 2 0/0.5/1 YES
HF-diff % 13 -100%/-/100% YES
MSE [cm2] cont.4 NO

Table 19.4 Overview of evaluation criteria. The # classes column indicates whether the criterion
is suitable for a two-class or for an M -class problem. Nevertheless, the two-class criteria also can
be applied to each class of an M -class problem if each class is evaluated against the rest (one-vs.-
rest scheme). The column min/chance/max indicates the range (min/max) and the result of a chance
classification. The threshold column indicates whether a known threshold value is necessary (YES)
or if the performance can be computed without determining a certain threshold (NO).
1The mutual information for continuous output is defined by two classes, and can be extended to M
classes by summing up the information of each 1-vs.-rest output. 2The correlation coefficient r can
be applied to M > 2 classes only if the classes can be ordered such that c1 < c2 < · · · < cM . 3The
HF − diff is used for evaluating one active state versus a resting state. 4The reference information
is not discrete but continuous, no class information but, e.g., target trajectory is provided.

example, the assumption of Gaussianity can be replaced by more accurate estimates of the
actual output distribution.

Although evaluation criteria have not received much attention in BCI research, com-
plete definitions, further discussion, and sound application of these criteria will improve
the overall evaluations of BCI systems. To simplify the usage of various criteria, the soft-
ware implementation of the evaluation criteria is available through the BioSig project
http://biosig.sf.net/.

Notes

E-mail for correspondence: alois.schloegl@tugraz.at
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Introduction

In this part, we introduce two software packages for BCI that are freely available for
research and include a set of useful tools to process EEG signals for real-time BCI. Note
that the subsequent chapters are intended as practical references for a quick start to the new
BCI researcher.

In chapter 20, Schlögl et al. introduce the Graz BioSig toolbox. Besides an interface to
many different data formats of EEG recordings, the toolbox supports several-signal pro-
cessing and artifact reduction, feature extraction, and classification methods. The software
package is freely available licensed with the GNU General Public License. It allows for
the use of several programming languages and computer platforms.

In chapter 21, Mellinger and Schalk introduce the EEG software toolbox BCI 2000 de-
veloped in cooperation of the Wadsworth Center in Albany and the University of Tübingen.
The system has been developed mainly for real-time BCI applications and provides the user
with general data acquisition techniques and a general framework where a research group
is able to use their own signal processing, user application, and operator modules. The
software is freely available for research and education. However, it is restriced to Windows
platforms and C++ programming.

Note that a number of further software packages are available in the field of EEG
processing (see section 20.2 for an overview) and BCI. The licensing schemes and the
technical scope of these packages vary strongly. Mostly they are software libraries that
are assembled by the respective local BCI group with varying degrees of documenting the
package functionalities. For example, in the case of Berlin, the BBCI toolbox is part of a
larger software library of general machine learning and signal processing, parts of which
contain patented technology; therefore, the software is only commercially available.

Guido Dornhege and Klaus-Robert Müller





20 BioSig: An Open-Source Software Library for
BCI Research
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20.1 Abstract

BioSig is an open-source software library for biomedical signal processing. Besides several
other application areas, BioSig also has been developed for BCI research. It provides a
common interface to many different dataformats, it supports artifact processing and quality
control, it provides adaptive signal processing and feature extraction methods that are very
suitable for online and real-time processing, it supports handling of missing values, and it
includes several classification methods for single-trial classification of EEG.

This chapter provides an overview of the current status and an outline of future pos-
sibilities. BioSig is licensed with the GNU General Public License; it provides an open
development platform unencumbered from legal restrictions. Therefore, it is also an ideal
tool for research and development.

20.2 Overview

Besides several proprietary software packages, several open-source software tools are
available in the field of EEG processing. Currently, we know of the following packages:
EEGLAB by Makeig and Delourme, BioSig (http://biosig.sf.net), OpenEEG, Bioelectro-
magnetism toolbox (http://eeg.sf.net), EMEGS, FieldTrip, LORETA by Pascual-Marqui,
and BCI2000 (http://www.bci2000.org) (see also table 20.1). The first five are licensed
with the GNU General Public License (GPL); thus, the user has the freedom to run, copy,
distribute study, change, and improve the software. EEGLAB, Bioelectromagnetism tool-
box, EMEGS, FieldTrip, and LORETA are designed for classical offline EEG analysis.
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Table 20.1 Software packages for EEG analysis.

Package License Language Requirements

BCI2000 ? C++ Windows
Bioelectromagnetism GPL Matlab Matlab
BioSig GPL Octave, Matlab, various

Simulink, C/C++,
Qt, Java, Python

EEGLAB GPL Matlab Matlab (5+)
EMEGS GPL Matlab Matlab (6+)
FieldTrip GPL Matlab Matlab
LORETA ? unknown Windows
OpenEEG GPL various various

Table 20.2 The library of m-functions is organized along the following subtasks or topics.

(i) Data acquisition
(ii) Data formats and storage
(iii) Preprocessing
(iv) Signal processing and feature extraction
(v) Classification and statistics
(vi) Evaluation criteria
(vii) Visualization
(viii) Interactive viewer and scoring

The packages BioSig and BCI2000 are dedicated to BCI research. BCI2000 is described
in detail in chapter 21, while the BioSig project is discussed here.

A major aim of BioSig is to provide an open-source software library for BCI research;
it is available from http://biosig.sf.net. In the following chapter, we outline the general
structure of BioSig and highlight some important components.

20.3 BioSig for Octave and MATLAB

The BioSig project was started as a library for MATLAB with an attempt to be compatible
with Octave (http://www.octave.org). The first toolbox already contained several subtasks
(see table 20.2). With the advent of other subprojects (rtsBCI, C/C++, SigViewer, etc.) this
part was renamed “Biosig for Octave and MATLAB.”

20.3.1 Data Formats and Storage

The “data format module” implements a common interface to various data formats; cur-
rently, more than fourty different data formats are supported. This is more than any other
project in the field of biomedical signal processing.
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Automated detection of the file format is supported. The range of supported formats
includes data formats of equipment providers (e.g., ACQ from BIOPAC or CNT from
NeuroScan), specific research projects (e.g., Physiobank format from MIT, or the BCI2000
format), and standards and quasi-standards (e.,g., EDF, SCP, or MFER formats), and also
supports several audio and sound formats.

The various data formats contain many encoding schemes using different bit depths,
allowing single or multiple sampling rates, and they contain different header information.
With the common interface implemented in BioSig, the users do not need to care which
data format is actually used or how the proper scaling of the amplitude values is obtained or
from where to obtain the sampling rate. The interface also supports simple preprocessing
like the selection of specific data channels and overflow detection (if supported by the
underlying data format). If an overflow is detected, the corresponding sample value is
replaced by not-a-number (NaN) (IEEE754). This feature of automated overflow detection
can be turned off, but by default it is on.

However, none of these data formats contains all the features needed for BCI research.
Therefore, the advantages of various data formats were used to construct the general
data format (GDF) for biomedical signal processing (by Schlögl). Besides several other
improvements, an encoding scheme for events and annotations is part of the GDF definition
(see table 20.3). The codes are grouped according to different application areas, for
example, EEG artifacts have the code range 0x0100–0x010f, while the range of 0x0300–
0x3ff is reserved for BCI experiments.

The GDF format has been used already in several BCI studies, for example, the datasets
IIIa and IIIb of the BCI competition 2005 have been exchanged in the GDF format. Also,
the “rtsBCI” and the “biofeedpro” (see sections 20.4 and 20.6) are using GDF as the
standard data format for data recording.

20.3.2 Preprocessing

Methods for preproccessing are applied at an intermediate state between data access and
feature extraction. Accordingly, this module contains several useful preprocessing routines.
One of the most often used functions is probably the function for triggering the data, that
is, to extract data segments relative to a given trigger. Also available is a function for
extracting the trigger time points from a continuous trigger channel, as well as some simple
resampling methods. Some advanced algorithms for artifact processing are also included:
a method for quality control using histogram analysis (Schlögl et al. (1999c)), an algorithm
for reducing EOG artifacts based on regression analysis, and a method for detecting muscle
artifacts based on inverse filtering.

20.3.3 Signal Processing and Feature Extraction

Naturally, signal processing is one of the core components of a biomedical signal process-
ing toolbox. Many signal processing methods are already available elsewhere. Unfortu-
nately, it is rare that any signal processing toolbox supports the handling of missing data.
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Table 20.3 Predefined event codes for BCI experiments. The complete list is available from
http://biosig.cvs.sourceforge.net/biosig/biosig/doc/eventcodes.txt

### Table of event codes.
#
### table of event codes: lines starting with # are omitted
### add 0x8000 to indicate end of event
### 0x010 EEG artifacts
0x0101 artifact:EOG (blinks, fast, large amplitude)
...
### 0x011 EEG patterns
0x0111 eeg:Sleep spindles
...
### 0x012 Evoked potentials
0x0121 VEP: visual EP
...
### 0x013 Steady State Evoked potentials
0x0131 SSVEP
...
### 0x03 BCI: Trigger, cues, classlabels,
0x0300 Start of Trial, Trigger at t=0s
0x0301 Left - cue onset (BCI experiment)
0x0302 Right - cue onset (BCI experiment)
0x0303 Foot - cue onset (BCI experiment)
0x0304 Tongue - cue onset (BCI experiment)
0x0306 Down - cue onset (BCI experiment)
0x030C Up - cue onset (BCI experiment)
0x030D Feedback (continuous) - onset (BCI experiment)
0x030E Feedback (discrete) - onset (BCI experiment)
0x030F cue unknown/undefined (used for BCI competition)
0x0311 Beep (accustic stimulus, BCI experiment)
0x0312 Cross on screen (BCI experiment)
0x0313 Flashing light
0x031B - 0x037f reserved for ASCII characters #27-#127
0x0381 target hit, task successful, correct classification
0x0382 target missed, task not reached, incorrect classification
0x03ff Rejection of whole trial
### 0x00 user specific events
0x0001 condition 1
0x0002 condition 2
...
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Exceptions are the “time series analysis (TSA) toolbox” and the NaN toolbox. Both are
part of OctaveForge and are distributed with BioSig.

The NaN toolbox contains methods for statistical analysis that support data with missing
values encoded as not-a-number (NaN) according to the IEEE754 standard. The basic
functionality of the NaN toolbox is a function called sumskipnan.m, which skips all
NaNs, and sums and counts all numerical values. The two return values SUM and COUNT
are sufficient to calculate the mean of the data. This principle also can be used to calculate
the expectation value of any statistic including covariance matrices and more advanced
statistics. Whether or not this principle can be applied to more advanced signal processing
methods is being investigated.

The TSA toolbox contains many functions for parametric modeling, that is, autoregres-
sive estimators. It contains the well-known Burg and Levinson-Durbin algorithms for es-
timating autoregressive (AR) parameters of single-channel stationary processes. Adaptive
autoregressive (AAR) estimators (Schlögl (2000a)) like Kalman filtering, and RLS and
LMS algorithms are available. Multivariate autoregresssive (MVAR) estimators like the
Nuttall-Strand method (multichannel Burg) or the multichannel Levinson algorithm have
been included. Furthermore, the adaptive estimation of some standard EEG parameters
(e. g., bandpower, Hjorth (1970) and Wackermann (1999) parameters) are also supported.
The adaptive estimation does not require downsampling and is still computationally effi-
cient. Accordingly, the features are obtained with the same sampling rate as the input data.
All these functions can deal also with missing data encoded as NaN. This represents an
efficient way of handling missing data values and can be used easily in combination with
artifact detection methods, for example, saturation or muscle artifacts.

20.3.4 Classification

This module has been developed according to the needs of the Graz BCI system (see
chapter 4) using the advantage of statistical classifiers (e.g., robustness) like linear and
quadratic discriminant analysis. This use allowed the possibility of a continuous feedback
(in time as well as magnitude). A classifier combines various features into a single output,
and the time lag of classification should be as small as possible. Often, one wants to know
how well the classifier is able to separate the training data. To prevent overfitting, cross-
validation is required. Finally, the optimal time point for applying the classifier must be
identified in BCI research.

To fulfill the various needs, a wrapper function (findclassifier.m) has been de-
veloped that includes the required functionality. In the first version, a linear discriminant
analysis (LDA) for two classes was implemented. Later, quadratic classifiers and an inter-
face to support vector machines (SVM) were added; multiple classes N > 2 are supported
(using a one-versus-rest scheme). Another important issue was the selection of the proper
time segment for estimating a classifier. For this purpose, the data were triggered and sep-
arability was calculated for each time segment. The length of each segment can be varied
from 1 to N samples; typically, a fixed segment length of a fraction of a second (e.g., 0.2 s
or 0.125 s; 8 to 25 samples depending on the sampling rate) is used. For the search step,
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the relative separability is sufficient; the cross-validation is omitted in this step. In the next
step, a trial-based leave-one-out method (LOOM) is used for cross-validation.

The samples from the chosen segment of all but one trial are used to train the classifier,
and this classifier is applied to all samples of the testing trial; this provides a time course
of the output for the specific trial. This procedure is repeated until each trial has been used
once as test trial. When all permutations are finished, a time course of the output is obtained
from each trial. This outcome is then evaluated for different evaluation criteria like error
rate, SNR, mutual information, and kappa. An example is shown in section 19.6.

Results have been used in several works (e.g., Blankertz et al. (2004); Schlögl et al.
(2002, 2003, 2005). This classifier was also used in the BCI competition 2005 on dataset
I (rank 7) and IVa (rank 8). Moreover, the general classifier was obtained from the data of
the selected segment. This classifier has been used together with “rtsBCI” in several BCI
experiments (Scherer et al. (2004b); Vidaurre et al. (2004a,b)).

20.3.5 Evaluation Criteria

Several different evaluation criteria are used in BCI research (for details, see also chap-
ter 19): Implemented are accuracy (error rate), information transfer (Schlögl et al. (2002,
2003)), Cohen’s kappa coefficient (Schlögl et al. (2005)), and several others. Moreover,
functions for analyzing the time courses of the different criteria are provided. The imple-
mentation of these functions were also used for analyzing results of the BCI competition
2003 (dataset III) (Blankertz et al. (2004)) and BCI competition 2005 (dataset IIIa and
IIIb).

20.3.6 Visualization

Visualization is always an important issue. Currently, the function plota.m is a wrap-
per function for displaying various results. The presented result depends on the input
data and which function has generated a certain result. For example, the outcome of
findclassifier.m for two classes is presented as time courses of the error rate, SNR,
and the mutual information. If the result stems from N > 2 classes, the time course of the
accuracy and the kappa coefficient are displayed.

Another useful function is sview, which is able to present the raw EEG data in a
compressed form on a single screen. It also includes any event information (if available).
Within MATLAB it is possible to zoom into specific segments. The sview function is
useful to get an overview of the available data. Another important functionality is the
scoring of EEG data. Two packages—SViewer and SigViewer—support the viewing and
the scoring of EEG data and are described in more detail in section 20.5.

20.3.7 SViewer – a viewing and scoring software

SViewer is written in MATLAB, and it uses the MATLAB GUI functions and the
functions for reading the data and for writing event information. Because it is based on
the common interface, it can read any data format supported by Biosig for Octave and
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Figure 20.1 SViewer: a viewing and scoring software based on the graphical user interface of
MATLAB.

MATLAB. The annotations, markers, and events can be edited and stored in a separate event
file. A screenshot of SViewer is shown in figure 20.1. SViewer must not be confused with
SigViewer, which is a stand-alone program and does not require MATLAB; SigViewer is
described in section 20.5.

20.4 Real-time BCI System Based on MATLAB/Simulink—rtsBCI

The Graz BCI (see chapter 4) open-source software package rtsBCI provides a framework
for the development and rapid prototyping of real-time BCI systems.The software is li-
censed under the GNU GPL and based on MATLAB/Simulink (The Mathworks, Inc., Nat-
ick, MA, USA) running on Microsoft Windows (Microsoft Corporation, Redmond, WA,
USA). To enable hard real-time computing on Windows platforms, the Real-Time Win-
dows Target (RTWT) and, for the generation of stand-alone C code, the Real-Time Work-
shop (RTW) are required. Both toolboxes are extensions of Simulink. Furthermore, BioSig
for Octave and MATLAB is required for data format handling, and the TCP/UDP/IP tool-
box of P. Rydesäter (http://www.mathworks.com/matlabcentral/fileexchange/) is required
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for network communication support. In addition, to the software requirements, a data ac-
quisition card is needed to sample the biosignals.

After installation, all rtsBCI modules are listed in the Simulink Library Browser and can
be used to design (model) the BCI system (figure 20.2). Several MATLAB functions and
Simulink blocks are available for (1) data acquisition and conversion; (2) storage (using
the open data format GDF (Schlögl (2006))); (3) digital signal processing (e.g. bandpower
feature estimation, adaptive autoregressive parameters (AAR) estimated with Kalman fil-
tering (by Schlögl (2000a)), or linear discriminant analysis (LDA)); (4) visualization (e.g.
signal scope, presentation of cue information, or feedback of a moving bar); (5) paradigm
control (synchronous and asynchronous operation mode); and (6) network support (e.g.,
remote monitoring).

Tunable parameters as well as other information relevant for the experiment (e.g., subject
information, amplifier settings, electrode setup, and paradigm timing) are stored in an
individual configuration file (INI file). Before a model is executed, the configuration is
transferred to the model and stored altogether with the biosignals for further analysis. The
division of model and parameters makes it very easy to deal with changes: For example,
a new classifier requires only the replacement of the classification block. A new subject
requires only the modification of the related data in the configuration file.

Most of the online BCI feedback experiments reported from the Graz research group
(see chapter 4) in the past few years are based on rtsBCI and come along with the package:
the standard Graz BCI training without feedback (Pfurtscheller and Neuper (2001)), the
standard two-class Graz BCI training with feedback (Pfurtscheller and Neuper (2001)),
and the two-class basket paradigm (Krausz et al. (2003)). Generally, the first paradigm is
used to collect data for analysis and setup of the classifier. The second provides a simple
feedback in the form of a bar moving either toward the left or right side of the screen. The
third paradigm provides feedback in the form of a ball falling from the top to the bottom
of the screen at a constant speed with the task of hitting the correct target at the bottom of
the screen by moving the ball either to the left or right side (figure 20.2).

20.5 SigViewer

SigViewer is a viewing and scoring program for biosignals, originally designed to process
electroencephalogram (EEG) signals. SigViewer can load multichannel signals, such as
EEG, ECG, EMG, and EOG recordings, and display these in various scales. For example,
figure 20.3 shows the viewer displaying five EEG channels simultaneously. Besides the
viewing functions of SigViewer, the other major application is the scoring of biosignals,
which permits the user to make annotations to the signals (e.g., mark segments as artifact
or mark specific events) and save this information to a file (either in the original data file,
a copy of the data file, or in a file that contains only these annotations). In the example in
figure 20.3, an EOG artifact is marked inside the left light grey area. The right light and
dark grey rectangles label two overlapping events; for instance, the light grey area might
denote an EEG trial and the dark one might indicate the period where an arrow (a cue) is
displayed to the subject.
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Simulink library browser Configuration file Basket paradigm feedback

rtsBCI library Real-time modelModules (blockset)

Figure 20.2 The screenshot shows the development environment: the basic platform MATLAB,
Simulink with rtsBCI, an editor with configuration file, and a real-time model of the Basket paradigm
with feedback window.

It is also possible to view basic information about a specific file (e.g., number of chan-
nels, sampling frequency, number of events, time of recording). In addition to graphically
scoring the data, a list-based widget is available for viewing and deleting all events (anno-
tations) manually. In the future, adding new events that way will also be possible.

Currently, the software supports only GDF files as input and output signals, but thanks
to its modular structure it can be extended to support other file formats. In principle, any
kind of signal data (including audio files) is a candidate to be displayed. The availability
of new import and export filters is planned for in the separate subproject called “BioSig
for C++” (or biosig4c++ for short), which can be used not only by SigViewer but also by
other programs.

SigViewer is written in C++ using the platform-independent graphical user interface
(GUI) toolkit QT4. One major design specification was that SigViewer be able to run un-
der many different operating systems such as Linux, Windows, and MacOS and thus be
designed as platform-independent. Moreover, SigViewer does not depend on any propri-
etary software, making it a truly free program.
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Figure 20.3 Screenshot of SigViewer.

20.6 BioProFeed

BioProFeed is a data acquisition module based on the real-time application interface
(RTAI http://www.rtai.org/). Currently, BioProFeed can be used with the following data
acquisition hardware:

(1) g.mobilab from g.tec
(2) NI-6024e PCMCIA from National Instruments
(3) ModularEEG from OpenEEG

Support for further hardware modules is in preparation.
The name BioProFeed stands for Portable Biosignal acquisition, real-time Processing

and Feedback generation framework. The biosignal acquisition chain consists of one or
more transducers, a biosignal amplifier, an analog-digital converter (ADC) and a process-
ing and storage unit. BioProFeed is a software framework for the processing and storage
unit that is often a standard personal computer. It is licensed under the GPL and is a part
of the Biosig project.
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Figure 20.4 Software structure of BioProFeed.

BioProFeed was written with the following specifications in mind:

(1) it should be platform independent
(2) it should be modular to support different data aquisition hardware
(3) real-time data processing should be possible
(4) storage of the data in GDF format (Schlögl (2006)) should be possible

Currently, BioProFeed runs on Linux (i386, ppc, arm), MacOS, and Windows XP with
Cygwin. Autotools (by Vaughan et al.), like autoheader, autoconf, and automake, are used
to build software framework. These help to build the software by ensuring correct byte
ordering for the different hardware platforms. The byte ordering is important when storing
the data in GDF format (by Schlögl).

Gimp-Toolkit (GTK) has been used to write the user interface of the software. It can
be integrated into any C/C++ program and is also highly portable. In fact, many GLib
(glib) functions have been used to make BioProFeed more portable. In addition to the gLib
functions, standard POSIX functions have been used.

The main structure of BioProFeed can be seen in figure 20.4. BioProFeed consists of two
parts: the main part where data can be processed, displayed and stored, and the module part
that controls and gets samples from the data acquisition hardware. The interface between
the main part and the module part is called HAL (hardware abstraction layer). The modules
supporting the data aquisition hardware are present in the CVS Tree of BioProFeed.

BioProFeed is a tool for data acquisition, processing, storage, and feedback generation.
It is not restricted to specific data acquisition hardware or to specific data processing and
storage hardware, and can store the data in GDF format (by Schlögl) for further offline data
processing.

20.7 Summary

There are plans to improve almost every part of BioSig. The common interface to access
different file formats will be translated into the languages C/C++, Java, and Python.
Improvements in artifact processing and quality control should be evaluated offline, and,
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if successful, implemented online. Support for additional signal processing and feature
extraction methods needs to be developed including the ability to handle missing values.
Further data formats should be supported in SigViewer. Although each component of
BioSig can be improved, it provides a working environment that has been used already
in several BCI projects. BioSig contains modules for data acquistion, for BCI experiments
with online feedback, viewing and scoring software for reviewing the raw data, functions
for offline analysis of BCI data, and for obtaining a classifier that can be applied in
online experiments, and many more. It contains everything for running BCI experiments,
analyzing the data, and obtaining classifiers.

Almost all components can be used with free software; the M-code is also compati-
ble with Octave (http://www.octave.org). Exceptions are the SViewer (which requires the
graphical user interface of MATLAB) and rtsBCI (which requires the MATLAB, Simulink,
and the Real-Time Workshop from Mathworks). SigViewer is a viewing and scoring soft-
ware that can be used to replace SViewer as it requires only open-source software. Despite
this deviations, the overall commitment to the open source philosophy is substantiated
through the GNU General Public License (GPL).

Notes

E-mail for correspondence: alois.schloegl@tugraz.at
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21.1 Abstract

BCI2000 is a flexible general-purpose platform for brain-computer interface (BCI) re-
search and development that is aimed mainly at reducing the complexity and cost of imple-
menting BCI systems. Since 2000, we have been developing this system in a collaboration
between the Wadsworth Center of the New York State Department of Health in Albany,
New York, and the Institute of Medical Psychology and Behavioral Neurobiology at the
University of Tübingen, Germany. This system currently is used for a variety of studies in
more than 110 laboratories around the world. BCI2000 currently supports a variety of data
acquisition systems, brain signals, and feedback modalities and can thus be configured to
implement many commonly used BCI systems without any programming. We provide the
source code and corresponding documentation with the system to facilitate the implemen-
tation of BCI methods that are not supported by the current system. This process, and thus
the evaluation of different BCI methods, is further encouraged by the modular design of
BCI2000, which is designed such that a change in a module or a component requires little
or no change in other modules or components. In summary, by substantially reducing labor
and cost, BCI2000 facilitates the implementation of different BCI systems and other psy-
chophysiological experiments. It is available with full documentation and free of charge
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for research or educational purposes and is currently being used in a variety of studies by
many research groups (http://www.bci2000.org).

21.2 Overview

BCI2000 is a flexible general-purpose platform for brain-computer interface (BCI) re-
search and development. It also can be used for simple data acquisition and auditory or
visual stimulus presentation using a variety of data acquisition devices. BCI2000 has been
in development since 2000 in a joint project between the Wadsworth Center of the New
York State Department of Health in Albany, New York, USA, and the Institute of Medical
Psychology and Behavioral Neurobiology at the University of Tübingen, Germany. Many
other laboratories, most notably the BrainLab at Georgia State University and Fondazione
Santa Lucia in Rome, Italy, have contributed to the project also.

The goals of the BCI2000 project are (1) to create a system that can facilitate the
implementation of any BCI system, (2) to incorporate into this system support for the
most commonly used BCI methods, and (3) to disseminate the system and associated
documentation to other laboratories. BCI2000 should thus facilitate progress in laboratory
and clinical BCI research by reducing the time, effort, and expense of testing new BCI
methods, by providing a standardized data format for offline analyses, and by allowing
groups lacking high-level software expertise to engage in BCI research. As of February
2007, BCI2000 has been adopted by more than 110 laboratories around the world that use
the system for a variety of studies.

To achieve these three goals, BCI2000 decomposes a BCI into four independent and
interchangeable modules that represent the four essential functions of any BCI system:
signal acquisition, signal processing, user feedback, and operating protocol. These four
modules and their components, and the interfaces between them, are designed such that
a change in a module or a component requires little or no change in other modules or
components. This feature facilitates evaluation of different BCI methods.

To date, BCI2000 has been used to implement BCI methods that can use a variety of data
acquisition devices, that can make use of sensorimotor rhythms, cortical surface rhythms,
slow cortical potentials, and the P300 potential, and that can provide the different outputs
needed for several kinds of cursor and robotic arm control, sequential menu selection,
and selection from a matrix. The growing number of contributions from laboratories using
BCI2000 ensures that new methods are being developed continually.

To facilitate integration in other environments, the BCI2000 system can run on standard
PC hardware, and supports a variety of data acquisition devices. Because it is written
in C++, it makes efficient use of computational resources and can satisfy the real-time
requirements of BCI operation.
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21.3 Dissemination of BCI2000

BCI2000 is an open system that is available free of charge for research and educational pur-
poses (http://www.bci2000.org). As of January 2006, seventy laboratories have acquired
BCI2000 and are using it for a variety of studies. Most of these laboratories follow one of
the three following patterns:

(1) they use the existing BCI2000 system without changing the software,
(2) they implement new methods or system capabilities into BCI2000, and/or
(3) they use BCI2000 as a real-time signal acquisition platform to develop systems for

research not related to brain-computer interfaces.

Investigators planning to use the existing system are provided with example configu-
rations, descriptive documentation, and tutorial introductions. Extensions to the existing
BCI2000 system are encouraged and supported by a simple and robust programming inter-
face, tutorials, and sample code illustrating its use. An online bulletin board system allows
for efficiently asking support questions and sharing answers.

21.4 BCI Model and Modules

BCI2000 is based on a model that can describe any BCI system. This model, shown in
figure 21.1, consists of four modules that communicate with each other: Source (data
acquisition and storage), Signal Processing, User Application, and Operator Interface. The
modules communicate through a network-capable protocol based on TCP/IP. Each may
be written in any programming language and can be run on any machine on a network.
Communication between modules uses a generic protocol that can transmit all information
(e.g., signals or variables) needed for operation. Thus, the protocol does not need to be
changed when changes are made in a module. Brain signals are processed synchronously,
in blocks containing a fixed number of samples that are acquired by the Source module.
Each time a new block of data is acquired, the Source module sends it to Signal Processing,
which extracts signal features, translates those features into control signals, and sends them
on to the User Application module. Finally, the Application module sends the resulting
event markers back to the Source module where they and the raw signals are stored to disc.
The contents of the data file thus allow for full reconstruction of an experimental session
during offline analyses.

The choice of block size is determined by processing resources as well as timing pre-
cision considerations. In the BCI2000 online system, the duration of a block corresponds
to the temporal resolution of stimulus presentation and to the cursor update rate during
feedback, suggesting small block sizes. On the other hand, real-time operation implies that
the average time required for processing a block and communicating it between modules
(roundtrip time) is less than a block’s duration. Thus, processing resources (and network
latencies in a distributed system) impose a lower limit on the block size. A typical config-
uration, for example, sampling 16 channels at 160 Hz and processing blocks of 10 samples
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Figure 21.1 The four modules in BCI2000: Operator Interface, Source, Signal Processing, and
User Application. The operator module acts as a central relay for system configuration and online
presentation of results to the investigator. It also defines onset and offset of operation. During
operation, information (i.e., signals, parameters, or event markers) is communicated from Source
to Signal Processing to User Application and back to Source.

each, will result in a cursor update rate of 16 Hz with small output latency (table 21.2).
When using data sources that can acquire data only at specific block sizes (e.g., the TCP-
based data acquisition schemes in figure 21.1), BCI2000 block size will be further con-
strained to multiples of the source’s block size.

21.4.1 Source Module and File Format

The Source module digitizes and stores brain signals, and passes them on without any
further preprocessing to Signal Processing. It consists of a data acquisition component
(table 21.1 lists data acquisition hardware currently supported by BCI2000), and a data
storage component that implements the BCI2000 file format. This file format consists of
an ASCII header that defines all parameters used for this particular experimental session,
followed by binary signal sample and event marker values. The file format can accommo-
date any number of signal channels, system parameters, or event markers. It supports 16-
and 32-bit integer formats as well as the IEEE 754 single precision (32-bit) floating point
format.

21.4.2 Signal Processing Module

The Signal Processing module converts signals from the brain into signals that control an
output device. This conversion is done in two stages, feature extraction and translation,
and realized using a chain of signal filters, each of which transforms an input signal into
an output signal. The individual signal filters are designed to be independent of each other
and can thus be combined or interchanged without affecting others.

The first stage, feature extraction, is currently comprised of three filters. The first filter
realizes a linear calibration routine that converts signals from A/D units into μV. The
second filter can implement any linear spatial filtering operation by calculating a matrix
multiplication of the input signals with a spatial filtering matrix. The third filter is called
“temporal filter.” To date, we have created six variations of this temporal filter: a slow wave
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Vendor Product Type

National Instruments DAQ ADC boards Driver library
Data Translation ADC boards Driver library

Measurement Computing/Computer Boards ADC boards Driver library
g.tec g.USBamp Driver library
g.tec g.MOBIlab Driver library

Cleveland Medical Devices BioRadio 150 Driver library
OpenEEG ModularEEG Serial port protocol

BrainProducts BrainAmp TCP based protocol
Neuroscan SynAmps2 TCP based protocol
BioSemi Driver library

TuckerDavis Pentusa Driver library
Refa Sytem (TMSI, Inc.) TCP based protocol
Micromed EEG Systems TCP based protocol

Table 21.1 Support for data acquisition systems in BCI2000. An up-to-date list is maintained at
http://www.bci2000.org.

filter that can process slow cortical potentials, autoregressive spectral estimation, spectral
estimation based on the fast fourier transform (FFT), a general finite impulse response filter
(FIR) that can process sensorimotor rhythms, a peak detection routine that extracts firing
rates from neuronal action potentials, and a filter that averages evoked responses (e.g.,
P300s).

The second stage, feature translation, translates the extracted signal features into device-
independent control signals. This is done by two filters. The first applies a linear classifier,
and the second filter normalizes the output signals such that they have zero mean and a
specific value range. The output of this procedure is the output of the signal processing
module.

An additional statistics component can be enabled to update in real time certain param-
eters of the signal processing components such as the slope and intercept (i.e., baseline)
of the linear equation the normalization filter applies to each output channel; this allows
to compensate for spontaneous or adaptive changes in the distribution of the control signal
values.

21.4.3 User Application Module

The User Application module receives control signals from Signal Processing and uses
them to drive an application. In most present-day BCIs, the user application is presented
visually on a computer screen and consists of the selection of targets, letters, or icons.

Existing user application modules in BCI2000 implement one- to three-dimensional
cursor movement paradigms for feedback of sensorimotor rhythm amplitude or slow
cortical potential amplitude, two-dimensional robotic arm control, presentation of auditory
and visual stimuli with optional feedback of evoked potential classification result, and a
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a b

c d

Figure 21.2 Output screens for four BCI2000 implementations tested to date. (a) Sensorimotor
rhythm control of cursor movement to a variable number of targets. (b) A simple spelling application
using sensorimotor rhythm control. (c) Slow cortical potential (SCP) control of cursor movement to
two possible selections. (d) A spelling application based on P300 evoked potentials. In (a)–(c), the
cursor moves from left to right at a constant rate with its vertical movement controlled by the user’s
brain signals. In (d), rows and columns of the matrix flash in a block-randomized fashion.

matrix spelling application based on P300 evoked potentials. Figure 21.2 shows the user
screens for four of these applications.

21.4.4 Operator Interface Module

The Operator Interface module provides the investigator with a graphical interface that
displays current system parameters and real-time analysis results (e.g., frequency spectra)
communicated to it from other modules. It allows the investigator to start, stop, suspend,
resume, or reconfigure system operation. In a typical BCI2000 configuration, user feedback
is displayed on one monitor, and the Operator module’s graphical interface (i.e., the
interface to the investigator) is displayed on a second monitor.

21.4.5 System Variables

BCI2000 incorporates three types of system variables: parameters, event markers, and
signals. System parameters are those variables that do not change throughout a data file
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(i.e., during a specified period of online operation). In contrast, event markers record
events that occur during operation and that can change from one data sample to the next.
The inclusion of all event markers in the data file allows full offline reconstruction and
analysis of the experimental session. Each module has access to these event markers, and
can modify and/or simply monitor them. Finally, system signals are functions of the user’s
brain signals that are received and modified by the modules.

Each module can request that the Operator module create any number of system pa-
rameters (of different data types such as numbers, vectors, matrices, or strings) or event
markers (each 1–16 bits long). For example, the Source module might request a parameter
that defines the signal’s sampling rate. This parameter is constant during some defined pe-
riod of online operation, is available to all other modules, and is recorded automatically in
the data file. Similarly, a Signal Processing filter designed to detect artifacts (such as ones
created by muscle movements) might request an event marker with which to mark artifacts
in the signal, and an Application module might request an event marker to record stimulus
conditions.

21.4.6 System Requirements and Real-Time Processing

As a run-time environment, the current implementation of BCI2000 requires Microsoft
Windows 2000 or a more recent Windows-based operating system, any recent desktop or
laptop computer, and one of the data acquisition devices that BCI2000 supports (see table
21.1).

A BCI system must acquire and process brain signals (potentially from many channels
at high sampling rates) and respond with appropriate output within a short time period
(i.e., latency) with minimal variation (i.e., latency jitter). To give an impression of the
timing performance of BCI2000 in actual online operation, table 21.2 illustrates system
performance for different configurations. While Windows is not a real-time operating
system and thus does not guarantee specific timing of events, in each test case, system
latency and latency jitter easily satisfied the real-time requirements of BCI operation
(e.g., latencies are well below 20 ms). Furthermore, processor load was sufficiently low
to guarantee reliable operation. This indicates that even on the modest hardware tested,
BCI2000 could have handled even higher sampling rates, larger numbers of channels, or
more complex signal processing methods.

21.4.7 Offline Analysis Tools

We currently provide tools to visualize signals in the time domain, to get information on
the configuration stored in a data file, and to convert data files to ASCII and MATLAB.

The standard installation of BCI2000 also comes with an easy-to-use analysis tool de-
veloped by Febo Cincotti at Fondazione Santa Lucia in Rome, Italy. This software, called
“Mario,” supports data recorded from sensorimotor rhythm experiments and from P300
evoked potential experiments conducted using BCI2000. For analysis of sensorimotor
rhythms, it produces statistical analyses of frequency components for the different experi-
mental conditions. For analysis of P300-evoked potentials, it produces statistical analyses



366 BCI2000: A General-Purpose Software Platform for BCI

PC Processing Output Latency System clock Processor
Cfg configuration latency (ms) jitter (ms) jitter (ms) load (%)

1 A 4.26 0.57 4.31 15
1 B 15.11 0.57 2.65 36
2 A 3.22 0.67 0.57 23
2 C 11.02 0.75 0.69 59

Table 21.2 Performance measures for two different hardware configurations and three different
data acquisition/signal processing implementations. PC configuration 1 was a machine with a 1.4
GHz Athlon processor, 256 Mb RAM, IDE I/O sub-system, and Data Translation DT3003 data
acquisition board, running Windows 2000. PC configuration 2 was a machine with a 2.53 GHz
Pentium 4 processor, 1 Gb RAM, SCSI I/O sub-system, and National Instruments NI 6024E data
acquisition board, running Windows XP. Both configurations provided real-time display of the raw
signals; and for both the User Application was one of the two cursor movement applications (section
21.4.3). In configuration A, the Source module sampled and stored 16 channels at 160 Hz each and 16
times/s sent the results (i.e., all 16 channels at 10 values per channel) to the Signal Processing module.
The Signal Processing module extracted signal features from all channels by using an autoregressive
method to calculate voltage spectra. (All voltage spectra were displayed in real time.) Configuration
B was the same as configuration A, except that 64 channels were acquired and processed. In
configuration C, the Source module sampled 16 channels at 25 kHz each and 25 times/s sent the
results (i.e., all 16 channels at 1000 values per channel) to the Signal Processing module. The Signal
Processing module used a simple spike detection method to extract spike firings from all 16 channels.
For each configuration, Output Latency was the average time between acquisition of a block of data
and feedback output reflecting that block, and Latency Jitter was its standard deviation. System Clock
Jitter was the standard deviation of the intervals between successive completions of acquisitions of
blocks of data.

of the signal time course for different conditions. In both cases, the results can be mapped
topographically to standard EEG electrode locations.

Additionally, we created a framework to compile and link BCI2000 signal processing
components (filters) as command-line programs that read BCI2000 parameter, state, and
signal data from standard input, apply the filter they represent, and write the result to
standard output. This allows for offline processing of recorded data using the same code
that is used in the online system. For high sampling rates and/or large numbers of channels,
the memory efficiency of stream-based command line processing may make it the preferred
choice for data preprocessing and data reduction prior to statistical analysis.

Similar to the command line programs, BCI2000 filters may also be compiled into
dynamically loaded libraries (DLLs), and thus be called from any program, for example,
from MATLAB. In BCI development, signal processing routines that exist as a MATLAB
prototype may be implemented in C++ as a BCI2000 filter, and then called from MATLAB,
allowing comparison of the C++ and the MATLAB versions of this filter. A detailed
example script is provided with the DLL framework, demonstrating how to call a filter
DLL through MATLAB’s loadlibrary generic DLL interface.
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21.4.8 Rapid Prototyping with MATLAB

For rapid prototyping of signal processing algorithms, BCI2000 comes with a Signal
Processing module that exports most of the BCI2000 filter interface to the MATLAB side.
There, a filter implementation consists of a set of scripts called from BCI2000 to perform
various aspects of initialization and processing of data blocks. From within these scripts,
MATLAB code can

(1) act on blocks of brain signal data in real-time,
(2) request its own parameters and event markers,
(3) read and modify parameter and marker values, and
(4) report configuration and run-time errors.

21.5 Future Development

Hardware support: Data acquisition systems tend to be the most expensive components
in BCI systems, and laboratories often already own such equipment. Thus, the utility of
the BCI2000 system could be increased if it supported all commonly used data acquisition
systems. Table 21.1 provides a list of data acquisition systems that are currently supported.
We plan to add support for additional devices if there is sufficient demand.

Platform independence: In its current implementation, BCI2000 depends on the Borland
C++ compiler and the Borland VCL application framework. By moving toward platform-
independent libraries, and by replacing nonportable portions from the code base, we plan
to make future versions of BCI2000 compatible with multiple compilers and operating
systems, in particular gcc and Linux but also WindowsCE and Mac OS X.

Clinical implementations: In clinical settings, it is critical to make BCI setup, operation,
and analyses available to users who are not experts on BCI technology. Thus, it is necessary
to create versions of BCI2000 that might be less complex and flexible, but also easier to
use. We plan to create initial versions of such clinical versions of BCI2000, which will
support simple menu selection using sensorimotor rhythms and P300-evoked potentials.

Integration with other software: Real-world applications of a BCI could often benefit
from the plethora of existing software that specialize in stimulus presentation, augmenta-
tive control (such as the University of Rome’s ASPICE project), or efficient low-bandwidth
communication (such as the Dasher project developed at Cambridge University). Interfac-
ing BCI2000 with such external software is an important goal of its future development.

21.6 Availability

BCI2000 is available at http://www.bci2000.org. This Web site provides additional infor-
mation for and from the growing number of BCI2000 users.

While access to BCI2000 source code and executables is free of charge for research
and educational purposes, Wadsworth requires execution of a Material Transfer Agreement
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between a user’s institution and Wadsworth. At present, this agreement is paper-based. This
process will soon be simplified and made available through a Web-based interface. This
agreement mainly prohibits commercial use and limits liability. Wadsworth is prepared for
potential commercial licensing.

Compilation of the full BCI2000 source code requires version 5.4 of the Borland C++
compiler and version 6.0 of the Borland VCL application framework (both of which are
part of the Borland C++ Builder 6 Development Studio 2006 development environment),
but otherwise does not rely on third-party components. The Borland C++ compiler (without
IDE and VCL, available free of charge from the vendor’s Web site) is sufficient to build
the offline signal processing environment (command line programs and DLLs).
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Introduction

The promise of BCI technology is to augment human capabilities by enabling people to
interact with a computer through a conscious and spontaneous modulation of their brain-
waves after a short training period. Indeed, by analyzing brain electrical activity online,
several groups have designed brain-actuated systems that provide alternative channels for
communication, entertainment, and control. Thus, a person can write messages using a
virtual keyboard on a computer screen and also browse the internet. Alternatively, sub-
jects can operate simple computer games, or brain games, and interact with educational
software. Researchers have also been able to train monkeys to move a computer cursor to
desired targets and also to control a robot arm. Work with humans has shown that it is pos-
sible for them to move a cursor, open and close a hand orthosis, and even to drive a mobile
robot through rooms in a house model. It is worth noticing that for brain-actuated robots,
contrarily to augmented communication through BCI, fast decision-making is critical. In
this sense, real-time control of brain-actuated devices, especially robots and neuroprosthe-
ses, is the most challenging application for BCI.

Some of these BCI prototypes have been described in previous chapters, especially in
parts I and II. The chapters in this part illustrate other possible applications of BCI technol-
ogy. Kübler et al. (see chapter 22) give a review of clinical applications of BCI, highlighting
the low number of paralyzed patients using BCI technology and experiments carried out
by patients without the expert assistance. In particular, the authors report their experience
with patients in the complete locked-in state. Leeb et al. (see chapter 23) describe a virtual
reality system controlled through a BCI. They report experiments on navigation in virtual
environments with a cue-based (synchronous) and an uncued (asynchronous) BCI. The au-
thors conclude with a discussion on the possible uses and advantages of virtual reality for
improving BCI performance and speeding up BCI training.

The last two chapters in this part deal with a different way of brain-computer inter-
action, namely, recognition of brain phenomena for monitoring purposes. The basic idea
is to recognize neural correlates of some cognitive states such as mental workload (see
chapter 24) and visual recognition events (see chapter 25) and use them for improving the
performance of the system in which they are embedded. Kohlmorgen et al. (see chapter 24)
present an EEG-based system able to detect high mental workload in drivers operating un-
der real traffic conditions. After detection of this high workload, the system automatically
reduces workload, thus leading to an increase of the driver’s overall performance. Sajda
et al. (see chapter 25) describe an EEG-based system for single-trial detection of visual
recognition events. They exploit basic neuroscience findings for the development of a sys-
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tem that achieves high-throughput image triage. Experimental results show that their brain
technology improves image search over a strictly behavioral paradigm.

Altogether these applications show that the field of BCI, although still in its infancy, is
no longer in the realm of science fiction. It will not be long before it is possible to oper-
ate mentally complex systems that will restore mobility and communication capabilities to
disabled people, thus helping them increase their independence and facilitate their partic-
ipation in society. This is the main driving force behind the development of BCI technol-
ogy. But to achieve the promise of augmenting the mental capabilities, it is first necessary
to improve the performance and robustness of BCI technology so that it can be taken out
of the laboratory and used in real-world situations. The previous chapters provide a rather
large, but not exhaustive, set of approaches that currently are being explored in this rapidly
developing field.

Of course, BCI is also relevant for healthy people. However, its development is more
pressing for disabled people since the former will start using BCI systems only when
new sensor technology is developed and performance and robustness will become suffi-
ciently high, as it is the case today with speech recognition technology. In the meantime,
though, applications such as those illustrated by Ferrez and Millán, Kohlmorgen et al.,
and Sajda et al. in chapters 17, 24, and 25, respectively, may well lead to new paradigms
of human-computer interaction based on BCI technology. In this case, classical interac-
tion, control, or supervision tasks are extended with real-time recognition of particular
brain phenomena, thus yielding substantial improvements in performance and, more im-
portantly, achieving the development of truly adaptive systems that customize dynamically
in response to changes of the cognitive and emotional/affective states of the user.

José del R. Millán



22 Brain-Computer Interfaces for
Communication and Motor Control—
Perspectives on Clinical Applications
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22.1 Abstract

In this overview of the state-of-the-art of clinical applications of BCIs and outlook for the
future, we focus on interfaces aiming at maintaining or restoring lost communication and
motor function using the electric and magnetic activity of the human cortex.

22.2 Introduction

In 2001 we presented our first review on BCIs and we identified five groups that worked
with disabled patients, three of which had more or less experience with patients in the field
(Kübler et al. (2001a)). Only one patient from our group in Tübingen has been using the
BCI system without experts from the lab being present for private communication with his
friends, such that he wrote and printed letters with the BCI.1 A caregiver was needed only
to put the letter into an envelope and to bring it to the post office. None of the patients used
the BCI for communication or environmental control in daily life. In the past ten years, the
number of laboratories involved in BCI research and development augmented from about
5 in 1994 (Vaughan et al. (1996)),2 about twenty-two in 1999 (Wolpaw et al. (2000a)),
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Figure 22.1 Number of peer-reviewed BCI publications as a function of time. Grey columns
represent all BCI articles (from J. R. Wolpaw with kind permission). Black columns represent BCI
publications that include patients regardless of their disease, whether data of the same patients were
published under different aspects, and whether the same patients took part in different studies. Only
publications in which patients received feedback (closed-loop) are included. Publication output in
2002–2004 is tenfold that of the prenineties and doubles that of the turn of the twentieth century.
In 1997 the first publications with patients appear and are also constantly increasing, but are by far
outnumbered by technical papers based on data from healthy participants.

twenty-eight in 2002 (Vaughan et al. (2003b)), to more than fifty in 20053 (Vaughan and
Wolpaw (2006)). Currently, seventy groups are using the BCI2000 as a general purpose
brain-computer interface (Schalk et al. (2004)) (http://www.bciresearch.org). Figure 22.1
illustrates the increase of people working in the BCI field on the basis of the publication
output.

Tremendous improvements have been achieved in brain signal classification and patient
training resulting in as many as ten brain-controlled selections per minute (see section on
P300 in 22.4). More studies (mainly from the same laboratories as reviewed in 2001) have
been published on results with patients (Kübler et al. (2004, 2005a); Wolpaw and McFar-
land (2004); Neuper et al. (2003); Pfurtscheller et al. (2003b); Sellers and Donchin (2006))
(figures 22.1 and 22.2). Despite these positive and encouraging results and developments,
the number of patients in the field using the system without experts from the BCI group
being present has not increased and still—to our knowledge—none of the patients is using
a BCI for communication and control in daily life. Additionally, and of utmost importance,
we have not yet successfully restored even basic communication (yes/no) in patients who
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Figure 22.2 Peer-reviewed BCI publications with patients from the three laboratories with most
patient experience (in terms of patient numbers and BCI training in the lab and at the patients’
home).

are in the complete locked-in state (CLIS; see next section). These patients, however, need
most urgently a BCI to restore communication and interaction with the environment.

22.3 The Locked-In Syndrome

Several neurological diseases with different neuropathology may lead to the so-called
locked-in state (LIS) in which only residual voluntary muscular control is possible. Such a
state in which sensory, emotional, and cognitive processing remains largely intact (depend-
ing on the disease) may be the result of a traumatic brain injury, hypoxia (e.g., due to heart
attack), stroke, encephalitis, tumor, chronic Guillain Barré syndrome, or neurodegenerative
diseases such as amyotrophic lateral sclerosis (ALS). Despite different disease etiology, the
affected patients are very similar such that they can hardly communicate, have no control
over limb movement, depend on intensive care, are artificially fed and often also venti-
lated, and lack immediate reinforcement of thoughts and intentions (see section 22.5). In
almost all cases, residual muscular control like blinking and eye movement remains avail-
able. However, patients may also be in or enter—with disease progression—the complete
locked-in state in which no muscular control, and thus no communication, is possible.

The specifics with regard to ALS are that the disease progresses over, on average,
three years (sometimes only months, sometimes many years) from the first symptoms of
muscular or respiratory weakness to respiratory failure. Thus, these patients are in a unique
manner confronted with the end-of-life decision. They have the possibility to continue their
life beyond respiratory failure if they consent to invasive ventilation. Issues on quality of
life and ethical considerations with regard to the LIS and in relation to assisted suicide go
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beyond the scope of this chapter. The interested reader is referred to Kübler et al. (2006,
2005b); Birbaumer (2005).

22.4 State-of-the-Art in Clinical Application of BCIs

In the following paragraphs, we refer only to results achieved with patients. We do so be-
cause many impressive classification results have been achieved with healthy participants
(e.g., Dornhege et al. (2004a); Blankertz et al. (2003)). However, as the neurophysiology
and topography of the brains of all patients who are in need of a BCI, are altered—due
to lesions, degeneration, reorganization, and possibly nonuse—results from healthy con-
trols have to prove their validity in patient groups before we may consider the used brain
signal and its classification method as a potential means of communication or neuropros-
thesis control. Moreover, several reviews without restriction to patient groups are available
(Kübler et al. (2001a); Donoghue (2002); Kübler and Neumann (2005); Nicolelis (2003);
Curran and Stokes (2003); Wolpaw et al. (2002); Schwartz (2004b)). We also refrain from
going into the details of signal analysis and classification for the different BCI approaches
(see part III) and rather focus on the control and command outcome within the patient
population.

22.4.1 Non-Invasive BCIs—Electrical and Magnetic Brain Activity (EEG, MEG)

Noninvasive BCIs use the electrical activity of the brain (electroencephalogram, EEG)
recorded with single or multiple electrodes from the scalp surface as input signal for BCI
control. Such BCIs we refer to as EEG-BCIs. We summarize results of EEG-BCIs used to
restore communication and motor control. Noninvasive BCIs on the basis of the magnetic
activity of the brain (magnetoencephalogram, MEG) are introduced and discussed in the
last section of this chapter.

22.4.1.1 EEG-BCIs

The brain signals that have been used as input signals for BCI to maintain or reinstall
motor control are slow cortical potentials (SCP) (Kübler et al. (1999); Birbaumer et al.
(1999); Hinterberger et al. (2004b)), sensorimotor rhythms (SMR) (Wolpaw and McFar-
land (2004); Pfurtscheller et al. (2000b); Neuper et al. (2005); McFarland et al. (1993)),
or a combination of both (Dornhege et al. (2004a)), and the P300 response of the visually
and auditorily evoked potential (Sellers and Donchin (2006); Farwell and Donchin (1988)).
Both the SCP-BCI and the SMR-BCI require regulation of the brain response whereas the
P300-BCI requires the specific evoked potential to be present in the EEG. Patients learn to
regulate the SCP amplitude or to modulate SMR when presented with continuous feedback
of the EEG signal of interest. Over the past ten years, we have confronted thirty-five pa-
tients with one or each of the EEG-BCIs; such a huge patient sample is unique in the BCI
community. Thirty patients were diagnosed with ALS, five of which were in the LIS and
five in the CLIS, one patient was in the LIS after brain stem stroke, two as a consequence of
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Degree of physical impairment

Degree of success* Limb
movement
restricted,
but possible;
speech

Limb
movement
intact, no
speech

Limb
movement
very
restricted,
speech
impaired

Locked-in
state (LIS)
residual
muscular
control (eye
movement,
lip twitch,
etc.)

Complete
locked-in
state (CLIS)

None 2** 1 7

Significant control
over a brain or other
physiological
response

7 1 9 7 1 (pH)

Copy spelling 1 1 6 4

Free spelling 1 2 3

Internet 1 1

Number of patients 7 1 12 8 7

Table 22.1 Overview of the degree of success achieved by patients from our group who have been
confronted with a BCI on the basis of SCPs, SMR, or P300. All patients were severely disabled
ranging from being able to control limb movement and speech (although almost always restricted) to
being left with only residual muscular control (LIS) or even with no motor control (CLIS).
* Multiple entries of patients possible. For example, the one patient with intact limb movement but
no speech achieved significant control over a brain response and succeeded in copy and free spelling.
** We were unable to analyze data of one patient due to trainer failure.

muscular dystrophy, one CLIS patient suffered from hypoxia after a heart attack, and one
had chronic Guillan Barré syndrome. The table 22.1 provides an overview of the degree of
physical impairment and the degree of successful BCI control (significant control over the
brain signal) and communication (significant spelling results). With the exception of two
patients, who were still able to walk or use a wheelchair without a caregiver and came to
our institute for the training sessions, all patients were trained in their home environment.
In the following three paragraphs, we review the results of our and other patient groups
using these BCIs for communication and motor control.

SCP-BCI

Slow cortical potentials depend on sustained afferent intracortical or thalamocortical input
to cortical layers I and II and on simultaneous depolarization of large pools of pyramidal
neurons. The depolarization of cortical cell assemblies reduces their excitation threshold,
and firing of neurons in regions responsible for specified motor or cognitive tasks is facil-
itated (Birbaumer et al. (1990)). The anterior brain systems are particularly important for
regulation of SCPs (Lutzenberger et al. (1980)). Over the past ten years we trained thirty-
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two disabled patients with our SCP-BCI. We record the EEG with single electrodes and
feedback is provided from Cz (Jasper (1958)). To learn regulation of the SCP amplitude,
patients are presented with two targets: one at the top and one at the bottom of the screen.
We provide continuous feedback in discrete trials via cursor movement on a computer
screen. A negative SCP amplitude—compared to a baseline recorded at the beginning of
each trial—leads to cursor movement toward the top, and a positive SCP amplitude toward
the bottom of the screen. For details of patient training and signal processing, the reader is
referred to our other publications (Kübler et al. (1999); Hinterberger et al. (2004b); Kübler
et al. (2001b, 2003); Hinterberger et al. (2003a)). Twenty patients have been participating
in SCP-BCI training for the purpose of communication. Eight patients were trained with
the SCP-BCI for the purpose of being examined with functional magnetic resonance imag-
ing during SCP amplitude regulation. These patients were trained only until they achieved
significant control, but were not further trained to use this ability for communication. Many
of the patients achieved significant cursor control within a few training sessions (Kübler
et al. (2004, 1999, 1998)). However, to use this ability for communication, patients need
to be able to regulate their SCP amplitude with at least 70 percent accuracy (Kübler et al.
(2004, 1999, 1998); Perelmouter and Birbaumer (2000)). Five patients were trained long
enough to achieve such a high accuracy and used this ability to select letters in a language
support program (Perelmouter et al. (1999)). Over weeks and months, patients learn in
small steps the dual task of regulating their SCP amplitude and selecting letters or items
on the screen. To achieve this goal, we present patients with words to copy. If they master
this task with 75 percent accuracy, we confront them with the multiple task of SCP am-
plitude regulation, and letter selection, as well as thinking of what to communicate and
how to spell these words (Kübler et al. (2001b)). Figure 22.3 shows selection of the letter
“O” in the free spelling mode of our language support program. At the uppermost level
of the LSP, the patient is presented with the entire alphabet subdivided in halves for pre-
sentation. After selection of one half by producing a positive SCP amplitude shift, this
half is again split in two and this goes on until a single letter is presented for selection.
Although the SCP-BCI takes quite a while until patients are able to communicate, it is—
to our knowledge—still the only BCI with which severely disabled and LIS patients have
communicated messages of considerable length (Neumann et al. (2003); Birbaumer et al.
(1999); Kübler et al. (2001b); Kübler (2000)). Two of our patients are surfing the Net with
Nessi, a BCI-adapted Internet browser, which allows the patients a selection of links by
presenting them in a binary mode; all the links of one Web site are assigned to either the
top or bottom half of the screen. As in the language support program, the number of links
per target is divided after selection until a single link is presented for selection (Karim et al.
(2006); Mellinger et al. (2003)).

SMR-BCI

Sensorimotor or μ rhythm refers to 8–12 Hz EEG activity that can be recorded in awake
people over primary sensory or motor cortical areas (Niedermeyer (2005a)). It is usually
accompanied by 18–25Hz β rhythms. It decreases or desynchronizes with movement
or preparation for movement (event-related desynchronization—ERD) and increases or
synchronizes (event-related synchronization—ERS) in the postmovement period or during
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Figure 22.3 Spelling with the language support program in the free spelling mode (Kübler et al.
(2001b)). Letters are presented in the bottom half of the screen for selection. If the target letter is
in the presented string of letters, the patient has to produce cortical positivity to select the bottom
half. If not the patient must reject the letter string by producing a cortical negativity which moves the
cursor into the upper half of the screen. In the case of selecting of the letter “O,” 8 consecutive steps
are needed corresponding to a minimum of 32 seconds if no error occurs.

relaxation (Pfurtscheller (2005); Pfurtscheller and Aranibar (1979)). Operant learning of
SMR regulation is achieved through activation and deactivation of the central motor loops.
To learn to modulate the power of SMR, patients are also presented with feedback, for
example, cursor movement on a computer screen in one or two dimensions (Wolpaw et al.
(1991); Wolpaw and McFarland (1994)). During each trial of one-dimensional control,
users are presented with a target consisting of a red vertical bar that occupies the top or
bottom half of the right edge of the screen and a cursor on the left edge. The cursor moves
steadily across the screen, with its vertical movement controlled by the SMR amplitude.
The patients’ task is to move the cursor to the level of the target so that it hits the
target when it reaches the right edge. Low SMR amplitude following movement imagery
moves the cursor to the bottom bar, high SMR amplitude following thinking of nothing in
particular (“relaxation”) moves the cursor toward the top bar. Cursor movement to different
targets can also be achieved by different movement imagery (e.g., left vs. right hand or feet
vs. hand movement). Using this SMR-BCI, we have shown that ALS patients are able to
achieve SMR regulation of more than 75 percent accuracy within less than twenty training
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Figure 22.4 Feedback screen of the two-dimensional SMR-BCI with eight targets. Participant’s
task is to move the cursor to one of the targets. Cursor movement starts in the center of the screen
(Wolpaw and McFarland (2004)). The trajectories of the best of four users are depicted. Within
0.9–1.5 s he was able to move the cursor to the targets without hitting one of the neighbor targets
erroneously (from PNAS, Vol. 101, No. 51, 2004, p. 17852, with permission).

sessions (Kübler et al. (2005a)). With such control over SMR amplitude, a binary “yes/no”
answer is possible. On the basis of their tremendous expertise with SMR regulation,
classification, and feedback, Wolpaw, McFarland, and their colleagues recently realized
two-dimensional control with cursor movement to eight targets (figure 22.4) (Wolpaw and
McFarland (2004)). To date, Wolpaw et al. have trained two patients with spinal cord injury
(C6, T7) (Wolpaw and McFarland (2004); McFarland et al. (2005)), two patients with
cerebral palsy (McFarland et al. (2003)), two patients with ALS (Wolpaw et al. (1997);
Miner et al. (1998)), and one patient with abnormal gait (Schalk et al. (2000)) to control
cursor movement in one or two dimensions toward two to eight targets via regulation of
the SMR amplitude. In one study, participants used SMR regulation to answer yes or no
questions such that the two targets were replaced by the words YES and NO (Miner et al.
(1998)).

Event-related desynchronization (ERD) of SMR as a function of motor imagery is
also used by the Graz group (Pfurtscheller et al. (2003c)). BCI training with the Graz
system typically involves moving a cursor to one of two possible targets for the purpose of
communication or controlling a neuroprosthesis.

In 2003, Neuper et al. (in cooperation with the Tübingen group) reported results of a
patient with infantile cerebral paresis, who was trained over a period of several months with
the SMR-BCI (Neuper et al. (2003)). The patient was trained with a two-target task and
was provided with feedback of ERD in the alpha band (8–12 Hz). Eventually, the targets
were replaced by letters and the patient could spell with the system, using a so-called
virtual keyboard (Obermaier et al. (2001)). The virtual keyboard has the same function
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Figure 22.5 Setup of the Graz telemonitoring, which allows experts to supervise patient training,
to analyze data immediately, and to correct parameters if necessary in the laboratory (Müller et al.
(2003b)) (from IEEE Trans Neural Syst Rehabil Eng, Vol. 11, No. 1, 2003, p. 55, with permission).

as the language support program from our group (Perelmouter et al. (1999)): It allows
patients to select letters in successive binary steps. A different set of letters is presented
at the top and the bottom of the screen and the patient has to move the cursor into that
half of the screen that contains the desired letter. The spelling rate varied between 0.2 and
2.5 letters per minute. Although this rate may seem slow, Neuper et al. showed for the
first time that SMR-BCIs could provide communication for patients in the LIS. Müller et
al. (2003) implemented a telemonitoring system during SMR-BCI training with the same
patient diagnosed with cerebral palsy (figure 22.5). Since this patient lived in Germany 850
kilometers (approximately 530 miles) away from the Graz lab, the training was conducted
by a local caregiver and supervised by the Graz group by means of a Web camera and
online control of the EEG and BCI settings (Müller et al. (2003b)). Via telemonitoring, the
authors conducted thirty-nine BCI training sessions over twenty-two weeks occasionally
supervised directly by a BCI trainer from the Tübingen group.

Besides communication, the Graz group implemented SMR-BCI mediated neuropros-
thesis control in two exemplary patients. First, a tetraplegic patient, whose residual muscle
activity of the upper limbs was restricted to the left biceps after spinal cord injury, learned
to open and close his hand with the aids of an orthosis that reacted upon changes in the
SMR ERD (Pfurtscheller et al. (2000a)). The authors report an accuracy rate of almost
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100 percent. In a second study with the same patient, grasping movement was realized via
SMR-BCI-controlled functional electrical stimulation (FES). To execute a grasping move-
ment first, the finger and thumb extensors were stimulated for hand opening. Closing of
fingers was achieved by deactivation of the finger extensors and moderate activation of
finger and thumb flexors. To close the thumb, the thumb extensor was deactivated and
finger and thumb flexors fully activated. Reopening of the hand followed deactivation of
finger and thumb flexors and reactivation of finger and thumb extensors. An idling state of
hand muscles was achieved by deactivating finger and thumb extensors (Pfurtscheller et al.
(2003b)). The patient could induce FES sequentially by foot movement imagery that was
accompanied by increased power in the β band (15–19 Hz). In an interview, the patient
stated that with only minimal help from his family he can perform simple grasp functions,
for example, he can now grasp a glass of milk and drink it instead of having to ask one of
his family members to hold the cup for him (http://www.bci-info.tugraz.at/).

Another patient with spinal cord injury (C5) was available for only three training days.
Müller-Putz et al. demonstrated that the patient gained control over the SMR-BCI system
for the control of a neuroprosthesis within a very short training period (Müller-Putz et al.
(2005b)). The patient was trained with the so-called Basket paradigm. A trial consisted of
a ball descending from the top to the bottom of a black screen. Baskets (serving as cues)
positioned either on the left or the right half of the screen indicated by their color (red:
target; green: nontarget) which type of imagery the patient should perform to move the
ball into the basket. Imagery of left hand movement was the strategy that worked best for
the patient. Then the BCI was coupled with the neuroprosthesis. Each detection of a left
hand motor imagery task subsequently switched the neuroprosthesis to grasping movement
(see FES). Krausz et al. trained four wheelchair-bound paraplegic patients with the Basket
paradigm. After a few sessions over some weeks, all patients learned to control the BCI
with the best session between 77 and 95 percent accuracy (Krausz et al. (2003)).

In summary, SMR-BCIs have been successfully tested in ALS, cerebral palsy, and spinal
cord injury patients and may provide communication or restoration of lost motor function.

P300-BCI

The P300 is a positive deflection in the electroencephalogram (EEG) time-locked to
auditory or visual stimuli. It is seen typically when participants are required to attend to
rare target stimuli presented within a stream of frequent standard stimuli (Squires et al.
(1977)), an experimental design referred to as an oddball paradigm (Fabiani et al. (1987)).
In the P300-BCI, participants are presented with a 6 × 6 matrix where each of the 36 cells
contains a character or a symbol (Farwell and Donchin (1988)) (figure 22.6). This design
becomes an oddball paradigm by first intensifying each row and column for 100 ms in
random order and second by instructing participants to attend to only one of the 36 cells.
Thus, in one trial of 12 flashes (6 rows and 6 columns), the target cell will flash only twice,
constituting a rare event compared to the 10 flashes of all other rows and columns, and will
therefore elicit a P300. For details of design and signal classification, the reader is referred
to Sellers and Donchin (2006), Sellers et al. (2006b), and Xu et al. (2004).

Using data from 10 able-bodied participants and 4 paraplegic patients, Donchin et al.
predicted from offline analysis a spelling rate of 7.8 characters per minute for able-bodied
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Figure 22.6 The P300 matrix in the copy-spelling mode. The patients’ task is to copy the word
given by the trainer. Rows and columns are intensified in random order. In each trial, the target letter
is shown in parentheses following the word to copy. Selected letters appear in the second line. The
patients must count how often the target letter flashes.

participants and a spelling rate of 5.9 characters per minute for patients with an accuracy
of 80 percent (Donchin et al. (2000)). In 2003, Sellers et al. published the first results of an
ALS patient using the P300 Speller (Sellers et al. (2003)). In recent studies, Sellers et al.
and Nijboer et al. presented preliminary results of the P300 Speller used by ALS patients
indicating that ALS patients are able to use the P300-BCI with accuracies up to 100 percent
(Sellers et al. (2006b)). To date, we have presented 8 ALS patients in different stages of
the disease with the P300 spelling matrix. In all but one we were able to detect a P300
in response to the target letters, and all patients spelled above chance level (Kübler et al.
(in preparation)). Two of the patients spelled with 100 percent accuracy and four were
transferred to free spelling. By further adapting the classification to the patients’ P300
response, we succeeded in reducing the number of flashes per letter to four in one patient.
This presentation rate resulted in a character selection time of 5.25 s with an accuracy of
80 percent using a 7 × 7 matrix (67.23 bits/min not including time between characters
or 22.96 bits/min including the time between characters) (Nijboer et al. (submitted)).
This is the highest communication speed ever achieved with a BCI. This result is very
promising because it was achieved with ALS patients. Both patients were severely disabled
(patient A had limb movement but no speech and patient G was wheelchair bound, almost
quadriplegic, and had largely impaired speech) but not in the LIS or CLIS. Thus, it remains
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to be shown that the P300-BCI is also useful for LIS and CLIS patients. The main problem
with using P300-BCI for these patients is that eye movement becomes weaker so that they
may no longer be able to fixate on all cells of the matrix; the matrix then has to be reduced
in size according to the individual patients’ capacity to control gaze. CLIS patients, in
fact, are no longer able to use a BCI based on vision. For CLIS patients, all BCIs must
work with auditory stimulation completely independent of vision. First results with a four-
choice auditory oddball in four patients who were in the CLIS for several years have not
been promising.

22.4.1.2 MEG-BCI

Magnetoencephalography (MEG) measures magnetic fields generated by the electrical
currents in the brain. MEG sensors are induction coils statically arranged in a helmet,
and the position of a participant’s head relative to the helmet is controlled using three
localization coils attached to the head. In contrast to EEG-BCIs, the MEG-BCI is confined
to the laboratory and only patients who manage to get to the lab can participate. We used a
whole-head MEG system comprising 151 first-order gradiometers (CTF Inc., Vancouver,
Canada) placed in a magnetically shielded room. The MEG-BCI provides visual real-time
feedback of μ (8–12 Hz) or β (18–25 Hz) amplitudes. MEG yields a more localized SMR
of higher amplitude compared to EEG, even allowing discrimination of fingers (Braun et al.
(2000)), because brain magnetic fields are not attenuated and distorted on their way from
the cortical generators to the MEG dewar containing the recording SQUIDs. Feedback
consisted of the speed of a cursor projected onto a screen. The cursor moved from left
to right and the participants’ task was to move it up or down by regulating the amplitude
of their SMR. All five (healthy) participants learned to control their SMR amplitude. In
all cases, accuracy reached a high level toward the end of the first session. Maximum
accuracy exceeded 90 percent for four participants, and one participant achieved 80 percent
accuracy. Performance stabilized above the level achieved in session one (Mellinger et al.
(2005)). Recently, we were able to detect SMR modulation related to left- and right-
hand movement imagery in one of our ALS patients in whom EEG recording provided
no classifiable results. In the MEG, however, a right hemispheric dipole field related
to imagery of left-hand versus right-hand movement was identified and SMR amplitude
varied as a function of imagery (figure 22.7). With this patient, we will now continue
EEG-SMR-BCI training with electrode position, frequency range, and feedback design as
suggested by the MEG results.

On the basis of these results, Birbaumer et al. at the National Institute of Neurological
Diseases and Stroke (NINDS) together with the Tübingen group (Mellinger et al. (2005))
further developed the MEG-BCI for motor restoration (Birbaumer and Cohen (2005)).
They train patients with no residual hand movement one or more years after stroke with an
MEG-controlled hand orthosis for ten to twenty sessions. The head of the patient is fixated
in the dewar and the fingers are attached to the orthosis that opens and closes the hand
contingent on SMR increase or decrease, respectively. The patients receive proprioceptive
feedback from their own movement simultaneously with visual feedback by means of
cursor movement on a screen in relation to the SMR amplitude. After successful hand-
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Figure 22.7 Results of an SMR screening session with an ALS patient in the MEG. Left: Topo-
graphical plot of signal amplitude differences (in arbitrary units) in the frequency range from 18 to 21
Hz, taken between left-hand and right-hand imagined movement. On the right hemisphere, negative
difference values (white) form the field of a dipolar source located roughly at the position indicated
by the arrow. Right: Amplitude spectra for the two conditions of imagined hand movements (in arbi-
trary units). SMR activity appears in the form of amplitude peaks at around 9 Hz (basis frequency)
and 18 Hz (first harmonic), with modulation being larger for the first harmonic.

opening, closing, and grasping by means of SMR regulation, the patients are transferred
to a mobile EEG-BCI controlled by SMR wearing the same orthosis (Birbaumer (2006a)).
As a positive side effect, the patient experienced complete relief of the hand spasticity after
several training sessions with the MEG-BCI (Birbaumer (2006a)).

22.4.2 Invasive BCIs—Epidural, Subdural, and Intracortical Recordings

Most of the data on invasive recordings for motor control stem from animal experiments
(Schwartz (2004b); Nicolelis et al. (2003); Serruya et al. (2002)) that will not be reviewed
here due to the focus on clinical application of BCIs. Few studies were conducted with
patients. In the first part of this section we report first results of BCIs on the basis of the
electrocorticogram (ECoG), and in the second part we review studies with intracortical
recordings. These BCI approaches require brain surgery and long-term stability of the
implanted electrode grids (ECoG) or microelectrode arrays (intracortical recordings).

22.4.2.1 ECoG-BCI

The ECoG is measured with strips or arrays epidurally or subdurally from the cortical
surface. Its advantages compared to scalp-recorded EEG lay in the broader bandwidth
that allows recording of γ band activity (> 30Hz), the higher spatial resolution, and
the reduced vulnerability to artifacts such as muscular activity (Leuthardt et al. (2004)).
All published data on ECoG-BCIs have been acquired with epilepsy patients in whom
electrode grids were implanted for the purpose of later brain surgery to treat epilepsy.
In all studies, modulation of the ECoG as a function of actual or imagined movement
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or both has been recorded (Leuthardt et al. (2004); Lal et al. (2005a); Brunner et al.
(2005); Graimann et al. (2004)) and classification accuracies of up to 100 percent have
been reported. Leuthardt et al. and Lal et al. closed the loop and provided participants with
feedback. Presented with a one-dimensional binary task, patients achieved 74–100 percent
accuracy by imagery of speech, hand, and tongue movement. Hinterberger et al. presented
their participants with a spelling program and also achieved accuracies up to 100 percent
within one training session (Hinterberger et al., unpublished data). Encouraged by these
results, we were quite optimistic about being able to reinstall communication in an ALS
patient who recently entered the CLIS. She gave informed consent to subdural implantation
of a 64-electrode grid to record ECoG. Wilhelm et al. established communication in the
otherwise completely locked-in patient by changes in the saliva pH as a function of food
imagery (Wilhelm et al. (2006)). When asked to imagine lemon, the saliva pH increased,
and after imagery of milk decreased. The authors measured the pH in the mouth cavity
mucosa and assigned counterbalanced “yes” and “no” to “milk” and “lemon.” Responding
with pH manipulation, however, was lost after implantation. Slowing of the ECoG and
complete absence of gamma-band activity characterizes her recordings. She responded to
sensory stimulation (finger and mouth) and the corresponding areas in S1 were perfectly
localizable (figure 22.8), but when regulation of this activity was required by imagery of
finger and tongue movement, no classification of the signal was possible. This underlines
convincingly and dramatically that results of healthy BCI users or patients diagnosed with
other diseases than those that lead to paralysis of the motor system are not sufficient to
claim that a BCI is suitable to maintain communication and control in LIS and CLIS
patients.

22.4.2.2 Intracortical Recording

Intracortical signal acquisition can be realized with single, few, or multiple electrodes that
capture spike or field potentials or both simultaneously. Kennedy and Bakay have shown in
a few ALS patients that humans are able to modulate the action potential firing rate when
provided with feedback (Kennedy and Bakay (1998); Kennedy et al. (2000)). The authors
implanted into the motor cortex a single electrode with a glass tip containing neurotrophic
factors. Adjacent neurons grew into the tip and, after a few weeks, action potentials were
recorded. One patient was able to move a cursor on a computer screen to select presented
items, but the time needed for a selection is unclear. The patient had residual muscular
control that was also used for system control (Kennedy et al. (2000)).

Several groups use multielectrode recording to detect activation patterns related to
movement execution in animals (Carmena et al. (2003); Paninski et al. (2004); Taylor
et al. (2002); Musallam et al. (2004)). The action potential firing rate in motor areas
contains sensory, motor, perceptual, and cognitive information, which allows us to estimate
a subject’s intention to execute a movement; it was shown that hand trajectories can be
derived from the activity pattern of neuronal cell assemblies in the motor cortex (Serruya
et al. (2002)). After training, even complex motor patterns can be reconstructed from a
small number of cells located in the motor or parietal areas (Carmena et al. (2003); Taylor
et al. (2002); Musallam et al. (2004)). Taylor et al. trained rhesus macaques to move a brain-
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Figure 22.8 Separability of time-frequency features that characterize sensory-evoked responses in
the ECoG of one of our patients. A 64-electrode grid has been implanted subdurally as shown on the
left-hand side. Panels on the right-hand side show AUC scores as a function of frequency and time
after stimulation: midgrey indicates no separability (AUC=0.5; see chapter 19) as exemplified by the
horizontal stripes at 50 Hz (mains electricity) and its second harmonic at 150 Hz. Lighter and darker
tones indicate better separability. Support-vector classification of the spectrograms of electrodes 31,
39, and 40 following tactile stimulation of the lip resulted in a mean estimated accuracy of 77%
(varying from 68 to 86% across 8 sessions). The classifier consistently made use of the frequency
range 80–120 Hz about 850 ms after stimulation (see upper right panels). With auditory stimulation,
a weakly discriminating feature was visible in several of the sessions in the 5–10 Hz region, also
about 850 ms after stimulation (see the bottom right panels—note the different time scale), although
classification of spectrograms and of a time-domain representation of the signal was never possible
above 55%. Arrows indicate electrode positions from which spectrograms are shown.

controlled robot arm in virtual reality while neural activity was recorded from 18 cells only
(Taylor et al. (2003)), and then to feed themselves with a real robot arm (Schwartz (2004a)).
Donoghue et al. implanted for the first time such an electrode array in the hand motor area
of a patient with quadriplegia following spinal cord injury (Hochberg et al. (2006)). Neural
activity from field potentials was translated into movement of a robotic arm and continuous
mouse movement on a computer monitor, which was comparable to the multidirectional
SMR-controlled cursor movement reported by Wolpaw and McFarland (2004). None of
the invasive procedures allowed restoration of skillful movement in animals or humans
in daily life situations. All the animals participating in BCI research (Donoghue (2002);
Nicolelis (2003)) were healthy, performed real arm movement first, and then learned
through food reward to move a robotic arm while movement of the intact arm was restricted
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in highly artificial laboratory situations. Any generalization from these results with animals
to paralyzed, LIS, and CLIS patients seems somewhat premature (Birbaumer (2006a)).

22.5 Some Thoughts about Learning, Thinking, and Communication in the Complete Locked-in

State

Despite the view of some neurologists that the CLIS does not exist, we have encountered
five patients in the CLIS as a result of degenerative neurological disease. All but one
responded to auditory stimulation with oddball (P300) and semantic (N400) paradigms,
indicating at least some cognitive processing (Kotchoubey et al. (2002, 2005); Kotchoubey
(2005)). Of the two patients we met before they were completely locked-in, both still
had control of eye movement. Both responded to auditory stimulation with oddball and
semantic paradigms when they entered the CLIS, but lost this ability after months and
years in the CLIS.4

22.5.1 Operant Conditioning of Autonomic Functions

During the late sixties and early seventies, Miller and colleagues showed that autonomous
functions such as heart rate or blood pressure can be brought under voluntary control
by means of operant conditioning (Miller (1969)). Curarized rats even after weeks of
artificial nutrition and ventilation learned to increase and decrease heart rate, renal blood
flow, dilation, and constriction of peripheral arteries in an operant conditioning paradigm
rewarding (brain stimulation) the animals for changes in their physiological parameters.
These were landmark results because it was believed that the autonomous system is
autonomous and independent of the central nervous system. However, in the eighties Miller
and his students failed to replicate these results (Dworkin and Miller (1986)). Dworkin,
the most productive of Miller’s students, attributed this failure to the missing homeostatic
effect of the reward: The reward acquires its positive outcome through the homoeostasis-
restoring effects, that is, ingestion of food restores glucostatic and fluid balance. In the
curarized rat, where all bodily functions are kept artificially constant, the homeostatic
function of the reward is no longer present because imbalances of the equilibrium do not
occur.

Chronically curarized rats and patients in the CLIS who are artificially fed and ventilated
share many similarities. The up-to-date unsuccessful efforts to restore communication in
these patients by means of BCI and the failure of the curarized rat to achieve voluntary
control of autonomous parameters may have a common reason.

22.5.2 Event-Related Potentials and Regulation of Brain Responses in CLIS

Most often, the lack of communication in the CLIS as a result of ALS or Guillan Barré
syndrome is assumed to be due to deterioration of cognitive functions preventing learning
and communication. It is difficult to reject this argument empirically because neuropsy-
chological testing for cognitive function is impossible in a completely paralyzed person.
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The only possible channel to get information about cognitive processing is the brain itself.
Consequently, we developed an event-related brain-potential test battery with a series of
cognitive paradigms ranging from simple oddball P300 evoking tasks to highly complex
semantic mismatch N400 and personalized memory tasks eliciting late cortical positivities
(Kotchoubey et al. (2002, 2005); Kotchoubey (2005); Hinterberger et al. (2005c)).

None of five patients—three of which had ALS—starting BCI-training after entering the
CLIS acquired stable regulation of a brain response, neither SCP nor SMR. Furthermore,
we confronted two patients with an auditory oddball in which a high tone was assigned
to “yes” and a low tone to “no.” We detected an N100 in both patients showing that the
patients heard the tones, but found no P300 response indicating that the lower probabil-
ity of the target tones was not processed. One of these five patients was implanted with
subdural electrodes over the left frontal cortex (figure 22.8). Despite clean ECoG record-
ings and extensive learning attempts over weeks neither regulation of a brain response nor
communication was achieved.

More than one hundred patients in responsive and nonresponsive vegetative states and
seventeen ALS patients at different stages of the disease were tested. The relationships
between the complexity of a cognitive task and the presence or absence of a particular
component in the EEG were rather inconsistent (Kotchoubey et al. (2005)), meaning a
patient may show absent early cortical components like the N100 but normal P300, or
absent P300 to simple tones but intact P600 to highly complex verbal material. With one
exception, all CLIS patients had ERP-responses to one or more of the complex cognitive
tasks, indicating at least partially intact processing stages in CLIS (Hinterberger et al.
(2005c)). Patients in CLIS and patients in advanced stages of ALS show slowing of the
waking EEG with increased θ band activity. This slowing may at least in part be caused
by episodes of anoxia due to inadequate artificial respiration (e.g., every time patients are
transferred from their beds into a wheelchair they are disconnected from the ventilator). It
is often difficult to decide whether the patient is awake or asleep in stage 1 or 2.

These ERP data do not prove or disprove normal information processing in CLIS but
suggest some intact “processing modules” in most ALS patients with CLIS (ALS-CLIS)
despite a reduced general arousal. Assuming partially intact processing in ALS-CLIS, the
question remains of why the patients who entered the CLIS before learning BCI use have
not acquired control of their brain signals. We confronted them with the SCP-BCI, SMR-
BCI, and auditory P300 oddball paradigm, but found no classifiable response.

22.5.3 Why Do We Fail in Patients with CLIS?

The failure to replicate operant (voluntary) learning of visceral functions (Dworkin and
Miller (1986)) may provide an answer to this question: Chronically curarized rats and
people with longer time periods in CLIS may lose the contingency between the required
physiological behavior (SMR decrease, SCP amplitude changes, or heart rate increase)
and its consequences (brain stimulation reward in the curarized rat, and letter selection in
the patient). From the viewpoint of learning psychology, extinction sets in between the
few reinforced learning trials in the rat. In the patient with CLIS, no contingency remains:
Thoughts and intentions are never followed by their anticipated consequences in one’s
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own behavior, and thoughts, imagery, and goal-directed feelings extinguish. Theories of
consciousness come to a similar conclusion as the just-mentioned learning theory accounts
of extinction of thinking (the interested reader is referred to Birbaumer (2006a,b)). The
resulting cognitive state and remaining information processing capacities remain unclear
until the first CLIS patient communicates. From the failure to control autonomic functions
with operant learning in the curarized rat, the studies on contingency perception and will,
and the—at least—intact sensory event-related cognitive potentials, we may conclude
that passive sensory information processing seems to be intact even at the most complex
semantic processing levels. It may be the motor control element that is responsible for the
cessation of voluntary cognitive activity, goal-directed thinking, and imagery supporting a
“motor theory of thinking” already discussed by James (1983).

22.6 Summary and Outlook for the Future

Compared to the number of studies published under the scope of BCI for communication
and control for paralyzed patients, only few exist that include the target patient population.
It has been shown that the SCP-BCI enables severely paralyzed and LIS patients to
communicate, albeit slowly, and several messages of considerable length were formulated.
The P300-BCI provides a tremendous increase of the spelling-per-minute rate and has
proved its feasibility for severely disabled patients but not yet for patients in the LIS5

or CLIS. After extensive training, the SMR-BCI allows patients multidirectional cursor
control comparable to that achieved with intracortical recording, which seems, however,
to require less training time. The ECoG-BCI allowed epilepsy patients to acquire SMR
regulation and spelling with high accuracy within one training session, but failed to do
so for an ALS-CLIS patient despite weeks and months of training. The MEG-BCI may
constitute a unique approach to restore motor function after stroke. Neuroprosthesis control
on the basis of intracortical signals and noninvasive SMR regulation has been established in
three exemplary patients. Irrespective of the purpose—communication or neuroprosthesis
control—none of the BCIs has been used by patients in their daily life, with the one
exception described in the introduction. However, encouraged by recent success with the
P300- and SMR-BCI, we are setting up BCIs at three patients’ homes and will teach
caregivers to handle the system. We will supervise the “laymen training” by means of
telemonitoring introduced by the Graz group. The major drawback of BCI use in daily life
expressed by our patients is the still complicated and time-consuming setup of the system
including an electrode cap with which patients are uncomfortable. For the caregivers who
have to supervise the system at least to checking if EEG signals are too bad to start the
BCI and if the BCI is not running properly, the many degrees of freedom of the BCI2000
may constitute a constant source of errors if not completely automatized. With the P300-
and SMR-BCI we have now achieved a considerable selection-per-minute rate so that we
are quite optimistic that BCIs will become attractive for daily use in paralyzed patients,
provided we can reduce the complexity of the system and the number of electrodes needed
for signal analysis and classification. The invasive BCIs have to prove their superiority to
the EEG-BCIs, and for which patients they might be specifically suitable to justify brain
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surgery needs to be defined. We doubt that patients will consent to implantation of an
electrode grid for ECoG or a microelectrode array for intracortical recordings unless the
results of invasive BCIs exceeds that of EEG-BCIs. Whether we will be able to restore
communication in CLIS patients remains an open question.
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(1) These data have not been published due to the private nature of the communicated
messages. After the patient had written several letters we asked him whether he would
be ready to write a letter for us and, thus, for the scientific community. This resulted
in the longest BCI message ever communicated, in which the patient described his
strategy to control cursor movement (Neumann et al. (2003)).

(2) BCI workshop at the 13th Annual Carmel Workshop.
(3) Numbers derived from participating groups at the International Meetings on BCI

research and development. In 1999. 40 scientists participated, in 2002 roughly 100,
in 2005 150.

(4) Some of the considerations in this section are from Birbaumer (2006a,b).
(5) By the time of proof-reading we have confronted an ALS patient in the US with

the 6 × 6 matrix. She had a text book P300 and had copy and free spelling runs
with 100 percent accuracy. She has participated in three training sessions and will be
provided with a P300-BCI for daily use.
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23.1 Abstract

A brain-computer interface (BCI) is a closed-loop system with feedback as one impor-
tant component. Dependent on the BCI application either to establish communication in
patients with severe motor paralysis, to control neuroprosthesis, or to perform neurofeed-
back, information is visually fed back to the user about success or failure of the intended
act. One way to realize feedback is the use of virtual reality (VR). In this chapter, an
overview is given of BCI-based control of VR. In addition, four examples are reported in
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more detail about navigating in virtual environments with a cue-based (synchronous) and
an uncued (asynchronous) BCI. Similar results in different virtual worlds with different
types of motor imageries could be achieved, but no significant differences in the BCI clas-
sification accuracy were observed between VR and non-VR feedback. Nevertheless, the
use of VR stimulated the subject’s task performances and provided motivation.

23.2 Introduction

Brain-computer interface (BCI) technology deals with the development of a direct com-
munication channel between the human brain and machines that does not require any
motor activity (Wolpaw et al. (2002)). This is possible through the real-time analysis of
electrophysiological brain signals recorded by electroencephalogram (EEG) or electrocor-
ticogram (ECoG). Voluntary mental activity (e.g., a sequence of thoughts) modifies bio-
electrical brain activity and consequently the EEG and ECoG. A BCI is able to detect
such changes and generate operative control signals. Particularly for people suffering from
severe physical disabilities or who are in a “locked-in” state, a BCI offers a possible com-
munication channel.

Before a BCI can be used for control purposes, several training sessions are necessary.
Two sorts of learning can occur in BCI: (1) the users learn to control their own brain
activity (operant conditioning) and (2) the machine learns to recognize mentally modified
brain patterns (machine learning). Operant conditioning is exploited by feeding back
raw signals, or extracted parameters, as real-time changes to the user. Machine learning
employs adaptive algorithms to detect brain patterns. For this purpose, signals first need to
be recorded and analyzed, and a classifier must be setup, before feedback can be provided.
The duration of the training varies strongly from subject to subject and can last from several
hours to many months; therefore, a fundamental goal of BCI research is to reduce this
period.

The presentation of visual feedback plays a major role during the training (Neuper and
Pfurtscheller (1999)). Visual input has a strong impact on motor cortex activity (Rizzolatti
et al. (2001)). Not only the primary and higher order visual areas are activated, but also the
activities in motor and premotor areas are affected. This raises the question of which type
of visualization best facilitates online learning and therefore improves the performance of a
BCI system. Virtual reality (VR) might be a useful tool in providing visual feedback since it
provides a class of user interfaces able to create “realistic” artificial (virtual) environments
by means of three-dimensional, usually stereoscopic, computer graphics. The immersion
into the virtual environment (VE) should allow users to be shielded from the outside
world (Slater et al. (2002)) and therefore be able to focus on the required mental task. The
use of VR as feedback medium may be more motivating and entertaining than standard
feedback representations and therefore represents a crucial component during learning
processes. The field of presence research (Slater and Usoh (1993)) aims to create VR where
people feel and respond similarly to an equivalent real-world situation. If a VR keeps this
promise, then feedback would be as natural as a real-world feedback could be. For example,
users would control a locomotion device and actually feel themselves moving.



23.3 Background and Related Work 395

The technological progress in the past decade has made VR systems attractive for var-
ious research fields and applications ranging from aviation and military applications to
simulation and training programs (where real-life training is too expensive or difficult to
monitor and control), and from psychotherapy (Huber (2005)) to medical surgery. In par-
ticular, the area of medical rehabilitation exploits the possibilities and advances available
from VR systems. Precisely, it encourages the rehabilitation of motor functions (Holden
(2005)) including stroke rehabilitation (upper and lower extremity training) (Jack et al.
(2001)), spatial and perceptual motor training, Parkinson’s disease, orthopedic rehabili-
tation (Girone et al. (2000)), balance training, and wheelchair mobility (Webster et al.
(2001)). A major finding in this field is that people with disabilities can perform motor
learning in VR that can then be transferred to reality. In some cases it is even possible to
generalize to other untrained tasks including improved efficiency of virtual training and
learning (Holden (2005); Todorov et al. (1997)). It is important to note that VR is not a
treatment by itself, and therefore it is impossible to study whether it is effective or not for
rehabilitation. Although VR rehabilitation was undertaken for patients with acquired brain
injury or damage with some success (Rose et al. (2005)), it is rather a new technological
tool, which may be exploited to enhance motor retraining. Finally, virtual reality technol-
ogy has positively influenced many other fields in neuroscience (Sanchez-Vives and Slater
(2005); Tarr and Warren (2002)).

This chapter focuses on the benefits and impacts of such a technology on brain-computer
interface (BCI) research, starting with a description of the background and related work and
followed by a discussion of several results from various applications of BCI-based control
of VR.

23.3 Background and Related Work

This section introduces two kinds of research in the context of virtual environments (VEs).
Previous research has been established suggesting that a BCI may be used to control events
within immersive VEs. Additionally, a second line of research is presented that did not use
VEs but related technologies such as video games.

23.3.1 BCI and Immersive Systems

Nelson et al. (1997) were interested in BCI as a potential application for increasing the
effectiveness of future tactical airborne crew stations. CyberLink is an interface that uses
a combination of EEG and electromyographic (EMG) biopotentials as input signals in a
single-axis continuous control task. The participants used the interface to navigate along
a predetermined flight course that was projected onto a 40-foot diameter dome display.
Continuous feedback was provided by a graphical head-up display. Participants were not
given any BCI instructions. Scores of effective task performance gradually increased with
training.

Bayliss and Ballard (2000) used the P300-evoked potential (EP) component, a positive
waveform occurring approximately 300–550 ms after an infrequent task-relevant stimulus.
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They used a head mounted display – (HMD) based VR system. Subjects were instructed
to drive a modified go-cart within a virtual town and stop at red lights while ignoring
both green and yellow lights. The red lights were made to be rare enough to receive full
attention, which usually causes a clear P300 component. Results showed that a P300
EP indeed occurs at red lights and was absent at yellow lights, with recognition rates
high enough to serve as a suitable BCI communication medium. In further research,
Bayliss (2003) continued exploring the usage of the P300 component in VR. Subjects
were asked to control several objects or commands in a virtual apartment: a lamp, a stereo
system, a television set, a “Hi” command, and a “Bye” command, in several nonimmersive
conditions, and with an HMD. Using BCI, subjects could switch the objects on and off
or cause the animated character to appear or disappear. The BCI worked as follows:
Approximately once per second a semitransparent sphere appeared for 250 ms on a
randomly selected object. Subjects were asked to count the flashes on a specific object
(to focus their attention) and to make the stimulus task-related, which is necessary to
obtain a P300 component. During every run a written text instruction on the bottom of
the screen indicated the goal object. The subject had to count the flashes for that object
only and a visual feedback was given when the goal was achieved, that is, when a P300
event was recorded. Subjects were able to achieve approximately three goals per minute.
Bayliss found no significant difference in BCI performance between VR and the standard
computer paradigm, but individually most subjects preferred the VR environment.

Ron Angevin et al. (2004) proposed a training paradigm using VR techniques to avoid
early fatigue from the learning process. In this work they used a virtual driving simulator
inside an HMD, whereby the subjects had to control the car’s left/right position to avoid
an obstacle placed on the street by the imagination of hand movements. Five out of eight
subjects were able to achieve suitable results. They noted that the control group (standard
BCI feedback) reacted faster than the VR group; however, the VR group achieved less error
than the control group.

Finally, the Graz-BCI also was used to control VR applications. Leeb et al. (2003, 2005)
described the possibility of exploring a virtual conference room by the imagination of left
and right hand movements using an HMD setup with success rates up to 100 percent. In
further research, Leeb and Pfurtscheller (2004) and Pfurtscheller et al. (2006b) reported on
an experiment concerned with subjects moving through a virtual environment by thought
(“walking from thought”) based on the imagination of foot movements, whereby after an
HMD training, the subjects were able to move through a virtual street displayed on a highly
immersive projection environment (Leeb et al. (2006)).

23.3.2 BCI-Based Control of Game-Like Environments

Middendorf et al. (2000) harnessed the steady-state visually evoked potential (SSVEP),
a periodic response elicited by the repetitive presentation of a visual stimulus, as a com-
munication medium for the BCI. One of the presented experiments involved controlling
a flight simulator, where the roll position of the flight simulator was controlled with BCI.
The “airplane” rolled right or left depending on the SSVEP amplitude over a half-second
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period. Most operators were able to successfully control the airplane after thirty minutes
of training.

Lalor et al. (2005) used the SSVEP as a control mechanism for a 3D game. By looking
on the checkerboard (either left or right of the character) the player good countersteer when
the character was going to lost its balance on the robe. They reported robust BCI control
and attributed relative success to motivation. Both approaches are based on visually evoked
responses, which typically force the subject to focus visual attention and therefore may be
unnatural.

Pineda et al. (2003) used the similarity or the difference in the μ activity (8–12 Hz) over
the two hemispheres to control movements in a video game environment. After ten hours
of training the subject played a high-resolution 3D first-person shooter game on a desktop
monitor, whereby the forward and backward movements were controlled by the keyboard
but the left and right movements were controlled by high and low μ, respectively.

Mason et al. (2004) applied their low-frequency asynchronous switch design (LF-ASD)
to control a video game-like environment. The LF-ASD has been derived from signal
characteristics observed in the 1–4 Hz frequency band of a feature vector based on nine
electrodes over the primary and supplementary motor cortex. After a training session (six
trials), a test with a simple video game was performed. A white circle (user’s avatar) was
moving with continuous speed over the monitor and was bouncing off obstacles (walls or
pillars). An activation of the brain-switch would cause the avatar to turn left. Subjects self-
reported an error (the avatar either failed to turn when intended or turned unintentionally)
with a pneumatic sip-n-puff switch. They report that the performances of four able-bodied
subjects and four subjects with high-level spinal cord injuries (level of injury between C3-4
and C5-6) were similar.

23.4 Combination of BCI and VR

23.4.1 Graz-BCI

The basic principle of the Graz-BCI is the detection and classification of motor-imagery-
related EEG patterns, whereby the dynamics of sensorimotor rhythms are analyzed (as
described in chapter 4; Pfurtscheller and Neuper (2001); Pfurtscheller et al. (2003c)). In
particular, hand and foot motor imagery makes it possible to realize a BCI (Pfurtscheller
et al. (2005a)).

Over the sensorimotor hand and foot representation areas two (C3 and C4) or three (C3,
Cz and C4) EEG-electrode pairs are placed according to the international 10-20 system
(2.5 cm anterior and posterior to the named electrode positions). The ground electrode is
positioned on the forehead. The EEG is bipolarly recorded at a bandwidth of 0.5–30 Hz
from sintered Ag/AgCl electrodes and sampled with 250 Hz. For online classification, two
frequency bands (logarithmic bandpower, BP) of the specific EEG channels are used. These
features are classified with Fisher’s linear discriminant analysis (LDA, Bishop (1995)) and
transformed into a control signal (for details, see Pfurtscheller et al. (2005a)). For offline
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processing, all trials are visually controlled for artifacts and affected trials are excluded
from further analyses.

To calculate the classifier setup, motor imagery data must be acquired for each subject.
In general, one run consists of fourty trials in a randomized order, twenty trials for each
type of imagery. The task is to perform a cue-dependent (synchronous) mental activity
following a predefined, repetitive time-scheme. The visual cue, for example, an arrow
pointing either to the left or right side, indicates the imagination of a left or right hand
movement, respectively. The imagination has to be performed for a predefined period
(usually 4 s, see figure 23.1b), followed by a random-length pause usually between 4
and 5 s. Afterward the classifier, trained with these trials, is subsequently used for the
online feedback training. The task is to move the feedback cursor toward the direction
indicated by the arrow by performing the same mental activity previously trained to do. By
updating the classifier with this new data, the human brain and the classifier are mutually
adapting (Pfurtscheller and Neuper (2001)). In the presented experiments, the classifiers
were updated only after the first two feedback sessions, and afterward used for all further
sessions.

The Graz-BCI consists of an EEG amplifier (g.tec, Graz, Austria), a data acquisition
card (National Instruments, Austin, Texas, USA) and a commercial desktop PC running
WindowsXP (Guger et al. (2001)). The BCI algorithms are implemented in MATLAB 6.5
and Simulink 5.0 (The MathWorks, Natick, Mass., USA) using rtsBCI and the open source
package BIOSIG (http://biosig.sf.net).

23.4.2 Virtual Environments

Virtual reality generates three-dimensional stereoscopic representations of computer-
animated worlds. Present VR systems need either a large-scale display with shutter or
polarization glasses, or an HMD to separate the two stereoscopic images generated for
each eye of the observer. The basic idea is to let a user become immersed in a 3D scene.
The highest immersion can be achieved in a multiprojection stereo-based and head-tracked
VE system commonly known as a “Cave” (Cruz-Neira et al. (1993)). A special feature of
any multiwall system is that the images on the adjacent walls are joined together seam-
lessly, so that participants do not see the physical corners but the continuous virtual world
that is projected with active stereo (Slater et al. (2002)).

The creation of the 3D virtual environment consisted of two consecutive steps: first the
creation of a 3D model of the scene and second the generation of a VR-application that
controls and animates the modeled scene. In our studies, the 3D modeling software pack-
ages Performer (Silicon Graphics, Mountain View, Calif., USA) and Maya (Alias, Toronto,
Canada) were used. The experiments reported are performed with a Virtual Research V8
HMD (Virtual Research Systems, Aptos, Calif., USA) with a resolution of 640 x 480 pix-
els at a refresh rate of 60 Hz driven by VRjuggler (http://www.vrjuggler.org), with a single
back-projected wall and shutter glasses driven by Coin3D (http://www.coin3d.org) or the
Studierstube Augmented Reality framework (http://www.studierstube.org), or with a Re-
aCTor, a Cave-like system using the DIVE software (Frecon et al. (2001)) with CrystalEye
(StereoGraphics, Beverly Hills, Calif., USA) stereo glasses. All VR systems have also the
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possibility to include tracking information, but because BCI experiments require a subject
in a sitting position, no positional information had to be considered. Additionally, rotational
information from the tracking system was ignored because rotation should be controlled
by the BCI in the following Graz-BCI-specific VR applications.

23.5 Graz-BCI-Specific VR Applications

23.5.1 Study 1: Rotation in a Virtual Environment by Left- and Right-Hand Motor

Imagery

In the first application, the imagination of left and right hand movement was applied to
control VR feedback. For evaluation purposes three different conditions were compared:
(1) a standard horizontal bar graph on a desktop monitor (Pfurtscheller et al. (2003c)), (2)
a virtual conference room presented with an HMD (Leeb et al. (2005)), and finally (3) a
virtual pub populated with animated avatars, including background music and chatter of
the avatars (see figure 23.1a) in a Cave. The subject was either sitting in front of an LCD
monitor, wearing an HMD, or sitting in the middle of this virtual pub.

Three subjects, two male and one female (23, 26, and 28 years old), participated
repeatedly in this study over a period of seven months. The order of feedback conditions
was standard bar graph, HMD, Cave, HMD, standard bar graph (see figure 23.1d–f). The
participants were instructed to imagine left or right hand movements, depending on an
acoustic cue (single or double beep). During the feedback time, the output of the classifier
controlled either the length and the orientation of the horizontal bar graph in case of the
standard BCI feedback, or the rotation angle and direction within VR. During the BCI
experiments the cue was given at second 3 and the feedback was presented continuously
for 4 s (see figure 23.1b) (Pfurtscheller and Neuper (2001)). The feedback on the screen
was updated 25 times per second and either the length of the bar graph was changed or
the rotation angle was modified. Thereby, the subject perceived the feeling of rotating with
constant speed (24 degrees/s) to the right and left depending on the imagined movement.
In this way, the rotation information was integrated over one trial (cumulative feedback).
The maximum achievable gyration was ±90 degrees within one trial, increasing linearly to
this maximum over the feedback time. A random classification would result in an expected
rotation of 0 degrees.

The mean rotation achieved by one exemplary subject (S1, HMD condition, session 4,
run 6), is plotted in figure 23.1c by averaging all 20 trials for right hand imagination and all
20 trials for left hand imagination. In this run, the subject had problems with the right class
during second 4.25 and 5; therefore, the rotation angle moved first to the left and afterward
from a negative angle straight to the right side. The mean of the achieved rotation over all
trials of this run is 70 degrees for right-hand and -79 degrees for left-hand motor imagery.
The reason for the larger standard deviation (SD) at second 8 compared to second 5,
for example, is due to the cumulative presentation of the results. The subjects obtained
promising results with the three feedback systems. For comparison reasons, the rotational
information of the runs recorded with standard BCI feedback were simulated offline and
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Figure 23.1 (a) Picture of a subject in the virtual pub room. The pub is populated with animated
avatars (guests and barman). The subject wears shutter glasses and an electrode cap. (b) Timing of the
used paradigm. Between seconds 3 and 4.25 the cue information is presented by an arrow pointing
to the left, the right, or downward, depending on the motor imagery used. The cue information of
the synchronous two-class BCI is also given acoustically as a single or double beep. In the case
of feedback sessions, the classifier output is not presented until second 8. (c) Plot of the achieved
rotation angle of one exemplary run of 40 trials of subject S1. Mean angles are plotted in thick and
mean ± one SD in thin lines. Right-hand imagery is plotted in light and left-hand in dark colors. The
maximum achievable angle is ±90◦ at second 8, whereby the two outer lines reach these points. The
small circles on the left and right side are a more convenient illustration of the mean rotation angle at
that specific time point, whereby the pie slices are the actually reached gyrations. (d)–(f) Achieved
rotation angle over all runs for subjects S1, S2, and S3. Each vertical bar corresponds to the rotation
angle of one run (final value of panel c), whereby the upper bar indicates the rotation to the right and
the lower bar the rotation to the left. Runs with bar graph feedback are plotted in grey, with HMD
feedback in white and Cave feedback in black. (g) Boxplot of all rotation angles of all subjects and
feedback types, whereby the upper boxplot indicates the rotation to the right and the lower boxplot
the rotation to the left. The diagram consists of 3 groups each corresponding to one subject. Within
these groups the left plots correspond to standard BCI feedback B, the middle to HMD feedback H
and the right one to Cave feedback C. Each boxplot has lines at the lower quartile, median, and upper
quartile values.



23.5 Graz-BCI-Specific VR Applications 401

therefore these runs can be compared to the VR experiments. Subject S1 achieved the
best performance with HMD feedback and worst with standard bar graph feedback (see
figure 23.1d and g). Subject S3 was best in Cave condition followed by HMD and bar graph
(see figure 23.1f and g). Interestingly, no differences between HMD and Cave feedback
could be found because some subjects performed better with HMD and some better with
Cave feedback, but all subjects performed at least as well with VR feedback compared to
standard bar graph feedback (see figure 23.1g). The number of trials contaminated with
movement, muscle, or eye-movement artifacts were always between 0 and 5 out of 40
trials, but no differences between the various feedback conditions could be found.

Subjects noted that the virtual pub in the Cave feedback had two areas: The virtual
characters concentrated in one area, whereas the other side of the room was empty. It
did not even contain furniture (only a disco-style chandelier). Subjects reported that BCI
control was more difficult in the empty space because no clear spatial information was
obtained. Some subjects found the audio chatter in the Cave condition a bit distracting, but
none of them reported problems in identifying the auditory cues.

23.5.2 Study 2: Moving Forward in a Virtual Street by Foot Motor Imagery

In this experiment, the imagination of foot movement was used to walk through a VE based
on the previously applied BCI paradigm (see figure 23.1b). The subject was instructed to
imagine a right hand movement (arrow to the right and single beep) or a foot movement
(arrow pointing downward and double beep). Three healthy male volunteers aged 23, 28,
and 30 years participated several times in this study (Leeb et al. (2006)). The task given
to each participant was to walk to the end of a virtual street (see figure 23.2a) and in the
case of successful foot motor imagery only, a motion would occur. Correct classification of
foot motor imagery was accompanied by forward movement at constant speed (1.3 length
units/s) in the virtual street, whereas a correct classification of hand motor imagery stopped
the motion. Incorrect classification of foot motor imagery also resulted in halting, and
incorrect classification of hand motor imagery resulted in backward motion (same speed).
The walking distance was scored as a “cumulative achieved mileage” (CAM; Leeb and
Pfurtscheller (2004)), which was the integrated forward/backward distance covered during
foot movement imagination, and was used as performance measurement.

The output of the online classification was used either to control the length and orienta-
tion of the bar graph feedback or to move through a virtual street (HMD or Cave condition).
The order of feedback conditions was as follows: standard bar graph, HMD, Cave, HMD,
standard bar graph (see figure 23.2d–f). For comparison reasons, the CAM performances
of the bar graph feedback experiments were simulated offline.

In figure 23.2b and c, the performed CAM of exemplary results of subject S1 (session 2,
run 4) and subject S3 (session 2, run 5) are plotted. Both the theoretically possible CAM
(dashed line) and the real-achieved CAM (full line) are plotted. Due to the different se-
quences of the twenty foot (F) and twenty right-hand (R) motor imageries, which were
randomly distributed to avoid adaptation, the theoretical pathways are different in all pic-
tures. Nevertheless, the number of trials for both classes is the same and therefore the
maximum possible CAM also. A CAM of 100 percent corresponds to a correct classifi-
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Figure 23.2 (a) Participant in the virtual main street with shops and animated avatars. The subject
wears an electrode cap and shutter glasses. (b) and (c) Exemplary task performances displayed in the
theoretical possible CAM (dashed line) and the real CAM (full line) of one run of two subjects. The
cue class indicated is written above the line. Due to the random cue sequence, each participant had
a different theoretical pathway (dashed line). (d)–(f) Achieved walking distances over all runs for
subjects S1, S2, and S3. Each vertical bar corresponds to the CAM of each run (end value of picture
b or c). Runs with bar graph feedback are plotted in grey, with HMD feedback in white and Cave
feedback in black. (g) Boxplot of all achieved CAMs of all subjects and feedback types. The diagram
consists of 3 groups, each corresponding to a subject. Within these groups, the left plots corresponds
to standard BCI feedback B, the middle to HMD feedback H and the right one to Cave feedback C.

cation of all fourty imagery tasks over the entire feedback time. A random classification
would result in an expected CAM of 0 percent. It is almost impossible to achieve the max-
imum attainable CAM of 100 percent, because every small procrastination or hesitation
of the participant results in reduced mileage. In the example presented in figure 23.2b, a
close-to-perfect performance at least up to trial 35 is shown, followed by a small break-
down. A possible explanation for the problems in the performance results of subject S3
(in figure 23.2c) could be that between trial 4 and 14 the same class performance was re-
quired, which is the “standing class” (right hand movement), but the participant was not
able to remain stationary for such a long period. A similar effect can be observed at the
end of the run plotted in the bottom row of figure 23.2b. A faster alternation between the
two classes might achieve better results, but the sequence of cues was randomized auto-
matically through each run.
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All subjects were able to walk through the virtual city. The use of VR as feedback
stimulated the participant’s performances. All subjects achieved their best results within the
Cave and the worst in the standard BCI conditions (see figure 23.2g). In particular, subjects
S2 and S3 improved by using VR feedback (see figure 23.2e and f). Only subject S1
showed a different behavior, due to a high variability over the runs in the VR feedback (see
figure 23.2d). One possible interpretation is that VR feedback amplifies both positive and
negative feedback effects on the performance. The wrong-behaving rich visual feedback
can modify the EEG activity and thereby result in a further deterioration of performance.
It must be noted that during the Cave experiments, a competition arose between subjects
S2 and S3, which might have influenced the performances positively.

The number of trials contaminated with electrode movement, muscle, or eye-movement
artifacts were always less than six out of fourty trials, but trials with VR feedback had no
more artifacts than the trials with standard feedback.

These data indicate that foot motor imagery is a suitable mental strategy to control events
within the VEs. Imagination of feet movement is a mental task that comes very close to that
of natural walking. Especially in the Cave condition (highest immersion), the performance
of two participants was excellent (up to 100 percent BCI classification accuracy of single
trials), although variability in the classification results among individual runs occurred.

23.5.3 Study 3: Scouting through a Virtual Apartment

The next important step was to incorporate free will decisions (intentional control, IC)
in a synchronous (cue-based) BCI. Although a predefined time window (with variable
length) was used for feature extraction and classification, the user could choose which
imagined movement to perform after each cue. In a pilot study, a virtual apartment (see
figure 23.3a) was used as feedback presented on a single back-projected stereoscopic wall.
In this apartment the subject could freely decide where to go, but walking was only possible
along predefined pathways through the corridors or rooms (Leeb et al. (in revision)). At
every junction the subject could decide to go in one of two directions that were indicated
by a “neutral” cue consisting of arrows (see figure 23.3b). The size of the arrow was
modulated depending on the BCI classification output, so the subject received feedback.
The analysis was performed until a threshold was exceeded (huge arrow), and the subject
was turned to the right, left, or straight. Afterward, the system automatically guided the
subject to the next junction. Additionally, a small map of the apartment was inserted in the
bottom right corner of the display. In this study a cue-based BCI was still used, but the
cues were completely embedded in the given task or experiment and the duration of the
trials was variable, depending on the performance of the subject only. Four naive subjects
(three male and one female, between 21 and 27 years) without any prior BCI experience
participated in this study. Before placing the subjects into the VE, two training sessions
(each with four runs) without feedback and two sessions with feedback were performed.
The resulting classification errors are presented in table 23.1.

Each subject performed eleven runs with variable duration in the virtual apartment, but
all runs started at the same point (entrance door). During the first run, no instructions were
given to the subjects, so they could walk freely through the apartment for five minutes
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ba

Figure 23.3 (a) View into a virtual apartment with one possible pathway. The target room is marked
with a small flag pole (e.g., the room in the middle of the apartment). (b) First-person view of the
virtual apartment with two arrows indicating the possible directions to go. The size of the arrow
indicates the BCI classification output.

to become familiar with the VE. In all other runs the subjects were instructed to go to
a predefined target room. A small flag pole on the map indicated the destination, which
should be reached by using the shortest way through the maze-like apartment. In the first
four runs only one target was given, but in further runs the number of targets was increased
and only one target was visible each time. If this target was reached, either the follow-up
target was inserted or the run was finished. Dividing the number of wrong decisions by the
total number of turnarounds results into the classification performance of the VE task (see
table 23.1). Different from the previous examples, the number of trials/decisions in a run
varied depending on the chosen path. Furthermore, the analysis was more demanding since
one wrong decision required several correct decisions to reach the same goal.

The time necessary for a decision at the junctions varied for all subjects between
2.2 and 5.9 s, with a mean ± SD of 2.9 ± 0.5 s. The naive subjects achieved a BCI
classification error of less than 20 percent after two feedback sessions. Interestingly, two
subjects revealed worse results within the first feedback session than they achieved in the
training period without FB. However, the second feedback session resulted in reduced
error. The subjects obtained comparable performances with the standard feedback (error
rates between 1 and 33 percent) and the virtual apartment feedback (error rates between 7
and 23 percent). The subjects noted that the task in the virtual apartment was much harder
compared to the prior feedback training because not only the “correct” imagination must
have been performed, but also the shortest way had to be found. Despite the undefined trial
length (the duration of the trial depended on how fast or slow the subject could perform a
decision) and variable interdecision time, no dramatic change in the performance could be
found.

23.5.4 Study 4: Asynchronous freeSpace Experiments

Our first paradigm designed to train and evaluate asynchronous control was called the
“freeSpace virtual park” (see figure 23.4a). The VE consisted of hedges, a tree, and three
coins to collect. The subject was sitting in front of a stereoscopic projection wall and
wearing shutter glasses.
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Table 23.1 Classification performance for each subject and each feedback type. The classification
error in percent is given for training and standard feedback sessions, and the percentage of wrong
turnarounds is given for sessions in the virtual apartment. The number of trials/junctions of these
sessions are in brackets.

Subject Training with Standard feedback Virtual
no feedback Session 1 Session 2 apartment

S1 7.9% (240) 1.9% (160) 1.0% (160) 8.8% (96)
S2 18.2% (240) 28.4% (160) 17.0% (160) 28.6% (136)
S3 29.7% (240) 32.8% (160) 19.1% (160) 25.2% (206)
S4 26.4% (240) 20.2% (160) 15.9% (160) 20.8% (133)

The aim of the paradigm was to explore the VE and collect the scattered items. Turn
left and right and move forward were the navigation commands used to move through the
freeSpace (IC). Whenever an IC command was detected by the BCI, the corresponding
command was sent to the VE. When no IC pattern was detected (noncontrol state, NC)
accordingly no navigation was performed. By using this simple navigation strategy, each
corner of the VE was accessible. To realize this navigation, however, it was necessary
to detect three different motor imagery–modulated brain patterns in the ongoing EEG. For
more details on the setup of recordings and signal processing, see chapter 4.4.3 and Scherer
et al. (in revision).

Figure 23.4a shows a picture taken during a feedback experiment. In the lower part of
the screen feedback arrows were displayed, indicating the actual navigation command.
Figure 23.4b shows the bird’s view map of the freeSpace park. The dark line illustrates
the selected pathway of the subject. The starting point is marked with an “x” and the light
grey circles indicate the items to collect. The collection starts each time the path intersects
with an item, marked with a small dark circle. Additionally, the map shows that an infinite
number of ways to collect the three items exist. The selected path, however, is dependent on
the will of the subject only. For comparison, the corresponding BCI classification output
(navigation) sequence is shown in figure 23.4c. The items were collected at time points
(t), 40, 72, and 182 s (vertical line). By using this command sequence it is possible to
reconstruct the pathway. With 36 percent, as required by the paradigm, the moving forward
command had the highest frequencies of occurrence (fOCC ). With 26 and 24 percent, left
and right turn were balanced. NC was detected in 13 percent of the cases (see figure 23.4d).

Although the NC at the actual stage was not explicitly tested and evaluated, high
classification accuracy was very important for the motivation of the subjects. Since each
run lasted several minutes, it was difficult to keep the concentration and therefore periods
of NC were required. If NC was not properly detected, navigation commands were sent to
the freeSpace and this was extremely frustrating for subjects.



406 Combining BCI and Virtual Reality: Scouting Virtual Worlds

Figure 23.4 (a) Picture of the freeSpace VR experiments. (b) Bird’s view of the park with the
selected pathway (dark line), items to collect (light grey circle), pick-up position (small dark circle),
and starting point (x). (c) BCI navigation command sequence. To operate the BCI, left hand (L),
right hand (R), and foot (F) motor imagery were used. Also the noncontrol state (NC) was detected.
The marked time (vertical lines) indicates the pick-up time. (d) The histogram on the right shows the
frequency of occurrence for each class.

23.6 Discussion and Conclusion

The presented studies describe the possibility and feasibility of using a motor imagery–
based BCI with VR as feedback medium. Similar results in different virtual worlds with
different types of motor imageries (left-hand, right-hand, and foot movement imagination)
could be achieved but no significant differences in the BCI performance were observed
between VR and non-VR feedback.

At this time it is unknown whether the feedback in form of a realistic VE can improve
the BCI performance or not. However, there is strong evidence that observation of moving
body parts can modify the sensorimotor activity (Pfurtscheller et al. (2007); Rizzolatti
et al. (2001)), whereas observations of non-body parts have less influence on the brain
activity (Altschuller et al. (2000)). With the coupling of BCI and VR a new research tool
is available for investigating different research questions, for example, the impact of VR
feedback to shorten the training time. Nevertheless, VR provides an excellent training
and testing environment for procedures that may apply later in reality. One important
application might be the use of VE for people with severe motor disabilities. If it can
be shown that within VE people can learn to control their movements through space, the
much greater expense of building physical devices (e.g., neuroprosthesis or a robotic arm)
controlled by a BCI will be justified. One goal could be to move with a wheelchair through
a virtual environment and afterward through the real world solely by the imagination of
movements.

It must be noted, however, that in some experiments with VR feedback the task of the
subjects was more challenging than in the experiments with the standard BCI feedback.
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In the presented experiments, all subjects achieved their best results within the VEs
(either HMD or Cave) and the worst results in the standard BCI conditions. One possible
interpretation is that VR feedback amplifies both positive and negative feedback effects
on the performance: Generally, good performance is enhanced, but if the performance is
not satisfactory, the VR feedback distracts and leads to higher frustration compared to the
standard BCI feedback. Nevertheless, the use of VR stimulated the subject’s performances
and provided motivation.

High classification accuracy (low error rate) can be achieved only when the subjects
correctly perform the indicated mental task. This not only requires focused attention to
the corresponding body part, but also a withdrawal of attention from other body parts.
Because one run lasts several minutes, the subject must be vigilant the whole time, that is,
concentrate on the task, anticipate and process the cue stimuli, and perform the indicated
imagery task. This high mental load during each run and the performance of three to four
consecutive runs within one recording (approximately 1 hour including electrode montage)
can lead to a temporary drop in attention and an increased rate of misclassifications and
errors. Presenting such an erroneous feedback to the subject can modify the EEG activity
and result in a further deterioration of performance. Therefore, it is not surprising that
in nearly all sessions and different conditions individual runs with inferior and superior
performance were found (see figure 23.1d–f and 23.2d–f).

Concerning the difference between Cave, HMD and desktop PC experiments, the fol-
lowing observations are of interest:

(1) Subjects felt more natural in VE compared with BCI experiments with standard
feedback.

(2) Each subject preferred the Cave experiments to the HMD and both were favored over
BCI session on a desktop PC.

(3) Motivation (e.g., to “walk from thought” in a virtual street) seems to improve the BCI
performance, but too much excitement might also distract the subject.

(4) Despite distraction from auditory and moving visual stimuli in VE, motor imagery and
its classification in the ongoing EEG is still possible.

The research reported in this work is a further step to the long-range vision for interaction
in multisensory environments exploiting mental-only activity.
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Kekuléstr. 7, 12489 Berlin, Germany

Technical University Berlin
Str. des 17. Juni 135
10 623 Berlin, Germany

Gabriel Curio
Department of Neurology, Neurophysics Group
Campus Benjamin Franklin, Charité University Medicine Berlin
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24.1 Abstract

The ability to directly detect mental over- and under-load in human operators is an essential
feature of complex monitoring and control processes. Such processes can be found, for
example, in industrial production lines, in aviation, as well as in common everyday tasks
such as driving. In this chapter, we present an EEG-based system that is able to detect
high mental workload in drivers operating under real traffic conditions. This information is
used immediately to mitigate the workload typically induced by the influx of information
that is generated by the car’s electronic systems. Two experimental paradigms were tested:
an auditory workload scheme and a mental calculation task. The result is twofold. The
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system’s performance is strongly subject-dependent; however, the results are good to
excellent for the majority of subjects. We show that in these cases an induced mitigation of
a reaction time experiment leads to an increase of the driver’s overall task performance.

24.2 Introduction

The detection of mental workload is considered an important issue in fields where opera-
tional alertness and elevated concentration is crucial, as it is, for example, for pilots, flight
controllers, or operators of industrial plants. The output of such a workload detector could
be integrated with existing systems to control the information flow to the operator in order
to maximize the performance. One approach consists of creating a closed-loop system in
which the system’s interaction with the operator is adjusted according to the operator’s
mental workload measured by the workload detector. Another possibility consists of using
the workload detector as an objective measure of mental workload to develop improved
modes and organizations of human-machine interaction.

In this chapter, we follow the first approach and use a workload detector to reduce the
imposed workload, thereby improving the operator’s overall performance. We study the
problem of workload detection and performance improvement in the context of driving a
car while performing additional tasks that model interaction with the car’s systems. The
motivation for the present work was to obtain a system that is able to measure and mitigate
mental workload (1) in real time and (2) in a real operational environment, ultimately to
detect, or even to avoid, stressful and cognitively demanding situations for human operators
in critical monitoring or control tasks.

Approaches to mental workload detection are largely based on the electroencephalogram
(EEG) and have so far been investigated mainly under controlled laboratory conditions,
for example, by using tasks that involve the subject’s short-term memory (Gevins et al.
(1997, 1998); Low et al. (1999); Schack et al. (2002); Stipacek et al. (2003); Howard
et al. (2003)), by mimicking in-flight tasks of a pilot (Pope et al. (1995); Prinzel et al.
(2000); Smith et al. (2001)), or by simulating air traffic control (Brookings et al. (1996)).
Attempts to measure mental workload in real operational environments have so far been
limited to an offline analysis after the recording (Sterman and Mann (1995); Hankins and
Wilson (1998)), lacking the possibility of online feedback to actually control the workload
as discussed above (see Scerbo et al. (2003) for a more comprehensive review of the field).

The utility of these studies for our current application is rather limited. While the studies
have identified some neurophysiological effects of mental workload, the results do not
provide clear evidence due to the heterogeneity of the studied tasks. In the works cited
above, the workload is induced either visually or by memory tasks, and it is unclear if
these observations carry over to the setting of car driving, a task that is rather visually
demanding by itself.

Also, most of the results were obtained using laboratory experiments conducted under
relatively controlled conditions, and it is unclear how the observations of these experiments
translate to the more complex real-world setting. It is important to note that the analysis
of EEG data under real operating conditions is significantly more challenging than under
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controlled laboratory conditions. Besides uncontrollable sources of distraction and conse-
quently a larger degree of uncertainty about the subject’s true mental state, the EEG signals
can be heavily contaminated by artifacts, primarily due to facial muscle activity.

Finally, previous work in the field of single-trial EEG analysis has shown large intra-
as well as interindividual differences. Consequently, it does not seem realistic at this point
to build a universally applicable detector with fixed parameters. It is our belief that any
realistic workload detector currently must have some means of adaption to the individual
under consideration.

Based on these considerations as well as on the results reported in the literature, we
follow a flexible approach that takes into account the observed neurophysiological effects
while at the same time addressing the uncertainty and variability of the experimental and
physiological conditions. This is realized by designing a highly parameterized workload
detector that can detect the reported neurophysiological effects, but is not restricted to a
particular feature. The high dimensionality of the parameter set and the noisy nature of the
EEG signals then pose the challenge of robustly estimating the parameters. This task is
addressed by using methods from machine learning.

24.3 The Experimental Setup

The goal of the current study was to develop a system that is able to measure and mitigate
mental workload in real time and in real operational environments. Operating a vehicle
under real conditions, including the execution of secondary tasks not related to driving
such as interacting with other vehicle occupants or with the electronic equipment of the
vehicle, represents a complex operational task. We exemplarily used this task to develop
our approach and prove its success.

Twelve male and five female subjects age 20 to 32 years old performed the experiment.
The subjects were instructed to drive at approximately 100 km/h on the highway in
moderate traffic conditions. Note, however, that the traffic intensity was not controllable.
The experiments took place on the public German highway B10 (between Esslingen am
Neckar and Wendlingen) during the usual daytime traffic (figure 24.1). The subjects were
instructed not to speak during the experiment in order to avoid additional workload as well
as a systematic activation due to muscle artifacts.

The subjects were instructed to perform three types of tasks: a primary task (driving the
vehicle), a secondary task, and a tertiary task.

The secondary task was an auditory reaction time task mimicking the interaction with the
vehicle’s electronic warning and information system. It was important to choose a simple
task that would most likely not impose any significant amount of additional cognitive
workload on the driver. The task was used to measure the driver’s performance in terms
of reaction time: voice recordings of the German words links (left) and rechts (right) were
randomly presented every 7.5 s via the car’s audio system and had to be acknowledged as
quickly as possible by pressing corresponding buttons mounted on both index fingers.

The tertiary task was designed to induce high mental workload. We studied two different
types of workload. The first type was a mental calculation task (mimicking “thinking
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Figure 24.1 The mental workload detector in operation, during a mental calculation task performed
by the driver (a scene from one of the experiments). Two gauges (right) separately indicate auditory
and mental calculation workload. Each indicator bar can move over a green (lower), yellow (middle),
and red (top) background, indicating the amount of detected workload. In the snapshot, the bars
correctly indicate low auditory and high calculation workload.

processes”) that stressed the driver’s working memory. In this condition, the drivers are
asked to silently count down in steps of twenty-seven, starting from an initially given three-
digit random number (between 800 and 999). After two minutes, the subjects were stopped
by the beep of a timer and verbally asked for the final result. The second type of workload-
inducing task was an auditory task in which the drivers had to direct their attention to one
of two simultaneously presented voice recordings, replicating a situation in which several
vehicle occupants are talking at the same time: A female news reader and a male voice
reciting from a book. The subjects were instructed to follow the latter. To verify whether
the subjects were engaged or not, they had to answer related questions. To avoid artifact
contamination of the EEG, the questions were presented during the turning points of the
course, where EEG was not analyzed.

The entire experiment is organized in a block structure with a block length of two
minutes each (see figure 24.2). A high-workload block of two minutes’ length, comprising
all three tasks, was alternated with a low-workload block, in which the subjects performed
the primary task (driving) and the secondary task (reaction time task), but not the tertiary
task. Experience from pilot testings shows that it is possible to perform the tertiary tasks
for two minutes at the same attention level without getting tired.

One full pass of the experiment consisted of three pairs of high and low blocks in a row,
with different initial three-digit numbers and with different parts of the story. Each pass is
performed two times by each subject to get sufficiently many changes in workload level
for the subsequent performance analysis of the detector.

A crucial purpose of the experiment is to investigate whether the output of the workload
detector can be used to control the secondary task such that the performance of the
subject is improved. This is accomplished by making the secondary task a controllable
task interrupted by the workload detector each time the system identifies a high workload
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Figure 24.2 Illustration of the experimental procedure. The experiment consists of two consecutive
sessions, training and application, joined by a short break in which the parameters of the workload
detector are computed from the training session data. Each session consists of two runs for each
tertiary task, and a run consists of three high workload blocks of two minutes length, followed by
a low workload block of the same length. In the training session, the secondary task (reaction time
experiment) is performed throughout the session, whereas in the application session it is controlled
by the workload detector. If a high workload condition is detected, the secondary task is suppressed
in order to improve the performance for this task as measured by the average reaction time.

condition. This serves to mitigate the workload imposed on the driver. The performance is
measured by the average reaction time over the course of the experiment.

This experiment provides two measures for our method: the accuracy of the prediction
of a high workload condition, and the performance increase as measured by the reaction
times.

As stated, our workload detection method is highly parameterized to be able to adapt to
the environmental conditions, the task, and the driver. To estimate these parameters, one
experiment consists of two sessions: a training and an application session. The training
session is performed without running the detector. Immediately after the training session,
the recorded EEG data is used to train the detector, that is, its parameters are computed from
the data. In the subsequent application session, the trained workload detector is applied to
continuously analyze the ongoing EEG measurement in real time and to output a high
or low workload indication. In case of a high workload indication, the secondary task
automatically gets suppressed without external intervention until the detector indicates low
workload again (mitigation strategy). Both sessions are performed on the same day with
an intermediate break of roughly thirty minutes in which the detector is trained.

24.4 Online Detection of Mental Workload

In this section, we describe the workload detector and the procedure for parameter calibra-
tion. To test whether it is possible to distinguish types of workload, we use two independent
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Figure 24.3 The workload detector predicts two different workload conditions in real time from an
ongoing 32-channel EEG measurement. The detector consists of two stages: Feature extraction and
classification.

workload detectors per subject, one for each paradigm. As mentioned, we observed a large
inter- and intrasubject variability of the EEG in precursory investigations. We therefore
adopted a rather general approach and designed a workload detector with subject- and
task-specific parameters.

24.4.1 The Workload Detector

Each detector consists of two parts: feature extraction and classification. The feature
extraction component extracts neurophysiologically interesting features, which are then
used by the classifier to predict the workload (see figure 24.3).

The feature extraction consists of the following four steps: (1) removal of artifact
contaminated EEG channels, (2) selection of a subset of the remaining channels, (3)
spatial filtering, and (4) computing the power in a selected frequency band. The possible
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Figure 24.4 Spectral differences in EEG between low and high workload condition (on the aver-
age). Left: for auditory workload. Right: for mental calculation workload. (a), (b): t-statistics of 8–
12 Hz and power, interpolated between the electrode positions of subject ps. The contour lines denote
P = 0.001, i.e., bandpower differences in central and temporal areas are significant (P < 0.001).
The central locations exhibit more bandpower under the high workload condition, the temporal loca-
tions less. (c), (d): power spectra of three discriminative EEG channels of subject ps. Clear differences
are found at the 10 Hz α peaks.

parameters for each of these steps (and also for the classification stage) are listed below.
The sets of candidate parameters were designed on the basis of neurophysiological findings
that have been reported in the literature. A specific parameterization is chosen after the
initial training session and kept constant for the entire application.

EEG channels:1 (F# denotes the whole F-row, see figure 24.4a and b)
{FC#, C#, P#, CP#};
{F#, FC#, C#, P#, CP#, O#};
{F#, FC#, C#, P#, CP#, O#, T7, T8};
{FC#, C#, P#, CP#, T7, T8}.

Spatial filter: common median reference or none.

Frequency band: 3–15, 7–15, 10–15, 3–10 Hz.

Window lengths and integrate values: 10 s and 10; 15 s and 5; 30 s and 1.
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Classifier parameters: real number weight for each remaining channel.

Hysteresis thresholds: two real numbers ml and mh.

Starting with 32 recorded EEG channels, the first step of data processing is the exclusion
of channels that are contaminated with artifacts during the training session. More precisely,
channels containing muscle or eye-movement artifacts that are correlated with a particular
workload condition are identified based on their frequency spectra and excluded. This is
a crucial step and prevents the classifier from being driven by artifacts rather than neuro-
physiological effects. Therefore, frequencies above 20 Hz and below 6 Hz are scanned for
significant broadband differences between the two workload conditions. Such broad-band
differences are characteristic for muscle artifacts (> 20 Hz) or eye artifacts (< 6 Hz). The
channels that exhibit those differences are excluded.

Next, a subset of the remaining EEG channels is selected for further processing. This
subset is one of four candidate sets that potentially include frontal, occipital, and temporal
scalp positions. By using these sets, a rough preselection of EEG channels is achieved.
Each of the selected channels is then optionally normalized by the common median
reference signal (the median of all channels is subtracted from each channel), which is
a variation of the commonly employed common average reference filter. We choose the
median because it is more robust than the mean with respect to measurement outliers,
which we expect to occur more often in the given real-world setting.

The signal is then processed through a subject- and task-specific bandpass filter using
one of the bands listed above. The actual input to the workload classifier is the power
of each bandpass-filtered channel in a time window of specific length (within 10–30 s),
sampled every 200 ms. The use of time windows shorter than 10 s typically leads to a clear
degradation of the classifier performance, which reflects the difficulty of distinguishing
between the high and low workload class. Indeed, for the shorter window lengths we use
an average of the classifier output for a predefined number of successive predictions to get
a more robust result (i.e., 10 successive predictions for 10 s. window length, 5 for 15 s).
Interestingly, in 82 percent of the cases, a 10 s window was finally chosen by our method.
From this feature extraction stage, every 200 ms, we obtain a feature vector which is then
fed into the classifier.

For classification, we use a linear model whose parameters are computed by standard
linear discriminant analysis (LDA) of the feature vectors obtained from the high and low
workload conditions of the training session (Fisher (1936)). Nonlinear methods, such as
regularized kernel ridge regression (Poggio and Girosi (1990)) or support vector machines
(Vapnik (1998)), produced comparable results but no improvements in offline analyses.

The output of the classifier is a scalar value representing the estimated degree of low
workload (values below zero) or high workload (values above zero). We then map this
real-valued output to a binary quantity that indicates the two states, high and low workload,
by means of a threshold scheme that employs a hysteresis, which makes the classification
substantially more robust. It consists of two thresholds, ml < mh, such that switching to
a high workload indication takes place once the output exceeds mh, while switching to a
low workload requires that the output falls below the lower value ml. The values ml and
mh are subject- and task-specific, and therefore are calibrated on the training data also.
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Figure 24.5 Recorded EEG signals typically are highly correlated locally. Therefore, the cross-
validation scheme has to be set up properly to obtain a realistic estimate of the true generalization
error. This can be accomplished by splitting the datasets based on the block structure of the experi-
ment. For each of the eleven iterations, the workload detector is trained on ten blocks (dark and light
grey). The detector is then applied to the two remaining blocks (white) to obtain an estimate of the
performance on new, unseen data. The eleven individual performance estimates finally are averaged
to obtain a robust estimate of the generalization error.

24.4.2 Parameter Calibration

The set of possible parameters, as specified in the last section, results in a controlled
flexibility of the workload detector. The detector can adjust itself to the most discriminative
features, individually for each subject and each task (and it thereby accounts for the known
inter- and intrasubject variability). On the other hand, this adaptation is limited to a scope
that is neurophysiologically reasonable.

This flexible approach poses the problem of robustly identifying the most suitable pa-
rameter set in each experiment. Therefore, to find suitable values for all the previously
mentioned subject- and task-specific parameters, we use the well known cross-validation
technique (Cover (1969)), taking into account the particular block structure of our experi-
ment. The rationale of this technique is to find parameters that generalize well, that is, lead
to good performance on new, unseen data, given just a fixed training dataset. For the train-
ing data, the class labels are known, in this case high or low workload, whereas for new
data they must be inferred by the model (i.e., the workload detector). To avoid overfitting
the training data, resulting in inferior performance on new data, new data is simulated in
this approach by splitting the training dataset into two sets: One is used to fit the model to
the data, and the other one, the validation set, is used to assess the quality of the model.

It is important to note that for time series data like EEG signals, some care has to be
taken to perform the split such that the estimated generalization error is realistic. Since
data points that are close in time are likely to be highly correlated, the split cannot be
performed by selecting a random subset. This would result in many almost identical data
points in both sets, such that the training and validation sets would be very similar and
thus useless for testing the generalization performance. Instead, the validation set should
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be a single block of consecutive data points (see figure 24.5). For the same reason, if
there is a block structure of the class labels, the two split points should be at the class
label boundaries. Finally, to make the estimate of the generalization error more robust, it is
useful to perform the split in two subsets several times in different ways and then average
over all individual generalization errors. We therefore perform the splits by leaving out two
consecutive high- and low-workload blocks for validation and repeat the estimation of the
generalization error for all subsequent pairs of blocks, which thus results in an elevenfold
cross-validation. This procedure is performed for each possible combination of parameter
candidates in the feature extraction part (EEG channel subset, spatial filter, frequency band,
window length): the corresponding features are extracted and a classifier is trained on the
extracted features by using LDA.

For each classifier obtained in this way, the hysteresis thresholds are then determined
using the workload predictions of the classifier for the data in the training set. Recall that
these are real numbers below or above zero, representing the estimated degree of low
or high workload, respectively. The idea behind using a threshold scheme is to identify
an uncertainty interval by a lower and upper threshold, ml and mh, in which outputs
are generated almost equally likely from data of both classes. In this region of uncertain
predictions, the system should stick to its previous class decision, exploiting the fact that
changes in workload are slow in comparison to the frequency at which predictions are
made.

The thresholds lie in the interval spanned by the smallest and largest classifier output.
In this range, there exists a decision threshold m0 that attains maximum classification
accuracy on the training set (without hysteresis). A candidate pair for ml and mh is then
given as the smallest and largest threshold such that the classification accuracy is still larger
than η m0, with η being a value between 0.9 and 1.0. Such candidate pairs are generated
for a number of η-values. The pair that maximizes the training set accuracy resulting from
classification with hysteresis is ultimately selected.

The workload detector fully specified in this way then predicts the workload on the
two left-out blocks, resulting in a cross-validation error. Each complete set of parameters
is evaluated in this fashion, and the winning configuration is finally chosen among the
candidates with the smallest cross-validation error.

24.5 Results

We discuss the results of our experiment with respect to three different criteria: neuro-
physiological interpretation of the results, the accuracy of the workload detector, and the
performance increase obtained by using the workload detector to mitigate the workload in
high workload conditions.
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24.5.1 Neurophysiological Interpretation

A comparison of the relevant discriminating quantities, the channel-wise power spectra,
reveals a strong intersubject variability. Only some subjects exhibit clear α peaks (8–
12 Hz). There also is no clear unique neurophysiological effect that can be observed.

The best performing subject ps not only has very pronounced α peaks, but also displays
clear differences in the amount of α power for the two workload conditions (at least in the
overall average), which explains the good performance (figure 24.4). Remarkably, there is
an increase in α power under the high workload condition (at and around Cz in figure 24.4),
which also can be observed in eleven other subjects (mainly parietal). This is somewhat
in contrast to the work of others, where α generally decreases (Scerbo et al. (2003))—an
effect that we find in only about half of the subjects (and also in figure 24.4, e.g., at T7
and T8). A reason for this difference could be the complexity and real-world nature of our
experiment, but most likely it is because our workload-inducing tasks are not visual, as
opposed to a large number of experiments reported in the literature.

In summary, the large intersubject variability justifies our highly adaptable approach,
which automatically adjusts the workload detector to these neurophysiological variations.

24.5.2 Accuracy of the Workload Detector

The quality of the workload detector is assessed by comparing the indicated workload
with the high/low block structure of the experiment. The presented results reflect the
performance of the subject- and task-specific workload detectors after training, that is,
in the (real-time) application session.

As an example, the exact time course of the workload detector output for the best
performing subject, ps, is depicted in figure 24.6. For this subject, the continuous classifier
output (lower line) already exhibits a remarkable correlation with the block structure
of the experiment. For the other subjects, this correlation was less prominent and there
the hysteresis mechanism, which finally yields the binary high/low workload indication,
significantly improved the classification performance.

The results for all subjects are shown in figure 24.7 as the percentage of correctly
classified time points. The first few seconds of each task block that amount to the window
length (i.e., typically 10 s) were excluded from the assessment, since this is the potential
response time of the system. One can see that the intersubject variability is very large, but
nevertheless a classification accuracy of more than 70 percent for eight out of seventeen
subjects for the auditory task and for eleven out of seventeen subjects for the mental
calculation task was achieved. The best performing subject, ps, achieved classification
accuracies greater than 90 percent for both the auditory and the classification task.

24.5.3 Performance Improvement

The binary detector output was used to mitigate the workload of the subject by suppressing
the auditory reaction task when the workload indication is high. By comparing the (unmit-
igated) training session with the (mitigated) application session, we see that the mitigation
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Figure 24.6 The exact time course of the classifier output for the best performing subject, ps, and
the corresponding binary high/low workload indication used to control the mitigation, in comparison
with the true high and low workload conditions. (A) For auditory workload (95.6% correct); (B) For
mental calculation workload (91.8% correct).
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Figure 24.7 Experimental results. Top: Percentage of correctly classified workload for each subject
(in chronological order). In some cases the classifier could not find sufficiently discriminating
features in the EEG since even a random classification would already yield a rate of 50%. Bottom
right: The average improvement of the reaction time of each subject due to the workload mitigation
strategy (10% typically corresponds to an improvement of about 100 ms). Mitigation was introduced
after the first six subjects and consists in the temporary suppression of the reaction task. Degradation
of average reaction times happens only in cases where the classifier does not perform well. Bottom
left: The correlation between classification performance and mean reaction time improvement.

strategy leads to significantly better reaction times on average (figure 24.7, bottom right).
This is due mainly to the circumstance that reaction times are typically longer in the high
workload phase. That clearly degrades the average performance in the training session,
but it almost does not affect the performance in the application session, where the sub-
ject is largely exempted from reacting during the high workload condition because of the
successfully activated suppression of the reaction task. Thus, the mitigation strategy effec-
tively improves the performance of the subject by circumventing the periods of potentially
long reaction times.
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24.6 Discussion

In conclusion, we showed that mental workload detection in real-time and in real operating
environments is possible and can lead to an improved performance of a subject by miti-
gating the workload in high workload conditions. In the context of driving, the mitigation
of high mental workload can be of vital importance since a reaction time improvement of
100 ms, as achieved in the experiments, reduces the braking distance by 2.8 meters when
driving at 100 km/h. This could be enough to prevent a collision.

We also have seen that the strong intersubject variability of the EEG makes the use
of a highly adaptable system necessary. The performance of the workload detector is
nevertheless strongly subject-dependent and depends on the existence of differences in the
EEG power spectra for different workload conditions. These differences can be localized
in different frequency bands and channels. Therefore, it seems unlikely that one can obtain
good results by using a fixed neurophysiological feature. Instead, a system is required that
can select from a number of neurophysiologically sensible features in a robust fashion.
The presented feedback system is based on a parameterized EEG analysis, in which the
parameters are adapted to the subject and the task in an initial training session. For future
research, one major challenge is to reduce the amount of data necessary for the adaptation
of the workload detector.

Acknowledgments

We gratefully acknowledge S. Willmann and S. Rothe for helpful support. The authors
Konrad Hagemann, Andreas Bruns, Michael Schrauf, and Wilhelm E. Kincses were partly
supported by DARPA grant NBCH 3030001.

Notes

∗ The first three authors contributed equally to this work.
E-mail for correspondence: jek@first.fhg.de

(1) The EEG signals are recorded from Ag/AgCl electrodes at positions according to
the international 10-20 system. The actual sampling frequency of 500 Hz was down-
sampled to 100 Hz.



25 Single-Trial Analysis of EEG during Rapid
Visual Discrimination: Enabling Cortically
Coupled Computer Vision

Paul Sajda, Adam D. Gerson, and Marios G. Philiastides
Department of Biomedical Engineering
Columbia University
New York, NY 10027, USA

Lucas C. Parra
Department of Biomedical Engineering
City College of New York
New York, NY 10031, USA

25.1 Abstract

We describe our work using linear discrimination of multichannel electroencephalography
for single-trial detection of neural signatures of visual recognition events. We demonstrate
the approach as a methodology for relating neural variability to response variability, de-
scribing studies for response accuracy and response latency during visual target detection.
We then show how the approach can be used to construct a novel type of brain-computer
interface, which we term “cortically coupled computer vision.” In this application, a large
database of images is triaged using the detected neural signatures. We show how “cortical
triaging” improves image search over a strictly behavioral response.

25.2 Introduction

Running in the park with your head phones on, listening to your favorite tune, and
concentrating on your stride, you look up and see a face that you immediately recognize as
a high school friend. She is wearing a hat, glasses, and has aged fifteen years since you last
saw her. You and she are running in opposite directions so you only see her for a fleeting
moment, yet you are sure it was her. Your visual system has just effortlessly accomplished
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a feat that has thus far baffled the best computer vision systems. Such ability for rapid
processing of visual information is even more impressive in light of the fact that neurons
are relatively slow processing elements compared to digital computers, where individual
transistors can switch a million times faster than a neuron can spike.

Noninvasive neuroimaging has provided a means to peer into the brain during rapid
visual object recognition. In particular, analysis of trial-averaged event-related potentials
(ERPs) in electroencephalography (EEG) has enabled us to assess the speed of visual
recognition and discrimination in terms of the timing of the underlying neural processes
(Thorpe et al. (1996)). More recent work has used single-trial analysis of EEG to character-
ize the neural activity directly correlated with behavioral variability during tasks involving
rapid visual discrimination (Gerson et al. (2005); Philiastides and Sajda (2006)). These re-
sults suggest that components extracted from the EEG can capture the neural correlates of
the visual recognition and decision-making processing on a trial-by-trial basis.

In this chapter, we consider how such EEG components might be used for construct-
ing a brain-computer interface (BCI) system for rapidly assessing streams of natural im-
ages. Traditionally, noninvasive BCI systems have been based on one of the following
paradigms: (1) having a subject consciously modulate brain rhythms (e.g., Pfurtscheller
(1989); Wolpaw et al. (1991); Delorme and Makeig (2003)), (2) having a subject con-
sciously generate a motor plan and/or visual imagery (Pfurtscheller and Neuper (2001);
Wolpaw and McFarland (2004)), (3) directly modulating the subject’s cortical activity by
the stimulus frequency (e.g., steady-state visually evoked potentials (SSVEP)) (Kelly et al.
(2005); Cheng et al. (2002)), or (4) exploiting specific ERPs such as the novelty/oddball
P300 (Kaper et al. (2004)). The approach and system we describe is most similar to the
latter, though our focus is on single-trial detection of ERPs and their relationship to visual
discrimination and recognition.

We begin this chapter by providing a brief review of the linear discrimination methods
we employ to extract task-specific components in the EEG. We then show how such com-
ponents are in fact directly coupled with the visual discrimination and decision-making
processes for stimuli involving rapid sequences of natural images. For example, we show
that we can construct neurometric functions from the EEG components that are indistin-
guishable from the corresponding psychometric functions for a rapid serial visual presen-
tation (RSVP) task. We also investigate the neural correlates of response time variability
responsible for such perceptual decision-making processes. We then describe how we use
this approach to develop a BCI system for high-throughput imagery triage. We term our
system cortically coupled computer vision since we leverage the robust recognition ca-
pabilities of the human visual system (e.g., invariance to pose, lighting, scale), and use
a noninvasive cortical interface to intercept signatures of recognition events—that is, the
visual processor performs perception and recognition and the EEG interface detects the
result (decision) of that processing.
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25.3 Linear Methods for Single-Trial Analysis

The goal of a BCI system is to detect neuronal activity associated with perceptual and/or
cognitive events. Detecting such events implies detecting when an event occurred and
identifying its significance. The task is greatly simplified if the timing information is
provided by an external observable event. Thus, the conventional paradigm of the evoked
response considers the neuronal activity following the presentation of a stimulus. In our
work, we have adopted this paradigm by analyzing the EEG activity of multiple electrodes
following presentation of an image. For simplicity, we aim to identify only one type of
event, visual target recognition, and differentiate this from other visual processing. The
task is therefore a binary classification based on the temporal and spatial profile of the
potentials evoked following stimulus presentation. In every trial, an image is presented and
in some trials the image contains a target object, which we assume is recognized by the
subject. The EEG activity following each stimulus is recorded as D × T values, where
D is the number of channels and T is the number of samples. Typically, we record data
at 1000 Hz in up to 64 channels. With a time window of half a second following the
presentation of the stimulus, one would acquire 32,000 samples. This is a rather large
feature vector considering that typically there are fewer than N = 100 exemplars (trials)
to train a classifier. In addition, EEG signals have a very low signal-to-noise ratio (SNR)
and brute-force classification of this 32,000-dimensional feature vector will typically fail.

To obtain reasonable classification performance, we exploit prior information on the
temporal characteristics of the signal and noise with the following steps: (1) Reduce the
trial-to-trial variability by filtering the signal to remove 60 Hz interference and slow drifts
(slower than 0.5 Hz). This assumes that slow constant currents below 0.5 Hz carry no
information, (2) reduce the dimensionality of the problem by grouping the signal into
blocks of L samples assuming that the signal of interest does not change much within
this window in time, and (3) increase the number of exemplars by using the L redundant
samples in each classification window. This implies that the variation within L samples is
considered noise, that is, for L = 50 the signal of interest is at 10 Hz while faster signal
variation are considered noise. Steps (2) and (3) taken together will transform the original
data for each trial with TD dimensions into L exemplars of only DT/L dimensions. As
an example, with L = 50 and N = 100 one will acquire 5,000 training examples, which
can be used to train a classifier with a 640-dimensional feature vector. Admittedly these
samples are not independent, but they are useful as they capture the noise in the data at
least for frequencies above 10 Hz.

We have obtained good classification results with a simple linear classifier of these
DT/L-dimensional feature vectors. The classification method is demonstrated in fig-
ure 25.1 for the simple case of a single training window (L = T and D-dimensional
feature vector). Linear classification means that the feature vector x is projected onto an
orientation defined by vector w such that the projection, y = wT x, optimally differen-
tiates between the two classes. This is a traditional problem in pattern recognition with
various solutions depending on the exact optimality criteria. In an offline processing mode,
we use penalized logistic regression as it gives us the best generalization performance on
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this data (Parra et al. (2005)). For well-separated classes, this linear classification method
is equivalent to linear support vectors. In a real-time processing mode, we use Fisher linear
discriminants as the required means and covariances can easily be updated online as more
trials become available for training. For a discussion on the relative benefits of various lin-
ear classification methods with EEG data, see Müller et al. (2003a) and Parra et al. (2005).
Classification performance is measured with the conventional receiver operating charac-
teristic (ROC) curve (Green and Swets (1966)), specifically the area under the ROC curve
(Az). We report in all cases the cross-validated test-set performance using a leave-one-out
procedure where we leave out all samples belonging to one trial.

One can conceive of many other ways of classifying the spatiotemporal evoked re-
sponses including nonlinear methods. In fact, many different algorithms have been pro-
posed, which exploit different prior assumptions on the signals (Parra et al. (2005); Lemm
et al. (2005); Luo and Sajda (2006); Bronstein et al. (2005)). We are partial toward lin-
ear methods for two reasons: (1) The linear combination of voltages has an immediate
interpretation as a current (tissue is primarily resistive with coupling coefficients repre-
senting conductivity). The coefficients that couple this current with the observed voltages
are given for the linear model by a =

〈
xT y

〉
/
〈
y2
〉

where the angular brackets indicate
the average over trials and samples. Specifically, coefficients a describe the coupling (and
correlation) of the discriminating component y with the sensor activity x. Both a and x are
D-dimensional vectors (row and column, respectively). Strong coupling indicates low at-
tenuation of the component and can be visualized as intensity maps that we call the “sensor
projections” (Parra et al. (2005)). (2) Linear methods are easy to implement and are fast,
permitting real-time operation. The disadvantage of our method is that it does not capture
synchronized activity above 10 Hz, and neither does it capture activity that is not at a fixed
distance in time from the stimulus; instead only phase-locked activity is detected.

In the remaining sections, we give several examples of how this linear discrimination
method is used to identify the neural correlates of decision-making and response time
variability, as well as how it can be integrated into a BCI system for image triage.

25.4 EEG Correlates of Perceptual Decision Making

Identifying neural activity directly responsible for perceptual decision-making is a ma-
jor challenge for noninvasive BCI systems. A number of investigators have studied the
neural correlates of decision-making in awake behaving animals, in particular primates,
where single and multiunit recordings have been analyzed using signal detection theory
(Green and Swets (1966)) and subsequently correlated with the animal’s observed behav-
ior (Britten et al. (1992, 1996); Newsome et al. (1989)). These approaches consist mainly
of direct comparisons between psychometric and neurometric functions since this enables
researchers to relate the variability of the neural activity to the variability observed in the
behavioral response. The technique has been applied in a variety of perceptual decision-
making paradigms including discrimination of visual objects such as faces (Keysers et al.
(2001)). The approach, though powerful, has been limited to animal studies that use inva-
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Figure 25.1 Linear discrimination in EEG: (a) The D-dimensional EEG activity, X, is projected
onto a single dimension y. (X is a matrix of channels by samples, and y is a row vector containing
multiple samples). The row vectors, y, containing the samples that follow each target stimulus pre-
sentation, can be arranged for multiple trials as a matrix. This matrix (ytarget - mean(ynon−target))
is displayed here as an image with white and black representing the largest and smallest values, re-
spectively. The projection vector w is chosen so that the values y within the training window differ
maximally between target and non-target trials. (b) The sensor projections a are computed for the
samples within the training window. (In this equation, the inner product computes the average over
trials and samples. Therefore, matrix X and vector y extend here over the training samples from all
trials.) The resulting values of a are displayed at the corresponding scalp locations as a color-map
with white and black representing the largest and smallest values respectively. When the intensity y

averaged within the specified time window is used as classification criteria, we achieve on this data
an Az-value of 0.84. The probability of obtaining an Az of this magnitude by chance is less than 1%
(p < 0.01).

sive recordings of single-trial neural activities. Yet to be demonstrated, however, is whether
decision-making could be studied in a similar fashion, noninvasively, in humans.

We use single-trial linear discrimination analysis, as outlined in the previous section, to
identify the cortical correlates of decision-making during rapid discrimination of images.
Psychophysical performance is measured for several subjects during an RSVP task, where
a series of target (faces) and non-target (cars) trials are presented in rapid succession
(figure 25.2a) while simultaneously recording neuronal activity from a 64-channel EEG
electrode array. Stimulus evidence is varied by manipulating the phase coherence (Dakin
et al. (2002)) of the images (figure 25.2b). Within a block of trials, face and car images over
a range of phase coherences are presented in random order. We use a set of 12 face (Max
Planck Institute face database) and 12 car greyscale images (image size 512 x 512 pixels, 8-
bits/pixel). Both image types contained equal numbers of frontal and side views (up to ±45
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degrees). All images are equated for spatial frequency, luminance, and contrast. Subjects
are required to discriminate the type of image (face or car) and report their decision by
pressing a button.

EEG data is acquired simultaneously in an electrostatically shielded room (ETS-
Lindgren, Glendale Heights, Ill.) using a Sensorium EPA-6 Electrophysiological Amplifier
(Charlotte, Vt.) from 60 Ag/AgCl scalp electrodes and from 3 periocular electrodes placed
below the left eye and at the left and right outer canthi. All channels are referenced to the
left mastoid with input impedance < 15kΩ and chin ground. Data are sampled at 1000 Hz
with an analog pass band of 0.01–300 Hz using 12 dB/octave high-pass and eighth-order
elliptic low-pass filters. Subsequently, a software-based 0.5-Hz high-pass filter is used to
remove DC drifts, and 60 and 120 Hz (harmonic) notch filters are applied to minimize line
noise artifacts. These filters are designed to be linear-phase to minimize delay distortions.
In all our experiments, we also record EOG signals and remove motion and blink arti-
facts using linear methods as described in Parra et al. (2005). Motor response and stimulus
events recorded on separate channels are delayed to match latencies introduced by digitally
filtering the EEG.

Using a linear discriminator, we identify EEG components that maximally discriminate
between the two experimental conditions. At each phase coherence level, and between the
stimulus onset and the earliest reaction time, we identify two time windows that give the
most discriminating components. For this paradigm, an early (≈ 170 ms following stim-
ulus) and a late component (> 300 ms following stimulus) can be identified. To be able
to compare directly the neuronal performance at these two times, to the psychophysical
sensitivity as captured by the psychometric functions (Green and Swets (1966)), we con-
struct neurometric functions by plotting the area under the ROC curves (Az values) against
the corresponding phase coherence levels. A linear discriminator is trained by integrating
data across both time windows (2D-dimensional feature vector). With this approach, we
generally observe for the discriminator improved performance (and hence higher Az val-
ues) compared to when training is performed on the individual components in isolation.
Figure 25.3 shows a comparison of the psychometric and neurometric functions for one
subject in the dataset. To demonstrate that the EEG-derived neurometric functions can ac-
count for psychophysical performance, a likelihood-ratio test is used (Hoel et al. (1971)),
which shows that for all the subjects a single function can fit the behavioral and neuronal
datasets as well as the two separate functions.

For both the early (the well-known N170 (Rossion et al. (2003); Puce et al. (1996);
Jeffreys (1996))) and late face selective components, at each phase coherence level, we
construct discriminant component maps to help us visualize the temporal evolution of the
discriminating activity across trials. Data is analyzed for both stimulus and response-locked
conditions, showing that both face selective components appear to be more correlated
with the onset of visual stimulation than the response, as shown in figure 25.4 for one
subject. In addition, we construct scalp maps of these discriminating components. The
spatial distribution of activity seems to indicate signaling between occipito-parietal and
centro-frontal networks, consistent with several ERP/MEG and functional neuroimaging
studies (Hasson et al. (2002); Heekeren et al. (2004); Liu et al. (2002); Rossion et al.
(2003); VanRullen and Thorpe (2001)). The Az values that describe the discriminator’s
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performance at each phase coherence level are also shown. For the subject shown in
figure 25.4, the discriminant activity is statistically significant down to a 30 percent phase
coherence for both the early and late components as assessed by a bootstrapping technique.
Specifically, we compute a significance level for Az by performing the leave-one-out test
after randomizing the truth labels of our face and car trials. We repeat this randomization
process one hundred times to produce an Az randomization distribution and compute the
Az leading to a significance level of p < 0.01. Additional results and details can be found
in Philiastides and Sajda (2006) and Philiastides et al. (2006).

Our results demonstrate that neural correlates of perceptual decision-making can be
identified using high-spatial density EEG and that the corresponding component activities
are temporally distributed. Important to the identification of these neural correlates is the
spatial and, to a lesser extent, the temporal integration of the EEG component activities.
This approach is complementary to those using single and multiunit recordings since it
sacrifices spatial and some temporal resolution (local field potentials versus spike-trains)
for a more spatially distributed view of the neural activity during decision-making. The
fact that we are able to identify neural correlates of perceptual decision-making using
relatively poor spatial resolution of EEG suggests that these neural correlates represent
strong activities of neural populations and not the activity of a small number of neurons.
As such, this approach can be especially useful in designing noninvasive BCI systems that
reliably predict behavioral responses.

25.5 Identifying Cortical Processes Leading to Response Time Variability

Significant variability in response time is observed across trials in many visual discrimina-
tion and recognition tasks. A variety of factors may account for response time variability
ranging from the difficulty in discriminating an object on any given trial, to trial-by-trial
variability of the subject’s engagement in the task, to intrinsic variability of neural process-
ing. Identifying neural activity correlated with response time variability may shed light on
the underlying cortical networks responsible for perceptual decision-making processes and
the processing latencies that these networks may introduce for a given task.

We study visual target detection using an RSVP paradigm and use single-trial spatial
integration of high-density electroencephalography to identify the time course and cortical
origins leading to response time variability. The RSVP task emulates natural saccadic scene
acquisition and requires high vigilance. The RSVP paradigm is illustrated in figure 25.5.
Activity associated with recognition has been identified with the RSVP paradigm as early
as 150 ms after stimulus presentation (Thorpe et al. (1996)). More recent work argues that
this activity is associated with differences in low-level features of the imagery rather than
target recognition (Johnson and Olshausen (2003)). The varied scale, pose, and position of
target objects (people) requires subjects to recognize objects rather than low-level features.
During this task, participants are presented with a continuous sequence of natural scenes.
Participants completed four blocks of fifty sequences each with a rest period lasting no
more than five minutes between blocks. Each sequence consists of fifty images and has
a 50 percent chance of containing one target image with one or more people in a natural
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Figure 25.2 Schematic representation of the behavioral paradigm. (a) Within a block of trials,
subjects are instructed to fixate on the center of the screen and are subsequently presented, in random
order, with a series of different face and car images at one of the six phase coherence levels shown in
(b). Each image is presented for 30 ms followed by an interstimulus-interval lasting between 1500–
2000 ms during which subjects are required to discriminate among the two types of images and
respond by pressing a button. A block of trials is completed once all face and car images at all six
phase coherence levels are presented. (b) A sample face image at six different phase coherence levels
(20, 25, 30, 35, 40, and 45%).

scene. These target images can appear only within the middle thirty images of each fifty-
image sequence. The remaining natural scenes without a person are referred to as distractor
images. Each image was presented for 100 ms. A fixation cross is displayed for 2 s between
sequences. Participants are instructed to press the left button of a generic three-button
mouse with their right index finger while the fixation cross is present, and release the
button as soon as they recognize a target image.

Linear discrimination is used to determine spatial weighting coefficients that optimally
discriminate between EEG resulting from different RSVP task conditions (e.g., target ver-
sus distractor images) over specific temporal windows between stimulus and response.
Integration across sensors enhances signal quality without loss of temporal precision com-
mon to trial averaging in ERP studies. The resulting discriminating components describe
activity specific to target recognition and subsequent response for individual trials.

Intertrial variability is estimated by extracting features from discriminating components.
While robust extraction of component onset from individual trials is extremely difficult due
to the stochastic nature of EEG, there is evidence of strong correlation between ERP peak
and onset times (Scheffers et al. (1991)). The peaks of spatially integrated discriminating
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Figure 25.3 Comparison of behavioral and neuronal performance. Psychometric (solid grey) and
neurometric (solid black) functions for one subject. The abscissas represent the percentage of phase
coherence of our stimuli, and the ordinate indicates the subject’s performance as proportion correct.
We fit both data with separate Weibull functions (Quick (1974)). The psychophysical and neuronal
data are statistically indistinguishable as assessed by a likelihood-ratio test after we fit the best single
Weibull function jointly to the two datasets. The p-value in the bottom right corner represents the
output of this test. A p-value greater than 0.05 indicates that a single function fits the two datasets as
well as the two separate functions. The dotted grey lines connect the Az values computed for each of
the two training windows separately (earlier window, lighter grey circles; later window, darker grey
squares).

components were found by fitting a parametric function to the extracted component y(t).
For simplicity, we use a Gaussian profile that is parameterized by its height β, width σ,
delay μ, and baseline offset α:

ŷ(t) = α +
β

σ
√

2π
e−

(t−μ)2

2σ2 . (25.1)

Response-locking of discriminating components is determined by computing the linear
regression coefficients that predict the latency of the component activity as measured by
μ from the response times given by r as described by (25.2). The proportionality factor
from the response time peak latency regression (θ) is defined to be the degree of response-
locking (percentage) for each component. This metric quantifies the extent to which the
component is correlated with the response across trials. It ranges from 0 percent for pure
stimulus lock to 100 percent for pure response lock. A factor θ = 100% indicates that slow
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Figure 25.4 Discriminant component activity that shows the difference between face vs. car trials
at each coherence level for one subject for (a) the early (N170) and (b) the late (≈ 300 − 400 ms)
window. White represents positive and black negative activity. Each row of these maps represents
the output of the linear discriminator for a single trial, using a 60-ms training window (vertical black
lines) with onset times specified at the top of each panel. All trials are aligned to the onset of visual
stimulation, as indicated by the vertical black line at time 0 ms, and sorted by response time. The
black sigmoidal curves represent the subject’s response times for face trials. The representation of the
topology of the discriminating activity is shown by the scalp plots to the right (dorsal view). White
represents positive correlation of the sensor readings to the extracted activity and black negative
correlation. The Az values for each time window at each coherence level are represented by the bar
graphs. The significance of the difference activity is represented by the dotted line (p = 0.01).

responses show a corresponding late activity, and fast responses show a corresponding
early activity. A factor of θ = 0% indicates that the timing of the activity does not change
with response time and is therefore stimulus locked.

μ̂j = θrj + b (25.2)

where μ̂j and rj are the predicted peak latencies and response times for the jth trial and b

is an offset term for the regression. This is shown for one subject in figure 25.6.
The group results for the discriminating component activity across nine participants is

shown in figure 25.7. Scalp projections of discriminating components were normalized
prior to averaging. Group averaged results show a shift of activity from frontal to parietal
regions over the course of 200 ms, which is consistent with previous studies of visual
oddball BCIs (Makeig et al. (1999, 2004)). Additional analysis and discussion is provided
in Gerson et al. (2005).
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Figure 25.5 Example rapid serial visual presentation (RSVP) trial. A fixation cross lasting 2 s is
followed by a sequence of fifty images. Each sequence has a 50% probability of containing one target
image. This target can appear only within the middle thirty images to ensure that a one-second image
buffer precedes and follows the target.

To estimate the progression of response-locking across all subjects, it is necessary to
account for response time variability among subjects. It is not appropriate to average
results since components are not temporally aligned across subjects. Rather, histograms of
response times were equalized to one subject (subject 2), and component peak times were
scaled accordingly. Scaled response times and component peak times were concatenated
across subjects. These registered group response times were then projected onto the scaled
component peak times to estimate the degree of response-locking across subjects. The
group response lock increased from 28 percent at -200 ms to 78 percent at 50 ms after the
response.

The features of discriminating components are believed to reflect visual processing, at-
tention, and decision stages. Modeling the peak latency, amplitude, and duration of each
trial allows us to study the extent to which each stage varies with response time. Consistent
with Kammer et al. (1999), figure 25.7 indicates that significant processing delays may be
introduced by early processing stages. Within 200 ms prior to response (≈ 250 ms follow-
ing stimulus), activity is already, on average, between 25 and 35% response-locked. Due
to our method, it is not possible to determine whether this response-locking is a result of
components at this onset time or earlier onset times, since discriminating components were
not significant for earlier onset (peak) times. Thus, we conclude it is possible that some of
this early response-locking may be due to early visual processes (0–250 ms poststimulus).
For our nine subjects, correlation analysis reveals that discriminating component activity
progressively becomes more response-locked with subsequent processing stages. Along
with scalp projections derived from discriminant analysis, the covariability of peak latency
with response time describes which cortical regions introduce processing delays, providing
insight into the nature of information flow through the brain during visual discrimination.
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Figure 25.6 Detailed temporal analysis of stimulus-locked discriminating activity for subject 2.
Each row in the left column shows the fit of discriminating activity to a Gaussian profile described
by (25.1). On the top of each of these panels is the onset time of the window used for discrimination.
Right columns of each panel display the peak latency (μ) (black dots) of each trial. The projection
of response times onto these peak latencies is shown with a thin black curve, with thick black
curves representing response times. The parameters for this projection indicate the degree of response
locking for each component. Purely stimulus- and response-locked conditions are indicated by 0%
and 100% response lock, respectively. On top of these panels are reported the percent response lock
and corresponding error in the fit of the peak latencies across trials as well as the mean onset time of
the component. The standard deviation of peak latencies is 62 ms.
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Figure 25.7 Group results over all nine subjects for stimulus-locked discriminating components.
Top row shows scalp distribution of discriminating activity averaged over all subjects. Bottom row
shows the degree of response-locking over time. Error bars reflect standard error of the regression
parameter associated with response-locking percent. For all subjects the first discriminating activity
is frontal and correlated more with the stimulus than response. By the time it arrives in parietal areas,
a delay has been introduced.

25.6 EEG-Based Image Triage

Finally, we describe an EEG system capable of using neural signatures detected during
RSVP to triage sequences of images, reordering them so target images are placed near the
beginning of the sequence. We term our system “cortically coupled computer vision” since
we leverage the robust recognition capabilities of the human visual system (e.g., invariance
to pose, lighting, scale), and use a noninvasive cortical interface (e.g., EEG) to intercept
signatures of recognition events—the visual processor performs perception and recognition
and the EEG interface detects the result (e.g., decision) of that processing.

The RSVP triage task is similar to the task described in figure 25.5; however, following
the image sequence, a series of self-paced feedback slides were presented indicating
the position of target images within the sequence before and after EEG-based triage.
Participants completed two blocks of fifty sequences with a brief rest period lasting
no more than five minutes between blocks. During the second block, participants were
instructed to quickly press the left button of a generic three-button mouse with their right
index finger as soon as they recognized target images. They were instructed to press the
button twice, as quickly as possible, if one target image immediately followed the other.
Participants did not respond with a button press during the first block.
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To classify EEG online, we use a Fisher linear discriminator to estimate a spatial weight-
ing vector that maximally discriminates between sensor array signals evoked by target and
non-target images. During each experimental condition (with and without motor response),
5,000 images were presented to the subject in sequences of 100 images. EEG evoked by the
first 2,500 images (50 targets, 2,450 non-targets) was used to train the classifier. During the
experimental sessions, a training window between 400 and 500 ms following stimulus on-
set was used to extract training data. Weights were updated adaptively with each trial during
the training period. Classification threshold is adjusted to give optimum performance for
the observed prevalence (class-prior). These weights and threshold were fixed at the end of
the training period and applied to the subsequent testing dataset (images 2,501–5,000).

To boost offline triage performance, after the experiment multiple classifiers with dif-
ferent training window onsets were used. The training window onsets ranged from 0 to
900 ms in steps of 50 ms. The duration of the training windows was 50 ms. Once these
classifiers were trained, the optimal weighting of these classifier outputs was found using
logistic regression to discriminate between target and non-target images.

Again, only EEG data evoked by the first 2,500 images was used to train the classifiers
and then find the interclassifier weights. These weights were then applied to the testing
dataset evoked by the second set of 2,500 images (images 2,501–5,000).

Following the experiment, all image sequences were concatenated to create training and
testing sequences that each contain 2,500 images (50 targets and 2,450 non-targets). These
image sequences are resorted according to the output of our classifier with multiple training
windows for EEG evoked by every image.

For comparison, sequences were triaged based on the button response. Images were
resorted according to

p(target|RT ) =

p(RT |target)p(target)

p(RT |target)p(target) + p(RT |non-target)p(non-target)

(25.3)

where RT is the onset of a button response that occurs within one second of image onset.
p(target|RT ) = 0 when no response occurred within one second of image onset. The
priors p(target) = 0.02 and p(non-target) = 0.98. p(RT |target) are Gaussian distributions
with a mean and variance determined from the response times from the training sequences.
Since more than one response is likely to follow a target image if the two target images
are presented within one second of each other, for training sequences response times were
assigned to target images based on the position of the target image within the sequence. In
other words, if the target appeared first in the sequence and two button responses occurred
within one second of this target’s onset, the first response was assigned to that target image
and the second response was assigned to the second target image. For testing sequences,
if two or more responses occur within one second of the onset of any image, the response
with the greatest p(target|RT ) is assigned to the image. p(RT |non-target) is a mixture of
13 Gaussians, each with the same variance as that used for p(RT |target) and with means
assigned by shifting the mean from p(RT |target) 600 ms in the past to 700 ms in the
future in increments of 100 ms, excluding the actual mean of p(RT |target). This mixture
model contains a sufficient number of Gaussians so that the mixture is consistent within
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Table 25.1 Triage performance and behavioral results.

Subject EEG EEG Button EEG (motor) RT (training) RT (testing) % Correct % Correct
(no motor) (motor) and button (ms) (ms) (training) (testing)

1 0.92 0.91 0.87 0.94 418 ± 133 413 ± 101 88 86
2 0.94 0.96 0.86 0.97 412 ± 64 450 ± 64 94 74
3 0.90 0.87 0.96 0.96 445 ± 79 423 ± 59 86 94
4 0.91 0.92 0.98 0.98 433 ± 74 445 ± 59 98 98
5 0.91 0.93 0.98 0.98 398 ± 86 402 ± 58 96 96

Group 0.91 ± 0.02 0.92 ± 0.03 0.93 ± 0.06 0.97 ± 0.02 421 ± 91 426 ± 71 92 ± 5 90 ± 10

the one-second interval following image onset. p(RT |non-target) was designed to model
responses occurring within one second of the onset of a non-target image presented within
one second prior to or following a target image.

Triage results for one subject (subject 2) are shown in figure 25.8. Figure 25.8a shows
the number of targets as a function of the number of distractor images both before and after
triage based on button press and EEG. The area under the curve generated by plotting the
fraction of targets as a function of the fraction of distractor images presented is used to
quantify triage performance. Triage performance for five subjects is listed in table 25.1.
This area is 0.50 for all unsorted image sequences since target images are randomly
distributed throughout the sequences. Ideal triage performance results in an area of 1.00.
There is no significant difference in performance between button-based and EEG-based
triage (0.93 ± 0.06, 0.92 ± 0.03, p = 0.69, N = 5). Interestingly, there is no significant
difference in performance between EEG-based triage for the motor and no-motor response
conditions (0.92 ± 0.03, 0.91 ± 0.02, p = 0.81, N = 5).

Figure 25.8b–f are rasters showing the position of the target images (black squares) and
non-target images (white squares) in the concatenated image sequence. Based on these
rasters and the EEG- and button-based triage performance for the five subjects listed in
table 25.1, it is clear that both EEG- and button-based triage systems are capable of a
high level of performance. The button-based triage performance begins to fail, however,
when subjects do not consistently respond to target stimuli, and response times exceed one
second. Subject 2, for instance, correctly responded to only 74 percent of targets during
the testing session. In fact, this subject did not respond to twelve of fifty target images and
the response time for one target image exceeded one second. Excessively late responses
cannot effectively be classified using our Bayesian methods since it is not clear whether
these button presses were in response to the target image or a subsequent non-target images.
The EEG response evoked by images with either no response or a late response is, however,
still consistent with EEG evoked by the target images with predictable response times. The
EEG-based triage system is therefore capable of detecting the recognition of these target
images and subsequently resorting these target images appropriately. For this reason, we
exploit the information provided by both EEG and button press using another perception
to boost triage performance. This approach is effective for increasing triage performance
for subjects that either did not respond or had a delayed motor response to a significant
number of target images (e.g., subjects 1 and 2).
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Figure 25.8 Triage performance for subject 2. (a) Number of target images presented as a function
of the number of distractor images presented. An ideal triage system will place 50 (100%) of target
images before all 2,450 distractor images. The light grey curve shows the original sequence. Button-
based triage is shown by the dashed curve. The dash-dot curve shows EEG-based triage during the
experiment without motor response. The dotted curve shows EEG-based triage during the experiment
with motor response and the thick black curve shows triage based on EEG (motor) and the button
response. (b–f) Rasters showing the position of non-target (white squares) and target (black squares)
within the (b) original image sequence, (c) EEG (no motor)-based triage sequence, (d) EEG (motor)-
based triage sequence, (e) button-based triage sequence, and (f) combined EEG (motor) and button-
based triage sequence. The first and last images in each sequence are shown by the squares in the
upper left and lower right of each raster respectively.

25.7 Conclusion

Invasive and noninvasive electrophysiological recordings obtained during RSVP of natu-
ral image stimuli have shed light on the speed, variability, and spatiotemporal dynamics
of visual processing. Recent advances in high-spatial density EEG, real-time signal pro-
cessing, machine learning, and human-computer interface design have enabled these basic
neuroscience findings to be used in the development of systems that could support high-
throughput image triage. Further basic and applied neuroscience research by our group will
consider issues related to learning/priming/habituation, the effect of subject expertise, im-
age type and category, and correlated spatiotemporal structure, which is prevalent in video
sequences. We continue to develop “application-level” demonstrations that focus on inter-
cepting neural correlates of visual discrimination and recognition events that effectively
bypass the “slow and noisy” motor response loop.
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Hinterberger, T., A. Kübler, J. Kaiser, N. Neumann, and N. Birbaumer. 2003a. A brain-
computer interface (BCI) for the locked-in: comparison of different EEG classifications
for the thought translation device. Clinical Neurophysiology 114(3):416–425.

Hinterberger, T., J. Mellinger, and N. Birbaumer. 2003b. The Thought Translation Device:
Structure of a multimodal brain-computer communication system. In Proceedings of
the 1st International IEEE EMBS Conference on Neural Engineering: 603–606, Capri
Island, Italy.

Hinterberger, T., R. Veit, U. Strehl, T. Trevorrow, M. Erb, B. Kotchoubey, H. Flor, and
N. Birbaumer. 2003c. Brain areas activated in fMRI during self-regulation of slow
cortical potentials (SCPs). Experimental Brain Research 152(1):113–122.



References 457
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Schlögl, A. 2006. A general data format (GDF) for biomedical signals. Available at
http://arxiv.org/abs/cs.DB/0608052.
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M. Koivuluoma, I. Rezek, S. J. Roberts, A. Värri, P. Rappelsberger, G. Pfurtscheller,
and G. Dorffner. 1999a. Artifact processing of the sleep EEG in the “SIESTA”-project.
In Proceedings EMBEC’99: 1644–1645, Vienna, Austria.
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72074 Tübingen, Germany

Müller, Klaus-Robert

Fraunhofer–Institute FIRST
Intelligent Data Analysis Group (IDA)
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