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Series Foreword

The yearly Neural Information Processing Systems (NIPS) workshops bring
together scientists with broadly varying backgrounds in statistics, mathe-
matics, computer science, physics, electrical engineering, neuroscience, and
cognitive science, unified by a common desire to develop novel computa-
tional and statistical strategies for information processing, and to under-
stand the mechanisms for information processing in the brain. As opposed
to conferences, these workshops maintain a flexible format that both allows
and encourages the presentation and discussion of work in progress, and
thus serve as an incubator for the development of important new ideas in
this rapidly evolving field.

The Series Editors, in consultation with workshop organizers and mem-
bers of the NIPS Foundation Board, select specific workshop topics on the
basis of scientific excellence, intellectual breadth, and technical impact. Col-
lections of papers chosen and edited by the organizers of specific workshops
are built around pedagogical introductory chapters, while research mono-
graphs provide comprehensive descriptions of workshop-related topics, to
create a series of books that provides a timely, authoritative account of the
latest developments in the exciting field of neural computation.

Michael I. Jordan and Thomas Dietterich





Preface

Regression and classification methods based on similarity of the input to
stored examples have been part of the arsenal in statistics and computer
science for decades. Despite consistently good performance in a number of
domains, these methods have not been employed as widely in applications
where very large sets of high-dimensional data are involved. Two of the
main reasons for this are the computational complexity of similarity search
in high-dimensional spaces, often seen as prohibitive, and the sensitivity of
the exemplar-based methods to the choice of distance measure. The main
focus of this book is on advances in computational geometry and machine
learning that may alleviate these problems, and on emerging applications in
the field of computer vision in which the benefit of these advances is often
dramatic.

The book contains contributions by participants in the workshop on
nearest-neighbor methods in learning and vision, held in Whistler, British
Columbia, as part of the annual conference on Neural Information Pro-
cessing Systems (NIPS) in December 2003. The workshop brought together
researchers from theory of computation, machine learning, and computer
vision. Its goal was to bridge the ostensible gaps between these disciplines
and explore the state of the art in nearest-neighbor search methods on the
one hand, and the emerging applications of these methods in learning and
vision on the other hand. The chapters, organized into three correspond-
ing parts, are representative of the ideas presented and discussed at the
workshop.

We hope that this book will be of interest to the students, researchers,
and practitioners of machine learning and computer vision, to whom it may
provide inspiration and ideas as well as useful solutions to specific problems.
In addition, we expect that the book will be of interest to researchers in
computational geometry and algorithms, for whom it presents intersting
application domains in need of new efficient algorithms.

We would like to aknowledge Paul Viola, who co-organized the NIPS
workshop with us. We would also like to thank all those who attended
the workshop and participated in the discussions, and the authors of the
chapters for their excellent contributions to the workshop and now to this
book. Finally, we are grateful to the workshop chairs of NIPS 2003, to the
editors of the series, and to the staff of MIT Press, in particular Bob Prior



and Katherine Almeida, without all of whom this project would not have
succeeded.

Gregory Shakhnarovich

Brown University

Trevor Darrell, Piotr Indyk

Massachusetts Institute of Technology, Cambridge



1 Introduction

Gregory Shakhnarovich, Piotr Indyk, and Trevor Darrell

The nearest-neighbor (NN) problem occurs in the literature under many
names, including the best match or the post office problem. The problem
is of significant importance to several areas of computer science, includ-
ing pattern recognition, searching in multimedia data, vector compression,
computational statistics, and data mining. For many of these applications,
including some described in this book, large amounts of data are available.
This makes nearest-neighbor approaches particularly appealing, but on the
other hand it increases the concern regarding the computational complexity
of NN search. Thus it is important to design algorithms for nearest-neighbor
search, as well as for the related classification, regression, and retrieval tasks,
which remain efficient even as the number of points or the dimensionality of
the data grows large. This is a research area on the boundary of a number
of disciplines: computational geometry, algorithmic theory, and the appli-
cation fields such as machine learning. This area is the focus of this book,
which contains contributions from researchers in all of those fields.

Below we define the exact and approximate nearest-neighbor search prob-
lems, and briefly survey a number of popular data structures and algorithms
developed for these problems. We also discuss the relationship between the
nearest-neighbor search and machine learning. Finally, we summarize the
contents of the chapters that follow.

1.1 The Nearest-Neighbor Search Problem

The exact nearest-neighbor search problem in a Euclidean space is defined
as follows:

Definition 1.1 (Nearest neighbor) Given a set P of points in a d-
dimensional space ℜd, construct a data structure which given any query
point q finds the point in P with the smallest distance to q.

The problem is not fully specified without defining the distance between
an arbitrary pair of points p and q. Typically, it is assumed that this distance
is induced by an ls norm. That is, the distance between p and q is defined
as ‖p − q‖s, where ‖x‖ = (

∑d
i=1 |xi|s)1/s. Other (more general) notions of

distance are possible as well.
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A naive algorithm for this problem is as follows: given a query q, compute
the distance from q to each point in P , and report the point with the
minimum distance. This linear scan approach has query time of Θ(dn).
This is tolerable for small data sets, but is too inefficient for large ones. The
“holy grail” of the research in the area is to design an algorithm for this
problem that achieves sublinear (or even logarithmic) query time.

The nearest-neighbor problem has been extensively investigated in the
field of computational geometry. As a result of this research effort, many
efficient solutions have been discovered for the case when the points lie in a
space of constant dimension. For example, if the points lie in the plane, the
nearest-neighbor problem can be solved with O(logn) time per query, using
only O(n) storage [36, 27]. Similar results can be obtained for other problems
as well. Unfortunately, as the dimension grows, the algorithms become
less and less efficient. More specifically, their space or time requirements
grow exponentially in the dimension. In particular, the nearest-neighbor
problem has a solution with O(dO(1) log n) query time, but using roughly
nO(d) space [11, 29].

At the same time, many data structures that use the optimal O(dn)
space are known (e.g., see the survey [9] for a review of nearest-neighbor
data structures from the database perspective). These data structures often
provide significant speedups on many data sets. At the same time, they are
known to suffer from linear query time for “high enough” dimension (e.g.,
see [9], p. 365).

The lack of success in removing the exponential dependence on the
dimension led many researchers to conjecture that no efficient solutions exist
for this problem when the dimension is sufficiently large (e.g., see [31]).
At the same time, it raised the question: Is it possible to remove the
exponential dependence on d, if we allow the answers to be approximate?
The approximate nearest neighbor search problem is defined as follows.

Definition 1.2 (c-Approximate nearest neighbor) Given a set P of
points in a d-dimensional space ℜd, construct a data structure which given
any query point q, reports any point within distance at most c times the
distance from q to p, where p is the point in P closest to q.

During recent years, several researchers have shown that indeed in many
cases approximation enables reduction of the dependence on dimension from
exponential to polynomial. A survey of these results can be found in [23].
In addition, there are many approximate nearest-neighbor algorithms that
are more efficient than the exact ones, even though their query time and/or
space usage is still exponential in the dimension. This includes the algo-
rithms given in [3, 5, 12, 26, 10, 20, 1]. The algorithm in [5] has an efficient
implementation (ANN); see [2] for details.

In the following we present an brief overview of three data structures:
kd-trees (and relatives), balltrees, and locality-sensitive hashing (LSH).
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1.1.1 Kd-Trees

The kd-tree [8] is a data structure invented by Jon Bentley in 1975.
Despite its fairly old age, kd-tree and its variants remain probably the
most popular data structures used for searching in multidimensional spaces,
at least in main memory. According to Google Scholar, the paper [8]
that introduced this data structure is one of the most cited papers in
computational geometry, with 734 citations as of June 2005.

Given a set of n points in a d-dimensional space, the kd-tree is constructed
recursively as follows. First, one finds a median of the values of the ith
coordinates of the points (initially, i = 1). That is, a value M is computed,
so that at least 50% of the points have their ith coordinate greater-or-equal
to M , while at least 50% of the points have their ith coordinate smaller
than or equal to M . The value of x is stored, and the set P is partitioned
into PL and PR, where PL contains only the points with their ith coordinate
smaller than or equal to M , and |PR| = |PL|±1. The process is then repeated
recursively on both PL and PR, with i replaced by i + 1 (or 1, if i = d).
When the set of points at a node has size 1, the recursion stops.

The resulting data structure is a binary tree with n leaves, and depth
⌈log n⌉. In particular, for d = 1, we get a (standard) balanced binary search
tree. Since a median of n coordinates can be found in O(n) time, the whole
data structure can be constructed in time O(n log n).

For the problem of finding the nearest neighbor in P of a given query q,
several methods exist. The first one was suggested in the original paper.
However, it was quickly superseded by a different procedure, introduced
in [25] (the original procedure was deleted from the journal version of [8]).
The latter search procedure is as follows. The search starts from the root of
the tree, and is recursive. At any point in time, the algorithm maintains the
distance R to the point closest to q encountered so far; initially, R = ∞. At
a leaf node (containing, say, point p′) the algorithm checks if ‖q − p′‖ < R.
If so, R is set to ‖q − p′‖, and p′ is stored as the closest point candidate. In
an internal node, the algorithm proceeds as follows. Let M be the median
value stored at the node, computed with respect to the ith coordinates.
The algorithm checks if the ith coordinate of q is smaller than or equal to
M . If so, the algorithm recurses on the left node; otherwise it recurses on
the right node. After returning from the recursion, the algorithm performs
the “bounds overlap ball” test: it checks whether a ball of radius R around
q contains any point in ℜd whose ith coordinate is on the opposite side
of M with respect to q. If this is the case, the algorithm recurses on
the yet-unexplored child of the current node. Otherwise, the recursive call
is terminated. At the end, the algorithm reports the final closest-point
candidate.

It was shown in [25] that if the data and the query point are chosen inde-
pendently at random from a random distribution (say from a d-dimensional
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hypercube [0, 1]d), then the procedure terminates in time G(d) logn, for
some function G. However, G(d) is exponential in d, at least for values of d
that are “small” compared to log n; note that the running time is always at
most O(dn). It is easy to construct data sets which achieve this worst-case
running time.

A different search procedure is obtained by modifying the order in which
the nodes are visited. Specifically, several authors [4, 5, 6, 21] proposed to
examine the nodes in the order of their distance to the query point (the exact
definition of this process depends on the implementation). This enables the
algorithm to locate a “close enough” neighbor much faster. For example,
experiments in [4] indicate that this “priority” approach enables finding
very good approximate nearest neighbors up to ten times faster than the
original kd-tree search procedure.

Another bonus of the priority search approach is that one can prove
worst-case guarantees for the running times of the resulting algorithm (for a
somewhat modified data structure, called box-decomposition tree, see [5]).
Further results of this type are given in [17].

1.1.2 Balltrees and Metric Trees

Balltrees, introduced by Omohundro in [34], are complete binary trees,
where the leaves correspond to the data points and each interior (non-leaf)
node corresponds to a ball in the data space. The ball associated with a given
node is required to be the smallest ball that contains the balls associated
with that node’s children. Closely related to balltrees are metric trees [38],
in which a node is constructed by thresholding the distance between the
points it contains and a pivot.

In contrast to kd-trees, the regions associated with sibling nodes in ball-
trees and metric trees may intersect and do not have to cover the entire
space. This may allow a more flexible coverage of the space, reflecting the
structure inherent in the data, and thus make the data structure more effi-
cient for data embedded in high-dimensional spaces. A number of algorithms
have been proposed for fast construction, updating, and searching of these
data structures [34, 38, 32]. For a more detailed description, see section 4.2
in chapter 4.

1.1.3 Locality-Sensitive Hashing (LSH)

LSH, as well as several other algorithms discussed in [23], is randomized.
The randomness is typically used in the construction of the data structure.
Moreover, these algorithms often solve a near-neighbor problem, as opposed
to the nearest-neighbor problem. The former can be viewed as a decision
version of the latter. Formally, the problem definitions are as follows. A
point p is an R-near neighbor of q if the distance from p to q is at most R.
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Definition 1.3 (Randomized c-approximate near-neighbor) Given
a set P of points in a d-dimensional space ℜd, and parameters R > 0,
δ > 0, construct a data structure which, given any query point q, does the
following with probability 1− δ: if there is an R-near neighbor of q in P , it
reports a cR-near neighbor of q in P .

Definition 1.4 (Randomized near-neighbor reporting) Given a set
P of points in a d-dimensional space ℜd, and parameters R > 0, δ > 0,
construct a data structure which, given any query point q, reports each
R-near neighbor of q in P with probability 1 − δ.

Note that, in the second definition, the probabilities of reporting different
R-near neighbors might not be independent. Also note that, in both prob-
lems, the value R is known during the preprocessing time. Therefore, by
scaling the coordinates of all points, we can assume that R = 1.

Among the algorithms discussed in [23], the LSH algorithm is probably
the one that has received most attention in the practical context. Its main
idea is to hash the data points using several hash functions so as to ensure
that, for each function, the probability of collision is much higher for points
which are close to each other than for those which are far apart. Then, one
can determine near neighbors by hashing the query point and retrieving
elements stored in buckets containing that point.

The LSH algorithm can be used to solve either the approximate or the
exact near-neighbor problem. It relies on the existence of LSH functions,
defined in the following manner. Consider a family H of hash functions
mapping ℜd to some universe U .

Definition 1.5 (Locality-sensitive hashing) A family H is called
(r, cr, P1, P2)-sensitive if for any p, q ∈ ℜd

– if ‖p − q‖ ≤ R then PH[h(q) = h(p)] ≥ P1,

– if ‖p − q‖ ≥ cR then PH[h(q) = h(p)] ≤ P2.

In order for a LSH family to be useful, it has to satisfy P1 > P2.
An LSH family can be utilized as follows. Given a family H of hash

functions with parameters (r, cr, P1, P2) as in the above definition, we
amplify the gap between the “high” probability P1 and the “low” probability
P2 by concatenating several functions. In particular, for k and L specified
later, we choose L functions gj(q) = (h1,j(q), . . . , hk,j(q)), where ht,j(1 ≤ t ≤
k, 1 ≤ j ≤ L) are chosen independently and uniformly at random from H.
During preprocessing, we store each p ∈ P (input point set) in the bucket
gj(p), for j = 1, . . . , L. Since the total number of buckets may be large, we
retain only the nonempty buckets by resorting to hashing the values gj(p).

To process a query q, we search through the buckets g1(q), . . . , gL(q). Two
concrete strategies are possible:



6 Introduction

1. Interrupt search after finding the first L′ points (including duplicates).

2. Continue search until all points from the buckets are retrieved.

It is shown in [24] that the first strategy, with L′ = 3L, enables solving the
randomized c-approximate near-neighbor problem, with parameters R and
δ, for some constant δ < 1. To obtain that guarantee, it suffices to set L to
Θ(nρ), where ρ = ln 1/P1

ln 1/P2
. Note that this implies that the algorithm runs in

time proportional to nρ, which is sublinear in n if P1 > P2.
On the other hand, in practice, the second strategy appears to be more

popular, presumably since it avoids the need to specify the additional
parameter L′. Also, there is no need to specify c, since the algorithm can
solve the exact near neighbor problem, as described in the remainder of this
paragraph. The analysis in [24] can be used to show that the second strategy
enables solving the randomized exact near-neighbor reporting problem for a
given parameter R. The value of δ depends on the choice of the parameters k
and L; alternatively, for each δ one can provide parameters k and L so that
the error probability is smaller than δ. The query time is also dependent
on k and L: it could be as high as Θ(n) in the worst case, but for many
data sets a proper choice of parameters results in a sublinear query time.
See more details in chapter 3.

The quality of LSH functions is characterized by the parameter ρ. It was
shown in [24, 19] that if the distance is measured according to the l1 norm,
then there exists a (R, cR, P1, P2)-sensitive family of functions with ρ = 1/c.
In chapter 3 another family of functions is described which works if the
distances are measured according to the ls norm for s ∈ (0, 2].

1.2 Nearest-Neighbor Methods in Learning and Vision

In the context of machine learning, nearest-neighbor methods are applied to
supervised problems. Suppose one is given a reference set–a set of examples
for which the target concept (a class label, function value, etc.) is known,
and a query, for which such a value is unknown and is to be recovered. The
nearest-neighbor approach consists of finding one or more examples most
similar to the query, and using the labels of those examples to produce the
desired estimate of the query’s label.

This broad description leaves two important questions:

1. What are the criteria of similarity? The answer depends on the under-
lying distance measure as well as on the selection criteria, e.g., the k ex-
amples closest to the query for a fixed k, or the examples closer than a
fixed threshold r. The choices of these criteria are known to have a very
significant influence on the performance on the algorithm.

2. How are the labels from the neighbors to be combined? The simplest
way is to take the majority vote, in classification setup, or the average,
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in regression setup. However, more sophisticated methods, such as locally
weighted regression, have been shown to produce sometimes dramatically
better results.

The following fundamental property of nearest-neighbor classification
has been shown by Cover and Hart in [15]. Let R(n) be the expected
probability of error of the M-category nearest-neighbor classifier for a
training set of n examples. Then the limit R = limn→∞ R(n) is bounded
by R∗ ≤ R ≤ R∗(2 − MR∗/(M − 1)), where R∗ stands for the Bayes risk–
the probability of error of the optimal classifier given the distribution of the
data. A similar result can be shown for the nearest-neighbor regression [13].

Unfortunately, these asymptotic results do not necessarily translate into
similar bounds in practice when training sets of finite size are used. As
has been shown by Cover in [14], the rate of convergence to this limit may
be arbitrarily slow. A significant body of work has been devoted to analy-
sis of nearest-neighbor performance on samples of finite size. Although no
“distribution-free” bounds have been found, it is possible to characterize the
finite sample risk of the nearest-neighbor classifier based on various proper-
ties of the input space and the data distribution (see [18, 35, 37] for some
interesting results). Moreover, despite the lack of theoretical guarantees, it
has often been observed that the nearest-neighbor classifiers perform very
well in practice, and achieve accuracy equivalent to or even better than that
of significantly more complicated methods; see, e.g., the extensive compar-
ative study reported in [16].

Similar success has been seen in the application of nearest-neighbor meth-
ods to a variety of vision tasks, such as shape matching [22, 7] and object
recognition [33, 30, 28]. However, in computer vision the limitations of some
nearest-neighbor search methods have particularly high impact, since the
data here is typically high-dimensional, and in many cases the databases
required to sufficiently represent the visual phenomena are large. On the
other hand, appropriate similarity measures in vision applications are often
more expensive than the Euclidean distance. Furthermore, these measures
may not even be metrics. All this poses a challenge for a practitioner inter-
ested in using an example-based technique in a computer vision problem.
Possible solutions include randomized approximate algorithms, embedding
techniques, and machine learning algorithms for adapting the data struc-
tures for the properties of the data in the given domain. The book describes
some of the recent advances in these directions.
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1.3 Contributions to this book

Theory

The book opens with two contributions from computational geometry.
Chapter 2, by Clarkson, focuses on the formulation of exact nearest-neighbor
search, and studies this problem in metric spaces. In particular, it investi-
gates the various dimensionality properties that make the problem tractable
in practice, and presents theoretical results. Chapter 3, by Andoni, Datar,
Immorlica, Indyk, and Mirrokni, is devoted to a randomized algorithm that
allows approximate as well as exact similarity search in very high dimensions
in time sublinear in the size of the database. The algorithm is an extension
of LSH, described in 1.1.3, to a family of distance metrics beyond the l1
norm.

Learning

The unifying theme of the three chapters in the second part of the book
is exploring the ways to make the nearest-neighbor approach practicable in
machine learning application where the dimensionality of the data, and
the size of the data sets, make the naive methods for nearest-neighbor
search prohibitively expensive. In chapter 4, Liu, Moore, and Gray notice
that in nearest-neighbor classification, what matters for the decision is the
distribution of labels of the query’s neighbors, rather than the neighbors
themselves. They use this observation to develop new algorithms, using
previously introduced balltree data structures, that afford a significant
speedup while maintaining the accuracy of the exact k-nearest-neighbor
classification.

Chapter 5, by Vijayakumar, D’Souza, and Schaal, is devoted to methods
that build a local model of the target function in the vicinity of the query by
finding its neighbors in the reference set. The chapter proposes an approach
that extends such local learning methods to very high-dimensional spaces by
exploiting the low intrinsic dimensionality within a neighborhood. Another
contribution is a new Bayesian regression algorithm. The proposed frame-
work has been shown to be fast and accurate in a number of applications,
including real-time motor control tasks for robots.

Chapter 6, by Athitsos, Alon, Sclaroff, and Kollios addresses the issue that
arises in the context of many applications of nearest-neighbor methods in
learning, be they for classification, regression, or database retrieval. When
computing the distance of interest is expensive, a significant reduction in
search time may be gained if a cheap way exists to evaluate the relative dis-
tances from the query and eliminate the majority of the reference examples
from contention, thus requiring the distance to be explicitly computed only
on a small subset of the database. The approach proposed in this chapter
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is to learn an embedding of the original distance into a Euclidean space, in
which the ranking with respect to the Manhattan metric reflects the ranking
under the original distance. Connecting this chapter to the following ones,
the approach is evaluated on two computer vision tasks: estimating the
articulated pose of human hands and classifying sign language utterances.

Vision

The chapters in the third part of the book describe successful applications
of LSH to vision tasks. Moreover, as some of the chapters show, the basic
LSH framework may be adapted to better fit the properties of the data
space and the task at hand.

In chapter 7, Shakhnarovich, Viola, and Darrell deal with a regression
task: estimating articulated body pose from images of people. The basic
idea here is to learn, using pairs of images with known poses, hash func-
tions sensitive to the distance in the pose space. The resulting method,
parameter-sensitive hashing, allows very fast example-based estimation of
pose using a very large set of labeled examples. Chapter 8, by Grauman
and Darrell, is concerned with database retrieval scenarios where the dis-
tance is known but very expensive to compute: the earth mover’s distance
(EMD) between contours. The authors propose a technique, based on mul-
tiresolution histograms, that embeds the contours into a Euclidean space
of very high dimensions, and replaces EMD with the Manhattan distances
between sparse points in that space, thus allowing application of very fast
approximate search algorithms such as LSH. The experiments on data sets
of handwritten digits and human body contours show that with this embed-
ding, neighbor-based methods remain very accurate while gaining dramatic
speedup.

In contrast to the previous chapters, the task of interest in chapter 9,
by Shimshoni, Georgescu, and Meer, is an unsupervised one: clustering.
Specifically, the authors show how LSH can be used to reduce the complex-
ity of mean-shift clustering, and apply the resulting algorithm to the tasks
of visual texture classification and image segmentation. They also propose
significant modifications in the algorithms for constructing the data struc-
ture used to index the examples: the partitions in the hash tables are data
driven.

Finally, in chapter 10 Frome and Malik present an application of LSH
to another vision task: automatic classification of vehicles from their three-
dimensional range scans. The approach proposed by the authors relies on
LSH to perform fast search in a set of reference objects represented using
shape context–a representation that has been shown to be useful but also
to make distance calculations very costly. This chapter, too, presents a
modification of the basic LSH algorithm: Associative LSH. In this algorithm,
the results returned by LSH for a query are further refined by local search,
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improving the quality of the approximate nearest-neighbor and consequently
affording a gain in classification accuracy.
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2 Nearest-Neighbor Searching and Metric Space

Dimensions

Kenneth L. Clarkson

Given a set S of points in a metric space with distance function D, the
nearest-neighbor searching problem is to build a data structure for S so
that for an input query point q, the point s ∈ S that minimizes D(s, q) can
be found quickly. We survey approaches to this problem, and its relation
to concepts of metric space dimension. Several measures of dimension can
be estimated using nearest-neighbor searching, while others can be used to
estimate the cost of that searching. In recent years, several data structures
have been proposed that are provably good for low-dimensional spaces, for
some particular measures of dimension. These and other data structures for
nearest-neighbor searching are surveyed.

2.1 Introduction

The problem of nearest-neighbor search is to build a data structure for a set
of objects so that, given a query object q, the nearest object in the set to q
can be found quickly.

That is, suppose U is a set and D is a distance measure on U, a function
that takes pairs of elements of U and returns a nonnegative real number.
Then given a set S ⊂ U of size n, the nearest-neighbor searching problem
is to build a data structure so that, for an input query point q ∈ U, an
element a ∈ S is found with D(q, a) ≤ D(q, x) for all x ∈ S. We will call the
members of S sites, to distinguish them from other members of U, and say
that the answer a is nearest in S to q. Put another way, if we define D(x, S)
as min{D(x, s) | s ∈ S}, then we seek the site s such that D(q, s) = D(q, S).

This problem has been studied for a long time, and has many names in
a large and diverse literature. In an early proposal for a solution, due to
McNutt (as discussed by Knuth[60]), it was called the post office problem.
In another early proposal, it was called best-match file searching [15]. In
the database or information-retrieval literature, it might be called the
problem of building an index for similarity search [50]. In the information
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theory literature, it arises as the problem of building a vector quantization
encoder [69, 42]. In the pattern recognition (or statistics or learning theory)
literature, it might be called the problem of building a fast nearest-neighbor
classifier [34, 26].

This chapter surveys the problem of nearest neighbor searching in the gen-
eral metric space setting, together with additional dimensionality properties
that make instances of the problem tractable. The meaning of “tractable”
here is vague, but mainly refers to data structures that are not too big, but
allow queries that are fast, where “not too big” means roughly O(n), and
“fast” means o(n), as n → ∞.

Some basic constructions of metric spaces are also reviewed, as are some
ways of “repairing” a distance measure that does not quite satisfy all the
properties needed for a metric space.

Some concepts of dimension we consider include the Assouad dimension,
the box dimension, and a dimension based on doubling measures. These
concepts have been studied in measure theory and harmonic analysis. As
discussed in Subsection 2.5.2, the theoretical computer science community
has in recent years begun to study spaces of bounded Assouad dimension,
and some of their results include provably efficient data structures for
nearest-neighbor searching [21, 64, 44]. Some stronger efficiency results
have also been given for spaces satisfying a stronger condition based on
doubling measure [58, 11, 48]. Some of these algorithms, or related ones, have
been implemented, with promising results [22, 11]. Also, some experimental
results have been obtained regarding the correlation dimension of a space
and the cost of some nearest-neighbor searching problems [10].

These results are described here in the context of the large variety
of algorithms and data structures that have been proposed for nearest-
neighbor searching. It is remarkable that there are so many such algorithms,
especially considering that the distance measure is used simply as a “black
box” function that takes two objects and returns a nonnegative real number.

To put these applications of dimensional properties in perspective, we
survey a variety of dimensional concepts for metric spaces and for metric
measure spaces, and relate them to nearest neighbors. In addition to the box
and Assouad dimensions, we consider also for metric spaces the Hausdorff
and packing dimensions. For metric measure spaces, the pointwise, energy,
and quantization dimensions are discussed, as well as doubling measures,
and also the general Rènyi dimensions, which include the information and
correlation dimensions. Nearest-neighbor searching is a key component of
several estimators of these dimensions, while some estimates of dimension
allow bounds for costs related to nearest-neighbor queries. These relations
are discussed in Section 2.5.

As an example of the interplay of dimensions and nearest neighbors,
suppose a metric space has a measure. Here we will assume that the measure
is a probability distribution. The pointwise dimension at point x tells how
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quickly the measure of a ball B(x, ǫ) centered at x goes to zero, as its
radius ǫ goes to zero. The pointwise dimensions of points in the space are
closely related to the Hausdorff, information, and energy dimensions of the
measure. Now suppose a set of n sites S comprises random points that are
independently distributed according to the given measure. It turns out that
the pointwise dimension at x can be estimated as the ratio of log n to the
distance of x to its nearest neighbor in S. That is, the pointwise dimension
is related to how fast the nearest-neighbor distance goes to zero as n goes to
infinity. This is discussed in Subsection 2.4.2. The pointwise dimension has
been proposed in the database literature as a way to determine how large
the answer to a fixed-radius neighbor query is likely to be. (Such a query
asks for all sites inside a given ball.) It is a basic concept of multifractal
analysis, as used in studying dynamical systems [79].

As another example: ǫ-nets are a kind of well-distributed subset of a metric
space, such that every point in the space is within distance ǫ of the net. The
box dimension of the space determines the rate at which the size of such
nets increases, as a function of 1/ǫ. There is a greedy algorithm for finding
ǫ-nets that has been applied to building data structures for nearest-neighbor
searching,[13, 97, 22, 45] as well as other optimization problems [39]. These
relations are discussed in Section 2.4 and Subsection 2.5.2.4.

2.1.1 Scope, and Survey of Surveys

There are many important aspects of nearest-neighbor searching that are
not covered here, but have been surveyed elsewhere.

Several surveys of nearest-neighbor searching in ℜd have been done: one
focuses on high-dimensional spaces[53]; another on closest-pair problems,
including insertions and deletions of sites [86]; and another [1] on data
structures to allow moving sites to be handled efficiently [6, 56, 7]. A
recent survey [12] and book [78] describe nearest-neighbor searching from a
database perspective.

There are at least two prior surveys of searching in general metric spaces
[17, 50]. These surveys discuss in detail many algorithms that have arisen
in practice.

The primary concern here is with reducing the number of distance eval-
uations needed to answer a query. There is a substantial body of work on
increasing the efficiency of search by speeding up distance evaluations. Some
of these techniques are simple and practical, such as avoiding the evaluation
of square roots, or stopping distance evaluations when the distance value
is known accurately enough. Other techniques show that distances can be
estimated quickly using randomization. Related techniques involve the “em-
bedding” of the metric space in a low-dimensional space, a very active area
of research [54].



18 Nearest-Neighbor Searching and Metric Space Dimensions

The basic conditions for provably fast search that we consider relate to
various concepts of dimension, many of which include the possibility of non-
integral, or fractal dimension [31, 29]. A rigorous, thorough, and accessible
introduction to fractal dimension, including statistical considerations for
estimators of dimension, is given by Cutler[24].

2.1.2 Caveat Lector

The algorithms described in Section 2.3 are given only the most cursory
overview. The discussion of dimension in Section 2.4 may well neglect some
basic conditions needed for mathematical rigor, while the discussion of
algorithms in Section 2.5 may not accurately reflect the data structures that
are being abstracted and simplified. The bibliography should be helpful,
however.

2.1.3 Related Problems and Applications

Nearest-neighbor problems arise in many application areas, including infor-
mation retrieval, classification, data compression, databases, and dynamical
systems. The tasks of vector quantization and nearest-neighbor classifica-
tion are illustrative.

The vector quantization problem is the following: let X denote a random
variable in U, with distribution μ. An n-quantizer for μ is a function f on
U that takes a point X to one of a set of at most n points in U. That set
is called the codebook. Let Fn be the set of all n-quantizer functions. Then
the nth quantization error for U is

Vn(μ) := inf
f∈Fn

Eρ(D(X, f(X))), (2.1)

the cheapest expected cost of representing X by f(X), where the cost is
a function ρ() of the distance of X to f(X), and the expectation is with
respect to the distribution μ. If the value X was information to transmit
over a channel, then an identifying number for f(X) from 1 to n could be
transmitted instead, and f(X) recovered from that number on the other
end of the channel. The quantization error is the expectation for how badly
the received value f(X) distorts the true value X.

Often U is ℜd, the distance is Euclidean, and ρ(a) = av for some value
v > 0, in which case the nth quantization error is of order v.

Nearest-neighbor searching arises in vector quantization as the task of
implementing f , after the codebook set has been chosen. Sometimes the
codebook is structured in a way that allows fast and easy search, as for
example when it comprises points on a regular grid. However, for a given
distribution, the optimal codebook may be unstructured, and look like
nothing but an arbitrary point set. (For such unstructured codebooks, the
need for fast encoding has led to the use of tree encoders, which are not
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guaranteed to answer a query with the nearest site, or even a near one.
However, such encoders work well in practice.) Vector quantization, and
the quantization dimension, are discussed further in 2.4.3.

As noted above, the problem of classification has long been approached
using nearest-neighbor searching [26]. Points in the space (typically ℜd)
correspond to sets of objects, and the point coordinates encode various
properties of the objects. Each object also has a “color,” say red or blue,
corresponding to some additional important property. The sites S are a
“training set,” each of known color. A nearest-neighbor classifier takes as
input a query point of unknown color, and returns the color of the nearest
site in the training set, or the color of the majority of the nearest k sites.
That returned value is a prediction of the true color of the query point.

Thus the nearest-neighbor searching problem arises in finding the closest
sites in the training set. Note that, however, it is not necessary to find
the nearest sites, but only their colors. It is sometimes possible to use this
simplification of the problem to obtain a faster algorithm [74, 70].

We turn now to other computational problems, closely related to nearest-
neighbor searching, that arise in applications. One mentioned for classifica-
tion is k-nearest neighbors (k-NN): given an integer k and query point q,
find the k sites that are closest to q. That is, nearest-neighbor searching is
the special case of k-NN searching with k = 1. Another related problem is
distance range searching: build a data structure so that given distance value
r and query point q, all sites p ∈ S with D(q, p) ≤ r can be found quickly.
If we were given the nearest-neighbor distance D(q, S) by an oracle, then
answering the range query with parameter r = D(q, S) would answer the
nearest neighbor query.

Approximate Queries. Sometimes it may not be necessary to find the
nearest neighbor, but only a (δ)-near neighbor, that is, one whose distance
is within a δ factor of the nearest distance, for some δ > 1. (Note the
distinction between “k-nearest” and “(δ)-near.”) Such approximate nearest
neighbor queries are of interest in their own right, and may have much
faster algorithms than those for nearest neighbor queries. Moreover, near
neighbors can sometimes be used to find nearest neighbors, as discussed in
Subsection 2.5.2.

Reverse Queries. Another related problem is that of building a data
structure for reverse or inverse nearest neighbor queries, where the input is
similar, but the answer is not the site nearest to query point q, but rather
the sites that have q as their (second) nearest neighbor in S ∪ {q}, that is,
the answer is the set of sites

{s ∈ S | D(s, q) ≤ D(s, S \ {s})}.

As with (forward) nearest-neighbor searching, this problem also can be
generalized with k and ǫ: given k and site q, find all sites that have q
as kth nearest neighbor, or given ǫ > 0, find all sites such that q is within
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1 + ǫ of closest. This problem has arisen as a computational bottleneck in
event-driven astrophysical simulations [3], and as a notion of “influence” in
decision support and referral systems[62, 85]. It also arises as a subproblem
in building data structures for nearest-neighbor queries, as mentioned in
Subsection 2.5.2.4.

A key property for reverse queries is that in some circumstances, such
as those given for Lemma 2.3, the answer size is bounded by a value
independent of |S|, the number of elements of S. The intuition, considering
points in the plane, is that as more and more sites have q as a nearest
neighbor, at some point two of the sites must be closer to each other than
to q.

Batched Queries. There are several general problems that might be
solved using a data structure for nearest-neighbor searching, or k-NN search-
ing. For example, the closest-pair problem is to find the two sites s and
s′ such that D(s, s′) = min{D(p, p′) | p, p′ ∈ S, p 
= p′}. This could be
solved by applying a data structure for 2-nearest-neighbors to each site in
turn. (Here we must have 2-nearest-neighbors because the closest site to a
site s is s itself.) Similarly, the all-k-nearest-neighbor (all-k-NN) problem is
to find, for each site s, the k sites closest to s. Solving this problem is a
common preprocessing step for “manifold reconstruction” in the computa-
tional geometry[36], learning theory[83], and computer graphics[52] litera-
tures. Note that the answer to the closest-pair problem can easily be found
using the answer to the all-k-NN problem. Similarly, the max-min distance

max
i

min
j

D(si, sj),

which has been proposed as a diversity measure [2], can be found among the
all-k-NN output. The correlation integral problem is a range query analog
of all-nearest neighbors: given a value r > 0, find all pairs of sites within
distance r of each other. This problem arises in computing the correlation
dimension of S, discussed in Subsection 2.4.2.

Bichromatic Problems In addition to the “chromatic” problem of
nearest-neighbor classification mentioned above, another class of problems
is bichromatic. The input is two sets S and S ′, and the closest pair of sites,
one from each set, is desired. (That is, sites in S are “red,” and those in S ′

are “blue,” and the closest two-color pair is wanted, hence the problem is
bichromatic.) Another bichromatic problem is called a kind of spatial join
in the database literature: given distance value D, find for each site s ∈ S,
the sites in S ′ that are within distance D of s [10].

2.2 Metric Space Properties, Construction, and Repair

So far, we have only described nearest-neighbor searching problems in great
generality, and have not even given any properties of the distance measure
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D, except that it maps from pairs of points to real numbers. In instances
of these problems, U and D have many properties that can be used to
obtain solutions to the nearest-neighbor problem. The main property that
often holds is that (U, D) is a metric space, described next. An additional
condition that often applies is that (U, D) has bounded dimension, for some
concept of dimension, as discussed in Section 2.4.

2.2.1 Metric Spaces

The distance function D of a metric space (U, D) satisfies the following
conditions, for all x, y, z ∈ U:

1. nonnegativity: D(x, y) ≥ 0;

2. small self-distance: D(x, x) = 0;

3. isolation: x 
= y implies D(x, y) > 0;

4. symmetry: D(x, y) = D(y, x);

5. the triangle inequality: D(x, z) ≤ D(x, y) + D(y, z).

2.2.2 Distance Measure Repairs

A great many instances of nearest-neighbor searching naturally have an
associated metric space. Moreover, it is worth noting that if any one of the
conditions 3 to 5 fails, while the others hold, there is a natural associated
function that is a metric, described next.

Condition 3, isolation, fails: here (U, D) is a called a pseudometric. Par-
tition U into equivalence classes based on D, where x and y are equivalent
if and only if D(x, y) = 0. With the natural distance D([x], [y]) = D(x, y)
on the classes, the result is a metric space.

Condition 4, symmetry, fails: (U, D) is a quasi-metric. The related measure
D̂(x, y) := (D(x, y)+D(y, x))/2 will satisfy symmetry, and so yield a metric
space.

Condition 5, the triangle inequality, fails: a semimetric, or positively-
weighted undirected graph. A related metric can be found using shortest
paths: let

D̂(x, y) := inf
∑

i

D(zi, zi+1),

where the infinum is taken over all sequences in U of the form

x = z1, z2, . . . , zN = y,

for all N > 1. Note that D̂ satisfies the triangle inequality, and is a metric,
possibly after patching up the “small self-distance” condition. This is the
shortest path distance in the graph whose vertices are the points, a graph
metric.

This repair of the triangle inequality is often used in the other direction:
given a finite metric space (U, D), a graph with vertex set U and with few
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edges is found, such that the resulting graph metric is a good approximation
to the original metric D. Such graphs are called spanners; these have been
the focus of considerable research and application.

Another conceivable repair for the triangle inequality is to use D̂(x, y) :=
D(x, y)1/w; for sufficiently large w, D̂ satisfies the triangle inequality. If only
w = ∞ will suffice, then the uniform metric (D(x, y) = 1 if x 
= y) is the re-
sulting D̂. Otherwise, with w < ∞, this approach might be of interest, since
it preserves inequalities among distances, so the nearest neighbor in D is
also the nearest in D̂. For finite spaces, maxx,y,z∈U,x �=y log2(D(x, z)/D(x, y))
would be large enough, for example; this quantity is bounded by the spread,
which is discussed in Subsection 2.5.2. Note that this transformation pre-
serves distance rank: if y is farther from x than z, it will also be under the
repaired version. So distance measures that do not obey the triangle inequal-
ity might be transformed into metrics, with the answers to nearest-neighbor
queries preserved. On the other hand, this transformation flattens the dis-
tance, and so may make clusters less distinct, and degrade some searching
algorithms.

The repair of quasi-metrics given above is computationally trivial. Pseu-
dometrics do not really need “repair” for nearest-neighbor searching: it is
only necessary to keep in mind that the answer is a representative of an
equivalence class, and the possibility that distinct sites have distance zero.
The repair of the triangle inequality may be difficult to apply in the context
of nearest-neighbor searching (although see the string edit distance below).
However, graph metrics are a concept of considerable interest and impor-
tance in optimization [54]. Given an arbitrary distance function (mapping
from ordered pairs to the nonnegative reals) that has D(x, x) = 0, an asso-
ciated metric could be found by using shortest paths to obtain a function
that satisfies the triangle inequality, then averaging to enforce symmetry,
and finally grouping into equivalence classes to achieve isolation.

2.2.3 Metric Space Constructions

One very basic metric space for any given set U is, as noted, the uniform
metric, where for all x, y ∈ U, D(x, y) = 1 if x 
= y, and D(x, x) = 0.
Another basic space is the set of real numbers ℜ, with distance |x − y|
for x, y ∈ ℜ. Moreover, metric spaces can be constructed from other
spaces. In the following, suppose (U, D) is a metric space, as are some
(U1, D1) . . . (Ud, Dd).

– Submetrics. Plainly, any (U′, D′), where U
′ ⊂ U and D′ is D restricted to

U
′ × U

′, is a metric space.
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– Products. Let Û be the cross-product U1 × U2 × . . . Ud, that is, the d-
tuples over the Ui. For some value p with 1 ≤ p ≤ ∞, define D̂ as follows:
for x, y ∈ Û, let

D̂(x, y) :=

(

∑

i

Di(xi, yi)
p

)1/p

,

the product metric. When all Ui = ℜ and Di(x, y) = |x− y|, this yields ℜd

with the ℓp distance measures, so D̂(x, y) = ‖x− y‖p. When p = d = 2, this
is simply the Euclidean plane. When p = 1 and all the Di are the uniform
metric, the result is the Hamming distance.

– Strings. Let U
∗ denote the strings over U. Suppose D̂ is a distance measure

on U
∗ defined as follows: when deletion or addition of one character from

x yields y, then D̂(x, y) = 1; when replacement of a character a in x by a
character b yields y, then D̂(x, y) = D(a, b). Then (U∗, D̂) is a semimetric,
and its shortest path “repair,” as discussed above, is called the string edit,
or Levenshtein distance. In other words, the string edit distance between
x, y ∈ U

∗ is the minimum cost sequence of deletion, insertion, or replacement
operations to obtain y from x. If deletion and insertion have infinite cost,
then this is a kind of Hamming distance on strings. This measure might be
used for spelling correction, and for comparing genetic sequences.

– Subsets. The Hausdorff distance between subsets of U is

D̂(S, T ) := min{D′(S, T ), D′(T, S)},

where
D′(S, T ) := sup

s∈S
inf
t∈T

D(s, t).

Such a distance might be used for geometric shapes. (Technically, this is
only a pseudometric, but it is a metric for all closed bounded subsets.)
Another commonly used distance between subsets is

D(S, T ) := inf
s∈S,t∈T

D(s, t).

Note that this is not a metric.
When U has a measure μ, the distance μ(A∆B) has been studied, where
A∆B is the symmetric difference of A and B; this metric generalizes the
Hamming distance.

– Nonnegative combinations. Suppose the Ui are all equal, a set U, but
the Di are different. Given α1 . . . αd with αi ≥ 0, define D̂ by D̂(x, y) :=
∑

i αiDi(x, y). Then (U, D̂) is a metric, a nonnegative combination of the
originals. (In particular, scaling a single metric by a positive constant also
gives a metric.) In other words, the set of metrics on U is closed under
nonnegative combination, and forms a cone; such cones are well studied
[27].
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– Metric Transforms. If f is a real-valued function of the nonnegative reals,
and f(0) = 0, and f(z) is monotone increasing and concave for z ≥ 0,
then D̂(x, y) := f(D(x, y)) is a metric [27]. For example, if f is twice
differentiable, f ′(z) ≥ 0, and f ′′(z) ≤ 0 for z ≥ 0, then f is monotone
increasing and concave. One such function is f(z) := zǫ, for any given ǫ
with 0 < ǫ < 1. The new metric D(x, y)ǫ is sometimes called the snowflake
or power transform of the original. The function with f(z) = z/(1 + z) also
satisfies the given conditions, and yields a bounded distance measure.

– Steinhaus Transform. If (U, D) is a metric space and a ∈ U , then (U, D̂)
is also a metric space, where

D̂(x, y) :=
2D(x, y)

D(x, a) + D(y, a) + D(x, y)
.

This is sometimes called the Steinhaus transform[27].
When this transform is applied to the distance D(A, B) = μ(A∆B), and
with a being the null set Φ, the result is

D̂(A, B) =
2μ(A∆B)

μ(A∆Φ) + μ(B∆Φ) + μ(A∆B)

=
2μ(A∆B)

μ(A) + μ(B) + μ(A∆B)
=

2μ(A∆B)

2μ(A ∪ B)

=
μ(A∆B)

μ(A ∪ B)
,

which is called the Steinhaus distance [27]. The special case for finite sets
|A∆B|/|A ∪ B| is called the Tanimoto distance [82], resemblance [14], set
similarity distance [16], Jaccard distance [55, 87], or Marczewski-Steinhaus
distance [71]. It has been proven a metric in several ways [27, 87, 98, 16].

The above follows in part Deza and Laurent [27], and also Indyk and
Matoušek [54]; the latter describe other metric constructions, including the
earth-mover (or Mallows[68]), Fréchet, and block-edit distances.

The above hardly exhausts the distances and metrics that have been
considered, even by applying the constructions repeatedly. For example,
for two probability distributions on U with density functions f and g, the
α-divergence of f and g is

1

α − 1
ln

∫

fαg1−α,

which has the Kullback-Leibler (α → 1) and Hellinger (α = 1/2) divergences
as special cases. This is not a metric, however.

There is even a distance measure between metric spaces, which can be
defined for spaces Z and Z ′ as the Hausdorff distance between κ(Z) and
κ(Z ′), where these are Kuratowski embeddings of Z and Z ′, as mentioned in
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Subsection 2.3.1, and the embeddings are chosen to minimize the Hausdorff
distance, among all such embeddings [47].

The Pearson Correlation Distance. A distance measure on ℜd com-
monly used for biological sequences is derived from the Pearson corre-
lation: For point x = (x1, . . . , xd) ∈ ℜd, let η :=

∑

i xi/d, and x′ :=
(x1 − η, x2 − η, . . . , xd − η), and finally x̂ := x′/‖x′‖2. That is, the coor-
dinates of x are normalized to have mean zero, and to have ‖x̂‖2 = 1, a
unit vector in the Euclidean norm. The Pearson correlation of x, y ∈ ℜd is
then the dot product x̂ · ŷ. The commonly-used derived distance measure
is 1 − x̂ · ŷ. While this measure does not satisfy the small self-distance or
triangle inequality conditions for a metric, note that

‖x̂ − ŷ‖2
2 = x̂ · x̂ + ŷ · ŷ − 2x̂ · ŷ = 2(1 − x̂ · ŷ).

That is, the square root of the commonly used measure is proportional
to the ordinary Euclidean distance between x̂ and ŷ. Therefore, only the
small self-distance condition fails for this variant, and metric space (even
Euclidean space) methods can be used.

2.3 Using Triangle Inequalities

2.3.1 Triangle Inequality Bounds

The properties of metric spaces allow some basic observations that can yield
significantly faster algorithms for nearest-neighbor searching. These follow
from the triangle inequality, which allows bounds on a distance we may
not have computed, say D(q, s), to be derived from two distances we may
already know, say D(q, p) and D(p, s). The following simple properties hold.

Lemma 2.1 For q, s, p ∈ U, any value r, and any P ⊂ U,

1. |D(p, q) − D(p, s)| ≤ D(q, s) ≤ D(q, p) + D(p, s);

2. D(q, s) ≥ DP (q, s) := maxp∈P |D(p, q) − D(p, s)|;

3. if D(p, s) > D(p, q) + r or D(p, s) < D(p, q) − r, then D(q, s) > r;

4. if D(p, s) ≥ 2D(p, q), then D(q, s) ≥ D(q, p).

Proof Applying the triangle inequality in the three possible ways,

D(q, s) ≤ D(q, p) + D(p, s)

D(p, s) ≤ D(p, q) + D(q, s)

D(q, p) ≤ D(q, s) + D(s, p)

The first of these is the upper bound for D(q, s) in (1), and the other two
imply the lower bound of (1). Claim (2) follows from (1), the two parts of
Claim (3) follow from the last two inequalities, respectively, and Claim (4)
follows from Claim (3) with r = D(p, q).
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The value DP (q, s), that is a lower bound for D(q, s), is used in the AESA
algorithm, as discussed below( 2.3.2.2).

If sites in U are represented by the vector of their distances to P ,
then DP (q, s) is the ℓ∞ (coordinate-wise maximum) distance between the
representatives of q and s. Because DP (q, s) ≤ D(q, s), the mapping from
the original (U, D) to (ℜ|P |, D∞) is said to be contractive; such contractive
mappings can be helpful in distance range searching: if the problem is
mapped to the vector representation, then the answer to a query corresponds
to a superset of the answer in the original space [49].

Moreover, DP (q, s) ≤ D(q, s) is an equality if both q and s are in P . That
is, the sites s ∈ P can be represented by the vector of their distances to
P , and the ℓ∞ (coordinate-wise maximum) distance between those vectors
is the original distance. This shows that any finite space of m sites can
be embedded in the ℓ∞ space of dimension m. This embedding is due to
Kuratowski [47, 54].

2.3.2 Orchard’s Algorithm, AESA, Metric Trees

The above bounds from the triangle inequality give a way to avoid comput-
ing the distance from a query point q to many of the sites, by giving bounds
on their distance that allow the sites to be ruled out as nearest.

2.3.2.1 Orchard’s Algorithm

For example, consider the following simple scheme. For each site p, create
a list of sites in increasing order of distance to p.

To find the closest site to a query point q, pick some site c as an initial
candidate for the nearest site. Compute D(c, q), and walk along the list
for c, computing distances to the sites on the list. If some site s is closer
to q than c, set c := s. Now repeat the same procedure, using the new
c and its list, and so on. Suppose some such list is traversed to a site s
with D(c, s) > 2D(c, q). Then by Lemma 2.1(4), c is the closest site: any
remaining site on the list for c must be farther from q than c is. (Here c
takes the role of p in the lemma.)

This algorithm, due to Orchard[77], is simple and fast[101], particularly
in high dimension (U is ℜ64, for example). However, it needs Ω(n2) prepro-
cessing, making it inappropriate for large databases. Even worse, it needs
Ω(n2) storage. For many applications this is fatal. However, for the target
application of vector quantization, the preprocessing and storage costs can
be acceptable.

Orchard’s algorithm is an instance of a “traversal” method, and so can be
accelerated using the skip list technique, as discussed in Subsection 2.5.2.3.

One refinement for Orchard’s algorithm is to ensure that the distance from
q to any given site is computed only once per query; one way to do this is
to keep a mark bit for each site, which is initially zero for all sites. When
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the distance to a site is computed, the mark bit is set to one, and the site is
entered in a linked list. When a site is considered for distance computation,
if the mark bit is set to one, the site can be ignored: it cannot be closer than
the current site. After a query, the linked list is walked, and the mark bits
are set to zero for sites on the list. Such a scheme allows the mark bits to be
maintained in a time proportional to the number of distance evaluations.

The Annulus Method. To ease the storage burden, a different scheme is
to keep only one of the sorted lists for Orchard’s algorithm, proceeding as
follows. For some site p∗, build a list of the other sites and their distances
to p∗, sorted by increasing distance. As in Orchard’s algorithm, maintain
a candidate closest site c. To find sites closer to q than c, walk on the list
for p∗ from the position of c, alternately in each direction, and compute
distances. As in Orchard’s algorithm, if a site s is found that is closer
to q than c, set c := s and continue. If a site s on the lower side has
D(p∗, s) < D(p∗, q) − D(c, q), then no further sites on the lower side need
be considered, by Lemma 2.1(3). (Here the r of the lemma is D(c, q),
and the p of the lemma is p∗.) Similarly, if a site on the higher side has
D(p∗, s) > D(p∗, q)+D(c, q), then no further sites on the higher side need be
considered. If both conditions hold, then the current candidate c is closest.

Orchard’s method, the annulus method, and other methods are discussed
and tested in [101].

2.3.2.2 AESA

The Approximating and Eliminating Search Algorithm, or AESA [94, 95],
applies the bounds of Lemma 2.1 in a more thorough way than Orchard’s
algorithm or the annulus method, and like Orchard’s method, uses Ω(n2)
preprocessing and storage. The AESA algorithm precomputes and stores
distances D(x, y) for all x, y ∈ S, and uses the lower bound function DP

defined in Lemma 2.1. When AESA answers a query for point q, every site
x ∈ S is in one of three states:

– Known, so that D(x, q) has been computed; the Known sites form a set P ;

– Unknown, so that only a lower bound DP (x, q) is available;

– Rejected, so that DP (x, q) is larger than the distance of the closest Known
site.

The algorithm starts with all sites x Unknown, with DP (x, q) = ∞, and
repeats the following steps until all sites are Rejected or Known:

1. pick the Unknown site x with the smallest DP (x, q);

2. compute D(x, q), so that x becomes Known;

3. update the smallest distance r known to q;

4. set P := P ∪ {x}, and for all Unknown x′, update DP (x′, q); make x′

Rejected if DP (x′, q) > r.
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Based on its definition,

DP∪{x}(x
′, q) = max{DP (x′, q), |D(x, q) − D(x, x′)|},

so it is easy to maintain its value as sites are added to P .
There will be a need to break ties in the picking step 1, as at the beginning,

when all sites have DP (x, q) = ∞. This might be done at random.
While this scheme is simple and answers queries quickly, the quadratic

preprocessing and storage limit its applicability. The Linear Approximating
and Eliminating Search Algorithm, or LAESA [73], reduces these needs by
precomputing and storing the distances from all sites to only a subset V
of the sites, called pivots. The algorithm proceeds as in AESA, but only
applies the update step 4 when x ∈ V . The algorithm therefore picks the
pivots preferentially in step 1.

The LAESA algorithm works best when the pivots are well separated
[73]; similar observations motivate many algorithms, as discussed in Sub-
section 2.5.2.2, to use ǫ-nets (defined in the next section) in a way similar
to pivot sets.

While AESA makes very thorough use of bounds that are implied by
the triangle inequality, perhaps the ultimate in that direction is the work
of Shasha and Wang[84], whose algorithm considers a matrix of upper and
lower bounds on the distances among points in S∪{q}, and finds the closure
of the bounds implied by the distance evaluations. The set of evaluated
distances gives a semimetric, or nonnegatively weighted undirected graph.
The triangle inequality gives an upper bound on the distance between two
sites by way of the shortest path in the graph, and a lower bound by way
of such upper bounds and evaluated distances.

2.3.2.3 Metric Trees

While the storage needs of the data structures of the last section are
considerable, those of metric trees are quite modest. A metric tree T (S)
can be built as follows: if |S| = 1, the tree has one node; otherwise,

1. pick a ball B, with a site as center;

2. recursively construct T (S ∩ B) and T (S \ B);

3. make these two trees the children of the root;

4. store a description of B at the root, including its center site.

Each node of a metric tree thus corresponds to the intersection of the balls
and ball-complements stored at its ancestors in the tree. When answering
a query for point q, the tree is traversed and distances to the ball centers
of nodes are computed. As the traversal progresses, the minimum of the
computed distances gives an upper bound on the nearest-neighbor distance,
and thus the radius of a ball Bq centered at q. When a node in the tree is
visited, the regions of the two children of the node are considered; if Bq can
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be proven not to meet the region of a child, based on the ball data in the
path to the root, then the child need not be visited. Otherwise, the child
is visited. (Here Lemma 2.1(3) gives a means for such a proof, using the
current upper bound on the nearest-neighbor distance as r.) The cost of
answering a query is proportional to the number of nodes explored.

In the seventies, McNutt(as discussed by Knuth [60]) proposed a data
structure similar to metric trees, where children of a node are T (S∩B) and
T (S \B′), and B′ is a ball with the same center, but slightly smaller radius
than B. Thus some sites might be stored in both subtrees. This overlap
makes for a data structure that needs more space, but allows some queries
to be answered with less backtracking, that is, without needing to explore
both children.

Burkhard and Keller [15] proposed a multibranch version for discrete-
valued metrics. Metric trees, in many variations, were also invented by
Omohundro [76], by Uhlmann[91], and by Yianilos[99], and they have a large
literature. For further discussion of them, prior surveys can be consulted
[50, 17].

2.4 Dimensions

While it is easy to construct or encounter metric spaces for which brute-
force search is the fastest possible, it is still useful to consider situations in
which something faster can be done. Moreover, it may be that the properties
of the space that make it desirable to do nearest-neighbor search also make
it possible to do the search quickly.

One such property is that of bounded dimension of the metric space,
for a wide variety of definitions of the term dimension. Such a definition
gives a way of assigning a real number to a metric space; all the definitions
we consider coincide (assign the same number) for “simple” sets. So the
dimension of ℜd, or an open subset of it, is d for any of these definitions,
and the dimension of a d-manifold in ℜd′ will always be d, regardless of
how big d′ is. That is, the dimensions are generally “intrinsic,” and rely on
properties of the given metric space itself, not on any space in which the
given space happens to reside.

In physics and statistics, there has long been interest in the use of
nearest-neighbor searching for the purpose of estimating the dimension of
a space. The correlation integral and correlation dimension were mentioned
in Subsection 2.1.3 above. The k-NN problem is intimately related to the
information dimension, as discussed below. The correlation and information
dimensions are both instances of the generalized, or Rènyi, dimension
spectrum; here there is a numerical parameter v so that dimv Z is a
measure of dimension, where the information dimension corresponds to
v = 1, and the correlation dimension corresponds to v = 2. The Rènyi
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spectrum is much-studied in the area of chaotic, multifractal systems, such
as turbulence, the web, network traffic [33], and Bayesian belief networks
[43].

Another dimension value on the Rènyi spectrum can be computed by
way of minimum spanning trees, or other extremal geometric graphs, as
discussed in Section 2.5.

This section will survey some of these concepts of dimension, and the
relations among them. Only a glimpse will really be given here; as mentioned
earlier, for a more thorough understanding the survey by Cutler is helpful
[24].

2.4.1 Dimensions of Metric Spaces

To discuss the many concepts of dimension, the notions of coverings and
packings are crucial. These concepts will also appear in algorithms, as
discussed in 2.5.2 below.

Coverings and packings. We will consider bounded metric spaces Z =
(U, D), so that there is some r with D(x, y) < r for all x, y ∈ U. Given
ǫ > 0, an ǫ-cover (by balls) of Z is a set Y ⊂ U with the property that for
every x ∈ U, there is some y ∈ Y with D(x, y) < ǫ. Put another way, let

B(y, ǫ) := {x ∈ U | D(x, y) < ǫ}.

Then Y is an ǫ-cover if and only if U = ∪y∈Y B(y, ǫ). Put still another way,
Y is an ǫ-cover of U if and only if the Hausdorff distance (cf. 2.2.1) of U

to Y is less than ǫ.
The covering number C(U, ǫ) is the size of the smallest ǫ-covering of U.

(Here the dependence of the covering number on the distance function D
is implicit.) For example, if U is the unit square in the plane, the covering
number is Θ(1/ǫ2) as ǫ → 0, since a disk of radius ǫ can cover only an area
proportional to ǫ2. In general, the covering number of a unit hypercube in
ℜd is Θ(1/ǫd), for similar reasons.

The quantity log2 C(U, ǫ) is called the ǫ-entropy or metric entropy, a
function of ǫ. This measures the number of bits needed to identify an
element of the space, up to distortion ǫ. Referring to Subsection 2.1.3,
the elements of the cover could constitute a codebook for an n-quantizer
with n = C(U, ǫ). Such a quantizer would need log2 n bits to transmit an
approximation to a member x ∈ U, such that the worst-case (not expected)
distortion D(x, f(x)) is no more than ǫ.

A subset Y ⊂ U is an ǫ-packing if and only if D(x, y) > 2ǫ for every
x, y ∈ Y . That is, the set of balls {B(y, ǫ) | y ∈ Y } are disjoint.

The packing number P(U, ǫ) is the size of the largest ǫ-packing. The
packing number is closely related to the covering number, as shown in the
following lemma.
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Lemma 2.2 [61] For given ǫ > 0 and metric space (U, D), if P(U, ǫ) and
C(U, ǫ) are finite, then

P(U, ǫ) ≤ C(U, ǫ) ≤ P(U, ǫ/2).

Proof A maximal (ǫ/2)-packing P has the property that no point s ∈ U

has D(s, P ) > ǫ; otherwise such a site could be added to P . That is, a
maximal (ǫ/2)-packing P is an ǫ-cover, and so the smallest ǫ-cover can be
no larger.

On the other hand, for a given ǫ-cover Y , and ǫ-packing P , every point in
P must be in B(y, ǫ) for some y ∈ Y . However, no two p, p′ ∈ P can be in the
same such ball: then D(p, p′) < 2ǫ by the triangle inequality, contradicting
the assumption that P is an ǫ-packing. So every ǫ-packing is no larger than
any ǫ-cover.

Nets and the Greedy Algorithm. The close relation of packing and
covering is illuminated by the fundamental concept of ǫ-nets. A set Y ⊂ U

is an ǫ-net of (U, D) if it is both an ǫ-cover and an (ǫ/2)-packing.
An ǫ-net can be constructed by the following greedy algorithm, whose

input is ǫ ≥ 0 and maximum allowed size k, as well as the metric space
(U, D). The algorithm: pick s ∈ U arbitrarily, and set Y := {s}. Repeat the
following: pick an s ∈ U that maximizes D(s, Y ) = min{D(s, y) | y ∈ Y }.
If D(s, Y ) < ǫ or |Y | ≥ k, stop. Otherwise, set Y := Y ∪ {s}, and continue.

The returned Y is an ǫ′-cover for some ǫ′, with ǫ′ < ǫ if k is large enough.
Let the ith site added to Y be denoted si, and let Yi denote the set Y before
si is added. Since the sequence D(si, Yi), for i = 2 . . . , |Y |, is nonincreasing,
every member of Y is at least ǫ′ from every other member, and so Y is
an (ǫ′/2)-packing, and hence an ǫ′-net. Since Y is an (ǫ′/2)-packing, by
the Lemma above, any (ǫ′/2)-cover must have at least |Y | members. If this
greedy algorithm is run with input ǫ = 0, then the output Y will have size k,
and any (ǫ′/2)-cover must have at least k members; that is, the algorithm
gives a cover distance ǫ′ no more than twice the best possible for k sites:
it is an approximation algorithm for the k-center problem, of finding the k
points whose maximum distance to any point in U is minimized. Gonzalez
[39], and, independently, Hochbaum and Shmoys [51], showed that this is
the best possible approximation factor for a polynomial-time algorithm on
a general metric space, unless P = NP .

As mentioned, this algorithm has been used in building nearest-neighbor
data structures [13, 97, 22, 44]. It has also been used in computational
chemistry[96], where it is one version of the Bawden-Lajiness algorithm.

Box Dimension. The box dimension dimB(Z) of Z = (U, D) can be
defined as follows: it is the d such that the covering number satisfies

C(U, ǫ) = 1/ǫd+o(1) (2.2)

as ǫ → 0, if such a d exists. That is, the covering (and packing) numbers
depend roughly polynomially on the scale of measurement ǫ, and dimB(Z)
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is the limiting degree of that polynomial. The above condition on d is often
expressed as

d = lim
ǫ→0

log C(U, ǫ)

log(1/ǫ)
.

The box dimension need not be an integer; sets with nonintegral dimen-
sion are often called fractals. A set can also have zero measure but be fully
dimensioned; for example, space-filling curves in the plane have box dimen-
sion two, but area zero. The rational numbers have box dimension one,
but length zero. (This last property is generally viewed, mathematically,
as “bad” in that for other dimensions, the dimension of a countable union
∪iUi is no more than supi dim Ui, so the rationals “should” have dimension
zero. This can be patched up, resulting in the modified box dimension, which
turns out to be equal to the packing dimension.)

Another view of the box dimension is that it is the critical value for the
box t-content C(U, ǫ)ǫt. That is, suppose each ball in the cover has volume
proportional to at most ǫt, as would be true in ℜt. Then the box t-content
is a rough overestimate of the volume of U, since it is the sum of volumes
of a small collection of sets whose union contains U. Suppose the covering
number is 1/ǫd+o(1); then the t-content is ǫt−d+o(1), as ǫ → 0, which goes to
0 for t > d, and ∞ for t < d. That is, d is the supremum of the t for which
the t-content is infinite, or the infinum of the t for which the t-content is
zero.

Hausdorff and Packing Dimensions. A similar relationship holds for
some other concepts of dimension: the dimension is the critical value for a
t-content function. For example, generalizing on ǫ-covers slightly, suppose we
call a collection E of balls an ǫ-cover when U ⊂ ∪B∈EB, and diam(B) ≤ ǫ for
all B ∈ E, where diam(B) := supx,y∈B D(x, y). Now consider the t-content

inf{
∑

B∈E
diam(B)t | E an ǫ-cover of U}.

This is a Hausdorff t-measure, and the corresponding critical value is the
Hausdorff dimension dimH Z. (Really, this is the Hausdorff ball t-measure,
as discussed below.) Note that a cover E could contain many more balls
than C(Z, ǫ), but balls smaller than ǫ count less in the sum.

A similar construction as for Hausdorff measure, but with covers E
replaced with packings, and the infinum replaced with a supremum, leads to
the packing t-measure, and the packing dimension[90, 88]. (The Hausdorff
and packing t-measures are better behaved mathematically than the box
t-content, since they are outer measures, hence the different names.)

Variations. There are many variations of these constructions; for example,
the limit may not always exist, so lim sup or lim inf are used instead,
leading to upper or lower versions of these dimensions, respectively. These
are denoted as dimH(Z) for the upper Hausdorff dimension, and dimH(Z)
for the lower Hausdorff dimension, and similarly for other dimensions. The
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Hausdorff dimension, and other dimensions, exist if and only if the upper
and lower versions are equal.

The Hausdorff measure is usually defined with the covers E allowed to
include arbitrary subsets; this changes the t-measure by some factor, but
not the basic dependence on ǫ, and so the dimension is the same. In ℜd,
the covering or packing can be done with, for example, boxes for all three
versions of dimension, and similarly the measures change by a factor but
the dimension remains the same.

Furthermore, it is not necessary to consider boxes of all possible sizes and
shapes. For Z = (U, D) with U ⊂ ℜd, and D an ℓp distance, an equivalent
definition of box dimension can be made using quadtrees (also known as
hyperoctrees, dyadic cubes, or Besicovitch nets), as follows: put the set U

in a cube; divide the cube into 2d equal-sized subcubes, divide those into
equal sized cubes, and so on, so that at the kth step, there are 2kd equal-
sized cubes. Let B2−k(U) denote the minimum number of such cubes at step
k needed to contain U. Then the upper box dimension dim Z is the d′ such
that B2−k(U) = 2kd′+o(k) as k → ∞. The occupied cubes in this description
correspond to the nodes of a quadtree data structure for U.

Assouad dimension, a.k.a. Uniform Metric Dimension, Doubling

Constant. The Assouad dimension dimA(Z), for space Z = (U, D) is re-
lated to the box dimension, but satisfies a stronger, more uniform condition:
it is the value d, if it exists, such that

sup
x∈U,r>0

C(B(x, r), ǫr) = 1/ǫd+o(1) (2.3)

as ǫ → 0 [66, 5].
So dimA(Z) is at least as large as the box dimension of any ball from the

space. This dimension is bounded if and only if Z = (U, D) is a doubling
space, meaning that there is a constant C so that that any ball B(x, 2r) is
contained in the union of at most 2C balls of radius r; that is, any 2r-ball
has an r-cover. Sometimes C itself is termed the doubling dimension, and
2C the doubling constant. Let doubA(Z) denote this version of the doubling
dimension. The numbers are related by dimA(Z) ≤ doubA(Z); in fact we
can say that the cover size in (2.3) above is bounded by O(1/ǫdoubA(Z)).

From the close relation of packings and coverings, another way to express
the doubling condition is that no ball B(x, r) contains an (r/2)-packing
with more than 2C members.

Coping with Finiteness. If U is finite, then (U, D) has dimension zero
for any of these dimensions except doubA Z, since C(Z, ǫ) ≤ n for any ǫ.
However, the box dimension can be estimated by considering the covering
number as a function of ǫ, over some range of ǫ values, and fitting log C(Z, ǫ)
to log ǫ within that range. Moreover, if S ⊂ U, then dim S ≤ dim U for
any of these dimensions, and doubA S ≤ doubA U, that is, a bound on the
dimension of U gives a bound on the dimension of its subsets.
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2.4.2 Dimensions of Metric Measure Spaces

Another category of dimensions applies to metric measure spaces (U, d, μ),
where a set U is equipped with both a metric D and a measure μ. (We
will assume that μ(U) = 1, so μ defines a probability distribution, and the
measure of a set is the probability mass that it contains.)

Recall that a measure μ is a nonnegatively valued function on subsets of
U, with at least the following properties: the empty set φ has μ(φ) = 0; if
A ⊂ B, then μ(A) ≤ μ(B); and μ(∪iAi) ≤

∑

i μ(Ai), for A1, A2, · · · ⊂ U.
The metric spaces that are input for nearest-neighbors problems are of

course finite, and a given finite set has measure zero for many measures
of interest. However, the counting measure μc can be used, for which
μc(A) = |A|, the number of elements of A. A common input of interest
is a random sample from μ, with the sites independently generated with
distribution μ. Moreover, often we consider such sets of independently
identically distributed sites S = {x1, x2, . . . , xn} as n → ∞. Since the
empirical measure μS(A) := μc(A ∩ S)/n satisfies

lim
n→∞

μS(A) = μ(A)

with probability one, for any given A ⊂ U, various properties of μ can be
estimated using S. Also, some properties of metric measure spaces can be
defined also for finite spaces, for example, the doubling measure property.

Doubling Measure. A metric measure space Z = (U, D, μ) with a
doubling measure[47] is one for which there is a number doubM(Z) such
that μ(B(x, 2r)) ≤ μ(B(x, r))2doubM (Z) for all x and r. Such a space is also
called a growth-restricted metric[58] or Federer measure or a diametrically
regular measure [32]. The definition is sometimes relaxed, so that only balls
B(x, r) with μ(B(x, r)) sufficiently large need satisfy the doubling condition.

For such a space there is a smallest number dimD(Z) such that

sup
x∈U,r>0

μ(B(x, r))/μ(B(x, ǫr)) = 1/ǫdimD(Z)+o(1),

as ǫ → 0. (cf. (2.3).) It is not hard to show that doubA(Z) ≤ 4 doubM(Z)[64]
and that dimA(Z) ≤ dimD(Z).

If the inputs to a nearest-neighbor searching problem are such that (S ∪
{q}, D, μc) is a doubling measure, then several provably good data structures
exist for searching S, as discussed below ( 2.5.2). Note that it is not the case
that any subset of a growth-restricted space is growth-restricted. However,
this relation can hold approximately for random subsets.

Rènyi Spectrum and Dimensions. For a metric measure space (U, D, μ),
and a value ǫ ≥ 0, define μǫ by μǫ(x) = μ(B(x, ǫ)), and for a value v, let

‖μǫ‖v :=

[
∫

U

μv
ǫdμ

]1/v

=

[
∫

U

μ(B(y, ǫ))vdμ(y)

]1/v

.
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That is, μǫ is a “smoothed” version of μ, and ‖μǫ‖v is its Lv norm with
respect to μ. For integral v ≥ 1, it is not too hard to see that for
random points X1 . . .Xv+1 with distribution μ, ‖μǫ‖v

v is the probability
that X2 . . .Xv+1 are all within distance ǫ of X1. So ‖μǫ‖v

v is the probability
distribution (as a function of ǫ) for the vth nearest-neighbor distance of
v + 1 points.

In particular, ‖μǫ‖1 is the probability that X1 and X2 are within distance
ǫ of each other. Since this is a kind of spatial correlation, ‖μǫ‖1 is also known
as the correlation integral. For S a random sample with distribution μ, the
correlation integral can be estimated by the number of pairs of sites in S
at distance less than ǫ, divided by

(

n
2

)

. The expectation of this estimate
is ‖μǫ‖1.

The generalized Rènyi dimension dimv(μ) is the value d, if it exists, such
that

‖μǫ‖v−1 = ǫd+o(1),

as ǫ → 0. The Rènyi entropy of order v is log‖μǫ‖v−1, and so the Rènyi
dimension is the limit of the ratio of the Rènyi entropy to log ǫ, as ǫ → 0
[81, 24].

The Rènyi dimension can be defined even for v = 1, by considering the
limiting value of ‖μǫ‖v as v → 0. If the limit exists, the result is equal to the
information dimension of μ, which will be denoted as dim1(μ), and equal
to the d such that

∫

U

μǫ(y) log(μǫ(y))dμ(y) = ǫd+o(1), (2.4)

as ǫ → 0.
The family of values dimv(μ), for v ∈ ℜ, is called the Rènyi spectrum.
Pointwise Dimension, fμ(α). The information dimension is closely related

to the pointwise dimension αμ(x) for x ∈ U, also known as the local
dimension or Hölder exponent. It is defined as the d, if it exists, such that

μ(B(x, ǫ)) = ǫd+o(1),

as ǫ → 0. That is,

αμ(x) = lim
ǫ→0

log μ(B(x, ǫ))

log ǫ
, (2.5)

with a lower version αμ(x) defined using lim inf instead of lim, and similarly
an upper version. The definition of information dimension suggests that
dim1(μ) = E[αμ(x))], taking the expectation with respect to μ, and indeed
for bounded measures the equality holds, under some general conditions
[24].

The pointwise dimension is also related to the Hausdorff and packing
dimensions of μ: the upper Hausdorff dimension dimH(μ) is the infinum of
the Hausdorff dimensions of all subsets of U with measure 1, that is,

dimH(μ) := inf{dimH A | A ⊂ U, μ(A) = 1}.



36 Nearest-Neighbor Searching and Metric Space Dimensions

(Recalling here our assumption that μ is a probability distribution, so
μ(U) = 1.) The packing dimension of a measure can be defined analogously.
The upper Hausdorff dimension can also be expressed in terms of the
pointwise dimension:

dimH(μ) = inf{β | αμ(x) ≤ β, almost all x}

So the upper Hausdorff dimension is an upper bound for the pointwise
dimension of all points, except for a set of measure zero. (See Edgar
[29],3.3.14.) The lower Hausdorff dimension, and upper and lower packing
dimensions, also can be expressed as bounds for the pointwise dimension.

Some spaces are exact-dimensional, meaning that all points have the same
pointwise dimension, except for a set of measure zero. For (U, D, μ), let
fμ(α) denote the Hausdorff dimension of the subset of U comprising those
points with pointwise dimension α. (Sometimes the box dimension is used
instead here.) For exact-dimensional spaces, fμ(α) is zero for all but one
value of α, but other spaces have a more elaborate structure under this
multifractal analysis. Moreover, the values of fμ(α) can be computed from
the Rènyi spectrum, using the Legendre transform.

Box-Counting Versions. Just as with the dimensions of metric spaces,
for subsets of ℜd these dimensions are also readily defined in a box-counting,
or “quadtree” form: the level i cubes of the quadtree are those cubes of size
2−i that have nonzero measure. Then the value

∑

c level i μ(c)v is within a
constant factor of ‖μ2−i‖v−1

v−1, and yields the same dimension value. (The
difference in exponents, that is, v vs. v− 1, is due to the implicit additional
factor of μ(x) in the integral defining ‖μǫ‖v.)

In this formulation, the set function for the information dimension be-
comes

∑

c at level i

μ(c) logμ(c),

an estimate of the Shannon information, while the set function for the
correlation dimension is

∑

c at level i

μ(c)2,

and dim0(Z) is seen to equal the box dimension of the support of μ.
Again, a given finite or countable metric space (S, D, μ) will have dimen-

sion zero, according to the above definitions, but under the assumption that
S is i.i.d. with distribution μ, the empirical measure using S gives a way of
estimating the dimension of μ. The quadtree cells of interest for estimating
the information dimension are those that contain at least one site, and the
estimator for the information dimension set function becomes

∑

c at level i

μS(c) log μS(c).
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We would like to use the limit, as ǫ → 0, of the limit of this function as n →
∞, but instead the value for given ǫ = 2−i is estimated using “sufficiently
large” n. (Using such estimates for a range of ǫ scales leads to a dimension
estimate via line-fitting, as mentioned for metric space dimension.) It is the
complication of relating ǫ and n that has led to consideration of nearest-
neighbor-based estimators, where the scale of measurement is set by the
sample size n itself.

Relations Among the Dimensions. As noted above, there are some
basic inequalities among these notions of dimension. If dimT (Z) denotes
the topological dimension, we have

dimT (Z) ≤ dimH(Z) ≤ dim0(Z) = dimB(Z) ≤ dimA(Z) ≤ dimD(Z),

when the given values exist. The inequalities can be strict. Also for metric
measure space Z, dimq(Z) < dimq′(Z) if q > q′, so in particular dim2(Z) ≤
dim1(Z) ≤ dim0(Z).

Some of these inequalities are clear intuitively. The Assouad dimension is
roughly a uniform, homogeneous, worst-case version of the box dimension,
so it is not surprising that dimB(Z) ≤ dimA(Z). The box dimension is
based on a t-content that is a restricted form of that for the Hausdorff
measure, so dimH(Z) ≤ dimB(Z) is intuitively clear. The existence of a
doubling measure implies the existence of a doubling constant, implying
dimA(Z) ≤ dimD(Z).

2.4.3 Quantization and Energy Dimensions

For completeness, we note yet two more concepts of dimension for mea-
sures. Each is equal to the box dimension in a limiting case. The quanti-
zation dimension is related to the ability to apply the procedure of vector
quantization. Let X denote a random variable in U, with distribution μ.
As discussed in 2.1.3, an n-quantizer for μ is a function f on U that takes
a point X to one of at most n points in U. Also Fn is the set of all such
n-quantizer functions, and the nth quantization error for U of order v is

Vn,v(μ) := inf
f∈Fn

ED(X, f(X))v, (2.6)

the cheapest expected cost of representing X by f(X), where the cost is
the vth power of the distance of X to f(X). The quantization dimension of
order v of Z = (U, D, μ) is

dimQ(Z) := lim
n→∞

−v
log n

log Vn,v(μ)
,

that is,
Vn,v(μ) = n−v/ dimQ(Z)+o(1) (2.7)

as n → ∞.
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The quantization dimension can also be defined for v = ∞, and with
“upper” and “lower” versions, and these are equal to the upper and lower
box dimension of the support of μ.

Graf and Luschgy [40] discuss the quantization dimension in detail.
The energy dimension is defined as follows. The Riesz t-energy of a

measure is

It(μ) :=

∫ ∫

1

D(x, y)t
dμ(x)dμ(y),

and the energy dimension is sup{t | It(μ) < ∞}.
This energy is related to the pointwise dimension: for given x, it can be

shown [72] that
∫

1

D(x, y)t
dμ(y) = t

∫ ∞

0

r−t−1μ(B(x, r))dr.

If μ(U) is bounded, and the upper pointwise dimension is bounded every-
where by some v > t, that is, for all x ∈ U, μ(B(x, r)) = O(rv), then It(μ)
is bounded.

A discrete version of the energy is, for S = {x1 . . . xn} with distribution
μ,

It(S) =
1

n2

∑

i�=j

1

D(xi, xj)t
.

Minimizing this energy is a way to produce “well-distributed” points [46].
Note that for large t, the small distances will dominate, and a minimizer
will be approximately a packing. The results of Hardin and Saff [46] imply
that the minimum energy It(S) for n points in a d-manifold contained in
ℜd′ is

nt/d−1+o(1) (2.8)

as n → ∞, for t > d.

2.5 Dimensions and Nearest-Neighbor Searching

2.5.1 Dimension Estimation

Dimension measures and nearest-neighbor searching are related in both
directions: the computation of some dimensional measures can be done using
nearest-neighbor searching, and spaces with bounded dimension can have
faster nearest-neighbor searching data structures, both theoretically and
empirically.

Nearest-neighbor Searching for Dimension Estimation. In the former
direction, we have already seen that the correlation integral can be estimated
using a fixed-radius all-sites query. Historically, the quadtree-based view
was proposed first, and the distance-based version was proposed as a more
accurate empirical estimator [41].
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For a given set of sample points, the quadtree estimate is easier to compute
than the correlation integral, and so Belussi and Faloutsos[10] use the
quadtree estimator in the context of database spatial joins. One kind of
spatial join is the set of pairs of sites within distance ǫ of each other, for
some given ǫ. That is, its size is exactly the distance-based estimate of the
correlation integral, times

(

n
2

)

. Belussi and Faloutsos propose the quadtree
estimator (together with a line fit) to help estimate the answer size for
spatial joins.

Pointwise Dimension. So far, estimators based on quadtrees and fixed-
radius queries have been considered; a class of estimators even more directly
related to nearest-neighbor search are those based on k-NN search. For
example, Cutler and Dawson [25] showed that the pointwise dimension (2.5),
related to the information dimension, has the kth nearest-neighbor distance
as an estimator:

αμ(x) = lim
n→∞

log(k/n)

log δk:n(x)
, (2.9)

with probability 1, where n is the sample size and δk:n(x) is the distance of
x to its kth nearest neighbor in the sample. In other words,

δ1:n(x) = n−1/αµ(x)+o(1) (2.10)

as n → ∞. Similar observations were made by Pettis et al. [65], Verveer
and Duin [93], and van de Water and Schram [92]. A derivation of a similar
estimator via maximum likelihood was given by Levina and Bickel [67].

Heuristically, (2.9) can be understood by considering ǫk such that the
ball B(x, ǫk) has probability mass μ(B(x, ǫk)) = k/n. The expected number
of points in the sample falling in B(x, ǫk) is k, and so δk:n(x) ≈ ǫk, and
therefore

k/n = μ(B(x, ǫk)) ≈ ǫ
αµ(x)
k ≈ δk:n(x)αµ(x),

using the definition of pointwise dimension, and (2.9) follows after taking
logarithms and dividing. This relation to pointwise dimension suggests that
nearest-neighbor distances might be helpful in estimating other related
dimensional measures, such as the information, energy, and even Hausdorff
dimension.

A paper of Tao et al. [89], related to that of Belussi and Faloutsos [10],
uses estimates of the pointwise dimension for nearest-neighbor query cost
and size estimation; given (S, D), the pointwise dimension for each site
in a sample P ⊂ S is estimated, and then for a given query point, the
pointwise dimension estimate for a nearby sample site is used. The pointwise
dimension estimate is done with the counting measure, and is called a local
power law.

A worst-case bound on the pointwise dimension of a graph metric is used
by Gao and Zhang [38] in the context of routing. In view of the relation of
the Hausdorff and pointwise dimensions, perhaps their bound is a kind of
graph Hausdorff dimension.
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Extremal Graphs as Dimensional Estimators. In the setting of Eu-
clidean manifolds, Costa and Hero [23] propose the use as dimension es-
timators of the minimum spanning tree, matching, k-NN graph, or other
extremal graphs. Suppose G is such a graph for a set of n sites indepen-
dently, identically distributed on a d-manifold. For v with 0 < v < d, let

L(G, v) :=
∑

e an edge of G

ℓ(e)v,

an edge length power sum of G. Costa and Hero use the fact, going back to
the celebrated results of Beardwood et al. [9], that

L(G, v)/n = n−v/d+o(1)

as n → ∞, for the extremal graphs just mentioned, and others. (cf. (2.7),
(2.8), (2.10)) Yukich’s monograph [100] surveys results in this setting.)
This allows the topological dimension d of a manifold to be estimated as a
function of L(G, v) and n, so for example,

d = lim
n→∞

log(1/n)

log(L(G, 1)/n)

with probability one.
This expression matches (2.9) for the case of the 1-nearest-neighbor graph

in a d-manifold, since L(G, 1)/n is the mean nearest-neighbor distance in the
graph, and all points in the manifold have pointwise dimension d. Moreover,
algorithms to find the extremal graphs involve nearest-neighbor queries.
These estimators also provide their own scaling: there is no ǫ to go to zero,
as in the definitions of the dimensions, but rather the scale of measurement
1/n is a consequence of the nearest-neighbor relations involved.

Kozma et al.[63] have shown a somewhat similar relation between the
minimum spanning tree and the upper box dimension: for a bounded metric
space (U, D), let the minimum spanning tree dimension be the infinum of
the values t such that there is some δ with L(T (S), t) ≤ δ for all S ⊂ U,
where T (S) is the minimum spanning tree of S. That is, supS⊂U L(T (S), t)
is a t-content of U, and this minimum spanning tree dimension is its critical
value. Kozma et al. show that this dimension is equal to the upper box
dimension of (U, D). They do this by way of a series of packings implicitly
constructed in the course of building a minimum spanning tree.

A further, heuristic, relation with box dimension: if we change the greedy
ǫ-net algorithm of Subsection 2.4.1 only “slightly,” to take at each step
the point whose minimum distance is smallest, instead of largest, then the
minimum spanning tree results by connecting each newly added point to its
nearest neighbor in the current set.

Kégl[59] proposes using an upper bound on the packing number and a
simple form of line-fitting as an estimate of the box dimension, although
not using the greedy ǫ-net algorithm discussed in Subsection 2.4.1.
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2.5.2 Constant Dimension and Nearest-Neighbors Search

2.5.2.1 Basic Properties, Spread

Some basic properties of metric spaces Z = (S, D) with bounded Assouad
dimension, that is, constant doubling dimension, are useful in nearest
neighbor searching. Recall that for Z with constant doubling dimension,
there is a value d = doubA(Z) so that any ball of radius r has an (rǫ)-
cover of size at most O(1/ǫd), as ǫ → 0. As shown below, this implies a
reverse nearest-neighbor condition: every site s ∈ S is nearest neighbor to
O(2O(d) log ∆(S)) sites, where ∆(S) is the ratio of the distance between the
farthest pair of sites to the distance between the closest pair of sites.

Before that nearest-neighbor condition is shown, a brief digression on
the ratio ∆(S): it is known variously as the distance ratio, aspect ratio,
and spread, where the last seems to be most common. Algorithms for
nearest-neighbor searching problems that depend on the spread have been
known for some time: for example, algorithms for the all-nearest-neighbors
or all-k-NN in ℜd that take O(n log ∆(S)) time[18, 37]. Less anciently,
combinatorial properties of point sets in ℜd with very low spread have also
been described[28, 30], and bounds have been given for classical clustering
algorithms in terms of the spread [45]. Note also that the spread gives
a bound to the exponent of Subsection 2.2.1 related to the “repair” of a
distance measure for the triangle inequality.

Although it is not as elegant to include a dependence on the spread in a
bound, often that dependence is only on the logarithm of the spread. Making
an algorithm more complicated to remove such dependence is unlikely to be
worth the trouble in practice.

Here is the reverse nearest-neighbor condition mentioned. It holds not just
for nearest neighbors, but in the more general setting of “kth (γ)-nearest”
neighbors. A site a is kth (γ)-nearest to a site b, with respect to S, if there
are at most k − 1 sites in S whose distance to b is within a factor of γ of
the distance of the nearest to b in S \ {b}.

Lemma 2.3 For a metric space Z = (S, D) with doubling dimension d =
dimA(Z), and any site s ∈ S, the number of sites s′ ∈ S for which s is k-th
(γ)-near in S to s′ is O((2γ)dk log ∆(S)), as 1/γ → 0.

Proof First consider k = 1, that is, (γ)-near neighbors, and a ball B(s, 2r)
for some r > 0. As discussed in 2.4.1, there is an (r/γ)-cover of B(s, 2r) of
size O((2r/(r/γ))d) = O((2γ)d). Therefore any site s′ with r < D(s, s′) ≤ 2r
has some site in the (r/γ)-cover that is closer to s′ than D(s, s′) by a factor
of at least r/(r/γ) = γ, and the number of sites s′ with r < D(s, s′) ≤ 2r
that have s (γ)-near is O((2γ)d).
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If p is the closest point in S to s, at distance r′, then consideration
of r = 2r′, 4r′, 8r′, . . ., shows that at most log ∆(S) values of r need be
considered, each contributing at most O((2γ)d) sites with s (γ)-near in S.

For k = 2, all sites of the covers in the above construction are removed
from S; this leaves a metric space with fewer sites but the same doubling
constant. New covers can be constructed using the remaining sites, showing
that there two sites that are closer to a given site s′ than D(s, s′)/γ.

For k > 2, build such nets k times.

Doubling Constant Spaces vs. Euclidean. For Euclidean spaces, there
is a sharper form of the above bound, as applied to kth nearest neighbors:
for S ⊂ ℜd, a site is kth nearest to at most k2O(d) other sites. It is not clear
if this condition alone makes searching in Euclidean spaces much easier.

Another condition satisfied by subsets of Euclidean spaces is that for any
site s and query q, if s is nearest neighbor to q, then it is possible to prove
this using the Delaunay neighbors of s. (Sites a and b are Delaunay neighbors
if there is some ball with a and b on its boundary sphere, and no sites in
its interior.) If s is closer to q than any Delaunay neighbor of s is to q,
then s is closest to q in S. A site may have many Delaunay neighbors, even
in the plane, but for random sites under many probability distributions, a
site may have O(1) expected Delaunay neighbors. If the nearest neighbor
to the query can be “guessed,” then in such cases its status can be proven
in constant expected time. Any similar condition for metric spaces seems to
include a dependence on the spread.

Note that conversely, if s is not nearest to q, then one of its Delaunay
neighbors is closer, suggesting a walk from Delaunay neighbor to Delaunay
neighbor toward q; analogs of such an approach are discussed in Subsec-
tion 2.5.2.3.

2.5.2.2 Divide and Conquer

We next consider applying a divide-and-conquer approach to building a data
structure and answering a query. Under some conditions, it is possible to
split the searching problem into subproblems: the set of sites S is expressed
as the union of sets S1, S2, . . ., so that for any query point q, the nearest in
S to q is in one of the sets Si, and there is an efficient test to verify that
condition. A natural tree data structure T (S) could be found in this setting
by recursively finding T (Si) for all Si, and making each of these a child of
the root of the tree. The search algorithm is then: apply this “effective test”
to choose Si, and then recursively search T (Si).

Such a data structure is appealing, in that it requires no “back-tracking,”
that is, it is a tree structure for which the search proceeds from the root,
along a single path, to a leaf.
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Key properties of such an approach are a bound on maxi |Si|, and on the
total

∑

i |Si|. The former determines the number of levels in the data struc-
ture, and the latter is needed to determine the size of the data structure.

One example of such a scheme is an algorithm by Clarkson for the
Euclidean case [19].

In the examples below, the divide-and-conquer scheme is based on finding
the nearest neighbor to q in a subset P ⊂ S. To motivate such approaches,
we return to some basic considerations regarding nearest-neighbor search.

Bounds Using the Nearest in a Subset. The task of nearest-neighbor
searching can be viewed as having two parts: finding the nearest neighbor,
and proving that all other sites are not the nearest neighbor. Moreover,
any nearest-neighbor algorithm, at any given time while processing a query,
has computed the distance from the query point q to some subset P of the
sites. So the algorithm needs to use the distance evaluations from q to P to
prove that some sites cannot be the answer to the query. What is the most
effective way to do this?

Looking at Lemma 2.1(1), to show that s ∈ S \P is far from q, given that
the distance from some p ∈ P to q is known, the lower bound of

|D(p, q) − D(p, s)|

for D(q, s) can be used. It is hard to tell, considering different members p
of P , which p would maximize this expression. However, to maximize the
difference of the two distances in the expression, one might try to make one
distance or the other as small as possible. The p ∈ P that minimizes D(p, q)
is of course the nearest in P to q, while the p ∈ P that minimizes D(p, s) is
the nearest in P to s. So if some p ∈ P is close to q and far from s, or close
to s and far from q, then it gives a proof that s cannot be close to q.

These considerations suggest that one major piece of information for a
query point q is the closest site in P . Next we will consider how such
information can be used, together with the doubling constant and doubling
measure conditions, to suggest some data structures for nearest-neighbor
searching that have provable properties. These data structures will be
inefficient in their resource bounds, but will illustrate the relations involved.

In each of the three examples below, a subset P of S of size m will be
found, together with a ball Bp for each p ∈ P . (Bp is typically, but not
always, centered at p.) These will have the property that for query point q,
if p is nearest to q in P , then up to some conditions, the nearest neighbor
to q in S is contained in Bp. Moreover, some progress will be made by this,
either because Bp is small, or there are not too many sites in it. The three
cases considered are:

– The space has a doubling constant, P is an ǫ-net, and either q is far
enough away from p that p itself is approximately nearest, or Bp contains
the nearest to q in S. Each ball Bp is smaller by a constant factor than a
ball containing S.
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– The space is an (empirical) doubling measure, P is a random subset, and
Bp contains the nearest to q in S with very high probability. Moreover, Bp

contains O(n(log n)/m) sites.

– The space has a doubling constant and the queries are exchangeable with
the sites. Here P is a random subset, and Bp contains the nearest to q in
S with controllably high probability 1− 1/K, for given K. Moreover, Bp is
expected to contain O((Kn/m) log2 ∆(S)) sites.

A direct approach for using these constructions is, again, to apply them
recursively: to build T (S), find the subset P and balls Bp for each p ∈ P ,
then recursively build T (S ∩ Bp) for each p ∈ P . To search for the nearest
neighbor in S to query point q, find p ∈ P closest to q, then recursively
search T (S ∩ Bp).

The first approach we consider uses ǫ-nets, which were defined in Subsec-
tion 2.4.1.

Divide and Conquer: Doubling Constant Spaces. Consider a metric
space Z = (U, D) with bounded doubling dimension d = doubA(Z), input
sites S ⊂ U, and the problem of building a data structure for approximate
nearest-neighbor search. Suppose we scale the distance measure so that the
sites fit in a ball of radius one, and suppose the subset P is a δ2-net, for a
parameter δ > 0. That means, in particular, that any site in S is within δ2

of a site in P . Moreover, the doubling dimension condition means that there
is a limit on how many sites are in a δ2-net, namely, O(1/δ2d). Now suppose
a query point q has p as nearest neighbor in P , and a as nearest neighbor
in S, and also the nearest neighbor of a in P is pa ∈ P . Then D(a, pa) ≤ δ2,
and so

D(q, p) ≤ D(q, pa) ≤ D(q, a) + D(a, pa) ≤ D(q, a) + δ2.

That is, if D(q, a) > δ, then p is (1 + δ)-near to q in S. Otherwise, with
D(q, a) ≤ δ, we have

D(p, a) ≤ D(p, q) + D(q, a) ≤ 2δ + δ2 ≤ 3δ, (2.11)

for δ < 1. At the cost of searching the sites of P , we have confined the
answer to the query to a ball Bp := B(p, 3δ), unless p itself is an acceptable
answer. Suppose we recursively build a data structure, for each p ∈ P , for
S ∩ B(p, 3δ), with δ < 1/6. Then at depth t in such a data structure, the
sites are in a ball of radius 1/2t.

The building of such a data structure must stop when there is only one
site in the current set S. Thus the depth of this data structure, and the cost
of searching it for a nearest neighbor, is proportional to log ∆(S). The data
structure sketched above can answer an approximate nearest neighbor query
in time O(2O(d) log ∆(S)), if δ and so m = |P | = O(1/δ2d) are constants.

Divide and Conquer: Doubling Measure Spaces. Consider now a metric
space (U, D) for which the empirical measure μC is doubling for S ⊂ U and
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q ∈ U. Recall from Subsection 2.4.2 that such a space has the property that
|S ∩ B(x, r)| ≥ |S ∩ B(x, 2r)|/2C for a value C, for all x ∈ S ∪ {q} and
r > 0.

Hereafter, we may abbreviate |S ∩ B(x, r)| as |B(x, r)|.
Fix a query point q, and let P be a random subset of S, obtained by

choosing each site of S independently, with probability m/n, for a parameter
m. The expected size of P is m. For p ∈ P , consider ǫp chosen so that
|B(p, ǫp)| = Kn(log n)/m, where n := |S| and the values of K and m are to
be determined. For p ∈ P , suppose D(q, p) ≤ ǫp/2, and p is nearest to q in
P . Then the nearest site to q in S is contained in B(p, ǫp), by Lemma 2.1(4).
On the other hand, if β := D(q, p) > ǫp/2, then

|B(q, β)| ≥ |B(q, 3β)|/4C ≥ |B(p, ǫp)|/4C ≥ Kn(log n)/m4C .

where the second inequality follows from B(p, ǫp) ⊂ B(q, 3β), which follows,
for x ∈ B(p, ǫp), from

D(q, x) ≤ D(q, p) + D(p, x) ≤ β + ǫp ≤ 3β.

The probability that p is nearest to q in P is no more than the probability
that B(q, β) has no points of P , which is no more than

(1 − m/n)Kn(log n)/m4C

≤ e−K(log n)/4C

= 1/nK/4C

.

If K/4C > 10, for example, then q will have p nearest in P with probability
no more than 1/n10.

We have the following lemma.

Lemma 2.4 Suppose (U, D) is a metric space, S ⊂ U, and q ∈ U, such
that there is some constant C for which

|S ∩ B(x, r)| ≥ |S ∩ B(x, 2r)|/2C

for all x ∈ S ∪ {q} and r. Suppose P is a random subset of S, where p ∈ S
is chosen independently for P with probability m/n. Then with probability
at least 1 − 1/nK/4C

, the nearest neighbor to q in S will be contained in a
subset of S of size Kn(log n)/m.

If m := 10K log n, that size is n/10, so if a data structure is built for each
subset recursively, the depth will be log n. Choosing K := 10(log n)4C then
means that the probability that any step in a search for a given q will fail
is no more than about 1/n9.

Divide and Conquer: Exchangeable Queries. We have seen that for
metric spaces with a doubling constant, it is possible to build a data
structure for approximate nearest-neighbor searching, and for doubling
measure spaces, it is possible to build a data structure for exact searching.
While the schemes given above are crude, the best data structures known for
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metric spaces under these conditions have a similar behavior: approximate
for doubling constant, exact for doubling measure. This is dissatisfying,
because the doubling measure condition seems very fragile. The doubling
constant condition is more robust, but approximation algorithms have the
difficulty that for some metric spaces, and some applications, they may
have poor precision: for points uniformly distributed in high dimension,
every site is not much more distant, relatively speaking, than the nearest
site. An approximation algorithm might return any site at all.

A better goal, then, would be a data structure for exact queries that is
provably good for doubling constant spaces. Unfortunately, no such data
structure is known, so it is worth asking for additional conditions under
which provably good data structures can be built.

One such condition is known: when the queries have the same distribution
as the sites, that is, they are exchangeable. The assumption here is of some
random generator of sites and queries, such that the following is true: for a
presented query point q, the sets P ∪{q} and P ′ have the same distribution,
when P and P ′ are random subsets of S, and P has one less site than P ′.
This would hold, for example, when the sites and queries are independently,
identically distributed random variables, or if the sites and queries were
chosen at random from some large discrete set. Such conditions roughly
hold, for example, for vector quantization, where the sites are specifically
chosen to be representative of the distribution of the queries.

This condition, together with constant doubling dimension, imply some
useful bounds. In particular, a divide-and-conquer construction analogous
to those previously given is as follows: pick a random subset P ⊂ S of size
m, then pick a random subset P̂ ⊂ S of size Km, where K and m will be
determined. For each p ∈ P , consider the site qp ∈ P̂ that has p nearest in
P , but is farthest away among all such sites in P̂ . We will show that the ball
Bp := B(qp, 3D(p, qp)) is likely to contain the answer site, for exchangeable
query points q with p nearest in P . We will also show that there are not too
many sites expected in Bp.

Lemma 2.5 Under the conditions just above, for s ∈ P̂ with p nearest to s
in P and a nearest to s in S, it holds that D(a, qp) ≤ 3D(p, qp).

Proof Since qp is farther from p than s, D(s, a) ≤ D(s, p) ≤ D(qp, p), and
so

D(qp, a) ≤ D(qp, p) + D(p, s) + D(s, a) ≤ 3D(p, qp),

using the triangle inequality and assumptions.

Lemma 2.6 Under the conditions of the previous lemma, if q is an ex-
changeable query point with p nearest in P , then with probability 1 − 1/K,
the nearest neighbor to q in S is contained in B(qp, 3D(p, qp)).
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Proof If D(q, p) ≤ D(qp, p), the previous lemma shows that the nearest
neighbor of q in S is contained in B(qp, 3D(p, qp)), as desired. So the
construction fails only if D(q, p) > D(qp, p), that is, if q is the point in
Pq := {q} ∪ P̂ that is farthest from p, among all points in Pq that have p
nearest in P ; that is q is the “qp” of Pq. There are m such points in Pq, and
since q is exchangeable, the probability that it is chosen to be one of those
m points is m/(Km + 1) < 1/K. The lemma follows.

So the probability is at least 1− 1/K that the nearest neighbor to q is in
Bp := B(qp, 3D(qp, p)), that is, is a (3)-near neighbor of qp. The next lemma
bounds the expected number of such (3)-near neighbors.

Lemma 2.7 For P ⊂ S a random subset of size m, P̂ ⊂ S a random subset
of size Km, and q an exchangeable query, there are an expected

2O(d)O(Kn/m) log2 ∆(S)

sites x such that: there is some q′ in P̂ with x a (3)-near site with respect
to P , and some p ∈ P that is nearest in P to q and q′.

We really only need to bound the expected number of sites x in such a
configuration with q′ = qp. It seems easier, however, to bound the number
with a weaker condition on q′. The set of such sites x, for a given p ∈ P ,
contains B(qp, 3D(qp, p)) ∩ S.

Proof Let P ′ be any subset of S with m+ 2 sites. Consider any x ∈ S \P ′.
The number of sites q̂′ ∈ P ′ with x (3)-near in P ′ is at most 2O(d) log ∆(S),
from Lemma 2.3. (Here we apply the lemma to P ′ ∪ {x} with γ = 3, and
use the fact that the spread of that set is no more than ∆(S).) Let p ∈ P ′

be the nearest to q̂′ in P ′. The number of sites q̂ ∈ P ′ with p as nearest or
second nearest is 2O(d) log ∆(S). (It is possible that q̂′ is nearest to q̂ in P ′,
and we want to be able to discount that, so second nearest p is considered.)

That is, at most 2O(d) log2 ∆(S) configurations of sites q̂′, p, and q̂ in P ′

satisfy the conditions:

1. q̂′ has x (3)-nearest in P ′,

2. q̂′ has p nearest in P ′, and

3. q̂ has p nearest or second nearest in P ′.

Consider now an exchangeable query q, and q′ a random member of P̂ .
We have that q and q′ are random members of P ∪ {q, q′}. Therefore the
probability there are also p ∈ P ′ and x ∈ S \ P ′ such that q, q′, p, and
x satisfy conditions 1-3, with q in the role of q̂ and q′ in the role of q̂′,
is the number of such configurations divided by (m + 1)(m + 2), namely
(2O(d) log2 ∆(S))/(m+2)(m+1). The result follows by multiplying by Km,
to account for averaging over the members of P̂ by picking random q′ ∈ P̂ ,
and also multiplying by n − m, to account for all choices of x.
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Nearly-Linear Data Structures. The above claims were not proposed in
the literature exactly as given, since their direct application to divide and
conquer does not result in the most efficient data structures. However, the ǫ-
net scheme roughly follows the ideas of Krauthgamer and Lee[64], while the
empirical doubling measure (growth-restricted) scheme follows ideas of an
earlier paper by Karger and Ruhl[58]. Finally, the “exchangeable queries”
model follows a still earlier paper [21].

The problem with applying the direct approach, as described in Subsec-
tion 2.5.2.2, is that the sizes of the subproblems are too big: ideally, the
sum of the subproblem sizes |Bp ∩ S|, over p ∈ P , would be n, but it can
be much larger than that. As a result, the resulting data structures, if built
with small P , use superlinear storage.

However, for the two approaches described above that employ a random
subset, it is possible to use a sample size αn, where α is a fixed fraction;
applying this approach recursively to P , the resulting data structure needs
storage close to linear in n, although exponential in the doubling dimension.
The M(S, Q) algorithm of [21] uses a scheme like this.

Applying this approach to the divide-and-conquer scheme for doubling
measure would yield, in the course of construction, a sequence of nested
random subsets,

S = P0 ⊃ P1 ⊃ P2 ⊃ . . . ⊃ Ph, (2.12)

where |Pi| ≈ αin, and h ≈ log1/α n. Each Pi is a random subset of Pi−1, for
i > 0, and a random subset of S.

Another way to build nested random subsets is via random permu-
tations: if p1, p2, . . . , pn is a random permutation of S, then any prefix
{p1, p2, . . . , pm} is a random subset. Random permutations, and subsets,
can be built one site at a time, picking pm+1 as a random element of
S \ {p1, p2, . . . , pm}.

A roughly analogous idea for the ǫ-net scheme would be to use the ǫ-net
P to divide and conquer, not the searching problem in S, but instead the
searching problem for a larger ǫ-net P ′ (that is, one with smaller ǫ). There is
a nested sequence of subsets as in (2.12) above, but (assuming S is in a ball
of radius 1/2), each Pi is (1/2h−i)-net, and h ≈ ∆(S). This is roughly the
approach taken by Krauthgamer and Lee[64], with additional refinements;
they obtain also dynamic data structures that support insertion and deletion
of sites.

The ǫ-net divide-and-conquer approach can also use a permutation: the
one that arises from the greedy ǫ-net construction procedure described in
Subsection 2.4.1. This permutation is used in [22] and [44].

2.5.2.3 Traversal Data Structures and Skip Lists

Four ways of generating a nested sequence of subsets of the sites were just
described, two for the random approaches, and two for the ǫ-net approaches.
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The first way could also be described as follows: each site is given a level
number i ≥ 0, and the level is chosen independently for each site, where the
probability that level i is assigned is 1/2i+1. Starting at the highest level,
the search algorithm finds the closest site at level i, and then must consider
a small number of sites to determine the closest site at level i− 1 or higher,
repeating until the closest site at level 0 is found.

This description shows that the data structure is similar to a skip list[80],
which is a way to accelerate searching in a linear list of ordered values; such
searching is the one-dimensional version of nearest-neighbor searching.

The skip list approach can be applied to a broader set of methods for
nearest-neighbor searching, which could be characterized as graph-searching
or traversal methods.

Orchard’s method (see Subsection 2.3.2.1) is an example: recall that
for Orchard’s method, each site s has a corresponding list Ls, sorted by
increasing distance from s. The search algorithm maintains a candidate
closest site c, and repeats the following steps:

1. walk down Lc, until a site c′ closer to q than c is found, or the distance
of the list entry to c exceeds 2d(c, q);

2. if no such site is found, return c as nearest; otherwise c := c′.

In Subsection 2.5.2, a way of searching in Euclidean spaces was described,
using Delaunay neighbors: each site s has a list Ns of its Delaunay neighbors.
For every point q and site s, recall that either some Delaunay neighbor site
s′ ∈ Ns is closer to q than s, or else s is the closest site. That is, the
same traversal procedure as in Orchard’s algorithm can be applied to the
Delaunay neighbor lists, in the Euclidean case.

While the Delaunay method can be very expensive, because the total
number of Delaunay neighbors can be large, in the Euclidean case there are
some traversal approximation algorithms. Given ǫ > 0, Arya and Mount[4]
found an easily computed list Ls of size independent of the number of sites,
such that for any q, if s is closer to q than any member of Ls, then s is
(1 + ǫ)-near to q in s. This yields a traversal approximation algorithm. In
this setting, it is possible to find a list with the same properties as described
for Arya and Mount, and whose size is within a provably small factor of the
smallest possible for such a list[20].

In the metric-space setting, Navarro [75] proposed a heuristic data struc-
ture with a similar but somewhat more complicated searching method. His
construction is very similar to one of those of Arya and Mount.

Even when the sizes of the lists Ls are small, it may be that the query
time is large, because the path from the starting site to the answer must
hop over many sites. However, the skip list technique can be applied to
accelerate any traversal method; it was first applied in the nearest-neighbor
setting by Arya and Mount. It was expressed above in terms of a nested
sequence of random subsets, but it could also be described as follows: assign
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the sites to levels probabilistically, as above, and for a site s at level i, build
the search lists Ls,j with respect to Pj, for each j ≤ i. (As before, Pj is the
set of sites at level j or lower.) Starting at some site at the highest level
h, perform the traversal procedure using lists Ls,h, until the nearest site at
level h is found, then use the level h−1 lists, and so on, until the nearest at
level 0 is found. In some cases the same effect can be achieved as follows: for
s at level i, concatenate its lists Ls,i, Ls,i−1, . . . , Ls,0, and search this grand
concatenated list using the basic traversal method. This might be called a
skip-list-accelerated traversal method.

Although it was not derived in the same way, the M(S, Q) data structure
of [21] behaves something like such a data structure: the data structure
comprises, for each site, a list of sites, the searching method is the traversal
above, and the search is provably fast. However, the nested sequence of
subsets was generated using a random permutation.

Note that Orchard’s algorithm might be accelerated in this way, and in
the doubling measure setting, each list Ls for Orchard’s method need not
include all the sites, by an analysis similar to that for the divide-and-conquer
construction.

2.5.2.4 Voronoi Grouping

The storage requirements of data structures are often their critical lim-
itation, and for nearest-neighbor searching that limitation is particularly
acute. Even with storage that is O(n), as in some of the data structures
cited above, a dependence in the storage on the doubling constant, or other
large constant, makes the data structures unsuitable for many applications.

One way to make a data structure that uses less space is to give up on
pure divide and conquer. In the examples above, the condition that p is
nearest to the query q in P constitutes a certificate that the nearest site a
to q in S is contained in Bp, up to the various additional caveats given. One
less “greedy” approach is the following: view each p ∈ P as the “leader” of
a “group” of sites, those sites in S for which p is nearest in P . The set of
points that has a given site closest is called its Voronoi region, and so this
approach might be called Voronoi grouping.

A key value associated with a leader p ∈ P is its covering radius rp, the
distance to the farthest site in its group. Thus each leader p ∈ P has an
associated ball B(p, rp) that contains all the sites in its group, although
not all sites in B(p, rp) are in the group led by p. However, if at some
point the nearest distance to a query q is bounded above by some δ, and
D(q, p) > δ + rp, then none of the sites led by p can be nearest. So the
covering radius gives a way of ruling out groups, even if it does not give a
way to “rule them in,” as in divide and conquer.

An early proposal for Voronoi grouping, called “bisector trees”[57] had
|P | = 2; that is, the sites would be split according to which of two sites was
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closer, and child subtrees built for each set. To search the tree, the closest
site currently known is maintained, and a subtree need not be searched if
its sites can be ruled out using the covering radius, as above.

(A very early proposal by Fukunaga and Narendra [35] for nearest-
neighbor searching uses Voronoi grouping with a large branching factor,
that is, |P | is large. Their method does not apply to general metric spaces.)

Another data structure that uses Voronoi grouping is GNAT[13], where
|P | is typically a large constant, and one proposed way to choose P is
find an ǫ-net of a random sample. There are no proven results about its
performance, however.

We turn now to sketching data structures related to those for which
provable bounds have been found. Here the approach is generally something
like that for divide and conquer: when answering a query, a sequence of
larger and larger subsets is considered, and for each subset, the sites that
cannot be ruled out as the leaders of the answer a are maintained.

To apply this idea to the ǫ-net approach, consider the nested sequence
of ǫi-nets Pi described above, with ǫi := 1/2h−i, for ǫ-net divide and
conquer. (Recall that D has been scaled to have maximum value 1.) For
each p ∈ Pi, suppose its leader in Pi+1, the closest p′ ∈ Pi+1, has been
found in preprocessing, and stored. A way to answer a query is to find,
for i = h, h − 1, . . . , 0, the set Qi containing all sites in Pi that are at a
distance from the query point q no more than D(q, Pi) + 2ǫi. Let Qh := Ph,
the coarsest net. Suppose inductively that Qi ⊂ Pi satisfies the distance
condition. Then Qi−1 can be found from Qi, because if p′ ∈ Pi is the leader
of a site p ∈ Pi−1 with

D(q, p) ≤ D(q, Pi−1) + 2ǫi−1 ≤ D(q, Pi) + ǫi,

then the distance of q to p′ is at most

D(q, p′) ≤ D(q, p) + D(p′, p) ≤ D(q, Pi) + 2ǫi,

and so p′ ∈ Qi.
This is roughly the technique of Beygelzimer et al. [11], who prove resource

bounds for it in the doubling measure model.
The following lemma gives a slightly different way of applying this idea.

Lemma 2.8 For query point q, and P ⊂ S, suppose p′ ∈ P is nearest to q
in P , and a ∈ S \P is nearest to q in S. If p ∈ P is nearest to a in P , then

D(a, p) ≤ D(a, p′) ≤ 2D(q, p′),

and
D(q, p) ≤ 3D(q, p′),

and
D(p, p′) ≤ 4D(q, p′).
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So any leader in P of a is a (3)-near neighbor of q in P .

Proof We have

D(a, p) ≤ D(a, p′) ≤ D(a, q) + D(q, p′) ≤ 2D(q, p′),

using the triangle inequality and the assumptions. So

D(q, p) ≤ D(q, a) + D(a, p) ≤ D(q, p′) + 2D(q, p′) = 3D(q, p′).

Finally, D(p, p′) ≤ D(q, p′) + D(q, p) ≤ 4D(q, p′).

This lemma was used by Hildrum et al. [48] to prove bounds for a
randomized data structure along generally similar lines: an increasing nested
sequence of random subsets Ph ⊂ Ph−1 ⊂ ... ⊂ P0 = S is considered,
generated with the skip-list technique; each p ∈ Pi has a link to its leader
in Pi+1; to answer a query, a subset Qi is maintained such that Qi contains
the (3)-near neighbors of q in Pi.

The same lemma was used in a previous paper for doubling constant
spaces in the exchangeable queries model[21], to obtain a provably efficient
data structure, and it also figures in an algorithm for approximate distance
oracles [8].

Recently Har-Peled and Mendel [44] have shown, among many other
things, that the greedy permutation can be computed using the Voronoi
grouping approach, with a near-linear time bound for constant doubling di-
mension spaces. Clarkson [22] proposed and implemented a roughly similar
algorithm, but without analysis. These algorithms proceed site by site, for
j = 1 . . . n, processing a site pj and making it a leader. Each leader, that
is, each site in Pj := {p1, . . . , pj}, has maintained for it the set of sites in
S for which it is nearest in Pj . Such a set for each pi is maintained in a
heap, ordered by distance to pi, with the largest distance on top. The top
of each such heap is itself kept in a heap, so that the site p ∈ S \ Pj for
which D(p, Pj) is largest can found, and chosen to be pj+1. When pj+1 is
processed, a key operation is to find the set of sites that it leads, those
for which it is closest in Pj+1. In other words, a reverse nearest-neighbor
query is done for pj+1. Such queries can be answered quickly, using some
information acquired while building Pj.

2.6 Concluding Remarks

The problem of nearest-neighbor searching and various concepts of metric
space dimension have been seen to be related in a variety of interesting
ways.

A few obvious questions arise: Does constant doubling dimension allow
a data structure for exact queries, without the exchangeability condition?
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Can efficiency be proven for algorithms under weaker dimensional conditions
than doubling measure or doubling constant? Can extremal graphs be used
to estimate metric measure space dimensions in a broader setting than
Euclidean d-manifolds?
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3 Locality-Sensitive Hashing Using

Stable Distributions

Alexandr Andoni, Mayur Datar, Nicole Immorlica,
Piotr Indyk, and Vahab Mirrokni

In this chapter, we introduce and analyze a novel locality-sensitive hashing
family. The family is defined for the case where the distances are measured
according to the ls norm, for any s ∈ [0, 2]. The hash functions are
particularly simple for the case s = 2, i.e., the Euclidean norm. The
new family provides an efficient solution to the (approximate or exact)
randomized near-neighbor problem. Part of this work appeared earlier in [5].

3.1 The Locality-Sensitive Hashing Scheme Based on s-Stable Distributions

3.1.1 s-Stable Distributions

Stable distributions [10] are defined as limits of normalized sums of inde-
pendent identically distributed variables (an alternative definition follows).
The best-known example of a stable distribution is the Gaussian (or nor-
mal) distribution. However, the class is much wider; for example, it includes
heavy-tailed distributions.

Definition 3.1 A distribution D over ℜ is called s-stable if there exists p ≥
0 such that for any n real numbers v1 . . . vn and i.i.d. variables X1 . . .Xn with
distribution D, the random variable

∑

i viXi has the same distribution as
the variable (

∑

i |vi|p)1/pX, where X is a random variable with distribution
D.

It is known [10] that stable distributions exist for any p ∈ (0, 2]. In
particular:

– a Cauchy distribution DC , defined by the density function c(x) = 1
π

1
1+x2 ,

is 1-stable;

– a Gaussian (normal) distribution DG, defined by the density function
g(x) = 1√

2π
e−x2/2, is 2-stable.
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We note from a practical point of view, despite the lack of closed form
density and distribution functions, it is known [4] that one can generate
s-stable random variables essentially from two independent variables dis-
tributed uniformly over [0, 1].

Stable distributions have found numerous applications in various fields
(see the survey [8] for more details). In computer science, stable distributions
were used for “sketching” of high-dimensional vectors by Indyk ([6]) and
since have found use in various applications. The main property of s-stable
distributions mentioned in the definition above directly translates into a
sketching technique for high-dimensional vectors. The idea is to generate a
random vector a of dimension d whose each entry is chosen independently
from an s-stable distribution. Given a vector v of dimension d, the dot
product a · v is a random variable which is distributed as (

∑

i |vi|
s)1/sX

(i.e., ||v||sX), where X is a random variable with s-stable distribution. A
small collection of such dot products (a.v), corresponding to different a’s,
is termed the sketch of the vector v and can be used to estimate ||v||s (see
[6] for details). It is easy to see that such a sketch is linearly composable,
i.e., for any p, q ∈ ℜd, a · (p − q) = a · p − a · q.

3.1.2 Hash Family Based on s-Stable Distributions

We use s-stable distributions in the following manner. Instead of using the
dot products (a · v) to estimate the ls norm we use them to assign a hash
value to each vector v. Intuitively, the hash function family should be locality
sensitive; i.e., if two points (p, q) are close (small ||p−q||s), then they should
collide (hash to the same value) with high probability and if they are far
they should collide with small probability. The dot product a · v projects
each vector to the real line. It follows from s-stability that for two vectors
(p, q) the distance between their projections (a · p − a · q) is distributed as
||p−q||sX where X is an s-stable distribution. If we “chop” the real line into
equiwidth segments of appropriate size w and assign hash values to vectors
based on which segment they project onto, then it is intuitively clear that
this hash function will be locality-sensitive in the sense described above.

Formally, each hash function ha,b(v) : Rd → N maps a d-dimensional
vector v onto the set of integers. Each hash function in the family is indexed
by a choice of random a and b where a is, as before, a d-dimensional vector
with entries chosen independently from an s-stable distribution and b is a
real number chosen uniformly from the range [0, w]. For a fixed a, b the hash
function ha,b is given by ha,b(v) = ⌊a·v+b

w
⌋

3.1.2.1 Collision Probability

We compute the probability that two vectors p, q collide under a hash
function drawn uniformly at random from this family. Let fs(t) denote
the probability density function of the absolute value of the s-stable
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distribution. We may drop the subscript s whenever it is clear from the
context.

For the two vectors p, q, let u = ||p−q||s and let p(u) denote the probability
(as a function of u) that p, q collide for a hash function uniformly chosen
from the family H described above. For a random vector a whose entries
are drawn from an s-stable distribution, a · p − a · q is distributed as cX
where X is a random variable drawn from an s-stable distribution. Since b
is drawn uniformly from [0, w] it is easy to see that

p(u) = Pra,b[ha,b(p) = ha,b(q)] =

∫ w

0

1

u
fs(

t

u
)(1 −

t

w
)dt

For a fixed parameter w the probability of collision decreases monoton-
ically with u = ||p − q||s. Thus, as per the definition, the family of hash
functions above is (R, cR, P1, P2)-sensitive for P1 = p(1) and P2 = p(c).

3.2 Approximate Near Neighbor

In what follows we will bound the ratio ρ = ln 1/P1

ln 1/P2
, which as discussed

earlier is critical to the performance when this hash family is used to solve
the c-approximate near-neighbor problem.

Note that we have not specified the parameter w, for it depends on the
value of c and s. For every c we would like to choose a finite w that makes
ρ as small as possible.

We focus on the cases of s = 1, 2. In these cases the ratio ρ can be
explicitly evaluated. We compute and plot this ratio and compare it with
1/c. Note that 1/c is the best (smallest) known exponent for n in the space
requirement and query time that is achieved in [7] for these cases.

For s = 1, 2 we can compute the probabilities P1, P2, using the den-
sity functions mentioned before. A simple calculation shows that P2 =
2 tan−1(w/c)

π
− 1

π(w/c)
ln(1 + (w/c)2) for s = 1 (Cauchy) and P2 = 1 −

2norm(−w/c)− 2√
2πw/c

(1− e−(w2/2c2)) for s = 2 (Gaussian), where norm(·)

is the cumulative distribution function (cdf) for a random variable that is
distributed as N(0, 1). The value of P1 can be obtained by substituting
c = 1 in the formulas above.

For c values in the range [1, 10] (in increments of 0.05) we compute the
minimum value of ρ, ρ(c) = minw log(1/P1)/ log(1/P2), using Matlab. The
plot of c vs. ρ(c) is shown in fig. 3.1. The crucial observation for the case
s = 2 is that the curve corresponding to optimal ratio ρ (ρ(c)) lies strictly
below the curve 1/c. As mentioned earlier, this is a strict improvement over
the previous best known exponent 1/c from [7]. While we have computed
here ρ(c) for c in the range [1, 10], we believe that ρ(c) is strictly less than
1/c for all values of c.
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Figure 3.1 Optimal ρ vs. c.
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Figure 3.2 ρ vs. w.

For the case s = 1, we observe that the ρ(c) curve is very close to 1/c,
although it lies above it. The optimal ρ(c) was computed using Matlab
as mentioned before. The Matlab program has a limit on the number of
iterations it performs to compute the minimum of a function. We reached
this limit during the computations. If we compute the true minimum, then
we suspect that it will be very close to 1/c, possibly equal to 1/c, and that
this minimum might be reached at w = ∞.

If one were to implement our locality-sensitive hashing scheme, ideally
they would want to know the optimal value of w for every c. For s = 2, for
a given value of c, we can compute the value of w that gives the optimal
value of ρ(c). This can be done using programs like Matlab. However, we



Locality-Sensitive Hashing Using Stable Distributions 65

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

rh
o

c

r=1.5
r=3.5
r=10

1/c

(a) ρ vs c for l1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12 14 16 18 20

rh
o

c

r=1.5
r=3.5
r=10

1/c

(b) ρ vs c for l2

Figure 3.3 ρ vs c

observe that for a fixed c the value of ρ as a function of w is more or less
stable after a certain point (see fig. 3.2). Thus, we observe that ρ is not very
sensitive to w beyond a certain point and as long we choose w “sufficiently”
away from 0, the ρ value will be close to optimal. Note, however that we
should not choose w that is too large. As w increases, both P1 and P2 get
closer to 1. This increases the query time, since k increases as log1/P2

n.
We mention that for the l2 norm, the optimal value of w appears to be a

(finite) function of c.
We also plot ρ as a function of c for a few fixed w values (see fig. 3.3).

For s = 2, we observe that for moderate w values the ρ curve “beats” the
1/c curve over a large range of c that is of practical interest. For s = 1,
we observe that as w increases the ρ curve drops lower and gets closer and
closer to the 1/c curve.

3.3 Exact Near Neighbor

LSH can also be used to solve the randomized version of the exact near-
neighbor problem. To use it for the exact near neighbor, we use the “strategy
2” of the basic LSH scheme, and keep only the R-near neighbors of q. Thus,
the running time depends on the data set P. In particular, the running time
is slower for “bad” data sets, e.g., when for a query q, there are many points
from P clustered right outside the ball of radius R centered at q (i.e., when
there are many approximate near neighbors).
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3.3.1 Parameters k and L of the LSH Scheme

There are two steps for choosing the parameters k and L that are optimal
for a data set. First, we need to determine the bounds on k and L that
guarantee the correctness of the algorithm. Second, within those bounds,
we choose the values k and L that would achieve the best expected query
running time.

Next, we derive the bounds that need to be satisfied by k and L to
guarantee the correctness of the algorithm. We need to ensure that our
data structure reports an R-near neighbor with a probability of at least
1− δ. To analyze what condition this implies, consider a query point q and
an R-near neighbor p of q. Let P1 = p(R). Then, Prg∈G[g(q) = g(p)] ≥ P k

1 .
Thus, q and p fail to collide for all L functions gi with probability at most
(1−P k

1 )L. Requiring that the point q collides with p on some function gi is
equivalent to saying 1 − (1 − P k

1 )L ≥ 1 − δ, which implies that

L ≥
log 1/δ

− log(1 − P k
1 )

. (3.1)

Since we want to choose L as small as possible (for a fixed k), the best

value for L is L =
⌈

log 1/δ

− log(1−P k
1 )

⌉

.

Thus, one is free to choose only k since it is the only remaining degree of
freedom in choosing parameters k and L.

To understand better how the choice of k affects the query running time,
we decompose the running time into two terms, Tg and Tc. Tg is the time
necessary for computing L functions gi for the query point q as well as
for retrieving the buckets gi(q) from hash tables; the expression for Tg is
Tg = O(dkL).

The second term, Tc, represents the time for computing the distance to all
points encountered in the retrieved buckets; Tc is equal to O(d·#collisions),
where #collisions is the number of points encountered in the buckets
g1(q), . . . gL(q) for a query point q. The expected value of Tc is

E[Tc] = O(d · E[#collisions]) = O(dL ·
∑

p∈P
pk(‖q − p‖)). (3.2)

Intuitively, Tg increases as a function of k, while Tc decreases as a function
of k. The latter is due to the fact that higher values of k magnify the gap
between the collision probabilities of “close” and “far” points, which (for
proper values of L) decreases the probability of collision of far points. Thus,
typically there exists an optimal value of k that minimizes the sum Tg + Tc

(for a given query point q). Note that there might be different optimal k’s
for different query points, therefore the goal would be optimize the mean
query time for all query points.
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3.4 LSH in Practice: E2LSH

In this section we present a practitioner’s view on how to implement the
LSH scheme for solving the R-near-neighbor reporting problem in practice.
Specifically, we describe a concrete method for choosing the algorithm’s
parameters, as well as present some implementation details that both clarify
steps of the scheme and demonstrate how to optimize the scheme in practice.

The section is based on the package E2LSH (Exact Euclidean LSH),
version 0.1, which is our current implementation of the LSH scheme [1].
E2LSH solves the exact near-neighbor reporting problem.

Note that E2LSH uses a few addition optimizations to improve the search
performance, in addition to what is described below. Please refer to the
manual [1] for more information.

3.4.1 Data Structure Construction

Before constructing the data structure, E2LSH first computes the parame-
ters k, L as a function of the data set P, the radius R, and the probability
1 − δ as outlined in earlier sections. In what follows, we consider L as a
function of k, and the question remains only of how to choose k.

For choosing the value k, the algorithm experimentally estimates the times
Tg and Tc as a function of k. Remember that the time Tc is dependent on
the query point q, and, therefore, for estimating Tc we need to use a set S
of sample query points (the estimation of Tc is then the mean of the times
Tc for points from S). The sample set S is a set of several points chosen
at random from the query set. (The package also provides the option of
choosing S to be a subset of the data set P.)

Note that to estimate Tg and Tc precisely, we need to know the constants
hidden by the O(·) notation in the expressions for Tg and Tc. To compute
these constants, the implementation constructs a sample data structure and
runs several queries on that sample data structure, measuring the actual
times Tg and Tc. Note that Tg and Tc depend on k. Thus, k is chosen such
that Tg+T̃c is minimal (while the data structure space requirement is within
the memory bounds), where T̃c is the mean of the times Tc for all points in

the sample query set S: T̃c =
P

q∈S Tc(q)

|S| .
Once the parameters k, m, L are computed, the algorithm constructs the

data structure containing the points from P.

3.4.2 Bucket Hashing

Recall that the domain of each function gi is too large to store all possible
buckets explicitly, and only nonempty buckets are stored. To this end, for
each point p, the buckets g1(p), . . . gL(p) are hashed using the universal
hash functions. For each function gi, i = 1 . . . L, there is a hash table Hi
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containing the buckets {gi(p) | v ∈ P}. For this purpose, there are two
associated hash functions t1 : Z

k → {0, . . . , tableSize − 1} and t2 : Z
k →

{0, . . . , C}. The function t1 determines for an LSH bucket the index of the
point in the hash table. The second hash function identifies the buckets in
chains.

The collisions within each index in the hash table are resolved by chaining.
When storing a bucket gi(p) = (x1, . . . xk) in its chain, instead of storing the
entire vector (x1, . . . xk) for bucket identification, we store only t2(x1, . . . xk).
Thus, a bucket gi(p) = (x1, . . . xk) has only the following associated infor-
mation stored in its chain: the identifier t2(x1, . . . , xk), and the points in the
bucket, which are g−1

i (x1, . . . xk) ∩ P.
The reasons for using the second hash function t2 instead of storing

the value gi(p) = (x1, . . . xk) are twofold. First, by using a fingerprint
t2(x1, . . . xk), we decrease the amount of memory for bucket identification
from O(k) to O(1). Second, with the fingerprint it is faster to look up an
LSH bucket in the chain containing it. The domain of the function t2 is
chosen big enough to ensure with a high probability that any two different
buckets in the same chain have different t2 values.

All L hash tables use the same primary hash function t1 (used to dermine
the index in the hash table) and the same secondary hash function t2. These
two hash functions have the form

t1(a1, a2, . . . , ak) =
((

∑k
i=1 r′iai

)

mod P
)

mod tableSize,

t2(a1, a2, . . . , ak) =
(

∑k
i=1 r′′i ai

)

mod P,

where r′i and r′′i are random integers, tableSize is the size of the hash tables,
and P is a prime.

In the current implementation, tableSize = |P|, ai are represented by
32-bit integers, and the prime P is equal to 232 − 5. This value of the prime
allows fast hash function computation without using modulo operations.
Specifically, without loss of generality, consider computing t2(a1) for k = 1.
We have that

t2(a1) = (r′′1a1) mod
(

232 − 5
)

= (low [r′′1a1] + 5 · high [r′′1a1]) mod (232 − 5),

where low[r′′1a1] are the low-order 32 bits of r′′1a1 (a 64-bit number), and
high[r′′1a1] are the high-order 32 bits of r′′1a1. If we choose r′′i from the range
{1, . . . 229}, we will always have that α = low [r′′1a1] + 5 · high [r′′1a1] <
2 · (232 − 5). This means that

t2(a1) =

{

α , if α < 232 − 5

α − (232 − 5) , if α ≥ 232 − 5
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For k > 1, we compute progressively the sum
(

∑k
i=1 r′′i ai

)

mod P keeping

always the partial sum modulo (232 − 5) using the same principle as the one
above. Note that the range of the function t2 thus is {1, . . . 232 − 6}.

3.4.3 Memory Requirement for LSH

The data structure described above requires O(nL) memory (for each
function gi, we store the n points from P). Since L increases as k increases,
the memory requirement could be large for a large data set, or for a
moderate data set for which optimal time is achieved with higher values
of k. Therefore, an upper limit on memory imposes an upper limit on k.

Because the memory requirement is big, the constant in front of O(nL)
is very important. In E2LSH, with the best variant of the hash tables, this
constant is 12 bytes. Note that it is the structure and layout of the L hash
tables that dictate memory usage.

Below we show two variants of the layout of the hash tables that we
deployed. We assume that

– the number of points is n ≤ 220;

– each pointer is 4 bytes long;

– tableSize = n for each hash table.

One of the most straightforward layouts of a hash table Hi is the following.
For each index l of the hash table, we store a pointer to a singly linked list of
buckets in the chain l. For each bucket, we store its value h2(·), and a pointer
to a singly linked list of points in the bucket. The memory requirement per
hash table is 4 · tableSize + 8 · #buckets + 8 · n ≤ 20n, yielding a constant
of 20.

To reduce this constant to 12 bytes, we do the following. First, we index all
points in P, such that we can refer to points by index (this index is constant
across all hash tables). Referring to a point thus takes only 20 bits (and not
32 as in the case of a pointer). Consider now a hash table Hi. For this hash
table, we deploy a table Y of 32-bit unsigned integers that store all buckets
(with values h2(·)) and points in the buckets (thus, Y is a hybrid storage
table since it stores both buckets’ and points’ description). The table has
a length of #buckets + n and is used as follows. In the hash table Hi, at
index l, we store the pointer to some index el of Y ; el is the start of the
description of the chain l. A chain is stored as follows: h2(·) value of the first
bucket in chain (at position el in Y ) followed by the indices of the points in
this bucket (positions el + 1, . . . el + n1); h2(·) value of the second bucket in
the chain (position el + n1 + 1) followed by the indices of the points in this
second bucket (positions el + n1 + 2, . . . el + n1 + 1 + n2); and so forth.

Note that we need also to store the number of buckets in each chain as
well as the number of points in each bucket. Instead of storing the chain
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length, we store for each bucket a bit that says whether that bucket is the
last one in the chain or not; this bit is one of the unused bits of the 4-
byte integer storing the index of the first point in the corresponding bucket
(i.e., if the h2(·) value of the bucket is stored at position e in Y , then we
use a high-order bit of the integer at position e + 1 in Y ). For storing the
length of the bucket, we use the remaining unused bits of the first point in
the bucket. When the remaining bits are not enough (there are more than
232−20−1 − 1 = 211 − 1 points in the bucket), we store a special value for
the length (0), which means that there are more than 211 − 1 points in the
bucket, and there are some additional points (that do not fit in the 211 − 1
integers allotted in Y after the h2(·) value of the bucket). These additional
points are also stored in Y but at a different position; their start index and
number are stored in the unused bits of the remaining 211 − 2 points that
follow the h2(·) value of the bucket and the first point of the bucket (i.e.,
unused bits of the integers at positions e + 2, . . . e + 211 − 1).

3.5 Experimental Results

In this section we present some preliminary experimental results on the
performance of E2LSH.

For the comparison, we used the MNIST data set [9]. It contains 60,000
points, each having dimension 28 × 28 = 784. The points were normalized
so that each point has its l2 norm equal to 1.

We compared the performance of E2LSH and ANN [2]. The latter provides
an efficient implementation of a variant of the kd-tree data structure. It
supports both exact and approximate nearest neighbor search (we used the
former).

To compare the running times of ANN and E2LSH, we need to have E2LSH
find the nearest neighbor, as opposed to the near neighbor. We achieve this
by solving the near-neighbor problem for one value of R. We chose this
value to ensure that all but, say, 3% of the data points have their nearest
neighbor within distance R. To find such R, it suffices to find, say, the 97th
percentile of the distances from points to their nearest neighbor (this can
be approximated fast by sampling). In our case, we chose R = 0.65. Then,
to find the nearest neighbor, we find the R-near neighbors and report the
closest point.

We note that, in general, the value of R obtained using the above method
might not lead to an efficient algorithm. This is because, for some data
sets, the number of R-near neighbors of an average query point could be
very large, and sifting through all of them during the query time would be
inefficient. For such data sets one needs to build data structures for several
values of R. During the query time, the data structures are queried in the
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Figure 3.4 Experiments: LSH vs ANN.

increasing order of R. The process is stopped when a data structure reports
an answer.

Another parameter that is required by E2LSH is the probability of error
δ. We set it to 10%. A lower probability of error would increase the running
times, although not very substantially. For example, using two separate
data structures in parallel (or, alternatively, doubling the number of hash
functions L), would reduce the error from 10% to at most (10%)2 = 1%.

To perform the running time comparisons, we ran the algorithms on
random subsets of the original data sets of size 10,000, 30,000 and 50,000.
The actual times per query are reported in fig. 3.4.

As can be observed, the running times of E2LSH are much lower than
the times of ANN. Additional experiments (not reported here) indicate
that the times do not decrease substantially if ANN is allowed to report
c-approximate nearest neighbor for small values of c (say, c < 1.5). On the
other hand, setting c to a large value (say, c = 10) reduces running times
of ANN drastically, since the search procedure is stopped at a very early
stage; the resulting running times become comparable to E2LSH. At the
same time, the actual error of ANN is remarkably low: it reports the exact
nearest neighbor for about two thirds of the query points. The fact that the
kd-trees search procedure (using priority queues) reports “good” nearest
neighbors, even if the search is interrupted very early, has been observed
earlier in the literature (e.g., see [3]). Note, however, that any guarantees
for this method are only empirical, while, for the R-near-neighbor search
problem, E2LSH provides rigorous guarantees on the probability of missing
a near neighbor.



72 Locality-Sensitive Hashing Using Stable Distributions

References

1. E2lsh package. http://web.mit.edu/andoni/www/LSH/ .

2. S. Arya and D. Mount. Ann: Library for approximate nearest
neighbor searching. http://www.cs.umd.edu/~mount/ANN/.

3. J. S. Beis and D. G. Lowe. Shape indexing using approximate
nearest-neighbour search in high-dimensional space. pages 1000–1006,
San Juan, PR, June 1997.

4. J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method for
simulating stable random variables. Journal of the American
Statistical Association, 71:340–344, 1976.

5. M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. DIMACS Workshop
on Streaming Data Analysis and Mining, 2003.

6. P. Indyk. Stable distributions, pseudorandom generators, embeddings
and data stream computation. Proceedings of the Symposium on
Foundations of Computer Science, 2000.

7. P. Indyk and R. Motwani. Approximate nearest neighbor: Towards
removing the curse of dimensionality. Proceedings of the Symposium
on Theory of Computing, 1998.

8. J. P. Nolan. An introduction to stable distributions.
http://www.cas.american.edu/~jpnolan/chap1.ps.

9. H. Wang and S. Bengio. The mnist database of handwritten
upper-case letters. Technical Report 04, IDIAP, 2002.

10. V.M. Zolotarev. One-Dimensional Stable Distributions. Volulme 65
of Translations of Mathematical Monographs, American Mathematical
Society, Providence, R.I., 1986.



II APPLICATIONS: LEARNING





4 New Algorithms for Efficient High-

Dimensional Nonparametric Classification

Ting Liu, Andrew W. Moore, and Alexander Gray

This chapter is about nonapproximate acceleration of high-dimensional
nonparametric operations such as k nearest-neighbor (k-NN) classifiers.
We attempt to exploit the fact that even if we want exact answers to
nonparametric queries, we usually do not need to explicitly find the data
points close to the query, but merely need to answer questions about
the properties of that set of data points. This offers a small amount of
computational leeway, and we investigate how much that leeway can be
exploited. This is applicable to many algorithms in nonparametric statistics,
memory-based learning, and kernel-based learning. But for clarity, this
chapter concentrates on pure k-NN classification. We introduce new balltree
algorithms that on real-world data sets give accelerations from 2- to 100-
fold compared to highly optimized traditional balltree-based k-NN . These
results include data sets with up to 106 dimensions and 105 records, and
demonstrate nontrivial speedups while giving exact answers.

4.1 Introduction

This chapter is a copy of an article that is going to be published in JMLR.
Nonparametric models have become increasingly popular in the statistics
and probabilistic artificial intelligence communities. These models are ex-
tremely useful when the underlying distribution of the problem is unknown
except that which can be inferred from samples. One simple well-known
nonparametric classification method is called the k-nearest-neighbors or
k-NN rule. Given a data set V ⊂ RD containing n points, it finds the
k closest points to a query point q ∈ RD, typically under the Euclidean
distance, and chooses the label corresponding to the majority. Despite the
simplicity of this idea, it was famously shown by Cover and Hart [9] that
asymptotically its error is within a factor of two of the optimal. Its sim-
plicity allows it to be easily and flexibly applied to a variety of complex
problems. It has applications in a wide range of real-world settings, in par-
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ticular pattern recognition [15, 14]; text categorization [55]; database and
data mining [26, 29]; information retrieval [10, 17, 51]; image and mul-
timedia search [16, 47, 20, 53]; machine learning [8]; statistics and data
analysis [12, 32] and also combination with other methods [57]. However,
these methods all remain hampered by their computational complexity.

Several effective solutions exist for this problem when the dimension D is
small, including Voronoi diagrams [48], which work well for two-dimensional
(2D) data. Other methods are designed to work for problems with moderate
dimension (i.e. tens of dimensions), such as k-D tree [21, 48], R-tree [26], and
ball-tree [22, 43, 56, 6]. Among these tree structures, balltree, or metric-
tree [43], represents the practical state of the art for achieving efficiency
in the largest dimension possible [40, 7] without resorting to approximate
answers. They have been used in many different ways, in a variety of tree
search algorithms and with a variety of “cached sufficient statistics” deco-
rating the internal leaves, for example in [42, 11, 59, 46, 25]. However, many
real-world problems are posed with very large dimensions that are beyond
the capability of such search structures to achieve sub linear efficiency, e.g.,
in computer vision, in which each pixel of an image represents a dimension.
Thus, the high-dimensional case is the long-standing frontier of the nearest-
neighbor problem.

With one exception, the proposals involving tree-based or other data struc-
tures have considered the generic nearest-neighbor problem, not that of
nearest-neighbor classification specifically. Many proposals designed specif-
ically for nearest-neighbor classification have been proposed, virtually all
of them pursuing the idea of reducing the number of training points. In
most of these approaches, such as [28], although the runningtime is re-
duced, so is the classification accuracy. Several similar training set reduc-
tion schemes yielding only approximate classifications have been proposed
[19, 23, 5, 50, 52, 44]. Our method achieves the exact classification that
would be achieved by exhaustive search for the nearest neighbors. A few
training set reduction methods have the capability of yielding exact clas-
sifications. Djouadi and Bouktache [13] described both approximate and
exact methods, but a speedup of only about a factor of two over exhaus-
tive search was reported for the exact case, for simulated, low-dimensional
data. The paper by Lee and Chae [35] also achieves exact classifications,
but only obtained a speedup over exhaustive search of about 1.7. It is in
fact common among the results reported for training set reduction meth-
ods that only 40% to 60% of the training points can be discarded, i.e., no
important speedups are possible with this approach when the Bayes risk is
not insignificant. Zhang and Srihari [58] pursued a combination of training
set reduction and a tree data structure, but that is an approximate method.
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In this chapter, we propose two new balltree based algorithms, which we will
call KNS2 and KNS3. They are both designed for binary k-NN classification.
We only focus the on binary case, since there are many binary classification
problems, such as anomaly detection [34], drug activity detection [33], and
video segmentation [49]. Liu et al. [37] applied similar ideas to many-class
classification and proposed a variation of the k-NN algorithm. KNS2 and
KNS3 share the same insight that the task of k-nearest-neighbor classifi-
cation of a query q need not require us to explicitly find those k nearest-
neighbors. To be more specific, there are three similar but in fact different
questions: (a) What are the k-NN of q?, (b) How many of the k-NN of q

are from the positive class?, and (c) Are at least t of the k-NN from the pos-
itive class? Many researches have focused (a), but uses of proximity queries
in statistics far more frequently require (b) and (c) types of computations.
In fact, for the k-NN classification problem, when the threshold t is set, it
is sufficient to just answer the much simpler question (c). The triangle in-
equality underlying a balltree has the advantage of bounding the distances
between data points, and can thus help us estimate the nearest neighbors
without explicitly finding them. In this chapter, we test our algorithms
on seventeen synthetic and real-world data sets, with dimensions ranging
from 2 to 1.1 × 106 and the number of data points ranging from 104 to
4.9×105. We observe up to 100-fold speedup compared to highly optimized
traditional balltree-based k-NN , in which the neighbors are found explicitly.

Omachi and Aso [41] proposed a fast k-NN classifier based on a branch
and bound method, and the algorithm shares some ideas of KNS2, but
it did not fully explore the idea of doing k-NN classification without ex-
plicitly finding the k-NN set, and the speedup of the algorithm achieved
is limited. In section 4, we address Omachi and Aso’s method in more detail.

We will first describe balltrees and this traditional way of using them (which
we call KNS1), which computes problem a. Then we will describe a new
method (KNS2) for problem b, designed for the common setting of skewed-
class data. We will then describe a new method (KNS3) for problem c,
which removes the skewed-class assumption, applying to arbitrary classi-
fication problems. At the end of Section 4.5 we will say a bit about the
relative value of KNS2 vs. KNS3.

4.2 Balltree

A balltree [22, 43, 56, 6, 40] is a binary tree where each node represents a
set of points, called Pts(N ). Given a data set, the root node of a balltree
represents the full set of points in the data set. A node can be either a leaf
node or a nonleaf node. A leaf node explicitly contains a list of the points
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represented by the node. A nonleaf node has two children nodes: N .child1
and N .child2, where

Pts(N .child1) ∩ Pts(N .child2) = φ,

P ts(N .child1) ∪ Pts(N .child2) = Pts(N ).

Points are organized spatially. Each node has a distinguished point called
a Pivot. Depending on the implementation, the Pivot may be one of the
data points, or it may be the centroid of Pts(N ). Each node records the
maximum distance of the points it owns to its pivot. Call this the radius of
the node:

N .Radius = max
x∈Pts(N )

| N .Pivot − x | .

Nodes lower down the tree have a smaller radius. This is achieved by
insisting, at tree construction time, that

x ∈ Pts(N .child1) ⇒ | x −N .child1.P ivot | ≤ | x −N .child2.P ivot | .

x ∈ Pts(N .child2) ⇒ | x −N .child2.P ivot | ≤ | x −N .child1.P ivot | .

Provided that our distance function satisfies the triangle inequality, we can
bound the distance from a query point q to any point in any balltree node.
If x ∈ Pts(N ) then we know that

|x − q| ≥ |q −N .Pivot| − N .Radius. (4.1)

|x − q| ≤ |q −N .Pivot| + N .Radius. (4.2)

Here is an easy proof of the inequality. According to triangle inequality,
we have |x − q| ≥ |q − N .Pivot| − |x − N .Pivot|. Given x ∈ Pts(N )
and N .Radius is the maximum distance of the points it owns to its pivot,
|x−N .Pivot| ≤ N .Radius, so |x−q| ≥ |q−N .Pivot|−N .Radius. Similarly,
we can prove (4.2). �

Balltrees are constructed topdown. There are several ways to construct
them, and practical algorithms trade off the cost of construction (e.g., it
can be inefficient to be O(R2) given a data set with R points) against the
tightness of the radius of the balls. Moore [40] describes a fast way to con-
struct a balltree appropriate for computational statistics. If a balltree is
balanced, then the construction time is O(CR log R), where C is the cost
of a point-point distance computation (which is O(m) if there are m dense
attributes, and O(fm) if the records are sparse with only fraction f of at-
tributes taking non-zero value). Figure 1 shows a 2D data set and the first
few levels of a balltree.



New Algorithms for Efficient High- Dimensional Nonparametric Classification 79

(a) A dataset

A

(b) Root node

B

C

(c) The 2 children

D

G

E

F

(d) The 4 grand-
children

A

B C

D E F G

(e) The internal
tree structure

Figure 4.1 An example of a balltree structure.

4.3 KNS1: Conventional k-NN Search with Balltree

In this chapter, we call the conventional balltree-based search [56] KNS1.
Let PS be a set of data points, and PS ⊆ V , where V is the training set.
We begin with the following definition:

Say that PS consists of the k-NN of q in V if and only if

| V |≥ k and PS are the k-NN of q in V

or

| V |< k and PS == V.

(4.3)

We now define a recursive procedure called BallKNN with the following
inputs and output.

PSout = BallKNN(PSin,N ).

Let V be the set of points searched so far, on entry. Assume that PSin

consists of the k-NN of q in V. This function efficiently ensures that on
exit, PSout consists of the k-NN of q in V ∪ Pts(N ). We define

Dsofar =

{

∞ if | PSin |< k

maxx∈PSin | x − q | if | PSin |== k.
(4.4)
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Dsofar is the minimum distance within which points become interesting to
us. Let

DN
minp =

{

max(|q −N .Pivot| − N .Radius, DN .parent
minp ) if N 
= Root

max(|q −N .Pivot| − N .Radius, 0) if N == Root.
(4.5)

DN
minp is the minimum possible distance from any point in N to q. This

is computed using the bound given by (4.1) and the fact that all points
covered by a node must be covered by its parent. This property implies
that DN

minp will never be less than the minimum distance of its ancestors.
Step 2 of section 4.4 explains this optimization further. See algorithm 4.1
for details.

Procedure BallKNN (PSin,N )

if (DN
minp ≥ Dsofar), then

/* If this condition is satisfied, then impossible
for a point in N to be closer than the
previously discovered kth nearest neighbor.*/
Return PSin unchanged.

else if (N is a leaf)
PSout = PSin

∀x ∈ Pts(N )

if (| x − q |< Dsofar), then /* If a leaf, do a naive linear scan */
add x to PSout

if (| PSout |== k + 1), then
remove furthest neighbor from PSout

update Dsofar
else

/*If a nonleaf, explore the nearer of the two
child nodes, then the further. It is likely that
further search will immediately prune itself.*/
node1 = child of N closest to q

node2 = child of N furthest from q

PStemp = BallKNN(PSin, node1)
PSout = BallKNN(PStemp, node2)

Algorithm 4.1 A call of BallKNN({},Root) returns the k-NN of q in the balltree.

Experimental results show that KNS1 (conventional k-NN search with ball-
tree) achieves significant speedup over Naive k-NN when the dimension d
of the data set is moderate (less than 30). In the best case, the complexity
of KNS1 can be as good as O(d logR), given a data set with R points.
However, with d increasing, the benefit achieved by KNS1 degrades, and
when d is really large, in the worst case, the complexity of KNS1 can be as
bad as O(dR). Sometimes it is even slower than Naive k-NN search, due to
the curse of dimensionality.
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In the following sections, we describe our new algorithms KNS2 and KNS3;
these two algorithms are both based on balltree structure, but by using
different search strategies, we explore how much speedup can be achieved
beyond KNS1.

4.4 KNS2: Faster k-NN Classification for Skewed-Class Data

In many binary classification domains, one class is much more frequent than
the other. For example, in High Throughput Screening data sets, (described
in section 7.2), it is far more common for the result of an experiment to be
negative than positive. In detection of fraud telephone calls [18] or credit
card transactions [54], the number of legitimate transactions are far more
common than fraudulent ones. In insurance risk modeling [45], a very small
percentage of the policyholders file one or more claims in a given time
period. There are many other examples of domains with similar intrinsic
imbalance, and therefore classification with a skewed distribution is impor-
tant. Various researches have been focused on designing clever methods to
solve this type of problem [4, 39]. The new algorithm introduced in this
section, KNS2, is designed to accelerate k-NN based classification in such
skewed data scenarios.

KNS2 answers the type b question described in the introduction, namely,
How many of the k-NN are in the positive class? The key idea of KNS2 is
we can answer question b without explicitly finding the k-NN set.

KNS2 attacks the problem by building two balltrees: A Postree for the
points from the positive (small) class, and a Negtree for the points from
the negative (large) class. Since the number of points from the positive
class(small) is so small, it is quite cheap to find the exact k nearest positive
points of q by using KNS1. And the idea of KNS2 is to first search Postree
using KNS1 to find the k-nearest positive neighbors set Possetk, and then
search Negtree while using Possetk as bounds to prune nodes far away, and
at the same time estimate the number of negative points to be inserted to
the true nearest-neighbor set. The search can be stopped as soon as we get
the answer to question b. Empirically, much more pruning can be achieved
by KNS2 than conventional balltree search. A concrete description of the
algorithm is as follows:

Let Rootpos be the root of Postree, and Rootneg be the root of Negtree.
Then, we classify a new query point q in the following fashion

– Step 1 “ Find positive”: Find the k nearest positive class neighbors of
q (and their distances to q) using conventional balltree search.
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– Step 2 — “Insert negative”: Do sufficient search on the negative tree
to prove that the number of positive data points among k-NN is n for some
value of n.

Step 2 is achieved using a new recursive search called NegCount. In order
to describe NegCount we need the following four definitions.

– The dists array. Dists is an array of elements Dists1 . . .Distsk consisting
of the distances to the k nearest positive neighbors found so far of q, sorted
in increasing order of distance. For notational convenience we will also write
Dists0 = 0 and Distsk+1 = ∞.

– Pointset V . Define pointset V as the set of points in the negative balls
visited so far in the search.

– The counts array (n,C) (n ≤ k+1). C is an array of counts containing
n+1 array elements C0, C1, ...Cn. Say (n,C) summarize interesting negative
points for pointset V if and only if

1. ∀i = 0, 1, ..., n,

Ci =| V ∩ {x :| x − q |< Distsi} | (4.6)

Intuitively Ci is the number of points in V whose distances to q are
closer than Distsi. In other words, Ci is the number of negative points
in V closer than the ith positive neighbor to q.

2. Ci + i ≤ k(i < n), Cn + n > k.
This simply declares that the length n of the C array is as short as
possible while accounting for the k members of V that are nearest to
q. Such an n exists since C0 = 0 and Ck+1 = total number of negative
points. To make the problem interesting, we assume that the number
of negative points and the number of positive points are both greater
than k.

– DN
minp and DN

maxp

Here we continue to use DN
minp which is defined in (4.4). Symmetrically, we

also define DN
maxp as follows: Let

DN
maxp =

{

min(|q −N .Pivot| + N .Radius, DN .parent
maxp ) if N 
= Root

|q −N .Pivot| + N .Radius if N == Root.
(4.7)

DN
maxp is the maximum possible distance from any point in N to q. This is

computed using the bound in (4.1) and the property of a balltree that all
the points covered by a node must be covered by its parent. This property
implies that DN

maxp will never be greater than the maximum possible distance
of its ancestors.
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c1

p

c2

c1

q

Figure 4.2 An example to illustrate how to compute DN
minp

Figure 4.2 gives a good example. There are three nodes: p, c1, and c2. c1
and c2 are p’s children. q is the query point. In order to compute Dc1

minp,
first we compute |q − c1.pivot| − c1.radius, which is the dashed line in the
figure, but Dc1

minp can be further bounded by Dp
minp, since it is impossible

for any point to be in the shaded area. Similarly, we get the equation for
Dc1

maxp. DN
minp and DN

maxp are used to estimate the counts array (n, C). Again
we take advantage of the triangle inequality of balltree. For any N , if there
exists an i (i ∈ [1, n]) such that Distsi−1 ≤ DN

maxp < Distsi, then for
∀x ∈ Pts(N ), Distsi−1 ≤| x − q |< Distsi. According to the definition of
C, we can add | Pts(N ) | to Ci, Ci+1, ...Cn. The function of DN

minp similar
to KNS1, is used to help prune uninteresting nodes.

Step 2 of KNS2 is implemented by the recursive function below:

(nout, Cout) = NegCount(nin, Cin,N , jparent, Dists)

See algorithm 4.2 for the detailed implementation of NegCount.
Assume that on entry (nin, Cin) summarize interesting negative points for
pointset V , where V is the set of points visited so far during the search. This
algorithm efficiently ensures that, on exit, (nout, Cout) summarize interesting
negative points for V ∪ Pts(N ). In addition, jparent is a temporary variable
used to prevent multiple counts for the same point. This variable relates to
the implementation of KNS2, and we do not want to go into the details here.

We can stop the procedure when nout becomes 1 (which means all the
k-NN of q are in the negative class) or when we run out of nodes. nout

represents the number of positive points in the k-NN of q.The top-level call
is

NegCount(k, C0, NegTree.Root, k + 1, Dists)

where C0 is an array of zeroes and Dists are defined in step 2 and obtained
by applying KNS1 to the Postree.
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Procedure NegCount (nin, Cin,N , jparent,Dists)

nout
:= nin /* Variables to be returned by the search.

Cout
:= Cin Initialize them here. */

Compute DN
minp and DN

maxp

Search for i, j ∈ [1, nout], such that

Distsi-1 ≤ DN
minp < Distsi

Distsj-1 ≤ DN
maxp < Distsj

For all indices ∈ [j, jparent)

/* Re-estimate Cout */
Update Cout

index := Cout
index+ | Pts(N ) |

/* Only update the count less than jparent
to avoid counting twice. */
Update nout, such that

Cout
nout−1 + (nout − 1) ≤ k, Cout

nout + nout > k

Set Distsnout := ∞

(1) if (nout == 1)

/* At least k negative points closer to q

than the closest positive one: done! */
Return(1, Cout)

(2) if (i == j)

/* N is located between two adjacent
positive points, no need to split. */
Return(nout, Cout)

(3) if (N is a leaf)
Forall x ∈ Pts(N )

Compute | x − q |
Update and return (nout, Cout)

(4) else
node1 := child of N closest to q

node2 := child of N furthest from q

(ntemp, Ctemp) := NegCount(nin, Cin, node1, j, Dists)
if (ntemp == 1)

Return (1, Cout)
else (nout, Cout) := NegCount(ntemp, Ctemp, node2, j,Dists)

Algorithm 4.2 Procedure NegCount.

There are at least two situations where this algorithm can run faster than
simply finding k-NN . First of all, when n = 1, we can stop and exit, since
this means we have found at least k negative points closer than the nearest
positive neighbor to q. Notice that the k negative points we have found are
not necessarily the exact k-NN to q, but this will not change the answer
to our question. This situation happens frequently for skewed data sets.
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The second situation is as follows: An N can also be pruned if it is located
exactly between two adjacent positive points, or it is farther away than
the nth positive point. This is because that, in these situations, there is no
need to figure out which negative point is closer within the N . Especially
as n gets smaller, we have more chance to prune a node, because Distsnin

decreases as nin decreases.

[41] Omachin and Aso proposed a k-NN method based on branch and
bound. For simplicity, we call their algorithm KNSV. KNSV is similar to
KNS2, in that for the binary class case, it also builds two trees, one for each
class. For consistency, let us still call them Postree and Negtree. KNSV first
searches the tree whose center of gravity is closer to q. Without loses of
generality, we assume Negtree is closer, so KNSV will search Negtree first.
Instead of fully exploring the tree, it does a greedy depth-first search only
to find k-candidate points. Then KNSV moves on to search Postree. The
search is the same as the conventional balltree search (KNS1), except that
it uses the kth candidate negative point to bound the distance. After the
search of Postree is done, KNSV counts how many of the k-NN so far are
from the negative class. If the number is more than k/2, the algorithm
stops. Otherwise, KNSV will go back to search Negtree for the second time,
this time to fully search the tree. KNSV has advantages and disadvantages.
The first advantage is that it is simple, and thus it is easy to extend to
the many-class case. Also, if the first guess of KNSV is correct and the k
candidate points are good enough to prune away many nodes, it will be
faster than conventional balltree search. But there are some obvious draw-
backs to the algorithm. First, the guess of the winner class is only based on
which class’s center of gravity is the closest to q. Notice that this is a pure
heuristic, and the probability of making a mistake is high. Second, using a
greedy search to find the k candidate nearest neighbors has a high risk, since
these candidates might not even be close to the true nearest neighbors. In
that case, the chance for pruning away nodes from the other class becomes
much smaller. We can imagine that in many situations, KNSV will end up
searching the first tree for yet another time. Finally, we want to point out
that KNSV claims it can perform well for many-class nearest neighbors,
but this is based on the assumption that the winner class contains at least
k/2 points within the nearest neighbors, which is often not true for the
many-class case. Compared to KNSV, KNS2’s advantages are (i) it uses the
skewedness property of a data set, which can be robustly detected before
the search, and (ii) more careful design gives KNS2 more chance to speedup
the search.
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4.5 KNS3: Are at Least t of the K-NN Positive?

In this chapter’s second new algorithm, we remove KNS2’s constraint of an
assumed skewedness in the class distribution. Instead, we answer a weaker
question: are at least t of the k-NN positive?, where the questioner must
supply t and k. In the usual k-NN rule, t represents a majority with respect
to k, but here we consider the slightly more general form which might be
used, e.g., during classification with known false positive and false negative
costs.

In KNS3, we define two important quantities:

Dpos
t = distance of the tth nearest positive neighbor of q, (4.8)

Dneg
m = distance of the mth nearest negative neighbor of q. (4.9)

where m + t = k + 1.

Before introducing the algorithm, we state and prove an important propo-
sition, which relates the two quantities Dpos

t and Dneg
m with the answer to

KNS3.

Proposition 4.1 Dpos
t ≤ Dneg

m if and only if at least t of the k nearest
neighbors of q from the positive class.

Proof
If Dpos

t ≤ Dneg
m , then there are at least t positive points closer than the

mth negative point to q. This also implies that if we draw a ball centered
at q, and with its radius equal to Dneg

m , then there are exactly m negative
points and at least t positive points within the ball. Since t + m = k + 1,
if we use Dk to denote the distance of the kth nearest neighbor, we get
Dk ≤ Dneg

m , which means that there are at most m − 1 of the k-NN of q

from the negative class. It is equivalent to say that there are at least t of
the k nearest neighbors of q are from the positive class. On the other hand,
if there are at least t of the k-NN from the positive class, then Dpos

t ≤ Dk,
the number of negative points, is at most k − t < m, so Dk ≤ Dneg

m . This
implies that Dpos

t ≤ Dneg
m is true. �

Figure 4.3 provides an illustration. In this example, k = 5, t = 3. We
use black circles to represent positive points, and white circles to represent
negative points. The reason to redefine the problem of KNS3 is to transform
a k nearest neighbor searching problem to a much simpler counting problem.
In fact, in order to answer the question, we do not even have to compute
the exact value of Dpos

t and Dneg
m , instead, we can estimate them. We define
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Figure 4.3 An example of Dpos
t and Dneg

m .

Lo(Dpos
t ) and Up(Dpos

t ) as the lower and upper bounds of Dpos
t , and simi-

larly we define Lo(Dneg
m ) and Up(Dneg

m ) as the lower and upper bounds of
Dneg

m . If at any point, Up(Dpos
t ) ≤ Lo(Dneg

m ), we know Dpos
t ≤ Dneg

m , on the
other hand, if Up(Dneg

m ) ≤ Lo(Dpos
t ), we know Dneg

m ≤ Dpos
t .

Now our computational task is to efficiently estimate Lo(Dpos
t ), Up(Dpos

t ),
Lo(Dneg

m ) and Up(Dneg
m ). And it is very convenient for a balltree structure

to do so. Below is the detailed description:

At each stage of KNS3 we have two sets of balls in use called P and N ,
where P is a set of balls from Postree built from positive data points, and
N consists of balls from Negtree built from negative data points.

Both sets have the property that if a ball is in the set, then neither its
balltree ancestors nor its descendants are in the set, so that each point
in the training set is a member of one or zero balls in P ∪ N . Initially,
P = {PosTree.root} and N = {NegTree.root}. Each stage of KNS3
analyzes P to estimate Lo(Dpos

t ), Up(Dpos
t ), and analyzes N to estimate

Lo(Dneg
m ), Up(Dneg

m ). If possible, KNS3 terminates with the answer, else it
chooses an appropriate ball from P or N , and replaces that ball with its
two children, and repeats the iteration. Figure 4.4 shows one stage of KNS3.
The balls involved are labeled a through g and we have

P = {a, b, c, d}

N = {e, f, g}.

Notice that although c and d are inside b, they are not descendants of b.
This is possible because when a ball is splitted, we only require that the
pointset of its children be disjoint, but the balls covering the children node
may be overlapped.
In order to compute Lo(Dpos

t ), we need to sort the balls u ∈ P , such that

∀ui, uj ∈ P, i < j ⇒ Di
minp ≤ Dj

minp
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Figure 4.4 A configuration at the start of a stage.

Then

Lo(Dpos
t ) = D

uj

minp, where

j−1
∑

i=1

| Pts(ui) |< t and

j
∑

i=1

| Pts(ui) |≥ t

Symmetrically, in order to compute Up(Dpos
t ), we sort u ∈ P , such that

∀ui, uj ∈ P, i < j ⇒ Di
maxp ≤ Dj

maxp.

Then

Up(Dpos
t ) = Duj

maxp, where

j−1
∑

i=1

| Pts(ui) |< t and

j
∑

i=1

| Pts(ui) |≥ t

Similarly, we can compute Lo(Dneg
m ) and Up(Dneg

m ).

To illustrate this, it is useful to depict a ball as an interval, where the
two ends of the interval denote the minimum and maximum possible dis-
tances of a point owned by the ball to the query. Figure 4.5(a) shows an
example. Notice, we also mark “+5” above the interval to denote the num-
ber of points owned by the ball B. After we have this representation, both
P and N can be represented as a set of intervals, each interval corresponds
to a ball. This is shown in 4.5(b). For example, the second horizontal line
denotes the fact that ball B contains four positive points, and that the
distance from any location in B to q lies in the range [0, 5]. The value of
Lo(Dpos

t ) can be understood as the answer to the following question: what
if we tried to slide all the positive points within their bounds as far to the
left as possible, where would the tth closest positive point lie? Similarly, we
can estimate Up(Dpos

t ) by sliding all the positive points to the right ends
within their bounds.
For example, in figure 4.4, let k = 12 and t = 7. Then m = 12 − 7 + 1 = 6.
We can estimate (Lo(Dpos

7 ), Up(Dpos
7 )) and (Lo(Dneg

6 ), Up(Dneg
6 )), and the
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Figure 4.5 (a) The interval representation of a ball B. (b) The interval representation of the
configuration in figure 4.4

.

results are shown in figure 4.5. Since the two intervals (Lo(Dpos
7 ), Up(Dpos

7 ))
and (Lo(Dneg

6 ),Up(Dneg
6 )) have overlap now, no conclusion can be made at

this stage. Further splitting needs to be done to refine the estimation.

Below is the pseudocode of the KNS3 algorithm: We define a loop pro-
cedure called PREDICT with the following input and output.

Answer = PREDICT (P, N, t, m)

The Answer, a boolean value, is true, if there are at least t of the k-NN
from the positive class; and false otherwise. Initially, P = {PosTree.root}
and N = {NegTree.root}. The threshold t is given, and m = k − t + 1.

Before we describe the algorithm, we first introduce two definitions.
Define

(Lo(DS
i ), Up(DS

i )) = Estimate bound(S, i). (4.10)

Here S is either set P or N , and we are interested in the ith nearest neighbor
of q from set S. The output is the lower and upper bounds. The concrete
procedure for estimating the bounds was just described.

Notice that the estimation of the upper and lower bounds could be very
loose in the beginning, and will not give us enough information to answer the
question. In this case, we will need to split a balltree node and re-estimate
the bounds. With more and more nodes being splitted, our estimation be-
comes more and more precise, and the procedure can be stopped as soon as
Up(Dpos

t ) ≤ Lo(Dneg
m ) or Up(Dneg

m ) ≤ Lo(Dpos
t ). The function of Pick(P, N)

below is to choose one node either from P or N to split. There are different
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strategies for picking a node, for simplicity, our implementation only ran-
domly picks a node to split.
Define

split node = Pick(P, N). (4.11)

Here split node is the node chosen to be split (see Algorithm 4.3).

Procedure PREDICT ( P, N, t, m)

Repeat

(Lo(Dpos
t ), Up(Dpos

t )) = Estimate bound(P, t) /* See definition 4.10. */
(Lo(Dneg

m ), Up(Dneg
m )) = Estimate bound(N, m)

if (Up(Dpos
t ) ≤ Lo(Dneg

m )) then
Return TRUE

if (Up(m
neg) ≤ Lo(Dneg

m )) then
Return FALSE

split node = Pick(P, N)
remove split node from P or N
insert split node.child1 and split node.child2 to P or N

.

Algorithm 4.3 Procedure PREDICT.

Our explanation of KNS3 was simplified for clarity. In order to avoid fre-
quent searches over the full lengths of sets N and P , they are represented as
priority queues. Each set in fact uses two queues: one prioritized by Du

maxp

and the other by Du
minp.This ensures that the costs of all argmins, deletions,

and splits are logarithmic in the queue size.

Some people may ask the question: It seems that KNS3 has more ad-
vantages than KNS2; it removes the assumption of skewedness of the data
set. In general, it has more chances to prune away nodes, etc. Why do we
still need KNS2? The answer is KNS2 does have its own advantages. It an-
swers a more difficult question than KNS3. To know exact how many of the
nearest neighbors are from the positive class can be especially useful when
the threshold for deciding a class is not known. In that case, KNS3 does not
work at all since we cannot provide a static t for answering the question c
in section 4.1. But KNS2 can still work very well. On the other hand, the
implementation of KNS2 is much simpler than KNS3. For instance, it does
not need the priority queues we just described. So there do exist some cases
where KNS2 is faster than KNS3.
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4.6 Experimental Results

To evaluate our algorithms, we used both real data sets (from UCI and KDD
repositories) and also synthetic data sets designed to exercise the algorithms
in various ways.

4.6.1 Synthetic data sets

We have six synthetic data sets. The first synthetic data set we have is called
Ideal, as illustrated in figure 4.6(a). All the data in the left upper area are
assigned to the positive class, and all the data in the right lower area are
assigned to the negative class. The second data set we have is called Diag2d,
as illustrated in figure 4.6(b). The data are uniformly distributed in a 10 ×
10 square. The data above the diagonal are assigned to the positive class;
the data below the diagonal are assigned to the negative class. We made
several variants of Diag2d to test the robustness of KNS3. Diag2d(10%) has
10% data of Diag2d. Diag3d is a cube with uniformly distributed data and
classified by a diagonal plane. Diag10d is a 10D hypercube with uniformly
distributed data and classified by a hyperdiagonal plane. Noise-diag2d

has the same data as Diag2d(10%), but 1% of the data was assigned to the
wrong class.

(10, 0)

(0, 0) (0, 10)

(10, 10)

(b) Diag2d (100,000 data-points)(a)   Ideal

Figure 4.6 Synthetic Data Sets

Table 4.1 is a summary of the data sets in the empirical analysis.
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Table 4.1 Synthetic Data Sets

Data Set No. of No. of No. of No.positive/No.negative

records Dimensions positive

Ideal 10,000 2 5000 1

Diag2d(10%) 10,000 2 5000 1

Diag2d 100,000 2 50,000 1

Diag3d 100,000 3 50,000 1

Diag10d 100,000 10 50,000 1

Noise2d 10,000 2 5000 1

4.6.2 Real-world Data Sets

We used UCI and KDD data (listed in table 4.2), but we also experimented
with data sets of particular current interest within our laboratory.

Life Sciences.
These were proprietary data sets (ds1 and ds2) similar to the publicly avail-
able Open Compound Database provided by the National Cancer Institute
(NCI Open Compound Database, 2000). The two data sets are sparse.
We also present results on data sets derived from ds1, denoted ds1.10pca,
ds1.100pca, and ds2.100anchor by linear projection using principal compo-
nent analysis (PCA).

Link Detection.
The first, Citeseer, is derived from the Citeseer website (Citeseer,2002) and
lists the names of collaborators on published materials. The goal is to pre-
dict whether J Lee (the most common name) was a collaborator for each
work based on who else is listed for that work. We use J Lee.100pca to rep-
resent the linear projection of the data to 100 dimensions using PCA. The
second link detection data set is derived from the Internet Movie Database
(IMDB, 2002) and is denoted imdb using a similar approach, but to predict
the participation of Mel Blanc (again the most common participant).

UCI/KDD data.
We use four large data sets from the KDD/UCI repository [3]. The data
sets can be identified from their names. They were converted to binary
classification problems. Each categorical input attribute was converted into
n binary attributes by a 1-of-n encoding (where n is the number of possible
values of the attribute).

1. Letter originally had twenty-six classes: A-Z. We performed binary clas-
sification using the letter A as the positive class and “Not A” as negative.

2. Ipums (from ipums.la.97). We predict farm status, which is binary.
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3. Movie is a data set from [31]. The TREC-2001 Video Track organized by
NIST shot boundary Task. four hours of video or 13 MPEG-1 video files at
slightly over 2 GB of data.

4. Kdd99(10%) has a binary prediction: Normal vs. Attack.

Table 4.2 Real Data Sets

Data Set No. of No. of No.of No.positive/No.negative

records Dimensions positive

ds1 26,733 6348 804 0.03

ds1.10pca 26,733 10 804 0.03

ds1.100pca 26,733 100 804 0.03

ds2 88,358 1.1 × 106 211 0.002

ds2.100anchor 88,358 100 211 0.002

J Lee.100pca 181,395 100 299 0.0017

Blanc Mel 186,414 10 824 0.004

Data Set No. No. of No.of No.positive/No.negative

records Dimensions positive

Letter 20,000 16 790 0.04

Ipums 70,187 60 119 0.0017

Movie 38,943 62 7620 0.24

Kdd99( 10% ) 494,021 176 97278 0.24

4.6.3 Methodology

The data set ds2 is particular interesting, because its dimension is 1.1×106.
Our first experiment is especially designed for it. We use k=9, and t = ⌈k/2⌉,
then we print out the distribution of time taken for queries of three algo-
rithms: KNS1, KNS2, and KNS3. This is aimed at understanding the range
of behavior of the algorithms under huge dimensions (some queries will be
harder, or take longer, for an algorithm than other queries). We randomly
took 1% negative records (881) and 50% positive records (105) as test data
(total 986 points), and train on the remaining 87,372 data points.

For our second set of experiments, we did ten-fold crossvalidation on all
the data sets. For each data set, we tested k = 9 and k = 101, in order
to show the effect of a small value and a large value. For KNS3, we used
t = ⌈k/2⌉: a data point is classified as positive if and only if the majority
of its k-NN are positive. Since we use crossvalidation, each experiment re-
quired R k-NN classification queries (where R is the umber of records in
the data set) and each query involved the k-NN among 0.9R records. A
naive implementation with no ball trees would thus require 0.9R2 distance
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computations. We want to emphasize here that these algorithms are all
exact. No approximations were used in the classifications.

4.6.4 Results

Figure 4.7 shows the histograms of times and speed-ups for queries on
the ds2 data set. For naive k-NN , all the queries take 87,372 distance
computations. For KNS1, all the queries take more than 1.0× 104 distance
computations, (the average number of distances computed is 1.3×105) which
is greater than 87,372 and thus traditional balltree search is worse than
“naive” linear scan. For KNS2, most of the queries take less than 4.0× 104

distance computations; a few points take longer time. The average number
of distances computed is 6233. For KNS3, all the queries take fewer than
1.0×104 distance computations; the average number of distances computed
is 3411. The lower three figures illustrate speed-up achieved for KNS1,
KNS2, and KNS3 over naive linear scan. The figures show the distribution
of the speedup obtained for each query. From figure4.7(d) we can see that,
on average, KNS1 is even slower than the naive algorithm. KNS2 can get
from 2- to 250-fold speedups. On average, it has a 14-fold speedup. KNS3
can get from 2- to 2500-fold speedups. On average, it has a 26-fold speedups.

Table 4.3 on page 96 shows the results for the second set of experiments.
The second column lists the computational cost of naive k-NN , both in
terms of the number of distance computations and the wall-clock time on
an unloaded 2 GHz Pentium. We then examine the speedups of KNS1 (tra-
ditional use of a balltree) and our two new balltree methods (KNS2 and
KNS3). Generally speaking, the speedups achieved for distance computa-
tions on all three algorithms are greater than the corresponding speedup for
wall-clock time. This is expected, because the wall-clock time also includes
the time for building ball trees, generating priority queues, and searching.
We can see that for the synthetic data sets, KNS1 and KNS2 yield 2- to
700-fold speedup over naive. KNS3 yields a 2- to 4500-fold speedup. Notice
that KNS2 cannot beat KNS1 for these data sets, because KNS2 is designed
to speedup k-NN search on data sets with unbalanced output classes. Since
all the synthetic data sets have an equal number of data from positive and
negative classes, KNS2 has no advantage.

It is notable that for some high dimensional data sets, KNS1 does not
produce an acceleration over naive. KNS2 and KNS3 do, however, and in
some cases they are hundreds of times faster than KNS1.
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Figure 4.7 Vertical axis in all plots is the number of data. (a) Distribution of times taken
for queries of KNS1. (b) Distribution of times taken for queries of KNS2. (c) Distribution of
times taken for queries of KNS3. (d) Distribution of speedup for queries achieved for KNS1. (e)
Distribution of speedup for queries achieved for KNS2. (f) Distribution of speedup for queries
achieved for KNS3.

4.7 Comments and related work

Why k-NN ?
k-NN is an old classification method, often not achieving the highest pos-
sible accuracies when compared to more complex methods. Why study it?
There are many reasons. k-NN is a useful sanity check or baseline against
which to check more sophisticated algorithms provided k-NN is tractable.
It is often the first line of attack in a new complex problem, due to its
simplicity and flexibility. The user need only provide a sensible distance
metric. The method is easy to interpret once this distance metric is un-
derstood. We have already mentioned its compelling theoretical properties,
which explains its surprisingly good performance in practice in many cases.
For these reasons and others, k-NN is still popular in some fields that need
classification, e.g., computer vision and QSAR analysis of high throughput
screening data, e.g., trps:nove. Finally, we believe that the same insights
that accelerate k-NN will apply to more modern algorithms. From a theo-
retical viewpoint, many classification algorithms can be viewed simply as
the nearest-neighbor method with a certain broader notion of distance func-
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Table 4.3 Number of distance computations and wall-clock time for naive k-NN classification
(second column). Acceleration for normal use of KNS1 (in terms of number. distances and time).
Accelerations of new methods KNS2 and KNS3 in other columns. Naive times are independent
of k.

k NAIVE KNS1 KNS2 KNS3

dists Time Dists Time Dists Time Dists Time

(sec) Speedup Speedup Speedup Speedup Speedup Speedup

ideal 9 9.0 × 107 30 96.7 56.5 112.9 78.5 4500 486

101 23.0 10.2 24.7 14.7 4500 432

Diag2d(10%)9 9.0 × 107 30 91 51.1 88.2 52.4 282 27.1

101 22.3 8.7 21.3 9.3 167.9 15.9

Diag2d 9 9.0 × 109 3440 738 366 664 372 2593 287

101 202.9 104 191 107.5 2062 287

Diag3d 9 9.0 × 109 4060 361 184.5 296 184.5 1049 176.5

101 111 56.4 95.6 48.9 585 78.1

Diag10d 9 9.0 × 109 6080 7.1 5.3 7.3 5.2 12.7 2.2

101 3.3 2.5 3.1 1.9 6.1 0.7

Noise2d 9 9.0 × 107 40 91.8 20.1 79.6 30.1 142 42.7

101 22.3 4 16.7 4.5 94.7 43.5

ds1 9 6.4 × 108 4830 1.6 1.0 4.7 3.1 12.8 5.8

101 1.0 0.7 1.6 1.1 10 4.2

ds1.10pca 9 6.4 × 108 420 11.8 11.0 33.6 21.4 71 20

101 4.6 3.4 6.5 4.0 40 6.1

ds1.100pca 9 6.4 × 108 2190 1.7 1.8 7.6 7.4 23.7 29.6

101 0.97 1.0 1.6 1.6 16.4 6.8

ds2 9 8.5 × 109 105,500 0.64 0.24 14.0 2.8 25.6 3.0

101 0.61 0.24 2.4 0.83 28.7 3.3

ds2.100- 9 7.0 × 109 24,210 15.8 14.3 185.3 144 580 311

101 10.9 14.3 23.0 19.4 612 248

J Lee.100- 9 3.6 × 1010 142,000 2.6 2.4 28.4 27.2 15.6 12.6

101 2.2 1.9 12.6 11.6 37.4 27.2

Blanc Mel 9 3.8 × 1010 44,300 3.0 3.0 47.5 60.8 51.9 60.7

101 2.9 3.1 7.1 33 203 134.0

Letter 9 3.6 × 108 290 8.5 7.1 42.9 26.4 94.2 25.5

101 3.5 2.6 9.0 5.7 45.9 9.4

Ipums 9 4.4 × 109 9520 195 136 665 501 1003 515

101 69.1 50.4 144.6 121 5264 544

Movie 9 1.4 × 109 3100 16.1 13.8 29.8 24.8 50.5 22.4

101 9.1 7.7 10.5 8.1 33.3 11.6

Kddcup99 9 2.7 × 1011 167,000 4.2 4.2 574 702 4 4.1

(10%) 101 4.2 4.2 187.7 226.2 3.9 3.9

tion; see, e.g., [2] for such a broad notion. RKHS kernel methods use another
example of a broadened notion of distance function. More concretely, we
have applied similar ideas to speed up nonparametric Bayes classifiers, in
work to be submitted.

Applicability of other Proximity Query Work.
For the problem of find the k nearest data points (as opposed to our ques-
tion of “perform k-NN or kernel classification”) in high dimensions, the
frequent failure of a traditional balltree to beat naive has led to some very
ingenious and innovative alternatives, based on random projections, hash-
ing discretized cubes, and acceptance of approximate answers. For example,
[24] gives a hashing method that was demonstrated to provide speedups over
a balltree-based approach in sixty-four dimensions by a factor of two to five
depending on how much error in the approximate answer was permitted.
Another approximate k-NN idea is in [1], one of the first k-NN approaches
to use a priority queue of nodes, in this case achieving a three-fold speedup
with an approximation to the true k-NN . In [36], we introduced a variant
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of balltree structures which allow nonbacktracking search to speed up ap-
proximate nearest neighbor, and we observed up to 700-fold accelerations
over conventional balltree based k-NN . A similar idea has been proposed
by [30]. However, these approaches are based on the notion that any points
falling within a factor of (1+ǫ) times the true nearest-neighbor distance are
acceptable substitutes for the true nearest neighbor. Noting in particular
that distances in high-dimensional spaces tend to occupy a decreasing range
of continuous values [27], it remains unclear whether schemes based upon
the absolute values of the distances rather than their ranks are relevant to
the classification task. Our approach, because it need not find the k-NN to
answer the relevant statistical question, finds an answer without approx-
imation. The fact that our methods are easily modified to allow (1 + ǫ)
approximation in the manner of [1] suggests an obvious avenue for future
research.

No free lunch
For uniform high dimensional data no amount of trickery can save us. The
explanation for the promising empirical results is that all the interdepen-
dencies in the data mean we are working in a space of much lower intrinsic
dimensionality [38]. Note though, that in experiments not reported here,
QSAR and vision k-NN classifiers give better performance on the original
data than on PCA-projected low dimensional data, indicating that some of
these dependencies are non-linear.

Summary
This chapter has introduced and evaluated two new algorithms for more
effectively exploiting spatial data structures during k-NN classification.
We have shown significant speedups on high-dimensional data sets with-
out resorting to approximate answers or sampling. The result is that the
k-NN method now scales to many large high-dimensional data sets that
previously were not tractable for it, and are still not tractable for many
popular methods such as support vector machines.

Notes

1Note that the exact shape context distance is different from exact EMD. It first solves
the optimal assignment problem, and then given those correspondences, it estimates the
thin-plate spline transformation that best aligns the two shapes. The scalar measure of
dissimilarity is then the sum of the matching errors between the corresponding points,
plus the magnitude of the aligning transform [2].
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5 Approximate Nearest Neighbor Regression in

Very High Dimensions

Sethu Vijayakumar, Aaron D’Souza, and Stefan Schaal

Fast and approximate nearest-neighbor search methods have recently be-
come popular for scaling nonparameteric regression to more complex and
high-dimensional applications. As an alternative to fast nearest neighbor
search, training data can also be incorporated online into appropriate suffi-
cient statistics and adaptive data structures, such that approximate nearest-
neighbor predictions can be accelerated by orders of magnitude by means
of exploiting the compact representations of these sufficient statistics. This
chapter describes such an approach for locally weighted regression with
locally linear models. Initially, we focus on local dimensionality reduction
techniques in order to scale locally weighted learning to domains with very
high dimensional input data. The key issue here revolves around obtaining
a statistically robust and computationally inexpensive estimation of local
linear models in such large spaces, despite potential irrelevant and redun-
dant inputs. We develop a local version of partial least squares regression
that fulfills all of these requirements, and embed it in an incremental nonlin-
ear regression algorithm that can be shown to work efficiently in a number
of complex applications. In the second part of the chapter, we introduce a
novel Bayesian formulation of partial least squares regression that converts
our nonparametric regression approach to a probabilistic formulation. Some
of the heuristic components inherent in partial least squares can be elimi-
nated with this new algorithm by means of efficient Bayesian regularization
techniques. Evaluations are provided for all algorithms on various synthetic
data sets and real-time learning examples with anthropomorphic robots and
complex simulations.

5.1 Introduction

Despite the recent progress in statistical learning, nonlinear function ap-
proximation with high-dimensional input data remains a nontrivial prob-
lem, especially in incremental and real-time formulations. There is, how-
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ever, an increasing number of problem domains where both these properties
are important. Examples include the online modeling of dynamic processes
observed by visual surveillance, user modeling for advanced computer inter-
faces and game playing, and the learning of value functions, policies, and
models for learning control, particularly in the context of high-dimensional
movement systems like humans or humanoid robots. An ideal algorithm for
such tasks needs to avoid potential numerical problems from redundancy
in the input data, eliminate irrelevant input dimensions, keep the compu-
tational complexity of learning updates low while remaining data efficient,
allow for online incremental learning, and, of course, achieve accurate func-
tion approximation and adequate generalization.

When looking for a learning framework to address these goals, one can
identify two broad classes of function approximation methods: (i) methods
which fit nonlinear functions globally, typically by input space expansions
with predefined or parameterized basis functions and subsequent linear
combinations of the expanded inputs, and (ii) methods which fit nonlinear
functions locally, usually by using spatially localized simple (e.g., low-order
polynomial) models in the original input space and automatically adjusting
the complexity (e.g., number of local models and their locality) to accurately
account for the nonlinearities and distributions of the target function.
Interestingly, the current trends in statistical learning have concentrated
on methods that fall primarily in the first class of global nonlinear function
approximators, for example, Gaussian process regression(GPR)[48], support
vector machine regression(SVMR)[40] and variational Bayes for mixture
models1(VBM)[13]. In spite of the solid theoretical foundations that these
approaches possess in terms of generalization and convergence, they are
not necessarily the most suitable for online learning in high-dimensional
spaces. First, they require an a priori determination of the right modeling
biases. For instance, in the case of GPR and SVMR, these biases involve
selecting the right function space in terms of the choice of basis or kernel
functions[44], and in VBM the biases are concerned with the the right
number of latent variables and proper initialization.2 Second, all these recent
function approximator methods were developed primarily for batch data
analysis and are not easily or efficiently adjusted for incrementally arriving
data. For instance, in SVMR, adding a new data point can drastically
change the outcome of the global optimization problem in terms of which
data points actually become support vectors, such that all (or a carefully
selected subset) of data has to be kept in memory for reevaluation. Thus,
adding a new data point in SVMR is computationally rather expensive, a
property that is also shared by GPR. VBM suffers from similar problems
due to the need for storing and reevaluating data when adding new mixture
components[43]. In general, it seems that most suggested Bayesian learning
algorithms are computationally too expensive for real-time learning because
they tend to represent the complete joint distribution of the data, albeit
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as a conditionally independent factored representation. As a last point,
incremental approximation of functions with global methods is prone to lead
to negative interference when input distributions change[35]; such changes
are, however, a typical scenario in many online learning tasks.

In contrast to the global learning methods described above, function ap-
proximation with spatially localized models, that is, nearest-neighbor(NN)
techniques, are rather well suited for incremental and real-time learning[2].
Such nonparametric methods are very useful when there is limited knowl-
edge about the model complexity such that the model resources need to be
increased in a purely incremental and data-driven fashion, as demonstrated
in previous work[35]. However, since these techniques allocate resources to
cover the input space in a localized fashion, in general, with an increas-
ing number of input dimensions, they encounter an exponential explosion
in the number of local models required for accurate approximation, often
referred to as the “curse of dimensionality”[31]. Hence, at the outset, high-
dimensional function approximation seems to be computationally infeasible
for local nonparametric learning.

Nonparametric learning in high-dimensional spaces with global methods,
however, has been employed successfully by using techniques of projection
regression (PR). PR copes with high-dimensional inputs by decomposing
multivariate regressions into a superposition of single variate regressions
along a few selected projections in input space. The major difficulty of
PR lies in the selection of efficient projections, that is, how to achieve the
best fitting result with as few univariate regressions as possible. Among
the best known PR algorithms are projection pursuit regression [11], and
its generalization in the form of generalized additive models[16]. Sigmoidal
neural networks can equally be conceived of as a method of projection
regression, in particular when new projections are added sequentially, e.g.,
as in cascade correlation[9].

In this chapter we suggest a method of extending the beneficial properties
of local nonparametric learning to high-dimensional function approximation
problems. The prerequisite of our approach is that the high-dimensional
learning problems we address have locally low dimensional distributions, an
assumption that holds for a large class of real-world data (see below). If
distributions are locally low-dimensional, the allocation of local models can
be restricted to these thin distributions, and only a tiny part of the entire
high dimensional space needs to be filled with local models. Thus, the curse
of dimensionality of spatially localized model fitting can be avoided. Under
these circumstances, an alternative method of projection regression can be
derived, focusing on finding efficient local projections. Local projections can
be used to accomplish local function approximation in the neighborhood of
a given query point with traditional local nonparametric approaches, thus
inheriting most of the statistical properties from the well established meth-
ods of locally weighted learning and nearest-neighbor regression[15, 2]. As
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this chapter will demonstrate, the resulting learning algorithm combines the
fast, efficient, and incremental capabilities of the nonparametric techniques
while alleviating the problems faced due to high-dimensional input domains
through local projections.

In the following sections, we first motivate why many high dimensional
learning problems have locally low-dimensional data distributions such that
the prerequisites of our local learning system are justified. Second, we ad-
dress the question of how to find good local projections by looking into var-
ious schemes for performing dimensionality reduction for regression. Third,
we embed the most efficient and robust of these projection algorithms in an
incremental nonlinear function approximator[45] capable of automatically
adjusting the model complexity in a purely data-driven fashion. Finally,
a new Bayesian approach is suggested to reformulate our algorithms in a
probabilistic framework, thus removing several levels of open parameters in
the techniques. In several evaluations, in both on synthetic and real world
data, in the resulting incremental learning system demonstrates high accu-
racy for function fitting in very high-dimensional spaces, robustness toward
irrelevant and redundant inputs, as well as low computational complex-
ity. Comparisons will prove the competitiveness with other state-of-the-art
learning systems.

5.2 Evidence for Low-Dimensional Distributions

The development of our learning system in the next sections relies on the
assumption that high-dimensional data sets have locally low dimensional
distributions, an assumption that requires some clarification. Across do-
mains like vision, speech, motor control, climate patterns, human gene dis-
tributions, and a range of other physical and biological sciences, various
researchers have reported evidence that corroborate the fact that the true in-
trinsic dimensionality of high-dimensional data is often very low[42, 27, 47].
We interpret these findings as evidence that the physical world has a signif-
icant amount of coherent structure that expresses itself in terms of a strong
correlations between different variables that describe the state of the world
at a particular moment in time. For instance, in computer vision it is quite
obvious that neighboring pixels of an image of a natural scene have redun-
dant information. Moreover, the probability distribution of natural scenes
in general has been found to be highly structured such that it lends itself
to a sparse encoding in terms of set of basis functions[24, 3]. Another ex-
ample comes from our own research on human motor control. In spite of
the fact that humans can accomplish movement tasks in almost arbitrary
ways, thus possibly generating arbitrary distributions of the variables that
describe their movements, behavioral research has discovered a tremendous
amount of regularity within and across individuals[20, 32]. These regular-
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Figure 5.1 Dimensionality Analysis. (a) The cumulative variance accounted vs. the local
dimensionality (averaged across all mixture models). (b) The distribution of the effective
dimensionality across all mixture models.

ities lead to a locally low-dimensional data distribution, as illustrated in
the example in figure5.1. In this analysis[6], we assessed the intrinsic di-
mensionality of data collected from full body movement of several human
subjects, collected with a special full-body exoskeleton that recorded si-
multaneously 35 degrees of freedom(DOF) of the joint angular movement
of the subjects at 100Hz sampling frequency. Subjects performed a variety
of daily-life tasks (e.g., walking, object manipulation, reaching, etc.) until
about a gigabyte of data was accumulated. Our analysis examined the local
dimensionality of the joint distribution of positions, velocities, and acceler-
ations of the collected data, that is, a 105-dimensional data set, as would be
needed as inputs to learn an inverse dynamics model for motor control[20].
As an analysis tool, we employed a variational Bayesian mixture of fac-
tor analyzers that automatically estimated the required number of mixture
components[13]. As demonstrated in figure 5.1(a), the local dimensionality
was around five to eight dimensions, computed based on the average number
of significant latent variables per mixture component. Figure 5.1(b) shows
the distribution of the effective dimensionality across all mixture models.

In summary, the results from our analysis and other sources in the
literature show that there is a large class of high-dimensional problems
that can be treated locally in much lower dimensions if one can determine
appropriate regions of locality and the local projections that model the
corresponding low-dimensional distributions. As a caveat, however, it may
happen that such low dimensional distributions are embedded in additional
dimensions that are irrelevant to the problem at hand but have considerable
variance. In the context of regression, it will thus be important to only
model those local dimensions that carry information that is important for
the regression and eliminate all other dimensions, that is, to perform local
dimensionality reduction with regression in mind and not just based on
input or joint input-output distributions, as discussed in the next section.
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5.3 Local Dimensionality Reduction

Assuming that data are characterized by locally low dimensional distri-
butions, efficient algorithms are needed to exploit this property. For this
purpose, we will focus on locally weighted learning (LWL) methods[2] be-
cause they allow us to adapt a variety of linear dimensionality reduction
techniques for the purpose of nonlinear function approximation (see section
5.4) and because they are easily modified for incremental learning. LWL-
related methods have also found widespread application in mixture models
[19, 50, 13] such that the results of this section can contribute to this field,
too.

In pursuit of the question of what is the “right” method to perform
local dimensionality reduction for regression, Schaal et al.[36] examined
several candidate techniques theoretically and empirically. In particular,
the authors focused on locally weighted versions of principal component
regression (LWPCR), joint data principal component analysis (LWPCA),
factor analysis (LWFA), and partial least squares (LWPLS). We will briefly
revisit some main insights of this work before moving on to the development
of our key learning algorithm.

5.3.1 The Locally Weighted Regression Model

The learning problems considered here assume the standard regression
model:

y = f(x) + ǫ,

where x denotes the d-dimensional input vector, y the (for simplicity) scalar
output, and ǫ a mean-zero random noise term. When only a local subset of
data in the vicinity of a point xc is considered and the locality is chosen
appropriately, a low-order polynomial can be employed to model this local
subset. Due to a favorable compromise between computational complexity
and quality of function approximation[15], we choose linear models

y = βTx + ǫ.

A measure of locality for each data point, the weight wi, is computed from
a Gaussian kernel:

wi = exp(−0.5(xi − xc)
TD(xi − xc)), W ≡ diag{w1, . . . , wM}, (5.1)

where D is a positive semidefinite distance metric which determines the
size and shape of the neighborhood contributing to the local model[2]. The
weights wi will enter all following algorithms to assure spatial localization
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in input space. In particular, zero mean prerequisites of several algorithms
are ensured by subtracting the weighted mean x or y from the data, where

x =

M
∑

i=1

wixi/

M
∑

i=1

wi, and y =

M
∑

i=1

wiyi/

M
∑

i=1

wi, (5.2)

and M denotes the number of data points. For simplicity, and without loss
of generality, we will thus assume in the derivations in the next sections that
all input and output data have a weighted mean of zero with respect to a
particular weighting kernel. The input data are summarized in the rows of
the matrix X=[x1 x2 ...xM ]T , the corresponding outputs are the coefficients
of the vector y, and the corresponding weights, determined from (5.1), are
in the diagonal matrix W. In some cases, we need the joint input and output
data, denoted as Z=[z1 z2...zM ]T = [X y].

5.3.2 Locally Weighted Factor Analysis

Factor analysis[8] is a density estimation technique that assumes that the
observed data z were actually generated from a lower-dimensional process,
characterized by k-latent or hidden variables v that are all independently
distributed with mean zero and unit variance. The observed variables are
generated from the latent variables through the transformation matrix U
and additive mean zero independent noise ǫ with diagonal covariance matrix
Ω:

z = Uv + ǫ, (5.3)

where

z =

[

x

y

]

, ǫ =

[

ǫx

ǫy

]

, E{ǫǫT} = Ω, (5.4)

and E{.} denotes the expectation operator. If both v and ǫ are normally
distributed, the parameters Ω and U can be obtained iteratively by the
expectation-maximization (EM) algorithm[28].

Factor analysis can be adapted for linear regression problems by assuming
that z was generated with

U = [Id β]T , (5.5)

v = x, (5.6)

where β denotes the vector of regression coefficients of the linear model
y = βTx and Id the d-dimensional identity matrix. For the standard
regression model, ǫx would be zero, that is, we consider noise contamination
in the output only; for numerical reasons, however, some remaining variance
needs to be permitted and we prefer to leave it to the EM algorithm to find
the optimal values of the covariance Ω. After calculating Ω and U with EM
in joint data space as formulated in (5.3), an estimate of β can be derived
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from the conditional probability p(y|x). Let us denote Z=[z1 z2...zM ]T and
V=[v1 v2...vM ]T . The locally weighted version (LWFA) of β can be obtained
together with an estimate of the factors v from the joint weighted covariance
matrix Ψ of z and v as

E{

[

y

v

]

|x} =

[

βT

B

]

x = Ψ21Ψ
−1
11 x, (5.7)

where

Ψ = [ZT VT ]W

[

Z

V

]

/

M
∑

i=1

wi =

[

Ω + UUT U

UT Id

]

=

[

Ψ11 Ψ12

Ψ21 Ψ22

]

,

and B is a matrix of coefficients involved in estimating the factors v. Note
that unless the noise ǫx is zero, the estimated β is different from the true
β as it tries to optimally average out the noise in the data. Thus, factor
analysis can also be conceived of as a tool for linear regression with noise-
contaminated inputs.

5.3.3 Partial Least Squares

Partial least squares (PLS)[49, 10], a technique used extensively in chemo-
metrics, recursively computes orthogonal projections of the input data and
performs single variable regressions along these projections on the residu-
als of the previous iteration step. It is outlined in algorithm 5.1. The key
ingredient in PLS is to use the direction of maximal correlation between
the residual error and the input data as the projection direction at every
regression step. Additionally, PLS regresses the inputs of the previous step
against the projected inputs s in order to ensure the orthogonality of all
the projections u (step 2c). Actually, this additional regression could be
avoided by replacing p with u in step 2c, similar to techniques used in
PCA[30]. However, using this regression step leads to better performance
of the algorithm as PLS chooses the most effective projections if the in-
put data have a spherical distribution: in the spherical case, with only one
projection, PLS will find the direction of the gradient and achieve optimal
regression results. The regression step in 2(c) in algorithm 5.1 chooses the
reduced input data Xres such that the resulting data vectors have minimal
norms and, hence, push the distribution of Xres to become more spherical.
An additional consequence of 2(c) is that all the projections si become un-
correlated, that is, sT

j si = 0 ∀i 
= j, a property which will be important in
the derivations below.

5.3.4 Other Techniques

There are several other approaches to local dimensionality reduction, in-
cluding principal component regression[22, 45], and principal component in
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1. Initialize: Xres = X, yres = y

2. for i = 1 to k do

(a) ui = XT
resyres.

(b) βi = sT
i yres/(s

T
i si) where si = Xresui.

(c) yres = yres − siβi, Xres = Xres − sipi
T

where pi = XT
ressi/(s

T
i si).

Algorithm 5.1 Outline of PLS regression algorithm

joint space(LWPCA J). Both of these methods can be regarded as locally
weighted factor analysis models with specific constraints on the structure
of the data generating model, and restrictive assumptions about the gener-
ative probabilistic model. As shown in [36], the methods are always inferior
to the full formulation of factor analysis from the previous section.

5.3.5 Which Approach to Choose?

Schaal et al.[36] demonstrated that both LWPLS and LWFA perform ap-
proximately the same under a large variety of evaluation sets. This result
was originally slightly surprising, as LWPLS has more of a heuristic com-
ponent than the theoretically principled factor analysis, a fact that leads to
naturally favoring factor analysis models. However, there are two compo-
nents that lift LWPLS above LWFA for our approximate nearest-neighbor
approach. First, we wish to learn incrementally and remain computation-
ally inexpensive in high dimensions. For this purpose, one would like to have
a constructive approach to factor analysis, that is, an approach that adds
latent variables as needed, a pruning approach, starting from the maximal
latent variable dimensionality, would be unacceptably expensive. Empir-
ically, [36] found that LWFA performs a lot worse if the latent variable
space is underestimated, meaning that a constructive approach to LWFA
would have transients of very bad performance until enough data were en-
countered to correctly estimate the latent space. For applications in robot
control, for instance, such behavior would be inappropriate.

Second, besides redundant variables, we also expect a large number of
irrelevant variables in our input data. This scenario, however, is disadvan-
tageous for LWFA, as in the spirit of a density estimation technique, it
needs to model the full dimensionality of the latent space, and not just
those dimensions that matter for regression. In empirically evaluations (not
shown here) similar to [36], we confirmed that LWFA’s performance de-
grades strongly if it does not have enough latent variables to represent the
irrelevant inputs. LWPLS, in contrast, uses the projection step based on
input-output correlation to exclude irrelevant inputs, which exhibits very
reliable and good performance even if there are many irrelevant and redun-
dant inputs.
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Table 5.1 Legend of indexes and symbols used for LWPR

Notation Affectation

M No. of training data points

N Input dimensionality (i.e., dim. of x)

k = (1 : K) No. of local models

r = (1 : R) No. of local projections used by PLS

{xi, yi}
M
i=1 Training data

{zi}
M
i=1 Lower-dimensional projection of input data xi

{zi,r}
R
r=1 Elements of projected input

X, Z Batch representations of input and projected data

w Weight or activation of data (x, y) with respect to

local model or receptive field(RF) center c

W Weight matrix: W ≡ diag{w1, . . . , wN}

W n Cumulative weights seen by local model

an
var,r Trace variable for incremental computation of rth

dimension of variable var after seeing n data points

These considerations make LWPLS a superior choice for approximate
nearest-neighbors in high dimensions. In the next section, we embed LW-
PLS in an incremental nonlinear function approximator to demonstrate its
abilities for nontrivial function-fitting problems.

5.4 Locally Weighted Projection Regression

For nonlinear function approximation, the core concept of our learning sys-
tem - locally weighted projection regression (LWPR)- is to find approxima-
tions by means of piecewise linear models[2]. Learning involves automati-
cally determining the appropriate number of local models K, the parameters
βk of the hyperplane in each model, and also the region of validity, called
receptive field (RF), parameterized as a distance metric Dk in a Gaussian
kernel:

wk = exp(−
1

2
(x − ck)

TDk(x − ck)). (5.8)

Given a query point x, every linear model calculates a prediction ŷk(x). The
total output of the learning system is the normalized weighted mean of all
K linear models:

ŷ =
K

∑

k=1

wkŷk/
K

∑

k=1

wk, (5.9)

also illustrated in Figure 5.2. The centers ck of the RFs remain fixed in order
to minimize negative interference during incremental learning that could
occur due to changing input distributions[35]. Local models are created on
an “as-needed” basis as described in sub-section 5.4.2. Table 5.1 provides a
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reference list of indices and symbols that are used consistently across the
description of the LWPR algorithm.

5.4.1 Learning with Locally Weighted Projection Regression

Despite its appealing simplicity, the “piecewise linear modeling” approach
becomes numerically brittle and computationally too expensive in high-
dimensional input spaces when using ordinary linear regression to deter-
mine the local model parameters[35]. Given the empirical observation (cf.
section 5.2) that high-dimensional data often lie on locally low-dimensional
distributions, and given the algorithmic results in section 5.3, we will thus
use local projection regression, that is, LWPLS, within each local model
to fit the hyperplane. As a significant computational advantage, we expect
that far fewer projections than the actual number of input dimensions are
needed for accurate learning. The next sections will describe the necessary
modifications of LWPLS for this implementation, embed the local regression
into the LWL framework, explain a method of automatic distance metric
adaptation, and finish with a complete nonlinear learning scheme, called
locally weighted projection regression (LWPR).

Incremental Computation of Projections and Local Regression

For incremental learning, that is, a scheme that does not explicitly store any
training data, the sufficient statistics of the learning algorithm need to be
accumulated in appropriate variables. Algorithm 5.2[46] provides suitable
incremental update rules. The variables azz,r, azres,r, and axz,r are sufficient
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1. Initialization: (# data points seen n = 0)
x0

0 = 0, β0
0 = 0, W 0 = 0, u0

r = 0; r = 1 : R

2. Incorporating new data: Given training point (x, y)

2a. Compute activation and update the means

1. w = exp(− 1
2
(x− c)T D(x− c)); W n+1 = λW n + w

2. xn+1
0 = (λW nxn

0 + wx)/W n+1; βn+1
0 = (λW nβn

0 + wy)/W n+1

2b. Compute the current prediction error

xres,1 = x − xn+1
0 , ŷ = βn+1

0

Repeat for r = 1 : R (# projections)

1. zr = xT
res,ru

n
r /

p

un
r

T un
r

2. ŷ ← ŷ + βn
r zr

3. xres,r+1 = xres,r − zrp
n
r

4. MSEn+1
r = λMSEn

r + w (y − ŷ)2

ecv = y − ŷ

2c. Update the local model

res1 = y − βn+1
0

For r = 1 : R (# projections)

2c.1 Update the local regression and compute residuals

1. an+1
zz,r = λ an

zz,r + w z2
r ; an+1

zres,r = λ an
zres,r + w zr resr

2. βn+1
r = an+1

zres,r/an+1
zz,r

3. resr+1 = resr − zrβ
n+1
r

4. an+1
xz,r = λ an

xz,r + wxres,rzr

2c.2 Update the projection directions

1. un+1
r = λ un

r + wxres,r resr

2. pn+1
r = an+1

xz,r/an+1
zz,r

e = resr+1

3. Predicting with novel data (xq):
Initialize: yq = β0,xq = xq − x0

Repeat for r = 1 : R

1. yq ← yq + βrsr where sr = uT
r xq

2. xq ← xq − srp
n
r

Note: The subscript k referring to the kth local model is omitted throughout
this table since we are referring to updates in one local model or RF.

Algorithm 5.2 Incremental locally weighted PLS for one RF centered at c
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statistics that enable us to perform the univariate regressions in step 2c.1.2
and step 2c.2.2, similar to recursive least squares, that is, a fast Newton-
like incremental learning technique. λ ∈ [0, 1] denotes a forgetting factor
that allows exponential forgetting of older data in the sufficient statistics.
Forgetting is necessary in incremental learning since a change of some
learning parameters will affect a change in the sufficient statistics; such
forgetting factors are a standard technique in recursive system identification
[21]. It can be shown that the prediction error of step 2b corresponds to the
leave-one-out cross-validation error of the current point after the regression
parameters were updated with the data point; hence, it is denoted by ecv.

In algorithm 5.2, for R = N , that is, the same number of projections
as the input dimensionality, the entire input space would be spanned by
the projections ur and the regression results would be identical to that
of ordinary linear regression[49]. However, once again, we would like to
emphasize the important properties of the local projection scheme. First, if
all the input variables are statistically independent and have equal variance,3

PLS will find the optimal projection direction ur in roughly a single sweep
through the training data; the optimal projection direction corresponds to
the gradient of the local linearization parameters of the function to be
approximated. Second, choosing the projection direction from correlating
the input and the output data in step 2b.1 automatically excludes irrelevant
input dimensions. And third, there is no danger of numerical problems due
to redundant input dimensions as the univariate regressions can easily be
prevented from becoming singular.

Given that we will adjust the distance metric to optimize the local model
approximation (see below), it is also possible to perform LWPR with only
one projection direction (denoted as LWPR-1). In this case, this distance
metric will have to be adjusted to find the optimal receptive field size
for a local linearization as well as to make the locally weighted input
distribution spherical. An appropriate learning rule of the distance metric
can accomplish this adjustment, as explained below. It should be noted that
LWPR-1 is obtained from algorithm5.2 by setting R = 1.

Adjusting the Shape and Size of the Receptive Field

The distance metric D and hence the locality of the receptive fields can be
learned for each local model individually by stochastic gradient descent in
a penalized leave-one-out cross-validation cost function[35]:

J =
1

∑M
i=1 wi

M
∑

i=1

wi(yi − ŷi,−i)
2 +

γ

N

N
∑

i,j=1

D2
ij , (5.10)

where M denotes the number of data points in the training set. The first
term of the cost function is the mean leave-one-out cross-validation error
of the local model (indicated by the subscript i,−i) which ensures proper
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Table 5.2 Derivatives for distance metric update

For the current data point x, its PLS projection z and activation w:
(Refer to table 5.2 for some of the variables)

∂J

∂M
≈ (

M
X

i=1

∂J1

∂w
)

∂w

∂M
+

w

W n+1

∂J2

∂M
[stochastic update of (5.12)]

∂w

∂Mkl
= −

1

2
w(x − c)T ∂D

∂Mkl
(x − c);

∂J2

∂Mkl
= 2

γ

N

N
X

i,j=1

Dij
∂Dij

∂Mkl

∂Dij

∂Mkl
= Mkjδil + Mkiδjl; where δij = 1 if i = j, else δij = 0.

M
X

i=1

∂J1

∂w
=

e2
cv

W n+1
−

2 e

W n+1
qT an

H −
2

W n+1
q2T

an
G −

an+1
E

(W n+1)2

where z =

2

6

6

4

z1

...

zR

3

7

7

5

z2 =

2

6

6

4

z2
1

...

z2
R

3

7

7

5

q =

2

6

6

4

z1/an+1
zz,1

...

zR/an+1
zz,R

3

7

7

5

an+1
H = λan

H +
w ecvz

(1 − h)
; an+1

G = λan
G +

w2e2
cvz

2

(1 − h)

where h = wzT q

an+1
E = λan

E + we2
cv

generalization[35]. The second term, the penalty term, makes sure that re-
ceptive fields cannot shrink indefinitely in case of large amounts of training
data; such shrinkage would be statistically correct for asymptotically un-
biased function approximation, but it would require maintaining an ever
increasing number of local models in the learning system, which is compu-
tationally too expensive. The tradeoff parameter γ can be determined either
empirically or from assessments of the maximal local curvature of the func-
tion to be approximated[34]; in general, results are not very sensitive to this
parameter[35] as it primarily affects resource efficiency.

It should be noted that due to the local cost function in (5.10), learning
becomes entirely localized, too, that is, no parameters from other local
models are needed for updates as, for instance, in competitive learning
with mixture models. Moreover, minimizing (5.10) can be accomplished in
an incremental way without keeping data in memory[35]. This property is
due to a reformulation of the leave-one-out cross-validation error as the
PRESS residual error[4]. As detailed in[35] the bias-variance tradeoff is
thus resolved for every local model individually such that an increasing
number of local models will not lead to overfitting; indeed, it leads to better
approximation results due to model averaging [e.g. (5.9)]in the sense of
committee machines[25].



Approximate Nearest Neighbor Regression in Very High Dimensions 117

In ordinary weighted linear regression, expanding (5.10) with the PRESS
residual error results in

J =
1

∑M
i=1 wi

M
∑

i=1

wi(yi − ŷi)
2

(1 − wix
T
i Pxi)2

+
γ

N

N
∑

i,j=1

D2
ij, (5.11)

where P corresponds to the inverted weighted covariance matrix of the input
data. Interestingly, the PRESS residuals of (5.11) can be exactly formulated
in terms of the PLS projected inputs zi ≡ [zi,1 . . . zi,R]T (algorithm 5.2) as

J =
1

∑M
i=1 wi

M
∑

i=1

wi(yi − ŷi)
2

(1 − wizT
i Pzzi)2

+
γ

N

N
∑

i,j=1

D2
ij

≡
1

∑M
i=1 wi

M
∑

i=1

J1 +
γ

N
J2, (5.12)

where Pz corresponds to the covariance matrix computed from the projected
inputs zi for R = N , that is, the zi’s span the same full-rank input space4 as
the xi’s in (5.11). It can also been deduced that Pz is diagonal, which greatly
contributes to the computational efficiency of our update rules. Based on
this cost function, the distance metric in LWPR is learned by gradient
descent:

Mn+1 = Mn − α
∂J

∂M
where D = MTM (for positive definiteness),

where M is an upper triangular matrix resulting from a Cholesky decom-
position of D. Following[35], a stochastic approximation of the gradient ∂J

∂M

of (5.12) can be derived by keeping track of several sufficient statistics as
shown in table 5.2. It should be noted that in these update laws, we treated
the PLS projection direction and hence z as if it were independent of the
distance metric, such that chain rules need not be taken throughout the
entire PLS recursions. Empirically, this simplification did not seem to have
any negative impact and reduced the update rules significantly.

5.4.2 The Complete LWPR Algorithm

All update rules can be combined in an incremental learning scheme that
automatically allocates new locally linear models as needed. The concept of
the final learning network is illustrated in figure 5.2 and an outline of the
final LWPR algorithm is shown in algorithm 5.3.

In this pseudocode, wgen is a threshold that determines when to create a
new receptive field, as discussed in [35], wgen is a computational efficiency
parameter and not a complexity parameter as in mixture models. The closer
wgen is set to 1, the more overlap local models will have, which is beneficial in
the spirit of committee machines (cf. [35, 25]) but more costly to compute; in
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1: Initialize the LWPR with no receptive field (RF)
2: for every new training sample (x,y) do
3: for k=1 to K(# of receptive fields) do
4: calculate the activation from (5.8)
5: update projections and regression (algorithm 5.2) and distance metric (table 5.2),
6: check if number of projections needs to be increased (cf. subsection 5.4.2).
7: end for
8: if no RF was activated by more than wgen then
9: create a new RF with R = 2, c = x, D = Ddef .
10: end if
11: end for

Algorithm 5.3 Pseudocode of the complete LWPR algorithm

general, the more overlap is permitted, the better the function fitting results,
without any danger that the increase in overlap can lead to overfitting. Ddef

is the initial (usually diagonal) distance metric in (5.8). The initial number
of projections is set to R = 2. The algorithm has a simple mechanism of
determining whether R should be increased by recursively keeping track of
the mean-squared error (MSE) as a function of the number of projections
included in a local model, that is, step 2b.4 in algorithm 5.2. If the MSE
at the next projection does not decrease more than a certain percentage of
the previous MSE, that is, MSEr+1

MSEr
> φ, where φ ∈ [0, 1], the algorithm

will stop adding new projections locally. As MSEr can be interpreted as an
approximation of the leave-one-out cross-validation error of each projection,
this threshold criterion avoids problems due to overfitting. Due to the need
to compare the MSE of two successive projections, LWPR needs to be
initialized with at least two projection dimensions.

Speedup for Learning from Trajectories

If in incremental learning, training data are generated from trajectories,
that is, data are temporally correlated, it is possible to accelerate lookup
and training times by taking advantage of the the fact that two consecutively
arriving training points are close neighbors in input space. For such cases,
we added a special data structure to LWPR that allows restricting updates
and lookups only to a small fraction of local models instead of exhaustively
sweeping through all of them. For this purpose, each local model maintains a
list of all other local models that overlap sufficiently with it. Sufficient over-
lap between two models i and j can be determined from the centers and
distance metrics. The point x in input space that is the closest to both cen-
ters in the sense of a Mahalanobis distance is x = (Di+Dj)

−1(Dici+Djcj).
Inserting this point into (5.8) of one of the local models gives the activation
w due to this point. The two local models are listed as sufficiently over-
lapping if w ≥ wgen (cf. algorithm 5.3). For diagonal distance metrics, the
overlap computation is linear in the number of inputs. Whenever a new data
point is added to LWPR, one neighborhood relation is checked for the max-
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imally activated RF. An appropriate counter for each local model ensures
that overlap with all other local models is checked exhaustively. Given this
“nearest-neighbor” data structure, lookup and learning can be confined to
only a few RFs. For every lookup (update), the identification number of the
maximally activated RF is returned. The next lookup (update) will only
consider the neighbors of this RF. It can be shown that this method per-
forms as well as an exhaustive lookup (update) strategy that excludes RFs
that are activated below a certain threshold wcutoff .

Pruning of Local Models

As in the RFWR algorithm[35], it is possible to prune local models depend-
ing upon the level of overlap between two local models and the accumulated
locally weighted mean-squared error; the pruning strategy is virtually iden-
tical as in [[35], section 3.14]. However, due to the numerical robustness of
PLS, we have noticed that the need for pruning or merging is almost nonex-
istent in the LWPR implementation, such that we do not expand on this
possible feature of the algorithm.

Computational Complexity

For a diagonal distance metric D and under the assumption that the number
of projections R remains small and bounded, the computational complexity
of one incremental update of all parameters of LWPR is linear in the
number of input dimensions N . To the best of our knowledge, this property
makes LWPR one of the computationally most efficient algorithms that
have been suggested for high-dimensional function approximation. This low
computational complexity sets LWPR apart from our earlier work on the
RFWR algorithm[35], which was cubic in the number of input dimensions.
We thus accomplished one of our main goals, that is, maintaining the
appealing function approximation properties of RFWR while eliminating
its problems in high-dimensional learning problems.

Confidence Intervals

Under the classical probabilistic interpretation of weighted least squares[12],
that is, that each local model’s conditional distribution is normal with
heteroscedastic variances p(y|x; wk) ∼ N(zk

T βk, sk
2/wk), it is possible to

derive the predictive variances σ2
pred,k for a new query point xq for each

local model in LWPR.5 The derivation of this measure is in analogy with
ordinary linear regression[33, 23] and is also consistent with the Bayesian
formulation of predictive variances [12]. For each individual local model,
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σ2
pred,k can be estimated as (see table 5.2 and algorithm 5.2 for variable

definitions):

σ2
pred,k = s2

k(1 + wkz
T
q,kqk), (5.13)

where zq,k is the projected query point xq under the kth local model, and

sk
2 ≈ MSEn=M

k,R /(M ′
k − p′k); M ′

k ≡
M

∑

i=1

wk,i ≈ Wk
n=M ,

p′k ≡
M

∑

i=1

w2
k,iz

T
k,iqk,i ≈ an=M

p′k
,

with incremental update of an+1
p′k

= λan
p′k

+ wk
2zk

Tqk.

The definition of M ′ in terms of the sum of weights reflects the effective
number of data points entering the computation of the local variance sk

2[33]
after an update of M training points has been performed. The definition of
p′, also referred to the as the local degrees of freedom, is analogous to the
global degrees of freedom of linear smoothers [16, 33].

In order to obtain a predictive variance measure for the averaging formula
(5.9), one could just compute the weighed average of the predictive variance
in (5.13). While this approach is viable, it nevertheless ignores important
information that can be obtained from variance of the individual predictions
ŷq,k and is thus potentially too optimistic. To remedy this issue, we postulate
that from the view of combining individual ŷq,k, each contributing yq,k was
generated from the process

yq,k = yq + ǫ1 + ǫ2,k,

where we assume two separate noise processes: (i) one whose variance σ2

is independent of the local model, that is, ǫ1 ∼ N(0, σ2/wk) (and accounts
for the differences between the predictions of the local models), and (ii)
another, which is the noise process ǫ2,k ∼ N(0, σ2

pred,k/wk) of the individual
local models. It can be shown that (5.9) is a consistent way of combining
prediction from multiple models under the noise model we just described and
that the combined predictive variance over all models can be approximated
as

σ2
pred =

∑

k wk σ2

(
∑

k wk)2
+

∑

k wk σ2
pred,k

(
∑

k wk)2
. (5.14)

The estimate of σpred,k is given in (5.13). The global variance across models
can be approximated as σ2 =

∑

k wk(ŷq − ŷk,q)
2/

∑

k wk. Inserting these
values in (5.14), we obtain

σ2
pred =

1

(
∑

k wk)2

K
∑

k=1

wk[(ŷq − ŷk,q)
2 + s2

k(1 + wkz
T
k qk)]. (5.15)
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Figure 5.3 Function approximation with 200 noisy data points along with plots of confidence
intervals for (a) Gaussian Process Regression and (b) LWPR algorithms. Note the absence of
data in the range [0.5 1.5]

A one-standard-deviation-based confidence interval would thus be

Ic = ŷq ± σpred. (5.16)

The variance estimate in (5.14) is consistent with the intuitive requirement
that when only one local model contributes to the prediction, the variance is
entirely attributed to the predictive variance of that single model. Moreover,
a query point that does not receive a high weight from any local model will
have a large confidence interval due to the small squared sum-of-weight
value in the denominator. Figure 5.3 illustrates comparisons of confidence
interval plots on a toy problem with 200 noisy data points. Data from the
range [0.5 1.5] was excluded from the training set. Both GPR and LWPR
show qualitatively similar confidence interval bounds and fitting results.

5.5 Empirical Evaluation

The following sections provide an evaluation of our proposed LWPR learning
algorithm over a range of artificial and real-world data sets. Whenever useful
and feasible, comparisons to state-of-the-art alternative learning algorithms
are provided, in particular SVMR and GPR. SVMR and GPR were chosen
due to their generally acknowledged excellent performance in nonlinear
regression on finite data sets. However, it should be noted, that both SVMR
and GPR are batch learning systems, while LWPR was implemented as a
fully incremental algorithm, as described in the previous sections.
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Figure 5.4 (a) Target and (b) learned nonlinear cross-function.(c) Learning curves for 2D,
10D and 20D data. (d) The automatically tuned distance metric.

5.5.1 Function Approximation with Redundant and Irrelevant Data

We implemented the LWPR algorithm as outlined in section 5.4. In each
local model, the projection regressions are performed by (locally weighted)
PLS, and the distance metric D is learned by stochastic incremental cross-
validation; all learning methods employed second-order learning techniques,
that is, incremental PLS uses recursive least squares, and gradient descent
in the distance metric was accelerated as described in [35]. In all our
evaluations, an initial (diagonal) distance metric of Ddef = 30I was chosen;
the activation threshold for adding local models was wgen = 0.2, and the
threshold for adding new projections was φ = 0.9 (cf. subsection 5.4.2).
As a first test, we ran LWPR on 500 noisy training data drawn from the
two-dimensional function (cross 2D) generated from

y = max{exp(−10x2
1), exp(−50x2

2, 1.25exp(−5(x2
1 + x2

2)))} + N(0, 0.01),

as shown in figure 5.4(a). This function has a mixture of areas of rather
high and rather low curvature and is an interesting test of the learning
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and generalization capabilities of a learning algorithm: learning models
with low complexity find it hard to capture the nonlinearities accurately,
while more complex models easily overfit, especially in linear regions. A
second test added eight constant (i.e., redundant) dimensions to the inputs
and rotated this new input space by a random 10D rotation matrix to
create a 10D input space with high rank deficiency (cross 10D). A third
test added another ten (irrelevant) input dimensions to the inputs of the
second test, each having N(0, 0.052) Gaussian noise, thus obtaining a data
set with 20D input space (cross 20D). Typical learning curves with these
data sets are illustrated in figure 5.4(c). In all three cases, LWPR reduced
the normalized mean squared error (thick lines) on a noiseless test set
(1681 points on a 41x41 grid in the unit-square in input space) rapidly
in ten to twenty epochs of training to less than nMSE = 0.05, and it
converged to the excellent function approximation result of nMSE = 0.015
after 100,000 data presentations or 200 epochs.6 Figure 5.4(b) illustrates the
reconstruction of the original function from the 20D test data, visualized
in 3D - a highly accurate approximation. The rising lines in figure 5.4(c)
show the number of local models that LWPR allocated during learning. The
lines at the bottom of the graph indicate the average number of projections
that the local models allocated: the average settled at a value of around
two local projections, as is appropriate for this originally 2D data set. This
set of tests demonstrate that LWPR is able to recover a low-dimensional
nonlinear function embedded in high-dimensional space despite irrelevant
and redundant dimensions, and that the data efficiency of the algorithm
does not degrade in higher-dimensional input spaces. The computational
complexity of the algorithm only increased linearly with the number of
input dimensions, as explained in section 5.4.

The results of these evaluations can be directly compared with our earlier
work on the RFWR algorithm[35], in particular figures 4 and 5 of this
earlier paper. The learning speed and the number of allocated local models
for LWPR is essentially the same as for RFWR in the 2D test set. Applying
RFWR to the 10D and 20D data set of this paper, however, is problematic,
as it requires a careful selection of initial ridge regression parameters to
stabilize the highly rank-deficient full covariance matrix of the input data,
and it is easy to create too much bias or too little numerical stabilization
initially, which can trap the local distance metric adaptation in local minim.
While the LWPR algorithm just computes about a factor ten times longer
for the 20D experiment in comparison to the 2D experiment, REFER
requires a 1000-fold increase of computation time, thus rendering this
algorithm unsuitable for high-dimensional regression.

In order to compare LWPR’s results to other popular regression methods,
we evaluated the 2D, 10D, and 20D cross data sets with GPR and SVMR in
addition to our LWPR method. It should be noted that neither SVMR nor
GPR methods is an incremental method, although they can be considered
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Figure 5.5 Normalized mean squared error comparisons between LWPR and Gaussian Pro-
cesses for 2D, 10D and 20D Cross data sets

the state-of-the-art for batch regression under relatively small number
of training data and reasonable input dimensionality. The computational
complexity of these methods are prohibitively high for realtime applications.
The GPR algorithm[14] used a generic covariance function and optimized
over the hyperparameters. The SVMR was performed using a standard
available package[29] and optimized for kernel choices.

Figure 5.5 compares the performance of LWPR and GPR for the above
mentioned data sets using 100, 300, and 500 training data points.7 As in
figure 5.4, the test data set consisted of 1681 data points corresponding
to the vertices of a 41x41 grid over the unit square; the corresponding
output values were the exact function values. The approximation error was
measured as a normalized weighted mean squared error, nMSE, i.e, the
weighted MSE on the test set normalized by the variance of the outputs of
the test set; the weights were chosen as 1/σ2

pred,i for each test point xi. Using
such a weighted nMSE was useful to allow the algorithms to incorporate
their confidence in the prediction of a query point, which is especially useful
for training data sets with few data points where query points often lie far
away from any training data and require strong extrapolation to form a
prediction. Multiple runs on ten randomly chosen training data sets were
performed to accumulate the statistics.

As can be seen from figure 5.5, the performance differences between
LWPR and GPR were largely statistically insignificant across training
data sizes and input dimensionality. LWPR had a tendency to perform
slightly better on the 100-point data sets, most likely due to its quickly
decreasing confidence when significant extrapolation is required for a test
point. For the 300-point data sets, GPR had a minor advantage and less
variance in its predictions, while for 500-point data sets both algorithms
achieved equivalent results. While GPRs used all the input dimensions
for predicting the output (deduced from the final converged coefficients
of the covariance matrix), LWPR stopped at an average of two local
projections, reflecting that it exploited the low dimensional distribution
of the data. Thus, this comparison illustrates that LWPR is a highly
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Table 5.3 Comparison of nMSE on Boston and Abalone data sets

Gaussian Process Support Vectors LWPR

Boston 0.0806 ± 0.0195 0.1115 ± 0.09 0.0846 ± 0.0225

Abalone 0.4440 ± 0.0209 0.4830 ± 0.03 0.4056 ± 0.0131

competitive learning algorithm in terms of its generalization capabilities and
accuracy of results, despite it being a truly incremental, computationally
efficient and real-time implementable algorithm.

5.5.2 Comparisons on Benchmark Regression Data Sets

While LWPR is specifically geared toward real-time incremental learning in
high dimensions, it can nevertheless also be employed for traditional batch
data analysis. Here we compare its performance on two natural real-world
benchmark datasets, using again GPR and SVMR as competitors.

The data sets we used were the Boston housing data and the Abalone
data set, both available from the UCI Machine Learning Repository[18]. The
Boston housing data, which had fourteen attributes, was split randomly (10
random splits) into disjoint sets of 404 training and 102 testing data. The
Abalone data set, which had nine attributes, was downsampled to yield ten
disjoint sets of 500 training data points and 1177 testing points.8

The GPR used hyperparameter estimation for the open parameters of the
covariance matrix while for SVMR, the results were obtained by employing
a Gaussian kernel of width 3.9 and 10 for the Boston and Abalone data
sets, respectively, based on the optimized values suggested in [38]. Table 5.3
shows the comparisons of the nMSE achieved by GPR, SVMR and LWPR
on both these data sets. Once again, LWPR was highly competitive on these
real-world data sets, consistently outperforming SVMR and achieving very
similar nMSE results as GPR.

5.5.3 Sensorimotor Learning in High Dimensional Space

In this section, we look at the application of LWPR to realtime learning in
high-dimensional spaces in a data-rich environment - an example of which
is learning for robot control. In such domains, LWPR is -to the best of
our knowledge - one of the only viable and practical options for principled
statistical learning. The goal of learning in this evaluation is to estimate
the inverse dynamics model (also referred to as an internal model) of the
robotic system such that it can be used as a component of a feedforward
controller for executing fast accurate movements.

Before demonstrating the applicability of LWPR in realtime, a comparison
with alternative learning methods will serve to demonstrate the complexity
of the learning task. We collected 50,000 data points from various movement
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Figure 5.6 (a) Sarcos dextrous arm. (b) Comparison of nMSE learning curves for learning
the robot’s inverse dynamics model for the shoulder DOF.

patterns from a 7DOF anthropomorphic robot arm [figure 5.6(a)], sampled
at 50 Hz. The learning task was to fit the the inverse dynamics model
of the robot, a mapping from seven joint positions, seven joint velocities,
and seven joint accelerations to the corresponding seven joint torques
(i.e, a 21D to 7D function). Ten percent of these data were excluded
from training as a test set. The training data were approximated by four
different methods: (i) parameter estimation based on an analytical rigid-
body dynamics model[1], (ii) SVMR[29] (using a ten-fold downsampled
training set for computational feasibility), (iii) LWPR-1, that is, LWPR that
used only one single projection (cf. 5.4.1), and (iv) full LWPR. It should be
noted that neither (i) nor (ii) is an incremental method. Using a parametric
rigid-body dynamics model as suggested in (i) and just approximating its
open parameters from data results in a global model of the inverse dynamics
that is theoretically the most powerful method. However, given that our
robot is actuated hydraulically and is rather lightweight and compliant, we
know that the rigid body dynamics assumption is not fully justified. In
all our evaluations, the inverse dynamics model of each DOF was learned
separately, that is, all models had a univariate output and twenty-one
inputs. LWPR employed a diagonal distance metric.

Figure 5.6 illustrates the function approximation results for the shoulder
motor command graphed over the number of training iterations (one iter-
ation corresponds to the update from one data point). Surprisingly, rigid-
body parameter estimation achieved the worst results. LWPR-1 outper-
formed parameter estimation, but fell behind SVMR. Full LWPR performed
the best. The results for all other DOFs were analogous and are not shown
here. For the final result, LWPR employed 260 local models, using an av-
erage of 3.2 local projections. LWPR-1 did not perform better because we
used a diagonal distance metric. The abilities of a diagonal distance metric
to “carve out” a locally spherical distribution are too limited to accomplish
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Figure 5.7 (a) The 30-DOF Sarcos humanoid robot. (b) Results of online learning of the
inverse dynamics with LWPR on the humanoid robot.

better results; a full distance metric can remedy this problem, but would
make the learning updates quadratic in the number of inputs. As in the
previous sections, these results demonstrate that LWPR is a competitive
function approximation technique that can be applied successfully in real
world applications.

Online Learning for Humanoid Robots

We implemented LWPR on the realtime operating system (vxWorks) for
two of our robotic setups, the 7DOF Sarcos dextrous arm mentioned above
in figure 5.6(a), and the Sarcos humanoid robot in figure 5.7(a), a 30DOF
system. Out of the four parallel processors of the system, one 366 MHz
PowerPC processor was completely devoted to lookup and learning with
LWPR.

For the dexterous arm, each DOF had its own LWPR learning system,
resulting in seven parallel learning modules. In order to accelerate lookup
and training times, the nearest-neighbor data lookup described on page
118 was utilized. The LWPR models were trained online while the robot
performed a randomly drifting figure-eight pattern in front of its body.
Lookup proceeded at 480 Hz, while updating the learning model was
achieved at about 70 Hz. At 10-second intervals, learning was stopped and
the robot attempted to draw a planar figure eight in the x-z plane of the
robot end effector at 2 Hz frequency for the entire pattern. The quality
of these drawing patterns is illustrated in figure 5.8. In figure 5.8(a), Xdes

denotes the desired figure eight pattern, Xsim illustrates the figure eight
performed by our robot simulator that uses a perfect inverse dynamics model
(but not necessarily a perfect tracking and numerical integration algorithm),
Xparam is the performance of the estimated rigid-body dynamics model, and
Xlwpr shows the results of LWPR. While the rigid-body model has the worst
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Figure 5.8 (a) Trajectories of robot end effector: Xdes is the desired trajectory, Xsim is a
trajectory obtained from a robot simulator that had a perfect controller but numerical inaccuracy
due to the integration of the equations of motion, Xlwpr is the result of a computed torque
controller using LWPR’s approximated inverse model, and Xparam is the trajectory using an
inverse model due to rigid body parameter estimation. (b) Results of online learning with LWPR
starting from scratch, that is, initially with no functional inverse model; the improvement of
control due to LWPR learning is shown at intervals of 10 seconds over the first minute of
learning.

performance, LWPR obtained the best results, even slightly better than the
simulator. Figure 5.8(b) illustrates the speed of LWPR learning. The Xnouff

trace demonstrates the figure eight patterns performed without any inverse
dynamics model, just using a low-gain PD controller. The other traces show
how rapidly LWPR learned the figure eight pattern during training: they
denote performance after 10, 20, 30, and 60 seconds of training. After 60
seconds, the figure eight is hardly distinguishable from the desired trace.

In order to demonstrate the complexity of functions that can be learned
in realtime with LWPR, we repeated the same training and evaluation
procedure with the Sarcos humanoid robot, which used its right hand
to draw a lying figure eight pattern. In this case, learning of the inverse
dynamics model required learning in a 90D input space, and the outputs
were the thirty torque commands for each of the DOFs. As the learning of
thirty parallel LWPR models would have exceeded the computational power
of our 366 MHz real-time processors, we chose to learn one single LWPR
model with a 30D output vector, that is, each projection of PLS in LWPR
regressed all outputs vs. the projected input data. The projection direction
was chosen as the mean projection across all outputs at each projection stage
of PLS. This approach is suboptimal, as it is quite unlikely that all output
dimensions agree on one good projection direction; essentially, one assumes
that the gradients of all outputs point roughly in the same direction. On the
other hand, section 5.2 demonstrated that movement data of actual physical
systems lie on locally low-dimensional distributions, such that one can hope
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that LWPR with multiple outputs can still work successfully by simply
spanning this locally low-dimensional input space with all projections.
Figure 5.7(b) demonstrates the result of learning in a similar way as figure
5.8(b); the notation for the different trajectories in this figure follow as
explained above for the 7DOF robot. Again, LWPR very rapidly improves
over a control system with no inverse dynamics controller, that is, within 10
seconds of movement, the most significant inertial perturbation have been
compensated. Convergence to low error tracking of the figure eight takes
slightly longer, that is, about 300 seconds [X300 in figure 5.7(b)], but is
reliably achieved. About fifty local models were created for this task. The
learned inverse dynamics outperformed a model estimated by rigid-body
dynamics methods significantly [cf. Xparam in figure 5.7(b)].

Online Learning for Autonomous Airplane Control

The online learning abilities of LWPR are ideally suited to be incorporated
in algorithms of provably stable adaptive control. The control theoretic
development of such an approach was presented in Nakanishi et al.[26].
In essence, the problem formulation begins with a specific class of equations
of motion of the form

ẋ = f (x) + g (x)u, (5.17)

where x denotes the state of the control system, the control inputs, and
f (x) and g (x) are nonlinear function to approximated. A suitable control
law for such a system is

u = ĝ (x)−1
(

−f̂ (x) + ẋc + K (xc − x)
)

, (5.18)

where xc, ẋc are a desired reference trajectory to be tracked, and the “hat”
notation indicates that these are the approximated version of the unknown
function.

We applied LWPR in this control framework to learn the unknown
function f and g for the problem of autonomous airplane control on a high-
fidelity simulator. For simplicity, we only considered a planar version of the
airplane, governed by the differential equation[41]:

V̇ = 1
m

(T cos α − D) − g sin γ,

α̇ = − 1
mV

(L + T sin α) + g cos γ
V

+ Q,

Q̇ = cM.

(5.19)

In these equations, V denotes the forward speed of the airplane, m the
mass, T the thrust, α the angle of attack, g the gravity constant, γ the
flight path angle with respect to the horizontal world coordinate system
axis, Q the pitch rate, and c an inertial constant. The complexity of these
equations is hidden in D,L, and M , which are the unknown highly nonlinear
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aerodynamic lift force, drag force, and pitch moment terms, which are
specific to every airplane.

While we will not go into the details of provably stable adaptive control
with LWPR in this chapter and how the control law (5.18) is applied to
for airplane control, from the viewpoint of learning the main components
to learn are the lift and drag forces and the pitch moment. These can be
obtained by rearranging (5.19) to

D = T cos α −
(

V̇ + g sin γ
)

m =

fD (α, Q, V, M, γ, δOFL, δOFR, δMFL, δMFR, δSPL, δSPR)

L =
(

g cos γ
V

+ Q − α̇
)

mV − T sin α =

fL (α, Q, V, M, γ, δOFL, δOFR, δMFL, δMFR, δSPL, δSPR)

M = Q
c

= fM (α, Q, V, M, γ, δOFL, δOFR, δMFL, δMFR, δSPL, δSPR) .
(5.20)

The δ terms denote the control surface angles of the airplane, with indices
midboard-flap-left/right (MFL,MFR), outboard-flap-left/right(OFL,OFR),
and left and right spoilers (SPL,SPR). All terms on the right hand side
of (5.20) are known, such that we have to cope with three simultaneous
function approximation problems in an 11D input space, an ideal application
for LWPR.

We implemented LWPR for the three functions above in a high-fidelity
simulink simulation of an autonomous airplane using the adaptive control
approach of[26]. The airplane started with no initial knowledge, just the
proportional controller term in (5.18) (i.e., the term multiplied by K). The
task of the controller was to fly doublets, that is, up-and-down trajectories,
which are essentially sinusoid like variations of the flight path angle γ

Figure 5.9 demonstrates the results of this experiment. Figure 5.9(a) shows
the desired trajectory in γ and its realization by the controller. Figure 5.9(b-
d) illustrate the online function approximation of D, L, and M . As can be
seen, the control of γ achieves almost perfect tracking after just a very few
seconds. The function approximation of D and L is very accurate after a very
short time. The approximation M requires a longer time for convergence,
but progresses fast. About ten local models were needed for learning fD and
fL, while about twenty local models were allocated for fM .

An interesting element of figure 5.9 happens after 400 seconds of flight,
where we simulated a failure of the airplane mechanics by locking the MFR
to 17-degree deflection. As can be seen, the function approximators very
quickly reorganize after this change, and the flight is successfully continued,
although γ tracking has some error for a while until it converges back to
good tracking performance. The strong signal changes in the first seconds
after the failure are due to oscillations of the control surfaces, and not a
problem in function approximation. Without adaptive control, the airplane
would have crashed.
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Figure 5.9 LWPR learning results for adaptive learning control on a simulated autonomous
airplane (a) Tracking of flight angle γ. (b) Approximation of lift force. (c) Approximation of drag
force, (d) Approximation of pitch moment. At 400 seconds into the flight, a failure is simulated
that locks one control surface to a 17-degree angle. Note that for reasons of clearer illustration,
an axis break was inserted after 200 seconds.

5.6 Bayesian Backfitting

The PLS algorithm described in subsection 5.3.3 has an attractive feature:
rather than reduce the dimensionality of the input data to the most rel-
evant subspace, it deals with the complete dimensionality, and structures
its computation efficiently such that successive computationally inexpensive
univariate regressions suffice rather than expensive matrix inversion tech-
niques. However, PLS also has two heuristic components, that is, the way
the projection directions are selected by an input-output correlation analy-
sis, and the decision on when to stop adding new projection directions. In
this section we suggest a Bayesian algorithm to replace PLS.

Another algorithm similar in vein to PLS is backfitting [16]. The backfit-
ting algorithm estimates additive models of the form

y(x) =

d
∑

m=1

gm(x; θm),
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1: Init: X = [x1 . . .xN ]T , y =
h

y1 . . . yN

iT

, gm,i = gm(xi; θm),gm = [gm,1 . . . gm,N ]T

2: repeat
3: for m = 1 to d do
4: rm ← y −

P

k �=m gk {compute partial residual (fake target)}

5: θm ← arg minθm
(gm − rm)2 {optimize to fit partial residual}

6: end for
7: until convergence of θm

Algorithm 5.4 Algorithm for backfitting.

where the functions gm are adjustable basis functions (e.g., splines), pa-
rameterized by θm. As shown in algorithm 5.4, backfitting decomposes the
statistical estimation problem into d individual estimation problems by us-
ing partial residuals as “fake supervised targets” for each function gm. At
the cost of an iterative procedure, this strategy effectively reduces the com-
putational complexity of multiple input settings, and allows easier numerical
robustness control since no matrix inversion is involved.

For all its computational attractiveness, backfitting presents two serious
drawbacks. There is no guarantee that the iterative procedure outlined in
algorithm 5.4 will converge as this is heavily dependent on the nature of
the functions gm. The updates have no probabilistic interpretation, making
backfitting difficult to insert into the current framework of statistical learn-
ing which emphasizes confidence measures, model selection, and predictive
distributions. It should be mentioned that a Bayesian version of backfitting
has been proposed in [17]. This algorithm however, relies on Gibbs sam-
pling, which is more applicable when dealing with the nonparametric spline
models discussed there, and is quite useful when one wishes to generate
samples from the posterior additive model.

5.6.1 A Probabilistic Derivation of Backfitting

Consider the graphical model shown in figure 5.10(a), which represents the
statistical model for generalized linear regression (GLR)[16]:

y|x ∼ Normal

(

y;

d
∑

m=1

bmfm (x; θm) , ψy

)

Given a data set xD = {(xi, yi)}
N
i=1, we wish to determine the most likely

regression vector v =
[

b1 b2 · · · bd

]T

which linearly combines the basis

functions fm to generate the output y. Since computing the ordinary least
squares (OLS) solution (v =

(

FTF
)−1

FT y) is an O(d3) task that grows
computationally expensive and numerically brittle as the dimensionality of
the input increases, we introduce a simple modification of the graphical
model of figure 5.10(a), which enables us to create the desired algorithmic
decoupling of the predictor functions, and gives backfitting a probabilistic
interpretation. Consider the introduction of random variables zim as shown
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v

(a) Graphical model for
generalized linear
regression.
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zi2

zi1
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f1(xi)

f2(xi)

fd(xi)

b1

b2

bd

yi ψy

(b) Graphical model for
probabilistic backfitting.

Figure 5.10 We modify the original graphical model for generalized linear regression by
inserting hidden variables zim in each branch of the fan-in. This modified model can be solved
using the EM framework to derive a probabilistic version of backfitting.

in figure 5.10(b). These variables are analogous to the output of the gm

function of algorithm 5.4, and can also be interpreted as an unknown
fake target for each branch of the regression fan-in. For the derivation of
our algorithm, we assume the following conditional distributions for each
variable in the model:

yi|zi ∼ Normal
(

yi; 1
Tzi, ψy

)

zim|xi ∼ Normal (zim; bmfm(xi), ψzm)
(5.21)

where 1 = [1, 1, . . . , 1]T . With this modification in place, we are essentially
in a situation where we wish to optimize the parameters

φ =
{

{bm, ψzm}
d
m=1 , ψy

}

,

given that we have observed variables xD = {(xi, yi)}
N
i=1 and that we have

unobserved variables xH = {zi}
N
i=1 in our graphical model. This situation

fits very naturally into the framework of maximum-likelihood estimation
via the EM algorithm, by maximizing the expected complete log likelihood
〈ln p(xD,xH; φ)〉 which, from figure 5.10(b), can be expressed as
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ln p(xD,xH; φ) = −
N

2
lnψy −

1

2ψy

N
∑

i=1

(

yi − 1Tzi

)2

−
d

∑

m=1

[

N

2
ln ψzm +

1

2ψzm

N
∑

i=1

(

zim − bmfm(xi; θm)
)2

]

+ const.
(5.22)

The resulting EM update equations are summarized below:

M-Step :

bm =

∑N
i=1 〈zim〉 fm(xi)
∑N

i=1 fm(xi)2

ψy =
1

N

N
∑

i=1

(

yi − 1T 〈zi〉
)2

+ 1T Σz1

ψzm =
1

N

N
∑

i=1

(〈zim〉 − bmfm(xi))
2 + σ2

zm

E-Step :

1TΣz1 =

(

d
∑

m=1

ψzm

) [

1 −
1

s

(

d
∑

m=1

ψzm

)]

σ2
zm = ψzm

(

1 −
1

s
ψzm

)

〈zim〉 = bmfm(xi) +
1

s
ψzm

(

yi − vT f(xi)
)

where we define s ≡ ψy +
∑d

m=1 ψzm. In addition, the parameters θm of
each function fm can be updated by setting:

N
∑

i=1

(

〈zim〉 − bmfm (xi; θm)
)∂fm (xi; θm)

∂θm
= 0 (5.23)

and solving for θm. As this step depends on the particular choice of
fm, e.g., splines, kernel smoothers, parametric models, etc., we will not
pursue it any further and just note that any statistical approximation
mechanism could be used. Importantly, all equations in both the expectation
and maximization steps are algorithmically O(d) where d is the number of
predictor functions fm, and no matrix inversion is required.

To understand our EM solution as probabilistic backfitting, we note that
backfitting can be viewed as a formal Gauss-Seidel algorithm; an equivalence
that becomes exact in the special case of linear models[16]. For the linear
system FTFv = FTy, the Gauss-Seidel updates for the individual bm are
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bm =

∑N
i=1

(

yi −
∑d

k �=m bkfk(xi)
)

fm(xi)
∑N

i=1 fm(xi)2
. (5.24)

Note that (5.24) - if used naively - only guarantees convergence for very
specially structured matrices. An extension to the Gauss-Seidel algorithm
adds a fraction (1 − ω) of bm to the update and gives us the well-known
relaxation algorithms:

b(n+1)
m = (1 − ω)b(n)

m + ω

∑N
i=1

(

yi −
∑d

k �=m bkfk(xi)
)

fm(xi)
∑N

i=1 fm(xi)2
, (5.25)

which has improved convergence rates for overrelaxation (1 < ω < 2), or
improved stability for underrelaxation (0 < ω < 1). For ω = 1, the standard
Gauss-Seidel/backfitting of equation (5.24) is recovered. The appropriate
value of ω, which allows the iterations to converge while still maintaining
a reasonable convergence rate can only be determined by treating (5.24) as
a discrete dynamical system, and analyzing the eigenvalues of its system
matrix - an O(d3) task. If, however, we substitute the expression for 〈zim〉
in the maximization equation for bm, and set ω = ωm = ψzm/s in (5.25), it
can be shown that (after some algebraic rearrangement,) the two equations
are identical, that is, we indeed derive a probabilistic version of backfitting.

This allows us to now place backfitting within the wider context of
Bayesian machine learning algorithms. In particular, we can place individual
priors over the regression coefficients:

bm ∼ Normal (bm; 0, 1/αm) ,

αm ∼ Gamma (αm; aα, bα) ,

where aα and bα are small enough to select an uninformative Gamma prior
over the precisions αm. Figure 5.11(a) shows the graphical model with
the added priors, while figure 5.11(b) shows the resulting marginal prior
over v. This prior structure favors solutions which have as few nonzero
regression coefficients as possible, and thus performs an automatic relevance
determination (ARD) sparsification of the input dimensions.

We compared the use of PLS and ARD Bayesian backfitting to analyze the
following real-world data set collected from neuroscience. The data set con-
sists of simultaneous recordings (2400 data points) of firing-rate coded activ-
ity in seventy-one motor cortical neurons and the electromyograms(EMGs)
of eleven muscles. The goal is to determine which neurons are responsible
for the activity of each muscle. The relationship between neural and muscle
activity is assumed to be linear, such that the basis functions in backfitting
are simply a copy of the respective input dimensions, that is fm(x) = xm.
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Figure 5.11 By associating an individual gamma distributed precision with each regression
coefficient, we create a marginal prior over v that favors sparse solutions which lie along the
(hyper)-spines of the distribution.

Table 5.4 Results on the neuron-muscle data set

Bayesian backfitting PLS Baseline

neuron match 93.6% 18% —

nMSE 0.8446 1.77 0.84

A brute-force study (conducted by our research collaborators) painstak-
ingly considered every possible combination of neurons (up to groups of
twenty for computational reasons; i.e., even this reduced analysis required
several weeks of computation on a thirty-node cluster computer), to deter-
mine the optimal neuron-muscle correlation as measured on various valida-
tion sets. This study provided us with a baseline neuron-muscle correlation
matrix that we hoped to duplicate with PLS and Bayesian backfitting, al-
though with much reduced computational effort.

The results shown in table 5.4 demonstrate two points:

– The relevant neurons found by Bayesian backfitting contained over 93% of
the neurons found by the baseline study, while PLS fails to find comparable
correlations. The neuron match in backfitting is easily inferred from the
resulting magnitude of the precision parameters α, while for PLS, the neuron
match was inferred based on the subspace spanned by the projections that
PLS employed.

– The regression accuracy of Bayesian backfitting (as determined by eight-
fold crossvalidation), is comparable to that of the baseline study, while PLS’s
failure to find the correct correlations causes it to have significantly higher
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generalization errors. The analysis for both backfitting and PLS was carried
out using the same validation sets as those used for the baseline analysis.

The performance of Bayesian backfitting on this particularly difficult data
set shows that it is a viable alternative to traditional generalized linear
regression tools. Even with the additional Bayesian inference for ARD, it
maintains its algorithmic efficiency since no matrix inversion is required.

As an aside it is useful to note that Bayesian backfitting and PLS required
of the order of 8 hours of computation on a standard PC (compared with
several weeks on a cluster for the brute-force study), and evaluated the
contributions of all seventy-one neurons.

An alternative form of prior in which a single precision parameter is shared
among the regression coefficients results in a shrinkage of the norm of the
regression vector solution, similar to ridge regression. In this case, however,
no additional crossvalidation is required to determine the ridge parameters,
as these are automatically inferred. The Bayesian backfitting algorithm is
also applicable within the framework of sparse Bayesian learning [7], and
provides a competitive and robust nonlinear supervised learning tool.

Bayesian Backfitting can thus completely replace PLS in LWPR, thus
reducing the number of open parameters in LWPR and facilitating its
probabilistic interpretation.

5.7 Discussion

Nearest-neighbor regression with spatially localized models remains one of
the most data efficient and computationally efficient methods for incremen-
tal learning with automatic determination of the model complexity. In order
to overcome the curse of dimensionality of local learning systems, we inves-
tigated methods of linear projection regression and how to employ them in
spatially localized nonlinear function approximation for high-dimensional
input data that have redundant and irrelevant components. We compared
various local dimensionality reduction techniques - an analysis that resulted
in choosing a localized version of Partial Least Squares regression at the core
of a novel nonparametric function approximator, Locally Weighted Projec-
tion Regression (LWPR). The proposed technique was evaluated on a range
of artificial and real-world data sets in up to 90D input spaces. Besides
showing fast and robust learning performance due to second-order learning
methods based on stochastic leave-one-out cross-validation, LWPR excelled
by its low computational complexity: updating each local model with a new
data point remained linear in its computational cost in the number of in-
puts since the algorithm accomplishes good approximation results with only
three to four projections irrespective of the number of input dimensions. To
our knowledge, this is the first spatially localized incremental learning sys-
tem that can efficiently work in high-dimensional spaces and that is thus
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suited for online and realtime applications. In addition, LWPR compared fa-
vorably in its generalization performance with state-of-the-art batch regres-
sion methods like Gaussian process regression, and can provide qualitatively
similar estimates of confidence bounds and predictive variances. Finally, a
new algorithm, Bayesian backfitting, was suggested to replace partial least
squares in the future. Bayesian backfitting is a Bayesian treatment of lin-
ear regression with automatic relevance detection of inputs and a robust
EM-like incremental updating technique. Future work will investigate this
algorithm in the nonlinear setting of LWPR on the way to a full Bayesian
approach to approximate nearest-neighbor regression.

Notes

1Mixture models are actually somehow in between global and local function approxi-
mators since they use local model fitting but employ a global optimization criterion.

2It must be noted that there has been some recent work[39] that has started to look
at model selection for SVMs and GPRs and automatic determination of the number of
latent models for VBM[13]

3It should be noted that we could insert one more preprocessing step in algorithm 5.2
that independently scales all inputs to unit variance; empirically, however, we did not
notice a significant improvement of the algorithm, so that we omit this step for the sake
of simplicity.

4For rank-deficient input spaces, the equivalence of (5.11) and (5.12) holds in the
space spanned by X

5Note that wk is used here as an abbreviated version of w{q,k} -the weight contribution
due to query point q in model k- for the sake of simplicity.

6Since LWPR is an incremental algorithm, data presentations in this case refer to
repeated, random-order presentations of training data from our noisy data set of size 500

7We have not plotted the results for SVMR since it was found to consistently perform
worse that GPR for the given number of training data.

8The GPR algorithm had problems of convergence and numerical stability for training
data sizes above 500 points.
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6 Learning Embeddings for Fast Approximate

Nearest Neighbor Retrieval

Vassilis Athitsos, Jonathan Alon, Stan Sclaroff,
and George Kollios

We present an embedding method that can signficantly reduce nearest
neighbor retrieval time when the underlying distance measure is compu-
tationally expensive. Database and query objects are embedded into a Eu-
clidean space, in which similarities can be rapidly measured using a weighted
Manhattan distance. Embedding construction is formulated as a machine
learning task, where AdaBoost is used to combine many simple, 1D em-
beddings into a multidimensional embedding that preserves a significant
amount of the proximity structure in the original space. Performance is eval-
uated in a hand pose estimation system, and a dynamic gesture recognition
system, where the proposed method is used to retrieve approximate nearest
neighbors under expensive similarity measures. In both systems, BoostMap
significantly increases efficiency, with minimal losses in accuracy. Moreover,
the experiments indicate that BoostMap compares favorably with exist-
ing embedding methods that have been employed in computer vision and
database applications, such as FastMap and Lipschitz embeddings.

6.1 Introduction

Many important applications require efficient nearest-neighbor retrieval in
non-Euclidean, and often nonmetric spaces. Finding nearest neighbors effi-
ciently in such spaces can be challenging, because the underlying distance
measures can take time superlinear to the length of the data, and also be-
cause most indexing methods are not applicable in such spaces. For example,
most tree-based and hash-based indexing methods typically assume that ob-
jects live in a Euclidean space, or at least a so-called “coordinate-space”,
where each object is represented as a feature vector of fixed dimensions.
There is a wide range of non-Euclidean spaces that violate those assump-
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tions. Some examples of such spaces are proteins and DNA in biology, time
series data in various fields, and edge images in computer vision.

Euclidean embeddings (like Bourgain embeddings [17] and FastMap [8])
provide an alternative for indexing non-Euclidean spaces. Using embed-
dings, we associate each object with a Euclidean vector, so that distances
between objects are related to distances between the vectors associated
with those objects. Database objects are embedded offline. Given a query
object q, its embedding F (q) is computed efficiently online, by measuring
distances between q and a small number of database objects. To retrieve
the nearest neighbors of q, we first find a small set of candidate matches
using distances in the Euclidean space, and then we refine those results by
measuring distances in the original space. Euclidean embeddings can sig-
nificantly improve retrieval time in domains where evaluating the distance
measure in the original space is computationally expensive.

This chapter presents BoostMap, a machine learning method for con-
structing Euclidean embeddings. The algorithm is domain-independent and
can be applied to arbitrary distance measures, metric or nonmetric. With
respect to existing embedding methods for efficient approximate nearest-
neighbor methods, BoostMap has the following advantages:

– Embedding construction explicitly optimizes a quantitative measure of
how well the embedding preserves similarity rankings. Existing methods
(like Bourgain embeddings [11] and FastMap [8]) typically use random
choices and heuristics, and do not attempt to optimize some measure of
embedding quality.

– Our optimization method does not make any assumptions about the
original distance measure. For example, no Euclidean or metric properties
are required.

Embeddings are seen as classifiers, which estimate for any three objects
a, b, c if a is closer to b or to c. Starting with a large family of simple,
one-dimensional (1D) embeddings, we use AdaBoost [20] to combine those
embeddings into a single, high-dimensional embedding that can give highly
accurate similarity rankings.

6.2 Related Work

Various methods have been employed for similarity indexing in multidi-
mensional data sets, including hashing and tree structures [29]. However,
the performance of such methods degrades in high dimensions. This phe-
nomenon is one of the many aspects of the “curse of dimensionality.” An-
other problem with tree-based methods is that they typically rely on Eu-
clidean or metric properties, and cannot be applied to arbitrary spaces.
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Approximate nearest-neighbor methods have been proposed in [12] and
scale better with the number of dimensions. However, those methods are
available only for specific sets of metrics, and they are not applicable
to arbitrary distance measures. In [9], a randomized procedure is used
to create a locality-sensitive hashing (LSH) structure that can report a
(1 + ǫ)-approximate nearest neighbor with a constant probability. In [32]
M-trees are used for approximate similarity retrieval, while [16] proposes
clustering the data set and retrieving only a small number of clusters
(which are stored sequentially on disk) to answer each query. In [4, 7, 13]
dimensionality reduction techniques are used where lower-bounding rules
are ignored when dismissing dimensions and the focus is on preserving
close approximations of distances only. In [27] the authors used VA-files
[28] to find nearest neighbors by omitting the refinement step of the original
exact search algorithm and estimating approximate distances using only the
lower and upper bounds computed by the filtering step. Finally, in [23] the
authors partition the data space into clusters and then the representatives
of each cluster are compressed using quantization techniques. Other similar
approaches include [15, 19]. However, all these techniques can be employed
mostly for distance functions defined using Lp norms.

Various techniques appeared in the literature for robust evaluation of
similarity queries on time-series databases when using nonmetric distance
functions [14, 25, 30]. These techniques use the filter-and-refine approach
where an approximation of the original distance that can be computed
efficiently is utilized in the filtering step. Query speedup is achieved by
pruning a large part of the search space before the original, accurate, but
more expensive distance measure needs to be applied on few remaining
candidates during the refinement step. Usually, the distance approximation
function is designed to be metric (even if the original distance is not) so
that traditional indexing techniques can be applied to index the database
in order to speed up the filtering stage as well.

In domains where the distance measure is computationally expensive, sig-
nificant computational savings can be obtained by constructing a distance-
approximating embedding, which maps objects into another space with a
more efficient distance measure. A number of methods have been proposed
for embedding arbitrary metric spaces into a Euclidean or pseudo-Euclidean
space [3, 8, 11, 18, 22, 26, 31]. Some of these methods, in particular multi-
dimensional scaling (MDS) [31], Bourgain embeddings [3, 10], locally linear
embeddings (LLE) [18], and Isomap [22] are not targeted at speeding up
online similarity retrieval, because they still need to evaluate exact dis-
tances between the query and most or all database objects. Online queries
can be handled by Lipschitz embeddings [10], FastMap [8], MetricMap [26]
and SparseMap [11], which can readily compute the embedding of the query,
measuring only a small number of exact distances in the process. These four
methods are the most related to our approach. The goal of BoostMap is to
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achieve better indexing performance in domains where those four methods
are applicable.

6.3 Background on Embeddings

Let X be a set of objects, and DX(x1, x2) be a distance measure between
objects x1, x2 ∈ X. DX can be metric or nonmetric. A Euclidean embedding
F : X → R

d is a function that maps objects from X into the d-dimensional
Euclidean space R

d, where distance is measured using a measure DRd. DRd

is typically an Lp or weighted Lp norm. Given X and DX , our goal is
to construct an embedding F that can be used for efficient and accurate
approximate k-nearest neighbor (k-NN) retrieval, for previously unseen
query objects, and for different values of k.

In this section we describe some existing methods for constructing Eu-
clidean embeddings. We briefly go over Lipschitz embeddings [10], Bour-
gain embeddings [3, 10], FastMap [8], and MetricMap [26]. All these meth-
ods, with the exception of Bourgain embeddings, can be used for efficient
approximate nearest-neighbor retrieval. Although Bourgain embeddings re-
quire too many distance computations in the original space X in order to
embed the query, there is a heuristic approximation of Bourgain embeddings
called SparseMap [11] that can also be used for efficient retrieval.

6.3.1 Lipschitz Embeddings

We can extend DX to define the distance between elements of X and subsets
of X. Let x ∈ X and R ⊂ X. Then,

DX(x, R) = min
r∈R

DX(x, r) . (6.1)

Given a subset R ⊂ X, a simple 1D Euclidean embedding F R : X → R

can be defined as follows:

F R(x) = DX(x, R) . (6.2)

The set R that is used to define F R is called a reference set. In many cases
R can consist of a single object r, which is typically called a reference object
or a vantage object [10]. In that case, we denote the embedding as F r:

F r(x) = DX(x, r) . (6.3)

If DX obeys the triangle inequality, F R intuitively maps nearby points in
X to nearby points on the real line R. In many cases DX may violate the
triangle inequality for some triples of objects (an example is the chamfer
distance [2]), but F R may still map nearby points in X to nearby points
in R, at least most of the time [1]. On the other hand, distant objects may
also map to nearby points (fig. 6.1).
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R
2 (original space) R (target space)

Figure 6.1 A set of five 2D points (shown on the left), and an embedding F r of
those five points into the real line (shown on the right), using r as the reference
object. The target of each 2D point on the line is labeled with the same letter as
the 2D point. The classifier F̃ r (6.7) classifies correctly 46 out of the 60 triples
we can form from these five objects (assuming no object occurs twice in a triple).
Examples of misclassified triples are: (b, a, c), (c, b, d), (d, b, r). For example, b is
closer to a than it is to c, but F r(b) is closer to F r(c) than it is to F r(a).

In order to make it less likely for distant objects to map to nearby points,
we can define a multidimensional embedding F : X → R

k, by choosing k
different reference sets R1, ..., Rk:

F (x) = (F R1(x), ..., FRk(x)) . (6.4)

These embeddings are called Lipschitz embeddings [3, 10, 11]. Bourgain em-
beddings [3, 10] are a special type of Lipschitz embeddings. For a finite
space X containing |X| objects, we choose ⌊log |X|⌋2 reference sets. In
particular, for each i = 1, ..., ⌊log |X|⌋ we choose ⌊log|X|⌋ reference sets,
each with 2i elements. The elements of each set are picked randomly. Bour-
gain embeddings are optimal in some sense: using a measure of embedding
quality called distortion, if DX is a metric, Bourgain embeddings achieve
O(log(|X|)) distortion, and there exist metric spaces X for which no embed-
ding can achieve lower distortion [10, 17]. However, we should emphasize
that if DX is nonmetric, then Bourgain embeddings can have distortion
higher than O(log(|X|)).

A weakness of Bourgain embeddings is that, in order to compute the
embedding of an object, we have to compute its distances DX to almost all
objects in X. This happens because some of the reference sets contain at
least half of the objects in X. In database applications, computing all those
distances is exactly what we want to avoid. SparseMap [11] is a heuristic
simplification of Bourgain embeddings, in which the embedding of an object
can be computed by measuring only O(log2 |X|) distances. The penalty for
this heuristic is that SparseMap no longer guarantees O(log(|X|)) distortion
for metric spaces.

Another way to speed up retrieval using a Bourgain embedding is to define
this embedding using a relatively small random subset X ′ ⊂ X. That is, we
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Figure 6.2 Computing F x1,x2(x), as defined in Equation 6.5: we construct a
triangle ABC so that the sides AB,AC,BC have lengths DX(x, x1),DX(x, x2)
and DX(x1, x2) respectively. We draw from A a line perpendicular to BC, and
D is the intersection of that line with BC. The length of the line segment BD is
equal to F x1,x2(x).

choose ⌊log |X ′|⌋2 reference sets, which are subsets of X ′. Then, to embed
any object of X we only need to compute its distances to all objects of X ′.
We use this method to produce Bourgain embeddings of different dimensions
in the experiments we describe in this chapter. We should note that, if we
use this method, the optimality of the embedding only holds for objects in
X ′, and there is no guarantee about the distortion attained for objects of the
larger set X. We should also note that, in general, defining an embedding
using a smaller set X ′ can in principle also be applied to Isomap [22], LLE
[18], and even MDS [31], so that it takes less time to embed new objects.

The theoretical optimality of Bourgain embeddings with respect to dis-
tortion does not mean that Bourgain embeddings actually outperform other
methods in practice. Bourgain embeddings have a worst-case bound on dis-
tortion, but that bound is very loose, and in actual applications the quality
of embeddings is often much better, both for Bourgain embeddings and for
embeddings produced using other methods.

A simple and attractive alternative to Bourgain embeddings is to simply
use Lipschitz embeddings in which all reference sets are singleton, as in (6.3).
In that case, if we have a d-dimensional embedding, in order to compute
the embedding of a previously unseen object we only need to compute its
distance to d reference objects.

6.3.2 FastMap and MetricMap

A family of simple, 1D embeddings is proposed in [8] and used as building
blocks for FastMap. The idea is to choose two objects x1, x2 ∈ X, called
pivot objects, and then, given an arbitrary x ∈ X, define the embedding
F x1,x2 of x to be the projection of x onto the “line” x1x2. As illustrated in
fig. 6.2, the projection can be defined by treating the distances between x,
x1, and x2 as specifying the sides of a triangle in R2:
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F x1,x2(x) =
DX(x, x1)

2 + DX(x1, x2)
2 − DX(x, x2)

2

2DX(x1, x2)
. (6.5)

If X is Euclidean, then F x1,x2 will map nearby points in X to nearby points
in R. In practice, even if X is non-Euclidean, F (x1, x2) often still preserves
some of the proximity structure of X.

FastMap [8] uses multiple pairs of pivot objects to project a finite set X
into R

k using only O(kn) evaluations of DX . The first pair of pivot objects
(x1, x2) is chosen using a heuristic that tends to pick points that are far
from each other. Then the rest of the distances between objects in X are
“updated,” so that they correspond to projections into the “hyperplane”
perpendicular to the “line” x1x2. Those projections are computed again by
treating distances between objects in X as Euclidean distances in some R

m.
After distances are updated, FastMap is recursively applied again to choose
a next pair of pivot objects and apply another round of distance updates.
Although FastMap treats X as a Euclidean space, the resulting embeddings
can be useful even when X is non-Euclidean, or even nonmetric. We have
seen that in our own experiments (Section 6.6).

MetricMap [26] is an extension of FastMap that maps X into a a pseudo-
Euclidean space. The experiments in [26] report that MetricMap tends
to do better than FastMap when X is non-Euclidean. So far we have no
conclusive experimental comparisons between MetricMap and our method,
partly because some details of the MetricMap algorithm have not been fully
specified (as pointed out in [10]), and therefore we could not be sure how
close our MetricMap implementation was to the implementation evaluated
in [26].

6.3.3 Embedding Application: Filter-and-refine Retrieval

In applications where we are interested in retrieving the k-NN for a query
object q, a d-dimensional Euclidean embedding F can be used in a filter-
and-refine framework [10], as follows:

– Offline preprocessing step: compute and store vector F (x) for every
database object x.

– Embedding step: given a query object q, compute F (q). Typically this
involves computing distances DX between q and a small number of objects
of X.

– Filter step: find the database objects whose vectors are the p most similar
vectors to F (q). This step involves measuring distances in R

d.

– Refine step: sort those p candidates by evaluating the exact distance DX

between q and each candidate.

The assumption is that distance measure DX is computationally expensive
and evaluating distances in Euclidean space is much faster. The filter step
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discards most database objects by comparing Euclidean vectors. The refine
step applies DX only to the top p candidates. This is much more efficient
than brute-force retrieval, in which we compute DX between q and the entire
database.

To optimize filter-and-refine retrieval, we have to choose p, and often we
also need to choose d, which is the dimensionality of the embedding. As p
increases, we are more likely to get the true k-NN in the top p candidates
found at the filter step, but we also need to evaluate more distances DX

at the refine step. Overall, we trade accuracy for efficiency. Similarly, as
d increases, computing F (q) becomes more expensive (because we need to
measure distances to more objects of X), and measuring distances between
vectors in R

d also becomes more expensive. At the same time, we may get
more accurate results in the filter step, and we may be able to decrease p.
The best choice of p and d will depend on domain-specific parameters like k,
the time it takes to compute the distance DX , the time it takes to compare
d-dimensional vectors, and the desired retrieval accuracy (i.e., how often we
are willing to miss some of the true k-NN).

6.4 Associating Embeddings with Classifiers

In this section we define a quantitative measure of embedding quality, that is
directly related to how well an embedding preserves the similarity structure
of the original space. The BoostMap learning algorithm will then be shown
to directly optimize this quantitative measure.

As previously, X is a set of objects, and DX(x1, x2) is a distance measure
between objects x1, x2 ∈ X. Let (q, x1, x2) be a triple of objects in X.
We define the proximity order PX(q, x1, x2) to be a function that outputs
whether q is closer to x1 or to x2:

PX(q, x1, x2) =

⎧

⎪

⎨

⎪

⎩

1 if DX(q, x1) < DX(q, x2)

0 if DX(q, x1) = DX(q, x2) .

−1 if DX(q, x1) > DX(q, x2)

(6.6)

If F maps space X into R
d (with associated distance measure DRd), then

F can be used to define a proximity classifier F̃ that estimates, for any triple
(q, x1, x2), whether q is closer to x1 or to x2, simply by checking whether
F (q) is closer to F (x1) or to F (x2):

F̃ (q, x1, x2) = DRd(F (q), F (x2)) − DRd(F (q), F (x1)) . (6.7)

If we define sign(x) to be 1 for x > 0, 0 for x = 0, and −1 for x < 0, then
sign(F̃ (q, x1, x2)) is an estimate of PX(q, x1, x2).
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We define the classification error G(F̃ , q, x1, x2) of applying F̃ on a
particular triple (q, x1, x2) as

G(F̃ , q, x1, x2) =
|PX(q, x1, x2) − sign(F̃ (q, x1, x2))|

2
. (6.8)

Finally, the overall classification error G(F̃ ) is defined to be the expected
value of G(F̃ , q, x1, x2), over X3, i.e., the set of triples of objects of X. If X
contains a finite number of objects, we get

G(F̃ ) =

∑

(q,x1,x2)∈X3 G(F̃ , q, x1, x2)

|X|3
. (6.9)

Using the definitions in this section, our problem definition is very simple:
we want to construct an embedding Fout : X → R

d in a way that minimizes
G(F̃out). If an embedding F has error rate G(F̃ ) = 0, then F perfectly
preserves nearest-neighbor structure, meaning that for any x1, x2 ∈ X, and
any integer k > 0, x1 is the kth NN of x2 in X if and only if F (x1) is the kth
NN of F (x2) in the set F (X). Overall, the lower the error rate G(F̃ ) is, the
better the embedding F is in terms of preserving the similarity structure of
X.

We address the problem of minimizing G(F̃out) as a problem of combining
classifiers. As building blocks we use a family of simple, 1D embeddings.
Then, we apply AdaBoost to combine many 1D embeddings into a high-
dimensional embedding Fout with a low error rate.

6.5 Constructing Embeddings via AdaBoost

The 1D embeddings that we use as building blocks in our algorithm are
of two types: embeddings of type F r as defined in (6.3), and embeddings
of type F x1,x2 , as defined in (6.5). Each 1D embedding F corresponds to a
binary classifier F̃ . These classifiers estimate, for triples (q, x1, x2) of objects
in X, if q is closer to x1 or x2. If F is a 1D embedding, we expect F̃ to
behave as a weak classifier [20], meaning that it will have a high error rate,
but it should still do better than a random classifier. We want to combine
many 1D embeddings into a multidimensional embedding that behaves as
a strong classifier, i.e., that has relatively high accuracy. To choose which
1D embeddings to use, and how to combine them, we use the AdaBoost
framework [20].

6.5.1 Overview of the Training Algorithm

The training algorithm for BoostMap is an adaptation of AdaBoost to the
problem of embedding construction. The inputs to the training algorithm
are the following:
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– A training set T = ((q1, a1, b1), ..., (qt, at, bt)) of t triples of objects from
X.

– A set of labels Y = (y1, ..., yt), where yi ∈ {−1, 1} is the class label of
(qi, ai, bi). If DX(qi, ai) < DX(qi, bi), then yi = 1, else yi = −1. The training
set includes no triples where qi is equally far from ai and bi.

– A set C ⊂ X of candidate objects. Elements of C can be used to define
1D embeddings.

– A matrix of distances from each c ∈ C to each qi, ai, and bi included in
one of the training triples in T .

The training algorithm combines many classifiers F̃j associated with 1D
embeddings Fj, into a classifier H =

∑d
j=1 αjF̃j . The classifiers F̃j and

weights αj are chosen so as to minimize the classification error of H . Once we
get the classifier H , its components F̃j are used to define a high-dimensional
embedding F = (F1, ..., Fd), and the weights αj are used to define a weighted
L1 distance, that we will denote as DRd, on R

d. We are then ready to use
F and DRd to embed objects into R

d and compute approximate similarity
rankings.

Training is done in a sequence of rounds. At each round, the algorithm
either modifies the weight of an already chosen classifier, or selects a new
classifier. Before we describe the algorithm in detail, here is an intuitive,
high-level description of what takes place at each round:

1. Go through the classifiers F̃j that have already been chosen, and try to
identify a weight αj that, if modified, decreases the training error. If such
an αj is found, modify it accordingly.

2. If no weights were modified, consider a set of classifiers that have not
been chosen yet. Identify, among those classifiers, the classifier F̃ which is
the best at correcting the mistakes of the classifiers that have already been
chosen.

3. Add that classifier F̃ to the set of chosen classifiers, and compute its
weight. The weight that is chosen is the one that maximizes the corrective
effect of F̃ on the output of the previously chosen classifiers.

Intuitively, weak classifiers are chosen and weighted so that they com-
plement each other. Even when individual classifiers are highly inaccurate,
the combined classifier can have very high accuracy, as evidenced in several
applications of AdaBoost (e.g., in [24]).

Trying to modify the weight of an already chosen classifier before adding
in a new classifier is a heuristic that reduces the number of classifiers
that we need to achieve a given classification accuracy. Since each classifier
corresponds to a dimension in the embedding, this heuristic leads to lower-
dimensional embeddings, which reduce database storage requirements and
retrieval time.
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6.5.2 The Training Algorithm in Detail

This subsection, together with the original AdaBoost reference [20], provides
enough information to allow implementation of BoostMap, and it can be
skipped if the reader is more interested in a high-level description of our
method.

The training algorithm performs a sequence of training rounds. At the jth
round, it maintains a weight wi,j for each of the t triples (qi, ai, bi) of the
training set, so that

∑t
i=1 wi,j = 1. For the first round, each wi,1 is set to 1

t
.

At the jth round, we try to modify the weight of an already chosen
classifier or add a new classifier, in a way that improves the overall training
error. A key measure that is used to evaluate the effect of choosing classifier
F̃ with weight α is the function Zj:

Zj(F̃ , α) =

t
∑

i=1

(wi,j exp(−αyiF̃ (qi, ai, bi))) . (6.10)

The full details of the significance of Zj can be found in [20]. Here it suffices
to say that Zj(F̃ , α) is a measure of the benefit we obtain by adding F̃ with
weight α to the list of chosen classifiers. The benefit increases as Zj(F̃ , α)
decreases. If Zj(F̃ , α) > 1, then adding F̃ with weight α is actually expected
to increase the classification error.

A frequent operation during training is identifying the pair (F̃ , α) that
minimizes Zj(F̃ , α). For that operation we use the shorthand Zmin, defined
as follows:

Zmin(B, j) = argmin(F̃ ,α)∈B×R
Zj(F̃ , α) . (6.11)

In (6.11), B is a set of classifiers.
At training round j, the training algorithm goes through the following

steps:

1. Let Bj be the set of classifiers chosen so far. Set (F̃ , α) = Zmin(Bj , j). If
Zj(F̃ , α) < .9999 then modify the current weight of F̃ , by adding α to it,
and proceed to the next round. We use .9999 as a threshold, instead of 1,
to avoid minor modifications with insignificant numerical impact.

2. Construct a set of 1D embeddings Fj1 = {F r | r ∈ C} where F r is defined
in (6.3), and C is the set of candidate objects that is one of the inputs to
the training algorithm (see subsection 6.5.1).

3. For a fixed number m, choose randomly a set Cj of m pairs of elements of
C, and construct a set of embeddings Fj2 = {F x1,x2 | (x1, x2) ∈ Cj}, where
F x1,x2 is as defined in (6.5).

4. Define Fj = Fj1 ∪ Fj2. We set F̃J = {F̃ | F ∈ Fj}.

5. Set (F̃ , α) = Zmin(F̃j, j).

6. Add F̃ to the set of chosen classifiers, with weight α.
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7. Set training weights wi,j+1 as follows:

wi,j+1 =
wi,j exp(−αyiF̃ (qi, ai, bi))

Zj(F̃ , α)
. (6.12)

Intuitively, the more αF̃ (qi, ai, bi) disagrees with class label yi, the more
wi,j+1 increases with respect to wi,j. This way triples that get misclassified
by many of the already chosen classifiers will carry a lot of weight and will
influence the choice of classifiers in the next rounds.

The algorithm can terminate when we have chosen a desired number of
classifiers, or when, at a given round j, no combination of F̃ and α makes
Zj(F̃ , α) < 1.

6.5.3 Training Output: Embedding and Distance

The output of the training stage is a classifier H =
∑d

j=1 αjF̃j, where each

F̃j is associated with a 1D embedding Fj . The final output of BoostMap
is an embedding Fout : X → R

d and a weighted Manhattan (L1) distance
DRd : R

d × R
d → R:

Fout(x) = (F1(x), ..., Fd(x)) . (6.13)

DRd((u1, ..., ud), (v1, ..., vd)) =
d

∑

j=1

(αj |uj − vj |) . (6.14)

It is important to note (and easy to check) that the way we define
Fout and DRd , if we apply (6.7) to obtain a classifier F̃out from Fout, then
F̃out = H , i.e., F̃out is equal to the output of AdaBoost. This means that
the output of AdaBoost, which is a classifier, is mathematically equivalent
to the embedding Fout: given a triple (q, a, b), both the embedding and the
classifier give the exact same answer as to whether q is closer to a or to b. If
AdaBoost has been successful in learning a good classifier, the embedding
Fout inherits the properties of that classifier, with respect to preserving the
proximity order of triples.

Also, we should note that this equivalence between classifier and embed-
ding relies on the way we define DRd. For example, if DRd were defined
without using weights αj , or if DRd were defined as an L2 metric, the equiv-
alence would not hold.

6.5.4 Complexity

If C is the set of candidate objects, and n is the number of database objects,
we need to compute |C|n distances DX to learn the embedding and compute
the embeddings of all database objects. At each training round, we evaluate
classifiers defined using |C| reference objects and m pivot pairs. Therefore,
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Figure 6.3 Top: 14 of the 26 hand shapes used to generate the hand database.
Middle: four of the 4128 3D orientations of a hand shape. Bottom: for two
test images we see, from left to right: the original hand image, the extracted
edge image that was used as a query, and a correct match (noise-free computer-
generated edge image) retrieved from the database.

the computational time per training round is O((|C|+ m)t), where t is the
number of training triples. In our experiments we always set m = |C|.

Computing the d-dimensional embedding of a query object takes O(d)
time and requires O(d) evaluations of DX . Overall, query processing time is
not worse than that of FastMap [8], SparseMap [11], and MetricMap [26].

6.6 Experiments

We used two data sets to compare BoostMap to FastMap [8] and Bourgain
embeddings [3, 11]: a database of hand images, and an ASL (American Sign
Language) database, containing video sequences of ASL signs. In both data
sets the test queries were not part of the database, and not used in the
training.

The hand database contains 107,328 hand images, generated using com-
puter graphics. Twenty-six hand shapes were used to generate those images.
Each shape was rendered under 4128 different 3D orientations (fig. 6.3). As
queries we used 703 real images of hands. Given a query, we consider a
database image to be correct if it shows the same hand shape as the query,
in a 3D orientation within 30 degrees of the 3D orientation of the query
[1]. The queries were manually annotated with their shape and 3D orienta-
tion. For each query there are about 25 to 35 correct matches among the
107,328 database images. Similarity between hand images is evaluated us-
ing the symmetric chamfer distance [2], applied to edge images. Evaluating
the exact chamfer distance between a query and the entire database takes
about 260 seconds.

The ASL database contains 880 gray-scale video sequences. Each video
sequence depicts a sign, as signed by one of three native ASL signers (fig.
6.4). As queries we used 180 video sequences of ASL signs, signed by a single
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Figure 6.4 Four sample frames from the video sequences in the ASL database.

signer who was not included in the database. Given a query, we consider a
database sequence to be a correct match if it is labeled with the same sign
as the query. For each query, there are exactly 20 correct matches in the
database. Similarity between video sequences is measured as follows: first,
we use the similarity measure proposed in [6], which is based on optical flow,
as a measure of similarity between single frames. Then, we use dynamic time
warping [5] to compute the optimal time alignment and the overall matching
cost between the two sequences. Evaluating the exact distance between the
query and the entire database takes about 6 minutes.

In all experiments, the training set for BoostMap was 200,000 triples.
For the hand database, the size of C (subsection 6.5.2) was 1000 elements,
and the elements of C were chosen randomly at each step from among
3282 objects, i.e., C was different at each training round (a slight deviation
from the description in section 6.5), to speed up training time. For the
ASL database, the size of C was 587 elements. The objects used to define
FastMap and Bourgain embeddings were also chosen from the same 3282
and 587 objects respectively. Also, in all experiments, we set m = |C|, where
m is the number of embeddings based on pivot pairs that we consider at
each training round. Learning a 256D BoostMap embedding of the hand
database took about 2 days, using a 1.2 GHz Athlon processor.

To evaluate the accuracy of the approximate similarity ranking for a query,
we used two measures: exact nearest-neighbor rank (ENN rank) and highest
ranking correct match rank (HRCM rank). The ENN rank is computed as
follows: let b be the database object that is the nearest neighbor to the query
q under the exact distance DX . Then, the ENN rank for that query in a given
embedding is the rank of b in the similarity ranking that we get using the
embedding. The HRCM rank for a query in an embedding is the best rank
among all correct matches for that query, based on the similarity ranking we
get with that embedding. In a perfect recognition system, the HRCM rank
would be 1 for all queries. Figs. 6.5, 6.6, 6.7, and 6.8 show the median ENN
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Figure 6.5 Median rank of ENN, vs. number of dimensions, in approximate
similarity rankings obtained using three different methods, for 703 queries to
the hand database.
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Figure 6.6 Median rank of HRCM, vs. number of dimensions, in approximate
similarity rankings obtained using three different methods, for 703 queries to the
hand database. For comparison, the median HRCM rank for the exact distance
was 21.

ranks and median HRCM ranks for each data set, for different dimensions
of BoostMap, FastMap and Bourgain embeddings. For the hand database,
BoostMap gives significantly better results than the other two methods, for
16 or more dimensions. In the ASL database, BoostMap does either as well
as FastMap or better than FastMap, in all dimensions. In both data sets,
Bourgain embeddings overall do worse than BoostMap and FastMap.

With respect to Bourgain embeddings, we should mention that they are
not quite appropriate for online queries, because they require evaluating too
many distances in order to produce the embedding of a query. SparseMap
[11] was formulated as a heuristic approximation of Bourgain embeddings
that is appropriate for online queries. We have not implemented SparseMap
but, based on its formulation, it would be a surprising result if SparseMap
achieved higher accuracy than Bourgain embeddings.

6.6.1 Filter-and-refine Experiments

As described in subsection 6.3.3, we can use an embedding to perform filter-
and-refine retrieval of nearest neighbors. The usefulness of an embedding in
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Figure 6.7 Median rank of ENN, vs. number of dimensions, in approximate
similarity rankings obtained using three different methods, for 180 queries to
the ASL database.

1 2 4 8 16 32 64 128
0
5

10
15
20
25
30
35

number of dimensions

m
e
d
ia

n
 r

a
n
k
 o

f 
H

R
C

M

BoostMap
FastMap
Bourgain

Figure 6.8 Median rank of HRCM, vs. number of dimensions, in approximate
similarity rankings obtained using three different methods, for 180 queries to the
ASL database. For comparison, the median HRCM rank for the exact distance
was 3.

filter-and-refine retrieval depends on two questions: how often we success-
fully identify the nearest neighbors of a query, and how much the overall
retrieval time is.

For both BoostMap and FastMap, we found the optimal combination of d
(dimensionality of the embedding) and p (the number of candidate matches
retained after the filter step) that would allow 1-NN retrieval to be correct
95% or 100% of the time, while minimizing retrieval time. Table 6.1 shows
the optimal values of p and d, and the associated computational savings
over standard nearest-neighbor retrieval, in which we evaluate the exact
distance between the query and each database object. In both data sets,
the bulk of retrieval time is spent computing exact distances in the original
space. The time spent in computing distances in the Euclidean space is
negligible, even for a 256D embedding. For the hand database, BoostMap
leads to significantly faster retrieval, because we need to compute far fewer
exact distances in the refine step, while achieving the same error rate as
FastMap.
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Table 6.1 Comparison of BoostMap, FastMap, and using brute-force search, for
the purpose of retrieving the exact nearest neighbors successfully for 95% or 100%
of the queries, using filter-and-refine retrieval. The letter d is the dimensionality
of the embedding. The letter p stands for the number of top matches that we
keep from the filter step (i.e., using the embeddings). DX # per query is the
total number of DX computations needed per query, in order to embed the query
and rank the top p candidates. The exact DX column shows the results for brute-
force search, in which we do not use a filter step, and we simply evaluate DX

distances between the query and all database images.

ENN retrieval accuracy and efficiency for hand database

Method BoostMap FastMap Exact DX

ENN-accuracy 95% 100% 95% 100% 100%

Best d 256 256 13 10 N/A

Best p 406 3850 3838 17498 N/A

DX # per query 823 4267 3864 17518 107328

seconds per query 2.3 10.6 9.4 42.4 260

ENN retrieval accuracy and efficiency for ASL database

Method BoostMap FastMap Exact DX

ENN-accuracy 95% 100% 95% 100% 100%

Best d 64 64 64 32 N/A

Best p 129 255 141 334 N/A

DX # per query 249 375 269 398 880

seconds per query 103 155 111 164 363

6.7 Discussion and Future Work

With respect to existing embedding methods, the main advantage of Boost-
Map is that it is formulated as a classifier-combination problem that can
take advantage of powerful machine learning techniques to assemble a high-
accuracy embedding from many simple, 1D embeddings. The main disad-
vantage of our method, at least in the current implementation, is the run-
ning time of the training algorithm. However, in many applications, trading
training time for embedding accuracy would be a desirable tradeoff. At the
same time, we are interested in exploring ways to improve training time.

A possible extension of BoostMap is to use it to approximate not the
actual distance between objects, but a hidden state space distance. For
example, in our hand image data set, what we are really interested in is not
retrieving images that are similar with respect to the chamfer distance, but
images that actually have the same hand pose. We can modify the training
labels Y provided to the training algorithm, so that instead of describing
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proximity with respect to the chamfer distance, they describe proximity
with respect to actual hand pose. The resulting similarity rankings may be
worse approximations of the chamfer distance rankings, but they may be
better approximations of the actual pose-based rankings. A similar idea is
described in Chapter 7, although in the context of a different approximate
nearest-neighbor framework.
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III APPLICATIONS: VISION





7 Parameter-Sensitive Hashing for Fast Pose

Estimation

Gregory Shakhnarovich, Paul Viola, and Trevor Darrell

Example-based methods are most effective for parameter estimation prob-
lems when a large number of labeled examples is availabe, and a similarity
measure appropriate for the domain at hand is defined. However, this is
precisely the scenario in which the computational complexity of similarity
search often makes example-based estimation prohibitively expensive. This
is further complicated for high-dimensional domains, such as the articu-
lated human pose. We introduce an approach to learning an embedding of
the data into a space where a simple metric distance reflects the desired
similarity notion. As a result we can apply locality-sensitive hashing in the
embedding space to produce

7.1 Introduction

Many problems in computer vision can be naturally formulated as parame-
ter estimation problems: given an image or a video sequence x, we estimate
the parameters θ of a model describing the scene or the object of inter-
est. Here we focus on perhaps the most common problem of this type–the
estimation of the configuration of an articulated body. Other examples of
such tasks include estimating the contraction of muscles in the face, or the
orientation of a rigid object.

Model-based approaches to estimation rely on fitting a model to the input-
parameter relationship, which is typically parametric. In contrast, example-
based methods capitalize on the availability of a large set of examples for
which the parameter values are known: they infer the parameter values for
the input from the known values in similar examples. This does not require
modeling the global structure of the input-parameter relationship, which is
only assumed to be sufficiently smooth to make such inference meaningful.
Nearest-neighbor regression 1 and loclaly-weighted regression 5 are well-
known instances of this family. However, the computational complexity of
similarity search used by these methods in high-dimensional spaces and on
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very large data sets has made them infeasible for many vision problems.
A feasible solution is to resort to approximate similarity search, and apply
methods such as LSH. However, this limits the similarity measure to a
metric, which may not be expressive or efficient enough.

In this chapter we describe a new example-based algorithm for fast pa-
rameter estimation using local models, which are dynamically built for each
new input image. We overcome the problem of computational complexity
with a recently developed algorithm for fast approximate similarity search,
locality-sensitive hashing (LSH) [11]. The training examples are indexed by
a number of hash tables, such that the probability of collision is large for
examples similar in their parameters and small for dissimilar ones. For prac-
tical problems, such as pose estimation, good results can be achieved with
a speedup factor of 103 to 104 over an exhaustive search in a database as
large as 106 examples.

Our approach is motivated by the following intuitition: What one really
wants is to base the estimate on examples similar to the input in their
parameter values. In other words, we would like to find in the database
examples poses that are close to the underlying pose in the input image.
Of course we can not measure such similarity directly since this pose in the
input image is precisely what we need to estimate! Instead, we will use a
proxy similarity, measured in a space where distances are closely related to
this target pose similarity. In order to

Consequently, we will have to change the definition of lacolity-snsitive
functions on p. 1.5 to the following definition of a parameter-sensitive
family over the data space X . Let p1, p2 be probability values and S be
the similarity function, such that S(x1,x2) = +1 if the poses in x1 and x2

are similar and −1 otherwise. A family H of functions h : X → {0, 1} is
(p1, p2, S)-sensitive if, for any h ∈ H,

Px,y∼ p(X )2(h(x) = h(y) | S(x,y) = +1) ≥ p1, (7.1)

Px,y∼ p(X )2(h(x) = h(y) | S(x,y) = −1) ≤ p2. (7.2)

Note that, in contrast to the definition in chapter 1, the probabilities
here are over random choice of data rather than functions. This formulation
leads to parameter-sensitive hashing (PSH), a modification of LSH in which
the bits that form hash functions are sampled from this family H. When
H contains M functions, this is equivalent to embedding the data into an
M-dimensional binary space, in which distance are measured with L1, and
applying the standard LSH.

The key problem in this approach is the construction of H. In this chapter
we describe a learning algorithm that selects the functions in H through a
feature selection process, based on a set of examples of images with similar
and dissimilar poses. A set of pose-labeled images is indexed using PSH
bases on the so learned family of functions. The pose estimate for a new
image is produced by robust LWR which uses the approximate neighbors
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(a) Input (b) 3 top matches in PSH, left to right (c) Robust
LWR

Figure 7.1 Pose estimation with parameter-sensitive hashing and local regression.

found by PSH to dynamically build a simple model of the neighborhood of
the input. Our approach is schematically illustrated in figure 7.1.

The remainder of this chapter is organized as follows. Previous work
is reviewed in section 7.2; it includes a brief overview of example-based
estimation, a more detailed discussion of which was given in chapter 1. The
PSH algorithm is presented in section 7.3 (the algorithm for constructing
efficient hash functions is described in 7.3.1). We evaluate our framework
on an articulated pose estimation problem: estimating the pose of a human
upper body from a single image. The details of the task and our experiments
are described in Section 7.4. We conclude and discuss some open questions
in section 7.5.

7.2 Background and Previous Work

The body of literature on object parameter estimation from a single image,
and in particular on estimating the pose of articulated bodies, is very large,
and space constraints force us to mention only work most related to our
approach.

In [18] a three-dimensional pose is recovered from the 2D projections of
a number of known feature points on an articulated body. Other efficient
algorithms for matching articulated patterns are given in [9, 16]. These
approaches assume that detectors are available for specific feature locations,
and that a global model of the articulation is available. In [15] a “shape
context” feature vector is used to represent general contour shape. In [17],
the mapping of a silhouette to a 3D pose is learned using multiview training
data. These techniques were successful, but they were restricted to contour
features and generally unable to use appearance within a silhouette.

Finally, in [1] a hand image is matched to a large database of rendered
forms, using a sophisticated similarity measure on image features. This work
is most similar to ours and in part inspired our approach. However, the
complexity of nearest-neighbor search makes this approach difficult to apply
to the very large numbers of examples needed for general articulated pose
estimation with image-based distance metrics. Our goal is to alleviate this
by employing the fast approximate search mechanism of PSH.
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7.2.1 Example-Based Estimation

The task of example-based parameter estimation in vision can be formulated
as follows. Input, which consists of image features (e.g., edge map, vector of
responses of a filter set, or edge direction histograms) computed on the
original image, is assumed to be generated by an unknown parametric
process x = f(θ). In our context of articulated pose, θ is a vector of joint
angles. A training set of labeled examples (x1, θ1), . . . , (xN , θN) is provided.
One must estimate θ0 as the inverse of f for a novel input x0. The objective
is to minimize the residual in terms of the distance (similarity measure) dθ

in the parameter space. Thus, we are facing a regression problem.
Methods based on nearest neighbors are among the oldest techniques for

such estimation. The k-NN estimate [7] is obtained by averaging the values
for the k training examples most similar to the input:

θ̂NN =
1

k

∑

xi∈neighborhood

θi , (7.3)

i.e., the target function is approximated by a constant in each neighborhood
defined by k. This estimate is known to be consistent, and to asymptoti-
cally achieve Bayes-optimal risk under many loss functions [7]. Note that
similarity (neighborhood) is defined in terms of the distance dX in the input
space.

A natural extension to k-NN, in which the neighbors are weighted accord-
ing to their similarity to the query point, leads to locally weighted regression
(LWR) [5, 2]: the target function is approximated locally (within any small
region) by a function from a particular model class g(x; �β). The parameters
�β are chosen to optimize the weighted learning criterion in the test input
x0,

�β∗ = argmin

β

∑

xi∈neighborhood

dθ

(

g(xi; �β), θi

)

K (dX(xi,x0)) , (7.4)

where K is the kernel function that determines the weight falloff with
increasing distance from the query point.

In robust LWR [4], the influence of outliers is diminished through a short
iterative process. In each iteration after the model is fit, the neighborhood
points are reweighted so that points with higher residual with respect to
the fitted values become less influential.

There are two major problems with the straightforward application of
example-based methods to parameter estimation in vision. The first is
the computational complexity of the existing nearest-neighbor search al-
gorithms, particularly in the high-dimensional spaces often encountered in
vision tasks. Using fast approximate algorithms may overcome this obsta-
cle. The idea of using approximate nearest-neighbor has been mentioned
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in previous work for object or texture classification [3, 10], and for some
estimation tasks [14, 1]. However to our knowledge, no experiments using
recent algorithms for estimation tasks have been conducted.

The second problem, not immediately solved by adopting an efficient
similarity search algorithm, is the reliance of the search on the input space
metric dX , without explicitly taking into account dθ. We will show how to
explicitly select a feature subspace in which dX approximates dθ, without
an explicit global model of this relationship. The data, training examples as
well as new test examples, are embedded into this space. The approximate
near neighbors with respect to L1 distance in this space are of much higher
relevance that neighbors retrieved using metric distance in the original data
space.

7.3 Estimation with Parameter-Sensitive Hashing

Let (x1, θ1), . . . , (xN , θN) be the training examples with their associated
parameter values. An example is represented by a feature vector x =
[x1, . . . , xD], where xj is computed by a scalar-valued function φj on the
input image, such as a filter response at a certain location or a bin count in
an edge direction histogram in a certain region. We assume the following:

1. A distance function dθ is given which measures similarity between pa-
rameter vectors, and a radius R in the parameter space is given such that
θ1, θ2 are considered similar if and only if dθ(θ1, θ2) < R.

2. The training examples are representative of the problem space, i.e., for
a randomly drawn example there exists, with high probability, an example
with similar parameter values.

3. The process that generates the examples is unbiased, or it is possible to
correct for such bias.

The distance function and the similarity threshold are dependent on the
particular task, and often reflect perceptual similarities between the scenes
or objects.

The second assumption may appear a bit vague, and in fact its precise
meaning depends on the nature of the problem. If we control the example
generation process, we can attempt to “fill” the space, storing an example
in every node on an R-grid in parameter space. This becomes infeasible
very quickly as the dimension of θ increases. Alternatively, it has been often
observed or conjectured [13, 19] that images of many real-world phenomena
do not fill the space uniformly, but rather belong to an intrinsically low-
dimensional manifold, and densely covering that manifold is enough to
ensure this property.

The last assumption implies that there are no significant sources of
variation in the examples besides the variation in the parameters, or that the
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contribution of such sources can be accounted for. While perhaps limiting,
this is possible to comply with in many vision problems, either explicitly,
by normalizing the examples, or implicitly, e.g., by using features invariant
with respect to the “nuisance” parameters.

7.3.1 Parameter-Sensitive Hash Functions

Consider a two-bin hash table based on a binary-valued hashing function h.
Let p1(h) and p2(h) be the probabilities of collision for similar or different
examples, respectively: Recall from chapter 3 that a family of hash functions
H is useful when, averaged over h ∈ H, p2(h) is low and p1(h) is high.
In [11] quantities like p1 and p2, that characterize the entire family, are
derived for the task of finding neighbors in the input space. In our modified
definitions, these quantities characterize each given hash function. For
the parameter estimation task, where the goal is to find neighbors in
the unknown parameter space, analytic derivation of p1(h) and p2(h) is
infeasible since h is a measurement in the input (not parameter) domain.
Instead, we will estimate these from data.

We can show that p1(h) and p2(h) have an intuitive interpretation in the
context of the following classification problem. Let us assign to each possible
pair of examples (xi,xj) the label

yij =

⎧

⎪

⎨

⎪

⎩

+1 if dθ(θi, θj) < r,

−1 if dθ(θi, θj) > R,

not defined otherwise,

(7.5)

where r = R/(1 + ǫ). Note that we do not define the label for the “gray
area” of similarity between r and R, in order to conform to the definition
of locality sensitive fuctions.

We can now formulate a classification task related to these labels. A binary
hash function h either has a collision h(xi) = h(xj) or not; we say that h
predicts the label

ŷh(xi,xj) =

{

+1 if h(xi) = h(xj) (collision),

−1 otherwise.
(7.6)

Thus, when h is interpreted as a classifier, p2(h) is the probability of a false
positive P(ŷij = +1|yij = −1). Similarly, p1(h) is the probability of a true
negative. Such a paired problem set can be built from our training set of
images labeled with poses, since we know dθ, r, R.

Our goal, in learning a distance on images “faithful” to the pose similarity,
is to find h’s that are similarity sensitive in terms of (7.1). A reasonable
objective that achieves this goal is to maximize the gap between the true
positive and the false positive rate of h as a classifier on this paired
classification problem; we have thus reduced our task to a feature selection
task standard in machine learning.
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One should be careful about two things when constructing the paired
problem. First, one must not include pairs with similarity within the “gray
area” between r and R, in order to allow for more efficient learning.
Second, we should take into account the asymmetry of the classification
task: there are many more negative examples among possible pairs than
there are positive. Consequently, in order to represent the negative examples
appropriately, we may need to include many more of them in the paired
problem.

An alternative approach to dealing with this asymmety has been recently
proposed [12]: under the assumptions that similar pairs are very rare (af-
firmed by our experiments in the pose domain, as described below), and
that the expected rate of examples similar to any given example is roughly
uniform, one can forgo sampling the negative examples alltogether. Instead,
the expected false positive rate can be estimated in the following way. For
a given feature φ and a threshold T , let π be the estimated probability of
the event φ(x) ≤ T . For a single (unpaired) data point xi, suppose, with-
out loss of generality, that φ(xi) ≤ T . Now consider a pair formed by ran-
domly selecting another example xj and joining it with xi. With probability
Pφ,T = π2 + (1 − π)2, this pair will be classified as positive by the function
h parametrized by φ and T . Under the assumptions stated above, this ran-
dom pair (and any random pair!) is with very high probability negative, i.e.,
dissimilar. Thus, the probability Pφ,T is a reasonable estimate of the false
positive rate of h. This estimate of the probability mass over a one dimen-
sional variable φ(x) is easily obtained as long as some unlabeled data points
are available. In the experiments below, we have compared this approach
to explicitly sampling large amounts of negative examples, and found that
the results obtained with the two approaches are essentially identical, while
the latter sampling-based estimation is significantly more time consuming.

The exact nature of the hash functions h will of course affect the feature
selection algorithm. Here we consider h which are decision stumps:

hφ,T (x) =

{

+1 if φ(x) ≥ T,

−1 otherwise,
(7.7)

where φ(x) is a real-valued image function and T is a threshold. Algorithm
7.1 is the procedure that for a given φ finds the optimal T in two passes over
the paired training set. Intuitively, it tries all possible distinct thresholds
and counts the number of negative examples that are assigned the same
hash value, as well as the number of positive examples that are assigned the
same value. The former serves as an (unnormalized) estimate of the false
positive rate p2(h); the latter, of the true positive rate p1. Since examples
are sorted by the feature value, these quantities can be updated with little
work. The threshold Tbest is the one that minimizes the gap between the
two.
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Require: Feature φ;

Require: Set of pairs X̃ = (xin ,xjn , yn)Nn=1, where yn ∈ {±1} is the

similarity label.

Start with an empty array A.

Np := number of positive pairs;

Nn := number of negative pairs (Nn + Np = N).

for n = 1 to N do

v1 := φ(xin), v2 = φ(xjn)
l1 := 1 if vin > vjn, 0 otherwise

l2 := −l1
A := A ∪ {< v1, l1, n >,< v2, l2, n >}

end for

/*At this point A has 2N elements. Each paired example is

represented twice. /*

Sort A by the values of v

Sp := Sn := 0
/*g is the best gap p̂1 − p̂2 for φ */

gbest := 0
for k = 1 to 2N do

Let < v, l, n >= A[k]
if yn = +1 then

Sp := Sp − l

else if yn = −1 then

Sn := Sn − l

end if

g := (Np − Sp) − (Nn − Sn)
if g > gbest then

gbest := g; Tbest := v

end if

end for

Algorithm 7.1 Algorithm for evaluating potential hash functions based on axis-parallel
decision stumps (see 7.3). The algorithm returns the threshold Tbest that attains the maximal
gap between the estimated true positive rate and the estimated false positive rate.

The family H of parameter-sensitive hash functions can now be con-
structed by selecting only hφ,T for which p1(hφ,T ) and p2(hφ,T ) evaluated
on the paired problem satisfy the desired thresholds.

7.3.2 Similarity Search

After H is selected, we project the data on only those feature dimensions φ
for which hφ,T ∈ H, obtain binary representation for our data by applying
(7.7) and select k and l. We then build the l hash tables. For an unlabeled
input, LSH is used to query the database rapidly, and finds the union of the
l hash buckets, X ′ =

⋃l
j=1 gj(x0). Let M be the number of distinct points

in X ′; with high probability M ≪ N (if M = 0 the algorithm terminates
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in failure mode). X ′ is exhaustively searched to produce the K (r, ǫ)-NN
x′

1, . . . ,x
′
K , ordered by increasing dX(x′

i,x0), with parameters θ′1, . . . , θ
′
K .

The estimate is based on these points, which, with high probability, belong
to an approximate neighborhood of x0 both in the parameter and in the
input spaces.

7.3.3 Local Regression

The simplest way to proceed is by the (single) nearest-neighbor rule, that
is, to return θ′1 as the answer. There are two problems with this. First θ′1
can be up to R away from the true parameter of the input, θ0. Often,
the R for which it is feasible to satisfy the representativeness property
mentioned above is too large to make this an acceptable solution (see figure
7.4 for examples). The second problem is caused by our inability to directly
measure dθ(θ0, θ); the search relies on the properties of LSHF, and on the
monotonicity of dX with respect to dθ, which are usually not perfect. We
need a robust estimate based on the approximate neighborhood found by
PSH.

A possible way of achieving this is by using the k-NN estimate as a starting
point of a gradient descent search [1]. Alternatively, active learning can be
used to refine the “map” of the neighborhood [6]. Both approaches, however,
require an explicit generative model of p(x|θ), or an “oracle,” which for a
given value of θ generates an example to be matched to x0. While in some
cases it is possible (e.g., with animation software which would render objects
with a given pose), we would like to avoid such a limitation.

Instead, we use robust LWR to avoid overfitting; since we expect the
number of neighbors to be small, we consider constant or linear model,
which can be easily fit with weighted least squares. The model order and
the kernel bandwidth, as well as the number of iterations of reweighting,
can be chosen based on validation set.

7.4 Pose Estimation with PSH

We applied our algorithm to the problem of recovering the articulated pose
of a human upper body. The model has 13 degrees of freedom (DOF): one
DOF for orientation, namely the rotation angle of the torso around the
vertical axis, and 12 DOFs in rotational joints (2 in each clavicle, 3 in each
shoulder, and 1 in each elbow). We do not assume constant illumination
or fixed poses for other body parts in the upper body (head and hands),
and therefore need to represent the variation in these and other nuisance
parameters, such as clothing and hairstyle, in our training set.

For this application, it is important to separate the problem of object
detection from that of pose estimation. Given simple backgrounds and a
stationary camera, body detection and localization are not difficult. In the
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(a) (b) (c)

(d) (e)

Figure 7.2 Positive and negative paired examples. For each image in (b)–(e), the ±1 label of
the pair formed with (a) is based on the distance dθ to the underlying parameters of (a), with
similarity threshold r = 0.25.

experiments reported here, it is assumed that the body has been segmented
from the background, scaled, and centered in the image. For more difficult
scenarios, a more complex object detection system may be required.

Input images are represented in our experiments by multi-scale edge
direction histograms. Edges are detected using the Sobel operator and each
edge pixel is classified into one of four direction bins: π/8, 3π/8, 5π/8, 7π/8.
Then, the histograms of direction bins are computed within sliding square
windows of varying sizes (8, 16, 32 pixels) placed at multiple locations in
the image. The feature space consists of the concatenated values of all of the
histograms. We chose this representation, often used in image analysis and
retrieval, because it is largely invariant to some of the nuisance parameters
with respect to pose, such as illumination and color.

The training set consisted of 500,000 images rendered from a humanoid
model using Poser [8], with parameter values sampled independently
and uniformly within anatomically feasible ranges; the torso orientation is
constrained to the range [−90o, 90o]. Each training image is 180×200 pixels.
In our model, all angles are constrained to [−π, π], so as a similarity measure
we use

dθ(θ1, θ2) =

m
∑

i=1

1 − cos(θi
1 − θi

2) (7.8)

where m is the dimension of the parameter space (number of joint angles),
and θi

j is the i-th component of θj . We found that this distance function,
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while not perfect, usually reflects our perception of pose similarity (see figure
7.2 for examples).

After examining large numbers of images corresponding to poses with
various distances, we set r = 0.25 and ǫ = 1. An LSH query is therefore
considered successful if it returns examples within R = 0.5 of the input,
using (7.8) as a distance between poses. Analysis of the distribution of dθ

over pairs of training examples reveals that only about 0.05% of the pairs
constitute a positive example by this criterion (the distribution appears to
be roughly log-normal). Figure 7.2 shows four of 1,775,000 paired examples
used to select hash functions; out of 11,270 features, 219 hash functions
were selected for which the gap between p1(h) and p2(h) is at least 0.25.
Based on validation set performance, PSH was implemented with 80 hash
tables using 19-bit hash functions.

Model k = 7 k = 12 k = 50

k-NN 0.882 (0.39) 0.844 (0.36) 0.814 (0.31)

Linear 0.957 (0.47) 0.968 (0.49) 1.284 (0.69)

Const LWR 0.882 (0.39) 0.843 (0.36) 0.810 (0.31)

Linear LWR 0.885 (0.40) 0.843 (0.36) 0.808 (0.31)

Robust const LWR 0.930 (0.49) 0.825 (0.41) 0.755 (0.32)

robust linear LWR 1.029 (0.56) 0.883 (0.46) 0.738 (0.33)

Table 7.1 Mean estimation error for synthetic test data, over 1000 examples. Standard
deviation shown in parentheses. Not shown are the baseline error of 1-NN, 1.614 (0.88), and
of the exact 1-NN based on the input distance, 1.659.

To quantitatively evaluate the algorithm’s performance, we tested it on
1000 synthetic images, generated from the same model. Table 7.1 summa-
rized the results with different methods of fitting a local model; “linear”
refers to a non-weighted linear model fit to the neighborhood, “constant”
refers to a zeroth order model (weighted average). On average PSH searched
5100 candidates, about 3.4% of the data, per input example; in almost all
cases, the true nearest neighbors under dX were also the top PSH candi-
dates.

The results confirm some intuitive expectations. As the number of ap-
proximate neighbors used to construct the local model increases, the non-
weighted model suffers from outliers, while the LWR model improves; the
gain is especially high for the robust LWR. Since higher-order models re-
quire more examples for a good fit, the order-1 LWR only becomes better
for large neighborhood sizes. Although the differences between models that
rely on multiple neighbors were not statistically significant, there is a clear
trend that reflects consistent superiority of LWR models. In particular, note
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Figure 7.3 Examples of upper body pose estimation (see section 7.4). Top row: input images.
Middle row: top PSH match. Bottom row: robust constant LWR estimate based on 12 NN. Note
that the images in the bottom row are not in the training database - these are rendered only to
illustrate the pose estimate obtained by LWR.

Figure 7.4 More examples, including typical “errors”. In the leftmost column, the gross error
in the top match is corrected by LWR. The rightmost two columns show various degrees of error
in estimation.

that the robust linear LWR with 50-NN is on average more than twice better
than the baseline 1-NN estimator.

We also tested the algorithm on 800 images of a real person; images
were processed by a simple segmentation and alignment program. Figure
7.3 shows a few examples of pose estimation on real images. Note that
the results in the bottom row are not images from the database, but a
visualization of the pose estimated with robust linear LWR on 12-NN found
by PSH; we used a Gaussian kernel with the bandwidth set to the median
distance to the neighbors. In some cases (e.g., leftmost column in figure 7.4),
there is a dramatic improvement vs. the estimate based on the single NN.
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The number of candidates examined by PSH was, as expected, significantly
lower than for the synthetic images–about 2000, or 1.3% of the database. It
takes an unoptimized Matlab program less than 2 seconds to produce the
pose estimate. This is a dramatic improvement over searching the entire
database for the exact nearest-neighbor, which takes more than 2 minutes
per query, and in most cases produces the same top matches as the PSH.

Lacking ground truth for these images, we rely on visual inspection of
the pose for evaluation. For most of the examples the pose estimate was
accurate; on some examples it failed to various extents. Figures 7.3 and 7.4
show a number of examples, including two definite failures. Note that in
some cases the approximate nearest neighbor is a poor pose estimate, while
robust LWR yields a good fit. We believe that there are three main sources
of failure: significant mismatch between dθ and dX ; imperfect segmentation
and alignment; and the limitations of the training set, in terms of coverage
and representativeness of the problem domain.

7.5 Summary and Conclusions

We present an algorithm that uses new hashing-based search techniques
to rapidly find relevant examples in a large database of image data, and
estimates the parameters for the input using a local model learned from
those examples. Experiments show that our estimation method, based on
PSH and robust LWR, is successful on the task of articulated pose estima-
tion from static input. These experiments also demonstrate the usefulness
of synthetically created data for learning and estimation.

In addition to the use of local regression to refine the estimate, our
work differs from that of others, e.g., [1, 14], in that it allows accurate
estimation when examining only a fraction of a data set. The running time
of our algorithm is sublinear; in our experiments we observed a speedup of
almost two orders of magnitude relative to the exhaustive exact nearest-
neighbor search, reducing the time to estimate pose from an image from
minutes to under two seconds without adversely affecting the accuracy. We
expect an optimized version of the system to run at real-time speed. This
has the potential of making previously infeasible example-based estimation
paradigms attractive for such tasks.

There are many interesting questions that remain open. The learning
algorithm, presented in 7.3.1, implicitly assumes independence between the
features; we are exploring more sophisticated feature selection methods that
would account for possible dependencies. Moreover, it should be pointed out
that there exist fast algorithms for approximate similarity search other than
LSH. It remains an open question whether those algorithms can be modified
for parameter sensitivity and become useful for estimation tasks in vision,
replacing LSH in our framework.
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Finally, as we mentioned earlier, the presented framework is not specific
to pose; we intend to investigate its use in other parameter estimation tasks.
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8 Contour Matching Using Approximate Earth

Mover’s Distance

Kristen Grauman and Trevor Darrell

A shape may be represented by a set of local features, and the corre-
spondences produced by the minimum cost matching between the two dis-
crete feature distributions often reveal how similar the underlying shapes
are. However, due to the complexity of computing the exact minimum cost
matching, previous correspondence-based algorithms could only run effi-
ciently with a limited number of features per example, and could not scale
to perform retrievals from large databases. We present a matching algo-
rithm that quickly computes a minimal cost correspondence field between
sets of descriptive local contour features using a recently introduced low-
distortion embedding of the Earth Mover’s Distance (EMD) into a normed
space. Given a novel embedded shape, the approximate nearest neighbors
in a database of embedded examples are retrieved in time sublinear in the
number of examples via Locality-Sensitive Hashing (LSH). We demonstrate
our method on large databases of human figure contours and images of
handwritten digits.

8.1 Introduction

The ability to measure the similarity between shapes has wide application
in tasks such as object recognition, content-based image retrieval, and
automatic video analysis. A shape may be represented by a set (or bag) of
local features, such as a set of local histograms collected from its contour or
edge points. The minimum cost of matching the local image features of one
object to the features of another often reveals how similar the two objects
are. The cost of matching two features may be defined as how dissimilar they
are in spatial location, appearance, curvature, or orientation; the minimal
weight matching is the correspondence field between the two sets of features
that requires the least summed cost. A number of successful shape matching
algorithms and distance measures require the computation of minimal cost
correspondences between sets of features on two shapes (see [2, 19, 9, 7, 3]).
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Unfortunately, computing the optimal matching for a single comparison
has a complexity that is cubic in the number of features. The complexity
is of course magnified when one wishes to search for similar examples
(“neighbors”) in a large database: a linear scan of the database would require
computing a comparison of cubic complexity for each database member
against the query. Hierarchical search methods, pruning, or the triangle
inequality may be employed, yet query times are still linear in the size of
the database in the worst case, and individual comparisons maintain their
high complexity regardless.

To address the computational complexity of current correspondence-based
matching algorithms, we propose a contour matching algorithm that in-
corporates recently developed approximation techniques and enables fast
shape-based similarity retrieval from large databases. We treat contour
matching as a graph matching problem, and use the Earth Mover’s Distance
(EMD)—the minimum cost that is necessary to transform one weighted
point set into another—as a metric of similarity. We embed the minimum
weight matching of contour features into L1 via an EMD embedding, and
then employ approximate nearest-neighbor search to retrieve the shapes
that are most similar to a novel query. The embedding step alone reduces
the complexity of computing a low-cost correspondence field to O(nd log ∆),
where n is the number of features, d is their dimension, and ∆ is the diam-
eter of the feature space (i.e., the greatest inter-feature distance).

For further efficiency, we introduce a low-dimensional shape descriptor
subspace based on the shape context feature of [2], and successfully use
it within the proposed approximate EMD shape matching method. Using
many examples of high-dimensional local edge point histograms taken from
shapes in a database, we construct a subspace that captures much of the
descriptive power of the rich features, yet allows us to represent them
compactly.

We demonstrate our contour matching method on databases of 136,500
human figure images (real and synthetic examples) and 60,000 handwrit-
ten digits. We report on the relative complexities (query time and space
requirements) of approximate versus exact EMD. In addition, we study
empirically how much retrieval quality for our approximate method differs
from its exact-solution counterpart, optimal graph matching. Shape match-
ing quality is quantified based on its performance as a k-nearest-neighbor
(k-NN) classifier for 3D pose or digit classification. With our method it is
feasible to quickly retrieve similar shapes from large databases—an abil-
ity which has applications in various example-based vision systems. Unlike
other methods which must perform vector quantization in the feature space
in order to do efficient online retrievals, our technique can efficiently match
raw feature distributions, and it eliminates the constraint on input feature
set size from which other matching techniques suffer.
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8.2 Related Work

In this section we briefly review relevant related work on shape matching
techniques requiring optimal correspondences between features, the use of
EMD as a similarity measure, and an embedding of EMD into a normed
space and fast approximate similarity search.

A number of shape matching techniques require optimal correspondences
between feature sets at some stage. The authors of [2] obtain least cost
correspondences with an augmenting path algorithm in order to estimate
an aligning transform between two shapes. They achieve impressive shape
matching results with their method, but they note that the run-time does
not scale well with the representation size due to the cubic complexity of
solving correspondences. The authors of [3] characterize local shape topolo-
gies with points and tangent lines and use a combinatorial geometric hashing
method to compute correspondence between these “order structures” of two
shapes. In [9], a graduated assignment graph matching method is developed
for matching image boundary features; it operates in time polynomial in the
size of the feature sets. For additional information about various distance
metrics for shape matching and their computational complexities, please
refer to [20].

In recent work, AdaBoost is used to learn an embedding that maps the
Chamfer distance into Euclidean space, and it is applied to edge images
of hands to retrieve 3D hand poses from large databases [1]. However,
while [1] requires that a large number of exact (potentially expensive)
distance computations be performed during training, our method requires
no exact EMD computations; our “training” cost is only the O(Nnd log ∆)
cost of embedding N database members. Additionally, while in [1] retrievals
are based on a linear scan of the database, our method’s online query time
is sublinear in the size of the database.

The concept of using an EMD-like distance to measure perceptual sim-
ilarity between images was first explored in [17] for the purpose of com-
paring intensity images. More recently EMD has been utilized for color-
or texture-based similarity in [18] and [12], and extended to allow unpe-
nalized distribution transformations in [5]. Exact EMD is computed via a
linear programming solution, and its complexity is exponential in the num-
ber of points per point set in the worst case. In [15] exact EMD is applied
to a database of 1620 silhouettes whose shock graphs are embedded into
a normed space; the method does not use an embedding to approximate
the EMD computation itself, and thus may not scale well with input or
database size. In [7], a pseudo-metric derived from EMD that respects the
triangle inequality and positivity property is given and applied to measure
shape similarity on edges.

Our goal is to achieve robust, perceptually meaningful matching results,
but in a way that scales more reasonably with an arbitrary representation
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size and allows real-time retrieval from larger databases. To that end, in
this work we show how EMD and Locality-Sensitive Hashing (LSH) can
be used for contour-based shape retrievals. An embedding of EMD into
L1 and the use of LSH for approximate nearest neighbors was shown for
the purpose of image retrieval using global color histograms in [14]. To our
knowledge, this work is the first to use an EMD embedding or employ LSH
for local feature-based matching, and it is the first to develop a compact
shape context subspace feature.

8.3 Fast Similarity Search with EMD

In this section, for the reader’s convenience, we briefly summarize the
EMD metric and the randomized algorithms we use in our shape matching
method: the approximate similarity search algorithm LSH [8], and the
embedding of EMD into a normed space given in [14].

EMD is named for a physical analogy that may be drawn between the
process of transforming one weighted point set into another and the process
of moving piles of dirt spread around one set of locations to another set
of holes in the same space. The points are locations, their weights are the
size of the dirt piles and holes, and the ground metric between a pile and
a hole is the amount of work needed to move a unit of dirt. To use this
transformation as a distance measure, i.e., a measure of dissimilarity, one
seeks the least cost transformation—the movement of dirt that requires the
least amount of work.

When the total weights in the two point sets are equal, the solution is
a complete one-to-one correspondence, and it is equivalent to the problem
of bipartite graph matching. That is, for a metric space (X,D) and two
n-element sets A,B ⊂ X, the distance is the minimum cost of a perfect
matching π between A and B:

EMD(A,B) = min
π:A→B

∑

a∈A

D(a, π(a)). (8.1)

LSH indexes a database of examples residing in a normed space by a
number of hash tables, such that the probability of collision is high for
similar examples and low for dissimilar ones. In particular, LSH guarantees
that if for a query point q there exists a point in the database p such that
D(p,q) ≤ r, then (with high probability) a point p′ is returned such that
D(p′,q) ≤ (1 + ǫ)r. Otherwise, the absence of such a point is reported.
The query time for a database of N d-dimensional examples is bounded by
O(dN (1/(1+ǫ))). See [8] for details.

The low-distortion embedding of EMD given in [14] provides a way to map
weighted point sets A and B from the metric space into the normed space
L1, such that the L1 distance between the resulting embedded vectors is
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comparable to the EMD distance between A and B themselves. It is required
that A and B have equal total weights. Working in a normed space is
desirable since it allows the use of fast approximate nearest-neighbor search
techniques such as LSH. The general idea of the embedding is to compute
and concatenate several weighted histograms of decreasing resolution for a
given point set.

Formally, given two point sets A and B, each of cardinality n, and each
containing points in ℜd: impose grids Gi, −1 ≤ i ≤ log(∆), on the space
ℜd, with grid Gi having side length 2i, and ∆ equal to the diameter of
A∪B. Each grid is translated by a vector chosen randomly from [0, ∆]d. To
embed a point set A, a vector vi is created for each Gi with one coordinate
per grid cell, where each coordinate counts the number of points in the
corresponding cell, i.e., each vi forms a histogram of A. The embedding of
A is then the concatenated vector of the vi’s, scaled by the side lengths:

f(A) =

[

1

2
v−1(A),v0(A), 2v1(A), . . . , 2ivi(A), . . .

]

. (8.2)

The distortion C of a metric embedding f describes how much information
loss the embedding induces:

1

C
EMD(A,B) ≤ ||f(A) − f(B)||L1 ≤ EMD(A,B). (8.3)

The distortion of the embedding used in this work has an upper bound of
O(log ∆) [14].

The intuition behind how this embedding captures EMD’s minimum cost
correspondence is as follows: each increasingly coarse level of the hierarchy
of histogram grids serves to “match” the yet unmatched points from one
point set to another within a particular grid cell. Points not matched at a
given level result in entries in the L1 vectors with different indices, which
will add a value proportional to that level’s grid cell side length to the L1

distance between the two point sets’ embeddings.

8.4 Matching Contours and Shape Context Subspaces

In this work we develop an efficient contour matching method that exploits
the approximate EMD embedding and nearest neighbor search algorithms
described above, and a rich but compact contour descriptor subspace that
is amenable to approximate EMD.

EMD provides an effective way for us to compare shapes based on their
distributions of local features. To compare shapes with EMD is essentially
to measure how much effort would be required to transform one shape
into another. The measure of this “effort” is based on establishing the
correspondence between two shapes’ unordered set of descriptive local
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Given: N weighted point sets B1, . . . ,BN , where Bi = {(s1, w1) . . . , (smi
, wmi

)} is a weighted
point set composed of mi features, Si = {s1, . . . , smi

}, sj ∈ ℜd, with feature vector sj

associated with scalar weight wj , and where ∆ is the diameter of ∪N
i=1S

i,
1: for all i = 1, . . . , N do
2: Bi ← {(s1, w1/T ), . . . , (smi

, wmi
/T )}, where T =

Pmi

j=1 wj .
3: end for
4: Let L = ⌈log ∆⌉.
5: For 1 ≤ l ≤ L, let each tl = [tl

1, . . . , t
l
d] be a random vector from [0, 2l]d.

6: for all Bi, 1 ≤ i ≤ N do
7: for all (sj = [sj

1, . . . , s
j
d], wj) ∈ Bi do

8: for all tl, 1 ≤ l ≤ L do
9: xj

l = [c(tl
1, s

j
1), . . . , c(t

l
d, sj

d)],
where c(th

k , s) = trunc((s − th
k)/2h)

10: vj
l = wj × 2l

11: end for
12: pi

j = [(xj
1, v

j
1), . . . , (x

j
L, vj

L)]
13: end for
14: embed(Bi) = tally(sort([pi

1, . . . ,p
i
mi

])),
where pairs (x, v) represent nonzero sparse vector entries with index x and value v, sort()
returns [(xo1

, vo1
), . . . , (xon

, von
)] such that xoi

≤LEX xoi+1
(lexicographic ordering of

concatenated vector elements) and tally() sums values of sparse vector entries with equal
indices.

15: end for

Algorithm 8.1 L1 embedding for sets of local features.

features that results overall in the lowest possible matching cost, where
matching cost is defined by a ground distance between two local features
(e.g., the L2 norm). Our goal is to compare local feature sets in this manner,
but in an efficient way that will scale well with feature set cardinality and
database size.

To overcome the computational burden of the conventional methods
described above, we embed the problem of correspondence between sets
of local features into L1, and use the approximate solution to match the
shapes or images. By mapping the computation of EMD over unordered
feature sets into a normed space, a complex correspondence-based distance
is reduced to a simple, efficiently computable norm over very sparse vectors.

Our method proceeds as follows: features are extracted from a database of
images, and each image’s features are treated as a uniformly weighted point
set. Using the L1 embedding of EMD over the point sets, one sparse vector is
produced for each input example. Next, a set of random LSH hash functions
are generated, and all of the embedded database vectors are entered into
the hash tables. Both the database embedding and hash table construction
are performed offline. Then, given a novel example, the embedding for its
features is computed using the same random grid translations used for
the database embedding. Finally, examples similar to the novel query are
retrieved from the database by computing the L1 distance between the
query’s embedding and only those vectors in the union of the hash buckets
that are indexed by the query’s embedding. Pseudo-code for the EMD local
feature matching embedding is given in Algorithm 8.1.
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The embedded vector resulting from an input point set is high-dimensional
but very sparse; only O(n log ∆) entries are nonzero. The time required to
embed one point set is O(nd log ∆). L1 distances are computed in time
proportional to the number of nonzero entries in the sparse vectors as
follows: a sparse vector data structure is composed of a vector of nonzero
indices plus a vector of values at those indices. At the time of embedding,
the vectors are sorted according to their indices (an offline computational
cost). Then computing the L1 distance is a matter of running two pointers
through the vectors to sum the absolute value of the difference of their
values where they have the same index, or add the absolute value of one
vector where the index is not shared.

Thus the computational cost of obtaining the near-optimal feature cor-
respondences for our matching method will be O(nd log ∆) + O(n log ∆) =
O(nd log ∆), the cost of embedding two point sets, plus an L1 distance on
the sparse vectors. In comparison, the exact methods typically used in shape
matching to solve for correspondences (such as the Hungarian method for
bipartite graph matching or the transportation simplex algorithm for linear
programming) require time cubic or exponential in n.

Once a database of example shapes or images is embedded into a normed
space, we do fast (time sublinear in the database size) retrievals for a novel
embedded query via LSH. In addition to the complexity savings for a single
match described above, the time required for retrieving similar shapes or
images is reduced to O(sN (1/(1+ǫ))), where N is the number of examples in
the database, ǫ is the LSH parameter relating the amount of approximation
of the normed distance between neighbors, and s is the dimension of
the sparse embedded contour vectors, s having a space requirement of
O(n log ∆). Results showing the quality of the approximate nearest neighbor
contours we retrieve with LSH are reported in section 8.5.

Probably the most direct application of EMD for 2D contour matching
is to compose point sets from the literal points on the two contours (or
some subsets of them) and use the Euclidean distance between two contour
points’ image coordinates as the ground distance D in (8.1). For this simple
positional feature, examples must be translated and scaled to be on par with
some reference shape. To embed a set of 2D contour points, we impose a
hierarchy of grids on the image coordinates themselves, starting with a grid
resolution where each image coordinate receives its own cell, and ending
with a single cell grid the size of the largest image, Glog ∆ (see figure 8.1).

There are drawbacks to using the simple positional feature for shape
matching with approximate EMD. Though straightforward to embed, it
can be a brittle feature. In order to achieve scale or translation invariance
this feature demands a pre-processing stage on all shapes (which requires
some a priori knowledge about the shapes, and can itself be brittle).
In addition, under EMD the positional feature is too weak to enforce
consistent, meaningful correspondences; since it encodes nothing about the
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Figure 8.1 Imposing a hierarchy of grids on a set of 2D contour points to get its embedding.

Figure 8.2 Projecting histograms of contour points onto the shape context subspace.

local shape appearance of the object, it will be greedily matched to points
that are simply nearby on the other object.

To overcome these issues, we use a richer shape descriptor with the ap-
proximate EMD distance, as we expect to achieve more robust matchings
and more meaningful correspondence fields from descriptive feature repre-
sentations that encode the local shape in the neighborhood of each point.
We employ the shape context descriptor of [2]. The shape context feature
at a single contour point is a log-polar histogram of the coordinates of the
rest of the point set, measured using the reference point as the origin. It is
inherently translation invariant, and scale and rotation invariance may be
added [2].

While matching with the full shape context feature is possible with our
method, a low-dimensional feature descriptor is desirable since any change in
point dimensions changes the constant distortion factor C in the embedding,
and also changes the d factor in the complexity of computing the embedding
itself. Thus we find a low-dimensional feature subspace based on a large
sample of the shape context histograms, and then perform the embedding
step in the domain of this subspace. The subspace is constructed from a
large sample of features drawn from the database of contours on which
we wish to apply our method. All contour features (from the database
items and novel queries alike) are then projected onto the subspace, and the
approximate EMD embedding is performed in the domain of a small number
of their subspace coordinates (see figure 8.2). We use principal components
analysis (PCA) to determine the set of bases that define this “shape context
subspace.”
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We found that a very low-dimensional subspace was able to capture much
of the local contour variation in our data sets. Figure 8.3 gives examples
of the shape context subspace for human figures and handwritten digits. In
section 8.5 we report results using the shape context subspace representation
and discuss how to determine the most effective subspace dimension to use.

8.5 Results

In this section, we first describe each of the data sets we use in our
experiments, as well as the feature representations and parameter settings
that are used for each. Then we report on the matching performance of our
method, followed by a discussion regarding its efficiency.

8.5.1 Data Sets and Representation

We have tested the proposed contour matching method on databases of
human figures and handwritten digits. The human figure database contains
136,500 images of synthetic human figure contours in random poses that
were generated with a computer graphics package called Poser [4]. We query
this database with a separate test set of 7000 synthetic human figure images,
and a test set of 1000 real images from a single human subject in various
poses. The digit database we use is a publicly available benchmark data
set, the MNIST database [16], which has been used to test many different
pattern recognition algorithms. It contains 60,000 training images and
10,000 test images of digits written by about 250 different people. For the
human figure images, we uniformly sampled 200 points from each silhouette
contour, and for the digits we sampled 100 edge points per example.

We describe each contour with a set of shape context subspace features
(see subsection 8.4). We construct shape context subspaces from 5 × 12
log-polar histograms extracted from the training sets; we used samples of
855,600 and 816,665 histograms from the human figure and handwritten
digit data sets, respectively. The representation of a novel contour is deter-
mined by projecting its shape context histograms onto the low-dimensional
subspace. This representation is translation invariant, and the scale of the
shape context histograms initially extracted from the data is determined
from the mean inter-point distance per shape. Because the coefficients are
real-valued, they must be appropriately scaled and discretized before the
embedding grids can be imposed. We remap the projection coefficients to
positive integers by subtracting the minimum projection value from all ex-
amples, then scaling by 102.

There are several tradeoffs that must be considered when selecting d,
the number of subspace dimensions to use for the shape context subspace
features. The larger d is, the more exactly the projection coordinates will
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(a) Human figure database

(b) Handwritten digits database

Figure 8.3 Visualization of feature subspace constructed from shape context histograms for
two different data sets. The RGB channels of each point on the contours are colored according
to its histogram’s 3D PCA coefficient values. Matching with EMD in this feature space means
that contour points of similar color have a low matching cost (require little “work”), while highly
contrasting colors incur a high matching cost.

capture the original histogram feature extracted from the image (i.e., the
smaller the PCA reconstruction error will be). However, larger d values will
increase both the distortion over EMD that is induced by the embedding,
as well as the complexity of computing the embedding. The dimension of
the embedded vectors—and thus the time required to compute an L1 dis-
tance on the embedded vectors—are also directly impacted by d. Moreover,
higher-dimensional subspace projections, though strictly capturing the orig-
inal data more faithfully, will not necessarily provide the most meaningful
representation of the feature; one purpose of reducing the features’ dimen-
sionality with PCA is to distill the most significant modes of variation within
the high-dimensional feature and use only those most discriminating dimen-
sions as the descriptor. In fact, since we have a quantitative task by which
retrievals may be judged (k-NN classification performance), it is more ap-
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Figure 8.4 Example of using recognition performance to select the feature subspace dimension
(d). These data are from the MNIST digits data set. A reserved portion (500 examples) of the
training set was used to query the remaining 50,500 in order to optimize d for testing on the true
test set. The top left graph shows the magnitudes of the eigenvalues for the PCA subspace over
the shape context feature. The top right graph shows the k-NN classification performance that
results when the 500 reserved training examples are used as queries, for projection dimensions
varying from 1 to 34 (k = 3). The bottom left graph shows the corresponding mean embedding
times for the same queries, and the bottom right graph shows the mean query times. Note that
even though a number of principal components past the first two dimensions have eigenvalues of
significant magnitude, the top right plot reveals that these dimensions are superfluous in terms
of recognition performance. The data indicate that the choice of d = 2 is optimal for this data
set, since there is an excellent balance between recognition performance and embedding/query
efficiency at this point.

propriate to choose d with this objective than to select it solely on the
number of eigenvalues with the highest magnitude (a standard approach).

Ultimately, the optimal setting of d—the setting that preserves both de-
scriptiveness and efficiency—will depend on the data set. Thus in our exper-
iments we determine the best setting by looking directly at the relationships
between d and both recognition performance and retrieval efficiency. Using
a reserved portion of the training set to query the remaining training ex-
amples, we record the correct k-NN classification rate, embedding times,
and query times achieved with each increasing value of d. While seeking
the optimal d in this way, we measure relative query times in terms of an
exhaustive L1 search on embedded vectors (i.e., without LSH). This ensures
both that the best possible classification performance is observed, and that



192 Contour Matching Using Approximate Earth Mover’s Distance

the query times are fairly uniform across examples for the same d, so as
not to be influenced by outlier cases that may occur with LSH. Plotting
the recognition rates, embedding times, and query times then reveals the
tradeoffs between complexity and classification performance and allows us
to choose an appropriate value of d to be applied for the actual test ex-
amples (see figure 8.4). Using this process, we found that for the human
figure and MNIST digit data sets, a 2D projection adequately captured the
descriptive power of the shape context feature and produced good contour
matches, yet also yielded very efficient embedding and query complexities.

We constructed a separate set of hash functions for each image data set
in order to perform LSH approximate nearest-neighbor retrievals. We de-
termined the LSH parameters (number of hash tables and number of bits
per hash value) based on the proof in [13] which shows how to select param-
eters for the case of the Hamming space over a non-binary alphabet, such
that the desired level of approximation versus speed tradeoff is achieved.
The radius r denotes the distance from a query point where similar points
(its “r-neighbors”) are believed to lie. The probability of collision of similar
examples (examples within distance r), p1, is set to 1 − r

d′
, where d′ = Zd,

d is the dimension of the embedded vectors, and Z is the largest coordinate
value in any of the embeddings. The probability of collision for dissimilar
examples (examples farther than (1 + ǫ)r from each other), p2, is set to
1 − r(1+ǫ)

d′
. Then the number of bits k and the number of hash tables l are

set as follows:

k = log1/p2

(

N

B

)

, l =

(

N

B

)

log 1/p1
log 1/p2

, (8.4)

where N is the total number of examples in the database, and B is the
maximum number of examples we wish to search exhaustively after hashing.
For the complete data set of 136,500 human figure examples, this meant
using eight tables and 120-bit functions. For the MNIST digit data set, we
used five tables and 96-bit functions. The radius r is determined for each
data set by examining the distances and class labels corresponding to the
nearest neighbors of an embedded point set under L1. For all experiments
ǫ is set to 1, which means the upper bound on the query time is O(dN

1
2 ).

8.5.2 Retrieval Quality

To quantitatively measure the quality of the database retrievals our contour
matching method yields, we pose a k-NN classification task for each data set.
A k-NN query selects the nearest k examples among a database of training
examples, and then labels the test point by a majority vote of these samples.
Though a simple method, the k-NN approach to classification is powerful
since its error rate reaches the optimal Bayes rate when k and N go to
infinity [6].
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(a)
Queries

(b) Exact
EMD

(c) L1 on em-
beddings

(d) LSH on
embeddings

Figure 8.5 Approximate EMD retrieves shapes very similar to those retrieved by the optimal
matching. This figure shows examples of the three nearest neighbors (left to right in rank order)
retrieved with embedded EMD contour matching (c) and embedded EMD contour matching with
LSH (d), compared to the nearest neighbors under exact EMD contour matching (b). Examples
shown were chosen randomly from 7000 test set results, and nearest neighbors were retrieved
from a database of 136,500 examples. Columns (c) and (d) use the embedded 2D shape context
subspace feature; column (b) uses exact EMD applied to full 60D shape context features. Note
that the embedded match results are qualitatively similar, yet are several orders of magnitude
faster to compute.



194 Contour Matching Using Approximate Earth Mover’s Distance

Figure 8.6 Real image queries: examples of query contours from a real person (left image
in each group) and the five nearest-neighbor contours retrieved from a synthetic database of
136,500 images using L1 on EMD embeddings of 2D shape context subspace features. The
example results shown here are a random sample of the 1000 real queries that were performed.

8.5.2.1 Human Figures Data Set

For the human figures data set, we measure retrieval quality by comparing
the 3D pose of each query example with the pose of the k most similar
examples that are retrieved from the database. When the synthetic human
figure database is generated, the 3D pose (a set of 19 3D joint positions) is
recorded for each example. If the joint positions corresponding to a retrieved
shape are on average within some threshold of distance from the known joint
positions of the query example, we consider the retrieved shape a good
match. We chose a threshold of 10 cm, since this is a distance at which the
3D poses are perceptually similar.

Figure 8.5 shows some example retrievals using our approximate EMD
method with synthetic query images. Examples of the synthetic nearest
neighbors that were retrieved for the images from a real person are shown
in figure 8.6. These real image queries contain a single subject performing
various actions against a static background. Background subtraction was
done automatically using standard frame differencing followed by morpho-
logical operations.

Figure 8.7 (a) quantitatively compares the quality of results obtained
with our approximate method with those obtained from exact EMD for a
database of 10,000 images. Due to the complexity of exact EMD, the exact
comparisons were necessarily computed with a parallel implementation. In
this figure the optimal results were obtained by running the transportation
simplex algorithm to compute EMD on full 60D shape context features,
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Figure 8.7 (a) Comparison of the quality of contour matching retrievals from the exact
versus approximate methods for the human figures data set. Quality is measured via a k-NN
classification task. The test set and training set are composed of 1000 and 10,000 examples,
respectively. For this problem, our method achieves a speedup of four orders of magnitude over
the exact method, at the cost of only a 4% reduction in accuracy. (b) Distributions of the highest
rank of a correct match for human figure retrievals. Lines in center of boxes denote median value;
the top and bottom of boxes denote upper and lower quartile values, respectively. The dashed
lines show extent of rest of the data, and the pluses denote outliers. See text for details.

whereas results for the two approximations (the embedding and LSH) were
obtained using only 2D shape context subspace features. There is a slight
decrease in classification performance at each approximation level; however,
we found that the practical bound on the distortion introduced by the
EMD embedding is significantly (about one order of magnitude) lower than
the theoretical upper bound. Moreover, the bar graph in figure 8.7 (a)
demonstrates that our method shows only a 4% reduction in accuracy over
the exact method, and as we discuss in subsection 8.5.3, this small error
increase allows us a substantial speedup of four orders of magnitude.

Figure 8.7 (b) shows how well our contour matching method serves as a
means of estimating 3D pose from a set of 2D occluding contour points. The
boxplot shows the distributions of the highest rank that is assigned by our
method to an example in the database with a very similar (within 10 cm)
pose to a query. In most cases, the second nearest neighbor is a “correct”
match, meaning it correctly identifies the pose of the query. We note that
there are of course ambiguities in the task of inferring 3D pose from a
single frame silhouette view; due to self-occlusions or ambiguities about the
orientation of the person, the information provided by the outer contour may
be an insufficient indicator of 3D pose. Nevertheless, we are encouraged by
the fact that the correct matches in pose are generally among the highest
ranked examples according to our method. In recent work we have also
investigated how these example-based pose estimates may be integrated
and improved by considering sequences of silhouette frames [11].
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(a)
Queries

(b) Nearest neighbors: initial
rankings

(c) Nearest neighbors: refined
rankings

Figure 8.8 Example retrieval results for the MNIST handwritten digits database. Approxi-
mate EMD efficiently filters through the N-item database to find an initial set of w examples
whose edge point histograms have minimal cost correspondences with the query’s histograms.
Then, in order to refine the initial rankings, a more expensive shape matching method (such
as shape context matching [2]) can be applied to only the w examples that were retrieved with
approximate EMD. Classification is then done using only the first k re-ranked examples (k < w).
Each row shows one example. (a) shows some query digits from the MNIST test set. (b) shows
the first w = 10 nearest neighbors for these queries under approximate EMD with L1 (in rank
order). (c) shows the same 10 nearest neighbors after they are re-ranked by the shape context
distance. The first k = 3 refined nearest neighbors are used to classify the query digit.
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8.5.2.2 Handwritten Digits Data Set

In a practical system, classification rates can be improved by adding a refin-
ing step: some number of the best matches retrieved by the fast approximate
method may be fed as input to a more elaborate (and presumably more ex-
pensive) matching algorithm for re-ranking prior to k-NN classification. For
the MNIST handwritten digits data set, we took this refinement approach.
The goal is to correctly label the identity of a query handwritten digit based
on the majority vote of its k-NN in the training set of 60,000 examples. First,
we use our approximate EMD shape matching method with shape context
subspace features to retrieve an initial set of w nearest neighbors for a query.
Then we compute the exact shape context distance [2] between this initial
nearest neighbor set and the query example, which yields a re-ranking of the
neighbors.1 The k closest neighbors in this re-ranked or refined set are then
used to do the classification. Figure 8.8 shows some example matching re-
sults for the handwritten digits and illustrates the impact of the refinement
stage.

Figure 8.9 shows classification performance for the handwritten digits
data set. Since the MNIST digit database is a publicly available benchmark
data set, we are able to compare our algorithm’s performance against that
of many other researchers. (See [16] for a summary of different algorithms’
results.) At this writing, the best published classification performance was
achieved by the shape context matching method of [2], which correctly
classifies 99.37% of the 10,000-item test set. By combining our approximate
EMD contour matching with shape context matching as described above,
we are able to correctly classify 99.35% of the test set. Note that while the
technique in [2] compares query shapes against every database item, with
the refinement framework we need only evaluate the shape context distance
between the query and a fraction of the database; so with w = 6000, our
method misclassifies only 65 of the 10,000 test digits, but classification is an
order of magnitude more efficient than doing a linear scan of the database.

Even with a much shorter refinement step that evaluates only 50 exact
shape context distances, our method correctly classifies 97.42% of the test
set. With only 100 exact shape context distances, it correctly classifies
98.08%. In comparison, the authors of [21] report a correct classification
rate of 97.0% on the same data using their discriminative classifier, when
allowing the same computational cost of 100 exact shape context distances
against selected prototypes. In addition, our method’s training stage is
substantially more efficient and more easily updatable than that given
in [21]. Since the method in [21] relies on k-medoids to determine prototypes
from the training set (an O(NdkT ) operation for T iterations), it is not
clear that it will be able to accommodate new training examples without
an expensive re-training step. In contrast, since the “training” of our method
consists only of embedding available training examples, additional examples
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Figure 8.9 Contour matching-based classification of the MNIST handwritten digit test set.
Given a query image, approximate EMD is used to obtain an initial set of nearest neighbors
in the training set, and then shape context matching is used to refine the ranks of this set of
neighbors. Classification is based on the refined rankings.

may be incorporated simply by embedding the new examples and entering
them into the LSH hash tables.

8.5.3 Empirical Measure of Complexity

As discussed in section 8.4, the theoretical computational complexity of
retrieving the approximate minimum cost feature correspondences with our
method for feature sets of cardinality n and dimension d residing in a space
of diameter ∆ is O(nd log ∆). The diameters of the spaces in which our point
sets reside are on the order of 103 up to 105, depending on the representation;
with n on the order of 102, d = 2, theoretically this means that a single
embedding and L1 distance cost requires on the order of 103 operations.
This is the cost of embedding two point sets, plus performing an L1 distance
on the very sparse vectors.

In practice, with d = 2 and n = 200, an unoptimized C implementation
of our method takes about 0.005 second to perform a single matching
between the human figure images with exact L1 (less than 0.005 second
to compute the two embeddings, plus 7.9 × 10−5 second to compute the L1

distance). In comparison, to compute a single exact EMD distance using a
C implementation of the simplex algorithm required on average 0.9 second
for data of the same dimensions. In accordance with the upper bound on
the embedding’s space requirements, the number of nonzero entries in the
sparse embedded vectors was on average 350 for the human figure contours
with the shape context subspace representation. For the MNIST digits data,
with d = 2 and n = 100, the average time needed to compute an embedding
was 0.003 second, and each L1 distance required 1.7 × 10−4 second.
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Figure 8.10 (a) Mean embedding time per point set for 500 point sets with varying dimensions
and cardinalities. (b) Query time distributions for embedded point sets for increasing database
sizes. The test set is composed of 1000 examples from the human figure database, d = 2, n
= 200. The lines in center of boxes denote median value; the top and bottom of boxes denote
upper and lower quartile values, respectively. The dashed lines show extent of rest of the data,
and the pluses denote outliers. The median query time for the 136,500 item database is only
1.56 seconds; exact EMD could require over a day to perform the same query.

Figure 8.10 (a) gives a summary of the empirical run-time behavior of
the embedding. Our experiments confirm that the run-time for embedding
point sets increases only linearly with the size of the input’s dimension or
cardinality. This means that our method scales well to handle inputs with
large representation sizes.

The larger payoff for using the approximate embedding, however, comes
when we use LSH to query a large database with an embedded point set.
With ǫ set to 1, the upper bound on the query time is O(dN

1
2 ). The input

must be compared against only a small fraction of the database’s embedded
vectors—those in the union of the hash buckets that are indexed by the
query’s embedding.

On average, in our experiments LSH needed to compute only 1915 L1

distances per query for the human figures database, (less than 2% of the
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database). The median query time for the complete 136,500-item Poser
database was only 1.56 seconds. In comparison, a single query with the
exact EMD method would require 34 hours (performing a worst-case linear
scan of the database). Figure 8.10 (b) shows how query time for the human
figure data set varies with the database size.

For the MNIST digits data set, the median query time using LSH (and no
refinement step) was 0.14 second, and on average a query’s embedding was
compared to 94 training examples, less than 1% of the database. When the
refinement step described in subsection 8.5.2.2 is included, the query time
increases by w × g, where w is the number of rankings that are refined
and g is the time needed to perform one shape context distance. (The
implementation of the shape context distance that we are using requires
g = 0.07 second.)

8.6 Conclusions

We have presented a new contour matching algorithm that utilizes an
approximation to EMD to judge similarity between sets of local descriptors.
Our technique enables fast (sublinear in the size of the database) local
feature-based similarity retrievals from large databases, and its run-time
is only linearly dependent on the number of features used to represent
an object. We have also constructed a rich but compact contour feature
subspace based on shape contexts that is appropriate for approximate EMD.
We have demonstrated the application of our method for inferring pose from
contours of human figures and classifying handwritten digits. We have also
shown that our method is able to more efficiently produce matching results
that are competitive with the best reported results on the MNIST digits
data set.

In the future we intend to experiment with different shape representations
under approximate EMD. Thus far we have applied our shape matching
method to 2D inputs, i.e., contours. However, our method may also be
applied to 3D data (e.g., visual hull data or stereo maps); the only necessary
adjustment is to provide an appropriate 3D shape descriptor as the feature
type in the point sets. We will also explore alternative means of compactly
representing inherently continuous features within the discrete embedding
framework, such as vector quantization or multi-dimensional scaling. We are
also interested in investigating ways to improve the efficacy of the nearest
neighbors hashing process in this context.



Contour Matching Using Approximate Earth Mover’s Distance 201

Acknowledgments

We would like to thank Piotr Indyk and Gregory Shakhnarovich for various
helpful discussions, and Vassilis Athitsos for sharing his implementation of
shape context matching. This work was supported in part by a Department
of Energy Computational Science Graduate Fellowship.

Notes

1Note that the exact shape context distance is different from exact EMD. It first solves
the optimal assignment problem, and then given those correspondences, it estimates the
thin-plate spline transformation that best aligns the two shapes. The scalar measure of
dissimilarity is then the sum of the matching errors between the corresponding points,
plus the magnitude of the aligning transform [2].
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9 Adaptive Mean Shift Based Clustering in

High Dimensions

Ilan Shimshoni, Bogdan Georgescu, and Peter Meer

Feature space analysis is the main module in many computer vision tasks.
The most popular technique, k-means clustering, however, has two inherent
limitations: the clusters are constrained to be spherically symmetric and
their number has to be known a priori. In nonparametric clustering methods,
like the one based on mean shift, these limitations are eliminated but the
amount of computation becomes prohibitively large as the dimension of the
space increases. We exploit a recently proposed approximation technique,
locality-sensitive hashing (LSH), to reduce the computational complexity of
adaptive mean shift. In our implementation of LSH the optimal parameters
of the data structure are determined by a pilot learning procedure, and the
partitions are data driven. The algorithm is tested on two applications. In
the first, the performance of mode and k-means-based textons are compared
in a texture classification study. In the second, multispectral images are
segmented. Again, our method is compared to k-means clustering.

9.1 Introduction

Representation of visual information through feature space analysis has
received renewed interest in recent years, motivated by content-based image
retrieval applications. The increase in the available computational power
allows today the handling of feature spaces which are high-dimensional and
contain millions of data points.

The structure of high-dimensional spaces, however, defies our three-
dimensional(3D) geometric intuition. Such spaces are extremely sparse with
the data points far away from each other [17, subsection 4.5.1]. Thus, when
inferring about the local structure of the space when only a small number of
data points may be available can yield erroneous results. The phenomenon
is known in the statistical literature as the “curse of dimensionality”, and
its effect increases exponentially with the dimension. The curse of dimen-
sionality can be avoided only by imposing a fully parametric model over



204 Adaptive Mean Shift Based Clustering in High Dimensions

the data [6, p.203], an approach which is not feasible for a high-dimensional
feature space with a complex structure.

The goal of feature space analysis is to reduce the data to a few significant
features through a procedure known under many different names, clustering,
unsupervised learning, or vector quantization. Most often different variants
of k-means clustering are employed, in which the feature space is represented
as a mixture of normal distributions [6, subsection 10.4.3]. The number of
mixture components k is usually set by the user.

The popularity of the k-means algorithm is due to its low computational
complexity of O(nkNd), where n is the number of data points, d the
dimension of the space, and N the number of iterations which is always
small relative to n. However, since it imposes a rigid delineation over the
feature space and requires a reasonable guess for the number of clusters
present, the k-means clustering can return erroneous results when the
embedded assumptions are not satisfied. Moreover, the k-means algorithm
is not robust; points which do not belong to any of the k clusters can move
the estimated means away from the densest regions.

A robust clustering technique which does not require prior knowledge of
the number of clusters, and does not constrain the shape of the clusters,
is the mean shift-based clustering. This is also an iterative technique, but
instead of the means, it estimates the modes of the multivariate distribution
underlying the feature space. The number of clusters is obtained automati-
cally by finding the centers of the densest regions in the space (the modes).
See [1] for details. Under its original implementation the mean shift-based
clustering cannot be used in high dimensional spaces. Already for d = 7,
in a video sequence segmentation application, a fine-to-coarse hierarchical
approach had to be introduced [5].

The most expensive operation of the mean shift method is finding the
closest neighbors of a point in the space. The problem is known in compu-
tational geometry as multidimensional range-searching [4, chap.5]. The goal
of the range-searching algorithms is to represent the data in a structure in
which proximity relations can be determined in less than O(n) time. One
of the most popular structures, the kD-tree, is built in O(n log n) opera-
tions, where the proportionality constant increases with the dimension of
the space. A query selects the points within a rectangular region delimited
by an interval on each coordinate axis, and the query time for kD-trees has

complexity bounded by O
(

n
d−1

d + m
)

, where m is the number of points

found. Thus, for high dimensions the complexity of a query is practically
linear, yielding the computational curse of dimensionality. Recently, sev-
eral probabilistic algorithms have been proposed for approximate nearest-
neighbor search. The algorithms yield sublinear complexity with a speedup
which depends on the desired accuracy [7, 10, 11].

In this chapter we have adapted the algorithm in [7] for mean shift-
based clustering in high dimensions. Working with data in high dimensions
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also required that we extend the adaptive mean shift procedure introduced
in [2]. All computer vision applications of mean shift until now, such as
image segmentation, object recognition, and tracking, were in relatively low-
dimensional spaces. Our implementation opens the door to use mean shift
in tasks based on high-dimensional features.

In section 9.2 we present a short review of the adaptive mean shift
technique. Locality-sensitive hashing(LSH), the technique for approximate
nearest-neighbor search, is described in section 9.3, where we have also in-
troduced refinements to handle data with complex structure. In section 9.4
the performance of adaptive mean shift (AMS) in high dimensions is in-
vestigated, and in section 9.5 AMS is used for texture classification based
on textons and for segmentation of multispectral images. We conclude in
section 9.6.

9.2 Adaptive Mean Shift

Here we only review some of the results described in [2] which should be
consulted for the details.

Assume that each data point xi ∈ Rd, i = 1, . . . , n is associated with a
bandwidth value hi > 0. The sample point estimator

f̂K(x) =
1

n

n
∑

i=1

1

hd
i

k

(

∥

∥

∥

∥

x − xi

hi

∥

∥

∥

∥

2
)

(9.1)

based on a spherically symmetric kernel K with bounded support satisfying

K(x) = ck,d k(‖x‖2) > 0 ‖x‖ ≤ 1 (9.2)

is an adaptive nonparametric estimator of the density at location x in the
feature space. The function k(x), 0 ≤ x ≤ 1, is called the profile of the
kernel, and the normalization constant ck,d assures that K(x) integrates to
one. The function g(x) = −k′(x) can always be defined when the derivative
of the kernel profile k(x) exists. Using g(x) as the profile, the kernel G(x)
is defined as G(x) = cg,d g(‖x‖2).

By taking the gradient of (9.1) the following property can be proven

mG(x) = C
∇̂fK(x)

f̂G(x)
, (9.3)

where C is a positive constant and
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is called the mean shift vector. The expression (9.3) shows that at location x
the weighted mean of the data points selected with kernel G is proportional
to the normalized density gradient estimate obtained with kernel K. The
mean shift vector thus points toward the direction of maximum increase in
the density. The implication of the mean shift property is that the iterative
procedure

yj+1 =

∑n
i=1

xi

hd+2
i

g
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2
) j = 1, 2, . . . (9.5)

is a hill-climbing technique to the nearest stationary point of the density,
i.e., a point in which the density gradient vanishes. The initial position of
the kernel, the starting point of the procedure y1, can be chosen as one of
the data points xi. Most often the points of convergence of the iterative
procedure are the modes (local maxima) of the density.

There are numerous methods described in the statistical literature to
define hi, the bandwidth values associated with the data points, most of
which use a pilot density estimate [17, subsection 5.3.1]. The simplest way
to obtain the pilot density estimate is by nearest neighbors [6, section 4.5].
Let xi,k be the k-nearest neighbor(k-NN) of the point xi. Then, we take

hi = ‖xi − xi,k‖1, (9.6)

where L1 norm is used since it is the most suitable for the data structure
to be introduced in the next section. The choice of the norm does not have
a major effect on the performance. The number of neighbors k should be
chosen large enough to assure that there is an increase in density within
the support of most kernels having bandwidths hi. While the value of k
should increase with d the dimension of the feature space, the dependence
is not critical for the performance of the mean shift procedure, as will be
seen in section 9.4. When all hi = h, i.e., a single global bandwidth value is
used, the AMS procedure becomes the fixed bandwidth mean shift discussed
in [1].

A robust nonparametric clustering of the data is achieved by applying the
mean shift procedure to a representative subset of the data points. After
convergence, the detected modes are the cluster centers, and the shape of
the clusters is determined by their basins of attraction. See [1] for details.

9.3 Locality-Sensitive Hashing

The bottleneck of mean shift in high dimensions is the need for a fast
algorithm to perform neighborhood queries when computing (9.5). The
problem has been addressed before in the vision community by sorting the
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data according to each of the d coordinates [13], but a significant speedup
was achieved only when the data are close to a low-dimensional manifold.

Recently, new algorithms using tools from probabilistic approximation
theory were suggested for performing approximate nearest neighbor search
in high dimensions for general data sets [10, 11] and for clustering data [9,
14]. We use the approximate nearest neighbor algorithm based on locality-
sensitive hashing [7] and adapted it to handle the complex data met in
computer vision applications. In a task of estimating the pose of articulated
objects [16], the LSH technique was extended to accommodate distances in
the parameter space.

9.3.1 High-Dimensional Neighborhood Queries

Given n points in Rd the mean shift iterations (9.5) require a neighborhood
query around the current location yj . The naive method is to scan the whole
data set and test whether the kernel of the point xi covers yj . Thus, for each
mean computation the complexity is O(nd). Assuming that for every point
in the data set this operation is performed N times (a value which depends
on the hi’s and the distribution of the data), the complexity of the mean
shift algorithm is O(n2dN).

To improve the efficiency of the neighborhood queries the following data
structure is constructed. The data is tessellated L times with random
partitions, each defined by K inequalities (fig. 9.1). In each partition K
pairs of random numbers, dk and vk, are used. First, dk, an integer between
1 and d, is chosen, followed by vk, a value within the range of the data along
the dkth coordinate.

The pair (dk, vk) partitions the data according to the inequality

xi,dk
≤ vk i = 1, . . . , n, (9.7)

where xi,dk
is the selected coordinate for the data point xi. Thus, for each

point xi each partition yields a K-dimensional Boolean vector (inequality
true/false). Points which have the same vector lie in the same cell of the
partition. Using a hash function, all the points belonging to the same cell
are placed in the same bucket of a hash table. As we have L such partitions,
each point belongs simultaneously to L cells (hash table buckets).

To find the neighborhood of radius h around a query point �q, L Boolean
vectors are computed using (9.7). These vectors index L cells Cl, l =

1, . . . , L in the hash table. The points in their union C∪ =
L
⋃

l=1

Cl are the

ones returned by the query (fig. 9.1). Note that any �q in the intersection

C∩ =
L
⋂

l=1

Cl will return the same result. Thus C∩ determines the resolution

of the data structure, whereas C∪ determines the set of the points returned
by the query. The described technique is called locality-sensitive hashing
and was introduced in [10].
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Points close in Rd have a higher probability for collision in the hash table.
Since C∩ lies close to the center of C∪, the query will return most of the
nearest neighbors of �q. The example in fig. 9.1 illustrates the approximate
nature of the query. Parts of an L1 neighborhood centered on �q are not
covered by C∪, which has a different shape. The approximation errors can
be reduced by building data structures with larger C∪’s; however, this will
increase the running time of a query.

L

Figure 9.1 The LSH data structure. For the query point 	q the overlap of L cells yields the
region C∪, which approximates the desired neighborhood.

9.3.2 Optimal Selection of K and L

The values for K and L determine the expected volumes of C∩ and C∪. The
average number of inequalities used for each coordinate is K/d, partitioning
the data into K/d+1 regions. Qualitatively, the larger the value for K, the
number of cuts in a partition, the smaller the average volume of the cells
Cl. Conversely, as the number of partitions L increases, the volume of C∩

decreases and of C∪ increases. For a given K, only values of L below a
certain bound are of interest. Indeed, once L exceeds this bound all the
neighborhood of radius h around �q has been already covered by C∪. Thus,
larger values of L will only increase the query time with no improvement in
the quality of the results.

The optimal values of K and L can be derived from the data. A subset
of data points xj , j = 1, · · · , m ≪ n, is selected by random sampling. For
each of these data points, the L1 distance hj (9.6) to its k-NN is determined
accurately by the traditional linear algorithm.

In the approximate nearest-neighbor algorithm based on LSH, for any pair
of K and L, we define for each of the m points h

(K,L)
j , the distance to the

k-NN returned by the query. When the query does not return the correct
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k-NNs h
(K,L)
j > hj . The total running time of the m queries is t(K, L). The

optimal (K, L) is then chosen such that

(K, L) = arg min
K,L

t(K, L) subject to:
1

m

m
∑

j=1

h
(K,L)
j

hj

≤ (1 + ǫ),

where ǫ is the LSH approximation threshold set by the user.
The optimization is performed as a numerical search procedure. For a

given K we compute, as a function of L, the approximation error of the m
queries. This is shown in fig. 9.2(a) for a 13D real data set. By thresholding
the family of graphs at ǫ = 0.05, the function L(K) is obtained (fig. 9.2(b)).
The running time can now be expressed as t[K, L(K)], i.e., a 1D function
in K, the number of employed cuts (fig. 9.2(c)). Its minimum is Kmin

which together with L(Kmin), are the optimal parameters of the LSH data
structure.
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Figure 9.2 Determining the optimal K and L. (a) Dependence of the approximation error on
L for K = 10, 20, 30. The curves are thresholded at ǫ = 0.05 (dashed line). (b) Dependence of L
on K for ǫ = 0.05. (c) The running time t[K, L(K))]. The minimum is marked ∗.

The family of error curves can be efficiently generated. The number of
partitions L is bounded by the available computer memory. Let Lmax be that
bound. Similarly, we can set a maximum on the number of cuts, Kmax. Next,
the LSH data structure is built with (Kmax, Lmax). As the result of a query
is the union of the results on all the Lmax partitions, the approximation
error can be computed incrementally for L = 1, · · · , Lmax by adding one
partition at a time, yielding the approximate error for all values of L. This
yields L(Kmax) which is subsequently used as Lmax for Kmax − 1, etc.

9.3.3 Data-Driven Partitions

The strategy of generating the L random tessellations has an important
influence on the performance of LSH. In [7] the coordinates dk have equal
chance to be selected and the values vk are uniformly distributed over the
range of the corresponding coordinate. Under this assumption and when
given a distance r, probabilities p1 and p2, and an uncertainty value ǫ, an
LSH data structure can be built using appropriate values of K and L to
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satisfy the following requirements. Given a query point q and a data point
p, then if the distance between them is less than r, then the probability
that the query will return p is greater than p1. On the other hand, if
the distance between them is greater than (1 + ǫ)r, then the probability
that the query will return p is less than p2. This partitioning strategy
works well only when the density of the data is approximately uniform
in the entire space (i.e., the distance to the required neighbors is less than
r). However, feature spaces associated with vision applications are often
multimodal and with large differences in the density. In [10, 11] the problem
of nonuniformly distributed data was dealt with by building several data
structures associated with different values of r which have different values
of K and L to accommodate the different local densities. The query is
performed first under the assumption of a high density (small value of r),
and when it fails to find the required neighbors the process is repeated for
larger values of r. The process terminates when the nearest neighbors are
found.

Our approach is to sample according to the marginal distributions along
each coordinate. We use K points xi chosen at random from the data set.
For each point one of its coordinates is selected at random to define a cut.
Using more than one coordinate from a point would imply sampling from
partial joint densities, but that does not seem to be more advantageous.
Our adaptive, data driven strategy assures that in denser regions more cuts
will be made yielding smaller cells, while in sparser regions there will be
fewer cuts. On average all cells will contain a similar number of points.

The 2D data in fig. 9.3(a) and 9.3(b) comprised of four clusters and
uniformly distributed background is used to demonstrate the two sampling
strategies. In both cases the same number of cuts were used but the data
driven method places most of the cuts over the clusters [see fig. 9.3(b)]. For a
quantitative performance assessment a data set of ten normal distributions
with arbitrary shapes (5000 points each) were defined in fifty dimensions.
When the data-driven strategy is used, the distribution of the number of
points in a cell is much more compact and their average value is much lower
[fig. 9.3(c)]. As a consequence, the data driven strategy yields more efficient
k-NN queries for complex data sets. For more uniformly distributed data
sets the data-driven method converges to the original LSH method.

9.4 Mean Shift in High Dimensions

Given yj , the current location in the iterations, an LSH-based query re-
trieves the approximate set of neighbors needed to compute the next loca-
tion (9.5). The resolution of the data analysis is controlled by the user. In
the fixed bandwidth mean shift method the user provides the bandwidth
parameter h. In the AMS method, the user sets the number of neighbors k
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Figure 9.3 Uniform vs. data-driven partitions. Typical result for 2D data obtained with (a)
uniform, (b) data-driven strategy. (c) Distribution of points per cell for a 50D data set.

used in the pilot density procedure. The parameters K and L of the LSH
data structure are selected employing the technique discussed in subsec-
tion 9.3.2. The bandwidths hi associated with the data points are obtained
by performing n neighborhood queries. Once the bandwidths are set, the
adaptive mean shift procedure runs at approximately the same cost as the
fixed bandwidth mean shift. Thus, the difference between mean shift and
AMS is only one additional query per point.

An ad hoc procedure provides further speedup. Since the resolution of
the data structure is C∩, with high probability one can assume that all the
points within C∩ will converge to the same mode. Thus, once any point from
a C∩ is associated with a mode, the subsequent queries to C∩ automatically
return this mode and the mean shift iterations stop. The modes are stored
in a separate hash table whose keys are the L Boolean vectors associated
with C∩.

9.4.1 Adaptive vs. Fixed Bandwidth Mean Shift

To illustrate the advantage of adaptive mean shift, a data set containing
125,000 points in a 50D cube was generated. From these 10 × 2500 points
were generated from ten spherical normal distributions (clusters) whose
means were positioned on a line through the origin. The standard deviation
increases as the mean becomes more distant from the origin. For an adjacent
pair of clusters, the ratio of the sum of standard deviations to the distance
between the means was kept constant. The remaining 100,000 points were
uniformly distributed in the 50D cube. Plotting the distances of the data
points from the origin yields a graph very similar to the one in fig. 9.4(a).
Note that the points farther from the origin have a larger spread.

The performance of the fixed bandwidth mean shift and the AMS proce-
dures is compared for various parameter values in fig. 9.4. The experiments
were performed for 500 points chosen at random from each cluster, a total of
5000 points. The location associated with each selected point after the mean
shift procedure is the employed performance measure. Ideally this location
should be near the center of the cluster to which the point belongs.
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Figure 9.4 Distance from the origin of 5000 points from ten 50D clusters after (a) to (d):
fixed bandwidth mean shift, and (e) to (h): AMS. The parameters: mean shift – bandwidth h;
AMS – number of neighbors k. (i) to (l): the adaptive bandwidths for AMS data points.

In the mean shift strategy, when the bandwidth h is small due to the
sparseness of the high-dimensional space, very few points have neighbors
within distance h. The mean shift procedure does not detect any neighbors
and the allocation of the points is to themselves [fig. 9.4(a)]. On the other
hand, as h increases the windows become too large for some of the local
structures and points may converge incorrectly to the center (mode) of an
adjacent cluster [fig. 9.4(b) to (d)].

The pilot density estimation in the AMS strategy automatically adapts
the bandwidth to the local structure. The parameter k, the number of
neighbors used for the pilot estimation, does not have a strong influence.
The data are processed correctly for k = 100 to 500, except for a few points
[fig. 9.4(e) to (g)], and even for k = 700 only some of the points in the
cluster with the largest spread converge to the adjacent mode [fig. 9.4(h)].
The superiority of the adaptive mean shift in high dimensions is clearly
visible. In fig. 9.4(i) to (l) the bandwidth values for the AMS procedure are
shown. Note the wide spread of values for the different points. This shows
that the attempt to choose a single bandwidth for all the data points is
futile. Due to the sparseness of the 50D space, the 100,000 points in the
background did not interfere with the mean shift processes under either
strategy, proving its robustness.
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The use of the LSH data structure in the mean shift procedure assures
a significant speedup. We have derived four different feature spaces from a
texture image with the filter banks discussed in the next section. The spaces
had dimension d = 4, 8, 13, and 48, and contained n = 65, 536 points. An
AMS procedure was run both with linear and approximate queries for 1638
points. The number of neighbors in the pilot density estimation was k = 100.
The approximation error of the LSH was ǫ = 0.05. The running times (in
seconds) in table 9.1 show the achieved speedups.

Table 9.1 Running times of AMS implementations

d Traditional LSH Speedup

4 1507 80 18.8

8 1888 206 9.2

13 2546 110 23.1

48 5877 276 21.3

The speedup will increase with the number of data points n, and will
decrease with the number of neighbors k. Therefore in the mean shift
procedure the speedup is not as high as in applications in which only a
small number of neighbors are required.

9.5 Applications

The adaptive mean shift procedure in high dimensions has been imple-
mented. This procedure has been used in two different applications: texture
classification and multispectral image segmentation. In both cases the mean
shift method is compared to k-means-based methods.

9.5.1 Texture Classification

Efficient methods exist for texture classification under varying illumination
and viewing direction [3, 12, 15, 18]. In the state-of-the-art approaches
a texture is characterized through textons, which are cluster centers in a
feature space derived from the input. Following [12] this feature space is
built from the output of a filter bank applied at every pixel. However, as
was shown recently [19], neighborhood information in the spatial domain
may also suffice.

The approaches differ in the employed filter bank.

– LM: A combination of forty eight anisotropic and isotropic filters was
used by Leung and Malik [12] and Cula and Dana [3]. The filters are
Gaussian masks, their first derivative, and Laplacian, defined at three scales.
Because of the oriented filters, the representation is sensitive to texture
rotations. The feature space is 48D.
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– S: A set of thirteen circular symmetric filters was used by Schmid [15] to
obtain a rotationally invariant feature set. The feature space is 13D.

– M4, M8: Both representations were proposed by Varma and Zisser-
mann [18]. The first one (M4) is based on two rotationally symmetric and
twelve oriented filters. The second set is an extension of the first one at
three different scales. The feature vector is computed by retaining only the
maximum response for the oriented filters (two out of twelve for M4 and
six out of thirty six for M8), thus reducing the dependence on the global
texture orientation. The feature space is 4D and 8D respectively.

To find the textons, usually the standard k-means clustering algorithm
is used, which, as was discussed in section 9.1, has several limitations. The
shape of the clusters is restricted to be spherical and their number has to
be set prior to the processing.

The most significant textons are aggregated into the texton library. This
serves as a dictionary of representative local structural features and must be
general enough to characterize a large variety of texture classes. A texture is
then modelled through its texton histogram. The histogram is computed by
defining at every pixel a feature vector, replacing it with the closest texton
from the library (vector quantization) and accumulating the results over the
entire image.

Let two textures i and j be characterized by the histograms Hi and Hj

built from T textons. As in [12] the χ2 distance between these two texton
distributions,

χ2(Hi, Hj) =

T
∑

t=1

[Hi(t) − Hj(t)]
2

Hi(t) + Hj(t)
, (9.8)

is used to measure similarity, although note the absence of the factor 1/2
to take into account that the comparison is between two histograms derived
from data. In a texture classification task the training image with the
smallest distance from the test image determines the class of the latter.

In our experiments we substituted the k-means based clustering module
with the AMS-based robust nonparametric clustering. Thus, the textons
instead of being mean-based are now mode-based, and the number of the
significant ones is determined automatically.

The complete Brodatz database containing 112 textures with varying
degrees of complexity was used in the experiments. Classification of the
Brodatz database is challenging because it contains many nonhomogeneous
textures. The 512× 512 images were divided into four 256× 256 subimages
with half of the subimages being used for training (224 models) and the
other half for testing (224 queries). The normalizations recommended in [18]
(both in the image and filter domains) were also performed.

The number of significant textons detected with the AMS procedure
depends on the texture. We have limited the number of mode textons
extracted from a texture class to five. The same number was used for the
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mean textons. Thus, by adding the textons to the library, a texton histogram
has at most T = 560 bins.

Table 9.2 Classification results for the Brodatz database

Filter M4 M8 S LM

Random 84.82% 88.39% 89.73% 92.41%

k-means 85.71% 94.64% 93.30% 97.32%

AMS 85.27% 93.75% 93.30% 98.66%

The classification results using the different filter banks are presented in
table 9.2. The best result was obtained with the LM mode textons, an
additional three correct classifications out of the six errors with the mean
textons. However, there is no clear advantage in using the mode textons
with the other filter banks.

The classification performance is close to its upper bound defined by the
texture inhomogeneity, due to which the test and training images of a class
can be very different. This observation is supported by the performance
degradation obtained when the database images were divided into sixteen
128×128 subimages and the same half/half partition yielded 896 models and
896 queries. The recognition rate decreased for all the filter banks. The best
result of 94%, was again obtained with the LM filters for both the mean and
mode textons. In [8], with the same setup but employing a different texture
representation, and using only 109 textures from the Brodatz database, the
recognition rate was 80.4%.

A texture class is characterized by the histogram of the textons, an ap-
proximation of the feature space distribution. The histogram is constructed
from a Voronoi diagram with T cells. The vertices of the diagram are the tex-
tons, and each histogram bin contains the number of feature points in a cell.
Thus, variations in textons translate in approximating the distribution by a
different diagram, but appear to have a weak influence on the classification
performance. When by uniform sampling five random vectors were chosen
as textons, the classification performance (RANDOM) decreased only be-
tween 1% and 6%. The reduction in performance is probably due to textons
located in sparse areas of the distributions. But when they are located in
more dense regions as a result of the mean shift or the k-means procedures
the performance improves somewhat.

The k-means clustering imposes rigidly a given number of identical spheri-
cal clusters over the feature space. Thus, it is expected that when this struc-
ture is not adequate, the mode based textons will provide a more meaningful
decomposition of the texture image. This is proven in the following two ex-
amples.

In fig. 9.5 the LM filter bank was applied to a regular texture. The AMS
procedure extracted twenty one textons, the number also used in the k-
means clustering. However, when ordered by size, the first few mode textons
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Figure 9.5 Mode (∗)- vs. mean (◦)-based textons. The local structure is better captured by
the mode textons. D001 texture, LM filter bank.

are associated with more pixels in the image than the mean textons, which
always account for a similar number of pixels per texton. The difference
between the mode and mean textons can be seen by marking the pixels
associated with textons of the same local structure (fig. 9.5, bottom). The
advantage of the mode-based representation is more evident for the irregular
texture in fig. 9.6, where the cumulative distribution of the mode textons
classified pixels has a sharper increase.

Since textons capture local spatial configurations, we believe that combin-
ing the mode textons with the representation proposed in [19] can offer more
insight into why the texton approach is superior to previous techniques.

9.5.2 Multispectral Image Segmentation

In a second set of experiments we compared mean shift-based segmentation
with k-means-based segmentation. The inputs were multispectral images.
Each pixel consisted of thirty one bands in the visual spectrum. In the
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Figure 9.6 Mode (∗)- vs. mean (◦)-based textons. The local structure is better captured by
the mode textons. D040 texture, S filter bank.

experiments only the photometric data were used. The x-y coordinates of
the pixels were discarded. As in the previous experiments the number of
clusters recovered by the mean shift clustering was used as the value of k for
the k-means clustering. In the following two examples, shown in fig. 9.7, the
differences between the two methods can be seen. In both examples the mean
shift-based segmentation better segments the images. Consider the large leaf
on the left side of the first image. The mean shift segmentation correctly
segments the leaf into two segments whereas the k-means clustering method
oversegments the light green part of the leaf. The reason for that is that
the intensity of light falling on the leaf changes depending on the surface
normal. This causes all the thirty one bands to change depending on the
normal, creating an approximately 1D surface in ℜ31. Mean shift clustering
can deal clusters of arbitrary shape as long as they are continuous. k-means
clustering on the other hand assumes that the clusters are spherical and
thus in this case oversegments the single natural cluster. The mean shift



218 Adaptive Mean Shift Based Clustering in High Dimensions

clustering is also able to detect other meaningful clusters, e.g., a segment
of specular pixels.

image mode mean

Figure 9.7 Multispectral image segmentation. Mode- vs. mean-based classification.

9.6 Conclusion

We have introduced a computationally efficient method that makes pos-
sible the detection of modes of distributions in high dimensional spaces.
By employing a data structure based on LSH, a significant decrease in
the running time was obtained while maintaining the quality of the re-
sults. The new implementation of the mean shift procedure opens the
door to the development of vision algorithms exploiting feature space
analysis - including learning techniques - in high dimensions. The C++
source code of this implementation of mean shift can be downloaded from
http://www.caip.rutgers.edu/riul.
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10 Object Recognition using Locality Sensitive

Hashing of Shape Contexts

Andrea Frome and Jitendra Malik

At the core of many computer vision algorithms lies the task of finding a
correspondence between image features local to a part of an image. Once
these features are calculated, matching is commonly performed using a
nearest-neighbor algorithm. In this chapter, we focus on the topic of object
recognition, and examine how the complexity of a basic feature-matching
approach grows with the number of object classes. We use this as motivation
for proposing approaches to feature-based object recognition that grow
sublinearly with the number of object classes.

10.1 Regional Descriptor Approach

Our approach to object recognition relies on the matching of feature vec-
tors (also referred to here as features) which characterize a region of a two-
dimensional (2D) or 3D image, where by “3D image” we mean the point
cloud resulting from a range scan. We use the term descriptor to refer to
the method or “template” for calculating the feature vector. There are sev-
eral lines of work which develop descriptors for use in object recognition.
[15] introduced jet-based features; [12] introduced the scale- and rotation-
invariant feature transform (SIFT) descriptor for recognition and matching
in intensity images; [10] describes the spin image descriptor for recogniz-
ing objects by shape in 3D range scans; [3] describes a histogram-based
descriptor for recognizing objects in 2D images by shape, called the shape
context, which is extended to the generalized shape context in [14]; and [6]
presents the 3D shape context, an extension of the shape context to three
dimensions, and experimentally evaluates its performance against the spin
image descriptor in difficult range image recognition tasks.

The spin image and shape context descriptors share a regional approach
to feature calculation; the features incorporate information within a support
region of the image centered at a chosen basis point. The locality of these
regional descriptors make them robust to clutter and occlusion, while at
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the same time each feature contains more information than purely local
descriptors due to their extended support. In some recognition approaches
the features are computed at particularly salient locations in the image
determined by an interest operator, such as in [12]. In other approaches,
including the cited works that make use of spin images and shape contexts,
the basis points at which features are computed are chosen randomly and
are not required to posses any distinguishing characteristics.

Object recognition algorithms typically work by calculating features from
a query image and comparing those features to other features previously
calculated from a set of reference images, and return a decision about
which object or image from among the reference set best matches the query
image. We consider full object recognition to be achieved when the algorithm
returns the identity, location, and position of an object occurring in a query
image. Our discussion in this chapter focuses on a relaxed version of the full
recognition problem where the algorithm returns a short list of objects, at
least one of which occurs somewhere in the image. An algorithm solving this
relaxed recognition problem can be used to prune a large field of candidate
objects for a more expensive algorithm which solves the full recognition
problem. In a more complex system it could be used as an early stage
in a cascade of object recognition algorithms which are increasingly more
expensive and discriminating, similar in spirit to the cascade of classifiers
made popular in the vision community by [16]. A pruning step or early
cascade stage is effective when it reduces the total computation required
for full recognition and does not reduce the recognition performance of the
system. To this end, we want a short-list recognition algorithm which (1)
minimizes the number of misses, that is, the fraction of queries where the
short list does not include any objects present in the query image, and (2)
minimizes its computational cost.

Object recognition algorithms based on features have been shown to
achieve high recognition rates in the works cited above and many others,
though often in a an easy or restricted recognition setting. We will demon-
strate methods for speeding a simple matching algorithm while maintaining
high recognition accuracy in a difficult recognition task, beginning with an
approach which uses an exhaustive k-nearest-neighbor (k-NN) search to
match the query features calculated from a query image to the reference
features calculated from the set of reference images. Using the distances
calculated between query and reference features, we generate a short list of
objects which might be present in the query image.

It should be noted that the method we examine does not enforce relative
geometric constraints between the basis points in the query and reference
images, and that most feature-based recognition algorithms do use this
additional information. For example, for reference features centered at basis
points p1 and p2 and query features centered at basis points q1 and q2, if p1

is found to be a match for q1, p2 a match for q2, and we are considering rigid
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objects, then it should be the case that the distance in the image between
p1 and p2 should be similar to the distance between q1 and q2. There are
many methods for using these types of constraints, [8], RANSAC, and [5] to
name a few. We choose not to use these constraints in order to demonstrate
the power of matching feature vectors alone. A geometric-based pruning or
verification method could follow the matching algorithms described in this
chapter.

The drawback of an exhaustive search of stored reference features is that
it is expensive, and for the method to be effective as a pruning stage, it
needs to be fast. Many of the descriptors listed above are high-dimensional;
in the works cited, the scale-invariant feature transform (SIFT) descriptor
has 160 dimensions, the spin image has about 200, the 2D shape context
has 60 (the generalized version has twice as many for the same number
of bins), and the 3D shape context has almost 2000. The best algorithms
for exact nearest-neighbor search in such high-dimensional spaces requires
time linear in the number of reference features. In addition, the number
of reference features is linear in the number of example objects the system
is designed to recognize. If we aim to build systems that can recognize
hundreds or thousands of example objects, then the system must be able to
run in time sublinear in the number of objects.

The goal of this chapter is to present ways to maintain the recognition
accuracy of this “short-list” algorithm while reducing its computational
cost. Locality-sensitive hashing (LSH) plays a key role in a final approach
that is both accurate and has complexity sublinear in the number of objects
being recognized. In our experiments we will be evaluating variations on the
basic matching method with the 3D shape context descriptor.

10.2 Shape Context Descriptors

We will focus on a type of descriptor called the shape context. In their
original form, shape context features characterize shape in 2D images
as histograms of edge pixels (see [2]). In [14] the authors use the same
template as 2D shape contexts but capture more information about the
shape by storing aggregate edge orientation for each bin. In [4], the authors
developed the notion of geometric blur which is an analog to the 2D shape
context for continuous-valued images. We extended the shape context to
three dimensions in [6], where it characterizes shape by histogramming the
position of points in a range scan. In the rest of this section, we describe
the basics of the 2D and 3D shape context descriptors in more detail, and
introduce the experimental framework used in the rest of the chapter.
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10.2.1 Two-dimensional Shape Contexts

To calculate a 2D shape context feature from an image, first run your
favorite edge detector on the image. Next, choose a coordinate in the edge
map to be a basis point, and imagine a radar-like template like the one in
figure 10.1 laid down over the image, centered at that point. The lines of
this pattern divide the image into regions, each of which corresponds to one
dimension of the feature vector. The value for the dimension is calculated
as the number of edge pixels which fall into the region. This feature vector
can be thought of as a histogram which summarizes the spatial distribution
of edges in the image relative to the chosen basis point. Each region in the
template corresponds to one bin in the histogram, and we use the term bin
to refer to the region in the image as well as the dimension in the feature
vector. Note that if the bins were small enough to each contain one pixel,
then the histogram would be an exact description of the shape in the support
region.

This template has a few advantageous properties. The bins farther from
the center summarize a larger area of the image than those close to the
center. The gives a foveal effect; the feature more accurately captures and
weights more heavily information toward the center. To accentuate this
property of shape context descriptors, we use equally spaced log-radius
divisions. This causes bins to get “fuzzy” more quickly as you move from
the center of the descriptor.

When comparing two shape context features, even if the shapes from
which they are calculated are very similar, the following must also be similar
in order to register the two features as a good match:

• orientation of the descriptor relative to the object

• scale of the object

To account for different scales, we can search over scale space, e.g., by
calculating a Gaussian pyramid for our query image, calculating query
features in each of the down- and upscaled images, and finding the best
match at each scale. We could sidestep the issue of orientation by assuming
that objects are in a canonical orientation in the images, and orient the
template the same way for all basis points. Or, to make it robust to variation,
we could orient the template to the edge gradient at the basis point or
include in our training set images at different orientations.

10.2.2 Three-dimensional Shape Contexts

In order to apply the same idea to range images, we extended the template
to three dimensions (see figure 10.1 for a visualization). We use a spherical
support volume, and divide the sphere at regular angles along the elevation
and azimuth dimensions. Again we use the log-radius division as with the
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(a) (b)

Figure 10.1 Example templates for the shape contexts: (a) for 2D, (b) for 3D. The number
of divisions shown are not the same as we used in our experiments.

2D shape contexts. The value for a bin is the count of the number of points
in three dimensions from the raw range image that fall into its region.

When working with 3D range scans, we do not need to consider differences
in scale since the scanner measurements in both the query and reference
scans are reported in real-world dimensions. In three dimensions there are
2 degrees of freedom in the orientation of the template. We solve half of
the problem by aligning the north pole with the surface normal calculated
at the basis point. However, this still leaves a free rotation in the azimuth
dimension. We account for that freedom with sampling; if we divide the
azimuth into twelve sections, then we include in the reference set twelve
discrete rotations of the feature vector. Since we are rotating the reference
features, we do not need to rotate the query features. We could just as easily
rotate the query features instead, but it should become clear why we rotate
the reference features when we discuss our use of LSH later in the chapter.

Spin images, another descriptor used for 3D object recognition presented
in [10], is very similar to the 3D shape context. It differs primarily in the
shape of its support volume and its approach to the azimuth degree of
freedom in the orientation: the spin image sums the counts over changes in
azimuth. See [6] for a direct comparison between spin images and 3D shape
contexts in similar experiments.

10.2.3 Experiments with Three-dimensional Shape Contexts

In this subsection, we introduce the data set that we use throughout the
chapter to evaluate recognition with 3D shape contexts. The 3D shape
contexts we calculate are the same as those used in [6]: they have twelve
azimuth divisions, eleven elevation divisions, and fifteen radial divisions.
These values were chosen after a small amount of experimentation with a
similar data set.
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Figure 10.2 The fifty-six car models used in our experiments.
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(a) (b) (c)

Figure 10.3 The top row shows scans from the 1962 Ferrari 250 model, and the bottom scans
are from the Dodge Viper. The scans in column (a) are the query scans at 30 degrees elevation
and 15 degrees azimuth with σ = 5 cm noise, and those in (b) are from the same angle but with
σ = 10 cm noise. With 10 cm noise, it is difficult to differentiate the vehicles by looking at the
2D images of the point clouds. Column (c) shows the reference scans closest in viewing direction
to the query scans (45 degrees azimuth and 45 degrees elevation).

The range scans from which we calculate the features are simulated from
a set of fifty-six 3D car models, and are separated into reference scans (our
training set) and query scans. The full models are shown in figure 10.2. The
reference scans were generated from a viewpoint at 45 degrees elevation
(measured from the horizon) and from four different azimuth positions,
spaced 90 degrees apart around the car, starting from an angle halfway
between the front and side views of the vehicle. The query scans were
generated from a viewpoint at 30 degrees elevation and at one azimuth
position 15 degrees different from the nearest reference scan. We also added
Gaussian noise to the query scans along the viewing direction, with either
a 5 cm or 10 cm standard deviation. This amount of noise is comparable
to or greater than the noise one could expect from a quality scanner. An
example of the noisy query scans next to the nearest reference scan for two
of the car models is shown in figure 10.3.

From the reference scans, we calculated normals at the points, and cal-
culated 3D shape context features at basis points sampled uniformly over
the surface, an average of 373 features per scan. For each noisy query scan,
we calculated the normals, then calculated features at 300 randomly chosen
basis points. Now we can describe our first experiment.

10.3 Basic Matching Experiment

Experiment 1

Given a query scan, we want to return the best match from among the
reference scans. Each of the 300 query features from the query scan casts a
“vote” for one of the fifty-six car models, and the best match to the query
scan as a whole is the model which received the most votes. We determine a
query feature’s vote by finding its nearest neighbor from among the reference
features, and awarding the vote to the model that produced that reference
feature. We could also give the n best matches by ordering the models by
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the number of votes received, and returning the top n from that list. We run
this procedure for all fifty-six query scans and calculate the recognition rate
as the percentage of the fifty-six query scans which were correctly identified.
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Figure 10.4 Confusion matrix for experiment 1 for 5 cm noise queries. Each row corresponds
to one query and each column to one reference model. A square in the matrix represents the
percentage of votes for the column’s reference models by the row’s query, where each row sums
to 100%. The scale at the far right maps the colors to numbers. The strong diagonal means that
most of the votes for each 5 cm noise query went to the correct corresponding model, giving us
100% recognition in the top choice.

The results we get are shown as confusion matrices in figure 10.4 for the
5 cm and figure 10.5 for 10 cm queries. Each row corresponds to the results
for one query scan, and each column to one car model (four reference scans).
Each square is a color corresponding to the number of votes that the query
gave for the model. If every query feature voted for the correct model, then
the matrix would have a dark red diagonal and otherwise be dark blue.
Perfect recognition is achieved when the diagonal has the largest number
from each row, which is the case here for the 5 cm noise data set. In the
10 cm experiment, we got fifty-two out of fifty-six queries correct, giving
a recognition rate of 92.86%. The correct model is always in the top four
matches, so if we are want a short list of depth four or greater, then our
recognition is 100%.
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Figure 10.5 Confusion matrix for experiment 1 for 10 cm noise queries. See caption of
figure 10.4 for legend. There was more confusion here than with 5 cm noise, with fifty-two
of the fifty-six models correctly identified in the top choice, and 100% recognition within the
top four choices.

10.3.1 Complexity and Computation Time

Take

• m to be the number of reference images (assume one object per reference
image),

• nr the number of features calculated per reference image,

• nq the number of features calculated per query image,

• d the dimensionality of the features,

• p the number of pixels or points in the query scene, and

• s the number of scales over which we need to search.

Let us first look at the cost of computing each query feature. For the
2D shape context, we need to compute edge features at all the pixels that
may lie in one of the descriptors’ support, and then count the number of
edge pixels in each bin. This gives us a preprocessing cost of O(p) and a
computation cost of O(p) for each query feature, for a total of O(p)+O(p·nq)
for the query image as a whole.
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For the 3D shape context, we do not need to preprocess all the points in
the scan, just the neighborhood around the basis point to get the normal at
that point. We still need to look through the points in the scene to calculate
the bin contents, giving a cost of O(p · nq).

Once we have the query features, we need to search through the m · nr

reference features. If we are performing an exact nearest-neighbor search
as in experiment 1, we need to calculate the distance between each of
those reference features and each of the query features. The cost for that is
O(m · nr · nq · d). If we are working with 2D shape contexts, then we may
also have to search over scale, increasing the cost to O(m · nr · nq · d · s).

For the 3D shape contexts, this gives us a total cost of O(p · nq) + O(m ·
nr · nq · d). In experiment 1, nq = 300, m = 224, nr = 4476 (average of 373
features per reference scan times the twelve rotations through the azimuth
for each), and d = 1980 (11×12×15), so the second term sums to 5.96×1011

pairs of floating point numbers we need to examine in our search. On a 1.3
GHz 64-bit Itanium 2 processor, the comparison of 300 query features to
the full database of reference features takes an average of 3.3 hours, using
some optimization and disk blocking. The high recognition rate we have
seen comes at a high computational cost.

The rest of this chapter focuses on reducing the cost of computing these
matches, first by reducing nq using the representative descriptor method
and then by reducing nr using LSH. The voting results for nq = 300 using
exact nearest neighbor provides a baseline for performance, to which we will
compare our results.

10.4 Reducing Running Time with Representative Descriptors

If we densely sample features from the reference scans (i.e., choose a large
nr), then we can sparsely sample basis points at which to calculate features
from query scans. This is the case for a few reasons.

• Because the features are fuzzy, they are robust to small changes due to
noise, clutter, and shift in the center point location. This makes it possible
to match a feature from a reference object and a feature from a query scene
even if they are centered at slightly different locations on the object or are
oriented slightly differently. This also affects how densely we need to sample
the reference object.

• Since regional descriptors describe a large part of the scene in fuzzy terms
and a small part specifically, few are needed to describe a query scene well.

• Finally, these features can be very discriminative. Even with the data
set we use below where we are distinguishing between several very similar
objects, the features are descriptive enough that only a few are enough to
tell apart very similar shapes.
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We make use of these properties via the representative descriptor method.
The method was originally introduced in [13] as representative shape con-
texts for the speeding search of 2D shape contexts, and were renamed in [6]
to encompass the use of other descriptors such as spin images. Each of the
few features calculated from the query scene is referred to as a represen-
tative descriptor or RD. What we refer to as the representative descriptor
method really involves four aspects:

1. Using a reduced number of query points as centers for query features

2. A method for choosing which points to use as representative descriptors

3. A method for calculating a score between an RD and a reference object

4. A method for aggregating the scores for the RDs to give one score for
the match between the query scene and the reference object

In our experiments, we try a range of values for the number of RDs and
find that for simple matching tasks (e.g., low-noise queries), few are needed
to achieve near-perfect performance. As the matching task becomes more
difficult, the number required to get a good recognition rate increases.

We choose the basis points for the RDs uniformly at random from the 300
basis points from the query scans. This is probably the least sophisticated
way to make the choice, and we do so to provide a baseline. Instead, we
could use an interest operator such as those used with SIFT descriptors.

We take the score between one RD and a particular car model to be
the smallest distance between the RD and a feature from one of the four
reference scans for the model. To calculate the score between the query
scene as a whole and the model, we sum the individual RD scores for that
model. The model with the smallest summation is determined to be the
best match. We have found this summation to be superior to the “voting”
method where we take a maximum over the scores; the individual distances
give a notion of the quality of the match, and summing makes use of that
information, whereas taking a maximum discards it.

10.4.1 Experiment and Results

Experiment 2

Calculate nq features from the query scan, which will be our RDs. Find the
nearest neighbors to each of the RDs from each of the models, and calculate
the scores. The model with the smallest score is the best match. Repeat for
all queries and calculate the recognition rate as the percentage of query
models that were correctly matched. Repeat the experiment several times
with different randomly chosen sets of nq features, and report the average
recognition rate across these runs. Perform the experiment for different
values of nq.
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Figure 10.6 Results from experiment 2, shown as the number of RDs vs. mean recognition
rate for the (a) 5 cm noise and (b) 10 cm noise queries. While our performance has dropped
when considering only the top match, our recognition within a short list of matches is still very
good, while we are performing a fraction of the feature comparisons. Note that the number of
feature comparisons increases linearly with the number of RDs.

The graphs in figure 10.6 show the results. Note that the number of
comparisons increases linearly with the number of RDs. For example, if
the voting method with 300 query features required n comparisons, then
using thirty RDs requires n × 30

300
comparisons. With the 5 cm queries, we

achieve 100% recognition with thirty descriptors if we consider the top seven
matches. If we use forty RDs, we achieve 99.9% in the top two matches and
100% in the top three. The performance on the 10 cm noise query degrades
quickly with fewer RDs. Because of the noise, fewer of the original 300
query points are useful in matching, so we randomly choose more RDs in
the hopes that we will get more of the distinctive query features. With the
10 cm queries, we achieve 97.8% mean recognition in the top seven results
using eighty RDs. The mean recognition within the top seven with 160 RDs
is 98%.

When we consider only our top match, our performance has dropped
significantly with both query sets. However, we are primarily interested in
getting a short list of candidates, and for the 5 cm queries we can reduce the
number of computations required by 87% to 90% (depending on the length
of our short list) by using the RD method over voting. And for almost all
choices of the forty RDs, we find the correct match in the top five returned.
With the 10 cm set, we can reduce our computation by 47% to 73%. Also
keep in mind that these are recognition rates averaged across 100 different
random selections of the RDs; for many choices of the RDs we are achieving
perfect recognition.
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10.5 Reducing Search Space with a Locality-Sensitive Hash

When comparing a query feature to the reference features, we could save
computation by computing distances only to the reference features that are
nearby. Call this the “1, 2, 3, many” philosophy: the few close ones play a
large role in the recognition; the rest of the features have little meaning for
the query. One way to achieve this is to use an algorithm for approximate
k-NN search that returns a set of candidates that probably lie close to the
query feature. The method we will look at is LSH, first introduced in [9].

We use a version of the simple LSH algorithm described in [7] (see
chapter 3 for a more recent version). To create a hash, we first find the range
of the data in each of the dimensions and sum them to get the total range.
Then choose k values from that range. Each of those values now defines
a cut in one of the dimensions, which can be visualized as a hyperplane
parallel to that dimension’s axis. These planes divide the feature space into
hypercubes, and two features in the same hypercube hash to the same bucket
in the table. We represent each hypercube by an array of integers, and refer
to this array as the first-level hash or locality-sensitive hash. There are an
exponential number of these hashes, so we use a standard second-level hash
function on integer arrays to translate each to a single integer. This is the
number of the bucket in the table, also called the second-level hash value. To
decrease the probability that we will miss close neighbors, we create l tables,
independently generating the k cuts in each. In most of our experiments in
this section, we will use twenty tables. We will use the notation b = hi(·)
to refer to the hash function for the ith table which takes a feature vector
and returns a second-level hash, or bucket, number. Ti(bi) will refer to the
set of identifiers stored in bucket bi in the ith table.

To populate the ith hash table, we calculate bi = hi(fj) for each feature
fj in the set of features calculated from the reference scans, and store
the unique integer identifier j for the feature fj in bucket bi. Given a
query feature q, we find matches in two stages. First, we retrieve the
set of identifiers which are the union of the matches from the l tables:
F =

⋃l
i=1 Ti(hi(q)). Second, we retrieve from a database on disk the feature

vectors for the identifiers, and calculate the distances dist(q, fj) for all
features fj where j ∈ F.

The first part is the LSH query overhead, and in our experiments this
takes 0.01 to 0.03 second to retrieve and sort all the identifiers from twenty
tables. This is small compared to the time required in the second step,
which ranges from an average of 1.12 to 2.96 seconds per query feature,
depending upon the number of matches returned. Because the overhead for
LSH is negligible compared to the time to do the feature comparisons, we
will compare the “speed” of our queries across methods using the number
of feature comparisons performed. This avoids anomalies common in timing
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Figure 10.7 Results for experiment 3 using the voting method with 300 query features. The
graph shows the recognition rate vs. the number of hash divisions (k) for 20 and 100 tables and
for short lists of length one, three, and five (the legend applies to both graphs). The left and
right graphs show results for the 5 cm and 10 cm noise queries, respectively. In general, as the
number of hash divisions increases for a given number of tables, the performance degrades, and
if the number of tables is increased, for a given value of k, performance increases. To see how
the same factors affect the number of comparisons performed, see figure 10.8. To visualize the
tradeoff between the number of comparisons and recognition rate, see section 10.9.

numbers due to network congestion, disk speed, caching, and interference
from other processes.

As we mentioned earlier, we are storing in the hash tables the azimuth
rotations of the reference features instead of performing the rotations on
the query features. If LSH returns only the features that are most similar
to a query q, it will effectively select for us the rotations to which we should
compare, which saves us a linear search over rotations.

10.5.1 LSH with Voting Method

We first examine the performance of LSH using the voting method from
subsection 10.2.3 to provide a comparison with the strong results achieved
using exact nearest neighbor.

Experiment 3

Given the number of hash divisions k and the number of LSH tables l,
perform LSH search with 300 features per query, and tabulate the best
matches using the voting scheme, as we did in experiment 1. Perform for
5 cm and 10 cm noise queries.

We created 100 tables, and ran experiments using all 100 tables as well
as subsets of 20, 40, 60, and 80 tables. In figure 10.7, we show how the
recognition rate changes with variations in the number of hash divisions for
the 5 cm and 10 cm queries. We show results for experiments with 20 and
100 tables, and show the recognition rate within the top choice, top three
choices, and top five choices. In the 5 cm experiment, we maintain 100%
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Figure 10.8 Results for experiment 3, showing the mean number of comparisons per query
scene vs. the number of hash divisions (k), using 20, 40, 60, 80, or 100 tables. The left and
right graphs show results for the 5 cm noise and 10 cm noise queries, respectively. The scale of
the y-axis in the 10 cm graph is larger than in the 5 cm graph to accommodate the k = 300
results, though the number of comparisons required for each k and l combination is fewer with
the 10 cm queries.

recognition with up to 600 hash divisions when using twenty tables, and up
to 800 hash divisions if we use 100 tables and consider a short list of length
five. Notice that when using twenty tables, recognition degrades quickly as
k increases, whereas recognition is better maintained when using 100 tables.

In the 10 cm experiments, we only achieve 100% recognition looking
at the top five and using 300 or 400 hash divisions, with recognition
declining quickly for larger values of k. Also notice that recognition falls
with increasing k more quickly in the 10 cm experiments. As the queries
become more difficult, it is less likely we will randomly generate a table with
many divisions that performs well for many of our query features.

The recognition rate is only one measure of the performance. In figure 10.8,
we show the mean number of comparisons per query scene vs. the number
of hash divisions. Here we show results for 20, 40, 60, 80, and 100 tables.
In both the 5 cm and 10 cm queries, we see a decline in the number
of comparisons with increasing k, though the decline quickly becomes
asymptotic. We also see a linear increase in the number of computations
with a linear increase in the number of tables used.

For the 10 cm query, we tried using 300 hash divisions, but for more than
forty tables, the queries were computationally too expensive. The range on
the y-axis is larger in the 10 cm graph than in the 5 cm graph due to the
jump at k = 300, but the number of computations performed for all other
combinations of k and l are fewer in the 10 cm experiments. This seems to
indicate that in general, the 10 cm query features lie farther away from the
reference features in feature space than the 5 cm query features.

We see that as k decreases or the number of tables increases, the recog-
nition improves, but the number of comparisons increases. To evaluate the
trade off between speed and accuracy, we show in figure 10.9 the number of
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Figure 10.9 Results for experiment 3, where we vary the value of k along each line to show
the tradeoff between the number of comparisons performed and the mean recognition rate. The
ideal point is in the upper-left corner where the number of comparisons is low and recognition
is perfect. Exact nearest neighbor is off the graph in the upper-right corner, and would lie at
(3.0 × 108, 1) if it were plotted.

comparisons vs. the recognition rate, varying k along each line. The ideal
point would be in the upper-left corner, where the recognition rate is high
and the number of comparisons is low. Exact nearest neighbor gives us a
point at (3.0 × 108, 1), off the graph in the far upper-right corner. In the
5 cm graph, the leftmost point still at 100% recognition is from the exper-
iment with 600 divisions and twenty tables. We can see that there is little
to gain in increasing the number of divisions or the number of tables. The
rightmost points in the 10 cm graph correspond to the experiments with
300 divisions, showing that the high recognition comes at a high computa-
tional cost. The points closest to the upper-left corner are from experiments
using twenty tables and either 400 or 500 hash divisions. Unless we require
perfect recognition for all queries, it makes little sense to use fewer than 400
divisions or more than twenty tables.

Lastly, while we are still achieving 100% mean recognition with k = 600
on the 5 cm queries using the voting method, the confusion matrix in figure
10.10 shows that we are not as confident about the matches relative to
the confusion matrix for exact nearest neighbor (see figures 10.4 and 10.5).
The RD method depends upon having several distinguishing query features,
so if we combine LSH with RD, we expect a decrease in the number of
comparisons but also a further degradation in recognition performance.

10.5.2 Using RDs with LSH

Experiment 4

Perform LSH search with varying numbers of RDs, values of k, and
numbers of tables. Using the model labels returned with each feature,
tabulate scores as we did in experiment 2, with one exception: it is possible
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Figure 10.10 Confusion matrix showing the results for the 5 cm query for k = 600 from
experiment 3. While we achieved 100% recognition with the top choice, comparing this matrix
to the one from experiment 1 using exact nearest neighbor (see figures 10.4 and 10.5) shows
that we are less certain of our choices.

that LSH does not return any matches corresponding to a particular model,
and in that case, we substitute for the RD model score a number larger
than any of the distances as a penalty.
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Figure 10.11 Results for experiment 4, showing number of comparisons vs. recognition rate
with varying numbers of RDs along each line. We ran the experiment for different values of k
and different numbers of tables. The legend applies to both graphs. In the left graph we show
the recognition within the top five results for the 5 cm queries, and in the right graph we show
recognition within the top seven results for the 10 cm queries.



238 Object Recognition using Locality Sensitive Hashing of Shape Contexts

The tradeoff for experiment 4 between number of comparisons and mean
recognition rate is shown in figure 10.11. Along each line we varied the
number of RDs, and show results for combinations of 400, 600, 800, and
1000 divisions and 20 and 100 tables. For the 5 cm experiment, we show
recognition in a short list of five, and show results within the top seven
for the 10 cm experiment. The mean recognition in the 5 cm experiment
using 400 divisions and twenty tables reaches 80%, which is much worse
than before. With k = 600 and twenty tables, which demonstrated a good
tradeoff when we using the voting method with 300 query features, only a
45% mean recognition rate is achieved. We do see however, that increasing
the number of tables has helped us; using k = 400 with 100 tables yields a
mean recognition rate of 94%. We see similar degradation with the 10 cm
experiments, achieving only 83% mean recognition withing the top seven
results using 400 divisions and 100 tables.

Recognition performance is decreased when using LSH because LSH
misses many of the nearest neighbors to the query points, resulting in a
heavy penalty. We can improve performance by being more “forgiving”
and including in the RD sum only the closest x percent of the RD model
matches, hopefully discarding the large values that arise because LSH un-
luckily misses good matches. If we are using twenty RDs and we are summing
the top 50%, then for a given model, we would search for the model’s closest
reference features to each of the twenty RDs, and include in the sum only
the ten of those which are closest.

Experiment 5

We perform LSH search with varying numbers of RDs, values of k, and
numbers of tables. We tally the RD scores by including in the sum the
distances from only the best 50% of the RD model matches.

The results for experiment 5 in figure 10.12 show that this method
improved performance significantly within the top five results for 5 cm and
top seven for 10 cm. In the 5 cm experiments, our sweet spot appears to be
forty RDs, 400 divisions, and twenty tables with a mean recognition rate of
99.8% within the top five matches (and 95.3% with the top match; 99.4%
within the top three, not shown). In the 10 cm experiments we reach 96%
mean recognition with 160 RDs, 400 divisions, and 100 tables within the
top seven matches (and 93.6% in the top five, not shown). We reach 90%
mean recognition with 160 RDs, 400 divisions, and twenty tables within
the top seven matches, which requires less than one-sixth the number of
comparisons as with the same settings except with 100 tables.

The key to further improving performance lies primarily with getting
better results from our approximate nearest-neighbor algorithm. In the next
section, we examine the quality of the LSH results relative to exact nearest
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Figure 10.12 Results from experiment 5, where we use the RD method but sum only the top
half of the RD scores. The graphs show the number of comparisons vs. the mean recognition
rate, with the number of RDs varying along each line. In the left graph we show the recognition
within the top 5 results for the 5 cm queries, and in the right graph we show recognition with
the top 7 results for the 10 cm queries. Note the logarithmic scale along the x-axis.

neighbor, and use this to motivate the need for algorithms that provide
better nearest-neighbor performance.

10.6 Nearest-Neighbor Performance of LSH

In this section, we look at the performance of LSH as an approximate
nearest-neighbor algorithm, independent of any recognition procedure. In
most work on approximate nearest-neighbor algorithms, the performance is
measured using the effective distance error or a similar measure [11, 7, 1],
defined for the nth nearest neighbor as

E =
1

Q

∑

q∈Q

(

dalg,n

d∗
n

− 1

)

, (10.1)

where Q is the set of query features, d∗
n is the distance from the query q

to the nth true nearest neighbor, and dalg,n is the distance from q to the
nth best feature returned from the approximate algorithm. The effective
distance error with increasing rank depth n is shown for the 5 cm and 10 cm
queries in the first row of figure 10.13. Each line of the graphs represents
one LSH query with a different number of hash divisions (k).

The effective distance error does not capture whether an approximate
nearest-neighbor algorithm is returning the correct nearest neighbors, only
how close it gets to them. In a recognition setting, the identity of the features
returned is of primary interest, so we suggest a better measure would be
error by rank. If we want the n nearest neighbors, the error by rank is the
percentage of the true n nearest neighbors that were missing in the list of
n returned by the approximate algorithm. The graphs in the second row
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of figure 10.13 show the error by rank with increasing n for the 5 cm and
10 cm queries.
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Figure 10.13 LSH performance, relative to exact nearest neighbor. The graphs in the first
column show the performance on the 5 cm queries, using effective distance error in (a) and error
by rank in (b). The second column shows results for the 10 cm query, with (c) showing effective
distance error and (d) showing error by rank. All results are for twenty tables.

In the first column of figure 10.13 we see that for the 5 cm query, the
effective distance error reaches a maximum at 40% for 800, 900, and 1000
hash divisions, but the same LSH results show almost 100% error by rank,
meaning that almost never are any of the correct nearest neighbors returned.
The second column of the figure shows results for the 10 cm queries. Notice
that, relative to the 5 cm queries, the ceiling on the effective distance error is
actually lower; the 900 and 1000 hash division LSH queries level off around
0.32, and all queries except LSH with 400 and 500 hash divisions are actually
performing better by this measure than in the 5 cm query. However, we
know from our recognition results that this should not be the case, that
recognition results for the 10 cm queries were worse than the 5 cm queries
for the same LSH settings. Indeed, we can see in the error-by-rank graph
that the 10 cm queries are performing much worse than the 5 cm queries
for all LSH settings.
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As an aside, the lines on these graphs are monotonically increasing, which
does not have to be the case in general. If an approximate nearest-neighbor
algorithm misses the first nearest neighbor, but then correctly finds every
nearest neighbor of deeper rank, than the error by rank would decrease with
increasing rank depth, from 100% to 50% to 33%, etc. It is also true that
the effective distance error need not increase with increasing rank depth. It
is a feature of LSH that we get fewer correct results as we look further from
the query, which means that we cannot expect to increase our recognition
performance by considering a greater number of nearest neighbors.

In figure 10.14, we show the tradeoff for different numbers of tables and
hash divisions (l and k). Each line corresponds to a fixed number of divisions,
and we vary the number of tables along the line, with the largest number of
tables at the rightmost point on each line. As expected, with a greater
number of tables we see better performance but we also perform more
comparisons.

In general, recognition performance should increase as error by rank de-
creases, though to what degree will depend upon the recognition algorithm
and data set. Next we introduce a variant of LSH which will find the same or
more of the nearest neighbors as LSH, but at a computational cost between
LSH and exact nearest neighbor.
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Figure 10.14 Nearest-neighbor performance of LSH, shown as the tradeoff between the
number of comparisons and the error-by-rank for the 5 cm and 10 cm query sets. The lower-right
corner of the graph is the ideal result, where the number of comparisons and the error by rank
are low. The number of tables used is varied from 20 to 100 along each line. With 400 divisions,
we drive down the error by rank, but also dramatically increase the number of comparisons
required.

10.7 Associative LSH

In order to improve the error-by-rank and recognition performance, we
introduce a variation which we will refer to as associative LSH. This
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p∗

p0

q

Figure 10.15 A 2D LSH example showing the space divided into bins by axis-parallel lines.
The solid lines represent the divisions from one hash table, and the dashed lines represent
divisions from another. Note that although p∗ is the nearest neighbor to q, they do not occupy
the same bin in either of the tables. It is the case, however, that p∗ can be reached from q: q
and p0 are binmates in the solid-line table and p0 and p∗ are binmates in the dashed-line table.

algorithm begins with the results returned from LSH, and then uses the
LSH tables to further explore the neighborhood around the query feature.

Consider the situation in figure 10.15 where we have a query q and the
closest point to it, p∗, where for all tables i, hi(q) 
= hi(p

∗). It may be the
case that there exists a point p0 such that for two different tables i and j,
hi(q) = hi(p0) and hj(p0) = hj(p

∗). This suggests that we could use p0 to
find p∗.

First, a word about the data structures necessary. We will need the l LSH
hash tables. To speed the algorithm we will also use precomputed l reverse
hashes bi = Ri(j), which take an integer feature identifier and return the
bucket in the ith table in which it is stored. Note that this is the reverse of
the Ti(bi) function. Note that these reverse hashes are not necessary since
we could retrieve the feature fj from disk and calculate hi(fi).

Results will be written to a structure R that for each match found so
far stores the integer feature identifier j and the distance to the query,
dist(q, fj), sorted by distance. This is the same structure we used for results
when performing LSH queries. We will keep lists of the numbers of the
buckets we have visited, one for each of the tables. Call the ith of these lists
Bi. We will also have a set of integer identifiers A which is initially empty.

The algorithm takes as input a rank depth r and a query feature q and
outputs the results structure R. Notice that the first three steps below
are identical to the original LSH algorithm as described earlier, with the
exception of the use of Bi for record-keeping.

1. For all i, calculate bi = hi(q). Add bi to Bi so that we do not visit the
bucket bi in the ith table again.

2. Calculate F =
⋃l

i=1 Ti(bi).

3. For all j ∈ F, calculate dist(q, fj) and add to the results list R.

4. Find a feature identifier that is within the top r results in R and that is
not in the set A, call it a. If such a feature does not exist, then terminate.
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5. Add a to the set A. This, with the check above, ensures that we do not
iterate using this feature again.

6. For all i, find bi = Ri(a), the bucket in which a is stored in the ith table.

7. For all i where bi 
∈ Bi (i.e., we have not already looked in bucket bi

in table i), retrieve F =
⋃

i Ti(bi), the identifiers in the buckets in which a
resides.

8. For all i, add bi to Bi.

9. For each identifier j ∈ F that is not already in R, calculate dist(q, fj)
and store the result in R.

10. Go to step 4.

This algorithm requires only one parameter, r, that LSH does not require.
In our experiments, we did not tune r, setting it only to two. Setting
it higher would result in more comparisons and perhaps better results.
The data structures for Ri(·) are l arrays, each with an element for each
reference feature stored in the LSH tables. This roughly doubles the amount
of memory required to hold the LSH tables, though it does not need to be
stored on disk as it can quickly be generated when the tables are loaded
from disk. Note that any variation on LSH that randomly generates the
hash divisions can be used with this method as well.

The running time of the algorithm is dependent upon the number of
associative iterations performed and the number of features retrieved on
each iteration. The additional bookkeeping required for associative LSH
over regular LSH adds a negligible amount of overhead. Step 4 requires a
O(r) search through the results list and comparison with the hashed set A,
but r will be set to a small constant (two in our experiments). Steps 8 and
9 require additional bookkeeping using the structure Bi, but the complexity
in both cases is O(l) if we make Bi a hashed set.

In figure 10.16 we show the tradeoff between the number of comparisons
performed and the error by rank for our associative LSH queries. We see
a drop in the error by rank over regular LSH, especially when comparing
results using the same number of hash divisions, but we see a corresponding
increase in the number of comparisons.

In figure 10.16 we show the tradeoff between comparisons and error by
rank using associative LSH. Comparing to the results for LSH in figure
10.14 we see that we achieve a better tradeoff. For example, in the 5 cm
experiments using 400 divisions, associative LSH achieves a slightly lower
error and about the same number of comparisons using twenty tables as
LSH does using eighty tables. Similarly, using 600 divisions, associative
LSH achieves 65% error in 5×106 comparisons using twenty tables, whereas
LSH reaches only 72% error in the same number of comparisons using 100
tables. From these results we can see that our search using associative LSH
is more focused; we are finding a comparable number of nearest neighbors
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Figure 10.16 Nearest-neighbor performance of associative LSH, shown as the tradeoff between
the number of comparisons and the error by rank for the 5 cm and 10 cm query sets. Compare
these graphs to those in figure 10.14 showing nearest-neighbor performance of LSH. The number
of tables used is varied from 20 to 100 along each line.

with associative LSH but with fewer comparisons. In the 10 cm experiments,
this effect is more dramatic as associative LSH is able to achieve much lower
error rates with a comparable number of comparisons.

Another important difference is that associative LSH is much less sensitive
to the choices of k and the number of tables. With LSH, error changes
dramatically with a change in the number of tables, and we see a quick
degradation with an increase in the number of divisions.

10.8 Summary

In this chapter, we have performed an analysis of methods for performing
object recognition on a particular data set, with a focus on the tradeoff
between the speed of computation and the recognition performance of the
methods. We made use of LSH for improving the speed of our queries, and
demonstrated ways in which it could be made more robust.

In figure 10.17 we display as a scatterplot results from the different
methods discussed earlier in the chapter on the 5 cm query data set. For each
method, we show points for all the variations of number of RDs, number of
hash divisions, and number of tables. In general, results for associative LSH
using voting lie between LSH and exact nearest neighbor using voting, with
the same true for all three methods using RDs. Looking at the left graph
showing results using the top choice, the best associative LSH results using
RDs is close both in recognition and speed to LSH results using voting. If
we can accept finding the match in the top three results returned, all the
methods presented can get us to 100% recognition, with LSH with RDs
achieving the lowest number of comparisons by a small margin over LSH
with voting and associative LSH with RDs. We note again that the range
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Figure 10.17 Summary of results for various methods on the 5 cm noise data set. For each
method, we show points for all the variations of number of RDs, number of hash divisions, and
number of tables discussed earlier in the chapter. The legend applies to both graphs.

of k using in the associative LSH experiments is much larger than in the
LSH experiments, showing that we can achieve similar performance with
less precise tuning of the parameters.

In figure 10.18 we give a scatterplot of the results for the various 10 cm
noise experiments. Again we see that the associative LSH results lie between
LSH and exact nearest neighbor, though as we see in the first plot, LSH using
300 divisions and the voting method shows a slightly higher recognition
rate and lower comparisons than associative LSH. In general, however,
associative LSH yields a higher recognition rate than LSH, though by
performing more comparisons. We also note that when using the voting
method, the results for associative LSH are more tightly packed than the
LSH results, despite using a wider range of parameters for associative LSH
in the experiments. This indicates that associative LSH can yield similar
results on this data set with less tuning of the parameters.

In conclusion, we have found that LSH is an effective method for speed-
ing nearest-neighbor search in a difficult object recognition task, but at the
cost of some recognition performance. We have touched upon the connection
between the reduction in recognition performance and the performance of
LSH as a nearest-neighbor algorithm, and have presented a variation, asso-
ciative LSH, which gives an improvement in nearest-neighbor performance
on our data set. This increase in nearest-neighbor performance translates
only roughly into recognition performance, showing small gains in recog-
nition performance on this data set for an additional computational cost.
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Figure 10.18 Summary of results for various methods on the 10 cm noise data set, showing
results for the top choice, top three, and top five choices. For each method, we show points for
all the variations of number of RDs, number of hash divisions, and number of tables discussed
earlier in the chapter. The legend in (c) applies to all three plots.
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Index

ǫ-cover, 30
ǫ-net, 31

AdaBoost, 151, 183
AESA, see approximating and

eliminating search algo-
rithm

ANN, 2, 70
annulus method, 27
approximating and eliminating search

algorithm, 27
articulated pose, 165
associative LSH, 241
Assouad dimension, 33

balltree, 4, 28, 77
construction, 78
search, 79, 81, 86

BoostMap, 151
box dimension, 31

classification, 150, 215
covering number, 30
curse of dimensionality, 203

doubling dimension, 33

earth mover’s distance, 24, 182,
184

embedding, 25, 146, 166, 184
Bourgain, 147
Lipschitz, 147
low-distortion, 184

EMD, see earth mover’s distance
exchangeable queries, 46

factor analysis
locally weighted, 110

FastMap, 148

Hausdorff dimension, 32

image segmentation, 216

kd-tree, 3

locality-sensitive hashing, 4, 5, 62,
207, 233

and nearest-neighbor, 70, 239
associative, 241

locally weighted regression, 108,
168

robust, 168
LSH, see locality-sensitive hashing
LWR, see locally weighted regres-

sion

matching
2D contours, 187
3D data, 227

mean shift, 205
mean-shift, 204

adaptive, 205
metric, 21
metric entropy, 30
metric space, 21
metric tree, see balltree
MetricMap, 149

near neighbor
approximate, 4, 19

near-neighbor
approximate, 63

nearest-neighbor, 15
approximate, 2, 19
classification, 7, 19, 77
exact, 1
regression, 168

Orchard’s algorithm, 26
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packing dimension, 32, 36
packing number, 30
parameter-sensitive hashing, 166,

172
partial least squares, 110
pointwise dimension, 35
projection regression, 105

locally weighted, 112

recognition
car models, 231
hand shapes, 155
handwritten digits, 197
human silhouettes, 194

regression, 168

shape context, 221, 223
three-dimensional, 224

skip list, 49
spin image, 225
stable distribution, 61

vector quantization, 18


