
3x

x 2
4x

1x

3y

Predicting Structured Data

5x

2y

4y

5y

edited by Gökhan Bakır, Thomas Hofmann, 

Bernhard Schölkopf, Alexander J. Smola, Ben 

Taskar, and S. V. N. Vishwanathan



Predicting Structured Data



Advances in Neural Information Processing Systems

Published by The MIT Press

Neural Information Processing Series

Michael I. Jordan and Thomas Dietterich, editors

Advances in Large Margin Classifiers,

Alexander J. Smola, Peter L. Bartlett, Bernhard Schölkopf, and Dale Schuurmans, eds., 2000

Advanced Mean Field Methods: Theory and Practice,

Manfred Opper and David Saad, eds., 2001

Probabilistic Models of the Brain: Perception and Neural Function,

Rajesh P. N. Rao, Bruno A. Olshausen, and Michael S. Lewicki, eds., 2002

Exploratory Analysis and Data Modeling in Functional Neuroimaging,

Friedrich T. Sommer and Andrzej Wichert, eds., 2003

Advances in Minimum Description Length: Theory and Applications,

Peter D. Grünwald, In Jae Myung, and Mark A. Pitt, eds., 2005

New Directions in Statistical Signal Processing: From Systems to Brain,

Simon Haykin, Jos C. Prncipe, Terrence J. Sejnowski, and John McWhirter, eds., 2006

Nearest-Neighbor Methods in Learning and Vision: Theory and Practice,

Gregory Shakhnarovich, Piotr Indyk, and Trevor Darrell, eds., 2006

New Directions in Statistical Signal Processing: From Systems to Brains,

Simon Haykin, Jos C. Prncipe, Terrence J. Sejnowski, and John McWhirter, eds., 2007

Predicting Structured Data,

Gökhan Bakır, Thomas Hofmann, Bernard Schölkopf, Alexander J. Smola, Ben Taskar, S.V.N.

Vishwanathan, eds., 2007

Towards Brain-Computer Interfacing,

Guido Dornhege, José del R. Millán, Thilo Hinterberger, Dennis McFarland, Klaus-Robert

Müller, eds., 2007



Predicting Structured Data

edited by
Gökhan Bakır
Thomas Hofmann
Bernhard Schölkopf
Alexander J. Smola
Ben Taskar
S.V.N. Vishwanathan

The MIT Press
Cambridge, Massachusetts
London, England



c©2007 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic

or mechanical means (including photocopying, recording, or information storage and retrieval)

without permission in writing from the publisher.

Printed and bound in the United States of America

Library of Congress Cataloging-in-Publication Data

Predicting Structured Data / edited by Gökhan BakIr ... [et al.].

p. cm.

Collected papers based on talks presented at two Neural Information Processing Systems

workshops.

Includes bibliographical references and index.

ISBN 978-0-262-02617-8 (alk. paper)

1. Machine learning. 2. Computer algorithms. 3. Kernel functions.

4. Data structures (Computer science).

I. BakIr, Gökhan. II. Neural Information Processing Systems Foundation.

Q325.5.P74 2007

006.3’1 – dc22 2006047001



Contents

Preface x

I Introduction 1

1 Measuring Similarity with Kernels 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Operating in Reproducing Kernel Hilbert Spaces . . . . . . . . . . . 11
1.4 Kernels for Structured Data . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 An Example of a Structured Prediction Algorithm Using Kernels . . 22
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Discriminative Models 25
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Online Large-Margin Algorithms . . . . . . . . . . . . . . . . . . . . 26
2.3 Support Vector Estimation . . . . . . . . . . . . . . . . . . . . . . . 28
2.4 Margin-Based Loss Functions . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Margins and Uniform Convergence Bounds . . . . . . . . . . . . . . 37
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Modeling Structure via Graphical Models 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Conditional Independence . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Markov Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5 Inference Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.6 Exponential Families . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Probabilistic Context-Free Grammars . . . . . . . . . . . . . . . . . 57
3.8 Structured Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



vi Contents

II Structured Prediction Based on Discriminative Models 65

4 Joint Kernel Maps 67
Jason Weston, Gökhan Bakır, Olivier Bousquet, Tobias Mann,

William Stafford Noble, and Bernhard Schölkopf
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Incorporating Correlations into Linear Regression . . . . . . . . . . . 68
4.3 Linear Maps and Kernel Methods : Generalizing Support Vector

Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Joint Kernel Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5 Joint Kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Support Vector Machine Learning for Interdependent and Struc-
tured Output Spaces 85

Yasemin Altun, Thomas Hofmann, and Ioannis Tsochandiridis
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.2 A Framework for Structured/Interdependent Output Learning . . . 86
5.3 A Maximum-Margin Formulation . . . . . . . . . . . . . . . . . . . . 90
5.4 Cutting-Plane Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 94
5.5 Alternative Margin Formulations . . . . . . . . . . . . . . . . . . . . 98
5.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.8 Proof of Proposition 37 . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Efficient Algorithms for Max-Margin Structured Classification 105
Juho Rousu, Craig Saunders, Sandor Szedmak, and John Shawe-Taylor
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2 Structured Classification Model . . . . . . . . . . . . . . . . . . . . . 107
6.3 Efficient Optimization on the Marginal Dual Polytope . . . . . . . . 117
6.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7 Discriminative Learning of Prediction Suffix Trees with the Per-
ceptron Algorithm 129

Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
7.2 Suffix Trees for Stream Prediction . . . . . . . . . . . . . . . . . . . 131
7.3 PSTs as Separating Hyperplanes and the perceptron Algorithm . . . 133
7.4 The Self-Bounded Perceptron for PST Learning . . . . . . . . . . . . 136
7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



Contents vii

8 A General Regression Framework for Learning String-to-String
Mappings 143

Corinna Cortes, Mehryar Mohri, and Jason Weston
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.3 Regression Problems and Algorithms . . . . . . . . . . . . . . . . . . 146
8.4 Pre-Image Solution for Strings . . . . . . . . . . . . . . . . . . . . . 154
8.5 Speeding up Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.6 Comparison with Other Algorithms . . . . . . . . . . . . . . . . . . . 160
8.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9 Learning as Search Optimization 169
Hal Daumé III and Daniel Marcu
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.3 Search Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
9.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 188

10 Energy-Based Models 191
Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato,

and Fu Jie Huang
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
10.2 Energy-Based Training: Architecture and Loss Function . . . . . . . 197
10.3 Simple Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
10.4 Latent Variable Architectures . . . . . . . . . . . . . . . . . . . . . . 211
10.5 Analysis of Loss Functions for Energy-Based Models . . . . . . . . . 214
10.6 Efficient Inference: Nonprobabilistic Factor Graphs . . . . . . . . . . 225
10.7 EBMs for Sequence Labeling and Structured Outputs . . . . . . . . 230
10.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

11 Generalization Bounds and Consistency for Structured Labeling 247
David McAllester
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
11.2 PAC-Bayesian Generalization Bounds . . . . . . . . . . . . . . . . . 249
11.3 Hinge Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.4 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
11.5 A Generalization of Theorem 62 . . . . . . . . . . . . . . . . . . . . 256
11.6 Proofs of Theorems 61 and 62 . . . . . . . . . . . . . . . . . . . . . . 258
11.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



viii Contents

III Structured Prediction Using Probabilistic Models 263

12 Kernel Conditional Graphical Models 265
Fernando Pérez-Cruz, Zoubin Ghahramani, and Massimiliano Pontil
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265
12.2 A Unifying Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
12.3 Conditional Graphical Models . . . . . . . . . . . . . . . . . . . . . . 274
12.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
12.5 Conclusions and Further Work . . . . . . . . . . . . . . . . . . . . . 280

13 Density Estimation of Structured Outputs in Reproducing Kernel
Hilbert Spaces 283

Yasemin Altun and Alex J. Smola
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
13.2 Estimating Conditional Probability Distributions over Structured

Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
13.3 A Sparse Greedy Optimization . . . . . . . . . . . . . . . . . . . . . 292
13.4 Experiments: Sequence Labeling . . . . . . . . . . . . . . . . . . . . 295
13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

14 Gaussian Process Belief Propagation 301
Matthias W. Seeger
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
14.2 Data and Model Dimension . . . . . . . . . . . . . . . . . . . . . . . 303
14.3 Semiparametric Latent Factor Models . . . . . . . . . . . . . . . . . 306
14.4 Gaussian Process Belief Propagation . . . . . . . . . . . . . . . . . . 308
14.5 Parameter Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
14.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

References 319

Contributors 341

Index 345



Series Foreword

The yearly Neural Information Processing Systems (NIPS) workshops bring to-
gether scientists with broadly varying backgrounds in statistics, mathematics, com-
puter science, physics, electrical engineering, neuroscience, and cognitive science,
unified by a common desire to develop novel computational, and statistical strate-
gies for information processing, and to understand the mechanisms for information
processing in the brain. As opposed to conferences, these workshops maintain a
flexible format that both allows and encourages the presentation and discussion of
work in progress, and thus serve as an incubator for the development of important
new ideas in this rapidly evolving field.

The series editors, in consultation with workshop organizers and members of the
NIPS foundation board, select specific workshop topics on the basis of scientific
excellence, intellectual breadth, and technical impact. Collections of papers chosen
and edited by the organizers of specific workshops are built around pedagogical
introductory chapters, while research monographs provide comprehensive descrip-
tions of workshop-related topics, to create a series of books that provides a timely,
authoritative account of the latest developments in the exciting field of neural com-
putation.

Michael I. Jordan and Thomas Dietterich





Preface

Machine learning develops intelligent computer systems that are able to generalize
from previously seen examples. Traditionally, machine learning has mostly been
involved with generalizing decisions from examples, as in the case of classification,
or predicting a scalar number, as in the case of regression. Recent developments,
however, have approached a wider domain where the prediction has to satisfy
additional constraints, i.e., the output has structure.

Predicting structured data can be considered as one of the big challenges in
machine learning, namely:

Learning functional dependencies between arbitrary input and output domains.

The current book aims at collecting and reviewing the state of the art in machine
learning algorithms and machine learning theory which considers learning in this
scenario. The material included in this collection covers applications as diverse as
machine translation, document markup, computational biology, image restoration,
and information extraction — to name just a few motivating examples.

The present book contains a number of papers based on talks presented at
two Neural Information Processing Systems (NIPS) workshops on “Learning with
Structured Outputs” and “Graphical Models and Kernels,” along with several
invited articles describing recent progress made since the workshops have taken
place. We believe that it provides a timely overview of this exciting field, covering a
wide range of promising methods. Structured prediction being a rather novel field,
this overview cannot be comprehensive nor anticipate all future trends, but we hope
it will provide a good starting point for entering this exciting area.

We would like to thank everybody who contributed toward the success of this
book, in particular Karin Bierig and Bob Prior for their continuing support,
assistance, and patience.

Gökhan Bakır, Thomas Hofmann, Bernhard Schölkopf,

Alexander J. Smola, Ben Taskar, S.V. N. Vishwanathan

Tübingen, Zürich, Canberra, Berkeley; September 2006





I Introduction





1 Measuring Similarity with Kernels

1.1 Introduction

Over the last ten years, estimation and learning methods utilizing positive definite
kernels have become rather popular, particularly in machine learning. Since these
methods have a stronger mathematical slant than earlier machine learning methods
(e.g., neural networks), there is also significant interest in the statistical and math-
ematical community for these methods. The present chapter aims to summarize
the state of the art on a conceptual level. In doing so, we build on various sources
(including Vapnik (1998); Burges (1998); Cristianini and Shawe-Taylor (2000); Her-
brich (2002) and in particular Schölkopf and Smola (2002)), but we also add a fair
amount of recent material which helps in unifying the exposition.

The main idea of all the described methods can be summarized in one paragraph.
Traditionally, theory and algorithms of machine learning and statistics have been
very well developed for the linear case. Real-world data analysis problems, on the
other hand, often require nonlinear methods to detect the kind of dependences that
allow successful prediction of properties of interest. By using a positive definite
kernel, one can sometimes have the best of both worlds. The kernel corresponds
to a dot product in a (usually high-dimensional) feature space. In this space, our
estimation methods are linear, but as long as we can formulate everything in terms
of kernel evaluations, we never explicitly have to work in the high-dimensional
feature space.

1.2 Kernels

1.2.1 An Introductory Example

Suppose we are given empirical data

(x1, y1), . . . , (xn, yn) ∈ X× Y. (1.1)

Here, the domain X is some nonempty set that the inputs xi are taken from; the
yi ∈ Y are called targets. Here and below, i, j = 1, . . . , n.

Note that we have not made any assumptions on the domain X other than it being
a set. In order to study the problem of learning, we need additional structure. In



4 Measuring Similarity with Kernels

o
+

+

+

+

o
o

c+

c-

x-c

w

x

c

.

Figure 1.1 A simple geometric classification algorithm: given two classes of points
(depicted by ‘o’ and ‘+’), compute their means c+, c− and assign a test input x to the
one whose mean is closer. This can be done by looking at the dot product between x − c
(where c = (c+ + c−)/2) and w := c+ − c−, which changes sign as the enclosed angle
passes through π/2. Note that the corresponding decision boundary is a hyperplane (the
dotted line) orthogonal to w (from Schölkopf and Smola (2002)).

learning, we want to be able to generalize to unseen data points. In the case of
binary pattern recognition, given some new input x ∈ X, we want to predict the
corresponding y ∈ {±1}. Loosely speaking, we want to choose y such that (x, y)
is in some sense similar to the training examples. To this end, we need similarity
measures in X and in {±1}. The latter is easier, as two target values can only be
identical or different.1 For the former, we require a function

k : X× X→ R, (x, x′) �→ k(x, x′) (1.2)

satisfying, for all x, x′ ∈ X,

k(x, x′) = 〈Φ(x), Φ(x′)〉 , (1.3)

where Φ maps into some dot product space H, sometimes called the feature space.
The similarity measure k is usually called a kernel, and Φ is called its feature map.kernels and

feature map The advantage of using such a kernel as a similarity measure is that it allows us
to construct algorithms in dot product spaces. For instance, consider the following
simple classification algorithm, where Y = {±1}. The idea is to compute the
means of the two classes in the feature space, c+ = 1

n+

∑
{i:yi=+1} Φ(xi), and

c− = 1
n−

∑
{i:yi=−1} Φ(xi), where n+ and n− are the number of examples with

1. When Y has a more complex structure, things can get complicated — this is the main
topic of the present book, but we completely disregard it in this introductory example.



1.2 Kernels 5

positive and negative target values, respectively. We then assign a new point Φ(x)
to the class whose mean is closer to it. This leads to

y = sgn(〈Φ(x), c+〉 − 〈Φ(x), c−〉+ b) (1.4)

with b = 1
2

(‖c−‖2 − ‖c+‖2
)
. Substituting the expressions for c± yields

y = sgn

⎛
⎝ 1

n+

∑
{i:yi=+1}

〈Φ(x), Φ(xi)〉 − 1
n−

∑
{i:yi=−1}

〈Φ(x), Φ(xi)〉+ b

⎞
⎠ . (1.5)

Rewritten in terms of k, this reads

y = sgn

⎛
⎝ 1

n+

∑
{i:yi=+1}

k(x, xi)− 1
n−

∑
{i:yi=−1}

k(x, xi) + b

⎞
⎠ , (1.6)

where b = 1
2

(
1

n2
−

∑
{(i,j):yi=yj=−1} k(xi, xj)− 1

n2
+

∑
{(i,j):yi=yj=+1} k(xi, xj)

)
. This

algorithm is illustrated in figure 1.1 for the case that X equals R2 and Φ(x) = x.
Let us consider one well-known special case of this type of classifier. Assume

that the class means have the same distance to the origin (hence b = 0), and that
k(., x) is a density for all x′ ∈ X. If the two classes are equally likely and were
generated from two probability distributions that are correctly estimated by the
Parzen windows estimators

p+(x) :=
1

n+

∑
{i:yi=+1}

k(x, xi), p−(x) :=
1

n−

∑
{i:yi=−1}

k(x, xi), (1.7)

then (1.6) is the Bayes decision rule.
The classifier (1.6) is quite close to the support vector machine (SVM) that we

will discuss below. It is linear in the feature space (see (1.4)), while in the input
domain, it is represented by a kernel expansion (1.6). In both cases, the decision
boundary is a hyperplane in the feature space; however, the normal vectors are
usually different.2

1.2.2 Positive Definite Kernels

We have above required that a kernel satisfy (1.3), i.e., correspond to a dot product
in some dot product space. In the present section, we show that the class of kernels
that can be written in the form (1.3) coincides with the class of positive definite
kernels. This has far-reaching consequences. There are examples of positive definite

2. For (1.4), the normal vector is w = c+ − c−. As an aside, note that if we normalize
the targets such that ŷi = yi/|{j : yj = yi}|, in which case the ŷi sum to zero, then
‖w‖2 = K, ŷŷ�

F
, where 〈., .〉F is the Frobenius dot product. If the two classes have

equal size, then up to a scaling factor involving ‖K‖2 and n, this equals the kernel-target
alignment defined by Cristianini et al. (2002).



6 Measuring Similarity with Kernels

kernels which can be evaluated efficiently even though via (1.3) they correspond to
dot products in infinite-dimensional dot product spaces. In such cases, substituting
k(x, x′) for 〈Φ(x), Φ(x′)〉, as we have done when going from (1.5) to (1.6), is crucial.

1.2.2.1 Prerequisites

Definition 1 (Gram Matrix) Given a kernel k and inputs x1, . . . , xn ∈ X, the
n× n matrix

K := (k(xi, xj))ij (1.8)

is called the Gram matrix (or kernel matrix) of k with respect to x1, . . . , xn.

Definition 2 (Positive Definite Matrix) A real n × n symmetric matrix Kij

satisfying ∑
i,j

cicjKij ≥ 0 (1.9)

for all ci ∈ R is called positive definite. If for equality in (1.9) only occurs for
c1 = · · · = cn = 0, then we shall call the matrix strictly positive definite.

Definition 3 (Positive Definite Kernel) Let X be a nonempty set. A function
k : X × X → R which for all n ∈ N, xi ∈ X gives rise to a positive definite Gram
matrix is called a positive definite kernel. A function k : X × X→ R which for all
n ∈ N and distinct xi ∈ X gives rise to a strictly positive definite Gram matrix is
called a strictly positive definite kernel.

Occasionally, we shall refer to positive definite kernels simply as a kernels. Note
that for simplicity we have restricted ourselves to the case of real-valued kernels.
However, with small changes, the below will also hold for the complex-valued case.

Since
∑

i,j cicj 〈Φ(xi), Φ(xj)〉 =
〈∑

i ciΦ(xi),
∑

j cjΦ(xj)
〉
≥ 0, kernels of the

form (1.3) are positive definite for any choice of Φ. In particular, if X is already a
dot product space, we may choose Φ to be the identity. Kernels can thus be regarded
as generalized dot products. While they are not generally bilinear, they share
important properties with dot products, such as the Cauchy-Schwartz inequality:

Proposition 4 If k is a positive definite kernel, and x1, x2 ∈ X, then

k(x1, x2)2 ≤ k(x1, x1) · k(x2, x2). (1.10)

Proof The 2 × 2 Gram matrix with entries Kij = k(xi, xj) is positive definite.
Hence both its eigenvalues are nonnegative, and so is their product, K’s determi-
nant, i.e.,

0 ≤ K11K22 −K12K21 = K11K22 −K2
12. (1.11)

Substituting k(xi, xj) for Kij , we get the desired inequality.



1.2 Kernels 7

1.2.2.2 Construction of the Reproducing Kernel Hilbert Space

We now define a map from X into the space of functions mapping X into R, denoted
as RX, via

Φ : X→ RX

x �→ k(., x). (1.12)

Here, Φ(x) = k(., x) denotes the function that assigns the value k(x′, x) to x′ ∈ X.
We next construct a dot product space containing the images of the inputs under

Φ. To this end, we first turn it into a vector space by forming linear combinations

f(.) =
n∑

i=1

αik(., xi). (1.13)

Here, n ∈ N, αi ∈ R and xi ∈ X are arbitrary.
Next, we define a dot product between f and another function g(.) =

∑n′

j=1 βjk(., x′
j)

(with n′ ∈ N, βj ∈ R and x′
j ∈ X) as

〈f, g〉 :=
n∑

i=1

n′∑
j=1

αiβjk(xi, x
′
j). (1.14)

To see that this is well-defined although it contains the expansion coefficients, note
that 〈f, g〉 =

∑n′

j=1 βjf(x′
j). The latter, however, does not depend on the particular

expansion of f . Similarly, for g, note that 〈f, g〉 =
∑n

i=1 αig(xi). This also shows
that 〈·, ·〉 is bilinear. It is symmetric, as 〈f, g〉 = 〈g, f〉. Moreover, it is positive
definite, since positive definiteness of k implies that for any function f , written as
(1.13), we have

〈f, f〉 =
n∑

i,j=1

αiαjk(xi, xj) ≥ 0. (1.15)

Next, note that given functions f1, . . . , fp, and coefficients γ1, . . . , γp ∈ R, we have

p∑
i,j=1

γiγj 〈fi, fj〉 =

〈
p∑

i=1

γifi,

p∑
j=1

γjfj

〉
≥ 0. (1.16)

Here, the left-hand equality follows from the bilinearity of 〈·, ·〉, and the right-hand
inequality from (1.15).

By (1.16), 〈·, ·〉 is a positive definite kernel, defined on our vector space of
functions. For the last step in proving that it even is a dot product, we note that
by (1.14), for all functions (1.13),

〈k(., x), f〉 = f(x), (1.17)



8 Measuring Similarity with Kernels

and in particular

〈k(., x), k(., x′)〉 = k(x, x′). (1.18)

By virtue of these properties, k is called a reproducing kernel (Aronszajn, 1950) .reproducing
kernel Due to (1.17) and proposition 4, we have

|f(x)|2 = |〈k(., x), f〉|2 ≤ k(x, x) · 〈f, f〉. (1.19)

By this inequality, 〈f, f〉 = 0 implies f = 0, which is the last property that was left
to prove in order to establish that 〈., .〉 is a dot product.

Skipping some details, we add that one can complete the space of functions (1.13)
in the norm corresponding to the dot product, and thus get a Hilbert space H , called
a reproducing kernel Hilbert space (RKHS).reproducing

kernel Hilbert
space(RKHS)

One can define an RKHS as a Hilbert space H of functions on a set X with
the property that for all x ∈ X and f ∈ H, the point evaluations f �→ f(x) are
continuous linear functionals (in particular, all point values f(x) are well-defined,
which already distinguishes RKHSs from many L2 Hilbert spaces). From the point
evaluation functional, one can then construct the reproducing kernel using the Riesz
representation theorem. The Moore-Aronszajn theorem (Aronszajn, 1950) states
that for every positive definite kernel on X × X, there exists a unique RKHS and
vice versa.

There is an analogue of the kernel trick for distances rather than dot products, i.e.,
dissimilarities rather than similarities. This leads to the larger class of conditionally
positive definite kernels. Those kernels are defined just like positive definite ones,
with the one difference being that their Gram matrices need to satisfy (1.9) only
subject to

n∑
i=1

ci = 0. (1.20)

Interestingly, it turns out that many kernel algorithms, including SVMs and kernel
principal component analysis (PCA) (see section 1.3.2), can be applied also with
this larger class of kernels, due to their being translation invariant in feature space
(Schölkopf and Smola, 2002; Hein et al., 2005).

We conclude this section with a note on terminology. In the early years of kernel
machine learning research, it was not the notion of positive definite kernels that
was being used. Instead, researchers considered kernels satisfying the conditions of
Mercer’s theorem (Mercer, 1909); see e.g. Vapnik (1998) and Cristianini and Shawe-
Taylor (2000). However, while all such kernels do satisfy (1.3), the converse is not
true. Since (1.3) is what we are interested in, positive definite kernels are thus the
right class of kernels to consider.



1.2 Kernels 9

1.2.3 Constructing Kernels

In the following we demonstrate how to assemble new kernel functions from existing
ones using elementary operations preserving positive definiteness. The following
proposition will serve us as the main working horse:constructing new

kernels

Proposition 5 Below, k1, k2, . . . are arbitrary positive definite kernels on X × X,
where X is a nonempty set.
(i) The set of positive definite kernels is a closed convex cone, i.e., (a) if α1, α2 ≥ 0,
then α1k1 + α2k2 is positive definite.
(ii) The pointwise product k1k2 is positive definite.
(iii) Assume that for i = 1, 2, ki is a positive definite kernel on Xi × Xi, where Xi

is a nonempty set. Then the tensor product k1 ⊗ k2 and the direct sum k1 ⊕ k2 are
positive definite kernels on (X1 × X2)× (X1 × X2).
(iv) If k(x, x′) := limn→∞ kn(x, x′) exists for all x, x′, then k is positive definite.
(v) The function k(x, x′) := f(x)f(x′) is a valid positive definite kernel for any
function f .

Let us use this proposition now to construct new kernel functions.

1.2.3.1 Polynomial Kernels

From proposition 5 it is clear that homogeneous polynomial kernels k(x, x′) =
〈x, x′〉p are positive definite for p ∈ N and x, x′ ∈ Rd. By direct calculation we can
derive the corresponding feature map (Poggio, 1975):

〈x, x′〉p =

〈
d∑

j=1

[x]j , [x′]j

〉p

=
∑

j∈[d]p

[x]j1 · · · · · [x]jp · [x′]j1 · · · · · [x′]jp = 〈Cp(x), Cp(x′)〉 ,

(1.21)

where Cp maps x ∈ Rd to the vector Cp(x) whose entries are all possible p th-degree
ordered products of the entries of x. The polynomial kernel of degree p thus
computes a dot product in the space spanned by all monomials of degree p in
the input coordinates. Other useful kernels include the inhomogeneous polynomial,

k(x, x′) = (〈x, x′〉+ c)p where p ∈ N and c ≥ 0, (1.22)

which computes all monomials up to degree p.

1.2.3.2 Gaussian Kernel

Using the infinite Taylor expansion of the exponential function ez =
∑∞

i=1
1
i!z

i, it
follows from propostion 5(iv) that

eγ〈x,x′〉



10 Measuring Similarity with Kernels

is a kernel function for any x, x′ ∈ X and γ ∈ R. Therefore, it follows immediately
that the widely used Gaussian function e−γ||x−x′||2 with γ > 0 is a valid kernel
function. This can be seen as rewriting the Gaussian function as

e−γ||x−x′||2 = e−γ〈x,x〉e2γ〈x,x′〉e−γ〈x′,x′〉,

and using proposition 5(ii).
We see that the Gaussian kernel corresponds to a mapping into C∞, i.e. the space

of continuous functions. However, the feature map is normalized, i.e. ||Φ(x)||2 =
k(x, x) = 1 for any x ∈ X. Moreover, as k(x, x′) > 0 for all x, x′ ∈ X, all mapped
points lie inside the same orthant in feature space.

1.2.3.3 Spline Kernels

It is possible to obtain spline functions as a result of kernel expansions (Smola,
1996; Vapnik et al., 1997) simply by noting that convolution of an even number of
indicator functions yields a positive kernel function. Denote by IX the indicator (or
characteristic) function on the set X , and denote by ⊗ the convolution operation,
(f ⊗ g)(x) :=

∫
Rd f(x′)g(x′ − x)dx′). Then the B-spline kernels are given by

k(x, x′) = B2p+1(x − x′) where p ∈ N with Bi+1 := Bi ⊗B0. (1.23)

Here B0 is the characteristic function on the unit ball3 in Rd. From the definition of
(1.23) it is obvious that for odd m we may write Bm as the inner product between
functions Bm/2. Moreover, note that for even m, Bm is not a kernel.

1.2.4 The Representer Theorem

From kernels, we now move to functions that can be expressed in terms of ker-
nel expansions. The representer theorem (Kimeldorf and Wahba, 1971; Cox and
O’Sullivan, 1990) shows that solutions of a large class of optimization problems can
be expressed as kernel expansions over the sample points. We present a slightly
more general version of the theorem with a simple proof (Schölkopf et al., 2001).
As above, H is the RKHS associated with the kernel k.

Theorem 6 (Representer Theorem) Denote by Ω : [0,∞) → R a strictly
monotonic increasing function, by X a set, and by c : (X × R2)n → R∪{∞}
an arbitrary loss function. Then each minimizer f ∈ H of the regularized risk
functional

c ((x1, y1, f(x1)) , . . . , (xn, yn, f(xn))) + Ω
(‖f‖2H) (1.24)

3. Note that in R one typically uses ξ
− 1

2
,
1
2

.



1.3 Operating in Reproducing Kernel Hilbert Spaces 11

admits a representation of the form

f(x) =
n∑

i=1

αik(xi, x). (1.25)

Proof We decompose any f ∈ H into a part contained in the span of the kernel
functions k(x1, ·), · · · , k(xn, ·), and one in the orthogonal complement:

f(x) = f‖(x) + f⊥(x) =
n∑

i=1

αik(xi, x) + f⊥(x). (1.26)

Here αi ∈ R and f⊥ ∈ H with 〈f⊥, k(xi, ·)〉H = 0 for all i ∈ [n] := {1, . . . , n}. By
(1.17) we may write f(xj) (for all j ∈ [n]) as

f(xj) = 〈f(·), k(xj , .)〉 =
n∑

i=1

αik(xi, xj) + 〈f⊥(·), k(xj , .)〉H =
n∑

i=1

αik(xi, xj).

(1.27)
Second, for all f⊥,

Ω(‖f‖2H) = Ω

⎛
⎝
∥∥∥∥∥

n∑
i

αik(xi, ·)
∥∥∥∥∥

2

H

+ ‖f⊥‖2H

⎞
⎠ ≥ Ω

⎛
⎝
∥∥∥∥∥

n∑
i

αik(xi, ·)
∥∥∥∥∥

2

H

⎞
⎠ . (1.28)

Thus for any fixed αi ∈ R the risk functional (1.24) is minimized for f⊥ = 0. Since
this also has to hold for the solution, the theorem holds.

Monotonicity of Ω does not prevent the regularized risk functional (1.24) from
having multiple local minima. To ensure a global minimum, we would need to
require convexity. If we discard the strictness of the monotonicity, then it no longer
follows that each minimizer of the regularized risk admits an expansion (1.25); it
still follows, however, that there is always another solution that is as good, and
that does admit the expansion.

The significance of the representer theorem is that although we might be trying
to solve an optimization problem in an infinite-dimensional space H, containing
linear combinations of kernels centered on arbitrary points of X, it states that the
solution lies in the span of n particular kernels — those centered on the training
points. We will encounter (1.25) again further below, where it is called the support
vector expansion. For suitable choices of loss functions, many of the αi often equal
zero.

1.3 Operating in Reproducing Kernel Hilbert Spaces

We have seen that kernels correspond to an inner product in some possibly high-
dimensional feature space. Since direct computation in these spaces is computation-
ally infeasible one might argue that sometimes the application of kernels is rather
limited. However, in this section we demonstrate for some cases that direct opera-



12 Measuring Similarity with Kernels

tion in feature space is possible. Subsequently we introduce kernel PCA which can
extract features corresponding to principal components in this high-dimensional
feature space.

1.3.1 Direct Operations in RKHS

1.3.1.1 Translation

Consider the modified feature map Φ̃(x) = Φ(x)+Γ, with Γ ∈ H. This feature map
corresponds to a translation in feature space. The dot product

〈
Φ̃(x), Φ̃(x′)

〉
yields

for this case the terms

〈Φ(x), Φ(x′)〉+ 〈Φ(x), Γ〉+ 〈Γ, Φ(x′)〉+ 〈Γ, Γ〉 ,

which cannot always be evaluated. However, let us restrict the translation Γ to be
in the span of the functions Φ(x1), · · · , Φ(xn) ∈ H with {x1, . . . , xn} ∈ Xn. Thus if
Γ =

∑n
i=1 αiΦ(xi), αi ∈ R, then the dot product between translated feature maps

can be evaluated in terms of the kernel functions solely. Thus we obtain for our
modified feature map

〈
Φ̃(x), Φ̃(x′)

〉
= k(x, x′) +

n∑
i=1

αik(xi, x) +
n∑

i=1

αik(xi, x
′) +

n∑
i,j=1

αiαjk(xi, xj).

(1.29)

1.3.1.2 Centering

As a concrete application for a translation operation consider the case that we would
like to center a set of points in the RKHS. Thus we would like to have a feature map
Φ̃ such that 1

n

∑n
i=1 Φ̃(xi) = 0. Using Φ̃(x) = Φ(x)+Γ with Γ = −∑n

i=1
1
nΦ(xi) this

can be obtained immediately utilizing (1.29). The kernel matrix K̃ of the centered
feature map Φ̃ can then be expressed directly in terms of matrix operations by

K̃ij = (K − 1mK −K1m + 1mK1m)ij ,

where 1m ∈ Rm×m is the constant matrix with all entries equal to 1/m, and K is
the kernel matrix evaluated using Φ.

1.3.1.3 Computing Distances

An essential tool for structured prediction is the problem of computing distances
between two objects. For example, to assess the quality of a prediction we would
like to measure the distance between predicted object and true object. Since kernel
functions can be interpreted as dot products (see (1.3)) they provide an elegant way
to measure distances between arbitrary objects. Consider two objects x1, x2 ∈ X,



1.3 Operating in Reproducing Kernel Hilbert Spaces 13

such as two-word sequences or two automata. Assume we have a kernel function k

on such objects; we can use their distance in the RKHS, i.e.,

d(x1, x2) = ||Φ(x1)− Φ(x2)||H =
√

k(x1, x1) + k(x2, x2)− 2k(x1, x2).

Here, we have utilized the fact that the dot product in H can be evaluated by
kernel functions and thus define the distance between the objects to be the distance
between the images of the feature map Φ.

1.3.1.4 Subspace Projections

Another elementary operation which can be performed in a Hilbert space is the
one-dimensional orthogonal projection. Given two points Ψ, Γ in the RKHS H we
project the point Ψ to the subspace spanned by the point Γ, obtaining

Ψ′ =
〈Γ, Ψ〉
||Γ||2 Γ. (1.30)

Considering the case that Ψ and Γ are given by kernel expansions, we see immedi-
ately that any dot product with the projected point Ψ′ can be expressed with kernel
functions only. Using such a projection operation in RKHS, it is straightforward to
define a deflation procedure:

Ψ′ = Ψ− 〈Γ, Ψ〉
||Γ||2 Γ. (1.31)

Using projection and deflation operations, one can perform e.g. the Gram-Schmidt
orthogonalization procedure for the construction of orthogonal bases. This was used
for example in information retrieval (Cristianini et al., 2001) and computer vision
(Wolf and Shashua, 2003). An alternative application of deflation and subspace
projection in RKHS was introduced by Rosipal and Trejo (2002) in the context of
subspace regression.

1.3.2 Kernel Principal Component Analysis

A standard method for feature extraction is the method of principal component
analysis (PCA), which aims to identify principal axes in the input. The principal
axes are recovered as the eigenvectors of the empirical estimate of the covariance
matrix Cemp = Eemp

[
(x− Eemp[x]) (x− Eemp[x])


]
. In contrast to PCA, kernel

PCA introduced by Schölkopf et al. (1998) tries to identify principal components
of variables which are nonlinearly related to input variables, i.e. principal axis in
some feature space H. To this end, given some training set (x1, . . . ,xn) of size n,
one considers the eigenvectors v ∈ H of the empirical covariance operator in featurecovariance in

feature space space:

Cemp = Eemp

[
(Φ(x)− Eemp[Φ(x)]) (Φ(x)− Eemp[Φ(x)])


]
.



14 Measuring Similarity with Kernels

Although this operator and thus its eigenvectors v cannot be calculated directly,
they can be retrieved in terms of kernel evaluations only. To see this, note that even
in the case of a high-dimensional feature space H, a finite training set (x1, . . . ,xn) of
size n when mapped to this feature space spans a subspace E ⊂ H whose dimension
is at most n. Thus, there are at most n principal axes (v1, . . . ,vn) ∈ En with
nonzero eigenvalues. It can be shown that these principal axes can be expressed
as linear combinations of the training points vj =

∑N
i=1 αj

iΦ(xi), 1 ≤ j ≤ n,
where the coefficients αj ∈ Rn are obtained as eigenvectors of the kernel matrix
evaluated on the training set. If one retains all principal components, kernel
PCA can be considered as a basis transform in E, leaving the dot product of
training points invariant. To see this, let (v1, . . . ,vn) ∈ En be the principal axes of
{Φ(x1), . . . ,Φ(xn)}. The kernel PCA map φn : X→ Rn is defined coordinatewise
as

[φn]p(x) = Φ(x) · vp, 1 ≤ p ≤ n.

Note that by definition, for all i and j, Φ(xi) and Φ(xj) lie in E and thus

K(xi,xj) = Φ(xi) · Φ(xj) = φn(xi) · φn(xj). (1.32)

The kernel PCA map is especially useful if one has structured data and one wants
to use an algorithm which is not readily expressed in dot products.

1.4 Kernels for Structured Data

We have seen several instances of positive definite kernels, and now intend to
describe some kernel functions which are particularly well suited to operate on data
domains other than real vector spaces. We start with the simplest data domain: sets.

1.4.1 Set Kernels

Assume that we have given a finite alphabet Σ, i.e. a collection of symbols which
we call characters. Furthermore let us denote by P(Σ) the power set of Σ. Then, we
define a set kernel to be any valid kernel function k which takes two sets A ∈ P(Σ)
and B ∈ P(Σ) as arguments. As a concrete example, consider the following kernel:

k(A, B) =
∑

x ∈ A, y ∈ B

1x=y,

where 1x=y denotes a comparison. This kernel measures the size of the intersectionkernels for text
of two sets and is widely used e.g. in text classification where it is referred to as
the sparse vector kernel. Considering a text document as a set of words, the sparse
vector kernel measures the similarity of text document via the number of common



1.4 Kernels for Structured Data 15

words. Such a kernel was used e.g. in Joachims (1998) for text categorization using
SVMs.

The feature map corresponding to the set kernel can be interpreted as a repre-
sentation by its parts. Each singleton xi ∈ Σ, 1 ≤ i ≤ |Σ|, i.e. all sets of cardinality
1, is mapped to the vertex ei of the unit simplex in R|Σ|. Each set A with |A| > 1
is then the average of the vertex coordinates, i.e.,

Φ(A) =
∑
x∈A

Φ(x) =
∑

xi∈Σ,x∈A

1x=xiei.

Set kernels are in general very efficient to evaluate as long as the alphabet is
finite since the feature map yields a sparse vector in R|Σ|. For example, in text
classification each dimension corresponds to a specific word, and a component is
set to a constant whenever the related word occurs in the text. This is also known
as the bag-of-words representation. Using an efficient sparse representation, the dot
product between two such vectors can be computed quickly.

1.4.2 Rational Kernels

One of the shortcomings of set kernels in applications such as natural language
applications is that any relation among the set elements such as, e.g., word order
in a document, is completely ignored. However, in many applications one considers
data with a more sequential nature such as word sequences in text classification,
temporal utterance order in speech recognition, or chains of amino acids in protein
analysis. In these cases the data are of sequential nature and can consist of variable-
length sequences over some basic alphabet Σ. In the following we review kernels
which were introduced to deal with such data types and which belong to the general
class of rational kernels.

Rational kernels are in principle similarity measures over sets of sequences. Since
sets of sequences can be compactly represented by automata, rational kernels can be
considered as kernels for weighted automata. For a discussion on automata theorykernels for

automata see e.g. Hopcroft et al. (2000). In particular, since sequences can be considered
as very simple automata, rational kernels automatically implement kernels for
sequences. At the heart of a rational kernel is the concept of weighted transducers
which can be considered as a representation of a binary relation between sequences;
see e.g. Mohri et al. (2002) and Cortes et al. (2004).

Definition 7 (Weighted Transducer) Given a semiring K = (K,⊕,⊗), a
weighted finite-state transducer (WFST) T over K is given by an input alpha-
bet Σ, an output alphabet Ω, a finite set of states S, a finite set of transitions
E ⊆ S× (Σ∪ {ε})× (Ω∪ {ε})×K× S, a set of initial states S0 ∈ S, a set of final
states S∞ ⊆ S, and a weight function w : S → K.

In our further discussion we restrict the output alphabet Ω to be equal to the input
alphabet, i.e. Ω = Σ. We call a sequence of transitions h = e1, . . . , en ⊂ E a path,
where the ith transition is denoted by πi(h). By π0(h) and π∞(h) we denote starting



16 Measuring Similarity with Kernels

and termination states of a path h respectively. Given two sequences x, y ∈ Σ∗, we
call a path h successful if it starts at an initial state, i.e. π0(h) ∈ S0, terminates
in a final state, i.e. π∞(h) ∈ S∞, and concatenating the input and output symbols
associated with the traversed transitions equals the sequences x and y. There might
be more than a single successful path and we will denote the set of all successful
paths depending on the pair (x, y) by Π(x, y). Furthermore, for each transition
πi[h] ∈ E we denote by w(πi[h]) ∈ K the weight associated with the particular
transition πi[h]. A transducer is called regulated if the weight of any sequence input-
output pair (x, y) ∈ Σ∗ × Σ∗ calculated by

[[T ]](x, y) :=
⊕

h∈Π(x,y)

w(π0[h])⊗
|h|⊗
i=1

w(πi[h])⊗ w(π∞[h]) (1.33)

is well-defined and in K.
The interpretation of the weights w(h) and in particular [[T ]](x, y) depends on how

they are manipulated algebraically and on the underlying semiring K. As a concrete
example for the representation of binary relations, let us consider the positive
semiring (K,⊕,⊗,0,1) = (R+, +,×, 0, 1) which is also called the probability or real
semiring. A binary relation between two sequences x, y ∈ Σ∗ is e.g. the conditional
probability [[T ]](x, y) = P (y|x). Let xi denote the ith element of the sequence x.
We can calculate the conditional probability as

P (y|x) =
∑

h∈Π(x,y)

∏
i=0

P (yi|πi[h], xi)× P (y∞|π∞(h), x∞),

where the sum is over all successful paths h and w(πi[h])) := P (yi|πi(h), xi) denotes
the probability of performing the transition πi(h) and observing (xi, yi) as input and
outpout symbols. However, reconsidering the example with the tropical semiring
(K,⊕,⊗,0,1) = (R ∪ {∞,−∞}, min, +, +∞, 0) we obtain

[[T ]](x, y) = max
h∈Π(x,y)

∑
i=0

w(πi[h]) + w(π∞[h]),

which is also known as the Viterbi approximation if the weights are negative log-
probabilities, i.e. w(π∞[h]) = − log P (yi|πi[h], xi). It is also possible to perform
algebraic operations on transducers directly. Let T1, T2 be two weighted transducers,
then a fundamental operation is composition.

Definition 8 (Composition) Given two transducers T1 = {Σ, Ω, S1, E1, S1
0 , S1∞, w1}

and T2 = {Ω, Δ, S2, E2, S2
0 , S2∞, w2}, the composition T1 ◦ T2 is defined as trans-

ducer R = {Σ, Δ, S, E, S0, S∞, w} such that

S = S1 × S2, S0 = S1
0 × S2

0 , S∞ = S1
∞ × S2

∞

and each transition e ∈ E satisfies

∀e : (p, p′)
a:c/w→ (q, q′) ⇒ ∃ {p a:b/w1→ q, p′

b:c/w2→ q′},



1.4 Kernels for Structured Data 17

with w = w1 ⊗ w2.

For example, if the transducer T1 models the conditional probabilities of a label
given a feature observation P (y|φ(x)) and another T2 transducer models the condi-
tional probabilities of a feature given an actual input P (φ(x)|x), then the transducer
obtained by a composition R = T1 ◦T2 represents P (y|x). In this sense, a composi-
tion can be interpreted as a matrix operation for transducers which is apparent if
one considers the weights of the composed transducer:

[[T1 ◦ T2]](x, y) =
∑
z∈Ω

[[T1]](x, z)[[T2]](z, y).

Finally, let us introduce the inverse transducer T−1 that is obtained by swapping
all input and output symbols on every transition of a transducer T. We are now
ready to introduce the concept of rational kernels.

Definition 9 (Rational Kernel) A kernel k over the alphabet Σ∗ is called ra-
tional if it can be expressed as weight computation over a transducer T , i.e.
k(x, x′) = Ψ([[T ]](x, x′)) for some function Ψ : K → R. The kernel is said to be
defined by the pair (T, Ψ).

Unfortunately, not any transducer gives rise to a positive definite kernel. However,
from proposition 5(v) and from the definition it follows directly that any transducer
S := T ◦ T−1 is a valid kernel sincekernel evaluation

by transducers
k(x, y) =

∑
z

[[T ]](x, z)[[T ]](x′, z) = [[S]](x, x′).

The strength of rational kernels is their compact representation by means of
transducers. This allows an easy and modular design of novel application-specific
similarity measures for sequences. Let us give an example for a rational kernel.

1.4.2.1 n-gram Kernels

An n-gram is a block of n adjacent characters from an alphabet Σ. Hence, the
number of distinct n-grams in a text is less than or equal to |Σ|n. This shows that
the space of all possible n-grams can be very high even for moderate values of n.
The basic idea behind the n-gram kernel is to compare sequences by means of the
subsequences they contain:

k(x, x′) =
∑

s∈Σn

#(s ∈ x)#(s ∈ x′), (1.34)

where #(s ∈ x) denotes the number of occurrences of s in x. In this sense, the
more subsequences two sequences share, the more similar they are. Vishwanathan
and Smola (2004) proved that this class of kernels can be computed in O(|x|+ |x′|)
time and memory by means of a special suited data structure allowing one to find
a compact representation of all subsequences of x in only O(|x|) time and space.



18 Measuring Similarity with Kernels

Furthermore, the authors show that the function f(x) = 〈w, Φ(x)〉 can be computed
in O(|x|) time if preprocessing linear in the size of the expansion w is carried out.
Cortes et al. (2004) showed that this kernel can be implemented by a transducer
kernel by explicitly constructing a transducer that counts the number of occurrences
of n symbol blocks; see e.g figure 1.2. One then can rewrite (1.34) as

k(x, x′) = [[T ◦ T−1]](x, x′). (1.35)

In the same manner, one can design transducers that can compute similarities
incorporating various costs as, for example, for gaps and mismatches; see Cortes
et al. (2004).

1.4.3 Convolution Kernels

One of the first instances of kernel functions on structured data was convolutional
kernels introduced by Haussler (1999). The key idea is that one may take a
structured object and split it up into parts. Suppose that the object x ∈ X consists
of substructures xp ∈ Xp where 1 ≤ p ≤ r and r denotes the number of overall
substructures. Given then the set P(X) of all possible substructures

⊗r
i=1 Xi, one

can define a relation R between a subset of P and the composite object x. As an
example consider the relation “part-of” between subsequences and sequences. Ifrepresentation by

parts there are only a finite number of subsets, the relation R is called finite. Given a
finite relation R, let R−1(x) define the set of all possible decompositions of x into
its substructures: R−1(x) = {z ∈ P(X) : R(z, x)}. In this case, Haussler (1999)
showed that the so-called R-convolution given as

k(x, y) =
∑

x′∈R−1(x)

∑
y′∈R−1(y)

r∏
i=1

ki(x′
i, y

′
i) (1.36)

is a valid kernel with ki being a positive definite kernel on Xi.The idea of decom-
posing a structured object into parts can be applied recursively so that one only
requires to construct kernels ki over the “atomic” parts Xi.

Convolution kernels are very general and were successfully applied in the context
of natural language processing (Collins and Duffy, 2002; Lodhi et al., 2000).
However, in general the definition of R and in particular R−1 for a specific problem
is quite difficult.

A:A:1

B:B:1

A:A:1

B:B:1

A:A:1

B:B:1

A: :1

B: :1

A: :1

B: :1

Figure 1.2 A transducer that can be used for calculation of 3-grams for a binary
alphabet.



1.4 Kernels for Structured Data 19

1.4.4 Kernels Based on Local Information

Sometimes it is easier to describe the local neighborhood than to construct a kernel
for the overall data structure. Such a neighborhood of a data item might be defined
by any item that differs only by the presence or absence of a single property. For
example, when considering English words, neighbors of a word can be defined as
any other word that would be obtained by misspelling. Given a set of data items, all
information about neighbor relations can be represented by e.g. a neighbor graph. A
vertex in such a neighbor graph would correspond to a data item and two vertices
are connected whenever they satisfy some neighbor rule. For example, in the case of
English words, a neighbor rule could be that two words are neighbors whenever their
edit distance is smaller than some apriori defined threshold. Kondor and Lafferty
(2002) utilize such neighbor graphs to construct global similarity measures by usingsimilarities due

to a diffusion
process

a diffusion process analogy. To this end, the authors define a diffusion process by
using the so-called graph Laplacian, L being a square matrix and where each entry
encodes information on how to propagate the information from vertex to vertex.
In particular, if A denotes the binary adjacency matrix of the neighbor graph, the
graph Laplacian is given by L = A − D, where D is a diagonal matrix and each
diagonal Dii is the vertex degree of the ith data item. The resulting kernel matrix
K is then obtained as the matrix exponential of βL with β < 1 being a propagation
parameter:

K = e−βL := lim
n→∞

(
1− β

n
L

)n

.

Such diffusion kernels were successfully applied to such diverse applications as text-
categorization, as e.g. in Kandola et al. (2002); gene-function prediction by Vert
and Kanehisa (2002); and semisupervised learning, as e.g. in Zhou et al. (2004).

Even if it is possible to define a kernel function for the whole instance space,
sometimes it might be advantageous to take into account information from local
structure of the data. Recall the Gaussian kernel and polynomial kernels. When
applied to an image, it makes no difference whether one uses as x the image or a
version of x where all locations of the pixels have been permuted. This indicates
that the function space on X induced by k does not take advantage of the locality
properties of the data. By taking advantage of the local structure, estimates can be
improved. On biological sequences one may assign more weight to the entries of the
sequence close to the location where estimates should occur, as was performed e.g.
by Zien et al. (2000). In other words, one replaces 〈x, x′〉 by x
Ωx, where Ω � 0 is
a diagonal matrix with largest terms at the location which needs to be classified.

In contrast, for images, local interactions between image patches need to be
considered. One way is to use the pyramidal kernel introduced in Schölkopf (1997)
and DeCoste and Schölkopf (2002), which was inspired by the pyramidal cells of
the brain: It takes inner products between corresponding image patches, then raises
the latter to some power p1, and finally raises their sum to another power p2. This



20 Measuring Similarity with Kernels

means that mainly short-range interactions are considered and that the long-range
interactions are taken with respect to short-range groups.

1.4.5 Tree and Graph Kernels

We now discuss similarity measures on more structured objects such as trees and
graphs.

1.4.5.1 Kernels on Trees

For trees Collins and Duffy (2002) propose a decomposition method which maps a
tree x into its set of subtrees. The kernel between two trees x, x′ is then computed
by taking a weighted sum of all terms between both trees and is based on the
convolutional kernel (see section 1.4.3). In particular, Collins and Duffy (2002)
show an O(|x| · |x′|) algorithm to compute this expression, where |x| is the number
of nodes of the tree. When restricting the sum to all proper rooted subtrees it is
possible to reduce the time of computation to O(|x|+ |x′|) time by means of a tree
to sequence conversion (Vishwanathan and Smola, 2004).

1.4.5.2 Kernels on Graphs

A labeled graph G is described by a finite set of vertices V , a finite set of edges E,
two sets of symbols which we denote by Σ and Ω, and two functions v : V → Σ and
e : E → Ω which assign each vertex and edge a label from the sets Σ, Ω respectively.
For directed graphs, the set of edges is a subset of the Cartesian product of the
ordered set of vertices with itself, i.e. E ⊆ V × V such that (vi, vj) ∈ E if and only
if vertex vi is connected to vertex vj . One might hope that a kernel for a labeled
graph can be similarly constructed using some decomposition approach similar to
the case of trees. Unfortunately, due to the existence of cycles, graphs cannot be
as easily serialized, which prohibits, for example, the use of transducer kernels for
graph comparison. A workaround is to artificially construct walks, i.e. eventuallygraph kernels

based on paths repetitive sequences of vertex and edge labels. Let us denote by W (G) the set of
all possible walks in a graph G of arbitrary length. Then, using an appropriate
sequence kernel kh, a valid kernel for two graphs G1, G2 would take the form

kG(G1, G2) =
∑

h∈W (G1)

∑
h′∈W (G2)

kh(h, h′). (1.37)

Unfortunately, this kernel can only be evaluated if the graph is acyclic since
otherwise the sets P (G1), P (G2) are not finite. However, one can restrict the set of
all walks W (G) to the set of all paths P (G) ⊂ W (G), i.e. nonrepetitive sequences
of vertex and edge labels. Borgwardt and Kriegel (2005) show that computation ofpath kernels are

intractable this so-called all-path kernel is NP-complete. As an alternative, for graphs where
each edge is assigned to a cost instead of a general label they propose to further
restrict the set of paths. They propose to choose the subset of paths which appear in



1.4 Kernels for Structured Data 21

an all-pairs shortest-path transformed version of the original graph. Thus for eachshortest-path
graph kernel graph Gi which has to be compared, the authors build a new completely connected

graph Ĝi of the same size. In contrast to the original graph each edge in Ĝi between
nodes vi and vj corresponds to the length of the shortest path from vi to vj in the
original graph Gi. The new kernel function between the transformed graphs is then
calculated by comparing all walks of length 1, i.e.,

kĜ(G1, G2) =
∑

h ∈W (Ĝ1)

|h| = 1

∑
h′ ∈ W (Ĝ2)

|h′| = 1

kh(h, h′). (1.38)

Since algorithms for determining all-pairs shortest paths as, for example, Floyd-
Warshall, are of cubic order and comparing all walks of length 1 is of fourth order,
the all-pairs shortest-path kernel in (1.38) can be evaluated in O(|V |4) complexity.

An alternative approach proposed by Kashima et al. (2003) is to compare two
graphs by measuring the similarity of the probability distributions of random walkscomparing

random walks on the two graphs. The authors propose to consider a walk h as a hidden variable
and the kernel as a marginalized kernel where marginalization is over h, i.e.,

kRG(G1, G2) = E[kG(G1, G2)] =
∑

h∈W (G1)

∑
h′∈W (G2)

kh(h, h′)p(h|G1)p(h|G2),

(1.39)
where the conditional distributions p(h|G1), p(h′|G2) in (1.39) for the random walk
h, h′ are defined as start, transition, and termination probability distribution over
the vertices in V . Note that this marginalized graph kernel can be interpreted as a
randomized version of (1.37).

By using the dot product of the two probability distributions as kernel, the
induced feature space H is infinite-dimensional, with one dimension for every
possible label sequence. Nevertheless, the authors developed an algorithm for how
to calculate (1.39) explicitly with O(|V |6) complexity.

1.4.6 Kernels from Generative Models

In their quest to make density estimates directly accessible to kernel methods
Jaakkola and Haussler (1999a,b) designed kernels which work directly on probability
density estimates p(x|θ). Denote by

Uθ(x) := ∂θ − log p(x|θ) (1.40)

I := Ex

[
Uθ(x)U


θ (x)
]

(1.41)

the Fisher scores and the Fisher information matrix respectively. Note that forFisher
information maximum likelihood estimators Ex [Uθ(x)] = 0 and therefore I is the covariance of

Uθ(x). The Fisher kernel is defined as

k(x, x′) := U

θ (x)I−1Uθ(x′) or k(x, x′) := U


θ (x)Uθ(x′) (1.42)



22 Measuring Similarity with Kernels

depending on whether we study the normalized or the unnormalized kernel respec-
tively. It is a versatile tool to reengineer existing density estimators for the purpose
of discriminative estimation.

In addition to that, it has several attractive theoretical properties: Oliver et al.
(2000) show that estimation using the normalized Fisher kernel corresponds to an
estimation subject to a regularization on the L2(p(·|θ)) norm.

Moreover, in the context of exponential families (see section 3.6 for a more
detailed discussion) where p(x|θ) = exp(〈φ(x), θ〉 − g(θ)), we have

k(x, x′) = [φ(x) − ∂θg(θ)] [φ(x′)− ∂θg(θ)] (1.43)

for the unnormalized Fisher kernel. This means that up to centering by ∂θg(θ) the
Fisher kernel is identical to the kernel arising from the inner product of the sufficient
statistics φ(x). This is not a coincidence and is often encountered when working with
nonparametric exponential families. A short description of exponential families is
given further below in section 3.6. Moreover, note that the centering is immaterial,
as can be seen in lemma 13.

1.5 An Example of a Structured Prediction Algorithm Using Kernels

In this section we introduce concepts for structured prediction based on kernel
functions. The basic idea is based on the property that kernel methods embed
any data type into a linear space and thus can be used to transform the targets
to a new representation more amenable to prediction using existing technqiues.
However, since one is interested in predictions of the original type one has to solve
an additional reconstruction problem that is independent of the learning problem
and therefore might be solved more easily. The first algorithm following this recipe
was kernel dependency estimation (KDE) introduced by Weston et al. (2002) andkernel

dependency
estimation

which we discuss next.
Given n pairs of data items Dn = {(xi, yi)}ni=1 ⊂ X × Y one is interested in

learning a mapping tZ : X → Y. As a first step in KDE one constructs a linear
embedding of the targets only. For example, Weston et al. (2002) propose kernelkernel for the

outputs PCA using a kernel function on Y, i.e. ky(y1, y2) : Y×Y→ R. Note that this kernel
function gives rise to a feature map φy into a RKHS Hy and allows application
of the kernel PCA map (see section 1.3.2). The new vectorial representation of
the outputs can then be used to learn a map TH from the input space X to the
vectorial representation of the outputs, i.e. Rn. This new learning problem using the
transformed output is a standard multivariate regression problem and was solved
for example in Weston et al. (2002) with kernel ridge regression using a kernel for
X.



1.6 Conclusion 23

Finally, for a given new input point x∗ and its predicted representation TH(x∗),
one has to reconstruct the output element y∗ ∈ Y that matches the predicted
representation best, i.e.

y∗ = arg min
y∈Y

||φy(y)− TH(x∗)||2Hy
. (1.44)

The problem (1.44) is known as the pre-image problem or alternatively as thepre-
image/decoding
problem

decoding problem and has wide applications in kernel methods. , We summarize
all feature maps used in KDE in figure 1.3 where we denote by Γ : Hy → Y the
pre-image map which is given by (1.44). In chapter 8, we see an application of KDE
to the task of string prediction where the authors design a pre-image map based
on n-gram kernels.

φ(Y) ⊂ Hy

Γ

��
X

TH

����������������� tZ �� Y

φy

��

Figure 1.3 Mappings between original sets X, Y and corresponding feature spaces Hy

in kernel dependency estimation.

1.6 Conclusion

Kernels can be used for decorrelation of nontrivial structures between points in
Euclidean space. Furthermore, they can be used to embed complex data types into
linear spaces leading straightforward to distance and similarity measures among
instances of arbitrary type. Finally, kernel functions encapsulate the data from
the algorithm and thus allow use of the same algorithm on different data types
without changing the implementation. Thus, whenever a learning algorithm can be
expressed in kernels it can be utilized for arbitrary data types by exchanging the
kernel function. This reduces the effort of using existing inference algorithms for
novel application fields to introducing a novel specifically designed kernel function.





2 Discriminative Models

2.1 Introduction

In this chapter we consider the following problem: Given a set of data points
Z := {(x1, y1), . . . , (xn, yn)} ⊆ X × Y drawn from some data distribution P (x, y),
can we find a function f(x) = σ(〈w, x〉 + b) such that f(x) = y for all (x, y) ∈ Z,
and Eemp [f(x) �= y] is minimized. This problem is hard because of two reasons:

Minimization of the empirical risk with respect to (w, b) is NP-hard (Minsky
and Papert, 1969). In fact, Ben-David et al. (2003) show that even approximately
minimizing the empirical risk is NP-hard, not only for linear function classes but
also for spheres and other simple geometrical objects. This means that even if the
statistical challenges could be solved, we still would be saddled with a formidable
algorithmic problem.

The indicator function I{f(x) �=y} is discontinuous and even small changes in f

may lead to large changes in both empirical and expected risk. Properties of such
functions can be captured by the VC-dimension (Vapnik and Chervonenkis, 1971),
that is, the maximum number of observations which can be labeled in an arbitrary
fashion by functions of the class. Necessary and sufficient conditions for estimation
can be stated in these terms (Vapnik and Chervonenkis, 1991). However, much
tighter bounds can be obtained by using the scale of the class, too (Alon et al.,
1993; Bartlett et al., 1996; Williamson et al., 2001). In fact, there exist function
classes parameterized by a scalar which have infinite VC-dimension (Vapnik, 1995).

Given the difficulty arising from minimizing the empirical risk of misclassification,
we now discuss algorithms which minimize an upper bound on the empirical risk,
while providing good computational properties and consistency of the estimators. A
common theme underlying all such algorithms is the notion of margin maximization.
In other words, these algorithms map the input data points into a high-dimensional
feature space using the so-called kernel trick discussed in the previous chapter, and
maximize the separation between data points of different classes. In this chapter, we
begin by studying the perceptron algorithm and its variants. We provide a unifying
exposition of common loss functions used in these algorithms. Then we move on to
support vector machine (SVM) algorithms and discuss how to obtain convergence
rates for large-margin algorithms.



26 Discriminative Models

2.2 Online Large-Margin Algorithms

2.2.1 Perceptron and Friends

Let X be the space of observations, and Y the space of labels. Let, {(xi, yi)|xi ∈
X, yi ∈ Y} be a sequence of data points. The perceptron algorithm proposed by
Rosenblatt (1962) is arguably the simplest online learning algorithm which is used
to learn a separating hyperplane between two classes Y := {±1}. In its most basic
form, it proceeds as follows. Start with the initial weight vector w0 = 0. At step t,
if the training example (xt, yt) is classified correctly, i.e., if yt(〈xt, wt〉) ≥ 0, then
set wt+1 = wt; otherwise set wt+1 = wt + ηytxt (here, η > 0 is a learning rate).
Repeat until all data points in the class are correctly classified. Novikoff’s theorem
shows that this procedure terminates, provided that the training set is separable
with nonzero margin:

Theorem 10 (Novikoff (1962)) Let S = {(x1, y1), . . . , (xn, yn)} be a dataset
containing at least one data point labeled +1, and one data point labeled −1, and
R = maxi ||xi||2. Assume that there exists a weight vector w∗ such that ||w∗||2 = 1,
and yi(〈w∗, xt〉) ≥ γ for all i, then the number of mistakes made by the perceptron
is at most (R/γ)2.

Collins (2002) introduced a version of the perceptron algorithm which generalizes
to multiclass problems. Let, φ : X × Y → Rd be a feature map which takes into
account both the input as well as the labels. Then the algorithm proceeds as follows.
Start with the initial weight vector w0 = 0. At step t, predict withperceptron for

multiclass
zt = argmax

y∈Y
〈φ(xt, y), wt〉 .

If zt = yt, then set wt+1 = wt; otherwise set wt+1 = wt + η(φ(xt, yt) − φ(xt, zt)).
As before, η > 0 is a learning rate. A theorem analogous to the Novikoff theorem
exists for this modified perceptron algorithm:

Theorem 11 (Collins (2002)) Let S = {(x1, y1), . . . , (xn, yn)} be a nontrivial
dataset, and R = maxi maxy ||φ(xi, yi) − φ(xi, y)||2. Assume that there exists a
weight vector w∗ such that ||w∗||2 = 1, and miny �=yt 〈w∗, φ(xt, yt)〉−〈w∗, φ(xt, y)〉 ≥
γ for all t, then the number of mistakes made by the modified perceptron is at most
(R/γ)2.

In fact, a modified version of the above theorem also holds for the case when the
data are not separable.

We now proceed to derive a general framework for online learning using large-
margin algorithms and show that the above two perceptron algorithms can be
viewed as special cases.



2.2 Online Large-Margin Algorithms 27

2.2.2 General Online Large-Margin Algorithms

As before, let X be the space of observations, and Y the space of labels. Given a
sequence {(xi, yi)|xi ∈ X, yi ∈ Y} of examples and a loss function l : X×Y×H→ R,
large-margin online algorithms aim to minimize the regularized riskregularized risk

J(f) =
1
m

m∑
i=1

l(xi, yi, f) +
λ

2
‖f‖2H,

where H is a reproducing kernel Hilbert space (RKHS) of functions on X. Its
defining kernel satisfies the reproducing property i.e., 〈f, k(x, ·)〉H = f(x) for all
f ∈ H. Let φ : X→ H be the corresponding feature map of the kernel k(·, ·); then we
predict the label of x ∈ X as sgn(〈w, φ(x)〉). Finally, we make the assumption that l

only depends on f via its evaluations at f(xi) and that l is piecewise differentiable.derivatives in H

By the reproducing property of H we can compute derivatives of the evaluation
functional. That is,

g := ∂ff(x) = ∂f 〈f, k(x, ·)〉H = k(x, ·).

Since l depends on f only via its evaluations we can see that ∂f l(x, y, f) ∈ H. Using
the stochastic approximation of J(f),

Jt(f) := l(xt, yt, f) +
λ

2
‖f‖2H

and setting

gt := ∂fJt(ft) = ∂f l(xt, yt, ft) + λft ,

we obtain the following simple update rule:

ft+1 ← ft − ηtgt,

where ηt is the step size at time t. This algorithm, also known as NORMA (Kivinen
et al., 2004), is summarized in algorithm 2.1.

Algorithm 2.1 Online learning

1. Initialize f0 = 0
2. Repeat

(a) Draw data sample (xt, yt)
(b) Predict ft(xt) and incur loss l(xt, yt, ft)
(c) Update ft+1 ← ft − ηtgt

Observe that, so far, our discussion of the online update algorithm is independent
of the particular loss function used. In other words, to apply our method to a new



28 Discriminative Models

setting we simply need to compute the corresponding loss function and its gradient.
We discuss particular examples of loss functions and their gradients in section 2.4.
But, before that, we turn our attention to the perceptron algorithms discussed
above.

In order to derive the perceptron as a special case, set H = Rd with the Euclidean
dot product, ηt = η, and the loss function

l(x, y, f) = max(0,−y 〈x, f〉).

It is easy to check that

g = ∂f l(x, y, f) =

{
0 if y 〈x, f〉 ≥ 0

−yx otherwise,

and hence algorithm 2.1 reduced to the perceptron algorithm.
As for the modified perceptron algorithm, just set H = Rd with the Euclidean

dot product, ηt = η, and the loss function

l(x, y, f) = max(0, max
ỹ �=y

〈φ(x, ỹ), f〉 − 〈φ(x, y), f〉).

Observe that the feature map φ now depends on both x and y. This and other
extensions to multiclass algorithms will be discussed in more detail in section 2.4.
But for now it suffices to observe that

g = ∂f l(x, y, f) =

{
0 if 〈φ(x, y), f〉 ≥ maxỹ �=y 〈φ(x, ỹ), f〉
maxỹ �=y {φ(x, ỹ)− φ(x, y)} otherwise,

and we recover the modified perceptron algorithm from algorithm 2.1.

2.3 Support Vector Estimation

Until now we concentrated on online learning algorithms. Now we turn our attention
to batch algorithms which predict with a hypothesis that is computed after seeing
all data points.

2.3.1 Support Vector Classification

Assume that Z := {(x1, y1), . . . , (xn, yn)} ⊆ X × Y is separable, i.e. there exists a
linear function f(x) such that sgn yf(x) = 1 on Z. In this case, the task of finding
a large-margin separating hyperplane can be viewed as one of solving (Vapnik and
Lerner, 1963)maximally

separating
hyperplane minimize

w,b

1
2 ‖w‖2 subject to yi (〈w, x〉+ b) ≥ 1. (2.1)



2.3 Support Vector Estimation 29

Note that ‖w‖−1
f(xi) is the distance of the point xi to the hyperplane H(w, b) :=

{x| 〈w, x〉 + b = 0}. The condition yif(xi) ≥ 1 implies that the margin of separation
is at least 2 ‖w‖−1. The bound becomes exact if equality is attained for some
yi = 1 and yj = −1. Consequently minimizing ‖w‖ subject to the constraints
maximizes the margin of separation. Eq. (2.1) is a quadratic program which can be
solved efficiently (Luenberger, 1984; Fletcher, 1989; Boyd and Vandenberghe, 2004;
Nocedal and Wright, 1999).

Mangasarian (1965) devised a similar optimization scheme using ‖w‖1 instead of
‖w‖2 in the objective function of (2.1). The result is a linear program. In general,
one may show (Smola et al., 2000) that minimizing the p norm of w leads to the
maximizing of the margin of separation in the q norm where 1

p + 1
q = 1. The 1

norm leads to sparse approximation schemes (see also Chen et al. (1999)), whereas
the 2 norm can be extended to Hilbert spaces and kernels.

To deal with nonseparable problems, i.e. cases when (2.1) is infeasible, we need
to relax the constraints of the optimization problem. Bennett and Mangasariannonseparable

problem (1992) and Cortes and Vapnik (1995) impose a linear penalty on the violation of
the large-margin constraints to obtain:

minimize
w,b,ξ

1
2 ‖w‖2 + C

n∑
i=1

ξi subject to yi (〈w, xi〉+ b) ≥ 1− ξi and ξi ≥ 0. (2.2)

Eq.(2.2) is a quadratic program which is always feasible (e.g. w, b = 0 and ξi = 1
satisfy the constraints). C > 0 is a regularization constant trading off the violation
of the constraints vs. maximizing the overall margin.

Whenever the dimensionality of X exceeds n, direct optimization of (2.2) is
computationally inefficient. This is particularly true if we map from X into an
RKHS. To address these problems one may solve the problem in dual space as
follows. The Lagrange function of (2.2) is given byLagrange

function
L(w, b, ξ, α, η) = 1

2 ‖w‖2 + C

n∑
i=1

ξi +
n∑

i=1

αi (1− ξi − yi (〈w, xi〉+ b))−
n∑

i=1

ηiξi,

where αi, ηi ≥ 0 for all i ∈ [n]. To compute the dual of L we need to identify the
first-order conditions in w, b. They are given by

∂wL = w −
n∑

i=1

αiyixi = 0, ∂bL = −
n∑

i=1

αiyi = 0 and ∂ξiL = C − αi + ηi = 0.

(2.3)

This translates into w =
∑n

i=1 αiyixi, the linear constraint
∑n

i=1 αiyi = 0, and the
box-constraint αi ∈ [0, C] arising from ηi ≥ 0. Substituting (2.3) into L yields the
Wolfe dual (Wolfe, 1961):dual problem

minimize
α

1
2 α
Qα− α
1 subject to α
y = 0 and αi ∈ [0, C]. (2.4)



30 Discriminative Models

Q ∈ Rn×n is the matrix of inner products Qij := yiyj 〈xi, xj〉. Clearly this can
be extended to feature maps and kernels easily via Kij := yiyj 〈Φ(xi), Φ(xj)〉 =
yiyjk(xi, xj). Note that w lies in the span of the xi. This is an instance of the rep-
resenter theorem (see section 1.2.4). The Karush-Kuhn-Tucker (KKT) conditions
(Karush, 1939; Kuhn and Tucker, 1951; Boser et al., 1992; Cortes and Vapnik, 1995)
require that at optimality αi(yif(xi)− 1) = 0. This means that only those xi may
appear in the expansion (2.3) for which yif(xi) ≤ 1, as otherwise αi = 0. The xi

are commonly referred to as support vectors, (SVs).
Note that

∑n
i=1 ξi is an upper bound on the empirical risk, as yif(xi) ≤ 0 implies

ξi ≥ 1 (see also lemma 12). The number of misclassified points xi itself depends
on the configuration of the data and the value of C. The result of Ben-David et al.
(2003) suggests that finding even an approximate minimum classification error
solution is difficult. That said, it is possible to modify (2.2) such that a desired
target number of observations violates yif(xi) ≥ ρ for some ρ ∈ R by making the
threshold itself a variable of the optimization problem (Schölkopf et al., 2000). This
leads to the following optimization problem (ν-SV classification):ν-SV

classification
minimize

w,b,ξ

1
2 ‖w‖2 +

n∑
i=1

ξi − nνρ subject to yi (〈w, xi〉+ b) ≥ ρ− ξi and ξi ≥ 0.

(2.5)

The dual of (2.5) is essentially identical to (2.4) with the exception of an additional
constraint:

minimize
α

1
2 α
Qα subject to α
y = 0 and α
1 = nν and αi ∈ [0, 1]. (2.6)

One can show that for every C there exists a ν such that the solution of (2.6) is a
multiple of the solution of (2.4). Schölkopf et al. (2000) prove that solving (2.6) for
which ρ > 0 satisfies:

1. ν is an upper bound on the fraction of margin errors.

2. ν is a lower bound on the fraction of SVs.

Moreover, under mild conditions with probability 1, asymptotically, ν equals both
the fraction of SVs and the fraction of errors.

This statement implies that whenever the data are sufficiently well separable
(that is, ρ > 0), ν-SV classification finds a solution with a fraction of at most ν

margin errors. Also note that for ν = 1, all αi = 1, that is, f becomes an affine
copy of the Parzen windows classifier (1.6).

2.3.2 Estimating the Support of a Density

We now extend the notion of linear separation to that of estimating the support of a
density (Schölkopf et al., 2001; Tax and Duin, 1999). Denote by X = {x1, . . . , xn} ⊆
X the sample drawn i.i.d. from Pr(x). Let C be a class of measurable subsets of X



2.3 Support Vector Estimation 31

and let λ be a real-valued function defined on C. The quantile function (Einmal and
Mason, 1992) with respect to (Pr, λ, C) is defined as

U(μ) = inf {λ(C)|Pr(C) ≥ μ, C ∈ C} where μ ∈ (0, 1].

We denote by Cλ(μ) and Cm
λ (μ) the (not necessarily unique) C ∈ C that attain

the infimum (when it is achievable) on Pr(x) and on the empirical measure given
by X respectively. A common choice of λ is the Lebesgue measure, in which case
Cλ(μ) is the minimum volume set C ∈ C that contains at least a fraction μ of the
probability mass.

Support estimation requires us to find some Cm
λ (μ) such that |Pr (Cm

λ (μ))− μ|
is small. This is where the complexity tradeoff enters: On the one hand, we want
to use a rich class C to capture all possible distributions; on the other hand large
classes lead to large deviations between μ and Pr (Cm

λ (μ)). Therefore, we have to
consider classes of sets which are suitably restricted. This can be achieved using an
SVM regularizer.

In the case where μ < 1, it seems the first work was reported in Sager (1979)
and Hartigan (1987), in which X = R2, with C being the class of closed convex
sets in X. Nolan (1991) considered higher dimensions, with C being the class of
ellipsoids. Tsybakov (1997) studied an estimator based on piecewise polynomial
approximation of Cλ(μ) and showed it attains the asymptotically minimax rate
for certain classes of densities. Polonik (1997) studied the estimation of Cλ(μ) by
Cm

λ (μ). He derived asymptotic rates of convergence in terms of various measures
of richness of C. More information on minimum volume estimators can be found in
that work, and in Schölkopf et al. (2001).

SV support estimation1 relates to previous work as follows: set λ(Cw) = ‖w‖2,learning the
support where Cw = {x|fw(x) ≥ ρ}, and (w, ρ) are respectively a weight vector and an

offset with fw(x) = 〈w, x〉. Stated as a convex optimization problem we want to
separate the data from the origin with maximum margin via:

minimize
w,ξ,ρ

1
2 ‖w‖2 +

n∑
i=1

ξi − nνρ subject to 〈w, xi〉 ≥ ρ− ξi and ξi ≥ 0. (2.7)

Here, ν ∈ (0, 1] plays the same role as in (2.5), controlling the number of obser-
vations xi for which f(xi) ≤ ρ. Since nonzero slack variables ξi are penalized in
the objective function, if w and ρ solve this problem, then the decision function
f(x) will attain or exceed ρ for at least 1− ν instances xi contained in X while the
regularization term ‖w‖ will still be small. The dual of (2.7) yields:

minimize
α

1
2 α
Kα subject to α
1 = νn and αi ∈ [0, 1]. (2.8)

To compare (2.8) to a Parzen windows estimator assume that k is such that it can
be normalized as a density in input space, such as a Gaussian. Using ν = 1 in (2.8)

1. Note that this is also known as one-class SVM.



32 Discriminative Models

the constraints automatically imply αi = 1. Thus f reduces to a Parzen windows
estimate of the underlying density. For ν < 1, the equality constraint (2.8) still
ensures that f is a thresholded density, now depending only on a subset of X —
those which are important for the decision f(x) ≤ ρ to be taken.

2.4 Margin-Based Loss Functions

In the previous sections we implicitly assumed that Y = {±1}. But many estimation
problems cannot be easily written as binary classification problems. We need to
make three key changes in order to tackle these problems. First, in a departure
from tradition, but keeping in line with Collins (2002), Altun et al. (2004b),
Tsochantaridis et al. (2004), and Cai and Hofmann (2004), we need to let our kernel
depend on the labels as well as the observations. In other words, we minimize a
regularized risk

J(f) =
1
m

m∑
i=1

l(xi, yi, f) +
λ

2
‖f‖2H, (2.9)

where H is a reproducing kernel Hilbert space (RKHS) of functions on both X×Y.
Its defining kernel is denoted by k : (X × Y)2 → R, and the corresponding feature
map by φ : X× Y→ H. Second, we predict the label of x ∈ X as

argmax
y∈Y

f(x, y) = argmax
y∈Y

〈w, φ(x, y)〉 ,

and finally we need to modify the loss function in order to deal with structured
output spaces. While the online variants minimize a stochastic approximation of
the above risk, the batch algorithms predict with the best hypothesis after observing
the whole dataset.

Also, observe that the perceptron algorithms did not enforce a margin constraint
as a part of their loss. In other words, they simply required that the data points be
well classified. On the other hand, large-margin classifiers not only require a point
to be well classified but also enforce a margin constraint on the loss function.

In this section, we discuss some commonly used loss functions and put them in
perspective. Later, we specialize the general recipe described above to multicategory
classification, ranking, and ordinal regression. Since the online update depends on
it, we will state the gradient of all loss functions we present below, and give their
kernel expansion coefficients.



2.4 Margin-Based Loss Functions 33

2.4.0.1 Loss Functions on Unstructured Ouput Domains

Binary classification uses the hinge or soft-margin loss (Bennett and Mangasar-
ian, 1992; Cortes and Vapnik, 1995),

l(x, y, f) = max(0, ρ− yf(x)), (2.10)

where ρ > 0, and H is defined on X alone. We have

∂f l(x, y, f) =

{
0 if yf(x) ≥ ρ

−yk(x, ·) otherwise
. (2.11)

Multiclass classification employs a definition of the margin arising from log-
likelihood ratios (Crammer and Singer, 2000). This leads to

l(x, y, f) = max(0, ρ + max
ỹ �=y

f(x, ỹ)− f(x, y)) (2.12)

(2.13)
∂f l(x, y, f) =

{
0 if f(x, y) ≥ ρ + f(x, y∗)

k((x, y∗), ·)− k((x, y), ·) otherwise
.

Here we defined ρ > 0, and y∗ to be the maximizer of the maxỹ �=y operation. If
several y∗ exist we pick one of them arbitrarily, e.g. by dictionary order.
Logistic regression works by minimizing the negative log-likelihood. This loss
function is used in Gaussian process classification (MacKay, 1998). For binary
classification this yields

l(x, y, f) = log(1 + exp(−yf(x))) (2.14)

∂f l(x, y, f) = −yk(x, ·) 1
1 + exp(yf(x))

. (2.15)

Again the RKHS H is defined on X only.
Multiclass logistic regression works similarly to the example above. The only
difference is that the log-likelihood arises from a conditionally multinomial model
(MacKay, 1998). This means that

l(x, y, f) = −f(x, y) + log
∑
ỹ∈Y

exp f(x, ỹ) (2.16)

∂f l(x, y, f) =
∑
ỹ∈Y

k((x, ỹ), ·)[p(ỹ|x, f)− δy,ỹ], (2.17)

where we used p(y|x, f) =
ef(x,y)∑

ỹ∈Y ef(x,ỹ)
. (2.18)



34 Discriminative Models

Novelty detection uses a trimmed version of the log-likelihood as a loss function.
In practice this means that labels are ignored and the one-class margin needs to
exceed 1 (Schölkopf et al., 2001). This leads to

l(x, y, f) = max(0, ρ− f(x)) (2.19)

∂f l(x, y, f) =

{
0 if f(x) ≥ ρ

−k(x, ·) otherwise
. (2.20)

2.4.0.2 Loss Functions on Structured Label Domains

In many applications the output domain has an inherent structure. For example,
document categorization deals with the problem of assigning a set of documents to
a set of predefined topic hierarchies or taxonomies. Consider a typical taxonomyclass hierarchies
shown in figure 2.1 which is based on a subset of the open directory project.2

If a document describing CDROMs is classified under hard disk drives (HDD),
intuitively the loss should be smaller than when the same document is classified
under Cables. Roughly speaking, the value of the loss function should depend on the
length of the shortest path connecting the actual label to the predicted label, i.e.,
the loss function should respect the structure of the output space (Tsochantaridis
et al., 2004).

Computers

Hardware Software

Storage Cables

HDD CDROM

Freeware Shareware

Opensource

Figure 2.1 A taxonomy based on the open directory project.

To formalize our intuition, we need to introduce some notation. A weighted graph
G = (V, E) is defined by a set of nodes V and edges E ⊆ V × V , such that each

2. http://www.dmoz.org/.



2.4 Margin-Based Loss Functions 35

edge (vi, vj) ∈ E is assigned a nonnegative weight w(vi, vj) ∈ R+. A path from
v1 ∈ V to vn ∈ V is a sequence of nodes v1v2 . . . vn such that (vi, vi+1) ∈ E. The
weight of a path is the sum of the weights on the edges. For an undirected graph,
(vi, vj) ∈ E =⇒ (vj , vi) ∈ E ∧ w(vi, vj) = w(vj , vi).

A graph is said to be connected if every pair of nodes in the graph is connected
by a path. In the sequel we will deal exclusively with connected graphs, and let
ΔG(vi, vj) denote the weight of the shortest (i.e., minimum weight) path from vi

to vj . If the output labels are nodes in a graph G, the following loss function takes
the structure of G into account:

l(x, y, f) = max{0, max
ỹ �=y

[ΔG(ỹ, y) + f(x, ỹ)]− f(x, y)}. (2.21)

This loss requires that the output labels ỹ which are “far away” from the actual
label y (on the graph) must be classified with a larger margin while nearby labels
are allowed to be classified with a smaller margin. More general notions of distance,
including kernels on the nodes of the graph, can also be used here instead of the
shortest path ΔG(ỹ, y).

Analogous to (2.17), by defining y∗ to be the maximizer of the maxỹ �=y operation
we can write the gradient of the loss as

∂f l(x, y, f) =

{
0 if f(x, y) ≥ ΔG(y, y∗) + f(x, y∗)

k((x, y∗), ·)− k((x, y), ·) otherwise
. (2.22)

The multiclass loss (2.12) is a special case of graph-based loss (2.21): consider
a simple two-level tree in which each label is a child of the root node, and every
edge has a weight of ρ

2 . In this graph, any two labels y �= ỹ will have ΔG(y, ỹ) = ρ,
and thus (2.21) reduces to (2.12). In the sequel, we will use Δ(y, ỹ) (without the
subscript G) to denote the desired margin of separation between y and ỹ.

2.4.1 Multicategory Classification, Ranking, and Ordinal Regression

Key to deriving convex optimization problems using the generalized risk function
(2.9) for various common tasks is the following lemma:

Lemma 12 Let f : X × Y → R and assume that Δ(y, ỹ) ≥ 0 with Δ(y, y) = 0.
Moreover let ξ ≥ 0 such that f(x, y) − f(x, ỹ) ≥ Δ(y, ỹ) − ξ for all ỹ ∈ Y. In this
case ξ ≥ Δ(y, argmaxỹ∈Y f(x, ỹ)).

Proof Denote by y∗ := argmaxỹ∈Y f(x, ỹ). By assumption we have ξ ≥ Δ(y, y∗)+
f(x, y∗)−f(x, y). Since f(x, y∗) ≥ f(x, ỹ) for all ỹ ∈ Y the inequality holds.

The construction of the estimator was suggested in Taskar et al. (2004b) and
Tsochantaridis et al. (2004), and a special instance of the above lemma is given
by Joachims (2005). We now can derive the following optimization problem from
(2.9) (Tsochantaridis et al., 2004):



36 Discriminative Models

minimize
w,ξ

1
2 ‖w‖2 + C

n∑
i=1

ξi (2.23a)

s.t. 〈w, φ(xi, yi)− φ(xi, y)〉 ≥ Δ(yi, y)− ξi for all y ∈ Y. (2.23b)

This is a convex optimization problem which can be solved efficiently if the con-
straints can be evaluated without high computational cost. One typically employs
column-generation methods (Hettich and Kortanek, 1993; Rätsch, 2001; Bennett
et al., 2000; Tsochantaridis et al., 2004; Fletcher, 1989) which identify one violated
constraint at a time to find an approximate minimum of the optimization problem.

To describe the flexibility of the framework set out by (2.23) we give several
examples of its application.

Binary classification can be recovered by setting Φ(x, y) = yΦ(x), in which case
the constraint of (2.23) reduces to 2yi 〈Φ(xi), w〉 ≥ 1− ξi. Ignoring constant offsets
and a scaling factor of 2, this is exactly the standard SVM optimization problem.

Multicategory classification problems (Crammer and Singer, 2000; Collins, 2002;
Allwein et al., 2000; Rätsch et al., 2002a) can be encoded via Y = [N ], where N is
the number of classes, [N ] := {1, . . .N}, and Δ(y, y′) = 1 − δy,y′. In other words,
the loss is 1 whenever we predict the wrong class and is 0 for correct classification.
Corresponding kernels are typically chosen to be δy,y′k(x, x′).

We can deal with joint labeling problems by setting Y = {±1}n. In other words,
the error measure does not depend on a single observation but on an entire set of
labels. Joachims (2005) shows that the so-called F1 score (van Rijsbergen, 1979)
used in document retrieval and the area under the receiver operating characteristic
(ROC) curve (Bamber, 1975; Gribskov and Robinson, 1996) fall into this category
of problems. Moreover, Joachims (2005) derives an O(n2) method for evaluating
the inequality constraint over Y.

Multilabel estimation problems deal with the situation where we want to find
the best subset of labels Y ⊆ 2[N ] which correspond to some observation x. The
problem is described in Elisseeff and Weston (2001), where the authors devise a
ranking scheme such that f(x, i) > f(x, j) if label i ∈ y and j �∈ y. It is a special
case of a general ranking approach described next.

Note that (2.23) is invariant under translations φ(x, y) ← φ(x, y) + φ0 where φ0

is constant, as φ(xi, yi) − φ(xi, y) remains unchanged. In practice this means that
transformations k(x, y, x′, y′)← k(x, y, x′, y′)+ 〈φ0, φ(x, y)〉+ 〈φ0, φ(x′, y′)〉+‖φ0‖2
do not affect the outcome of the estimation process. Since φ0 was arbitrary, we have
the following lemma:

Lemma 13 Let H be an RKHS on X×Y with kernel k. Moreover, let g ∈ H. Then
the function k(x, y, x′, y′) + f(x, y) + f(x′, y′) + ‖g‖2H is a kernel and it yields the
same estimates as k.



2.5 Margins and Uniform Convergence Bounds 37

We need a slight extension to deal with general ranking problems. Denote by
Y = G[N ] the set of all directed graphs on N vertices which do not contain loops of
less than three nodes. Here an edge (i, j) ∈ y indicates that i is preferred to j with
respect to the observation x. Our goal is to find some function f : X × [N ] → R

which imposes a total order on [N ] (for a given x) by virtue of the function values
f(x, i) such that the total order and y are in good agreement.

More specifically, Dekel et al. (2003), Crammer (2005), and Crammer and Singer
(2005) propose a decomposition algorithm A for the graphs y such that the
estimation error is given by the number of subgraphs of y which are in disagreement
with the total order imposed by f . As an example, multiclass classification can be
viewed as a graph y where the correct label i is at the root of a directed graph
and all incorrect labels are its children. Multilabel classification can be seen as a
bipartite graph where the correct labels only contain outgoing arcs and the incorrect
labels only incoming ones.

This setting leads to a form similar to (2.23) except for the fact that we now have
constraints over each subgraph G ∈ A(y). We solve

minimize
w,ξ

1
2 ‖w‖2 + C

n∑
i=1

|A(yi)|−1
∑

G∈A(yi)

ξiG

subject to 〈w, Φ(xi, u)− Φ(xi, v)〉 ≥ 1− ξiG and ξiG ≥ 0 for all (u, v) ∈ G ∈ A(yi).

That is, we test for all (u, v) ∈ G whether the ranking imposed by the subgraph
G ∈ yi is satisfied.

Finally, ordinal regression problems which perform ranking not over labels y but
rather over observations x were studied by Herbrich et al. (2000) and Chapelle
and Harchaoui (2005) in the context of ordinal regression and conjoint analy-
sis respectively. In ordinal regression x is preferred to x′ if f(x) > f(x′) and
hence one minimizes an optimization problem akin to (2.23), with constraint
〈w, Φ(xi)− Φ(xj)〉 ≥ 1 − ξij . In conjoint analysis the same operation is carried
out for Φ(x, u), where u is the user under consideration. Similar models were also
studied by Basilico and Hofmann (2004).

2.5 Margins and Uniform Convergence Bounds

So far we motivated the algorithms by means of practicality and the fact that 0−1
loss functions yield hard-to-control estimators. We now follow up on the analysis
by providing uniform convergence bounds for large-margin classifiers. We focus on
the case of scalar-valued functions applied to classification for two reasons: The
derivation is well established and it can be presented in a concise fashion. Secondly,
the derivation of corresponding bounds for the vectorial case is by and large still
an open problem. Preliminary results exist, such as the bounds by Collins (2002)
for the case of perceptrons; Taskar et al. (2004b), who derive capacity bounds in
terms of covering numbers by an explicit covering construction; and Bartlett and



38 Discriminative Models

Mendelson (2002), who give Gaussian average bounds for vectorial functions. We
believe that the scaling behavior of these bounds in the number of classes |Y| is
currently not optimal, when applied to the problems of type (2.23).

Our analysis is based on the following ideas: firstly the 0 − 1 loss is upper-
bounded by some function ψ(yf(x)) which can be minimized, such as the soft-
margin function max(0, 1− yf(x)) of the previous section. Secondly we prove that
the empirical average of the ψ-loss is concentrated close to its expectation. This willconcentration
be achieved by means of Rademacher averages. Thirdly we show that under rather
general conditions the minimization of the ψ-loss is consistent with the minimization
of the expected risk. Finally, we combine these bounds to obtain rates of convergence
which only depend on the Rademacher average and the approximation properties
of the function class under consideration.

2.5.1 Margins and Empirical Risk

Unless stated otherwise E[·] denotes the expectation with respect to all random
variables of the argument. Subscripts, such as EX [·], indicate that the expectation
is taken over X . We will omit them wherever obvious. Finally we will refer to Eemp[·]
as the empirical average with respect to an n-sample.

While the sign of yf(x) can be used to assess the accuracy of a binary
classifier we saw that for algorithmic reasons one rather optimizes a (smooth
function of) yf(x) directly. In the following we assume that the binary loss
χ(ξ) = 1

2 (1 − sgn ξ) is majorized by some function ψ(ξ) ≥ χ(ξ), e.g. via the
construction of lemma 12. Consequently E [χ(yf(x))] ≤ E [ψ(yf(x))] and likewise
Eemp [χ(yf(x))] ≤ Eemp [ψ(yf(x))]. The hope is (as will be shown in section 2.5.3)
that minimizing the upper bound leads to consistent estimators.

There is a long-standing tradition of minimizing yf(x) rather than the number
of misclassifications. yf(x) is known as “margin” (based on the geometrical rea-
soning) in the context of SVMs (Vapnik and Lerner, 1963; Mangasarian, 1965), as
“stability” in the context of neural networks (Krauth and Mézard, 1987; Ruján,
1993), and as the “edge” in the context of arcing (Breiman, 1999). One may show
(Makovoz, 1996; Barron, 1993; Herbrich and Williamson, 2002) that functions f in
an RKHS achieving a large margin can be approximated by another function f ′

achieving almost the same empirical error using a much smaller number of kernel
functions.

Note that by default, uniform convergence bounds are expressed in terms of
minimization of the empirical risk average with respect to a fixed function class
F, e.g. Vapnik and Chervonenkis (1971). This is very much unlike what is done in
practice: in SVM (2.23) the sum of empirical risk and a regularizer is minimized.
However, one may check that minimizing Eemp [ψ(yf(x))] subject to ‖w‖2 ≤ W

is equivalent to minimizing Eemp [ψ(yf(x))] + λ ‖w‖2 for suitably chosen values
of λ. The equivalence is immediate by using Lagrange multipliers. For numerical
reasons, however, the second formulation is much more convenient (Tikhonov, 1963;
Morozov, 1984), as it acts as a regularizer. Finally, for the design of adaptive



2.5 Margins and Uniform Convergence Bounds 39

estimators, so-called luckiness results exist, which provide risk bounds in a data-
dependent fashion (Shawe-Taylor et al., 1998; Herbrich and Williamson, 2002).

2.5.2 Uniform Convergence and Rademacher Averages

The next step is to bound the deviation Eemp[ψ(yf(x))]−E[ψ(yf(x))] by means of
Rademacher averages. For details see Boucheron et al. (2005), Mendelson (2003),
Bartlett et al. (2002), and Koltchinskii (2001). Denote by g : Xn → R a function of n

variables and let c > 0 such that |g(x1, . . . , xn)−g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤

c for all x1, . . . , xn, x′
i ∈ X and for all i ∈ [n], then (McDiarmid, 1989)

Pr {E [g(x1, . . . , xn)]− g(x1, . . . , xn) > ε} ≤ exp
(−2ε2/nc2

)
. (2.24)

Assume that f(x) ∈ [0, B] for all f ∈ F and let g(x1, . . . , xn) := supf∈F |Eemp [f(x)]−
E [f(x)] |. Then it follows that c ≤ B

n . Solving (2.24) for g we obtain that with prob-
ability at least 1− δ,

sup
f∈F

E [f(x)]−Eemp [f(x)] ≤ E

[
sup
f∈F

E [f(x)]−Eemp [f(x)]

]
+ B

√
− log δ

2n
. (2.25)

This means that with high probability the largest deviation between the sample
average and its expectation is concentrated around its mean and within an O(n− 1

2 )
term. The expectation can be bounded by a classical symmetrization argument
(Vapnik and Chervonenkis, 1971) as follows:

EX

[
sup
f∈F

E[f(x′)]−Eemp[f(x)]

]
≤ EX,X′

[
sup
f∈F

Eemp[f(x′)]−Eemp[f(x)]

]

= EX,X′,σ

[
sup
f∈F

Eemp[σf(x′)]−Eemp[σf(x)]

]
≤ 2EX,σ

[
sup
f∈F

Eemp[σf(x)]

]
.

The first inequality follows from the convexity of the argument of the expec-
tation; the second equality follows from the fact that xi and x′

i are drawn
i.i.d. from the same distribution; hence we may swap terms. Here σi are in-
dependent ±1-valued zero-mean Rademacher random variables. The final term
EX,σ

[
supf∈F Eemp[σf(x)]

]
:= Rn [F] is referred as the Rademacher average

(Mendelson, 2002; Bartlett and Mendelson, 2002; Koltchinskii, 2001) of F w.r.t.
sample size n.



40 Discriminative Models

For linear function classes Rn [F] takes on a particularly nice form. We begin withRadermacher
averages for
linear functions

F := {f |f(x) = 〈x, w〉 and ‖w‖ ≤ 1}. It follows that sup‖w‖≤1

∑n
i=1 σi 〈w, xi〉 =

‖∑n
i=1 σixi‖. Hence

nRn [F] = EX,σ

∥∥ n∑
i=1

σixi

∥∥

≤ EX

⎡
⎣Eσ

⎡
⎣
∥∥∥∥∥

n∑
i=1

σixi

∥∥∥∥∥
2
⎤
⎦
⎤
⎦

1
2

= EX

[
n∑

i=1

‖xi‖2
] 1

2

≤
√

nE
[
‖x‖2

]
. (2.26)

Here the first inequality is a consequence of Jensen’s inequality, the second
equality follows from the fact that σi are i.i.d. zero-mean random variables, and
the last step again is a result of Jensen’s inequality. Corresponding tight lower
bounds by a factor of 1/

√
2 exist and they are a result of the Khintchine-Kahane

inequality (Kahane, 1968).

Note that (2.26) allows us to bound Rn [F] ≤ n− 1
2 r where r is the average length

of the sample. An extension to kernel functions is straightforward: by design of the
inner product we have r =

√
Ex [k(x, x)]. Note that this bound is independent of

the dimensionality of the data but rather only depends on the expected length of
the data. Moreover r is the trace of the integral operator with kernel k(x, x′) and
probability measure on X.

Since we are computing Eemp [ψ(yf(x))] we are interested in the Rademacher
complexity of ψ ◦F. Bartlett and Mendelson (2002) show that Rn [ψ ◦ F] ≤ LRn [F]
for any Lipschitz continuous function ψ with Lipschitz constant L and with ψ(0) =
0. Secondly, for {yb where |b| ≤ B} the Rademacher average can be bounded by
B
√

2 log 2/n, as follows from (Boucheron et al., 2005, eq. (4)). This takes care of the
offset b. For sums of function classes F and G we have Rn [F + G] ≤ Rn [F]+Rn [G].
This means that for linear functions with ‖w‖ ≤ W , |b| ≤ B, and ψ Lipschitz
continuous with constant L, we have Rn ≤ L√

n
(Wr + B

√
2 log 2).

2.5.3 Upper Bounds and Convex Functions

We briefly discuss consistency of minimization of the surrogate loss function ψ : R→
[0,∞) about which assume that it is convex and that ψ ≥ χ (Jordan et al., 2003;
Zhang, 2004). Examples of such functions are the soft-margin loss max(0, 1 − γξ),
which we discussed in section 2.3, and the boosting loss e−ξ, which is commonly
used in AdaBoost (Schapire et al., 1998; Rätsch et al., 2001).



2.5 Margins and Uniform Convergence Bounds 41

Denote by f∗
χ the minimizer of the expected risk and let f∗

ψ be the minimizer of
E [ψ(yf(x)] with respect to f . Then, under rather general conditions on ψ (Zhang,
2004), for all f the following inequality holds:

E [χ(yf(x))]−E
[
χ(yf∗

χ(x))
] ≤ c

(
E [ψ(yf(x))] −E

[
ψ(yf∗

ψ(x))
])s

. (2.27)

In particular we have c = 4 and s = 1 for soft-margin loss, whereas for boosting and
logistic regression c =

√
8 and s = 1

2 . Note that (2.27) implies that the minimizer
of the ψ loss is consistent, i.e. E [χ(yfψ(x))] = E [χ(yfχ(x))].

2.5.4 Rates of Convergence

We now have all tools at our disposal to obtain rates of convergence to the minimizer
of the expected risk which depend only on the complexity of the function class and
its approximation properties in terms of the ψ-loss. Denote by f∗

ψ,F the minimizer
of E [ψ(yf(x))] restricted to F, let fn

ψ,F be the minimizer of the empirical ψ-risk,

and let δ(F, ψ) := E
[
yf∗

ψ,F(x)
]
− E
[
yf∗

ψ(x)
]

be the approximation error due to
the restriction of f to F. Then a simple telescope sum yields

E
[
χ(yfn

ψ,F)
] ≤E

[
χ(yf∗

χ)
]
+ 4
[
E
[
ψ(yfn

ψ,F)
]−Eemp

[
ψ(yfn

ψ,F)
]]

+ 4
[
Eemp

[
ψ(yf∗

ψ,F)
]−E

[
ψ(yf∗

ψ,F)
]]

+ δ(F, ψ)

≤E
[
χ(yf∗

χ)
]
+ δ(F, ψ) + 4

RWγ√
n

[√
−2 log δ + r/R +

√
8 log 2

]
.

(2.28)

Here γ is the effective margin of the soft-margin loss max(0, 1 − γyf(x)), W is an
upper bound on ‖w‖, R ≥ ‖x‖, r is the average radius, as defined in the previous
section, and we assumed that b is bounded by the largest value of 〈w, x〉. A similar
reasoning for logistic and exponential loss is given in Boucheron et al. (2005).

Note that we get an O(1/
√

n) rate of convergence regardless of the dimensionality
of x. Moreover, note that the rate is dominated by RWγ, that is, the classical radius-
margin bound (Vapnik, 1995). Here R is the radius of an enclosing sphere for the
data and 1/(Wγ) is an upper bound on the radius of the data — the soft-margin
loss becomes active only for yf(x) ≤ γ.

2.5.5 Localization and Noise Conditions

In many cases it is possible to obtain better rates of convergence than O(1/
√

n)
by exploiting information about the magnitude of the error of misclassification and
about the variance of f on X. Such bounds use Bernstein-type inequalities and
they lead to localized Rademacher averages (Bartlett et al., 2002; Mendelson, 2003;
Boucheron et al., 2005).

Basically the slow O(1/
√

n) rates arise whenever the region around the Bayes
optimal decision boundary is large. In this case, determining this region produces



42 Discriminative Models

the slow rate, whereas the well-determined region could be estimated at an O(1/n)
rate.

Tsybakov’s noise condition (Tsybakov, 2003) requires that there exist β, γ ≥ 0
such that

Pr
{∣∣Pr {y = 1|x} − 1

2

∣∣ ≤ t
} ≤ βtγ for all t ≥ 0. (2.29)

Note that for γ = ∞ the condition implies that there exists some s such that∣∣Pr {y = 1|x} − 1
2

∣∣ ≥ s > 0 almost surely. This is also known as Massart’s noise
condition.

The key benefit of (2.29) is that it implies a relationship between variance and
expected value of classification loss. More specifically, for α = γ

1+γ and g : X → Y

we have

E
[
[{g(x) �= y} − {g∗(x) �= y}]2

]
≤ c [E [{g(x) �= y} − {g∗(x) �= y}]]α . (2.30)

Here g∗(x) := argmaxy Pr(y|x) denotes the Bayes optimal classifier. This is suffi-
cient to obtain faster rates for finite sets of classifiers. For more complex function
classes localization is used. See, e.g., Boucheron et al. (2005) and Bartlett et al.
(2002) for more details.

2.6 Conclusion

In this chapter we reviewed some online and batch discriminative models. In
particular, we focused on methods employing the kernel trick in conjunction with
a large margin loss. We showed how these algorithms can naturally be extended
to structured output spaces. We also showed how various loss functions used in
the literature are related. Furthermore, we showed statistical properties of the
estimators, as, e.g., convergence rates using Rademacher averages and related
concepts.



3 Modeling Structure via Graphical Models

3.1 Introduction

Graphical models combine probability theory and graph theory in order to address
one of the key objectives in designing and fitting probabilistic models, which is
to capture dependencies among relevant random variables, both on a qualitative
as well as quantitative level. The qualitative aspects of a model specify, loosely
speaking, which variables depend on each other directly and which ones do not.
Understanding such independencies is crucial in complex domains, since it allows
breaking down the overall modeling or inference problem into smaller modules,
often leading to concise model representations and efficient inference algorithms.
The language of graphs provides a suitable formalism for dealing with dependency
structures. While the power of qualitative modeling is to exclude and simplify
dependencies, it is as important to quantify the existing dependencies and to provide
ways to interface models to data via a suitable inference calculus; this is where the
power of probability theory comes in.

Although the focus of this chapter is on graphical models, we also briefly review
models that capture recursive dependency structure in syntactic natural language
constructions.

3.2 Conditional Independence

In defining probabilistic models, conditional independence is a concept of fundamen-
tal importance that also underpins the theory of graphical models. If one wants to
model domains with a potentially large number of variables among which complex
dependencies exist, as is typical in many real-world applications, everything may
depend on everything else and it is crucial to make appropriate assumptions about
the ways variables do not depend on each other.types of

independence Statistical independence is the strongest such assumption: given two random
variables X and Y with joint distribution p(X, Y ), X and Y are independent,
if p(X, Y ) = p(X) p(Y ). We will use the convenient notation X⊥⊥Y to indicate in-
dependence of X and Y . The above condition on the joint distribution is equivalent
to the condition p(X |Y ) = p(X), where the conditional probability distribution is
given by p(X |Y ) = p(X, Y )/p(Y ). However, complete independence is often too



44 Modeling Structure via Graphical Models

restrictive and uninteresting in that we can effectively model independent variables
separately.

Conditional independence is a more differentiated and useful concept. Two ran-
dom variables X and Y are conditionally independent given a third random variable
Z, denoted by X⊥⊥Y |Z, if p(X, Y |Z) = p(X |Z) p(Y |Z), which is equivalent to the
formulation p(X |Y, Z) = p(X |Z). The latter expresses a key fact about condi-
tional independence: it allows discarding variables from the conditioning set in the
presence of others. In short, if X⊥⊥Y |Z, then knowing Z renders Y irrelevant for
predicting X .

There are many ways in which one or more conditional independence statements
imply others. The following proposition is related to the concept of a graphoid (see
Lauritzen (1996) for more detail).

Proposition 14 For random variables X, Y, Z, and W and arbitrary functions g

of X, the following implications hold:

X⊥⊥Y |Z ⇐⇒ Y⊥⊥X |Z (3.1a)

X⊥⊥Y |Z =⇒ X ′⊥⊥Y |Z, X ′ = g(X) (3.1b)

X⊥⊥Y |Z =⇒ X⊥⊥Y |(Z, X ′), X ′ = g(X) (3.1c)

X⊥⊥Y |Z and X⊥⊥W |(Y, Z) =⇒ X⊥⊥(Y, W )|Z (3.1d)

For distributions with full support we also have that

X⊥⊥Y |(Z, W ) and X⊥⊥W |(Z, Y ) =⇒ X⊥⊥(Y, W )|Z (3.1e)

(Note: As a special case one may define g such that X ′ ⊆ X.)

3.3 Markov Networks

3.3.1 Conditional Independence Graphs

In large domains, dealing with many conditional independence statements can
become quite complex and may even lead to inconsistencies. Independence graphs
– also known as Markov networks or Markov random fields (MRFs) – are a very
elegant formalism to express and represent a large set of conditional independencies
in a concise and consistent manner.

Definition 15 (Markov Network) Given random variables V = {X1, . . . , Xm}
an independence graph (or Markov network) of V is an undirected graph G = (V, E),
representing the following set of conditional independencies: {Xi, Xj} �∈ E if and
only if Xi⊥⊥Xj |V − {Xi, Xj} for all Xi, Xj ∈ V .

Definition 16 (Independence Map) A Markov network G is an independence
map (I-map) for a probability distribution p, if all pairwise Markov assumptions



3.3 Markov Networks 45

C

A E

DB

(a)

A

B

C D E

(b)

A

B

C D E

A

B

C D E

bd(A)local

global

(c)

(d)

Figure 3.1 Simple example illustrating the concept of conditional independence.

represented by G hold under p. G is a minimal I-map, if there is no G′ � G which is
an I-map of p.

Notice that the construction of a Markov network given a set of pairwise indepen-
dencies is trivial, since it just amounts to eliminating all edges corresponding to
conditionally independent pairs from the complete graph. Obviously, for each set
of pairwise independencies, there is a unique corresponding Markov network which
is a minimal I-map. Figure 3.1 shows an illustrative example: Starting from a com-
plete graph (a), the list of pairwise conditional independence statements specifies
edges to be eliminated, resulting in the graph (b).

3.3.2 Pairwise, Local, and Global Markov Properties

The above definition is based on the pairwise Markov property of a graph and
only deals with special types of conditional independencies. However, one can ask
whether it is possible to read off additional or strengthened conditional indepen-
dencies from a Markov network. Clearly, as witnessed by the identities in (3.1), a
given set of conditional independence statements may imply many more conditional
independencies. But how can such statements be derived in a systematic way from
the graph representation? One way to interpret an undirected graph in terms of
conditional independencies is in terms of the so-called local Markov property:

X⊥⊥ bd(X)|bd(X) , (3.2)

where bd(X) denotes the boundary (neighbors) of X , bd(X) = {X ′ : (X, X ′) ∈ E}
and bd(X) = V − (bd(X)∪{X}) refers to the remaining nodes. bd(X) is also called
the Markov blanket of X . Thus the local Markov property simply states that given
its Markov blanket, a random variable is rendered independent of the rest of the
variables. It can be shown that this interpretation of a Markov network graph is
in fact valid and equivalent to the interpretation of a graph in terms of pairwise
Markov properties. We show here one direction of this equivalence:



46 Modeling Structure via Graphical Models

Proposition 17 The local Markov property of a graph implies the pairwise Markov
properties.

Proof Note that if (X, Y ) �∈ E and X �= Y , then Y ∈ bd(X). Now by assumption
we know that X⊥⊥ bd(X)|bd(X). The claim follows from property (3.1b) since
{Y } ⊆ bd(X).

Returning to the example in figure 3.1, this results in a list of additional
independence statements (c), such as A being independent of D, E given its
immediate neighbors B, C.

Finally, by virtue of the separation theorem (cf. Whittaker (1990)) one can also
show the equivalence between the above definition and one that is based on globalMarkov

properties of
graphs

separation properties of the graph, called the global Markov property: for disjoint
subsets A, B, C ⊆ V , where C separates A from B in G one has that A⊥⊥B|C.
Separation in an undirected graph means that every path between nodes in A and
B contains at least one node in C. An example is shown in figure 3.1 (d): C separates
A, B from D, E, in fact removing C effectively cuts the graph into the subgraphs
A−B and D − E. Here we show first one direction of this equivalence:

Proposition 18 The global Markov property of a graph implies the local Markov
property.

Proof Every path from X to a node Y ∈ bd(X) has to pass through bd(X). Hence
bd(X) separates X from bd(X) and by assumption X⊥⊥bd(X)|bd(X).

To complete the above proofs, we show the more involved result that the pairwise
Markov property implies the global Markov property. This completes a circle of
three implications, which together establish the equivalence of all three Markov
properties.

Proposition 19 For distributions with full support, the pairwise Markov property
of a graph implies the global Markov property.

Proof (i) Given disjoint variables sets A, B, C with V = A ∪ B ∪ C such that C

separates A from B in G. Performing reverse induction on the cardinality of C we
show that A⊥⊥B|C is implied by the pairwise Markov properties of G. First consider
the case of singleton sets A = {X} and B = {Y }, i.e. |C| = n − 2. If C separates
A and B, then (X, Y ) �∈ E and the result follows directly from the pairwise Markov
property X⊥⊥Y |V − {X, Y }. Now consider w.l.o.g. |A| ≥ 2, so that A = A1 ∪ A2,
for some A1, A2 with |A1|, |A2| ≥ 1. If C separates A and B, then C ∪A1 separates
A2 from B and by the induction hypothesis A1⊥⊥B|(C, A2). By exchanging A1 and
A2 one also obtains A2⊥⊥B|(C, A1). Applying (3.1e) finishes this part of the proof.
(ii) The second case of A ∪B ∪C � V also uses reverse induction over the size of
C, leading to the same base case: pick α ∈ V −(A∪B∪C). If C separates A and B,
so does C ∪ {α}, hence by induction hypothesis we get A⊥⊥B|(C, α). Note further
that either C∪A separates α from B or C ∪B separates A from α. W.l.o.g. assume



3.4 Bayesian Networks 47

the former, which implies α⊥⊥B|(C, A). From (3.1e) we get (A, α)⊥⊥B|C and from
(3.1b) we can derive that A⊥⊥B|C.

3.3.3 Factorization Theorem

Another result that is even more important in our context is the following factoriza-
tion result (Hammersley and Clifford, 1971; Besag, 1974; Winkler, 1995) that shows
how conditional independencies imply a decomposition of the joint distribution into
a product of simpler functions. Denote by C(G) the cliques of G, i.e. the maximal
complete subgraphs. We will think of c ∈ C(G) in terms of index sets c ⊆ {1, . . . , m}
and will write Xc = {Xi : i ∈ c}.

Theorem 20 (Hammersley-Clifford) Given random variables {X1, . . . , Xm}
with independence graph G. Any probability density (or probability mass) function
with full support factorizes over C(G) as follows:

p(X1 . . . , Xn) =
∏

c∈C(G)

ψc(Xc) = exp

⎡
⎣ ∑

c∈C(G)

fc(Xc) .

⎤
⎦ (3.3)

The positive functions ψc = exp[fc] are also called potential functions. This
shows how a model that obeys the conditional independence statements encoded
in an independence graph naturally decomposes into local models over (typically
overlapping) subsets of random variables, namely the maximal cliques of the graphs.
Coming back to the example graph in figure 3.1, G has three maximal cliques,
(A, B, C), (C, D), and (D, E), so that the Hammersley-Clifford theorem tells usimplications of

Hammersley-
Clifford
theorem

that there have to be positive functions ψ1, ψ2, ψ3 such that p(A, B, C, D, E) =
ψ1(A, B, C)ψ2(C, D)ψ3(D, E).

This factorization has two main implications: First, the specification of the
joint distribution involves simpler, local functions that are defined over subsets
of variables, namely the cliques of the graph. This has advantages for representing
and assessing/estimating probability distributions. Second, the above factorization
can be exploited for efficient inference, for instance, the junction tree algorithm,
which performs computations by passing and processing of messages between cliques
(cf. section 3.5).

3.4 Bayesian Networks

3.4.1 Markov Properties in Directed Graphs

Bayesian networks represent conditional independence properties in terms of a
directed acylic graph (DAG). We introduce some terminology: The parents or parent
set pa(X) of a node X in a DAG G is the set of immediate predecessors of X . The
descendants dc(X) of a node X are all nodes Y which can be reached from X



48 Modeling Structure via Graphical Models

Earthquake Burglary

Radio Alarm

Call

Earthquake ⊥⊥ Burglary

Burglary⊥⊥ Earthquake |Radio

Radio⊥⊥ Burglary, Alarm, Call|Earthquake

Alarm⊥⊥ Radio—Burglary, Earthquake

Call⊥⊥ Radio, Burglary, Earthquake|Alarm

Figure 3.2 Earthquake and burglary network.

by a directed path. The remaining nodes are called nondescendants ndc(X). The
Bayesian network semantics interprets a DAG by making the following conditional
independence assumptions:

Definition 21 (Bayesian Network) A Bayesian network for a set of variables
V = {X1, . . . , Xm} is a directed acyclic graph G = (V, E) representing the condi-
tional independence statements that each X ∈ V is independent of its nondescen-
dants given its parents, i.e. X⊥⊥ndc(X)|pa(X).

Definition 22 (Independence Map) A Bayesian network G is an independence
map (I-map) for a probability distribution p, if the conditional independencies
X⊥⊥ndc(X)|pa(X) hold for every X ∈ V . G is a minimal I-map, if there is no
G′ � G which is an I-map of p.

In the following we will assume (without loss of generality) that the ordering of
the variables X1, . . . , Xm is consistent with the partial order induced by the DAG,
so that i < j implies that Xj �∈ pa(Xi).

To illustrate the Bayesian networks semantics, let us look at a simple example, the
so-called burglar network shown in figure 3.2 (left). The conditional independence
statements are listed in figure 3.2 (right). For instance, whether or not the alarm
went off does not depend on whether a call was received, if we know about the
presence/absence of an earthquake and burglary.

There are again two questions one should ask: First, how can a probability
distribution that obeys these conditional independencies be factored into a product
of simpler functions? Second, which other conditional independence statements are
implied by the set of statements that define the Bayesian network semantics?

3.4.2 Factorization Theorem

In order to address the first question, we prove:



3.4 Bayesian Networks 49

Proposition 23 Let G = (V, E) be a Bayesian network over V = {X1, . . . , Xm}.
Then every probability distribution which has G as an I-map factors as follows:

p(X1, . . . , Xm) =
m∏

i=1

p(Xi|pa(Xi)) . (3.4)

Proof Let us start by applying the product (or chain) rule to express the joint
probability distribution as the product,

p(X1, . . . , Xm) = p(X1)p(X2|X1) . . . p(Xm|X1, . . . Xm−1) =
m∏

i=1

p(Xi|X1:i−1) .

By assumption on the ordering pa(Xi) ⊆ {X1, . . . , Xi−1} = X1:i−1 and X1:i−1 −
pa(Xi) ⊆ ndc(Xi), hence the conditional independence Xi⊥⊥ndc(Xi)|pa(Xi) to-
gether with eq. (3.1b) implies p(Xi|X1:i−1) = p(Xi|pa(Xi)). Applying this to every
node results in the claimed factorization

Proposition 23 shows that the joint probability distribution can be written as a
product of “local” conditional probabilities over each variable X that only depend
on the parents pa(X) as specified by the DAG. It is also possible to show that the
converse holds, i.e. the above factorization implies the conditional independence
statements in definition 21.

Proposition 24 Assume that a probability distribution over {X1, . . . , Xm} factors
as in eq. (3.4) with respect to a DAG G. Then G is an I-map.

Proof

p(X, pa(X), ndc(X)) =
∑

dc(X)

m∏
i=1

p(Xi|pa(Xi))

= p(X |pa(X))

⎡
⎢⎣ ∏

X′∈pa(X)
∪ndc(X)

p(X ′|pa(X ′))

⎤
⎥⎦ · ∑

dc(X)

⎡
⎣ ∏

X′∈dc(X)

p(X ′|pa(X ′))

⎤
⎦

= p(X |pa(X)) · p(pa(X), ndc(X))

Here the fact that the above sum over dc(X) reduces to 1 can be seen by rearranging

∑
dc(X)

⎡
⎣ ∏

X′∈dc(X)

p(X ′|pa(X ′))

⎤
⎦ =
∑
Xi1

p(Xi1 |pa(Xi1)) · · ·
∑
Xir

p(Xir |pa(Xir )),

where dc(X) = {Xi1 , . . . Xir} and i1 > i2 · · · > ir. Moreover∏
X′∈pa(X)∪ndc(X)

p(X ′|pa(X ′)) = p(pa(X), ndc(X))

follows from the fact that for every node X ′ ∈ pa(X) ∪ ndc(X), pa(X ′) ∈ pa(X) ∪
ndc(X).



50 Modeling Structure via Graphical Models

D

C E

A B

D

C E

A B

Figure 3.3 Example of a Bayesian network with five nodes.

Because of this equivalence, one often defines Bayesian networks over the fac-
torization in (3.4), which can be done (blindly) without even thinking about the
concept of conditional independence.

In the case of finite random variables the conditional distributions can be rep-
resented as multidimensional tables, called conditional probability tables (CPTs),
but other functional forms are also quite common, e.g. linear or logistic regression
models or the noisy-OR model for binary random variables (Pearl, 1988). Fig-
ure 3.3 shows a simple Bayesian network over a set of binary variables along with
the CPTs. Note that the table sizes depend on the number of parent configurations
and a reasonably small number of parents per node is required in order to guarantee
a compact representation.1

There are many situations where it is quite natural to use the Bayesian network
semantics to specify models. For instance, whenever the data-generating processadvantages of

Bayesian
networks

can be modeled as an iterative process of generating the outcome of some variable
X based on a subset of previously generated outcomes pa(X), Bayesian networks
are the most natural representation. Another situation is one where a causal
relationship between variables may be known (or assumed) and directly encoded
in the graph structure. However, the general issue of causal models goes beyond
Bayesian networks (Pearl, 2000).

In addition to the fact that Bayesian networks are often highly interpretable
and may thereby offer advantages for interfacing with human experts, they also
have a “technical” advantage that is important in the context of learning: the
proper normalization of the local conditional probabilities in the factorization of
(3.4). Whereas the normalization of potential functions in the Markov network

1. Note that since p(X = 0|pa(X)) = 1 − p(X = 1|pa(X)), we have omitted some
redundant entries in the CPTs of figure 3.3.



3.4 Bayesian Networks 51

representation of (3.3) depends on the product as a whole, the normalization can
be performed independently in Bayesian networks for each factor p(X |pa(X)). This
is crucial for parameter estimation as well as structure learning. See Heckerman
(1999) for more details on learning in Bayesian networks.

In comparing the factorization in (3.4) with the one in (3.3), we see that –
modulo the technical issue of nonmaximal cliques – it is possible to convert a
Bayesian network to a Markov network, by dropping the directionality of the edges
and by adding – whenever necessary – edges between nodes that are coparents,
i.e. nodes that have a common child node in the Bayesian network. This procedure
of “marrying” coparents is also known as moralization. An example is provided in
figure 3.3 (B).

3.4.3 d-Separation

While the factorization of the joint distribution can be read off directly from a
Bayesian network, stating the implied conditional statements requires a bit more
thought. Ideally, one would like to have a simple procedure based on global graph-
separation properties (as in the case of the global Markov property) that would
allow deciding whether a certain conditional independence statement is or is not
implied by the Bayesian network. This leads to the concept of d-separation. In this
context it is important to identify the so-called v-structures or colliders in a DAG.
A collider on a path is a node in which edges meet head-to-head, for instance B is
collider in the graph A→ B ← C.

Definition 25 (Collider) Given a DAG G = (V, E) and an undirected path π =
Xπ(0), Xπ(1), . . . , Xπ(l) of length l. The set of colliders of π is defined as follows:

coll(π) = {X |∃0 < t < l : X = Xπ(t) ∧ (Xπ(t−1), X) ∈ E ∧ (Xπ(t+1), X) ∈ E}.

Intuitively, the variables in a Bayesian network are coupled through active paths
that propagate dependencies. The following definition turns out to be appropriate
to capture this intuition.

Definition 26 (Active Path) Given a DAG G = (V, E), an undirected path π is
active with respect to a conditioning set C ⊆ V , if

(coll(π) ∪ dc(coll(π))) ∩ C �= ∅ and (π − coll(π)) ∩ C = ∅.

A path that is not active is called nonactive or blocked.

This means a path is rendered active by conditioning on a collider or one or more
of its descendants and by not conditioning on any of the noncollider nodes. The
different cases are sketched in figure 3.4



52 Modeling Structure via Graphical Models

A B C

A B C
blocked

active

intermediate cause common cause common effect

A B C

A B C

A B C

A B C

dc(B)

dc(B)

A BB CC

A B CC
blocked

active

intermediate cause common cause common effect

A BB CC

A B C

A B CC

A B CC

dc(B)

dc(B)

Figure 3.4 Active and blocking paths.

Definition 27 (d-Separation) For disjoint sets of variables A, B, C ⊆ V =
{X1, . . . , Xn} A is d-separated from B given C, if all paths from A to B are blocked
given C.

The notion of d-separation is indeed the one that allows identifying inferred
independency statements in Bayesian networks:

Proposition 28 Given a Bayesian network with DAG G = (V, E). For disjoint
nonempty sets A, B, C ⊂ V A⊥⊥B|C if and only if C d-separates A from B in G.

Finally, one may ask which one of the above representations – Markov networks
or Bayesian networks – is more powerful. The answer is neither, since there are
Markov networks that have no equivalent formulation as Bayesian networks and vice
versa. Without going into depth, we show simple examples in figure 3.5. Hence, in
converting a Bayesian network to a Markov network and vice versa we will often only
be able to represent a (strict) subset of the conditional independencies represented
in the original graph.

3.5 Inference Algorithms

The most common type of inference problem is the conditional probability query:
computing probabilities of assignments to unobserved variables of interest given
observations for a subset of the variables. The first set is called the query set XQ

and the second set the evidence set XE for which we have observed evidence xE .
We are then interested in computing p(XQ|XE = xE).

Often one is also interested in finding the most probable configuration of the
unobserved variables given the observed ones, XQ = V − XE, a problem that is
known as most probable explanation (MPE), although many authors also refer to



3.5 Inference Algorithms 53

A B

C

A B

C
A B

D C

A B

D C

(a) (b)

A B

C

A B

D C

A B

C

A B

C
A B

D C

A B

D C

(a) (b)

A B

C

A B

D C

Figure 3.5 Markov networks and Bayes networks.

it as maximum a posteriori (or simply MAP), x∗
Q = argmaxxQ

p(XQ = xQ|XE =
xE).2

In general, inference in directed and undirected graphical models is computation-
ally hard even if the model is specified compactly (cf. Cowell et al. (1999)).inference is hard

Theorem 29 The following problems are NP -complete:

Given a graphical model defining a distribution p(·) over a set of variables
X1, . . . , Xn, a variable X ∈ V , and a value x of X, decide whether p(X = x) > 0.

Given a graphical model defining a distribution p(·) over a set of variables
X1, . . . , Xn, and a threshold θ, decide whether there exists an assignment x such
that p(x) > θ.

However, there are several special classes of networks for which efficient inference
algorithms exist. Most notable examples are linear-chain networks, like hidden
Markov models and Kalman filters, for which inference algorithms are well-known
(Viterbi and forward-backward).

3.5.1 Decomposable Graphs and Junction Trees

One of the standard algorithms for inference in general Markov networks is the
cluster tree or junction tree algorithm (cf. Jensen et al. (1990); Dawid (1992)).
The algorithm works on a data structure that is known as a junction tree, which

2. More broadly, MAP queries ask for the most probable configuration of a subset of
unobserved variables XQ ⊆ V − XE . Then x∗

Q = argmaxxQ xH
p(XQ = xQ, XH =

xH |XE = xE), where the set of variables XH = V − XE − XV must be summed out.



54 Modeling Structure via Graphical Models

is a special type of tree defined over the cliques of the graph fulfilling the running
intersection property.

Definition 30 (Junction Tree) A junction tree for a graph G is a tree T =
(C(G), E) over the cliques of the graph, with the following property: for all pairs of
cliques c, c′ ∈ C and every clique d ∈ C on the (unique) path from c to c′ in T one
has that c ∩ c′ ⊆ d, i.e. all variables contained in both c and c′ are also contained
in every clique on the path connecting the two.

In order for a junction tree to exist, the underlying graph needs to be decomposable.

Definition 31 (Decomposable) A graph G is decomposable (or chordal) if any
cycle with four or more nodes contains at least one chord.

The standard procedure for obtaining a junction tree is to first triangulate G, hence
enforcing decomposability, and then to apply a maximum spanning tree algorithm
to the weighted clique graph (C(G), W ) with edge weights Wcd = |c∩d| (cf. Shibata
(1988), Jensen and Jensen (1994)). Once this data structure is constructed, inference
can be performed by local message passing between neighboring cliques in the
junction tree. Finding an optimal triangulation, e.g. one that needs the minimum
number of fill-in edges or that leads to the smallest maximum clique size, is a hard
problem in itself, but reasonable heuristics and constant factor approximations exist
(Shoikhet and Geiger, 1997; Becker and Geiger, 2001).

3.5.2 Junction Tree Algorithm

Assume now a junction tree T for a Markov network G has been constructed. Denote
by XH the unobserved nodes and by XE the observed nodes, V = XH ∪ XE .
Introduce separators S = C ∩ C′ for all cliques that are neighbors in T. The sum
product algorithm maintains a representation

p(XH , XE = xE) =
1
Z

∏
C φC(XC)∏
S ψS(XS)

(3.5)

where we initially set all ψS = 1. Evidence is absorbed on the level of the
clique potential functions φC by fixing all variables in C ∩ XE at their observed
values. We aim at a representation in which φC(XC) = p(XC |XE) and ψS(XS) =
p(XS |XE) correspond to the (conditional) marginals on the cliques and separator
sets, respectively. This requires in particular that marginals for variables occurring
in several cliques need to be consistent. Such global consistency can be accomplished
by local message passing. Let us first look how at how one may obtain local



3.5 Inference Algorithms 55

consistency between pairs of cliques C, D with separator S. We first compute a
message that C passes to D as follows:

message (1) generation ψ∗
S ≡

∑
XC−XS

φC , (3.6a)

message (1) absorption φ∗
D ≡

ψ∗
S

ψS
φD . (3.6b)

Note how this leaves the representation in (3.5) invariant. Now we compute a similar
message that D sends back to C

message (2) generation ψ∗∗
S =

∑
XD−XS

φD, (3.7a)

message (2) absorption φ∗
C =

ψ∗∗
S

ψ∗
S

φC (3.7b)

The marginals are now consistent, since
∑

XC−XS

φ∗
C =

∑
XC−XS

ψ∗∗
S

ψ∗
S

φC =
ψ∗∗

S

ψ∗
S

∑
XC−XS

φC =
ψ∗∗

S

ψ∗
S

ψ∗
S =

∑
XD−XS

φ∗
D . (3.8)

This message scheme can be easily extended to a clique tree by fixing a suitable
message propagation order, for instance, by picking an arbitrary clique as the root
of the tree and by first propagating messages (1) inward from the leaves to the root
and then messages (2) outward again from the root to the leaves. One can show,
that the fact that the clique tree is a junction tree ensures that all clique potentials
are consistent.

3.5.3 Approximate Inference

In many realistic problems, the size of the largest clique of the triangulated
graph is too large to perform the junction tree algorithm. However, a similar
message-passing scheme has been used widely to perform approximate inference
on untriangulated graphs. Instead of passing messages from leaves to root and back
in a tree, neighboring cliques pass messages to each other synchronously in a general
graph. Although this scheme, called loopy belief propagation (Pearl, 1988), is only
guaranteed to converge to the correct marginal probabilities for trees, empirical
results (Murphy et al., 1999) show that it often converges in general networks, and
when it does, the marginals are a good approximation to the correct posteriors.

Approximate inference algorithms broadly divide into deterministic (e.g., vari-
ational methods) and sampling (e.g., Markov chain Monte Carlo methods) based
schemes. It is beyond the scope of this chapter to review the wide range of available
techniques. We refer the interested reader to several recent surveys (Jordan et al.,
1998; Wainwright and Jordan, 2003; Neal, 1993; Doucet et al., 2001).



56 Modeling Structure via Graphical Models

3.6 Exponential Families

3.6.1 Definition

Another perspective of looking at factorization properties of probability distribu-
tions is provided by exponential families (Barndorff-Nielsen, 1978), which can be
defined as follows:

p(x;w) = exp [〈w, Φ(x)〉 − g(w) + h(x)] , where (3.9)

g(w) ≡ log
∫

X

exp [〈w, Φ(x)〉 + h(x)] dx . (3.10)

Here, w are the canonical parameters, Φ are the sufficient statistics, g is the log-
partition (or cummulant-generating) function, and h is an arbitrary, fixed function,
which we will omit in the sequel for ease of presentation (it can be absorbed by
changing the underlying measure).

3.6.2 Basic Properties

Exponential families have the characteristic property that the dimensionality of
the sufficient statistics remains constant, if joint distribution over i.i.d. samples are
considered, i.e. for an n sample S = {x1, . . . ,xn},

p(S;w) = exp

[
n∑

i=1

〈w, Φ(xi)〉 − ng(w)

]
= exp [〈w, Φ(S)〉 − ng(w)] , (3.11)

which is also in exponential form, the sufficient statistics being Φ(S) ≡∑n
i=1 Φ(xi).

Among other things this implies that in many cases statistical inference about theadvantages
unknown parameters w will only depend on the sufficient statistics, a fact that
is also stressed by the Rao-Blackwell theorem. It is well-known that much of the
structure of exponential models can be derived from the log partition function g(w),
in particular (cf. Lauritzen (1996)),

∇wg(w) = E[Φ(x)], and ∇2
wg(w) = V[Φ(x)] , (3.12)

where the expectation E[·] and the variance V[·] are computed with respect to
p(x;w). Another trait that makes exponential families very convenient to work
with from a computational point of view is that the maximum likelihood estimates
for w can be computed in closed form using the expected sufficient statistics E[Φ(x)]
(DeGroot, 1970; Hastie et al., 2001). More precisely the maximum likelihood
equations are given by

∇w log p(S;w) = Φ(S)− n∇g(w) = Φ(S)− n

∫
X

Φ(x)p(x;w)dx != 0, (3.13)



3.7 Probabilistic Context-Free Grammars 57

which leads to the simple and concise condition E[Φ(x)] = Φ(S) = ES [Φ(x)], where
the latter denotes the sample average of the sufficient statistics.

3.6.3 Exponential Families for Markov Networks

Exponential families can be related to Markov networks by taking the factoriza-
tion theorem as the starting point. From (3.3) we know that any (full support)
probability distribution that fulfills the Markov properties encoded in a conditional
dependency graph can be written in the form

log p(x) =
∑

c∈C(G)

fc(xc) , (3.14)

with suitable functions fc. Now, if we do not treat these functions as given, but
rather define a family of distributions by assuming that each fc can be written as
a simple linear expansion using basis function fcr, r = 1, . . . , Rc (modulo proper
normalization), we arrive at the following model:

log p(x;w) =
∑

c∈C(G)

Rc∑
r=1

wcrfcr(xc)− g(w) . (3.15)

In the case of random variables with finite sample spaces, the functions fcr may, for
instance, correspond to indicator functions for the Rc possible clique configurations.
More generally, we can think of every potential function as being a member of a
suitably defined exponential family. By joining all functions in a single vector-valued
statistic, we can see that (3.15) corresponds to an exponential family.

3.7 Probabilistic Context-Free Grammars

In this section, we consider important dependency structures that are not naturally
handled by the graphical model formalism. Context-free grammars (CFGs) are
one of the primary formalisms for modeling syntactic constructions (Manning
and Schütze, 1999). Recently, the CFGs have also been used to capture RNA
secondary structure (Durbin et al., 1998). In natural language grammars (see
example in figure 3.6), the nonterminal symbols (labels of internal nodes) typically
correspond to syntactic categories such as noun phrase (NP), verbal phrase (VP),
or prepositional phrase (PP), and part-of-speech tags like nouns (N), verbs (V),
determiners (Det), and prepositions (P). The terminal symbols (leaves) are the
words of the sentence.



58 Modeling Structure via Graphical Models

3.7.1 Representation

For simplicity, we restrict our attention to grammars in Chomsky normal form
(CNF), where all rules in the grammar are of the form: A → B C and A → D,

where A, B, and C are nonterminal symbols, and D is a terminal symbol.

Definition 32 (CFG) A CFG G consists of

set of nonterminal symbols, N;
designated start symbol, S;
set of terminal symbols, T;
set of productions, P = {A→ λ}, divided into

binary productions, PB = {A→ B C : A, B, C ∈ N} and
unary productions, PU = {A→ D : A ∈ N, D ∈ T}.

Consider a very simple grammar:

N = {S, NP, VP, PP, N, V, Det, P}.
T = {The, the, cat, dog, tree, chased, from}.
PB = {S → NP VP, NP → Det N, NP → NP PP, VP → V NP, VP →

VP PP, PP→ P NP}.
PU = {Det → The, Det → the, N → cat, N → dog, N → tree, V → chased,

P→ from}.
A grammar generates a sentence by starting with the symbol S and applying the

productions in P to rewrite nonterminal symbols. For example, we can generate Theexample
dog chased the cat by starting with S→ NP VP, rewriting the NP as NP→ Det N
with Det → The and N → dog, then rewriting the VP as VP → V NP with
V→ chased, again using NP→ Det N, but now with Det→ the and N→ cat. We
can represent such derivations using parse trees as in the bottom left of figure 3.6.

The simple grammar above can generate sentences of arbitrary length, since it
has several recursive productions. It can also generate the same sentence several
ways. In general, there are exponentially many parse trees that produce a sentence
of length. Consider the sentence: The dog chased the cat from the tree. The likely
analysis of the sentence is that the dog chased the cat away from the tree. A less
likely but possible alternative is that the dog chased the cat who lives in the tree.
Our grammar allows both interpretations, with the difference being in the analysis
of the top-level VP as seen in figure 3.6.

So far we have considered the set of legal strings (as well as corresponding parse
trees) that a grammar can generate. To capture which sentences are likely and
which are not, we can define a joint probability distribution over the space of parse
trees and sentences. A probabilistic (or stochastic) CFG (PCFG) defines such a



3.7 Probabilistic Context-Free Grammars 59

S

wasThe screen

DT NN

NP VP

VBD NP

NP PP

a sea

DT NN

of NN

IN NP

red

S

The dog

DET N

NP

chased

V

from

P

the

NP

DET N

tree

PP

VP

VP

the

NP

DET N

cat

Figure 3.6 Examples of parse trees.

distribution p(t) over trees by assigning a probability to each production and such
that the sum of probabilities of all productions starting with each symbol is 1:∑

λ:A→λ∈P

p(A→ λ | A) = 1, ∀A ∈ N.

The probability of a given tree (including the sentence) is simply the product of
probabilities of the productions used in the tree.

p(t) =
∏

A→λ∈t

p(A→ λ | A).

A PCFG induces a probability distribution over the yields of trees, sequences of
terminals T∗. The probability of a sequence s is the sum of the probabilities of trees
that yield it, T (s):

p(s) =
∑

t∈T (s)

p(t).

Conversely, a PCFG defines the most likely tree for a given sentence:

t∗(s) = argmax
t∈T (s)

p(t).

Next, we review an efficient algorithm for PCFG inference.

3.7.2 Inference

We can use the Cocke-Younger-Kasami (CKY) dynamic programming algorithm
to compute the most likely parse tree in O(n3) time (Younger, 1967; Manning
and Schütze, 1999). The input to the algorithm is a sequence s1, ..., sn of terminal
symbols. The algorithm recursively fills out an array π(i, j, A) representing highest
probability of any subtree starting with the symbol A yielding si, ..., sj . When the
array is completed, the probability of the most likely parse tree spanning the entire



60 Modeling Structure via Graphical Models

sequence will be stored in π(1, n, S).
Base step: for i = 1, . . . , n, set

π(i, i, A) = p(A→ si|A), ∀A ∈ N.

Recursive step: for d = 1, . . . , n− 1, for i = 1, . . . , n− d, set j = i + d and

π(i, j, A) = max
A→B C∈PB

i≤k<j

{p(A→ B C | A) ∗ π(i, k, B) ∗ π(k + 1, j, C)} , ∀A ∈ N.

Using the argmax’s of the max’s in the computation of π, we can backtrace the
most likely tree itself. We assume that ties are broken in a predetermined way, say
according to a lexicographic order of the symbols. A similar dynamic program can
be used to compute the probability of a sequence p(s), where the max operation
above is replaced with a sum.

3.8 Structured Prediction

We now turn to using structured models for prediction tasks. In contrast to standard
supervised learning problems such as classification and regression, which involve
simple scalar outputs, structured prediction deals with structured or compound
response variables, including structures such as sequences, strings, trees, lattices,
or graphs. Here, we will focus in particular on the supervised setting of learning
mappings between arbitrary input spaces X and discrete output spaces Y, based
on a sample of input-output pairs {(xi,yi) : i = 1 . . . , n}, a scenario that is called
structured classification. In the simplest case, we will be dealing with fixed-length
vector-valued outputs y = (y1, . . . , yL) ∈ Y ⊆ Y1× . . .×YL, where each Yj is a finite
set. This setting is also referred to as collective classification, since a prediction is
made collectively for all L response variables yj. In some cases, the range of allowed
outputs may also depend on the input, i.e. Y = Y(x). More complex problems may
involve outputs such as strings, trees, or graphs.

The crucial question is: Why would one want to make predictions jointly instead
of simply predicting each output independently? The key benefit is that it allows
taking interdependencies between outputs into account, in addition to the statistical
dependencies that exist between inputs and outputs. These interdependencies
may be expressible beforehand in the form of constraints that restrict the set of
admissible outputs Y, or take the more malleable form of statistical correlations
between the different output variables.

The range of prediction problems these broad definitions encompass is immense,
arising in fields as diverse as natural language analysis, machine vision, and com-
putational biology, to name just a few. For concreteness consider the task of hand-
writing recognition. Figure 3.7 shows an example of a handwritten word brace.
Distinguishing between the second letter and fourth letter (r and c) in isolation is
far from trivial, but in the context of the surrounding letters that together form a



3.8 Structured Prediction 61

Figure 3.7 Handwritten word recognition: sample from (Kassel, 1995) dataset.

word, this task is much less error-prone for humans and should be for computers as
well. In word recognition, each Yj is the alphabet, while Y corresponds to the dic-
tionary of words. The dictionary might a priori exclude certain character sequences;
for instance, the letter q may never be follows by z in English. In addition to “hard”
constraints, the output variables may also be highly correlated, for instance, due to
phonetic regularities that make certain letter combinations more or less likely.

3.8.1 Conditional Models

An important distinction in using probabilistic models for prediction tasks is be-
tween generative and conditional models. In the generative case, one aims at model-
ing the joint distribution over a domain of interest, without a priori committing to
a fixed split of the variables into input x and output y. For example, PCFGs define
a joint model over trees and sentences. Yet, in many applications it is typically
known which variables are considered inputs and outputs, respectively, in which
case conditional (or discriminative) modeling based on the conditional distribution
p(y|x) may be advantageous.

In principle, one could derive a conditional model for y given x from a generative
model over (x,y) by conditioning on the input x, p(y|x) = p(x,y)/p(x), where
p(x) =

∑
y∈Y p(x,y). However, it is often more advantageous to directly learn con-

ditional models. One reason is that generative models often require making strong
simplifying assumptions, e.g. (conditional) independence assumptions, which may
be overly restrictive for a specific problem of predicting y from x. Another reason
is that by fitting a joint distribution p(x,y), we may be tuning the approximation
away from the optimal conditional distribution p(y|x), which we use to make the
predictions. Given sufficient data, the conditional model will aim at learning the
best approximation to p(y|x) possible, while the generative model p(x,y) will not
necessarily do so.

3.8.2 Linear Models for Structured Prediction

The class of structured models H we consider generalizes the notion of linear
discriminant functions utilized in the context of classification, e.g. in perceptron
and support vector machine (SVM) classification. Instead of using feature maps
defined over the input space alone, we assume here that an appropriate joint feature
map Φ : X × Y → Rm is available. Given such a vector-valued function Φ, we can



62 Modeling Structure via Graphical Models

S

The dog

DET N

NP

chased

V

VP

the

NP

DET N

cat

The dog chased the cat x:

y:

f X: Y

Figure 3.8 Illustration of natural language parsing model.

then define H to be the set of linear functions f , parametrized by a weight vectorcompatibility
function w,

f(x,y) = 〈w, Φ(x,y)〉 . (3.16)

We also refer to f as a compatibility function between inputs and outputs. A
compatibility function implicitly defines a mapping F from inputs to outputs (up
to tie-breaking) via

F (x) = argmax
y∈Y

f(x,y) . (3.17)

This formulation is very general; clearly, for many choices of Φ and Y, finding the
optimal y for a given x may be intractable. However, as we will see, there are many
models where the optimization problem in (3.17) can be solved in polynomial time.

To illustrate the concept of a joint feature map, consider the problem of natural
language parsing with CFGs illustrated in figure 3.8. We can choose Φ such that the
linear model in (3.16) becomes isomorphic to a PCFG (cf. Manning and Schütze
(1999)). A valid parse tree y ∈ Y(x) for a sentence x is one that has the designated
start symbol as the root and the words in the sentence as the leaves. Each node of
the parse tree corresponds to a production qj with associated weight wj , from which
a score is computed by adding up all weights wj . This score can thus be written as a
linear function in Φ(x,y), where each feature φj corresponds to the number of times
production qj has been used in the parse tree. F (x) can be efficiently computed by
finding the structure y ∈ Y(x) that maximize f via the CKY algorithm (Manning
and Schütze, 1999).

A very generic way of designing joint feature maps is to independently specify
feature maps over inputs and outputs, Φx and Φy, respectively, and to combine
them via the Kronecker (or tensor) product Φ(x,y) = Φx(x) ⊗ Φy(y). Every
joint feature will thus be a multiplicative combination of some input and some
output feature, corresponding to a simple logical conjunction in the case of Boolean



3.9 Conclusion 63

features. For such tensor product feature maps inner products factorize nicely,
〈Φ(x,y), Φ(x̂, ŷ)〉 = 〈Φx(x), Φx(x̂)〉〈Φy(y), Φy(ŷ)〉, which often is advantageous in
the context of kernel-based learning algorithms.

3.8.3 Generalized Linear Models

To link this back to the previous paragraphs on exponential families and linear
models for structured prediction, one may define

p(y|x;w) = exp [f(x,y) − g(x,w)] , g(x,w) ≡ log
∑
y∈Y

exp [f(x,y)] . (3.18)

Since f(x,y) = 〈w, Φ(x,y)〉, the conditional distributions parameterized by w form
an exponential family with sufficient statistics Φx(y) ≡ Φ(x,y) for every x. We refer
to this as a conditional exponential family.

Probabilistic semantics are certainly not necessary for a good predictive model
if we are simply interested in the optimal prediction (the argmax in (3.17)). As
we discussed in the previous chapter, SVMs, which do not represent a conditional
distribution, typically perform as well or better than probabilistic models in many
applications (Vapnik, 1995; Cristianini and Shawe-Taylor, 2000).

In general, we can often achieve higher accuracy models when we do not learn a
normalized distribution over the outputs, but concentrate on the margin or decision
boundary, the difference between the optimal y, and the rest. We can still rely on
the representation and inference tools familiar from probabilistic models for the
construction of and prediction in unnormalized models, but largely dispense with
the probabilistic interpretation when needed. Essentially, we use the term model
very broadly, to include any scheme that assigns scores to the output space Y and
has a procedure for finding the optimal scoring y.

3.9 Conclusion

The graphical model formalism is currently the predominant framework for repre-
senting structured probability distributions across a wide variety of fields, including
computer vision and robotics, computational biology and linguistics, signal process-
ing, and decision analysis. A large proportion of active research is concerned with
developing and analyzing efficient algorithms for approximate inference and learning
in graphical models, bringing together tools from convex optimization and graph-
theoretic algorithms as well as stochastic simulation. Among the several themes in
this collection is the lifting and adaptation of recent methodologies for problems of
classification and regression to graphical models. The questions raised by such ef-
forts exhibit a rich interplay between the statistical and the computational aspects
of structured prediction.





II Structured Prediction Based on Discriminative

Models





4 Joint Kernel Maps

Jason Weston, Gökhan Bakır, Olivier Bousquet, Tobias Mann, William

Stafford Noble, and Bernhard Schölkopf

We develop a methodology for solving high-dimensional estimation problems
between pairs of arbitrary data types as a regression problem. This is achieved
by mapping the objects into a continuous or discrete space using joint kernels.
The resulting algorithm is an extension of the large-margin classification-based
structured output algorithms to the regression case, and includes all standard
support vector machine (SVM)-type optimization problems as special cases. Joint
kernels allow us to explicitly specify a priori known input-output and output-
output correlations for each output dimension. We provide examples of such kernels
and empirical results on mass spectrometry prediction and a problem of image
transformation.

4.1 Introduction

A standard concern in predicting output data that are nonvectorial is to represent
the structural dependencies between output variables in a form amenable to predic-
tion. Consider, for example, predicting a binary sequence where the nth bit depends
on a subset of other output bits. A learning algorithm has to take into account the
structure of the output while learning to yield an accurate prediction model. One
approach to incorporate such constraints into the learning process is to pose each
output variable as a single output dimension and to encode the dependency as an
output-output correlation. This will be one of the main concerns of this chapter.

Our framework, which extends (Weston et al., 2005), is based on a multivariate
regression setting where we use kernels to map the data into a single joint feature
space using joint kernels (Tsochantaridis et al., 2004), a way of implicitly embedding
data by only requiring the computation of dot products in the embedding space.
Using such joint kernels on inputs and outputs simultanously we are able to encode
any prior knowledge on possible correlations into our learning algorithm.chapter

organization



68 Joint Kernel Maps

This chapter is organized as follows. In the following section we start with the
basic setting of linear regression and discuss how to incorporate correlation into the
problem of learning linear maps. We will show that our formulation is very general,
and is in fact a generalization of classification-based structured output algorithms
to the regression case. It includes all standard SVM-type optimization problems as
special cases: binary (Boser et al., 1992), multiclass (Weston and Watkins, 1998),
and regression (Vapnik, 1995).

Subsequently we extend our formulation to use joint kernels on both input and
output variables simultaneously, which leads to the development of a structured
output learning algorithm for the continuous output variable case. We show how this
is related to the existing discrete structured output learning case (Tsochantaridis
et al., 2004). Finally we put our framework to use on two problems: predicting
peptides given an observed mass spectrum, posed as a prediction problem from a
spectrum to a string; and solving an image transformation problem between related
pairs of images where the output is high-dimensional, but local dependencies are
known: given images of people with a plain expression, we predict how they will
look when they are smiling.

4.2 Incorporating Correlations into Linear Regression

We begin with the problem of linear regression. Given a training set of input-
output pairs {(x1,y1), .., (xm,ym)} identically and independently sampled from a
distribution P over the product space X × Y, we wish to find a function W that
maps from X into Y such that∫

X×Y

‖y −Wx‖2YdP(x,y)

is minimized. Here, we assume X and Y are vector spaces; later we will consider
them to be any objects, and use kernels to embed them in a vector space. This is
a classical learning problem that has been widely studied when X = Rp, Y = Rq,
and q is small with the most prominent example being least squares regression.
When the output dimension becomes very high, to learn effectively, one must takeexploiting

correlation into account (i) correlation between output variables, (ii) correlation between input
variables, and (iii) correlation between input and output variables.

Known input correlations can be exploited with weight sharing (choosing a
regularizer that treats these features similarly) or in nonlinear methods by lowering
the amount of regularization on nonlinear features that are a function of correlated
features, as has been exploited e.g. in digit recognition (Vapnik, 1998).

A classical approach for incorporating output correlations is to adopt the cost
function

1
m

dim(Y)∑
s,t

m∑
i=1

[Wxi − yi]s[Wxi − yi]tσst,



4.3 Linear Maps and Kernel Methods : Generalizing Support Vector Machines 69

where [z]s denotes the sth component of vector z and Σ = (σij) ∈ Rdim(Y)×dim(Y)

is a reweighting of the error metric. That is, we replace the Euclidean distance
by an arbitrary quadratic form, hence off-diagonal elements of Σ incorporate the
correlations.

In contrast, if prior knowledge exists on input-output correlations as well, one
could choose to introduce a regularization functional Ω : XY → R+ instead of
altering the used error metric. Then, a classical approach to minimization schemeencoding

correlation into
the regularizer

could be adopted that minimizes

1
m

m∑
i=1

||Wxi − yi||2 + Ω[W ].

For instance, we propose

Ω[W ] =
dim(X)∑

i,j=1

dim(Y)∑
s,t=1

WisWjtSijst, (4.1)

where the tensor Sijst encodes the correlation between parameters Wis and Wjt.
For example, suppose one is learning a mapping between two images of equal and
large dimension, where it is known that the top left corner of the input image is
correlated to the top left-hand corner of the output image. This knowledge can be
encoded into S. The challenge is to rewrite such an optimization problem in the
general case so that (i) it can be solved in a dual form to make it tractable for
high dimension and (ii) it can be generalized with kernels to also solve nonlinear
problems. We will see that regularization schemes based on (4.1) will allow us to
achieve this goal.

We now show how to encode such prior knowledge by defining appropriate joint
kernel functions and subsequent minimization in dual variables, building on work
such as kernel dependency estimation (KDE)(see section 1.5) and work presented in
Tsochantaridis et al. (2004). The subsequent algorithm will solve much more than
linear regression: it will generalize nonlinear SVMs for classification and regression,
and will also be able to deal with structured outputs such as strings, trees, and
graphs via kernels (Haussler, 1999; Watkins, 1999; Tsochantaridis et al., 2004).
This will be an extension of previous work on structured outputs, as our method
will be able to deal with both the discrete and continuous output variable cases,
whereas only the discrete case was addressed before.

4.3 Linear Maps and Kernel Methods : Generalizing Support Vector Machines

In the following section we describe an algorithm which contains all standard
support vector algorithms as special cases. We start by considering a linear map
W . We will make predictions on data using the equation

y(x) = argminy∈Y‖Wx− y‖2 = Wx.



70 Joint Kernel Maps

We consider an ε-insensitive loss approach, as in support vector regression (SVR)
(Vapnik (1998)). We choose the W that minimizes

‖W‖2FRO, (4.2)

using the Frobenius norm, subject to

‖Wxi − y‖2 ≥ ‖Wxi − yi‖2 + ε2/2, ∀i, {∀y ∈ Y : ‖yi − y‖ ≥ ε}. (4.3)

Note that the constraints can also be written as ∀i{∀y ∈ Y : ‖yi − y‖ ≥
ε} : 2(yi − y)
Wxi ≥ ε2/2 + ‖yi‖2 − ‖y‖2. Let us postpone the technical
difficulty that this formulation has possibly infinitely many constraints for later
(see section 4.4.1). We now show how this algorithm generalizes both support vector
classification and regression:

4.3.1 Support Vector Regression

For y ∈ R one obtains SVR (Vapnik, 1998) without threshold, and for y ∈ Rq one
obtains vector-valued ε-insensitive SVR (Pérez-Cruz et al., 2002). We rewrite (4.3)
as miny∈Cε(yi) ‖Wxi − y‖2 ≥ ‖Wxi − yi‖2 + ε2/2 where Cε(yi) is the complement
of the open ball of radius ε centered at yi. If Wxi is not in the latter ball, the value
of this minimum is zero and the problem does not have any solution. On the other
hand, if Wxi is in the ball, then this minimum is not zero and can be computed
directly. Its value is attained for the following y:

y = yi +
Wxi − yi

‖Wxi − yi‖ ε.

The value of the minimum is then (ε− ‖Wxi − yi‖)2. We then have the constraint
(ε− ‖Wxi − yi‖)2 ≥ ‖Wxi− yi‖2 + ε2/2 which gives, after some algebra, ‖Wxi−
yi‖ ≤ ε/4. Disregarding the scaling, this is the same as the usual SVR constraints.

4.3.2 Support Vector Classification

For y ∈ {±1} and 0 ≤ ε < 2 we obtain two-class SVMs (Vapnik, 1998) (W is a 1×p

matrix). Expanding the constraint (4.3) for each i gives −2yWxi +2yiWxi ≥ ε2/2.
For y, yi ∈ {±1}, ‖yi − y‖ ≥ ε only occurs for y = −yi, in which case we have
yiWxi ≥ ε2/8, the usual SVM constraints, disregarding scaling and threshold b.

4.3.3 Multiclass Support Vector Machines

Similarly, for y ∈ {0, 1}q, where the cith entry is 1 when example i is in class ci,
and 0 otherwise, and 0 ≤ ε <

√
2, we can obtain multiclass SVMs (Weston and

Watkins, 1998). As ||y|| = 1 we have the constraints y

i Wxi−y
Wxi ≥ ε2/4 where

the q rows of W =
(

w

1 . . .w


q

)

correspond to the q hyperplanes of multiclass

SVMs (W is a q × p matrix). Because only one constraint is switched on at one



4.4 Joint Kernel Maps 71

time due to the zeros in y we have to minimize ‖W‖FRO =
∑

i ||wi||2 subject to
∀i, wcixi −wjxi ≥ ε2/4, ∀j ∈ {1, . . . , q} \ ci which is the same as in Weston and
Watkins (1998), again disregarding scaling and thresholds.

4.3.4 Structured Output Case

Let us now restrict ourselves slightly to the situation where the outputs are nor-
malized so ∀y ∈ Y : ‖y‖ = 1. (Obviously this is only useful in the multidimensional
case.) Hence, we rewrite our optimization problem as: minimize

‖W‖2FRO (4.4)

subject to

∀i, {∀y ∈ Y : ‖yi − y‖ ≥ ε} : y

i Wxi − y
Wxi ≥ ε2/4. (4.5)

We can regard F (x,y) = y
Wx as a function that returns the degree of fit
between x and y. The output on a test point can now be written

y(x) = argminy∈Y‖Wx− y‖2

= argmaxy∈Yy
Wx =
Wx
‖Wx‖ . (4.6)

because, by Cauchy-Schwarz, the function argmaxyy

Wx is maximal if y

‖y‖ is
parallel to Wx.

With this optimization problem for the case of discrete Y and ε → 0, we
obtain the SVM for interdependent and structured output spaces (SVM-ISOS)
of Tsochantaridis et al. (2004). In practice, one could relax the restriction upon
the normalization of y during training because separability could still be obtained.normalization of

the outputs However, if one is dealing with continuous outputs without this restriction, then
the pre-image given by argmaxy∈Yy
Wx would not be well defined. This is the
reason why in the work of Tsochantaridis et al. (2004) normalization was not an
issue, as only the discrete output case was considered.1

We now show how to develop our method for joint kernels.

4.4 Joint Kernel Maps

We can rewrite the last optimization problem by considering the matrix W as a
vector w of dimension dim(X)dim(Y), and choosing the feature map

[ΦXY(x,y)]ij = (xy
)ij , i = 1, . . . ,dim(Y), j = 1, . . . ,dim(X), (4.7)

1. In practice, in our experiments with joint kernels, we normalize the joint kernel itself,
not the outputs, because the output in this case is not easily accessible.



72 Joint Kernel Maps

where the dimensions are indexed by i and j. The optimization problem then
consists of minimizing2

‖w‖2 (4.8)

subject to

〈w, ΦXY(xi,yi)− ΦXY(xi,y)〉 ≥ ε2/2, (4.9)

∀i, {∀y ∈ Y : ‖yi − y‖ ≥ ε}.

However, we are free to choose a mapping other than the one given above in (4.7), as
we shall see later. (Indeed, choosing a mapping which incorporates prior knowledge
is the whole point of using this approach.) We call ΦXY the joint kernel map (JKM),
and

J((x,y), (x̂, ŷ)) = ΦXY(x,y)
ΦXY(x̂, ŷ)

the joint kernel. This relates our method to the work of Collins and Duffy (2002),
Hofmann et al. (2002), and chapter 5 of this book.

Constructing the corresponding dual problem we obtain: maximize3dual problem

ε2

4

∑
i,y:‖yi−y‖≥ε

αiy − (1/2)
∑

i,y : ‖yi − y‖ ≥ ε

j, ŷ : ‖yj − ŷ‖ ≥ ε

αiy αjŷ〈ΦXY(xi,yi)

−ΦXY(xi,y), ΦXY(xj ,yj)− ΦXY(xj , ŷ)〉

2. Note that we could also simplify the optimization problem further by splitting the
constraints: i.e. minimize ‖w‖2 subject to

∀i : 〈w, ΦXY(xi,yi)〉 + b ≥ ε2/8

{∀y ∈ Y : ‖yi − y‖ ≥ ε} : 〈w, ΦXY(xi,y)〉 + b ≤ −ε2/8.

If this problem is linearly separable, then its solution w is also a feasible solution of
(4.8)-(4.9).
3. Note that with infinitely many constraints, standard duality does not apply for our
optimization problem. However, for the purposes of the present chapter, we are not
concerned with this. For practical purposes, we may assume that for any ε > 0, our
data domain has a finite ε-cover (e.g., our domain could be a compact subset of Rn). Since
on a computer implementation, a constraint can only be enforced up to machine precision,
we can thus imagine choosing a sufficiently small ε, which reduces our setting to one with
a finite number of constraints. Furthermore, we find experimentally that the number of
active constraints is small and scales sublinearly with the number of examples or output
dimension (see figure 4.1).



4.4 Joint Kernel Maps 73

subject to

αiy ≥ 0, i = 1, . . . , m, {∀y ∈ Y : ‖yi − y‖ ≥ ε}.

The objective can be rewritten with kernels:

ε2

4

∑
i,y:‖yi−y‖≥ε

αiy − (1/2)
∑

i,y : ‖yi − y‖ ≥ ε

j, ŷ : ‖yi − ŷ}| ≥ ε

αiyαjŷ[J((xi,yi), (xj ,yj))

−J((xi,yi), (xj , ŷ))− J((xi,y), (xj ,yj)) + J((xi,y), (xj , ŷ))].
linear joint kernel

The standard linear map therefore implies J((xi,yi), (xj ,yj)) = 〈xi,xj〉〈yi,yj〉 =
K(xi,xj)L(yi,yj), where K(xi,xj) = 〈xi,xj〉 and L(yi,yj) = 〈yi,yj〉 are kernel
maps for input and output respectively.

Now

w =
∑

i,y:‖yi−y‖≥ε

αiy[ΦXY(xi,yi)− ΦXY(xi,y)].

For certain joint kernels (that are linear in the outputs) we can compute the matrix
W explicitly to calculate the mapping (in the equation above we see the vectorized
version of this matrix). However, for general nonlinear mappings of the output (or
input) we must solve the pre-image problem (cf. (4.6)):

y(x∗) = argmax
y∗∈Y

〈W, ΦXY(x∗,y∗)〉

= argmax
y∗∈Y

∑
i,y:‖yi−y‖≥ε

αiyJ((xi,yi), (x∗,y∗))− αiyJ((xi,y), (x∗,y∗)).

In the next section we discuss joint kernels, and consider several examples that do
not require one to solve the general pre-image problem. First, let us discuss related
work, and practical implementation considerations.

4.4.1 Optimization

So far we simply ignored the fact that the discussed optimization problems above
have infinite constraints of the form:

{∀y ∈ Y : ‖yi − y‖ ≥ ε} : 2(yi − y)
Wxi ≥ ε2/2 + ‖yi‖2 − ‖y‖2,

for each training pair (xi,yi). Optimization problems of this form are called semi-semi-infinite
program infinite programs (SIPs). Duality theorems exist that are in spirit similar to weak

and strong duality theorems for the finite case. For a detailed discussion see Hettich
and Kortanek (1993) and Shapiro (2005). In practice SIPs are treated by two
possible strategies: discretization and greedy search. Discretization corresponds
to quantizing the set of constraints regarding a particular threshold and solving



74 Joint Kernel Maps

the new finite program. However, due to its relevance we will focus more on the
greedy strategy. The greedy strategy is an iterative procedure to solve SIPs and
corresponds to a bilevel program where one tries to identify repeatedly the most
violating constraint in the set. Thus, one replaces the set of infinite constraints by
a single one,

2(yi − y∗)
Wxi ≥ ε2/2 + ‖yi‖2 − ‖y∗‖2,

where the single y∗ is found by a new optimization subproblem. In our case, we
could identify y∗ by the program

y∗ = argmax
y∈Y

‖yi‖2 − ‖y‖2 − 2(yi − y)
Wxi

subject to

‖yi − y‖ ≥ ε.

Due to the nonconvex nature of this problem one usually applies some form of
approximations such as to restrict the possible set of candidates y to all patterns
in the training set. A method for the SVM for interdependent and structured
output spaces (ISOS) along these lines was developed in Tsochantaridis et al.
(2004) and can be analogously implemented for JKMs by using an iterative scheme:greedy strategy
add the most violating example to the working set and reoptimize, repeating until
completion. One can then show that on each iteration the objective function strictly
improves and is guaranteed to terminate if the problem is separable.

This strategy is mostly feasible since one assumes that the solution violates only
a finite set of constraints. In fact, using the Lagrangian approach as above we
found out that the solution tends to be very sparse (see figure 4.1). In the current
approach, we used the following simple approximation: For each example i compute
y = Wxi. We require ||Wxi − yi|| ≤ ε/4 (see section 4.3). So, if ||y − yi|| > ε/4,
one of the constraints from (4.9) is violated. We thus add y to our list of active
constraints, and reoptimize. We repeat this until there are no more violations.
In practice, in our experiments we also start with ε large, and decrease it upon
separability, similar to the procedure in Tsochantaridis et al. (2004), mixing solution
strategies ideas from discretization and greedy optimization.

4.4.2 Related Algorithms

The idea of learning maps by embedding both input and output spaces using kernels
was first employed in the KDE algorithm (Weston et al., 2002), where the kernels
were defined separately. This allowed correlations to be encoded between output
features, nonlinear loss functions to be defined, and for outputs to be structured
objects such as strings and trees (Haussler, 1999; Watkins, 1999; Tsochantaridis
et al., 2004) (however, one must then solve an often difficult pre-image problem).
The method first decorrelates the outputs via performing a kernel principal com-



4.4 Joint Kernel Maps 75

ponent analysis (kernel PCA). Kernel PCA (Schölkopf et al., 1998) yields principal
components vl ∈ Rq, l = 1 . . . n and corresponding variances λl. Henceforth the out-
put labels {yi}mi=1 are projected to the column vectors vl to retrieve the m principal
coordinates zi ∈ Rn. This projection results in the new estimation task

argmin
W∈Rn×p

m∑
i=1

‖zi −Wxi‖2.

KDE, for example, performs a ridge regression on each component zij , 1 ≤ j ≤ n

to overcome overfitting. Predictions for a new point x� are made via predicting first
the principal coordinates z� = Wx�, and then using the principal components:

y� = V z�.

Here V ∈ Rq×n consists of the n principal components vl. In the case where
n = q the prediction performance will only depend on the basic regression used
for estimating z� since V acts as a basis transformation.

If one assumes that the main variation in the output is according to signal
and the small variances according to noise, then it is reasonable to take the first
n principal components corresponding to the largest variance λl. Alternatively,
instead of cutting off, it is also possible to shrink the directions according to their
variance.

Compared to the current work and work such as SVM-ISOS (Tsochantaridis
et al., 2004), KDE has the advantage during training of not requiring the compu-
tation of pre-images. On the other hand, it requires an expensive matrix inversion
step, and does not give sparse solutions. The inability to use joint kernels in KDE
means that prior knowledge cannot be so easily encoded into the algorithm. In our
experiments (see section 4.6) the difference between using this prior knowledge or
not in real applications can be large, at least for small sample size.

We note that Cortes et al. (2005) and chapter 8 of this book also deal with
the structured output regression case. In particular, their use of regularization to
incorporate the same kind of prior knowledge as in joint kernels is similar to that
described in section 4.2.

Micchelli and Pontil (2003) also provide a method of using kernels to deal with
high-dimensional output regression problems using vector-valued kernel functions.vector-valued

kernel functions One defines a prediction function as follows:

f(x) =
m∑

i=1

K(xi,x)ci,

where K(xi,xj) is a q by q matrix which in position Ks,t encodes the similarity
between training points i and j with respect to outputs s and t (for a discussion of
how this relates to standard kernel machines, cf. Hein and Bousquet (2004)). The
weights ci are hence q by 1 vectors. Although at first sight this approach seems very
complicated in terms of defining kernels, there are some natural examples where



76 Joint Kernel Maps

known correlation across outputs can be encoded. However, simply minimizing∑
i ||yi−f(xi)||2 yields a large, nonsparse optimization problem with qm variables.
Considering once again classification problems, the current work also turns

out to have strong relations with the work of Collins and Duffy (2002) who
employed a ranking perceptron algorithm and a specific joint kernel on the natural
language problem of parsing (outputting a parse tree). In this case, the difficult
pre-image problem was avoided by only selecting among n candidate parse trees.
The algorithm they used is thus similar to the one given in footnote 2, except in
their case not all possible negative constraints are enforced, but only n − 1 per
example. Using the multiclass SVM formulation of Vapnik (1998) and Weston and
Watkins (1998),

f(xi,yi) > f(xi,y), ∀{y ∈ Y \ yi}, (4.10)

and considering Y as some large set, e.g. of structured objects, one arrives at the
formulation of SVM-ISOS (Tsochantaridis et al., 2004). Essentially, this is a special
case of our algorithm, where the output is structured (discrete Y) and ε = 0.4

The authors apply the algorithm to problems of label sequence learning, named
entity recognition, and others. Our work complements this last one in helping to
understand the role of joint kernels in learning problems where one can supply prior
knowledge by way of the similarity measure. Taskar et al. (2004b) provide a similar
formulation to Tsochantaridis et al. (2004) but with a probabilistic interpretation.
Finally, both Tsochantaridis et al. (2004) and Taskar et al. (2004b) have generalized
the constraints of type (4.10) to be able to quantify how good a prediction is relative
to the correct output. One way of doing this is by defining a loss function of choice
on L(y,yi) and enforcing a margin on each constraint equal to this loss. See chapter
5 for detailed discussion.

4.5 Joint Kernels

As discussed before, a joint kernel is a nonlinear similarity measure between input-
output pairs, i.e.,

J((x,y), (x′,y′)),

where (x,y) and (x′,y′) are labeled training examples,5

J((x,y), (x′,y′)) = 〈ΦXY(x,y), ΦXY(x′,y′)〉,

4. Ignoring the normalization conditions on the output which come from our original
derivation, as discussed previously.
5. Note there is nothing stopping us considering not just pairs here but also kernels on
n-tuples, e.g., of the form (x,y, z).



4.5 Joint Kernels 77

where ΦXY is a map into a dot product space. All functions J((x,y), (x′,y′)) that
take this form are positive definite, and all positive definite kernels J((x,y), (x′,y′))
can be written in this form. This follows directly from the corresponding statements
for kernels k(x,x′) (see, for example, Schölkopf and Smola (2002)). The point of
a joint kernel is to describe the similarity between input-output pairs by mapping
pairs into a joint space. A joint kernel can encode more than just information
about inputs or outputs independent of each other: it can also encode known
dependencies/correlations between inputs and outputs. Joint kernels have already
begun to be studied (Hofmann et al., 2002; Tsochantaridis et al., 2004); however,
so far only discrete output spaces and structured outputs (such as sequences) were
considered. One of the problems with joint kernels is that only for a subset of
possible kernels can one compute the pre-image easily. In Tsochantaridis et al.
(2004) kernels on sequences are chosen that are amenable to dynamic programming.
Although some methods for speeding up pre-image computations exist (Schölkopf
and Smola, 2002; Kwok and Tsang, 2004; Bakır et al., 2004), this remains a difficult
problem. In the following we describe some kernels which avoid complex pre-image
problems.

4.5.1 Tensor Product Kernels
kernels with
simple pre-images A kernel that does not encode any correlations can be obtained by using the product

JLINEAR((x,y), (x′,y′)) = K(x,x′)L(y,y′) = 〈ΦX(x), ΦX(x′)〉〈ΦY(y), ΦY(y′)〉,

where K and L are respectively kernels on the inputs and outputs. If K and L

are positive definite, then J will be, too; moreover, the associated feature space is
known to be the tensor product of the individual feature spaces.

An interesting special case is when L is a linear kernel. In that case

WLINEAR =
∑

i,y:‖yi−y‖≥ε

αiYΦX(xi)y

i − αiYΦX(xi)y
.

When dim(X) or dim(Y) are very large it can be more efficient to avoid the
calculation of W and calculate a test prediction directly:

WLINEARx =
∑

i,y:‖yi−y‖≥ε

αiYK(xi,x)y

i − αiYK(xi,x)y
.

Hence we avoid difficult pre-image problems in this case.

4.5.2 Diagonal Regularization

Consider the case where dim(X) = dim(Y), and it is known that one is looking for
a linear map where the true matrix W is close to the identity map. Slightly more
generally, one may know that the nth dimension of the input is correlated with
the nth dimension of the output. Instances of such problems include decoding mass



78 Joint Kernel Maps

spectrometry (mapping from observed to theoretical spectra) and image mapping
problems (deblurring, morphing, etc.). This correlation can be directly encoded:

JDIAG((x,y), (x′,y′)) = (1− λ)K(x,x′)〈y,y′〉+ λ
[ q∑

k=1

xkx′
kyky′

k

]
, (4.11)

where λ controls the amount of encoded correlation. If λ is large, then the nth
dimension in the input is presumed highly correlated with the nth dimension in the
output, and the similarity measure is dominated by these relationships. Algorithms
that minimize the Frobenius norm choose these dimensions as relevant, because
this regularizer gives these features larger weights. Furthermore, the solution is still
linear (does not require a pre-image) because we can write

WDIAGx = (1− λ)WLINEARx + λ
∑

i,y:‖yi−y‖≥ε

αiY[DIAG(xiy

i )−DIAG(xiy
)]x,

where D = DIAG(M) is a diagonal matrix with Dii = Mii.

4.5.3 Patchwise Correlation

The natural generalization of the previous kernel is when you know that the nth
dimension of the output is strongly correlated with a known set of dimensions in
the input; e.g., for mappings between images, one could know that a region in the
output image is strongly correlated with a region in the input image. This knowledge
can be encoded with the kernel

JPATCH((x,y), (x′,y′)) = (1− λ)K(x,x′)〈y,y′〉+ λ

|P|∑
k=1

[ ∑
p∈Pk

xpx′
p

∑
p∈Pk

ypy′
p

]
,

where P is the set of known correlated patches. This encodes patch correlation
between dimensions in x, between dimensions in y, and correlation between input
and output, i.e. between x and y.6 The evaluation on a test example can be
expressed as:

WPATCHx = (1 − λ)WLINEARx + λ
∑

i,y:‖yi−y‖≥ε

αiY[
|P|∑
k=1

Pk(xiy

i )−

|P|∑
k=1

Pk(xiy
)]x,

where P = Pk(M) is a matrix such that Pij = Mij if i ∈ Pk or j ∈ Pk (if i or j is
in the kth patch), or Pij = 0, otherwise.

6. One can introduce a weighting function over the patches, corresponding to the assump-
tion that the closer the pixels are, the more reliable is their correlation (cf. Schölkopf and
Smola (2002), Eq. (13.21)).



4.6 Experiments 79

4.6 Experiments

As said before, the JKM algorithm reduces to support vector classification and
regression for particular Y. We therefore only test our algorithm on regression
problems of multiple outputs, and show how employing joint kernels can benefit
in this case.

4.6.1 Artificial Problem: The Identity Map

We performed a first experiment on toy data to demonstrate the potential of the
approach. We chose a very simple problem: the input is xi ∈ Rp, each dimensionlearning the

identity drawn independently from a normal distribution of mean 0, standard deviation 1.
The output is the same as the input, yi = xi, i.e. the task is to learn the identity
map.

Table 4.1 Mean-squared error for different joint kernels encoding the identity map (first
three rows) compared to ridge regression (RR) and k-NN. Incorporating prior knowledge
in the joint kernel approach (λ > 0) improves generalization performance

dim(X) = dim(Y) 20 30 50 75 100

JKMDIAG (λ = 1) 0.00 0.00 0.01 0.02 0.02

JKMDIAG (λ = 0.5) 0.03 0.14 0.34 0.50 0.62

JKMDIAG (λ = 0) 0.06 0.40 0.78 1.00 1.14

RR (best γ) 0.06 0.43 0.82 1.07 1.21

k-NN (best k) 0.92 1.09 1.27 1.40 1.47

We compared k-nearest neighbor and ridge regression with our approach. For the
former (k-NN and RR) we chose the best possible parameters; for the latter (JKM)
we show the results for the identity-map regularizing joint kernel (4.11) for λ = 0,
1
2 , and 1, with ε = 0.5√

p . For λ = 0 the set of possible linear maps is free; for λ = 1
only linear maps that are diagonal matrices are considered.

The mean-squared error for p = 20, . . . , 100 features are given in table 4.1, with
20 examples for training and 100 for testing, averaged over 20 runs. A Wilcoxon
signed ranked test confirms that the two kernels with γ > 0 outperform the other
techniques. Further experiments adding noise to the dataset (not shown) yielded
similar conclusions. Figure 4.1 shows the number of active constraints (support
vectors) for varying output dimensions with training size 20 (left) and varying
training set sizes with output dimension 20 (right). The solutions are relatively
sparse (consider that dual ridge regression (Saunders et al., 1998) uses pm variables
for p outputs and m examples). Note that larger values of λ (where the capacity of
the set of functions is lower) have less active constraints.



80 Joint Kernel Maps

N
u
m

b
e
r 

o
f 
S

v
’s

Output Dimension

N
u
m

b
e
r 

o
f 
S

v
’s

Training Points

Figure 4.1 Number of active constraints (support vectors) on artificial data for varying
output dimension (left) and training set size (right).

4.6.2 Mass Spectrometry: Prediction of Peptides

An important application of protein mass spectrometry (MS) is to identify proteins
in a complex mixture, e.g. blood taken from a patient. In this technique, proteins
are ionized and transferred to the gas phase. Their mass-to-charge ratio can be
measured by directing them to an ion detector using an electric field, and this
measurement can be used to infer protein identity. In practice, the protein is first
dissolved into peptides using an enzyme. These peptides are of varying lengths
up to about 20 amino acids. The peptides are run through an MS device, further
fragmented, and subjected to a second MS analysis. The final result is one spectrum
per peptide, in which the x-axis is the mass-to-charge ratio (m/z) and the y-axis
reflects the abundance of subpeptides with the given m/z. This spectrum thus
contains information about the peptide sequence, and can be used to identify the
protein from which the peptide was cleaved.

The problem is, given such a spectrum, to infer the peptide that generated it.
Hence the problem is to map from a spectrum to a string. We used a dataset taken
from (Keller et al., 2002) with a training set of 290 spectra, and a test set of 1277
spectra.

Table 4.2 Test error (mean rank of true peptides) on the mass spectrometry problem

JKM− JKM−
PATCH LINEAR RR k-NN

(λ = 0.95) (λ = 0) (best γ) (best k)

Test error 10.98 40.7 29.6 49.7

±0.50 ±0.96 ±0.78 ±1.28



4.6 Experiments 81

INPUT OUTPUT JKMPATCH JKMLINEAR RR (best γ) k-NN (best k)

Figure 4.2 Prediction of smiling face given plain expression by joint kernel maps (patch
and linear) and ridge regression and k-NN. The large dimensionality means there are many
solutions with low empirical error; RR (after choosing the optimal regularization constant)
selects one that uses many (irrelevant) inputs due to its regularizer ||w||2 which favors
nonsparse solutions. Only the patch-kernel joint kernel map is successful, as the choice of
(joint) kernel limits the possible choice of functions to ones which are close to the identity
map.



82 Joint Kernel Maps

As stated before, JKM generalizes to the case of nonvectorial outputs via the
(joint) kernel trick, effectively defining an embedding space via the joint map.
For each peptide in our database the peaks that could be observed in a mass
spectrum are known, and are represented as 1000-dimensional vectors. Similarly,
the input (the observed spectra) is a vector of the same length. We therefore
use the diagonal regularization kernel (4.11) to encode the prior knowledge that
the input vector is a noisy variant of the output vector. The quality of a given
predictor is inversely proportional to the rank assigned to the true peptide in the
ranked output. We use this rank as our performance metric. Here, Y is the set
of known spectra in the database, |Y| = 1567, and ε = 0. As shown in table 4.2,
the diagonal kernel outperforms conventional regression techniques (RR and k-NN)
even when using their best choice of hyperparameters chosen using the testing set.
This preliminary result gives us a hint at the improvement one can get from both
encoding information about the known classes in the output space and via encoding
knowledge about the map. Note that using existing kernels such as the string kernels
used by Tsochantaridis et al. (2004) to represent the outputs would be unlikely to
improve this result, because then the joint representation with the inputs would
not be possible. We aim to more deeply explore this application in future work.

4.6.3 Image Mapping: Learning to Smile

We consider the problem of mapping from the image of a face with a plain expression
to an image of the same person smiling using images from the Max Planck Institute
(MPI) face database (Blanz and Vetter, 1999). We use 20 examples for training, and
50 for testing. The images are 156×176 = 27456 pixels. We selected a small number
of training examples because in this setting the weakness of existing methods was
further exposed.

We applied a joint kernel mapping using the tensor product (linear) kernel
(ε = 0.05) and the patchwise kernel with γ = 0.95, ε = 0.1 and patches of size
10 × 10 which overlap by 5 pixels. Training took 344 and 525 steps of adding
a single violating example for the linear and patch kernels, resulting in 150 and
162 support vectors, respectively. Again, we compared with conventional regression
techniques, choosing their best possible hyperparameters. A naive employment of
RR on this task fails, outputting a kind of “average” face image, independent of
the input (see figure 4.2). The large dimensionality means there are many solutions
with low empirical error; RR (after choosing the optimal regularization constant)
selects one that uses many (irrelevant) inputs due to its regularizer. Similarly, k-
NN cannot solve this problem well for small sample size. See figure 4.2 for example
images, and table 4.3 for mean-squared error rates comparing all these methods.
By way of comparison, the baseline of simply predicting the input image as the
output (the plain expression) gives a test error of 0.1823±0.003. The complete test
set can be viewed at the supplementary website.



4.7 Conclusions 83

Table 4.3 Test error on the smiling problem of the MPI face database

JKM− JKM−
PATCH LINEAR RR k-NN

(ε = 0.1) (ε = 0.05) (best γ) (best k)

Test error 0.142 0.227 0.222 0.244

Test error ±0.002 ±0.006 ±0.006 ±0.006

4.7 Conclusions

In this work we presented a general method of supervised learning via joint kernel
mappings, and showed how such kernels can encode certain regularization properties
which reflect prior knowledge in mappings. While the experiments shown here used
only simple types of joint kernels taking advantage of patchwise information, these
examples are only an instantiation of our approach, to show its validity and to bring
insight into why and how joint kernels are useful. Joint kernels are mainly useful
in cases where their pre-image is easily computable and are extendable to complex
outputs such as strings, trees, and graphs. Indeed, we believe the gain of joint
kernel methods is in employing such complex structured outputs that go beyond
standard classification and regression such as in parsing, machine translation, and
other applications. In those cases the difference between coding prior knowledge into
a joint kernel and using two separate kernels for input and output could potentially
be large, at least in the small sample size case. Although first studies in some of
these areas have been completed (Collins and Duffy, 2002; Tsochantaridis et al.,
2004), no study that we know of has yet directly compared this benefit.

Future work should also address issues of training efficiency, pre-images for more
complex nonlinear and structured kernels.

Acknowledgments

We thank Christian Wallraven for providing the MPI face data. We thank André
Elisseeff, Jan Eichorn, Olivier Chapelle, Arthur Gretton, Massimiliano Pontil, and
Thomas Hofmann for useful discussions.





5 Support Vector Machine Learning for

Interdependent and Structured

Output Spaces

Yasemin Altun, Thomas Hofmann, and Ioannis Tsochantaridis

5.1 Introduction

Supervised learning, one of the most important areas of machine learning, is
the general problem of learning a function that predicts the best value for a
response variable y for an observation x by making use of a sample of input-
output pairs. Traditionally, in classification, the values that y can take are simple,
in the sense that they can be characterized by an arbitrary identifier. However, in
many real-world applications the outputs are often complex, in that either there
are dependencies between classes (e.g. taxonomies used in document classification),
or the classes are objects that have some internal structure such that they describe
a configuration over interdependent components (e. g. sequences, parse trees). For
such problems, which are commonly called structured output prediction problems,
standard multiclass approaches render ineffective, since the size of the output space
is very large (e.g. the set of label sequences scale exponentially with the length of the
input sequence). More importantly, it is crucial to capture the common properties
that are shared by the set of classes in order to generalize across classes as well as
to generalize across input patterns.

In this chapter, we approach the structured output prediction problems by gen-
eralizing a multiclass support vector machine (SVM) formulation by Crammer and
Singer (2001) to the broad problem of learning for interdependent and structured
outputs. To that extent, we specify discriminant functions that exploit the de-
pendencies and structure of outputs. This framework enables generalization across
classes and prediction of classes that may not have been observed in the training
set. We provide the details of this framework for three important special cases,
namely hierarchical classification, label sequence learning, and weighted context-
free grammar learning.

The standard 0-1 cost function is not adequate to capture the differences between
classes in interdependent and structured output spaces. More sophisticated cost



86 Support Vector Machine Learning for Interdependent and Structured Output Spaces

functions such as Hamming loss and F1 score are common in practice, for example
for sequence and parse trees. We generalize the separation margin notion for
structured outputs and device max-margin formulations that directly incorporate
the cost functions that the classifier is evaluated on. These formulations result
in a potentially prohibitive, more specifically exponential, number of constraints.
However, exploiting the sparsity and the (de-)coupling of these constraints, we
present a cutting-plane algorithm that is guaranteed to satisfy the exponential
number of constraints up to an ε-precision without evaluating them explicitly.

We empirically evaluate our approach in document classification as an instance of
hierarchical classification, named entity recognition as an instance of label-sequence
learning, and natural language parsing as an instance of learning weighted context-
free grammars. Experimental results show that our framework is advantageous over
the more standard approaches in terms of the cost function on which the classifiers
are evaluated.

5.2 A Framework for Structured/Interdependent Output Learning

We are interested in the task of inferring a complex label y ∈ Y for a (possi-
bly structured) observation x ∈ X. Given a sample of input-output pairs S =
{(x1,y1), . . . , (xn,yn)} generated from an unknown distribution P , the goal is to
learn a mapping f : X→ Y between input spaces X and interdependent/structured
output spaces Y. Hence, it is a generalization of the supervised classification prob-
lem where values of the random variables are predicted not only with respect to
observations but also with respect to the values of other related random variables.

The prediction function f is evaluated according to a cost function : Y×Y→ !,
which measures the similarity between two labels. We focus on cost functions where
 (y,y) = 0 and  (y,y′) ≥ 0,y �= y′. For example, 0-1 loss, Hamming loss, and
1−F1 loss are the canonical cost functions of multiclass classification, label sequence
learning, and parsing, respectively. The goal of learning a function that minimizes
the cost over the unknown P is commonly approximated by learning a function
that minimizes the empirical cost

R
�
S (f) =

1
n

n∑
i=1

 (yi, f(xi)). (5.1)

In general, minimizing this cost on the sample is NP-complete. Following the usual
practice in machine learning, we investigate optimizing surrogate functions of the
empirical cost.

In structured and interdependent output prediction, two factors make it essential
to generalize across sets of labels as well as to generalize across input patterns.
First, in most cases, the very large size of the label sets renders any learning that
is independent over class labels intractable. More importantly, capturing common
properties shared by sets of labels enables us to use data points across classes, and



5.2 A Framework for Structured/Interdependent Output Learning 87

even generalize to class labels that are not observed in the sample but likely to occur
as the label of a new observation. Therefore, the standard approach of multiclass
classification, i.e. learning a function Fy : X→ ! for each class independently and
inferring the label of an observation by maximizing Fy(x) over all labels, is not
appropriate for this setting. We define a discriminant function F : X× Y→ ! over
the joint input-output space where F (x,y) can be interpreted as measuring the
compatibility of x and y. Each such function F induces a mapping f ,F (x,y) measures

compatibility
f(x) = argmax

y∈Y
F (x,y;w), (5.2)

where w denotes a parameter vector and ties are broken arbitrarily. We restrict the
space of F to linear functions over some feature representation Ψ, which is defined
on the joint input-output space

F (x,y;w) = 〈w, Ψ(x,y)〉.

Ψ is chosen with respect to the dependency structure of y and x and commonalities
within y’s in order to enable generalization across labels. Before we present several
interesting special cases, we need some definitions. We define the canonical (binary)
representation of outputs y ∈ Y = {1, . . . , k} by unit vectors

Λc(y) ≡ (δ(y, 1), δ(y, 2), . . . , δ(y, k))′ ∈ {0, 1}k,

so that 〈Λc(y), Λc(y′)〉 = δ(y, y′). Let the tensor product ⊗ and the concatenation
" be defined as

⊗ :!d ×!k → !dk, [a⊗ b]i+(j−1)d ≡ [a]i[b]j ,

" :!d ×!k → !d+k, a" b ≡ (a′,b′)′.

The following proposition states that feature representations derived from " and
⊗ operations, such as all the joint feature maps Ψ defined in this chapter, are
induced by valid kernels.

Proposition 33 Let Φ and Φ̄ be feature representations induced by kernels k, k̄

over X × X, X̄ × X̄ respectively (i. e. k(a, ā) = 〈Φ(a), Φ(ā)〉). Then, for any
a, ā ∈ X, b, b̄ ∈ X̄, Φ⊗ Φ̄ and Φ" Φ̄ are induced by kernels k⊗, k� where

k⊗((a, b), (ā, b̄)) = k(a, ā)k̄(b, b̄), (5.3)

k�((a, b), (ā, b̄)) = k(a, ā) + k̄(b, b̄). (5.4)

concatenation
and tensor
product lead to
valid kernels

Proof The claims follow from the definitions of " and ⊗ operations and from the
fact that sums and pointwise products of two kernels are also kernels (Schölkopf and
Smola, 2002).



88 Support Vector Machine Learning for Interdependent and Structured Output Spaces

For the rest of this section, we assume the existence of an arbitrary feature
representation of the inputs, Φ(x) ∈ !d, and a kernel function k that induces
Φ.

It is easy to see that multiclass classification is a special case of our framework
where Y = {1, . . . , k}. Let the weight vector w be a concatenation of all wr, with
wr being a weight vector associated with the rth class, w = w1"· · ·"wk. Defining
the joint feature map is given by Ψ(x, y) ≡ Φ(x) ⊗ Λc(y), resulting in the familiar
multiclass discriminant function F (x, y;w) = 〈wy, Φ(x)〉.

Let us now examine more interesting special cases.

5.2.1 Hierarchical Classification

In many applications, such as document classification and word sense disambigua-
tion, taxonomies and hierarchies are natural ways to organize classes of objects.
These problems are instances of interdependent output spaces where the feature
representation is defined as follows: Let a taxonomy be a set of elements Z ⊇ Y

equipped with a partial order ≺, which can be by a tree or a lattice, and let
β(y,z) ∈ ! be a measure of similarity with respect to the partial order ≺. We
generalize the canonical representation of outputs to Λ(y) ∈ !p, such that for all
z ∈ Z

λz(y) =

{
β(y,z) if y ≺ z or y = z

0 otherwise
.

Then, defining the joint input-output feature map via the tensor product,

Ψ(x, y) = Φ(x)⊗ Λ(y),

effectively introduces a weight vector wz for all z ∈ Z, i.e. for every node in the
hierarchy. A simple derivation shows that the weight vector of a class is a linear
combination of its processors’ weights, and the discriminant is given by

F (x, y;w) =
∑

z:y≺z or z=y

β(y, z) 〈wz, Φ(x)〉 .

Thus, the features λz are shared by all successor classes of z and the joint feature
representation enables generalization across classes. Figure 5.1 shows an examplesharing features

in taxonomies of the joint feature map Ψ of the second class for a given hierarchy. It follows
immediately from (5.3) of proposition 33 that the inner product of the joint feature
map decomposes into kernels over input and output spaces

〈Ψ(x, y), Ψ(x′, y′)〉 = 〈Λ(y), Λ(y′)〉 k(x,x′).



5.2 A Framework for Structured/Interdependent Output Learning 89

9

6 7

10

1 2 3 4 5

8

〈w, Ψ(x, 2)〉 = 〈w2,x〉+ 〈w6,x〉+ 〈w9,x〉
Figure 5.1 Classification with taxonomies.

5.2.2 Label Sequence Learning

Label sequence learning is the task of predicting a sequence of labels y = (y1, . . . , yl)
for a given observation sequence x = (x1, . . . ,xl). Applications of this problem are
ubiquitous in many domains such as computational biology, information retrieval,
natural language processing, and speech recognition. We denote by lx the length of
an observation sequence, by Σ the set of possible labels for each individual variable
yt, and by Y(x) the set of label sequences for x. Then, Y(x) = Σlx .

In order to encode the dependencies of the observation-label sequences which
are commonly realized as a Markov chain, we define Ψ to include interactions
between input features and labels (Φ(xt)⊗Λc(yt)), as well as interactions betweenencoding

neighbor
correlation

neighboring label variables (Λc(yt)⊗Λc(yt+1)) for every position t. Then, using the
stationary property, our joint feature map is a sum over all positions,

Ψ(x,y) =

[
lx∑

t=1

Φ(xt)⊗ Λc(yt)

]
"
[
η

lx−1∑
t=1

Λc(yt)⊗ Λc(yt+1)

]
, (5.5)

where η ≥ 0 is a scalar balancing the two types of contributions. Clearly, this repre-
sentation can be generalized by including higher-order interdependencies of labels
(e. g. Λc(yt)⊗Λc(yt+1)⊗Λc(yt+2)), by including input features from a window cen-
tered at the current position (e. g. replacing Φ(xt) with Φ(xt−r, . . . ,xt, . . . ,xt+r)),
or by combining higher-order output features with input features (e. g.

∑
t Φ(xt)⊗

Λc(yt) ⊗ Λc(yt+1)). The important constraint on designing the feature map is theefficiency
efficient computation of the discriminant function, which in the case of (5.5) is given
by

F (x,y;w) =

〈
wol,

lx∑
t=1

Φ(xt)⊗ Λc(yt)

〉
+ η

〈
wll,

lx−1∑
t=1

Λc(yt)⊗ Λc(yt+1)

〉
,

(5.6)

where w = wol "wll is the concatenation of weights of the two dependency types.



90 Support Vector Machine Learning for Interdependent and Structured Output Spaces

S

The dog

DET N

NP

chased

V

VP

the

NP

DET N

cat

The dog chased the cat x:

y:

f X: Y

Ψ(x,y) =

1

0

2

1
...

0

2

1

1

1

S → NP VP

S → NP

NP → Det N

VP → V NP
...

Det → dog

Det → the

N → dog

V → chased

N → cat

Figure 5.2 Natural language parsing.

As indicated in proposition 33, the inner product of the joint feature map
decomposes into kernels over input and output spaces,

〈Ψ(x,y), Ψ(x′,y′)〉 =
lx∑

t=1

lx′∑
s=1

δ(yt, ȳs)k(xt, x̄s) + η2
lx−1∑
t=1

lx′−1∑
s=1

δ(yt, ȳs)δ(yt+1, ys+1),

(5.7)

where we used the equality 〈Λc(σ), Λc(σ̄)〉 = δ(σ, σ̄).

5.2.3 Weighted Context-Free Grammars

Parsing is the task of predicting a labeled tree y that is a particular configuration
of grammar rules generating a given sequence x = (x1, ..., xl). Let us consider a
context-free grammar in Chomsky normal form. The rules of this grammar are of
the form σ → σ′σ′′, or σ → x, where σ, σ′, σ′′ ∈ Σ are nonterminals, and x ∈ T are
terminals. Similar to the sequence case, we define the joint feature map Ψ(x, y) to
contain features representing interdependencies between labels of the nodes of the
tree (e.g. ψσ→σ′σ′′ via Λc(yrs) ⊗ Λc(yrt) ⊗ Λc(y(t+1)s)) and features representing
the dependence of labels to observations (e.g. ψσ→τ via Φc(xt)⊗ Λc(yt)). Here yrs

denotes the label of the root of a subtree spanning from xr to xs. This definition
leads to equations similar to (5.5), (5.6), and (5.7). Extensions to this representation
are possible, for example by defining higher-order features that can be induced using
kernel functions over subtrees (Collins and Duffy, 2002).

5.3 A Maximum-Margin Formulation

We propose a maximum-margin approach for the problem of learning in structured
and interdependent output spaces. We first generalize the multiclass separation



5.3 A Maximum-Margin Formulation 91

margin of Crammer and Singer (2001), where the margin of an instance (x,y) with
respect to w is given by

γ(x,y;w) = F (x,y;w) − max
y′∈Y\y

F (x,y′;w).

Then, the maximum-margin problem can be defined as finding the weight vector w
that maximizes the minimum margin of the sample, mini γ(xi,yi). If the data are
separable (γ > 0), there exist multiple solutions to this problem, since the margin
can be made arbitrarily large by scaling w. This can be resolved by fixing either
the norm of w (e.g.‖w‖ = 1) or the margin (e.g. mini γ(xi,yi) ≥ 1). Following the
latter, we have a constraint optimization problem:

SVM0 : min
w

1
2
‖w‖2

s.t. F (xi,yi;w)− max
y∈Y\yi

F (xi,y;w) ≥ 1, ∀i.

In order to accommodate for margin violations, we generalize this formulation
by introducing linear penalties that are scaled according to the cost incurred by
misclassification. Intuitively, violating a margin constraint involving a y �= yi with
high loss  (yi,y) should be penalized more severely than a violation involving an
output value with smaller loss. This can be accomplished by multiplying the margin
violation, given by (1− 〈w, δΨi(y)〉) where δΨi(y) = Ψ(xi,yi)−Ψ(xi,y)), by the
cost

SVM�s
1 : min

w,ξξξ

1
2
〈w,w〉 + C

n

n∑
i=1

ξi (5.9a)

s.t. max
y∈Y\yi

[ (yi,y)(1 − 〈w, δΨi(y)〉)] ≥ 1− ξi ∀i. (5.9b)

Here C > 0 is a constant controlling the tradeoff between the loss and the
regularizer. Note that SVM�s

1 can also be stated without constraints via a hinge
loss function,

SVM�s
1 : min

w

1
2
‖w‖2 +

C

n

n∑
i=1

max
y∈Y\yi

[ (yi,y)(1 − 〈w, δΨi(y)〉)+] , (5.10)

where (a)+ = max(0, a) denotes the hinge loss. It is easy to show that SVM�s
1 is a

surrogate of the empirical cost (5.1).

Proposition 34 Let w∗ be the optimal solution to SVM�s
1 . Then, the empirical

risk R
�
S (w∗) is upper-bounded by 1

n

∑n
i=1 maxy �=yi [ (yi,y)(1 − 〈w∗, δΨi(y)〉)+].

Proof If f(xi;w∗) = yi then  (yi, f(xi;w)) = 0 and the bound holds trivially.
If ŷ ≡ f(xi;w∗) �= yi, then maxy �=yi [ (yi,y)(1 − 〈w∗, δΨi(y)〉)+] ≥  (yi,y),
because 〈w∗, δΨi(y)〉 < 0. Since the bound holds for every training instance, it also
holds for the average.



92 Support Vector Machine Learning for Interdependent and Structured Output Spaces

A similar optimization problem can be given by the squared hinge loss, or equiva-
lently by the squared penalties on the slack variable This loss, which we denote by
SVM�s

2 , is also an upper bound on the empirical cost R
�
S (w).

5.3.1 Optimizing the Primal Problem

By specifying the class of discriminant functions F to be the reproducing kernel
Hilbert space (RKHS) associated with the kernel k, where k((x,y), (x̄, ȳ)) =
〈Ψ(x,y), Ψ(x̄, ȳ)〉, it is easy to show that SVM�s

1 (5.10) is an instance of a more
general optimization problem given by

F ∗ = argmin
F∈H

n∑
i=1

L(xi, yi, F ) + λ‖F‖2H,

where L is a convex loss function. The well-known representer theorem (Kimeldorf
and Wahba, 1971) states that the solution F ∗ lies in the span of data points, in
this case (xi,y) for all xi ∈ S and y ∈ Y(x). Under fairly mild conditions, one can
show that this space can be further reduced to the span of the substructures of the
data points, via a straightforward variant of the representer theorem which was also
presented in Lafferty et al. (2004) and Altun et al. (2006). Let C(x,y) be the set of
assignments of all subcomponents of (x,y). For example, if (x,y) corresponds to adecomposition of

F (x,y) Markov random field, C(x,y) is given by the clique assignments. Furthermore, let
C(S) = ∪x∈S,y∈Y(x)C(x,y). If the discriminant F (x,y) decomposes into a function
h defined over the subcomponents of (x,y) and the loss L is local in the sense that
L(x,y, F ) is determined by the values of h over the set C(x), F ∗ can be represented
over C(S).

Theorem 35 For any local loss function L and any sample S, there exist some
weights αc, ∀c ∈ C(S) such that F ∗ admits a representation of the form

F ∗(x,y; α) =
∑

c∈C(x,y)

h∗(c; α),

h∗(c; α) =
∑

c′∈C(S)

αck̃(c, c),

where the kernel function k̃ is defined so that h(c) =
〈
h, k̃(c, .)

〉
.



5.3 A Maximum-Margin Formulation 93

Note that since all joint feature maps Ψ(x,y) considered in section 5.2 decom-
pose into subcomponents of (x,y), the corresponding F and the margin losses,
SVM�s

1 and SVM�s
2 , satisfy the conditions in theorem 35. Then, we can reformal-

ize SVM�s
1 as an optimization problem over α:primal problem

min
α,ξi(α)

1
2

∑
c,c′∈C(S)

αcαc′k(c, c′) +
C

n

n∑
i=1

ξi(α)

s.t. max
y∈Y\yi

[ (yi,y)(1 + F (xi,y; α) − F (xi,yi; α)] ≥ 1− ξi(α) ∀i. (5.11)

This gives a convex program over the vectors indexed by C(S), which scales
polynomially in terms of the size of the output variables. Every one of the nonlinear
inequalities (5.11) implicitly represents exponentially many linear constraints given
by

∀i,∀y ∈ Y \ yi :  (yi,y)(1 + F (xi,y; α)− F (xi,yi; α)) ≥ 1− ξi(α). (5.12)

If one can perform the max operation in (5.11) via a polynomial time dynamic
programming (DP) algorithm, then there exist a polynomial number of constraints
that satisfy (5.12). Each such constraint involves a cost variable C, which is
coupled within instances xi and upper-bounded by ξi. The resulting optimization
problem, which is closely related to the factored primal of Taskar et al. (2004b),
is a polynomial-sized quadratic program (QP) with polynomial number of highly
coupled constraints. Unfortunately, this coupling prohibits the use of decomposition
methods such as sequential minimal optimization (Platt, 1999) and may render the
optimization intractable for large datasets. In the next section, we present a method
for optimizing the dual problem which benefits the decomposition methods.

5.3.2 Dual Problem

Using the standard Lagrangian techniques, i.e., introducing a Lagrange parameter
α(iy) enforcing the margin constraint for label y �= yi and input xi, writing out the
Lagrangian, differentiating it with respect to the primal parameters w and ξ, and
substituting the optimality equations of the primals into the Lagrangian results, in
a dual QP. Let k((xi,y), (xj , ȳ)) = 〈δΨi(y), δΨj(ȳ)〉 denote the kernel function.1

Then, the QP of SVM�s
1 and SVM�s

2 is given in the following proposition.

1. Note that k can be computed from the inner products involving values of Ψ due to the
linearity of the inner product, and is a valid kernel.



94 Support Vector Machine Learning for Interdependent and Structured Output Spaces

Proposition 36 The dual problem to SVM�s
1 and SVM�s

2 is given by the program
dual problem

ααα∗ = argmax
ααα

−1
2

∑
i,j

∑
y �=yi,ȳ �=yj

α(iy)α(jȳ)k((xi,y), (xj , ȳ)) +
∑

i

∑
y �=yi

α(iy), (5.13)

s. t. ααα ≥ 0,

where SVM�s
1 has additional box constraints

∑
y �=yi

α(iy)

 (yi,y)
≤ C

n
, ∀i = 1, . . . , n

and SVM�s
2 has a modified kernel function

k((xi,y), (xj , ȳ)) = 〈δΨi(y), δΨj(ȳ)〉+ nδij

C
√ (yi,y)

√ (yj , ȳ)
. (5.14)

The optimality equation of w is given by

w∗ =
∑

j

∑
y

αt
(jy)δΨj(y). (5.15)

5.4 Cutting-Plane Algorithm

The main computational challenge in optimizing (5.13) is posed by the extremely
large number of variables (n|Y| − n). If Y is a product space, its cardinality grows
exponentially in the size of y, for instance in sequences of length l, |Y| = |Σ|l,
rendering the optimization of (5.13) by standard quadratic programming solvers
intractable. The max-margin problem in structured-output prediction has two
properties that can be exploited for efficient optimization. First, we expect only aefficient

implementation very small fraction of the constraints (and therefore a small number of parameters)
to be active, due to the hinge loss but more importantly due to the overlap of
information among classes represented via the joint feature map. The analysis of
sparsity is presented in section 5.4.2. Secondly, the constraint matrix is (at least)
block diagonal (diagonal for the SVM�s

2 variant), resulting in dual variables to be
coupled only within a block of variables associated with the same training instance.

We propose a general cutting-plane algorithm (Kelley, 1960) for cost-sensitive
SVMs. This algorithm exploits the above-mentioned properties of the maximum-
margin problem, so that only a small number of constraints are examined explicitly
and a small-size QP is solved at each iteration of the algorithm. In a nutshell, the
algorithm starts with no constraints (which corresponds to the most relaxed version
of the primal) and iteration adds constraints via a variable selection approach in
the dual formulation leading to tighter relaxations.

Pseudocode of the algorithm is depicted in algorithm 5.1. The algorithm main-
tains working sets Si for each instance to keep track of the selected constraints which



5.4 Cutting-Plane Algorithm 95

Algorithm 5.1 Cost-sensitive support vector machines (SVM�s
1 and SVM�s

2 )

1: input: (x1,y1), . . . , (xn,yn), C, ε

2: output: ααα

3: Si ← ∅ for all i = 1, . . . , n

4: repeat
5: for i = 1, . . . , n do

6: H(y) ≡
{

(1− 〈δΨi(y),w〉) (yi,y) (SVM�s
1 )

(1− 〈δΨi(y),w〉)√ (yi,y) (SVM�s
2 )

where w ≡∑j

∑
y′∈Sj

α(jy′)δΨj(y′).
7: compute ŷ = arg maxy∈Y H(y)
8: compute ξi = max{0, maxy∈Si H(y)}
9: if H(ŷ) > ξi + ε then
10: Si ← Si ∪ {ŷ}
10a: /* Variant (a): perform full optimization */

αS ← optimize the dual of SVM�s
1 or SVM�s

2 over S, S = ∪iSi

10b: /* Variant (b): perform subspace ascent */
αSi ← optimize the dual of SVM�s

1 or SVM�s
2 over Si

13: end if
14: end for
15: until no Si has changed during iteration

define the current relaxation. Iterating through the training examples (xi,yi), the
algorithm finds the (potentially) “most violated” constraint of xi, involving some
output value ŷ. If the scaled margin violation of this constraint exceeds the current
value of ξi by more than ε, the dual variable corresponding to ŷ is added to the
working set, leading to the cutoff of the current primal solution from the feasible set
(see figure 5.3). Once a constraint has been added, the QP is solved with respect to
S or Si (leading to smaller QP problems) depending on the ratio of the complexity
of the constraint selection in step 7 and the complexity of solving the relaxed QP.
Since at each iteration only one constraint is added, it is possible to initialize the
QP solver to the current solution, which greatly reduces the runtime. If ŷ satisfies
the soft-margin constraint up to ε precision, it implies that the rest of constraints
are approximately satisfied as well and no further improvement is necessary for xi.

Due to the generality of the algorithm, by implementing the feature mapping
Ψ(x,y) (either explicit or via a joint kernel function), the cost function  (y,y′),
and the maximization in step 7 accordingly, one achieves a max-margin classifier
for all the special cases considered in section 5.2 as well as others such as string-to-
string matching.



96 Support Vector Machine Learning for Interdependent and Structured Output Spaces

Figure 5.3 Cutting-plane algorithm. Successive steps of the cutting-plane algorithm. In
the first step no constraints have been added (no shading); w0 = 0 is the current solution.
a) Second step: the (potentially) most violated constraint has been added. It cuts off the
current solution w0 from the feasible region (shaded). b) Third step: one more violated
constraint is added, and the new solution is computed. c) Fourth step: the process is
repeated until there are no more violating constraints.

5.4.1 Finding Most Violated Constraint

We now describe efficient algorithms to compute the maximization in step 7 of
algorithm 5.1. Note that the crucial computation involves finding

argmax
y �=yi

 (y,yi)F (xi,y), (5.16)

since the other terms computed by simple operations. There exist well-known DP
algorithms for finding argmaxy F (x,y) for various dependency structures, such
as the Viterbi algorithm for sequences and the Cocke-Younger-Kasami (CKY)
algorithm for parsing (Manning and Schütze, 1999). When  is 0/1 loss, (5.16) can
be found by modifying these algorithms to find the n-best labeling of an observation,
for n = 2 (Schwarz and Chow, 1990). In cases where  (yi, ·) only takes on a
finite number of values, a generic strategy is a two-stage approach, where one first
computes the maximum over those y for which the cost  (yi,y) is constant, and
then maximizes over the finite number of levels. However, this strategy can scale the
computational complexity by the size of y (e.g. when the cost is the Hamming loss).
We now present the recursion rules of a simple modification of the DP algorithms
to compute (5.16) for Hamming loss and 1−F1 score. The resulting algorithms are
as efficient as the original DP algorithm (up to a small constant). This approach
can easily be generalized to any cost function that decomposes into factors that are
linear in the cost of subcomponents of y.

Note that the Hamming loss is given by  (y, ȳ) =
∑T

t=1 δ̄(yt, ȳt), where yt

denotes the tth component of y (e.g. tth position in a sequence of length T ) and
δ̄(a, b) equals 0 if a = b and 1 otherwise. Let c(t, σ, σ′;w) be the local contribution
of assigning σ to the tth component with respect to w given the previous variable
assignments σ′. Suppressing the dependence on yi and w, the recursive rules are



5.4 Cutting-Plane Algorithm 97

pre-images via
dynamic
programming

given by

St(σ) = max
σ′

(
St−1(σ′) + δ̄(yt

i , σ)Ft−1(σ′) + c(t, σ, σ′)[Dt−1(σ′) + δ̄(yt
i , σ)]

)
At(σ) = argmax

σ′

(
Tt−1(σ′) + δ̄(yt

i , σ)Ft−1(σ′) + c(t, σ, σ′)[Dt−1(σ′) + δ̄(yt
i , σ)]

)
Dt(σ) = Dt−1(At(σ)) + δ̄(yt

i , σ)

Ft(σ) = Ft−1(At(σ)) + c(t, σ, At(σ)).

where all the variables at t = 0 is 0. Then, the best labeling is achieved by
reconstructing the path from A via argmaxσ ST (σ) in reverse direction.

Note that the F1 score, which is the harmonic mean of precision and recall,
is given by  (y, ȳ) = 2a/(p + o), where a is the number of correctly predicted
subcomponents, p is the number of predicted subcomponents, and o is the number
of correct subcomponents. Define ĉ such that ĉ(t, σ, σ′) = 1 if labeling the tth
component with σ increases the number of predicted components given previous
labeling σ′ and 0 otherwise. Then the recursive rules are given by

Rt(σ) = max
σ′

[
Rt−1(σ′) + c(t, σ, σ′)

(
1− 2

Dt(σ)
Nt(σ) + o

)
+ 2

Ft−1(σ′)
Nt(σ) + o

V

]

At(σ) = argmax
σ′

[
Rt−1(σ′) + c(t, σ, σ′)

(
1− 2

Dt(σ)
Nt(σ) + o

)
+ 2

Ft−1(σ′)
Nt(σ) + o

V

]
Dt(σ) = Dt−1(At(σ)) + δ(yt

i , σ)

Ft(σ) = Ft−1(At(σ)) + c(t, σ, At(σ))

Nt(σ) = Nt−1(At(σ)) + ĉ(t, σ, At(σ)).

where V = Dt−1(σ′)ĉ(t,σ,σ′)
Nt−1(σ′)+o −δ(σ, yt

i). The best labeling is achieved by reconstructing
the path from A via argmaxσ RT (σ) in the reverse direction.

5.4.2 Analysis

We now show that algorithm 5.1 computes arbitrary close approximations to SVMs
by evaluating only a polynomial number of constraints so that the exponentially
many constraints are guaranteed to be satisfied up to an ε-precision without explicit
evaluation. We start by providing lower bounds of the improvements in SVM�s

2 and
SVM�s

1 at each iteration of algorithm 5.1. The proof can be found in the appendix.

Proposition 37 Let  i ≡ maxy{ (yi,y)} and Ri ≡ maxy{‖δΨi(y)‖}. The dual
objective improves by at least

1
2

ε2

 iR2
i + n

C

and min
{

Cε

2n
,

ε2

8 2
i R

2
i

}
(5.19)

in step 10 of algorithm 5.1 for SVM�s
2 and SVM�s

1 respectively.



98 Support Vector Machine Learning for Interdependent and Structured Output Spaces

Theorem 38 With R̄ = maxi Ri,  ̄ = maxi i and for a given ε > 0, algorithm
5.1 terminates after incrementally adding at most

max
{

2n ̄
ε

,
8C̄3R̄2

ε2

}
, and

C̄2R̄2 + n ̄
ε2

(5.20)

constraints to the working set S for the SVM�s
1 and SVM�s

2 respectively.

Proof With S = ∅ the optimal value of the dual is 0. In each iteration a constraint
(iy) is added that is violated by at least ε, provided such a constraint exists. After
solving the S-relaxed QP in step 10, the objective will increase by at least the
amounts suggested by proposition 37. Hence after t constraints, the dual objective
will be at least t times these amounts. The result follows from the fact that the
dual objective is upper-bounded by the minimum of the primal, which in turn can
be bounded by C ̄ and 1

2C ̄ for SVM�s
1 and SVM�s

2 respectively.

To make the bounds more concrete, let us now examine how R is bounded for
the special cases studied in section 5.2. For hierarchical classification, we define
ri ≡ ‖Φ(xi)‖ and S ≡ maxy∈Y ‖Λ(y)‖. Using proposition 33 and simple derivation,
we can show that ‖Ψ(xi, y)−Ψ(xi, y

′)‖2 is upper-bounded by

2〈Ψ(xi, y), Ψ(xi, y)〉 = 2‖Φ(xi)‖2‖Λ(y)‖2 ≤ 2r2
i S

2. (5.21)

For label sequence learning, we define ri ≡ maxt ‖Φ(xt
i)‖ and l = maxi lxi . Then

‖Ψ(xi,y)−Ψ(xi,y′)‖2 is upper-bounded by

2‖
∑

t

Φ(xt
i)⊗ Λc(yt)‖2 + η2‖

∑
t

Λc(yt)⊗ Λc(yt+1)‖2 ≤ 2l2(R2
i + η2). (5.22)

In parsing, a sequence x of length l has l − 1 internal and l preterminal nodes.
Thus, ‖Ψ(x,y)‖1 = 2l−1. Then, ‖Ψ(x,y)−Ψ(x,y′)‖2 ≤

√
4l2 + 4(l − 1)2 < 2

√
2l.

5.5 Alternative Margin Formulations

In addition to the margin approaches of SVM�s
1 and SVM�s

2 , a second way to
incorporate the cost function into the optimization problem is to rescale the margin
as proposed by Taskar et al. (2004b) for the special case of the Hamming loss,

SVM�m
1 : min

w

1
2
‖w‖2 +

C

n

n∑
i=1

max
y∈Y\yi

( (yi,y)− 〈w, δΨi(y)〉)+.

SVM�m
2 can be defined similarly with the squared hinge loss. Both SVM�m

1 and
SVM�m

2 are upper bounds on R
�
S (w∗). Dynamic programming algorithms similar

to ones in section 5.4.1 can be given to compute

max
y∈Y\yi

( (yi,y)− 〈w, δΨi(y)〉 , (5.23)



5.6 Experiments 99

Table 5.1 Results on the WIPO-alpha corpus. “flt” is a standard (flat) SVM multiclass
model, “tax” the hierarchical architecture. “0/1” denotes training based on the classifica-
tion loss, “�” refers to training based on the tree loss

flt 0/1 tax 0/1 flt  tax  
4 training instances per class (3-fold x-val)

acc 28.32 28.32 27.47 29.74 +5.01 %

 -loss 1.36 1.32 1.30 1.21 +12.40 %

2 training instances per class(5-fold x-val)

acc 20.20 20.46 20.20 21.73 +7.57 %

 -loss 1.54 1.51 1.39 1.33 +13.67 %

and algorithm 5.1 can be used for these formulations simply by changing line 6. An
advantage of SVM�s

1 over SVM�m
1 is its scaling invariance.

Proposition 39 Suppose  ′ ≡ η with η > 0, i.e.  ′ is a scaled version of the
original loss  . Then the optimal weight vector w∗ for SVM�′s

1 is also optimal for
SVM�s

1 and vice versa, if we rescale C′ = C/η.

Proof If w is fixed in SVM�s
1 and SVM�′s

1 , then the optimal values for ξ∗i in each
of the problems are related to one another by a scale change of η. By scaling C with
the inverse of η, this effectively cancels.

This is not the case for SVM�m
1 . One needs, for example, to rescale the feature

map Ψ by a corresponding scale factor as well, which seems to indicate that one has
to calibrate the scaling of the loss and the scaling of the feature map more carefully
in the SVM�m

1 formulation.
More importantly, SVM�m

1 can potentially give significant weight to output
values y ∈ Y that are not even close to being confusable with the target values
yi, i. e. F (xi,yi)−F (xi,y) might be large but smaller than  (yi,y). SVM�m

1 , on
the other hand, only depends on y for which F (xi,yi)−F (xi,y) ≤ 1, i. e. outputs
only receive a relatively high discriminant score.

5.6 Experiments

We present experiments on hierarchical classification, label sequence learning, and
parsing, reported in Tsochantaridis et al. (2005).

5.6.1 Hierarchical Classification

Experiments were performed using a 1710-document subsample of the World In-
tellectual Property Organization (WIPO)-alpha document collection. The title and



100 Support Vector Machine Learning for Interdependent and Structured Output Spaces

Table 5.2 Results of various algorithms on the named entity recognition task

Method HMM CRF Perceptron SVM

Error 9.36 5.17 5.94 5.08

Table 5.3 Results of various joint kernel SVM formulations on NER

SVM2 SVM�s
2 SVM�m

2

Test Err 5.1±0.6 5.1±0.8 5.1±0.7

Const 2824±106 2626±225 2628±119

claim tags were indexed. Document parsing, tokenization, and term normalization
have been performed with the MindServer retrieval engine.2 The cost function  
is the height of the first common ancestor of the arguments y, y′ in the taxonomy.
Results in table 5.1 show that the proposed hierarchical SVM learning architecture
improves the performance over the standard multiclass SVM in terms of classifica-
tion accuracy as well as in terms of the tree loss.

5.6.2 Label Sequence Learning

We performed experiments on a named entity recognition (NER) problem using
fivefold crossvalidation on a 300-sentence subcorpus of the Spanish newswire ar-
ticle corpus provided by CoNLL2002. The label set consists of nonname and the
beginning and continuation of person names, organizations, locations, and miscel-
laneous names, resulting in a total of nine different labels, i.e. |Σ| = 9 . The joint
feature map Ψ(x,y) is the histogram of label-label interactions plus a set of fea-
tures describing the observation-label interactions. For both perceptron and SVM,
a second-degree polynomial kernel was used. No special tuning was performed, and
C was set to 1 and ε to 0.01. The cost function is given by the Hamming distance.
Results given in table 5.2 for the zero-one loss, where we compare the generative
hidden Markov model (HMM) with conditional random fields (CRF) (Lafferty et al.,
2001), perceptron (Collins, 2002), and the joint kernel SVM algorithm. All discrim-
inative learning methods substantially outperform the standard HMM. In addition,
the SVM performs slightly better than the perceptron and CRFs, demonstrating
the benefit of a large-margin approach. Table 5.3 shows that all joint kernel SVM
formulations perform comparably, probably due to the fact that the vast majority
of the support label sequences end up having Hamming distance 1 to the correct
label sequence. Note that for loss equal to 1 all SVM formulations are equivalent.



5.7 Conclusions 101

Table 5.4 Results for learning a weighted context-free grammar on the Penn Treebank

PCFG SVM2 SVM�s
2 SVM�m

2

Test Acc 55.2 58.9 58.9 58.3

Test F1 86.0 86.2 88.5 88.4

Const N/A 7494 8043 7117

5.6.2.1 Parsing

Experiments were performed on a subset of the Penn Treebank corpus, where the
4098 sentences of length at most 10 from sections F2-21 were used as the training
set, and the 163 sentences of length at most 10 from F22 were used as the test set.
The feature representation include the grammar rules observed in the training data.
The cost function is given by  (y,yi) = 1 − F1(yi,y). All results are for C = 1
and ε = 0.01. All values of C between 10−1 to 102 gave comparable prediction
performance.

The results are given in table 5.4. For the zero-one loss (i.e. predicting the com-
plete tree correctly), the generative PCFG model using the maximum likelihood
estimate (MLE) achieves better accuracy than the max-margin approaches. How-
ever, optimizing the SVM for the F1-loss outperforms PCFG significantly in terms
of F1-scores. Table 5.4 also shows that the total number of constraints added to the
working set is small, roughly twice the number of training examples in all cases.

5.7 Conclusions

We presented a maximum-margin approach to learn functional dependencies for
interdependent and structured output spaces. The key idea is to model the problem
as a (kernelized) linear discriminant function over a joint feature space of inputs
and outputs. We showed that this framework is applicable to a wide range of
problems, in particular hierarchical classification, label sequence learning, and
parsing. We presented an efficient algorithm with polynomial time convergence.
This algorithm combines the advantages of maximum-margin classifiers and kernels
with the efficiency of dynamic programming algorithms. Experimental evaluation
shows the competitiveness of our method.

5.8 Proof of Proposition 37

2. http://www.recommind.com.



102 Support Vector Machine Learning for Interdependent and Structured Output Spaces

Lemma 40 For a symmetric, positive semidefinite matrix, JJJ , let

Θ(ααα) = − 1
2ααα

′JJJααα + 〈h,ααα〉 (5.24)

be concave in ααα and bounded from above. Assume 〈∇Θ(αααt), η〉 > 0 for a solution αααt

and an optimization direction η. Let β ≤ D for some D > 0. Then the improvement
of the objective along η starting from αααt δΘ(β) ≡ max0<β≤D{Θ(αααt +βη)}−Θ(αααt)
is bounded by

1
2

min
{

D,
〈∇Θ(αααt), η〉

η′JJJη

}
〈∇Θ(αααt), η〉. (5.25)

For special cases where η = eeer and where η = eeer, β <D=∞, (5.25) is equivalent to

1
2

min

{
D,

∂Θ
∂αr

(αααt)
Jrr

}
∂Θ
∂αr

(αααt) and
1

2Jrr

(
∂Θ
∂αr

(αααt)
)2

. (5.26)

Proof Writing out δΘ(β∗) = β 〈∇Θ(αααt), η〉 − β2

2 η′JJJη, solving for β to maximize
δΘ(β∗) yields β∗ = 〈∇Θ(αααt), η〉/(η′JJJη). Substituting this value in δΘ(β∗) gives
the bound on improvement with unconstraint β,

δΘ(β∗) = 〈∇Θ(αααt), η〉2/(2η′JJJη) > 0. (5.27)

If D < β∗, i .e. 〈∇Θ(αααt), η〉/(η′JJJη) > D, due to the concavity of Θ, β = D and

δΘ(D) = D

(
〈∇Θ(αααt), η〉 − D

2
η′JJJη

)
. (5.28)

Combining the two cases yields (5.25). When ηηη = eeer, 〈∇Θ, η〉 = ∂Θ
∂αr

and η′JJJη =
Jrr, which yields the first term in (5.26). The second term is achieved by substituting
∞ for D.

Proof of Proposition 37. We first prove the bound for SVM�s
2 . Using (5.15),

(5.14), ξ∗i =
∑

y �=yi

nαt
(iy)

C
√

�(yi,y)
given by the optimality equations for the primal

variables and the condition of step 10, namely
√ (yi, ŷ) (1− 〈w∗, δΨi(ŷ)〉) > ξ∗i +ε

yields ∂Θ
∂α(iŷ)

(αααt) ≥ ε√
�(yi,ŷ)

. Inserting this and Jrr = ‖δΨi(ŷ)‖2 + n
C�(yi,ŷ) in the

second term of (5.26) yields the first term of (5.19).
For SVM�s

1 , consider two cases:
Case I:
If the working set does not contain an element (iy), Si = 0, then we can optimize
over α(iŷ) such that α(iŷ) ≤  (yi, ŷ)C

n = D. Then, via the condition of step 10 and
ξ∗i ≥ 0, ∂Θ

∂α(iŷ)
(αααt) = 1 − 〈w∗, δΨi(ŷ)〉 >

ξ∗
i +ε

�(yi,ŷ) ≥ ε
�(yi,ŷ) . Substituting this and

J(iŷ)(iŷ) ≤ R2
i in the first term of (5.26) yields

δΘ ≥ min
{

Cε

2n
,

ε2

2R2
i (yi, ŷ)2

}
. (5.29)



5.8 Proof of Proposition 37 103

Case II:
If Si �= ∅, optimization is performed over α(iŷ) and α(iy), ∀y ∈ Si. We need to
upper-bound η′JJJη and lower-bound 〈∇Θ(αααt), η〉. Without losing any generality
let η(iŷ) = 1 and η(iy) = − α(iy)

�(yi,ŷ)
n
C ≤ 0 for (iy) ∈ Si. Then αααt + βη ≥ 0 since

β ≤ C
n (yi, ŷ).

In order to bound 〈∇Θ(αααt), η〉, notice that for δ ≥ ε > 0,

 (yi, ŷ) (1− 〈w∗, δΨi(ŷ)〉) = ξ∗i + δ, (5.30a)

 (yi,y) (1− 〈w∗, δΨi(y)〉) = ξ∗i , y ∈ Si (5.30b)

Then via 〈∇Θ(αααt), η〉 =
∑

y η(iy) (1− 〈w∗, δΨi(y)〉), we get

〈∇Θ(αααt), η〉 =
ξ∗i

 (yi, ŷ)

(
1− n

C

∑
y

α(iy)

 (yi,y)

)
+

δ

 (yi, ŷ)
≥ ε

 (yi, ŷ)
. (5.31)

Using
∑

y �=ŷ αt
(iy) ≤  i

∑
y �=ŷ

αt
(iy)

�(yi,y) ≤ C�i

n , we bound η′JJJη as

η′JJJη = J(iŷ)(iŷ) − 2
n

C

∑
y �=ŷ

αt
(iy)J(iŷ)(iy)

 (yi, ŷ)
+

n2

C2

∑
y �=ŷ

∑
y′ �=ŷ

αt
(iy)α

t
(iy′)J(iy)(iy′)

 (yi, ŷ) (yi, ŷ)

(5.32a)

≤ R2
i + 2

nR2
i

C (yi, ŷ)

∑
y �=ŷ

αt
(iy) +

n2R2
i

C2 (yi, ŷ)2
∑
y �=ŷ

∑
y′ �=ŷ

αt
(iy)α

t
(iy′) (5.32b)

≤ R2
i + 2

R2
i i

 (yi, ŷ)
+

R2
i 2

i

 (yi, ŷ)2
≤ 4R2

i 2
i

 (yi, ŷ)2
. (5.32c)

Substituting (5.31) and (5.32c) into (5.25) yields

min
{

Cε

2n
,

ε2

8R2
i 2

i

}
. (5.33)

Combining (5.29) and (5.33) yields the second term of (5.19).





6 Efficient Algorithms for

Max-Margin Structured Classification

Juho Rousu, Craig Saunders, Sandor Szedmak, and John Shawe-Taylor

We present a general and efficient optimization methodology for max-margin
structured classification tasks. The efficiency of the method relies on the interplay
of several techniques: formulation of the structured support vector machine (SVM)
or max-margin Markov problem as an optimization problem; marginalization of
the dual of the optimization; partial decomposition via a gradient formulation;
and finally tight coupling of a maximum likelihood inference algorithm into the
optimization algorithm, as opposed to using inference as a working set maintenance
mechanism only. The tight coupling also allows fast approximate inference to be
used effectively in the learning.

The generality of the method follows from the fact that changing the output
structure in essence only changes the inference algorithm, that is, the method can
to a large extent be used in a “plug and play” fashion.

6.1 Introduction

Structured classification methods based on the conditional random field (CRF)
model (Lafferty et al., 2001) are proving themselves in various application fields.
Recently, techniques inspired by SVMs for learning the parameters of CRFs (Taskar
et al., 2004b; Tsochantaridis et al., 2004; Lafferty et al., 2004) or related graphical
models (Altun et al., 2003b; Bartlett et al., 2004) have emerged.

In this chapter, we present a general and efficient approach for max-margin
learning of CRF parameters when the CRF takes the form of a hypergraph. The
method benefits from many of the above works and also from the related research
on exponential families and their inference methods (Wainwright and Jordan, 2003;
Wainwright et al., 2003).

The main contribution of this chapter is to show that the max-margin optimiza-
tion relying on the marginal dual formulation (c.f. Taskar et al. 2004b) can be made



106 Efficient Algorithms for Max-Margin Structured Classification

efficient without simplifying the problem or settling for approximations. Key ingre-
dients are feature and loss representations that adhere to the hypergraph structure,
a partial decomposition via gradient-based optimization, and, finally, tight coupling
of the inference algorithm to conditional gradient optimization, which avoids an ex-
plicit description of the constraints.

6.1.1 Outline of the Chapter

The structure of this chapter is the following. In section 6.2 we present the
classification framework, review loss functions, and derive a quadratic optimization
problem for finding the maximum-margin model parameters. In section 6.3 we
present an efficient learning algorithm relying on a decomposition of the problem
into single training example subproblems, and then conducting iterative conditional
gradient ascent in marginal dual variable subspaces corresponding to single training
examples. We show that search directions of the conditional gradient method
can be efficiently found by solving an inference problem on the hypergraph. We
demonstrate the algorithm’s behavior in section 6.4 in a hierarchical classification
task. We conclude the chapter with a discussion in section 6.5.

6.1.2 Notation

For a Cartesian product S = S1×· · ·×Sk of sets, and p = {p1, . . . , pl} ⊂ {1, . . . , k}
an index set, we use the shorthand Sp = Sp1 × · · · ×Spl

to denote the restriction of
S to the index set p. Similarly, we use s = (s1, . . . , sk) ∈ S and sp = (sp1 , . . . , spl

)
to denote the members of the set and their restrictions to p, respectively. When p

is clear from the context, we sometimes drop the subscripts and write s instead of
sp.

In this chapter we need to refer extensively to vectors with a nested block
structure; for example a marginal dual vector μ = (μi)

m
i=1, where μi = (μie)e∈E

(E will be a set of hyperedges introduced below with Ye the set of values over the
hyperedge node e) and μie = (μie(u))u∈Ye

. To denote individual items in these
vectors we may use multi-indices μ(i, e,u) = μi(e,u) = μie(u). With no confusion
we sometimes transpose the vectors so that μe = (μie)

m
i=1; the subscript will make

clear which vector is meant.
For matrices with nested block structure similar conventions are used (figure 6.1):

the notation K = (Kii′)
m
i,i′=1, Kii′ = (Kie,i′e′)e,e′∈E and

Kie,i′e′ = (Kie,i′e′(u,u′))u∈Ye,u′∈Ye′

is used to refer to the blocks, and multi-indices

K(i, e,u; i′, e′,u′) = Kii′(e,u; e′,u′) = Kie,i′e′(u,u′)

are used to access the individual items. Furthermore, different permutations will
be used, Kee′ = (Kie,ie′ )m

i=1, that will again be clear from the context. For



6.2 Structured Classification Model 107

e1

e

e
l

x1

xm

x
i

x
i

Ke

e1

e
l

e

e

KH

Kii’

eΔφ (u x i ) eΔφ (u x i )
T

K(i,e,u;i’,e,u’)=

Kei,ei’

’

u’

u

Figure 6.1 Illustration of the nested block structure of the kernels applied in this
chapter. The kernel block Kie,i′e′ (top, left) occurs as a block both in the Kii′ kernel (top,
right) and the edge-kernel Ke (bottom, left). The full marginalized kernel KH (bottom,
right) is composed of Ke blocks on the diagonal. Gray color indicates potentially nonzero
values.

diagonal blocks the double subscript is sometimes replaced with a single one:
Ki = Kii, Ke = Kee.

When referring to elements of the training set, when no confusion arises we
sometimes use the shorthand i in place of xi or yi, e.g. α(i,y) instead of α(xi,y),
and e(i,ue) in place of e(yie,ue).

6.2 Structured Classification Model

In this chapter we use the CRF model for structured classification. We first briefly
introduce the setting.

We consider data from a domain X × Y where X is a set and Y = Y1 × · · · × Yk

is a Cartesian product of finite sets Yj = {1, . . . , |Yj |}, j = 1, . . . , k. A vector
y = (y1, . . . , yk) ∈ Y is called the multilabel and the components yj are calledmulti- and

microlabels microlabels.



108 Efficient Algorithms for Max-Margin Structured Classification

We assume that a training set {(xi,yi)}mi=1 ⊂ X×Y has been given, consisting of
training examples (xi,yi) of a training pattern xi and multilabel yi. A pair (xi,y),
where xi is a training pattern and y ∈ Y is arbitrary, is called a pseudoexample in
order to denote the fact that the output may or may not have been generated by
the distribution generating the training examples.

The multilabels conform to a given fixed hypergraph structure H = (V, E) that
consists of nodes V = {1, . . . , k} and hyperedges E = {e1, . . . , er}, with eh ⊂ V

for h = 1, . . . , r. For some or all nodes v ∈ V , the singleton hyperedge {v} may be
contained in E. The existence of a hyperedge e = {v1, . . . , vl} ∈ E indicates that
there is a potential statistical dependency between the microlabels yv1 , . . . , yvl

.
In the CRF defined on H , the probability of a multilabel y given a training

pattern x is determined by the product of hyperedge potentials

P (y|x,w) =
1

Z(x,w)

∏
e∈E

ϕe(x,ye,w),

where Z(x,w) =
∑

u∈Y

∏
e∈E ϕ(x,ue,w) is the normalization factor also referred

to as the partition function. We concentrate on the case where the potentials are
given by an exponential family,

ϕe(x,ye,w) = exp
(
wT

e φe(x,y)
)
,

where we is the vector of the appropriate block entries for that hyperedge. This
choice gives us a log-linear model

log P (y|x,w) = wT φ(x,y) − log Z(x,w). (6.1)

6.2.1 Max-Margin Learning

Typically in learning probabilistic models one aims to learn maximum likelihood
parameters, which in the exponential CRF amounts to solving

argmax
w

log

(
m∏

i=1

P (yi|xi,w)

)
= argmax

w

m∑
i=1

[
wT φ(xi,yi)− log Z(xi,w)

]
.

This estimation problem is hampered by the need to compute the logarithm
of the partition function Z. For a general graph this problem is hard to solve.
Approximation methods for its computation are the subject of active research (cf.
Wainwright et al. 2003). Also, in the absence of regularization the max-likelihood
model is likely to suffer from overfitting.

An alternative formulation (cf. Altun et al. 2003b; Taskar et al. 2004b), inspired
by SVMs, is to estimate parameters that in some sense maximize the ratio

P (yi|xi,w)
P (y|xi,w)



6.2 Structured Classification Model 109

between the probability of the correct labeling yi and the closest competing
incorrect labeling y. With the exponential family, the problem translates to the
problem of maximizing the minimum linear margin

wT φ(xi,yi)−wT φ(xi,y)

in the log-space.
In classical SVM learning the required margin between an example (x, y) and an

(incorrect) pseudoexample (x,−y) is taken to be constant. In structured classifi-
cation, it is proposed to grade the required margin based on the (structured) loss
(y,yi), so that the margin requirement is a nondecreasing function γ(y,yi) of the
loss of corresponding pseudoexamples. We consider the detailed loss functions and
the margin scaling below.

Using the canonical hyperplane representation (cf. Cristianini and Shawe-Taylor
2000) the problem can be exactly stated as the following minimization problem:

minimize
w

1
2
||w||2

s.t. wT Δφ(xi,y) ≥ γ(yi,y), for all i and y, (6.2)

where Δφ(xi,y) = φ(xi,yi) − φ(xi,y) and γ(yi,y) is the margin required from
the pseudoexample (xi,y). Note that in the problem (6.2) the need to compute
the log-partition function has been avoided. Also, margin-maximization provides
resistance against overfitting.

As with SVMs we are not usually able to find a model satisfying margin con-
straints exactly, and so it is necessary to add slack variables ξi to allow examples
to deviate from the margin boundary. Altogether this results in the following opti-
mization problem:

minimize
w

1
2
||w||2 + C

m∑
i=1

ξi

s.t. wT Δφ(xi,y) ≥ γ(yi,y) − ξi, for all i and y. (6.3)

For many feature representations such as, for example, strings, images, or graphs,
the problem can be very high-dimensional, making it advisable to seek a dual
representation:

maximize
α≥0

αT γ − 1
2
αT Kα, s.t.

∑
y

α(i,y) ≤ C, ∀i,y, (6.4)

where K = ΔΦT ΔΦ is the joint kernel matrix for pseudoexamples (xi,y) and
γ = (γ(yi,y))i,y encodes the margin requirements for each (xi,y).

This approach makes it possible to avoid working with explicit feature vectors.
However, in the dual problem there are exponentially many dual variables α(i,y),
one for each pseudoexample. There are a few main routes by which the exponential
complexity can be circumvented:



110 Efficient Algorithms for Max-Margin Structured Classification

Dual working set methods where the constraint set is grown incrementally by
adding the worst margin violator,

argmin
i,y

wT Δφ(xi,y)− γ(yi,y),

to the dual problem. One can guarantee an approximate solution with a polynomial
number of support vectors using this approach (Altun et al., 2003b; Tsochantaridis
et al., 2004).

Primal methods where the solution of the above inference problem is integrated
into the primal optimization problem, hence avoiding the need to write down the
exponential-sized constraint set (Taskar et al., 2004a).

Marginal dual methods, in which the problem is translated to a polynomially
sized form by considering the marginals of the dual variables (Taskar et al., 2004b;
Bartlett et al., 2004).

The methodology presented in this chapter belongs to the third category.

6.2.2 Loss Functions

We assume that associated with the set Y is a loss function  : Y × Y �→ R+ that
associates for each pair y,y′ ∈ Y a nonnegative loss (y,y′). There are many ways
to define loss functions for a multilabel classification setting, and it will depend
on the application which loss function is the most suitable. Nonetheless a few
general guidelines can be set. The loss function should obviously fulfill some basic
conditions: (y,y′) = 0 if and only if y = y′, (y,y′) is maximal when yj �= y′

j

for every 1 ≤ j ≤ k, and  should be monotonically nondecreasing with respect
to inclusion of the sets of incorrect microlabels. These conditions are, for example,
satisfied by the zero-one loss

0/1(y,y′) = [y �= y′].

For structured classification, another useful property is that the loss decomposes so
that it can be expressed as a combination of the losses of the hyperedges. This is
beneficial for algorithmic efficiency and it is not a significant restriction: the need
to express the loss of some set of variables g ⊂ V implies a statistical dependency
between those variables. If this dependency is not preempted by the dependencies
of the hyperedges that intersect with g, then g really should be a hyperedge in H .
We therefore restrict ourselves to losses that are defined as weighted combinations
of hyperedge losses:

(y,y′) =
∑
e∈E

e(ye,y′
e).

The simplest way of defining a loss of this type is to take e(ye,y′
e) = [ye �= y′

e], in
which case the overall loss is the number of incorrectly predicted hyperedges. If all



6.2 Structured Classification Model 111

News

Entertainment Sport Politics

Music Film Football Athletics

Jazz Classical Champions leagueWorld 2006

N,E,M

N,E

N

N,S P

AN,S,F

N,E,M,J N,E,M,C N,S,F,W N,S,F,C

N,E,F

Figure 6.2 A classification hierarchy represented as a tree (left) and a hypergraph
consisting of partial paths of the tree as hyperedges (right).

singleton hyperedges {v}, v ∈ V are in E, defining e(ye,y′
e) = 0 for all nonsingleton

hyperedges (|e| > 1) gives us the Hamming loss:

Δ(y,y′) =
∑

{v}∈E

[yv �= y′
v],

which penalizes the errors made in vertices individually, but does not take into
account the structure implied by the nonsingleton hyperedges; this is also referred
to as the microlabel loss.

Example 1 For particular structures, one can define more elaborate losses. For
example, for hierarchical classification (cf. figure 6.2), predicting the parent micro-
label correctly is typically more important than predicting the child correctly, as the
child may deal with some detailed concept that the user may not be interested in; for
example whether a document was about champions league football or not may
not be relevant to a person who is interested in football in general. Also, from the
learner’s point of view, if the parent class has already been predicted incorrectly, we
don’t want to penalize the mistake in the child. Loss functions with these kinds of
properties can be defined in more than one way. If one represents the classification
hierarchy as a set of nodes and directed edges i �→ j, one may define an edge loss

H̃(y,y′) =
∑

e={i�→j}∈E

ce[yj �= y′
j & yi = y′

i],

that penalizes a mistake in a child only if the label of the parent was correct. If, on
the other hand, the hierarchy is represented as a hypertree with the hyperedges given
by the partial paths p = (v1, . . . , vk) where vi is the parent of vi+1, and vk is either
a leaf or an internal node, one can define a path loss

H(y,y′) =
∑

p=(v1,...,vk)∈E

cp[yk �= y′
k & (yh = y′

h∀h ∈ anc(k))],

where anc(j) denotes the set of ancestors h of node j.



112 Efficient Algorithms for Max-Margin Structured Classification

6.2.3 Scaling the Margin Requirement

As discussed above it is useful to enforce larger margins for pseudoexamples with
high loss and vice versa. A natural way to incorporate this is to define the required
margin to be a function γ(yi, y) that is monotonically increasing with respect to
the loss. Examples of margin scaling include:

Linear scaling (Taskar et al., 2004a,b): γ(yi,y) = (yi,y). The benefit of linear
scaling is that any decomposability properties of the loss function are translated to
the margin requirement. The potential drawback is the fact that some capacity of
the learning machine is wasted in tuning the margins of high-loss pseudoexamples;
to some degree the classification problem is turned into an ordinal regression
problem.

Inverse scaling (Tsochantaridis et al., 2004): γ(yi,y)− ξi = 1− ξi/(yi,y). Here
the slack is downscaled so high-loss examples receive smaller slacks. Inverse scaling
is strictly concave with respect to the loss, which makes the margin requirement loss
sensitive in the low-loss regime but less sensitive in the high-loss regime. However,
the margin requirement is in general not decomposable even if the loss function 

is.

Avoiding the tradeoff between retaining decomposability and the apparent waste
of capacity in enforcing high margins in the high-loss regime seems difficult. In
this chapter, we follow the first approach, as we prefer to retain the possibility
of decomposing the learning problem, hence making it possible to tackle larger
structures and training sets.

6.2.4 Feature Representation

In a learning problem, there are two general types of features that can be distin-
guished:

Global features are given by the feature map φx : X �→ Fx. They are not
tied to a particular vertex or hyperedge but represent the structured object as a
whole. For example, the bag-of-words of a document is not tied to a single class
of documents in a hierarchy, but a given word can relate to different classes with
different importance.

Local features, are given by a feature map φx
e : X �→ Fxe tied to a particular

vertex or hyperedge of the structure. For example, for sequence annotation based on
a hidden Markov model each position in the sequence is tied to a set of attributes,
e.g. the type and biochemical properties of the nucleotide or amino acid, location-
specific sequence homology, and so on.

When the features are used in structured classification on a hypergraph H , the
features need to be associated with the labelings of the hypergraph. This is done
via constructing a joint feature map φ : X × Y �→ Fxy. There are important design



6.2 Structured Classification Model 113

choices to be made in how the hypergraph structure should be reflected in the
feature representation.

Orthogonal feature representation is defined as

φ(x,y) = (φe(x,ye))e∈E ,

so that there is a block for each hyperedge, that in turn is divided into blocks for
specific hyperedge-labeling pairs (e,ue), i.e. φe(x,ye) = (φue

e (x,ye))ue∈Ye
.

The map φu
e should both incorporate the x-features relevant to the hyperedge

and encode the dependency on the labeling of the hyperedge. A simple choice is to
define

φue
e (x,ye) = [ue = ye] (φx(x), φx

e (x))T

that incorporates both the global and local features if the hyperedge is labeled
ye = ue, and a zero vector otherwise. Intuitively, the features are turned “on” only
for the particular labeling of the hyperedge that is consistent with y.

Note that in this representation, global features get weighted in a context-
dependent manner: some features may be more important in labeling one hyperedge
than another. Thus, the global features will be “localized” by the learning algorithm.
The size of the feature vectors grows linearly in the number of hyperedges, which
requires careful implementation if solving the primal optimization problem (6.3)
rather than the dual.

The kernel induced by the above feature map decomposes as

K(x,y;x′,y′) =
∑
e∈E

φe(x,ye)T φe(x′,y′
e) =

∑
e∈E

Ke(x,ye;x′,y′
e), (6.5)

which means that there is no crosstalk between the hyperedges:

φe(x,ye)T φe′(x, ye′ ) = 0

if e �= e′, hence the name “orthogonal”. The number of terms in the sum when
calculating the kernel obviously scales linearly in the number of hyperedges.

Additive feature representation is defined as

φ(x,y) =
∑
e∈E

∑
u∈Ye

[ye = u] (φx(x), φx
e (x))T ;

thus the features of the hyperedges are added together.
This feature representation differs from the orthogonal one in a few important

respects. First, the dimension of the feature vector is independent of the size of the
hypergraph; thus optimization in the primal representation (6.3) is more feasible
for large structures. Second, as there are no hyperedge-specific feature weights, the



114 Efficient Algorithms for Max-Margin Structured Classification

existence of local features is mandatory in this approach; otherwise the hypergraph
structure is not reflected in the computed output. Third, the kernel

K(x,y;x′,y′) =

(∑
e

φe(x,y)

)T (∑
e

φe(x′,y′)

)

=
∑
e,e′

φe(x,ye)T φe′(x,y′
e) =

∑
e,e′

Kee′(x,ye;x′,y′
e)

induced by this representation typically has nonzero blocks Kee′ �= 0, for e �= e′,
reflecting crosstalk between hyperedges. There are two consequences of this fact.
First, the kernel does not exhibit the sparsity that is implied by the hypergraph,
thus it creates the possibility of overfitting. Second, the complexity of the kernel will
grow quadratically in the size of the hypergraph rather than linearly as is the case
of orthogonal features. This is another reason why a primal optimization approach
for this representation might be more justified than a dual approach.

In the sequel, we describe a method that relies on the orthogonal feature repre-
sentation that will give us a dual formulation with complexity growing linearly in
the number of hyperedges in H . The kernel defined by the feature vectors, denoted
by

Kx(x,x′) = φx(x)T φx(x′)

is referred to as the x-kernel, while K(x,y;x,y′) is referred to as the joint kernel.

6.2.5 Marginal Dual Polytope

The feasible set of the dual problem (6.4) is a Cartesian product A = A1×· · ·×Am

of identical closed polytopes,

Ai = {αi ∈ R|Y| | αi ≥ 0, ||αi||1 ≤ C}, (6.6)

with a vertex set Vi = {0, Ce1, . . . , Ce|Y|} ⊂ R|Y| consisting of the zero vector and
the unit vectors of R|Y|, scaled by C. The vertex set of A is the Cartesian product
V1 × · · · × Vm.

The dimension of the set A, dA = m|Y| is exponential in the length of the
multilabel vectors. This means that optimizing directly over the the set A is not
tractable. Fortunately, by utilizing the structure of H , the set A can be mapped
to a set M of polynomial dimension, called the marginal polytope of H , where
optimization becomes more tractable (cf. Taskar et al. 2004b).

Given a subset p ⊂ {1, . . . , k} of vertices, and an associated labeling yp, the
marginal of α(i,y) for the pair (p, yp) is given by

μ(i, p, yp) =
∑
u∈Y

[yp = up]α(i,u), (6.7)

where the sum picks up those dual variables α(i,u) that have equal value up = yp

on the subset p ⊂ {1, . . . , k}.



6.2 Structured Classification Model 115

For the hypergraph H , the marginal dual vector containing the hyperedge
marginals of the example xi is given by

μi = (μ(i, e,ue))e∈E,ue∈Ye
.

The marginal vector of the whole training set is the concatenation of the single-
example marginal dual vectors μ = (μi)

m
i=1 . The vector has dimension dM =

m
∑

e∈E |Ye| = O(m|E|maxe |Ye|). Thus the dimension is linear in the number
of examples, hyperedges, and the maximum cardinality of the set of labelings of a
single hyperedge.

The indicator functions in the definitions (6.7) of all relevant marginals can be
collectively represented by the matrix MH , MH(e,ue;y) = [ue = ye], and the
relationship between a dual vector α and the corresponding marginal vector μ is
given by the linear map MHαi = μi and μ = (MHαi)

m
i=1. The image of the set Ai,

defined by

Mi = {μi| ∃αi ∈ Ai : MHαi = μi}

is called the marginal polytope of αi on H .

The following properties of the set Mi are immediate:

Theorem 41 Let Ai be the polytope of (6.6) and let Mi be the corresponding
marginal polytope. Then

the vertex set of Mi is the image of the vertex set of Ai:

V μ
i = {μ| ∃α ∈ V α

i : MHα = μ}.

As an image of a convex polytope Ai under the linear map MH , Mi is a convex
polytope.

These properties underlie the efficient solution of the dual problem on the marginal
polytope.

6.2.6 Marginal Dual Problem

The exponential size of the dual problem (6.4) can be tackled via the relationship
between its feasible set A = A1 × · · · ×Am and the marginal polytopes Mi of each
Ai.

Given a decomposable loss function

(yi,y) =
∑
e∈E

e(i,ye)



116 Efficient Algorithms for Max-Margin Structured Classification

and linear margin scaling γ(y′,y) = (yi,y), the linear part of the objective satisfies
m∑

i=1

∑
y∈Y

α(i,y)(i,y) =
m∑

i=1

∑
y

α(i,y)
∑

e

e(i,ye)

=
m∑

i=1

∑
e∈E

∑
u∈Ye

∑
y:ye=u

α(i,y)e(i, u)

=
m∑

i=1

∑
e∈E

∑
u∈Ye

μ(e, u)e(i, u)

=
m∑

i=1

μT
i i = μT H , (6.8)

where H = (i)
m
i=1 = (e(i, u))m

i=1,e∈E,u∈Ye
is the marginal loss vector.

Given an orthogonal feature representation inducing a decomposable kernel (6.5),
the quadratic part of the objective becomes

αKα =
∑

e

∑
i,i′

∑
y,y′

α(i,y)Ke(i,ye; i′,y′
e)α(i′,y′)

=
∑

e

∑
i,i′

∑
u,u′

Ke(i,u; i′,u′)
∑

y:ye=u

∑
y′:y′

e=u′
α(i,y)α(i′,y′)

=
∑

e

∑
i,i′

∑
u,u′

μe(i,u)Ke(i,u; i′,u′)μe(i,u′)

= μT KHμ, (6.9)

where KH = diag (Ke, e ∈ E) is a block diagonal matrix with hyperedge-specific
kernel blocks Ke.

The objective should be maximized with respect to μ while ensuring that there
exist α ∈ A satisfying Mα = μ, so that the marginal dual solution represents
a feasible solution of the original dual. By theorem 41 the feasible set of the
marginalized problem is the marginal dual polytope, or to be exact, the Cartesian
product of the marginal polytopes of single examples (which are in fact equal):

M = M1 × · · · ×Mm.

In summary, the marginalized optimization problem can be stated in implicit
form as

max
μ∈M

μT H − 1
2
μT KHμ. (6.10)

This problem is a quadratic program (QP) with a linear number of variables in the
number of training examples and in the number of hyperedges. If the cardinality of
hyperedges is bounded by a constant, the number of variables is linear also in the
number of microlabels.

For optimization algorithms, an explicit characterization of the feasible set is
required. However, characterizing the polytope M in terms of linear constraints



6.3 Efficient Optimization on the Marginal Dual Polytope 117

defining the faces of the polytope is in general infeasible. Singly connected graphs
are an exception: for such a graph G = (V, E)), E ⊂ V × V , the marginal polytope
is exactly reproduced by the box constraints∑

ue

μe(i,ue) ≤ C, ∀i, e ∈ E, μe ≥ 0 (6.11)

and the local consistency constraints∑
yk

μkj(i, (yk, yj)) = μj(i, yj);
∑
yj

μkj(i, (yk, yj)) = μk(i, yk). (6.12)

In this case the size of the resulting constraint set is linear in the number of vertices
of the graph. Thus for small singly connected graphs they can be written down
explicitly and the resulting optimization problem has linear size both in the number
of examples and the size of the graph. Thus the approach can in principle be made
to work, although not with off-the-shelf QP solvers (see sections 6.3 and 6.4).

For general graphs and hypergraphs the situation is more complicated (cf.
Wainwright and Jordan 2003): the local consistency of edges or hyperedges is not
sufficient to ensure global consistency, that is, there are marginal dual vectors μ for
which there exists no α ∈ A such that MHα = μ. For global consistency, one needs
to derive the junction tree of the hypergraph and write down the local consistency
constraints of the junction tree. Consequently, the size of the constraint set is linear
in the size of the junction tree, which, unfortunately, can be much more than the size
of the original hypergraph. Thus in general an explicit description of the constraint
set is not a tractable approach.

In the following, we derive an approach where we avoid the explicit consideration
of the constraints, which in part contributes toward an efficient optimization
approach.

6.3 Efficient Optimization on the Marginal Dual Polytope

Despite the polynomial number of dual variables, the marginal dual problem is still
a challenging one to solve if the hypergraph is large or dense. In the following,
we describe an algorithm that enables us to tackle general graph structures with
reasonable computational complexity. The main ingredients are

partial decomposition via gradient-based approaches;

efficient optimization via the conditional gradient method;

computation of feasible descent directions via solving an inference problem on the
hypergraph.



118 Efficient Algorithms for Max-Margin Structured Classification

6.3.1 Decomposition of the Learning Problem

The size of the optimization problem suggests that we should try to decompose it
in some way. However, the marginalized dual problem has a property that defies
full decomposition:

The constraints decompose by the examples, i.e. we can collect all the constraints
related to training example xi into the linear system Aμi ≤ b, Cμi = d. However,
decomposition by the hyperedges is not possible due to the consistency constraints
between hyperedges.

The kernel decomposes by the hypergraph structure as KH = diag (Ke, e ∈ E)
but the interactions between examples (represented by a nonsparse x-kernel Kx)
forbid a similar decomposition by the examples.

A partial decomposition becomes possible via gradient-based approaches. The
gradient of the objective obj(μ) = T

Hμ− (1/2)μT KHμ,

g = �[obj(μ)] = H −KHμ = (i − (Ki1, . . . , Kim)μ)m
i=1 = (gi)

m
i=1 ,

can be consulted and updated for each example independently. Thus a general
gradient-based iterative approach is possible:

1. For example, xi, using the gradient information gi, find Δμi such that μi + Δμi

is feasible and the objective value is increased, i.e. gT
i Δμi > 0

2. If a stopping criterion is satisfied, stop, otherwise move to the next example, and
repeat.

In the next section, we describe the application of a conditional gradient algorithm
(c.f. Bertsekas 1999), which follows the above general template.

6.3.2 Conditional Gradient Algorithm

Let us consider optimizing the dual variables μi = (μe(i,u))e∈E,u∈Ye
of example

xi. We denote by i = (e(i,ue)e∈E the corresponding loss vector and by Kij =
diag(Keij , e ∈ E), where Keij = (Ke(i,u; j,v)u,v∈Ye

, the block of kernel values
between examples i and j, on edge e (note that Kij also is block diagonal like
the full marginalized kernel KH). Finally we denote by Ki· = (Kij)j∈{1,...,m} the
columns of the kernel matrix KH referring to example i.

Obtaining the gradient for the xi-subspace requires computing the corresponding
part of the gradient of the objective function in (6.10), which is gi = i − Ki·μ.
However when updating μi only, evaluating the change in objective and updating
the gradient can be done more cheaply. We have

Δgi = −KiiΔμi



6.3 Efficient Optimization on the Marginal Dual Polytope 119

and

Δobj = gT
i Δμi − 1

2
ΔμiKiiΔμi.

Thus local optimization in a subspace of a single training example can be done
without consulting the other training examples. On the other hand, we do not want
to spend too much time in optimizing a single example: since the dual variables of
the other examples are nonoptimal, so is the initial gradient gi. Thus the optimum
we would arrive at by optimizing μi while keeping other examples fixed would not
be the global optimum of the quadratic objective. It makes more sense to optimize
all examples more or less in tandem so that the full gradient approaches its optimum
as quickly as possible.

In our approach, we have chosen to conduct a few optimization steps for each
training example using a conditional gradient ascent (see algorithm 6.2) before
moving on to the next example. The iteration limit for each example is set by using
the Karush-Kuhn-Tucker(KKT) conditions as a guideline; the larger contribution
to the duality gap by an example, the higher the iteration limit.

The pseudocode of our algorithm is given in algorithm 6.1. It takes as input the
training data, the hypergraph H , and the loss vector μ = (i)

m
i=1. The algorithm

chooses a chunk of examples as the working set, computes the kernel for each xi,
and makes an optimization pass over the chunk. After one pass, the gradient, slacks,
and the duality gap are computed and a new chunk is picked. The process is iterated
until the duality gap falls below a given threshold.

Note in particular that the joint kernel is not explicitly computed, although
evaluating the gradient requires computing the product KHμ. We are able to take
advantage of the special structure of the feature vectors, where the interaction
between the labelings and the x-features of a hyperedge is given by a tensor product,
to facilitate the computation using the x-kernel and the dual variables only.

6.3.3 Conditional Subspace Gradient Ascent

The optimization algorithm used for a single example is a variant of conditional
gradient ascent (or descent) algorithms (Bertsekas, 1999). The algorithms in this
family solve a constrained quadratic problem by iteratively stepping to the best
feasible direction with respect to the current gradient. It exploits the fact if μ∗ is
an optimum solution of a maximization problem with objective function f over the
feasibility domain Mi, then it has to satisfy the first-order optimality condition,
that is, the inequality

∇f(μi)(μi − μ∗) ≥ 0 (6.13)

has to hold for any feasible μi chosen from Mi.
The pseudocode of our variant conditional subspace gradient ascent (CSGA) is

given in algorithm 6.2. The algorithm takes as input the current dual variables,
gradient, constraints and the kernel block for the example xi, and an iteration



120 Efficient Algorithms for Max-Margin Structured Classification

Algorithm 6.1 Maximum-margin optimization algorithm for a conditional random
field on a hypergraph

Require: Training data S = ((xi,yi))
m
i=1, hyperedge set E of the hypergraph, a

loss vector H , and the feasibility domain M.
Ensure: Dual variable vector μ and objective value f(μ).
1: Initialize g = H , ξ = ,dg =∞ and OBJ = 0.
2: while dg > dgmin & iter < max iter do
3: [WS, Freq] = UpdateWorkingSet(μ, g, ξ);
4: Compute x-kernel values KX,WS with respect to the working set;
5: for i ∈ WS do
6: Compute joint kernel block Kii and subspace gradient gi;
7: [μi, Δobj] = CSGA(μi, gi, Kii, Mi, F reqi);
8: end for
9: Compute gradient g, slacks ξ and duality gap dg;
10: end while

limit. It outputs new values for the dual variables μi and the change in objective
value. As discussed above, the iteration limit is set very tight so that only a few
iterations will be typically conducted.

First, we need to find a feasible μ∗ which maximizes the first-order feasibility
condition (6.13) at a fixed μi. This problem is a linear program:

μ∗ = argmax
v∈Mi

gT
i v. (6.14)

The solution gives a direction potentially increasing the value of objective function
f . Then we have to choose a step length τ that gives the optimal feasible solution
as a stationary point along the line segment μi(τ) = μi + τΔμ, τ ∈ (0, 1], where
Δμ = μ∗ − μi, starting from the known feasible solution μi.

The stationary point is found by solving the equation

d
dτ

[
gT

i μi(τ) − 1/2μi(τ)T Kiiμi(τ)
]

= 0, (6.15)

expressing the optimality condition with respect to τ . If τ > 1, the stationary point
is infeasible and the feasible maximum is obtained at τ = 1. In our experience, the
time taken to compute the stationary point was typically significantly smaller than
the time taken to find μ∗

i .

6.3.4 Efficient Computation of the Feasible Ascent Direction

The main difficulty in optimizing the max-margin problem in the marginal dual
form arises from the need to ensure marginal consistency: the box constraints
are easy to satisfy by many algorithms, including variants of sequential margin
optimization (SMO) (Platt, 1999) or simple steepest gradient search. For tree-
structured graphs the constraints can be written down explicitly, as in such graphs



6.3 Efficient Optimization on the Marginal Dual Polytope 121

Algorithm 6.2 Conditional subspace gradient ascent optimization step
CSGA(μi, gi, Kii, Mi, maxiteri)
Require: Initial dual variable vector μi, gradient gi, the feasible region Mi, a

joint kernel block Kii for the subspace, and an iteration limit maxiteri.
Ensure: New values for dual variables μi and change in objective Δobj.
1: Δobj = 0; iter = 0;
2: while iter < maxiter do
3: % find highest feasible point given gi

4: μ∗ = argmaxv∈Mi
gT

i v;
5: Δμ = μ∗ − μi;
6: q = gT Δμ, r = ΔμT KiiΔμ; % taken from the solution of (6.15)
7: τ = min(q/r, 1); % clip to remain feasible
8: if τ ≤ 0 then
9: break; % no progress, stop
10: else
11: μi = μi + τΔμ; % update
12: gi = gi − τKiiΔμ;
13: Δobj = Δobj + τq − τ2r/2;
14: end if
15: iter = iter + 1;
16: end while

local consistency of adjacent edges is sufficient to ensure global consistency. For
general graphs, such a relation does not hold: it is easy to find examples where a
locally consistent distribution can be globally inconsistent. In principle, a sufficient
constraint set for a general graph can be found via construction of the junction tree
of the graph and writing down consistency constraints of the hyperedges. However,
this approach suffers from the fact that, for a dense graph, the junction tree and
consequently the constraint set, may be very (exponentially) large. Thus, other
means need to be used to ensure global consistency of the marginal dual solution.

The basis of our solution is the following relationship, which can also be seen as
a consequence of (Wainwright and Jordan, 2003, theorem 4):

Lemma 42 For any gradient gi, there is a vertex α∗
i ∈ Ai such that μ∗

i = MHα∗
i

is an optimizer of (6.14).

Proof Since Mi is a polyhedron and the objective is linear, it follows that among
the optimal solutions of the conditional gradient (6.14) there is a vertex of Mi.
Denote this vertex by μ∗

i . Since the vertex set of Mi is the image of the vertex set
of Ai, μ∗

i is the image of some vertex α∗
i ∈ Ai.

Thus, α∗
i corresponding to the conditional gradient is either the zero vector or a

unit vector corresponding to some multilabel y∗.



122 Efficient Algorithms for Max-Margin Structured Classification

Lemma 43 If μ∗
i �= 0, then for all hyperedges e ∈ E we have μ∗

i (e,y
∗
e) = C, and

μ∗
i (e, u) = 0 for all y∗

e �= u.

Proof Since MHα∗
i = μ∗

i and α∗
i has a single nonzero component, α∗(i,y∗) = C,

μ∗
i is the y∗th column of MH , multiplied by C. Thus the nonzero values of μ∗

i equal
C. Let us now assume, contrary to the claim, that μ∗

i (e,u) = μ∗
i (e,u

′) = C for
some u �= u′. But then by the definition of matrix MH we must have [y∗

e = u] =
1 = [y∗

e = u′] which is a contradiction, and the claim follows.

Consequently, μ∗
i = μi(y∗) is directly defined by the optimal labeling y∗. The

lemma also gives a recipe for constructing μ∗
i given y∗.

We can now rewrite (6.14) in terms of the multilabels:

y∗ = argmax
y

gT
i μ∗

i (y) = argmax
y

∑
e∈E

gT
ieμ

∗
ie(ye) = argmax

y

∑
e∈E

gie(ye)C, (6.16)

which is readily seen as an inference problem on the hypergraph H : one must find
the configuration y∗ that maximizes the sum of the hyperedge gradients gie(ye).

Thus we have translated our feasible ascent direction problem into an inference
problem on the hypergraph. If we can solve the inference problem (6.16) efficiently,
the conditional gradient method will be very efficient.

In addition, for our purposes there is no real need to compute the exact optimum,
a direction that promises ascent with high likelihood is sufficient. Hence, fastidentifying ascent

directions approximate inference algorithms suffice here. Some examples of available methods
are the following.

For sequences and trees, inference can be implemented via dynamic programming
and it has generally a linear time complexity.

Hypergraphs with low tree width can be converted to their junction tree and
dynamic programming can be used on the junction tree to find the maximizing
configuration. The size of the junction tree depends on the tree width of the graph.

Loopy belief propagation (LBP) refers to the use of the message-passing algorithm
on a cyclic hypergraph. While this algorithm is not guaranteed to converge on such
graphs, it has a successful track record in practical applications. For our purposes,
the asymptotic convergence is not a central issue as long as the initial convergence
is fast enough to find a configuration y∗ corresponding to a descent direction.

The tree reparametrization algorithm (TRP) (Wainwright et al., 2003) is based on
computing a series of spanning trees of the (hyper)graph. The convergence is often
faster than that of LBP. Also, in the case of TRP, the algorithm can be stopped
after a few iterations once a configuration y∗ guaranteeing descent is found.

All of the methods can be viewed as instantiations of message-passing algorithms
(Wainwright and Jordan, 2003). In the next section we exemplify the optimization
approach on hierarchical problems, where exact inference can be implemented by
dynamic programming.



6.4 Experiments 123

6.4 Experiments

We tested the presented learning approach on three datasets that have an associated
classification hierarchy:

Reuters Corpus Volume 1, RCV1 (Lewis et al., 2004). 2500 documents were used
for training and 5000 for testing. As the label hierarchy we used the “CCAT” family
of categories, which had a total of 34 nodes, organized in a tree with maximum depth
3. The tree is quite unbalanced, half of the nodes residing in depth 1.

WIPO-alpha patent dataset (WIPO, 2001). The dataset consisted of the 1372
training and 358 testing documents comprising the D section of the hierarchy. The
number of nodes in the hierarchy was 188, with maximum depth 3. Each document
in this dataset belongs to exactly one leaf category, hence it contains no multiple
or partial paths.

ENZYME classification dataset. The training data consisted of 7700 protein
sequences with hierarchical classification given by the Enzyme Classification (EC)
system. The hierarchy consisted of 236 nodes organized into a tree of depth 3. Test
data consisted of 1755 sequences.

The two first datasets were processed into bag-of-words representation with term
frequencyinverse document frequency weighting (TF/IDF). No word stemming
or stop-word removal was performed. For the ENZYME sequences a length-4
subsequence kernel was used. Note that in the Reuters Corpus multiple partial
paths exist: it is not the case that the correct classification is simply a single path
to a leaf node; for a single example multiple paths in the hierarchy may be positively
labeled, and it is not necessary that a path end at a leaf node.

We compared the performance of the presented max-margin conditional random
field (MMCRF)learning approach to three algorithms: svm denotes an SVM trained
for each microlabel separately, h-svm denotes the case where the SVM for a
microlabel is trained only with examples for which the ancestor labels are positive.

The svm and h-svm were run using the SVM-light package. After precomputation
of the kernel these algorithms are as fast as one could expect, as they just involve
solving an SVM for each node in the graph (with the full training set for svm and
usually a much smaller subset for h-svm).

h-rls is a batch version of the hierarchical least-squares algorithm described
in Cesa-Bianchi et al. (2004). It essentially solves for each node i a least-squares
style problem wi = (I + SiS

T
i + xxT )−1Siyi, where Si is a matrix consisting of

all training examples for which the parent of node i was classified as positive, yi

is a microlabel vector for node i of those examples, and I is the identity matrix of
appropriate size. Predictions for a node i for a new example x is −1 if the parent
of the node was classified negatively and sign(wT

i x) otherwise.
h-rls requires a matrix inversion for each prediction of each example, at each

node along a path for which errors have not already been made. No optimization of
the algorithm was made, except to use extension approaches to efficiently compute



124 Efficient Algorithms for Max-Margin Structured Classification

the matrix inverse (for each example an inverted matrix needs to be extended by
one row/column, so a straightforward application of the Sherman-Morrison formula
to efficiently update the inverse can be used).

The h-rls and MMCRF algorithms were implemented in MATLAB. The tests
were run on a high-end PC. For svm,h-svm, and MMCRF, the regularization
parameter value C = 1 was used in all experiments, as in initial experiments its
value did not seem to have a significant effect.

6.4.1 Obtaining Consistent Labelings

As the learning algorithms compared here all decompose the hierarchy for learning,
the multilabel composed of naively combining the microlabel predictions may be
inconsistent, that is, they may predict a document as part of the child but not
as part of the parent. For svm and h-svm consistent labelings were produced by
postprocessing the predicted labelings as follows: start at the root and traverse
the tree in a breadth-first fashion. If the label of a node is predicted as −1,
then all descendants of that node are also labeled negatively. This postprocessing
turned out to be crucial to obtain good accuracy; thus we only report resultspost-processing

predictions with the postprocessed labelings. Note that h-rls performs essentially the same
procedure (see above). For the max-margin CRF models, we computed by dynamic
programming the consistent multilabel with maximum likelihood

ŷ(x) = argmax
y∈YT

P (y|x) = argmax
y

wT φ(x,y),

where YT is the set of multilabels that correspond to unions of partial paths in T .
This inference problem can be solved by the same dynamic programming algorithm
as the one used for learning, with the exception that the set of multilabels considered
is restricted to those consistent with the union of partial paths model.

6.4.2 Efficiency of Optimization

To give an indication of the efficiency of the MMCRF algorithm, figure 6.3 shows
an example of a learning curve on the WIPO-alpha dataset. The number of marginal
dual variables for this training set is just over 1 million and the marginalized kernel
matrix KH—if computed explicitly—would have approximately 5 billion entries.
Note that the solutions for this optimization are not sparse: typically less than 25%
of the marginal dual variables are zero. Training and test losses (Δ) are all close to
their optima within 10 minutes of starting the training, and the objective is within
2 % of the optimum in 30 minutes.

To put these results in perspective, for the WIPO dataset svm (SVM-light) takes
approximately 50 seconds per node, resulting in a total running time of about 2.5
hours. The running time of h-rls was slower than the other methods, but this could
be due to our nonoptimized implementation. It is our expectation that it would be
very close to the time taken by h-svm if coded more efficiently.



6.4 Experiments 125

0 200 400 600 800 1000 1200 1400 1600 1800
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CPU time (seconds)

O
b

je
ct

iv
e 

/ E
rr

o
r 

(%
 o

f 
m

ax
im

u
m

)

objective
tr.error
test.error

Figure 6.3 The objective function (% of optimum) and �Δ losses for MMCRF on
training and test sets (WIPO-alpha).

Therefore, from a computational efficiency point of view, the methods presented
in this chapter are very competitive to other methods which do not operate in the
large feature/output spaces of MMCRF.

Figure 6.4 shows for WIPO-alpha the efficiency of the dynamic programming
(DP) based computation of update directions as compared to solving the update
directions with MATLAB’s linear interior point solver LIPSOL. The DP-based
updates result in an optimization an order of magnitude faster than using LIPSOL.

In addition, for DP the effect of the iteration limit for optimization speed is
depicted. Setting the iteration limit too low (1) or too high (50) slows down the
optimization, for different reasons. A too tight iteration limit makes the overhead
in moving from one example to the other dominate the running time. A too high
iteration limit makes the the algorithm spend too much time optimizing the dual
variables of a single example. Unfortunately, it is not straightforward to suggest an
iteration limit that would be universally the best.

6.4.3 Comparison of Predictive Accuracies of Different Algorithms.

In our final test we compare the predictive accuracy of MMCRF to other learning
methods. For the MMCRF we include the results for training with Δ and H̃ losses
(see section 6.2.2 for a discussion of loss functions). For training svm and h-svm,
these losses produce the same learned model.



126 Efficient Algorithms for Max-Margin Structured Classification

100 1000 10000
4000

4500

5000

5500

6000

6500

7000

CPU time (seconds)

O
bj

ec
tiv

e

LIPSOL
DP−1
DP−50
DP−10

Figure 6.4 Learning curves for MMCRF using LIPSOL and dynamic programming
(DP) to compute update directions (WIPO-alpha). Curves with iteration limits 1,10 and
50 are shown for DP. The LIPSOL curve is computed with iteration limit set to 1.

Table 6.1 depicts the different test losses, as well as the standard information
retrieval statistics precision (P), recall (R), and F1 statistic (F1 = 2PR/(P + R)).
Precision and recall were computed over all microlabel predictions in the test set.
Flat svm is expectedly inferior to the competing algorithms with respect to most
statistics, as it cannot utilize the dependencies between the microlabels in any way.
The two variants of MMCRF are the most efficient in getting the complete tree
correct, as shown by the lower zero-one loss. With respect to other statistics, the
structured methods are quite evenly matched overall.

6.5 Conclusion

In this chapter we have introduced a general methodology for efficient optimization
of structured classification tasks in the max-margin setting. We discussed how the
choice of feature representation and loss function can affect the computational
burden imposed by the primal and dual formulations. We have shown that for
the nonrestrictive setting where an orthogonal feature representation is used in
combination with a loss function that is edge-decomposable, we can efficiently
solve the optimization problem using conditional gradient methods by exploiting
the block structure of the gradient. The resulting method has been tested on three
datasets for which the labels are placed within a hierarchical structure. The first
two of these were document classification tasks that used the standard TF/IDF



6.5 Conclusion 127

Table 6.1 Prediction losses �0/1 and �Δ, precision, recall, and F1 values obtained using
different learning algorithms. All figures are given as percentages. Precision and recall are
computed in terms of totals of microlabel predictions in the test set

REUTERS �0/1 �Δ P R F1

svm 32.9 0.61 94.6 58.4 72.2

h-svm 29.8 0.57 92.3 63.4 75.1

h-rls 28.1 0.55 91.5 65.4 76.3

MMCRF-�Δ 27.1 0.58 91.0 64.1 75.2

MMCRF-�H̃ 27.9 0.59 85.4 68.3 75.9

WIPO-alpha �0/1 �Δ P R F1

svm 87.2 1.84 93.1 58.2 71.6

h-svm 76.2 1.74 90.3 63.3 74.4

h-rls 72.1 1.69 88.5 66.4 75.9

MMCRF-�Δ 70.9 1.67 90.3 65.3 75.8

MMCRF-�H̃ 65.0 1.73 84.1 70.6 76.7

ENZYME �0/1 �Δ P R F1

svm 99.7 1.3 99.6 41.1 58.2

h-svm 98.5 1.2 98.9 41.7 58.7

h-rls 95.6 2.0 51.9 54.7 53.3

MMCRF-�Δ 95.7 1.2 87.0 49.8 63.3

MMCRF-�H̃ 85.5 2.5 44.5 66.7 53.4

feature representation. The third dataset focused on enzyme analysis and used a
string kernel as the feature mapping; this task would therefore not be practical in
alternative max-margin settings where only the primal objective function is used.
In all cases the approach in this chapter achieved high performance and took less
computation time.

Our method can be contrasted to the structured exponentiated gradient (EG)
approach presented in Bartlett et al. (2004). Both algorithms are iterative gradient-
based algorithms but with significant differences. First, the update direction of the
MMCRF algorithm is toward the best feasible direction while the structured EG
update tends to look for sparse directions of steep ascent. Conditional gradient
updates are known to work well in the early stages of optimization but less so
in the final stages (Bertsekas, 1999). On the other hand, the emphasis on sparse
solutions should benefit EG in the final stages of optimization as the (full) dual
optimum typically is sparse. Finally, the tractable formulation of the structured
EG (Bartlett et al., 2004) relies on enforcing a Gibbs distribution (with polynomial
number of parameters) on the dual variables while our MMCRF does not make any
additional assumptions of the distribution of the dual variables. We leave for future
work study of the relative merits of these methods.

One advantage of the marginal approach used in this chapter is that there is a
clear relationship between the complexity of the optimization and the representation



128 Efficient Algorithms for Max-Margin Structured Classification

of the output structure which is used. For the hierarchical datasets used in this
chapter, the inference step can be solved exactly and efficiently using dynamic
programming, thus ensuring that the computational complexity of the terms in
the objective function only grow linearly with the size of the output structure. In
the case of more general structures, then the inference step must either be solved
by considering junction trees where possible, or by applying approximate inference
methods such as loopy belief propagation. It is still an open question as to how the
performance of the algorithm would be effected should a technique such as LBP
be used on a more complex output structure. Given that the inference is only used
to find a suitable direction across which to optimize, one could expect that exact
inference is unnecessary and a good approximation is more than sufficient to guide
the optimization process. In general though, this is an open question and will be
the subject of future research.

Acknowledgments

This work was supported in part by the PASCAL Network of Excellence, IST-2002-
506778. C. S. is supported in part by EPSRC grant no GR/S22301/01 (Development
and Application of String-Type Kernels). The work by J. R. was partially funded
by a Marie Curie Individual Fellowship HPMF-2002-02110 and undertaken while
visiting Royal Holloway, University of London.



7 Discriminative Learning of Prediction

Suffix Trees with the Perceptron Algorithm

Ofer Dekel , Shai Shalev-Shwartz , and Yoram Singer

Prediction suffix trees (PSTs) provide a popular and effective tool for tasks such
as compression, classification, and language modeling. We present a large-margin
perspective of PSTs for the task of sequence prediction. We generalize the notion of
margin to PSTs and cast the PST learning problem as the online problem of finding
a linear predictor in a Hilbert space. This view enables us to adapt the perceptron
algorithm to the task of learning PSTs. The end result is an efficient algorithm that
does not rely on a priori assumptions on the maximal size of the target PST. We
prove a relative mistake bound, which implies that our algorithm is competitive
with any fixed PST. We also prove that the depth of the PST constructed by our
algorithm grows at most logarithmically with the number of mistakes made by the
algorithm.

7.1 Introduction

Prediction suffix trees are elegant, effective, and well-studied models for tasks such
as compression, temporal classification, and probabilistic modeling of sequences
(see, for instance, Willems et al. (1995), Ron et al. (1996), Helmbold and Schapire
(1997), Pereira and Singer (1999), and Buhlmann and Wyner (1999)). Different
scientific communities have different names for variants of PSTs, such as context
tree weighting (Willems et al., 1995) and variable-length Markov models (Ron et al.,
1996; Buhlmann and Wyner, 1999). A PST observes an input stream of symbols,
one symbol at a time, and attempts to predict the identity of the next symbol based
on the symbols already observed. Typically, this prediction relies only on the most
recent observed symbols, a suffix of the previously observed symbols which we call
the context of the prediction. A fundamental property of PST predictors is that
the exact number of previous symbols used to make each prediction depends on the
specific context in which the prediction is made.



130 Discriminative Learning of Prediction Suffix Trees with the Perceptron Algorithm

0

1 4

7

−3

−2

−1

Figure 7.1 An illustration of the prediction process induced by a PST. The support of
the context function is {−, +, +−, ++,−++,+++}, and the previously observed symbols
are −−+++. The relevant context is depicted in bold. The predicted value of the next
symbol is sign(2−1/2 × (−1) + 2−1 × 4 + 2−3/2 × 7).

For example, say that we observe a text in the English language letter by letter,
and assume that the last observed letter is a q. We know that q is always followed
by the letter u, therefore we can confidently predict the next letter to be u without
looking at previous letters in the stream. On the other hand, if the last observed
letter is not q, we may need as many as three or four previous letters to make an
accurate prediction.

Consistently underestimating the length of the suffix required to make good pre-
dictions is likely to lead to many prediction mistakes. Consistently overestimating
this length will lead to poor generalization. Balancing this tradeoff is at the heart
of PST learning algorithms. Techniques for learning PSTs include online Bayesian
mixtures (Willems et al., 1995), tree growing based on PAC learning (Ron et al.,
1996), and tree pruning based on structural risk minimization (Kearns and Man-
sour, 1996). All of these algorithms assume an a priori bound on the maximal suffix
size which may be used to make predictions. Clearly, this poses a problem in set-
tings where we do not have a clear a priori idea of the suffix length required to
make accurate predictions. Optimally, the learning algorithm should be given the
freedom to look as far back as needed to make accurate predictions. Motivated by
the problem of statistical modeling of biological sequences, Bejerano and Apostolico
(2000) showed that the bound on the maximal depth can be removed by devising
a smart modification of Ron et al. (1996). Their modification, which can also be
applied to other PST learning techniques, has time and space requirements that
grow linearly with the length of the input stream. However, even this linear growth
may lead to serious computational problems when modeling very long sequences.

Our approach to learning PSTs can be viewed as a balancing act between two
extremes. On one hand, we do not rely on any a priori bounds on suffix length, and
may “look” as far back into history as needed. On the other hand, we only use a
short suffix when this is sufficient. We begin by casting the PST learning problem
as a margin-based linear separation problem. Then we solve the linear separation



7.2 Suffix Trees for Stream Prediction 131

problem with a modified version of the perceptron algorithm. We prove that our
technique is competitive with any fixed PST, even one defined in hindsight. We
also prove that the maximal suffix length which we use to make predictions grows
logarithmically with the number of prediction mistakes. Specifically, this implies
that the size of the PST constructed by our algorithm is linear in the number of
mistakes it makes.

7.2 Suffix Trees for Stream Prediction

We now present the stream prediction problem more formally. A stream y, is
a (possibly infinite) sequence of symbols y1, y2, . . . over a finite alphabet Y. We
abbreviate the subsequence yi, . . . , yj by yj

i and the set of all finite subsequences
by Y�. Our goal is to correctly predict each symbol in the stream. For simplicity, we
focus on the binary prediction case, where |Y| = 2, and for convenience we assume
Y = {−1, +1} (or {−, +} for short) as our alphabet. Our algorithms and analysis
can be adapted to larger alphabets using ideas from Crammer et al. (2005).

On each time step t, we predict the symbol yt based on a suffix of yt−1
1 . We denote

the hypothesis used to make this prediction by ht. This hypothesis is confidence-
rated, namely it takes the form ht : Y� → R, where the sign of ht(yt−1

1 ) determines
the predicted symbol and |ht(yt−1

1 )| is the confidence in this prediction. Although
our notation implies that ht is a function of the entire observed sequence yt−1

1 , ht

typically ignores all but the last few symbols in yt−1
1 . The hypothesis ht is defined

by a context function gt, which assigns weights to different contexts. The function
gt also defines a mapping from Y� into R, and the relationship between ht and gtcontext functions
is as follows:

ht(yt−1
1 ) =

t−1∑
i=1

2−i/2 gt

(
yt-1

t-i

)
. (7.1)

In words, the prediction involves the application of the context function gt to all of
the suffixes of yt−1

1 . In the prediction process, the contribution of each suffix yt-1
t-i

is multiplied by a factor which is exponentially decreasing in its length. This type
of demotion of long suffixes is common to most PST-based approaches (Willems
et al., 1995; Helmbold and Schapire, 1997; Pereira and Singer, 1999) and reflects
the a priori assumption that statistical correlations tend to decrease as the time
between events increases. Nevertheless, gt can always compensate for this demotion
by assigning proportionally large values to long sequences.

We next describe an alternative view of our prediction function as a tree. Define
the support of a context function g as the set of sequences for which g(s) is nonzero,
supp (g) = {s ∈ Y� : g(s) �= 0}. A set T of strings is said to be suffix-closed if for any
s ∈ T, T also contains every suffix of s. Let Tt be the smallest suffix-closed subset of
Y� which contains both supp (gt) and the empty string. The set Tt can alternatively
be viewed as a rooted tree whose root is the empty sequence. Every s ∈ Tt is a node



132 Discriminative Learning of Prediction Suffix Trees with the Perceptron Algorithm

in the tree, and its parent is the node which corresponds to the sequence obtained
by removing the leftmost symbol from s. From this point through the rest of the
chapter we refer to Tt as a PST, and to the sequences in Tt as nodes. We denote the
length of the longest sequence in T by depth(T). The context function g associates
a weight g(s) with each node s ∈ T. Evaluating ht using Tt requires following the
unique path from the root which matches the current context, scaling the weight
of each node in this path by 2−d/2 (where d is its depth in the tree) and summing
the resulting values. More formally, (7.1) can be restated as

h(yt−1
1 ) =

∑
i: yt-1

t-i ∈T

2−i/2 g
(
yt-1

t-i

)
. (7.2)

An example of a PST with an associated prediction is illustrated in figure 7.1.
Our algorithm follows the general skeleton of an online learning algorithm. Online

learning is performed in a sequence of consecutive rounds, where on round t the
online algorithm predicts symbol t in the stream. Before observing any input, the
PST learning algorithm starts with a default hypothesis, which is used to predict
the first symbol in the stream. At the end of every round, the algorithm constructs
the hypothesis which is used to make a prediction on the next round. On round t,
the algorithm predicts the tth symbol in the sequence to be ŷt = sign(ht(yt−1

1 )),
and then observes the correct answer yt. Then, the algorithm may use yt to
define an updated context function gt+1. Our algorithm always sets gt+1 such that
supp (gt) ⊆ supp (gt+1), or in other words, Tt ⊆ Tt+1. Therefore, we say that our
algorithm grows a PST. The specific procedure of adding nodes to the current PST
and deriving gt+1 from gt and yt is the focus of this chapter, and will be specified
later on.

In contrast to most previous approaches to learning PSTs, we take a decision-
theoretic approach by adapting the notion of margin to our setting. In the context
of PSTs, this approach was first proposed by Eskin (2002). We define the marginmargin for PST
attained by the hypothesis ht to be ytht(yt−1

1 ). Whenever the current symbol yt

and the output of the hypothesis agree in their sign, the margin is positive. We
evaluate the performance of our algorithm, or of any other fixed PST, in one of two
ways. One alternative is to choose a horizon T and count the number of prediction
mistakes made on the first T rounds. The second alternative uses the hinge-loss
function as a margin-based proxy for the prediction error. Formally, the hinge loss
attained on round t is defined to be

max
{
0, 1− ytht

(
yt−1

1

)}
. (7.3)

Again, we choose a horizon T and sum the loss values attained on the first T rounds.
An important term which appears in our analysis is the complexity of a context

function g. Informally, the larger the tree defined by supp (g) and the bigger the



7.3 PSTs as Separating Hyperplanes and the perceptron Algorithm 133

weights assigned by g to the nodes in this tree, the harder it is to learn g. We define
the complexity of a context function using its squared 2-norm, defined as

‖g‖2 =
( ∑

s∈Y�

g2(s)
) 1

2
. (7.4)

We analyze our algorithms by comparing the number of prediction errors they
make to the performance of an arbitrary fixed hypothesis h�, which is defined by
a context function g�. We refer to h� as our competitor, and note that it can even
be a hypothesis chosen in hindsight, after observing the entire stream. The mistake
bounds we derive grow with ‖g�‖ and with the hinge loss attained by h� on the
stream. We also prove a bound on the maximal depth of Tt generated by our
algorithm. The size of supp (g�) does not appear in either of our bounds, hence we
can compete with infinite-sized competitors h� using only a bounded-depth PST,
as long as ‖g�‖ is finite.

7.3 PSTs as Separating Hyperplanes and the perceptron Algorithm

Our goal now is to derive and analyze efficient online algorithms for PST learning.online learning
for PSTs To do so, we begin by drawing an analogy between PSTs and linear margin-based

predictors in a Hilbert space. We show that when casting our problem as one of
linear separation, the notions of margin and of the squared 2-norm of g reduce to
the familiar notions of margin and norm for linear separators.

First we define H = {g : Y� → R | ‖g‖ <∞}, the set of all bounded-complexity
context functions. For any two functions in H, define their inner product to be

〈f, g〉 =
∑
s∈Y�

f(s)g(s) .

It is rather straightforward to show that H, together with its inner product, satisfies
the requirements of a Hilbert space. Also note that our definition of ‖g‖2 from (7.4)
can be rewritten as ‖g‖2 =

√〈g, g〉. Next, we show that evaluating h(s) is equivalent
to calculating an inner product operation in H. To do so, we define a feature map
Φ : Y� → H, where

Φ(s) =

{
2−i/2 if ∃i s.t s = yt-1

t-i

0 otherwise
.

Using this definition, we can rewrite (7.1) as

h(yt-1
1 ) =

〈
g, Φ(yt-1

1 )
〉

. (7.5)

In summary, we can view g as the normal vector of a separating hyperplane in H:
the prediction of h on yt-1

1 is +1 if Φ(yt-1
1 ) falls in the positive half-space defined by

g, and is −1 otherwise. As such, we can learn g using standard online algorithms



134 Discriminative Learning of Prediction Suffix Trees with the Perceptron Algorithm

Algorithm 7.1 The unbounded-depth perceptron for PST learning

1: initialize: T1 = {ε}, g1(s) = 0 ∀s ∈ Y�

2: for t = 1, 2, . . . do
3: Calculate: ht

(
yt-1

1

)
=
∑t−1

i=1 2−i/2 gt

(
yt-1

t-i

)
4: Predict: ŷt = sign

(
ht

(
yt-1

1

))
5: Receive yt

6: if (ytht(yt-1
1 ) > 0) then

7: Tt+1 = Tt

8: gt+1 = gt

9: else
10: Tt+1 = Tt ∪ {yt-1

t-i : 1 ≤ i ≤ t− 1}

11: gt+1(s) =

{
gt(s) + yt 2−i/2 if s = yt-1

t-i for 1 ≤ i ≤ t− 1

gt(s) otherwise
12: end for

for linear separation, such as the perceptron algorithm (Agmon, 1954; Rosenblatt,
1958; Novikoff, 1962).

The perceptron, originally formulated for the task of binary classification, ob-
serves a sequence of inputs and predicts a binary outcome for each input. In our
case, the input on round t is Φ(yt-1

1 ) and the output is yt. The perceptron predicts
the label on round t to be sign(

〈
gt, Φ(yt-1

1 )
〉
), where gt is a member of H which

defines the current hypothesis. In our case, gt takes on the role of a context func-
tion. The perceptron initializes g1 to be the zero vector in H, which is equivalent
to initializing T1 to be a tree with a single node (the root) with an assigned weight
of zero. At the end of round t, the perceptron receives the correct label for that
round, yt ∈ {+1,−1}, and uses it to define gt+1. If yt was correctly predicted, then
gt+1 is simply set to equal gt. Otherwise, the perceptron updates its hypothesis by
gt+1 = gt + ytΦ(yt-1

1 ). In this case, gt+1 differs from gt only on those inputs for
which Φ(yt-1

1 ) is nonzero, namely on every yt-1
t-i for 1 ≤ i ≤ t− 1. For these inputs,

the update takes the form gt+1(yt-1
t-i ) = gt(yt-1

t-i ) + yt 2−i/2. The pseudocode of the
perceptron algorithm applied to the PST learning problem is given in algorithm
7.1.

We immediately point out a major drawback in this approach. The number ofdrawback
nonzero elements in Φ(yt-1

1 ) is t − 1. Therefore, |supp (gt+1)| − |supp (gt)| may be
on the order of t. This means that the number of new nodes added to the PST
on round t may also be on the order of t. Consequently, the size of Tt may grow
quadratically with t. For this reason we refer to the straightforward application
of the perceptron algorithm to our problem as the unbounded-depth PST learning
algorithm. Implementation tricks in Bejerano and Apostolico (2000) can reduce
the space complexity of storing Tt to O(t), but even a linearly growing memory
requirement can impose serious computational problems. Let us put aside the
memory growth problem for the moment, and focus on proving a mistake bound



7.3 PSTs as Separating Hyperplanes and the perceptron Algorithm 135

for the unbounded algorithm. In the next section, we build on the analysis below
to amend this problem and devise a bounded version of our algorithm.

Theorem 44 Let y1, y2, . . . be a stream of binary symbols. Let g� be an arbitrary
context function, which defines the hypothesis h� as in (7.1). Assume that h�a relative mistake

bound for
unbounded PSTs

attains the loss values �
1, 

�
2, . . . on the stream. Then, for any T ≥ 1, the number of

prediction mistakes made by the unbounded-depth algorithm on the first T symbols
in the stream is, at most,

‖g�‖2 + 2
T∑

t=1

�
t .

Proof Define for all 1 ≤ t ≤ T ,

Δt = ‖gt − g�‖2 − ‖gt+1 − g�‖2 . (7.6)

We prove the theorem by bounding
∑T

t=1 Δt from above and from below. First note
that

∑
t Δt is a telescopic sum, which collapses to

T∑
t=1

Δt = ‖g1 − g�‖2 − ‖gT+1 − g�‖2 .

Using the facts that ‖gT+1 − g�‖2 ≥ 0 and that g1 ≡ 0, we upper-bound
∑

t Δt

by ‖g�‖2. Next we show a lower bound on
∑

t Δt. On rounds where the perceptron
makes a correct prediction, we have that gt+1 = gt and Δt = 0. On rounds on which
the perceptron makes a mistake, we have that gt+1 = gt + ytΦ(yt-1

1 ) and thus,

Δt = ‖gt − g�‖2 − ‖gt+1 − g�‖2
= ‖gt − g�‖2 − ‖(gt − g�) + ytΦ(yt-1

1 )‖2
= ‖gt − g�‖2 − (‖gt − g�‖2 + 2yt

〈
gt − g�, Φ(yt-1

1 )
〉

+ ‖Φ(yt-1
1 )‖2)

= −2yt

〈
gt, Φ(yt-1

1 )
〉

+ 2yt

〈
g�, Φ(yt-1

1 )
〉− ‖Φ(yt-1

1 )‖2 .

Using the facts that
〈
gt, Φ(yt-1

1 )
〉

= ht(yt-1
1 ) and

〈
g�, Φ(yt-1

1 )
〉

= h�(yt-1
1 ), we get

Δt = − 2ytht(yt-1
1 ) + 2yth

�(yt-1
1 )− ‖Φ(yt-1

1 )‖2 . (7.7)

Since we assumed that the perceptron errs on round t, we know that ytht(yt-1
1 ) ≤ 0.

Additionally, the definition of Φ(yt-1
1 ) implies that

‖Φ(yt-1
1 )‖2 =

t−1∑
i=1

2−i ≤ 1 .

Plugging the above inequalities back into (7.7) gives

Δt ≥ 2yth
�(yt-1

1 )− 1 . (7.8)



136 Discriminative Learning of Prediction Suffix Trees with the Perceptron Algorithm

The definition of the hinge loss from (7.3) implies that �
t ≥ 1 − yth

�(yt-1
1 ) and

therefore 2yth
�(yt-1

1 ) ≥ 2− 2�
t . Overall, we have that

Δt ≥ 1− 2�
t .

Let M denote the number of prediction mistakes made by the algorithm on the
first T symbols. Summing the above over 1 ≤ t ≤ T and using the fact that the
hinge loss is nonnegative, we get

T∑
t=1

Δt ≥ M − 2
T∑

t=1

�
t .

We conclude our proof by comparing this lower bound with the upper bound∑
t Δt ≤ ‖g�‖2 and rearranging terms.

7.4 The Self-Bounded Perceptron for PST Learning

As previously mentioned, the unbounded-depth algorithm presented in the previous
section has a major drawback: its unrestricted memory requirement. We now resolve
this problem by modifying the perceptron update to our needs. Our technique does
not rely on a priori assumptions on the structure of the PST (e.g. maximal tree
depth). The algorithm automatically determines the depth to which the PST should
grow on each round, and is therefore named the self-bounded algorithm.

Recall that every time a prediction mistake is made, the perceptron performs
the update gt+1 = gt + ytΦ(yt-1

1 ). Since the nonzero elements of Φ(yt-1
1 ) correspond

to yt-1
t-i for every 1 ≤ i ≤ t − 1, this update adds a path of depth t − 1 to the

current PST. To fix this problem, we introduce a new variable, dt, and confine the
new path to a maximal depth dt before adding it. The value of dt is determined
automatically by the algorithm. Nodes in the current tree of depth greater than dt

are left untouched. In other words, the new update step takes the form

gt+1(s) =

{
gt(s) + yt2−i/2 if ∃i s.t s = yt-1

t-i ∧ i ≤ dt

gt(s) otherwise.
. (7.9)

An analogous way of stating this update rule is obtained by defining the function
νt ∈ H,

νt(s) =

{
−yt2−i/2 if ∃i s.t s = yt-1

t-i ∧ i > dt

0 otherwise.
(7.10)

Using the definition of νt, we can rewrite the update of the self-bounded perceptron
from (7.9) as

gt+1 = gt + ytΦ(yt-1
1 ) + νt . (7.11)



7.4 The Self-Bounded Perceptron for PST Learning 137

That is, the update of the self-bounded perceptron is obtained by first applying the
standard perceptron update, and then altering the outcome of this update by νt.
It is convenient to think of νt as a kind of additive noise which contaminates the
updated hypothesis. Intuitively, the standard perceptron update guarantees positive
progress, whereas the additive noise νt pushes the hypothesis slightly off its course.
Our analysis in the sequel shows that the progress made by the perceptron step
overshadows the damage incurred by adding the noise vector νt.

First note that the norm of νt is upper-bounded by

‖νt‖ =

(
t−1∑

i=dt+1

2−i

)1/2

≤ 2−dt/2 . (7.12)

Therefore, the larger dt is, the smaller the norm of the noise vector becomes. We
now face a tradeoff. On one hand, we would like to keep dt as small as possible,
so that the depth of the PST will not grow significantly. On the other hand, dt

must be large enough so that the update remains similar to the original perceptron
update, which we know guarantees progress. We adapt and extend ideas from Auer
and Gentile (2000) to balance this tradeoff automatically on every round.

Define θt = max{i : yt-1
t-i ∈ Tt}. In words, θt is the depth of the path in Tt which

corresponds to the current context. Clearly, if dt ≤ θt, then the update in (7.9) does
not add any new nodes to the current PST. There is no point in setting dt < θt,
since doing so would only introduce a noise vector νt of a larger norm while having
no effect on the depth of the resulting PST. This is the algorithm’s first criterion
for setting dt.

The second criterion for setting dt ensures that the noise introduced by adding νt

is significantly smaller than the progress due to the perceptron update. For every
1 ≤ t ≤ T , let Jt be the subset of rounds 1, . . . , t on which the algorithm makes a
prediction mistake, and let Mt = |Jt|. In addition, define Pt to be

Pt =
∑
i∈Jt

2−di/2 . (7.13)

For completeness, define M0 = P0 = 0. Referring back to (7.12), we note that Pt is
an upper bound on the sum of ‖νi‖ over i ∈ Jt. The following analysis shows that
Pt is proportional to the amount of damage caused on the first t rounds by adding
νi after each perceptron update. Therefore, the algorithm must set dt such that Pt

is sufficiently small. Specifically, we show in theorem 45 that it is enough to require
that

Pt ≤ 1
2

√
Mt . (7.14)

If the above holds for some value of dt, then it also holds for larger values of dt.
Therefore, we can make sure that (7.14) is satisfied for every t using the following
greedy principle: whenever a prediction mistake is made, we set dt to be the smallest
value for which (7.14) holds, unless this value is less than θt. Note that (7.14)
trivially holds for t = 0. Now assume that Pt−1 ≤ 1

2

√
Mt−1. If t /∈ Jt, then



138 Discriminative Learning of Prediction Suffix Trees with the Perceptron Algorithm

Pt = Pt−1 and Mt = Mt−1, so clearly (7.14) is satisfied. Otherwise, Mt = Mt−1 +1.
Expanding the definition of P 2

t we get

P 2
t =

(
Pt−1 + 2−dt/2

)2

= P 2
t−1 + Pt−1 21−dt/2 + 2−dt . (7.15)

Using our assumption that P 2
t−1 ≤ 1

4Mt−1, it suffices to ensure that, Pt−1 21−dt/2 +
2−dt ≤ 1

4 . Equivalently, introducing the variable λ = 2−dt/2, we can require

λ2 + 2Pt−1λ − 1
4
≤ 0 .

The left-hand side of this inequality is a convex parabola, which is negative between
its two roots. These roots are

±
√

P 2
t−1 + 1

4 − Pt−1 .

Additionally, by definition, we know that λ > 0. Therefore, (7.14) holds whenever

λ ≤
√

P 2
t−1 + 1

4 − Pt−1 .

Plugging in λ = 2−dt/2, the above becomes

dt ≥ − 2 log2

(√
P 2

t−1 + 1
4 − Pt−1

)
.

In summary, we have shown that as long as dt satisfies the inequality above for all
t, it holds that Pt ≤ 1

2

√
Mt for all t. Together with our first requirement, dt ≥ θt,

we obtain the automatic update-pruning mechanism:

dt = max
{

θt ,
⌈
−2 log2

(√
P 2

t−1 + 1
4 − Pt−1

)⌉}
.

The pseudocode of the self-bounded perceptron is given in algorithm 7.2. Our
construction guarantees that Pt ≤ 1

2

√
Mt for all t, and it remains to show that

this condition leads to a mistake bound for the self-bounded algorithm.

Theorem 45 Let y1, y2, . . . be a stream of binary symbols. Let g� be an arbitraryrelative mistake
bound for
self-bounded PST

context function, which defines the hypothesis h� as in (7.1). Assume that h� attains
the loss values �

1, 
�
2, . . . on the stream. Then, for any T ≥ 1, the number of

prediction mistakes made by the self-bounded algorithm on the first T symbols in
the stream is, at most,

3+
√

5
2 ‖g�‖2 + 2

∑T
t=1 �

t + ‖g�‖
√

2
∑T

t=1 �
t .

Proof As in the proof of theorem 44, we prove the theorem by bounding
∑T

t=1 Δt

from above and from below, where Δt is defined in (7.6). The upper bound∑
t

Δt ≤ ‖g�‖2 (7.16)



7.4 The Self-Bounded Perceptron for PST Learning 139

is obtained in exactly the same way as in the proof of theorem 44. We thus turn
to bounding

∑
t Δt from below. On rounds where the perceptron makes a correct

prediction, we have that gt+1 = gt and Δt = 0. On rounds on which the perceptron
makes a mistake, we can write the update as gt+1 = gt + ytΦ(yt-1

1 ) + νt. Therefore,

Δt = ‖gt − g�‖2 − ‖gt+1 − g�‖2
= ‖gt − g�‖2 − ‖(gt − g�) + (ytΦ(yt-1

1 ) + νt)‖2
= ‖gt − g�‖2 − (‖gt − g�‖2 + 2

〈
gt − g�, ytΦ(yt-1

1 ) + νt

〉
+ ‖ytΦ(yt-1

1 ) + νt‖2
)

= −2yt

〈
gt, Φ(yt-1

1 )
〉

+ 2yt

〈
g�, Φ(yt-1

1 )
〉− 2 〈gt, νt〉

+ 2 〈g�, νt〉 − ‖ytΦ(yt-1
1 ) + νt‖2 . (7.17)

The definitions of Φ(yt-1
1 ) and νt imply that

‖ytΦ(yt-1
1 ) + νt‖2 =

dt∑
i=1

2−i ≤ 1 .

The fact that dt ≥ θt ensures that 〈gt, νt〉 = 0. In addition, as in the proof of
theorem 44, we know that

2(1− �
t ) ≤ − 2yt

〈
gt, Φ(yt-1

1 )
〉

+ 2yt

〈
g�, Φ(yt-1

1 )
〉

.

Finally, using the Cauchy-Schwartz inequality, we get

2 〈g�, νt〉 ≤ 2‖g�‖ ‖νt‖ ≤ 21−dt/2 ‖g�‖ .

Combining the above inequalities with (7.17) gives the lower bound,

1− 2�
t − 21−dt/2 ‖g�‖ ≤ Δt .

Summing the above over t, comparing to the upper bound in (7.16), and using the
definitions of MT and PT , we get that

MT − 2
T∑

t=1

�
t − 2PT ‖g�‖ ≤ ‖g�‖2 .

Recalling that we have guaranteed PT ≤ 1
2

√
MT , the above becomes

MT − 2
T∑

t=1

�
t −

√
MT ‖g�‖ ≤ ‖g�‖2 . (7.18)

Substituting λ =
√

MT and rearranging terms, we can rewrite the above as

λ2 − ‖g�‖λ −
(
‖g�‖2 + 2

T∑
t=1

�
t

)
≤ 0 .



140 Discriminative Learning of Prediction Suffix Trees with the Perceptron Algorithm

Algorithm 7.2 The self-bounded perceptron for PST learning

1: initialize: T1 = {ε}, g1(s) = 0 ∀s ∈ Y�, P0 = 0
2: for t = 1, 2, . . . do
3: Define: θt = max{i : yt-1

t-i ∈ Tt}
4: Calculate: ht

(
yt−1

1

)
=
∑θt

i=1 2−i/2 gt

(
yt-1

t-i

)
5: Predict: ŷt = sign

(
ht

(
yt−1

1

))
6: Receive yt

7:

if (ytht(yt-1
1 ) > 0) then

Set: Pt = Pt−1, Tt+1 = Tt, gt+1 = gt

else

Set: dt = max
{
θt ,

⌈
−2 log2

(√
P 2

t−1 + 1
4 − Pt−1

)⌉}
Set: Pt = Pt−1 + 2−dt/2

8: Tt+1 = Tt ∪ {yt-1
t-i : 1 ≤ i ≤ dt}

9: gt+1(s) =

{
gt(s) + yt 2−i/2 if s = yt-1

t-i for 1 ≤ i ≤ dt

gt(s) otherwise
10: end for

The above equation is a convex parabola in λ, which is negative between its two
roots. These roots are

1
2

(
‖g�‖ ±

√
5‖g�‖2 + 8

∑T
t=1 �

t

)
.

Since, by definition, λ ≥ 0, then (7.18) holds if and only if

λ ≤ 1
2

(
‖g�‖+

√
5‖g�‖2 + 8

∑T
t=1 �

t

)
.

Taking the square of both sides of the above and plugging in the definition of λ

gives the bound,

MT ≤ 1
4

(
‖g�‖+

√
5‖g�‖2 + 8

∑T
t=1 �

t

)2

= 1
4‖g�‖2 + 1

2‖g�‖
√

5‖g�‖2 + 8
∑T

t=1 �
t + 5

4‖g�‖2 + 2
∑T

t=1 �
t .

Using the the fact that
√

a2 + b2 ≤ |a|+ |b| we get

MT ≤ 1
4‖g�‖2 +

√
5

2 ‖g�‖2 + ‖g�‖
√

2
∑T

t=1 �
t + 5

4‖g�‖2 + 2
∑T

t=1 �
t ,

which proves the theorem.

Note that if there exists a fixed hypothesis with ‖g�‖ <∞ which attains a margin of
1 on the entire input sequence, then the bound of theorem 45 reduces to a constant,



7.4 The Self-Bounded Perceptron for PST Learning 141

3+
√

5
2 ‖g�‖. The next theorem states that the self-bounded perceptron grows a PST

whose depth grows logarithmically with the number of prediction mistakes.

Theorem 46 Under the conditions of theorem 45, let T1, T2, . . . be the sequence of
PSTs generated by the PST learning algorithm 7.2. Then, for all T ≥ 2,logarithmic

growth
depth(TT ) ≤ log2(MT−1) + 6.2 .

Proof Note that depth(TT ) = maxt∈JT dt and recall that dt is set to

max
{

θt ,
⌈
−2 log2

(√
P 2

t−1 + 1
4 − Pt−1

)⌉}
.

On rounds in JT where dt = θt, the update does not increase the depth of the PST.
Therefore, it suffices to show that for all t ∈ JT ,⌈

−2 log2

(√
P 2

t−1 + 1
4 − Pt−1

)⌉
≤ log2(MT−1) + 6.2 . (7.19)

Multiplying the term inside the logarithm by
√

P 2
t−1+ 1

4 +Pt−1√
P 2

t−1+ 1
4 +Pt−1

enables us to rewrite

the left-hand side of (7.19) as⌈
2 log2

(√
P 2

t−1 + 1
4 + Pt−1

)
+ 2 log2(4)

⌉
.

The above is upper-bounded by the expression 2 log2

(√
P 2

t−1 + 1
4 +Pt−1

)
+5, which

we denote by η. We thus need to show that η ≤ log2(MT−1) + 6.2. Using the
inequality

√
a2 + b2 ≤ |a|+ |b|, we get

η ≤ 2 log2

(
1
2 +2Pt−1

)
+ 5 .

By construction, we have that Pt−1 ≤ 1
2

√
Mt−1, and therefore,

η ≤ 2 log2

(
1
2 +
√

Mt−1

)
+ 5 .

Moreover, the fact that Mt is monotonic in t implies that

η ≤ 2 log2

(
1
2 +
√

MT−1

)
+ 5 .

Since h1 ≡ 0, the very first prediction of the PST always results in a mistake.
Furthermore, since T ≥ 2, we have MT−1 ≥ 1. Using the inequality log2(

1
2 +a) ≤

log2(a) + 0.6, which holds for a > 1, we conclude that

η ≤ log2(MT−1) + 6.2 .

Since a PST, T, has at most 2depth(T) nodes, theorem 46 also implies that the
self-bounded perceptron grows a PST whose size grows linearly with the number
of prediction mistakes. The bound on tree depth given in theorem 46 becomes



142 Discriminative Learning of Prediction Suffix Trees with the Perceptron Algorithm

particularly interesting when there exists some fixed hypothesis h� for which
∑

t �
t

is finite. In that case, theorem 45 guarantees that MT is finite, and together with
theorem 46 we have a finite bound on depth(TT ).

7.5 Conclusion

We presented an adaptation of the perceptron algorithm for learning PSTs for the
task of sequence prediction. Unlike other methods for learning PSTs, our algorithm
does not rely on a priori assumptions on the maximal size of the target PST. We
proved that the number of prediction mistakes our algorithm makes on any sequence
is comparable to the performance of any fixed PST. Moreover, our algorithm grows
a PST whose depth grows at most logarithmically with the number of prediction
mistakes. There are several possible extensions of the work presented in this chapter.
Our algorithm can naturally be extended to other prediction problems such as
multiclass categorization (see, for example, Crammer et al. (2006)). While the focus
of this chapter is on the online setting, online algorithms can also serve as building
blocks in the construction of well-performing batch algorithms. Online to batch
conversions of the proposed algorithm are yet another important future research
direction. There are various possible applications of the algorithm described in
this chapter. We conclude this section with an outlook of the applicability of
our sequence prediction algorithm for the task of cache management. In cache
management we need to swap items between a small cache and a larger storage
device. Several heuristics were proposed for cache management (e.g. removing the
least recently used item). By predicting the sequence of requested items, one can
maintain the contents of the cache memory in a more efficient way. Clearly, the
storage requirements of the sequence prediction mechanism must be moderate.
Thus, a sequence prediction algorithm which grows small PSTs might be adequate
for the task of cache management.

Acknowledgments

This work was supported by the Israeli Science Foundation grant number 522-04
and by the Programme of the European Community, under the PASCAL Network
of Excellence, IST-2002-506778.



8 A General Regression Framework for

Learning String-to-String Mappings

Corinna Cortes, Mehryar Mohri, and Jason Weston

8.1 Introduction

The problem of learning a mapping from strings to strings arises in many areas
of text and speech processing. As an example, an important component of speech
recognition or speech synthesis systems is a pronunciation model, which provides the
possible phonemic transcriptions of a word, or a sequence of words. An accurate
pronunciation model is crucial for the overall quality of such systems. Another
typical task in natural language processing is part-of-speech tagging, which consists
of assigning a part-of-speech tag, e.g., noun, verb, preposition, determiner, to each
word of a sentence. Similarly, parsing can be viewed as a string-to-string mapping
where the target alphabet contains additional symbols such as parentheses to
equivalently represent the tree structure.

The problem of learning string-to-string mappings may seem similar to that of
regression estimation where the task consists of learning a real-valued mapping.
But a key aspect of string-to-string mappings is that the target values, in this
case strings, have some structure that can be exploited in learning. In particular, a
similarity measure between target values can use the decomposition of the strings
into their constituent symbols. More generally, since both input and output have
some structure, one might wish to impose some constraints on the mappings based
on prior knowledge about the task. A simple example is that of part-of-speech
tagging where each tag is known to be associated with the word in the same position.

Several techniques have been described for learning string-to-string mappings,
in particular maximum-margin Markov networks (M3Ns) (Taskar et al., 2004b;
Bartlett et al., 2004) and support vector machine learning for interdependent
and structured output spaces (SVM-ISOS) (Tsochantaridis et al., 2004). These
techniques treat the learning problem just outlined by learning a scoring function
defined over the input-output pairs, imposing that the pair (x, y) with y matching
x obtain a higher score than all other pairs (x, y′). This is done by using a binary
loss function as in classification. This loss function ignores similarities between the
output sequences. To correct for that effect, classification techniques such as SVM-



144 A General Regression Framework for Learning String-to-String Mappings

ISOS (Tsochantaridis et al., 2004) craft an additional term in the loss function to
help account for the closeness of the outputs y and y′, but the resulting loss function
is different from a regression loss function.

In contrast, this chapter introduces a general framework and algorithms that
treat the problem of learning string-to-string mapping as a true regression problem.
Seeking a regression-type solution is natural since it directly exploits the similarity
measures between two possible target sequences y and y′ associated with an input
sequence x. Such similarity measures are improperly handled by the binary losses
used in previous methods.

Our framework for learning string-to-string mappings can be viewed as a concep-
tually cleaner generalization of kernel dependency estimation (KDE) (Weston et al.,
2002, see also chapter 1, section 1.5). It decomposes the learning problem into two
parts: a regression problem with a vector space image to learn a mapping from the
input strings to an explicit or implicit feature space associated to the output strings,
and a pre-image problem which consists of computing the output string from its
feature space representation. We show that our framework can be generalized natu-
rally to account for known constraints between the input and output sequences and
that, remarkably, this generalization also leads to a closed-form solution and to an
efficient iterative algorithm, which provides a clean framework for estimating the
regression coefficients. The pre-image is computed from these coefficients using a
simple and efficient algorithm based on classical results from graph theory. A major
computational advantage of our general regression framework over the binary loss
learning techniques mentioned is that it does not require an exhaustive pre-image
search over the set of all output strings Y ∗ during training.

This chapter describes in detail our general regression framework and algorithms
for string-to-string mappings and reports the results of experiments showing its
effectiveness. The chapter is organized as follows. Section 8.2 presents a simple for-
mulation of the learning problem and its decomposition into a regression problem
with a vector space image and a pre-image problem. Section 8.3 presents several
algorithmic solutions to the general regression problem, including the case of re-
gression with prior constraints. Section 8.4 describes our pre-image algorithm for
strings. Section 8.5 shows that several heuristic techniques can be used to substan-
tially speed up training. Section 8.6 compares our framework and algorithm with
several other algorithms proposed for learning string-to-string mapping. Section 8.7
reports the results of our experiments in several tasks.

8.2 General Formulation

This section presents a general and simple regression formulation of the problem of
learning string-to-string mappings.



8.2 General Formulation 145

Let X and Y be the alphabets of the input and output strings. Assume that a
training sample of size m drawn according to some distribution D is given:

(x1, y1), . . . , (xm, ym) ∈ X∗ × Y ∗. (8.1)

The learning problem that we consider consists of finding a hypothesis f : X∗ → Y ∗

out of a hypothesis space H that predicts accurately the label y ∈ Y ∗ of a
string x ∈ X∗ drawn randomly according to D. In standard regression estimation
problems, labels are real-valued numbers, or more generally elements of RN with
N ≥ 1. Our learning problem can be formulated in a similar way after the
introduction of a feature mapping ΦY : Y ∗ → FY = RN2 . Each string y ∈ Y ∗

is thus mapped to an N2-dimensional feature vector ΦY (y) ∈ FY .
As shown by the diagram of figure 8.1, our original learning problem is now

decomposed into the following two problems:learning as a
two-step
approach Regression problem: The introduction of ΦY leads us to the problem of learning a

hypothesis g : X∗ → FY predicting accurately the feature vector ΦY (y) for a string
x ∈ X∗ with label y ∈ Y ∗, drawn randomly according to D.

Pre-image problem: To predict the output string f(x) ∈ Y ∗ associated to x ∈ X∗,
we must determine the preimage of g(x) by ΦY . We define f(x) by

f(x) = argmin
y∈Y ∗

‖g(x)− ΦY (y)‖2, (8.2)

which provides an approximate pre-image when an exact pre-image does not exist
(Φ−1

Y (g(x)) = ∅).
As with all regression problems, input strings in X∗ can also be mapped to a
Hilbert space FX with dim (FX) = N1, via a mapping ΦX : X∗ → FX . Both
mappings ΦX and ΦY can be defined implicitly through the introduction of positive
definite symmetric kernels KX and KY such that for all x, x′ ∈ X∗, KX(x, x′) =
ΦX(x) · ΦX(x′) and for all y, y′ ∈ Y ∗, KY (y, y′) = ΦY (y) · ΦY (y′).

This description of the problem can be viewed as a simpler formulation of the
so-called kernel dependency estimation of Weston et al. (2002). In the original
presentation of KDE, the first step consisted of using KY and kernel principal
components analysis to reduce the dimension of the feature space FY . But that
extra step is not necessary and we will not require it, thereby simplifying that
framework.

In the following two sections, we examine in more detail each of the two problems
just mentioned (regression and pre-image problems) and present general algorithms
for both.



146 A General Regression Framework for Learning String-to-String Mappings

X∗

�
FX

�Y ∗

�

�

FX
�

�
�

�
�

�
�

���

ΦX ΦY Φ−1
Y

f

g

Figure 8.1 Decomposition of the string-to-string mapping learning problem into a
regression problem (learning g) and a pre-image problem (computing Φ−1

Y and using g
to determine the string-to-string mapping f).

8.3 Regression Problems and Algorithms

This section describes general methods for regression estimation when the dimen-
sion of the image vector space is greater than one. The objective functions and
algorithms presented are not specific to the problem of learning string-to-string
mapping and can be used in other contexts, but they constitute a key step in
learning complex string-to-string mappings.

Different regression methods can be used to learn g, including kernel ridge
regression (Saunders et al., 1998), support vector regression (SVR) (Vapnik, 1995),
or kernel matching pursuit (KMP) (Vincent and Bengio, 2000). SVR and KMP offer
the advantage of sparsity and fast training. But a crucial advantage of kernel ridge
regression in this context is, as we shall see, that it requires a single matrix inversion,
independently of N2, the number of features predicted. Thus, in the following we
will consider a generalization of kernel ridge regression.

The hypothesis space we will assume is the set of all linear functions from FX to
FY . Thus, g is modeled as

∀x ∈ X∗, g(x) = W (ΦX(x)), (8.3)

where W : FX → FY is a linear function admitting an N2 ×N1 real-valued matrix
representation W.

We start with a regression method generalizing kernel ridge regression to the case
of vector space images. We will then further generalize this method to allow for the
encoding of constraints between the input and output vectors.

8.3.1 Kernel Ridge Regression with Vector Space Images

For i = 1, . . . , m, let Mxi ∈ RN1×1 denote the column matrix representing ΦX(xi)
and Myi ∈ RN2×1 the column matrix representing ΦY (yi). We will denote by
‖A‖2F =

∑p
i=1

∑q
j=1 A2

ij the Frobenius norm of a matrix A = (Aij) ∈ Rp×q and



8.3 Regression Problems and Algorithms 147

by < A, B >F =
∑p

i=1

∑q
j=1 AijBij the Frobenius product of two matrices A and

B in Rp×q. The following optimization problem,

argmin
W∈RN2×N1

F (W ) =
m∑

i=1

‖WMxi −Myi‖2 + γ‖W ‖2F , (8.4)

where γ ≥ 0 is a regularization scalar coefficient, generalizes ridge regression
to vector space images. The solution W defines the linear hypothesis g. Let
MX ∈ RN1×m and MY ∈ RN2×m be the matrices defined by

MX = [Mx1 . . . Mxm ] MY = [My1 . . . Mym ]. (8.5)

Then, the optimization problem (8.4) can be rewritten as

argmin
W∈RN2×N1

F (W ) = ‖WMX −MY ‖2F + γ‖W ‖2F . (8.6)

Proposition 47 The solution of the optimization problem (8.6) is unique and is
given by either one of the following identities:

W = MY M

X (MXM


X + γI)−1 (primal solution)

W = MY (KX + γI)−1M

X (dual solution).

(8.7)

where KX ∈ Rm×m is the Gram matrix associated to the kernel KX : Kij =
KX(xi, xj).

Proof The function F is convex and differentiable, thus its solution is unique and
given by ∇W F = 0. Its gradient is given by

∇W F = 2 (WMX −MY )M

X + 2γW . (8.8)

Thus,

∇W F = 0 ⇔ 2(WMX −MY )M

X + 2γW = 0

⇔ W (MXM

X + γI) = MY M


X

⇔ W = MY M

X (MXM


X + γI)−1,

(8.9)

which gives the primal solution of the optimization problem. To derive the dual
solution, observe that

M

X (MXM


X + γI)−1 = (M

XMX + γI)−1M


X . (8.10)

This can be derived without difficulty from a series expansion of (MXM

X +γI)−1.

Since KX = M

XMX ,

W = MY (M

XMX + γI)−1 M


X = MY (KX + γI)−1 M

X , (8.11)

which is the second identity giving W .



148 A General Regression Framework for Learning String-to-String Mappings

For both solutions, a single matrix inversion is needed. In the primal case, the
complexity of that matrix inversion is in O(N3

1 ), or O(N2+α
1 ) with α < .376, using

the best known matrix inversion algorithms. When N1, the dimension of the feature
space FX , is not large, this leads to an efficient computation of the solution. For large
N1 and relatively small m, the dual solution is more efficient since the complexity
of the matrix inversion is then in O(m3), or O(m2+α).

Note that in the dual case, predictions can be made using kernel functions alone,
as W does not have to be explicitly computed. For any x ∈ X∗, let Mx ∈ RN1×1

denote the column matrix representing ΦX(x). Thus, g(x) = WMx. For any
y ∈ Y ∗, let My ∈ RN2×1 denote the column matrix representing ΦY (y). Then,
f(x) is determined by solving the pre-image problem:pre-image

problem
f(x) = argmin

y∈Y ∗
‖WMx −My‖2 (8.12)

= argmin
y∈Y ∗

(
M


y My − 2M

y WMx

)
(8.13)

= argmin
y∈Y ∗

(
M


y My − 2M

y MY (KX + γI)−1M


XMx

)
(8.14)

= argmin
y∈Y ∗

(
KY (y, y)− 2(Ky

Y )
(KX + γI)−1Kx
X

)
, (8.15)

where Ky
Y ∈ Rm×1 and Kx

X ∈ Rm×1 are the column matrices defined by

Ky
Y =

⎡
⎢⎢⎣

KY (y, y1)

. . .

KY (y, ym)

⎤
⎥⎥⎦ and Kx

X =

⎡
⎢⎢⎣

KX(x, x1)

. . .

KX(x, xm)

⎤
⎥⎥⎦ . (8.16)

8.3.2 Generalization to Regression with Constraints

In many string-to-string mapping learning tasks such as those appearing in natural
language processing, there are some specific constraints relating the input and
output sequences. For example, in part-of-speech tagging, a tag in the output
sequence must match the word in the same position in the input sequence. More
generally, one may wish to exploit the constraints known about the string-to-string
mapping to restrict the hypothesis space and achieve a better result.

This section shows that our regression framework can be generalized in a natural
way to impose some constraints on the regression matrix W . Remarkably, this
generalization also leads to a closed-form solution and to an efficient iterative
algorithm. Here again, the algorithm presented is not specific to string-to-string
learning problems and can be used for other regression estimation problems.

Some natural constraints that one may wish to impose on W are linearincorporating
input-output
constraints via
regularization

constraints on its coefficients. To take these constraints into account, one can
introduce additional terms in the objective function. For example, to impose that



8.3 Regression Problems and Algorithms 149

the coefficients with indices in some subset I0 are null, or that two coefficients with
indices in I1 must be equal, the following terms can be added:

β0

∑
(i,j)∈I0

W 2
ij + β1

∑
(i,j,k,l)∈I1

|Wij −Wkl|2, (8.17)

with large values assigned to the regularization factors β0 and β1. More generally,
a finite set of linear constraints on the coefficients of W can be accounted for in
the objective function by the introduction of a quadratic form defined over Wij ,
(i, j) ∈ N2 ×N1.

Let N = N2N1, and denote by W̄ the N×1 column matrix whose components are
the coefficients of the matrix W . The quadratic form representing the constraints
can be written as < W̄ , RW̄ >, where R is a positive semidefinite symmetric
matrix. By Cholesky’s decomposition theorem, there exists a triangular matrix Ā

such that R = Ā
Ā. Denote by Āi the transposition of the ith row of Ā, Āi is an
N × 1 column matrix, then

< W̄ , RW̄ >=< W̄ , Ā
ĀW̄ >= ||ĀW̄ ||2 =
N∑

i=1

< Āi, W̄ >2 . (8.18)

The matrix Āi can be associated to an N2×N1 matrix Ai, just as W̄ is associated
to W , and < Āi, W̄ >2=< Ai, W >2

F . Thus, the quadratic form representing the
linear constraints can be rewritten in terms of the Frobenius products of W with
N matrices:

< W̄ , RW̄ >=
N∑

i=1

< Ai, W >2
F , (8.19)

with each Ai, i = 1, . . . , N , being an N2 ×N1 matrix. In practice, the number of
matrices needed to represent the constraints may be far less than N ; we will denote
by C the number of constraint-matrices of the type Ai used.

Thus, the general form of the optimization problem including input-output
constraints becomes

argmin
W∈RN2×N1

F (W ) = ‖WMX −MY ‖2F + γ‖W ‖2F +
C∑

i=1

ηi < Ai, W >2
F , (8.20)

where ηi ≥ 0, i = 1, . . . , C, are regularization parameters. Since they can be factored
in the matrices Ai by replacing Ai with

√
ηiAi, in what follows we will assume

without loss of generality that η1 = . . . = ηC = 1.

Proposition 48 The solution of the optimization problem (8.20) is unique and is
given by the following identity:

W = (MY M

X −

C∑
i=1

ai Ai)U−1, (8.21)



150 A General Regression Framework for Learning String-to-String Mappings

with U = MXM

X + γI and⎡

⎢⎢⎣
a1

. . .

aC

⎤
⎥⎥⎦ =

(
(< Ai, AjU

−1 >)ij + I
)−1

⎡
⎢⎢⎣

< MY M

X U−1, A1 >

. . .

< MY M

X U−1, AC >

⎤
⎥⎥⎦ . (8.22)

Proof The new objective function F is convex and differentiable; thus, its solution
is unique and given by ∇W F = 0. Its gradient is given by

∇W F = 2 (WMX −MY )M

X + 2γW + 2

C∑
i=1

< Ai, W >F Ai. (8.23)

Thus,

∇W F = 0⇔ 2(WMX −MY )M

X + 2γW +

C∑
i=1

< Ai, W >F Ai = 0 (8.24)

⇔W (MXM

X + γI) = MY M


X −
C∑

i=1

< Ai, W >F Ai (8.25)

⇔W = (MY M

X −

C∑
i=1

< Ai, W >F Ai)(MXM

X + γI)−1. (8.26)

To determine the solution W , we need to compute the coefficients < Ai, W >F .
Let M = MY M


X , ai =< Ai, W >F and U = MXM

X + γI, then the last

equation can be rewritten as

W = (M −
C∑

i=1

ai Ai)U−1. (8.27)

Thus, for j = 1, . . . , C,

aj =< Aj , W >F =< Aj , MU−1 >F −
C∑

i=1

ai < Aj , AiU
−1 >F , (8.28)

which defines the following system of linear equations with unknowns aj :

∀j, 1 ≤ j ≤ C, aj +
C∑

i=1

ai < Aj , AiU
−1 >F =< Aj , MU−1 >F . (8.29)

Since u is symmetric, for all i, j, 1 ≤ i, j ≤ C,

< Aj , AiU
−1 >F = tr(A


j AiU
−1) = tr(U−1A


j Ai) =< AjU
−1, Ai >F . (8.30)

Thus, the matrix (< Ai, AjU
−1 >F )ij is symmetric and (< Ai, AjU

−1 >F )ij + I

is invertible. The statement of the proposition follows.

Proposition 8.20 shows that, as in the constrained case, the matrix W solution
of the optimization problem is unique and admits a closed-form solution. The



8.3 Regression Problems and Algorithms 151

computation of the solution requires inverting matrix U , as in the unconstrained
case, which can be done in time O(N3

1 ). But it also requires, in the general case,
the inversion of matrix (< Ai, AjU

−1 >F )ij + I, which can be done in O(C3). For
large C, C close to N , the space and time complexity of this matrix inversion may
become prohibitive.

Instead, one can use an iterative method for computing W , using (8.31):iterative
algorithm

W = (MY M

X −

C∑
i=1

< Ai, W >F Ai)U−1, (8.31)

and starting with the solution of the unconstrained solution:

W0 = MY M

XU−1. (8.32)

At iteration k, Wk+1 is determined by interpolating its value at the previous
iteration with the one given by (8.31):

Wk+1 = (1− α)Wk + α (MY M

X −

C∑
i=1

< Ai, Wk >F Ai)U−1, (8.33)

where 0 ≤ α ≤ 1. Let P ∈ R(N2×N1)×(N2×N1) be the matrix such that

PW =
C∑

i=1

< Ai, W >F AiU
−1. (8.34)

The following theorem proves the convergence of this iterative method to the
correct result when α is sufficiently small with respect to a quantity depending
on the largest eigenvalue of P . When the matrices Ai are sparse, as in many cases
encountered in practice, the convergence of this method can be very fast.

Theorem 49 Let λmax be the largest eigenvalue of P . Then, λmax ≥ 0 and for
0 < α < min

{
2

λmax+1 , 1
}
, the iterative algorithm just presented converges to the

unique solution of the optimization problem (8.20).

Proof We first show that the eigenvalues of P are all nonnegative. Let X be an
eigenvector associated to an eigenvalue λ of P . By definition,

C∑
i=1

< Ai, X >F AiU
−1 = λX. (8.35)

Taking the dot product of each side with XU yields

C∑
i=1

< Ai, X >F < AiU
−1, XU >F = λ < X, XU >F . (8.36)



152 A General Regression Framework for Learning String-to-String Mappings

Since U = MXM

X + γI, it is symmetric and positive and by Cholesky’s decom-

position theorem, there exists a matrix V such that U = V V 
. Thus,

< X, XU >F =< X, XV V 
 >F = tr(X
XV V 
) = tr(V 
X
XV )

= tr((XV )
XV ) = ‖XV ‖2F ,
(8.37)

where we used the property tr(AB) = tr(BA), which holds for all matrices A and
B. Now, using this same property and the fact that U is symmetric, for i = 1, . . . , C,

< AiU
−1, XU >F = tr(U−1A


i XU) = tr(A

i XUU−1) =< Ai, X >F . (8.38)

Thus, (8.36) can be rewritten as

C∑
i=1

< Ai, X >2
F = λ‖XV ‖2F . (8.39)

If ‖XV ‖2F = 0, then for i = 1, . . . , C, < Ai, X >F = 0, which implies PX = 0 =
λX and λ = 0. Thus, if λ �= 0, ‖XV ‖2F �= 0, and in view of (8.39),

λ =
∑C

i=1 < Ai, X >2
F

‖XV ‖2F
≥ 0. (8.40)

Thus, all eigenvalues of P are nonnegative. This implies in particular that I + P

is invertible.
Eq. (8.31) giving W can be rewritten as

W = W0 − PW ⇐⇒W = (I + P )−1W0. (8.41)

with W0 = MY M

XU−1, which gives the unique solution of the optimization

problem (8.20). Using the same notation, the iterative definition (8.33) can written
for all n ≥ 0 as

Wn+1 = (1 − α)Wn + α (W0 − PWn). (8.42)

For n ≥ 0, define Vn+1 by Vn+1 = Wn+1 −Wn. Then,

∀n ≥ 0, Vn+1 = −α((I + P )Wn −W0). (8.43)

Thus, for all n ≥ 0, Vn+1 − Vn = −α(I + P )Vn. Summing these equalities gives

∀n ≥ 0, Vn+1 = [I − α(I + P )]nV1. (8.44)

Assume that 0 < α < 1. Let μ be an eigenvalue of I − α(I + P ), then there exists
X �= 0 such that

I − α(I + P )X = μX ⇐⇒ PX =
(1− α) − μ

α
X. (8.45)



8.3 Regression Problems and Algorithms 153

Thus, (1−α)−μ
α must be an eigenvalue of P . Since the eigenvalues of P are nonneg-

ative,

0 ≤ (1− α)− μ

α
=⇒ μ ≤ 1− α < 1. (8.46)

By definition of λmax,

(1− α)− μ

α
≤ λmax =⇒ μ ≥ (1− α)− αλmax = 1− α(λmax + 1). (8.47)

Thus, for α < 2
λmax+1 ,

μ ≥ 1− α(λmax + 1) > 1− 2 = −1. (8.48)

By (8.46) and (8.48), any eigenvalue μ of I − α(I + P ) verifies |μ| < 1. Thus, in
view of (8.48),

lim
n→∞Vn+1 = lim

n→∞[I − α(I + P )]nV1 = 0. (8.49)

By (8.43) and the continuity of (I + P )−1, this implies that

lim
n→∞(I + P )Wn = W0 =⇒ lim

n→∞Wn = (I + P )−1W0, (8.50)

which proves the convergence of the iterative algorithm to the unique solution of
the optimization problem (8.20).

Corollary 50 Assume that 0 < α < min
{

2
‖P‖+1 , 1

}
, then the iterative algorithm

presented converges to the unique solution of the optimization problem (8.20).

Proof Since λmax ≤ ‖P‖, the results follows directly theorem 49.

Thus, for smaller values of α, the iterative algorithm converges to the unique
solution of the optimization problem (8.20). In view of the proof of the theorem,
the algorithm converges at least as fast as in

O(max {|1− α|n, |(1− α)− αλmax|n}) = O(|1 − α|n). (8.51)

The extra terms we introduced in the optimization function to account for known
constraints on the coefficients of W (8.20), together with the existing term ‖W ‖2F ,
can be viewed as a new and more general regularization term for W . This idea can
be used in other contexts. In particular, in some cases, it could be beneficial to use
more general regularization terms for the weight vector in support vector machines.
We leave the specific analysis of such general regularization terms to a future study.



154 A General Regression Framework for Learning String-to-String Mappings

8.4 Pre-Image Solution for Strings

8.4.1 A General Problem: Finding Pre-Images

A critical component of our general regression framework is the pre-image computa-
tion. This consists of determining the predicted output: given z ∈ FY , the problem
consists of finding y ∈ Y ∗ such that ΦY (y) = z (see figure 8.1). Note that this is a
general problem, common to all kernel-based structured output problems, including
M3Ns (Taskar et al., 2004b) and SVM-ISOS (Tsochantaridis et al., 2004) although
it is not explicitly described and discussed by the authors (see section 8.6).

Several instances of the pre-image problem have been studied in the past in cases
where the pre-images are fixed-size vectors (Schölkopf and Smola, 2002). The pre-
image problem is trivial when the feature mapping ΦY corresponds to polynomial
kernels of odd degree since ΦY is then invertible. There also exists a fixed-point
iteration approach for radial basis function (RBF) kernels. In the next section, we
describe a new pre-image technique for strings that works with a rather general
class of string kernels.

8.4.2 n-gram Kernels

n-gram kernels form a general family of kernels between strings, or more gener-
ally weighted automata, that measure the similarity between two strings using the
counts of their common n-gram sequences. Let |x|u denote the number of occur-
rences of u in a string x, then the n-gram kernel kn between two strings y1 and y2

in Y ∗, n ≥ 1, is defined by

kn(y1, y2) =
∑
|u|=n

|y1|u |y2|u, (8.52)

where the sum runs over all strings u of length n. These kernels are instances of
rational kernels and have been used successfully in a variety of difficult prediction
tasks in text and speech processing (Cortes et al., 2004).

8.4.3 Pre-Image Problem for n-gram Kernels

The pre-image problem for n-gram kernels can be formulated as follows. Let Σ be
the alphabet of the strings considered. Given z = (z1, . . . , zl), where l = |Σ|n and
zk is the count for an n-gram sequence uk, find string y such that for k = 1, . . . , l,
|y|uk

= zk. Several standard problems arise in this context: the existence of y given
z, its uniqueness when it exists, and the need for an efficient algorithm to determine
y when it exists. We will address all these questions in the following sections.



8.4 Pre-Image Solution for Strings 155

ab

bc|abc| = 2

bb

|abb| = 3
ab

bc

bb

(a) (b)

Figure 8.2 (a) The De Bruijn graph Gz,3 associated with the vector z in the case of
trigrams (n = 3). The weight carried by the edge from vertex ab to vertex bc is the number
of occurrences of the trigram abc as specified by the vector z. (b) The expanded graph Hz,3

associated with Gz,3. An edge in Gz,3 is repeated as many times as there were occurrences
of the corresponding trigram.

8.4.4 Equivalent Graph-Theoretic Formulation of the Problem

The pre-image problem for n-gram kernels can be formulated as a graph problem by
considering the De Bruijn graph Gz,n associated with n and the vector z (van LintDe Bruijn graphs
and Wilson, 1992). Gz,n is the graph constructed in the following way: associate
a vertex to each (n-1)-gram sequence and add an edge from the vertex identified
with a1a2 . . . an−1 to the vertex identified with a2a3 . . . an weighted with the count
of the n-gram a1a2 . . . an. The De Bruijn graph can be expanded by replacing each
edge carrying weight c with c identical unweighted edges with the same original
and destination vertices. Let Hz,n be the resulting unweighted graph.

The problem of finding the string y is then equivalent to that of finding an Euler
circuit of Hz,n, that is, a circuit on the graph in which each edge is traversed exactlyEuler circuit
once (van Lint and Wilson, 1992). Each traversal of an edge between a1a2 . . . an−1

and a1a2 . . . an corresponds to the consumption of one instance of the n-gram
a1a2 . . . an. Figure 8.2 illustrates the construction of the graphs Gz,n and Hz,n

in a special case.

8.4.5 Existence

The problem of finding an Eulerian circuit of a graph is a classical problem. Let
in-degree(q) denote the number of incoming edges of vertex q and out-degree(q)
the number of outgoing edges. The following theorem characterizes the cases where
the pre-image y exists.

Theorem 51 The vector z admits a pre-image iff for any vertex q of Hz,n, in-
degree(q) = out-degree(q).



156 A General Regression Framework for Learning String-to-String Mappings

a b c

Figure 8.3 Example of a pre-image computation. The graph is associated with the
vector z = (0, 1, 0, 0, 0, 2, 1, 1, 0) whose coordinates indicate the counts of the bigrams
aa, ab, ac, ba, bb, bc, ca, cb, cc. The graph verifies the conditions of theorem 51, thus it admits
an Eulerian circuit, which in this case corresponds to the pre-image y = bcbca if we start
from the vertex a which can serve here as both the start and end symbol.

Proof The proof is a direct consequence of the graph formulation of the problem
and a classical result related to the problem of Euler (1741) and Wilson (1979).

8.4.6 Compact Algorithm

There exists a linear-time algorithm for determining an Eulerian circuit of a graph
verifying the conditions of theorem 51 (Wilson, 1979). Here, we give a simple,
compact, and recursive algorithm that produces the same result as that algorithm
with the same linear complexity:

O(|Hz,n|) = O(
l∑

i=1

zi) = O(|y|). (8.53)

Note that the complexity of the algorithm is optimal since writing the output
sequence y takes the same time (O(|y|)). The following is the pseudocode of our
algorithm.

Euler(q)
1 path← ε

2 for each unmarked edge e leaving q do
3 Mark(e)
4 path← e Euler(dest(e)) path
5 return path

A call to the function Euler with argument q returns a path corresponding to
an Eulerian circuit from q. Line 1 initializes the path to the empty path. Then,
each time through the loop of lines 2-4, a new outgoing edge of q is examined. If it
has not been previously marked (line 3), then path is set to the concatenation of
the edge e with the path returned by a call to Euler with the destination vertex
of e and the old value of path.

While this is a very simple algorithm for generating an Eulerian circuit, the proof
of its correctness is in fact not as trivial as that of the standard Euler algorithm.
However, its compact form makes it easy to modify and analyze the effect of the
modifications.



8.4 Pre-Image Solution for Strings 157

a b c

Figure 8.4 Case of nonunique pre-images. Both bcbcca and bccbca are possible pre-
images. Our Euler algorithm can produce both solutions, depending on the order in which
outgoing edges of the vertex c are examined. The graph differs from that of figure 8.3 only
by the self-loop at the vertex identified with c.

8.4.7 Uniqueness

In general, when it exists, the pre-image sequence is not unique. Figure 8.4 gives a
simple example of a graph with two distinct Eulerian circuits and distinct pre-image
sequences. A recent result of Kontorovich (2004) gives a characterization of the set
of strings that are unique pre-images. Let Φn be the feature mapping corresponding
to n-gram sequences, that is, Φn(y) is the vector whose components are the counts
of the n-grams appearing in y.

Theorem 52 (Kontorovich (2004)) The set of strings y such that Φ(y) admits
a unique pre-image is a regular language.

In all cases, our algorithm can generate all possible pre-images starting from
a given (n-1)-gram. Indeed, different pre-images simply correspond to different
orders of examining outgoing edges. In practice, for a given vector z, the number
of outgoing edges at each vertex is small (often 1, rarely 2). Thus, the extra cost of
generating all possible pre-images is very limited.

8.4.8 Generalized Algorithm

The algorithm we presented can be used to generate efficiently all possible pre-
images corresponding to a vector z when it admits a pre-image. However, due to
regression errors, the vector z might not admit a pre-image. Also, as a result of
regression, the components of z may be noninteger.

One solution to this problem is to round the components to obtain integer counts.
As we shall see, incrementing or decrementing a component by one only leads to
the local insertion or deletion of one symbol.

To deal with regression errors and the fact that y might not admit a pre-image,
we can simply use the same algorithm. To allow for cases where the graph is not
connected, the function Euler is called at each vertex q whose outgoing edges are
not all marked. The resulting path is the concatenation of the paths returned by
different calls to this function.



158 A General Regression Framework for Learning String-to-String Mappings

a b c

Figure 8.5 Illustration of the application of the generalized algorithm to the case of a
graph that does not admit the Euler property. The graph differs from that of figure 8.3
by just one edge (dashed). The possible pre-images returned by the algorithm are bccbca
and bcbcca.

a b c

Figure 8.6 Further illustration of the application of the generalized algorithm to the
case of a graph that does not admit the Euler property. The graph differs from that of
figure 8.3 by just one edge (dashed). The pre-image returned by the algorithm is bcba.

The algorithm is guaranteed to return a string y whose length is |y| = ∑l
i=1 zi

since each edge of the graph Hz,n is visited exactly once. Clearly, the result is a
pre-image when z admits one. But how different is the output string y from the
original pre-image when we modify the count of one of the components of z by one,
either by increasing or decreasing it? Figures 8.3 and 8.4 can serve to illustrate
that in a special case since the graph of figure 8.4 differs from that of figure 8.3
by just one edge, which corresponds to the existence or not of the bigram cc.1 The
possible pre-images output by the algorithm given the presence of the bigram cc

only differ from the pre-image in the absence of the bigram cc by one letter, c.
Their edit-distance is one. Furthermore, the additional symbol c cannot appear at
any position in the string; its insertion is only locally possible.

Figure 8.5 illustrates another case where the graph differs from that of figure 8.3
by one edge corresponding to the bigram bc. As in the case just discussed, the
potential pre-images can only contain one additional symbol, c, which is inserted
locally.

Figure 8.6 illustrates yet another case where the graph differs from that of
figure 8.3 by one edge missing which corresponds to the bigram bc. The graph
does not have the Euler property. Yet, our algorithm can be applied and outputs
the pre-image bcba.

Thus, in summary, the algorithm we presented provides a simple and efficient
solution to the pre-image problem for strings for the family of n-gram kernels. It
also has the nice property that changing a coordinate in feature space has minimal
impact on the actual pre-image found.

1. We can impose the same start and stop symbol, a, for all sequences.



8.5 Speeding up Training 159

One can use additional information to further enhance the accuracy of the pre-
image algorithm. For example, if a large number of sequences over the targetusing a priori

knowledge alphabet are available, we can create a statistical model such as an n-gram model
based on those sequences. When the algorithm generates several pre-images, we can
use that statistical model to rank these different pre-images by exploiting output
symbol correlations. In the case of n-gram models, this can be done in linear time
in the sum of the lengths of the pre-image sequences output by the algorithm.

8.5 Speeding up Training

This section examines two techniques for speeding up training when using our
general regression framework.

8.5.1 Incomplete Cholesky Decomposition

One solution is to apply incomplete Cholesky decomposition to the kernel matrix
KX ∈ Rm×m (Bach and Jordan, 2002). This consists of finding a matrix L ∈ Rm×n,
with n& m, such that

KX = LL
. (8.54)

Matrix L can be found in time O(mn2) using an incomplete Cholesky decomposition
which takes O(mn2) operations (see e.g., Bach and Jordan, 2002) for the use of
this technique in the context of kernel independent component analysis). To invert
KX + γI one can use the so-called inversion lemma or Woodbury formula:

(A + BC)−1 = A−1 −A−1B(I + CA−1B)−1CA−1, (8.55)

which here leads to

(γI + LL
)−1 =
1
γ

[I − L (γI + L
L)−1 L
]. (8.56)

Since (γI +L
L) ∈ Rn×n, the cost of the matrix inversion in the dual computation
is reduced from O(m3) to O(n3). This method can thus be quite effective at reducing
the computational cost. Our experiments (section 8.7.4) have shown, however, that
the simple greedy technique described in the next section is often far more effective.

8.5.2 Greedy Technique

This consists, as with kernel matching pursuit (Vincent and Bengio, 2000), of
defining a subset n& m of kernel functions in an incremental fashion. This subset isovercoming

nonsparsity



160 A General Regression Framework for Learning String-to-String Mappings

then used to define the expansion. Consider the case of a finite-dimensional output
space:

g(x) = (
∑
i∈S

αi1KX(xi, x), . . . ,
∑
i∈S

αiN2KX(xi, x)), (8.57)

where S is the set of indices of the kernel functions used in the expansion, initialized
to ∅. The algorithm then consists of repeating the following steps so long as |S| < n:

1. Determine the training point xj with the largest residual:

j = argmax
i∈{1,...,m}\S

||ΦY (yi)− g(xi)||2; (8.58)

2. Add xj to the set of ”support vectors” and update α:

S ← S ∪ {xj};
α← argmin

α̂

∑m
i=1 ||ΦY (yi)− g(xi)||2. (8.59)

The matrix inversion required in step 2 is done with α = KS
−1KS,∗Y where KS

is the kernel matrix between input examples indexed by S only, and KS,∗ is the
kernel matrix between S and all other examples.

In practice, this can be computed incrementally via rank one updates (Smola and
Bartlett, 2001), which results in a running time complexity of O(nm2N2) as with
KMP (Vincent and Bengio, 2000) (but there, N2 = 1). A further linear speedup
is possible by restricting the subset of the data points in step 1. Note that this
approach differs from KMP in that we select basis functions that approximate all
the output dimensions at once, resulting in faster evaluation times. The union of
the support vectors over all output dimensions is indeed smaller.

One could also apply this procedure to the iterative regression algorithm incor-
porating constraints of section 8.3.2. One would need to add a ”support vector”
greedily as above, run several iterations of the update rule given in (8.27), and then
repeat n times.

8.6 Comparison with Other Algorithms

This section compares our regression framework for learning string-to-string map-
pings with other algorithms described in the literature for the same task. It describes
the objective function optimized by these other algorithms, which can all be viewed
as classification-based, and points out important differences in the computational
complexity of these algorithms.

8.6.1 Problem Formulation

Other existing algorithms for learning a string-to-string mapping (Collins andrelation to other
work



8.6 Comparison with Other Algorithms 161

Duffy, 2002; Tsochantaridis et al., 2004; Taskar et al., 2004b) formulate the problem
as that of learning a function f : X×Y → R defined over the pairs of input-output
strings, such that the output ŷ(x) associated to the input x is given by

ŷ(x) = argmax
y∈Y

f(x, y). (8.60)

The hypothesis space considered is typically that of linear functions. Pairs of input-
output strings are mapped to a feature space F via a mapping ΦXY : X × Y → F .
Thus, the function f learned is defined as

∀(x, y) ∈ X × Y, f(x, y) = w ·ΦXY (x, y), (8.61)

where w ∈ F . Thus, a joint embedding ΦXY is used, unlike the separate embeddings
ΦX and ΦY adopted in our framework. The learning problem can be decomposed
into the following two problems, as in our case:

learning the weight vector w to determine the linear function f , which is similar
to our problem of determining W ;

given x, computing ŷ(x) following (8.60), which is also a pre-image problem.
Indeed, let gx be the function defined by gx(y) = f(x, y), then

ŷ(x) = argmax
y∈Y

gx(y). (8.62)

When the joint embedding ΦXY can be decomposed as

ΦXY (x, y) = ΦX(x) ⊗ ΦY (y), (8.63)

where ⊗ indicates the tensor product of the vectors, the hypothesis functions
sought coincide with those assumed in our regression framework. In both cases,
the problem then consists of learning a matrix W between the same two spaces as
in our approach. The only difference lies in the choice of the loss function.

Other joint embeddings ΦXY may help encode conveniently some prior knowledge
about the relationship between input and output sequences (see Weston et al. (2004)
and chapter 4 of this book for an empirical analysis of the benefits of joint feature
spaces). For example, with

〈ΦXY (x, y), ΦXY (x′, y′)〉 = 〈ΦX(x)⊗ ΦY (y), R (ΦX(x′)⊗ ΦY (y′))〉 (8.64)

the matrix R can be used to favor some terms of W . In our method, such
relationships can also be accounted for by imposing some constraints on the matrix
W and solving the generalized regression problem with constraints described in
section 8.3.2.

The weight vector w in previous techniques is learned using the kernel perceptron
algorithm (Collins and Duffy, 2002), or a large-margin maximization algorithm
(Tsochantaridis et al., 2004; Taskar et al., 2004b). These techniques treat the
learning problem outlined above by imposing that the pair (x, y) with y matching



162 A General Regression Framework for Learning String-to-String Mappings

x obtain a higher score than all other pairs (x, y′). This is done by using a binary
loss function as in classification which ignores the similarities between the output
sequences. To correct for that effect, classification techniques such as SVM-ISOS
(Tsochantaridis et al., 2004) modify the binary loss function to impose the following
condition for i = 1, . . . , m and any y ∈ Y − {yi}:existing

approaches mimic
regression setting f(xi, yi) > f(xi, y) + L(yi, y), (8.65)

where L is a loss function based on the output strings. This makes the loss function
similar, though not equivalent, to the objective function of a regression problem.
To further point out this similarity, consider the case of the joint embedding (8.63).
The inequality can then be rewritten as

ΦY (yi)
WΦX(xi)− ΦY (y)
WΦX(xi) ≥ L(yi, y). (8.66)

In our general regression framework, using (8.4), a solution with zero empirical
error, i.e., WΦX(xi) = ΦY (yi) for i = 1, . . . , m, verifies the following equality:

||WΦX(xi)− ΦY (y)||2 = ||WΦX(xi)− ΦY (yi)||2 + L(yi, y), (8.67)

where L(yi, y) = ||ΦY (yi) − ΦY (y)||2. Assuming that the outputs are normalized,
i.e., ||ΦY (y)|| = 1 for all y, this equation is equivalent to

ΦY (yi)
WΦX(xi)− ΦY (y)
WΦX(xi) =
1
2
L(yi, y), (8.68)

which is similar to the zero-one loss constraint of (8.66) with the inequality replaced
with an equality here.

We argue that in structured output prediction problems, it is often natural to
introduce a similarity measure capturing the closeness of the outputs. In view of
that, minimizing the corresponding distance is fundamentally a regression problem.

8.6.2 Computational Cost

The computational cost of other techniques for learning string-to-string mapping
significantly differs from that of our general regression framework.

In the case of other techniques, a pre-image computation is required at every it-
eration during training, and the algorithms can be shown to converge in polynomial
time if the pre-image computation itself can be computed in polynomial time. In
our case, pre-image calculations are needed only at testing time, and do not affect
training time. Since the pre-image computation may be often very costly, this can
represent a substantial difference in practice.

The complexity of our Euler circuit string pre-image algorithm is linear in the
length of the pre-image string y it generates. It imposes no restriction on the type
of regression technique used, nor does it constrain the choice of the features over
the input X .



8.7 Experiments 163

The computation of the pre-image in several of the other techniques consists of
applying the Viterbi algorithm, possibly combined with a heuristic pruning, to a
dynamically expanded graph representing the set of possible candidate pre-images.
The complexity of the algorithm is then O(|y||G|) where y is the string for which
a pre-image is sought and G the graph expanded. The practicality of such pre-
image computations often relies on some rather restrictive constraints on the type
of features used, which may impact the quality of the prediction. As an example,
in the experiments described by Taskar et al. (2004b), a Markovian assumption is
made about the output sequences, and furthermore the dependency between the
input and output symbols is strongly restricted: yi, the output symbol at position
i, depends only on xi, the symbol at the same position in the input.

The two approaches differ significantly in terms of the number of variables to
estimate in the dual case. With the kernel perceptron algorithm (Collins and Duffy,
2002) and the large-margin maximization algorithms of Tsochantaridis et al. (2004)
and Taskar et al. (2004b), the number of variables to estimate is at most m|Y |, where
|Y |, the number of possible labels, could be potentially very large. On the positive
side, this problem is partially alleviated thanks to the sparsity of the solution. Note
that the speed of training is also proportional to the number of nonzero coefficients.

In the case of our general regression framework with no constraints, the number
of dual variables is m2, and is therefore independent of the number of output labels.
On the negative side, the solution is in general not sparse. The greedy incremental
technique described in section 8.5 helps overcome this problem, however.

8.7 Experiments

8.7.1 Description of the Dataset

To test the effectiveness of our algorithms, we used exactly the same dataset as
the one used in the experiments reported by Taskar et al. (2004b) with the same
specific crossvalidation process and the same folds: the data are partitioned into
ten folds, and ten times one fold is used for training, and the remaining nine are
used for testing.

The dataset, including the partitioning, is available for download from http:

//ai.stanford.edu/~btaskar/ocr/. It is a subset of the handwritten words col-
lected by Rob Kassel at the MIT Spoken Language Systems Group for an optical
character recognition (OCR) task. It contains 6877 word instances with a total of
52,152 characters. The first character of each word has been removed to keep only
lowercase characters. (This decision was not made by us. We simply kept the dataset
unchanged to make the experiments comparable.) The image of each character has
been rasterized and normalized into a 16× 8 = 128 binary-pixel representation.

The general handwriting recognition problem associated with this dataset is to
determine a word y given the sequence of pixel-based images of its handwritten



164 A General Regression Framework for Learning String-to-String Mappings

segmented characters x = x1 · · ·xk. We report our experimental results in this task
with two different settings.

8.7.2 Perfect Segmentation

Our first experimental setting matches exactly that of Taskar et al. (2004b), where
a perfect image segmentation is given with a one-to-one mapping of images to
characters. Image segment xi corresponds exactly to one word character, the
character, yi, of y in position i.

To exploit these conditions in learning, we will use the general regression frame-
work with constraints described in section 8.3.2. The input and output feature
mappings ΦX and ΦY are defined as follows.

Let vi, i = 1, . . . , N1, denote all the image segments in our training set and let
kX be a positive definite symmetric kernel defined over such image segments. We
denote by l the maximum length of a sequence of images in the training sample.

The feature vector ΦX(x) associated to an input sequence of images x = x1 · · ·xq,
q ≤ l, is defined by

ΦX(x) = [k′
X(v1, xp(v1)), . . . , k′

X(vN1 , xp(vN1 ))]
, (8.69)

where for i = 1, . . . , N1, k′
X(vi, xp(vi)) = kX(vi, xp(vi)) if p(vi) ≤ q, k′

X(vi, xp(vi)) =
0 otherwise. Thus, we use a so-called empirical kernel map to embed the input
strings in the feature space FX of dimension N1.

The feature vector ΦY (y) associated to the output string y = y1 · · · yq, q ≤ l, is
a 26l-dimensional vector defined by

ΦY (y) = [φY (y1), . . . , φY (yq), 0, . . . , 0]
, (8.70)

where φY (yi), 1 ≤ i ≤ q, is a 26-dimensional vector whose components are all
zero except from the entry of index yi, which is equal to one. With this feature
mapping, the pre-image problem is straightforward since each position can be
treated separately. For each position i, 1 ≤ i ≤ l, the alphabet symbol with the
largest weight is selected.

Given the embeddings ΦX and ΦY , the matrix W learned by our algorithm is in
RN2×N1 , with N1 ≈ 5000 and N2 = 26l. Since the problem setting is very restricted,
we can impose some constraints on W . For a given position i, 1 ≤ i ≤ l, we can
assume that input features corresponding to other positions, that is, input features
vj for which p(vj) �= i, are (somewhat) irrelevant for predicting the character in
position i. This translates into imposing that the coefficients of W corresponding
to such pairs be small. For each position i, there are 26(N1 − | {vj : p(vj) = i} |)
such constraints, resulting in a total of

C =
l∑

i=1

26(N1 − |{vj : p(vj) = i}|) = 26N1(l − 1) (8.71)



8.7 Experiments 165

Table 8.1 Experimental results with the perfect segmentation setting. The M3N and
SVM results are read from the graph in Taskar et al. (2004b)

Technique Accuracy

REG-constraints η = 0 84.1% ±.8%

REG-constraints η = 1 88.5% ±.9%

REG 79.5% ±.4%

REG-Viterbi (n = 2) 86.1% ±.7%

REG-Viterbi (n = 3) 98.2% ±.3%

SVMs (cubic kernel) 80.9% ±.5%

M3Ns (cubic kernel) 87.0% ±.4%

constraints. These constraints can be easily encoded following the scheme outlined
in section 8.3.2. To impose a constraint on the coefficient Wrs of W , it suffices
to introduce a matrix A whose entries are all zero except from the coefficient of
row index r and column index s, which is set to one. Thus, < W , A >= Wrs. To
impose all C constraints, C matrices Ai, i = 1, . . . , C, of this type can be defined.
In our experiments, we used the same regularization parameter η for all of these
constraints.

In our experiments, we used the efficient iterative method outlined in section 8.3.2
to compute W . However, it is not hard to see that in this case, thanks to
the simplicity of the constraint matrices Ai, i = 1, . . . , C, the resulting matrix
(< Ai, AjU

−1 >F )ij + I can be given a simple block structure that makes it
easier to invert. Indeed, it can be decomposed into l blocks in RN1×N1 that can
be inverted independently. Thus, the overall complexity of matrix inversion, which
dominates the cost of the algorithm, is only O(lN3

1 ) here.
Table 8.1 reports the results of our experiments using a polynomial kernel of

third degree for kX , and the best empirical value for the ridge regression coefficient
γ which was γ = 0.01. The accuracy is measured as the percentage of the total
number of word characters correctly predicted. REG refers to our general regression
technique, REG-constraints to our general regression with constraints. The results
obtained with the regularization parameter η set to 1 are compared to those with
no constraint, i.e., η = 0. When η = 1, the constraints are active and we observe a
significant improvement of the generalization performance.

For comparison, we also trained a single predictor over all images of our training
sample, regardless of their positions. This resulted in a regression problem with a
26-dimensional output space, and m ≈ 5000 examples in each training set. This
effectively corresponds to a hard weight-sharing of the coefficients corresponding to
different positions within matrix W , as described in section 8.3.2. The first 26 lines
of W are repeated (l − 1) times. That predictor can be applied independently to
each image segment xi of a sequence x = x1 · · ·xq . Here too, we used a polynomial
kernel of third degree and γ = 0.01 for the ridge regression parameter. We also



166 A General Regression Framework for Learning String-to-String Mappings

experimented with the use of an n-gram statistical model based on the words of
the training data to help discriminate between different word sequence hypotheses,
as mentioned in section 8.4.8.

Table 8.1 reports the results of our experiments within this setting. REG refers to
the hard weight-sharing regression without using a statistical language model and is
directly comparable to the results obtained using support vector machines (SVMs).
REG-Viterbi with n = 2 or n = 3 corresponds to the results obtained within this
setting using different n-gram order statistical language models. In this case, we
used the Viterbi algorithm to compute the pre-image solution, as in M3Ns. The
result shows that coupling a simple predictor with a more sophisticated pre-image
algorithm can significantly improve the performance. The high accuracy achieved
in this setting can be viewed as reflecting the simplicity of this task. The dataset
contains only 55 unique words, and the same words appear in both the training
and the test set.

We also compared all these results with the best result reported by Taskar et al.
(2004b) for the same problem and dataset. The experiment allowed us to compare
these results with those obtained using M3Ns. But we are interested in more
complex string-to-string prediction problems where restrictive prior knowledge such
as a one-to-one mapping is not available. Our second set of experiments corresponds
to a more realistic and challenging setting.

8.7.3 String-to-String Prediction

Our method generalizes indeed to the much harder and more realistic problem
where the input and output strings may be of different length and where no prior
segmentation or one-to-one mapping is given. For this setting, we directly estimate
the counts of all the n-grams of the output sequence from one set of input features
and use our pre-image algorithm to predict the output sequence.

In our experiment, we chose the following polynomial kernel KX between two
image sequences:

KX(x1, x2) =
∑

x1,i,x2,j

(1 + x1,i x2,j)
d
, (8.72)

where the sum runs over all n-grams x1,i and x2,j of input sequences x1 and x2. The
n-gram order and the degree d are both parameters of the kernel. For the kernel
KY we used n-gram kernels.

As a result of the regression, the output values, that is, the estimated counts of the
individual n-grams in an output string are nonintegers and need to be discretized for
the Euler circuit computation (see section 8.4.8). The output words are in general
short, so we did not anticipate counts higher than one. Thus, for each output feature,
we determined just one threshold above which we set the count to one. Otherwise,
we set the count to zero. These thresholds were determined by examining each
feature at a time and imposing that averaged over all the strings in the training
set, the correct count of the n-gram be predicted.



8.7 Experiments 167

100 316 1000 3162 10000
0.2

0.3

0.4

0.5

0.6

0.7

T
es

t E
rr

or

n

RANDOM
CHOLESKY
GREEDY

Figure 8.7 Comparison of random subsampling of n points from the OCR dataset,
incomplete Cholesky decomposition after n iterations, and greedy incremental learning
with n basis functions. The main bottleneck, for all of these algorithms is the matrix
inversion where the size of the matrix is n× n, we therefore plot test error against n. The
furthest right point is the test error rate of training on the full training set of n = 4617
examples.

Note that, as a consequence of this thresholding, the predicted strings do not
always have the same length as the target strings. Extra and missing characters are
counted as errors in our evaluation of the accuracy.

We obtained the best results using unigrams and second-degree polynomials in
the input space and bigrams in the output space. For this setting, we obtained an
accuracy of 65.3± 2.3.

A significant higher accuracy can be obtained by combining the predicted integer
counts from several different input and output kernel regressors, and computing an
Euler circuit using only the n-grams predicted by the majority of the regressors.
Combining five such regressors, we obtained a test accuracy of 75.6± 1.5.

A performance degradation for this setting was naturally expected, but we view it
as relatively minor given the increased difficulty of the task. Furthermore, our results
can be improved by combining a statistical model with our pre-image algorithm.

8.7.4 Faster Training

As pointed out in section 8.5, faster training is needed when the size of the training
data increases significantly. This section compares the greedy incremental technique
described in that section with the partial Cholesky decomposition technique and



168 A General Regression Framework for Learning String-to-String Mappings

the baseline of randomly subsampling n points from the data, which of course also
results in reduced complexity, giving only an n× n matrix to invert. The different
techniques are compared in the perfect segmentation setting on the first fold of the
data. The results should be indicative of the performance gain in other folds.

In both partial Cholesky decomposition and greedy incremental learning, n

iterations are run and then an n × n matrix is inverted, which may be viewed as
the bottleneck. Thus, to determine the learning speed we plot the test error for the
regressions problem vs. n. The results are shown in figure 8.7. The greedy learning
technique leads to a considerable reduction in the number of kernel computations
required and the matrix inversion size for the same error rate as the full dataset.
Furthermore, in greedy incremental learning we are left with only n kernels to
compute for a given test point, independently of the number of outputs. These
reasons combined make the greedy incremental method an attractive approximation
technique for our regression framework.

8.8 Conclusion

We presented a general regression framework for learning string-to-string mappings
and illustrated its use in several experiments. Several paths remained to be explored
to further extend the applicability of this framework.

The pre-image algorithm for strings that we described is general and can be used
in other contexts. But the problem of pre-image algorithms for strings may have
other efficient solutions that need to be examined.

Efficiency of training is another key aspect of all string-to-string mapping algo-
rithms. We presented several heuristics and approximations that can be used to
substantially speed up training in practice. Other techniques could be studied to
further increase speed and extend the application of our framework to very large
tasks without sacrificing accuracy.

Much of the framework and algorithms presented can be used in a similar way
for other prediction problems with structured outputs. A new pre-image algorithm
needs to be introduced, however, for other learning problems with structured
outputs.



9 Learning as Search Optimization

Hal Daumé III and Daniel Marcu

Mappings to structured output spaces (strings, trees, partitions, etc.) are typically
learned using extensions of classification algorithms to simple graphical structures
(e.g., linear chains) in which search and parameter estimation can be performed
exactly. Unfortunately, in many complex problems, exact search and parameter
estimation are both intractable. Instead of learning exact models and searching via
heuristic means, we embrace the search framework and treat the structured output
problem as being defined by search. We present a framework for learning as search
optimization (section 9.3), and two parameter updates with convergence theorems
and bounds (section 9.3.4). We present an empirical evaluation both on standard
sequence labeling tasks (sections 9.4.1 and 9.4.2) as well as a significantly more
complicated task from natural language processing: entity detection and tracking
(section 9.4.4). Empirical evidence shows that our integrated approach to learning
and search can outperform exact models at small computational cost.

9.1 Introduction

Many general techniques for learning with structured outputs are computationally
demanding, are ill-suited for dealing with large datasets, and employ parameter
optimization for an intractable search (decoding/pre-image) problem. In some
instances, such as syntactic parsing, efficient task-specific decoding algorithms
have been developed, but, unfortunately, these are rarely applicable outside of one
specific task.

Rather than separating the learning problem from the search problem, we propose
to consider these two aspects in an integrated manner. By doing so, we learn model
parameters appropriate for the search procedure, avoiding the need to heuristically
combine an a priori unrelated learning technique and search algorithm. After
phrasing the learning problem in terms of search, we present two online parameter
update methods: a simple perceptron-style update and an approximate large-margin
update. We apply our model to two simple tasks: a simple syntactic chunking task



170 Learning as Search Optimization

for which exact search is possible (to allow for comparison to exact learning and
decoding methods) and a joint tagging/chunking task for which exact search is
intractable. Finally, we apply our model to a complex natural language processing
task for which exact search is highly intractable.

9.2 Previous Work

Most work on the structured outputs problem extends standard classifiers to lin-
ear chains. Among these are maximum entropy Markov models and conditional
random fields (McCallum et al., 2000; Lafferty et al., 2001); case-factor diagrams
(McAllester et al., 2004); sequential Gaussian process models (Altun et al., 2004b);
support vector machines for structured outputs (Tsochantaridis et al., 2005) and
max-margin Markov models (Taskar et al., 2004b); and kernel dependency estima-
tion models (Weston et al., 2002). These models learn distributions or weights on
simple graphs (typically linear chains). Probabilistic models are typically optimized
by gradient descent on the log-likelihood, which requires computable expectations
of features across the structure (Lafferty et al., 2001). Margin-based techniques are
typically optimized by solving a quadratic program (QP) whose constraints specify
that the best structure must be weighted higher than all other structures (Taskar
et al., 2004b). Markov (i.e., locality) assumptions can reduce the exponentially many
constraints to a polynomial, but training remains computationally expensive.

At the heart of all these algorithms, batch or online, likelihood- or margin-based,
is the computation:

ŷ = arg max
y∈Y

f(x, y; w) (9.1)

This seemingly innocuous argmax statement is necessary in all models, and
“simply” computes the structure ŷ from the set of all possible structures Y that
maximizes some function f on an input x, parameterized by a weight vector w.
This computation is typically left unspecified, since it is “problem specific.”

Unfortunately, this argmax computation is, in real problems with complex struc-
ture, intractable. Compounding this issue is that this best guess ŷ is only one in-
gredient to the learning algorithms: likelihood-based models require feature expec-
tations and the margin-based methods require either a k-best list of ys (McDonald
et al., 2004) or a marginal distribution across the graphical structure. One alterna-
tive that alleviates some of these issues is to use a perceptron algorithm, where only
the argmax is required (Collins, 2002), but performance can be adversely affected
by the fact that even the argmax cannot be computed exactly; see McCallum and
Wellner (2004) for an example.



9.3 Search Optimization 171

Algorithm 9.1 The generic search algorithm

Algorithm Search(problem, initial, enqueue)
nodes ← MakeQueue(MakeNode(problem,initial))
while nodes is not empty do

node ← RemoveFront(nodes)
if GoalTest(node) then return node
next ← Operators(node)
nodes ← enqueue(problem, nodes, next)

end while
return failure

9.3 Search Optimization

We present the learning as search optimization (LaSO) framework for predicting
structured outputs. The idea is to delve into (9.1) to first reduce the requirementlearning as search

optimization that an algorithm needs to compute an argmax, and also to produce generic
algorithms that can be applied to problems that are significantly more complex that
the standard sequence labeling tasks that the majority of prior work has focused
on.

9.3.1 Search

The generic search problem is covered in great depth in any introductory AI book.
Its importance stems from the intractability of computing the “best” solution to
many problems; instead, one must search for a “good” solution. Most AI texts
contain a definition of the search problem and a general search algorithm; we work
here with that from Russell and Norvig (1995). A search problem is a structure
containing four fields: states (the world of exploration), operators (transitions
in the world), goal test (a subset of states), and path cost (computes the cost
of a path).

One defines a general search algorithm given a search problem, an initial state,
and a “queuing function.” The search algorithm will either fail (if it cannot find
a goal state) or will return a path. Such an algorithm (algorithm 9.1) operates
by cycling through a queue, taking the first element off, testing it as a goal, and
expanding it according to operators if otherwise. Each node stores the path taken to
get there and the cost of this path. The enqueue function places the expanded nodes,
next, onto the queue according to some variable ordering that can yield depth-first,
breadth-first, greedy, beam, hill-climbing, and A* search (among others). Since most
search techniques can be described in this framework, we will treat it as fixed.



172 Learning as Search Optimization

9.3.2 Search Parameterization

Given the search framework described, for a given task the search problem will be
fixed, the initial state will be fixed, and the generic search algorithm will be fixed.
The only place left, therefore, for parameterization is in the enqueue function, whose
job it is to essentially rank hypotheses on a queue. The goal of learning, therefore,
is to produce an enqueue function that places good hypotheses high on the queue
and bad hypotheses low on the queue. In the case of optimal search, this means
that we will find the optimal solution quickly; in the case of approximate search
(with which we are most interested), this is the difference between finding a good
solution or not.

In our model, we will assume that the enqueue function is based on two com-
ponents: a path component g and a heuristic component h, and that the score of
a node will be given by g + h. This formulation includes A* search when h is an
admissible heuristic, heuristic search when h is inadmissible, best-first search when
h is identically zero, and any variety of beam search when a queue is cut off at a
particular point at each iteration. We will assume h is given and that g is a linear
function of features of the input x and the path to and including the current node,
n: g = 〈w,Φ(x, n)〉, where Φ(·, ·) is the vector of features.1

9.3.3 Learning the Search Parameters

The supervised learning problem in this search-based framework is to take a search
problem, a heuristic function, and training data with the goal of producing a good
weight vector w for the path function g. As in standard structured output learning,
we will assume that our training data consist of N -many pairs (x(n), y(n)) ∈ X× Y

that tell us for a given input x(n) what is the correct structured output y(n). We
will make one more important monotonicity assumption: for any given node n ∈ S

and an output y ∈ Y, we can tell whether n can or cannot lead to y. In the case
that n can lead to y, we refer to n as “y-good.”

The learning problem can thus be formulated as follows: we wish to find a weight
vector w such that (1) the first goal state dequeued is y-good and (2) the queue
always contains at least one y-good state. In this framework, we explore an onlineadapting enqueue

via online
learning

learning scenario, where learning is tightly entwined with the search procedure.
From a pragmatic perspective, this makes sense: it is useless to the model to learn
parameters for cases that it will never actually encounter. We propose a learning
algorithm of the form shown in algorithm 9.2. In this algorithm, we write siblings
(node, y) to denote the set of y-good siblings of this node. This can be calculated
recursively by backtracing to the first y-good ancestor and then tracing forward
through only y-good nodes to the same search depth as n (in tasks where there is a

1. All algorithms described in this chapter can be kernelized, though we do not explore
this option here.



9.3 Search Optimization 173

Algorithm 9.2 The generic search/learning algorithm

Algorithm Learn(problem, initial, enqueue, w, x, y)
nodes ← MakeQueue(MakeNode(problem,initial))
while nodes is not empty do

node ← RemoveFront(nodes)
if none of nodes∪ {node} is y-good or GoalTest(node) and node is not y-good
then

sibs ← siblings(node, y)
w← update(w, x, sibs, {node} ∪ nodes)
nodes ← MakeQueue(sibs)

else
if GoalTest(node) then return w
next ← Operators(node)
nodes ← enqueue(problem, nodes, next, w)

end if
end while

unique y-good search path—which is common—the sibling of a node is simply the
appropriate initial segment of this path).

There are two changes to the search algorithm to facilitate learning (comparing
algorithm 9.1 and algorithm 9.2). The first change is that whenever we make an
error (a non y-good goal node is dequeued or none of the queue is y-good), we
update the weight vector w. Secondly, when an error is made, instead of continuingrollback on error
along this bad search path, we instead clear the queue and insert all the correct
moves we could have made.

Note that this algorithm cannot fail (in the sense that it will always find a goal
state). Aiming at a contradiction, suppose it were to fail; this would mean that
nodes would have become empty. Since “Operators” will never return an empty
set, this means that sibs must have been empty. But since a node that is inserted
into the queue is either itself y-good or has a y-good ancestor, the queue could
never have become empty.2

9.3.4 Parameter Updates

We propose two methods for updating the model parameters; both function in an
online manner. To facilitate discussion, it will be useful to define a particular notion
of margin that we will use for the remainder of this chapter. The following notation
will be useful: for each example x, for each positive integer j, let Sxj be the set of
all search nodes node that are reachable after executing j steps of search for the

2. There may be a complication with cyclic search spaces – in this case, both algorithms
need to be augmented with some memory to avoid such loops, as is standard.



174 Learning as Search Optimization

example x. Note that the value of Sxj will be dependent on the search algorithm
used. For example, for greedy search, Sxj will be the set of all nodes that are j

steps away from the starting node.
We now define a search margin. We say that a weight vector w obtains a marginsearch margin

γ on a training set D if: for each (x, y) ∈ D, for each positive integer j, there
exists a y-good node g ∈ Sxj such that 〈w, Φ(x, g)〉− 〈w, Φ(x, n)〉 > γ for all y-bad
n ∈ Sxj. In words, a weight vector attains a margin of γ if after some number of
search steps at a fixed beam, it is always possible to pick out a y-good node from
the beam with a margin of γ. We similarly define a dataset to be linearly separable
if there exists a weight vector that attains a positive margin on the training set.

9.3.4.1 Perceptron Updates

A simple perceptron-style update rule (Rosenblatt, 1958), given (w, x, sibs,nodes):

w← w + Δ (9.2)

Δ =
∑

n∈sibs

Φ(x, n)
|sibs| −

∑
n∈nodes

Φ(x, n)
|nodes| (9.3)

When an update is made, the feature vector for the incorrect decisions are
subtracted off, and the feature vectors for all possible correct decisions are added.
Whenever |sibs| = |nodes| = 1, this looks exactly like the standard perceptron
update. When there is only one sibling but many nodes, this resembles the gradient
of the log-likelihood for conditional models using stochastic updates. In that work,
different “weighting” schemes are proposed, including, for instance, one that weights
the nodes in the sums proportional to the loss suffered; such schemes are also
possible in our framework. We do not explore such options here. Based on this
update, we can prove the following theorem, which depends on the assumption of
a positive real R such that ∀(x, y) ∈ D it holds that ||Φ(x, g)− Φ(x, n)|| ≤ R, for
all j and all n ∈ Sxj and y-good g ∈ Sxj.

Theorem 53 For any training sequence that is separable by a margin of size γmistake bound
for LaSO using a weight vector with unit norm, using the perceptron update rule the number

of errors made during training is bounded above by R2/γ2.

Proof The proof mirrors the proof of the standard perceptron convergence theorem
(Rosenblatt, 1958).

Let w(k) denote the weight vector before the kth update; so that w(1) is the zero
vector. Suppose the kth update is made on example (x, y) with a current beam
B that does not contain a y-good node. Note that since the start node is always
y-good, B must have been the result of at least one step of enqueuing.

The parent node of the beam B must have been y-good; let S denote the set
of all y-good children of this parent node. Then, by definition of the perceptron
updates, we have



9.3 Search Optimization 175

∣∣∣∣∣∣w(k+1)
∣∣∣∣∣∣2 =

∣∣∣∣∣∣w(k) + Δ
∣∣∣∣∣∣2 =

∣∣∣∣∣∣w(k)
∣∣∣∣∣∣2 + 2

〈
w(k), Δ

〉
+ ||Δ||2

≤
∣∣∣∣∣∣w(k)

∣∣∣∣∣∣2 + 0 + R2

The first equality is by definition, and the second is by algebra. The inequality
is due to two observations. First, each node in B must outweigh each node in S,
implying that the average score of each node in B outweighs the average score of
each node in S. Second, that ||Δ|| is bounded by R (by assumption). By induction,
we see that

∣∣∣∣w(k+1)
∣∣∣∣2 ≤ kR2.

Next, let u be a weight vector that obtains a margin of γ on the training set; we
obtain a lower bound on

〈
u,w(k+1)

〉
.

〈
u,w(k+1)

〉
=
〈
u,w(k)

〉
+ 〈u, Δ〉 ≥

〈
u,w(k)

〉
+ γ

Here, the fact that 〈u, Δ〉 ≥ γ follows from the definition of margin and the fact
that the elements that enter into Δ form a subset of Sxj for some j > 0, and the
fact that ||u|| ≤ q. By induction,

〈
u,w(k+1)

〉 ≥ kγ.
Putting the two results together, we get

√
kR ≥ ∣∣∣∣w(k+1)

∣∣∣∣ ≥ 〈u,w(k+1)
〉 ≥ kγ,

which, after algebra, leads us to conclude that k ≤ (R/γ)2.

It is worth commenting that subsequent to the initial publication of the LaSO
technique, Xu and Fern (2006) have shown that it can be modified slightly to belink to classical

AI problems applicable to a host of AI planning problems. Of particular interest is an extension
they show to the above theorem. Namely, under a slightly stronger definition of
margin, they obtain a bound that depends explicitly on the size of the beam.
Moreover, their bound holds even when there is not a “dominant” path that holds
across the training set. Their bound reduces to ours under the same assumptions,
but provides an interesting perspective on the search problem: larger beams imply
more computation, but actually give rise to tighter convergence bounds (for an
equivalent margin size).

9.3.4.2 Approximate Large-Margin Updates

One disadvantage of the perceptron algorithm is that it only updates the weights
when errors are made. This can lead to a brittle estimate of the parameters, in
which the “good” states are weighted only minimally better than the “bad” states.
We would like to enforce a large margin between the good states and bad states,
but would like to do so without adding significant computational complexity to
the problem. In the case of binary classification, Gentile (2001) has presented an
online, approximate large-margin algorithm that trains similarly to a perceptron
called ALMA. The primary difference (aside from a step size on the weight updates)
is that updates are made if either (a) the algorithm makes a mistake or (b) the



176 Learning as Search Optimization

algorithm is close to making a mistake. Here, we adapt this algorithm to structured
outputs in our framework.

Our algorithm, like ALMA, has four parameters: α, B, C, p. α determines the
degree of approximation required: for α = 1, the algorithm seeks the true maximal
margin solution; for α < 1, it seeks one within α of the maximal. B and C can
be seen as tuning parameters, but a default setting of B = 1/α and C =

√
2 is

reasonable (see theorem 54 below). We measure the instance vectors with norm p

and the weight vector with its dual value q (where 1/p+1/q = 1). We use p = q = 2,
but large p produces sparser solutions, since the weight norm will approach 1. The
ALMA-inspired update is

w ← proj
(
w + Ck−1/2 proj(Δ)

)
. (9.4)

Here, k is the “generation” number of the weight vector (initially 1 and incremented
at every update) and proj(u) is the projection of u into the l2 unit sphere:
u/ max{1, ||u||2}. One final change to the algorithm is to downweight the score
of all y-good nodes by (1− α)Bk−1/2. Thus, a good node will only survive if it is
good by a large margin. This setup gives rise to a bound on the number of updates
made using the large-margin updates.

Theorem 54 For any training sequence that is separable by a margin of size γmistake bound
for LaSO-ALMA using a unit-norm weight vector using the approximate large-margin update rule

with parameters α, B =
√

8/α, C =
√

2, the number of errors made during training
is bounded above by 2

γ2

(
2
α − 1

)2 + 8
α − 4.

Proof (sketch) The proof largely follows theorem 3 of Gentile (2001) and is too
lengthy to include in full. There are two primary differences between the proof
of our statement and the proof of the binary classification counterpart. The first
difference is analogous to the change in the perceptron proof (see theorem 53) and
requires that we derive the inequality 〈u, Δ〉 ≤ γ when u is a unit weight vector
with unit norm.

The second aspect of the original ALMA proof that needs to be modified has to
do with bounding the normalization factor when projecting w back into the unit
sphere. In order to obtain the stated result, suppose that u obtains a margin of γ

and is of unit length. As in the ALMA result, denote the normalization factor after
update k by Nk. We obtain

N2
k+1 ≤

∣∣∣∣∣∣w(k) + ηkΔ
∣∣∣∣∣∣2 ≤ ∣∣∣∣∣∣w(k)

∣∣∣∣∣∣2 + η2
k + 2ηk

〈
w(k),Δ

〉
≤ 1 + η2

k + 2(1− α)ηkγ.

Here, the first inequality is by definition, the second is by algebra and the fact
that Δ has unit norm. The last inequality is by definition of the margin. This can be
verified by the fact that

〈
w,
∑

n∈sibs Φ(x, n)/|sibs| −∑n∈nodes Φ(x, n)/|nodes|〉 ≤



9.4 Experiments 177

〈w, maxn∈sibs Φ(x, n)−minn∈nodes Φ(x, n)〉 ≤ γ, due to the definition of the mar-
gin. Therefore, Nk is bounded by 1 + (8/α− 6)/k. To bound number of updates m

by γm ≤ (4/α− 2)
√

4/α− 3 + m/2. Algebra completes the proof.

This theorem gives rise to the following easy corollary, analogous to the percep-
tron case.

Corollary 55 Suppose for a given α, B and C are such that C2 +2(1−α)BC = 1;
letting ρ = (Cγ)−2, the number of corrections made is bounded above by

min
w,γ

1
γ

Dw,γ +
ρ2

2
+ ρ

[
ρ2

4
+

1
γ

Dw,γ + 1
]1/2

. (9.5)

9.4 Experiments

In this section, we describe the results of experiments from related natural language
processing tasks of varying difficulty.

9.4.1 Syntactic Chunking

The syntactic chunking problem is a sequence segmentation and labeling problem;
for example:

[Great American]NP [said]VP [it]NP [increased]VP [its loan-loss
reserves]NP [by]PP [$ 93 million]NP [after]PP [reviewing]VP [its loan
portfolio]NP , [raising]VP [its total loan and real estate reserves]NP

[to]PP [$ 217 million]NP .

Typical approaches to this problem recast it as a sequence labeling task and
then solve it using any of the standard sequence labeling models; see Sha and
Pereira (2003) for a prototypical example using conditional random fields (CRFs).
The reduction to sequence labeling is typically done through the “BIO” encoding,
where the beginning of an X phrase is tagged B-X , the nonbeginning (inside) of an
X phrase is tagged I-X , and any word not in a phrase is tagged O (outside). More
recently, Sarawagi and Cohen (2005) have described a straightforward extension
to the CRF (called a semi-CRF) in which the segmentation and labeling are done
directly.

We explore similar models in the context of syntactic chunking, where entireexperimental
setup chunks are hypothesized, and no reduction to word-based labels is made. We use

the same set of features across all models, separated into “base features” and
“metafeatures.” The base features apply to words individually, while metafeatures
apply to entire chunks. The base features we use are: the chunk length, the
word (original, lowercase, stemmed, and original-stem), the case pattern of the
word, the first and last 1, 2, and 3 characters, and the part of speech and its



178 Learning as Search Optimization

first character. We additionally consider membership features for lists of names,
locations, abbreviations, stop words, etc. The metafeatures we use are, for any base
feature b, b at position i (for any subposition of the chunk), b before/after the
chunk, the entire b-sequence in the chunk, and any 2- or 3-gram tuple of bs in the
chunk. We use a first-order Markov assumption (chunk label only depends on the
most recent previous label) and all features are placed on labels, not on transitions.
In this task, the argmax computation from (9.1) is tractable; moreover, through
a minor adaptation of the standard hidden Markov model (HMM) forward and
backward algorithms, we can compute feature expectations, which enable us to do
training in a likelihood-based fashion.

Our search space is structured so that each state is the segmentation and labeling
of an initial segment of the input string, and an operation extends a state by an
entire labeled chunk (of any number of words). For instance, on the example shown
at the beginning of this section, the initial hypothesis would be empty; the first
correct child would be to hypothesize a chunk of length 2 with the tag NP. The
next correct hypothesis would be a chunk of length 1 with tag VP. This process
would continue until the end of the sentence is reached. For beam search, we execute
search as described, but after every expansion we only retain the b best hypotheses
to continue on to the next round.

Our models for this problem are denoted LaSO-perc and LaSO-alma. We
vary the beam size over {1, 5, 25,∞}, where ∞ denotes full, exact Viterbi search
and forward-backward updates similar to those used in the semi-CRF. This points
out an important issue in our framework: if the graphical structure of the problem is
amenable to exact search and exact updates, then the framework can accommodate
this. In this case, for example, when using exact search, updates are only made at
the end of decoding when the highest ranking output is incorrect (after adjusting
the weights down for LaSO-alma); but, other than this exception, the sum over
the bad nodes in the updates is computed over the entire search lattice and strongly
resemble and are almost identical to those used in the conditional likelihood models
for the gradient of the log normalization constant. We always use averaged weights.

We report results on the CoNLL 2000 dataset, which includes 8936 training
sentences (212k words) and 2012 test sentences (47k words). We compare our
proposed models against several baselines. The first baseline is denoted ZDJ02

and is state of the art for this task (Zhang et al., 2002). The second baseline is the
likelihood-trained model, denoted SemiCRF. The third baseline is the standard
structured perceptron algorithm, denoted Perceptron. We use 10% of the training
data to tune model parameters. For the SemiCRF, this is the prior variance; for
the online algorithms, this is the number of iterations to run (for ALMA, α = 0.9;
changing α in the range [0.5, 1] does not affect the score by more than ±0.1 in all
cases).

The results, in terms of training time, test decoding time, precision, recall
and F-score are shown in table 9.1. As we can see, the SemiCRF is by far
the most computationally expensive algorithm, more than twice as slow to train
than even the LaSO-perc algorithm with infinite beam. The Perceptron has



9.4 Experiments 179

Table 9.1 Results on syntactic chunking task; columns are training and testing time
(h:m), and precision/recall/F-score on test data

Train Test Pre Rec F

ZDJ02 - - 94.3 94.0 94.1

SemiCRF 53:56 :31 92.3 92.1 92.2

Perceptron 18:05 :22 93.4 93.5 93.4

LaSO-perc (Beam 1) :55 :01 92.5 92.3 92.4

LaSO-perc (Beam 5) 1:49 :04 93.7 92.6 93.1

LaSO-perc (Beam 25) 6:32 :11 94.2 94.1 94.1

LaSO-perc (Beam ∞) 21:43 :24 94.3 94.1 94.2

LaSO-alma (Beam 1) :51 :01 93.6 92.5 93.0

LaSO-alma (Beam 5) 2:04 :04 93.8 94.4 94.3

LaSO-alma (Beam 25) 5:59 :10 93.9 94.6 94.4

LaSO-alma (Beam ∞) 20:12 :25 94.0 94.8 94.4

roughly comparable training time to the exactly trained LaSO algorithms (slightly
faster since it only updates for the best solution), but its performance falls short.
Moreover, decoding time for the SemiCRF takes a half-hour for the 2000 test
sentences, while the greedy decoding takes only 52 seconds. It is interesting to note
that at the larger beam sizes, the large-margin algorithm is actually faster than the
perceptron algorithm.

In terms of the quality of the output, the SemiCRF falls short of the previous
reported results (92.2 vs. 94.1 F-score). Our simplest model, LaSO-perc (beam
1) already outperforms the SemiCRF with an F-score of 92.4; the large-margin
variant achieves 93.0. Increasing the beam past 5 does not seem to help with large-
margin updates, where performance only increases from 94.3 to 94.4 going from a
beam of 5 to an infinite beam (at the cost of an extra 18 hours of training time).

9.4.2 Joint Tagging and Chunking

In section 9.4.1, we described an approach to chunking based on search without
reduction. This assumed that part of speech tagging had been performed as a
preprocessing step. In this section, we discuss models in which part-of-speech
tagging and chunking are performed jointly. This task has previously been used as
a benchmark for factorized CRFs (Sutton et al., 2004). In that work, the authors
discuss many approximate inference methods to deal with the fact that inference
in such joint models is intractable.

For this task, we do use the BIO encoding of the chunks so that a more direct
comparison to the factorized CRFs would be possible. We use the same features
as the last section, together with the regular expressions given by Sutton et al.



180 Learning as Search Optimization

Table 9.2 Results on joint tagging/chunking task; columns are time to train (h:m), tag
accuracy, chunk accuracy, joint accuracy, and chunk F-score

Train Test Tag Chunk Joint F

Sutton - - 98.9 97.4 96.5 93.9

LaSO-perc (Beam 1) 1:29 :01 98.9 95.5 94.7 93.1

LaSO-perc (Beam 5) 3:24 :04 98.9 95.8 95.1 93.5

LaSO-perc (Beam 10) 4:47 :09 98.9 95.9 95.1 93.5

LaSO-perc (Beam 25) 4:59 :16 98.9 95.9 95.1 93.7

LaSO-perc (Beam 50) 5:53 :30 98.9 95.8 94.9 93.4

LaSO-alma (Beam 1) :41 :01 99.0 96.5 95.8 93.9

LaSO-alma (Beam 5) 1:43 :03 99.0 96.8 96.1 94.2

LaSO-alma (Beam 10) 2:21 :07 99.1 97.3 96.4 94.4

LaSO-alma (Beam 25) 3:38 :20 99.1 97.4 96.6 94.3

LaSO-alma (Beam 50) 3:15 :23 99.1 97.4 96.6 94.4

(2004) (so that our feature set and their feature set are nearly identical). We do,
however, omit their final feature, which is active whenever the part of speech at
position i matches the most common part of speech assigned by Brill’s tagger to the
word at position i in a very large corpus of tagged data. This feature is somewhat
unrealistic: the CoNLL dataset is a small subset of the Penn Treebank, but the Brill
tagger is trained on all of the Treebank. By using this feature, we are, in effect,
able to leverage the rest of the Treebank for part of speech tagging. Using just their
features without the Brill feature, our performance is quite poor, so we added the
lists described in the previous section.

In this problem, states in our search space are again initial taggings of sentences
(both part-of-speech tags and chunk tags), but the operators simply hypothesize the
part-of-speech and chunk tag for the single next word, with the obvious constraint
that an I-X tag cannot follow anything but a B-X or I-X tag.

The results are shown in table 9.2. The models are compared against Sutton,
the factorized CRF with tree reparameterization. We do not report on infinite
beams, since such a calculation is intractable. We report training time,3 testing
time, tag accuracy, chunk accuracy, joint accuracy, and F-score for chunking. In this
table, we can see that the large-margin algorithms are much faster to train than
the perceptron (they require fewer iterations to converge – typically two or three
compared to seven or eight). In terms of chunking F-score, none of the perceptron-
style algorithms is able to outperform the Sutton model, but our LaSO-alma

3. Sutton et al. report a training time of 13.6 hours on 5% of the data (400 sentences);
it is unclear from their description how this scales. The scores reported from their model
are, however, based on training on the full dataset.



9.4 Experiments 181

algorithms easily outperform it. With a beam of only 1, we achieve the same F-
score (93.9) and with a beam of 10 we get an F-score of 94.4. Comparing table 9.1
and table 9.2, we see that, in general, we can do a better job chunking with the
large-margin algorithm when we do part of speech tagging simultaneously.

To verify theorem 54 experimentally, we have run the same experiments using
a 1000-sentence (25k word) subset of the training data (so that a positive mar-
gin could be found) with a beam of 5. On these data, LaSO-alma made 15, 932
corrections. The empirical margin at convergence was 0.01299; according to the-
orem 54, the number of updates should have been ≤ 17, 724, which is borne out
experimentally.

9.4.3 Effect of Beam Size

Clearly, from the results presented in the preceding sections, the beam size plays
an important role in the modeling. In many problems, particularly with generative
models, training is done exactly, but decoding is done using an inexact search.
In this chapter, we have suggested that learning and decoding should be done in
the same search framework, and in this section we briefly support this suggestion
with empirical evidence. For these experiments, we use the joint tagging/chunking
model from section 9.4.2 and experiment by independently varying the beam size for
training and the beam size for decoding. We show these results in table 9.3, where
the training beam size runs vertically and the decoding beam size runs horizontally;
the numbers we report are the chunk F-score.

In these results, we can see that the diagonal (same training beam size as testing
beam size) is heavy, indicating that training and testing with the same beam size
is useful. This difference is particularly strong when one of the sizes is 1 (i.e., pure
greedy search is used). When training with a beam of 1, decoding with a beam
of 5 drops the F-score from 93.9 (which is respectable) to 90.5 (which is poor).
Similarly, when a beam of 1 is used for decoding, training with a beam of 5 drops
performance from 93.9 to 92.8. The differences are less pronounced with beams
≥ 10, but the trend is still evident. We believe (without proof) that when the beam
size is large enough that the loss incurred due to search errors is at most the loss
incurred due to modeling errors, then using a different beam for training and testing
is acceptable. However, when some amount of the loss is due to search errors, then
a large part of the learning procedure is aimed at learning how to avoid search
errors, not necessarily modeling the data. It is in these cases that it is important
that the beam sizes match.

9.4.4 Entity Detection and Tracking - EDT

In many natural language applications, such as automatic document summariza-
tion, machine translation, question answering, and information retrieval, it is advan-
tageous to preprocess text documents to identify references to entities. An entity,
loosely defined, is a person, location, organization, or geopolitical entity (GPE) that



182 Learning as Search Optimization

Table 9.3 Effect of beam size on performance; columns are for constant decoding beam;
rows are for constant training beam. Numbers are chunk F-score on the joint task

1 5 10 25 50

1 93.9 92.8 91.9 91.3 90.9

5 90.5 94.3 94.4 94.1 94.1

10 89.6 94.3 94.4 94.2 94.2

25 88.7 94.2 94.5 94.3 94.3

50 88.4 94.2 94.4 94.2 94.4

exists in the real world. Being able to identify references to real-world entities of
these types is an important and difficult natural language processing problem. It in-
volves finding text spans that correspond to an entity, identifying what type of entity
it is (person, location, etc.), identifying what type of mention it is (name, nomi-
nal, pronoun, etc.) and finally identifying which other mentions in the document it
corefers with. The difficulty lies in the fact that there are often many ambiguous
ways to refer to the same entity. For example, consider the two sentences below:

Bill Clintonnam
per–1 gave a speech today to the Senatenam

org–2 . The Presidentnom
per–1 out-

lined hispro
per–1 plan for budget reform to thempro

org–2 .

There are five entity mentions in these two sentences, each of which is under-
lined (the corresponding mention type and entity type appear as superscripts and
subscripts, respectively, with coreference chains marked in the subscripts), but only
two entities : { Bill Clinton, The president, his } and { the Senate, them }. The
mention detection task is to identify the entity mentions and their types, without
regard for the underlying entity sets, while coreference resolution groups a given
mentions into sets.

Current state-of-the-art solutions to this problem split it into two parts: mention
detection and coreference (Soon et al., 2001; Ng and Cardie, 2002; Florian et al.,
2004). First, a model is run that attempts to identify each mention in a text and
assign it a type (person, organization, etc.). Then, one holds these mentions fixed
and attempts to identify which ones refer to the same entity. This is typically ac-
complished through some form of clustering, with clustering weights often tuned
through some local learning procedure. This pipelining scheme has the significant
drawback that the mention detection module cannot take advantage of information
from the coreference module. Moreover, within the coreference task, performing
learning and clustering as separate tasks makes learning rather ad hoc. In this sec-
tion, we build a model that solves the mention detection and coreference problems
in a simultaneous, joint manner. By doing so, we are able to obtain an empirically
superior system as well as integrate a large collection of features that one cannot
consider in the standard pipelined approach.

The LaSO framework essentially requires us to specify two components: the
search space (and corresponding operations) and the features. These two are



9.4 Experiments 183

inherently tied, since the features rely on the search space, but for the time being
we will ignore the issue of the feature functions and focus on the search.

9.4.4.1 Search Space

We structure search in a left-to-right decoding framework: a hypothesis is a complete
identification of the initial segment of a document. For instance, on a document with
N words, a hypothesis that ends at position 0 < n < N is essentially what you
would get if you took the full structured output and chopped it off at word n. In the
example given in section 9.4.4, one hypothesis might correspond to “Bill Clinton
gave a” (which would be a y-good hypothesis), or to “Bill Clinton gave a” (which
would not be a y-good hypothesis).

A hypothesis is expanded through the application of the search operations. In our
case, the search procedure first chooses the number of words it is going to consume
(for instance, to form the mention “Bill Clinton,” it would need to consume two
words). Then, it decides on an entity type and a mention type (or it opts to call
this chunk not an entity (NAE), corresponding to nonunderlined words). Finally,
assuming it did not choose to form an NAE, it decides on which of the foregoing
coreference chains this entity belongs to, or none (if it is the first mention of a new
entity). All these decisions are made simultaneously, and the given hypothesis is
then scored.

9.4.4.2 An Example

For concreteness, consider again the text given in the introduction. Suppose that we
are at the word “them” and the hypothesis we are expanding is correct. That is, we
have correctly identified “Bill Clinton” with entity type “person” and mention type
“name”; that we have identified “the Senate” with entity type “organization” and
mention type “name”; and that we have identified both “The President” and “his”
as entities with entity type “person” and mention types “nominal” and “pronoun,”
respectively, and that “The President” points back to the chain 〈Bill Clinton〉 and
that “his” points back to the chain 〈Bill Clinton, The President〉.

At this point of search, we have two choices for length: one or two (because there
are only two words left: “them” and a period). A first hypothesis would be that the
word “them” is NAE; a second hypothesis would be that “them” is a named person
and is a new entity; a third hypothesis would be that “them” is a named person
and is coreferent with the “Bill Clinton” chain; a fourth hypothesis would be that
“them” is a pronominal organization and is a new entity; next, “them” could be
a pronominal organization that is coreferent with “the Senate”; and so on. Similar
choices would be considered for the string “them ” when two words are selected.



184 Learning as Search Optimization

9.4.4.3 Linkage Type

One significant issue that arises in the context of assigning a hypothesis to a
coreference chain is how to compute features over that chain. As we will discuss
in section 9.4.4.4, the majority of our coreference-specific features are over pairs of
chunks: the proposed new mention and an antecedent. However, since in general
a proposed mention can have well more than one antecedent, we are left with a
decision about how to combine this information.

The first, most obvious solution is to essentially do nothing: simply compute the
features over all pairs and add them up as usual. This method, however, intuitively
has the potential for overcounting the effects of large chains. To compensate for
this, one might advocate the use of an average link computation, where the score
for a coreference chain is computed by averaging over its elements. One might also
consider a max link or min link scenario, where one of the extrema is chosen as
the value. Other research has suggested that a simple last link, where a mention is
simply matched against the most recent mention in a chain might be appropriate,
while first link might also be appropriate because the first mention of an entity
tends to carry the most information.

In addition to these standard linkages, we also consider an intelligent link
scenario, where the method of computing the link structure depends on the mention
type. The intelligent link is computed as follows, based on the mention type of the
current mention, m:

If m =NAM then: match first on NAM elements in the chain; if there are none,
match against the last NOM element; otherwise, use max link.

If m =NOM then: match against the max NOM in the chain; otherwise, match
against the most last NAM; otherwise, use max link.

If m =PRO then: use average link across all PRO or NAM; if there are none, use
max link.

The construction of this methodology is guided by intuition (for instance, match-
ing names against names is easy, and the first name tends to be the most complete)
and subsequently tuned by experimentation on the development data. One might
consider learning the best link method, and this may result in better performance,
but we do not explore this option in this work. The initial results we present will be
based on using intelligent link, but we will also compare the different linkage types
explicitly.

9.4.4.4 Feature Functions

All the features we consider are of the form base feature × decision feature, where
base features are functions of the input and decisions are functions of the hypothesis.
For instance, a base feature might be something like “the current chunk contains



9.4 Experiments 185

the word ‘Clinton’ ” and a decision feature might be something like “the current
chunk is a named person.”

Base features. For pedagogical purposes and to facilitate model comparisons, we
have separated the base features into 11 classes: lexical, syntactic, pattern-based,
count-based, semantic, knowledge-based, class-based, list-based, inference-based,
string match features, and history-based features. We will deal with each of these
in turn. Finally, we will discuss how these base features are combined into meta
features that are actually used for prediction.

The class of lexical features contains simply computable features of single words.
This includes chunk length, words, prefixes and suffixes, stems, etc. The class
of syntactic features is based on running the LaSO-based part-of-speech tagger
and syntactic chunker on the data. We have included a large number of pattern-
based features surrounding the current word, built largely as regular expressions
for identifying pluralization, pleonasticity, and possessiveness. Several count-based
features apply only to the coreference task and attempt to capture regularities in
the size and distribution of coreference chains. These include the total number of
entities detected thus far, the total number of mentions, the entity-to-mention ratio,
the entity-to-word ratio, the mention-to-word ratio, the size of the hypothesized
entity chain, etc. We include a number of semantic features drawn from WordNet
(Fellbaum, 1998), including synsets and hypernyms both of the current word and
previous and next verbs and nouns.

We use a number of knowledge-based features that account for the fact that many
name to nominal coreference chains are best understood in terms of background
knowledge (for instance, that “George W. Bush” is the “President”); we have
attempted to take advantage of recent techniques from large scale data mining
to extract lists of such pairs (Fleischman et al., 2003; Ravichandran et al., 2005).
Additionally, we use class-based features based on clustering (Ravichandran et al.,
2005) and collocation (Dunning, 1993) calculations. We use standard list-based
features calculated based on about 40 lists of names, places, and organizations.
These combine with inference-based features that attempt to infer number and
gender based on local context. For the coreference task, we use standard string
match features : string match, substring match, string overlap, pronoun match, and
normalized edit distance. We also attempt to match acronyms by looking at initial
letters from the words in long chunks. Finally, we use a set of history-based features
(Sutton and McCallum, 2004). For instance, if at the beginning of the document we
tagged the word “Arafat” as a person’s name (perhaps because it followed “Mr.” or
“Palestinian leader”), and later in the document we again see the word “Arafat,”
we should be more likely to call this a person’s name, again.

Decision features. Our decision features are divided into three classes: simple,
coreference, and boundary features. The simple decision features include: is this
chunk tagged as an entity; what is its entity type; what is its entity subtype; what
is its mention type; what is its entity type/mention type pair. The coreference
decision features include: is this entity the start of a chain or continuing an existing
chain; what is the entity type of this started (or continued) chain; what is the entity



186 Learning as Search Optimization

subtype of this started (or continued) chain; what is the mention type of this started
chain; what is the mention type of this continued chain; and the mention type of
the most recent antecedent. The boundary decision features include: the second-
and third-order Markov features over entity type, entity subtype, and mention type;
features appearing at the previous (and next) words within a window of three; the
words that appear and the previous and next mention boundaries, specified also by
entity type, entity subtype, and mention type.

9.4.4.5 Experimental Results

Data. We use the official 2004 ACE training and test set for evaluation purposes;
however, we exclude from the training set the Fisher conversations data, since this
is very different from the other datasets and there are no Fisher data in the 2004
test set. This amounts to 392 training documents, consisting of 8.1k sentences and
160k words. There are a total of 24k mentions in the data corresponding to 10k

entities (note that the data are not annotated for cross-document coreference, so
instances of “Bill Clinton” appearing in two different documents are counted as two
different entities). Roughly half of the entities are people, a fifth are organizations,
a fifth are GPEs, and the remaining are mostly locations or facilities. The test
data are 192 documents, 3.5k sentences, and 64k words, with 10k mentions to 4.5k

entities. In all cases, we use a beam of 16 for training and test, and ignore features
that occur fewer than five times in the training data.

Evaluation metrics. There are many evaluation metrics possible for these data.
We will use as our primary measure of quality the ACE metric. This is computed,
roughly, by first matching system mentions with reference mentions, then using
those to match system entities with reference entities. There are costs, once this
matching is complete, for type errors, false alarms, and misses, which are combined
together to give an ACE score, ranging from 0 to 100, with 100 being perfect (we
use v.10 of the ACE evaluation script).

Results. The results on the full EDT task are shown in figure 9.1, again compared
against the four top-performing systems in the ACE 2004 evaluation workshop. We
compare two versions of our system: the jointly trained system and a pipelined
version. The pipelined version is the simple concatenation of our stand-alone
mention detection model and our coreference module, described in the previous two
chapters. As we can see from these results, our EDT model performs comparably to
the third-best ACE 2004 system when run in a pipelined fashion, but on par with
the first- and second-best systems when run jointly (again, Sys1 annotated extra
data). This shows that the joint decoding framework is useful in the EDT task.

Joint vs. pipelined. We compare the performance of the joint system with
the pipelined system. For the pipelined system, to build the mention detection
module, we use the same technique as for the full system, but simply do not
include in the hypotheses the coreference chain information (essentially treating
each mention as if it were in its own chain). For the stand-alone coreference system,
we assume that the correct mentions and types are always given, and simply



9.4 Experiments 187

Figure 9.1 ACE scores on the full EDT task for the four best-performing systems at
ACE 2004, our LaSO-based joint system, and a pipelined version of our system.

hypothesize the chain (though still in a left-to-right manner). Run as such, the
joint model achieves an ACE score of 79.4 and the pipelined model achieves an
ACE score of 78.1, a reasonably substantial improvement for performing both tasks
simultaneously. We have also computed the performance of these two systems,
ignoring the coreference scores (this is done by considering each mention to be
its own entity and recomputing the ACE score). In this case, the joint model,
ignoring its coreference output, achieves an ACE score of 85.6 and the pipelined
model achieves a score of 85.3. The joint model does marginally better, but it is
unlikely to be statistically significant. In the 2004 ACE evaluation, the best three
performing systems achieved scores of 79.9, 79.7, and 78.2; it is unlikely that our
system is significantly worse than these.

One subtle difficulty with the joint model has to do with the online nature of the
learning algorithm: at the beginning of training, the model is guessing randomly
at what words are entities and what words are not entities. Because of the large
number of initial errors made in this part of the task, the weights learned by the
coreference model are initially very noisy. We experimented with two methods for
compensating for this effect. The first was to give the mention identification model
as “head start”: it was run for one full pass through the training data, ignoring the
coreference aspect and the following iterations were then trained jointly. The second
method was to only update the coreference weights when the mention was identified
correctly. On development data, the second was more efficient and outperformed
the first by a 0.6 ACE score, so we use this for the experiments reported in this
section.

Linkage types. As stated in the previous section, the coreference-only task with
intelligent link achieves an ACE score of 89.1. The next best score is with min link
(88.7) followed by average link with a score of 88.1. There is then a rather large



188 Learning as Search Optimization

drop with max link to 86.2, followed by another drop for last link to 83.5, and first
link performs the poorest, scoring 81.5.

9.5 Summary and Discussion

In this chapter, we have suggested that one view the learning with structured
outputs problem as a search optimization problem and that the same search
technique should be applied during both learning and decoding. We have presented
two parameter update schemes in the LaSO framework, one perceptron-style and
the other based on an approximate large-margin scheme, both of which can be
modified to work in kernel space or with alternative norms (but not both).

Our framework most closely resembles that used by the incremental parser of
Collins and Roark (2004). There are, however, several differences between the two
methodologies. Their model builds on standard perceptron-style updates (Collins,
2002) in which a full pass of decoding is done before any updates are made, and thus
does not fit into the search optimization framework we have outlined. Collins and
Roark found experimentally that stopping the parsing early whenever the correct
solution falls out of the beam results in drastically improved performance. However,
they had little theoretical justification for doing so. These “early updates,” however,
do strongly resemble our update strategy, with the difference that when Collins and
Roark make an error, they stop decoding the current input and move on to the next;
on the other hand, when our model makes an error, it continues from the correct
solution(s). This choice is justified both theoretically and experimentally. On the
tasks reported in this chapter, we observe the same phenomenon: early updates are
better than no early updates, and the search optimization framework is better than
early updates. For instance, in the joint tagging/chunking task from section 9.4.2,
using a beam of 10, we achieved an F-score of 94.4 in our framework; using only
early updates, this drops to 93.1; and using standard perceptron updates, it drops
to 92.5. Using the incremental perceptron framework on the EDT task results in
abysmal scores. This happens because each output requires roughly one thousand
decisions, and by not restarting at failure modes throws out too much data.

Our work also bears a resemblance to training local classifiers and combining
them together with global inference (Punyakanok and Roth, 2000). The primary
difference is that when learning local classifiers, one must assume to have access
to all possible decisions and must rank them according to some loss function.
Alternatively, in our model, one only needs to consider alternatives that are in the
queue at any given time, which gives us direct access to those aspects of the search
problem that are easily confused. This, in turn, resembles the online large-margin
algorithms proposed by McDonald et al. (2004), which suffer from the problem
that the argmax must be computed exactly. Finally, one can also consider our
framework in the context of game theory, where it resembles the iterated gradient
ascent technique described by Kearns et al. (2000) and the closely related marginal
best-response framework (Zinkevich et al., 2005).



9.5 Summary and Discussion 189

We believe that LaSO provides a powerful framework to learn to predict struc-
tured outputs. It enables one to build highly effective models of complex tasks
efficiently, without worrying about how to normalize a probability distribution,
compute expectations, or estimate marginals. It necessarily suffers against proba-
bilistic models in that the output of the classifier will not be a probability; however,
in problems with exponential search spaces, normalizing a distribution is quite im-
practical. In this sense, it compares favorably with the energy-based models pro-
posed by, for example, LeCun and Huang (2005), which also avoid probabilistic nor-
malization, but still require the exact computation of the argmax. We have applied
the model to two comparatively trivial tasks: chunking and joint tagging/chunking.
Since LaSO is not limited to problems with clean graphical structures, we believe
that this framework will be appropriate for many other complex structured learning
problems.

Acknowledgments

We thank Alan Fern, Michael Collins, Andrew McCallum, Charles Sutton, Thomas
Dietterich, Fernando Pereira, and Ryan McDonald for enlightening discussions, as
well as the anonymous reviewers on previous versions of this work, all of whom gave
very helpful comments. This work was supported by DARPA-ITO grant NN66001-
00-1-9814 and NSF grant IIS-0326276.





10 Energy-Based Models

Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and

Fu Jie Huang

Energy-based models (EBMs) capture dependencies between variables by associ-
ating a scalar energy to each configuration of the variables. Inference consists in
clamping the value of observed variables and finding configurations of the remaining
variables that minimize the energy. Learning consists in finding an energy function
in which observed configurations of the variables are given lower energies than
unobserved ones. The EBM approach provides a common theoretical framework
for many learning models, including traditional discriminative and generative ap-
proaches, as well as graph-transformer networks, conditional random fields (CRFs),
maximum-margin Markov networks (M3Ns), and several manifold learning meth-
ods.

Probabilistic models must be properly normalized, which sometimes requires eval-
uation of intractable integrals over the space of all possible variable configurations.
Since EBMs have no reqpuirement for proper normalization, this problem is nat-
urally circumvented. EBMs can be viewed as a form of nonprobabilistic factor
graphs that provide considerably more flexibility in the design of architecture and
the training criterion than probabilistic approaches.

10.1 Introduction

The main purpose of statistical modeling and machine learning is to encode
dependencies between variables. By capturing those dependencies, a model can
be used to answer questions about the values of unknown variables given the values
of known variables.

Energy-based models capture dependencies by associating a scalar energy (a
measure of compatibility) to each configuration of the variables. Inference, i.e.,
making a prediction or decision, consists in setting the value of observed variables
and finding values of the remaining variables that minimize the energy. Learning
consists in finding an energy function that associates low energies to correct values



192 Energy-Based Models

of the remaining variables, and higher energies to incorrect values. A loss functional,
minimized during learning, is used to measure the quality of the available energy
functions. Within this common inference/learning framework, the wide choice
of energy functions and loss functionals allows for the design of many types of
statistical models, both probabilistic and nonprobabilistic.

Energy-based learning provides a unified framework for many probabilistic and
nonprobabilistic approaches to learning, particularly for nonprobabilistic training of
graphical models and other structured models. Energy-based learning can be seen as
an alternative to probabilistic estimation for prediction, classification, or decision-
making tasks. Because there is no requirement for proper normalization, energy-
based approaches avoid the problems associated with estimating the normalization
constant in probabilistic models. Furthermore, the absence of the normalization
condition allows for much more flexibility in the design of learning machines. Most
probabilistic models can be viewed as special types of EBMs in which the energy
function satisfies certain normalizability conditions, and in which the loss function,
optimized by learning, has a particular form.

This chapter presents a tutorial on EBMs, with an emphasis on their use for
structured output problems and sequence labeling problems. Section 10.1 intro-chapter overview
duces EBMs and describes deterministic inference through energy minimization.
Section 10.2 introduces energy-based learning and the concept of the loss function.
A number of standard and nonstandard loss functions are described, including the
perceptron loss, several margin-based losses, and the negative log-likelihood (NLL)
loss. The NLL loss can be used to train a model to produce conditional probabil-
ity estimates. Section 10.3 shows how simple regression and classification models
can be formulated in the EBM framework. Section 10.4 concerns models that con-
tain latent variables. Section 10.5 analyzes the various loss functions in detail and
gives sufficient conditions that a loss function must satisfy so that its minimiza-
tion will cause the model to approach the desired behavior. A list of “good” and
“bad” loss functions is given. Section 10.6 introduces the concept of nonprobabilistic
factor graphs and informally discusses efficient inference algorithms. Section 10.7
focuses on sequence labeling and structured output models. Linear models such
as M3Ns and CRFs are reformulated in the EBM framework. The literature on
discriminative learning for speech and handwriting recognition, going back to the
late 80’s and early 90’s, is reviewed. This includes globally trained systems that
integrate nonlinear discriminant functions, such as neural networks, and sequence
alignment methods, such as dynamic time warping and hidden Markov models
(HMMs). Hierarchical models such as the graph transformer network architecture
are also reviewed. Finally, the differences, commonalities, and relative advantages
of energy-based approaches, probabilistic approaches, and sampling-based approx-
imate methods such as contrastive divergence are discussed in section 10.8.



10.1 Introduction 193

YX
Observed variables

(input)
Variables to be 

predicted
(answer)

Human
Animal
Airplane
Car
Truck

Human
Animal

Airplane
Car

Truck

Energy Function E(Y, X)

E(Y, X)

Figure 10.1 A model measures the compatibility between observed variables X and
variables to be predicted Y using an energy function E(Y, X). For example, X could be
the pixels of an image, and Y a discrete label describing the object in the image. Given
X, the model produces the answer Y that minimizes the energy E.

10.1.1 Energy-Based Inference

Let us consider a model with two sets of variables, X and Y , as represented in
figure 10.1. Variable X could be a vector containing the pixels from an image of
an object. Variable Y could be a discrete variable that represents the possible
category of the object. For example, Y could take six possible values: animal,
human figure, airplane, truck, car, and “none of the above.” The model is viewed
as an energy function which measures the “goodness” (or badness) of each possible
configuration of X and Y . The output number can be interpreted as the degree
of compatibility between the values of X and Y . In the following, we use the
convention that small energy values correspond to highly compatible configurations
of the variables, while large energy values correspond to highly incompatible
configurations of the variables. Functions of this type are given different names
in different technical communities; they may be called contrast functions, value
functions, or NLL functions. In the following, we will use the term energy function
and denote it E(Y, X). A distinction should be made between the energy function,energy E(X, Y )

as compatibility
mesure

which is minimized by the inference process, and the loss functional (introduced in
section 10.2), which is minimized by the learning process.



194 Energy-Based Models

In the most common use of a model, the input X is given (observed from the
world), and the model produces the answer Y that is most compatible with the
observed X . More precisely, the model must produce the value Y ∗, chosen from a
set Y, for which E(Y, X) is the smallest:prediction as

energy
minimization Y ∗ = argminY ∈YE(Y, X). (10.1)

When the size of the set Y is small, we can simply compute E(Y, X) for all possible
values of Y ∈ Y and pick the smallest.

E(Y, X)

X Y

Einstein

E(Y, X)

X Y
[- 0.90 41.11 68.51 34.25 -0.10 0 0.05]
[0.84 109.62 109.62 34.25 0.37 0 -0.04]
[0.76 68.51 164.44 34.25 -0.42 0 0.16]
[0.17 246.66 123.33 34.25 0.85 0 -0.04]
[0.16 178.14 54.81 34.25 0.38 0 -0.14]

E(Y, X)

X Y

E(Y, X)

X Y
"this"

E(Y, X)

X Y
"This is easy" (pronoun verb adj)

E(Y, X)

X Y

(a) (b) (c)

(d) (e) (f)

Figure 10.2 Several applications of EBMs: (a) face recognition: Y is a high-
cardinality discrete variable; (b) face detection and pose estimation: Y is a collection
of vectors with location and pose of each possible face; (c) image segmentation: Y is
an image in which each pixel is a discrete label; (d-e) handwriting recognition and
sequence labeling: Y is a sequence of symbols from a highly structured but potentially
infinite set (the set of English sentences). The situation is similar for many applications
in natural language processing and computational biology; (f) image restoration: Y is
a high-dimensional continuous variable (an image).



10.1 Introduction 195

In general, however, picking the best Y may not be simple. Figure 10.2 depicts
several situations in which Y may be too large to make an exhaustive search
practical. In figure 10.2(a), the model is used to recognize a face. In this case, the
set Y is discrete and finite, but its cardinality may be tens of thousands (Chopraapplications of

EBMs et al., 2005). In figure 10.2(b), the model is used to find the faces in an image
and estimate their poses. The set Y contains a binary variable for each location
indicating whether a face is present at that location, and a set of continuous
variables representing the size and orientation of the face (Osadchy et al., 2005).
In figure 10.2(c), the model is used to segment a biological image: each pixel must
be classified into one of five categories (cell nucleus, nuclear membrane, cytoplasm,
cell membrane, external medium). In this case, Y contains all the consistent label
images, i.e. the ones for which the nuclear membranes are encircling the nuclei,
the nuclei and cytoplasm are inside the cells walls, etc. The set is discrete, but
intractably large. More importantly, members of the set must satisfy complicated
consistency constraints (Ning et al., 2005). In figure 10.2(d), the model is used
to recognize a handwritten sentence. Here Y contains all possible sentences of the
English language, which is a discrete but infinite set of sequences of symbols (LeCun
et al., 1998a). In figure 10.2(f), the model is used to restore an image (by cleaning
the noise, enhancing the resolution, or removing scratches). The set Y contains
all possible images (all possible pixel combinations). It is a continuous and high-
dimensional set.

For each of the above situations, a specific strategy, called the inference procedure,
must be employed to find the Y that minimizes E(Y, X). In many real situations,
the inference procedure will produce an approximate result, which may or may not
be the global minimum of E(Y, X) for a given X . In fact, there may be situations
where E(Y, X) has several equivalent minima. The best inference procedure to
use often depends on the internal structure of the model. For example, if Y is
continuous and E(Y, X) is smooth and well-behaved with respect to Y , one may
use a gradient-based optimization algorithm. If Y is a collection of discrete variables
and the energy function can be expressed as a factor graph, i.e. a sum of energy
functions (factors) that depend on different subsets of variables, efficient inference
procedures for factor graphs can be used (see section 10.6) (Kschischang et al., 2001;
MacKay, 2003). A popular example of such a procedure is the max-sum algorithm.
When each element of Y can be represented as a path in a weighted directed acyclic
graph, then the energy for a particular Y is the sum of values on the edges and
nodes along a particular path. In this case, the best Y can be found efficiently
using dynamic programming (e.g. with the Viterbi algorithm or A∗). This situation
often occurs in sequence labeling problems such as speech recognition, handwriting
recognition, natural language processing, and biological sequence analysis (e.g. gene
finding, protein folding prediction, etc.). Different situations may call for the use of
other optimization procedures, including continuous optimization methods such as
linear programming, quadratic programming, nonlinear optimization methods, or
discrete optimization methods such as simulated annealing, graph cuts, or graph
matching. In many cases, exact optimization is impractical, and one must resort to



196 Energy-Based Models

approximate methods, including methods that use surrogate energy functions (such
as variational methods).

10.1.2 What Questions Can a Model Answer?

In the preceding discussion, we have implied that the question to be answered by
the model is What is the Y that is most compatible with this X?, a situation that
occurs in prediction, classification, or decision-making tasks. However, a model may
be used to answer questions of several types:potential

applications
1. Prediction, classification, and decision-making: Which value of Y is most com-
patible with this X? This situation occurs when the model is used to make hard
decisions or to produce an action. For example, if the model is used to drive a
robot and avoid obstacles, it must produce a single best decision such as “steer
left,” “steer right,” or “go straight.”

2. Ranking: Is Y1 or Y2 more compatible with this X? This is a more complex
task than classification because the system must be trained to produce a complete
ranking of all the answers, instead of merely producing the best one. This situation
occurs in many data-mining applications where the model is used to select multiple
samples that best satisfy a given criterion.

3. Detection: Is this value of Y compatible with X? Typically, detection tasks, such
as detecting faces in images, are performed by comparing the energy of a face label
with a threshold. Since the threshold is generally unknown when the system is built,
the system must be trained to produce energy values that increase as the image
looks less like a face.

4. Conditional density estimation: What is the conditional probability distribution
over Y given X? This case occurs when the output of the system is not used directly
to produce actions, but is given to a human decision maker or is fed to the input
of another, separately built system.

We often think of X as a high-dimensional variable (e.g. an image) and Y

as a discrete variable (e.g. a label), but the converse case is also common. This
occurs when the model is used for such applications as image restoration, computer
graphics, speech and language production, etc. The most complex case is when both
X and Y are high-dimensional.

10.1.3 Decision Making vs. Probabilistic Modeling

For decision-making tasks, such as steering a robot, it is merely necessary that
the system give the lowest energy to the correct answer. The energies of other
answers are irrelevant, as long as they are larger. However, the output of a system
must sometimes be combined with that of another system, or fed to the input of
another system (or to a human decision maker). Because energies are uncalibrated
(i.e. measured in arbitrary units), combining two, separately trained energy-based



10.2 Energy-Based Training: Architecture and Loss Function 197

models is not straightforward: there is no a priori guarantee that their energy scales
are commensurate. Calibrating energies so as to permit such combinations can
be done in a number of ways. However, the only consistent way involves turningcalibration of

energies the collection of energies for all possible outputs into a normalized probability
distribution. The simplest and most common method for turning a collection of
arbitrary energies into a collection of numbers between 0 and 1 whose sum (or
integral) is 1 is through the Gibbs distribution:

P (Y |X) =
e−βE(Y,X)∫

y∈Y e−βE(y,X)
, (10.2)

where β is an arbitrary positive constant akin to an inverse temperature, and the
denominator is called the partition function (by analogy with similar concepts
in statistical physics). The choice of the Gibbs distribution may seem arbitrary,
but other probability distributions can be obtained (or approximated) through a
suitable redefinition of the energy function. Whether the numbers obtained this
way are good probability estimates does not depend on how energies are turned
into probabilities, but on how E(Y, X) is estimated from data.restrictions of

probabilistic
modeling

It should be noted that the above transformation of energies into probabilities is
only possible if the integral

∫
y∈Y

e−βE(y,X) converges. This somewhat restricts the
energy functions and domains Y that can be used. More importantly, there are many
practical situations where computing the partition function is intractable (e.g. when
Y has high cardinality), or outright impossible (e.g. when Y is a high-dimensional
variable and the integral has no analytical solution). Hence probabilistic modeling
comes with a high price, and should be avoided when the application does not
require it.

10.2 Energy-Based Training: Architecture and Loss Function

Training an EBM consists in finding an energy function that produces the best Y

for any X . The search for the best energy function is performed within a family of
energy functions E indexed by a parameter W

E = {E(W, Y, X) : W ∈W}. (10.3)

The architecture of the EBM is the internal structure of the parameterized energy
function E(W, Y, X). At this point, we put no particular restriction on the nature
of X , Y , W , and E. When X and Y are real vectors, E could be as simple as
a linear combination of basis functions (as in the case of kernel methods), or
a set of neural net architectures and weight values. Section 10.3 gives examples
of simple architectures for common applications to classification and regression.
When X and Y are variable-size images, sequences of symbols or vectors, or more
complex structured objects, E may represent a considerably richer class of functions.
Sections 10.4, 10.6, and 10.7 discuss several examples of such architectures. One



198 Energy-Based Models

advantage of the energy-based approach is that it puts very few restrictions on the
nature of E.

To train the model for prediction, classification, or decision making, we are given
a set of training samples S = {(X i, Y i) : i = 1 . . . P}, where X i is the input for the
ith training sample, and Y i is the corresponding desired answer. In order to find
the best energy function in the family E, we need a way to assess the quality of any
particular energy function, based solely on two elements: the training set, and our
prior knowledge about the task. This quality measure is called the loss functional
(i.e. a function of function) and denoted L(E, S). For simplicity, we often denote it
L(W, S) and simply call it the loss function. The learning problem is simply to find
the W that minimizes the loss:

W ∗ = min
W∈W

L(W, S). (10.4)

For most cases, the loss functional is defined as follows:

L(E, S) =
1
P

P∑
i=1

L(Y i, E(W, Y, X i)) + R(W ). (10.5)

It is an average taken over the training set of a per-sample loss functional, denoted
L(Y i, E(W, Y, X i)), which depends on the desired answer Y i and on the energies
obtained by keeping the input sample fixed and varying the answer Y . Thus, for
each sample, we evaluate a “slice” of the energy surface. The term R(W ) is the
regularizer, and can be used to embed our prior knowledge about which energy
functions in our family are preferable to others (in the absence of training data).
With this definition, the loss is invariant under permutations of the training samples
and under multiple repetitions of the training set.

Naturally, the ultimate purpose of learning is to produce a model that will give
good answers for new input samples that are not seen during training. We can
rely on general results from statistical learning theory which guarantee that, under
simple interchangeability conditions on the samples and general conditions on the
family of energy functions (finite VC dimension), the deviation between the value
of the loss after minimization on the training set, and the loss on a large, separate
set of test samples is bounded by a quantity that converges to zero as the size of
training set increases (Vapnik, 1995).

10.2.1 Designing a Loss Functional

Intuitively, the per-sample loss functional should be designed in such a way that
it assigns a low loss to well-behaved energy functions: energy functions that give
the lowest energy to the correct answer and higher energy to all other (incorrect)
answers. Conversely, energy functions that do not assign the lowest energy to the
correct answers would have a high loss. Characterizing the appropriateness of loss
functions (the ones that select the best energy functions) is further discussed in
following sections.



10.2 Energy-Based Training: Architecture and Loss Function 199

Human
Animal

Airplane
Car

Truck

E(Y, X)

After
training

Human
Animal

Airplane
Car

Truck

E(Y, X)

Figure 10.3 How training affects the energies of the possible answers in the discrete
case: the energy of the correct answer is decreased, and the energies of incorrect answers
are increased, particularly if they are lower than that of the correct answer.

Considering only the task of training a model to answer questions of type 1
(prediction, classification, and decision making), the main intuition of the energy-main intuition
based approach is as follows. Training an EBM consists in shaping the energy
function, so that for any given X , the inference algorithm will produce the desired
value for Y . Since the inference algorithm selects the Y with the lowest energy,
the learning procedure must shape the energy surface so that the desired value of
Y has lower energy than all other (undesired) values. Figures 10.3 and 10.4 show
examples of energy as a function of Y for a given input sample X i in cases where
Y is a discrete variable and a continuous scalar variable. We note three types of
answers:

Y i: the correct answer.

Y ∗i: the answer produced by the model, i.e. the answer with the lowest energy.

Ȳ i: the most offending incorrect answer, i.e. the answer that has the lowest energy
among all the incorrect answers. To define this answer in the continuous case, we
can simply view all answers within a distance ε of Y i as correct, and all answers
beyond that distance as incorrect.

With a properly designed loss function, the learning process should have the effect
of “pushing down” on E(W, Y i, X i), and “pulling up” on the incorrect energies,

Answer
Ȳ iY i

pull up

push down

(Y )

E
(W

,·,
X

i )

Answer
Ȳ iY i

(Y )

E
(W

,·,
X

i )After
training

Figure 10.4 The effect of training on the energy surface as a function of the answer Y
in the continuous case. After training, the energy of the correct answer Y i is lower than
that of incorrect answers.



200 Energy-Based Models

−4 −3 −2 −1 0 1
0

0.5

1

1.5

2

2.5

3

E
I
 − E

C

Lo
ss

: L

−2 −1.5 −1 −0.5 0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

E
I
 − E

C

Lo
ss

: L

0 0.5 1 1.5 2 2.5 3 3.5
0

2

4

6

8

10

12

14

Energy: E
C

 / E
I

Lo
ss

:L

Figure 10.5 The hinge loss (left) and log loss (center) penalize E(W,Y i, Xi) −
E(W, Ȳ i, Xi) linearly and logarithmically, respectively. The square-square loss (right) sep-
arately penalizes large values of E(W,Y i, Xi) (solid line) and small values of E(W, Ȳ i, Xi)
(dashed line) quadratically.

particularly on E(W, Ȳ i, X i). Different loss functions do this in different ways.
Section 10.5 gives sufficient conditions that the loss function must satisfy in order
to be guaranteed to shape the energy surface correctly. We show that some widely
used loss functions do not satisfy the conditions, while others do.

To summarize: given a training set S, building and training an EBM involvescomponents of
EBMs designing four components:

1. The architecture: the internal structure of E(W, Y, X).

2. The inference algorithm: the method for finding a value of Y that minimizes
E(W, Y, X) for any given X .

3. The loss function: L(W, S) measures the quality of an energy function using the
training set.

4. The learning algorithm: the method for finding a W that minimizes the loss
functional over the family of energy functions E, given the training set.

Properly designing the architecture and the loss function is critical. Any prior
knowledge we may have about the task at hand is embedded into the architec-
ture and into the loss function (particularly the regularizer). Unfortunately, not
all combinations of architectures and loss functions are allowed. With some com-
binations, minimizing the loss will not make the model produce the best answers.
Choosing the combinations of architecture and loss functions that can learn effec-
tively and efficiently is critical to the energy-based approach, and thus is a central
theme of this tutorial.

10.2.2 Examples of Loss Functions

We now describe a number of standard loss functions that have been proposed and
used in the machine learning literature. We shall discuss them and classify them
as “good” or “bad” in an energy-based setting. For the time being, we set aside
the regularization term, and concentrate on the data-dependent part of the loss
function.



10.2 Energy-Based Training: Architecture and Loss Function 201

10.2.2.1 Energy Loss

The simplest and the most straightforward of all the loss functions is the energy
loss. For a training sample (X i, Y i), the per-sample loss is defined simply as

Lenergy(Y i, E(W, Y, X i)) = E(W, Y i, X i). (10.6)

This loss function, although very popular for things like regression and neural
network training, cannot be used to train most architectures: while this loss will
push down on the energy of the desired answer, it will not pull up on any other
energy. With some architectures, this can lead to a collapsed solution in which
the energy is constant and equal to zero. The energy loss will only work with
architectures that are designed in such a way that pushing down on E(W, Y i, X i)
will automatically make the energies of the other answers larger. A simple examplestandard loss

functions do not
pull up

of such an architecture is E(W, Y i, X i) = ||Y i −G(W, X i)||2, which corresponds to
regression with mean-squared error with G being the regression function.

10.2.2.2 Generalized Perceptron Loss

The generalized perceptron loss for a training sample (X i, Y i) is defined as

Lperceptron(Y i, E(W, Y, X i)) = E(W, Y i, X i) − min
Y ∈Y

E(W, Y, X i). (10.7)

This loss is always positive, since the second term is a lower bound on the first
term. Minimizing this loss has the effect of pushing down on E(W, Y i, X i), while
pulling up on the energy of the answer produced by the model.

While the perceptron loss has been widely used in many settings, including for
models with structured outputs such as handwriting recognition (LeCun et al.,
1998a) and parts-of-speech tagging (Collins, 2002), it has a major deficiency: there
is no mechanism for creating an energy gap between the correct answer and the
incorrect ones. Hence, as with the energy loss, the perceptron loss may produce
flat (or almost flat) energy surfaces if the architecture allows it. Consequently, a
meaningful, uncollapsed result is only guaranteed with this loss if a model is used
that cannot produce a flat energy surface. For other models, one cannot guarantee
anything.

10.2.2.3 Generalized Margin Losses

Several loss functions can be described as margin losses; the hinge loss, log loss,
LVQ2 loss, minimum classification error loss, square-square loss, and square-
exponential loss all use some form of margin to create an energy gap between the
correct answer and the incorrect answers. Before discussing the generalized margin
loss we give the following definitions.



202 Energy-Based Models

Definition 56 Let Y be a discrete variable. Then for a training sample (X i, Y i),
the most offending incorrect answer Ȳ i is the answer that has the lowest energy
among all answers that are incorrect:

Ȳ i = argminY ∈YandY �=Y iE(W, Y, X i). (10.8)

If Y is a continuous variable, then the definition of the most offending incorrect
answer can be defined in a number of ways. The simplest definition is as follows.

Definition 57 Let Y be a continuous variable. Then for a training sample (X i, Y i),
the most offending incorrect answer Ȳ i is the answer that has the lowest energy
among all answers that are at least ε away from the correct answer:

Ȳ i = argminY ∈Y,‖Y −Y i‖>εE(W, Y, X i). (10.9)

The generalized margin loss is a more robust version of the generalized perceptron
loss. It directly uses the energy of the most offending incorrect answer in the
contrastive term:

Lmargin(W, Y i, X i) = Qm

(
E(W, Y i, X i), E(W, Ȳ i, X i)

)
. (10.10)

Here m is a positive parameter called the margin and Qm(e) is a convex function
whose gradient has a positive dot product with the vector [1,−1] in the region where
E(W, Y i, X i)+m > E(W, Ȳ i, X i). In other words, the loss surface is slanted toward
low values of E(W, Y i, X i) and high values of E(W, Ȳ i, X i) wherever E(W, Y i, X i)
is not smaller than E(W, Ȳ i, X i) by at least m. Some special cases of the generalized
margin loss are given below:

Hinge loss: A particularly popular example of generalized margin loss is thegeneralized
margin losses hinge loss, which is used in combination with linearly parameterized energies and

a quadratic regularizer in support vector machines (Vapnik, 1995), support vector
Markov models (Altun and Hofmann, 2003), and M3Ns (Taskar et al., 2004b):

Lhinge(W, Y i, X i) = max
(
0, m + E(W, Y i, X i) − E(W, Ȳ i, X i)

)
, (10.11)

where m is the positive margin. The shape of this loss function is given in figure 10.5.
The difference between the energies of the correct answer and the most offending
incorrect answer is penalized linearly when larger than −m. The hinge loss only
depends on energy differences, hence individual energies are not constrained to take
any particular value.

Log loss: A common variation of the hinge loss is the log loss, which can be seen
as a “soft” version of the hinge loss with an infinite margin (see figure 10.5, center):

Llog(W, Y i, X i) = log
(
1 + eE(W,Y i,Xi)−E(W,Ȳ i,Xi)

)
. (10.12)

LVQ2 loss: One of the very first proposals for discriminatively training sequence
labeling systems (particularly speech recognition systems) is a version of Kohonen’s
LVQ2 loss. This loss has been advocated by Driancourt and Bottou since the early



10.2 Energy-Based Training: Architecture and Loss Function 203

90’s (Driancourt and Bottou, 1991; Driancourt and Gallinari, 1992a,b; Driancourt,
1994; McDermott, 1997; McDermott and Katagiri, 1992):

Llvq2(W, Y i, X i) = min
(

1, max
(

0,
E(W, Y i, X i) − E(W, Ȳ i, X i)

δE(W, Ȳ i, X i)

))
, (10.13)

where δ is a positive parameter. LVQ2 is a zero-margin loss, but it has the peculiarity
of saturating the ratio between E(W, Y i, X i) and E(W, Ȳ i, X i) to 1 + δ. This
mitigates the effect of outliers by making them contribute a nominal cost M to
the total loss. This loss function is a continuous approximation of the number of
classification errors. Unlike generalized margin losses, the LVQ2 loss is nonconvex
in E(W, Y i, X i) and E(W, Ȳ i, X i).

MCE loss: The MCE (minimum classification error) loss was originally proposed
by Juang et al. in the context of discriminative training for speech recognition
systems (Juang et al., 1997). The motivation was to build a loss function that also
approximately counts the number of classification errors, while being smooth and
differentiable. The number of classification errors can be written as

θ
(
E(W, Y i, X i) − E(W, Ȳ i, X i)

)
, (10.14)

where θ is the step function (equal to zero for negative arguments, and 1 for positive
arguments). However, this function is not differentiable, and therefore very difficult
to optimize. The MCE loss “softens” it with a sigmoid:

Lmce(W, Y i, X i) = σ
(
E(W, Y i, X i) − E(W, Ȳ i, X i)

)
, (10.15)

where σ is the logistic function σ(x) = (1 + e−x)−1. As with the LVQ2 loss, the
saturation ensures that mistakes contribute a nominal cost to the overall loss.
Although the MCE loss does not have an explicit margin, it does create a gap
between E(W, Y i, X i) and E(W, Ȳ i, X i). The MCE loss is nonconvex.

Square-square loss: Unlike the hinge loss, the square-square loss treats the
energy of the correct answer and the most offending answer separately (LeCun and
Huang, 2005; Hadsell et al., 2006):

Lsq−sq(W, Y i, X i) = E(W, Y i, X i)2 +
(
max(0, m − E(W, Ȳ i, X i))

)2
. (10.16)

Large values of E(W, Y i, X i) and small values of E(W, Ȳ i, X i) below the margin
m are both penalized quadratically (see figure 10.5). Unlike the margin loss, the
square-square loss “pins down” the correct answer energy at zero and “pins down”
the incorrect answer energies above m. Therefore, it is only suitable for energy
functions that are bounded below by zero, notably in architectures whose output
module measures some sort of distance.

Square-exponential (LeCun and Huang, 2005; Chopra et al., 2005; Osadchy
et al., 2005): The square-exponential loss is similar to the square-square loss. It only



204 Energy-Based Models

differs in the contrastive term: instead of a quadratic term it has the exponential
of the negative energy of the most offending incorrect answer:

Lsq−exp(W, Y i, X i) = E(W, Y i, X i)2 + γe−E(W,Ȳ i,Xi), (10.17)

where γ is a positive constant. Unlike the square-square loss, this loss has an infinite
margin and pushes the energy of the incorrect answers to infinity with exponentially
decreasing force.

Negative log-likelihood loss: The motivation for the NLL loss comes from
probabilistic modeling. It is defined as

Lnll(W, Y i, X i) = E(W, Y i, X i) + Fβ(W, Y, X i). (10.18)

Where F is the free energy of the ensemble {E(W, y, X i), y ∈ Y}:

Fβ(W, Y, X i) =
1
β

log
(∫

y∈Y

exp
(−βE(W, y, X i)

))
, (10.19)

where β is a positive constant akin to an inverse temperature. This loss can only
be used if the exponential of the negative energy is integrable over Y, which may
not be the case for some choices of energy function or Y.

The form of the NLL loss stems from a probabilistic formulation of the learning
problem in terms of the maximum conditional probability principle. Given the
training set S, we must find the value of the parameter that maximizes the
conditional probability of all the answers given all the inputs in the training
set. Assuming that the samples are independent, and denoting by P (Y i|X i, W )
the conditional probability of Y i given X i that is produced by our model with
parameter W , the conditional probability of the training set under the model is a
simple product over samples:

P (Y 1, . . . , Y P |X1, . . . , XP , W ) =
P∏

i=1

P (Y i|X i, W ). (10.20)

Applying the maximum likelihood estimation principle, we seek the value of W

that maximizes the above product, or the one that minimizes the negative log of
the above product:

− log
P∏

i=1

P (Y i|X i, W ) =
P∑

i=1

− log P (Y i|X i, W ). (10.21)

Using the Gibbs distribution (10.2), we get

− log
P∏

i=1

P (Y i|X i, W ) =
P∑

i=1

βE(W, Y i, X i) + log
∫

y∈Y

e−βE(W,y,Xi). (10.22)



10.2 Energy-Based Training: Architecture and Loss Function 205

The final form of the NLL loss is obtained by dividing the above expression by P

and β (which has no effect on the position of the minimum):

Lnll(W, S) =
1
P

P∑
i=1

(
E(W, Y i, X i) +

1
β

log
∫

y∈Y

e−βE(W,y,Xi)

)
. (10.23)

While many of the previous loss functions involved only E(W, Ȳ i, X i) in their
contrastive term, the NLL loss combines all the energies for all values of Y in
its contrastive term Fβ(W, Y, X i). This term can be interpreted as the Helmholtz
free energy (log partition function) of the ensemble of systems with energies
E(W, Y, X i), Y ∈ Y. This contrastive term causes the energies of all the answers to
be pulled up. The energy of the correct answer is also pulled up, but not as hard
as it is pushed down by the first term. This can be seen in the expression of the
gradient for a single sample:

∂Lnll(W, Y i, X i)
∂W

=
∂E(W, Y i, X i)

∂W
−
∫

Y ∈Y

∂E(W, Y, X i)
∂W

P (Y |X i, W ), (10.24)

where P (Y |X i, W ) is obtained through the Gibbs distribution:

P (Y |X i, W ) =
e−βE(W,Y,Xi)∫

y∈Y
e−βE(W,y,Xi)

. (10.25)

Hence, the contrastive term pulls up on the energy of each answer with a force
proportional to the likelihood of that answer under the model. Unfortunately,
there are many interesting models for which computing the integral over Y is
intractable. Evaluating this integral is a major topic of research. Considerable efforts
have been devoted to approximation methods, including clever organization of the
calculations, Monte-Carlo sampling methods, and variational methods. While these
methods have been devised as approximate ways of minimizing the NLL loss, they
can be viewed in the energy-based framework as different strategies for choosing
the Y s whose energies will be pulled up.

Interestingly, the NLL loss reduces to the generalized perceptron loss when
β → ∞ (zero temperature), and reduces to the log loss (10.12) when Y has two
elements (e.g. binary classification).

The NLL loss has been used extensively by many authors under various names.
In the neural network classification literature, it is known as the cross-entropy
loss (Solla et al., 1988). It was also used by Bengio et al. to train an energy-based
language model (Bengio et al., 2003). It has been widely used under the name max-
imum mutual information estimation for discriminatively training speech recogni-
tion systems since the late 80’s, including HMMs with mixtures of Gaussians (Bahl
et al., 1986), and HMM-neural net hybrids (Bengio et al., 1990, 1992; Haffner, 1993;
Bengio, 1996). It has also been used extensively for global discriminative training
of handwriting recognition systems that integrate neural nets and HMMs under
the names maximum mutual information (Bengio et al., 1993; LeCun and Bengio,
1994; Bengio et al., 1995; LeCun et al., 1997; Bottou et al., 1997) and discrim-



206 Energy-Based Models

inative forward training (LeCun et al., 1998a). Finally, it is the loss function of
choice for training other probabilistic discriminative sequence labeling models such
as input/output HMM (Bengio and Frasconi, 1996), CRFs (Lafferty et al., 2001),
and discriminative random fields (Kumar and Hebert, 2004).

Minimum empirical error loss: Some authors have argued that the NLL
loss puts too much emphasis on mistakes: (10.20) is a product whose value is
dominated by its smallest term. Hence, Ljolje et al. (1990) proposed the minimum
empirical error (MEE) loss, which combines the conditional probabilities of the
samples additively instead of multiplicatively:

Lmee(W, Y i, X i) = 1 − P (Y i|X i, W ). (10.26)

Substituting (10.2) we get

Lmee(W, Y i, X i) = 1 − e−βE(W,Y i,Xi)∫
y∈Y e−βE(W,y,Xi)

. (10.27)

As with the MCE loss and the LVQ2 loss, the MEE loss saturates the contribution
of any single error. This makes the system more robust to label noise and outliers,
which is of particular importance to applications such as speech recognition, but
it makes the loss nonconvex. As with the NLL loss, MEE requires evaluating the
partition function.

10.3 Simple Architectures

To substantiate the ideas presented thus far, this section demonstrates how simple
models of classification and regression can be formulated as EBMs. This sets the
stage for the discussion of good and bad loss functions, as well as for the discussion
of advanced architectures for structured prediction.

10.3.1 Regression

Figure 10.6(a) shows a simple architecture for regression or function approximation.
The energy function is the squared error between the output of a regression function
GW (X) and the variable to be predicted Y , which may be a scalar or a vector:

E(W, Y, X) =
1
2
||GW (X) − Y ||2. (10.28)

The inference problem is trivial: the value of Y that minimizes E is equal to GW (X).
The minimum energy is always equal to zero. When used with this architecture, the
energy loss, perceptron loss, and NLL loss are all equivalent because the contrastive



10.3 Simple Architectures 207

D(GW (X), Y )

X Y X Y

−Y · GW (X)

X Y

g0 g1 g2

E(W,Y, X)E(W,Y, X)

GW (X) GW (X) GW (X)

E(W,Y, X) =
3∑

k=1

δ(Y − k)gk

a) b) c)

Figure 10.6 Simple learning models viewed as EBMs: (a) a regressor: The energy
is the discrepancy between the output of the regression function GW (X) and the answer
Y . The best inference is simply Y ∗ = GW (X); (b) a simple two-class classifier: The
set of possible answers is {−1, +1}. The best inference is Y ∗ = sign(GW (X)); (c) a
multiclass classifier: The discriminant function produces one value for each of the three
categories. The answer, which can take three values, controls the position of a “switch,”
which connects one output of the discriminant function to the energy function. The best
inference is the index of the smallest output component of GW (X).

term of the perceptron loss is zero, and that of the NLL loss is constant (it is a
Gaussian integral with a constant variance):

Lenergy(W, S) =
1
P

P∑
i=1

E(W, Y i, X i) =
1

2P

P∑
i=1

||GW (X i) − Y i||2. (10.29)

This corresponds to standard regression with mean-squared error.
A popular form of regression occurs when G is a linear function of the parameters:

GW (X) =
N∑

k=1

wkφk(X) = WT Φ(X). (10.30)

The φk(X) are a set of N features, and wk are the components of an N -dimensional
parameter vector W . For concision, we use the vector notation WT Φ(X), where WT

denotes the transpose of W , and Φ(X) denotes the vector formed by each φk(X).
With this linear parameterization, training with the energy loss reduces to an easily
solvable least-squares minimization problem, which is convex:

W ∗ = argminW

[
1

2P

P∑
i=1

||WT Φ(X i) − Y i||2
]

. (10.31)

In simple models, the feature functions are handcrafted by the designer, or sepa-
rately trained from unlabeled data. In the dual form of kernel methods, they are
defined as φk(X) = K(X, Xk), k = 1 . . . P , where K is the kernel function. In
more complex models such as multilayer neural networks and others, the φ’s may



208 Energy-Based Models

themselves be parameterized and subject to learning, in which case the regression
function is no longer a linear function of the parameters and hence the loss function
may not be convex in the parameters.

10.3.2 Two-Class Classifier

Figure 10.6(b) shows a simple two-class classifier architecture. The variable to be
predicted is binary: Y = {−1, +1}. The energy function can be defined as

E(W, Y, X) = −Y GW (X), (10.32)

where GW (X) is a scalar-valued discriminant function parameterized by W . Infer-
ence is trivial:

Y ∗ = argminY ∈{−1,1} − Y GW (X) = sign(GW (X)). (10.33)

Learning can be done using a number of different loss functions, which include
the perceptron loss, hinge loss, and NLL loss. Substituting (10.32) and (10.33) into
the perceptron loss (10.7), we get

Lperceptron(W, S) =
1
P

P∑
i=1

(
sign(GW (X i)) − Y i

)
GW (X i). (10.34)

The stochastic gradient descent update rule to minimize this loss is

W ← W + η
(
Y i − sign(GW (X i)

) ∂GW (X i)
∂W

, (10.35)

where η is a positive step size. If we choose GW (X) in the family of linear models, the
energy function becomes E(W, Y, X) = −Y WT Φ(X), the perceptron loss becomes

Lperceptron(W, S) =
1
P

P∑
i=1

(
sign(WT Φ(X i)) − Y i

)
WT Φ(X i), (10.36)

and the stochastic gradient descent update rule becomes the familiar perceptron
learning rule: W ← W + η

(
Y i − sign(WT Φ(X i))

)
Φ(X i).

The hinge loss (10.11) with the two-class classifier energy (10.32) yields

Lhinge(W, S) =
1
P

P∑
i=1

max(0, m + 2Y iGW (X i)). (10.37)

Using this loss with GW (X) = WT X and a regularizer of the form ||W ||2 gives the
familiar linear support vector machine.

The NLL loss (10.23) with (10.32) yields

Lnll(W, S) =
1
P

P∑
i=1

[
−Y iGW (X i) + log

(
eY iGW (Xi) + e−Y iGW (Xi)

)]
. (10.38)



10.3 Simple Architectures 209

Using the fact that Y = {−1, +1}, we obtain

Lnll(W, S) =
1
P

P∑
i=1

log
(
1 + e−2Y iGW (Xi)

)
, (10.39)

which is equivalent to the log loss (10.12). Using a linear model as described above,
the loss function becomes

Lnll(W, S) =
1
P

P∑
i=1

log
(
1 + e−2Y iW T Φ(Xi)

)
. (10.40)

This particular combination of architecture and loss is the familiar logistic regression
method.

10.3.3 Multiclass Classifier

Figure 10.6(c) shows an example of architecture for multiclass classification
for three classes. A discriminant function GW (X) produces an output vector
[g1, g2, . . . , gC ] with one component for each of the C categories. Each compo-
nent gj can be interpreted as a “penalty” for assigning X to the jth category.
A discrete switch module selects which of the components is connected to the
output energy. The position of the switch is controlled by the discrete variable
Y ∈ {1, 2, . . . , C}, which is interpreted as the category. The output energy is equal
to E(W, Y, X) =

∑C
j=1 δ(Y − j)gj , where δ(Y − j) is the Kronecker delta function:

δ(u) = 1 for u = 0; δ(u) = 0 otherwise. Inference consists in setting Y to the index
of the smallest component of GW (X).

The perceptron loss, hinge loss, and NLL loss can be directly translated to the
multiclass case.

10.3.4 Implicit Regression

The architectures described in the previous section are simple functions of Y with
a single minimum within the set Y. However, there are tasks for which multiple
answers are equally good. Examples include robot navigation, where turning left
or right may get around an obstacle equally well, or a language model in which
the sentence segment “the cat ate the” can be followed equally well by “mouse” or
“bird.”

More generally, the dependency between X and Y sometimes cannot be expressed
as a function that maps X to Y (e.g., consider the constraint X2 + Y 2 = 1). In
this case, which we call implicit regression, we model the constraint that X and Y

must satisfy and design the energy function such that it measures the violation of
the constraint. Both X and Y can be passed through functions, and the energy is
a function of their outputs. A simple example is

E(W, Y, X) =
1
2
||GX(WX , X) − GY (WY , Y )||2. (10.41)



210 Energy-Based Models

E(W,Y, X)

X Y

GW (X)G1W1
(X) HW2(X)

||G1W1
(X) − G2W2

(Y )||1

G2W2
(Y )

Figure 10.7 The implicit regression architecture. X and Y are passed through two
functions G1W1

and G2W2
. This architecture allows multiple values of Y to have low

energies for a given X.

For some problems, the function GX must be different from the function GY . In
other cases, GX and GY must be instances of the same function G. An interesting
example is the Siamese architecture (Bromley et al., 1993): variables X1 and X2 areSiamese

architectures passed through two instances of a function GW as shown in figure 10.7. A binary
label Y determines the constraint on GW (X1) and GW (X2): if Y = 0, GW (X1) and
GW (X2) should be equal, and if Y = 1, GW (X1) and GW (X2) should be different.
In this way, the regression on X1 and X2 is implicitly learned through the constraint
Y rather than explicitly learned through supervision. Siamese architectures are used
to learn similarity metrics with labeled examples. When two input samples X1 and
X2 are known to be similar (e.g. two pictures of the same person), Y = 0; when
they are different, Y = 1.

Siamese architectures were originally designed for signature verification (Bromley
et al., 1993). More recently they have been used with the square-exponential
loss (10.17) to learn a similarity metric with application to face recognition (Chopra
et al., 2005). They have also been used with the square-square loss (10.16) for
unsupervised learning of manifolds (Hadsell et al., 2006).

In other applications, a single nonlinear function combines X and Y . An example
of such architecture is the trainable language model of Bengio et al (Bengio et al.,
2003). Under this model, the input X is a sequence of several successive words in a
text, and the answer Y is the the next word in the text. Since many different words
can follow a particular word sequence, the architecture must allow multiple values
of Y to have low energy. The authors used a multilayer neural net as the function
G(W, X, Y ), and chose to train it with the NLL loss. Because of the high cardinality
of Y (equal to the size of the English dictionary), they had to use approximations
(importance sampling) and had to train the system on a cluster machine.

The current section often referred to architectures in which the energy was linear
or quadratic in W , and the loss function was convex in W , but it is important



10.4 Latent Variable Architectures 211

to keep in mind that much of the discussion applies equally well to more complex
architectures, as we will see later.

10.4 Latent Variable Architectures

Energy minimization is a convenient way to represent the general process of
reasoning and inference. In the usual scenario, the energy is minimized with respect
to the variables to be predicted Y , given the observed variables X . During training,
the correct value of Y is given for each training sample. However there are numerous
applications where it is convenient to use energy functions that depend on a set
of hidden variables Z whose correct value is never (or rarely) given to us, even
during training. For example, we could imagine training the face detection system
depicted in figure 10.2(b) with data for which the scale and pose information of the
faces is not available. For these architectures, the inference process for a given set
of variables X and Y involves minimizing over these unseen variables Z:

E(Y, X) = min
Z∈Z

E(Z, Y, X). (10.42)

Such hidden variables are called latent variables, by analogy with a similar conceptlatent/missing
variables in probabilistic modeling. The fact that the evaluation of E(Y, X) involves a

minimization over Z does not significantly impact the approach described so far,
but the use of latent variables is so ubiquitous that it deserves special treatment.

In particular, some insight can be gained by viewing the inference process in the
presence of latent variables as a simultaneous minimization over Y and Z:

Y ∗ = argminY ∈Y,Z∈ZE(Z, Y, X). (10.43)

Latent variables can be viewed as intermediate results on the way to finding the
best output Y . At this point, one could argue that there is no conceptual difference
between the Z and Y variables: Z could simply be folded into Y . The distinction
arises during training: we are given the correct value of Y for a number of training
samples, but we are never given the correct value of Z.

Latent variables are very useful in situations where a hidden characteristic
of the process being modeled can be inferred from observations, but cannot be
predicted directly. One such example is in recognition problems. For example, in
face recognition the gender of a person or the orientation of the face could be a
latent variable. Knowing these values would make the recognition task much easier.
Likewise in invariant object recognition the pose parameters of the object (location,
orientation, scale) or the illumination could be latent variables. They play a crucial
role in problems where segmentation of the sequential data must be performed
simultaneously with the recognition task. A good example is speech recognition,
in which the segmentation of sentences into words and words into phonemes
must take place simultaneously with recognition, yet the correct segmentation into
phonemes is rarely available during training. Similarly, in handwriting recognition,



212 Energy-Based Models

the segmentation of words into characters should take place simultaneously with
the recognition. The use of latent variables in face recognition is discussed in this
section, and section 10.7.3 describes a latent variable architecture for handwriting
recognition.

10.4.1 An Example of Latent Variable Architecture

To illustrate the concept of latent variables, we consider the task of face detection,
beginning with the simple problem of determining whether a face is present or
not in a small image. Imagine that we are provided with a face-detecting function
Gface(X) which takes a small image window as input and produces a scalar output.
It outputs a small value when a human face fills the input image, and a largeenergy-based face

detection... value if no face is present (or if only a piece of a face or a tiny face is present).
An energy-based face detector built around this function is shown in figure 10.8(a).
The variable Y controls the position of a binary switch (1 = “face”, 0 = “nonface”).
The output energy is equal to Gface(X) when Y = 1, and to a fixed threshold value
T when Y = 0:

E(Y, X) = Y Gface(X) + (1 − Y )T.

The value of Y that minimizes this energy function is 1 (face) if Gface(X) < T and
0 (nonface) otherwise.

Let us now consider the more complex task of detecting and locating a single
face in a large image. We can apply our Gface(X) function to multiple windows
in the large image, compute which window produces the lowest value of Gface(X),
and detect a face at that location if the value is lower than T . This process is
implemented by the energy-based architecture shown in figure 10.8(b). The latent..and localization
“location” variable Z selects which of the K copies of the Gface function is routed
to the output energy. The energy function can be written as

E(Z, Y, X) = Y

[
K∑

k=1

δ(Z − k)Gface(Xk)

]
+ (1 − Y )T, (10.44)

where the Xk’s are the image windows. Locating the best-scoring location in the
image consists in minimizing the energy with respect to Y and Z. The resulting
value of Y will indicate whether a face was found, and the resulting value of Z will
indicate the location.

10.4.2 Probabilistic Latent Variables

When the best value of the latent variable for a given X and Y is ambiguous,
one may consider combining the contributions of the various possible values by
marginalizing over the latent variables instead of minimizing with respect to those
variables.



10.4 Latent Variable Architectures 213

E(W,Y, X)

X Y

"face" (= 1)
or

"no face" (= 0)

GW (X)
TGface(X)

X Y

"face" (= 1)
or

"no face" (= 0)

GW (X)

T

Z

E(W,Z, Y, X)

position
of

face

Gface(X) Gface(X) Gface(X) Gface(X)

(a) (b)

Figure 10.8 (a) Architecture of an energy-based face detector. Given an image, it
outputs a small value when the image is filled with a human face, and a high value equal
to the threshold T when there is no face in the image. (b) Architecture of an energy-based
face detector that simultaneously locates and detects a face in an input image by using
the location of the face as a latent variable.

When latent variables are present, the joint conditional distribution over Y and
Z given by the Gibbs distribution is

P (Z, Y |X) =
e−βE(Z,Y,X)∫

y∈Y, z∈Z
e−βE(y,z,X)

. (10.45)

Marginalizing over Z gives

P (Y |X) =

∫
z∈Z e−βE(Z,Y,X)∫

y∈Y, z∈Z e−βE(y,z,X)
. (10.46)

Finding the best Y after marginalizing over Z reduces to

Y ∗ = argminY ∈Y − 1
β

log
∫

z∈Z

e−βE(z,Y,X). (10.47)

This is actually a conventional energy-based inference in which the energy func-
tion has merely been redefined from E(Z, Y, X) to F(Z) = − 1

β log
∫

z∈Z
e−βE(z,Y,X),

which is the free energy of the ensemble {E(z, Y, X), z ∈ Z}. The above inference
formula by marginalization reduces to the previous inference formula by minimiza-
tion when β → ∞ (zero temperature).



214 Energy-Based Models

10.5 Analysis of Loss Functions for Energy-Based Models

This section discusses the conditions that a loss function must satisfy so that its
minimization will result in a model that produces the correct answers. To give
an intuition of the problem, we first describe simple experiments in which certain
combinations of architectures and loss functions are used to learn a simple dataset,
with varying results. A more formal treatment follows in section 10.5.2.

10.5.1 “Good” and “Bad” Loss Functions

Consider the problem of learning a function that computes the square of a number:
Y = f(X), where f(X) = X2. Though this is a trivial problem for a learning
machine, it is useful for demonstrating the issues involved in the design of an energy
function and loss function that work together. For the following experiments, we
use a training set of 200 samples (X i, Y i) where Y i = X i2, randomly sampled with
a uniform distribution between −1 and +1.interplay of loss

and energy First, we use the architecture shown in figure 10.9(a). The input X is passed
through a parametric function GW , which produces a scalar output. The output
is compared with the desired answer using the absolute value of the difference (L1
norm):

E(W, Y, X) = ||GW (X) − Y ||1. (10.48)

E(W,Y, X)

X Y

GW (X)

||GW (X) − Y ||1

GW (X)

E(W,Y, X)

X Y

GW (X)G1W1
(X) HW2(X)

||G1W1
(X) − G2W2

(Y )||1

G2W2
(Y )

(a) (b)

Figure 10.9 (a) A simple architecture that can be trained with the energy loss. (b) An
implicit regression architecture where X and Y are passed through functions G1W1

and
G2W2

respectively. Training this architecture with the energy loss causes a collapse (a flat
energy surface). A loss function with a contrastive term corrects the problem.



10.5 Analysis of Loss Functions for Energy-Based Models 215

(a) (b) (c) (d)

Figure 10.10 The shape of the energy surface at four intervals while training the
system in figure 10.9(a) with stochastic gradient descent to minimize the energy loss. The
X-axis is the input, and the Y -axis the output. The energy surface is shown (a) at the
start of training, (b) after 10 epochs through the training set, (c) after 25 epochs, and
(d) after 39 epochs. The energy surface has attained the desired shape where the energy
around training samples (dark spheres) is low and energy at all other points is high.

Any reasonable parameterized family of functions could be used for GW . For these
experiments, we chose a two-layer neural network with 1 input unit, 20 hidden units
(with sigmoids), and 1 output unit. Figure 10.10(a) shows the initial shape of the
energy function in the space of the variables X and Y , using a set of random initial
parameters W . The dark spheres mark the location of a few training samples.

First, the simple architecture is trained with the energy loss (10.6):

Lenergy(W, S) =
1
P

P∑
i=1

E(W, Y i, X i) =
1
P

P∑
i=1

||GW (X) − Y ||1. (10.49)

This corresponds to a classical form of robust regression. The learning process can be
viewed as pulling down on the energy surface at the location of the training samples
(the spheres in figure 10.10), without considering the rest of the points on the energy
surface. The energy surface as a function of Y for any X has the shape of a V with
fixed slopes. By changing the function GW (X), the apex of that V can move around
for different X i. The loss is minimized by placing the apex of the V at the position
Y = X2 for any value of X , and this has the effect of making the energies of all
other answers larger, because the V has a single minimum. Figure 10.10 shows the
shape of the energy surface at fixed intervals during training with simple stochastic
gradient descent. The energy surface takes the proper shape after a few iterations
through the training set. Using more sophisticated loss functions such as the NLL
loss or the perceptron loss would produce exactly the same result as the energy loss
because, with this simple architecture, their contrastive term is constant.

Consider a slightly more complicated architecture, shown in figure 10.9(b), to
learn the same dataset. In this architecture X is passed through function G1W1

and Y is passed through function G2W2
. For the experiment, both functions were

two-layer neural networks with 1 input unit, 10 hidden units, and 10 output units.
The energy is the L1 norm of the difference between their 10-dimensional outputs:

E(W, X, Y ) = ||G1W1
(X) − G2W2

(Y )||1, (10.50)



216 Energy-Based Models

where W = [W1W2]. Training this architecture with the energy loss results in a
collapse of the energy surface. Figure 10.11 shows the shape of the energy surface
during training; the energy surface becomes essentially flat. What has happened?
The shape of the energy as a function of Y for a given X is no longer fixed. With
the energy loss, there is no mechanism to prevent G1 and G2 from ignoring their
inputs and producing identical output values. This results in the collapsed solution:
the energy surface is flat and equal to zero everywhere.

(a) (b) (c) (d)

Figure 10.11 The shape of the energy surface at four intervals while training the
system in figure 10.9(b) using the energy loss. Along the X-axis is the input variable and
along the Y -axis is the answer. The shape of the surface (a) at the start of the training,
(b) after three epochs through the training set, (c) after six epochs, and (d) after nine
epochs. Clearly the energy is collapsing to a flat surface.

Now consider the same architecture, but trained with the square-square loss:

L(W, Y i, X i) = E(W, Y i, X i)2 − (
max(0, m − E(W, Ȳ i, X i))

)2
. (10.51)

Here m is a positive margin, and Ȳ i is the most offending incorrect answer. The
second term in the loss explicitly prevents the collapse of the energy by pushing
up on points whose energy threatens to go below that of the desired answer.
Figure 10.12 shows the shape of the energy function during training; the surface
successfully attains the desired shape.

(a) (b) (c) (d)

Figure 10.12 The shape of the energy surface at four intervals while training the system
in figure 10.9(b) using square-square loss. Along the X-axis is the variable X and along
the Y -axis is the variable Y . The shape of the surface at (a) the start of the training, (b)
after 15 epochs over the training set, (c) after 25 epochs, and (d) after 34 epochs. The
energy surface has attained the desired shape: the energies around the training samples
are low and energies at all other points are high.



10.5 Analysis of Loss Functions for Energy-Based Models 217

(a) (b) (c) (d)

Figure 10.13 The shape of the energy surface at four intervals while training the
system in figure 10.9(b) using the negative log-likelihood loss. Along the X-axis is the
input variable and along the Y -axis is the answer. The shape of the surface at (a) the
start of training, (b) after 3 epochs over the training set, (c) after 6 epochs, and (d) after
11 epochs. The energy surface has quickly attained the desired shape.

Another loss function that works well with this architecture is the negative log-
likelihood loss:

L(W, Y i, X i) = E(W, Y i, X i) +
1
β

log
(∫

y∈Y

e−βE(W,y,Xi)

)
. (10.52)

The first term pulls down on the energy of the desired answer, while the second term
pushes up on all answers, particularly those that have the lowest energy. Note that
the energy corresponding to the desired answer also appears in the second term.
The shape of the energy function at various intervals using the NLL loss is shown in
figure 10.13. The learning is much faster than the square-square loss. The minimum
is deeper because, unlike with the square-square loss, the energies of the incorrect
answers are pushed up to infinity (although with a decreasing force). However,
each iteration of the NLL loss involves considerably more work because pushing up
every incorrect answer is computationally expensive when no analytical expression
for the derivative of the second term exists. In this experiment, a simple sampling
method was used: the integral is approximated by a sum of 20 points regularly
spaced between -1 and +1 in the Y direction. Each learning iteration thus requires
computing the gradient of the energy at 20 locations, versus 2 locations in the case
of the square-square loss. However, the cost of locating the most offending incorrect
answer must be taken into account for the square-square loss.

An important aspect of the NLL loss is that it is invariant to global shifts of
energy values, and only depends on differences between the energies of the Y s for
a given X . Hence, the desired answer may have different energies for different X ’s,
and may not be zero. This has an important consequence: the quality of an answer
cannot be measured by the energy of that answer without considering the energies
of all other answers.

In this section we have seen the results of training four combinations of architec-
tures and loss functions. In the first case we used a simple architecture along with
a simple energy loss, which was satisfactory. The constraints in the architecture of
the system automatically lead to the increase in energy of undesired answers while



218 Energy-Based Models

decreasing the energies of the desired answers. In the second case, a more compli-
cated architecture was used with the simple energy loss and the machine collapsed
for lack of a contrastive term in the loss. In the third and the fourth cases the
same architecture was used as in the second case but with loss functions containing
explicit contrastive terms. In these cases the machine performed as expected and
did not collapse.

10.5.2 Sufficient Conditions for Good Loss Functions

In the previous section we offered some intuitions about which loss functions are
good and which ones are bad with the help of illustrative experiments. In this section
a more formal treatment of the topic is given. First, a set of sufficient conditions
are stated. The energy function and the loss function must satisfy these conditions
in order to be guaranteed to work in an energy-based setting. Then we discuss the
quality of the loss functions introduced previously from the point of view of these
conditions.

10.5.3 Conditions on the Energy

Generally in energy-based learning, the inference method chooses the answer with
minimum energy. Thus the condition for the correct inference on a sample (X i, Y i)
is as follows.

Condition 58 For sample (X i, Y i), the machine will give the correct answer for
X i if

E(W, Y i, X i) < E(X, Y, X i), ∀Y ∈ Y and Y �= Y i. (10.53)

In other words, the inference algorithm will give the correct answer if the energy of
the desired answer Y i is less than the energies of all the other answers Y .

To ensure that the correct answer is robustly stable, we may choose to impose
that its energy be lower than energies of incorrect answers by a positive margin
m. If Ȳ i denotes the most offending incorrect answer, then the condition for the
answer to be correct by a margin m is as follows.

Condition 59 For a variable Y and sample (X i, Y i) and positive margin m, the
inference algorithm will give the correct answer for X i if

E(W, Y i, X i) < E(W, Ȳ i, X i) − m. (10.54)

10.5.4 Sufficient Conditions on the Loss Functional

If the system is to produce the correct answers, the loss functional should be
designed in such a way that minimizing it will cause E(W, Y i, X i) to be lower
than E(W, Ȳ i, X i) by some margin m. Since only the relative values of those two



10.5 Analysis of Loss Functions for Energy-Based Models 219

energies matter, we only need to consider the shape of a slice of the loss functional
in the two-dimensional space of those two energies. For example, in the case where
Y is the set of integers from 1 to k, the loss functional can be written as

L(W, Y i, X i) = L(Y i, E(W, 1, X i), . . . , E(W, k, X i)). (10.55)

The projection of this loss in the space of E(W, Y i, X i) and E(W, Ȳ i, X i) can be
viewed as a function Q parameterized by the other k − 2 energies:

L(W, Y i, X i) = Q[Ey](E(W, Y i, X i), E(W, Ȳ i, X i)), (10.56)

where the parameter [Ey] contains the vector of energies for all values of Y except
Y i and Ȳ i.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy: E
C

E
ne

rg
y:

 E
I

HP
1

HP
2

E
C
 + m = E

I

E
C
 = E

I

m

R

Figure 10.14 Figure showing the various regions in the plane of the two energies EC

and EI . EC are the (correct answer) energies associated with (Xi, Y i), and EI are the
(incorrect answer) energies associated with (Xi, Ȳ i).

We assume the existence of at least one set of parameters W for which condition
59 is satisfied for a single training sample (X i, Y i). Clearly, if such a W does
not exist, there cannot exist any loss function whose minimization would lead to
condition 59. For the purpose of notational simplicity let us denote the energy
E(W, Y i, X i) associated with the training sample (X i, Y i) by EC (as in “correct
energy”) and E(W, Ȳ i, X i) by EI (as in “incorrect energy”). Consider the plane
formed by EC and EI . As an illustration, figure 10.17(a) shows a three-dimensional
plot of the square-square loss function in which the abscissa is EC and the ordinate
is EI . The third axis gives the value of the loss for the corresponding values of EC

and EI . In general, the loss function is a family of 2D surfaces in this 3D space,



220 Energy-Based Models

where each surface corresponds to one particular configuration of all the energies
except EC and EI . The solid red line in the figure corresponds to the points in the
2D plane for which EC = EI . The dashed blue line correspond to the margin line
EC + m = EI . Let the two half-planes EC + m < EI and EC + m ≥ EI be denoted
by HP1 and HP2 respectively.

Let R be the feasible region, defined as the set of values (EC , EI) corresponding
to all possible values of W ∈ W. This region may be nonconvex, discontinuous,
open, or one-dimensional and could lie anywhere in the plane. It is shown shaded
in figure 10.14. As a consequence of our assumption that a solution exists which
satisfies condition 59, R must intersect the half-plane HP1.

Let two points (e1, e2) and (e′1, e
′
2) belong to the feasible region R, such that

(e1, e2) ∈ HP1 (that is, e1 + m < e2) and (e′1, e
′
2) ∈ HP2 (that is, e′1 + m ≥ e′2). We

are now ready to present the sufficient conditions on the loss function.

Condition 60 Let (X i, Y i) be the ith training example and m be a positive margin.
Minimizing the loss function L will satisfy conditions 2 or 3 if there exists at least
one point (e1, e2) with e1 +m < e2 such that for all points (e′1, e

′
2) with e′1 +m ≥ e′2,

we have

Q[Ey](e1, e2) < Q[Ey](e′1, e
′
2), (10.57)

where Q[Ey] is given by

L(W, Y i, X i) = Q[Ey ](E(W, Y i, X i), E(W, Ȳ i, X i)). (10.58)

In other words, the surface of the loss function in the space of EC and EI should
be such that there exists at least one point in the part of the feasible region R

intersecting the half-plane HP1 such that the value of the loss function at this
point is less than its value at all other points in the part of R intersecting the
half-plane HP2.

Note that this is only a sufficient condition and not a necessary condition. There
may be loss functions that do not satisfy this condition but whose minimization
still satisfies condition 59.

10.5.5 Which Loss Functions Are Good or Bad

Table 10.1 lists several loss functions, together with the value of the margin with
which they satisfy condition 60. The energy loss is marked “none” because it does
not satisfy condition 60 for a general architecture. The perceptron loss and the
LVQ2 loss satisfy it with a margin of zero. All others satisfy condition 60 with a
strictly positive value of the margin.



10.5 Analysis of Loss Functions for Energy-Based Models 221

Table 10.1 A list of loss functions, together with the margin which allows them to
satisfy condition 60. A margin > 0 indicates that the loss satisfies the condition for any
strictly positive margin, and “none” indicates that the loss does not satisfy the condition

Loss (equation #) Formula Margin

energy loss (10.6) E(W, Y i, X i) none

perceptron (10.7) E(W, Y i, X i) − minY ∈Y E(W, Y, X i) 0

hinge (10.11) max
(
0, m + E(W, Y i, X i) − E(W, Ȳ i, X i)

)
m

log (10.12) log
(
1 + eE(W,Y i,Xi)−E(W,Ȳ i,Xi)

)
> 0

LVQ2 (10.13) min
(
M, max(0, E(W, Y i, X i) − E(W, Ȳ i, X i)

)
0

MCE (10.15)
(
1 + e−(E(W,Y i,Xi)−E(W,Ȳ i,Xi))

)−1

> 0

square-square (10.16) E(W, Y i, X i)2 − (
max(0, m − E(W, Ȳ i, X i))

)2
m

square-exp (10.17) E(W, Y i, X i)2 + βe−E(W,Ȳ i,Xi) > 0

NLL/MMI (10.23) E(W, Y i, X i) + 1
β log

∫
y∈Y e−βE(W,y,Xi) > 0

MEE (10.27) 1 − e−βE(W,Y i,Xi)/
∫
y∈Y e−βE(W,y,Xi) > 0

10.5.5.1 Energy Loss

The energy loss is a bad loss function in general, but there are certain forms of
energies for which it is a good loss function. For example, consider an energy
function of the form

E(W, Y i, X i) =
K∑

k=1

δ(Y i − k)||Uk − GW (X i)||2. (10.59)

This energy passes the output of the function GW through K radial basis functions
(one corresponding to each class) whose centers are the vectors Uk. If the centers
Uk are fixed and distinct, then the energy loss satisfies condition 60 and hence is a
good loss function.

To see this, consider the two-class classification case (the reasoning for K > 2
follows along the same lines). The architecture of the system is shown in figure 10.15.

Let d = ||U1 − U2||2, d1 = ||U1 − GW (X i)||2, and d2 = ||U2 − GW (X i)||2. Since
U1 and U2 are fixed and distinct, there is a strictly positive lower bound on d1 +d2

for all GW . Being only a two-class problem, EC and EI correspond directly to the
energies of the two classes. In the (EC , EI) plane no part of the loss function exists
where EC + EI ≤ d. The region where the loss function is defined is shaded in
figure 10.16(a). The exact shape of the loss function is shown in figure 10.16(b).



222 Energy-Based Models

X Y

GW (X)
GW (X)

di = ||U i − GW (X)||2

d1 d2

GW

E(W,Y, X) =
2∑

k=1

δ(Y − k) · ||Uk − GW (X)||2

RBF Units

Figure 10.15 The architecture of a system where two RBF units with centers U1 and
U2 are placed on top of the machine GW , to produce distances d1 and d2.

(a) (b)

Figure 10.16 (a) When using the radial basis function(RBF) architecture with fixed
and distinct RBF centers, only the shaded region of the (EC , EI) plane is allowed. The
nonshaded region is unattainable because the energies of the two outputs cannot be small
at the same time. The minimum of the energy loss is at the intersection of the shaded
region and the vertical axis. (b) The 3D plot of the energy loss when using the RBF
architecture with fixed and distinct centers. Lighter shades indicate higher loss values and
darker shades indicate lower values.



10.5 Analysis of Loss Functions for Energy-Based Models 223

One can see from the figure that as long as d ≥ m, the loss function satisfies
condition 60. We conclude that this is a good loss function.

However, when the RBF centers U1 and U2 are not fixed and are allowed to
be learned, then there is no guarantee that d1 + d2 ≥ d. Then the RBF centers
could become equal and the energy could become zero for all inputs, resulting in a
collapsed energy surface. Such a situation can be avoided by having a contrastive
term in the loss function.

10.5.5.2 Generalized Perceptron Loss

The generalized perceptron loss has a margin of zero. Therefore, it could lead to
a collapsed energy surface and is not generally suitable for training energy-based
models. However, the absence of a margin is not always fatal (LeCun et al., 1998a;
Collins, 2002). First, the set of collapsed solutions is a small piece of the parameter
space. Second, although nothing prevents the system from reaching the collapsed
solutions, nothing drives the system toward them either. Thus the probability of
hitting a collapsed solution is quite small.

10.5.5.3 Generalized Margin Loss

0

0.5

1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

2

2.5

3

3.5

4

Energy: E
C

Energy: E
I

Lo
ss

: L

HP
2

E
C
  = E

IE
C
 + m = E

I

HP
1 0

0.5

1

0
0.2

0.4
0.6

0.8
1
0

0.5

1

1.5

Energy: E
CEnergy: E

I

Lo
ss

: L

HP
2

E
C
  = E

IE
C
 + m = E

I

HP
1

(a) (b)

Figure 10.17 (a) The square-square loss in the space of energies EC and EI . The value
of the loss monotonically decreases as we move from HP2 into HP1, indicating that it
satisfies condition 60. (b) The square-exponential loss in the space of energies EC and EI .
The value of the loss monotonically decreases as we move from HP2 into HP1, indicating
that it satisfies condition 60.

We now consider the square-square and square-exponential losses. For the two-
class case, the shape of the surface of the losses in the space of EC and EI is shown



224 Energy-Based Models

in figure 10.17. One can clearly see that there exists at least one point (e1, e2) in
HP1 such that

Q[Ey](e1, e2) < Q[Ey ](e′1, e
′
2) (10.60)

for all points (e′1, e
′
2) in HP2. These loss functions satisfy condition 60.

10.5.5.4 Negative Log-Likelihood Loss

It is not obvious that the NLL loss satisfies condition 60. The proof follows.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Energy: E
C

E
ne

rg
y:

 E
I

HP
1

HP
2

E
C

 + m = E
I

E
C

 = E
I

m

R

g
C

g
I

g = g
C

 + g
I

−g

A = (E*
C

, E*
C

 + m)

B = (E*
C

 − ε, E*
C

 + m + ε)

ε

Figure 10.18 Figure showing the direction of gradient of the negative log-likelihood
loss in the feasible region R in the space defined by the two energies EC and EI .

For any fixed parameter W and a sample (X i, Y i) consider the gradient of the
loss with respect to the energy EC of the correct answer Y i and the energy EI of
the most offending incorrect answer Ȳ i. We have

gC =
∂L(W, Y i, X i)

∂EC
= 1 − e−E(W,Y i,Xi)∑

Y ∈Y e−E(W,Y,Xi)
, (10.61)

and

gI =
∂L(W, Y i, X i)

∂EI
= − e−E(W,Ȳ i,Xi)∑

Y ∈Y e−E(W,Y,Xi)
. (10.62)

Clearly, for any value of the energies, gC > 0 and gI < 0. The overall direction of
the gradient at any point in the space of EC and EI is shown in figure 10.18. One
can conclude that when going from HP2 to HP1, the loss decreases monotonically.

Now we need to show that there exists at least one point in HP1 at which the
loss is less than at all the points in HP2. Let A = (E∗

C , E∗
C + m) be a point on the



10.6 Efficient Inference: Nonprobabilistic Factor Graphs 225

margin line for which the loss is minimum. E∗
C is the value of the correct energy at

this point. That is,

E∗
C = argmin{Q[Ey](EC , EC + m)}. (10.63)

Since from the above discussion, the negative of the gradient of the loss Q[Ey ] at
all points (and in particular on the margin line) is in the direction which is inside
HP1, by monotonicity of the loss we can conclude that

Q[Ey](E∗
C , E∗

C + m) ≤ Q[Ey](EC , EI), (10.64)

where EC + m > EI .
Consider a point B at a distance ε away from the point (E∗

C , E∗
C +m), and inside

HP1 (see figure 10.18). That is the point

(E∗
C − ε, E∗

C + m + ε). (10.65)

Using the first-order Taylor’s expansion on the value of the loss at this point, we
get

Q[Ey](E∗
C − ε, E∗

C + m + ε)

= Q[Ey](E∗
C , E∗

C + m) − ε
∂Q[Ey]

∂EC
+ ε

∂Q[Ey]

∂EI
+ O(ε2)

= Q[Ey](E∗
C , E∗

C + m) + ε

[
∂Q[Ey]

∂EC
+

∂Q[Ey]

∂EI

]⎡⎣ −1

1

⎤
⎦+ O(ε2). (10.66)

From the previous discussion the second term on the right-hand side is negative.
So for sufficiently small ε we have

Q[Ey](E∗
C − ε, E∗

C + m + ε) < Q[Ey](E∗
C , E∗

C + m). (10.67)

Thus we conclude that there exists at least one point in HP1 at which the loss is
less than at all points in HP2.

Note that the energy of the most offending incorrect answer EI is bounded above
by the value of the energy of the next most offending incorrect answer. Thus we
only need to consider a finite range of EI ’s and the point B cannot be at infinity.

10.6 Efficient Inference: Nonprobabilistic Factor Graphs

This section addresses the important issue of efficient energy-based inference.
Sequence labeling problems and other learning problem with structured outputs
can often be modeled using energy functions whose structure can be exploited for
efficient inference algorithms.

Learning and inference with EBMs involves a minimization of the energy over the
set of answers Y and latent variables Z. When the cardinality of Y×Z is large, this



226 Energy-Based Models

Y1 Y2

+

Z2Z1X

E(Y, Z, X)

Eb(X, Z1, Z2) Ec(Z2, Y1) Ed(Y1, Y2)Ea(X, Z1)

Y1 Y2Z2Z1

0 0 0

0

1 1 1 1

2

E
a (X, 0)

Ea
(X

, 1)

Eb(X, 1, 1)

E
b (X

, 1, 0)

Eb(X, 0, 0)

E b
(X

, 0
, 1

)

0

0

0
Ec(1, 1)

E
c (1, 0)

E c
(0,

1)

Ec(0, 0) Ed(0, 0)

Ed
(0,

1)

Ed(1, 1)

Ed(1
, 2)

E
d (1, 0)

E d
(0
, 2

)

Figure 10.19 Top: A log domain factor graph. The energy is a sum of factors that take
different subsets of variables as inputs. Bottom: Each possible configuration of Z and Y
can be represented by a path in a trellis. Here Z1, Z2, and Y1 are binary variables, while
Y2 is ternary.



10.6 Efficient Inference: Nonprobabilistic Factor Graphs 227

minimization can become intractable. One approach to the problem is to exploit the
structure of the energy function in order to perform the minimization efficiently.
One case where the structure can be exploited occurs when the energy can be
expressed as a sum of individual functions (called factors) that each depend on
different subsets of the variables in Y and Z. These dependencies are best expressed
in the form of a factor graph (Kschischang et al., 2001; MacKay, 2003). Factor
graphs are a general form of graphical models, or belief networks.

Graphical models are normally used to represent probability distributions over
variables by directly encoding the dependency relationships between variables. At
first glance, it is difficult to dissociate graphical models from probabilistic modeling
(witness their original name: “Bayesian networks”). However, factor graphs can be
studied outside the context of probabilistic modeling, and EBM learning applies to
them.

A simple example of a factor graph is shown in figure 10.19 (top). The energy
function is the sum of four factors:

E(Y, Z, X) = Ea(X, Z1) + Eb(X, Z1, Z2) + Ec(Z2, Y1) + Ed(Y1, Y2), (10.68)

where Y = [Y1, Y2] are the output variables and Z = [Z1, Z2] are the latent variables.
Each factor can be seen as representing soft constraints between the values of its
input variables. The inference problem consists in finding

(Ȳ , Z̄) = argminy∈Y, z∈Z (Ea(X, z1) + Eb(X, z1, z2) + Ec(z2, y1) + Ed(y1, y2)) .

(10.69)
This factor graph represents a structured output problem, because the factor Edencoding of

output
dependencies

encodes dependencies between Y 1 and Y 2 (perhaps by forbidding certain combi-
nations of values).

Let’s assume that Z1, Z2, and Y1 are discrete binary variables, and Y2 is a
ternary variable. The cardinality of the domain of X is immaterial since X is
always observed. The number of possible configurations of Z and Y given X is
2 × 2 × 2 × 3 = 24. A naive minimization algorithm through exhaustive search
would evaluate the entire energy function 24 times (96 single-factor evaluations).
However, we notice that for a given X , Ea only has two possible input configu-
rations: Z1 = 0 and Z1 = 1. Similarly, Eb and Ec only have four possible input
configurations, and Ed has six. Hence, there is no need for more than 2+4+4+6 = 16
single-factor evaluations. The set of possible configurations can be represented by
a graph (a trellis) as shown in figure 10.19 (bottom). The nodes in each column
represent the possible values of a single variable. Each edge is weighted by the out-
put energy of the factor for the corresponding values of its input variables. With
this representation, a single path from the start node to the end node represents
one possible configuration of all the variables. The sum of the weights along a path
is equal to the total energy for the corresponding configuration. Hence, the infer-
ence problem can be reduced to searching for the shortest path in this graph. This
can be performed using a dynamic programming method such as the Viterbi algo-
rithm, or the A* algorithm. The cost is proportional to the number of edges (16),



228 Energy-Based Models

which is exponentially smaller than the number of paths in general. To compute
E(Y, X) = minz∈Z E(Y, z, X), we follow the same procedure, but we restrict the
graph to the subset of arcs that are compatible with the prescribed value of Y .

The above procedure is sometimes called the min-sum algorithm, and it is the log
domain version of the traditional max-product for graphical models. The procedure
can easily be generalized to factor graphs where the factors take more than two
variables as inputs, and to factor graphs that have a tree structure instead of a
chain structure. However, it only applies to factor graphs that are bipartite trees
(with no loops). When loops are present in the graph, the min-sum algorithm may
give an approximate solution when iterated, or may not converge at all. In this
case, a descent algorithm such as simulated annealing could be used.

As mentioned in section 10.4, variables can be handled through minimization
or through marginalization. The computation is identical to the one required for
computing the contrastive term of the NLL loss (the log partition function), hence
we will make no distinctions. The contrastive term in the NLL loss function is

− 1
β

log
∫

Y ∈Y, z∈Z

e−βE(Z,Y,X), (10.70)

or simply

− 1
β

log
∫

Y ∈Y

e−βE(Y,X), (10.71)

when no latent variables are present.
At first, this seems intractable, but the computation can be factorized just as

with the min-sum algorithm. The result is the so-called forward algorithm in the
log domain. Values are propagated forward, starting at the start node on the left,
and following the arrows in the trellis. Each node k computes a quantity αk:

αk = − 1
β

log
∑

j

e−β(Ekj+αj), (10.72)

where Ejk is the energy attached to the edge linking node j to node k. The final α

at the end node is the quantity in (10.70). The procedure reduces to the min-sum
algorithm for large values of β.

In a more complex factor graph with factors that take more than two variables as
input, or that have a tree structure, this procedure generalizes to a nonprobabilistic
form of belief propagation in the log domain. For loopy graphs, the procedure can
be iterated, and may lead to an approximate value for (10.70), if it converges at
all (Yedidia et al., 2005).

The above procedures are an essential component for constructing models with
structures and/or sequential output.



10.6 Efficient Inference: Nonprobabilistic Factor Graphs 229

10.6.1 EBMs vs. Internally Normalized Models

It is important to note that at no point in the above discussion did we need
to manipulate normalized probability distributions. The only quantities that are
manipulated are energies. This is in contrast with HMMs and traditional Bayesian
nets. In HMMs, the outgoing transition probabilities of a node must sum to 1,
and the emission probabilities must be properly normalized. This ensures that the
overall distribution over sequences is normalized. Similarly, in directed Bayesian
nets, the rows of the conditional probability tables are normalized.

EBMs manipulate energies, so no normalization is necessary. When energies are
transformed into probabilities, the normalization over Y occurs as the very last steplate

normalization in the process. This idea of late normalization solves several problems associated
with the internal normalization of HMMs and Bayesian nets. The first problem
is the so-called label-bias problem, first pointed out by Bottou (1991): transitionslabel-bias

problem leaving a given state compete with each other, but not with other transitions in the
model. Hence, paths whose states have few outgoing transitions tend to have higher
probability than paths whose states have many outgoing transitions. This seems like
an artificial constraint. To circumvent this problem, a late normalization scheme
was first proposed by Denker and Burges (1995) in the context of handwriting
and speech recognition. Another flavor of the label-bias problem is the missing
probability mass problem discussed by LeCun et al. (1998a). They also make use of
a late normalization scheme to solve this problem. Normalized models distribute the
probability mass among all the answers that are explicitly modeled by the system.
To cope with “junk” or other unforeseen and unmodeled inputs, designers must
often add a so-called background model that takes some probability mass away from
the set of explicitlymodeled answers. This could be construed as a thinly disguised
way of removing the normalization constraint. To put it another way, since every
explicit normalization is another opportunity for mishandling unforeseen events,
one should strive to minimize the number of explicit normalizations in a model.
A recent demonstration of successful handling of the label-bias problem through
normalization removal is the comparison between maximum entropy Markov models
by McCallum et al. (2000), and conditional random fields by Lafferty et al. (2001).

The second problem is controlling the relative importance of probability distri-
butions of different natures. In HMMs, emission probabilities are often Gaussiancomparing

probabilities mixtures in high-dimensional spaces (typically 10 to 100), while transition proba-
bilities are discrete probabilities over a few transitions. The dynamic range of the
former is considerably larger than that of the latter. Hence transition probabilities
count for almost nothing in the overall likelihood. Practitioners often raise the tran-
sition probabilities to some power in order to increase their influence. This trick is
difficult to justify in a probabilistic framework because it breaks the normalization.
In the energy-based framework, there is no need to make excuses for breaking the
rules. Arbitrary coefficients can be applied to any subset of energies in the model.
The normalization can always be performed at the end.

The third problem concerns discriminative learning. Discriminative training oftennormalization
and discriminant
training



230 Energy-Based Models

uses iterative gradient-based methods to optimize the loss. It is often complicated,
expensive, and inefficient to perform a normalization step after each parameter
update by the gradient method. The EBM approach eliminates the problem (LeCun
et al., 1998a). More importantly, the very reason for internally normalizing HMMs
and Bayesian nets is somewhat contradictory with the idea of training them
discriminatively. The normalization is only necessary for generative models.

10.7 EBMs for Sequence Labeling and Structured Outputs

The problem of classifying or labeling sequences of symbols or sequences of vectors
has long been a topic of great interest in several technical communities. The
earliest and most notable example is speech recognition. Discriminative learning
methods were proposed to train HMM-based speech recognition systems in the
late 80’s (Bahl et al., 1986; Ljolje et al., 1990). These methods for HMMs brought
about a considerable improvement in the accuracy of speech recognition systems,
and remains an active topic of research to this day.

With the appearance of multilayer neural network training procedures, several
groups proposed combining neural networks and time alignment methods for speech
recognition. The time alignment was implemented either through elastic template
matching (dynamic time warping) with a set of reference words, or using an HMM.
One of the main challenges was to design an integrated training method for simul-
taneously training the neural network and the time alignment module. In the early
90’s, several authors proposed such methods for combining neural nets and dynamic
time warping (Driancourt and Bottou, 1991; Driancourt et al., 1991; Driancourt
and Gallinari, 1992a,b; Driancourt, 1994), and for neural net and HMM combi-
nations (Bengio et al., 1990; Bourlard and Morgan, 1990; Bottou, 1991; Haffner
et al., 1991; Haffner and Waibel, 1991; Bengio et al., 1992; Haffner and Waibel,
1992; Haffner, 1993; Driancourt, 1994; Morgan and Bourlard, 1995; Konig et al.,
1996). Extensive lists of references on the topic are available in McDermott (1997)
and Bengio (1996). Most approaches used one-dimensional convolutional networks
(time-delay neural networks, TDNNs) to build robustness to variations of pitch,time-delay neural

networks voice timbre, and speed of speech. Earlier models combined discriminative classi-
fiers with time alignment, but without integrated sequence-level training (Sakoe
et al., 1988; McDermott and Katagiri, 1992; Franzini et al., 1990).

Applying similar ideas to handwriting recognition proved more challenging, be-
cause the 2D nature of the signal made the segmentation problem considerably more
complicated. This task required the integration of image segmentation heuristics in
order to generate segmentation hypotheses. To classify the segments with robust-
ness to geometric distortions, 2D convolutional nets were used (Bengio et al., 1993;
LeCun and Bengio, 1994; Bengio et al., 1995). A general formulation of integrated
learning of segmentation and recognition with late normalization resulted in the
graph transformer network architecture (LeCun et al., 1997, 1998a).



10.7 EBMs for Sequence Labeling and Structured Outputs 231

Detailed descriptions of several sequence labeling models in the framework of
EBMs are presented in the next three sections.

10.7.1 Linear Structured Models: CRF, SVMM, and M3Ns

E(W,Y, X)

f(X, Y1, Y2) f(X, Y2, Y3) f(X, Y3, Y4)

W1 W2 W3

Y1 Y2 Y3 Y4

X

+

Figure 10.20 A log domain factor graph for linear structured models, which include
conditional random fields, support vector Markov models, and maximum-margin Markov
networks.

Outside of the discriminative training tradition in speech and handwriting recog-
nition, graphical models have traditionally been seen as probabilistic generative
models, and trained as such. However, in recent years, a resurgence of interest for
discriminative training has emerged, largely motivated by sequence labeling prob-
lems in natural language processing, notably conditional random fields (Lafferty
et al., 2001), perceptron-like models (Collins, 2002), support vector Markov models
(SVMMs) (Altun et al., 2003a), and M3Ns (Taskar et al., 2004b).

These models can be easily described in an EBM setting. The energy function in
these models is assumed to be a linear function of the parameters W :

E(W, Y, X) = WT F (X, Y ), (10.73)

where F (X, Y ) is a vector of feature functions that depend on X and Y . The answer
Y is a sequence of l individual labels (Y1, . . . , Yl), often interpreted as a temporal
sequence. The dependencies between individual labels in the sequence is captured
by a factor graph, such as the one represented in figure 10.20. Each factor is a linear
function of the trainable parameters. It depends on the input X and on a pair of
individual labels (Ym, Yn). In general, each factor could depend on more than two



232 Energy-Based Models

individual labels, but we will limit the discussion to pairwise factors to simplify the
notation:

E(W, Y, X) =
∑

(m,n)∈F

WT
mnfmn(X, Ym, Yn). (10.74)

Here F denotes the set of factors (the set of pairs of individual labels that have
a direct interdependency), Wmn is the parameter vector for factor (m, n), and
fmn(X, Ym, Yn) is a (fixed) feature vector. The global parameter vector W is the
concatenation of all the Wmn. It is sometimes assumed that all the factors encode
the same kind of interaction between input and label pairs: the model is then called
a homogeneous field. The factors share the same parameter vector and features,
and the energy can be simplified as

E(W, Y, X) =
∑

(m,n)∈F

WT f(X, Ym, Yn). (10.75)

The linear parameterization of the energy ensures that the corresponding probabil-
ity distribution over W is in the exponential family:

P (W |Y, X) =
e−W T F (X,Y )∫

w′∈W e−wT F (X,Y )
. (10.76)

This model is called the linear structured model.
We now describe various versions of linear structured models that use different

loss functions. Sections 10.7.2 and 10.7.3 will describe nonlinear and hierarchical
models.

10.7.1.1 Perceptron Loss

The simplest way to train the linear structured model is with the perceptron loss.
LeCun et al. (1998a) proposed its use for general, nonlinear energy functions in
sequence labeling (particularly handwriting recognition), calling it discriminative
Viterbi training. More recently, Collins (2000, 2002) has advocated its use for linear
structured models in the context of natural language processing:

Lperceptron(W ) =
1
P

P∑
i=1

E(W, Y i, X i) − E(W, Y ∗i, X i), (10.77)

where Y ∗i = argminy∈YE(W, y, X i) is the answer produced by the system. The
linear property gives a particularly simple expression for the loss:

Lperceptron(W ) =
1
P

P∑
i=1

WT
(
F (X i, Y i) − F (X i, Y ∗i)

)
. (10.78)



10.7 EBMs for Sequence Labeling and Structured Outputs 233

Optimizing this loss with stochastic gradient descent leads to a simple form of the
perceptron learning rule:

W ← W − η
(
F (X i, Y i) − F (X i, Y ∗i)

)
. (10.79)

As stated before, the main problem with the perceptron loss is the absence of
margin, although this problem is not fatal when the energy is a linear function of
the parameters, as in Collin’s model. The lack of a margin, which theoretically may
lead to stability problems, was overlooked in LeCun et al. (1998a).

10.7.1.2 Margin Loss: Max-Margin Markov Networks

The main idea behind margin-based Markov networks (Altun et al., 2003a; Altun
and Hofmann, 2003; Taskar et al., 2004b) is to use a margin loss to train the linearly
parameterized factor graph of figure 10.20 with the energy function of (10.73). The
loss function is the simple hinge loss with an L2 regularizer:

Lhinge(W ) =
1
P

P∑
i=1

max(0, m + E(W, Y i, X i) − E(W, Ȳ i, X i)) + γ||W ||2. (10.80)

Because the energy is linear in W , the loss becomes particularly simple:

Lhinge(W ) =
1
P

P∑
i=1

max
(
0, m + WT ΔF (X i, Y i)

)
+ γ||W ||2, (10.81)

where ΔF (X i, Y i) = F (X i, Y i) − F (X i, Ȳ i). This loss function can be optimized
with a variety of techniques. The simplest method is stochastic gradient descent.
However, the hinge loss and linear parameterization allow for the use of a dual
formulation as in the case of conventional support vector machines. The question
of which optimization method is most suitable is not settled. As with neural net
training, it is not clear whether second order methods bring a significant speed
improvement over well-tuned stochastic gradient methods. To our knowledge, no
systematic experimental study of this issue has been published.

Altun et al. (2003a) have studied several versions of this model that use other
loss functions, such as the exponential margin loss proposed by Collins (2000):

Lhinge(W ) =
1
P

P∑
i=1

exp(E(W, Y i, X i) − E(W, Ȳ i, X i)) + γ||W ||2. (10.82)

This loss function tends to push the energies E(W, Y i, X i) and E(W, Ȳ i, X i) as far
apart as possible, an effect which is moderated only by regularization.



234 Energy-Based Models

10.7.1.3 Negative Log-Likelihood Loss: Conditional Random Fields

Conditional random fields (Lafferty et al., 2001) use the NLL loss function to train
a linear structured model:

Lnll(W ) =
1
P

P∑
i=1

E(W, Y i, X i) +
1
β

log
∑
y∈Y

e−βE(W,y,Xi). (10.83)

The linear form of the energy (10.75) gives the following expression:

Lnll(W ) =
1
P

P∑
i=1

WT F (X i, Y i) +
1
β

log
∑
y∈Y

e−βW T F (Xi,y). (10.84)

Following (10.24), the derivative of this loss with respect to W is

∂Lnll(W )
∂W

=
1
P

P∑
i=1

F (X i, Y i) −
∑
y∈Y

F (X i, y)P (y|X i, W ), (10.85)

where

P (y|X i, W ) =
e−βW T F (Xi,y)∑

y′∈Y e−βW T F (Xi,y′) . (10.86)

The problem with this loss function is the need to sum over all possible label
combinations, as there are an exponentially large number of such combinations (2l

for a sequence of l binary labels). However, one of the efficient inference algorithms
mentioned in section 10.6 can be used.

One of the alleged advantages of CRFs is that the loss function is convex with
respect to W . However, the convexity of the loss function, while mathematically
satisfying, does not seem to be a significant practical advantage. Although the
original optimization algorithm for CRF was based on iterative scaling, recent work
indicates that stochastic gradient methods may be more efficient (Vishwanathan
et al., 2006).

10.7.2 Nonlinear Graph-Based EBMs

The discriminative learning methods for graphical models developed in the speech
and handwriting communities in the 90’s allowed for nonlinear parameterizations
of the factors, mainly mixtures of Gaussians and multilayer neural nets. Nonlinear
factors allow the modeling of highly complex dependencies between inputs and
labels (such as mapping the pixels of a handwritten word to the corresponding
character labels). One particularly important aspect is the use of architectures thatinvariance
are invariant (or robust) to irrelevant transformations of the inputs, such as time
dilation or pitch variation in speech, and geometric variations in handwriting. This
is best handled by hierarchical, multilayer architectures that can learn low-level
features and higher-level representations in an integrated fashion. Most authors



10.7 EBMs for Sequence Labeling and Structured Outputs 235

have used one-dimensional convolutional nets (TDNNs) for speech and pen-based
handwriting (Bengio et al., 1990; Bottou, 1991; Haffner et al., 1991; Haffner and
Waibel, 1991; Driancourt and Bottou, 1991; Driancourt et al., 1991; Driancourt
and Gallinari, 1992a,b; Bengio et al., 1992; Haffner and Waibel, 1992; Haffner,
1993; Driancourt, 1994; Bengio, 1996), and 2D convolutional nets for image-based
handwriting (Bengio et al., 1993; LeCun and Bengio, 1994; Bengio et al., 1995;
LeCun et al., 1997, 1998a).

To some observers, the recent interest in the linear structured model looks like
somewhat of a throwback to the past, and a regression on the complexity scale.nonconvexity vs.

convexity One apparent advantage of linearly parameterized energies is that they make the
perceptron loss, hinge loss, and NLL loss convex. It is often argued that convex loss
functions are inherently better because they allow the use of efficient optimization
algorithms with guaranteed convergence to the global minimum. However, several
authors have recently argued that convex loss functions are no guarantee of good
performance, and that nonconvex losses may in fact be easier to optimize than
convex ones in practice, even in the absence of theoretical guarantees (Huang and
LeCun, 2006; Collobert et al., 2006).

Furthermore, it has been argued that convex loss functions can be efficiently
optimized using sophisticated second-order optimization methods. However, it is
a well-known but often overlooked fact that a carefully tuned stochastic gradientefficiency
descent method is often considerably faster in practice than even the most sophis-
ticated second-order optimization methods (which appear better on paper). This
is because stochastic gradients can take advantage of the redundancy between the
samples by updating the parameters on the basis of a single sample, whereas “batch”
optimization methods waste considerable resources to compute exact descent direc-
tions, often nullifying the theoretical speed advantage (Becker and LeCun, 1989;
LeCun et al., 1998a,b; Bottou, 2004; Bottou and LeCun, 2004; Vishwanathan et al.,
2006).

Figure 10.21 shows an example of speech recognition system that integrates a
TDNN and word matching using dynamic time warping (DTW). The raw speech
signal is first transformed into a sequence of acoustic vectors (typically 10 to 50
spectral or cepstral coefficients, every 10 ms). The acoustic vector sequence is fed
to a TDNN that transforms it into a sequence of high-level features. Temporal
subsampling in the TDNN can be used to reduce the temporal resolution of the
feature vectors (Bottou, 1991). The sequence of feature vectors is then compared
to word templates. In order to reduce the sensitivity of the matching to variations
in speed of pronunciation, DTW aligns the feature sequence with the template
sequences. Intuitively, DTW consists in finding the best “elastic” warping that maps
a sequence of vectors (or symbols) to another. The solution can be found efficiently
with dynamic programming (e.g. the Viterbi algorithm or the A* algorithm).

DTW can be reduced to a search for the shortest path in a directed acyclic
graph in which the cost of each node is the mismatch between two items in the two
input sequences. Hence, the overall system can be seen as a latent variable EBM
in which Y is the set of words in the lexicon, and Z represents the set of templates



236 Energy-Based Models

X Y

word in 
the lexicon

Z

E(W,Z, Y, X)

Path

TDNN

(acoustic vectors)

word templates

DTW

feature   vectors

Figure 10.21 Figure showing the architecture of a speech recognition system using
latent variables. An acoustic signal is passed through a time-delay neural network (TDNN)
to produce a high level feature vector. The feature vector is then compared to the
word templates. Dynamic time warping (DTW) aligns the feature vector with the word
templates so as to reduce the sensitivity of the matching to variations in pronunciation.

for each word, and the set of paths for each alignment graph. The earliest proposalearlier work
for integrated training of neural nets and time alignment is by Driancourt and
Bottou (1991), who proposed using the LVQ2 loss (10.13) to train this system. It is
a simple matter to backpropagate gradients through the DTW module and further
backpropagate gradients into the TDNN in order to update the weights. Similarly,
gradients can be backpropagated to the word templates in order to update them as
well. Excellent results were obtained for isolated word recognition, despite the zero
margin of the LVQ2 loss. A similar scheme was later used by McDermott (1997).

A slightly more general method consists in combining neural networks (e.g.
TDNN) with HMMs instead of DTW. Several authors proposed integrated trainingneural network

and HMM
combinations

procedures for such combinations during the 90’s. The first proposals were by
Bengio et al. (1992); Bengio (1996), who used the NLL/MMI loss optimized
with stochastic gradient descent; and Bottou (1991), who proposed various loss
functions. A similar method was subsequently proposed by Haffner et al. in his
multistate TDNN model (Haffner and Waibel, 1992; Haffner, 1993). Similar training
methods were devised for handwriting recognition. Bengio and LeCun described a
neural net/HMM hybrid with global training using the NLL/MMI loss optimized
with stochastic gradient descent (Bengio et al., 1993; LeCun and Bengio, 1994).
Shortly thereafter, Konig et al. proposed the REMAP method, which applies the
expectation maximization algorithm to the HMM in order to produce target outputs
for a neural net-based acoustic model (Konig et al., 1996).



10.7 EBMs for Sequence Labeling and Structured Outputs 237

The basic architecture of neural net/HMM hybrid systems is similar to the one in
figure 10.21, except that the word (or language) models are probabilistic finite-state
machines instead of sequences. The emission probabilities at each node are generally
simple Gaussians operating on the output vector sequences produced by the neural
net. The only challenge is to compute the gradient of the loss with respect to the
neural net outputs by backpropagating gradients through the HMM trellis. Since
the procedure is very similar to the one used in graph transformer networks, we
refer to the next section for a description.

It should be noted that many authors had previously proposed methods that
combined a separately trained discriminative classifier and an alignment method
for speech and handwriting, but they did not use integrated training methods.

10.7.3 Hierarchical Graph-Based EBMs: Graph Transformer Networks

Sections 10.7.2 and 10.7.1 discussed models in which inference and learning involved
marginalizing or minimizing over all configurations of variables of a dynamic
factor graph. These operations are performed efficiently by building a trellis in
which each path corresponds to a particular configuration of those variables.
Section 10.7.2 concentrated on models where the factors are nonlinear functions
of the parameters, while section 10.7.1 focused on simpler models where the factors
are linearly parameterized. The present section discusses a class of models called
graph transformer networks (GTNs) (LeCun et al., 1998a). GTNs are designed for
situations where the sequential structure is so complicated that the corresponding”procedural”

representation dynamical factor graph cannot be explicitly represented, but must be represented
procedurally. For example, the factor graph that must be built on the fly in order
to recognize an entire handwritten sentence in English is extremely large. The
corresponding trellis contains a path for every grammatically correct transcription
of the sentence, for every possible segmentation of the sentence into characters.
Generating this trellis (or its associated factor graph) in its entirety is impractical,
hence the trellis must be represented procedurally. Instead of representing the
factor graph, the GTN approach views the trellis as the main data structure being
manipulated by the machine. A GTN can be seen as a multilayer architecture in
which the states are trellises, just as a neural net is a multilayer architecture in
which the states are fixed-size vectors. A GTN can be viewed as a network ofgraph-to-graph

mapping modules, called graph transformers, that take one or more graphs as input and
produce another graph as output. The operation of most modules can be expressed
as the composition of the input graph with another graph, called a transducer,
associated with the module (Mohri, 1997). The objects attached to the edges of
the input graphs, which can be numbers, labels, images, sequences, or any other
entity, are fed to trainable functions whose outputs are attached to the edge of the
output graphs. The resulting architecture can be seen as a compositional hierarchy
in which low-level features and parts are combined into higher-level objects through
graph composition.



238 Energy-Based Models

(a)

path

GW GW

Path Selector

Viterbi 
Transformer

"342"

Recognition
Transformer

3

2

1

3

4
23

4

... GW

X Y Z

E(W,Z, Y, X)

Grseg

Grint

Grsel

(b)

Figure 10.22 The architecture of a graph transformer network for handwritten word
recognition. (a) The segmentation graph Grseg is generated from the input image. (b) The
hierarchical multimodular architecture takes a set of graphs and outputs another set of
graphs.

For speech recognition, acoustic vectors are assembled into phones, phones into
triphones, triphones into words, and words into sentences. Similarly, in handwriting
recognition, ink segments are assembled into characters, characters into words, and
words into sentences.



10.7 EBMs for Sequence Labeling and Structured Outputs 239

Figure 10.22 shows an example of GTN architecture for simultaneously segment-GTN application
ing and recognizing handwritten words (LeCun et al., 1998a). The first step involves
oversegmenting the image and generating a segmentation graph out of it (see fig-
ure 10.22(a)). The segmentation graph Grseg is a directed acyclic graph (DAG) in
which each path from the start node to the end node represents a particular way
of segmenting the input image into character candidates. Each internal node is as-
sociated with a candidate cut produced by the segmentation. Every arc between a
source and a destination node is associated with the part of the image that lies be-
tween the two cuts. Hence every piece of ink appears once and only once along each
path. The next stage passes the segmentation graph Grseg through the recognition
transformer which produces the interpretation graph Grint with the same number
of nodes as Grseg . The recognition transformer contains as many identical copies
of the discriminant functions GW (X) as there are arcs in the interpretation graph
(this number changes for every new input). Each copy of GW takes the image asso-
ciated with one arc in the segmentation graph and produces several arcs between
the corresponding nodes in the interpretation graph. Each output arc is labeled by
a character category, and weighted by the energy of assigning the image to that
category. Hence, each path in the interpretation graph represents one possible in-
terpretation of the input for one possible segmentation, with the sum of the weights
along the path representing the combined energy of that interpretation. The inter-
pretation graph is then passed through a path selector module that selects only
those paths from the interpretation graph that have the same sequence of labels as
given by Y (the answer). The output of this module is another graph called Grsel .
Finally, a so-called Viterbi transformer selects a single path in Grsel indexed by
the latent variable Z. Each value of Z corresponds to a different path in Grsel, and
can be interpreted as a particular segmentation of the input. The output energy
is obtained either by minimizing or by marginalizing over Z. Minimizing over Z is
achieved by running a shortest-path algorithm on the Grsel (e.g., the Viterbi al-
gorithm, hence the name Viterbi transformer). The output energy is then the sum
of the arc energies along the shortest path. Marginalizing over Z is achieved by
running the forward algorithm on Grsel, as indicated in section 10.6, (10.72). The
path selector and Viterbi transformer can be seen as particular types of “switch”
modules that select paths in their input graph.

In the handwriting recognition systems described in LeCun et al. (1998a), the dis-
criminant function GW (X) was a 2D convolutional network. This class of function is
designed to learn low-level features and high-level representations in an integrated
manner, and is therefore highly nonlinear in W . Hence the loss function is not
convex in W . The optimization method proposed is a refined version of stochastic
gradient descent.

In LeCun et al. (1998a), two primary methods for training GTNs are proposed:
discriminative Viterbi training, which is equivalent to using the generalized percep-
tron loss (10.7), and discriminative forward training, which is equivalent to using
the NLL loss (10.23). Any of the good losses in table 10.1 could also be used.



240 Energy-Based Models

Training by minimizing the perceptron loss with stochastic gradient descent is
performed by applying the following update rule:

W ← W − η

(
∂E(W, Y i, X i)

∂W
− ∂E(W, Y ∗i, X i)

∂W

)
. (10.87)

How can the gradients of E(W, Y i, X i) and E(W, Y i, X i) be computed? The answerbackpropagation
through graphs is simply to backpropagate gradients through the entire structure, all the way back

to the discriminant functions GW (X). The overall energy can be written in the
following form:

E(W, Y, X) =
∑
kl

δkl(Y )Gkl(W, X), (10.88)

where the sum runs over all arcs in Grint, Gkl(W, X) is the lth component of the
k copy of the discriminant function, and δkl(Y ) is a binary value equal to 1 if the
arc containing Gkl(W, X) is present in the final graph, and 0 otherwise. Hence, the
gradient is simply

∂E(W, Y, X)
∂W

=
∑
kl

δkl(Y )
∂Gkl(W, X)

∂W
. (10.89)

One must simply keep track of the δkl(Y ).
In section 10.5 we concluded that the generalized perceptron loss is not a good

loss function. While the zero margin may limit the robustness of the solution, the
perceptron loss seems appropriate as a way to refine a system that was pretrained
on segmented characters as suggested in LeCun et al. (1998a). Nevertheless, the
GTN-based bank check reading system described in LeCun et al. (1998a) that was
deployed commercially was trained with the NLL loss.

The second method for training GTNs uses the NLL loss function, with a
marginalization over Z using the forward algorithm of (10.72) over Grsel, instead
of a minimization.

Training by minimizing the NLL loss with stochastic gradient descent is per-
formed by applying the following update rule:

W ← W − η

(
∂FZ(W, Y i, X i)

∂W
− ∂FY,Z(W, X i)

∂W

)
, (10.90)

where

FZ(W, Y i, X i) = − 1
β

log
∑
z∈Z

e−βE(W,Y i,z,Xi) (10.91)

is the free energy obtained by marginalizing over Z, keeping X i and Y i fixed, and

FY,Z(W, X i) = − 1
β

log
∑

y∈Y, z∈Z

e−βE(W,y,z,Xi) (10.92)



10.8 Conclusion 241

is the free energy obtained by marginalizing over Y and Z, keeping X i fixed.
Computing those gradients is slightly more complicated than in the minimization
case. By chain rule the gradients can be expressed as

∂FY,Z(W, X i)
∂W

=
∑
kl

∂FY,Z(W, X i)
∂Gkl

∂Gkl(W, X)
∂W

, (10.93)

where the sum runs over all edges in the interpretation graph. The first factor is
the derivative of the quantity obtained through the forward algorithm (10.72) with
respect to one particular edge in the interpretation graph. These quantities can
be computed by backpropagating gradients through the trellis, viewed as a feed-
forward network with node functions given by (10.72). We refer to LeCun et al.
(1998a) for details.

Contrary to the claim in Lafferty et al. (2001), the GTN system trained with
the NLL loss as described in LeCun et al. (1998a) does assign a well-defined prob-
ability distribution over possible label sequences. The probability of a particular
interpretation is given by (10.45):

P (Y |X) =

∫
z∈Z e−βE(Z,Y,X)∫

y∈Y, z∈Z e−βE(y,z,X)
. (10.94)

It would seem natural to train GTNs with one of the generalized margin losses.
To our knowledge, this has never been done.

10.8 Conclusion

There are still outstanding questions to be answered about energy-based and
probabilistic models. This section offers a relatively philosophical discussion of
these questions, including an energy-based discussion of approximate methods for
inference and learning. Finally, a summary of the main ideas of this chapter is given.

10.8.1 EBMs and Probabilistic Models

In section 10.1.3, the transformation of energies to probabilities through the Gibbs
distribution was introduced:

P (Y |X, W ) =
e−βE(W,Y,X)∫

y∈Y
e−βE(W,y,X)

. (10.95)

Any probability distribution over Y can be approximated arbitrarily closely by
a distribution of that form. With finite energy values, distributions where the
probability of some Y is exactly zero can only be approximated. Estimating the
parameters of a probabilistic model can be performed in a number of different
ways, including maximum likelihood estimation with Bayes inversion, maximum
conditional likelihood estimation, and (when possible) Bayesian averaging (possibly



242 Energy-Based Models

with variational approximations). Maximizing the conditional likelihood of the
training samples is equivalent to minimizing what we called the NLL loss.

Hence, at a high level, discriminative probabilistic models can be seen as a special
case of EBMs in which

the energy is such that the integral
∫

y∈Y
e−βE(W,y,X) (partition function) con-

verges;

the model is trained by minimizing the NLL loss.

An important question concerns the relative advantages and disadvantages ofdisadvantages of
probabilistic
models

probabilistic models vs. energy-based models. Probabilistic models have two major
disadvantages. First, the normalization requirement limits the choice of energy
functions we can use. For example, there is no reason to believe that the model
in figure 10.7 is normalizable over Y . In fact, if the function GW2(Y ) is upper-
bounded, the integral

∫ +∞
−∞ e−βE(W,y,X)dy does not converge. A common fix is to

include an additive term Ry(Y ) to the energy, interpreted as a log prior on Y , whose
negative exponential is integrable. Second, computing the contrastive term in the
NLL loss function (or its gradient with respect to W ) may be very complicated,
expensive, or even intractable. The various types of models can be divided into five
rough categories of increasing complexity:categorization of

probabilistic
models Trivial: When Y is discrete with a small cardinality, the partition function is a

sum with a small number of terms that can be computed simply. Another trivial case
is when the partition function does not depend on W , and hence can be ignored for
the purpose of learning. For example, this is the case when the energy is a quadratic
form in Y with a fixed matrix. These are cases where the energy loss can be used
without fear of collapse.

Analytical: When the partition function and its derivative can be computed
analytically. For example, when the energy is a quadratic form in Y in which
the matrix depends on trainable parameters, the partition function is a Gaussian
integral (with variable covariance matrix) and its derivative is an expectation under
a Gaussian distribution, both of which have closed-form expressions.

Computable: When the partition function is a sum over an exponential number
of terms, but the computation can be factorized in such a way as to make it
tractable. The most notable case of this is when the partition function is a sum
over configurations of output variables and latent variables of a tree-type graphical
model. In this case, belief propagation can be used to compute the partition
function. When the graphical model is a simple chain graph (as in the case of
HMMs), the set of configurations can be represented by the paths of a weighted
trellis. Running the forward algorithm through this trellis yields the partition
function. A simple backpropagation-like procedure can be used to compute its
gradient (e.g., see LeCun et al. (1998a) and references therein).

Approachable: When the partition function cannot be computed exactly, but
can be approximated reasonably well using various methods. One notable example



10.8 Conclusion 243

is when the partition function is a sum over configurations of a loopy graphical
model. The sum cannot be computed exactly, but loopy belief propagation or other
variational methods may yield a suitable approximation. With those approxima-
tions, the energies of the various answers will still be pulled up, although not as
systematically and with the same force as if using the full partition function. In a
sense, variational methods could be interpreted in the context of EBM as a way to
choose a subset of energies to pull up.

Intractable: When the partition function is truly intractable with no satisfactory
variational approximation. In this case, one is reduced to using sampling methods. A
sampling method is a policy for choosing suitable candidate answers whose energy
will be pulled up. The probabilistic approach to this is to sample answers according
to their probability under the model, and to pull up their energy. On average, each
answer will be pulled up by the appropriate amount according to the partition
function.

In this context, using an energy-based loss function other than the NLL can be
seen as a sampling method with a particular policy for picking the answers whose
energy will be pulled up. For example, the hinge loss systematically chooses the
most offending incorrect answer as the one whose energy should be pulled up. In
the end, using such strategies will produce energy surfaces with which differences of
energies cannot be interpreted as likelihood ratios (the same is true with variational
methods). We should emphasize again that this is inconsequential if the model is
to be used for prediction, classification, or decision making.

Variational approximation methods can be interpreted in the EBM framework as
a particular choice of contrastive term for the loss function. A common approach
is to view variational methods and energy-based loss functions as approximations
to the probabilistic method. What we propose here is to view the probabilistic
approach as a special case of a much larger family of energy-based methods. Energy-
based methods are equally well justified as probabilistic methods. They are merely
designed for training models to answer a different kind of question than probabilistic
models.

An important open question is whether the variational methods that are com-
monly used (e.g., mean field approximations with popular architectures) actually
satisfy condition 60 (see section 10.5.2).

10.8.2 Efficiency in Learning

The most important question that affects the efficiency of learning is: How many
energies of incorrect answers must be explicitly pulled up before the energy surface
takes the right shape?. Energy-based loss functions that pull up the most offending
incorrect answer only pull up on a single energy at each learning iteration. By
contrast, the NLL loss pulls up on all incorrect answers at each iteration, including
those that are unlikely to produce a lower energy than the correct answer. Hence,



244 Energy-Based Models

unless the NLL computation can be done at very low cost (as in the case of “trivial”
and “analytical” models), the energy-based approach is bound to be more efficient.

An important open question is whether alternative loss functions exist whose
contrastive term and its derivative are considerably simpler to compute than that
of the NLL loss, while preserving the nice property that they pull up a large volume
of incorrect answers whose energies are “threateningly low.” Perhaps, a figure of
merit for architectures and loss functions could be defined which would compare
the amount of computation required to evaluate the loss and its derivative relative
to the volume of incorrect answers whose energy is pulled up as a result.

For models in the “intractable” category, each individual energy that needs to be
pulled up or pushed down requires an evaluation of the energy and of its gradient (if
a gradient-based optimization method is used). Hence, finding parameterizations
of the energy surface that will cause the energy surface to take the right shape
with the minimum amount of pushing or pulling is of crucial importance. If Y is
high-dimensional, and the energy surface is infinitely malleable, then the energy
surface will have to be pulled up in many places to make it take a suitable shape.
Conversely, more “rigid” energy surfaces may take a suitable shape with less pulling,
but are less likely to approach the correct shape. There seems to be a bias-variance
dilemma similar to the one that influences the generalization performance.

10.8.3 Learning with Approximate Inference

Very often, the inference algorithm can only give us an approximate answer, or is not
guaranteed to give us the global minimum of the energy. Can energy-based learning
work in this case? The theory for this does not yet exist, but a few intuitions may
shed light on the issue.

There may be certain answers in Y that our inference algorithm never finds,
perhaps because they reside in faraway regions of the space that the algorithm can
never reach. Our model may give low energy to wrong answers in these regions,
but since the inference algorithm cannot find them, they will never appear in the
contrastive term, and their energies will never be pulled up. Fortunately, since those
answers are not found by the inference algorithm, we do not need to worry about
their energies.

It is an interesting advantage of energy-based learning that only the incorrect
answers whose energies are pulled up actually matter. This is in contrast with
probabilistic loss functions (e.g. NLL) in which the contrastive term must pull up
the energy of every single answer, including the ones that our inference algorithm
will never find, which can be wasteful.

10.8.4 Approximate Contrastive Samples, Contrastive Divergence

Loss functions differ in how the contrastive sample is selected, and how hard its
energy is pulled up. One interesting suggestion is to pull up on answers that are
always near the correct answer, so as to make the correct answer a local minimum,



10.8 Conclusion 245

but not necessarily a global one. This idea is the basis of the contrastive divergence
algorithm proposed by Hinton (2002) and Teh et al. (2003). Contrastive divergence
learning can be seen as an approximation of NLL learning with two shortcuts.
First, the contrastive term in (10.24) is approximated by drawing samples from
the distribution P (Y |X i, W ) using a Markov chain Monte Carlo method (MCMC).
Second, the samples are picked by starting the Markov chain at the desired answer,
and by running only a few steps of the chain. This produces a sample Ỹ i that is near
the desired answer. Then, a simple gradient update of the parameters is performed:

W ← W − η

(
∂E(W, Y i, X i)

∂W
− ∂E(W, Ỹ i, X i)

∂W

)
. (10.96)

Since the contrastive sample is always near the desired answer, one can hope that
the desired answer will become a local minimum of the energy. Running MCMC
for just a few steps limits computational expense. However, there is no guarantee
that all incorrect answers with low energy will be pulled up.

10.8.5 Summary

This tutorial was written to introduce and explicate the following major ideas:

Many existing learning models can be be expressed simply in the framework of
energy-based learning.

Among the many loss functions proposed in the literature, some are good (with
a nonzero margin), and some can be bad.

Probabilistic learning is a special case of energy-based learning where the loss
function is the NLL, a.k.a. the maximum mutual information criterion.

Optimizing the loss function with stochastic gradient methods is often more
efficient than black box convex optimization methods.

Stochastic gradient methods can be applied to any loss function including non-
convex ones. Local minima are rarely a problem in practice because of the high
dimensionality of the space.

Support vector Markov models, M3Ns, and conditional random fields are all
sequence modeling systems that use linearly parameterized energy factors. Sequence
modeling systems with nonlinear parameterization for speech and handwriting
recognition have been a very active research area since the early 90’s.

Graph transformer networks are hierarchical sequence modeling systems in which
the objects that are manipulated are trellises containing all the alternative interpre-
tations at a given level. Global training can be performed using stochastic gradient
by using a form of backpropagation algorithm to compute the gradients of the loss
with respect to all the parameters in the system.



246 Energy-Based Models

Acknowledgments

The authors thank Geoffrey Hinton, Leon Bottou, Yoshua Bengio, Sebastian Seung,
and Brendan Frey for helpful discussions.



11 Generalization Bounds and Consistency

for Structured Labeling

David McAllester

This chapter gives generalization bounds for structured output learning. We show
that generalization bounds justify the use of Hamming distance in training algo-
rithms independent of the choice of the loss function used to define generalization
error. In particular, even when generalization error is measured by 0-1 loss the gen-
eralization bounds involve a Hamming distance. A natural training algorithm is to
simply minimize the generalization bound over the concept parameters. Minimiz-
ing the generalization bound is consistent — as the amount of training data in-
creases the performance of the algorithm approaches the minimal generalization er-
ror achievable over the parameter settings. Unfortunately, the generalization bound
is not convex in concept parameters. We consider several different ways to make
the generalization bound convex all of which are equivalent to classical hinge loss
in the case of binary classification but none of which are consistent.

11.1 Introduction

Structured output classification can be viewed as a kind of decoding. We assume
a probability distribution on pairs 〈x, y〉 where x is observable and y is latent. A
decoder is a machine for predicting y given only x. In communication channels, as
in structured labeling, one typically deals with cases where y is a structured signal.

In this chapter we will be concerned only with a kind of linear decoding. We
assume a fixed mapping Φ from pairs to feature vectors, i.e., for any pair 〈x, y〉 we
have Φ(x, y) ∈ �d. We will consider decoders of the following form where w ∈ �d

is a weight vector.

fw(x) = argmax
y

Φ(x, y) · w (11.1)

The ultimate objective is to set the parameters w so as to minimize the expectation
of d(y, fw(x)) where d is a measure of distortion.learning objective



248 Generalization Bounds and Consistency for Structured Labeling

w∗ = argmin
w

E〈x, y〉∼D
[d(y, fw(x))] (11.2)

A popular alternative to (11.2) is logistic regression. In logistic regression the
weight vector w is used to represent a probability distribution P (y|x, w) defined as
follows:

P (y|x, w) =
1

Z(x, w)
exp(Φ(x, y) · w), (11.3)

Z(x, w) =
∑

ŷ

exp(Φ(x, ŷ) · w). (11.4)

Models of this form include Markov random fields (MRFs), probabilistic context-
free grammars (PCFGs), hidden Markov models (HMMs), conditional random fields
(CRFs) (Lafferty et al., 2001), dynamic Bayes nets (Kanazawa et al., 1995), and
probabilistic relational models (PRMs) (Getoor et al., 2001). In logistic regression
the goal is to minimize expected log loss.

w∗ = argmin
w

E〈x, y〉∼D

[
log

1
P (y|x, w)

]
(11.5)

A significant advantage of logistic regression is that (11.5) is convex in w while
(11.2) is not. However, the objective in (11.2) seems a more accurate reflection of
the actual quantity of interest. The main question addressed in this chapter is howmain question
one should select the parameter vector w so as to approximate (11.2) given only a
finite sample of training data drawn from D.

For binary classification, the case with y ∈ {−1, 1}, support vector machines
(SVMs) provide a popular approach to optimizing (11.2). But for the general case of
structured decoding there are several different generalizations of binary SVMs. Here
we give generalization bounds designed to provide insight into these alternatives.

Generalization bounds were given by Collins for 0-1 distortion Collins (2004) and
a bound has been given by Taskar et al. (2004b) for the case of Hamming distance
distortion. The use of Hamming distance produces a much tighter bound and seems
to support the idea that Hamming distortion has advantages in practice. Here we
show that the improvements in the generalization analysis achieved by Taskar et al.
can be achieved for an arbitrary bounded distortion, including 0-1 distortion. Inter-
estingly, Hamming distance still appears in the analysis, but not as a consequence
of the choice of distortion. We also consider issues of asymptotic consistency. Withconvexity and

consistency
tradeoff

more than two possible signals, SVM algorithms are not consistent — they fail to
converge on the optimal decoder even in the limit of infinite training data. However,
the training algorithm that sets w by minimizing the (nonconvex) generalization
bound is consistent. This gives a tradeoff between convexity and consistency in
decoding with structured signals.



11.2 PAC-Bayesian Generalization Bounds 249

11.2 PAC-Bayesian Generalization Bounds

In the decoding problem considered here, the goal is to learn a mapping f : X → Y

where X is a set of observable “codes” and Y is a set of latent (unobserved) “signals.”
Here we follow the approach given in Bartlett et al. (2004) based on “parts.” In
addition to the sets X and Y we assume a set P of parts. In parsing we have that x

is a string and y is a parse tree with yield x — the decoder takes as input a stringstring-to-tree
mapping and produces as output a parse tree. Furthermore, we have given a stochastic (or

weighted) grammar G and each ”part” is just a production of G. Each pair 〈x, y〉
of a string x and parse tree y is associated with a set of parts — the productions
of G that appear in the parse tree y. Note that a given parse tree can use the same
production more than once. Also note that for parsing with a finite grammar the
set of parts is finite even though the spaces X and Y are infinite.

In general we assume sets X, Y, and P and we assume a function c such thatassumptions
for x ∈ X, y ∈ Y, and p ∈ P we have that c(p, 〈x, y〉) is a nonnegative integer —
c(p, 〈x, y〉) gives the number of times that the part p appears in the pair 〈x, y〉.
Furthermore, we assume a distribution on D on X × Y such that for any x ∈ X we
have that the conditional distribution P (y|x) has a countable support (a feasible
set) which we denote by Y(x). We let P(x) denote the set of p ∈ P such that there
exists ŷ ∈ Y(x) with c(p, 〈x, ŷ〉) > 0. Here we will assume that for any x ∈ X the
sets Y(x) and P(x) are finite. For grammars we have that c(p, 〈x, y〉) is the number
of times the production p occurs in the parse tree y.

We consider the decoder fw defined by (11.1) where w, Φ(x, y) ∈ �|P| and where
Φ(x, y) is defined as follows:

Φp(x, y) = c(p, 〈x, y〉). (11.6)

In the case of grammars we have that w and Φ(x, y) are both indexed by the set of
productions of the grammar. A more general form for Φ(x, y), allowing for the use
of kernels, is discussed in section 11.5. For any definition of Φ(x, y) we define the
margin m(x, y, ŷ, w) as follows:decoding margin

m(x, y, ŷ, w) = Φ(x, y) · w − Φ(x, ŷ) · w. (11.7)

Intuitively, m(x, y, ŷ, w) is the amount by which y is preferable to ŷ under the
parameter setting w.

The PAC-Bayesian theorem governs the expected distortion of a stochastic
decoder. The stochastic decoder first stochastically selects an alternative parameter
vector w′, then returns fw′(x). It is possible to convert the bounds stated here for
the loss of a stochastic decoder to a bound on the loss of the deterministic decoder
fw. However, this conversion seems to provides no additional insight. For any weight
vector w we let Q(w) be a distribution on weight vectors whose precise definition
is given in section 11.6. We define the expected distortion of Q(w) as follows:

L(Q(w), D) = E〈x, y〉∼D, w′∼Q(w)
[d(y, fw′(x))] . (11.8)



250 Generalization Bounds and Consistency for Structured Labeling

For simplicity we assume that there exist finite values r, s, and � satisfying the
following conditions for all x ∈ X and ŷ ∈ Y(x):

|Y(x)| ≤ r (11.9)

∑
p∈P(x)

c(p, 〈x, ŷ〉) ≤ s (11.10)

|P(x)| ≤ �. (11.11)

In parsing we have that finite values r, s, and � exist provided that we bound the
length n of the string x. In this case r is exponential in n while s is O(n) and � is
O(1) (the number of productions of the grammar). In lexicalized grammars, bounds
for r, s, and � can be given in terms of the length of the input string independent
of the size of the lexicon.

Throughout the rest of this chapter we assume that 0 ≤ d(y, ŷ) ≤ 1 for all
y, ŷ ∈ Y(x) with x ∈ X. We also assume a sequence S = 〈x1, y1〉, . . . , 〈xm, ym〉
of m labeled training pairs has been drawn i.i.d. from D. The following theorem
is similar to that proved by Collins but generalized to handle arbitrary bounded
distortion and modified so as to be consistent. More specifically, if we set w∗ so as to
minimize the right-hand side of (11.12), then, in the limit of infinite training data,
we have that w∗ minimizes generalization loss. This is discussed in more detail in
section 11.4. In the theorem I[Φ] denotes the indicator function where I[Φ] = 1 if
Φ is true and 0 otherwise.

Theorem 61 With probability at least 1 − δ over the draw of the training data S

of m pairs we have that the following holds simultaneously for all weight vectors w.bound involving
output
complexity

L(Q(w), D) ≤ L1(w, S)
m

+
||w||2

m
+

√√√√2s2||w||2 ln
(

rm
||w||2

)
+ ln

(
m
δ

)
(m − 1)

(11.12)

L1(w, S) =
m∑

i=1

max
ŷ∈Y(x)

d(yi, ŷ)I[m(xi, fw(xi), ŷ, w) ≤ 1] (11.13)

Intuitively, fw(xi) is uncertain and any value ŷ satisfying m(xi, fw(xi), ŷ, w) ≤ 1
should be considered as a possible value of fw(xi). The quantity L1(w, S) is the
worst-case distortion over the signals ŷ which are considered to be possible values
of fw(xi). If all possible values of fw(xi) are similar to yi (as measured by the
distortion function), then L1(w, S) will be low. Theorem 61 should be contrasted
with the following which refines the bound of Taskar et al. by handling arbitrary
bounded distortion and modified so as to be consistent.



11.2 PAC-Bayesian Generalization Bounds 251

Theorem 62 With probability at least 1− δ over the choice of the training data we
have that the following holds simultaneously for all weight vectors w.bound involving

number of
possible
productions L(Q(w), D) ≤ LH(w, S)

m
+

||w||2
m

+

√√√√ ||w||2 ln
(

2�m
||w||2

)
+ ln

(
m
δ

)
2(m − 1)

(11.14)

LH(w, S) =
m∑

i=1

max
ŷ∈Y(x)

d(yi, ŷ)I[m(xi, fw(xi), ŷ, w) ≤ H(xi, fw(xi), ŷ)] (11.15)

H(x, y, ŷ) =
∑

p∈P(x)

|c(p, 〈x, ŷ〉) − c(p, 〈x, y〉)| (11.16)

Like L1(w, S), the training loss LH(w, S) can be viewed as the worst-case
distortion on the training set over the training labels that are considered possible
values of fw(xi). However, the criterion for being considered to be a possible value
for fw(xi) involves a Hamming distance.

The proof of both theorems is given in section 11.6. The main feature of the proof
of theorem 61 is a union bound over the elements of Y(xi) leading to the appearance
of r in the bound. The bound is also influenced by the fact that ||Φ(x, y)||2 can be
as large as s2. The proof of theorem 62 replaces the union bound over Y(x) by a
union bound over P(x) which is typically exponentially smaller.

At first, theorems 61 and 62 may appear incomparable. However, theorem 62comparing both
bounds dominates theorem 61 when � << r. To establish this one must make the two

margin requirements comparable. Margin requirements can be changed by rescaling
the weight vector. It is well-known that in SVMs one can either work with unit
norm weight vectors and bounds involving the margin, or work with unit margin
and bounds involving the norm of the weight vector. To compare theorems 61 and
62 we insert w/(2s) for w in theorem 61 to get the following equivalent statement.

L
(
Q
( w

2s

)
, D
)
≤ L2s(w, S)

m
+

||w||2
4s2m

+

√√√√ ||w||2 ln
(

4s2rm
||w||2

)
+ ln

(
m
δ

)
2(m − 1)

(11.17)

L2s(w, S) =
m∑

i=1

max
ŷ∈Y(x)

d(yi, ŷ)I[m(xi, fw(xi), ŷ, w) ≤ 2s] (11.18)

We now compare (11.17) with (11.14). We ignore the fact that the posteriors Q(w)
and Q(w/2s) are different. Showing that the right-hand side of (11.14) dominates
the right-hand side of (11.17) shows that theorem 62 can provide a better guarantee
than theorem 61 even if that better guarantee is for a different classifier. We can
also justify ignoring the difference between Q(w) and Q(w/2s) with the claim
that variants of these bounds can be proved for deterministic classifiers and the
deterministic classifiers fw and fw/2s are the same. To compare the right-hand
sides of (11.17) and (11.14) we first note that H(xi, fw(xi), ŷ) ≤ 2s and therefore
LH(w, S) ≤ L2s(w, S). Furthermore, for structured problems we have that r is
exponentially larger than � and hence the regularization term in (11.17) is larger
than the regularization term in (11.14).



252 Generalization Bounds and Consistency for Structured Labeling

11.3 Hinge Loss

Support vector machines provide a popular alternative to logistic regression for bi-
nary classification. In this section we consider generalizations of SVMs to structured
decoding. SVMs involve the optimization of hinge loss. When discussing hinge loss
and its relationship to generalization bounds the following notation for the step
function and the ramp function will be useful.

(x)+ = I[x ≥ 0]

(x)+ = min(0, x)

In the case of binary classification we have y ∈ {1,−1}. In this case we have that
(11.1) can be written as follows:

fw(x) = argmax
y∈{−1,1}

Φ(x, y) · w = sign(Φ(x) · w) (11.19)

where

Φ(x, 1) = −Φ(x,−1) =
1
2
Φ(x). (11.20)

An SVM selects w so as to minimize the following regularized hinge loss objective
function where yi(Φ(x) · w) is called the margin and (1 − m)+ is called the hinge
loss of margin m.

w∗ = argmin
w

∑
i

(1 − yi(Φ(xi) · w))+ + λ||w||2 (11.21)

Collins (2004) considered structured SVMs using a multiclass hinge lossexisting
SVM-based
approaches w∗ = argmin

w

∑
i

max
ŷ �=yi

(1 − m(xi, yi, ŷ, w))+ + λ||w||2, (11.22)

whereas Altun and Hofmann (2003) proposed

w∗ = argmin
w

∑
i

max
ŷ

d(yi, ŷ) (1 − m(xi, yi, ŷ, w))+ + λ||w||2, (11.23)

in contrast to Taskar et al. (2004b) who proposed

w∗ = argmin
w

∑
i

max
ŷ

(H(xi, yi, ŷ) − m(xi, yi, ŷ, w))+ + λ||w||2. (11.24)

The optimizations (11.22), (11.23), and (11.24) all reduce to (11.21) in the case of
binary classification. The fact that theorem 62 dominates theorem 61 suggests that
(11.24) is preferable to (11.22) or (11.23). But the precise relationship between the



11.4 Consistency 253

generalization bounds and the various notions of hinge loss is subtle. Theorems 61
and 62 directly motivate the following:

w∗ = argmin
w

∑
i

max
ŷ

d(yi, ŷ) (1 − m(xi, fw(xi), ŷ, w))+ + λ||w||2 (11.25)

w∗ = argmin
w

∑
i

max
ŷ

d(yi, ŷ)

(
H(xi, fw(xi), ŷ)

−m(xi, fw(xi), ŷ, w)

)+

+ λ||w||2 (11.26)

The optimization problems given by (11.25) and (11.26) are not convex in w. As
a first step in approximating these by convex functions we can replace the step
functions by ramps. This replacement yields the following:

w∗ = argmin
w

∑
i

max
ŷ

d(yi, ŷ) (1 − m(xi, fw(xi), ŷ, w))+ + λ||w||2 (11.27)

w∗ = argmin
w

∑
i

max
ŷ

d(yi, ŷ)

(
H(xi, fw(xi), ŷ)

−m(xi, fw(xi), ŷ, w)

)
+

+ λ||w||2 (11.28)

But (11.27) and (11.28) are still not convex. To see this consider the case of binary
classification under 0-1 distortion. Because d(yi, ŷ) = 0 for ŷ = yi we need consider
only the case where ŷ 
= yi. If fw(xi) = yi, then (1 − m(xi, fw(xi), ŷ, w))+ equals
the binary hinge loss (1 − yi(Φ(x) · w))+. But if fw(xi) 
= yi — the case where the
classical margin is less than zero — then (1 − m(xi, fw(xi), ŷ, w))+ = 1. So in the
binary case (1 − m(xi, fw(xi), ŷ, w))+ is a continuous piecewise linear nonconvex
function which equals the hinge loss for positive margin but equals the constant 1
for negative margin. A second step in making this convex is to replace fw(xi) by the
constant yi. With this replacement (11.27) becomes (11.23) and (11.28) becomes
the following:

w∗ = argmin
w

∑
i

max
ŷ

d(yi, ŷ) (H(xi, yi, ŷ) − m(xi, yi, ŷ, w))+ + λ||w||2. (11.29)

It is interesting to note that (11.29) also reduces to (11.21) in the case of binary
classification. It is also interesting to note that replacing fw(xi) by yi in theorems
61 and 62 strictly weakens the bounds and causes them to be inconsistent.

11.4 Consistency

Consistency is an important criterion for generalization bounds. More specifically,
a bound is consistent if, in the limit of infinite data, the minimum of the bound
(over the parameter vector w) approaches the minimum distortion possible over the
allowed parameter space. The bounds in theorems 61 and 62 are both consistent in
this sense. We give a quick sketch of a proof for this in the finite-dimensional case
where we have w ∈ �d. We consider only theorem 61; the argument for theorem 62
is similar.



254 Generalization Bounds and Consistency for Structured Labeling

Since the unit sphere in �d is compact, there must exist a vector w∗ on the unit
sphere minimizing generalization loss.

w∗ = argmin
w: ||w||=1

E(w)

E(w) = E〈x, y〉∼D
[d(y, fw(x))]

All vectors in the same direction as w∗ yield the same classification function and
hence the same expected distortion. We define w∗

m to be the vector m1/3w∗ which
is in the same direction as w∗ but has length m1/3. For a sample of size m we
consider the value of the generalization bound for the vector w∗

m. Note that as
m → ∞ we have that ||wm|| → ∞ but the regularization term for w∗

m goes
to zero. Furthermore, for vectors of sufficiently large norm, the only ŷ satisfying
m(xi, fw(xi), ŷ) < 1 is fw(xi). This means that for vectors of sufficiently large
norm we have that L1(w, S)/m is essentially equivalent to the sample average of
d(xi, yi, fw(xi)). Putting these two observations together we get that as m → ∞
we have that the generalization bound for w∗

m must approach E(w∗). Hence, as
m → ∞ the minimum of the generalization bound is at most E(w∗). The algorithm
is guaranteed (with high probability) to perform as well as the minimum of the
generalization bound.

It is well-known that the use of hinge loss in multiclass classification results
in inconsistent algorithms (Lee et al., 2004). The various forms of convex hinge
loss discussed in section 11.3 all fail to be consistent. It is possible to construct
consistent forms of hinge loss for nonparametric, i.e., infinite feature dimension,
multiclass classification (Lee et al., 2004). However, neither the convergence rates
nor the practicality of these constructions has been established for the case of
learning decoders.

To show inconsistency of the hinge losses considered in section 11.3, suppose that
X contains only a single element x and that Y is a finite set y1, y2, . . ., yk, and that
we are using 0 − 1 distortion. Further assume that there is an independent weight
for each yi. In other words, d = k and Φj(x, yi) is 1 if i = j and zero otherwise so
that Φ(x, yi) · w = wi. In this case all four of the hinge loss rules, (11.22), (11.23),
(11.24), and (11.29), are the same. We will work with the simplest form, (11.22).
Assume that λ = 0 so that we simply want to minimize the hinge loss independent
of ||w||2. In the limit of an infinitely large sample we have that the hinge loss term
dominates the regularization term. Furthermore, suppose that for each yi we have
that the probability of the pair 〈x, yi〉 is less than 1/2 (note that this cannot happen
in binary classification). Define the margin mi as follows:

mi = wi − max
j �=i

wj .

In the limit of infinite training data we have the following:

w∗ = argmin
w

∑
i

pi (1 − mi)+ . (11.30)



11.4 Consistency 255

We will show that in this case the optimal value is achieved when all weights are
the same so that mi = 0 for all i. To see this consider any uniform vector w. Since
the objective function in (11.30) is convex it suffices to show that any variation
in w fails to improve the objective function. As an example of a simple variation
suppose that we increase the weight of the component wi corresponding to the
choice minimizing expected distortion. As we increase wi we increase mi but we
decrease each mj for j 
= i by the same amount. Given that pi < 1/2, the net effect
is an increase in the objective function. To prove that no variation from uniform
improves the objective, let Δ ∈ �k be a vector and consider w′ = w + εΔ. We then
have the following:

∂mi

∂ε
= Δi − max

j �=i
Δj.

To show that that is a nonimproving variation it suffices to show the following:∑
i

pi(Δi − max
j �=i

Δj) ≤ 0.

But this is equivalent to the following:∑
i

pi max
j �=i

Δj ≥
∑

i

piΔi.

This can be derived as follows where i∗ is argmaxi Δi and j∗ is argmaxj �=i∗ Δj and
the last line follows from the assumption that pi < 1/2.∑

i

pi max
j �=i

Δj = pi∗Δj∗ +
∑
j �=i∗

pjΔi∗

= pi∗Δj∗ +
∑
j �=i∗

pj(Δj + (Δi∗ − Δj))

≥ pi∗Δj∗ +

⎛
⎝∑

j �=i∗
pjΔj

⎞
⎠+ (1 − pi∗)(Δi∗ − Δj∗)

= pi∗Δi∗ + pi∗(Δj∗ − Δi∗) +

⎛
⎝∑

j �=i∗
pjΔj

⎞
⎠+ (1 − pi∗)(Δi∗ − Δj∗)

=
∑

i

piΔi + (Δi∗ − Δj∗)(1 − 2pi∗)

≥
∑

i

piΔi



256 Generalization Bounds and Consistency for Structured Labeling

Now we argue for the consistency of (11.25) and (11.26). If we hold λ/n fixed
and let the sample size go to infinity, then (11.25) and (11.26) become the following
where λ′ = λ/n

w∗ = argmin
w

E〈x, y〉∼D

[
max

ŷ
d(y, ŷ) (1 − m(x, fw(x), ŷ, w))+

]
+ λ′||w||2 (11.31)

w∗ = argmin
w

E〈x, y〉∼D

⎡
⎣max

ŷ
d(y, ŷ)

(
H(x, fw(x), ŷ)

−m(x, fw(x), ŷ, w)

)+
⎤
⎦+ λ′||w||2 (11.32)

Now we consider the limit of (11.31) and (11.32) as λ′ → 0. Intuitively this limit
gives the following:

w∗ = argmin
w

E〈x, y〉∼D

[
max

ŷ
d(y, ŷ) (1 − m(x, fw(x), ŷ, w))+

]
(11.33)

w∗ = argmin
w

E〈x, y〉∼D

[
max

ŷ
d(y, ŷ) (H(x, fw(x), ŷ) − m(x, fw(x), ŷ, w))+

]
.(11.34)

The optimizations (11.33) and (11.34) yield very large vectors which drive any
nonzero margin to be arbitrarily large. The direction of the optimal vector for both
(11.33) and (11.34) is then given by the following:

w∗ = argmin
w

E〈x, y〉∼D
[d(y, fw(x))] . (11.35)

To convert this argument into a formal proof one needs to give an explicit schedule
for λ as a function of sample size and show that this schedule corresponds to taking
m to infinity holding λ′ constant and then taking λ′ to zero. It should suffice to
consider the “schedule” obtained by optimizing λ with holdout data.

11.5 A Generalization of Theorem 62

We define two steps of increasing generality — a generalization to allow for
kernels and a second generalization that generalizes the notion of part. The first
generalization replaces (11.6) by the following where Ψ is a feature map on parts.

Φ(x, y) =
∑

p∈P(x)

c(p, 〈x, y〉)Ψ(p) (11.36)

This generalization is important when the parts themselves contain vectorial data.
For example, in speech recognition the observable state in an HMM is often taken
to be an acoustic feature vector. In (11.36) we have Ψ(p) ∈ �d where we allow
d = ∞ with the understanding that �∞ is the vector space of square summable
infinite sequences. For the d = ∞ case it is usually more convenient to work in a



11.5 A Generalization of Theorem 62 257

reproducing kernel Hilbert space (RKHS) defined by a kernel K, in which case the
decoder specified by weight function g is defined as follows:

fg(x) = argmax
ŷ∈Y(x)

∑
p∈P(x)

c(p, 〈x, ŷ〉)g(p). (11.37)

Formulation (11.37) is equivalent to (11.36) with d = ∞ and we will work only with
(11.36).

We now generalize the notion of a part. As before we now assume sets X and
Y with a distribution D on X × Y with the property that for all x ∈ X the
marginal P (·|x) has a countable support Y(x). We also assume a feature map Φ
with Φ(x, y) ∈ �d where, as above, we allow d = ∞. But rather than assume parts,
we assume that for each x ∈ X we are given a set of �(x) independent vectors B(x)
such that for all ŷ ∈ Y(x) we have that Φ(x, ŷ) is in the linear span of B(x). The
vectors Ψ(p) in (11.36) form such a basis. We let Ψi(x) denote the ith vector in the
basis B(x). We can then generalize (11.36) to the following:

Φ(x, y) =
�(x)∑
i=1

γi(x, y)Ψi(x). (11.38)

The difference between (11.36) and (11.38) is actually quite minor. In (11.38) we
have that γi(x, y) is any real number while in (11.36) we have that c(p, 〈x, y〉) must
be a count — a nonnegative integer. We now assume two quantities � and R such
that for all x ∈ X we have the following:

�(x) ≤ � (11.39)

||Ψi(x)|| ≤ R. (11.40)

We now state the generalization of theorem 62.

Theorem 63 With probability at least 1− δ over the choice of the training data we
have that the following holds simultaneously for all weight vectors w.

L(Q(w), D) ≤ LH(w, S)
m

+
R2||w||2

m
+

√√√√R2||w||2 ln
(

2�m
R2||w||2

)
+ ln

(
m
δ

)
2(m − 1)

(11.41)

LH(w, S) =
m∑

i=1

max
ŷ∈Y(x)

d(yi, ŷ)I[m(xi, fw(xi), ŷ, w) ≤ H(xi, fw(xi), ŷ)](11.42)

H(x, y, ŷ) =
�(x)∑
i=1

|γi(x, ŷ) − γi(x, y)| (11.43)

The proof of this more general theorem is a straightforward generalization of the
proof of theorem 62 and is not given here.



258 Generalization Bounds and Consistency for Structured Labeling

11.6 Proofs of Theorems 61 and 62

All our proofs use the PAC-Bayesian theorem (McAllester, 2003a; Seeger, 2002;
Langford and Shawe-Taylor, 2002; McAllester, 2003b).

Lemma 64 (PAC-Bayesian Theorem) For sets X and Y, any probability dis-
tribution D on X× Y, any distortion function d on Y× Y with 0 ≤ d(y, ŷ) ≤ 1, any
decoder fw : X → Y parameterized by parameter vector w, and any prior probability
density P on the parameters w, we have that with probability at least 1 − δ over
the drawn of a sample S = 〈〈x1, y1〉, . . . , 〈xm, ym〉〉 from distribution D that the
following holds simultaneously for all densities Q on parameters:

L(Q, D) ≤ L(Q, S) +

√
KL(Q, P ) + ln m

δ

2(m − 1)
, (11.44)

where

L(Q, D) = E〈x, y〉∼D,w∼Q
[d(y, fw(x))] (11.45)

L(Q, S) =
1
m

m∑
i=1

Ew∼Q [d(yi, fw(xi))] . (11.46)

Quadratic regularization corresponds to a Gaussian prior. We consider the d = ∞
case of a Gaussian process prior as the limit of the finite d case as d increases without
bound. More specifically, we take the “prior” density to be a unit-variance isotropic
Gaussian on weight vectors defined as follows:

p(w) =
1
Z

exp
(
−||w||2

2

)
.

Theorems 61 and 62 govern the distortion of a stochastic decoder that stochastically
draws w′ from a distribution Q(w). We now define the density Q(w) as follows:

q(w′ | w) =
1
Z

exp
(−(1/2)||(w′ − αw)||2) . (11.47)

Here α is a scalar multiple which will be optimized later. The distribution Q(w) is a
unit-variance Gaussian centered at αw. If α is very large, then the vast majority of
vectors drawn from Q(w) will be essentially in the same direction as w. So by tuning
α we can tune the degree to which Q(w) is concentrated on vectors pointing in the
same direction as w. The KL divergence from Q to P can be solved analytically as
follows:

KL (Q(w) || P ) =
α2||w||2

2
. (11.48)



11.6 Proofs of Theorems 61 and 62 259

To apply the PAC-Bayesian theorem it remains only to analyze the training loss
L(Q(w), S). In analyzing the training loss we can consider each training point
〈xi, yi〉 independently.

L(Q, S) =
1
m

m∑
i=1

Li (11.49)

Li = Ew′∼Q(w) [d(yi, fw′(xi))] (11.50)

In analyzing Li we have that fw′(xi) is a random variable based on the random
draw of w′. The difference between theorem 61 and theorem 62 involves a different
way of analyzing the random variable fw′(xi). For theorem 61 we use the following
lemma.

Lemma 65 For s and r as defined at the start of section 11.2 and α defined by

α = s

√
8 ln

(
rm

||w||2
)

,

we have that with probability at least 1− ||w||2
m over the selection of w′ the following

holds:

fw′(xi) ∈ {ŷ : m(xi, fw(xi), ŷ, w) ≤ 1}
Proof Let ŷi abbreviate fw(xi). We first note that by a union bound over the
elements of Y(xi) it suffices to show that for any given ŷ with m(xi, ŷi, ŷ, w) ≥ 1,
the probability that fw′(xi) = ŷ is at most ||w||2/(rm). Consider a fixed ŷ ∈ Y(xi)
with m(xi, ŷi, ŷ, w) ≥ 1. We analyze the probability that the choice of w′ overcomes
the margin and causes ŷ to have a better score than ŷi. We first note the following
for any vector Ψ ∈ Rd with ||Ψ|| = 1 and any ε ≥ 0.

Pw′∼Q(w) [(αw − w′) · Ψ ≥ ε] ≤ exp
(−ε2

2

)
(11.51)

For Δ(xi, ŷi, ŷ) = Φ(xi, ŷi) − Φ(xi, ŷ) we then have the following:

m(xi, ŷi, ŷ, w) = Δ(xi, ŷi, ŷ) · w
||Δ(xi, ŷi, ŷ)|| ≤ 2s.

Inserting Δ(xi, ŷi, ŷ)/||Δ(xi, ŷi, ŷ|| into (11.51) yields the following:

Pw′∼Q(w) [m(xi, ŷi, ŷ, w′) ≤ αm(xi, ŷi, ŷ, w) − ε||Δ(xi, ŷi, ŷ)|| ] ≤ exp
(−ε2

2

)

Pw′∼Q(w) [m(xi, ŷi, ŷ, w′) ≤ α − ε||Δ(xi, ŷi, ŷ)|| ] ≤ exp
(−ε2

2

)
.



260 Generalization Bounds and Consistency for Structured Labeling

Setting ε equal to α/||Δ(xi, ŷi, ŷ|| we get the following:

Pw′∼Q(w) [m(xi, ŷi, ŷ, w′) ≤ 0] ≤ exp
( −α2

2||Δ(xi, ŷi, ŷ)||2
)

Pw′∼Q(w) [fw′(xi) = ŷ)] ≤ exp
( −α2

2||Δ(xi, ŷi, ŷ)||2
)

≤ exp
(−α2

8s2

)
.

Setting α as in the statement of the lemma finishes the proof.

Theorem 61 now follows from the PAC-Bayesian theorem, (11.48), and lemma 65.
Theorem 62 follows from the PAC-Bayesian theorem, (11.48), and the following
lemma which is similar in form to lemma 65.

Lemma 66 For s and � as defined at the start of section 11.2 and α defined by

α =

√
2 ln

(
2�m

||w||2
)

,

we have that with probability at least 1− ||w||2
m over the selection of w′ the following

holds.

fw′(xi) ∈ {ŷ : m(xi, fw(xi), ŷ, w) ≤ H(xi, fw(xi), ŷ, w)} (11.52)

Proof Again let ŷi denote fw(xi). First we note that for any p ∈ P(xi) we have
the following:

Pw′∼Q(w)

[|w′
p − αwp| ≥ ε

] ≤ 2 exp
(−ε2

2

)
. (11.53)

Setting ε to α, for the above value of α, gives the following:

Pw′∼Q(w)

[|w′
p − αwp| ≥ α

] ≤ ||w||2
�m

. (11.54)

Now taking a union bound over the elements of P(xi) we get that with probability
1 − ||w||2

m the following holds simultaneously for all p ∈ P(xi):

|w′
p − αwp| ≤ α. (11.55)



11.7 Conclusion 261

Now assume that (11.55) holds for all p ∈ P(xi). Consider ŷ such that m(xi, ŷi, ŷ, w) >

H(xi, ŷi, ŷ). Let Δ(xi, ŷi, ŷ) denote Φ(xi, ŷi)−Φ(xi, ŷ). We now have the following:

m(xi, ŷi, ŷ, w′) (11.56)

= m(xi, ŷi, ŷ, αw + (w′ − αw)) (11.57)

= αm(xi, ŷi, ŷ, w) − Δ(xi, ŷi, ŷ) · (αw − w′) (11.58)

> αH(xi, ŷi, ŷ) − Δ(xi, ŷi, ŷ) · (αw − w′) (11.59)

≥ αH(xi, ŷi, ŷ) −
∑

p∈P(xi)

(c(p, 〈xi, ŷi〉) − c(p, 〈xi, ŷ〉))|αwp − w′
p| (11.60)

≥ αH(xi, ŷi, ŷ) −
∑

p∈P(xi)

|c(p, 〈xi, ŷi〉) − c(p, 〈xi, ŷ〉)|α (11.61)

= 0. (11.62)

Since m(xi, ŷi, ŷ, w′) > 0 we have that fw′(xi) 
= ŷ and the lemma follows.

11.7 Conclusion

One of the goals of learning theory is to provide guidance in the construction
of learning algorithms. This chapter provides consistent generalization bounds for
learning decoders (structured output learning). These new bounds improve previous
bounds by achieving consistency for arbitrary distortion (loss) functions. These new
generalization bounds seem to provide insight into the various notions of hinge
loss that have been proposed for learning decoders and suggest that nonconvex
optimization may achieve superior, or at least consistent, generalization.

Acknowledgments

I thank Michael Collins, Ben Taskar, and Peter Bartlett for useful discussions
regarding this chapter.





III Structured Prediction Using Probabilistic Models





12 Kernel Conditional Graphical Models

Fernando Pérez-Cruz, Zoubin Ghahramani, and Massimiliano Pontil

In this chapter we propose a modification of conditional random fields (CRFs) type
algorithms that allows for solving large-scale structural classification problems. Our
approach consists in upper-bounding the CRF functional in order to decompose its
training into independent optimization problems per clique. Furthermore, we show
that each subproblem corresponds to solving a multiclass learning task in each
clique. This feature enlarges the applicability of these tools to large-scale structural
learning problems. Before introducing the conditional graphical model (CGM), as
we refer to this procedure, we review the family of CRF algorithms. We present
the best-known methods and standard generalizations of CRFs. The objective of
this introduction is to analyze from the same viewpoint the solutions proposed
in the literature and to compare their different features. We conclude the chapter
with a case study, in which we solve large-scale problems using CGM. We show the
advantages of using CGM compared to CRF-like algorithms.

12.1 Introduction

In the last decade machine learning tools have moved from heuristic-based ap-
proaches to more theory-based ones. There has been an explosion of work on the-
oretical and algorithmic developments, as well as on potential applications to real-
world problems. In particular, in the pattern recognition field, the appearance of
the support vector machines (SVMs) (Boser et al., 1992) blossomed into research
into new machine learning algorithms and they brought the kernel concept into
the machine learning community (Schölkopf and Smola, 2002). Nevertheless, most
real-life applications of pattern recognition cannot be readily cast as a binary (or
multiclass) learning problem, because they present an inherent structure that can-
not be exploited by general classification algorithms. Some of these applications,
such as speech or object recognition, have developed their own research field. They
use a mixture of machine learning tools and specific knowledge about each appli-
cation to provide meaningful solutions to these relevant problems. However, there



266 Kernel Conditional Graphical Models

are still many others that can benefit from a machine learning approach, if we are
capable of embedding their structure into a generic pattern recognition tool.

CRFs address this general problem as an extension of logistic regression for
multiclass problems. In their seminal work, Lafferty et al. (2001) assume that
the output for each sample can be expressed as a set of interdependent labels
and that this dependency can be captured by an undirected graphical model.
They exploit the graphical model structure to avoid the exponential growth of
the complexity with the number of labels in each output. There are many different
machine learning problems that can be represented by this setting (Dietterich,
2002) such as, e.g., optical character recognition, part-of-speech tagging, collective
webpage classification, mobile fraud detection, or pitch accent prediction. There
have been several extensions to CRFs using kernels (Altun et al., 2004a,b; Lafferty
et al., 2004), Bayesian learning (Qi et al., 2005), maximum-margin solution (Altun
et al., 2003b; Taskar et al., 2004b), and two-dimensional CRFs (Kumar and Hebert,
2004).

Although the use of an undirected graphical model makes these procedures
tractable, they are difficult to train, needing custom-made optimization tools, and
hence they cannot solve large-scale problems. In this chapter, we present (kernel)
CGMs, which simplify the training phase of CRF-like algorithms to solve large-
scale structural classification problems. This algorithmic proposal is based on the
same principle used for solving the binary classification problem, in which the 0–1
loss is replaced by a convex upper bound to ensure the optimal solution can be
easily computed. In our case, we replace the CRF-like algorithm loss by another
convex loss function that decouples the training of each clique in the undirected
graph. CGM optimization is solved independently per clique using any general
multiclassification algorithm. CGM complexity depends on the selected multiclass
learning tool, so it opens the possibility of solving large-scale problems thanks to
inexpensive multiclass tools, such as SVMs.

12.1.1 Outline of the Chapter

This chapter is divided into two main sections. In the first, we review CRF-like
algorithms and present them using the same notation. Studying the different
approaches for solving this fascinating machine learning problem from the same
perspective allows a broad comparison between these algorithms. This knowledge
helps us understand which algorithm is most suitable for each structural learning
problem. We have also made an effort to simplify the notation so the algorithms
are readily understood. In the second part, we introduce CGMs. We first show how
a simple transformation of the general CRF algorithm loss function can reduce
enormously the complexity of its training procedure and then examine in detail
the hinge loss case, helping us understand how the proposed procedure works. We
finish the chapter with a case study, showing the advantages of CGMs for solving
large-scale problems.



12.2 A Unifying Review 267

12.2 A Unifying Review

The objective of this section is twofold; first, to present all CRF-like algorithms
in a unifying framework in order to compare them and understand their different
properties; and second to introduce the proposed notation. For these algorithms
notation is an issue of its own, as it can be complicated and might be difficult to
follow.

We address the general supervised classification problem: given a labeled trainingsetup
dataset D = {(xn,yn)}N

n=1, predict the label y∗ for a new input x∗, where xn ∈ X

and the label yn ∈ Y = Y1 ×Y2× · · ·×YL in which each Y� = {1, 2, . . . , q}. L might
depend on each training example (Ln) and q might be different for each element in
Y (q�), but to keep the notation simple we use a unique L for all the samples and
a unique q for all the labels. This simplification is exclusively used for presentation
clarity and does not limit the applicability of any of the presented procedures for the
more general case. This problem can be seen as a huge multiclass learning problem
with qL possible labels, and it is general enough to contain as special cases standard
multiclass classification (L = 1) and binary classification (L = 1 and q = 2). But
we can tractably solve it, because there is some structure in Y that we can exploit
to simplify our machine learning problem.

We start from a probabilistic model that enables us to compute the posterior
probability for all the possible labelings: p(y∗|x∗, D). We are interested in finding
the labeling with highest probability: maxy∗{p(y∗|x∗, D)}. From the maximumMAP approach
a posteriori (MAP) approach to learning models, we make the connection with
regularized risk minimization, and solutions to the problem using nonprobabilistic
discriminative methods, such as SVMs.

We are given a set of features (φ(xn,yn)), in which we can solve the classification
problem using a linear combination of these features. The softmax function,

p(yn|xn,w) =
exp

(
w
φ(xn,yn)

)
∑
y

exp
(
w
φ(xn,y)

) , (12.1)

is a standard likelihood function for linear multiclassification problems. In (12.1),
we are using an exponential family model to represent the likelihood function, in
which a set of features are linearly combined to construct the probability density of
yn. The denominator is known as the partition function and it comprises the sum
over all qL possible labeling of y to ensure that p(yn|xn,w) adds up to 1. In this
equation we have used y as a compact running index to represent the sum over all
possible labeling, i.e.,

∑
y

exp
(
w
φ(xn,y)

)
=

q∑
i1=1

q∑
i2=1

· · ·
q∑

iL=1

exp
(
w
φ(xn,y)

)

with y = [i1, i2, . . . , iL]
.



268 Kernel Conditional Graphical Models

We can compute the posterior over the weights using Bayes rule:

p(w|Y,X) =
p(Y|w,X)p(w)

p(Y|X)
, (12.2)

where Y = [y1, . . . ,yN ], X = [x1, . . . ,xN ] and p(Y|w,X) =
∏

n p(yn|xn,w). The
prior over w is usually assumed to be an independent and identical zero-mean
Gaussian distribution for each component:

p(w) =
1√

(2πC)H
exp

(‖w‖2

2C

)
, (12.3)

where w ∈ RH .
The prediction for a new data point, integrating out the weights, isprediction

p(y∗|x∗, D) =
∫

p(y∗|x∗,w)p(w|Y,X)dw. (12.4)

The complexity of this problem grows exponentially in L –the length of the label
vector– and we need to simplify it to work with large values of q and/or L. The
complexity in (12.4) depends exponentially on L in many ways. First of all, we need
to solve this equation for all qL possible labeling of y∗. Second, the complexity of
p(y∗|x∗,w) depends on the partition function of (12.1), which is the sum of all qL

terms in y∗. Finally, to compute the posterior term p(w|Y,X) we need to evaluate
the likelihood of the N training examples and each one needs to evaluate a sum of qL

terms. Therefore the total complexity is O(NqL). Lafferty et al. (2001) propose the
use of an undirected acyclic graph over the labels. This graph makes it possible to
efficiently compute the denominator in (12.1) using a forward-backward algorithm.
Lafferty et al. (2001) define conditional random fields (CRFs) as follows:

Definition 67 (Conditional Random Field) Let G = (V, E) be a graph such
that yn is indexed by the vertices of G, then (xn,yn) is a conditional random field
in case, when conditioned on xn, the random variables yn = [yn1, yn2, . . . , ynL]


obey the Markov property with respect to the graph:

p(yn�|xn, yn�′ , ∀�′ 
= �) = p(yn�|xn, yn�′ , ∀�′ n∼ �), (12.5)

where �′ n∼ � indicates that node �′ is neighbor of node � in the graph.

Therefore, by the fundamental theorem of random fields, the distribution of yn

can be simplified to

p(yn|xn,w) ∝ exp

(
T∑

t=1

w

t φt(xn,ynt)

)
, (12.6)

where the sum over t runs over the T maximal cliques in the graph. Note that each
feature depends on the tth clique, which can be used to provide a different set of
features for each clique. For example, a feature can select a part of the input xn,
which is relevant for the labels in the tth clique.



12.2 A Unifying Review 269

yn1 yn2

yn1 yn2 yn3

yn3 yn4

t=1 t=2 t=3

l=1 l=2 l=3 l=4

yn

xn

Figure 12.1 We show a chain for a four-dimensional label yn = [yn1, yn2, yn3, yn4]
�. We

have labeled the nodes (yn�) and the cliques (ynt) from left to right, i.e. yn2 = [yn2, yn3]
�.

Therefore boldfaced yn2 indicates the second clique and italic yn2 indicates the second
node. We have also introduced xn in the graph to indicate that the labels are conditioned
on the input.

Before presenting the family of CRF algorithms, let us explicitly state the
notation that is being used throughout the chapter. The running indices n, �,notation
and t represent, respectively, the training samples, the nodes in the graph (the
components in each yn = [yn1, yn2, . . . yn�, . . . , ynL]
), and the cliques in the graph.
Therefore yn� is the �th entry in the nth training sample and ynt represents
the labels of the nth training sample associated with the tth clique, i.e. ynt =
[yn�1 , yn�2 , . . .]
 and its length depends on the number of variables in each clique
(typically 2). We also use as running indices y�, yt, and y to denote that a sum runs,
respectively, over all possible configurations in node �, all possible configurations
in the tth clique, and all possible labeling in the graph. Hence, for a node:∑
y�

(·) =
q∑

i=1

(·); for a clique with two nodes:
∑
yt

(·) =
q∑

i1=1

q∑
i2=1

(·) with yt = [i1, i2]
;

and for the whole graph:
∑
y

(·) =
q∑

i1=1

q∑
i2=1

· · ·
q∑

iL=1

(·) with y = [i1, i2, . . . , iL]
. The

subindex in y/y tells us what are we summing over, the configuration of nodes
(y�), cliques (yt), or graphs (y). We use boldface for y and yt, as they represent a
vector of labels, and italic for y�, as it represents a scalar value. Although using the
index to carry extra information might be misleading at first, it greatly simplifies
the notation in the chapter. For example, it allows understanding the differences
between yn (the output of the n training example) and yt (a running index over
all possible labels in the tth clique) without explicitly mentioning them. Also, we
use the standard matrix notation with bold uppercase for matrices, bold lowercase



270 Kernel Conditional Graphical Models

for column vectors, and italic for scalars. We have depicted in figure 12.1 a simple
acyclic graph over y to show a type of graphical model supported by CRFs and to
clarify the notation. In this graph each yn has four labels, yn = [yn1, yn2, yn3, yn4]
,
and each clique has two labels, yn1 = [yn1, yn2]
, . . ., yn3 = [yn3, yn4]
. We use
throughout the chapter boldface for the labels of the cliques and graphs and italic
for nodes.

Lafferty et al. (2001) propose to train the parameters of the CRF model by
maximum likelihood (ML). We present the MAP version, because it is easier to
relate to similar approaches and because we can readily obtain the ML solution
from the MAP functional by eliminating the prior term.MAP functional

wMAP = argmax
w

p(w|Y,X) = argmin
w

{− log (p(w)) − log (p(Y|w,X))}

= argmin
w

{
1
2
‖w‖2 + C

N∑
n=1

[
log

(∑
y

exp (o(xn,y))

)
− o(xn,yn)

]}
,

(12.7)

where

o(xn,y) =
T∑

t=1

w

t φt(xn,yt), (12.8)

and the sum over y runs over the qL possible labels. This sum can be efficiently
computed using a forward-backward algorithm if the proposed graph for the CRF
has no cycles; see Lafferty et al. (2001) for further details.

In (12.7) we readily see that the loss function compares the true output o(xn,yn)
with all the other outputs log

(∑
y exp (o(xn,y))

)
. This loss function is always

nonnegative log
(∑

y exp (o(xn,y))
)

> log (exp (o(xn,yn))) = o(xn,yn) and it is
close to zero iff o(xn,yn) � o(xn,y) ∀y 
= yn. The norm of w is a regularizer to
avoid overfitting. This functional is convex and can be solved using different tech-
niques (Wallach, 2002; Sha and Pereira, 2003; Dietterich et al., 2004; Vishwanathan
et al., 2006; Pal et al., 2006). The inference phase can be done using a Viterbi-like
algorithm over the labels in the graph.

Bayesian conditional random fields (B-CRFs) (Qi et al. (2005)) have been recently
proposed, in which the posterior over the weight (12.2) is approximated by arelated work
Gaussian using the Power expectation propagation (EP) algorithm (Minka and
Lafferty (2002)). Once the posterior has been estimated, predictions can be also
made using an EP algorithm that considers an independent distribution for each
label.

CRFs were initially proposed to solve the multilabel problem using a known set of
features (φ(xn,yn)). Its functional in (12.7) fulfils the conditions of the representer
theorem in Schölkopf and Smola (2002) (which is a generalization of the representer



12.2 A Unifying Review 271

theorem originally proposed by Kimeldorf and Wahba (1971)). Therefore we can
represent the optimal solution as a linear combination of the training examples:

∀t : wt =
N∑

n′=1

∑
y′

t

βt
n′,y′

t
φt(xn′ ,y′

t). (12.9)

If we define the kernel for each feature in each clique as κt(xn′ ,yn′t,xn,ynt) =
φ


t (xn′ ,yn′t)φt(xn,ynt), we can obtain the MAP estimate in terms of β’s by solving
(12.7). In this case the output of the classifier can be written as

o(xn,y) =
T∑

t=1

N∑
n′=1

∑
y′

t

βt
n′,y′

t
κt(xn′ ,y′

t,xn,yt), (12.10)

which is the standard kernel formulation for multiclass problems. o(xn,y) is com-
puted as a linear combination of the kernels involving all the inputs in the training
set with every possible labeling of the outputs.

The number of β grows as N
∏T

t=1 q|yt|, where |yt| indicates the number of
nodes in the tth clique. For a chain (or treelike structure) the number of β

is NTq2, which is linear in the number of training samples and cliques and
quadratic in the possible labelings in each node. If we had not used the graph
to simplify the dependencies between the labels, the output would be o(xn,y) =∑N

n′=1

∑
y′ βn′,y′κ(xn′ ,y′,xn,y) and the number of β’s would grow as NqL, which

increases exponentially with the length of the label vector.
Using the representer theorem and the kernel trick to solve CRFs was indepen-

dently proposed by Lafferty et al. (2004) and Altun et al. (2004b). We refer to the
general approach as kernel conditional random fields (K-CRFs). In both of these
papers the authors propose to simplify the solution by forcing (in a smart and con-
trolled way) that some β’s should be zero at the solution. The runtime complexity
to infer the label of a new input sequence does not grow with the number of train-
ing samples. Otherwise all β’s are nonzero due to the applied loss function (logistic
regression). Another option to get a sparse solution in terms of the β is to change
the loss function by a hinge loss, which is presented in the following section.

12.2.1 Support Vector Machines

Once we have described the optimization of CRFs as the minimization in (12.7),
the comparison with SVMs is straightforward, as we can substitute the logistic
regression loss function by any other, such as the hinge loss used by SVMs.

There are two alternative formulation for multiclass SVMs (M-SMVs): Westonmulticlass SVMs
and related
formulations

and Watkins (1998) and Crammer and Singer (2001). The difference lies in how they
penalized the training errors. In Weston and Watkins (1998), the M-SVM penalizes
any possible labeling that provides a larger output than the true labeling. Whereas
in Crammer and Singer (2001), the M-SVM only penalizes the largest incorrect
labeling, if it is greater than the true labeling. For this problem, in which the number



272 Kernel Conditional Graphical Models

of possible labelings grows exponentially, the formulation by Weston and Watkins
(1998) can result in an exponential growth in the number of nonzero support vectors
and therefore it is more advisable to use the formulation by Crammer and Singer
(2001), although both perform similarly well for most multiclass learning problems.

The M-SVM formulation by Crammer and Singer (2001) can be represented as
an unconstrained optimization problem:

min
w

{
1
2
‖w‖2 + C

N∑
n=1

[
max

y

(
Myn,y + o(xn,y) − o(xn,yn)

)]
+

}
,

where Myn,y is the margin that depends on the true labeling and the labeling that
it is being compared against and [u]+ = max(0, u) is the hinge loss. This functional
is equivalent to (12.7) replacing the logistic regression loss function by the SVM’s
hinge loss.

This formulation can be expressed in the more standard constrained optimization
setting, in which we need to optimize

min
w,ξn

{
1
2
‖w‖2 + C

N∑
n=1

ξn

}
(12.11)

subject to

o(xn,yn) − o(xn,y) ≥ Myn,y − ξn ∀n, ∀y, (12.12)

where Myn,yn = 0 to ensure that ξn ≥ 0. The number of constraints grows
exponentially in L (qL) but as there is only one ξn per training sample there are only
few active constraints for each sample, typically none or two. Thus the growth of the
complexity (nonzero Lagrange multipliers) is not exponential in L. This formulation
is equivalent to the hidden Markov support vector machine (HM-SVM) proposed
in (Altun et al., 2003b) with small variations on how the margin is imposed and
the slack variable ξn is penalized.

Finally, there has been an independent formulation of this solution, known as
maximum-margin Markov networks (M3Ns) by Taskar et al. (2004b), in which
the above formulation is simplified, not needing exponentially many Lagrange
multipliers to solve it. We believe the easiest way to present M3Ns is to work
from the Lagrangian of (12.11),

L(w, ξn, αn,y) =
1
2
‖w‖2 + C

N∑
n=1

ξn

−
N∑

n=1

∑
y

αn,y

( T∑
t=1

w

t φt(xn,ynt) −

T∑
t=1

w

t φt(xn,yt)

−
L∑

�=1

[1 − δ(yn�, y�)] + ξn

)
, (12.13)



12.2 A Unifying Review 273

in which we have substituted o(xn,y) by its definition in (12.8) and we have defined
the margin per node to be the Hamming distance between the true and the possible
label, as proposed by Taskar et al. (2004b). Now for each training sample and each
configuration in every clique, we define

βt
n,yt

=
∑
y∼yt

αn,y ∀n, ∀t, ∀yt, (12.14)

where the sum runs over all possible labeling of y with the labels in the tth clique
fixed at yt. And for each configuration in every node, we define

β�
n,y�

=
∑
y∼y�

αn,y ∀n, ∀�, ∀y�, (12.15)

where the sum runs over all possible labeling of y with the labels in the �th node
fixed at y�.

Thus we can rewrite the Lagrange functional (12.13) in terms of βt
n,yt

and β�
n,y�

as follows:

L(w, ξn, βt
n,yt

, β�
n,y�

) =
1
2
‖w‖2 + C

N∑
n=1

ξn

−
N∑

n=1

T∑
t=1

∑
yt

βt
n,yt

(
w


t φt(xn,ynt) − w

t φt(xn,yt) + ξn

)

+
N∑

n=1

L∑
�=1

∑
y�

β�
n,y�

[1 − δ(yn�, y�)], (12.16)

in which we can see that the sum over y (qL terms) has been replaced by sums
over yt (q2 terms) and over y� (q terms). We have as many βt

n,yt
as we did for

the K-CRFs and the β�
n,y�

are significantly fewer, reducing the exponentially many
Lagrange multipliers (αn,y) in (12.13).

Note that the β’s are not independent of each other and when solving the
Lagrange functional we have to impose an additional constraint, besides the β

being positive.

β�
n,y�

=
∑

yt∼y�

βt
n,yt

(12.17)

This constraint is necessary to ensure that the α can be recovered from the β

and that we are obtaining the same solution as in the HM-SVM. This constraint
must hold for all the samples, for all the nodes, for all the cliques that contain the
node �, and for all possible labelings in the node.

12.2.2 Summary

In this section we have presented the family of CRF algorithms. We have discussed
CRF (Lafferty et al., 2001), B-CRF (Qi et al., 2005), K-CRF (Altun et al., 2004a,b;



274 Kernel Conditional Graphical Models

Lafferty et al., 2004), HM-SVM (Altun et al., 2003b), and M3Ns (Taskar et al.,
2004b). In all these algorithms an exponentially growing structured multiclass
learning problem is simplified by imposing a graphical model over the output
space. This simplification allows solving the multiclassification tractably both in
the needed computational power and in the training sample size. In table 12.1,
we classify all these procedures according to their relevant properties. The main
difference between HM-SVM and M3Ns lies within the optimization procedure, asHM-SVM vs.

M3Ns explained in the previous section (it does not show up in the table).

Table 12.1 Comparisons of CFR-like algorithms

Probabilistic output Kernels Loss function

CRF No No Logistic regression

B-CRF Yes No Logistic regression

K-CRF No Yes Logistic regression

HM-SVM No Yes Hinge loss

M3Ns No Yes Hinge loss

12.3 Conditional Graphical Models

The CRF-like algorithms can be represented in a general form by the following
convex optimization problem:

min
w

1
2

T∑
t=1

||wt||2 + C

N∑
n=1

L

(
T∑

t=1

w

t φt(xn,yt)

)
. (12.18)

where L(·) represent the loss-function and we have replaced w by
w = [w1,w2, . . . ,wT ]
. The used of a logistic regression loss function leads us
to (12.7) and the use of the hinge loss to (12.11). Any other loss function gives rise
to other CRF-like algorithm, i.e. LS-CRF with a quadratic loss function.

In our proposal, CGMs, we upper-bound the CRF loss function to obtain an op-CGM main idea
timization functional that it is significantly easier to optimize and can be addressed
using any multiclass learning tool. The idea behind CGM is identical to the one used
to solve binary classification problems. In binary classification, the 0–1 loss, which
is nonconvex and nondifferentiable, is replaced by a convex loss function (square
loss, hinge loss, logistic regression, etc.) that upper-bounds the 0–1 loss, to ensure
that the paid penalty is at least as large as the 0–1 loss. The change of the loss
function allows solving a simpler optimization problem and we can concentrate on
other tasks, such as defining nonlinear classifiers or obtaining the relevant features
for classification.



12.3 Conditional Graphical Models 275

We propose to upper-bound (12.18), using Jensen’s inequality over the loss
function, to build the CGM optimization functional:

min
w

T∑
t=1

{
1
2
||wt||2 + C

N∑
n=1

L
(
w


t φt(xn,yt)
)}

. (12.19)

In (12.19), we have interchanged the sum over t with the loss function L(·) to
obtain an upper bound on (12.18), if the loss function is convex. Therefore, we are
penalizing errors at least as much as we did in the original formulation.

CGM function decomposes per clique, so each wt is trained independently using
the features and outputs corresponding to the tth clique. This is a major advantage
as we do not need to keep track of what is happening in the rest of the graph to
learn the parameters of each clique. Furthermore the optimization in each clique,

min
wt

1
2
||wt||2 + C

N∑
n=1

L
(
w


t φt(xn,yt)
)
, (12.20)

is equivalent to a regularized multiclass problem with q2 labels.1 We can apply any
multiclassification tool to train the model in each clique without needing a custom-
made procedure for defining the parameters of the model. CGM opens up the range
of problems in which structured machine learning can be applied, as it has a simple
training procedure and can be trained for large-scale problems. For example, if we
use a standard tool such as LibSVM (Lin, 1999), we could train the CGM with up
to several thousand training samples.

To infer the label of new inputs CGMs work as CRF-like algorithms do. For this
phase there is no difference between both procedures and the solution provided by
CGMs cannot be read independently for each clique because the outputs on the
same node shared by two cliques has to be the same. To infer an output a Viterbi-
like algorithm has to be run over the assumed graphical model to find the most
likely output sequence, as in any CRF-like algorithm because the outputs of each
clique have to agree on the labels they assign to each node. Therefore, we cannot
compute the output independently for each clique, as a given node (shared among
different cliques) can present a different labeling for each clique.

12.3.1 Support Vector Machines

In this section, we compare HM-SVMs and M3Ns with CGMs with hinge loss.
This comparison helps us draw some useful conclusions about the validity of the

1. If each clique only contains two labels.



276 Kernel Conditional Graphical Models

proposed algorithm and how the two approaches penalize errors in training. The
HM-SVM/M3N solves the following constrained optimization problem:

min
w,ξn

1
2

T∑
t=1

‖wt‖2 + C
N∑

n=1

ξn, (12.21)

subject to

∀n, ∀y :
T∑

t=1

w

t φt(xn,ynt) −

T∑
t=1

w

t φt(xn,yt) ≥

T∑
t=1

Myn,yt − ξn, (12.22)

and CGM with hinge loss solves

min
w,ξn

T∑
t=1

{
1
2
‖wt‖2 + C

N∑
n=1

ξnt

}
(12.23)

subject to

∀n, ∀t, ∀yt : w

t φt(xn,ynt) − w


t φt(xn,yt) ≥ Mynt,yt − ξnt. (12.24)

Both optimization functional (12.21) and (12.23) are identical with the definition
of the slacks, variables being the only difference. The main difference lies in the
linear constraints that are responsible for the obtained solution for both methods.

Comparing constraints (12.24) and (12.22), we can notice the reduction in the
number of constraints and therefore the needed runtime complexity during training.
Initially it might seem that when using (12.24), we are multiplying the number
of constraints by T , the number of cliques, as it divides (12.22) into T different
constraints (one per clique). But each one of the constraints in (12.24) only needs
to distinguish between q|yt| labels in each clique instead of the qL different labeling
of each sequence in (12.22). We end up having a significant reduction in the number
of constraints2 in our optimization formulation for CGMs in (12.23) and (12.24).

As we commented in the previous paragraph the constraint in (12.22) is the sum
over all cliques of the constraint in (12.24). Thus the constraint in (12.24) is more
restrictive, because it enforces the margin constraint clique by clique instead of
over the whole label sequence. This is due to the modification of the loss function
in (12.19), where we changed the loss in CRF-like algorithms by a convex upper
bound. This constraint allows us to be more restrictive and more precise, as we
only penalize the cliques that are in error. Let us illustrate these properties with
two examples.

Suppose a labeling y fulfills the margin requirement for the nth training example,
but individually one of its cliques does not. In the original M3N formulation, this
labeling is not penalized and the discriminative information about the clique, which
does not fulfill the margin requirement, is lost. But the formulation in (12.23) and

2. For a treelike structure the number of constraints drops from NqL to NTq2.



12.4 Experiments 277

(12.24) enforces the margin per clique, so it uses the information in the erroneously
classified clique to build the classifier, incorporating its discriminative information
into wt.

The complementary example is also relevant. Suppose a labeling y does not fulfill
the margin requirement because one of its cliques is completely flawed, althoughnature of support

vectors all the other cliques are correctly classified with enough margin. In M3N and the
other CRF methods, this flawed clique forces the whole sequence to be a support
vector and it is incorporated into the construction of the classifier of every clique,
although it only presents discriminative information for one clique. In the CGM
solution, this flawed clique is considered as an outlier and is incorporated into the
solution of the classifier in that clique. But it does not affect the classifiers in the
remaining cliques and it does not force the whole sequence to be a support vector
in every clique.

In a way we can see the formulation per clique to be more restrictive than the
formulation in (12.22), as we can learn locally in a clique from sequences that are
globally correctly classified. At the same time it is more precise, as it only needs to
learn from the cliques in which the errors occur and does not need to incorporate
the whole sequence if it does not bring discriminative information for every clique
in the graph.

To sum up, we started the motivation for the algorithm by arguing that solving
the optimization per clique would provide a huge computational cost reduction
and that we might be able to tradeoff some accuracy for getting this complexity
reduction. We have finally shown that we do not only get this computational
cost reduction but also a more sensible learning procedure that only incorporates
those cliques that bring discriminative information for the whole sequence and not
complete sequences that might only provide local discriminative information. We
believe this approach can provide higher discriminative power than the previous
proposed methods with a much simpler learning mechanism and with a significant
reduction in computational complexity. We test these claims experimentally in the
next section.

12.4 Experiments

We test the CGM with a handwritten word-recognition task. The dataset was
collected by Kassel (1995) and contains around 6877 words of varying length (4 to
15 letters) written by 150 subjects. Each word is divided into 16× 8 binary images
for each letter and its corresponding label. Our inputs xn will be a 16× 8L binary
image and its corresponding label vector yn will contain L elements. Thisdata set
was preprocessed by Taskar et al. (2004b) to test the M3N. The dataset was divided
into 10 groups for crossvalidation.

We test the CGM using the three graphical models shown in figure 12.2. The first
graph contains no edges and in it we will be training a multiclass model for each
letter independently. The second one is a chain, in which we have pairwise inter-



278 Kernel Conditional Graphical Models

y1 y3 y5

y2 y4

y1 y3 y5

y2 y4

Graph1 Graph2

y1 y3 y5

y2 y4

Graph3
Figure 12.2 We represent the three graphical models that will be used in the experi-
ments to test the CGM.

actions between letters, and the third takes into account three-letter interactions.
For this experiment, we will use the following feature vector:

φt(xn,ynt) = [0, . . . ,ψ(xnt),0, . . .]
, (12.25)

where φt(xn,ynt) contains q|yt| terms and the nonzero element is indexed by the
labeling ynt. In this feature, we only consider as inputs the images of the letters in
each clique. The kernel of φt(xn,ynt) is

κt(xn′ ,yn′t,xn,ynt) = δ(ynt = yn′t)k(xnt,xn′t),

where we have defined k(xnt,xn′t) = ψ
(xnt)ψ(xn′t) = exp(‖xnt − xn′t‖2/2/σ2).
To solve each one of the multiclass SVMs we have used the LibSVM code (Lin,
1999).

We have first solved this experiment using one group for training and the other
nine for validation, as was done in Taskar et al. (2004b), and we have repeated it
over the 10 different sets. This is not the standard crossvalidation setting. We have
set C = 5, Mynt,yt = 1, and σ =

√
d/16, where d is the dimension of xnt. We have

reported the letter and word probability of error in table 12.2.

Table 12.2 We show the mean error and its standard deviation for 10-fold crossvalida-
tion for the three graphs with one set for training and nine for validation

Graph1 Graph2 Graph3

Word 0.795±.0012 0.369±.0013 0.195±.0009

Letter 0.271±.0009 0.125±.0011 0.058±.0005

In Taskar et al. (2004b) the authors reported an error rate of around 13% in the
letter recognition task, for the same partition of the data used in this experiment.
This result is directly comparable to the letter recognition for Graph2, as they used a
chain in their experiments. The proposed CGM can be used with higher connectivity



12.4 Experiments 279

graphs, such as Graph3, because we can perform the training independently per
clique and the error rate is reduced by over 50%.

We have also computed the crossvalidation error in the standard setting, in which
nine groups are used for training and one for validation, to show that we can
work with larger training sets. The mean probability of error of letter and word
recognition is reported in table 12.3. For this setting Graph3 is still better than

Table 12.3 We show the mean error and its standard deviation for 10-fold crossvalida-
tion for the three graphs with nine set for training and one for validation

Graph1 Graph2 Graph3

Word 0.528±.0037 0.133±.0015 0.128±.0019

Letter 0.126±.0009 0.031±.0003 0.027±.0004

Graph2, but there the difference is not as significant as it was for shorter training
sequences.

The performances of Graph2 and Graph3 in the above experiments were signifi-
cantly higher than those of Graph1, because they incorporate some error-correcting
capabilities, as not all the transitions in the graph are allowed and the different
cliques have to agree on the predicted label in the nodes they share. But if we look
at the performance clique by clique (individual decisions), Graph1 presents a lower
error rate as its learning problem is much simpler. It only needs to distinguish be-
tween q labels, instead of q2 or q3, and the training set has the same number of
entries with lower input dimension. We propose the following feature to incorporate
the individual decisions in Graph1 with the error-correcting capabilities provided
by graphs with higher connectivity among their nodes. We will train Graph2 using
the following feature vector:

φt(xn,ynt) = [0, . . . ,ψ(xnt1), . . . | 0, . . . ,ψ(xnt2), . . .]

,

which has 2q2 elements, twice as many entries as the feature defined in (12.25). The
positions of ψ(xnt1) and ψ(xnt2 ) are indexed by ynt. The vectors xnt1 and xnt2

are, respectively, the images of the first and second letter in the tth clique.
For this feature, we can describe the weight vector as

wt = [wt1 | wt2] = [wt11 , . . . ,wt1q2 | wt21 , . . . ,wt2q2 .]

In each wt1 there are q2 terms, but in the corresponding part of the feature vector,
we will only deal with the image of a letter (q different values). As the same letter
can be placed in different positions by the labeling ynt, we will clamp together the
wt1s (and wt2s) that multiply the image of the same letter, so we can have a higher
performance, as each weight vector will be trained with more training examples
(all the letters in each node). But the feature vector will still keep the information
about which couple of letters are allowed in each clique. The kernel for this feature



280 Kernel Conditional Graphical Models

will be κt(xn′ ,yn′t,xn,ynt) = δ(ynt = yn′t)[k(xnt1 ,xn′t1) + k(xnt2 ,xn′t2)], where
k(·, ·) is defined as above.

We have computed the crossvalidation error for this feature using the previously
defined sets. When a single set is used for training the mean letter recognition
error and standard deviation are 0.097±.0006 (for words: 0.327±.0012). And when
we used nine sets for training and one for validation, the performance results are
0.025±.0003 (for words: 0.120±.0019). We can see that these results provide lower
error rates than the ones reported in tables 12.2 and 12.3 for Graph1 and Graph2,
because we incorporate the error-correcting capabilities of Graph2 and the more
precise performance in each individual decision. This feature vector can be also
extended to Graph3.

12.5 Conclusions and Further Work

In this chapter, we have presented a unified framework that covers the most relevant
proposals to solve the multilabel classification problem using graphical models
to reduce the exponentially growing complexity with the label length. We have
presented a compact notation that can be used to represent CRFs (Lafferty et al.,
2001), Bayesian CRFs (Qi et al., 2005), K-CRFs (Altun et al., 2004a,b; Lafferty
et al., 2004) and M3Ns (Altun et al., 2003b; Taskar et al., 2004b). This notation is
simpler than most of the notation used in those papers, and allows comparison and
understanding of their similar properties. There is a different approach (Weston
et al., 2002), which uses a kernel over the labels to deal with the complexity of the
addressed problem. Although, we have not studied the connection of our framework
with this method, as we end up using a kernel over the inputs and labels (12.10),
we believe that connection can be made and it is left for further work.

In the second part of the chapter, based on the presented framework, we have
proposed a new learning algorithm to solve the multilabel problem. The CGM can
be solved independently per clique, which is its main difference with the algorithms
proposed in the literature. Therefore the CGM is much simpler to solve, so we can
use much larger training datasets and it can be applied over more complex graphs.
We have also argued, and shown experimentally, that this training per clique is more
precise than the training of the sequences as a whole. Because the classification of
a new example is based on the individual decisions of each clique (then combined
with the graph to ensure the solution is consistent), if we use all the discriminative
information to train each clique we will be able to provide much more accurate
answers when we predict the labels of new samples. We have left for further work
the connection between the CGMs and the probabilistic approaches for solving the
multilabel problem.



12.5 Conclusions and Further Work 281

Acknowledgments

Fernando Pérez-Cruz is supported by the Spanish Ministry of Education postdoc-
toral fellowship EX2004-0698.





13 Density Estimation of Structured Outputs

in Reproducing Kernel Hilbert Spaces

Yasemin Altun and Alex Smola

In this chapter we study the problem of estimating conditional probability distri-
butions for structured output prediction tasks in reproducing kernel Hilbert spaces
(RKHSs). More specifically, we prove decomposition results for undirected graphi-
cal models, give constructions for kernels, and show connections to Gaussian pro-
cess classification. Finally we present efficient means of solving the optimization
problem and apply this to label sequence learning. Experiments on named entity
recognition and pitch accent prediction tasks demonstrate the competitiveness of
our approach.

13.1 Introduction

The benefits of a framework for designing flexible and powerful input represen-
tations for machine learning problems has been demonstrated by the success of
kernel-based methods in binary and multiclass classification as well as regression.
However, many real-world prediction problems also involve complex output spaces,
with possible dependencies between multiple output variables. Markov chain depen-
dency structure is a prominent example of this kind and is ubiquitous in natural
language processing (e.g. part-of-speech tagging, shallow parsing), speech recogni-
tion (e. g. pitch accent prediction), information retrieval (e. g. named entity recog-
nition), and computational biology (e. g. protein secondary structure prediction).
More complicated dependency structures such as hierarchies and parse trees are
also commonplace.

A well-known approach for solving these problems is conditional random fields
(CRFs), proposed by Lafferty et al. (2001), an extension of logistic regression
that takes dependencies between random variables in a graph (e. g. neighboring
labels along a chain) into account. Related approaches include Punyakanok and
Roth (2000) and McCallum et al. (2000). More recently, other discriminative



284 Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

methods such as AdaBoost (Altun et al., 2002), perceptron learning (Collins,
2002), and support vector machines (SVMs) (Altun et al., 2003b; Taskar et al.,
2004b; Tsochantaridis et al., 2004) have been extended to learning the prediction
of structured objects.

In this chapter, which is an extension of our work in Altun et al. (2004a,b) and
is closely related to Lafferty et al. (2004), we study the problem of estimating con-
ditional probability distributions over structured outputs within a RKHS. Framing
this as a special case of inverse problems, we show that maximizing entropy with
respect to approximate moment-matching constraints in Banach spaces leads to
the maximum a posteriori estimation and exponential families. The space in which
the moments are defined and approximated specify a regularization of the con-
ditional log-likelihood of the sample. When this space is �2, we have a Gaussian
process over the structured input-output space. Then, one can construct and learn
in RKHS and, thereby overcome the limitations of (finite-dimensional) parametric
statistical models and achieve the flexibility of implicit data representations.

Our framework preserves the main strength of CRFs, namely their rigorous
probabilistic semantics, which is not the case for other discriminative methods such
as max-margin approaches. There are two important advantages of a probabilisticadvantages of a

probabilistic
model

model. First, it is very intuitive to incorporate prior knowledge within a probabilistic
framework. Second, in addition to predicting the best labels, one can compute
posterior label probabilities and thus derive confidence scores for predictions. This is
a valuable property, in particular for applications requiring a cascaded architecture
of classifiers. Confidence scores can be propagated to subsequent processing stages
or used to abstain on certain predictions. Another advantage over max-margin
methods for structured output prediction is its consistency with infinite samples.
Even though the performance of a learning method on small-sample problems
does not necessarily coincide with its performance on infinite samples, asymptotic
consistency analysis provides useful insights.

Performing density estimation via Gaussian processes over structured input-
output spaces faces serious tractability issues, since the space of parameters, al-
though finite, is exponential in the size of the structured object. We prove de-
composition results for Markov random fields (MRFs); which allows us to obtain
an optimization problem scaling polynomially with the size of the structure. This
leads to the derivation of an efficient estimation algorithm, for which we provide the
details for label sequence learning. We report experimental results on pitch accent
prediction and named-entity recognition.



13.2 Estimating Conditional Probability Distributions over Structured Outputs 285

13.2 Estimating Conditional Probability Distributions over Structured Outputs

13.2.1 General Setting

In this chapter, we are interested in the prediction of structured variables. The goal
is to learn a mapping h : X → Y from structured inputs to structured response
variables, where the inputs and response variables form a dependency structure.
There exists a cost function Δ : Y × Y → �, where Δ(y, ȳ) denotes the cost of
predicting ȳ instead of y. We restrict our attention to cost functions such that
Δ(y,y) = 0 and Δ(y, ȳ) > 0 for y 
= ȳ. This function is generally the standard 0-1
classification error for multiclass classification problems. However, in the structured
prediction problems, it can incorporate differences in the structure of y and ȳ, such
as Hamming loss of sequences or 1 − F1 score of parse trees.

Let us define Z as X×Y. We assume that there is a fixed but unknown distribution
P over Z according to which input/output pairs (x,y) are generated. If this
distribution was known, the optimal predictor, i. e. the Bayes decision rule, is givenoptimal predictor
by

hB(x) = argmin
y∈Y

∑
y′ �=y

p(y′|x)Δ(y′,y). (13.1)

In the special case of 0-1 loss, this is equivalent to hB(x) = argmaxy∈Y p(y|x).
Then, one can reduce the (structured) prediction problem to one of estimating the
conditional distribution p(y|x) and performing the argmin operation as in (13.1).

13.2.2 Maximum Entropy with Approximate Matching

In supervised learning, we are given a sample S of � input-output pairs S =
{(x1,y1), . . . , (x�,y�)}. There exists a set of measurements relevant for the learning
task, commonly referred as moment or feature functions, φ : Z → B, where B is
a Banach space in the most general form of the problem. The goal is to find the
conditional probability distribution p over Y|X such that the expectation of the
features with respect to p(y|x) for all x ∈ Sx (Ey∼p[φ(x,y)|x]) matches their
empirical values (φ̃), Ey∼p[φ(x,y)|x] = φ̃, Here Sx denotes the set of � inputs in
S, {xi} for i = 1, . . . , �. The empirical values of the features are generally derived
from the sample by

φ̃ =
1
�

�∑
i=1

φ(xi,yi). (13.2)

This estimation task is an instance of a more general problem, namely the inverse
problem, where the goal is to find x satisfying Ax = b. Inverse problems are known
to be ill-formed and are stabilized by imposing a regularity or smoothness measure,
such as the entropy of the distribution (Ruderman and Bialek, 1994). Then, the
estimation problem can be formulated as finding the maximum entropy distribution



286 Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

p (equivalently minimizing the relative entropy of p with respect to a constant
distribution q) such that it satisfies the moment-matching constraints,inference as

maximum
entropy problem min

p
KL(p‖q) subject to Ey∼p[φ(x,y)|x] = φ̃.

In general, it is very difficult to satisfy the moment-matching constraints exactly,
especially when the number of features can be very large (and possibly infinite).

For example, the solution may lie on the boundary of a feasibility region. Moreover,
this can lead to severe overfitting of the data. In order to overcome this obstacle,
the constraints can be relaxed to approximate matches such that the difference
between the expected and the empirical values are small with respect to the norm
of the space B, denoted by ‖.‖B. An adaptation of theorem 8 of Altun and Smola
(2006) gives the solution of this estimation problem and establishes the duality
connection between the KL divergence minimization with approximate moment-
matching constraints and the maximum a posteriori (MAP) estimation.

Theorem 68 (Approximate KL Minimization) Let p, q be conditional proba-
bility distributions over Y|X and S be a sample of size �. Moreover, φ : Z → B is a
mapping from Z to a Banach space B, φ̃ ∈ B and B∗ is the dual space of B. Then,
for any ε ≥ 0 the problem

min
p

KL(p‖q) subject to
∥∥∥Ey∼p[φ(x,y)|x] − φ̃

∥∥∥
B
≤ ε

has a solution of the form

pw(y|x) = q(y|x) exp (〈φ(x,y),w〉 − g(w;x)) , (13.3)

where w ∈ B∗ and g is the log-partition function guaranteeing p to be a probability
distribution. Moreover, the optimal value of w is found as the solution of

min
w

−
〈
φ̃,w

〉
+

1
�

∑
x∈Sx

g(w;x) + ε ‖w‖B∗ . (13.4)

Equivalently, for every feasible ε, there exists a Λ ≥ 0 such that the minimum of
−
〈
φ̃,w

〉
+ 1

�

∑
x∈Sx

g(w;x) + Λ
2 ‖w‖2

B∗ minimizes (13.4).

Note that the well-known connection between conditional maximum entropy
optimization (MaxEnt) with exact moment-matching constraints and conditional
maximum likelihood estimation is a special case of theorem 68 with ε = 0 . Thus,
relaxing the constraints corresponds to a regularization in the dual problem scaled
by the relaxation parameter. Since the dual (13.4) is an unconstrained optimization
problem (over a possibly finite domain), it is common to solve the density estimation
problem by performing the optimization in the dual space.



13.2 Estimating Conditional Probability Distributions over Structured Outputs 287

13.2.3 Exponential Families

As we have seen in (13.3), exponential families arise from the optimization of KL
divergence with respect to (approximate) moment-matching constraints. Here w is
called the canonical or natural parameter, φ(x,y) is the corresponding vector of
sufficient statistics, and g(w;x) is the log-partition function or moment-generating
function.log-partition

function
g(w;x) := log

∑
y∈Y

exp(〈φ(x,y),w〉)q(y|x) . (13.5)

The log-partition function plays an important role in estimating probability distri-
butions. In particular, it can be used to compute the moments of the distribution;
see e.g. Lauritzen (1996).

Proposition 69 g(w;x) is a convex C∞ function. Moreover, the derivatives of g

generate the corresponding moments of φ

∂wg(w;x) = Ey|x∼pw
[φ(x,y)] Mean (13.6a)

∂2
wg(w;x) = Covy|x∼pw

[φ(x,y)] Covariance . (13.6b)

It is important to use exponential families with rich sufficient statistics. One can
show that if φ(z) for z = (x,y) ∈ Z is powerful enough, exponential families becomeexponential

families as
universal density
estimators

universal density estimators, in the sense that the set of all functions of the form
〈w, φ(.)〉 is dense in the set of all bounded continous functions defined on C0(Z).
This is advantageous, as it can open the domain of nonparametric estimation to
an area of statistics which so far was restricted to parametric distributions. In
proposition 70, we show that exponential families can in fact be dense over C0(Z),
if they are defined with respect to a universal kernel. More precisely, we restrict
the Banach space B to be a RKHS with the kernel function k and define a linear
discriminant function F : Z → � as

F (.) = 〈φ(.),w〉 , (13.7)

for F ∈ H such that

F (z) = 〈F, k(z, ·)〉H , (13.8)

where φ is the feature map induced by k. We can now represent p as a function of
w and F interchangeably.



288 Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

Proposition 70 (Dense Densities) Let Z be a measurable set with respect to
the Lebesgue measure. Moreover, let H be universal and P be the space of C0(Z)
densities with ‖p‖∞ < ∞. Then the class of exponential family densities,

PH := {pF |pF (z) : F exp (F (z) − g(F )) and F ∈ H} , (13.9)

where g(F ) := log
∫

Z

exp (F (z)) dz,

is dense in P. Moreover, for any p ∈ P with ‖ log p‖∞ ≤ C and ε < 1 we have

‖log p − F‖∞ ≤ ε implies D(p‖pF ) ≤ 2ε and ‖p − pF ‖∞ ≤ 4εeC. (13.10)

Proof We prove the second part first: Let ε > 0. If ‖log p‖∞ ≤ C, we can find
some F ∈ H such that ‖F − log p‖∞ ≤ ε. By the definition of g(F ) it follows that

|g(F )| =

∣∣∣∣∣log
∑

z

exp(F (z))dz

∣∣∣∣∣ =
∣∣∣∣log p(z)

∫
z

exp(F (z) − log p(z))dz

∣∣∣∣ ≤ ε. (13.11)

Since log pF = F − g(F ) have ‖log p − log pF ‖∞ ≤ 2ε. This immediately shows the
first part of (13.10). For the second part, all we need to do is exponentiate the
bound and use the fact that log p is bounded by C.

To see the general result, pick some δ < ε/Z with ε < 1, where Z is the
measure of Z. Moreover, let pδ(z) := max(p(z), δ). Finally, pick F such that
‖F − log pδ‖ ≤ ε. By the same reasoning as in (13.11) it follows that |g(F )| ≤ 2ε.
Hence ‖p − pF ‖ ≤ 4ε ‖p‖∞. Since ε was arbitrary, this proves the claim.

Note that a similar result can be obtained whenever Z is endowed with a measure ν,
if we state our results for densities whose Radon-Nikodym derivatives with respect
to ν satisfy the properties above. Moreover, similar results apply for the conditional
densities, as long as log p(y|x) is a well-behaved function of x and the kernel k is a
universal kernel in y for every x.

Many RKHS H are dense in C0(X). See Steinwart (2001) for examples and a
proof. This shows that choosing a density from a suitable exponential family is not
restrictive in terms of approximation quality.

13.2.4 Objective Function and Relationship to Gaussian Processes

Theorem 68 establishes that, when B is an RKHS, our density estimation problem
is given bydensity

estimation via
Gaussian
processes

min
w

−
〈
φ̃,w

〉
+

1
�

�∑
i=1

g(w;xi) +
Λ
2
‖w‖2

2 .

Thus, we perform a regularized maximum likelihood estimate, where a normal
distribution is assumed as a prior on w. It follows from Williams (1999) that a
normal prior on w corresponds to a Gaussian process on the collection of random
variables F (z) with zero mean and a covariance function k, where k is the kernel



13.2 Estimating Conditional Probability Distributions over Structured Outputs 289

associated with RKHS H and F is defined as in (13.7). Using (13.2), (13.5), (13.7),
and (13.8), we can rewrite the optimization as

F ∗ = argmin
F∈H

1
�

�∑
i=1

⎛
⎝−F (xi,yi) + log

∑
y∈Y

exp(F (xi,y))

⎞
⎠ +

Λ
2
‖F‖2

H . (13.12)

Equivalently, F ∗ maximizes

p(F |S) ∝ p(F )
∏

i

p(yi|xi; F ), (13.13)

where p(F ) ∝ exp(Λ
2 ‖F‖2

H). In Gaussian process classification, (13.13) is approx-
imated by a Gaussian and F ∗ is the mode of the Gaussian approximating p(F |S)
by a second-order Taylor expansion of the log-posterior via Laplace approximation.
Given F ∗, one can approximate the curvature C at the mode and use this normal
distribution p(F |S) ≈ N(F ∗,C) to obtain the predictive distribution of a new input
x via

p(y|S,x) =
∫

p(y|x, F )p(F |S)dF.

Unfortunately, the Bayesian approach faces tractability problems with even mod-
erate datasets during training. Exact inference for structured output prediction is
intractable (Qi et al., 2005) and even the approximate inference is very expensive.
Also, motivated by the maximum entropy principle, we use the MAP estimate F ∗

to obtain the predictive distribution p(y|S,x) ≈ p(y|F ∗(x, .)).

13.2.5 Subspace Represention

The representer theorem (Kimeldorf and Wahba, 1970) guarantees that F ∗, the
optimizer of (13.12), is of the form

F ∗(x,y) =
�∑

i=1

∑
ȳ∈Y

α(xi,ȳ)k((x,y), (xi, ȳ)), (13.14)

with suitably chosen coefficients α. Note that there is one α(i,ȳ) coefficient for every
training example xi and its possible labeling ȳ, due to the fact that F is defined
over X × Y and the log-partition function sums over all ȳ ∈ Y for each xi ∈ S. The
feature map φ over Z is induced by the kernel function k via

k((x,y), (x̄, ȳ)) = 〈φ(x,y), φ(x̄, ȳ)〉 .

Thus, in complete analogy to Gaussian process classification and other kernel meth-
ods, we can perform the estimation and prediction by computing the inner products
between sufficient statistics without the need for evaluating φ(x,y) explicitly.

Although the application of the representer theorem reduces the optimization
problem from an infinite-dimensional space (H) to a finite-dimensional space scaling



290 Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

with the size of the sample and the size of Y (��|Y|), this formulation suffers from
scalability issues. This is because in the structured output prediction problems, |Y|
is very large, scaling exponentially in the size of the structure. However, if there
is a decomposition of the kernel into substructures, then the dimensionality canscalability
be reduced further. We now show that such a decomposition exists when (x,y)
represents a Markov random field.

Let G be an undirected graph, C be the set of maximal cliques of G, z be a
configuration of G, and zc be the restriction of z on the clique c ∈ C. The well-
known theorem of Hammersley and Clifford (1971), theorem 20, states that the
density over Z decomposes into potential functions defined on the maximal cliques
of G. Using this theorem, it is easy to show that the Gibbs form translates into a
simple decomposition of the kernel functions on MRFs.

Lemma 71 (Decomposition of Kernels on MRFs) For positive probability
density functions over an MRF Z on G, the kernel k(z, z̄) = 〈φ(z), φ(z̄)〉 satis-
fies

k(z, z̄) =
∑
c∈C

k(zc, z̄c). (13.15)

Proof We simply need to show that the sufficient statistics φ(z) satisfy a de-
composition over the cliques. From theorem 68 and theorem 20, we know that
F (z) = 〈φ(z),w〉 =

∑
c∈C ψc(zc;w) for all z ∈ Z and any w. Then, we can pick an

orthonormal basis of w, say ei, and rewrite

〈φ(z), ei〉 =
∑
c∈C

ηi
c(zc)

for some scalar functions ηi
c(zc). The key point is that ηi

c depends on z only via its
restriction on zc. Setting φc(zc) := (η1

c (zc), η2
c (zc), . . .) allows us to compute

〈φ(z),w〉 =

〈
φ(z),

∑
i

eiwi

〉
=
∑

i

wi 〈φ(z), ei〉 =
∑
c∈C

∑
i

wiη
i
c(zc).

Rearranging terms shows that φ decomposes into φ(z) = (φc1(zc1), . . . , φcn(zcn)).
Setting

k(zc, z̄c) = 〈φc(zc), φc(z̄c)〉 (13.16)

satisfies the claim. 1

1. Note that similar decomposition results can be achieved by selecting other basis
functions. This might lead to interaction across different cliques. However, one can reduce
such formulations to the decomposition presented in this lemma via rotating the basis
functions.



13.2 Estimating Conditional Probability Distributions over Structured Outputs 291

Time t − 2 t − 1 t t + 1 t + 2

X �������	x �������	x �������	x �������	x �������	x

Y �������	y �������	y �������	y �������	y �������	y

Figure 13.1 A time-invariant Markov chain with three types of cliques.

Many applications involve a family of graph structures such that some subsets of
cliques in these graphs share the same potential function. For instance, in the case
of Markov chains that are time invariant, there exist three types of cliques: x − x,
x − y, and y − y. Figure 13.1 shows these types of cliques where each clique share
the same potential function.

For such graphs, the decomposition in lemma 71 corresponds to k(z, z̄) =∑
c∈Cz

∑
c̄∈Cz̄

k(zc, z̄c̄), where Cz denotes the set of maximal cliques in z and
k(zc, z̄c̄) = 0 if c and c̄ are of different types. In order to simplify our future notation,
we define W as the set of all possible clique configurations for all cliques defined
over the set of Markov fields and θz

ω as the number of times the clique configuration
ω ∈ W occurs in z. Then,

k(z, z̄) =
∑

ω,ω̄∈W

θz
ωθz̄

ω̄k(ω, ω̄). (13.17)

We can now use this result to decompose the linear discriminant F given by
(13.8) into a linear discriminant function f : W → � over cliques by

Ff (z) =
∑
ω∈W

θz
ωf(ω), (13.18)

f(ω) = 〈f, k(ω, .)〉H . (13.19)

This gives us a new optimization problem with a subspace representation

f∗ = argmin
f∈H

1
�

�∑
i=1

⎛
⎝−Ff (xi,yi) + log

∑
y∈Y

exp(Ff (xi,y))

⎞
⎠+

Λ
2
‖f‖2

H , (13.20)

f∗(ω) =
∑

ω̄∈W(Sx)

γω̄k(ω, ω̄), (13.21)

where W(S) ⊆ W denotes the set of clique assignments with nonzero counts for
any (x,y) for all x ∈ Sx and all y ∈ Y. The subspace representation (13.21) holds
immediately through a simple variant of the representer theorem (Lafferty et al.,
2004; Altun et al., 2006) for any local loss function, where locality is defined as
follows:



292 Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

Definition 72 (Local Loss Function) A loss L is local if L(x,y, f) is deter-
mined by the value of f on the set W({x}), i.e., for f, g : W → � we have that if
f(p) = g(p) for all p ∈ W({x}) then L(x,y, f) = L(x,y, g).

Note that the log-loss in (13.20) is local due to the decomposition of kernels on
MRFs. This reduces the number of parameters from exponential in the size of the
structure (number of vertices for MRF) to linear in the number of cliques andimproved

scalability exponential in the number of vertices in the maximal cliques, which is generally
much smaller than the total number of vertices. In this chapter, we restrict our
focus to such MRFs. For instance, in the Markov chain example, let the length of
the chain be m and the number of possible label assignment for each vertex be n.
Then, the number of parameters is reduced from nm to mn + n2. Note that since
our goal is to estimate p(y|x), which is independent of x − x cliques, there are no
parameters for such cliques. In general, the set of cliques for which the restriction
of (x,y) is solely contained in x is irrelevant.

13.3 A Sparse Greedy Optimization

Using the representation of f∗ over the subspaces of Z, let us restate our optimiza-
tion in terms of the subspace parameters γ. Let K be the matrix of kernel values
of clique assignments k(ω, ω̄) for all ω, ω̄ ∈ W(Sx) and θz be the vector of clique
counts θz

ω in z for all ω ∈ W(Sx). Then, the linear discriminant F can be written
as

Fγ(x,y) = γT Kθ(x,y)

and the optimization problem is given by minimizing R(γ; S) with respect to γ

where

R(γ; S) =
1
�

�∑
i=1

⎛
⎝−γT Kθxi,yi

+ log
∑
y∈Y

exp(γT Kθxi,y)

⎞
⎠+

Λ
2

γT Kγ. (13.22)

We now have a polynomial-size convex optimization problem, whose Jacobian
and Hessian is

∂γR =
1
�

�∑
i=1

(
−Kθ(xi,yi) + KEy∼pγ

[
θ(xi,y)|

])
+ ΛKγ (13.23a)

∂2
γR =

1
�

�∑
i=1

Covy∼pγ [Kθ(xi,y)] + ΛK. (13.23b)



13.3 A Sparse Greedy Optimization 293

Note that each term of the Hessian is computed by

∂2
γω,γω̄

R =Λk(ω, ω̄)

+1/�

�∑
i=1

∑
ω′,ω′′

k(ω, ω′)k(ω̄, ω′′)
(
Ey

[
θ
(xi,y)
ω′ θ

(xi,y)
ω′′

]
− Ey

[
θ
(xi,y)
ω′

]
Ey

[
θ
(xi,y)
ω′′

])
,

which involves correlation between configuration assignments of different cliques
(Ey

[
θ
(xi,y)
ω′ θ

(xi,y)
ω′′

]
). Such correlations can be prohibitively expensive. For instance,

in the Markov chain example, the complexity of the computation of the Hessian
scales quadratically with the length of the chain. For this reason, we perform quasi-
Newton optimization which simply requires first-order derivatives. The expectations
can be computed using a dynamic programming algorithm in polynomial time with
the size of the structure. For example, the expectations in Markov chains can be
computed using the forward-backward algorithm whose complexity scales linearly
in the length of the chain.

While optimization over the complete γ space is attractive for small datasets,
the computation or the storage of K poses a serious problem when the dataset
is large. Also, classification of a new observation involves evaluating the kernel
function at all the cliques in W(Sx), which may be more than acceptable for many
applications. Hence, as in the case of standard Gaussian process classification, onesparse

approximation may have to find a method for sparse solutions in terms of the γ parameters to
speed up the training and prediction stages. We perform a sparse greedy subspace
approximation algorithm along the lines of the method presented by Zhang (2003).
In order to motivate this algorithm, we present the following lower bound on convex
functions which is simply a tangent of the convex function.

Lemma 73 (Lower Bound on Convex Functions) Let C : Θ → � be a convex
function on a vector space and θ0 ∈ Θ. We denote by g ∈ ∂θC(θ0) a vector in the
subdifferential of C at θ0. Then

min
θ∈Θ

C(θ) + ‖θ‖2 ≥ C(θ0) + ‖θ0‖2 − ‖g

2
+ θ0‖2. (13.24)

Proof Since C is convex, it follows that for any subdifferential g ∈ ∂θC(θ0) we
have C(θ) ≥ C(θ0) + g
δθ. Consequently,

min
θ∈Θ

C(θ) + ‖θ‖2 ≥ min
δθ∈Θ

C(θ0) + g
δθ + ‖θ0 + δθ‖2. (13.25)

The minimum is obtained for δθ = −(g
2 + θ0), which proves the claim.

This bound provides a valuable selection and stopping criterion for the inclusion of
subspaces during the greedy optimization process. Note in particular that g+2θ0 is
the gradient of the optimization problem in (13.24), hence we obtain a lower bound
on the objective function in terms of the L2 norm of the gradient. This means that
optimization over a subspace spanned by a parameter is only useful if the gradient
in the corresponding direction is large enough.



294 Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

Algorithm 13.1 Sparse greedy subspace approximation algorithm

Require: Training data (xi,yi)i=1:�; Maximum number of coordinates to be
selected, p; Number of coordinates to be selected at each iteration, d; Threshold
value for gradients, η.

1: K̂ ← [], γ̂ ← []
2: repeat
3: Pick i:
4: (1) Pick i where ω = argmaxω̄∈W(Sx) |∂γω̄R| and ω ∈ W({xi}), or
5: (2) Pick i ∈ {1, . . . , �} randomly
6: v ← argmax(d)ω∈W({xi}) |∂γωR| via (13.23a)
7: Optimize R wrt γv via dynamic programming.
8: Augment γ̂ = [γ̂; γv].
9: Augment K̂ ← [K̂;Keω] for all ω ∈ v
10: until ∂γR < η or p coordinates selected.

Let γ̂ denote the sparse linear combination of basis vectors in W(Sx) and K̂ de-
note the matrix of the kernel function evaluated at basis vectors in γ̂ and all W(Sx).
The sparse greedy subspace approximation (SGSA) algorithm (algorithm 13.1)
starts with an empty matrix K̂. At each iteration, it selects a training instance
xi and computes the gradients of the parameters associated with clique configura-
tions ω ∈ W({xi}) to select d coordinates with the largest absolute value of the
gradient vector of R over this subspace. 2 We denote those coordinates by v. Then,
R (which is defined via K̂ rather than K now) is optimized with respect to γv

using a quasi-Newton method. Finally, γ̂ is augmented with the selected subspaces
γ̂ = [γ̂′, γ′

v]′ and K̂ is augmented with the columns associated with the selected
subspaces, Keω for each selected ω ∈ v. This process is repeated until the gra-
dients vanish (i.e. they are smaller than a threshold value η) or some sparseness
level is achieved (i. e. a maximum number p of coordinates are selected). Notice
that the bottleneck of this method is the computation of the expectations of the
clique assignments, Ey

[
θ
(x,y)
ω

]
. Therefore, once the expectations are computed, it

is more efficient to include multiple coordinates rather than a single coordinate.
This number, denoted by d, is a parameter of the algorithm.

We consider two alternatives for choosing the training sequence at each iteration.
One method is to choose the input x whose set of cliques W({x}) has the highest-
magnitude gradients. Another option is simply to select a random input from the
sample.

When the input pattern is selected randomly, SGSA becomes an instance of
coordinate descent or the Gauss-Seidel method. This method is guaranteed toconvergence rate
converge to the unique minimum asymptotically irrespective of coordinate selection
sequence and the initial vector, if the optimization function is convex (Murty, 1998),

2. In algorithm 13.1, argmax(d)x f(x) selects the d number of x that maximize f(x).



13.4 Experiments: Sequence Labeling 295

which is the case for R. If we consider the convex sets of W(Sx), theorem 74 shows
that this algorithm has an O(1/k) convergence rate where k denotes the number of
iterations.

Theorem 74 (Zhang, 2003) Let Mγ be an upper bound on R′′(γ). Then, after k

iterations of the algorithm, we have

R(γ̂k; S) − R(γ∗; S) ≤ 2Mγ/(k + 2)

where γ∗ is the true minimizer of R(γ; S) and γ̂k is the estimate at the k iteration.

Note in the above analysis, it is assumed that ∀ω : γω ≥ 0. This is obviously a
special case of the SGSA algorithm. However, introducing the negative of all features
functions enables us to generalize the nonnegativity constraint and therefore apply
theorem 74.

One can establish better convergence rates if the best training sequence selection
criterion (line 4) is not prohibitively expensive. In this case, SGSA becomes an
approximation of the Gauss-Southwell method, which has been show to have afaster

convergence rates linear convergence rate of the form

R(γ̂k+1; S) − R(γ∗; S) ≤
(

1 − 1
η

)k

(R(γ̂k; S) − R(γ∗; S)),

where 1 < η < ∞ (Rätsch et al., 2002b). Here, η depends polynomially on |W(Sx)|.
It also has dependency on Mγ . In practice, we observed that the random selection
yields faster (approximate) convergence in terms of computational time. Therefore,
we report experiments with this selection criterion.

13.4 Experiments: Sequence Labeling

We proceed to experiments on a specific structured prediction task, namely sequence
labeling, and apply our method to two problems, pitch accent prediction and
named entity recognition. We consider the chain model in figure 13.1, whose clique
structure comprises (yt, yt+1) and (xt, yt) for all positions t in the sequence. Let Σ
be the set of labels for each vertex, n = |Σ| and δ be the Kronecker delta where
δ(a, b) is 1 if a = b, and 0 otherwise. The features corresponding to the label-input
cliques φ(xt, yt) is given by the concatenation of vectors (δ(yt, σ)φ(xt)) for all σ ∈ Σ:

φ(xt, yt) = (δ(yt, σ1)φ(xt)T , . . . , δ(yt, σn)φ(xt)T )T . (13.26)

This corresponds to the standard multiclass classification representation where
the weight vector is given by the concatenation of the weight vector of each
class w = (w′

1, . . . ,w
′
n)′. Eq. 13.26 is concatenated with a vector of 0’s whose

size is given by the number of features representing label-label dependencies. The
features corresponding to the label-label cliques φ(yt, yt+1) is given by the vector of



296 Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

(δ(yt, σ)δ(yt+1, σ̄)) for all σ, σ̄ ∈ Σ. This vector is concatenated to a 0 vector whose
size is given by the number of features representing input-label dependencies.

Then, via (13.16) the kernel function over the cliques is

k((xt, yt), (x̄t̄, ȳt̄)) = δ(yt, ȳt̄)k̄(φ(xt), φ(x̄t̄)),

k((yt, yt+1), (ȳt̄, ȳt̄+1) = δ(yt, ȳt̄)δ(yt+1, ȳt̄+1),

and clearly the kernel value of different clique types is 0, as discussed in sec-
tion 13.2.5. The exponential family represented by this kernel function gives us a
semiparametric MRF. Note, when k̄ is the linear kernel, we obtain the regularized
density estimation problem of CRFs (Lafferty et al., 2001).

The major computation in algorithm 13.1 is the computation of R and ∂γR,
which reduces to computing the expectations of clique configurations. For Markov
chains, this is done by the forward-backward algorithm, using the transition and the
observation matrices defined with respect to γ. The transition matrix is a |Σ| × |Σ|
matrix common for all input sequences. The observation matrix of x is a T × |Σ|
matrix where T is the length of x. Let us denote the configurations of cliques of type
label-input by Wx−y ⊂ W(Sx) and the configurations of cliques of type label-label
by Wy−y ⊂ W(Sx). Furthermore for ω ∈ Wx−y, let ωx and ωy be the input and
label configuration of the clique ω respectively. Then the two matrices are given by

T (σ, σ̄) =
∑

ω∈Wy−y

δ(ω, (σ, σ̄))γω (13.27a)

Ox(t, σ) =
∑

ω∈Wx−y

δ(ωy, σ)γωk̄(xt, ωx). (13.27b)

In sequence labeling, the cost function Δ is generally the Hamming loss. Then,
given a new observation sequence x, our goal is to find y∗ via (13.1)

y∗ = argmin
y

∑
y′ �=y

pγ(y′|x)
T∑

t=1

[[yt 
= y′
t]]

= argmax
y

∑
t

∑
y′:y′

t=yt

pγ(y′|x).

Thus, the best label sequence is the one with the highest marginal probability at
each position, which can be found by the forward-backward algorithm. Note that
this is different from finding the best label sequence with respect to p(.|x), which
is given by the Viterbi algorithm.

13.4.1 Pitch Accent Prediction

Pitch accent prediction, a subtask of speech recognition, is detecting the words
that are more prominent than others in an utterance. We model this problem as a
sequence annotation problem, where Σ = {±1}. We used switchboard corpus (God-
frey et al., 1992) to experimentally evaluate the described method by extracting 500



13.4 Experiments: Sequence Labeling 297

Figure 13.2 Test accuracy of pitch accent prediction task.

sentences from this corpus and running experiments using fivefold crossvalidation.
Features consist of probabilistic, acoustic, and textual information from the neigh-
borhood of the label over a window of size 5 (Gregory and Altun, 2004). We chose
polynomial kernel of different degrees for kernel over the inputs.

We compared the performance of CRFs and HM-SVMs (Altun et al., 2003b)
with the dense and sparse optimization of our approach according to their test
accuracy on pitch accent prediction. When performing experiments on the dense
optimization, we used polynomial kernels with different degrees (denoted with
DGPSX in figure 13.2 where X ∈ {1, 2, 3}is the degree of the polynomial kernel).
We used third-order polynomial kernel in HM-SVMs (denoted with SVM3 in
figure 13.2)

As expected, CRFs and DGPS1 performed very similarly. When second-order fea-
tures were incorporated implicitly using second-degree polynomial kernel (DGPS2),
the performance increases. Extracting second-order features explicitly results in a
12 million-dimensional feature space, where CRFs slow down dramatically. We
observed that third-order features do not provide significant improvement over
DGPS2. HM-SVM3 performs slightly worse than DGPS2.

To investigate how the sparse optimization (denoted by SGPS) affects the per-
formance, we report the test accuracy with respect to the sparseness of solution in
figure 13.3 using the random training sequence selection criteria where the number
of parameters selected at each iteration d is 3. 3 Sparseness is measured by the
percentage of the parameters selected. The straight line is the performance of the
dense optimization using second-degree polynomial kernel. Using 1% of the param-
eters, SGPS achieves 75% accuracy (1.48% less than the accuracy of the dense one).
When 7.8% of the parameters are selected, the accuracy is 76.18%, which is not
significantly different than the performance of the dense optimization (76.48%). We

3. The results reported here and below are obtained using a different set of features where
the performance of the dense algorithm is 76.48%.



298 Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

0 1 2 3 4 5 6 7 8
0.72

0.73

0.74

0.75

0.76

0.77

A
cc

ur
ac

y

Sparseness % 

DGPS2

SGPS2

Figure 13.3 Test accuracy of pitch accent prediction w.r.t. the sparseness of GPS
solution.

observed that these parameters were related to 6.2% of the observations along with
1.13 label pairs on average. Thus, during inference one needs to evaluate the kernel
function only at about 6% of the observations, which reduces the inference time
dramatically.

In order to experimentally verify how useful the predictive probabilities are as
confidence scores, we forced the classifier to abstain from predicting a label when
the probability of an individual label is lower than a threshold value. In figure 13.4,
we plot precision-recall values for different thresholds. We observed that the error
rate decreased 8.54%, when the classifier abstained on 14.93% of the test data. The
improvement on the error rate shows the validity of the probabilities generated by
the classifier.

13.4.2 Named Entity Recognition

Named entity recognition (NER), a subtask of information extraction, is finding
phrases containing names in a sentence. The individual labels consist of the begin-
ning and continuation of person, location, organization, and miscellaneous names
and nonnames. We used a Spanish newswire corpus, which was provided for the
special session of CoNLL 2002 on NER, to select 1000 sentences (21K words). As
features, we used the word and its spelling properties from a neighborhood of size
3.

The experimental setup was similar to the pitch accent prediction task. We com-
pared the performance of CRFs with and without the regularizer term (CRF-R,
CRF respectively) with the dense and sparse optimizations of our approach meth-
ods. We set the sparseness parameter of SGPS to 25%, i.e. p = 0.25|W(Sx)||Σ|2,



13.5 Conclusion 299

0.5 0.6 0.7 0.8 0.9 1
0.75

0.8

0.85

0.9

0.95

1

Threshold

Precision

Recall

Figure 13.4 Precision-recall curves for different threshold probabilities to abstain on
pitch accent prediction.

Table 13.1 Test error of named entity recognition task

DGPS1 DGPS2 SGPS2 CRF CRF-R

Error 4.58 4.39 4.48 4.92 4.56

where |Σ| = 9 and W(Sx) = 21K on average. The results are summarized in ta-
ble 13.1. Qualitatively, the behavior of the different optimization methods is compa-
rable to the pitch accent prediction task. Second-degree polynomial DGPS achieved
better performance than the other methods. SGPS with 25% sparseness achieves an
accuracy that is only 0.1% below DGPS. We observed that 19% of the observations
are selected along with 1.32 label pairs on average, which means that one needs to
compute only one fifth of the gram matrix. Note, CRF without the regularization
term corresponds to the maximum likelihood estimate, i. e. the estimation of the
probability distribution such that the expectation of the features matches exactly
the empirical values. The loss of accuracy in this case shows the importance of the
relaxation of the moment-matching constraints.

13.5 Conclusion

We presented a method for estimation of conditional probability distributions over
structured outputs within RKHSs. This approach is motivated through the well-
established maximum-entropy framework. It combines the advantages of the rig-



300 Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces

orous probabilistic semantics of CRFs and overcomes the curse-of-dimensionality
problem using kernels to construct and learn over RHKSs. The decomposition re-
sults for MRFs renders the problem tractable. Using this decomposition, we pre-
sented an efficient sparse approximate optimization algorithm. Empirical analysis
showed that our approach is competitive with the state-of-the-art methods on se-
quence labeling.

Cost sensitivity is an important aspect in the structured output prediction
problem. For cost functions which decompose into cliques, such as the Hamming loss
in the sequence applications, we proposed estimating the conditional distribution
and performing the cost-sensitive inference efficiently. Another approach is to
incorporate the cost function in the optimization problem. If the cost function
decomposes into the cliques, then the method presented here can be applied with
minor changes. If this is not the case, the decomposition results may not hold, which
may pose serious tractability problems.

Investigating the density estimation problem within the maximum-entropy frame-
work points to new directions in terms of regularizations. In particular, defining
the metric of the Banach space appropriately, one can impose different regulariza-
tions for features that possess different characteristics, such as features encoding
interlabel dependencies and features encoding observation-label dependencies in
sequences. This is one of the topics of our future work.



14 Gaussian Process Belief Propagation

Matthias W. Seeger

The framework of graphical models is a cornerstone of applied statistics, allowing
for an intuitive graphical specification of the main features of a model, and providing
a basis for general Bayesian inference computations though belief propagation (BP).
In the latter, messages are passed between marginal beliefs of groups of variables.
In parametric models, where all variables are of fixed finite dimension, these beliefs
and messages can be represented easily in tables or parameters of exponential
families, and BP techniques are widely used in this case. In this chapter, we are
interested in nonparametric models, where belief representations do not have a finite
dimension, but grow with the dataset size. In the presence of several dependent
domain variables, each of which is represented as a nonparametric random field, we
aim for a synthesis of BP and nonparametric approximate inference techniques. We
highlight the difficulties in exercising this venture and suggest possible techniques
for remedies. We demonstrate our program using the example of semiparametric
latent factor models (Teh et al., 2005), which can be used to model conditional
dependencies between multiple responses.

14.1 Introduction

Graphical models provide an intuitive way of specifying assumed conditional inde-
pendence relationships between several domain variables. Moreover, they come with
unified belief propagation algorithms1 to compute Bayesian inference, conditioned
on observed data. If the graphical model is parametric, in that the local conditional
distributions are such that the marginal posterior beliefs of all unobserved variables
have a representation of fixed size, independent of the number of data cases, BP

1. BP is a variant of the dynamic programming principle, making use of tree structure in
the model. If the model graph is not a tree, variables have to be grouped in cliques until
the corresponding hypergraph becomes a tree.



302 Gaussian Process Belief Propagation

involves passing messages between neighboring variables in the graph, where the
message representations are of fixed size, and the scaling is typically linear in the
number n of data cases. The distinctive feature of parametric graphical models is
the existence of a mediator variable of fixed finite size, such that conditioning on
this variable renders the observed cases i = 1, . . . , n (together with associated la-
tent variables) independent for different i. Because the mediator separates training
from test cases, it is clear that all information from the training cases required
for prediction is represented in the posterior belief for the mediator only. Mediator
variables are usually called parameters, but our naming here is more specific.

For nonparametric models, such as Gaussian random field models, there is no
mediator variable of finite size. We can propose such a variable, but it will be
an infinite random object, such as a Gaussian process (GP), and for any practical
inference or prediction, we need to integrate it out, which renders all variables across
all cases i mutually dependent in a way which has to be represented explicitly
(say, by storing the covariance matrix). We may call this problem the curse-of-curse-of-

dependency
problem

dependency; it leads to the fact that a direct generalization of BP to random field
models is not tractable in practice.

In this chapter, we are interested in generalizing BP to Gaussian random field
graphical models in a way which is efficient in practice. A general idea is to applymotivation
what we may call bottleneck approximations. For example, a factorization assump-
tion means that a joint distribution is approximated by a product of marginal ones.
A low rank (or sparsity) assumption means that we introduce artificial mediator
variables in a data-dependent way. The concept of a mediator variable illustrates
what we mean by the term “bottleneck.” Dependence arises through information
flowing between variables. A mediator variable creates a narrow bottleneck for this
flow, separating many variables by instantiation (conditioning). A different kind of
bottleneck approximation is used in section 14.4 in the context of the mv(c)→u mes-
sages. In the informative vector machine (IVM) framework (Lawrence et al., 2003;
Seeger, 2003) these mediators are a subset of the variables we want to represent
beliefs over, and this “active” subset is selected depending on the observed data.
The IVM framework has been proposed and applied to single domain variable GP
models, but in this chapter we show that the representations and inference compu-
tations developed there can be used to obtain an efficient nonparametric variant of
BP as well.

Our study is preliminary, in that we try to develop ideas, point out the major
problems, and suggest remedies which come as bottleneck approximations. Bayesian
inference in graphical models, whether parametric or nonparametric, can be in-
tractable for a great number of reasons. Since in this chapter, we are interested in
the curse-of-dependency problem only, we focus on the example of semiparametric
latent factor models (Teh et al., 2005) for multioutput regression. While this is a
useful nontrivial model, all variables are Gaussian, and domain variables are related
linearly, with the model graph being a tree, so that many of the usual difficulties
with Bayesian inference do not occur. However, we will hint at these additional
problems as we go.



14.2 Data and Model Dimension 303

14.1.1 Outline of the Chapter

The structure of the chapter is as follows. In section 14.2, we point out the main
differences between parametric and nonparametric graphical models, using the
concepts of data and model dimension. In section 14.3, semiparametric latent factor
models (SLFMs) are introduced as our working example. GP belief propagation for
conditional inference in SLFMs is developed in section 14.4. Finally, we comment on
how to learn hyperparameters in section 14.5. Conclusions are given in section 14.6.

The notation in this chapter is as follows. Vectors a = (ai)i and matricesnotation
A = (ai,j)i,j are boldface. We use subindex notation, in that aI = (ai)i∈I , “·” being
the full index. For matrices, AI is short for AI,I . I denotes the identity matrix. Note
that aI = II,·a. Some vectors y will have two indices: yi,c, the index i over cases
(data dimension), and c over variable components (part of model dimension), and
the standard ordering (if nothing else said) is y = (y1,1, y2,1, . . . , yn,1, y1,2, . . . )T .
We write yi = (yi,c)c, y(c) = (yi,c)i. The Kronecker product is A ⊗B = (ai,jB)i,j .
Our subscript notation for such “double index” vectors is applied to the case index
i only: yI = (yi,c)i∈I,c ∈ RC|I|. N(·|μ,Σ) denotes the Gaussian distribution, where
we also use an unnormalized form of the density:

NU (z|b, B) = exp
(

bT z − 1
2
zT Bz

)
.

14.2 Data and Model Dimension

Statistical models may be divided into parametric and nonparametric ones. If
P (z|θ) is a model for the observed variable z, indexed by parameters θ, and we
observe some data z1, . . . ,zn, a parametric model is characterized by the existence
of sufficient statistics φ(z1, . . . ,zn) ∈ Rs of fixed size s, in that the likelihood
of the data can be written solely in terms of the statistics: P (z1, . . . ,zn|θ) =
f(φ(z1, . . . ,zn), θ). For example, if we model z ∼ N(·|θ, σ2I) with known variance
σ2, where N(·|μ,Σ) denotes the Gaussian distribution with mean μ and covariance
matrix Σ, then the sample mean n−1

∑n
i=1 zi is a sufficient statistics, so the

Gaussian model is parametric.



304 Gaussian Process Belief Propagation

The existence of finite sufficient statistics has important implications in practice.
Estimators of θ or posterior beliefs for θ can typically be represented in O(s),
independent of the dataset size n. If there are several domain variables, we may
devise a parametric graphical model to describe their relationships. Here, conditionalrepresentation

issues in
parametric
graphical models
vs ...

independence relationships are captured in a graphical manner, in that the variables
are nodes in a graph, and roughly speaking, conditional independence is represented
in terms of separation in this graph. Finally, conditional distributions between
neighboring nodes are represented by parametric local models. In order to do
inference on the global model, namely to compute marginal posterior beliefs of
unobserved variables given data, belief propagation techiques can be employed,
which essentially pass messages (local conditional distributions) between nodes and
update the node marginals accordingly until convergence. For an introduction to
parametric graphical models, see Jensen (1996), Lauritzen (1996), Pearl (1988),
Jordan (1997). Note that one important factor to make this work is that messages
and node marginals can actually be represented finitely.

The situation is different for nonparametric models, where dependencies between
the cases in a dataset are represented directly, and are not mediated through some...nonparametric

graphical models finite number of parameters θ. We can still employ a model of the form P (z|θ),
but θ does not have a finite representation anymore. It is often easier to work
with nonparametric models after the “parameters” θ have been integrated out.2

To this end, a prior distribution P (θ) is chosen, and the joint distribution for
variables zi of interest is obtained as P (z1, . . . ,zn) =

∫
P (z1, . . . ,zn|θ)P (θ) dθ.

To give an example, we may associate each case zi with a real variable ui, then
assume that the ui are a priori jointly distributed as a Gaussian with a covariance
matrix depending on parts (say xi) of the observations zi. It is useful to regard the
relationship xi → ui as a random field (or random function). Certain properties,
such as the ui changing smoothly on average w.r.t. xi, can be encoded directly
into this setup, by assuming a correlation coefficient between ui, uj which grows
with shrinking distance between xi, xj . In this example, a convenient θ would be
a Gaussian process, and the prior P (θ) would be a GP distribution. Note that we
need at least countably infinitely many variables to describe a GP.

Now, suppose we have several domain variables, whose dependencies we would
like to capture with a graphical model. However, we would also like to represent the
individual variables by nonparametric random fields. In this chapter, we investigate
the feasibility of applying the parametric BP technique to such a nonparametric
graphical model. In this case, marginal beliefs and messages are random fields
themselves. In simple cases, these can be represented as joint distributions over cases
of interest, namely after the parameters (GPs in our case) have been integrated out.
However, the representations for node marginals and messages grows superlinearly
in the number n of cases, as does the cost for message propagations, and a

2. In fact, any practical application of nonparametric models has to work on such an
integrated-out representation, because θ cannot be represented on a machine.



14.2 Data and Model Dimension 305

straightforward BP extension along these lines would hardly be of more than
academic interest. We propose to use the recently developed IVM technique for
sparse approximations for single domain variable GP models (Lawrence et al.,
2003), in order to represent marginal beliefs and to propagate messages. The
central idea is that the BP message-passing operations can be expressed in terms
of common primitives of Bayesian inference, such as combining information from
multiple sources by multiplication of beliefs, or marginalization of variables, and
the IVM framework provides efficient approximate solutions for these primitives.

A central problem when trying to deal with nonparametric structured graphical
models, is the curse-of-dependency effect. In a parametric model, the cases zi are
independent given the parameters (mediator) θ, but in a nonparametric model, our
only option is to integrate out θ, introducing dependencies between the zi which
cannot be represented by a finite mediator variable. This problem becomes worse
with several domain variables.

We can think of a model dimension (along different domain variables) and amodel vs. data
dimension data dimension (along cases zi we are interested in). For a parametric model, the

mediator separates variables along the data dimension, although they still may have
some complicated dependence structure along the model dimension. Figure 14.1
illustrates the situation. We see that if the mediator θ is conditioned upon, paths
between the different replicas of the model along the data dimension are blocked,
which means that these blocks are conditionally independent. BP may be run on
each block independently, and the relevant messages are represented in a way which
does not depend on n.

In a nonparametric model, the infinite mediator must be integrated out, which
leads to all variables along model and data dimension becoming dependent in a way
which has to be represented explicitly. This fact is illustrated in figure 14.2. The

y

zx

y

zx

y

zx

θ

M
odel 

Dim
en

sio
n

Data Dimension

Figure 14.1 Model and data dimension for a parametric graphical model.



306 Gaussian Process Belief Propagation

bidirectional edges are not part of the usual directed graphical models semantics3;
they simply state that the replicas of x, y, z along the data dimension are all
fully dependent, in that they constitute a nonparametric random field. There is
no useful conditional factorization in this model, and belief representations and
their manipulations are formidably expensive. Bottleneck approximations through
artificial mediators are required in order to obtain practically efficient inference.

M
odel 

Dim
en

sio
n

x

yy

x z

y

x zz

Data Dimension

Figure 14.2 Model and data dimension for a nonparametric graphical model.

14.3 Semiparametric Latent Factor Models

In this section, we introduce the model for which we will demonstrate our GP
belief propagation ideas. We are interested in predicting multiple responses yc ∈
R c = 1, . . . , C from covariates x ∈ X, and we would like to model the responses
as conditionally dependent. In statistical terminology, we would like to “share
statistical strength” between the yc; in machine learning parlance this is often
referred to as “transfer of learning.” Such sharing can be especially powerful if the
data for the responses are partially unobserved.

Models related to the one proposed here are used in geostatistics and spatialco-kriging
prediction under the name of co-kriging (Cressie, 1993), where a typical problem
can be described as follows. After an accidental uranium spill, a spatial map of
uranium concentration is sought. We can take soil samples at selected locations
and interpolate from these measurements using GP prediction. However, carbon
concentration is easier to measure than uranium, and the two responses are often
significantly correlated. In co-kriging, we set up a joint spatial model for several
responses with the aim of improving our prediction of one of them. The model to
be introduced here can be used for co-kriging, in which the nature of dependence

3. The correct way of drawing these models would be to contract the data dimension and
use single nodes for x, y, z, representing the whole random fields.



14.3 Semiparametric Latent Factor Models 307

between the responses is conditional, in that it depends on the covariates x (spatial
location in our example).

Writing y = (yc)c and introducing a latent variable v ∈ RC , our model has
a factorizing likelihood P (y|v) =

∏
c P (yc|vc), P (yc|vc) = N(yc|vc, σ

2
c ), i.e. the

signal v is obscured by Gaussian noise, independent for each c. We intend to model
the prior P (v|x) using GPs. The simplest possibility is to assume that the vc are
independent given x, i.e. P (v|x) =

∏
c P (vc|x). In this case we can represent

P (vc|x) as a Gaussian process with mean function 0 and covariance function K̃(c):

E [vc(x)vc′(x′)] = δc,c′K̃
(c)(x, x′).

Details on GPs for machine learning may be found in Seeger (2004). The factorizing
model will be called the baseline model in the sequel. The components vc are
independent a posteriori under the baseline model, so statistical strength is not
shared among the different components.

On the other end of the spectrum, we can model P (v|x) as a set of dependent GPs
with C(C+1)/2 cross-covariance functions. Tasks such as inference, hyperparameter
learning, and prediction can be performed in much the same way as in a single
process model, by simply extending the covariate x to (x, c). This model will be
called the naive model. Due to the curse-of-dependency, approximate inference in
the naive model scales superlinearly in C n, which is acceptable only for rather
small datasets and number of outputs C.

The semiparametric latent factor model (Teh et al., 2005; Seeger et al., 2004) lies
in between, in that v|x are dependent in a flexible way, yet inference and learning
are more tractable than for the naive model. The key is to restrict the dependencies
in a way which can be exploited in inference. We introduce a second latent variable
u ∈ RP . Here and in the following it is understood that for typical applications of
our model we will have P � C. For a mixing matrix Φ ∈ RC,P we set

v = Φu + v(0)

where u and v(0) are independent. The components v
(0)
c have independent GP priors

with mean 0 and covariance function K̃(c), and the components up have independent
zero-mean GP priors with kernel K(p). Our model is a conditional nonparametric
version of factor analysis. P independent factors up are mixed through Φ, and
further independent factors v

(0)
c are added to the result. The factors have different

roles. The v
(0)
c represent parts in the signal v which behave independently, while the

up parameterize conditional dependencies (or correlations in this Gaussian case).
The baseline model is a special case (P = 0), but for P > 0 the components
vc will be dependent a posteriori. The model combines nonparametric (processes
up, v

(0)
c ) and parametric elements (the mixing matrix Φ). Note that the definition

here extends on the model of Teh et al. (2005), where they had v(0) ≡ 0.
Note that by integrating out the u processes, we obtain induced cross-covariance

functions for x �→ v:cross-covariance



308 Gaussian Process Belief Propagation

E[vc(x)vc′(x′)] = δc,c′K̃
(c)(x, x′) +

∑
p

φc,pφc′,pK
(p)(x, x′).

We could therefore perform inference and prediction the naive way. However, the
relationship between the domain variables u and v is structured, and in this chapter
we are interested in exploiting this structure in order to obtain a more efficient
method for representing the posterior Q(v) = P (v|D) for data D, and to do
predictions on unseen points. In the sequel, the posterior over v is denoted4 by
Q(v).

14.4 Gaussian Process Belief Propagation

In this section, we derive GP BP for the SLFM introduced in section 14.3. As noted
above, a naive approach would treat all O(n C) variables as dependent and represent
their covariance explicitly, which is not feasible in interesting practical situations.
To repeat our motivation, we first make use of the tree structure of SLFM (see
below) by applying BP for marginal inference, leading to a representation which is
factorized along the model dimension. Dependencies along the data dimension are
not structured, and additional bottleneck approximations, such as introduction of
artificial mediator variables, have to be applied in order to represent and update
the posterior marginals P (vi,c|D) efficiently. The details of these representations
are formidable even in the case of SLFMs, and for simplicity we will skip over
many of them. Our aim here is to point out typical problems that arise as curse-
of-dependency, and to suggest general remedies. All details for the SLFM case can
be found in Seeger et al. (2004).

We noted in section 14.2 that the dependencies along the data dimension are
unstructured (in the sense of structure through a sparse graphical model) and have
to be represented explicitly. This is a problem, because we would like to use BP
techniques to exploit conditional independencies along the model dimension. This
involves passing messages between node marginal beliefs, and has to be represented
in a way which scales superlinearly in n. We propose to use low-rank bottleneck
approximations in order to represent and work with these entities. IVM is a general
framework for finding such low-rank bottlenecks in a data-dependent way, and for
performing inference based on them. We will not go into details here, but merely
state what will be required later on. For a single domain variable GP model (C = 1)
with n cases xi, yi and latent variables vi ∈ R, the prior at the data points is
P (v) = N(0, K), where K = (K(xi, xj))i,j is the covariance matrix over the input
data points xi. The bottleneck variables are vI = (vi)i∈I , a part of the variables

4. This convention comes from approximate inference, where the true intractable posterior
P (v|D) is approximated by a feasible Q(v). We use Q(v) in the same sense, because due
to several bottleneck approximations, our final posterior marginals are approximate as
well.



14.4 Gaussian Process Belief Propagation 309

v whose posterior belief is to be represented. Here, I ⊂ {1, . . . , n} is the active set
of size d � n. In the case of SLFMs, the likelihood P (yi|vi) is Gaussian, but if
it is not, the expectation propagation (EP) technique (Minka, 2001) can be used
to replace them by a Gaussian function NU (vi|bi, πi), πi ≥ 0, so the approximate
posterior Q(v) is Gaussian. If P (yi|vi) = N(yi|vi, σ

2), then πi = σ−2, bi = σ−2yi.
The approximate IVM representation is obtained by constraining bi = πi = 0 for
i 
∈ I. If Q(u) = N(h, A), we see that

A =
(
K−1 + I·,IΠII,·

)−1
= K − MMT , h = Mβ,

M = K·,IΠ1/2L−T , LLT = B = I + Π1/2KIΠ1/2, β = L−1Π−1/2b,
(14.1)

where Π = diag (πi)i∈I and b = (bi)i∈I are called site parameters. This representa-
tion can be derived using the Sherman-Morrison-Woodbury formula (Press et al.,
1992). L is lower triangular, and M is called stub matrix. The IVM method con-
volves updates of this IVM representation (i.e. inclusions of a new i into I) with
greedy selections of the best point to include next. To this end, the marginal pos-
terior moments h, a = diag A are kept up to date at any time, and the forward
selection score is based on those. Patterns are scored highly if their inclusion into I

leads to a large information gain, or reduction of posterior entropy. Details about
the IVM framework are given in Seeger (2003).

More generally, an IVM representation is determined by a prior P (u) =
N(h(0), A(0)), an active set I (determining the bottleneck variables) of size d,
and 2d site parameters b, Π, and consists of the variables M, β, h, and a. These
are defined as in (14.1), with K being replaced by A(0) and the modifications

β = L−1
(
Π−1/2b − Π1/2h

(0)
I

)
, h = h(0) + Mβ.

This general tool for representing a single Gaussian random field belief efficiently
through a data-dependent bottleneck will be applied below in several contexts.

Recall the SLFM from section 14.3. v ∈ RnC are the latent variables directly
associated with the responses y, and u ∈ RnP are the latent variables representing
conditional dependencies. What is the graphical structure in the model dimension?
If we group v into v(c) = (vi,c)i, we see that the v(c) are conditionally independent
given u ∈ RnP . In other words, the graphical model along the model dimension is
tree-structured, as shown in figure 14.3.

The BP algorithm performs inference in tree-structured graphical models5 by
designating an arbitrary root, passing messages outward from this root to the leafs,
then collecting messages back to the root. This sweep has to be done at any time
new evidence (observations) becomes available (and is conditioned on). In our case,
all observed data are known at once, but recall that we would like to use IVM

5. If the graphical model is not tree-structured, BP is often used anyway, known as “loopy
BP” in this case. There is no guarantee of convergence in general, and even if BP converges,
the result is usually just an approximation to the true posterior marginals. Still, loopy BP
often works well in practice. Loopy GP BP is not in the scope of this chapter.



310 Gaussian Process Belief Propagation

v1 vC

u

yC1y

Figure 14.3 SLFM as a tree-structured graphical model.

bottlenecks for efficiency. The iterative procedure of selecting variables to become
mediators one at a time, then including them into the representation, is very similar
to observations becoming available in a sequential manner. We therefore employ the
following “sequential” scheme. In each iteration, we select new variables to become
active. As we will see, this can be interpreted as new evidence in the graphical
model, and the posterior representation is updated by a BP sweep.

The local conditional distributions in a graphical model are also called poten-
tials6, for our purposes they are positive functions sitting on nodes joined by an
edge, or on single nodes. Since vi = Φui + v

(0)
i , the edge potentials are

Ψu→v(v(c), u) = P (v(c)|u) = N
(
(φT

c ⊗ I)u, K̃
(c)
)

,

where φc = ΦT
c,· is the cth row of Φ. The single node potentials are Ψu(u) =

N(0, K) with K = diag (K(p))p and

Ψv(v(c)) = NU
(
I·,Icb

(c), I·,IcΠ
(c)IIc,·

)
,

where Ic, b(c), Π(c) are active set and site parameters for an IVM representation.
Since we will use IVM forward selection in order to determine good active sets Ic for
each marginal belief Q(v(c)), we see that the SLFM representation to be developed
has to be able to keep the marginal posterior beliefs Q(vi,c) = N(hi,c, ai,c) up to
date at all times. Furthermore, by the form of Ψv, including a new entry into Ic can
be interpreted as introducing new evidence into the model, as has been noted above.
Note that this setup does not allow us to access joint information about Q spanning
different v(c) blocks (in general, BP delivers marginal posterior distributions only).

In the belief propagation method, nodes pass messages to their neighbors. A
message can be seen as belief of a node in what the neighboring node should be,
based on information the node receives from its other neighbors, excluding the

6. We are dealing with directed graphical models here. In undirected models (Markov
random fields), potentials can be arbitrary positive functions.



14.4 Gaussian Process Belief Propagation 311

receiver of the message.7 Now suppose that new evidence is introduced into our
SLFM-clustered graphical model, in the sense that j is included into Ic with site
parameters bj,c, πj,c. This will change the message v(c) sends to u which is

mv(c)→u(u) ∝
∫

Ψv(v(c))Ψu→v(v(c), u) dv(c), (14.2)

which in turn modifies the messages u sends to v(c′), c′ 
= c:

mu→v(c′)(v(c′)) ∝
∫ ∏

c′′ �=c′
mv(c′′)→u(u)Ψu(u)Ψu→v(v(c′), u) du. (14.3)

The message mu→v(c) remains the same. Finally, all marginals have to be updated:

Q(v(c′)) ∝ Ψv(v(c′))mu→v(c′)(v(c′)),

Q(v(c)) because Ψv(v(c)) changed, and Q(v(c′)) because mu→v(c′) changed, c′ 
= c.
In the remainder of this section, we show how this program can be executed using

a sequence of IVM representations, such that after each inclusion into one of the Ic,
the marginals Q(vi,c) can be updated efficiently. The development is very technical,
and some details are omitted here and given in Seeger et al. (2004). Our aim here
is merely to highlight specific difficulties in the nonparametric BP extension, and
these do not depend on specific details, but will rather universally appear for other
models as well.

Recall our notation and the standard ordering of variables depending on double
indexes (i, c) or (i, p) from section 14.1. The kernel matrices K and K̃

(c)
are

block-diagonal in the standard ordering, because the processes up, v
(0)
c are all

independent a priori. However, for uI it turns out to be simpler to use the opposite
ordering uI = (ui1,1, ui1,2, . . . )T , where I = {i1, i2, . . . }. Let Ψ be the permutation
matrix8 such that ΨuI is in standard ordering. We use the superscriptˆto denote
vectors and matrices in the uI ordering, for example K̂I = ΨT KIΨ. Note that
ΨT (φc ⊗I) = (I ⊗φc), so that (φc ⊗I) in the standard ordering becomes (I ⊗φc)
in the uI ordering. We begin with the message mv(c)→u(u). We require an IVM

representation R1(c) (14.1) based on the prior N(v(c)|0, K̃
(c)

) and Ic, b(c), Π(c).
Let μ = (φT

c ⊗ I)u. Some algebra gives

mv(c)→u ∝ exp
(

β(1,c)T γ − 1
2
γT γ

)
, (14.4)

γ = L(1,c)−1Π(c)1/2μIc = L(1,c)−1Π(c)1/2(φT
c ⊗ I)uIc . (14.5)

7. Given this idea, the exact definition of messages is straightforward to derive, and con-
sists of standard Bayesian computations involving sums (marginalization) and products.
However, the fact that this intuitive procedure results in correct marginals after a single
sweep is less obvious.
8. In MATLAB, Ψ is implemented by reshaping the vector into a matrix, transposing it,
and reshaping back into a vector.



312 Gaussian Process Belief Propagation

We do not require the stub matrix M (1,c) in R1(c), because this representation
is not used to maintain marginal beliefs (but see R3(c) below); however, we
maintain E(c) = Π(c)1/2L(1,c)−T with R1(c). If P (c) = (φc ⊗ I)E(c), we have
that γ = P (c)T uIc , so that mv(c)→u depends on uIc only.

At this point, we encounter a curse-of-dependency problem. Even if mv(c)→u

depends on uIc only, these messages have to be combined for all c′ 
= c in order to
form the reverse message mu→v(c) . If the Ic are to be selected independently of size
dc (say), their union can be of size

∑
c dc, this size governing the representation for

the reverse messages. The problem is that we have bottlenecks Ic associated with
the nodes v(c), but by combining these we obtain an implied bottleneck for u of
size

∑
c dc, which is too large. This problem is especially severe in the SLFM case,

because u has all other nodes v(c) as neighbors, but similar problems will occur in
other examples as well. We deal with it by imposing an explicit bottleneck I on u

as well. Such “internal bottlenecks” on variables not directly related to observations
have to be chosen depending on the specifics of the model. In the SLFM case the
following seems sensible. We restrict all Ic to have the common prefix I of size d.
Inclusions are therefore done in two phases. In the common inclusion phase, patterns
are included into I, therefore into all Ic at the same time. In the subsequent separate
inclusion phase, the Ic are extended independently. However, the messages mv(c)→u

are always restricted to depend on uI only. Namely,

mv(c)→u(uI) = NU
(
P̂

(c)
β(1,c), P̂

(c)
P̂

(c)T
)

, P̂
(c)

= (I ⊗ φc)E
(c)
1...d,·,

which simply drops the dependence on uIc\I .9 Since the bottlenecks are the same
for each mv(c)→u , the implied bottleneck for u is I as well (of size P d). Again, while
the generic IVM bottleneck technique of selecting mediator variables is suitable if
the variables in question are closely linked to observations, we have just described
a second class of bottleneck approximations for “inner messages,” namely to limit
the dependence of incoming messages to a common set I.

The representation R2(c) is needed to form the message mu→v(c) ; it basically
represents the distribution

Rc(u) ∝ P (u)
∏
c′ �=c

mvc′→u(uI).

Because all mvc′→u are functions of uI we have Rc(u) = Rc(uI)P (u \ uI |uI),
thus R2(c) needs to be of size P d only, and its size grows only during the common
inclusion phase. In order to motivate the form of R2(c), we need to look ahead to
determine the requirements for maintaining the Q(v(c)) marginals. Here, Q(v(c))
is obtained by combining the evidence potential Ψv(v(c)) with the reverse message
mu→v(c) in an IVM representation R3(c) of size dc, where now the message mu→v(c)

plays the role of the prior distribution. The representations R1(c), R3(c) differ in

9. Note that P̂
(c)

= ΨT P
(c)
1...d,·, because uI is not in standard ordering.



14.4 Gaussian Process Belief Propagation 313

their prior distributions only. Denote the message mu→v(c) by N(v(c)|μ(c),Σ(c)).
A glance at (14.3) reveals that we have

Σ(c) = K̃
(c)

+ (φT
c ⊗ I)VarRc [u](φc ⊗ I). (14.6)

Next, let d\c =
∑

c′ �=c dc and

P̂
(\c)

=
(
P̂

(1)
. . . P̂

(c−1)
P̂

(c+1)
. . . P̂

(C)
)
∈ RPd,d\c ,

β̂
(\c)

=
(
β(1,1)T . . . β(1,c−1)T β(1,c+1)T . . . β(1,C)T

)T

∈ Rd\c .

The order of the columns of P̂
(\c)

is not important as long as β̂
(\c)

follows the
same ordering. These variables represent the combination

∏
c′ �=c mv(c′)→u in the

definition of mu→v(c) (see (14.3)). Some tedious algebra (Seeger et al., 2004) reveals
that the following IVM-like representation R2(c) is required in order to maintain
μ(c), Σ(c), the central parameters of Rc:

R2(c) : L(2,c)L(2,c)T = B(2,c) = K̂I + K̂IP̂
(\c)

P̂
(\c)T

K̂I ,

β(2,c) = L(2,c)−1K̂IP̂
(\c)

β̂
(\c)

,

M (2,c) = (φT
c ⊗ I)K·,IΨL(2,c)−T ∈ Rn,Pd.

(14.7)

This representation is of size O(n P d). It is not an IVM representation in the strict
sense, but is updated in a very similar manner. We now have μ(c) = M (2,c)β(2,c)

and

Σ(c) = K̃
(c)

+(φT
c ⊗I)K(φc ⊗I)− (φT

c ⊗I)M (4)M (4)T (φc ⊗I)+M (2,c)M (2,c)T ,

where

R4 : L(4)L(4)T = KI , M (4) = K·,IL(4)−T (14.8)

is another simple representation, which is block-diagonal and therefore of size
O(n P d) only.

Finally, R3(c) is a standard IVM representation based on the prior N(μ(c),Σ(c))
and with the same Ic and site parameters as R1(c) (see (14.1)). As opposed to
R1(c), we need to maintain the stub matrix M (3,c) ∈ Rn,dc here, because we want
to keep the marginal moments h(c), a(c) of Q(v(c)) up to date at all times.

The size of the combined representation is O(n (
∑

c dc + dC P )). This should be
compared to O(n

∑
c dc) for the baseline method and to O(n C

∑
c dc) for the naive

method. It is shown in Seeger et al. (2004) how to update the representation after
an inclusion in the common and the separate inclusion phase (the former is more
expensive). The details are tedious, but the idea is to apply a sequence of IVM
updates of the corresponding IVM representations, with some intervening algebra.



314 Gaussian Process Belief Propagation

The scaling behavior is enlightening,10 in that another problem is revealed. The
overall running time complexity (for both phases) is

O

(
n

(
P C d +

∑
c

dc

) ∑
c

dc

)
.

In large sample situations it makes sense to require P C d to be of the same order of
magnitude as

∑
c dc. In that case, the memory requirements of our method are the

same as for the baseline up to a constant factor. However, it seems that modeling
conditional dependencies between classes comes at a significant additional price of
at least O(n (

∑
c dc)2) as compared to O(n

∑
c d2

c) for the independent baseline. On
the other hand, our method is faster than the naive implementation11 by a factor
of C. Interestingly, if the active sets Ic and site parameters b(c), Π(c) are known,
then the complete representation can be computed in

O

(
n

(∑
c

d2
c + P d

(
C P d +

∑
c

dc

)))
,

which is significantly faster and actually fairly close to what the independent
baseline requires. Therefore, in marked contrast to the situation for IVM applied
to single process models, conditional inference with active set selection comes at a
significantly higher cost than without.

The problem is identified easily, and points to another difference between para-
metric and nonparametric BP. While R2(c) is of limited size P d, for each of the∑

c dc inclusions, C − 1 of the representations have to be updated by rank 1 (in

what amounts to an IVM update). In other words, the matrices P̂
(\c)

P̂
(\c)T

are
of size P d, but are in fact updated d\c > P d times by rank 1. Each such update
has to be worked through the whole representation in order to make sure that the
marginals h(c), a(c) are up to date all the time, and delaying these updates does
not help either. This is in marked contrast to the situation of parametric BP. In
the latter case, we would essentially maintain a single marginal belief for u in some
representation R2, independent of c, combining all messages mv(c)→u . We would
then obtain the reverse messages mu→v(c) by dividing this belief by the message
mv(c)→u , thus deleting its influence. Since parametric models are typically used
with potentials from an exponential family, such a division operation is cheap, and
the cost is independent of how much evidence has already been included, because
evidence is accumulated in the sufficient statistics of the potentials. However, such
a division cannot be done efficiently in the GP case. We need to maintain different

10. We are aware that the reader has to take these scaling figures for granted, if the
details in Seeger et al. (2004) are not consulted. However, again our purpose is to describe
a problem together with an intuitive explanation, whose appreciation would not be helped,
or would even be obscured by challenging details.
11. The naive implementation is not feasible due to memory requirements in the first
place.



14.4 Gaussian Process Belief Propagation 315

representations R2(c) in order to form each of the reverse messages mu→v(c) , and
C − 1 of them have to be updated separately after each inclusion. At this time, we
do not have a satisfying remedy for this problem, but it is clearly an important
point for future research.

14.4.1 Prediction

In order to predict on test data, the dominant buffers scaling as O(n) are not
required. We need to compute the marginals of Q on the test point which is done
just as above for the training points: compute M (2,c), Σ(c)

·,Ic
, M (4), and M (3,c)

w.r.t. the test points. The cost is the same as computing the representation for the
training set from scratch (with fixed active sets and site parameters), but with n

replaced by the number of test points m:

O

(
m

(∑
c

d2
c + P d

(
C P d +

∑
c

dc

)))
.

Again, this is fairly close to the requirements of the baseline method. Predictive
distributions can be computed from the marginals using Gaussian quadrature in
general (for non-Gaussian likelihoods in models different from SLFMs).

14.4.2 Selection of Points; Computing Site Parameters

Recall that if the likelihoods P (yi,c|ui,c) are not Gaussian,12 we use EP (or assumed
density filtering, ADF) projections in order to replace them by Gaussian factors
NU (ui,c|bi,c, πi,c). This is done in much the same way as for single process models
(Lawrence et al., 2003; Seeger, 2003) during the separate inclusion phase. In the
common inclusion phase, a pattern i is included jointly into all Ic. The correct way
of doing this would be to determine the joint marginal Q(vi), vi ∈ RC and doing
the ADF projection by computing mean and covariance of ∝ Q(vi)

∏
c P (yi,c|vi,c).

This has to be done not only for patterns to be included but also in order to
score an inclusion candidate, thus many times between each inclusion, requiring
the joint marginals even in case of a Gaussian likelihood. We do not know a way
of maintaining these joint marginals that is more efficient than using the naive
method.13 The problem is akin to joint rather than marginal inference in parametric
graphical models, which also comes at substantial extra costs. Another problem
is that for non-Gaussian likelihoods, we need to do C-dimensional quadrature in
order to implement the ADF projection, which quickly becomes infeasible with

12. For SLFM, the likelihoods are Gaussian, and the site parameters are given by bi,c =
σ−2

c yi,c, πi,c = σ−2
c .

13. We suggest the use of a joint common inclusion phase in Seeger et al. (2004), which
essentially amounts to running the naive method during the common inclusion phase. This
requires additional approximations and is not covered here.



316 Gaussian Process Belief Propagation

growing C. We settle for the approximation of doing ADF projections separately for
each vi,c, resulting in site parameters bi,c, πi,c. The updated marginal is Q′(vi,c) ∝
Q(vi,c)NU (vi,c|bi,c, πi,c); its moments match the ones of ∝ Q(vi,c)P (yi,c|vi,c).

Next, we need an efficient way of selecting active variables (i, c) for inclusion
into Ic. Information-theoretic scores (from active learning), which measure the
improvement from Q(vj,c) to Q′(vj,c) (after inclusion), have been suggested in
Lawrence et al. (2003) and Seeger (2003). For example, we may choose the in-
formation gain score Δi,c = −D[Q′(vj,c) ‖Q(vj,c)]. During the separate inclusion
phase, we can score a set of candidates (i′, c′) and pick the overall winner (i, c),
which means that i is included into Ic. During the common inclusion phase, the
values Δj,c, c = 1, . . . , C need to be combined14 into a score for j; suggestions
include

Δavg
j = C−1

∑
c

Δj,c, Δmin
j = min

c
Δj,c.

14.5 Parameter Learning

A nonparametric model comes with parameters as well, although they are less
directly related to observations than in parametric models. We refer to them as
hyperparameters α. In the case of the SLFM, α includes Φ and the parameters of
the K̃(c) and K(p). Note that we cannot avoid the hyperparameter learning issue15

in this case, because Φ has to be fitted to the data in any case. The derivations
in this section are preliminary and rather serve as suggestions for future work, in
that a number of approximations are proposed without experimental validation.
However, once more these suggestions are derived from the single process model
case, where they have proven useful.

An empirical Bayesian method for estimating α is to maximize the marginal
likelihood

P (y|α) =
∫

P (y|v)P (v|α) dv. (14.9)

This computation is of course intractable, but inference approximation techniques
typically come with some approximation for logP (y|α). It is shown in Seeger et al.
(2004) that

G =
C∑

c=1

(
n∑

i=1

EQ[− logP (yi,c|vi,c)] + D [Q(vI,c) ‖P (vI,c)]

)

14. Again, we cannot compute exactly the information gain for including j into all Ic,
since this requires knowledge of the joint Q(vj), vj ∈ RC .
15. Many kernel methods proposed so far “avoid” the learning issue by selecting hyper-
parameters by semi manual techniques such as crossvalidation. This is not possible with
Φ in general, because there are too many parameters.



14.6 Conclusions 317

is an upper bound on − logP (y|α). We can minimize G in order to choose α.
If we neglect the dependence of Ic, b(c), Π(c) on α, we can even compute the
gradient ∇αG efficiently. As suggested in Seeger (2003), we can use a double loop
optimization scheme. In the outer loop, Ic, b(c), Π(c) are computed by conditional
inference, as discussed in section 14.4. In the inner loop, G is minimized for fixed
Ic, b(c), Π(c). These inner optimizations should be run for a few steps only.

Alternatively, EP comes with its own marginal likelihood approximation (see
Seeger (2005)) which can be adopted to the case of SLFMs. First, our representation
only allows access to the marginals Q(v(c)), so we should look for an approximation
P (y) ≈ e−φ with φ =

∑
c φc. φc is taken to be the EP marginal likelihood

approximation for the “prior” P (v(c)) = N(μ(c),Σ(c)) and the posterior Q(v(c)).
Following Seeger (2005), we obtain after some algebra involving R3(c):

φc = −
n∑

i=1

log Zi,c+
∑
i∈Ic

log Z̃i,c+
1
2

(
log
∣∣∣B(3,c)

∣∣∣+ b(c)T Π(c)−1b(c) − β(3,c)T β(3,c)
)

.

Here, log Zi = log E\i[P (yi,c|vi,c)] and log Z̃i = log E\i[NU (vi,c|bi,c, πi,c)], where
Q\i(vi,c) = Q(vi,c) for i 
∈ Ic, and Q\i(vi,c) ∝ Q(vi,c)/NU (vi,c|bi,c, πi,c) for i ∈ Ic.
The criterion simplifies for the case of Gaussian noise, P (yi,c|vi,c) = N(yi,c|vi,c, σ

2
c ),

since Z̃i = Zi for i ∈ Ic in this case:

φc = −
∑
i�∈Ic

log Zi,c +
1
2

(
log
∣∣∣B(3,c)

∣∣∣+ b(c)T Π(c)−1b(c) − β(3,c)T β(3,c)
)

.

The exact gradient of φ cannot be computed in general, because the active sets
Ic and site parameters depend on α. However, if we assume these to be fixed, the
gradient ∇αφ can be computed efficiently along the same lines as for the variational
bound. We may use the same double-loop scheme in order to optimize φ.

14.6 Conclusions

A general marriage of parametric graphical models and nonparametric random field
models, each of which is well understood and frequently used in machine learning
and statistics, should prove very rewarding in that models of complicated structure
can be dealt with using a more flexible nonparametric setup. However, it is not clear
how this connection can be achieved in a sufficiently efficient manner in order to
be of interest in practice. In this chapter, we showed where the principal problems
lie and provided some ideas for tackling them. We used the example of SLFMs, for
which the main difficulties of the curse of dependency arise and can be demonstrated
clearly, and we suggested a number of different bottleneck approximations in order
to deal with these problems. Our main proposal is to use the generic IVM framework
for sparse approximations, which so far has been applied to single process models
only. While the techniques we employ here already result in a significant reduction
in computational complexity for the SLFM in comparison to a naive approach,



318 Gaussian Process Belief Propagation

additional approximation ideas will have to be developed in order to render this
marriage useful to practitioners. Our work presented here is preliminary at this
stage; an experimental validation of our ideas is subject to future work.

We are not aware of prior work combining Bayesian GP models with structured
graphical models in an efficient manner. Friedman and Nachman (2000) suggest
GP-directed graphical models, but they do not deal with reducing computational
complexity in a principled manner. In fact, they propose either to use the naive
approach or to assume that the posterior processes at each node are completely
independent (this was called the baseline method here). Nonparametric belief
propagation has been used in a very different context by Sudderth et al. (2005).
They represent a belief state by a parametric mixture whose components are
updated using ADF projections, but also resampled in a way related to particle
filtering. Their method is somewhat more general than ours here, since they are
able to represent beliefs with multiple modes,16 but they do not deal with the
curse of dependency arising through unstructured dependencies of random fields
along the data dimension. It would be possible to combine their approach with
ours for a structured GP model with multimodal posterior, but the complexity of
such a framework would probably be formidable.

Acknowledgments

The ideas presented here originate in joint work done with Yee-Whye Teh and
Michael I. Jordan. This work was supported in part by the IST Programme of
the European Community, under the PASCAL Network of Excellence, IST-2002-
506778. This publication only reflects the author’s views.

16. The SLFM is a jointly Gaussian model, and the posterior Q(v) (for fixed hyperpa-
rameters) is a Gaussian, so the problem of multiple modes does not arise.



References

S. Agmon. The relaxation method for linear inequalities. Canadian Journal of
Mathematics, 6(3):382–392, 1954.

E. L. Allwein, R. E. Schapire, and Y. Singer. Reducing multiclass to binary: A
unifying approach for margin classifiers. In P. Langley, editor, Proceedings of
the International Conference on Machine Learning, pages 9 – 16, San Francisco,
California, 2000. Morgan Kaufmann Publishers.

N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimen-
sions, uniform convergence, and learnability. In Proceedings of the 34rd Annual
Symposium on Foundations of Computer Science, pages 292 – 301. IEEE Com-
puter Society Press, Los Alamitos, CA, 1993.

Y. Altun and T. Hofmann. Large margin methods for label sequence learning. In
Proceedings of 8th European Conference on Speech Communication and Technol-
ogy (EuroSpeech), 2003.

Y. Altun and A. J. Smola. Unifying divergence minimization and statistical infer-
ence via convex duality. In Nineteenth International Conference on Algorithmic
Learning Theory (COLT’06), 2006.

Y. Altun, T. Hofmann, and M. Johnson. Discriminative learning for label sequences
via boosting. In Proceedings of Advances in Neural Information Processing
Systems (NIPS*15), pages 977–984, 2002.

Y. Altun, M. Johnson, and T. Hofmann. Loss functions and optimization methods
for discriminative learning of label sequences. In Proc. EMNLP, 2003a.

Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden Markov support vector
machines. In International Conference of Machine Learning, 2003b.

Y. Altun, T. Hofmann, and A. J. Smola. Gaussian process classification for
segmenting and annotating sequences. In International Conference on Machine
Learning, ICML, Banff, AB, Canada, 2004a.

Y. Altun, A. J Smola, and T. Hofmann. Exponential families for conditional random
fields. In Proceedings of the 20th Annual Conference on Uncertainty in Artificial
Intelligence (UAI-04), pages 2–9, Banff, AB, Canada, 2004b. AUAI Press.

Y. Altun, D. McAllester, and M. Belkin. Maximum margin semi-supervised learning
for structured variables. In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances
in Neural Information Processing Systems 18. MIT Press, Cambridge, MA, 2006.



320 References

N. Aronszajn. Theory of reproducing kernels. Transactions of the American
Mathematical Society, 68:337 – 404, 1950.

P. Auer and C. Gentile. Adaptive and self-confident on-line learning algorithms. In
Proceedings of the 13th Annual Conference on Computational Learning Theory,
pages 107 – 117, San Francisco, CA, 2000. Morgan Kaufmann.

F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of
Machine Learning Research, 3:1–48, 2002.

L. Bahl, P. Brown, P. de Souza, and R. Mercer. Maximum mutual information
estimation of hidden Markov model parameters for speech recognition. In
Proceedings of Acoustics, Speech, and Signal Processing Conference, pages 49–
52, 1986.

G. H. Bakır, J. Weston, and B. Schölkopf. Learning to find pre-images. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing
Systems (NIPS 2003), Cambridge, MA, 2004. MIT Press.

D. Bamber. The area above the ordinal dominance graph and the area below the
receiver operating characteristic graph. Journal of Mathematical Psychology, 12:
387–415, 1975.

O. Barndorff-Nielsen. Information and Exponential Families. Wiley, New York,
1978.

A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal
function. IEEE Transactions on Information Theory, 39(3):930 – 945, May 1993.

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3:463–
482, 2002.

P. L. Bartlett, P. M. Long, and Robert C. Williamson. Fat-shattering and the
learnability of real-valued functions. Journal of Computer and System Sciences,
52(3):434 – 452, 1996.

P. L. Bartlett, O. Bousquet, and S. Mendelson. Localized Rademacher averages. In
Proceedings of the 15th Conference on Computational Learning Theory COLT’02,
pages 44–58, 2002.

P. L. Bartlett, M. Collins, B. Taskar, and D. McAllester. Exponentiated gradient
algorithms for large-margin structured classification. Neural Information Pro-
cessing Systems 17, 2004.

J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In
International Conference on Machine Learning ICML, 2004.

A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal
clique trees. Artificial Intelligence, 125(1-2):3–17, 2001.

S. Becker and Y. LeCun. Improving the convergence of back-propagation learning
with second-order methods. In D. Touretzky, G. Hinton, and T. Sejnowski,
editors, Proceedings of the 1988 Connectionist Models Summer School, pages 29–
37, San Mateo, CA, 1989. Morgan Kaufman.



References 321

G. Bejerano and A. Apostolico. Optimal amnesic probabilistic automata, or, how
to learn and classify proteins in linear time and space. Journal of Computational
Biology, 7(3/4):381–393, 2000.

S. Ben-David, N. Eiron, and P. M. Long. On the difficulty of approximately
maximizing agreements. Journal of Computer and System Sciences, 66(3):496–
514, 2003.

Y. Bengio. Neural Networks for Speech and Sequence Recognition. International
Thompson Computer Press, London, 1996.

Y. Bengio and P. Frasconi. An input/output HMM architecture. In G. Tesauro,
D Touretzky, and T. Leen, editors, Advances in Neural Information Processing
Systems, volume 7, pages 427–434. MIT Press, Cambridge, MA, 1996.

Y. Bengio, R. Cardin, R. De Mori, and Y. Normandin. A hybrid coder for hidden
Markov models using a recurrent network. In Proceeding of ICASSP, pages 537–
540, 1990.

Y. Bengio, R. De Mori, G. Flammia, and R. Kompe. Global optimization of a neural
network-hidden Markov model hybrid. IEEE Transaction on Neural Networks,
3(2):252–259, 1992.

Y. Bengio, Y. LeCun, and D. Henderson. Globally trained handwritten word
recognizer using spatial representation, space displacement neural networks and
hidden Markov models. In J. Cowan and G. Tesauro, editors, Advances in Neural
Information Processing Systems, volume 6. Morgan Kaufmann, San Francisco,
1993.

Y. Bengio, Y. LeCun, C. Nohl, and C. Burges. Lerec: A NN/HMM hybrid for
on-line handwriting recognition. Neural Computation, 7(6):1289–1303, 1995.

Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language
model. Journal of Machine Learning Research, 3:1137–1155, 2003.

K. P. Bennett and O. L. Mangasarian. Robust linear programming discrimination
of two linearly inseparable sets. Optimization Methods and Software, 1:23 – 34,
1992.

K. P. Bennett, A. Demiriz, and J. Shawe-Taylor. A column generation algorithm
for boosting. In P. Langley, editor, Proceedings of the International Conference
on Machine Learning, San Francisco, 2000. Morgan Kaufmann.

D. Bertsekas. Nonlinear Programming. Athena Scientific, Nashua, NH, 1999.

J. Besag. Spatial interaction and the statistical analysis of lattice systems (with
discussion). Journal of the Royal Statistical Society, 36(B):192 – 326, 1974.

V. Blanz and T. Vetter. A morphable model for the synthesis of 3D faces.
SIGGRAPH’99, pages 187–194, 1999.

K. M. Borgwardt and H.-P. Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
International Conference on Data Mining (ICDM’05), pages 74–81, November
2005.



322 References

B. E. Boser, I. M. Guyon, and V. Vapnik. A training algorithm for optimal margin
classifiers. In D. Haussler, editor, Proceedings of the fifth Annual Workshop on
Computational Learning Theory, pages 144 – 152, New York, NY, July 1992.
ACM Press.

L. Bottou. Une approche théorique de l’apprentissage connexionniste: Applications
à la reconnaissance de la parole. PhD thesis, Université de Paris XI, 91405 Orsay
cedex, France, 1991.

L. Bottou. Stochastic learning. In O. Bousquet and U. von Luxburg, editors,
Advanced Lectures on Machine Learning, number LNAI 3176 in Lecture Notes in
Artificial Intelligence, pages 146–168. Springer-Verlag, Berlin, 2004.

L. Bottou and Y. LeCun. Large-scale on-line learning. In Advances in Neural
Information Processing Systems 15, Cambridge, MA, 2004. MIT Press.

L. Bottou, Y. LeCun, and Y. Bengio. Global training of document processing
systems using graph transformer networks. In Proc. of Computer Vision and
Pattern Recognition, pages 490–494, Puerto-Rico, 1997. IEEE Press.

S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: A survey of
some recent advances. ESAIM: Probability and Statistics, 9:323 – 375, 2005.

H. Bourlard and N. Morgan. A continuous speech recognition system embedding
MLP into HMM. In D.S. Touretzky, editor, Advances in Neural Information
Processing Systems 2, pages 186–193, San Francisco, 1990. Morgan Kaufmann.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, UK, 2004.

L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7):
1493 – 1518, 1999.

J. Bromley, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah. Signature verification
using a Siamese time delay neural network. In J. Cowan and G. Tesauro,
editors, Advances in Neural Information Processing Systems, volume 6. Morgan
Kaufmann, San Francisco, 1993.

P. Buhlmann and A. J. Wyner. Variable length Markov chains. Annals of Statistics,
27(2):480–513, 1999.

C. J. C. Burges. A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121 – 167, 1998.

L. Cai and T. Hofmann. Hierarchical document categorization with support vector
machines. In Proceedings of the 13th ACM Conference on Information and
Knowledge Management, pages 78–87, New York, 2004. ACM Press.

N. Cesa-Bianchi, C. Gentile, A. Tironi, and L. Zaniboni. Incremental algorithms
for hierarchical classification. In Neural Information Processing Systems, 2004.

O. Chapelle and Z. Harchaoui. A machine learning approach to conjoint analysis.
In Lawrence K. Saul, Yair Weiss, and Léon Bottou, editors, Advances in Neural
Information Processing Systems 17, Cambridge, MA, 2005. MIT Press.



References 323

S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit.
Siam Journal of Scientific Computing, 20(1):33 – 61, 1999.

S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively,
with application to face verification. In Proceedings of Computer Vision and
Pattern Recognition Conference, Piscataway, NJ, 2005. IEEE Press.

M. Collins. Parameter estimation for statistical parsing models: Theory and practice
of distribution-free methods. In New Developments in Parsing Technology.
Kluwer Academic, Norwell, MA, 2004.

M. Collins. Discriminative reranking for natural language parsing. In Proceedings
of International Conference on Machine Learning 2000, 2000.

M. Collins. Discriminative training methods for hidden Markov models: Theory
and experiments with perceptron algorithms. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, 2002.

M. Collins and N. Duffy. Convolution kernels for natural language. In T. G. Diet-
terich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information
Processing Systems 14, pages 625–632, Cambridge, MA, 2002. MIT Press.

M. Collins and B. Roark. Incremental parsing with the perceptron algorithm. In
Proceedings of the Conference of the Association for Computational Linguistics
(ACL), 2004.

R. Collobert, J. Weston, and L. Bottou. Trading convexity for scalability. In
Proceedings of the 23rd International Conference on Machine Learning (ICML
2006). IMLS/ICML, 2006.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):
273–297, 1995.

C. Cortes, P. Haffner, and M. Mohri. Rational kernels: Theory and algorithms.
Journal of Machine Learning Research (JMLR), 5:1035–1062, 2004.

C. Cortes, M. Mohri, and J. Weston. A general regression technique for learning
transductions. In ICML ’05: Proceedings of the 22nd International Conference
on Machine Learning, pages 153–160, New York, 2005. ACM Press. doi: http:
//doi.acm.org/10.1145/1102351.1102371.

R. G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. Probabilistic
Networks and Expert Systems. Springer-Verlag, New York, 1999.

D. Cox and F. O’Sullivan. Asymptotic analysis of penalized likelihood and related
estimators. Annals of Statistics, 18:1676 – 1695, 1990.

K. Crammer. Online Learning for Complex Categorical Problems. PhD thesis,
Hebrew University of Jerusalem, 2005.

K. Crammer and Y. Singer. On the learnability and design of output codes for
multiclass problems. In N. Cesa-Bianchi and S. Goldman, editors, Proceedings of
the Annual Conference on Computational Learning Theory, pages 35 – 46, San
Francisco, 2000. Morgan Kaufmann.



324 References

K. Crammer and Y. Singer. Loss bounds for online category ranking. In Proceedings
of the Annual Conference on Computational Learning Theory, 2005.

K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research, 2(5):265–292,
2001.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive
aggressive algorithms. Technical report, Hebrew University of Jerusalem, 2005.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-
aggressive algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

N. Cressie. Statistics for Spatial Data. Wiley, New York, 2nd edition, 1993.

N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, UK, 2000.

N. Cristianini, J. Shawe-Taylor, and H. Lodhi. Latent semantic kernels. In
Proceedings of the International Conference on Machine Learning, San Francisco,
2001. Morgan Kaufmann.

N. Cristianini, J. Shawe-Taylor, A. Elisseeff, and J. Kandola. On kernel-target
alignment. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances
in Neural Information Processing Systems 14, pages 367 – 373, Cambridge, MA,
2002. MIT Press.

P. Dawid. Applications of a general propagation algorithm for probabilistic expert
systems. Statistics and Computing, 2:25–36, 1992.

D. DeCoste and B. Schölkopf. Training invariant support vector machines. Machine
Learning, 46(1–3):161–190, 2002. Also: Technical Report JPL-MLTR-00 - 1, Jet
Propulsion Laboratory, Pasadena, CA, 2000.

M. H. DeGroot. Optimal Statistical Decisions. McGraw-Hill, New York, 1970.

O. Dekel, C. D. Manning, and Y. Singer. Log-linear models for label ranking. In
Advances in Neural Information Processing Systems 15, 2003.

J. S. Denker and C. J. Burges. Image segmentation and recognition. In The
Mathematics of Induction, Reading, MA, 1995. Addison Wesley.

T. G. Dietterich. Machine learning for sequential data: A review. In T. Caelli, editor,
In Structural, Syntactic, and Statistical Pattern Recognition; Lecture Notes in
Computer Science, volume 2396, pages 15–30. Springer-Verlag, 2002.

T. G. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random fields
via gradient tree boosting. In International Conference on Machine Learning,
2004.

A. Doucet, N. de Freitas, and N. Gordon (eds). Sequential Monte Carlo Methods
in Practice. Springer-Verlag, New York, 2001.

X. Driancourt. Optimisation par descente de gradient stochastique de systèmes mod-
ulaires combinant réseaux de neurones et programmation dynamique. Application
à la reconnaissance de la parole. PhD thesis, Université de Paris XI, 91405 Orsay



References 325

cedex, France, 1994.

X. Driancourt and L. Bottou. MLP, LVQ and DP: Comparison and cooperation. In
Proceedings of the International Joint Conference on Neural Networks, volume 2,
pages 815–819, Seattle, 1991.

X. Driancourt and P. Gallinari. A speech recognizer optimaly combining learning
vector quantization, dynamic programming and multi-layer perceptron. In Pro-
ceedings of International Conference on Acoustics, Speech, and Signal Processing,
1992a.

X. Driancourt and P. Gallinari. Empirical risk optimisation: neural networks and
dynamic programming. In Proceedings of Neural Networks for Signal Processing
(NNSP), 1992b.

X. Driancourt, L. Bottou, and Gallinari P. Comparison and cooperation of several
classifiers. In Proceedings of the International Conference on Artificial Neural
Networks (ICANN), 1991.

T. Dunning. Accurate methods for the statistics of surprise and coincidence.
Computational Linguistics, 19(1), 1993.

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis:
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press,
Cambridge, UK, 1998.

J. H. J. Einmal and D. M. Mason. Generalized quantile processes. Annals of
Statistics, 20(2):1062 – 1078, 1992.

A. Elisseeff and J. Weston. A kernel method for multi-labeled classification. In
Advances in Neural Information Processing Systems 14, Cambridge, MA, 2001.
MIT Press.

E. Eskin. Sparse Sequence Modeling with Applications to Computational Biology
and Intrusion Detection. PhD thesis, Columbia University, New York, 2002.

L. Euler. Solutio problematis ad geometriam situs pertinentis. Commentarii
academiae scientiarum Petropolitanae, 8:128–140, 1741.

C. Fellbaum, editor. Wordnet: An Electronic Lexical Database. MIT Press,
Cambridge, MA, 1998.

M. Fleischman, E. Hovy, and A. Echihabi. Offline strategies for online question
answering: Answering questions before they are asked. In Proceedings of the
Conference of the Association for Computational Linguistics (ACL), Sapporo,
Japan, July 2003.

R. Fletcher. Practical Methods of Optimization. Wiley, New York, 1989.

R. Florian, H. Hassan, A. Ittycheriah, H. Jing, N. Kambhatla, X. Luo, N. Ni-
colov, and S. Roukos. A statistical model for multilingual entity detection and
tracking. In Proceedings of the Conference of the North American Chapter of
the Association for Computational Linguistics and Human Language Technology
(NAACL/HLT), 2004.



326 References

M. Franzini, K. F. Lee, and A. Waibel. Connectionnist Viterbi training: A new
hybrid method for continuous speech recognition. In Proceedings of International
Conference on Acoustics, Speech, and Signal Processing, page 245, 1990.

N. Friedman and I. Nachman. Gaussian process networks. In C. Boutilier and
M. Goldszmidt, editors, Uncertainty in Artificial Intelligence 16, pages 211–219,
San Francisco, 2000. Morgan Kaufmann.

C. Gentile. A new approximate maximal margin classification algorithm. In T. K.
Leen, T. G. Dietterich, and V. Tresp, editors, Advances in Neural Information
Processing Systems 13, pages 500 – 506, Cambridge, MA, 2001. MIT Press.

L. Getoor, N. Friedman, D. Koller, and A. Pfeffer. Learning probabilistic relational
models. In S. Dzeroski and N. Lavrac, editors, Relational Data Mining. Springer-
Verlag, Berlin, 2001.

J. Godfrey, E. Holliman, and J. McDaniel. SWITCHBOARD: Telephone speech
corpus for research and development. In Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing, pages 517–520, 1992.

M. Gregory and Y. Altun. Using conditional random fields to predict pitch accents
in conversational speech. In Proceedings of ACL’04:Forty-second Annual Meeting
of the Association for Computational Linguistics, 2004.

M. Gribskov and N. L. Robinson. Use of receiver operating characteristic (ROC)
analysis to evaluate sequence matching. Computers and Chemistry, 20(1):25–33,
1996.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an
invariant mapping. In Proceedings of Computer Vision and Pattern Recognition
Conference (CVPR’06). IEEE Press, 2006.

P. Haffner. Connectionist speech recognition with a global MMI algorithm. In
EUROSPEECH’93, 3rd European Conference on Speech Communication and
Technology, Berlin, September 1993.

P. Haffner and A. H. Waibel. Time-delay neural networks embedding time align-
ment: A performance analysis. In EUROSPEECH’91, 2nd European Conference
on Speech Communication and Technology, Genoa, Italy, September 1991.

P. Haffner and A. H. Waibel. Multi-state time-delay neural networks for continuous
speech recognition. In Advances in Neural Information Processing Systems,
volume 4, pages 579–588, San Mateo, CA, 1992. Morgan Kaufmann.

P. Haffner, M. Franzini, and A. H. Waibel. Integrating time-alignment and neural
networks for high performance continuous speech recognition. In Proceedings of
ICASSP, pages 105–108. IEEE Press, 1991.

J. Hammersley and P. Clifford. Markov fields on finite graphs and lattices.
Unpublished manuscript, 1971.

J. A. Hartigan. Estimation of a convex density contour in two dimensions. Journal
of the American Statistical Association, 82:267 – 270, 1987.



References 327

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer-Verlag, New York, 2001.

D. Haussler. Convolutional kernels on discrete structures. Technical Report UCSC-
CRL-99 - 10, Computer Science Department, University of California, Santa
Cruz, 1999.

D. Heckerman. A tutorial on learning with Bayesian networks. In M. Jordan, editor,
Learning in Graphical Models. MIT Press, Cambridge, MA, 1999.

M. Hein and O. Bousquet. Kernels, associated structures, and generalizations.
Technical Report 127, Max Planck Institute for Biological Cybernetics, Tübingen,
Germany, 2004.

M. Hein, O. Bousquet, and B. Schölkopf. Maximal margin classification for metric
spaces. Journal of Computer and System Sciences, 71(3):333–359, 2005.

D. P. Helmbold and R. E. Schapire. Predicting nearly as well as the best pruning
of a decision tree. Machine Learning, 27(1):51 – 68, 1997.

R. Herbrich. Learning Kernel Classifiers: Theory and Algorithms. MIT Press,
Cambridge, MA, 2002.

R. Herbrich and R.C. Williamson. Algorithmic luckiness. Journal of Machine
Learning Research, 3:175 – 212, 2002.

R. Herbrich, T. Graepel, and K. Obermayer. Large margin rank boundaries for or-
dinal regression. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 115 – 132, Cambridge, MA,
2000. MIT Press.

R. Hettich and K. O. Kortanek. Semi-infinite programming: Theory, methods, and
applications. SIAM Review, 35(3):380–429, 1993.

G. E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Computation, 14:1771–1800, 2002.

T. Hofmann, I. Tsochantaridis, and Y. Altun. Learning over discrete output
spaces via joint kernel functions. Kernel Methods Workshop, Neural Processing
Information Systems 15, 2002.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, Reading, MA, 2nd edition, 2000.

F. J. Huang and Y. LeCun. Large-scale learning with SVM and convolutional nets
for generic object categorization. In Proceedings of Computer Vision and Pattern
Recognition Conference (CVPR’06). IEEE Press, 2006.

T. S. Jaakkola and D. Haussler. Probabilistic kernel regression models. In
Proceedings of the 1999 Conference on AI and Statistics, 1999a.

T. S. Jaakkola and D. Haussler. Exploiting generative models in discriminative
classifiers. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in
Neural Information Processing Systems 11, pages 487 – 493, Cambridge, MA,
1999b. MIT Press.



328 References

F. V. Jensen. An Introduction to Bayesian Networks. UCL Press, 1996.

F. V. Jensen and F. Jensen. Optimal junction trees. In Proceedings of the 10th
Conference on Uncertainty in Artificial Intelligence, pages 360–366, 1994.

F. V. Jensen, S. L. Lauritzen, and K. G Olesen. Bayesian updating in causal
probabilistic networks by local computations. Computational Statistics, 5(4):
269–282, 1990.

T. Joachims. A support vector method for multivariate performance measures. In
Proceedings of the 22nd International Conference on Machine Learning, 2005.

T. Joachims. Text categorization with support vector machines: Learning with
many relevant features. In Proceedings of the European Conference on Machine
Learning, pages 137 – 142, Berlin, 1998. Springer-Verlag.

M. I. Jordan, editor. Learning in Graphical Models. Kluwer Academic, Norwell,
MA, 1997.

M. I. Jordan, Z. Gharamani, T. S. Jaakkola, and L. K. Saul. An introduction to
variational methods for graphical models. In M. I. Jordan, editor, Learning in
Graphical Models, pages 105 – 162. Kluwer Academic, Norwell, MA, 1998.

M. I. Jordan, P. L. Bartlett, and J. D. McAuliffe. Convexity, classification, and risk
bounds. Technical Report 638, Universicty of California, Berkeley, 2003.

B.-H. Juang, W. Chou, and C.-H. Lee. Minimum classification error rate methods
for speech recognition. IEEE Transactions on Speech and Audio Processing, 5
(3):257–265, 1997.

J. P. Kahane. Some Random Series of Functions. Cambridge University Press,
Cambridge, UK, 1968.

K. Kanazawa, D. Koller, and S. Russell. Stochastic simulation algorithms for
dynamic probabilistic networks. In Proceedings of the 11th Annual Conference
on Uncertainty in Artificial Intelligence (UAI-95), pages 346–35, San Francisco,
CA, 1995. Morgan Kaufmann.

J. Kandola, J. Shawe-Taylor, and N. Cristianini. On the application of diffusion
kernel to text data. NeuroCOLT Technical Report NC-TR-02-122, 2002. URL
http://www.neurocolt.com/abs/2002/abs02122.html.

W. Karush. Minima of Functions of Several Variables with Inequalities as Side
Constraints. Master’s thesis, Department of Mathematics, University of Chicago,
1939.

H. Kashima, K. Tsuda, and A. Inokuchi. Marginalized kernels between labeled
graphs. In Proceedings of the 20th International Conference on Machine Learning
(ICML), pages 321–328, Washington, DC, United States, 2003.

R. Kassel. A Comparison of Approaches to On-line Handwritten Character Recog-
nition. PhD thesis, MIT Spoken Language Systems Group, Cambridge, MA,
1995.



References 329

M. Kearns and Y. Mansour. A fast, bottom-up decision tree pruning algorithm with
near-optimal generalization. In Proceedings of the 14th International Conference
on Machine Learning, 1996.

M. Kearns, Y. Mansour, and S. Singh. Nash convergence of gradient dynamics in
general-sum games. In Proceedings of the Conference on Uncertainty in Artificial
Intelligence (UAI), 2000.

A. Keller, S. Purvine, A. I. Nezvizhskii, S. Stolyar, D. R. Goodlett, and E. Kolker.
Experimental protein mixture for validating tandem mass spectral analysis.
OMICS, 6(2):207–212, 2002.

J. E. Kelley. The cutting-plane method for solving convex programs. Journal of
the Society for Industrial Applied Mathematics, 8:703–712, 1960.

G. S. Kimeldorf and G. Wahba. A correspondence between Bayesian estimation on
stochastic processes and smoothing by splines. Annals of Mathematical Statistics,
41:495 – 502, 1970.

G. S. Kimeldorf and G. Wahba. Some results on Tchebycheffian spline functions.
Journal of Mathematical Analysis and Applications, 33:82 – 95, 1971.

J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. IEEE
Transactions on Signal Processing, 52(8), Aug 2004.

V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE
Transactions on Information Theory, 47:1902–1914, 2001.

I. R. Kondor and J. D. Lafferty. Diffusion kernels on graphs and other discrete
structures. In Proceedings of the 19th International Conference on Machine
Learning (ICML-2002), 2002.

Y. Konig, H Bourlard, and N. Morgan. REMAP: Recursive estimation and max-
imization of a posteriori probabilities — application to transition-based con-
nectionist speech recognition. In David S. Touretzky, Michael C. Mozer, and
Michael E. Hasselmo, editors, Advances in Neural Information Processing Sys-
tems, volume 8, pages 388–394, Cambridge, MA, 1996. MIT Press.

L. Kontorovich. Uniquely decodable n-gram embeddings. Theoretical Computer
Science, 329/1-3:271–284, 2004.

W. Krauth and M. Mézard. Learning algorithms with optimal stability in neural
networks. Journal of Physics A, 20:745 – 752, 1987.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory, 47(2):498–519,
2001.

H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Proceedings of the 2nd
Berkeley Symposium on Mathematical Statistics and Probabilistics, pages 481 –
492, Berkeley, 1951. University of California Press.

S. Kumar and M. Hebert. Discriminative fields for modeling spatial dependencies
in natural images. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in
Neural Information Processing Systems 16. MIT Press, Cambridge, MA, 2004.



330 References

J. T. Kwok and I. W. Tsang. The pre-image problem in kernel methods. IEEE
Transactions on Neural Networks, 15(6):1517–1525, 2004.

J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In Proceedings of the 18th
International Conference on Machine Learning, pages 282–289, San Francisco,
2001. Morgan Kaufmann.

J. Lafferty, X. Zhu, and Y. Liu. Kernel conditional random fields: Representation
and clique selection. In Proceedings of the 21th International Conference on
Machine Learning, pages 504–511, 2004.

J. Langford and J. Shawe-Taylor. PAC-Bayes and margins. In Neural Information
Processing Systems (NIPS), 2002.

S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, UK, 1996.

N. D. Lawrence, M. Seeger, and R. Herbrich. Fast sparse Gaussian process methods:
The informative vector machine. In S. Becker, S. Thrun, and K. Obermayer,
editors, Neural Information Processing Systems 15, pages 609–616, Cambridge,
MA, 2003. MIT Press.

Y. LeCun and Y. Bengio. Word-level training of a handwritten word recognizer
based on convolutional neural networks. In IAPR, editor, Proceedings of the Inter-
national Conference on Pattern Recognition, volume 2, pages 88–92, Jerusalem,
October 1994. IEEE Press.

Y. LeCun and F.-J. Huang. Loss functions for discriminative training of energy-
based models. In Proceedings of the 10th International Workshop on Artificial
Intelligence and Statistics (AIStats’05), 2005.

Y. LeCun, L. Bottou, and Y. Bengio. Reading checks with graph transformer net-
works. In International Conference on Acoustics, Speech, and Signal Processing,
volume 1, pages 151–154, Munich, 1997. IEEE Press.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998a.

Y. LeCun, L. Bottou, G. Orr, and K. Muller. Efficient backprop. In G. Orr and
Muller K., editors, Neural Networks: Tricks of the trade. Springer-Verlag, 1998b.

Y. Lee, Y. Lin, and G. Wahba. Multicategory support vector machines: Theory and
application to the classification of microarray data and satellite radiance data.
Journal of the American Statistical Association, 99, 2004.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection
for text categorization research. JMLR, 5:361–397, Apr 2004.

C. J. Lin. Formulations of support vector machines: A note from an optimization
point of view. Technical report, National Taiwan University, Department of
Computer Science, 1999. http://www.csie.ntu.edu.tw/˜cjlin/penalty.ps.gz.

A. Ljolje, Y. Ephraim, and L. R. Rabiner. Estimation of hidden Markov model
parameters by minimizing empirical error rate. In Proc. of International Confer-
ence on Acoustics, Speech, and Signal Processing, pages 709–712, April 1990. URL



References 331

http://www.ece.ucsb.edu/Faculty/Rabiner/ece259/publications.html.

H. Lodhi, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using
string kernels. Technical Report 2000 - 79, NeuroCOLT, 2000. In: T. K. Leen,
T. G. Dietterich and V. Tresp (editors), Advances in Neural Information Pro-
cessing Systems 13, Cambridge, MA, MIT Press, 2001.

D. G. Luenberger. Linear and Nonlinear Programming. Addison-Wesley, Reading,
MA, 2nd edition, 1984. ISBN 0 - 201 - 15794 - 2.

D. J. C. MacKay. Introduction to Gaussian processes. In C. M. Bishop, editor,
Neural Networks and Machine Learning, pages 133 – 165. Springer-Verlag, Berlin,
1998.

D. J. C. MacKay. Information Theory, Inference, and Learning Al-
gorithms. Cambridge University Press, Cambridge, UK, 2003.
URL http://www.cambridge.org/0521642981. Available from
http://www.inference.phy.cam.ac.uk/mackay/itila/.

Y. Makovoz. Random approximants and neural networks. Journal of Approximation
Theory, 85:98 – 109, 1996.

O. L. Mangasarian. Linear and nonlinear separation of patterns by linear program-
ming. Operations Research, 13:444 – 452, 1965.

C. D. Manning and H. Schütze. Foundations of Statistical Natural Language
Processing. MIT Press, Cambridge, MA, 1999.

D. McAllester. PAC-Bayesian stochastic model selection. Machine Learning, 5:
5–21, 2003a. [A short version appeared as ”PAC-Bayesian Model Averaging” in
COLT99].

D. McAllester. Simplified PAC-Bayesian margin bounds. In COLT03, 2003b.

D. McAllester, M. Collins, and F. Pereira. Case-factor diagrams for structured
probabilistic modeling. In Proceedings of the Conference on Uncertainty in
Artificial Intelligence (UAI), 2004.

A. McCallum and B. Wellner. Conditional models of identity uncertainty with
application to noun coreference. In Advances in Neural Information Processing
Systems, 2004.

A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for
information extraction and segmentation. In Proceedings of the 17th International
Conference on Machine Learning, pages 591 – 598. Morgan Kaufmann, San
Francisco, 2000.

E. McDermott. Discriminative Training for Speech Recognition. PhD
thesis, Waseda University, 1997. URL citeseer.ifi.unizh.ch/
mcdermott97discriminative.html. [lots of references in alignment +
learning].

E. McDermott and S. Katagiri. Prototype-based discriminative training for various
speech units. In Proceedings of ICASSP-92, San Francisco, pages 417–420, 1992.



332 References

C. McDiarmid. On the method of bounded differences. In Survey in Combinatorics,
pages 148 – 188. Cambridge University Press, Cambridge, UK, 1989.

R. McDonald, K. Crammer, and F. Pereira. Large margin online learning algorithms
for scalable structured classification. In NIPS Workshop on Learning with
Structured Outputs, 2004.

S. Mendelson. Rademacher averages and phase transitions in Glivenko-Cantelli
classes. IEEE Transactions on Information Theory, 48(1):251–263, 2002.

S. Mendelson. A few notes on statistical learning theory. In S. Mendelson and A. J.
Smola, editors, Advanced Lectures on Machine Learning, number 2600 in LNAI,
pages 1 – 40. Springer-Verlag, 2003.

J. Mercer. Functions of positive and negative type and their connection with the
theory of integral equations. Philosophical Transactions of the Royal Society,
London, A 209:415 – 446, 1909.

C. A. Micchelli and M. Pontil. On learning vector–valued functions. Research Note
RN/03/08, Department of Computer Science, University College London, 2003.

T. Minka. Expectation propagation for approximate Bayesian inference. In J. Breese
and D. Koller, editors, Uncertainty in Artificial Intelligence 17, San Francisco,
2001. Morgan Kaufmann.

T. Minka and J. Lafferty. Expectation propagation for the generative aspect model.
In Conference on Uncertainty in Artificial Intelligence, 2002.

M. Minsky and S. Papert. Perceptrons: An Introduction to Computational Geom-
etry. MIT Press, Cambridge, MA, 1969.

M. Mohri. Finite-state transducers in language and speech processing. Computa-
tional Linguistics, 23(2):269–311, 1997.

M. Mohri, F. Pereira, and M. Riley. Weighted finite state transducers in speech
recognition. Computer Speech and Language, 16:69–88, 2002. URL citeseer.
ist.psu.edu/article/mohri00weighted.html.

N. Morgan and H. Bourlard. Continuous speech recognition: An introduction to
the hybrid hmm/connectionist approach. IEEE Signal Processing Magazine, 12
(3):25–42, May 1995.

V. A. Morozov. Methods for Solving Incorrectly Posed Problems. Springer-Verlag,
New York, 1984.

K. P. Murphy, Y. Weiss, and M. I. Jordan. Loopy belief propagation for approx-
imate inference: An empirical study. In Proceedings of the 15th Conference on
Uncertainty in Artificial Intelligence, 1999.

K. G. Murty. Linear Complementarity, Linear and Nonlinear Programming. Hel-
dermann Verlag, 1998.

R. M. Neal. Probabilistic inference using Markov chain Monte Carlo methods.
Technical Report CRG-TR-93-1, University of Toronto, 1993.



References 333

V. Ng and C. Cardie. Improving machine learning approaches to coreference
resolution. In Proceedings of the Conference of the Association for Computational
Linguistics (ACL), 2002.

F. Ning, D. Delhomme, Y. LeCun, F. Piano, L. Bottou, and P. Barbano. Toward
automatic phenotyping of developing embryos from videos. IEEE Transactions
on Image Processing, 14(9):1360–1371, 2005. Special issue on Molecular and
Cellular Bioimaging, to appear.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Series in Operations
Research. Springer-Verlag, New York, 1999.

D. Nolan. The excess mass ellipsoid. Journal of Multivariate Analysis, 39:348 –
371, 1991.

A. B. J. Novikoff. On convergence proofs on perceptrons. In Proceedings of the
Symposium on the Mathematical Theory of Automata, volume 12, pages 615 –
622. Polytechnic Institute of Brooklyn, 1962.

N. Oliver, B. Schölkopf, and A. J. Smola. Natural regularization in SVMs. In A. J.
Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in
Large Margin Classifiers, pages 51 – 60, Cambridge, MA, 2000. MIT Press.

R. Osadchy, M. Miller, and Y. LeCun. Synergistic face detection and pose esti-
mation with energy-based model. In Advances in Neural Information Processing
Systems (NIPS 2004), Cambridge, MA, 2005. MIT Press.

C. Pal, C. Sutton, and A. McCallum. Sparse forward-backward using minimum
divergence beams for fast training of conditional random fields. In International
Conference on Acoustic Speech and Signal Processing, 2006.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan-Kaufman, San
Francisco, 1988.

J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press,
Cambridge, UK, 2000.

F. C. Pereira and Y. Singer. An efficient extension to mixture techniques for
prediction and decision trees. Machine Learning, 36(3):183–199, 1999.

F. Pérez-Cruz, G. Camps, E. Soria, J. Pérez, A. R. Figueiras-Vidal, and A. Artés-
Rodŕıguez. Multi-dimensional function approximation and regression estimation.
In International Conference on Artificial Neural Networks (ICANN) 2002, 2002.

J. C. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances
in Kernel Methods - -Support Vector Learning, pages 185 – 208, Cambridge, MA,
1999. MIT Press.

T. Poggio. On optimal nonlinear associative recall. Biological Cybernetics, 19:201
– 209, 1975.

W. Polonik. Minimum volume sets and generalized quantile processes. Stochastic
Processes and Their Applications, 69:1 – 24, 1997.



334 References

W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical
Recipes in C. Cambridge University Press, Cambridge, UK, 2nd edition, 1992.

V. Punyakanok and D. Roth. The use of classifiers in sequential inference. In
Advances in Neural Information Processing Systems (NIPS), pages 995–1001,
Cambridge, MA, 2000. MIT Press.

Y. Qi, M. Szummer, and T. P. Minka. Bayesian conditional random fields. In
Proceedings of the 10th International Workshop on Artificial Intelligence and
Statistics, 2005.

G. Rätsch. Robust Boosting via Convex Optimization: Theory and Applications.
PhD thesis, University of Potsdam, Germany, 2001.

G. Rätsch, T. Onoda, and K. R. Müller. Soft margins for Adaboost. Machine
Learning, 42(3):287 – 320, 2001.

G. Rätsch, S. Mika, and A. J. Smola. Adapting codes and embeddings for poly-
chotomies. In Neural Information Processing Systems, volume 15, Cambridge,
MA, 2002a. MIT Press.

G. Rätsch, S. Mika, and M. K. Warmuth. On the convergence of leveraging. In
Advances in Neural Information Processing Systems (NIPS), 2002b.

D. Ravichandran, P. Pantel, and E. Hovy. Randomized algorithms and NLP: Using
locality sensitive hash functions for high speed noun clustering. In Proceedings of
the Conference of the Association for Computational Linguistics (ACL), 2005.

D. Ron, Y. Singer, and N. Tishby. The power of amnesia: Learning probabilistic
automata with variable memory length. Machine Learning, 25:117 – 149, 1996.

F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386 – 408, 1958.

F. Rosenblatt. Principles of Neurodynamics: Perceptron and Theory of Brain
Mechanisms. Spartan-Books, Washington DC, 1962.

R. Rosipal and L. J. Trejo. Kernel partial least squares regression in reproducing
kernel Hilbert space. Journal of Machine Learning Research, 2:97–203, 2002.

D. L. Ruderman and W. Bialek. Statistics of natural images: Scaling in the woods.
Physical Review Letters, 73:814–817, 1994.

P. Ruján. A fast method for calculating the perceptron with maximal stability.
Journal de Physique I France, 3:277 – 290, 1993.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,
Upper Saddle River, NJ, 1995.

T. W. Sager. An iterative method for estimating a multivariate mode and isopleth.
Journal of the American Statistical Association, 74(366):329 – 339, 1979.

H. Sakoe, R. Isotani, K. Yoshida, K. Iso, and T. Watanabe. Speaker-independant
word recognition using dynamic programming neural networks. In Proceedings
of ICASSP-88, pages 107–110, New York, 1988.



References 335

S. Sarawagi and W. Cohen. Semi-Markov conditional random fields for information
extraction. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural
Information Processing Systems 17, pages 1185–1192, Cambridge, MA, 2005.
MIT Press.

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in
dual variables. In Proceedings of the 15th International Conference on Machine
Learning, pages 515–521, San Francisco, 1998. Morgan Kaufmann.

R. Schapire, Y. Freund, P. L. Bartlett, and W. S. Lee. Boosting the margin: A new
explanation for the effectiveness of voting methods. Annals of Statistics, 26:1651
– 1686, 1998.

B. Schölkopf. Support Vector Learning, PhD thesis, Technische Universität Berlin.
R. Oldenbourg Verlag, Munich, 1997. http://www.kernel-machines.org.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge, MA,
2002.

B. Schölkopf, A. J. Smola, and K. R. Müller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299 – 1319, 1998.

B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support
vector algorithms. Neural Computation, 12:1207 – 1245, 2000.

B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In
Proceedings of the Annual Conference on Computational Learning Theory, pages
416 – 426, 2001.

B. Schölkopf, J. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson.
Estimating the support of a high-dimensional distribution. Neural Computation,
13(7):1443–1471, 2001.

R. Schwarz and Y. L. Chow. The n-best algorithm: An efficient and exact procedure
for finding the n most likely hypotheses. In Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 81–84, 1990.

M. Seeger. PAC-Bayesian generalization bounds for Gaussian processes. Journal
of Machine Learning Research, 3:233–269, 2002.

M. Seeger. Bayesian Gaussian Process Models: PAC-Bayesian Generalisation Error
Bounds and Sparse Approximations. PhD thesis, University of Edinburgh, July
2003. See www.kyb.tuebingen.mpg.de/bs/people/seeger.

M. Seeger. Gaussian processes for machine learning. International Journal of Neural
Systems, 14(2):69–106, 2004.

M. Seeger. Expectation propagation for exponential families. Tech-
nical report, University of California at Berkeley, 2005. See
www.kyb.tuebingen.mpg.de/bs/people/seeger.

M. Seeger, M. I. Jordan, and Y.-W. Teh. Semiparametric latent factor
models. Technical report, University of California, Berkeley, 2004. See
www.kyb.tuebingen.mpg.de/bs/people/seeger.



336 References

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In
Proceedings of Human Language Technology-NAACL, Edmondton, AB, Canada,
2003.

A. Shapiro. On duality theory of convex semi-infinite programming. Optimization,
54:535 – 543, 2005.

J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. Anthony. Structural risk
minimization over data-dependent hierarchies. IEEE Transactions on Informa-
tion Theory, 44(5):1926 – 1940, 1998.

Y. Shibata. On the tree representation of chordal graphs. Journal of Graph Theory,
12(3):421–428, 1988.

K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangulations.
In Proceedings of the National Conference on Artificial Intelligence (AAAI’97),
pages 185–190, San Francisco, 1997. Morgan Kaufmann.

A. J. Smola. Regression Estimation with Support Vector Learning Machines.
Dissertation, Technische Universität Munich, 1996.

A. J. Smola and P. L. Bartlett. Sparse greedy Gaussian process regression. Neural
Processing Information Systems 13, pages 619–625, 2001.

A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans, editors. Advances
in Large Margin Classifiers. MIT Press, Cambridge, MA, 2000.

S. Solla, E. Levin, and M. Fleisher. Accelerated learning in layered neural networks.
Complex Systems, 2(6):625–639, 1988.

W. M. Soon, H. T. Ng, and D. C. Y. Lim. A machine learning approach to
coreference resolution of noun phrases. Computational Linguistics, 27(4):521 –
544, 2001.

I. Steinwart. On the generalization ability of support vector machines. Technical
report, University of Jena, Germany, 2001.

E. Sudderth, M. Mandel, W. Freeman, and A. Willsky. Distributed occlusion rea-
soning for tracking with nonparametric belief propagation. In L. Saul, Y. Weiss,
and L. Bottou, editors, Neural Information Processing Systems 17, Cambridge,
MA, 2005. MIT Press.

C. Sutton and A. McCallum. Collective segmentation and labeling of distant entities
in information extraction. In International Conference on Machine Learning
(ICML) workshop on Statistical Relational Learning, 2004.

C. Sutton, K. Rohanimanesh, and A. McCallum. Dynamic conditional random
fields: Factorized probabilistic models for labeling and segmenting sequence data.
In Proceedings of the International Conference on Machine Learning, pages 783–
790, 2004.

B. Taskar, V. Chatalbashev, and D. Koller. Learning associative Markov networks.
In Proceedings of 21th International Conference on Machine Learning, pages 807–
814, 2004a.



References 337

B. Taskar, C. Guestrin, and D. Koller. Max-margin Markov networks. In S. Thrun,
L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004b.

D. M. J. Tax and R. P. W. Duin. Data domain description by support vectors.
In M. Verleysen, editor, Proceedings of European Symposium on Artificial Neural
Networks (ESANN), pages 251 – 256, Brussels, 1999. D-Facto.

Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton. Energy-based models for
sparse overcomplete representations. Journal of Machine Learning Research, 4:
1235–1260, 2003.

Y. W. Teh, M. Seeger, and M. I. Jordan. Semiparametric latent factor models. In
Z. Ghahramani and R. Cowell, editors, Workshop on Artificial Intelligence and
Statistics 10, 2005.

A. N. Tikhonov. The solution of ill-posed problems. Dokolady Akademii Nauk
SSSR, 39(5), 1963.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Support vector machine
learning for interdependent and structured output spaces. In ICML ’04: Twenty-
first International Conference on Machine Learning, pages 823–830, New York,
2004. ACM Press.

I. Tsochantaridis, T. Hofmann, T. Joachims, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research, 6:1453–1484, 2005.

A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals
of Statistics, 32(1):135–166, 2003.

A. B. Tsybakov. On nonparametric estimation of density level sets. Annals of
Statistics, 25(3):948 – 969, 1997.

J. H. van Lint and R. M. Wilson. A Course in Combinatorics. Cambridge University
Press, Cambridge, UK, 1992.

C. J. van Rijsbergen. Information Retrieval. Butterworths, London, 2nd edition,
1979.

V. Vapnik. The Nature of Statistical Learning Theory. Springer–Verlag, New York,
1995.

V. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

V. Vapnik and A. Y. Chervonenkis. On the uniform convergence of relative frequen-
cies of events to their probabilities. Theory of Probability and Its Applications,
16(2):264 – 281, 1971.

V. Vapnik and A. Y. Chervonenkis. The necessary and sufficient conditions for
consistency in the empirical risk minimization method. Pattern Recognition and
Image Analysis, 1(3):283 – 305, 1991.

V. Vapnik and A. Lerner. Pattern recognition using generalized portrait method.
Automation and Remote Control, 24:774 – 780, 1963.



338 References

V. Vapnik, S. Golowich, and A. J. Smola. Support vector method for function
approximation, regression estimation, and signal processing. In M. C. Mozer,
M. I. Jordan, and T. Petsche, editors, Advances in Neural Information Processing
Systems 9, pages 281 – 287, Cambridge, MA, 1997. MIT Press.

J. Vert and M. Kanehisa. Graph-driven features extraction from microarray data
using diffusion kernels and kernel cca. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems 15, NIPS 2002,
Cambridge, MA, 2002. MIT Press.

P. Vincent and Y. Bengio. Kernel matching pursuit. Technical Report
1179, Département d’Informatique et Recherche Opérationnelle, Université de
Montréal, 2000.

S. V. N. Vishwanathan and A. J. Smola. Fast kernels for string and tree matching.
In K. Tsuda, B. Schölkopf, and J. P. Vert, editors, Kernels and Bioinformatics,
Cambridge, MA, 2004. MIT Press.

S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy.
Accelerated training of conditional random fields with stochastic gradient meth-
ods. In Proceedings of the 23rd International Conference on Machine Learning
(ICML 2006). IMLS/ICML, 2006.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Technical Report 649, University of California, Berkeley,
Department of Statistics, September 2003.

M. J. Wainwright, T. Jaakkola, and A. Willsky. Tree-based reparameterization
framework for analysis of sum-product and related algorithms. IEEE Transac-
tions on Information Theory, 49:1120–1146, May 2003.

H. Wallach. Efficient Training of Conditional Random Fields. Master’s thesis,
Division of Informatics, University of Edinburgh, 2002.

C. Watkins. Dynamic alignment kernels. Technical report, Royal Holloway,
University of London, 1999.

J. Weston and C. Watkins. Multi-class support vector machines. Technical Report
CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of
London, Egham, UK, 1998.

J. Weston, O. Chapelle, A. Elisseeff, B. Schölkopf, and V. Vapnik. Kernel depen-
dency estimation. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances
in Neural Information Processing Systems 15, volume 15. MIT Press, Cambridge,
MA, 2002.

J. Weston, B. Schölkopf, O. Bousquet, T. Mann, and W. S. Noble. Joint ker-
nel maps. Technical report, Max Planck Institute for Biological Cybernetics,
Tübingen, Germany, 2004.

J. Weston, B. Schölkopf, and O. Bousquet. Joint kernel maps. In J. Cabestany,
A. Prieto, and F. Sandoval, editors, Proceedings of the 8th International Work-
Conference on Artificial Neural Networks, volume 3512 of LNCS, pages 176–191,



References 339

BerlinWhittaker90, 2005. Springer-Verlag.

J. Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley, Chich-
ester, UK, 1990.

F. M. J. Willems, Y. M. Shtarkov, and T. J. Tjalkens. The context tree weighting
method: Basic properties. IEEE Transactions on Information Theory, 41(3):
653–664, 1995.

C. K. I. Williams. Prediction with Gaussian processes: From linear regression to
linear prediction and beyond. In M. I. Jordan, editor, Learning and Inference in
Graphical Models, pages 599 – 621. MIT Press, Cambridge, MA, 1999.

R. C. Williamson, A. J. Smola, and B. Schölkopf. Generalization bounds for
regularization networks and support vector machines via entropy numbers of
compact operators. IEEE Transactions on Information Theory, 47(6):2516 –
2532, 2001.

R. J. Wilson. Introduction to Graph Theory. Longman, 1979.

G. Winkler. Image Analysis, Random Fields and Dynamic Monte Carlo Methods.
Springer-Verlag, Berlin, 1995.

WIPO. World Intellectual Property Organization.
http://www.wipo.int/classifications/en. 2001.

L. Wolf and A. Shashua. Learning over sets using kernel principal angles (kernel
machines section). Journal of Machine Learning Research, 4:913–931, 2003.

P. Wolfe. A duality theorem for nonlinear programming. Quarterly of Applied
Mathematics, 19:239 – 244, 1961.

Y. Xu and A. Fern. Toward discriminative learning of planning heuristics. In AAAI
Workshop on Learning for Search, 2006.

J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy approxi-
mations and generalized belief propagation algorithms. IEEE Transactions on
Information Theory, 51(7):2282–2312, July 2005.

D. H. Younger. Recognition and parsing of context-free languages in time n3.
Information and Control, 10:189–208, 1967.

T. Zhang. Sequential greedy approximation for certain convex optimization prob-
lems. IEEE Transactions on Information Theory, 49(3):682–691, 2003.

T. Zhang. Statistical behavior and consistency of classification methods based on
convex risk minimization. Annals of Statistics, 32(1):56–85, 2004.

T. Zhang, F. Damerau, and D. Johnson. Text chunking based on a generalization
of Winnow. Journal of Machine Learning Research, 2:615–637, 2002.

D. Zhou, D. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf. Learning with
local and global consistency. In S. Thrun, L. Saul, and B. Schölkopf, editors,
Advances in Neural Information Processing Systems 16, pages 321–328. MIT
Press, Cambridge, MA, USA, 2004.



340 References

A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. Engi-
neering support vector machine kernels that recognize translation initiation sites.
Bioinformatics, 16(9):799 – 807, 2000.

M. Zinkevich, P. Riley, M. Bowling, and A. Blum. Marginal best response, Nash
equilibria, and iterated gradient ascent. In preparation, 2005.



Contributors

Yasemin Altun
Toyota Technological Institute at Chicago
Chicago, IL
altun@tti-c.org

Gökhan Bakır
Max Planck Institute for Biological Cybernetics
Tübingen, Germany
gb@tuebingen.mpg.de

Olivier Bousquet
Max Planck Institute for Biological Cybernetics
Tübingen, Germany, and
Pertinence Paris, France
o.bousquet@pertinence.com

Sumit Chopra
Courant Institute of Mathematical Sciences
New York University, New York, NY
sumit@cs.nyu.edu

Corinna Cortes
Google Research
New York, NY
corinna@google.com

Hal Daumé III
School of Computing, University of Utah
Salt Lake City, UT
me@hal3.name

Ofer Dekel
School of Computer Science and Engineering



342 Contributors

The Hebrew University, Jerusalem, Israel
oferd@@cs.huji.ac.il

Zoubin Ghahramani
Engineering Department
Cambridge University, Cambridge, UK
zoubin@eng.cam.ac.uk

Raia Hadsell
Courant Institute of Mathematical Sciences
New York University, New York, NY
raia@cs.nyu.edu

Thomas Hofmann
Department of Computer Science
Technical University of Darmstadt, Germany, and
Google, Zurich, Switzerland
thofmann@google.com

Fu Jie Huang
Courant Institute of Mathematical Sciences
New York University, New York, NY
jhuangfu@cs.nyu.edu

Yann LeCun
Courant Institute of Mathematical Sciences
New York University, New York, NY
yann@cs.nyu.edu

Tobias Mann
Department of Genome Sciences
University of Washington, Seattle, WA
mann@gs.washington.edu

Daniel Marcu
Information Sciences Institute
University of Southern California, Marina del Rey, CA
marcu@isi.edu

David McAllester
Toyota Technological Institute at Chicago
Chicago, IL
mcallester@tti-c.org

Mehryar Mohri
Courant Institute of Mathematical Sciences



Contributors 343

New York University, New York, NY
mohri@cims.nyu.edu

William Stafford Noble
Department of Genome Sciences
University of Washington, Seattle, WA
noble@gs.washington.edu

Fernando Pérez-Cruz
Gatsby Computational Neuroscience Unit, London, UK
and University Carlos III, Madrid, Spain
fernando@tsc.uc3m.es

Massimiliano Pontil
Department of Computer Science, UCL
London, UK
m.pontil@cs.ucl.ac.uk

Marc’Aurelio Ranzato
Courant Institute of Mathematical Sciences
New York University, New York, NY
ranzato@cs.nyu.edu

Juho Rousu
Department of Computer Science
University of Helsinki, Finland
juho.rousu@cs.helsinki.fi

Craig Saunders
Electronics and Computer Science
University of Southampton, UK
cjs@ecs.soton.ac.uk

Bernhard Schölkopf
Max Planck Institute for Biological Cybernetics
Tübingen, Germany
bs@tuebingen.mpg.de

Matthias W. Seeger
Max Planck Institute for Biological Cybernetics
Tübingen, Germany
seeger@tuebingen.mpg.de

Shai Shalev-Shwartz
School of Computer Science and Engineering



344 Contributors

The Hebrew University, Jerusalem, Israel
shais@@cs.huji.ac.il

John Shawe-Taylor
Electronics and Computer Science
University of Southampton, UK
jst@ecs.soton.ac.uk

Yoram Singer
School of Computer Science and Engineering
The Hebrew University, Jerusalem, Israel, and
Google Inc., Mountain View, California, CA
singer@cs.huji.ac.il

Alex Smola
Statistical Machine Learning Programme
NICTA, Canberra 0200 ACT, Australia
alex.smola@nicta.com.au

Sandor Szedmak
Electronics and Computer Science
University of Southampton, UK
ss03v@ecs.soton.ac.uk

Ben Taskar
EECS Department
University of California, Berkeley, CA
taskar@cs.berkeley.edu

Ioannis Tsochantaridis
Google Inc.
Mountain View, CA
ioannis@google.com

S.V.N Vishwanathan
Statistical Machine Learning Programme
NICTA, Canberra 0200 ACT, Australia
vishy@nicta.com.au

Jason Weston
NEC Labs America
Princeton, NJ
jasonw@nec-labs.com



Index

F1 score, 97
�1,�2,�p norms, 29

active path, 51
algorithm

ν-SV classification, 30
conditional graphical model, 276
cost-sensitive SVM, 95
Eulerian circuit, 156
generic search, 171
joint kernel maps, 73
junction tree, 54
kernel dependency estimation,

22, 146
kernel PCA, 13
LaSO, 171
max-margin conditional random

field, 120
max-margin Markov networks,

233, 272
multiclass perceptron, 28
norma, 27
parzen, 5
perceptron, 26
self-bounded PST-perceptron, 140
sparse greedy subspace approxi-

mation, 292
SV support estimation, 31
SVM – dual, 29
SVM – primal, 29
unbounded-depth PST-perceptron,

134
approximate KL minimization, 284
asymptotic consistency, 248

Bayes rule, 267

Bayesian conditional random fields,
270

Bayesian networks, 47
beam size, 181
belief propagation, 299
boosting loss, 40
bottleneck approximation, 300
bounds for parsing, 249

Chomsky normal form , 57
co-kriging, 304
collapse of EBMs, 215
compatibility, 87
compatibility function, 61
compatibility measure, 193
concentration of measure, 37
conditional density estimation, 196
conditional gradient ascent, 119
conditional graphical models, 274
conditional independence, 44
conditional models, 60
conditional random fields, 233, 268
conditional subspace gradient ascent,

121
context function, 131
context tree weighting, 129
context-free grammars, 58
contrastive divergence algorithm, 244
correlation, 68
cross-covariance, 305
cummulant-generating, 56
curse-of-dependency problem, 300
cutting-plane algorithm, 94

d-separation, 51
De Bruijn graph, 155
decoder, 247



346 Index

decoding, 22, 170
decoding as energy minimization, 194
dense densities, 285
detection, 196
directed acylic graph, 47
DTW, see dynamic time warping
dynamic time warping, 235

EBMs, 191
EDT, 182
energy function, 193
energy loss, 201
energy-based models, 191
entity detection and tracking, 182
Euler circuit, 155
exponential families, 56, 285

face detection, 212
face detection and pose estimation,

194
factor analysis, 305
factor graph, 227
feature sharing, 88
feature space, 4
Fisher information matrix , 21
Fisher scores, 21

Gauss-Seidel, 292
Gauss-Southwell, 293
Gaussian process belief propagation,

306
Gaussian process classification loss,

33
gene function prediction, 19
generalization across classes, 88
generalized margin loss, 201
generalized perceptron loss, 201
generalizing support vector machines,

69
Gibbs distribution, 197
Gram matrix, 6
graph transformer network, 236
GTN, see graph transformer network

Hammersley-Clifford theorem, 47

Hamming distance, 248
handwriting recognition, 194
handwriting segmentation and recog-

nition, 239
hierarchical classification, 88, 99
hinge loss, 32, 202
hyperedge potentials, 108

identity map, 79
image segmentation, restoration, 194
implicit regression, 209
incomplete Cholesky decomposition,

159
independence graph, 47
independence map, 44, 48
input-output constraints, 148
interactions between output labels, 89

joint feature map, 62
joint input-output space, 87
joint kernel maps, 71
joint labeling problems, 35
joint learning, 187
joint tagging and chunking, 179
junction tree, 54
junction tree algorithm, 47

KDE, see algorithms, kernel depen-
dency estimation

Kernel
all-pairs shortest-path, 21
centering, 12
concatenation, 87
construction of kernels, 8
convolution kernels, 18
diffusion, 19
from generative models, 21
Gaussian, 9
graph kernel, 20
joint, 76
MRF decomposition, 288
n-gram kernel, 17
PCA, 13
positive definite, 6
rational kernel, 15



Index 347

reproducer property, 8
set kernel, 14
spline kernel, 10
sufficient statistics, 287
tensor product, 77
tree kernel, 20
vector-valued, 75

kernel dependency estimation, 23
kernel PCA map, 14

label interdependency, 89
label sequence learning, 89, 100
label-bias problem, 229
Lagrange function, 29
large-margin separating hyperplane,

28
late normalization, 229
latent variables, 210
learning as search optimization, see

algorithm, LaSO
linear regression, 68
local loss function, 289
log loss, 202
log-linear model, 108
log-partition, 56
logistic regression, 248
loopy belief propagation, 122
LVQ2 loss, 202

M3Ns, see algorithms, max-margin
Markov networks

Markov blanket, 45
Markov networks, 44
Markov property of graphs, 45
Markov random fields, 44
mass spectrometry, 80
maximal cliques, 47
maximum a posteriori, 267
maximum entropy, 283
maximum entropy distribution, 284
mediator variable, 300
microlabel, 107
minimum classification error loss, 203
missing probability mass problem,

229

missing variables, 210
MRF, 44
multiclass logistic regression, 33
multiclass loss, 32
multilabel, 107
multilabel estimation problems, 36

named entity recognition, 296
negative log-likelihood loss, 204
neighbor graph, 19
neighbor of a word, 19
novelty detection loss function, 33

offending answers, 202
one-class SVM, see algorithms, SV

support estimation
online learning, 26
online update, 27
ordinal regression, 36

PAC-Bayesian generalization bound,
249

parsing, 90, 101
partition function, 108, 197
path cost, 171
pitch accent prediction, 294
potential functions, 47, 288
pre-image, 170
pre-image problem, 22
pre-images for n-gram kernels, 154
prediction suffix trees, 129
probabilistic context-free grammars,

57
pseudoexample, 108

quadratic program, 29

Rademacher averages, 37, 38
ranking, 196
relative mistake bound for unbounded

PSTs, 134
representer theorem, 10
RKHS, 8

search, 171
operators, 171



348 Index

problem, 171
states, 171

search margin, 173
semi-infinite program, 73
semi-parametric Markov random field,

294
semisupervised learning, 19
sequence labeling, 194, 293
Siamese architectures, 210
smiling face, 81
soft-margin loss, 40
softmax, 267
sparse approximation schemes, 29
sparse greedy subspace approxima-

tion, 291
square-exponential loss, 203
square-square loss, 203
statistical independence, 43
stochastic approximation of risk, 27
stochastic gradient descent, 208
string-to-string, 144
string-to-string mapping, 143
structured output, 71
sufficient statistics, 56, 301
support vectors, 29
symmetrization, 38
syntactic chunking, 177

taxonomies in categorization, 33, 88
TDNN, see time-delay neural net-

work
time-delay neural network, 235
transfer learning, 304
tree reparametrization algorithm, 122
Tsybakov’s noise condition, 41

variable-length Markov models, 129


	0262026171
	Contents
	Series Foreword
	Preface

	I - Introduction
	1 - Measuring Similarity with Kernels
	2 - Discriminative Models
	3 - Modeling Structure via Graphical Models

	II - Structured Prediction Based on Discriminative Models
	4 - Joint Kernel Maps
	5 - Support Vector Machine Learning for Interdependent and Structured Output Spaces
	6 - Efficient Algorithms for Max-Margin Structured Classification
	7 - Discriminative Learning of Prediction Suffix Trees with the Perceptron Algorithm
	8 - A General Regression Framework for Learning String-to-String Mappings
	9 - Learning as Search Optimization
	10 - Energy-Based Models
	11 - Generalization Bounds and Consistency for Structured Labeling

	III - Structured Prediction Using Probabilistic Models
	12 - Kernel Conditional Graphical Models
	13 - Density Estimation of Structured Outputs in Reproducing Kernel Hilbert Spaces
	14 - Gaussian Process Belief Propagation

	References
	Contributors
	Index



