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P r e f a c e  

The present volume has emerged from a twofold intention: (1) to collect and to 
present to the reader results in two important and active areas of formal language 
theory, regulated rewriting and grammar systems (both these areas have as one of 
their main goals to increase the generative power of grammars by adding certain 
features dealing with the control of the derivation process, the cooperation of parts, 
the distribution of tasks among parts, and other related ideas), and (2) to mark the 
50th Birthday of Jiirgen Dassow, an author who has made a significant contribution 
to the above mentioned areas (and who has been quite active in organizing meetings 
in formal language theory, as well as in theoretical computer science in general). 

Most of the contributions are indeed devoted to regulated rewriting and grammar 
systems, but, because several of Jfirgen's friends and collaborators are not working 
in these areas, we decided to enlarge the scope of the volume. Thus, the last two 
chapters were added. 

The first chapter (Regulated rewriting) deals both with topics which can be con- 
sidered classical in formal language theory (the LBA problem reformulated in terms 
of programmed grammars, the index of grammars and languages, the descriptional 
complexity in the form of the number of nonterminals used by a grammar) and with 
recent (controlling the work of a grammar/automaton by means of elements of a 
group, or by attributes associated to strings or to symbols), or emergent topics (fuzzy 
grammars, array grammars, restarting automata). 

The next two chapters (Cooperating distributed grammar systems and Parallel 
communicating grammar systems) are devoted to the two main classes of grammar 
systems, the sequential ones (the components work in turn, one at each moment, 
on the same common sentential form) and the parallel ones (the components work 
synchronously, each on its own sentential form, and communicate on request or by 
command). 

The papers included in these chapters prove the power and the fruitfulness - both 
from a theoretical and a practical point of view - of the distributed architectures spe- 
cific to grammar systems. There are papers investigating basic generative capacity 
questions, computational complexity, variants (in general suggested by computer sci- 
ence aspects modelled in terms of grammar systems). Special mention should be made 
of the two papers about colonies, a particular case of cooperating distributed grammar 
systems, corresponding to multi-agent systems with very simple subsystems/agents, 
and the papers discussing the possible use(fulness) of parallel communicating grammar 
systems, of grammar systems in general, in modelling constructions and phenomena 
occurring in natural languages. 

The fourth chapter (Splicing systems) deals with an exciting and hot area in com- 
puter science, which promises important developments also in automata and language 
theory: DNA computing. The basic ingredient here is the splicing operation mod- 
elling the DNA recombination. The first two papers investigate (parallel) grammar 
systems based on components using the splicing operation. (Thus, these papers can 
also be considered as continuations of the previous chapter.) The third paper of this 
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chapter extends the splicing operation to arrays, opening a rich area of investigation. 
Chapter five (Infinite words) contains three papers whose object of study are the 

infinite sequences, whereas Chapter six (Algebraic approaches to languages) contains 
papers where the main point of view is not generative but algebraic. These areas con- 
stitute well-established branches of formal language theory, important counterparts of 
the %lassical" branches dealing with finite strings in a purely grammatical manner. 

Of course, the volume does not intend to provide an overview of formal language 
theory; the reader interested in such an overview can consult Handbook of Formal 
Languages (three volumes), published this spring by Springer-Verlag (G. Rozenberg, 
A. Salomaa, eds.). 

The contributions have been refereed in the usual way. We are very much indebted 
to all the people involved in the production of this volume. Most importantly, we want 
to thank the authors for excellent and timely cooperation, and regret that some other 
prospective authors who wanted to contribute were unable to do so because of time 
and other constraints. After fifty, other multiples of ten follow... So, Happy Birthday 
Jiirgen, and see you at many multiples of ten from now on ! 

January 1997 Gh. P~un and A. Salomaa 
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Chapter 1. Regulated Rewriting 

A G r a m m a t i c a l  A p p r o a c h  t o  t h e  L B A  P r o b l e m  

Henning BORDIHN 

Fakults ffir Informatik 
Otto-von-Guericke-Universits Magdeburg 

Postfach 4120, D-39016 Magdeburg, Germany 
Email: bordihn�9 cs .  uni-magdeburg, de 

A b s t r a c t .  In this paper, the degree of non-regulation for programmed 
grammars is introduced, as the largest number of elements in success or in 
failure fields. We show that this measure can be restricted to two without 
loss of generative capacity. Moreover, we present interrelations between 
the lba problem on the one hand and the relationship between the families 
of languages described by A-free programmed grammars with degree of 
non-regulation one and two on the other hand. EspeciMly, in case of 
accepting programmed grammars with monotone core rules and leftmost 
derivations this relationship exactly characterizes the lba problem. 

1. I n t r o d u c t i o n  

In [1], [2], it is proved that programmed grammars with A-free context-free produc- 
tions and with appearance checking features describe the family of context-sensitive 
languages if they are seen as accepting devices. 

The idea of accepting grammars [7] is the following: Starting from a "terminal" 
word, the system tries to derive a given goal word (the axiom) where, following [1], 
[2], [3], ,the yield relation is defined by textually the same words as in generating 
case. Possible restrictions to production sets are turned "around", e.g., coming to 
productions of the form v ~ a in the context-free case, where v is a (possibly empty) 
word and a is a symbol. 

In this paper, we present an approach to the family of languages recognized by 
deterministic linear-bounded automaton by restricting the number of possible choices 
of productions for continuing a derivation of programmed grammars in a certain sit- 
uation, i.e. after a certain production has been applied leading a certain sentential 
form. For, we introduce a new measure of descriptional complexity for programmed 
grammars, the degree of non-regulation, which reflects this number of possible 
choices. 

We assume that the reader is familiar with basic notions and basic knowledge of 
formal language and automata theory. Concerning our notations, we mostly follow 
[4]: C denotes inclusion, C denotes strict inclusion, IMI is the number of elements 
in the set M. The empty word is denoted by A. We consider two languages L1, L2 
to be equal iff L1 \ {A) = L2 \ (A}, and we simply write L1 = L2 in this case. We 



te rm two devices describing languages equivalent if the two described languages are 
equal. Moreover, let Sub(w) denote the set of subwords of w. The length of a word 
x is denoted by Ixl. If x c v*,  where V is some alphabet ,  and if W c_ V,  then IxIw 
denotes the number of occurrences of letters from W in x. If W is a singleton set {a}, 
we simply write Ixlo instead of Ixf<o>. 

The families of regular, context-free, A-free context-free, context-sensitive, mono- 
tone, and type-0 Chomsky grammars  are denoted by REG, CF, CF-$ ,  CS, MON, and 
RE, respectively. If X is one of these families, s (s denotes the family 
of languages generated (accepted) by some device from the family X.  Whenever  we 
use bracket notat ions like s  = s  we mean tha t  the s ta tement  
is true both in case of neglecting the bracket contents and in case of ignoring the 
brackets themselves. If several parts  of a formula (which can uniquelly be associated 
to each other) are enclosed in brackets then we can leave out none, one, or more of 
those associated parts.  

2. Programmed Grammars and the Degree of 
Non-Regulation 

First ,  we formally define the notion of programmed grammars  in a way appropr ia te  
for generating and accepting case [1], [2]. 

A programmed grammar is a construct G = (VN, VT, P, S),  where VN and VT 
are two disjoint alphabets ,  the set of nonterminal  symbols and the set of terminal  
symbols, S E VN is the axiom, and P is a finite set of productions of the form 
(r : a ---* ~, a ( r ) ,  r  where r :  a ~ fl is a rewriting rule labelled by r and cr(r) 
and r  are two sets of labels of such core rules in P .  By Lab(P) ,  we denote the set 
of all labels of the  productions appearing in P .  

A sequence of words over V~, Yo, Yl , . . - ,Y~,  is referred to as a derivation in G iff, 
for 1 < i < n, there are productions ( r i :  a i  --+ 13i, (r(r~), r  e P such tha t  

I I Yi-1 = zi- laizi-1,  Yi = Zi-lflizi-1, and, if 1 < i < n, ri+l C a(ri) 

o r  

ai ~ Sub(y~-l), Y~-I = yi, and, if 1 < i < n, ri+ 1 E r 

Note that ,  in the la t ter  case, the derivation step is done in the  appearance checking 
mode. The set ~r(ri) is called the success field and the set r the failure field of ri. 
We also write the  derivation as 

Y0 ==~rl Yl :::::=~r2 " ' "  = : : : @ r .  Yn 

or simply as yo ==~ yl ==~ "'" ==~ Y,, 

The language generated by G is defined as 

Lg~'~(G) = {w E V~ [ there is a derivation S = Yo, Y l , . . .  ,Y= = w} 

if G is a generating programmed grammar  and 

LaCe(G) = {w E V~ I there is a derivation w = Y0, Y l , . . - ,  Y,~ = S} 

if G is an accepting one. 



A derivation according to G is said to be leftmost if each rule is either applied in a 
way such that it replaces the leftmost occurrence of its left-hand side or it is applied 
in appearance checking mode. ~ By Lg~'~(G-left) (L~r we denote the language 
generated (accepted) by G in this leftmost manner. 

Let X E {REG, CF, CF-,k, CS, MON, RE}. The family of languages generated 
(accepted) by programmed grammars of the form G = (VN, VT, P, S) containing only 
core rules of type X is denoted by/2g~(P,  X, ac) ( s  X, ac)). When no appear- 
ance checking features are involved, i.e. r  = 0 for each rule in P,  we are led to 
the families s  X)  ( / : ~ ( P ,  X)).  In order to denote the corresponding families of 
languages obtMned by leftmost derivations we add left to the first component of that  
notation, e.g., leading to s  

Let us recall some results for the generating case [4] and extend them to further 
cases. 2 

L e m m a  2.1. For X C {CF, CF-A}, we have 

(i) s  C_ s  and 

(ii) s162 G s162 

For X E {CS, MON, RE}, 

(iii) s162 = s = s = s162 and 

(iv) s162 C s 

Proof. For (i), (ii), and (iii), see [4]. In order to show (iv), we slightly modify the 
idea of the proof given for the context-free case (ii). 

We consider the programmed grammar G = (VN, VT, P, S) with productions of 
type CS, MON, or RE, and with each rule ( r :  a -+ fl, a ( r ) ,  r  E P,  we associate 
the productions 

( r :  a ~ ~, {r', r"}, r  
( r ' :  A --+ A', {r', r"}, 0) if a = uA~ with u e V~, A C VN, 7 e (VN U Vr)*, 
(r ~ ~ / ~ ,  {r"}, 0), 
( r ' :  A' ---~ A, { r"} ,  ~r(r)). 

The remaining part of the construction is analogous to that  one given for the context- 
free case in [4]. [] 

Now, we turn to the accepting case. 

L e m m a  2.2. 

(i) For X e {OF-A, CS, MON}, s _C Z:~ 

(ii) s = s = s and 

(iii) s ___ s hold. 

1Note that this definition corresponds to the definition of leftmost derivations of type 3 in [4]. 
2For recent results about leftmost derivations in the special case of uneonditionM transfer of. [5]. 



Proof. (i) The case with appearance checking can be proved similarly to the 
proof for generating grammars. We just have to rename the teminal symbols first 
in order to avoid terminals on the right-hand sides of rules. More precisely, for a 
given accepting programmed grammar G = (VN, VT, P, S), we construct an equivalent 
accepting programmed grammar with leftmost derivations G' = (V~, V~, P' ,  S') as 
follows. Set V~ = VN U {A' I A E VN} U {~ ] a E VT} and V~. = VT. Now, let 
^: (VN U VT)* --~ (V~r be the morphism defined by A = A for A E VN and fi = 
for a E VT. Furthermore, let pt contain the following productions: 

((0,a) :  a--*g,  {(0, b) l bE  VT}, {r,r ' ,r"Clr E Lab(P)}), for all a E VT 

and with each ( r :  a ~ fl, a(r),  r E P, we associate the productions 

( r ' :  2 ~ x t , { r , r ' } , O ) ,  i f a = z T ,  x E V N U V T ,  TE(VNUVT)*  
( r :  ~ -~ ~, {r"}, 0), 
( r" :  x' -~ ~, {p"}, {p,p',p~c t P C ~(r)}), 
( < :  ~ -~ ~, 0, {p ,p ' , r176  I P e r 

Clearly, L ~ ( G  ') = L ~ ( G ) .  Note, that we have only productions of type X if every 
(given) rule a ~ fl is of type X. 

If appearance checking features are not involved then we omit the productions r ~r 
and have productions 

((0, a ) :  a--*~,{(0,  b) l b E V T } U { r , r ' } l r E L a b ( P ) } , 0 ) ,  for a l l a E V T  

and, for each ( r :  a -+ fl, ~r(r), r E P, 

( r ' :  & --* x', {r,r'}, O), if a = xT, x E VN U VT, ~/ E (VN U VT) * 
( r :  ~ -~ ~, {r"}, ~), 
( r" :  ~t _~ ~, {p,,} U {p,p' I P �9 ~(r)}, r 

Obviously, any derivation of G can be simulated by G', further possible derivations 
are either blocking or simulating derivations of the given grammar, as well. Hence, 
we find L ~ ( G  ') = L~C(G) and the failure fields are empty for all rules in P'.  

(ii) is a direct conclusion of Lemma 2.1 together with 

/Yen(P,X,ac) = s and 

s  ac]) = s ac]) 

for X �9 {CF, RE}, cf. [4] and [1], [3], respectively. Let us remark that the idea of the 
proof for (i) cannot be used if )~-rules, i.e. rules of the form ,~ --* fl are allowed, n 

Let G = (VN, VT, P, S) be a programmed grammar (with appearance checking) 
with productions of type X, X �9 {REG, CF, CF-)~, CS, MON, RE} in generating 
or in accepting mode. The degree of non-regulation Rg(G) of G is defined in the 
following way: For any production ( r :  a --* fl, a(r), r in P,  we set 

Rg(r) = max{l~(r) l , lr  

and 

Rg(G) = max{Rg(r) l r  E Lab(P)}.  
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For a language L r s [ac]), we define the degree of non-regulation as 

Rg(L) = min{Rg(G) I Lg~"(G) = L}. 

The degree of non-regulation of a language L E l :~(P[- lef t ] ,X,  [ac]) is defined analo- 
gously. Furthermore, we set 

t :~(P[- lef t ] ,X[ ,ac]))  = {L r ~g~'~(P[-left],X[,ac])) I Rg(L) < n}, 
s162 = {L e s  ) < n}. 

The inclusions 

E~'~(P[-left],X[,ac]) C_ s s and 

s q / :~ l (P[- le f t ] ,X[ ,ac] )  C_ s 

trivially hold for n > 1. Obviously, the degree of non-regulation of a programmed 
grammar is a measure for the maximum number of possibilities to continue a deriva- 
tion of the form z ===>* z' * ~ p  w according to G, for some sentential forms z, z', w 
and a label p E Lab(P) .  

L e m m a  2.3. Let X E {REG, CF, CF-A, CS, MON, RE}. 

(i) ~:~=(P,X[,ac]) = ~:~~ 

(ii) s  = C=2P,X[,ac]).  

Proof. First, we consider a generating programmed grammar G = (VN, VT, P, S). 
With each production 

( r :  o~ --4 fi], {81, 8 2 , . . . ,  81}, {t l ,  i~2, . . . ,  ~k}) ~ P, n > 2, 

we associate the following groups of productions: 

(r:  ~ ~ ~, {~,  r~}, {~1, ~}),  
( d :  ~ ~ / 3 ,  {~1}, ~), 

i f / ~  k, for 1 < i < min{/,k},  

( ~ :  ~ --. ~, {r~,~+i},  { t , ,~+l} ) ,  
(r~: ~ --, Z, {~d, 9), 

and, if l < k, for l < j < k, 

( r j :  a ~ c~, 9, {t~,r~+,}), and 
(r~: ~ ~ ~, 9, {t~}), 

i f k < l ,  for k < j < l ,  

! ( r j :  o~ --+ cq {rj, r j+  1 }, 9), 
(r':  ~ ~ ~, {sj},  9) J 
(r,: ~ ~ ~, {~d,  9). 

and 



In case of l = k, simply set a(rk) = {Sk} and r = {tk}. If r  = O we let the 
failure fields be empty  in all these productions. Then we construct the programmed 
grammar  G' = (VN, liT, P', S) by replacing each rule r E P with Rg(r) > 2 by the 
corresponding group of productions as listed above in order to obtain P ' .  Clearly, G' 
is of the same type as G and Lg~(G') = Lg~n(G) holds. 

In accepting case, replace any occurrence of ~ --+ cr by r --+ fl and any occurrence 
of a --+ fl by fl --+ ~ in the above groups of productions associated to rule r in 
order to obtain only accepting rules of the same type. Then we have L~CC(G ') = 
LaCe(G). [] 

Let us mention that  a similar construction is possible for the special case of pro- 
grammed grammars  with unconditional transfer [4]. Moreover, the construction given 
in the proof of Lemma 2.3 is also working for the case of leftmost derivations, i.e., 
L g~= (G'-left) = Lgen(G-left) (L~C~(G'-left) = L~r162 respectively). 

C o r o l l a r y  2.4. For X C {REG, CF, CF-A, US, MON, RE}, we have 

(i) s  = / : '~ (P- l e f t ,X[ , ac ] ) ,  

(ii) s  = s 

It is an open problem if the inclusions s C_ s are 
proper. 

3. On Context-Sensit ive and Determinist ic  
Context-Sensit ive Languages 

In [1], [2], [3] it is proved that  the familiy of accepting programmed grammars  
with A-free context-free rules (with appearance checking) describes exactly the fam- 
ily s i.e., the family of languages which are recognizable by linear-bounded 
automaton.  If we take into consideration the results of the previous section, we can 
give some further characterizations of this language family. 

C o r o l l a r y  3.1. For X E {CF-A, CS, MON}, we have 

s162 = s  = s = s  = s 

Pro@ s c_ s  is proved, e.g., in [2]. LP~(P,CF-A,ac) C_ 
s  for X E {CF-A, CS, MON}, holds by definition. The inclusions 
s  C /:g*n(CS) can be shown by appropriate lba constructions. 
Thus, together with Lemma 2.2, Lemma 2.3, and Corollary 2.4, our s ta tement  is 
proved. [] 

Since the restriction of the degree of non-regulation of programmed grammars  to 
one means the elimination of some nondeterministic aspect, it is natural  to investigate 
the interrelations between the families s  and, e.g., s  where 
~:(DCS) denotes the family of languages recognizable by deterministic linear-bounded 
au tomata  which we call deterministic context-sensitive languages. 

A linear-bounded automaton is a nondeterministic Turing machine in which the 
number  of cells that  can be used during a computat ion on an input word w is 
O(Iw]). A linear-bounded automaton is said to be deterministic iff the underly- 
ing Taring machine is deterministic. Concerning the notion of a Turing machine 



A/[ = (Q, E, F, 5, q0, B, F)  (where Q is the set of states, P is the alphabet of tape 
symbols, B E F is the blank symbol, E C_ F \ {B} is the alphabet of input symbols, 
5 is the transition function, q0 E Q is the initial state, and F C_ Q is the set of final 
states) and the notion of the accepted language we follow [6]. 

L e m m a  3.2. For X E { CF-),, CS, MON}, we have s  C_/:(DCS). 

Idea of the proof. Let G -- (V2v, VT, P, S) be an accepting progammed gram- 
mar with productions of type X (working in leftmost mode) and let k = [PT[, 
where PT = {a ~ /3 E P I a E T+}. Let {Pil,.'.,P~k} be the set of labels 
of the rules in PT. Construct a deterministic linear-bounded automaton ~ l  = 
( Q ,  VT , VN l..J VT I.J {# ,  $, B } , 5, qo, B,  F), where tile states are tuples with the first 
k components memorizing labels r~l,.. .  ,%  from Lab(P) initialized by r~j = p~j, 
1 < j <_ k, such that A/I performs the following steps. 

Step 1. Copy k - 1 times the input word w C V; such that we obtain the string 

k-times w 

Step 2. Perform stepwise simulations of leftmost derivation steps according to G 
in the following way. For j = 1 to k: 

2.1 Search for the leftmost occurrence of the left-hand side aij of rule tie in the j- th 
subword between markers # on the tape from the left to the right (in the j - th  
occurrence of w, in the beginning). 

2.2 If such substring is found, replace it by the right-hand side/~ij of rule rlj, if [/3~j I = 
I(~i~ l, and replace it by ~j$'~ if I%1 - I~,jI = m; change the j- th component of 
the current state to ~(r~j) if I~(r~)I = x and do not  accept  if I ~ ( ~ ) l  = 0. If 
# is reached and no subword c% has been found in the current subword, then 
change the j- th component of the state to r if possible and do not accept 
otherwise. 

2.3 If j < k, move the read-write head over the first cell of the (j + 1)-st subword 
and proceed with 2.1 for the next j .  If j = k then remove all occurrences of 
$ and shift the remaining parts such that we obtain a "compact" word over 
VN U VT U {#}. Then move the read-write head over the first cell of the first 
subword. 

Step 3. Check whether a subword # S #  occurs in the current contents of the tape. 
If yes accept, otherwise repeat step 2 according to the currently memorized rules in 
the state. 

Clearly, indeed Art is deterministic and linear-bounded and accepts exactly the 
words in La~(G-left). [] 

Together with Lemma 2.3 we obtain the following statement. 

Coro l la ry  3.3. For X ~ {CF-s CS, MON}, we have 

s  C s C_ s162 = s  



If we take Lemma 2.1 into consideration, together with the fact that 
s = s for Y E {CS, MON}, we also find analogous 
characterizations without appearance checking features both in generating and in 
accepting mode. 

Coro l la ry  3.4. For Y E {CS, MON}, 

(i) s C E(DCS) C s = s 

(ii) s  _C s _C s  = s 

Proof. The statement is proved with the remark that the idea of the proof of 
g e n  

Lemma 3.2 obviously applies also for languages in s  (P-left,Y). [] 

L e m m a  3.5. s C s 

Proof. Given a deterministic linear-bounded automaton AJ = (Q, E, F, 5, q0, B, F), 
where E = {al , . . . ,ak}.  Construct an accepting programmed grammar G = 
(VN, E , P , S )  with VN = r U { ~  ] x E F) t . . J Z x F U Z  x {~ I x E F}[..J{S} (the 
unions being disjoint) and where P contains the following productions. 

([0,i] : (q0, 0, 1 < i < k, 
([q, ki~] : (q,.~i~)xi~+~ --~ Yc~(q',xi~+~), {[q',xij+~]}, O) if 5(q, xij) = (q',x~j,R), 
([q,k,~] : ~,~_~(q, xi~)-~ (q',k "x' ~ ' ' , _ O)  = 

[ I J ~ X x l  l ([q,~i~]: B(q,5, i)  ~ (q , ) ij, {[q',B]}, O) if S(q,x,i) = (q ' , x# ,L) ,  

where k E {x, Y} for any x E F. 
Moreover, for F = {x l , . . . ,  x~}, add the productions 

([f,~] : (f ,~) ~ ,  {1}, 0), for al lx E VN, 
(i:  ~, --. 5,, {< i, 1 >}, {i + 1)) l < i < v - 1 ,  
( u -  1: x~-I --+ x~-l ,  {<  v -  1,1 >}, {< v, 1 >}) 
( < i , j > :  5 ~ x ~ ' 2 j , { < j , l > } , { < i , j + l > } ) ,  l < i < v , l < j < v  
(< i ,u >: 5ix~, ~ ~,,, {< u, 1 >}, {< i ,S  >}), 1 < i < u 
(< i ,S  >: ~ i ~ S , O , O ) ,  l < i < v .  

Given a word w E E*, the only applicable rules are those with label [0, i]. If the 
"correct" i has been guessed then the leftmost symbol is overlined and it carries the 
initial state as an additional component. Now, the transitions of .M can be simulated, 
where the barred symbol keeps on the leftmost position of the sentential form, until 
a sentential form is arrived which contains a symbol from Q x F U Q x {~ ] x E F}. 
Then the productions of the second group allow to derive S, but only if indeed the 
leftmost symbol has been overlined in the first step and w can be recognized by M.  
If a symbol different from the leftmost symbol of w has been barred in the first step 
then it is impossible to derive the axiom since letters to the left of the barred one 
cannot be replaced. In conclusion, G accepts exactly the words recognized by jr4. 
Note that this is true also in case of leftmost derivations. [] 

In conclusion, we have s = s and the question whether 
or not the degree of non-regulation of accepting programmed grammars with mono- 
tone productions and with leftmost derivations can be reduced to one without loss of 
descriptional capacity is equivalent to the lba problem. 

Coro l la ry  3.6. Z~(P-left,MON,ac) = E(DCS) C Eg~(CS) = E~(P- lef t ,  
M O N ,  ac). 



4.  C o n c l u d i n g  R e m a r k s  

In this paper, we gave a grammatical characterization of the lba problem. Thus, a 
problem stemming from complexity theory can be expressed in terms of descriptional 
complexity of grammars. Unfortunately, for the precise characterization of the lba 
problem we needed monotone productions. It is an open problem whether the in- 
clusion s C_ s is proper or/:~cc(P-left,CF-~,ac) = s 
holds. In general, it is interesting to do further investigations of the language families 
with degree of non-regulation equal to one. 

Moreover, it is remarkable that, in the proof of Lemma 3.5 we need appearance 
checking features only for the last part, where, after arriving at a final state, the 
sentential form is rewritten to the axiom by productions with context-free core rules. 
It is left open whether or not one can give up appearance checking at all for proving 
Lemma 3.5. 
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Abst rac t .  We consider conditional context-free grammars that gener- 
ate languages of finite index. Thereby, we solve an open problem stated 
in Dassow and Pgun's monograph on regulated rewriting. Moreover, we 
show that conditional context-free languages with context-free conditions 
of finite index are more powerful than conditional context-free languages 
with regular conditions of finite index. Furthermore, we study the com- 
plexity of membership and non-emptiness for conditional and programmed 
languages respectively grammars (of finite index) with regular, linear, and 
context-free core rules and conditions. 

1. Introduction 
Regulated rewriting is one of the main and classic topics of formal language the- 

ory [8], [36], since there, basically context-free rewriting mechanisms are enriched by 
different kinds of regulations, hence generally enhancing the generative power of such 
devices compared to the context-free languages. Such, it is possible to describe more 
natural phenomena using context-independent derivation rules [8]. 

In this paper, we are interested in the relation between formal languages which are 
built up by rewriting mechanisms--we restrict ourselves to context-free core rules-- 
that generate languages of finite index. Loosely speaking, the index of a grammar is 
the maximal number of nouterminals simultaneously appearing in a sentential form 
during a terminating derivation (considering the most economical derivation for each 
string). Interestingly, such a notion has been introduced by several authors in the 
sixties on various motivations. Therefore, we start giving sort of historical overview 
over the topic. 

Originally, the finite index restriction was investigated by Brainerd [5] motivated 
by combinatorial properties of context-free languages. He introduced this notion in 
order to generalize the statement: 

"If L is an infinite language generated by a context-free grammar, then L 
contains a sequence, {w~}, of strings such that the sequence of lengths 
{Iw~l} is a (nontrivial) arithmetic progression," 

(which is a corollary of the existence of pumping lemmata for context-free languages) 
to a class of languages that meets, but perhaps does not contain, the context-free 
languages. BrMnerd showed that an analogous statement is valid in case of matrix 
grammars of finite index. 

A similar notion (called bounded grammars here; a grammar is bounded if the 
total number of nonterminal symbols in any string derivable from the start symbol 
does not exceed an upper bound) has been introduced by Altman and Banerji [1], [3] 
motivated by an information theoretic reasoning. 
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". . .  languages have been studied for their efficiency for communication 
purposes, though ill these studies the media of communication are referred 
to as channels [37] rather than languages. These studies use the concept 
of channel capacity, which is a direct measure of the total number of valid 
sentences of a given length that a language has." 

In [3] it is studied how to compute the channel capacity for a restricted form of 
unambiguous bounded context-free languages. The capacity of bounded context-free 
languages (also called ultralinear languages) has been examined by Ginsburg and 
Spanier in [13]. It is shown that the family of ultralinear languages coincides with the 
language class characterized by finite-turn push-down automata. 

Ginsburg and Spanier introduced derivation-bounded languages [14]. There, all 
words which have a successful derivation (in a given grammar G) consisting of sen- 
tential forms each of which does not contain more than k nonterminals are collected 
into the set Lk(G). Even if G is a type-0 grammar, Lk(G) is context-free. 

Salomaa and Gruska investigated the index of a context-free grammar and lan- 
guage in [15], [35]. Later on, several authors have investigated finite index restrictions 
also to other rewriting mechanisms, as to, e.g., programmed, ordered, and random 
context with context-free core rules. In a sequence of papers of Rozenberg and Ver- 
meir [28], [29], [30], [31], it is shown that the corresponding language families coincide. 
In fact, there are about fifteen different language description mechanisms which char- 
acterize the same language class when endowed with the finite index restriction. In 
these cases, also the slightly different notion of derivation-bounded grammars leads 
to the same language class. 

Further relevant works are [4], [9], [10], [20], [21], [22], [24], [25], [26], [27], [32], 
[33], [38], [39]. More recently, the finite index restriction was studied in connection 
with grammar systems [6], [11], [12]. 

Most of the known results for these types of grammars (in general and in the finite 
index case) are contained in the first three chapters of the monograph of Dassow and 
Pgun [8]. Results on conditional grammars can be found in [7], [23], [43], too. 

In the present paper, we will contribute to the theory of conditional grammars 
in two ways: (a) we will study conditional grammars of finite index, hence solving a 
problem marked as open in the monograph [8], and (b) we will look at these mod- 
els from a complexity theoretical viewpoint. The results of (a) are also contained 
in [12]. 

2. D e f i n i t i o n s  

We assume the reader to be familiar with the basic notions of formal language 
theory, as contained in Dassow and Finn [8] or Salomaa [36]. In addition, we use C_ 
to denote inclusion, while C denotes strict inclusion. The set of positive integers is 
denoted by N, while No denotes the set of non-negative integers. The empty word is 
denoted by ~. We consider to languages L1 and L2 to be equal iff L1 \ {)~) = L2 \ {A}. 

The families of regular, linear, context-free, context-sensitive, and recursively enu- 
merable languages are denoted by s s s s and s 
respectively. 

For the convenience of the reader, we repeat some definitions from the theory 
of regulated rewriting. A programmed grammar (P grammar) is a septuple G ---- 
(VN, VT, P, S, A, ~r, @), where VN, VT, and S E VN are the set of nonterminals, the set 
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of terminals, and the start symbol, respectively, In the following we use Va to denote 
the set VN O VT. P is the finite set of rules a --* fl, and A is a finite set of labels (for 
the rules in P) ,  such that A can be also interpreted as a function which outputs a 
rule when being given a label; ~r and r are functions from A into the set of subsets 
of A. For (x, rl) , (y, r2) in V~ x A and A(rl) = (a  -* fl), we write (x, rl) ~ (y,/'2) 
iff either 

1. X --~ XlCgX2 , y ~" X l ~ X 2  a n d  r 2 �9 o ( r l )  , o r  

2. x = y and rule c~ -~ fl is not applicable to x, and r2 E r  

In the latter case, the derivation step is done in appearance checking mode. The 
set a(rl) is called success field and the set r  failure field of rl.  As usual, the 
reflexive transitive closure of ==~ is denoted by ~ . . 2  The language generated by G 
is defined as L(G) = { w e V; ] (S, rl) ~ *  (w, r2) for some rj, r2 e A }. The family 
of languages generated by programmed grammars containing only context-free core 
rules is denoted by s CF, ac). When no appearance checking features are involved, 
i.e., r  = 0 for each label r C A, we are led to the family s CF).  

A conditional grammar (If grammar) is a system G = (VN, VT, P, S) where 
VN, VT, S are defined as above, and P is a finite set of rules (a  -+ fl, Q), where Q is 
a regular language over VG. The rule (o~ ~ / ~ ,  Q) is applicable to x = XlOL~2 yielding 
y = xlflx2 iff x ff Q. Then, we write x ~ y and define ==~* as the reflexive transitive 
closure of ==* and L(G) = { w �9 V; ] S ~ *  w }. The family of languages gener- 
ated by conditional grammars containing only context-free rules a ~ fl is denoted by 
s CF).  

Up to now, we have only defined language families defined via grammars possibly 
containing A-rules. If we want to exclude A-rules, we add - ) `  in our notations, e.g., the 
family of languages generated by conditional grammars containing only context-free 
)`-free rules is denoted by s  CF - ;~). 

We use bracket notations l ike/ : (P,  CF[ - ) ` ] )  C f~(P, CF[- ) ` ] ,  ac) in order to say 
that the equation holds both in case of forbidding )`-rules and in the case of admitt ing 
),-rules (neglecting the bracket contents). 

The length of a word w �9 V,~, written as Iwl is the number of letters in w. For 
a subset V of Va, we denote the number of occurrences of letter of V in x �9 V,*a by 
Iwlv. If V = {a}, then we simply write Iw[~. 

Let G be an arbitrary grammar type (from those discussed above). For a 
derivation D : S = w~ ~ w2 ~ " "  ==~ w= = w �9 V~ according to G, 
we set i~d(D,G) = max{Iw, lvN I 1 < i < n} ,  and, for w �9 V~, we define 
lad(w, G) = rain{ lad(D, G) I D is a derivation for w in G }. The index of gram- 
mar G is defined as ind(G) = sup{ ind(w, G) I w �9 L(G)}.  For a language L 
in the family s  of languages generated by grammars of type X we define 
indx(L) = inf{ind(G) I L(G) = L and a is of type X }. For a family s  we set 
l:k(X) = { i I i E f_.(X) and i ndx ( i )  _< k } for k �9 N,  and/: .f ,~(X) = LJk~l ~k(X)" 

For our complexity considerations we need the following notations: we denote 
the class of languages accepted by deterministic (nondeterministic, respectively) 

2If there is no confusion, we write D : S = Wl ::~r~ w2 ==~r2 �9 " " ==:vr._x wn = w E V~ instead 
of D :  (S, rl) = (wl,rl) ==~ (w2, r2) ~ ."  ~ (w,,r~) = (w,r=) ~ V,* a x A for a derivation of a 
programmed grammar. 
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O(s(n)) space bounded Turing machines by D S P A C E ( s ( n ) )  ( N S P A C E ( s ( n ) ) ,  re- 
spectively). In addition, we use P S P A C E  as a short-hand notation for the class 
Uk N S P A C E ( n k )  " Moreover, the class of languages accepted by nondeterminis- 
tic pushdown machines equipped with an auxiliary worktape of space O(s(n)) is 
called N A u x P D A S P A C E ( s ( n ) ) .  If in addition the running time is restricted to 
O(t(n)) ,  the corresponding class is N A u x P D A T I M E S P A C E ( t ( n ) , s ( n ) ) .  Observe 
that N A u x P D A T I M E S P A C E ( n  ~ n) equals LOG(CF) ,  that is the class of 
languages deterministic logspace many-one reducible to context-free languages [41]. 
Furthermore, the class of languages accepted by deterministic (nondeterministic, re- 
spectively) polynomially time bounded Turing machines is denoted by P ( N P ,  re- 
spectively). 

To describe our ~lgorithms, we make use of nondeterministic space bounded oracle 
Turing machines, where the oracle tape is written deterministically. This oracle mech- 
anism is known as RST-relativization in literature [34]. If L is a set, we denote the 
class of languages accepted by nondeterministic O(s(n)) space bounded RST oracle 
Turing machines with L oracle by NSPACE(L) ( s (n ) ) .  If A is a class of sets, then 
NSPACE(A} ( s (n ) )  is ULEA NSPACE(L) ( s (n ) )  �9 

Further, all completeness results are meant with respect to deterministic logspace 
many-one reducibilities. In case grammars are part of the input, the straight-forward 
coding of these grammars is assumed; the languages being part of the specification of 
conditional rules are given by standard grammars. Basic notions of complexity theory 
are contained in [2]. 

3. Conditional Languages 

In this section, we give a positive answer to an open question listed in [8], Open 
problem 3.1.2, namely we show that the conditional and programmed context-free 
language coincide under the finite index restriction. 

Without the finite index restriction we have the chain 

s CF[-A]) C s CF[-A] ,  ac) C_ s  CF[-AI),  

where the latter inclusion is strict if and only if A-rules are forbidden. Further, ob- 
serve that conditional context-free grammars characterize the recursively enumerable 
languages in presence and the context-sensitive languages in absence of A-rules. 

Let us turn back to languages of finite index. We first show a normal form result 
for conditional grammars that generate languages of finite index. 

T h e o r e m  1. For every conditional context-free grammar G = (VN, VT, P, S) 
whose generated language is of index k C IN, there exists an equivalent grammar 
G' -- (V~r VT, P', S') of same type whose generated language is also of index k and 
which satisfies the following two properties: 

1. There exists a special start rule, which is the only rule where the start symbol S' 
appears. 

2. I f  D : S ~ -= Vo ~ vl ~ vu ~ " .  ~ vm -= w is a derivation in G', 
then, for every vi, 0 < i < m, we have Ivilyfv < k, and moreover, for every 
nonterminal A, we have ]Vi]A <_ 1. 
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Proof. We construct a g rammar  G'  = (V~, VT, P', $') of index k which is equivalent 
to G = (VN, VT, P, S) and satisfies the two requirements. 

Let V/r = VN • {1 , . . . ,  k} U {S'} and define the morphism h from Vo, \ {S'} 
to Va as follows: set h(a) = a if A C VT, and h((g, i)) = g otherwise. The start  
rule is (S' --~ (S, 1), {S'}). Thus, the first property is ensured. Then, for every rule 
(A --+ w, Q) of the original g rammar  G, we construct for every i, 1 < i < k, and for 
every v e h - l (w)  a rule of the form ((A, i) --+ v, h-l(Q) N R ~ T), where R and T are 
the regular set.s 

R = ~ (Va, \ {A})*. ({~} U {A}) .  (Va, \ {A})*, and T = U (V~V~) ' .  V=~. 
AeV~v o<_i<_k 

Note that  the second property is controlled by the regular sets R and T, since R is 
the set of words such that  every nonterminal occurs at most once, and language T 
ensures the additional property that  only words that  contain at most k nonterminals 
are derivable. [] 

Now, we are ready to prove tha t / : k (P ,  CF[ -A] )  and L:k(K, C F [ - A ] )  coincide. 

T h e o r e m  2. For every k �9 N,  /:k(P, CF[ -A] )  = s C F [ - s  

Proof. It suffices to prove the inclusion Z:k(g, C F [ - ) q )  C_ s  C F [ - ~ ] ) ,  since it 
is known from [28], Lemma 3, tha t / :k (P ,  C F [ - ~ ] )  coincides with the family of random 
context context-free languages of index k, which is a trivial subset of s  C F [ - I ] )  
(see, [8], page 121). 

Let G = (VN, VT, P, S) be a conditional context-free grammar  of the normal  form 
described above that  generates a language of finite index k. Assume that  every rule 
of P has a unique label r, 1 < r < m = [P[, and that  the start  rule is labeled by 1. 

In this way, we can refer to the regular language QT of the r th  rule. Fur- 
thermore,  we assume that  Q~ is represented by some deterministic finite automa- 
ton MT = (K~, Va,ar,qo,T,F~), where Kr is the finite set of states, Va the input 
alphabet,  5~ : K~ • Va --+ K~ the transition function, q0# C Kr the start  state, and 
F, C K~ the set of final states. 

Krn Def ineD  = K ~  1 •  •  . Note that  D i s f i n i t e .  The e l e m e n t s d o f D  are 
tuples of state maps, such that  the r th  projection d[r] is a map from K,  to itself. For 
each v E V.* a ,  one associates a map tuple dv �9 D defined by: for every 1 < r < m 
and for every p E K~, dv[r](p) = 5*(p, v), where ,5* is the extension of the transition 
function 5~ to domain Kr x V,* For dr, d~, E D let d~ o d~, denote the component-  G" 
wise extended composition of functions, i.e., for two functions f ,  g let f o g(x) mean 
g(f(x)). Having this, one readily verifies that  d~ o d~, equals d~,. 

Now, we briefly describe the construction of an equivalent programmed grammar  
G ~- ( V ~ ,  VT, P', S', A, a, r of index k. Set V} = VN and let 

AC-{Po}U{1, ' - . ,m}•  • 

The start  rule is S '  --+ S has the unique label p0 and we set er(p0) = {(1, d~, S, d~)}. 
Observe that  d~[r] is the identity on K~. 

We say that  a label (r,d=~,Al,d~2,A~,... ,d~i,Aj,d=~+~) is valid if and only if 
1 < r < m~ 1 _< j _< k, and all Ai's, 1 < i < j ,  are distinct, and it is r-valid if and 



15 

only if it is valid and satisfies 

(d~ OdA~ od~ 2 odA2 o . . . o d ~ j  odAj od~+~)[r](qo,,) E F~, 

i.e., the word ulAlu~.A2. . ,  ujAjuj+l belongs to Q~. 
For each rule r of the form (A -4 w, Q), we construct a bunch of labels with the 

corresponding ~ and r fields. Let 

(r, d~, , Aa, d~,  A2, . . . , d~,, Ai, d~,+~ , . . . , d~j, Aj,  d~j+~ ) 

be an r-valid label with A~ = A. We define 

A((r ,d~ ,A~ ,d~2 ,A2 , . . .  ,d~j,Aj,d~j+~)) = A --* w.  

We have to distinguish two cases: 

1. If IwlvN > 0, i.e., w = WlBlw~B2. . .  w~B~w~+l, for some s >__ 1, B1, �9 . . ,  B~ C VN, 
and wl . . .w~+l  C V~, then c~((r ,d~,Al ,d~,A2, . . . ,d~: ,A~,d~j+~))  consists of 
all #-valid labels 

(r', d~l, A 1 , . . . ,  d=i_l, A~-I, d= i o d~l , B1, d~o2,... 

. . .  ,d~,B~,d~,+ 1 o d~,+l,Ai+l, . . . ,  Aj, d~j+l). 

Of course, we can assume i + 8 _< k. 

2. If w E V~, let c , ( ( r , d~ , ,A l , d~ ,A2 , . . .  ,d~j,Aj,d~j+~)) consist of all #-valid la- 
bels 

(r', d~l, A 1 , . . . ,  d~i_~, Ai-1, d~ i o d~o o d~+l , A i+ l , . . . ,  Aj ,  d~j+~). 

This completes our construction. It is seen that the index of the language is 
preserved, and that the constructed programmed grammar G' is equivalent to the 
originally given one. More precisely, by induction we have 

SI =:=~p0 S ~ *  u =:=~ v, 

where a = (r ,d~a,Al,d~2,. . .  ,d~j,Ak, duj+~), in G' if and only if S ~ *  u ~ v in G 
such that  u = WaAlw2. . .wjAjwj+~,  with wi E V~ and d~ = d~ for 1 < i < j + 1. 
Furthermore, u E Q~. [] 

With our previous theorem, and the fact that  erasing rules do not enlarge the 
family of programmed context-free languages of finite index [8], Lemma 3.1.2, we 
immediately obtain: 

C o r o l l a r y  1. The language families s  C F  - )~) and/:f~=(K, CF )  coincide 
with the language fami ly / : I~ (P ,  CF) .  They strictly embrace the linear languages. 

4. B e y o n d  t h e  F i n i t e  I n d e x  Barr i er  

As mentioned in the introduction, about fifteen different language description 
mechanism coincide under the finite index restriction. Thus, the question arises 
whether one can think about "natural" rewriting mechanisms (based on context- 
free core rules), which generate languages of finite index which are not programmed 
context-free finite index languages. 
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Since in the non-finite index case, conditional context-free languages are a superset 
of programmed,  random context, and ordered context-free languages, one way to break 
the programmed context-free finite index barrier might be to use conditional grammars  
with enlarged condition sets. 

Conditional grammars  with different Chomsky type- / languages  for core rules and 
condition sets were already investigated in [23]. In all cases, characterizations of 
context-sensitive and recursively enumerable languages were obtained; the only ex- 
ceptions are given below: 

s  = s  REG) C s C s REG) C s 

Here Kx  denotes a conditional grammar  with condition sets f r o m / : ( X ) .  Thus, e.g., 
f~(KcF, REG) denotes the family of languages generated by conditional grammars  
with context-free condition sets and regular core rules. Observe that  by definition, 
s  REG) obviously contains only languages of finite index for any X.  

We show that  in the finite index case we can go beyond s CF) if one uses, 
e.g., conditional grammars  with context-free core rules and context-free condition 
sets. 

T h e o r e m  3. s CF) C ~$~(KcF, C F [ - ~ ] ) .  

Proof. The inclusion is obvious; it remains to proof the strictness. Since every one- 
letter language in s CF) is regular by [8] (Corollary, page 159), it is sufficient 
to prove that  a conditional grammar  with context-free core rules and context-free 
condition sets can generate a non-context-free one-letter language. 

The conditional g rammar  G = ({S, A, B}, {a}, P, S) with the rules 

1: (S --+ AB, a'S), 

la: (S ~ a,a*S), 

2: (B ~ aB,{a*~damBIn ,m >> 0 and n > m}) ,  

3: (d  -+ a, { a'~na'~B ] n, m > 0 and n = m }), and 

4: (B --* S, a'B) 

generates the language { a 2~ ] n > 0 }. This is seen as follows: Note that  the rules 1, 
3, 4,1, 2, 3, 4 , . . . ,  1,2, 3, 4, l a  must be applied in this order and rule 2 can be repeated 
several times. Therefore, a successful derivation in G has the structure 

S ::::::~1 AB ==~3 aB :==~4 aS 
~ 1  aAB ::=#'2 aAaB =:=~3 aaaB =::~4 haas 
::::::~1 aaaAB :::::=~2 "'" ~ 2  aaaAaaaB :::~3 aaaaaaaB ::::=~4 aaaaaaaS 

:====:@1 a2"-IAB ==~2 "'" ==~2 a2"-lAa2"-lB ==~3 a 2"a2"-lB ==~4 a 2~a2~-1S 
::::~la a2"a2~ = a2~+~' 

Obviously, lan- 
[] 

By induction, one proves that  L(G) equals the desired language. 
guage L(G) has finite index 2. This proves our claim. 
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The previous proof shows a little bit more than only the separation of ASia(K, CF) 
and s CF[-A]).  Since the condition sets of G are even linear languages, we 
obtain on the one hand: 

Coro l l a ry  2. If s is a language family that contains the linear languages, 
then oF) c CF[-A]). 

On the other hand, the language of the previous proof even separates the 
classes f-.(KcF, REG) and s CF[-A]), since every one-letter language in 
.E(KcF, REG) is regular by [231, page 184, Lemma 2. 

Coro l l a ry  3. s C f~(KcF, REG) C f~iin(KcF, CF[-A]).  

Finally, we find it quite surprising that conditional languages of finite index with 
context-free condition sets and context-free core rules (even admitting A-rules) belong 
to f_.(CS). Here, the presence of A-rules is not crucial, because by the finite index 
restriction in every sentential form there are at most a constant number of nontermi- 
nals that can derive the word A. Therefore, by a direct simulation of a (KcF, C F )  
grammar of finite index k using a Turing machine, only a linear number (in the length 
of the input word) of additional cells on the work-tape may be used. Thus, we have: 

T h e o r e m  4. s CF[-A])  C_ f~(CS). 

Unfortunately, we have to leave as open the question whether the inclusion of the 
last theorem is proper or not. Without the finite index restriction it is known from 
[23] that f.(CS) = s CF - A) and s = f~(KcF, CF). Employing a non- 
constant number of nonterminals during the simulation of a Turing machine (with a 
linear space bound) seems to be inherent in both cases. A natural idea for separating 
f~li,~(KcF, CF[-A])  C/~(CS) might be to look at closure or decidability properties. 

In the next section, we are going to investigate non-emptiness and word problems 
for conditional grammars. In the following, if we speak of a conditional grammar 
with say regular core rules and linear conditions, we also refer to these grammars as 
(KLIN, REG)-grammars, and we assume that the condition sets are given by some 
grammar of the required type. The following lemma starts these investigations, un- 
derlining the difference between regular and non-regular context-conditions, since for 
programmed grammars of finite index with context-free core rules (and hence for 
(KREG, CF)-grammars of finite index by Theorem 2, non-emptiness is known to be 
decidable, Theorem 3.2.4, [8]. 

L e m m a  1. For ( KLIN,REG)-grammars, the non-emptiness problem is undeeid- 
able. 

Proof. The Post correspondence problem (PCP), that is given two morphisms 
g, h : V* ~ {a, b}*, is there a word v C V + such that g(v) = h(v), is well-known to 
be undecidable, if V contains at least nine letters. 

Consider the conditional grammar G = ({S, T}, {a, b, $}, P, S) with rules 

1: (S --+ aS,{a,b,$}*{S}), (S --+ bS,{a,b,$}*{S}), and (S ---+ $S, {a,b,$}*{S}), 

2: (S ---* T, { w$wRS I w E {a, b}* }), and 

3: (T --+ A, { g(v)$h(vR)T I v e V + }), 
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where w R denotes the reversal or mirror image of w. Clearly, the condition sets used 
for the latter two rules are linear. Obviously, L(G) ~ 0 if and only if the PCP given 
by the morphisms g and h has a solution. [] 

5. Complexi ty  Considerations 
Up to now, the complexity of conditional languages respectively grammars (of fi- 

nite index) was not studied in literature. We close this gap, studying fixed (FM), 
general or variable membership (GM), and non-emptiness (NE) for conditional gram- 
mars with regular, linear, and context-free core rules and conditions. 

Grammars with regular or linear core rules are trivially of index 1. If we are 
interested in problems that deal with grammars of finite index having context-free 
core rules, we have two possibilities to vary each of the above-mentioned problems, 
because even for context-free grammars it is undecidable whether a given grammar 
is of finite index or not [8], Theorem 3.2.6. Hence, we can define the following fixed 
membership problems: 

F M  wi th  fixed index  (F MF I ) :  Let k E N and the grammar G, with context-free 
core rules, be fixed. For given word w, is w e L(G) and ind(w, G) <_ k? 

F M  wi th  genera l  index  ( F M G I ) :  Let the grammar G, with context-free core 
rules, be fixed. For given 1 k and word w, is w E L(G) and ind(w, G) <_ k? 

The corresponding general membership problems are denoted by GMFI and GMGI, 
and the non-emptiness problems by NEFI and NEGI. Obviously, FMFI reduces to 
GMFI which reduces to NEFI; FMGI reduces to GMGI which reduces to NEGI; 
finally FMFI reduces to FMGI, GMFI reduces to GMGI, and NEFI reduces to NEGI. 

First let us summarize a few results that relates the classes of the Chomsky hier- 
archy with conditional language families [23]: 

1. s  = r.(KREc,REG), 

2. s  = s LIN)  C s REG) 

3. s  C s 

4. s  = s  CF - A) for X e {REG, LIN, CF}, and 

5. s  = s  CF) for X C {REG, LIN, CF}. 

The inclusions in 2 and 3 are easily seen to be strict, e.g., {a~b~c n t n >_ 0 } C 
s177 REG) by a construction similar to Theorem 3. 

Since the complexity of the classes on the left-hand sides of the equations are 
well-known (LOG(REG) = DSPACE(logn), LOG(LIN) = NSFACE(log n) [40], 
and LOG(CS) = PSPACE),  we obtain either a few lower bound, completeness, or 
undecidability results. The two latter ones are stated below: 

T h e o r e m  5. Fixed membership, general membership, and non-emptiness for 
(Kx, CF)-grammars, with X E {REG, LIN, CF}, is undecidable. Even for A-free 
context-free core rules, non-emptiness remains undecidable. 

T h e o r e m  6. Let X G {REG, LIN, CF}. Fixed membership for (Kx, CF - A)- 
grammars is PSPACE-complete. 
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T h e o r e m  7. The fixed membership problem for (KREa, REG)-grammars is 
DSPACE(log n)-complete. 

In order to obtain upper bounds, let us show how to parse conditional languages 
nondeterministically in a top-down manner. So let G = (VN, VT, P, S) be a conditional 
grammar and assume w = a l . . .  a~ to be the input of length n. For simplicity of the 
description of the algorithm we assume that the productions of G are of the form 
(A -+ BC, Q) or (A --* a, Q). It is easily seen that the algorithm generalizes to 
arbitrary context-free rules. 

Define the triples (A,i,j)  E VN • {0 . . . .  ,n) • {0,... ,n}. To each triple (A,i,j),  
with 0 ~ i < j ~ n, we associate the word ala2. �9 �9 aiAaj+l.., a~. This meaning gen- 
eralizes to lists (Al,il,jl),  (A2,i2,j2),..., (Ak, ik,jk) in an obvious way; additionally 
we r e q u i r e 0 ~ i l < j l ~ _ i 2 < j ~ < - ' - < _ i k < j k < _ n .  

Start the algorithm with the list (S,O,n). (1) Guess a rule r = (A -~ a , Q )  
whose left-hand side appears in the list. We assume (A,i,k) to be this triple. (2) 
Check whether the word associated to the list belongs to Q. If this is not the case 
then halt and reject. Otherwise, we continue the simulation of the derivation by 
replacing (A,i,k) in the list by (B,i , j)(C,j ,k) for some guessed j w~th i < j < k if 
r = (d ~ BC, Q); erase (A,i,  k) if r = (A ~ a, Q), a - a~+l and i + 1 = k. (4) If 
we have reached an empty sequence of triples, then we halt and accept, otherwise we 
continue the algorithm starting with (1). In passing, the algorithm can test the index 
restriction. 

The interested reader may verify the correctness of the described algorithm. We 
implement the algorithm on an oracle Turing machine where the oracle tape is written 
deterministically [34], in order to simulate step (2). The oracle sets T we use are of 
the form 

( r , w } e T  ~ w e Q i f r = ( d - . a , Q ) ,  

and the space of the machine (as usual the oracle tape is not taken into consideration) 
is bounded by the maximal number of triples ever written on the work tape times the 
space needed to encode one triple (A, i,j), which is O(log n). 

Hence, if fixed membership with fixed index is checked for a conditional grammar 
with context-free core rules and linear conditions, we obtain NSPACE(logn) as 
an upper bound, because the space of the oracle Turing machine is logarithmically 
bounded, the oracle set T described above is contained in NSPACE(log n), and 

NSPACE(NSPAC~O~ C_ NSPACE(logn) [17], [42]. 

Analogously, we estimate the complexity of fixed membership with fixed index of 
conditional grammars with context-free core rules and context-free conditions with 
NAuxPDATIMESPACE(n~ Combined with the lower bounds stated 
earlier, we obtain the following theorem: 

T h e o r e m  8. 

1. Let X, Y e {REG, LIN}. Fixed membership for (Kx,  Y)-grammars, except for 
( KREG, REG)-grammars, and fixed membership with fixed index for ( Kx , C F)- 
grammars, is NSPACE(logn)-complete. 

2. Fixed membership for (KCF,Y)-grammars, with Y ~ {REG, LIN},  and fixed 
membership with fixed index for ( KcF , C F)-grammars is LOG( C F)-complete. 
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For the remaining three fixed membership problems we find the following upper 
bounds because the index is part of the input: 

T h e o r e m  9. 

1. The fixed membership with general index for (Kx, CF)-grammars, with X E 
{REG, LIN},  is contained in NSPACE(n .  log n). 

2. The fixed membership with general index for (KoF, CF)-grammars is contained 
in NAuxPDASPACE(n .  log n). 

Let us turn our attention to general membership. 

T h e o r e m  10. 

1. Let X , Y  E {REG, LIN}.  The general membership for (Kx,Y)-grammars is 
N S P A C E(log n )-complete. 

2. The general membership for (KcF, Y)-grammars, with Y e {REG, LIN},  and 
general membership with fixed index for ( KcF, C F)-grammars, is P-complete. 

3. The general membership with general index for (Kx, CF)-grammars, with X C 
{REG, LIN, CF}, is PSPACE-complete. 

4. The general membership for (Kx, CF - A)-grammars, with X E {REG, LIN, 
CF}, is PSPACE-complete. 

Proof. First consider general membership. Since general membership for regu- 
lar (context-free, respectively) grammars is NSPACE(logn)-complete (P-complete 
[18], respectively), we obtain NSPACE(logn) (P, respectively) as a lower bound 
for general membership for conditional grammars with regular core rules and regular 
(context-free, respectively) conditions. 

The upper bounds follow with the algorithm to check membership. Observe that 
the space bound for the oracle Turing machine is O(log n) and the oracle sets to be 
used are from NSPACE(log n) in case of linear conditions and from P if context-free 
conditions are used. This is because the oracles have to check general membership for 
the condition sets. Note that NSPACE(P)(log n) C P. This leads us to the desired 
completeness results for general membership with fixed index. 

In case of general membership (with general index), the space bounds for the 
oracle Turing machine get worse and remain O(n . log n). In combination with an 
oracle from P to check general membership for a context-free conditions, we obtain 
P S P A C E  as an upper bound, because NSPACE(P)(n �9 logn) C PSPACE.  The 
lower bound PSPACE,  and hence the completeness results stated in 3 and 4 follow 
with the enclosed construction: 

The intersection non-emptiness problem for deterministic finite automata, that is: 
given deterministic finite automata M1, . . . ,  Ms, i.e., a suitable coding (/141,..., M~), 
is ~1<i<,~ L(Mi) # 07 This problem is PSPACE-complete [19]. 

Let - (M1, . . . ,Mn)  be an instance of the non-emptiness intersection problem for 
deterministic finite automata. For technical reasons only, we assume that for the 
deterministic automata M~ = (Ki, E,(~,qo,~,Fi), 1 < i < n, with set of states K~, 
input alphabet ~, transition function 6~ : Ki • Z ~ Ki, start state q0,i, and final set 
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of states F~ _C I(~ the following is satisfied: (1) E = {a, b}, (2) K~ N I i j  = 0 if i r j ,  
and A r L(Mi) for each 1 < i < n. 

We construct a conditional grammar  G = (VN, {a}, P, S) with context-free core 
rules and regular conditions. Set 

VN={S ,A ,B ,C ,D}U U KiU U Ri, 
l < i < n  l < i < n  

where R~ = { ~ 1 q E I{~ } and all unions being disjoint. The rules are as follows: 

1. (S -~ q0,1qo,2.., qo,,~A, {S}) and (S --+ q0,1q0a.., qo,,~B, {S}). 

2. For each (X,x) E {(A,a),(B,b)} define 

(a) for every q e K1, (q --~ p, K1K2... K~{X}) if ~l(q, x) = p, 

(b) for q E K~ with 2 < i < n, define (q ---, p, K1K~... R~-IK~... K~{X})  if 
81(q, x) = p, and 

(X --* C,[Q[(2... R'~{X}), and (X -+ D, IQK~...  K~{X}).  (c) 

3. Case nonterminal C: 

(a) 

(b) 
For every q E K1 define (~l--~ q, KIK2. . . /~{C}) ,  

for every q e Ki, with 2 < i < n, define (q --* q, K1...  K~_IR~... R~{C}),  
and 

(c) (C ~ A, K1K2... K~{C}),  and (C --~ B, KIKz. . .  K~{C}).  

4. Case nonterminal D: 

(a) For every q e I(~, with 1 < i < n, define (q ~ a, ai-lR~...Rn{D}) if 
q G Fi, and 

(b) (D --~ a, an{D}). 

Finally, it is easy to verify that  DI<i<~ L(M~) 7 ~ 0 if and only if (1TM, a TM, G} is 
an instance of general membership with general index if and only if (a ~+1, G) is an 
instance of general membership.  Obviously, the latter instances are logspace com- 
putable if (M1,..., Ms} is given. This completes our construction. [] 

In the remainder of this section we deal with non-emptiness problems. In Theorem 
5 we have already seen, that  some non-emptiness problems are undecidable. But these 
were only a few of them. By Lemma 1 we additional obtain: 

C o r o l l a r y  4. Let X C {LIN, CF}. Non-emptiness for (Kx, Y)-grammars, with 
Y C {REG, LIN},  and non-emptiness with fixed and general index for (Kx, CF)- 
grammars, is undecidable. 

The remaining non-emptiness problems are shown to be PSPACE-complete. 

T h e o r e m  11. The following problems are PSPACE-complete: non-emptiness 
for ( KREG, Y )-grammars, with Y e { REG , L I N ) , and non-emptiness for both fixed 
and general index for ( KREa, C F)-grammars. 
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Proof. For the lower bound on non-emptiness, we again use the non-emptiness 
intersection problem for deterministic finite automata. For given (M1,. . .  ,M,~} 
we construct an instance of non-emptiness as follows: define the grammar G = 
({S, T~, . . . ,  T~+~}, {a, b}, P, S) with rules 

1. (S --+ aS, {a, b)*S), (S --* bS, {a, b}*S), (S -+ T~, {a, b)*S), 

2. (Ti --~ Ti+l, L(Mi). Ti), for 1 < i < n, and (Tn+ 1 ---+ A, {a, b}*Tn). 

It is easy to see that this construction is logspace computable and that 
Nl<i<n L(Mi) r 0 if and only if L(G) # O. Hence, PSPACE is the desired lower 
bound. 

Let G be a conditional grammar with context-free core rules and regular condi- 
tions. The easiest way to check non-emptiness with general index would be to guess 
a terminating derivation of finite index and to simulate it step by step, writing down 
the whole sentential form, say uaAlu2.., ukAkuk+l, obtained so far. Unfortunately, 
this idea does not result in a PSPACE algorithm in general. But we can do better, 
if we write down d~A~d~.. ,  d~kAkdk+l, where the d~,'s are defined as in the proof 
of Theorem 2. Simple calculations show that this approach results in a polynomial 
space algorithm. [] 

6. C o n c l u s i o n s  

We investigated conditional context-free grammars that generate languages of fi- 
nite index. We proved a normal form theorem for these grammars, and showed that 
they coincide with programmed context-free languages of finite index, even when 
considering language families of finite index k, regardless whether erasing rules are 
allowed or not. In this way we solved an open problem stated in [8]. 

Furthermore, we classified various variants of fixed and general membership and 
non-emptiness for conditional languages (of finite index) according to their undecid- 
ability and complexity. Thereby, we closed a gap in the literature. 

Let us remark that these results trivially carry over to programmed grammars 
of finite index, delivering easy upper bounds on the complexities. Regarding the 
lower bounds, we simply refer to the construction given in the proof of Theorem 
10, where the regular condition sets are only used to prescribe the sequence of rule 
applications. Let us point to the surprising fact that non-emptiness with fixed index 
for programmed graxnmars with context-free core rules is NSPACE(log n)-complete, 
while it is well-known to be P-complete for context-free grammars (without the finite 
index restriction). 

So, we obtain the table given in Figure 1. If we write only the complexity class C, 
we refer to a complete problem. If we write E C, we know only an upper bound. 
Finally, let us remark that it is known that fixed membership for (P, CF - A, ac) is 
NP-hard by a result of van Leeuwen [44]. 

We want to stimulate the readers to pursue complexity studies for problems given 
via regulated rewriting. Even if problems turn out to be undecidable, a further clas- 
sification according to the criteria delivered by recursion theory would be of interest. 
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grammars 

(P, REG, ae) 
(P, LIN, ac) 

(P, CF, ac) and FI 
(P, CF, ac) and GI 

(P, C F  - ~, ac) 

Problem 
fixed membership general non-emptiness 

membership 

DSPACE(logn) 

C NSPACE(n. log n) 
cPSPACE 

NSPACE(logn) 
PSPACE 

undecidable 

Figure 1. Undecidability and complexity results for programmed languages 

It is known that, e.g., programmed finite index languages have nice properties 
from the formal language theoretical point of view. Let's turn back to the original 
motivation of Brainerd [5] for introducing the notion of finite index. As Mready said 
in the introduction, he proved that the length set of each infinite context-free matrix 
language of finite index contains an infinite arithmetic progression. It is natural to ask 
whether this is a property special to languages of finite index in the regulated rewriting 
case with context-free core rules. There is a negative answer to this question in two 
senses: 

1. The family L(P, CF) (without the finite index restriction) has the property that 
every infinite language in s CF) contains an infinite arithmetic progression, 
because the class g(P, CF) is closed under homomorphisms, and every one- 
letter-language in/~(P, CF)  is semilinear, as proved in the paper of Hauschildt 
and Jantzen [16]. 

2. In Section 4, we have found a language class of finite index, namely 
~fi,~(KcF, CF[-~] ) ,  which contains the language { a 2" I n > 0 } that does 
not have an infinite arithmetic progression. 
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On t h e  N u m b e r  of  N o n t e r m i n a l s  in M a t r i x  G r a m m a r s  
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Abstrac t .  The paper investigates the descriptional complexity of matrix 
grammars that always rewrites the leftmost possible occurrence of a non- 
terminal. Measuring this complexity by the number of nonterminals, this 
investigation proves that four-nonterminal matrix grammars working in 
this way characterize the family of recursively enumerable languages. 

1. I n t r o d u c t i o n  

A matrix grammar,  G, is based upon sequences, referred to as matrices, that  
consist of context-free productions (see page 25 in [1]). According to its matrices, 
G makes derivation steps. More precisely, G makes a derivation step according to 
a matrix, m, so it applies m's  productions one by one until all of them are used. 
This step is leftmost if G applies each of these productions to the leftmost possible 
occurrence of a nonterminal in the given sentential form. 

The present paper reduces the number of nonterminals in matrix grammars mak- 
ing leftmost derivations. More precisely, it demonstrates that four-nonterminal ma- 
trix grammars with leftmost derivations characterize the family of recursively ennu- 
merable languages. Analogously four-nonterminal matrix grammars with rightmost 
derivations define this family as well. 

2. De f in i t i ons  

This paper assumes that  the re~der is familiar with the language theory (see" 
Chapter 0 in [1]). 

For an alphabet V, V* denotes the free monoid generated by V under the operation 
of concatenation; A denotes the unit of V*. Set V + = V* - {A}. For a word w C V*, 
[w[ denotes the length of w, alph(w) is the set of symbols occurring in w, and mi(w) 
is the mirror image of w. Set 

suf(w) = {x I x is a suffix of w}. 

For a symbol a C V a word w E V*, Iwl~ denotes the number of occurrences of a in w. 
The definitions of alph(w) and mi(w) are extended in the natural way to languages. 

A matrix grammaris a quadruple G = (V,T,M,S) ,  where V is an alphabet, T C 
V, S E V - T, and M is a finite set of matrices of the form (A1 -+ x l , . . . ,  An --~ xn), 
where n is a natural number, and for all i = 1, 2 , . . . ,  n, Ai E V - T, x~ E V*. 

Let G = (V,T,M,S)  be a matrix grammar. G uses a matrix (A1 --* Xl , . . .  ,As -* 
xn) in M by sequentially rewriting Ai with x~ in the order i = 1, 2 , . . . ,  n. Formally, 
if there exist n + 1 words wo, wl , . . .  ,w,~ such that  for i = 1 ,2 , . . .  ,n,  w~-i = u~A~v~ 



28 

and wi = uix~vi, for some ul, vi C V*, then we write Wo ~ w~ [m]. When  the 
specification of m is unimpor tant  we write w0 ==~ w~. 

If vo ==~ Vl ==~ . . .  =:~ v~ such that  v~-i ~ v~ [ml], 1 < i _< n, then we 
wr i tev0  =::~* v~ [ m l . . . m ~ ] .  I f n = 0 ,  thenv0  = v ~  a n d m l . . . m s  = A .  When  the 
specification of m l . . .  m~ is unimpor tant ,  we write v0 = = ~  v~ or simply vo ===>* v~ 
(for n _> 1 we write v0 ==~+ v~). If S ==~* w in G with w E T*, then S ===~* w is a 
successful derivation in G. The language of G, L(G),  is the set of words successfully 
derived in G; formally, 

L(G) = {w �9 T* ] S ~ *  w}. 

Let G = (V,T, M, S) be a matr ix  grammar  and m = (A1 ~ x l , . . . , A s  --+ x~) 
be a mat r ix  in M. In terms of this paper,  G uses this mat r ix  in a leftmost manner  
if for all i = 1 , 2 , . . . , n ,  G substi tutes xi for the lefmost occurrence of Ai in the 
current sentential  form ([1] classifies this manner  as type-3 leftmost derivations). More 
formally, if there  exist n + 1 words wo, w l , . . .  ,w~ such tha t  for i = 1 , 2 , . . .  ,n we 
have w{-1 = u~Aivl,w{ = ulxivi, Ai ~ alph(ui), for some u{,v{ �9 V*, then we write 
Wo ==~l~l* w~ [m]. As for the  usual derivation relation, also for the  leftmost derivation 
relation we omit  the specification of m when m is unimpor tant ,  and we write u ~ l * ] t  
w [ m l . . .  m~] for denoting a sequence of leftmost derivation steps according to matrices 
r n l , . . . ,  m~, n > 0; when the specification of m l , . . . , m ~  is unimpor tant ,  we write 

n * simply u :=~z~lt w or u :::~l~]t w. 
If S ~ l * f t  w in G and w �9 T*, then S ==*l*lt w is a successful leftmost derivation 

in G. Ll~#(G) denotes the language consisting of words that  G generates by these 
derivations; formally, 

We also recall the notion of a queue grammar  (see [3]). 
A queue gramar is a sextuple Q = (V, T, W, F,  R, g), where V, T, W, F are alpha- 

bets,  T C V, F C W, V N W  = O, R �9 ( V - T ) ( W - F ) ,  g C_ (V • ( W - F ) )  • (V* • W) 
is a finite relation of Q such that  for all a �9 V there is an element (a, b,x,c) �9 g. V is 
referred to as the alphabet  of Q, T is the terminal  alphabet ,  W is the  s ta te  a lphabet ,  
F is the  final s ta te  alphabet ,  R is the axiom, g is the finite t ransi t ion relat ion of Q. 

If there  are a �9 V, r, z �9 V*, b, c �9 W such that  (a, b, z, c) �9 g, u = arb, v = rzc, 
then u ==~ v [(a, b, z, c)], or, simply, u ~ v. The language of Q, L(Q), is defined as 

L(Q) = {w �9 T* ] R ~ *  wf,  for some f �9 F } ,  

where ==~* is the  reflexive and transit ive closure of ===~. 
Recall tha t  for any recursively enumerable language L, there exists a queue gram- 

mar  Q such tha t  L = L(Q) (see Theorem 2.1 in [2]). 

The following o b s e r v a t i o n  will be useful later: any successful derivation in Q, 
R ~ *  zd, with z �9 T* and d �9 F ,  can be expressed as 

R ~ '  alulbl 
Ul.TlYlCl [ ( a l ,  h i ,  xlYl,  Cl)] 

~ J  ylzld, 

where i , j  > O,z = y l z l , x l ,u l  �9 V*,yl ,z l  �9 T*,bl,Cl �9 W, and d �9 F (i = 0 implies 
alUlbl = UlXlylCl, and j = 0 implies UlXlYlCl --- ylZld). 
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We denote by R E  the family of recursively enumerable languages and by 
MATz~p( i )  the family of languages Lg~st(G ) geners by matrix grammars G = 
(V, T: M, S) with card (Y  - T)  < i. 

3 .  R e s u l t s  

T h e o r e m .  R E  = MATI~p(4) .  

Proof. Obviously~ MATI~st4(4) c R E .  We prove the converse inclusion. 
Let L be a recursively enumerable language. Take a queue grammar Q = 

(V, T,  W,  F, R,  g) such that L(Q)  = L. We construct the four-nonterminal matrix 
grammar 

G = (TU { 0 : l : 2 , 3 } , T , M : S )  

as follows. 
Set 

n =- 2 card(vuW). 

Consider a morphism fl from V U W to {0,1}. Extend fl to (Y U W)* in the standard 
manner. The set M of matrices is defined as follows. 

1. If a ~ V - T ,  v E W - F, ab = R,  then we introduce the matrix 

(3 ~ Obl . . . bn2al . . . an23), 

where b~,a~ E {0,1} for 1 < i < n, bl...b,~ = fl(b), and a l . . .a ,~  = fl(a). 

2. If (a, b, x, c) E g, then add 

(0 --+ 0, bl ~ ) t , . . . ,  bn --+ ~, 2 ~ )~, al --~ ~ , . . . ,  a,~ ~ ~, 

2 ~ fl(c)22, 3 ~ fl(x)3) 

to M, where ai, bi E {0,1}, for 1 < i < n, a l . . . a =  = fl(a), b l . . .bn  = ~(b). 

3. If (a,b, xy ,c )  E g with x E V* and y E T*, then add 

(0 --+ 1, bl --~ A, . . . :b~ ~ A,2 ---* )t, al ~ A, . , .  :an --+ A, 

to M,  where a~, b~ E {0: 1}: for 1 < i < n, a l . . .  a,~ = ~(a),  b l . . .  b= = fl(a). 

4. If (a ,b :y , c )  E g with y E T* and c r F :  then add 

(1 --+ l:b~ --+ )~,... :b~ -~ ~,2 --+ X, al --+ ;~,...,a,~ -~ ~,2 ~ fl(c)22, 3 --+ y3) 

to M, where a~,b~ E {0,1}, for 1 < i < n, a a . . . a=  = ~(a): b l . . .b= =/9(b). 

5. If ( a , b , y , c )  E g with c E F and y E T*, then add 

(1 --+ A, bx --~ A, . . . ,b~ ~ A,2 ---+ A, al --~ A , . . . , a=  -~ A,2 ~ A,3 ---* y) 

to M, where ai, bi, ci E {0,1} for 1 < i < n, a , . . . a =  =/~(a):  b~...b= = ~(b). 
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6. Add also 
(2 -~ 2, 2 ~ A, d -~ d2, 3 ~ 3) 

to M, for d = 0, 1. 

Notice that G has four nonterminals, 0, 1, 2, 3. The rest of this proof establishes 
several claims to demonstrate L(Q) = Lz~ft(G). 

C l a i m  1. Let 3 :==~Z*l~ z in G with z E T*. Then, in greater detail, 3 ==:~t*elt z 
can be expressed as 

2 ==~l~ft x [p] 

~ l e f t  u 
~ t ~ #  z [q], 

with x , u  C ( T u  {0, 1,2,3})*,p is the matrix in group 1, p is a matrix in group 5, and 
during x ~ t * f t  u, G never uses a matrix in groups 1 or 5. 

Proof of Claim 1. Consider a successful derivation 3 ~ t * f t  z in G. Observe that G 
surely uses the matrix in the first group, so express 3 ~ l * ] t  z as 3 ~ l ~ ] t  x ~ l * f ~  z, 
where the first step uses a matrix p introduced in the step 1 of the construction, that  
it p equals (3 -* db l . . ,  b=2al.. ,  a~23), where d E {0, 1}, b~, a~ E {0, 1}, for 1 < i < n, 
b l . . .  b n ~- f l ( b ) ,  a l . . .  am = f l ( a ) ,  a b  -~- R .  

* + 
Notice that for every y such that x ~ l ~ ] t ~ t ~ f t  z, [Y[3 = 1. 
As z E T*, G surely applies a matrix in group 5 in the last step of 3 ~ ] t  z, and 

before this application G never uses any matrix in group 5. Express 

3 ~ y ~  �9 ~o] 
::::::::~ le f t Z 

aS 
3 ~ , o f ,  x [p] 

=:::~ l e y t u 
~ o f ~  z [q] 

where q is a matrix in group 5 and during 3 ~ t * ~ p  u, G never uses a matrix in group 
5. Assume that during 3 =:=~z*p u, G applies (3 -+ db l . . ,  bn2al . . .a~23) t times, 
where t > 1. Then, lul2 = 2t and lUla = 1. G can remove 2's only by using matrices 
in group 5. However, during 3 ==~z*~ft u, G never uses a matrix in group 5. Therefore, 
3 =:~*ft  z can be expressed as in Claim 1. [] 

+ + 
C l a i m  2. Let 3 ==#left x =:=~left z in G, where x E ({0, 1, 2, 3} (A T)* and z E T*. 

Then 
x E ({0, 1} U T)*({2}({0, 1} U T)*)2({0,1} tA T)*{3}. 

Proof of Claim 2. Consider Claim 1. Then, examine M's  matrices to see that  
Claim 2, whose rigorous proof is left to the reader, holds. [] 

Let + 
3 ~ l e f t  x 

==::~le.[t Y [P] 
::=::::~ ~e f t Z 

be a successful leftmost derivation in G, where p is a matrix in one of groups 2 
- 5. The following claim demonstrate that at this point, x = dbl . . .b~2x ' ,  where 
d ~ {0,1},b~ ~ {0,1}, for 1 < i < n, x' e ({0,1} U T)*{2}({0,1} U T)*{3}. 
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i + C l a i m  3. Let 3 ===~t~p x =:~t~S~ z in G, where i > 1, x e ({0, 1,2, 3} U T)*, and 
z E T*. Then, 

x E {0, 1}{0,1}~{2}{0, 1}*{2}({0, 1} U T)*{3}. 

P r o o f  o f  Cla im 3. This proof is made by induction on i, where i > 1. 
i + Basis :  Let 3 ~ z ~ l t  x ~ t ~ l t  z in G, where i = 1,x �9 ({0,1,2,3} U T)*, and 

z �9 T*. By Claim 1, G makes 3 ~ t ~ l t  x by the matrix p in group 1, that  is p equals 
(3 ---* dbl . . .  b~2al . . . a,23). 

i + + Observe Express 3 ~ l ~ S t  x ~ t ~ ] ~  z as 3 ~ z ~ l ~  Ob l . . .  b ~ 2 a l . . ,  a~23 ~ l ~ S t  z. 
that  d b l . . ,  b=2al . . .  a=23 has the required form. 

I n d u c t i o n  step: Assume that  the claim holds for all i = 1, 2 , . . .  , j ,  where j is a 
___~j+l + ({0, 1,2} U z natural number. Let 3 --- ' t~p x ==~l~p z in G, x �9 T)*, and �9 T*. 

Express this derivation as 
J 

==~,r x [p] 
+ 

=:==:~ le.ft Z .  

By the induction hypothesis, y �9 {0, 1}{0, 1}~{2}{0, 1}*{2}({0, 1} UT)*{3}. By Claim 
1, p is a matrix in one of groups 2, 3, 4, or 6. Exaxnine these matrices to see that  G 
makes y ~ t e S ,  x [p] so that x E {0, 1}{0, 1}~+k{2}{0, 1}*{2}({0, 1} U T)*{3}. 

By contradiction, this proof next demonstrates that k = 0. Assume that  k > 1. 
+ A. Suppose that x ==~t~yt z is a one-step derivation. By Claim 1, G makes this 

step by using a matrix in group 5, so z ~ T*, which contradicts z E T*. 
+ B. Assume that x ==~l~l, z consists of two or more steps. Observe that  for every 

+ + 
u such that x ~ l e S ~  u ==:~lelt Z 

U E {0,1}{0,1}~+k+J{2}{0,1}*{2}({0,1} U T)*{3}, 

for some j > 0. Consequently, z ~ T*, which contradicts z �9 T*. 
Thus, k = 0 and Claim 3 holds. [] 

To continue the derivation after applying a matrix in one of groups 2, 3, 4, G has 
to shift the second appearance of 2 right in the current sentential form. G makes this 
shift by using matrices in group 6 to generate a sentential form having precisely n 
occurrences of d, where d E {0, 1}, between the first appearance of 2 and the second 
appearance of 2. Indeed, the sentential form has to contain exactly n appearances of 
d between the first appearance of 2 and the second appearance of 2; otherwise, the 
successfulness of the derivation is contradicted by these two arguments: 

A. If there exist fewer than n occurrences of d between the first appearance of 2 and 
the second appearance of 2, no matrix in groups 1 - 4 can be used, so the derivation 
ends. Because the last sentential form contains nonterminals, the derivation is not 
successful, a contradiction. 

B. Assume that  there exist more than n occurrences of d between the first appeax- 
ance of 2 and the second appearance of 2. Then, after the next application of a rule in 
groups 1 - 5 at least n + 2 occurrences of d, where d �9 {0,1}, appear before the first 
appearance of 2. Now, return to Claims 1 - 3, which imply these three observations: 

B.1. The matrix in group 1 is always used in the first step of a successful derivation. 
+ ===#+ B.2. If 3 ::==:~left X left Z in G is a successful derivation, then x E 

{0, 1}~+1{2}{0, 1}*{2}({0, 1} U T)*{3}. 
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B.3. A matrix in group 5 is always used only in the last derivation step of a 
successful derivation; furthermore, observe that this matrix erases precisely n + 1 
nonterminals preceding the first appearance of 2. 

By B.I  through B.3, if a sentential form, x, contains more than n occurrences of d 
between the first appearance of 2 and the second appearance of 2, then x derives no 
sentence in G. 

Thus, by A and B, the sentential form has to contain precisely n appearances of 
d between the first appearance of 2 and the second appearance of 2. The next claim 
verifies these observations rigorously. 

C l a i m  4. Let 

+ 
::::::~ l e f t Z 

in G, where i > 1, u, x E ({0,1,2, 3} U T)*, p is a matrix in one of groups 1 - 5, and 
z E T*. Then, 

x e {0, 1}{0, 1}~{2}{0, 1}~{2}({0, 1} U T)*{3}. 

Proof of Claim 4. This proof is made by induction on i, where i _> 0. 
Basis: Let i = 0; that  is 

3 =:=~l~]t x [p] 

:=:::~+f~ z 

in G, where x E ({0, 1,2,3)  U T)*, p is a matrix in one of groups 1 - 5, and z C T*. 
Claim 1 implies that 3 ==~le# x uses the matrix (3 --~ l b l . . . b~2a l . . . a~23) .  As 
l b l . . ,  b~2al . . .  an23 has the required form, the basis holds. 

Induction step: Assume that the claim holds for all i -- 1 ,2 , . . .  , j ,  where j is a 
natural number. Let 

3 ==:~+ft u 
x 

+ 
::::::=>left z 

in G, where i _> 1, u, x C ({0, 1,2, 3} U T)*, p is a matrix in one of groups 1 - 4, and 
z C T*. By the previous claim, 

x e {0,1}{0,1F{2}{0,1}m{2}({0, 1} U T)*{3}. 

Assume m < n. This assumption leads to a contradiction because p is inapplicable at 
this point. Therefore, m = n + k, for some k > 0, so 

x e {0, 1}{0, 1}~{2}{0, 1)~+k{2}({0, 1} U T)*{3}. 

By contradiction, this proof next demonstrates that k = 0. Assume that k > 1. 
+ A. Suppose that  x ====>left z is a one-step derivation. By Claim 4, G makes this 

step by using a matrix in group 5, so z ~ T*, which contradicts z C T*. 
B. Suppose that  x :==>+St z consists of two or more steps. Observe that  

x C (0 ,1 ){0 ,1F+~{2}{0 ,1F{2) ({0 ,  l} U T)*{3}. 

+ ==::::~ + Consequently, 3 ==*l,ft x l~lt z in G with z E T* and 

x @ {0, 1}{0, 1}~{2}{0, 1}n{2}({0, 1} U T)*(3}, 
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which contradicts  Claim 3. 
Thus, k = 0 and Claim 4 holds. [] 

+ 
C l a i m  5. Let 3 ~ u f t  x ~ f t  z in G, where i > 1, x �9 ({0, 1, 2, 3} U T)*, and 

z �9 T*. Then,  
�9 { 0 , 1 } { 0 , 1 F { 2 } { 0 , 1 p { 2 } { 0 ,  1}*T*{3}. 

P r o o f  o f  C l a i m  5. Consider Claim 4 and examine M ' s  matrices to see tha t  this 
claim holds. [] 

C l a i m  6. In G, every successful derivation 3 + ~u f t  v with v �9 T*, has the form 

3 + :::=:~ le f t 

=:::=~ l e f t 

: : : : ~  le f t 

0al . . .  a ~ 2 b l . . ,  b~2/~(Cl.., c~z)3 

l b l . . . b n 2 C l . . . C n 2 ~ ( z 2 c ) y 3  [P] 
ld l  . . .  d=2el �9 e=2yu3 

[q] 

where ai, b~,ci, d~,ei E {0, 1}, for all i --- 1 , . . . , n ,  z , x  E V* ,  y , u  E T*, so v = y u ,  p is 
a ma t r ix  in group 3 and q is a mat r ix  in group 5. 

P r o o f  o f  C l a i m  6. Claim 5 and the construction of M imply Claim 6, whose 
rigorous proof is left to the reader. [] 

C l a i m  7. Any successful derivation in G has the following form 

3 ~ ! + ] t  O b l . . . b , ~ 2 a ~ . . . a = 2 3  [Pl] 

=~ef t  U 
:===::~ l e f t V 

~ u f t  w4y4 ~vs] 

where i, k > 0 and the following propert ies A through E hold: 
A. Pl is of the form (3 --+ 0bl . . .  b~22al . . .  a~3) (see step 1 of the construction of 

M). 
B. In v ~ f t  w ,  consider any leftmost step that  is not made by a mat r ix  in group 

6. This step has the following form 

0 b l l . . ,  bxn2all  . . . a 1 , 2 f l ( u l ) 3  ~ Z ~ l ~  Ocn . . . C l n 2 2 ~ ( u l x l ) 3  [P2] 

where p2 is of the form 

(0 --* 0, bll ~ X , . . . , b l n  --+ X,2 --~ ~ , a l l  --+ ~ , . . . , a l =  ~ )~, 

2 Cll . . .  c1 22, 3 Z(Xl)3), 

i so Oh1 �9 �9 �9 b ~ 2 a l . .  �9 an23 ~ l t  u can be expressed as 

Oh1 . . .  b=2al . . .  an23 

Obn . . . b~,~2a~ . . . a ~ 2 f l ( U l ) 3  ~ u l *  0 c n . . .  c~=22fl(UlX~)3 [P2] 

0621 �9 �9 �9 b2=2a21 �9 �9 a2=2/3(u2)3, 
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where  u = 0b21.  . . b2,~2a21. . . a~=2/3(u2)3. 

C. Consider  u ==~t~ft v. This  step has the  following form 

0b21.  . . b2,~2a21. . . a2"2/3(u2)3 :==~t~f~ l c21 . . ,  c 2 , ~ 2 2 ~ ( u ~ x 2 ) y 2 3  

where  

u = 0bza �9 �9 b2=2a21. �9 a2n2/3(u2)3, 

V = lC21 , . .  c2,~22/3(u2x=)y23,  

and pa is of the  form 

(0 --+ 1~b21 --+ A, . . . , b2=  --+ A,2 --+ /~, a21 - +  / ~ , . . . , a 2 n  --)" .~, 

2 "-+ C21. , .  C2n22 , 3 -'+ /~(x2)y23), 

D. In v =::>kit w, consider  any der ivat ion step tha t  is not  m a d e  by a m a t r i x  in 

group 6. This  step has the  following form 

lb31 . . ,  ba ,2a31. . ,  a3,~2/3(u3)v33 ===>te# l c31 . . ,  c3 ,~22 f l (Us )v3v33  [P4], 

where  P4 is of the  fo rm 

(1 -+ 1,bal + A, . . . , b3~- -+  A , 2 - +  A, a31 --+ A , . . . , a 3 , ~  ~ A, 

2 --+ c31. . ,  ca~22, 3 --+ y33). 

As a resul t ,  v ==+tk~p w can be expressed as 

lc21 . . .  c2 ,~ j3(u2x2)y23  

lb 1... M] 

lb41 �9 .. b4~2a41 . . .  a4~2w43, 

where  

V ---- 1C21.. �9 C2,~22/3(U2X~)y23, 

W = lb4a . . .  b4~2a41 �9 �9 �9 a4,~2w43. 

E. P5 is of the  form 

(1 -+ A, b41 ~ A , . . . , b4~  -+ A,2 ~ A, a41 -+ A , . . .  ,a4n --+ A, 

2 ~ A, 3 ~ Y4), 

and w can be expressed as 

w = lb41 . . .  ba~2a4a . . .  a 4 ~ 2 w 4 y 4 3 .  

P r o o f  o f  C l a i m  7. A: The  first step of any successful der ivat ion is m a d e  according 
to (3 ~ 0bl . . .  b ~ 2 a l  . . .  a~23), which thus produces  0bl . . .  b ~ 2 a l  . . .  an23, wi th  bi, ai G 

{0, 1}, fo r  1 < i < n ,  b 1 . . . b n  = ~ (b ) ,  ~1 . . . a ,  -~ f l ( a ) ,  ab  = R .  
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Therefore, the first derivation has the form 3 ~ t ~ / ~  0 b l  . . .  bn2al  . . .  a~23 [Pl], with 
d E {0, 1}. After this step, only matrices of the form P2 or P3, whose use is described 
next, can be used because the left-hand side of the first production in these matrices 
starts with 0. 

B: Consider p2, which is of the form 

(0--* 0, bll ~ )~,... ,bl~ ~ ~,2 ~ ~,al l  ~ ~ , . . . , a l~ - -*  ~, 

2 --4 Cl1 . . .  Cln22, 3 --4 ~(Xl)3).  

By using p2, the 2n + 2 leftmost symbols of the sentential form, 0bl l  . . .  b l n 2 a a l . . ,  al,~, 

are replaced with 0ca1 . . .  c1~2, and in addition 3 is replaced with/~(xl)3. Therefore, 
this step is of the form 

Obl, . . . bl=2a11. . . a~=2fl (u~)3 ==>l~ft Ocll  . . . c~ ,~22~(u l x ,  )3  [P2] 

To continue this derivation, the second appearance of 2 is shifted right by productions 
in group 4. By this shift, G produces a sentential form that  has between the first 
appearance of 2 and the second appearance of 2 exactly n appearances of d, where 
d C {0, 1}; the concatenation of these n occurrences of d equals the n-symbol prefix 
of ~ ( u ~ z l ) .  Then, G can again use a matrix of the form p~ with i E {2, 3}. 

C: Consider p3, which is of the form 

(0 ~ 1,b21 ---+ . ~ , . . . , b 2 n  -'-4 .~,2 ~ ~,a21 --4 ) , , . . . , a 2 n  ~ .X, 

2 ~ c~1 . . .  c2=22, 3 ~ fl(x2)y23). 

By using P3, G replaces the 2n + 2 leftmost symbols of 0b21 . . .  b2n2a21 . . .  a2n2]~(u2)3 
with lc21...e2=; in addition, it replaces 3 with ~(x2)y23. Thus, this step has the 
following form 

Oh21 . . .  b2,~2a21. . ,  a2=2/~(u2)3 ~ t ~ f ~  lc2~..,  c2=22~(u2x2 )y23  [P3] 

To continue, the second appearance of 2 is shifted by analogy with the case when P2 
is used (see B). Then, G uses a matrix of the form p~, where i E {4,5}, because the 
sentential form starts with 1. 

D: Consider p4, which has the form 

(1 ~ 1, b31 --~ ~ , . . . ,  bz,~ --+ ~, 2 --* )~, a31 --+ ~ , . . . ,  a3n --~ ~, 

2 ~ c31.., c3=22, 3 ~ y 3 3 ) .  

By using p4, the 2n+2 leftmost symbols of l b31  . . .  b3n2a31  . . .  a 3 u 2 ~ ( u 3 ) v 3 3  are replaced 
with lc31 . . .  c 3 n 2 ,  and 3 is replaced with y 3 3 .  As a result, this step has the following 
form 

lb31..,  b3=2a3~.., a3,~fl(u3)v33 =:=~zof~ lc31...cz,~22fl(u3)v3y33 [P4] 

To continue, the second 2 is shifted in the same way as described in the case when p2 
is used. Then, a matrix of the form Pi, where i E {4,5}, because the sentential form 
starts with 1. 

E: Consider ps, which has the form 

(1 ~ ~, b41 ~ s  b4~ --* X, 2 --+ X, a41 --~ ~ , . . . ,  a ~  --~ $, 

2 --+ ,k, 3 --+ y4). 
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This mat r ix  is used in the last derivation step, w =::~t~]t w4Y4 [Ph]" Any successful 
derivation has thus the required form, so Claim 7 holds. [] 

C l a i m  8. For every successful derivation in Q, R ~ *  zd, with z C T* and d C F~ 
there exists a successful derivation in G of the form 3 :=:~l*~ft z- 

Proof of Claim 8. Let z E L(Q). Recall that  Q satisfies the observation at the end 
of the previous section. As a result,  Q derives z as 

R :=:=~i alUlbl 

~tlXiYlCl [(hi, bl, XlYl, c1)] 
~ J  ylzlc3 ~ F, 

where i~j > 1,z = y l z l , x l , u l  C V*,yl ,Zl  E T*,bl,Cl ~ W, and c3 E F .  In more 
detail ,  R ~ *  zc3 can be expressed as 

R ~ *  aouobo 
UoXoCo [(ao, bo, Xo, Co)] 

===@* alUlbl 

~lXlYlC1 [(al, bl, XlYl, el)] 
=::::~ * a2u2Yl Vb2 

u2y~vy2e2 [(a~, b~, y~, c~)] 
a3YlVy2wb3 
y i ~ y ~ y ~ e ~  [(a~, 6z, ~,  ~)], 

where Xo, xl,Uo, Ul,U2 E V* ,v ,w ,  yl,y2, y3 c T*,c, cl,c2 E W, c3 E F , z  = ylzl  = 
ylvy2wy3c3, a2u~ e s u f ( u l x l ) ,  aa e suf(u2) (note that  Zl = vy2wya). Next, this proof 
describes how G simulates the four direct derivations 

ao~obo ~ ~o~oco [(ao, bo, ~o, Co)] 
alUlbl  ~ r [(al, bl, XlYl, r 
a2u2Ylvb2 :::::} ~t2Ylvy2c2 [(a2, 52, Y2, c2)1 
a3ylvy2wb3 ~ ylvy2wy3c3 [(a3, b3~ y3, c3)] 

1. Consider 
aouobo=-~UoXoco 

G simulates this step as 

according to 

[(ao, bo, ~o, co)] 

0bol . . .  bo=2aol.. ,  ao=2fl(u)3 ~ l ~ ] t  0co l . . .  co~22fl(UoXo)3 

(0 -4 0, bol ---+ ),, �9 . . , bo~ --* ),, 2 --+ A, aol --+ A , . . . ,  ao= ~ A, 

2 --* COl... con22, 3 --+ fl(Xl)3), 

where aoi, boi, coi E {0,1}, for 1 < i < 

/~(~o), col �9 . .  eo~ = / ~ ( c o ) .  
2. Consider 

alUlbl ==~ ulxly lc l  [(al, bl, x lyl ,  cl)] 

in Q. G simulates this step as 

0b11... bln2a11. . . aln2fl(ul)3 ~ l ~ ] t  lc1~ . . . cl=22fl(u~xl)y13 

Tt, a01 . . ,  aon -~- fl(ao), bol . . ,  bo= = 



accord ing  to  

(0 "-+ 1, bll -+ 3`,.. �9 , bl~ ~ 3`, 2 -+ 3`, a l l  ~ 3`,. �9 . , aln ~ 3`, 

2 --+ t211.., c1.22, 3 -~ f l(xl)y13),  

i < n~ a l l . . . a l n  where  ali, bli, Cll E {0, 1}, for 1 _< 

C l l . . . e l n  : ~(C1).  
3. The  der iva t ion  s tep 

a2u2ylvb2 ~ u2ylvy2c2 

in Q is s imu la t ed  in G as 
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f l (a l ) ,b11. . .b ln  -= ~(bl ) ,  

[(a2, b2, Y2, c2)] 

lb2a . . .  b2~2a21..,  a2n2fl(u2)ylv3 ~ I e f t  lC21 . . ,  c2~22fl(u2)ylvy23 

accord ing  to  

(1 ~ 1, b21 ~ 3 ` , . . . ,  ben ~ 3`, 2 ~ 3`, a21 --> 3`,. �9 �9 , a2n -+ 3`, 

2 --~ c~a . . . c2~22,3  ~ y23), 

where  a2i, b2i, c2i E {0,1},  for 1 < i < n, a21 . . . a2~  = 

4. Cons ider  

a3yl vy2wb3 ~ Yl vy2wyzc3 

G s imula tes  this  s tep as 

f l(a2),b21.. .b2~ = ~(b2), 

accord ing  to  

cz)] 

l b31. . . b3~2a3a . . . a3~2yl vy2w3 =~z~ft yl vy2wy33 

4. F inal  R e m a r k s  

S y m m e t r i c a l l y  to the  le f tmost  der ivat ion ,  we can define a r igh tmos t  der iva t ion  
in a m a t r i x  g r a m m a r :  each rule  replaces  the  r igh tmos t  occur rence  of i ts  l e f t -hand  

where  a3~,bai, c3i E {0, t},  for 1 < i < n, a a l . . . a a ~  = ~ (a3 ) , b3~ . . . b3 ,  = fl(b3), 
= Z(c3).  

Thus,  3 ===*z~/t z in G. Consequent ly ,  C la im 8 holds.  [] 

By  C la im 8, L ( Q )  C_ nz~#(G). 

C l a i m  9. For  any successful  lef tmost  der iva t ion  in G, 3 ~ l * ] t  z, wi th  z E T*, 
the re  exis ts  a successful der iva t ion  in Q of the  form R ==~* zd  with  d C F .  

Proof  of Claim 9. This  c la im can be  proved by  ana logy  wi th  the  proof  of C la im 
8. A de tMied version of this  proof  is left to the  reader .  [] 

B y  C la im 9, Lz~ft(G) ~ L(Q) .  Thus,  L ( Q )  = L~f t (G) ,  which comple tes  the  proof  
of the  Theorem.  [] 

(1 --~ 3`, b3a -+ A , . . . ,  b3~ ---* 3`, 2 ---* 3,, a31 --+ 3 ` , . . . ,  a3~ --* 3`, 

2 --~ A, 3 --* y33), 
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nonterminal in the current sentential form. The construction in the previous section 
can be carried out also for the rightmost derivation: for L E RE consider the language 
mi(L), which is also in RE, construct a four-nonterminal matrix grammar G as in 
the the previous section such that L~p(G) = mi(L), then "reverse" the matrices of 
G by replacing (A1 ~ Xl , . . . ,  A~ -+ x~) by (A1 ~ mi(xl),...,A,~ ---+ mi(xn)). We 
obtain a grammar G ~ which generates in the rightmost mode the language L. Thus, 
each recursively enumerable language can be generated by a matrix grammar with 
four nonterminals. 

These characterizations of RE are closely related to the characterization of RE 
by six-nonterminal matrix grammars with appearance checking (see [3]). Can any of 
these characterizations be established for fewer nonterminals ? 
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Abs t rac t .  Some results from [2], [5], [6] are generalized for finite au- 
tomata over arbitrary groups. The accepting power is smaller when abelian 
groups are considered, in comparison with the non-abelian groups. We 
prove that this is due to the commutativity. Each language accepted by a 
finite automaton over an abelian group is actually a unordered vector lan- 
guage. Finally, deterministic finite automata over groups are investigated. 

1. I n t r o d u c t i o n  

One of the oldest and most investigated machine in the automata theory is the 
finite automaton. Many fundamental properties have been established and many 
problems are still open. 

Unfortunately, the finite automata without any external control have a very limited 
accepting power. Different directions of research have been considered for overcoming 
this limitation. The most known extension added to a finite automata is the pushdown 
memory. In this way, a considerable increasing of the accepting capacity has been 
achieved. The pushdown automata are able to recognize all context-free languages. 

Another simple and natural extension, related somehow to the pushdown memory, 
was considered in a series of papers [2], [5], [6], [7], namely to associate to each 
configuration an element of a given group, but no information regarding the associated 
element is allowed. This value is stored in a counter. An input string is accepted if 
and only if the automaton reaches a designated final state with its counter containing 
the neutral element of the group. 

Thus, new characterizations of unordered vector languages [6] or context-free lan- 
guages [2] have been reported. These results are, in a certain sense, unexpected 
since in such an automaton the same choice is available regardless the content of 
its counter. More precisely, the next action is determined just by the input symbol 
currently scanned and the state of the machine. 

In this paper, we shall consider only acceptors with a one-way input tape read 
from left to right and a counter able to store elements from a given group. The 
aforementioned papers deal with finite automata over very well defined groups e.g. 
the additive group of integers, the multiplicative group of non-null rational numbers 

1Work supported by the Alexander von Humboldt Foundation and the Academy of Finland, 
Project 11281 
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or the free group. The aim of this paper is to provide some general results regardless 
the associated group. 

We shall prove that  the addition of an abelian group to a finite automaton is 
less powerful than the addition of the multiplicative group of rational numbers. An 
interchange lemma points out the main reason of the power decrease of finite automata  
over abelian groups. Characterizations of the context-free and recursively enumerable 
languages classes are set up in the case of non-abelian groups. 

As far as the deterministic variants of finite automata  over groups are concerned 
we shall show their considerable lack of accepting power. 

2. Pre l iminar ie s  

We assume the reader familiar with the basic concepts in automata and formal 
language theory and in the group theory. For further details, we refer to [4] and [8], 
respectively. 

For an alphabet P,, we denote by P~* the free monoid generated by D under the 
operation of concatenation; the empty string is denoted by A and the semigroup 
P,* - {A} is denoted by P,+. The length of x E P,* is denoted by ]x]. 

Let K = (M, o, e) be a group under the operation denoted by o with the neutral 
element denoted by e. A n  extended finite automaton (EFA shortly) over the group 
K is a construct 

A = (Z,P, ,K,  qo, F, 8) 

where Z, P,, q0, F have the same meaning as for a usual finite automaton [4], namely 
the set of states, the input alphabet, the initial state and the set of final states, 
respectively, and 

8:  Z x P, U {A} , ;o/(Z x M) 

This sort of automaton can be viewed as a finite automaton having a counter in 
which any element of M can be stored. The relation (q, m) C 3(s, a), q, s C Z, a C 

U {A}, m E M means that the automaton A changes its current state s into q, by 
reading the symbol a on the input tape, and writes in the register x o m, where x is 
the old content of the register. The initial value registered is e. 

We shall use the notation 

(q, aw, m) ~A (s, w, m o r) iff (s, r) e ~(q, a) 

for all s,q E Z a �9 N U {A}, m,r  �9 M. The reflexive and transitive closure of the 
relation ~A is denoted by ~ .  Sometimes, the subscript identifying the automaton 
will be omitted when it is self-understood. 

The word x �9 N* is accepted by the automaton A if and only if there is a final state 
q such that  (q0, z, e) ~* (q, A, e). In other words, a string is accepted if the automaton 
completely reads it and reaches a final state when the content of the register is the 
neutral element of M. 

The language accepted by an extended finite automaton over a group A as above 

is 
L(A) = {x �9 ~,*l(qo, x ,e)  ~*A (q,A,e), for some q �9 F} 

For two groups K1 = (M~, ol, el) and K2 = (M2, 02, e2), we define the triple K1 •  = 
(M1 • Me, o, (el, e2)) with (ral, m2) o (nl, n2) = (ml ol nl, ra2 o2 n2). It is well-known 
that  K1 • K2 is also a group. 
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We are going to provide some results that  will be useful in what follows. The 
notation s  identifies the class of regular languages, 

T h e o r e m  1. For any group K ,  ~ ( E F A ( K ) )  = s  iff all finitely generated 
subgroups of K are finite. 

Proof. Let K be a group such that  any finitely generated subgroup of K is finite. 
Let A = (Z, E, K,  zo, F, 6) be an EFA over K = (M, o, e). We denote by X the finite 
subset of M 

x = { ~  e M I (z ' ,m) e 5(z ,a)  for some z,z'  e Z ,a  e ~ U {~}}. 

Let H = ((X}, o, e) be the subgroup generated by X. 
We construct the finite automaton with A-moves B = (Z x (X),  E, (z0, e), F x 

{ e } , ~ )  with ~((z,m),a) = { ( z ' , ~  o n) I (z' ,~) c 5(z ,a) ,  for all z e Z, m e M,  
a E E U {A}. One can easily prove that  (zo, w,e)  ~*~ (z ,A,m)  iff ((Zo, e ) ,w)  ~*B 
((z, m),  A), which implies L(A)  = L(B) .  

It remains to prove that  for any infinite group K,  finitely generated, exists an EFA 
over K accepting a non-regular language. Let K = ((X),  o, e) be such a group with the 
finite set of generators X. Consider the (deterministic) EFA A = ({z}, Y, K,  z, {z}, 3), 
with Y = X O {x -1 [ x E X} and 6(z, a) = (z, a), for all a C Y. The following facts 
about L(A)  are obvious: 

1. For any ra C (X), exist a word v E Y* such that  (z, v, e) ~ (z, A, m).  

2. For any v C Y*, exists a word w E Y* such that  vw C L(A).  

3. For any k > 0, the set 

Xk = {m ~ (X) 13v ~ Y*,lvl < k :  (z ,v ,e )  ~ ( z ,~ ,m)}  

is finite. 

As a consequence of these facts and of the infiniteness of (X),  we obtain: For all 
k >__ 0, there is a word vk such that  v~v ~ L(A) ,  for all v E Y*, Ivl _< k. 

But,  one can easily prove that  for any regular language L Q_ Y*, exists k > 0 such 
that  for all vw E L, there is w' G Y*, Iw'[ _< k, with vw' E L. Hence, L(A)  cannot be 
regular. [] 

A finitely generated abelian group is finite if all its elements are of finite order. 
Hence, for an abelian group K,  s  = s  iff all elements of K have 
finite order. This is not necessarily true for non-abelian groups. We can, however, 
prove a pumping lemma which is very similar to the pumping lemma for r e g u l a r  
languages. 

L e m m a  1. Let K be some group without elements of infinite order. For any 
language L C s  there is a constant n >_ 1 such that, for  all x E L, 
Ix] >_ n, there exist a decomposition x = uvw and a natural number q > 1 with 
[~1 < ,~, I~l >- L ~ + ~  c s for ~ll ~ > o. 

Moreover, i f  K has the finite ezponent p then q can uniformly be chosen as 
q = p .  

Proof. Let A = (Z, E, K,  z0, F, 5) be an EFA over K.  We choose n = ]Z I + 1. Now 
consider a word x E E* with Ix] > n. Similar to the proof of the pumping lemma for 
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regular languages, it can be shown that there is a decomposition x = uvw~ luv] <_ n, 
[v[ >__ 1, such that  

(Z0, UVW, e) ~*A (z, vw, ml) ~ i  (z, w, m I 0 ~-~2) ~ (f ,  A, e), z E Z, f e F. 

Now choose q such that m~ = e. Obviously, any word uviq+lw is accepted by A. [] 

As a consequence of the above pumping lemma, we obtain: 

T h e o r e m  2. For any group K, L(EFA(K)) contains the language L = {a"b ~ [ 
n > 1} iffat least one element of K has an infinite order. 

Proof. Let K = (M, o, e). If M contains an element m of infinite order then 
the finitely generated subgroup ((m}, o, c) is isomorphic to (Z, +,  0), hence L is in 
s 

If all elements of M have finite order, a simple application of the above pumping 
lamina yields L ~ ~(EFA(K)). [] 

For a group K, let ~-(K) denote the family of all finitely generated subgroups of 
K. 

T h e o r e m  3. For any group K, 

f~(EFA(K))= U f~(EFA(H)) 
He.;r(K) 

Proof. Let K = (M, o, e) be a group. The inclusion 

s D_ U E(EFA(H)) 
He~-(K) 

holds, since E(EFA(K)) D_D_ f~(EFA(H)), for any subgroup H of K. 
On the other hand, let A = ( Z , Z , K ,  z0, F,~) be an EFA over K. The group 

H = (iX),  o, e), where X = { m e  Ml(q, m) C g(z, a) for some q, z e Z, a e ~ U {A}} 
is a finitely generated subgroup of K. Obviously, during any computation in the 
counter of A appear  only elements of (X). Therefore, the automaton A can be viewed 
as an automaton over H. More precisely, A' = (Z, Z, I-I, z0, F, 5) accepts the same 
language as A does. This proves the second inclusion and thus the theorem. [] 

3 .  E F A  o v e r  A b e l i a n  G r o u p s  

Valence grammars and EFA have initially been introduced for the groups Z~ = 
(Z k ,§  k :> 1 and Q = ( Q -  {0},.,1). In what follows we shall show that  the 
accepting capacity of EFA does not increase if we consider arbitrary abelian groups 
instead of Q. Thus, every language accepted by an EFA over an abelian group is 
a (unordered) vector language [1]. The deeper reason of this fact is the following 
fundamental result in the group theory. 

T h e o r e m  4. A finitely generated abelian group is the direct product of a finite 
number of cyclic groups. 

As a consequence, a finitely generated abelian group is either finite or isomorphic 
to a group Zk • H,  where k is a positive integer and H is a finite abelian group. 
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T h e o r e m  5. For a group K and a finite group H,  

s  • H)) = s  

Proof. Let K and H be given by K = (M1, ol, el) and H = (2142, o2, e2), and let 
A = (Z, E, K x H,  z0, F, 5) be an EFA over K x H. We construct the EFA over K,  

= ' = (z0, c2), F ' =  F x {e2}  a n d  A' (Z',  E, K,  z~, F ' ,  5') with Z'  = Z'  x M2, z0 

5'((z, n2),a) = { ( ( z ' , n 2 0 2 m 2 ) , m , ) l ( z ' , ( m l , r n 2 ) )  e b(z ,a)} ,  

z , z  I C Z ,a  E EU {A},ml C Ml ,m2 ,n2  E M2. 

By induction on the number of steps, one can show that ((zo, e2),w, cl) ~*A, 
((z, m 2 ) , w ' , m l )  iff (z0, w, (el,e2)) ~ 4  ( z , w ' , ( m l , m 2 ) ) ,  hence L(A)  = L(A') .  [] 

We are now ready to prove the main result of this section. 

T h e o r e m  6. For an abelian group K,  one of the following relations hold: 

s  = s  

s  = s  for some k, 

s  = s  

Proof. As it was shown in Theorem 3, s  = UI-Ie~=(K)s 
Every H E Y(K)  is either finite or isomorphic to a group Zk X H '  where k > 1 and 
H '  is a finite group. Hence for all H e 5 r (g) ,  either s  = s  or 
s  = f - . (EFA(Zk x H'))  = s  for some k _> 1. 

If all finitely generated subgroups of K are finite, then s  = s  
holds, due to Theorem 1. 

Otherwise, let N ( K )  be the set of all k such that s  = s  
for some H e $-(K). If N ( K )  is finite then s  = s  where 
k = max(N(K)) .  If N ( K )  is infinite then s  = s  

It is known that languages as L1 = {anb ~ [ n >_ 1}* or L2 = { w c w  R ! w C {a, b} +} 
are not in s  Therefore, L1,L2 ~ s  for any abelian group 
K. In [2] it was conjectured that the commutativity of the multiplication of rational 
numbers is responsible for this fact. We shall formally prove this conjecture by help 
of the following "interchange lemma". 

L e m m a  2. Let K = (M,o ,e )  be some abelian group, and let L be a language 
in s  There is a constant k such that, for  any x C L, Ix I >_ k, and any 
decomposition x = VlWlV2W2... VkWkVk+l, Iwll >_ 1, exist two integers 1 <_ r < s <_ k 

t t I for such that the word x' = VlW~V2W12... VkWtkVk+l with % = ws, w, = w~, wi = wi, 
i ~ {r , s} ,  is in L. 

Proof. Let A = (Z, E, K, zo, F, 5) be an EFA over g = (M, o, e). We choose 
k = IZI 2 + 1 .  For a word x E L(A) ,  Ix I > k, let be given a decomposition x = 
ylWl?J2w2...VkWkVk+l, ]Wi] > 1. There are the states yi,zi C Z, 1 < i < k, q E F,  
with 

(Zi_l, Vl, e) ~* (Yi,)~, mi), 1 < i < /r 

(zk, vk+l,e) ~* (q,A,mk+O, 
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and ml o nl o m2 0 n2 0 . . . o mk o nk o mk+l = e. 
By the pigeon-hole principle, there are two numbers i _< r < s < k with (yT, zT) = 

(y,,**). 
Now consider x' ' v  w' , t , = vlwl 2 2'' 'vkw~Vk+l with % = ws, w s = w~, w i = w~, for 

i ~ {r,s}. For the words v~, 1 < i < k + 1, and w~, 1 < i < k + 1 the relations 

e) (y.  A, rod, 1 < i < 
(y.  e) (z .  1 < i < k, 

(Zk, Vk+l,e) ~* (q,A, mk+l), 

hold, with n'~ = n~, n'~ = n~, n~ = n~, for i ~ {r, s}. By the commutativi ty of K it 
follows 

r n l  o n~ 0 m 2  0 nt2 0 . . .  0 m k  0 ntk 0 m k + l  

: 77/. 1 o n 1 o m 2 o n 2 o . . . o m k o n k o mk-t-1 

~- e,  

implying that  x' is accepted by A. [] 

T h e o r e m  7. For any abelian group K,  the languages L1 = {anb "~ I n >_ 1}* and 
L2 = {wcwn l w e {a, b} +} are not in s  

Proof. Assume that L1 e s  for some K, and let k be the constant 
from the interchange lemma. Now consider the word x = aba2b2...akb k and the 
decomposition vi = ai, wi = b i, 1 < i < k, vk+l = )~. There are 1 < r < s < k such 
that x' = aw~a2w~...akw~k with w~ = b ~, w: = b ~, w~ = b i, for i ~ {r ,s} ,  is in L1, 
contradiction. 

A similar reasoning for the relation L2 ~ [ . ( E F A ( K ) )  is left to the reader. [] 

4 .  E F A  o v e r  N o n - A b e l i a n  G r o u p s  

In this section, we restrict our investigation to the free groups, since for any (non- 
abelian) group K there is a homomorphism from a free group to K [8]. 

In this way, we get a characterization of the context-free languages class in terms 
of languages accepted by extended finite automata over the free group with just two 
generators [2]. The free group with n generators is denoted by F~. 

Recall from [2] 

T h e o r e m  8. The family of context-free languages equals s  

L e m m a  3. Let KI  and K2 be two groups. For two languages L~ C s  
i = 1, 2, the languages L1 N L2 and LIL2 are in s  x K2)). 

Proof. Let A~ = (Z~, E~, K~, z ~ F~, 5~), i = 1,2, be two EFA over K~, respectively. 
We assume that Z1 N Z2 is empty. 

We have L ( B )  = L~ N L2 and L(C)  = L~L2, where B = (Z~ x Z2, E~ O E2, K~ x 
K2, (z ~ z~ F1 • F2, 5) with 

~((Z1,  Z2) , a )  = { ( ( Z ; ,  Z ; ) ,  ( t n l ,  ~'T~2)) I (J1 ,  m l )  e ~ l (Z1,  a ) ,  ( z ; ,  m 2 )  e ~2(z2,  a ) } ,  

z~ E Zl,z~ C Z2,a E E1 ;? E2, 

~((Zl, z2), ..~) ii {((z;, z2), (ml, e2)) I (z;, 7721) e (~l(Zl, A)} 

U{((z , ,z '2) , (el ,  m2)) l (z'~,mu) �9 5~(z~,X)}, z 1 �9 Zl,z2 �9 "--Z2. 
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and C = (Z1 U Z2, E1 U E2, K1 x K2, z ~ F2, 6) with 

5(z,a) -- { (z ' , (m,  e 2 ) ) i ( z ' , r n ) e h l ( z , a ) } ,  z e  Z l , a e  E1, 

{(z t , (m,  e2)) I ( z ' ,m)  e 51(z,~)}, z e Zl \ El, 
5(z, ;~) {(z', (m, I (z', m) e 5,(z, u z e F, 
5(z,a) = { ( z t , ( e l , m ) ) l ( z t , m )  e 52(z,a)}, z e Z2,a e ~'2 U {~}. 

which concludes the proof. [] 

It is well-known that  every recursively enumerable language can be expressed as 
the homomorphical  image of the intersection of two linear languages. It is obvious 
that  each family s  is closed under homomorphims.  In conclusion, due to 
the previous lemma as well as to Theorem 8~ we have just proved: 

T h e o r e m  9. s  • F~)) equals the family of recurs@ely enumerable lan- 
guages. 

5. D e t e r m i n i s t i c  EFA 

In the case of EFA, the determinism significantly decreases the accepting capacity. 
Denote by s  the family of languages recognized by deterministic EFA 
over the group K.  

L e m m a  4. For any group K,  the languages L1 = {a ~ I n >> 1} U {a~b ~ ] n > 1}~ 
L2 = {a'~b n [ m  >_ n} and L3 = {a,b}* \ {anb ~ I n >>_ 1} are not in f~ (DE FA (K) ) .  

Proof. Let K -- (M, o, e), and let d = (Z, {a, b}, K,  z0, F, 5) be a DEFA over K 
such that  L1 = L(A).  Since a N E L(A),  for all n > 1, there are the integers 1 < r < 
s < IF] + 1 such that  (z0, a ~, e) ~ (q,),, e) and (z0, a ~, c) ~ (q, ;L e), for some q e Z. 
Since a~b ~ e L(A) ,  for all n _> 1, we have also (Zo, a~b ~, e) ~*A (q, b~, e) ~*A (q', ~, e), 
for some q' E F.  Hence, (zo, a~b ~, e) ~*A (q, b~, e) ~ (q', ~, e), implying a~b ~ C L(A)~ 
contradiction. In conclusion, L1 ~ L(A).  

By similar arguments it can be shown that  L~, L3 q~ s  [] 

On the other hand, s  generally contains languages with undecidable 
membership problem. 

T h e o r e m  10. There is a finitely generated group K such that the following ques- 
tion is undecidable. Given a DEFA A over K and a word w over the input alphabet 
of A, is w E L(A)  ? 

Proof. For a finitely generated group K = (M, o, e) with the set of generators X,  
the word problem is the following question. Is a given te rm xlox2o. . ,  x,~, xi E X U X  -1, 
1 < i < n, X -1 = {x -1 I x E X} equal to the neutral element c? It is a well-known 
result from group theory that  there is a finitely generated group K with undecidable 
word problem. 

Let K = (M, o, e) with the finite set of generators X be such a group. We construct 
the DEFA A = ({z}, X U X -1, K,  z, {z}, 5) with the transition function 5(z, x) = 
(z, x), for all x E X U X  -1. Obviously, A accepts a word x l x 2 . . ,  x~ iff xl ox2o . . .ox~  = 
e. The  undecidability of the membership problem for A follows directly from the 
undecidability of the word problem for K.  [] 

T h e o r e m  11. For every group K having at least one element of infinite order, 
we have s  C s  strict inclusion. 
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Proof. Let K be an arbitrary given group and A = (Z, ~, K,  z0, F, ~) be a deter- 
ministic EFA over K.  

If there is an element of M of infinite order, then the language {a=l n > 1} U 
{a%~]n > 1} E s  since s  closed under union. In conclusion, 
C(DEFA(K))  C s  [] 

6. D e t e r m i n i s t i c  EFA over A b e l i a n  Groups  

The next result is a consequence of Theorem 11. 

T h e o r e m  12. For every abelian group K, we have either s  = 
s  or s  C s  strict inclusion. 

Obviously, the s tatement  of Theorem 6 is also valid for the deterministic EFA over 
abelian groups. 

As we have seen, neither s  [6] nor s  are closed under 
complement. In the end of this section we will show that  the complement of a language 
from s  is in s  In order to handle the difficulties owing to the 
existence of ~-steps, we introduce some notations. 

Let A -  (S, ~, Zk, So, F, 6) be a DEFA over (Zk), for some k > 1. For all s E S, 
we define the sets 

N~ = {r E Z k [ (s,s ~* (q,$,r), for some q E F} 

L e m m a  5. Let A be a DEFA as above. For all s E S, there is an EFA As = 
(Y~, ~,,Zk,s, {qs},6s) such that ~s(s,a) = O, for all a E ~, and (s,A,O) ~* (qs,)~,r) iff 
r E Z k \ N ~ .  

Proof. In what follows let e~, 1 < i < k, denote the i-th unit vector of Z k. For 
any 8 E S, we construct the EFA Al(s) = (S U {q},T, Zk, s ,{q},~l)  with q ~ S, 
T = {a l , . . . ,  ak} U {b~,...,  bk}, and the transition relation g~ defined as 

gl(p,a) = 0, for p E S, a E T, 

~,(p,~) = ~(p,;~), forp~S\F, 
gl(p,A) = ~(p,A) W {(q,O)}, f o r p  E F, 

t~l(q, al) = { (q , -e l ) ,  for l < i < k ,  

g~(q, bi) = {(q, ei), for 1 < i < k, 

(~(q,,~) = O. 

Obviously, the language accepted by Al(S) is 

L, = (w E T* I (Iwlol - Iwlbl , . . . ,  Iwl~k - Iwlb5 E Ns}. 

Let kv: T* --* N :k be the Parikh mapping with kO(w) = (1~1~1, Iwlb~,...,  Iwla~, Iwlb~), 
for all w E T*. The Parikh set g~(Ls) is semilinear, and its complement ~ ( L , )  is 
semilinear, too. Therefore, there is a finite automaton A2(s) = (Y~, T, s, {qs}, ~'~) such 
that  the Parikh set of L(A2(s)) is kV(Ls). From A2(s) we can construct A~ as follows: 
As = (118, P,, Zk, s, {qs}, (~s) with 

~s(p,a) = O, f o r p E Y ~ , a E  Z, 

gs(p,A) = {(p ' ,e , ) lP '~  ~:(p, a i ) , l  < i < k} 

U { ( p ' , - e l )  I P' E 5's(P, bl), 1 < i < k}, for p E Y~. 
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Obviously, (s,A, 0) ~ s  (q~,~,r) iff L(A~(s)) contains a word w with r = ( I w [ ~ i -  
Iw[bl , . . . ,  [wl~ k -Iwlbk),  i.e. iff L~ contains no word v with r = (Iv[~l - I v i b l , . . . ,  Iv[~k - 
[vlbk) , hence iff r it Nz. [] 

T h e o r e m  13. For all L E s the complement of L is contained in 
L(EFA(Q)). 

Proof. Let A = (S,Z, Zk,so, F,~) be a DEFA over Zk. The set of states can be 
part i t ioned into the set R consisting of all states s E S, such that  A can perform only 
)~-steps if s is reached, and its complement S \ R. 

The complement of L(A) consists of two sets; first, the set of all words w = wlw2 E 
E + with w2 ~ ~ and (so, w, 0) ~ (p, w2, r) for some r E Z k and some p E R; second, 
the set of all words wwla E E + with a E Z and (s0,w, 0) ~ (p , a , r ' )  ~A (s ,A,r )  
for some p, s E S, and r + t ~ 0, for all t E _/Vs. The last condition is equivalent to 
r + t = 0 ,  f o r s o m e t  E Z  kk/Vs. 

Now let for all s E S, A~ = (Y~, E, Zk, s, {q~}, ~ )  be the DEFA constructed in the 
last lemma. Without  loss of generality we may assume that  Y~ and Y~, are disjoint 
for s ~ s' and that  Y~ and S are disjoint for all s E S. Now we construct t3 = 
(S', E, Zk, so, F ' ,  6') with the set of states S '  = S U [-J~es Y~ U {f},  the set of final 
states F '  = {q~ ] s E S} U {f},  and the following transition mapping 

if s e s -  { so )  
5'(s,A) = 5(s,A) U { ( f ,  0 ) } i f s = s 0  

5~(s, A) if s E Y~, for some x E S 

{ 5(s,a) U{(y~,,r)l(s',r ) ES(s ,a)} i fs  e S - R  
6(s,a)  U {(y,,,r)l(s',r ) E 5(s,a)} U {(f ,  0)} if s �9 R 

{(f,O)}, 

{ ( f , m .  c i )} ,m �9 { - 1 , 0 , 1 } , 1  < i < k. 

a) = 

5'(f,a) = 
= 

for all a E E. 
It  is easy to see that  B accepts all words not in L(A). On the other hand, no word 

from L(A) is accepted by B. [] 

An important  consequence of the last theorem is the decidability of the inclusion 
problem (and of the equivalence problem, too) for DEFA over Q, which is an in- 
teresting contrast to the undecidability of the universe problem fo r nondeterministic 
one-turn counter automata ,  a proper subclass of EFA over (Z, +,  0). 

T h e o r e m  14. Let A and B be DEFA over Q. It is decidable whether or not 
L(A) C L(B). 

Proof. Given B, one can construct a (__nondeterministic) EFA B over Q with 
L(B) = L(B). Clearly, L(A) C L(B) iff L(B) ~ L(A) is empty. Now an EFA C over 
Q can be constructed such that  L(C) = L(B) N L(A). Hence, the inclusion problem 
for DEFA over Q is reduced to the emptiness problem for EFA over the same group, 
which is decidable [1]. [] 
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Abstract. We study a Lindenmayer-like parallel rewriting system to 
model the growth of filaments (arrays of cells) in which developmental 
errors may occur. In essence this model is the fuzzy analogue of the 
derivation-controlled iteration grammar. Under minor assumptions on the 
family of control languages and on the family of fuzzy languages in the 
underlying iteration grammar, we show that (i) regular control does not 
provide additional generating power to the model, (ii) the number of fuzzy 
substitutions in the underlying iteration grammar can be reduced to two, 
and (iii) the resulting family of fuzzy languages possesses strong closure 
properties, viz. it is a full hyper-AFFL, i.e., a hyper-algebraically closed 
full Abstract Family of Fuzzy Languages. 

1. I n t r o d u c t i o n  

The original motivation to introduce Lindenmayer systems, or L-systems for short, 
consisted of modeling the development of filamentous organisms [15], [16]. The state 
space of each individual cell of such an organism is a finite set, symbolically represented 
as an alphabet V, and rewrite rules over V provide for the development of single cells. 
More precisely, a rule c~ -+ w with ~ ~ V and w E V*, allows for a state change 
(w C V, w ~ ~), a cell death (w = ~, t is the empty word), or the splitting of a 
cell in more than a single off-spring (I w I> 1, where ] w I is the length of the string 
w). Starting from an initial filament, i.e. a string over V, and applying the rules 
for individual cells in parallel yields the global state of the filament after a discrete 
time step. Iterating this rewriting process shows the development of this filament as 
function of the discrete time parameter. From a mathematical point of view the set of 
rules is just a finite substitution over V that is applied iteratively to the initial string. 

Subsequent contributions to the extension of this model resulted in the distinction 
between nonterminal and terminal symbols as in Chomsky phrase-structure gram- 
mars, in several sets of rules (several finite substitutions, also called tables) instead of 
just a single one, and numerous ways of restricting or regulating the parallel rewriting 
process. We refer the reader to [13], [21] for surveys of the early days of L-system 
theory; [13] is more elementary and devoted to biological applications, whereas [21] 
concentrates on mathematical properties. More recent developments and related ap- 
proaches can be found in [7], [22], of which [7] treats derivation-controlled rewriting 
in general, whereas [22] shows a rich variety of results closely related to or inspired 
by L-systems. 

The extension of the basic model with different sets of rules (a finite number of 
finite substitutions instead of a single one) stems from the observation that a filamen- 
tous organism might develop in a different way under different external conditions 
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[20]. A typical example is the difference between day and night; in that  case we have 
two sets of rules, or tables, viz. a day table 7"d and a night table Tn, each table being 
a finite substitution over the alphabet V. Closely related to this extension are the 
so-called derivation-controlled tabled L-systems in which the order of application is 
prescribed by a control language over the table names [10], [18], [1]. E.g. in order to 
obtain the right sequence of day, followed by night, followed by day, etc., a regular 
control language of the form (~-dT~)*~-a can be used, provided each sequence should 
start and end with the day table ~-d. Similarly, but on a larger time scale, the or- 
der of the four seasons can be described by a regular control language of the form 

( Tspring Tsumraer Tautmnn Twinter ) * rspring. 
In this paper we introduce a further extension of this model which enables us 

to describe developmental errors. Such an error occurs when, instead of applying 
the correct rule a -+ w from the table T, the symbol a is replaced by a string w ~ 
with w J # w and a -+ w ~ is not a rule in r. In such a situation the "quality" of 
this incorrect off-spring w ~ should be strictly less than the corresponding correct one 
and, consequently, the "quality" of the entire filament should also decrease by this 
developmental error. In addition we want that making two developmental errors is 
worse than a single error and, in general, that  each additional developmentM error 
should strictly decrease the "quality" of the filament under consideration. 

But how do we measure the "quality" of a string or filament x derived by a 
controlled tabled L-system G? In traditional formal language theory there only are 
two possibilities, viz. (i) x belongs to the language L(G) generated by G: its "quality" 
equals 100%, or (ii) x does not belong to L(G): the "quality" of x is 0%. Clearly, 
there is no room for expressing statements like "x is slightly imperfect due to a 
minor developmental error" or "x has been severely damaged by a long sequence of 
considerable errors during its development". This lack of expressibility is, of course, 
due to restrictions in set theory: the membership function or characteristic function 
#L(a) of a set, or a language L(G) in our case, has two possible values only: ~tL(G)(X ) = 
1 if x E L(G), and #L(a)(x) = 0 if x ~ L(G). Thus, if L(G) C E*, then #L(a} is a 
mapping of type #L(a) : E* --+ {0, 1}. 

Fortunately, using fuzzy sets and fuzzy languages we are able to express "qualities" 
different from 0% and 100%, since #L(a) is now a mapping of type ttn(a) : E* ~ /2 
where ~ is a complete lattice, eventually provided with additional operations and 
properties. As a typical example, the reader may consider the case in which / :  equals 
the real interval [0,1] with min and max as lattice operations. Fuzzy languages have 
been introduced in [17], which is restricted to fuzzy analogues of Chomsky grammars 
and languages. In [19] fuzzy Lindenmayer systems and their languages have been 
studied, however, without any motivation in terms of developmental errors. This mo- 
tivation is the obvious parallel Lindenmayer variant based on the idea of grammatical  
error studied in [3], [4], [5]. 

So in fuzzy L-system theory the "quality" of a string is a value in s which might 
be anything in between 0 (the smallest element of/2) and 1 (the greatest element of 
s  depending on the actual structure o f / : .  And making a developmental error in 
the derivation of x means that the "quality" of x will not increase compared to the 
previous string. But whether it will strictly decrease depends on the structure and 
the operations o f / :  as well as their relation with the definition of derivation step; cf. 
Section 4 for details. 
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In dealing with developmental errors there is another problem. Usually, an L- 
system has in each of its tables a finite number of rewrite rules. Making a devel- 
opmental mistake, i.e., replacing a by w t instead of by the correct string w can be 
modeled by adding the rule a --+ w t to the table ~" to which a --+ w belongs, and 
requiring #~(~)(w') < 1, where r (a )  is the set of all strings w such that a ~ w belongs 
to r. This construction works for a finite number of possible developmental errors 
only. But, in general, there is an infinite number of ways to make mistakes, and fila- 
mentous development does not form an exception to this observation. So we should 
add an infinite number of rules a ~ w t to T or, equivalently, an infinite number of 
strings to the fuzzy set r (a) .  So each set {w E T(a) I 0 < #~(~)(w) < 1} is allowed to 
be infinite. But then the language {w e T(a) ] #,(~)(W) = 1} might be infinite as well, 
or, equivalently, each T(a) may be a fuzzy subset of V*, i.e., a fuzzy languages over 
V. However, we could not let be the sets r (a )  arbitrary fuzzy languages over V: they 
should be restricted in some uniform way, otherwise we end up with languages L(G) 
that are not even recursively enumerable; cf. [8]. A well-known way to restrict these 
fuzzy languages is the following: we require that each fuzzy language T(a) belongs to 
a given family K of fuzzy languages. The family K is a parameter in our approach: 
usually, we demand that K meets some minor conditions, but sometimes we simply 
take a concrete value for K,  e.g., we take K equal to the family F I N / o f  finite fuzzy 
languages. 

This results in the notion of fuzzy K-iteration grammar which plays the main 
part in the present paper. Formally, such a grammar G = (V, E, U, S) consists of 
an alphabet V, a terminal alphabet E (E C V), an initial symbol S (S E V - E), 
and a finite set U of fuzzy K-substitutions over V. Thus for each T in U, and 
for each c~ in V, T(a) is a fuzzy language over V that belongs to the family K. 
The controlled variant of this grammar concept is the so-called F-controlled fuzzy 
K-iteration grammar, or fuzzy (F, K)-iteration grammar where F is a family of (non- 
fuzzy) languages. A grammar (G; M) = (V, E, U, S, M) of this type consists of a 
fuzzy K-iteration grammar (V, E, U, S) and a language M over U (considered as an 
alphabet) with M C F. Each derivation D according to (G; M) satisfies the condition 
that the sequence of fuzzy K-substitutions used in D constitutes a string in the control 
language M. 

The remaining part of this paper is organized as follows. In Section 2 we introduce 
the basic notions with respect to fuzzy languages and operations on fuzzy languages. 
Section 3 is devoted to families of fuzzy languages. The formal definitions of fuzzy 
K-iteration grammar and of F-controlled fuzzy K-iteration grammar are provided in 
Section 4, where we also give a few examples of these grammars together with the fuzzy 
languages that they generate. Section 5 consists of some elementary but useful prop- 
erties of fuzzy K-iteration and fuzzy (F,K)-iteration grammars. The main results, 
viz. Theorem 6.1 and its corollaries, which deal with the generating power of fuzzy 
(F, K)-iteration grammars, are in Section 6. Closure properties of the corresponding 
families of fuzzy languages are the subject of Section 7. Under minor conditions on 
the families Y and K, the families HI(K ) and HI(F , K)  of fuzzy languages, generated 
by fuzzy K-iteration grammars and (F, K)-iteration grammars, respectively, possess 
strong closure properties very similar to the ones of the corresponding non-fuzzy lan- 
guage families; cf. [1]. Finally, Section 8 contains some concluding remarks. 
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2. Fuzzy Languages  and Operat ions  on Fuzzy Languages  

We assume that  the reader is familiar with basic formal language theory to the 
extend of the first few chapters of standard texts like [12], [14], [23]. L-systems and 
Abstract  Families of Languages are treated much more thoroughly in [13], [21] and [9], 
respectively. Finally, we need some rudiments of lattice theory which can be found in 
most books on algebra; all what we use of lattice theory is also summarized in [2]. 

In order to define several types of fuzziness we need a few lattice-ordered structures. 
Instead of stacking adjectives, we collect some collections of properties under simple 
names as "type-bb lattice" for some short bit strings bb. The following definitions and 
examples are quoted from [5]. The definition of the principal notion of type 00-lattice 
is a slight modification of a structure originally introduced in [11]. 

D e f i n i t i o n  2.1. An algebraic structure ~ or (~, A, V, 0, 1,*) is a type-O0 lattice if 
it satisfies the following conditions. 

�9 (Z~, A, V, 0, 1) is a completely distributive complete lattice. Therefore for all ai, 
a, b~ and b in s  aA V;b~ = V~(a A bl) and (Va~) A b = V~(ai A b) hold. And 0 
a~d 1 are the smallest and the greatest element of s  respectively; so 0 = / ~  s 
and 1 = V s  

�9 ( s  is a commutat ive semigroup. 

�9 The following identities hold for all a~'s, hi's, a and b in s  

a* V~ b~ = Vi(a. bl), 

(V,  ai) * b = Vi(ai. b) ,  

O A a = O * a = a * O = O ,  

1 A a =  l * a  = a * l  = a .  

A type-01 lattice is a type-00 lattice in which the operation * coincides with the 
operation A; so it is a completely distributive complete lattice actually. A type-lO 
lattice is a type-00 lattice in which (s A, V, 0, 1) is a totally ordered set or chain, i.e., 
for all a and b in s  we have a A b = a or a A b = b. In a type-10 lattice the operations 
V and A are usually denoted by max and min, respectively. Finally, when Z: is both  
a type-01 lattice and a type-10 lattice~ s is called a type-11 lattice. 

E x a m p l e  2.2. As usual we denote the closed interval of all real numbers in 
between 0 and 1 by [0, 1]. 
(1) The structure ([0, 1] • [0, 11, A, V, (0,0), (1, 1),*) in which the operations are 
defined by (x l ,y l )  A (x~,y2) = (min{x l ,x2} ,min{y l ,y2}) ,  (zl ,Yl) V (z2,y2) = 
(max{x1, x2}, max{y1, Y2}) and (xl, Yl) * (x2, Y2) -- (xlx2, YlY2) for all Xl, x2, Yl and 
y2 in [0, 1] is a type-00 lattice. 
(2) Consequently, ([0,1] x [0,1], A, V, (0,0), (1, 1) , , )  where the operations A and V are 
defined as in (1) and (x l ,Yl )*  (x2 ,Y2)  = (min{xl ,x2} ,min{yi ,Y2})  for all Xl, x2, Yl 
and y2 in [0, 1], is a type-01 lattice. 
(3) The structure ([0, 1], min, max, 0,1,*) with Xl*X2 = xlx2 for all Xl and x2 in [0f 1] 
is a type-10 lattice. 
(4) Taking * equal to min in (3) yields a type - l l  lattice. 
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The following useful fact is very easy to prove. 

L e m m a  2.3. For each type-O0 lattice s a*b < a A b holds for all elements a and 
b inE.  

Pro@ 
By the distributivity of * over V, a * ( 1 V b )  = a * l V a * b h o l d s .  As 1 V b =  1 

and a * 1 = a, we have a = a V a * b, and therefore a * b _< a. Analogously, we obtain 
a *  b_< b, and hence a *  b <_ a A b. [] 

Of course, Lemma 2.3 implies that  in a type-00 lattice the inequalities a * b < a 
and a * b _< b also hold for all a and b. 

Now we are ready to define fuzzy languages relative to the lattice-ordered struc- 
tures of Definition 2.1. 

D e f i n i t i o n  2.4. L e t / :  be a type-00 lattice and let E be an alphabet.  A/ : - fuzzy  
language over E is a / : - fuzzy  subset of E*, i.e., it is a triple (P,, #Lo, Lo) where #Lo is 
a function #Lo : E* --+ /:, the degree of membership function, and Lo is the support  
of #Lo; i.e., Lo = {w e E* ] #Lo(W) > 0}. Very often we will write Lo rather than 

Lo). 
Henceforth, w h e n / :  is clear from the context, we use "fuzzy language" instead of 

"/:-fuzzy language". Usually we write #(x; Lo) instead of #L0 (x) in order to reduce 
the number  of subscript levels. 

For each fuzzy language Lo over E, the crisp language c(Lo) induced by Lo - -a l so  
known as the crisp part of Lo - -  is the subset of E* defined by c(Lo) = {w C E* I 
#(w; Lo) = 1}. Each ordinary (non-fuzzy) language Lo coincides with its crisp part  
c(Lo). Therefore an ordinary language will also be called a crisp language. 

In dealing with fuzzy languages (F,,#Lo,Lo) the degree of membership function 
#Lo is actually the principal concept, whereas the languages L0, c(Lo) and many  
other crisp languages like 

L>~ = {w e E* l t t (w;Lo)  >_ a} , 

n>~ = {w e E * l # ( w ; L o )  > a} , 

L<~ = {w e E * l # ( w ; L o )  _< a} , 

n<~ = {w �9 E * l # ( w  ;no) < a} , 

L~<;<b = {w �9 E * l a  < #(w;Lo) < b} , 

where a and b are elements i n / : ,  are derived notions. 

E x a m p l e  2.5. (1) L e t / :  be the type-00 lattice of Example 2.2.(1). Consider the 
/:-fuzzy language Lo over E = {a, b} defined by 

) #(ambn; Lo) = m~x{~,~,~} . . . .  {Y,m,n} if rn, n >__ O. 

In defining the degree of membership function is such a concrete case, we always 
tacitly assume that  #(:e;Lo) = (0,0) in all other, unmentioned cases for x in E*. 
Consequently, we have, e.g., #(baa2; Lo) -- #(a2baS; Lo) = #(ab3a2b4; Lo) = (0, 0), etc. 

Then the crisp part  of Lo equals c(Lo) = {a'% m I m >_ 1}; for each x in c(Lo), we 
have #(x; Lo) = (1, 1). Note that  for each m _> 1, #(am; Lo) = (1, 0) and ~(b'~; L0) = 
(0,1), whereas for the empty  word ~, we have #( I ;  Lo) = (0, 0). 
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(2) Now we take for s the type-10 lattice of Example 2.2.(3). Let L be the fuzzy 
language over {a, b} defined by 

# ( w ; L ) = O  i f l w l  # 2 k f ~  

# ( w ; L ) = 2  -#b(~~ if I T ]  = 2 k f o r s o m e k > 0 .  

As usual, #~(w) denotes the number of times that the symbol c~ occurs in the 
word w. Then c(L) = {a 2~ I k > 0}. 

Throughout this paper we will restrict ourselves to the computable or even to the 
rational elements in [0, 1]. For an account on the impact of computability constraints 
in fuzzy formal languages we refer the reader to [8]. 

Starting from simple fuzzy languages we can define more complicated ones by 
means of operations on fuzzy languages. First, we consider the operations union, 
intersection and concatenation for fuzzy languages; they have been defined originally 
in [17] for the type-l l  lattice [0, 1]; cf. Example 2.2(4). In [4] we remarked that 
a generalization to the type-10 lattice of Example 2.2(3) is possible. However, it is 
straightforward to define these operations for arbitrary type-00 lattices; cf. [5] from 
which we cite the following definitions. 

Let (F,1, #L1, L1) and (E2, #L2, L2) be fuzzy languages, then the union of the fuzzy 
languages L1 and L2, denoted by (El U E2, #L1uL2, L1 U L2) or abbreviated by L1 U L2, 
is defined by 

#(x; nl U L~) = #(x; L1) V #(x; L2) , 

for all x in (El U E2)*. And for the intersection of fuzzy languages La and L2, denoted 
by (El • ~2,[-tLanL2, L1 [~ L2) or L1 ["1L~ for short, the equality 

//.(x; 51 ~ L2) = #(x; nl) A/.t(x; L2),  

holds for all x in (El A E2)*. Finally, for the concatenation of fuzzy languages L1 and 
L2, denoted by (El U E2, #LaL2, L1L2) or abbreviated to LIL2, we have 

#(x; LIL2) = V{#(Y; L1) * #(z; L~) I x = yz) 

for all x in (El U E2)*. 

E x a m p l e  2.6. Let P(X)  denote the power set of the set X. Then 7)(E *) is 
the collection of all crisp languages over the alphabet E. Let PI(E*) be the class of 
all fuzzy languages over E. Clearly, we have P(E*) = {c(L) I L E p~(r~*)}. And 
(7~f(E*), N, U, | E*,-) --where N, U and �9 denote the operations union, intersection 
and concatenation for fuzzy languages, respectively-- is not an example of a type-00 
lattice, since (7~1, .) is not a commutative semigroup. In case E contains a single 
letter only, (7)], .) is a commutative semigroup and (7~I(E*), f'l, U, Q, E*, .) is a type- 
00 lattice. The same remarks apply to the structure (7~(E*), A, U, Q, E*, .) of crisp 
languages. 

Once we have defined the operations of union and concatenation it is straightfor- 
ward to define the operations of Kleene + and Klcene * for a fuzzy language L; viz. 
by 

L + = L U L L U L L L U  . . . .  [J{L i t i > l ) ,  and 

L* = {A} U L U LL U LLL U . . . .  ~ {  Li I i > O) , 

respectively, where L ~ = {A}, and L =+1 = L'% with n > 0. In defining L* we demand 
that #(A; L*) = 1. Consequently, L* = L + U {A) where the latter set in this union is 
a crisp set. 
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Apart  from these simple operations we need some other well-known ones, like 
homomorphisms and substitutions. They can be extended to fuzzy languages as well 
by means of the concept of fuzzy function; cf. [5] for the original definitions. 

A fuzzy relation R between crisp sets X and Y is a fuzzy subset of X • Y. If 
R C X • Y and S C Y • Z are fuzzy relations, then their composition RoS is defined 
by 

z); noS) = y); R ) .  z); s )  I y e v} .  (1) 

A fuzzy function f : X ~ Y in its turn, is a fuzzy relation f C X • Y, satisfying 
the condition that  for all x in X: if #((x,y);f) > 0 and #((x,z);f) > 0 hold, then 
y = z and hence #((x,  y); f )  = tt((x, z); f ) .  For fuzzy functions (1) holds as well, but 
we write the composition of two functions f : X ~ Y and g : Y ~ Z as gof : X --~ Z 
rather than as fog. 

As mentioned before, "P(X) denotes the power set of the set X. In the sequel we 
need functions f : V* ~ 7~(Y *) that  will be extended to f : 7)(V *) ~ 7)(V *) by 
f(L) = (_J{f(x) ] x C L} and for each subset n of Y*, 

#(y; f(L)) = V { # ( x ;  L ) ,  #((x, y); f )  ] x e V*}. (2) 

Consequently, by (1) and (2) iterating a single fuzzy function f ,  yielding functions 
like fof,  fofof, and so on, are now defined. Clearly, each of these functions f('~) is of 
type f(n) : 7)(V,) ~ 7~(V.). Of course, we can iterated a finite set of such functions 
{ f l , . - - , f n }  in the very same way. 

3. Families of Fuzzy Languages 
This section is devoted to some families of simple fuzzy languages, their crisp 

counterparts,  and a few operators that  transform families of fuzzy languages into 
other families. The next few definitions are simple generalizations based on well- 
known concepts for families of crisp languages; cf. [5]. 

Throughout  this paper  E~ denotes a countably infinite set of symbols. All fami- 
lies of languages that  we will consider in the sequel only use symbols from this set. 
Henceforth, /~ is a type-00 lattice, and "fuzzy" means "L-fuzzy" actually. 

D e f i n i t i o n  3.1. A family of fuzzy languages K is a set of fuzzy languages 
(EL,#L,L)  such that  each E L is a finite subset of E~. As usual, we assume that  
for each fuzzy language (EL, #L, L) in the family K,  the alphabet EL is minimal with 
respect to #L, i.e., a symbol a belongs to EL if and only if there exists a word w in 
which a occurs and for which #L(W) > 0 or, equivalently, for which w C L holds. 

A family K of fuzzy languages is called nontriviaI if K contains a language 
(EL, #L, L) with n N E + • | i.e., (EL, #L, L) satisfies #(x; L) > 0 for some x �9 E +. 

For each family K of fuzzy languages, the crisp part of K ,  denoted by c(K), is 
defined by c(K) = {c(L) I L �9 K}.  

We already remarked that  we write L rather than (EL, #r ,  L) for members  of a 
family of fuzzy languages. And we also assume that  each family of fuzzy languages, 
tha t  we will use in this paper, is closed under isomorphism ("renaming of symbols"),  
i.e., for each family K we assume that  for each fuzzy language L in K over some 
a lphabe t  E L and for each bijective non-fuzzy mapping i : ~-~L -"4 Y]L - - ex tended  to 
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words and to languages in the usual way--  we have that the language i(L) also belongs 
to K. Consequently, we have the equality #(x; L) = #(i(x); i(L)) for all x in E~. 

We will encounter a few simple, nontrivial families of fuzzy languages in the sequel: 
they are the family F I N / o f  finite fuzzy languages 

FIN l = {(EL, #L, L) I EL C E~, L is finite}, 

the family ONE] of singleton fuzzy languages 

ONEs = {(EL, #L, L) I EL C E~, L is a singleton}, 

the family ALPHA] of fuzzy alphabets 

ALPHA] = {(EL, #L, L) I EL C E~, L = EL} , 

and the family SYMBOL] of singleton fuzzy alphabets 

SYMBOL/=  {(EL,#L,L) I EL C E~, L = EL,  L is a singleton } . 

The crisp counterparts of these language families are denoted by FIN, ONE, 
ALPHA, and SYMBOL, respectively. Clearly, the equality c(FINs) = FIN holds, 
as well as similar statements for the other families of languages. 

Another important role will be played by the family REGs of regular fuzzy lan- 
guages, which is defined in a way very similar to its crisp counterpart REG. 

Def ini t ion 3.2. Let E be an alphabet. The regular fuzzy languages over E are 
defined as follows: 
(1) The fuzzy subsets Q, {~}, and {a} (for each ~r in E) of E*, are regular fuzzy 
languages over E. 
(2) If R1 and R2 are regular fuzzy languages over E, then so are R1 U R2, RIR2, and 

(3) A fuzzy subset R of E* is regular fuzzy language over E if and only if R can 
be obtained from the basic elements in (1) by a finite number of applications of the 
operations in (2). 

The family of regular fuzzy languages us denoted by REG S. 

In the remainder of this paper we frequently need the concept of fuzzy substitution. 
It is defined in a way very similar to the notion of substitution for crisp languages; cf. 
[5], [6]. 

Def ini t ion 3.3. Let K be a family of fuzzy languages and let V be an alphabet. 
A mapping T : V --* K is called a fuzzy K-substitution T on V; it is extended to words 
over V by T(~) = {~} with #(~; T()~)) = 1, and T (a l . . .  an) = T(a~). . .  T(a~) where 
ai E V (1 < i < n), and to languages L over Y by r(L) = U{r(w) I w E L}. If 
for each a E V, r (a )  C V*, then r : V --+ K is called a fuzzy K-substitution over V. 
If K equals FIN/ or REGs, r is called a fuzzy finite or a fuzzy regular substitution, 
respectively. 

Given families K and K '  of fuzzy languages, let Sfib(K, K')  = {r(L) I L E K; 
~- is a fuzzy K~-substitution}. A family K is closed under fuzzy K~-substitution if 
Sfib(K, K ~) _C K, and K is closed under fuzzy substitution, if K is closed under fuzzy 
K-substitution. 

When we take K and K ~ equal to families of crisp languages we obtain the well- 
known definition of (ordinary, non-fuzzy) substitution. Therefore a ONE-substitution 
is just a homomorphism and an isomorphism ("renaming of symbols") is a one-to- 
one SYMBOL-substitution. And a fuzzy ONEs-substitution may be called a fuzzy 
homomorphism. 
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Definit ion 3.4. A fuzzy prequasoid K is a nontrivial family of fuzzy languages 
that is closed under fuzzy finite substitution (i.e., Sflb(K, FINf) C K) and under 
intersection with regular fuzzy languages. A fuzzy quasoid is a fuzzy prequasoid that 
contains an infinite fuzzy language. 

It is a straightforward exercise to show that each fuzzy [pre]quasoid includes the 
smallest fuzzy [pre]quasoid REGf [FIN f, respectively], whereas FIN s is the only fuzzy 
prequasoid that is not a fuzzy quasoid; cf. [6]. 

Let II](K) denote the smallest fuzzy prequasoid that includes the family K of fuzzy 
languages. Similarly, let Of(K) lAy(K), Of(K), respectively] be the smallest family 
of fuzzy languages that includes K and is closed under fuzzy finite substitutions [in- 
tersection with regular fuzzy languages, fuzzy homomorphisms, respectively]. Then, 
obviously, for each family K of fuzzy languages, we have g f (K)  = {~S, AI, OS}*(K) 
or even IIs(K ) = {q~s, As}*(K). But instead of this infinite set of strings over 
{r AS, Of} a single string suffices; viz. 

Propos i t ion  3.5. [6] For each family K of fuzzy languages, Hf(K) = 
@]Afr  

Definit ion 3.6. A full Abstract Family of Fuzzy Languages or full AFFL is a 
nontrivial family of fuzzy languages closed under union, concatenation, Kleene , ,  
(possibly erasing) fuzzy homomorphism, inverse fuzzy homomorphism, and intersec- 
tion with fuzzy regular languages. A full substitution-closed AFFL is a full AFFL 
closed under fuzzy substitution. 

In many situations the following characterization of full AFFL happens to be more 
useful than the original definition. 

Propos i t ion  3.7. [6] A family K of fuzzy languages is a full AFFL if and only 
if K is a fuzzy prequasoid closed under fuzzy regular substitution (i.e., Sfib(K, REG]) 
C K), and under substitution in the regular fuzzy languages (i.e., Sfib(REG], K) C_ 
K). 

Closely related to regular fuzzy languages is a kind of fuzzy finite automaton. The 
next definition and equivalence result is useful, and should not come as a surprise. A 
proof of this characterization can be found in [6]. 

Definit ion 3.8. A nondeterministic fuzzy finite automaton or NFFA is a 5-tuple 
M = (Q, E, 5, q0, F) where Q is a finite fuzzy set of states, E is an alphabet, q0 is an 
element of Q with #(q0; Q) > 0, F is a crisp subset of the crisp set {q ] #(q; Q) > 0}, 
and 5 is a fuzzy function of type 8 : Q • (E U {~} ~ ~of(Q). Note that M may have 
.~-moves. 

The fuzzy function 5 is extended to 5' : Q • E* ~ ~I(Q) by 5'(q, )t) = 5(q, )t) and 
5'(q, aw) = U{5'(q',w) [q ' e  5(q,~r)} for all q in Q. 

The language L(M) accepted by an NFFA M is defined by #(x;L(M)) = 
V{#(q; 5'(qo, x))) [ q e F}. 

Propos i t ion  3.9. A fuzzy language L is regular if and only if L is accepted by a 
nondeterministic fuzzy finite automaton. 
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4. Control led  Fuzzy  Iterat ion Grammars  

The notion of fuzzy K-iteration grammar is a straightforward modification of 
the definition of (ordinary) K-iteration grammar: we just replace the ordinary K- 
substitutions by fuzzy K-substitutions; cf. [1]. 

Defini t ion 4.1. Let K be a family of fuzzy languages. A fuzzy K-iteration 
grammar G is a four-tuple G = (V, E, U, S) where 
�9 V is an alphabet (the alphabet of G); 
�9 E is an alphabet with E C V (the terminal alphabet of G); 
�9 S is a symbol in V (the initial symbol of G); 
�9 U is a finite set of fuzzy K-substitutions over V. 

The fuzzy language L(G) generated by G is defined by 

L(G)=U*(S)NE*=U{Tp(. . .(TI(S)). . . )]  P>-O; ~-~eU, l < i < p } .  

The family of fuzzy languages generated by fuzzy K-iteration grammars is denoted 
by H/(K). For each m ~ 1, H/,,~(K) is the family of fuzzy languages generated by 
fuzzy K-iteration grammars that contain at most m fuzzy K-substitutions in U. 

Defini t ion 4.2. Let F be a family of crisp languages and let K be a family of fuzzy 
languages. A F-controlled fuzzy K-iteration grammar or fuzzy (F, K)-iteration gram- 
mar is a pair (G, M) that consists of a fuzzy K-iteration grammar G = (V, E, U, S) 
and a control language M, i.e., M is a crisp language over the alphabet U. The fuzzy 
language L(G, M) generated by (G, M) is defined by 

L(G,M)=M(S)NE*=[_J{Tp(. . . (rl(S)) . . . )I  P->0; r i e U ,  T1 . . .~pEM}.  

The family of fuzzy languages generated by fuzzy (F, K)-iteration grammars is 
denoted by HI(F , K). And H/,~(F, K) is the family of fuzzy languages generated by 
fuzzy (F, K)-iteration grammars that contain at most m fuzzy K-substitutions in U 
(m> 1). 

Note that in Definitions 4.1 and 4.2 L(G) and L(G, M), respectively, are defined 
in terms of union, intersection, concatenation and iterated function application for 
fuzzy sets; cf. Section 2 for the precise definitions of these fundamental concepts. 

Clearly, we have that HI (K ) = U{HLm(K) I m >_ 1} and HI(F,K) = 
U{Hy,m(F, K) I m ~ 1) for each family K of fuzzy languages and each family F 
of crisp languages. 

Exa m ple  4.3. Let s be the type-10 lattice of Example 2.2.(3). 
(1) Consider the fuzzy FIN/-iteration grammar G = (V, E, U, S) defined by E --- {a, b}, 
V = E U {S}, and U = {rl, T2} where 71 is an ordinary or crisp FIN-substitution with 
TI(S) = {SS} and rl(a)  = {a} (a E E), whereas ~-2 is a FINf-substitution with 
T2(S) = {a,b}, T2(oQ ~-~  {O~}, #(b;r2(S)) = 0.5 and #(a; r2(S)) = #(a;r2(a))  = 1 
(~ E z). 

Then L(G) consists of all strings w with length 2 ~ for some n _> 0 and #(w; L(G)) = 
2-#b(~); ~ ( x )  denotes the number of times that the symbol ~ occurs in the word x. 
Clearly, c(L(G)) = {a 2~ ] n > 0} which is the set of strings that are obtained without 
making any "developmental error"; cf. the discussion in Section 1. A developmental 
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error occurs when S changes into a b rather than into an a; the quality of the string 
reduces to 50% of its previous value by each such erroneous replacement. 
(2) Define the REG-controlled fuzzy FINf-iteration grammar or (REG,FINf)-  
iteration grammar (G, M) where G is as in (1) and M = {r~k+lT2 I k > 0}. Now 
L(G, M) equals the set of all strings w with length 2 ~ for some odd n > 1 and still we 
have #(w; L(G, M)) = 2 -#b(~). Remark that c(L(G, M)) = {a 2" I n > O, n is odd }. 
(3) We modify (G, M) of (2) to a REG-controlled fuzzy REGf-iteration grammar or 
(REG, REGf)-iteration grammar (G1, M) by redefining T2(S) to a REG/-substitution 
with T2(S) = {a} U {b k I k k 1}, r2(a) = {a} for each a in E, #(bk;r2(S)) = 2 -k 
for each k _> 1 and #(a;T~(S)) = #(a;r2(a))  = 1 (a �9 E). Then for all strings x 
over {a, b}, we have/~(z; L(G1, M)) > g(z; L(G, M)), L(G, M) is a proper subset of 
L(G~, M), but c(L(G1, M)) = c(L(G, M)). 

Since in Example 4.3 K equals FINf in both (1) and (2), a may be called a fuzzy 
ETOL-system and (G, M) a regularly controlled fuzzy ETOL-system. 

E x a m p l e  4.4. By taking concrete values for the parameter K we obtain fuzzy 
analogues for some families of (ordinary or crisp) Lindenmayer languages; viz. 

Hf(ONEI)  = EDTOLf, Hf,I(ONEf) = EDOLf, 
Hf(FINf)  = ETOLf, Hf,~(FIN/) = EOL 1. 

Readers unfamiliar with L-systems are referred to [21] for the meaning of these 
abbreviations. 

5. Elementary Properties 
In this section we establish some basic properties of F-controlled fuzzy K-iteration 

grammars and their languages that already hold under very mild restrictions on the 
parameters F and K. These results turn out to be very useful in proving more 
complicated and more interesting propositions to which the following two sections 
are devoted. 

First we show that regular control does not extend the generating power of fuzzy 
K-iteration grammars; cf. Theorem 2.1 in [1]. 

T h e o r e m  5.1. For each family K of fuzzy languages, Hf(REG, K) -- HI(K ) 
provided K D ONE. 

Proof. Since U * is regular for each alphabet U, the inclusion Hf(REG, It') _D 
Hf(K) is obvious. 

Conversely, let (G, M) -- (V, E, U, S, M) be an arbitrary fuzzy (REG, K)- 
iteration grammar where M is accepted by a complete deterministic finite automaton 
(Q,U,(~,q0, QF) with finite set of states Q, input alphabet U, transition function 

: Q • U --+ Q, initial state q0, and set of final states QF. 
We define a new initial symbol So, a set of new nonterminal symbols Nz = (A~ I 

a E ~}, and a new alphabet V0 = Q u V u (So, F} U Nz. Define an isomorphism 
r : V ~ ( V - E )  UNr. b y e ( a )  = Aa (a e 2) and r  = A (A �9 V - E ) .  The 
isomorphism r is extended to words and to languages in the usual way. Remember 
that we assumed that each family of (fuzzy) languages is closed under isomorphism. 

Define the fuzzy K-iteration grammar Go = (V0, E, U0, So) with U0 = {r '  I v E 
U} t.) {To}. So for each fuzzy K-substitution ~" in U there is corresponding fuzzy 
K-substitution T ~ in U0, defined by 
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~'(So) = {q0s}, 
~,( .)  = r  

T(A~) = r 
~'(q) = {q'}, 
~'(~) = {F} ,  

#(qoS; "r'(So)) = 1, 

It(q'; T'(q)) = 1, 

It(F; ~-'(a)) = 1, 

for each a in V - E, 

for each A~ in N~ (a in E), 

iff 5(q, T) = q' (q in Q), 

for each a in E U {F}. 

The additional fuzzy K-subst i tut ion TO is defined as follows. 

~0(q) = {~}, 
~o(q) = {F},  
T0(A~) = {a}, 

*0(~) = {F} ,  

It(A; vo(q))  = 1, 

It(F; vo(q)) = 1, 
It(a; ~o(Ao)) = 1, 
It(F; to(a))  = 1, 

for each q in QF, 

for each q in Q - QF, 

for each As in Nz (a in E), 

for each a in V U {So, F}.  

This construction implies that  for each string x in E*, we have #(x; L(Go)) = 
It(x; L(G, M)), and hence H / ( R E G ,  K) C_ HI(K). [] 

There exists a sort of reverse of Theorem 5.1 in the sense that  all "productive" 
sequences of substitutions in a fuzzy Kdtera t ion  grammar  G --i .e. ,  those sequences 
that  yield at least one terminal string x with #(x; L(G)) > 0 - -  form a regular language 
over U; cf. Definition 5.2, Theorem 5.3 and [24]. 

D e f i n i t i o n  5.2. Let G = (V, E, U, S) be a fuzzy K-i terat ion grammar.  Then the 
Szilard language of G - -denoted  by Sz(G)--  is 

Sz(a)  = {~ ~ u*13~  e z* :  I t(x;~(s))  > 0}. 

The following theorem is the straightforward fuzzy counterpart  of one of the main 
results in [24]. 

T h e o r e m  5.3. If G is a fuzzy K-iteration grammar, then its Szilard language 
Sz(G) is a regular language. 

Proof. Let G = (V, E, U, S) be a fuzzy K-i terat ion grammar.  For each word x, we 
denote the set of all symbols that  occur in x by ~(x) ;  formally, ~ (x )  = A{E  ] E C 
2~, x E E*}. 

Consider the right-linear g rammar  Go = (Vo, U, P0, So) where Vo - U -- {X ] X C_ 
V}, So -- {S}, and P0 is defined by 

P o = { X - - + T Y I 3 x , y e V * :  O ( x ) = X ,  � 9  I t (y ;T(X) )>0}  U 

o { x - + A  [ x _ c ~ } .  

Clearly, L(Go) is regular, and it is a routine mat ter  to verify that  So ::~* w with Go 
w e U* if and only if 3x e E* : It(x; w(S)) > O. [] 

Next we show that  the number of fuzzy K-substi tut ions in a F-controlled K-  
iteration g rammar  can be reduced to two in case the parameters  F and K satisfy 
some very simple conditions as in the corresponding crisp case; cf. [1]. 

T h e o r e m  5.4. Let F be a family of crisp languages closed under A-free homo- 
morphism, and let K be a family of fuzzy languages with K D_ SYMBOL. Then 
Hs,2(r, K) = Hs,~(r, K)  = Hs(r, K) for each m > 2. 

Proof. Of course, H/,2(P, K)  C HI,,~(F , K)  C H/(F ,  K)  holds for each m _> 2. So 
it remains to prove that  HI(F , K) C_ H],2(F, K).  
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Let (G, M) = (V, E, U, S, M) be a fuzzy (F, K)-iteration grammar with m (m > 3) 
fuzzy K-substitutions in U --say, U = {T~,...,  T,~}-- and let for each i (1 < i < m) r 
be the isomorphism defined by r = a~ (a in V; each a~ is a new, unique symbol). 

Construct the fuzzy (r, K)-iteration grammar (Go, M0) = (V0, E, U0, S, M0) with 
�9 V 0 = V U { F } U { r  l a � 9  l _ < i _ < m } ,  
�9 U0 = {al,~r2} where the fuzzy K-substitutions al and or2 are defined respectively 

O'I(OZ) : {~1} ,  #(~1; O'l(OZ)) : 1, O/ in V,  

O'l(O~i) = {O'i.t_1} , ~(O@t_1; O'l(Oli) ) = 1, C~ in V and 1 < i < m,  

r = { F } ,  #(F;cr~(B))  = 1, fl in { F }  V { r  I a �9 Y } ,  

~r2(ai) = r i ( a ) ,  a in V and 1 < i < m,  

~ ( ~ )  = { F } ,  ~ ( F ;  ~ ( ~ ) )  = l ,  ~ in v u { F ) .  

by 

�9 Mo = h(M) where the homomorphism h : U* --+ U~ is defined by h(~'i) = ~r~a2 
(1<_i_<.~) 

An application of r~ of (G, M) is simulated by i times applying or1 (by which 
each a is changed into ai) and a single application of ~r2 which carries out the actual 
simulation of wl and removes all subscripts from the symbols. 

It is left to the reader to show that #(x; L(G0, M0)) = #(x; L(G, M)) for each x 
over S. Hence HI(r,K ) c_ Hj,~(r,K). [] 

Obviously, we can combine Theorems 5.1 and 5,4 to establish a similar result for 
the uncontrolled case. However, we can achieve this under weaker assumptions on K 
by slightly modifying the proof of Theorem 5.4. 

Coro l l a ry  5.5. I l K  is a family of fuzzy languages with K D_ SYMBOL, then 
HI,~(K ) = HS,~(K ) = Hf (K  ) for each ,~ > 2. 

Proof. Take M and M0 in the proof of Theorem 5.4 equal to M = U* and 
M0 = U~ = {al, a2}*, respectively. Then for each x in E*, #(x; L(a0)) = ~(x; L(G)) 
holds and, consequently, HI(K ) C HI.r~(K ) C Hi.2(h" ). The converse inclusions are 
trivial. [] 

We conclude this section with a few useful inclusion properties for which we need 
some additional terminology. 

Def ini t ion 5.6. A family r of crisp languages is closed under left marking [right 
marking] if for each language L in r with L C_ E* for some E, and for each symbol c 
not in E, the language {c}L [L{c}, respectively] belongs to F. And I" is closed under 
full marking if r is closed under both left and right marking. Frequently, we write cL 
and Lc rather than {c}L and L{c}, respectively. 

P r o p o s i t i o n  5.7. (1) Let P be a family of crisp languages closed under right 
marking, and let K be a family of fuzzy languages with K D_ ONE. Then the inclusions 
r c_ H f ( r , K )  and K C H I ( F , K )  hold. 
(2) Let F be a family of crisp languages closed under (i) left or right marking, (ii) 
union or concatenation, and (iii) Kleene star. If  K is a family of fuzzy languages with 
K __D SYMBOL, then HI(K ) C HI(F,K ). 

Proof. (1) Consider an arbitrary crisp language Lo over U0 in the family F. Define 
the fuzzy (P, g)-i terat ion grammar (G, M) = (V, Uo, U, S, M) with U = Uo t_J {er}, 
M = Loot, and U consists of fuzzy K-substitutions defined by 
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T(s)  = {Ts ) ,  e u0, 

= {A}, 

= { . ) ,  e u0. 

All degrees of membership are equal to 1 (or to 0 in all other, unmentioned cases). 
So (G, M) is actually a crisp (r, Z)-iteration grammar with L(G, M) = Lo. Conse- 
quently, we have F C HI(F , K). 

Similarly, let L0 be a fuzzy language over E and let M0 be an arbitrary nonempty 
crisp language over U0. We define the fuzzy (F, K)-iteration grammar (G, M) = 
(V, E, U, S, M) where V = E U {S}, U = U0 U {a} (c~ ~ U0), M = M0a, and the fuzzy 
K-substitutions are defined by 

r(a) = {a}, ~(a; r(a)) = 1, a e V, ~ e U, 

a(S) = no, #(x; a(S)) = #(x; Lo), for all x over E, 

Then #(x; L(G, M)) = #(x; L0) for all x over E, and thus K _C H/(F, g) .  
(2) Let G -= (V, ~, U, S) be an arbitrary fuzzy K-iteration grammar with U = 

(T1,...,~'~} and let M0 be a nonempty crisp language over U0 from F such that 
U N U0 = | If the family F is closed under union [concatenation], then the crisp 
language M = (MOT: O Mo~'2 U. . .  U M07,)* [or M = ((Mor:)*(Mo~'2)*... (MoTh)*)*, 
respectively] is also in F. 

Finally, we define the fuzzy (F, /(-)-iteration grammar (G:, M) by (G1, M) = 
(V, E, U~, S, M) with U: = UUUo and for each T in Uo and for each a in V, T(a) = {a} 
with #(a; r(a)) = 1. Then #(x; L(G:, M)) --- #(x; L(G)) for each x over ~ and, con- 
sequently, HI(K ) C HI(F , K). [] 

6. T h e  M a i n  R e s u l t s  

In Section 1 we argued that in order to model developmental errors we should 
allow a countable rather than a finite number of productions in each table (or substi- 
tution). This resulted in the notion of F-controlled fuzzy K-iteration grammar and 
the corresponding language family HI(F , K). 

In this section we address the question to which extend we can enlarge the family K 
of fuzzy languages and still remain within the family HI(F, K). The answer (Theorem 
6.1 and Corollaries 6.2, 6.3 and 6.4)) is rather surprising and implies that both families 
HI(r, K) and HI(K) possess very strong closure properties; this latter subject will 
be discussed in Section 7. 

For families F1 and F2 of crisp languages, Sfib(rl,F~) denotes the family of 
crisp languages that results from substituting F2-1anguages into Fl-languages, i.e., 
Sfib(F1, F~) = {T(L) [ L E 1~1, T is  a F2-substitution}. A family F is closed under sub- 
stitution if Sfib(F, F) C_ r. Of course, these concepts are well-known special instances 
of Definition 3.3. 

T he o r e m 6.1. Let rl  and F2 be families of crisp languages and let F2 be closed 
under full marking, union or concatenation, and Kleene *. I l K  is a family of fuzzy 
languages with K D ALPHA, then H/(F:, HI(F2, K)) c Hs(S~b(r:, r~), K). 
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Proof. Consider an arbitrary Fl-controlled fuzzy Hl(P2,K)-iteration grammar 
(G, M) --- (V, E, U, S, M), where each ~- in U is a fuzzy Hi(F2, K)-substitution over V. 
For each such fuzzy Hf (F2, K)-substitution ~- in U and each symbol a in V, we assume 
that #(x;T(a)) = # (x ;L(G~,M.~) )  holds for each x over V. Here (G.~,M.~) = 
(V~, V, U.~, S.~, M.~) (v E U and a E V) are fuzzy (F2, K)-iteration grammars that 
have mutually disjoint nonterminal alphabets V.~ - V as well as mutually disjoint 
sets of fuzzy K-substitution names U.~. 

We also assume that the fuzzy (P2, K)-iteration grammars (G.~, M.~) meet the 
following conditions: (i) for each a in V and each g in U~: e(a) = {a} with 
#(a; ~r(a)) = 1, and (ii) if an intermediate string w in a derivation due to (G.~, M ~ )  
contains a symbol of V, then for each a in U~: e(w) = {~o}, while for all u over 
U~ and each w over V.~, we have #(w;au(w)) = #(w; u(w)). Otherwise, we intro- 
duce for each a in V a new nonterminal symbol Aa and we replace each occurrence 
of a in (G.~, M.~) by A~. Each fuzzy substitution is extended with a(/~) = {/3}, 
#(/~; e(fl)) = 1 with fl C V U {F0}, where F0 is a new rejection symbol. Finally, we 
add a new fuzzy substitution ~ defined by 

~(A~) = {a}, #(a; ~(A~)) = 1, for each a in V, 

~(a) = {a), #(a; ~(a)) = 1, for each a in V U {Fo}, 

T(/~) = {F0}, #(F0; T(3)) = 1, for each/~ in V~ - V, 

and we replace the control language M.~ by M . ~ .  
In order to show that the fuzzy language L(G,M) belongs to the fam- 

ily Hf(Sfib(F1,F2),K), we construct a fuzzy (Sfib(F1,F2),K)-iteration grammar 
(Go, Mo) = (Vo, E, Uo, S, Mo) such that #(x; L(Go, Mo)) = #(x; L(G, M)) holds for 
each x in E*. The definition of (Go, Mo) is as follows. 
�9 Vo = U~,~(V~ U {S~}) W {F} where F is a rejection symbol and each S'~ is 
a new nonterminal symbol associated with S~.  Remark that S E V, and since 
V G V~ C Vo, we have S e Vo. 
�9 Go = {r v { ~  I .  ~ u} u {g'.~ I g . ~  e u.o}. 
�9 The fuzzy K-substitutions in Uo are defined in the following way: 
(a) For the initial fuzzy K-substitution go we have with degree of membership equal 
to 1 in all the following instances: 

~o(a) = {S'~ I~ �9 g}, a �9 V, 

~o(~) = {~}, ~ ~ V. 

(b) For each r in U the fuzzy K-substitution g~ is defined by 

o~(s'.o) : {s '~,  s.~}, ~ e v ,  

g.(~) = {~}, ~ �9 v ,  
g~(~) = {F},  ~ ~ v u {s '~} ,  

where all degrees of membership are again equal to 1. 
(c) For each fuzzy K-substitution a~k from Ur~ we define a corresponding fuzzy 
K-substitution a ~  k by 

g ' ~ ( ~ )  = g~.~(~), ~ �9 v ~ ,  
I I ! I l g~k(S~)  = {S~}, #(S~;  g,~k(S,~)) = 1, fl E V, 

o"~_=k(fl ) = {F}, #(F; g~,k(fl))--- 1, otherwise. 
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�9 The control language M0 is defined by M0 = 7(M) where 7 is the F2-substitution 
defined by 

7(r)  = tl//,, z C U, 

where the languages M, with v C U satisfy --assuming V = { a l , . . . ,  a n } - -  

M~ = ~ro(a~M~ 1 U . . .  U a~M~.)*, if F2 is closed under union, and 

M, = ~r0(~,M,~ 1 . . .  ~r,M,~)*, if F2 is closed under concatenation. 

Clearly, each language M, (r C U) belongs to the family F2. 
Each step in any derivation according to the Fl-controlled fuzzy (F2, K)-iteration 

grammar (G, M) is simulated by a finite number of derivational steps of the fuzzy 
(Sab(gl, r2),/()-iteration grammar (Go, M0) in the following way. 

For each intermediate string in a derivation of (G, M) there is an identical string 
over V in the simulation by (Go, M0). However, going from such a string to the 
next one over V --i.e., the actual simulation of the application of a fuzzy (F2, K)- 
substitution r from U in a (G, M)-derivation-- takes a finite number of steps con- 
trolled by the language M,. So the simulation of a single step according to ~- by M, 
proceeds as follows. First, all symbols a from V are converted into S ~  by a single 
application of Cro. Next an application of c% checks whether all first indices of these 
primed initial symbols are indeed equal to r, otherwise at least one occurrence of 
the rejection symbol F is introduced. Simultaneously, some of the occurrences of the 
primed initial symbols S~  may be changed into their unprimed counterparts S,~. 
And symbols from Up,~ v;~ - v are rewritten into the rejection symbol F. Obvi- 
ously, the unprimed symbols S,~ start an actual derivation according to (G,~, M,~), 
i.e., according to the fuzzy K-substitutions ~ k  due to the control language M,~. 
Clearly, the definitions of M~ and of cr, allow different occurrences of S ~  be rewritten 
under different control words from M,~. Finally, after the simulation of a r-step only 
occurrences of symbols from V will survive the simulation of a subsequent r~-step and 
contribute to the derivation of a possible terminal substring in the end. 

By a long, straightforward correctness proof --which we leave to the in- 
terested reader-- one can establish that for each string x over E, we have 
#(x; L(Go, 3//o)) = #(x; L(G, M)), and, consequently, we have established the inclu- 
sion -~rf(rl, Hs(r2, K)) ___ Hf(Sfib(F1, F2), K). [] 

Coro l la ry  6.2. (1) Let F be a family of crisp languages closed under full marking 
and under substitution that satisfies F __D REG. I f  K is a family of fuzzy languages 
with t (  2 A•PI4A u ONE, then Hs(r, H~(r, K)) = H~(r, K). 
(2) Let F be a family of crisp languages that is closed under full marking, union, 
concatenation, and Klcene *. I l K  is a family of fuzzy languages with K D_ ALPHAU 
ONE, then ~s(Hs(F ,K))  = HS(F,K). 

Proof. (1) follows from Theorem 6.1 in which we take F1 = F2 = F, Proposition 
5.7.(1), and the fact that a family of crisp languages is closed under union, concate- 
nation, and Kleene * if and only if it is closed under substitution into the regular 
languages (Proposition 3.3.1 in [9]). 

(2) is implied by (i) Theorem 6.1 (where we take F1 and F2 equal to REG and 
F, respectively), (ii) Theorem 5.1, (iii) Proposition 3.3.1 in [9] (as in the proof of 
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6.2.(1)), and finally (iv) the inclusion Hf(r, K) C Hf(Hs(r , K)) due to Proposition 
5.7(1). [] 

Coro l l a ry  6.3. If K is a family of fuzzy languages with K D ALPHA U ONE, 
then HI(HI(K)) = Hf(K ). 

Proof. If we take F equal to REG, then the result follows from Theorem 5.1 and 
Corollary 6.2.(2) immediately. [] 

C o r o l l a r y  6.4. ETOLf = Hf(ETOL])  = Hf(Hf(FIN])) = Hf(FINf) .  

Proof. Example 4.4 and Corollary 6.3 with K equal to FINf. [] 
This latter corollary shows that, in order to stay within the framework of ETOLf- 

languages (i.e., Hf(FINf)-languages; cf. Example 4.4.), we have to restrict the infinite 
fuzzy sets T(a) consisting of developmental rules together with developmental errors 
to ETOLf-languages as Hf(ETOLf) C ETOLf; cf. the discussion in Section 1. Of 
course, a similar remark applies in the more general case (Corollary 6.3) but the ex- 
tension from finite sets to countably infinite fuzzy sets is a more striking phenomenon. 

7. C l o s u r e  P r o p e r t i e s  

We already remarked that Theorem 6.1 and its corollaries imply that the families 
HI(F , K) and HI(K ) of fuzzy languages possess very strong closure properties under 
minor assumptions and the families I' and K. In this section we first consider some 
simple closure properties (Lemmas 7.1 and 7.2) before we consider the more important 
ones (Theorem 7.5) due to our results from Section 6. 

L e m m a  7.1. Let K be a family of fuzzy languages with K D__ FINf, and let F 
be a family of crisp languages closed under right marking. Then the families of fuzzy 
languages Hf(K) and Hf(F, K) are closed under fuzzy finite substitution. 

Proof. Let G = (V, E, U, S) he a fuzzy K-iteration grammar and let ~ : E --+ A* be 
a fuzzy finite substitution. Without loss of generality we assume that the alphabets 
E and A are disjunct. 

Consider the fuzzy K-iteration grammar Go = (Vo, A, (/0, S) where V0 = V tl A U 
{F}, U0 = {T ' IT  �9 U} U {W} with 

= �9 

a ' (a)  = { r} ,  #(F; W(c~)) = 1, a ~ E, 

and for each T in U we define 

= e v ,  

= i F } ,  , ( F ;  = 1, �9 Zx u i F } .  

Then for each string x over A, we have #(x; (r(L(G))) = #(z; L(Go)). 
In the F-controlled case we depart from (G, M) and we construct (Go, Mo) with 

Go as above and Mo = p(M){a '}  where c~ is the isomorphism that maps each T on 
T t . [] 

L e m m a  7.2. Let K be a fuzzy prequasoid, and let F be a family of crisp languages 
closed under full marking. Then the familes of fuzzy languages HI(K ) and Hf(F, K)  
are closed under intersection with regular fuzzy languages. 
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Proof. Let G = (V, E, U, S) be a fuzzy K-iteration grammar, and let R be a regular 
fuzzy language accepted by a nondeterministic fuzzy finite automaton (Q, E, 5, q0, F); 
cf. Proposition 3.9. 

Consider the fuzzy K-iteration grammar Go = (Vo, E, Uo, So) where Vo = E U 
{so, F }  u {[q, ~, q'] I q, q' �9 Q, ~ �9 v } ,  Go = {~o, ~1} u (~' I ~ ~ u} ,  with 

~r0(S0) = {[qo, S,q] l q �9 F}, q �9 F, 
~0(~) = {~} ,  ~ �9 v0 - {So}, 
~1(~) = {~} ,  ~ �9 ~ u {So, F}; 

the degrees of membership are equal to 1 for all these instances. But for 

~l([q,~,q']) = {~ I q' e 5(q,~)} u {F} ,  ~ c V, q ,q '~  Q, 

we have #(~; ~l([q,a, q'])) = #(q'; 5(q, c~)) and #(F; al([q, c~, ql]) = 1. 
For each T in U, we define the fuzzy substitution 7' over V0 by 

~'([q, ~, q']) = {[q, ~1, q~][ql, ~ ,  q2].., f%-~, ~ ,  q'] I q l , . . . ,  qn-~ �9 Q; 
~ 1 ~ . . .  ~ �9 ~(~), ~ > 1} u E((~, ~, q, ql), ~ e V, q, q' �9 Q, 

with E((r ,  c~, q, q') = if ~ �9 r ( a )  and q = q' t h e n  {A} else {F}. For the degrees of 
membership we have 

#([q, ~ , ,  q l ] . . .  [q~-~, ~ ,  q']; ~'([q, ~, q'])) = # ( ~ , . . .  ~ ;  ~(~)), ~ > 1, 
#(~; ~'([q, ~, q'])) = i f  ~ �9 ~(~) and q = q' then  #(A; T(c~)) else 0, 
#(F; v'([q, ot, q'])) = 1. 

Since K is a fuzzy prequasoid, it easy to show that each T ~ is a fuzzy K-substitution 
over Vo. The proof that for each string x over E, #(x; L(Go)) = #(x; L(G) ;3 R) holds 
is also left to the reader. 

When G is provided with a crisp control language M from the family F, we con- 
struct (Go, Mo) with M0 --- {Go}~(M){cr~}, where ~ is as in the proof of Lemma 
7.1. 

We now turn to more complicated closure properties for fuzzy languages. 

Def in i t ion  7.3. A family K of fuzzy languages is dosed under iterated fuzzy 
substitution if for each fuzzy language L in K over some alphabet V (L _C V*), and 
each finite set U of fuzzy K-substitutions over V, the language U*(L) defined by 

U*(L)=U{Tp(.. .(rl(L)). . .)] p_>0; r i e U ,  l < i < p }  

belongs to K. 
A hyper-algebraicaIly closed full Abstract Family of Fuzzy Languages, or full hyper- 

AFFL for short, is a full AFFL closed under nested iterated fuzzy substitution. 

For a fuzzy prequasoid closure under iterated fuzzy substitution implies closure 
under many of the operations related to the notion of full AFFL; using Proposition 
3.7, Definitions 7.3 and 3.6 it is straightforward to establish the following characteri- 
zation. 

P r o p o s i t i o n  7.4. A family K of fuzzy languages is a full hyper-AFFL if and only 
i l K  is a fuzzy prequasoid and HI(K) --- K. 
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Each full hyper-AFFL is a full super-APFL (i.e., a full AFFL closed under iterated 
nested fuzzy substitution; a substitution T is nested if a E r(a) holds for each symbol 
a.), and each full super AFFL is in its turn a full substitution-closed AFFL [5], but 
none of the converse implications holds. 

Now we are ready for the main results of this section. 

T h e o r e m  7.5. I l K  is a fuzzy prequasoid and if F is a family of crisp languages 
closed under full marking, union, concatenation, and Kleene ,, then the family of 
fuzzy languages H:(F, K) is a full hyper-AFFL. 

Proof. By Lemmas 7.1 and 7.2 we obtain the fact that H:(F, K) is a fuzzy pre- 
quasoid. Then by Proposition 7.4 and Corollary 6.2.(2) the result follows. [] 

T h e o r e m  7.6. (1) If K is a fuzzy prequasoid, then HI(K) is a full hyper-AFFL. 
(2) For each arbitrary family K of fuzzy languages, H:II:(K) is the smallest full 
hyper-AFFL that includes K. 
(3) For each arbitrary family K of fuzzy languages, H]O:A:OI(K) is the smallest 
full hyper-AFFL that includes K. 

Proof. (1) The statement follows immediately from Laminas 7.1 and 7.2 together 
with Corollary 6.3. 

(2) Let ~:(K)  be the smallest full hyper-AFFL that includes K. By the inclu- 
sion g C ~: (K)  and the monotonicity of both H: and H:, we haveH:H:(K) C_ 
H:II:~t:(K). According to Proposition 7.4 this yields H:II:(K) C 7"gy(K). Now 
Theorem 7.6.(1) implies that H:II:(K) is a full hyper-AFFL that includes K. Hence 
we obtain that 7~:(K) = H:II/(K). 

(3) By Theorem 7.6.(2) and Proposition 3.5. [] 

By Proposition 7.4 we have that a family of fuzzy languages K is a full hyper- 
AFFL if and only if YI:(K) = K and Hf(K) = K. Consequently, the smallest full 
hyper-AFFa ~ f ( I ( ) ,  that includes a family g of fuzzy languages, equals ~f (K)  = 
U{w(K) I w e {II:,Hf}* } or, written equivalently, ~](K) = {Hf,H:}*(K). Ac- 
cording Theorem 7.6.(2) this infinite set of strings over the alphabet {IIf, Hf} can be 
reduced to the single string H:H/. Of course, a similar remark applies to Theorem 
7.6.(3). 

From the fact that FIN: is the smallest fuzzy prequasoid, Theorem 7.6.(1), Corol- 
lary 6.4, Example 4.4, and the monotonicity of the operator H: we obtain 

Coro l la ry  7.7. ETOL/ is the smallest full hyper-AFFL. 

8. Concluding Remarks 

In the previous sections we extended the concept of F-controlled K-iteration gram- 
mar from [1] to its fuzzy analogue in order to model the phenomenon of "developmen- 
tal error". Many of the results that we have established are straightforward generaliza- 
tions of similar statements for the crisp case from [t], [24] once the language-theoretic 
operations --like homomorphism, substitution and concatenation-- are extended in 
the right way for fuzzy languages; cf. Section 2. On the other hand non-fuzzy versions 
of Theorem 6.1 and Corollary 6.2.(1) are proper generalizations of the main result in 
[1] which is more or less equivalent to the crisp counterpart of Corollary 6.2.(2). 
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Obviously, all our results apply to fuzzy ETOL languages as well; they are obtained 
by taking the parameter family K of fuzzy languages equal to the family F I N / o f  finite 
fuzzy languages. The precise formulation of these statements for F-controlled ETOLy- 
languages are left to the interested reader. 

In the definition of fuzzy K-iteration grammar each element in U is an arbitrary 
fuzzy K-substitution over V. Restricting each r in U to a nested fuzzy K-substitution 
--i.e., #(a; ~-(a)) = 1 for each a E V - -  results in the concept of fuzzy context-free 
K-grammar; cf. [3], [4]. A further restriction to not-self-embedding nested fuzzy K- 
substitutions yields the notion of fuzzy regular K-grammar; cf. [5]. Both types of 
grammars have properties rather similar than those presented in this paper. Partic- 
ularly with respect to closure properties there are many similarities and the question 
arises whether a uniform approach as the one in [2] for crisp languages is also possible 
for families of fuzzy languages. On the other hand there are some differences between 
fuzzy regular or context-free K-grammars and fuzzy K-iteration grammars. E.g., for 
fuzzy regular and fuzzy context-free K-grammars we can reduce the number of sub- 
stitutions to 1 rather than to 2 (cf. Theorem 5.4), which implies that providing these 
grammars with a control language is probably not very challenging. 

Next we return to a few matters discussed in Section 1. First, we want to reconsider 
the effect of developmental errors on the quality of the filament. In Section 1 we argued 
that each developmental error should properly change this quality, and therefore the 
underlying lattice-ordered structure/~ should possess an infinite number of elements. 
Clearly, the real closed interval [0, 1] --even restricted to its computable or rational 
elements; cf. [8]-- satisfies this condition, which is one reason for its popularity. But 
other instances of/2 may be useful too. E.g. in case we want to count symbols, 
i.e. to count cell states in filaments, the elements of E may be Parikh-vectors with 
0 = [0, 0 , . . . ,  0], and 1 = [oo, oo , . . . ,  oo] as smallest and largest element in E. Note 
that s has countably infinite elements too in this example. 

Two examples of biologically motivated Control languages have been mentioned in 
Section 1: the sequence of days and nights, and the sequence of seasons. Both sets of 
sequences are regular languages. So the obvious question is: are there any non-regular 
events in biology/nature? Other sets of sequences --like the proper order of the days 
in a week, of the months in a year- -  are unsuitable candidates: apart from being 
regular sets, they are also human artifacts rather than natural or biological events. 
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Abstrac t .  In this paper we explore forms of organization of rewriting sys- 
tems which allow the systematic modelling of systems for human-computer 
interaction and the control of their dynamics. To this end we exploit tools 
from formal languages, adopting forms of parallel rewriting from L-systems 
tradition. Based on this formalisation, a notion of controlled rewriting is 
proposed where information about how to rewrite strings is embedded 
into the strings themselves or in properties of symbols. The main contri- 
bution of the paper is the introduction of a variety of families of L-systems 
with new control mechanisms in their rewriting relations. Hierarchies in 
the families are discussed and some relations among them presented. We 
also start the exploration of the closure properties of these language fam- 
ilies. Finally, we discuss some relations among the proposed families of 
L-systems and families of grammar systems. 

0. Introduction 
The theory of grammar systems has been mainly originated by attempts to for- 

malise within the theory of formal languages control mechanisms developed in the 
distributed/decentralised artificial intelligence and multi-agent systems fields (for a 
foundation, see [6]; for a survey of applications, see [18]). 

Different types of grammar systems have been proposed, in particular cooperating 
distributed (CD) grammars were aimed at modelling the behaviour of a blackboard 
system, by having several grammars taking turns to rewrite a single string [5]. Forms 
of parallelism in the development of the activity of agents, in particular having agents 
which operate independently and report to a master, motivated Parallel Communi- 
cating Grammar Systems (PCGS) [29]. Different models of communication were also 
studied, based on communication upon request or upon command [10]. Research in 
artificial life led to the development of systems based on parallel rewriting, in par- 
ticular combining the evolution of individual agents with their action on a common 
environment [9]. 
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Starting from the basic models, several variants were considered to model specific 
forms of cooperation and of synchronisation among the action of the independent 
grammars in the system. For instance, partial or linear orders can be defined on the 
set of grammars forming a CD system [6], [24]; forms of synchronisation in the choice 
of rules can be imposed on CD systems in the form of teams [20], or on P e G s  [27]. 

In this paper we explore forms of organisation of rewriting systems which allow 
the systematic modelling of systems for human-computer interaction and the control 
of their dynamics. To this end we exploit tools from formal languages, adopting forms 
of parallel rewriting from the L-system tradition. In particular, we will account for 
the simultaneous evolution of several strings, without necessarily having a notion of 
master string; we will adopt forms of parallel rewriting from the theory of L-systems 
and, again in the L-system tradition, we will drop the distinction between terminal 
and non terminal alphabets and will consider the possibility of having several strings 
as initial axioms [14]. Furthermore, we enrich symbols with properties, in the line of 
the use of attributed grammars as specification tools [17], [25]. In this way we gain 
in expressivity, as well as in generative power, with respect to traditional L-systems. 

The evolution of an interactive system is modelled by considering the state of 
the different components of the system, as it evolves under commands issued by a 
user. We do not enter into details of implementation, but we propose to consider 
the components as individual agents in a population whose behaviour is controlled by 
mechanisms of constraints and synchronisation on their dynamics. These constraints 
can be at different levels: hierarchical, mutual, physical. From an abstract point 
of view, these constraints are modelled by mechanisms of stratification, grouping, 
fragmentation. A special case of stratification is defined by observation morphisms 
which produce the representation to a user of the state of a population of agents. 

Based on this formalisation, a notion of controlled rewriting is proposed, different 
from those studied in classical formal language theory and based on some specific or- 
ganisation and refinements of the sets of rules [11]. In the proposed approach, instead, 
information about how to rewrite strings is embedded into the strings themselves or 
in properties of symbols. 

The main contribution of the paper is the introduction of a variety of families 
of L-systems with new control mechanisms in their rewriting relations. Hierarchies 
in the families are discussed and some relations among them presented. We also 
start the exploration of the closure properties of these languages. Finally, we discuss 
some relations among the proposed families of L-systems and families of grammar sys- 
tems. 

P a p e r  organizat ion.  First, we present a scenario from a realistic case in the 
development of interactive systems for scientific purposes. Then we formalise the 
notions introduced in the scenario in terms of systems of L-systems. In Section 3 we 
give details on the mechanisms of regulation in rewriting and in Section 4 we compare 
them with notions from grammar systems theory. Finally, the conclusions draw some 
lines for further research. 

1. S c e n a r i o  

In this Section we illustrate by an example how mechanisms which control the 
interleaving and synchronisation of several rewriting systems model the definition 
and use of a human-computer interactive environment. 
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Some preliminary definitions are needed. An image is a 2-D string. A tile is a 2-D 
substring of an image. Hence, an image is seen as the composition of one or more 
tiles of different size. A tile language is a set of images built from the juxtaposition 
of tiles. 

Tile languages have been formally introduced and studied as an extension of formal 
language theory to the two-dimensional case. In particular, the problem of recognising 
picture languages by finite state mechanisms has been studied [12], [15]. Here, we are 
only interested in the use of tile languages as a tool for layout definition, rather than 
in studying their properties in the usual terms of formal language theory. 

The scenario: a scientist prepares his/her electronic document for programming 
the simulation of a galaxy evolution, studying the galaxy behaviour and documenting 
both the programming and the simulation activity. 

To this end s/he uses a system of L-systems, presented in Appendix 1: one, the 
Screen Tile Language (STL), to define the organisation of the interface; the others to 
describe the set of data which must be displayed by the interface at any instant. Hence, 
the string describing the interactive system is organised into two strata: the first 
describing the organisation of the interface layout; the second describing the different 
sets of data. In turn: each stratum is organised into fragments. Each fragment in the 
first stratum is a tile defining a different part of the interface; each fragment in the 
second stratum defines a different set of data. 

In practice, the scientist first specifies the layout of the electronic document as 
a sentence in STL, defined by the L-system reported in Appendix 1A. S/he decides 
to work with two windows, each one showing a different plausible evolution of the 
galaxy under study. Then s/he starts the processes of naming the two windows 
and simulating the galaxy evolution (L-system of Appendix 1B). To this end, s/he 
initialises each fragment in the second stratum with the appropriate axiom, thus 
also determining the rules used in the subsequent rewriting process. The decision of 
which L-system to use in each fragment is non-deterministic and depends on scientist 
interaction. 

This process is exemplified in Appendix 2, showing the derivation up to the third 
step of galaxy evolution. A function mat materialises the description as an image on 
the screen [2]. Figure A1 schematises the images which appear on the screen after 
each derivation step. 

The use of systems of L-systems also opens the possibility of describing how the 
interface can be adapted to user needs during the simulation, without losing the results 
already obtained. Suppose that during the simulation the scientist realises that the 
document clarity can be improved by adding a new window which represents the 
galaxy by a different convention and grouping the two windows so that when scrolling 
one of the two, the other is similarly scrolled. In this way corresponding pixels in the 
two images represent the same element of the galaxy. In this case, s/he suspends the 
simulation, goes back to the use of the tile language, adapts the electronic document 
and restarts his/her work without losing the previously obtained results. The same 
applies if the user has only modified the size or some other property of a window. 
This is possible because when several strata are used, rules for each stratum evolution 
are applied in an interleaved way. The stratified organisation is left untouched. New 
fragments have been generated at the first stratmn to accommodate the new window 
and its title. A new fragment has been generated at the second stratum, which defines 
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the content of the new window. Due to lack of space, the Appendix does not report 
the rules to manage these situations, discussed in [4]. 

The L-Systems of Appendix 1 are not deterministic both at syntactic and semantic 
level, as shown for example by the splitting rules. The syntax specifies that a tile can 
be split in two horizontal or vertical subtiles. The semantics indicate that the type of 
a tile is associated with a specific subset of types and not only one. Again, this form 
of non-determinism is resolved in interactive systems by an interaction with the user. 

The description of the whole interactive environment as a system of L-systems 
drives its implementation as a Cooperative Visual Environment, [1]. 

2. Systems of L-Systems 

In the next Section we explore several augmentations on the classical structure of 
0L-systems. In particular, we consider families of rewriting systems that model the 
evolution of populations of agents under the influence of the environment. Each agent 
is modelled through a symbol from a finite alphabet. 

This marks a difference with the classical approach of grammar systems, where 
each individual agent is modelled by associating it with a grammar. In grammar 
systems, the agents operate on a common support (case of CD), or provide information 
to a master (case of PCGS). We give a first extension to the classical theory of 
formal languages and L-system: by augmenting symbols with attributes. Moreover, 
we consider four basic extensions. First, we use attributes to assign properties to 
symbols and to condition their evolution on the values of these attributes. This models 
the independent evolution of agents. It is observed that this allows the generation of 
a richer family of languages than in classicM 0L systems [14]. Second, we consider 
the possibility of coordinating the evolution of several strings on different Mphabets 
in which symbols are subject to different sets of rules. This models the possibility 
of considering the evolution of a system under different levels of detail and allows 
the introduction of a notion of observation. Third, we consider the evolution of a 
single string where a fragment structure is imposed on the string and different sets 
of rules are used in different fragments. This models the effect of the environment 
on the independent evolution of individual agents. Finally: the evolution of a string 
is studied when constraints are imposed on the simultaneous application of rules to 
different symbols. This models forms of cooperation or competition ill the evolution 
of populations of agents. 

We assume that  the reader is familiar with the theory of formal languages and we 
just give some basic definitions. 

A 0L-system is a construct 0L = (T, Ax, P, ==~}, where T is a finite alphabet of 
symbols, Ax is a finite collection of strings on T, i.e. Ax C_ T*, P is a finite collection 
of rules of the form x --+ w, with x E T and w C T*. The constraint holds that  
Vx E T, 3(x --+ w) E P for some w. The rewriting relation ==aC T* • T* holds 
between two strings x and z such that z can be obtained from x by simultoxleously 
substituting all symbols in x as allowed by the given rules, i.e. x ===~ z iff x = 
a l , . . .  ,a~, z = /~1, . . .  ,/3, and ai ~/3~ E P for each al. The language generated by a 
0L system is the set L = {x I 3y E Ax, y ==~* x}. 

In the above formulation the axioms belong to the generated language, in the fol- 
lowing we will adopt the same conventions as above to define the generated languages 
for any type of system. 
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0L-systems with attributes are defined following the tradition of associating seman- 
tics with syntax, introduced by Knuth [21]. An attributed 0L-system is a construct 
aOn = (T, Ax ,  P, At,  D, ~, ~ ) ,  where T and P are as above, At = { h i , . . . ,  ak} is 
a finite set of attributes, D = { D 1 , . . . ,  Dk} is a finite set of domains, one for each 
element of At, �9 a set of functions of the form f : D~ 1 x . . .  x D~ --+ Dik. With each 
symbol x E T a finite set of attributes At(x)  C At  is associated. We will indicate the 
at tr ibute a of the symbol x with x.a. Ax is a set of strings on T with an initial assign- 
ment of properties to attributes of symbols in the string. With each rule x -+ w E P,  
a finite set of functions rp C �9 is associated (called semantic rule) which computes 
the values of the attributes of the elements in w based on the values of the attributes 
of x. The rewriting relation is augmented with the prescription that the application 
of a rule is always followed by the evaluation of the associated semantic rule. The 
language defined by an attributed 0L-system is the set of strings on the alphabet T 
derived from an axiom (i.e. in the definition of the language the value of attributes is 
not accounted for). In the following we omit the 0 from the definition of L-systems. 
In any case the treatment will be restricted to the 0L case. 

3. C o n t r o l  M e c h a n i s m s  for R e w r i t i n g  

In this Section we describe control mechanisms that generalise those introduced 
in the Appendices. 

3.1. Conditioning 

The use of attributes can affect the definition of the generated language, if the 
rewriting relation is extended so that the application of a rule is guarded by the 
satisfaction of a condition. This allows context to be taken into account on a context- 
free structure of rules. As an example, most of the rules presented in Appendix 1 are 
conditioned. 

An attributed L-system with conditions is a construct caL = { T, Ax, P~ At, D, 
�9 , F, ==:::>) where T, Ax, At, P, D, and ~, are as in the definition of aL systems. 
P is a set of predicates, comprising the constant predicates true and false. Vp E 
P, 37 E r,  7 : Dil x . . .  x Dis -+ {true, fa lse} .  7 is called the condition of the 
rule. The relation ===> specifies that rules in P are applied in parallel and that  a 
rule is applied only if the associated condition is satisfied. Formally, ==:=:>C T* x T* 
holds between two strings x and z (x ~ z) iff x = a l , . . . , a ~ ,  z = /31,...,/3~, 
and, for each hi: 1) 3(a~ --+ fl~) C P,  2) the condition associated with this rule is 
7 : D~i x . . .  x D~, --+ {true, fa lse} ,  3) the set of attributes of al includes the subset 
{ a ~ , . . . ,  ai~}, and 4) 7(a~.ai~,... a;.ai,) = true. The semantic rule is then evaluated 
to assign values to each symbol in each fli. In the following we will adopt a notation for 
conditional at tr ibuted rules which synthesises their syntactic, semantic and condition 
components. In particular, a rule 

a ---+ Xl . . �9 X m T ( a . a c l , .  � 9  a.ack) 

Z 1.OLll  = f ( a . o g S l l , . . .  , a . o L s l r ) ; . . .  ; X m . O g k m  = f(a.c~,ma,... , a.~,,~) 

is written 

(a, a.~hl, . . . ,  a.~hk) --+ (Xl, ~11,'--, ~ ls) . . .  (Xm, ~ml,''' ~m~), 
r 

where {~hl , . . .  ,ahk} = {Olcl,... ,ack} U Ui~l Uj=l{aS,~} �9 
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The rules in the Appendix are instead written in the first form. 

C l a i m  3.1.1. The L-system caL = ({a, b, c}, Ax, P, {gen}, N,  ~, F, :=~),  with 
Ax = {(a, 0)(b ,0)(c ,0)}  and P = {(a,0) ~ (a, 1)(a,0), (b ,0)  --* (b, 1)(b,0) ,  (e,0) --* 
(e, 1)(e, 0), (a, 1) ~ (a, 1), (b, 1) ~ (b, 1), (e, 1) ~ (c, 1)} generates the language 
{anb~c~ln >_ 1}. 

Here, the synchronisation of string evolution is achieved by having in the string, 
at each step, only one instance, for each type of symbol, which is able to reproduce. 

This models systems where individual agents have a limited capacity of reproduc- 
tion. Different capacities can generate languages {a~kb~d ~k ! n >_ 1}, with k any 
number. In this model agents never disappear. More sophisticated behaviours can be 
obtained with agents with limited resources, modelled by letting symbols disappear 
when properties reach a certain value. 

3.2. Stratification 

In a string-stratified rewriting system several strings evolve together with mutual  
constraints on their evolution. This concept is the counterpart  in terms of strings 
of the notion of stratified grammar  systems, where sets of rules are ordered and the 
derivation of a single string occurs starting with the application of rules in the first 
set and ends with the application of rules in the last set, respecting the ordering of 
the sets [8]. Here, each generation step involves the evolution of all the strata,  in a 
prescribed way. As an example, process generating rules in Appendix 1A are used to 
start  a new process in a different s tratum. 

A string-stratified (from here on simply stratified) L-system is a construct 
sL = ((T1, Axl, HP1, VP~, ~ ,  ~ ) , . . . ,  (T~, Axn, HP, ,  VPn, ~ ,  ~, ) ) ,  where, for 
i = 1,. . .  ,n, Ti is an alphabet,  Axl is a set of axioms, HPi is a collection of intra- 
s t ra tum (horizontal) rules, VP~ is a collection of inter-stratum (vertical) rules, from 
symbols in the alphabet Ti into strings in the alphabets Ti-1 or Ti+i, :==*i and ~ are 
the horizontal and vertical direct generation relation for the i-th s t ra tum respectively. 
Conditions, if any, can regard symbols in the same s t ra tum or in adjacent s t ra ta  (the 
lower and the upper one). 

The case in which no attr ibutes (and afor t ior i  no conditions) are considered and 
only two s trata  are present reduces to the case of 0L-systems with coding [29]. 

Each s t ra tum is equipped with a direct generation relation for the in t ra-s t ra tum 
rules. For each s t ra tum a metarule specifies when to apply the inter-s t ratum rules. 
In t ra-s t ra tum rules are applied in parallel and each s t ra tum is rewritten when no gen- 
eration can be performed in any other stratum. Two basic definitions can be adopted 
for the generated language: either consider the language formed by the vector of the 
strings, or consider the language of the strings at some designated level. Languages 
formed by specific configuration of strings can be defined. Moreover, languages of 
strings of one level can be defined using strings of other levels as control words. 

A stratification mechanism allows the formalisation of observation as a mapping 
from a s t ra tum to the lower one. An observational stratified L-system osL is a stratified 
system with the limitation that  no condition is admissible from a lower s t ra tum to an 
upper  one. 

In an osL-system the relation 1~1 is such that  the string at the first level is not 
modified (except possibly for the modification of attributes) by the application of 
inter-strata rules. This reflects an assumption of non-destructive observation. 

For the other levels, instead, observation is destructive, so that  each symbol in the 
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s t ra tum above is deleted when a vertical rule is applied. (Indeed, strings in strata 
different from the first are valid only until a new observation is performed, while the 
first s t ratum provides the dynamics of the observed phenomenon). For reasons of 
homogeneity, the existence of vertical rules x $ x for each x is assumed for the string 
at the lowest level in the observation hierarchy. 

As an example, consider the following conditional attributed observational strat- 
ified system on the one-letter alphabet T = {a} and using the single attr ibute gen 
with domain the set of natural numbers. 

I intra-stratum rules: 
inter-strata rules: 

II intra-stratum rules: 
inter-strata rules: 

I I I  intra-stratum rules: 

{(a, 0) --~ (a, 0)(a, 3), (a, n) ~ (a, n + 2); with n r 0}, 
{ (a ,n)  J. (a ,n)} ,  
{(a, 0) ~ (a, 0); (a,n)  --+ (a ,n -- 1)}, with n ~ 0, 
{(a, 0) J. a}, 
{a -* a}. 

The rewriting relation prescribes that rules from the first to the second s tratum 
be applied after each step; rules from the second to the third stratum are applied 
when no more rules (different from identity) are applicable at the second stratum. 
This generates the language {a ~2 I n >_ 1}, which is an EDTOL language. The control 
mechanism here introduced is similar to the t-mode of derivation in the formalism of 
grammar systems, in which a grammar continues to apply rules as long as it can do 
so [6]. The difference lies in the fact that  we are dealing with parallel rewriting and 
we consider to have identity rules always available. 

3.3. Fragmentation 

An n-fragmented string on an alphabet T is a string a l # . . .  # a ~ # ,  where ai C T* 
for i = 1 , . . . , n  and # is a separator symbol not in T. As an example, process 
generating rules in Appendix 1A create fragments in the lower stratum which are 
initialised with different axioms. 

3.3.1. Fized number of fragments 

An n-fragmented L-system is a construct f Ln = (T U { # } , Ax, P, #, ~ ), where 
T is a set of symbols, T N {#}  = 0, Ax = A X l # . . .  A x e #  and each Ax~ is a finite 
set of strings from T*, P = {P1,P2, . . . ,P ,~} is a collection of sets of rules, with 
Pi C T x T*, and # : { 1 , . . . , n }  ~ P is a function associating a set of rules from 
P with each fragment. Symbols in the same fragment are rewritten only by rules in 
the same set (in the original formulation by Mayoh [22], # is implicitly assumed as 
# : N x { 1 , . . . ,  n} ~ P ,  letting the association vary at each step of derivation), n is 
called the degree of frgmentation of f L~. 

The direct generation relation is defined as follows: x ==~ y if[ x = 
a l # a 2 ~ . . . # ~ # , y  = f l l # f l 2 ~ . . . ~ r  and for i = 1 , . . . , n , a ~  :=:=*,(i) fl~. As 
usual, the language generated by a rewriting system with fragments is the set of 
strings obtained by hiding the symbols ~ .  This can be formulated in the context of 
observational stratified systems, by considering the interstrata rules x J, x, Vx E T 
and # J. A. As an example, consider the system f n  = ({a ,#} ,  { a # a # } ,  {{a ~ an}, 
{a --* a}}, tt, ==>), where # is defined by the pairs (1, P1), (2, P2). This generates the 
language {a l+2n [ n ~ 1}, which is not a 0L language. 

3.3.2. Migration 
Let us consider the case in which symbols are allowed to migrate f rom one fragment 

to another. Migration is modelled as the disappearing of one symbol in a fragment and 
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its reappearing in another. We assume that  only one symbol per fragment can migrate  
at a time, namely the one adjoining to a separator symbol. To restrict migration to 
such a symbol, we must enrich the OL scheme with special rules for migration. 

A fragmented L-system with migration is a construct m f L  = (T U { # } , A x ,  
P , # , M , ~ ) ,  where T, P, Ax and # are the same as for fL-systems, and M is a 
set of migration rules. Let TM C T be the set of symbols which are allowed to mi- 
grate, M C TM{#} • {#}TM. Each rule in M has the form x #  --+ # x ,  for any 
x E TM. In the following we consider TM = T. 

The rewriting relation ==~ is defined as follows. Let ==~p denote the rewriting 
relation of fragmented L systems as discussed above, with application of rules only 
from P. Let =::==~M he defined as follows: x :=:===~M Y if x = a l x l # a ~ x 2 # . . . # a n # ,  
y = a l ~ f l 2 ~ . . .  ~ f l ~ ,  and ~ = x~-la~ if ( x ~  --* ~xi ) ,  (x~- l#  ~ ~xi -1)  E M,  and 
al C T*, x~ E T, for i = 1 , . . . ,  n. Here we consider the deterministic case in which a 
migration rule is forced to occur for all fragments. Then x ==~ y iff a string z exists 
such that  x ~ p  z and z = ~ M  Y. In other words, a rewriting step is composed of 
an evolution step and a migration step. The language generated by an L-system with 
migration is therefore the set of strings generated after a migration step. 

Two variants can be considered as regards migration from the last fragment.  In 
the mode described above, called blocking and denoted by b, no migration is possible 
from the last fragment. Otherwise, in the leaping mode, denoted by l, migration from 
the last fragment results into the deletion of the migrating symbol. In the following 
we consider only the / -mode.  

Let L( fL )  be a language generated by a fragmented L-system fL. It can be 
oo L. expressed as L ( f L )  = (-J~=l *, where each L~ is the set of strings which can he 

generated in i steps from an initial string. The language L ~ = L ( m f L )  gener- 
ated by the system mfL, obtained by adding migration to fL, is defined as follows: 

OO L ( m f L )  = U~=I L~, where L~ = {~ I 3r = a l a 2 . . . a m  C L~ and a = fllfl2...fin, with 
each flj = xoh(xl ) . . ,  hi- l(xi-1)Pref( i ,  e~j)} and hk(x) indicates one of the possible 
strings generated in k steps starting with a symbol x. Each xk indicates the symbol 
which is migrated to a fragment k steps before. In particular x0 = last(ai_l) and 
xk = last(a~ -k )  where a~-I k indicates the state of fragment ai-1 at the derivation 
step n - k. 

C l a i m  8.3.2.1.  The 3-fragmented L-system with migration on a one-letter alpha- 
bet m f L  = ( { a , # } , { a # a # a # } , { { a  --~ aa}, {a ~ aaa}} {(1,P~), (2, P2), (3, P~)}, 
{ a ~  --+ # a } ,  =:=~) generates the language {aSia 2"+~ I n >_ 1}. This language is ob- 
tainable by a 3-fragmented one-letter 0L-system (without migration) only if one of 
the fragments has only the trivial rule a --* a. It is not obtainable from a one-letter 
0L-system. 

Consider now the case in which/z is defined by the pairs (1, P2), (2, P2), (3, P~). 
The  resulting language is {a~(n)a~"a h(n) I n > 1}, where g(n) is defined recursively as 
follows: g(0) = 1, g(n) = (3 • g ( n -  1 ) ) -  1, and h(n) is h(0) = 1, h(n) = 1 +2 • h ( n -  1). 

This is not obtainable by any 0L-system without migration. Actually, for one- 
letter alphabets,  the case with migration reduces to the case without migration if and 
only if the first and last fragment are rewritten by the same set of rules. Indeed, for 
all other fragments the incoming symbol compensates the outgoing symbol, while the 
first is not compensated by anyone and the last fragment only receives contributions 
from the fragment before. 
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3.3.3. Dynamic generation of fragments 
Let us now consider the case in which fragments can be generated dynamically, 

through rules of the type # --+ # # .  These rules, called fragmentation rules, are 
typically conditioned, but this is not relevant to the present discussion. We assume 
that for each new fragment the association with a set of rules is the same as for 
the originating fragment. Hence an L-system with fragment generation is a construct 
gfL = (TU{@}, Ax, P, #, F, ==~}, where T, P, Ax and # are the same as for fL systems, 
and F is a set of fragmentation rules, including the identity rule for fragments. 

Two variants can be considered for defining the starting string in the new frag- 
ment, based on the characteristics of the fragment to the left of the instance to which 
the fragmentation rule was applied. This fragment is called the originating fragment. 
First, in the setting mode, indicated by s, the fragmentation control mechanism is 
defined so that, when applying a fragmentation rule, a new fragment is generated 
with an axiom from the set of axioms for the originating fragment. This is expressed 
by the following rewriting relation: if # --+ # #  is applied to the i-th occurrence of 
# ,  then if x = O i l # . . .  Oli#O!i+l#. . .  a n #  , X t : OLI#. . .  OLi#~i#OLi+l#.. .  # a n #  where 
~i C Axl. This simulates a class-based mechanism in object-oriented programming 
language, where new instances are generated from the mould of the class. Second, 
in the doubling mode, indicated by d, the fragmentation control mechanism is de- 
fined so that when applying a fragmentation rule, a new fragment is generated equal 
to the originating fragment. This is expressed by the following rewriting relation: if 
# --* # #  is applied to the i-th occurrence of # ,  then if x = c q # . . ,  c~#c~i+l# �9 �9 c~n#, 
x' = a l # . . . ~ ; # a ; # ~ ; + l # . . . # a ~ # .  This simulates the cloning mechanism in 
object-based programming languages. Two variants are define for what happens to the 
originating fragment. In the fragment-non-returning mode, indicated by n, the orig- 
inating fragment remains unchanged after application of a fragmentation rule. This 
variant has implicitly been adopted in the discussion above. In the fragment-returning 
mode, indicated by r, the originating fragment (i.e. the i-th fragment) is deleted after 
the application of a fragmentation rule and substituted by a string ~ C Axe. 

In any case, the set of rules for the new fragment is the same as the one for the 
originating fragment. 

We adopt the notation (X, Y)gfL to indicate the family of fragmented L-systems 
with generation using the X E{r,n} mode for the originating fragment, and the Y 
C{s,d} mode for the created fragment. 

The rewriting relation ==* is as follows. Let :=*p denote the rewriting relation 
of fragmented L systems with application of rules only from P. Let ==*F be one of 
the variants of the rewriting relation defined above. Then x :=:~y iff a string z exists 
such that z ~ p z  and z :=*~y. In other words, a rewriting step is composed of an 
evolution step and a fragment generation step. 

The family of L-systems with migration and fragment generation is denoted by 
mgfL.  In this family, the rewriting relation is defined by the sequence :=:,p, ::::*F, 
==~M- 

3.3.3. Hierarchies of languages 
Let fLk be the set of k-fragmented L-systems and L:(fLk) the family of languages 

generated by L-systems in fLk. Then the following holds: 

T h e o r e m  3.3.4.1. The families of languages generated by L-systems in fL1, fL2, 
�9 .., fLn, ...form an infinite hierarchy. 
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Proof (of inclusion). For each n, a system L in fLn can be simulated by a system 
L ~ in I l n + l  in the following way: L ~ has exactly the same sets of rules P1 , . . . ,  P,~ as 
L, together with a set P0, which has rules x ~ ),,Vx E T. The function #~+1 is an 
extension of #~ to n + 1, with #~+l(n + 1) = P0. For each ax E Ax, where Ax is the 
set of axioms of L, ax = a l ~ . . ,  an#, the set Ax ~ of axioms of L r contains an axiom 
ax' = ~1~r a ~ # ~  (i.e. the fragment n + 1 contains the null string). 

(of strictness) For each n the one-letter language {a2ka3k... a (~+2)k I k > 1} is in 
/ : ( i ln+l) ,  but not i n / : ( i l n ) .  [] 

T h e o r e m  3.3 .4 .2 .  /;(fL) C Z;(gil) .  

Proof:  A fL is a gfL in which the fragment generation rule is never used. D 

Fragmented L-systems with only one fragment reduce to ordinary 0-L systems. 

3.3.5. Properties of closure 

Let I l  = U~=I I lk .  We now consider the properties of closure of the classes of 
fragmented L-systems above defined with respect to the usual operations. 

T h e o r e m  3.3.5.1. For any number k of fragments, the following table collects 
the results about the closure of the classes I I ,  gfL, mfL,  m g i l  and fL k w.r.t, union 
and concatenation. Y means that the family in the row is closed under the operation 
in the column, N that it is not closed, Y(cond.) that it is closed only if conditional 
rules are used. 

Family Union 
I l  Y (cond.) 

g i l  Y (cord.) 
m i l  Y (cond.) 

m g i l  Y (cond.) 
I l k  Y (cond.) 

Concat. 
Y 
Y 
N 
N 
N 

Kleene's * 
N 
N 
N 
N 

Pro@ 
Union. Without loss of generality, we will consider languages and systems over 

one same alphabet T. Let L(A) and L(B) be two languages generated by the frag- 
mented L-systems A = (TU{#}, Axe, Pa, #~, ~ )  and B = (TU{#}, Axb, Pb, #b, ~ ) ,  
respectively. Then, the language L = L(A)U L(B) is generated by the con- 
ditional attributed fragmented system: C = (T U {#},  Az'~ U Axe, 7~(P~ O P~), 
{origin}, {{0, 1}}, F,/~c, ==*), where origin is a new attribute, with domain {0,1}, 
Ax~ is obtained from Axx by assigning to symbols in the axioms in Ax~ (resp. Axb) 
the value 0 (resp. 1) for the attribute origin, and P~' is obtained by associating with 
each rule in P~ a condition in P on the value of the attribute origin so that rules 
in P~ (resp., Pb) can be applied iff origin has value 0 (resp., 1). The function /~ is 
defined by associating with each fragment i the primed version union of the sets of 
rules defined for the fragment i in A and B. 

Here we resort to conditioned rules, where rules depend on the value of an at- 
tribute. It is obvious that every string in L(A) or in L(B) can be generated by C, 
and no other strings can be generated. 

The proof for other classes is analogous. 
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Concatenation. Let L(A) and L(B) be two languages generated by the fragmented 
L-systems A = (T U {#},  Axe, P~, #~, =:*} and B -- (T U {#},  Axb, P~, #~, ~ } ,  re- 
spectively, and let k~ be the degree of fragmentation of A and kb the degree of frag- 
mentation of B. L = L(A) U L(B) is generated by the k~ + kb-fragmented system: 
C = (TU{#},Ax~.Axb, P~ UPb,#c, ~ ) ,  where #~ = #~(i) for i < k~, #~ -- #b(i--ka) 
for k~ < i <_ kb. 

The same proof holds for giL. However, concatenation is not closed on ILk, since 
it increases the number of fragments. Moreover, it is not closed even on systems with 
migration, in either variant, since migration would now be allowed for a symbol in 
the k~-th fragment, which would become subject to rules from a set in Pb. Hence, for 
any two languages L(A), L(B) E X, X e {mfL, mgiL}, we can only state the weaker 
result that there exists a language L(C) e X,  such that L(C) D L(A). L(B) and such 
that if a string is in L(C) \ (L(A). L(B)), then a symbol migrated from the k~-th 
fragment during its derivation. 

Kleene. Fragmented languages are not closed under Kleene since, they would re- 
quire an infinite set of axioms. However, it can be proved that (r,s)gfL-systems can 
generate the Kleene's * of 0L languages. [] 

If we consider stratified systems, so as to allow observation, we have the following 
result: 

T h e o r e m  3.3.5.2. The facts described in the table hold. 

Operation Union Concat. 
ssfL Y Y 

ssgfL Y Y 
ssmfL Y N 

ssmgfL Y N 
ssfLk Y N 

Proof. The proof procedes in a way analogous to that of Theorem 3.3.5.1. In 
this case, union does not require conditioning. It is in fact possible to use disjoint 
isomorphic copies T' and T" of the alphabet, and hence of the sets of rules, for the 
two original systems. Inverse morphisms from T ~ and T" to T are then applied in the 
observation phase, n. 

3.4. Grouping 

Groups allow the definition of synchronisation constraints on the action of differ- 
ent agents, so that if a certain agent performs a given action (application of a rule), 
then the associated agents will perform related actions. In particular this allows the 
modelling of forms of multicast communication where several agents receive simulta- 
neously the same message and each agent reacts according to its abilities [1]. As an 
example, the notion of group has been used in the L-system of Appendix 1B, where 
the belonging of all symbols to one same group forces the process to consistently 
evolve either in the horizontal or in the vertical direction. 

An L-system with groups is a construct gL = ( T, Ax, P, At, 19, r p, u, ==:~) with 
T, Ax, At, D, r as for aL-systems, p a symmetrical predicate p :  (T x I-I~=l D~) 2 
{true, false}, assessing whether two symbols belong to a same group, u a mapping 
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u : P \ I --~ p (P) ,  where I is the set of identity rules, with the property that  if 
p~ E u(pj) ,  p~ ~ I,  then pj C v(p~). If v is extended to I, the property holds also ill I. 

In particular,  p defines for each symbol the group it belongs to, u defines for each 
rule the associated set of rules. 

The direct generation relation is as follows: w ~ z iff w = a l a 2 . . . a n ,  z = 
fllfl2 . . . fin, ai --+ •i E P for each i = 1 , . . . ,  n, and if p(a~, aj) = true, and a rule aj ~ ~j 
has been applied, a rule ai ~ ~i has also been applied, where ai --* fll E v(aj  -4 tSj). 

C l a i m  3.4.1 The language Z = {xx  [ x E T*} on an alphabet T, is generated by 
an L-system with groups. 

Proof. Consider, without loss of generality, T = {a, b}. Let us assume that  we 
start  with a string respecting the pattern,  say abab, and that  we have the set of rules 
P = { a - 4  ab, a - 4  ha, a - 4  aa, a--+ bb, b - 4  bb, b ~  ab, b ~  ba, b - 4 a a ,  a - 4  a , b - 4  
b, a --~ b, b --* a}. Let v : P -4 p ( P )  be the injection in the powerset of the identity 
function on P. Let us at tach to a symbol in a string derived from the axiom a property 
formed by a pair (id, ln), where id is the identifier of the symbol, i.e. its derivation 
path  from the axiom, and In denotes the symbol with which it must  be coupled to 
form a group. 

Thus, the axiom is rewritten (a, 1,3)(b, 2, 4)(a, 3,1), (b, 4, 2). With each rule an 
action on this property is defined, namely, for a generic rule (x, id, In) -4 (y, id .  1, ln .  
1)(z, id.  2, ln .  2) or (x, id, in) --+ (y, id.  1, ln.  1). Two symbols (x, id, In) and (y, id, In) 
belong to the same group iff x . id  = y.ln and y.ln = x.id. [] 

As an example, consider the following steps in derivation: (a, 1, 3) (5, 2, 4) (a, 3, 1), 
(5 ,4 ,2)  ~ (a, 1 . 1 , 3 . 1 ) ( 5 , 1 - 2 , 3 - 2 ) ( b , 2 . 1 , 4 . 1 ) ( 5 , 2 - 2 , 4 . 2 ) ( a ,  3 .  i , I -1)(b, 3.  
2 , 1 - 2 ) ( b , 4 - 1 , 1 - 1 ) ( b , 4 - 2 , 1 - 2 )  ==~ (b, 1 . 1 . 1 , 3 - I - 1 ) ( a ,  1 - 1 . 2 , 3 . 1 - 2 ) ( b ,  1 . 2 . 1 , 3 .  
2 .1 ) (a ,  2 . 1 . 1 , 4 . 1 . 1 ) ( 5 , 2 . 1 . 2 , 4 . 1 . 2 ) ( b , 2 . 2 . 1 , 4 . 2 . 1 ) ( b , 3 . 1 . 1 , 1 . 1 . 1 ) ( a ,  3 . 1 .  
2,1 �9 1 �9 2)(b,3 �9 2 . 1 , 1 . 2 -  1 ) ( a ,4 .1  �9 1 ,2 .1  �9 1 ) (b ,4 .1  �9 2 , 2 . 1  �9 2 ) ( b , 4 . 2 . 1 , 2 -  2- 1). 
Each string in L can be generated from a string in the finite set of axioms {aa,  bb}. 

3.4.1. Fixed number of  groups 

We distinguish the case where the number of groups remains fixed from the case 
where it increases with the time. 

Consider the following gL, built on the alphabet T = {a, b, c}, with set of rules P = 
{a --+ aa, b --+ bb, c --~ cc, a --~ a, b --* b, c ---* c}. Each rule is labelled with its position in 
the set and the mapping u is defined by {I  ~ {I, I I ,  I I I } ,  I I  ~ { I ,  I I ,  I I I } ,  I I I  --* 
{I, I I ,  I I I } ,  I V  ~ {IV,  V, V I } ,  V -4 { IV,  V, Y I } ,  Y I  ~ {IV,  V, Y I } } .  To each sym- 
bol in a string derived from the axiom a property grp is attached, where grp indicates 
the group to which a symbol belongs. With each rule an action on this proper ty  is 
defined, namely, for a generic rule (x, - )  --+ (x, 1)(x, 2) or (x, G r P )  -4 (x, Grp). Two 
symbols (x, Grpl )  and (y, Grp2) belong to the same group iff Grpl  = Grp2. Start- 
ing from the axiom (a, 1)(a, 2)(b, 1)(b,2)(c,  1)(c,2), this gL generates the language 
{a% c n L" > 2}. 

Let igL be the set of L-systems with i groups. The following holds: 

T h e o r e m  3.4.1.1.  / : ( igL) is incomparable wi th / : ( ( i  + 1)gL) for  each i. 

Proof. Consider a language in / :( igL) generated starting from an axiom of i 
symbols. It is not possible to have i + 1 groups on such an axiom, so that  the axiom is 
not in / : ( ( i  + 1)gL). On the other hand, consider a language L E / : ( ( i  + 1)gL) with 
an axiom ~ E L, such that  I~l = i + 1. Let us suppose that  there exists a language 
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H E s  such that ~ E H. Hence, there are at least two symbols, say Ck and r 
which belong to a same group. Any string directly generated from r is such that if ~k 
is rewritten according to a rule r, ~l will be rewritten according to a rule u(r). Hence, 
indicated with c(r), the consequent of rule r, we have ~ = r ~t.-. ~k.. .  ~lr 
a = a l . . .  c(r) . . ,  c(s) . . ,  alr with s E u(r). In general, any string in H derived from 
r will present some relation between the 1-th and the k-th substrings. On the other 
hand, there is no such relation forced on strings in L, so that there is a string in L, 
directly generated from r of the form w = wl . . .  c(r) . . ,  c(s) . . .  Wlr with s ~ u(r). [] 

3.4.2. Dynamic number of groups 

Consider the same gL as in Section 3.4.1 above, this time starting from the axiom 
(a, 1)(b, 1)(c, 1). This gL generates the language {a~b~c~ I n > 1}. Here we have at 
most two groups, but we are not in the situation where this language can be obtained 
with exactly two groups (since the axiom accommodates only one group). 

Hence, we can define the set s  of languages from L-systems with dynami- 
cally generated groups up to a number i. By generalising the example, one can infer 
the following: 

T h e o r e m  3.4.2.1. s contains s for each i. 

T h e o r e m  3.4.2.2. s  + 1)gL) properly contains/:(digL) for each i. 

The set s  = UieNs of languages generated by L-systems with dy- 
namically generated groups is a superior fo r / : (NgL)  = UiEN s the set of lan- 
guages generated by systems with a fixed finite number of groups. In particular, the 
following theorem states that unrestricted dynamical generation of fragments provides 
more generative power than the use of any finite number of fragments. 

T h e o r e m  3.4.2.3. The language Z = {xz I x C {a, b}*} is not generated by any 
L-system with a limited number of groups. 

Proof. Let us consider a digL-system K with T = {a,b}, and rule set P, able 
to generate all the words in X = Z N {w ] ]wl _< 2 x (i + 1)}, and no word in 
Z cM{w ] Iwl_< 2 •  Let Y = L ( K )  M{w I Iwl > 2 •  n 
is the maximum length for any of the consequents in P. Then, there are strings in 
Y which K is not able to generate. Indeed, for any string a C Y there are at least 
a string w 6 Z, and ~ 6 (Z \ X) t3 (Z \ Y) and a derivation w ==~ ~ 3 "  a. By 
the argument in the demonstration of Claim 3.4.1, the sequence of groups in the first 
half of the string, must be replicated in the second half. Hence, for each such string 
( E Y there are at least two instances of the same symbol z, say Ck, and r with 
l <_ ]r which belong to a same group. Hence, let d(r indicate a string derived 
from a generic symbol ~i. Any string derived from will comply with the pattern 
d(~a)..,  d(~k-1)d(~). . ,  d(r162 d(r162 d(r 

In general, any string in Y will present some replication of substrings in its first 
half. Hence, for instance no string whose first half is of the form abbaaabbbb.., akb k+a 
can be generated, and Z \ L(K) # O. [] 

3.3.3. Properties of closure 

T h e o r e m  3.4.3.1. The facts in the table hold. 
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Family 
dgL 
NgL 

Union Concat. 
Y (con&) Y (con&) 
Y (con&) Y (con&) 

Proof. As for Theorem 3.3.4.1, we resort to conditioned rules, where rules depend 
on the value of an attribute. For union and concatenation one introduces a new at- 
tribute origin; takes the axioms of the two systems and sets origin to 0 or 1, according 
to the system from which is taken. Then one adds to the rules a condition on origin. 
If it is 0 the rules will be chosen from those of the first system, if it is 1 from those of 
the second. 

Concatenation. Again, one uses origin. []. 

4.  R e l a t i o n  w i t h  C o n t r o l  M e c h a n i s m s  i n  G r a m m a r  
S y s t e m s  

4.1. Fragments and PCLS 

The behaviour of fragmented L-systems can be related to the action of Paral- 
lel Communicating Lindenmayer Systems with Communication by Command. This 
family of L-systems combines the notion of Parallel Communicating L-systems, intro- 
duced in [26] with the notion of communication by command, introduced for grammar 
systems in [10]. 

In particular, we define a PCLS as a construct F = (T, L1 . . . ,L~) ,  with L~ = 
(T, Pi, Axi, 7ri, X~), for i = 1 , . . . ,  n, where 7r~ is the pattern of strings for which com- 
munication occurs and X~ is a set of components to which messages have to be sent. 
Several variants can be defined as to whether the messages sent by a component i 
are the whole current string (without splitting indicated with w) or substrings from it 
(splitting, indicated with x), or as to what happens of the string of a component after 
sending a message (returning, r, or not, n). 

T h e o r e m  4.1.1. E((n, d)fL) C s r )PCLS) .  

Proof. Given a system Z = ( T U  {#},Ax,P,# ,==~)  E (n,d)fLk, let Q E 
( w , r ) P C L S  a system built as follows. Q = (T, L0,L1, . . . ,L~)  with L~ = (T,p~, 
Axe, T*, {L0}), p~ = #(i), and Ax~ is the set of axioms for the i-th fragment of 
Z, and L0 = (T, Po, Axo,~,O), Po contains only rules x ~ A for each x E T and 
Axo = {#1~2 . . .  ~ - 1 ~ } .  Since for each component of Q the communication pat- 
tern is T*, every string is valid for performing a communication step. The rule for 
receiving messages is: concatenate a string al coming from component i before the 
i-th occurrence of # .  The language L(Lo) - {A} is equal to L(Z). [] 

If we apply the simulation in the proof of Theorem 4.1.1 to the case of L-systems 
with fragment generation, we find that for each string ala2 . . .  ~ produced by the 
PCLS simulating a system without fragment generation, we can generate strings of 
type K l ( a l ) . . .  I(~(a~)... K~(a~). K~ indicates that a string is repeated as many times 
as the rule for fragment generation has been applied to the i-th separator symbol. On 
the other hand, in fragmented L-systems with generation, no relation exists after 
generation between a fragment and its originator, so that no pattern of dependency 
can be defined. Hence, L-systems with fragment generation cannot be simulated by 
PCLS with the above rule. For the returning mode of fragmentation, i.e. for (r, d)fLk, 
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no simulation is possible by PCLS, since any simulation should mix the returning and 
the non returning mode for the same component of the PCLS. 

4.2. Migration and Immigration 

The concept of fragmented L-systems with migration subsumes the recently pro- 
posed notion of L-systems with immigration [30]. In this latter notion an axiom 
can be non-deterministicMly added to a string at each step and the resulting lan- 
guage derives from the concatenation of the contributions of the axioms through 
the steps. The case when axioms are strings of length one can be simulated by 
considering a string with two fragments, where the first fragment has rules of type 
A -~ x, for each x E T and the second fragment has all the rules of the original 
L-system. The case of generic axioms can be simulated by introducing migration 
rules with antecedents of arbitrary length and conditioning application of a rule to 
the antecedent belonging to a finite set of patterns (exactly the set of axioms). Called 
B the set of axioms, the language generated by an L-system G with immigration 
is described in [30] as L(G) = {b0h(bl;... ;b~) ] n >_ 0, bl C B}, where h(wl; 
w2;...;ten) = h(wOh2(w2)...hn(w~) and h indicates the same morphism as in the 
definition of L' above. Since L-systems with immigration, indicated with imL,  can 
be simulated by mfLs,  we have that s  C s  The additional constraint 
for imL that the morphism is unique for the whole string, causes the inclusion to be 
strict. 

On the other hand, imLs can be simulated by fragmented L-systems with fragment 
generation as stated by the following: 

T h e o r e m  4.2.1. s  C s  

Proof. An L-system with immigration can be simulated by a (r ,d)gfL system 
starting with a single fragment and applying at each step exactly a fragmentation 
rule to the first fragment. [:]. 

4.3. Groups, CD grammars and Teams 

We study here the relation between groups and cooperating distributed grammar 
systems [6] where rules from a same set are used up to a certain restriction. In general, 
the mechanism of generation of CD grammar systems can be simulated with groups 
by distinguishing terminals and non terminals and defining the mapping v so as to 
constrain the simultaneous application of rules to rules from a same component. Note 
that the simulation regards the synchronisation aspect, since CD systems operate on 
distinct alphabets of terminals and non terminals. The following theorem states the 
exact relation between sentential forms in derivations in a CD system and the language 
produced by the L-system with groups which simulates it. We first introduce a normal 
form lemma for CD systems. 

L e m m a  4.3.1. For any CD system r there exists a CD-system A such that all 
its components have disjoint rules and L.(F) = L.(A). 

Proof. An equivalent CD is constructed according to the following procedure: For 
any subset of rules in a component that is a subset of at least another component 
remove the subset from all components it appears in and build a new component with 
this set. Repeat the procedure considering the newly added co.mponents, until no 
intersections among components are found. The procedure terminates since at most 
there will be as many components as rules. Since in the *-mode rules can be chosen 



86 

from any component at each rewriting step, the set of sentential forms produced by 
the two CD systems in *-mode are the same. [] 

T h e o r e m  4.3.1. for any CD system F, there is a gL system G with two groups, 
such that A(G) = L,(r), i.e. the adult language of G is the language produced by F in 
the *-mode. Moreover, L(G) = Sen.(F), where Sen.(F) is the set of sentential forms 
produced in the *-mode of derivation. 

Proof. Given the CD system F = (T, G1,. . . ,  G~, S), G is built in the following 
way: G = ([.J~ Ti U [J~ N,, {(S,O)},Po U [.J, P~ U Pn+l, r {term}, { {O, 1} },p,y, ~ )  
with Po = {x ~ x t x C Ui T~}, P,~+I = {X --* X I X E [.Ji N~}, (I) a set of semantic 
actions associating the value 0 with each non terminal and 1 with each terminal, p 
stating that two symbols belong in the same group if they have the same value of term, 
and ~ defined by the rule ~(p) = P~ V P0 U P.+l ,  Vp ~ P~, for i < n (remember that 
identity rules can be freely applied within a group, unless v states otherwise). Let 
S = ~ ,  w C T* be a derivation in F. Such a derivation can be replicated in G b y  having 
only one symbol from a Ni rewritten at each step by a non-identity rule, while all 
other symbols are rewritten by identity rules. Hence any string of terminals produced 
by F is also generated by G, and is no longer modified in G. On the other hand, let 
(S, 0) ===~* r ==ez ~ ===~* w E ((.Ji T~)* be a derivation in G. If in the generation from ( 
to ~ only one symbol is rewritten by a rule different from identity, this same step can 
be performed in F. Suppose this step rewrites k symbols by non identity rules. For 
the definition of v, all the applied rules must belong to the same component. Hence 
the string ~ is a sentential form obtainable from ( in k steps in which rules from a 
same component are applied. (Remember that in the *-mode there is no restriction 
on the number of times that rules from a component can be used). Any string of 
terminals in L(G) is therefore also produced by F in the *-mode of derivation. [] 

We here briefly sketch an apparent symmetry between L-systems with groups and 
teams, which will be the subject of further studies. In teams, rules are applied in 
parallel by subsets of the set of sets of rules. Subsets are formed on the fly by taking 
any combination of sets of rules [20], or are predefined in a fixed number [28]. At 
each step each member of a team applies a rule. Teams can operate until all sets 
in the team have available a rule [28], or until all sets may be used simultaneously 
[13]. In general, several occurrences of symbols are rewritten simultaneously, each 
by a different member of a team. On the other hand, it is not required that all the 
occurrences of non terminals be rewritten at each step. 

In groups, rules are applied in parallel to all the occurrences of symbols, subject 
to restrictions of synchronisation. A symbol is rewritten only if all the elements in the 
group have a rule to apply. Symbols for which the group cannot behave as a whole 
are rewritten by the identity rule. 

4.4. Groups and fragments 

A relation can be established between groups and fragments in a restricted case, 
if rules in the L-system with groups are also conditioned. In particular, it holds 
that: 

T h e o r e m  4.4.1. Given a fLk-system F, there is a ckgL-system G, such that 
L(F)  = L(G). 
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Proof. Given a fLk-system, the corresponding ckgL-system is defined by associ- 
ating an attribute fragm with each symbol, to simulate membership in a fragment. 
Two symbols belong to the same group if they have the same value for fragm. The 
set P is composed of the union of the sets P~ in the fragmented system and v(p) = P~, 
Yp C P/. Each rule is associated with a condition, so that a rule from the set Pk is 
applicable to a symbol (x, f ragm) if and only if k = v(fragm).  [] 

The inverse simulation is not possible, since fragments restrict the possibility of 
synchronisation to adjacent symbols, while groups allow synchronisation among sym- 
bols at arbitrary distance. 

5. Conc lus ions  

Four abstract mechanisms to control the evolution of interactive systems - condi- 
tioning, stratification, fragmentation and grouping - have been abstracted from exper- 
imental studies on interactive systems [1] and placed in the framework of formal lan- 
guage theory. In particular~ in a simulation of the immune system antigens, antibodies 
and immunocomplexes were modelled as agents subject to conditions depending on 
the tissue they are in, [3]. Mechanisms of fragmentation restricted communication 
among agents, and grouping modelled the coordinated evolution of agents. Agents 
were able to migrate from a tissue to another under certain conditions. 

As shown in the example in Appendix 2, these abstract mechanisms allow the for- 
mal description of interactive systems and of their dynamics, characterised by: condi- 
tioning of system dynamics to user choices, synchronisation of responses of different 
parts of the system to a user action, coordination of the evolution of computational 
processes with their representation, management of different processes evolving in 
parallel, with forms both of synchronisation and of independence. 

The defined forms of control are common to many situations in which the evolu- 
tion and the viability of a system depend on the coordination of independent agents 
evolving in parallel and subject to environmental constraints [23]. In general, as dis- 
cussed in [t9], the ability of an agent to sense its environment defines the kind of 
environmental actions it can be subject to. 

A different form of modelling the relation between agents and environments comes 
from the formalism of eco-grammar systems where there is a mutuM dependency in 
the evolution of two different strings [9]. This mechanism can be seen as a special 
form of the stratification mechanism discussed in this paper. 

Further research will both explore the potential of the control mechanism proposed 
in this paper in satisfying requirements for coordination in different fields and extend 
the characterisation of the families here introduced. 
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A p p e n d i x  1. The system of L-systems for  de f in i t ion  of  e l ec t ron i c  d o c u -  
m e n t s  for  g a l a x y  s i m u l a t i o n  

A. LAYOUT DEFINITION 

ALPHABET 

The alphabet is TI = {s, t, h, v} where s stands for screen, tfor tile, h for horizontal, 
v for vertical. The value of the attribute a for a symbol s is denoted by s.a. 

A screen or a tile is described by a vector of attributes organized as follows: 
a = (u,v) where u = (tp, state) and v -- (links}; state is a vector state = 
(~d, as, ht, wt, pos) and links is a vector links = (son_of, fa ther_of l .  On the whole, 
a = ((tp, (id, ds, ht, wt,pos)) ,  (son_of, father_of)) ,  tp is the type and takes value in 
the powerset of tile types Tp = ul, ur, ll, It, title, comm, displayU{ axl, . . . , axe} where 
ut stands for upper_left, ur for upper_right, It for low_left, tr for tow_right and each ax~ 
is a domain-dependent type (e.g. text, Nh, Nv). We will not distinguish between an 
element of Tp and the corresponding singleton in the powerset. 

id is an identifier (an integer) which characterises the symbol at hand, ds is a 
string of integers memorising the derivation of the tile from the screen. The value of 
the attr ibute ds for the symbol s is I. 

pos identifies the position of the upper left corner of the tile in the image; ht 
identifies the height and wt the width of the tile. 

son_of and father_of are used to m~intain a link through the strata 

AXIOM 

The axiom is a screen symbol s with attributes tp=ul, id=0, ds=l, ht=H, wt= W; 
pos=(O,O); father_of=void. 

RULES 

In the semantic part we only show those attributes which are computed by the 
rules. When a symbol is created in the generation process, attributes which are not 
specified in the semantic part of the creating rule are set to void. When a symbol 
is rewritten, attributes which are not specified in the semantic part of the rewriting 
rule are copied. Symbols h,v have an empty set of attributes. We indicate by the 
symbol = assignments of values to attributes specified by the rule, by the symbol 

assignments which require user interaction. The symbol C indicates that  the rule 
constrains the value to be in a certain set, from which the user can choose. 

S p l i t t i n g  ru les  

For the sake of simplicity we impose rigid constraints on the computation of the 
attributes wt and ht. 

1) s --*tl.v .t2 t~.tp=ul; t~.id---1; h. tds=l.1; tl.ht=s.ht; t~.wt *--w~(s.wt); 
t~.pos=( O,O); t2.tp=ur; t2.id=2; t2.ds=l.2; 
t2.ht=s.ht; t~.wt ~s.wt-wc(s.wt); t2.pos=wc(s.wt)+ l. 

2) s ---~tl .h .t: tl.tp=title; tl.id=l; h.ds=l.1; tl.ht ~hc(s.ht); t~.wt=s.wt; 
h.  pos=( O,O); t2.tp=ll; t2.id=2; t2.ds=l.2; 
t2.ht ~--s.ht-hc(s.ht); t2.wt = s.wt; t2.pos=( O,h +2). 

where hc(s.ht)={1, . . . ,s .ht-1 and wc(s.wt)={1, . . . ,s .wt-1}.  The following rules are 
guarded by a condition. 
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3) t --~tl'v "t2 

4) t ---~h'h "t2 

7 =_t.tp ~{ul, u~, u, tr} 
tl.tp erl(t.tp); t~.id=(t.id x2)+l ;  tl.ds=t.ds .1; tl.ht=t.ht; 
h .wt  ~--w~( t.wt); tl.pos=t.pos; t2.tp E r2( t.tp); t2.id=( t.id • 
t2.ds=t.ds .2; t2.ht=t.ht; t2.wt ~t.wt-w~( t.wt); 
t2.pos=t.pos+ wc( t.wt+ 1); 

=t.tp E{ul, ur, II, lr} 
h.tp C r3( t.tp); tl.id=( t.id •  tl.ds=t.ds .1; 
tl.ht ~--h~(t.ht); h.wt=t.wt; 
h.pos=t.pos; t2.tp Cr4(t.tp); t2.id=(t.id • t2.ds=t.ds .2; 
t2.ht ,--t.ht-h~( t.ht); t2.wt=t.wt; t2.pos=t.pos+( O,h~( t.ht+ l); 

where rl, r2 and r3, r4 indicate a set of possible values determined by the following 
rules. The non-determinism in their definition is resolved by the interaction of the 
user. 

r~: uI ~-~ {ul, title}; ur ~-~ {ul, title}; 11 ~ {ll, title}; lr ~ {ll, title} 
r2: ul ~-~ {ur, title}; ur ~ {ur, title}; II ~-+ {Ir, title}; lr ~-+ {lr, title} 
rs: ul ~-~ {ul, title}; ur ~ {ur, title}; ll ~ {ll, title, display}; 

lr ~-~ { lr, title, display} 
r4: ul ~ {ul, display, eomm, {display, comm}); 

u~ ~ {u~, display, comm, { display, co,~m} }; 
U ~ {U, display, comm, {display, eomm}}; 
Ir ~ {It, display, comm, {display, comm} } 

P r o c e s s  gene ra t i ng  rules 

Tiles t of type display may generate at a lower stratum the axioms of different 
processes. 

5) tl J. t2 7 =_(t.tp=display A tl.father-of=void) 
ax # ax.id=(tl.id, O); ax.son_of=tl.id; 

ax.pos=( t.pos[1]+t.ht +2, t.pos[2]+t.wt +2 t2.father_of=ax.id 
6) h ~ t2 7 -( t . tp=ti t le  A tl.father_of=void) 

Tx # Tx.id=(tl.id, O); Tx.so~_of=tl.id; 
Tx.pos=( t.pos[1]+ t.ht +2, t.pos[ 2]+ t.wt +2 t2.fathcr_of= Tx.id 

Process generating rules can be applied after each rewriting step using only split- 
ting rules. 

B. SIMULATION OF GALAXY EVOLUTION 

ALPHABET 

The alphabet is T={Nh, Nv, A} where Nh stands for nucleus generating in hori- 
zontal, Nv for nucleus generating in vertical A for arm. A galaxy is composed of a 
nucleus and two arms developing at opposite sides of the nucleus. The gMaxy ex- 
pands by spawning new elements of the arms from the nucleus and each element of 
the arm moves in a way that combines expansion towards the exit as the result of 
the push from new formed elements and a tendency to rotate around the nucleus due 
to gravitational effects. The galaxy has also a translational movement. For the sake 
of simplicity the galaxy is described as having a one pixel nucleus, while arms have 
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one pixel width and translation is assumed to be always in the horizontal sense. All 
movements are here discretised and assumed to occur at a speed of one pixel per 
rewriting step. Let us consider the display tile in which the simulation of the galaxy 
dynamics is represented. The process is halted when an element of the galaxy touches 
the border of the tile, i. e. the representation would exceed the window limits. The 
elements of the alphabet Tg have a common set of attributes: Ag={x, y, xmax, ymax, 
xmin, ymin, age, arm, grp}. The tile L-system STL of appendix 1 is used to generate 
an interface, using a materialisation function which represents a tile t of size (t.wt, t.ht) 
and in position t.pos as a rectangle of width t.wt, height t.ht and with the upper left 
corner in position (x=t.pos[1], y-=t.pos[2]) of the screen. The process generating rules 
are here defined as follows: 

7) tl ~ t2 7 --(t.tp=display Atl.father-of=void) 
Nh # Nh.id-(t,.id, O); Nh.son_of=tl .id; Nh.xraax=t, .pos[1]+t.wt; 

Nh.ymax=tl.pos[2]+t.ht, Nh.pos=tx.pos+( tl.wt + 2,tl.ht +2); 
Nh.xmin=tl.pOS[1]+ l; Nh.ymin=tl.pos[2]+ l; Nh.grp=l; 
t2 .father_of=Nh. id 

8) tl $ t~ "/=_(t.tp=display Atl.father-of=void) 
Nv # Nv.id-(tl.id, O); Nv.son_of-=tl.id; Nv.xmaz=t~.pos[1]+t.wt; 

Nv.ymax=tl.pos[2]+t.ht, Nv.pos=h.pos+( tl .wt + 2,tl.ht +2; 
Nv.xmin=tl.pos[1]+ l; Nv.ymin=tl.pOS[2]+ l; Nv.grp = 1; 
t2.father_of = Nh.id. 

The evolution of the galaxy in the horizontal direction is described by two rules which 
combine expansion and translation. In these two rules the values of the attributes 
{grp, xmax, ymax, xmin, ymin~ son_of} of the antecedent are are transmitted to each gen- 
erated symbol in the consequent. 

9) Nhl --*A1.Nh2"A2 
Nh2.pos=Nhl.pos+(1,0), Al.pos= Nhl.pos, A2.pos= Nhl. 
pos+( 2,0) Al.arm---1, A2.arm= l, Al.age--1, A2.age= l 

10) nl  ~ A2 ? -(Al.pos[1] <nl.xmax-1) t (Al .ymin+l <nl.pos[2] <A1. 
ymax-1) A~.age=Al.age+ l, 
A2.pos[1]=gl.pos[1]+l+Al.arm x cos(45 ~ x [log Al.age J), 
A2.pos[2]=Al.pos[2]+Al.arm • sin(45 ~ • [log Al.age ])+1. 

An analogous pair of rules is defined to simulate upward movement and expansion, 
not reported here due to lack of space. 

C. Text  Genera t ion  

The process generating rules in the experiment are assumed to be coordinated so 
that for each tile of type display, the tile above it is of type title. Such tile can create 
a text axiom, from which the string of the title is derived. Such a derivation can be 
modelled with specific sets of rules for text generation. We do not report them due 
to lack of space. 

A p p e n d i x  2. Example :  In te rac t ive  genera t ion  of an interface and a 
s imulat ion process  

The system of L-Systems of Appendix 1 is used to generate a simple interface 
and to run the simple experiment described in the scenario. Table 1 displays the 
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derivation process with the following conventions. A rewriting step is denoted by an 
arrow ==* over which a vector of numbers is written. The numbers denote the rules 
from Appendix 1 which are simultaneously applied in the step. In the first two steps, 
some values used in the computation of the semantic part are interactively determined 
by the scientist interaction. In this case, the vector of values input by the scientist is 
written after the arrow and the arrow and the vector are enclosed between braces. 

1 
i, 
D 

l 

4, 4 6, 7, 6, 8 
D 

l g 

Tx Tx 

n ?z 

9. ~.~. G G . . . # ,  10 G1 G2 
, 9,10 # . ; .  a 

�9 a p a a 

g aria n g ana n 
a a a 

a 

Figure A1 

Each symbol in the derivation is materialised by a function mat which associates 
with each symbol t a rectangular shape, with each string in a tile of type title the 
string itself, and which represents a symbol x C{Nh, Nv} as a letter "n" in position x. 
pos and a symbol A as a letter "a" in position A. pos. 

(s, uI, O, 1, H, W, (0,0), void) 

{ (w/2)} 

(t, ul, 1, 1.1 ,H, W/2, (0,0), vo id )v  (t, ur, 2, 1.2, H, W/2, (W/2+1,0), void) 

{ ( ~ l ,  (tp=title, ht=hi),  (tp=display, ht=H-hl), (tp=title, ht=hl),  
(tp--display, ht=H-hl)} 

(t, title, 3, 1.1.1, hi, W/2, (0,0), void) h 
(t, display, 4, 1.1.2, H-hl, W/2, (O, hl+I), void) v 
(t, title, 5, 1.2.1, hi, W/2, (W/2-~-1,0), void) h 
(t, display, 6, 1.2.2, H-h~, W/2, ( W/2+l,hl+l),  void) 

6 , 7 , 6 , 8  

{ J$t , ((ax=Wx, rules=rtx), (ax=Nh, rules=rgal), (ax=Wx, rules=rtx), 
(ax=Nv, rules=rgal) } 
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( t ,  . . . ,  3 .0 )  h (t ,  . . . ,  4 . 0 )  v ( t ,  . . . ,  5 .0 )  h (t ,  . . . ,  6 .0 )  

(Tx, 9.0, W/2,hl, i, 1, (1,h~), i, S) # 
(Nh, 4.0, W/2, H, 1, h~+l, (W/~, ((H-h~)/2+ha), 1, ~ )# 
(Tx, 5.0, W, hl, W/2+l, 1, (W/24-1,h1), 1, 5) # 
(Nv, 6.0, W, H, W/2+~, hl+~, (W/2+W/4,((H-h~)/2+hl)),~, 6) 

9 

. . . #  (A, . . . ,( W/4,(H-h,)/2+h~), 1 ) 
(Nh, ...,(W/4+l,(H-h~)/2+hl) ) (A, ...,(W/4+2,(H-hl)/2+h~), 1 )#  . .# 

10~9 10 ~ g  

. . .#  (A, ...,( W/4,(H-h1)/2+h1-1), 2) (A,...,(W/4+l,(H-hl)/2+h~), 1 
{Nh, ..., (W/Z+2,(H-h,)/2+hl)...) 
(A, ...,(W/4+3,(H-hl)/2+ha), 1 ) (A, ...,(W/4+4, ( H-h~)/2+h~ +1), 2 )# . . .  
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Abstract. We consider (n-dimensional) array grammars in the accepting 
mode with various control mechanisms and compare these families of array 
grammars with the corresponding families obtained by array grammars in 
the generating mode. 

1. Introduct ion 
Accepting grammars together with various control mechanisms were introduced 

in [1] for the string case. Recent ideas concerning these grammars were exposed in 
[2]. The main results of the paper concern the relations between the families of array 
languages obtained by accepting array grammars in this way and array languages 
described by the corresponding types of generating array grammars. 

Compared with the string case, we find many similarities, e.g., accepting pro- 
grammed array grammars without appearance checking are just as powerful as their 
generating counterparts, and accepting ordered grammars can describe every recur- 
sively enumerable array language. On the other hand, the family of accepting regular 
programmed two-dimensional array languages with unconditional transfer is incom- 
parable with the corresponding family of generating regular programmed array lan- 
guages, while the respective string language classes coincide. Moreover, such incom- 
parability results have not been observed in the string case except for pure grammars 
[3]. 

2. Definit ions and Examples  
In the main part of this section, we will introduce the definitions and notations 

for arrays and sequential array grammars [5], [11], [14], [17], [19] and give some ex- 
planatory examples, but first we recall some basic notions from the theory of formal 
languages (for more details, the reader is referred to [18]). 

Definition 2.1. For an alphabet V, by V* we denote the free monoid generated 
by V under the operation of concatenation; the empty string is denoted by A, and 
V* \ {A} is denoted by V +. Any subset of V + is called a A-free (string) language. 

A (string) grammar is a quadruple G = (VN, VT, P, S) ,  where VN and VT are finite 
sets of non-terminal and terminal symbols, respectively, with VN M Vr = ~, P is a finite 
set of productions a -+ ~ with c~ E V + and fl E V*, where V = VN U VT, and S E VN 
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is the start symbol. For x, y E V* we say that y is directly derivable from x in G, 
denoted by x Fa y, if and only if for some a ~ fl in P and u, v E V* we get x = uav  
and y = uflv. Denoting the reflexive and transitive closure of the derivation relation 
Fa by F~, the (string) language generated by G is L(G) = {w E V~ I S F~ w} . 

The families of ~-free (string) languages generated by arbitrary, monotonic, 
context-free, respectively regular grammars are denoted by L ( e n u m ) ,  L ( m o n ) ,  
L (c f ) ,  respectively L (rag). The following relations are known as the CIIOMSgY- 
hierarchy [18]: L (rag) C L (c f )  C L (mort) C L (enum) .  

Def in i t ion  2.2. Let Z denote the set of integers, let N denote the set of positive 
integers, N = {1,2, ...}, and let n E N. Then an n-dimensional array "4 over an al- 
phabet V is a function "4: Z ~ ~ V U { # } ,  where shape(,4) = {v E Z n [ .4 (v) ~ # }  
is finite and # 6 V is called the background or blank symbol. We usually shall write 
,4 = {(v , '4(v))  l v e shape(,4)}. 

The set of all n-dimensional arrays over V shall be denoted by V *~. The empty 
array in V *~ with empty shape shall be denoted by A~. Moreover, we define V +~ = 
V *n \ {A~}. Any subset of V +~ is called a A-free n-dimensional array language. 

Def in i t ion  2.3. Let v E Z ~. Then the translation Tv : Z ~ ---+ Z ~ is defined 
by z~(w) : w + v for all w E Z ~, and for any array ,4 E V *~ we define 7v(,4), the 
corresponding n-dimensional array translated by v, by 

: ,4  - v) for all  e z "  

The vector ( 0 , . . . ,  0) E Z" is denoted by gt,, while (1 , . . . ,  1) is denoted by E~. 
Usually [5], [17], [19], [20], arrays are regarded as equivalence classes of arrays with 

respect to linear translations, i.e. only the relative positions of the symbols # # in 
the plane are taken into account: The equivalence class [,4] of an array ,4 6 V *~ is 
defined by [.41 = {B E V *~ I B = r. (`4) for some v E Z=}. 

The set of all equivalence classes of n-dimensional arrays over V with respect to 
linear translations shall be denoted by [V *~] etc. Most of the results elaborated in this 
paper immediately carry over from the families of array languages we consider to the 
corresponding families of array languages with respect to linear translations, therefore, 
in general we shall not consider these families of array languages with respect to linear 
translations explicitely in the following any more. 

In order to be able to define the notion of connectedness of n-dimensional arrays, 
we need the following definitions: 

Def in i t i on  2.4. An (undirected) graph g is an ordered pair (K ,E) ,  where K 
is a finite set of nodes and E is a set of undirected edges {x, y} with x ,y  E K. A 
sequence of different nodes x0, x l , . . . ,  xm, m E N, is called a path of length m in g 
with the starting-point x0 and the ending-point xm, if for all i with 1 < i < m an edge 
{x~-l, xi) in E exists. A graph g is said to be connected, if for any two nodes x , y  E K,  
x # y, a path in g with starting point x and ending point y exists. Observe that  a 
graph ({x},  0) with only one node and an empty set of edges is connected, too. 

Let W be a non-empty finite subset of Z ~. For any k E N U  {0}, a graph 
gk (W) = (W, Ek) can be assigned to W such that Ek for v, w E W contains the edge 
{v ,w}  if and only if 0 < IIv - w l [  _< k, where the norm [[u[[ of a vector u �9 Z ~, 
u = ( u ( 1 ) , . . . , u ( n ) ) ,  is defined by Ilu][ = max{lu(i)]  [ 1 < i < n} .  Then, W is said 
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to be k-connected if gk (W) is a connected graph. Observe that  W is 0-connected if 
and only if card (W) = 1, where card (W) denotes the number of elements in the set 
W. 

Now let V be a finite alphabet and A an n-dimensional array over V, A ~ A~. 
Then A is said to be k-connected if gk (shape (,4)) is a connected graph. Obviously, 
if A is k-connected then A is m-connected for all m > k, too. The norm of`4 is the 
smallest number k E N U {0} such that  A is k-connected, and is denoted by IIAII. 
Observe that  11̀ 411 = 0 if and only if card (shape (`4)) = 1. 

E x a m p l e  2.1. The n-dimensional array $ (n, k) = {(f~,  a), (kE~, a)} C {a} *~ is 
m-connected only for every m >__ k, and therefore I[$ (n, k)l I = k. 

D e f i n i t i o n  2.5. An n-dimensional generating array production p over V is 
a triple (W,`41,,A2), where W C Z ~ is a finite set and `41 and `42 are map- 
pings from W to Y U {~:} ; p is called A-free if shape (`42) # 0, where we define 
shape (`4~) = {v e W I ̀ 4~ (v) # # } ,  1 < i < 2. The norm of the n-dimensional array 
production (W,`41,`42) is defined by 11(W,`4,,`42)11 = max{llvll I v c W} .  We say 
that  the array C2 C V *" is directly derivable from the array C1 E V *n by the n-di- 
mensional array production (W,`41,`42) if and only if there exists a vector v E Z"  
such that  C1 (w) = C2 (w) for all w e Z ~ \ r~ (W) as well as C1 (w) = `41 (7_, (w)) and 
C2 (w) = ,42 (T-v (w)) for all w C Tv (W) ,  i.e. the subarray of Cx corresponding to `41 
is replaced by `42, thus yielding C2; we also write C1 t-p g2. 

As can already be seen from the definitions of an n-dimensional array produc- 
tion, the conditions for an application to an n-dimensional array B and the result 
of an application to B, an n-dimensional array production (W, `41, `42) is a represen- 
tat ive for the infinite set of equivalent n-dimensional array productions of the form 
( ~  (W) ,  ~-v (A1), Tv (`42)) with v C Z ~. Hence, without loss of generality, in the sequel 
we shall assume f~, C W as well as `41 (fl~) # # .  Moreover, we often will omit  the set 
W, because it is uniquely reconstructible from the description of the two mapping s 
`41 and `42 by `4~ = {(v, `4~ (v)) I v E W},  1 < i < 2. Thus in the sequel we will 
represent the n-dimensional array production (W,`41,`42) also by writing A1 ---+ ̀ 42, 
i.e. {(v, `41 (v)) I e W} (v)) I v e W } .  

D e f i n i t i o n  2.6. An n-dimensional (generating) array grammar is a quintuple 

G = (n, VN, VT,#,P,{(vo, S)}),  

where VN is the alphabet of non-terminal symbols, VT is the alphabet of terminal 
symbols, VN M VT = ~, # ~ VN U VT; P is a finite non-empty set of n-dimensional 
array productions over VNUVT and {(v0, S)} is the start array (axiom)~ Vo is the start  
vector, and S is the start symbol. G is called A-free if every production in P is A-free. 

We say that  the array B2 E V *~ is directly derivable from the array B1 E V *~ in 
G, denoted B1 I-a B2, if and only if there exists an n-dimensional array production 
p = (W, `41, `42) in P such that  B1 [-p B2. Let ~-~ be the reflexive transitive closure 
of ~-a. Then the (n-dimensional) array language generated by G, Lg~, (G) , is defined 
by Lg~ (G) = {A I A E V~", {(v0, S)} I--* a `4} . The norm of the n-dimensional array 
g rammar  a is defined by I l a l l  = max {llpll I p e P } .  

An n-dimensional generating array production p = (W, `41, `42) in P is called 

�9 monotonic, if shape (A1) C shape (A2) ; 
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�9 strictly monotonic, if shape (.A2) = W and Iip[[ = 1; 

�9 #-context-free, if card (shape (A1)) = 1; 

�9 context-free, if p is monotonic, card(shape(.A~)) = 1, and .At ( ~ )  E VN; the 
condition .As (Ft~) E VN allows the representation of a context-free array pro- 
duction as (A, {(v,.A2 (v)) I v G W}) or A --+ {(v,.A~ (v)) ] v e W} instead of 
(W, { ( ~ ,  A)} U {(v, # )  [ v G W \ {a~}},  {(v, A2 (v)) I v �9 W}) ; if card (W)  = 
1, we only write A ~ A2 (~t~) ; 

�9 strictly context-free, if p is strictly monotonic as well as context-free; 

�9 regular , if either 

1. W = {fl~,v} for some v �9 U~, where Un = { ( i l , . . . , i ~ )1  ~--~k=l likl = 1}, 
and AS : {(~-~n, B) ,  (v, # ) } ,  .,4 2 = {(~-~n, a) ,  (v, C)},  with B, C G VN and 
a �9 VT (we also write B y #  -+ avC), or 

2. W = { ~ } ,  .An = { ( ~ , B ) } ,  A2 = {(a~ ,a )} ,  with B �9 VN and a �9 VT 
(we also write B ---* a). 

G is called an n-dimensional array grammar of type (gen, X ) ,  X �9 
{enum, # -  c f ,  mon, smon, c f,  scf, reg}, if every array production in P is of 
the corresponding type, i.e. a generating arbitrary (9en, enum), #-context-free 
(gen, # -  c f ) ,  monotonic (gen, mon ), strictly monotonic (gen, smon ), context-free 
(gen,cf),  strictly context-free (yen, scf),  respectively regular (gen, reg) n-dimen- 
sional (generating) array production; the corresponding families of A-free n-dimen- 
sional array languages are denoted by n(n,(gen,  X ) ) .  If for two types (gcn, X) ,  
(gen, Y)  with X, Y � 9  # - e f ,  mon, smon, c f ,  scf, reg} every array pro- 
duction of type (gen, X )  is also an array production of type (gen, Y ) ,  we write 
(gen, x )  c (gen, Y) or even X < Y. 

R e m a r k  2.1. Let G = (n, VN, VT, # ,  P, {(v0, S)}) be an n-dimensional (gen- 
erating) array grammar. If G is regular, strictly context-free, respectively strictly 
monotonic, then according to the previous definition of regular, strictly context-free, 
and strictly monotonic n-dimensional generating array productions we immediately 
see that  every array in Lg~ (G) must be 1-connected. If G is context-free or mono- 
tonic, then II.AII -< IIGII for all .4 �9 Lgr (G).  In the case of arbitrary n-dimensional 
array grammars, additional restrictive conditions on the n-dimensional array produc- 
tions in P are required in order to guarantee every n-dimensional array in Lg~ (G) to 
be I I G l l - e o n n e c t e d  or  e v e n  to be 1-connected as it is often required in the literature [5], 
[17], [19], [20]. In the following, we also consider the case of monotonic n-dimensional 
generating array grammars with norm 1 and denote the corresponding family of array 
languages generated by such array grammars by L (n, (gen, monl)) .  

Like in the string case, some of the families of array languages defined above form 
a strict hierarchy (compare with the results stated in [11], [12], [14]. 

P r o p o s i t i o n  2.1. (CtIOMSKY-Hierarchy of array languages) For all n �9 N, 
L (n, (gen, reg)) C L (n, (gen, scf)) C L (n, (gen, mon)) C L (n, (gen, enum)).  

Obviously, the inclusions 

n (n, (gen, scf))  C L (n, (gen, 8mon)) and L (n, (gen, c f ) )  C L (n, (gen, mon)) 
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are true, too, whereas the families L (n, (gen, cf)) and L (n, (gen, smon)) are incom- 
parable. Furthermore,  we have the inclusions 

L (n, (gen, cf))  C L (n, (gen, # - cf)) C L (n, (gen, enum)), 

whereas n (n, (gen, # - cf) ) and n (n, (gen, mon) ) are incomparable. 

An interesting feature of n-dimensional (generating) array grammars  is the fact 
that  even regular and context-free array productions make use of some special context, 
namely the context of blank symbols # .  This #-sensing ability (which is reduced to 
a min imum in the case of strictly context-free respectively strictly monotonic array 
grammars  in contrast to context-free respectively monotonic array grammars)  induces 
a relatively high generating power even of only regular two-dimensional-dimenensional 
array grammars  and yields some rather astonishing results, e.g. the set of all solid 
squares can be generated by a regular two-dimensional array g rammar  [20]. 

As many  results for n-dimensional arrays for a special n can be taken over imme- 
diately for higher dimensions, we introduce the following notion: 

D e f i n i t i o n  2.7. Let n, m E N with n < m. For n < m, the natural  embedding 
in,,~ : Z n --* Z "~ is defined by i~,m (v) = (v,~,~_=) for all v E Z=; for n = m we 
define i=,,~ : Z ~ ~ Z = by i,~,~(v) = v for all v C Z ~. To an n-dimensional array 
AM C Y +n with ,4 = {(v,AM(v))[v C shape(AM)} we assign the m-dimensional array 
i ,m (AM) = (v), AM(v)) I v e  hape (AM)}. 

3. Accepting Array Grammars: Definitions and 
Examples 

First we introduce the concept of accepting array productions and grammars:  

Def in i t ion  3.1. An n-dimensional accepting array production p over V is a 
triple (W, .42, AM1), where W C Z ~ is a finite set and AM1 and ,42 are mappings from 
W to Y U {~}  ; p is called A-free if shape (AM2) ~ 0. We say that  the array C1 �9 
V *~ is directly derivable (reducible) from the array C2 �9 V *" by the n-dimensional 
accepting array production (W, AM2, AM1) if and only if there exists a vector v �9 Z"  
such that  Ct (w) = C2 (w) for all w �9 Z" \ T~ (W) as well as C2 (w) = AMs (~-_. (w)) and 
C1 (w) = AM1 (T_, (w)) for all w �9 Tv (W) ,  i.e. the subarray of C2 corresponding to AMs 
is replaced by AM1, thus yielding C1; we also write C2 kv C~. For short, if (W, AM~, AMs) is 
a generating array production, then (W, .As, AM1) is the corresponding (dual) accepting 
array production; for the accepting array production (W, AM2, AM1) the dual generating 
array production is (W, AM1,AM2). 

An n-dimensional accepting array grammar is a construct 

G = S ) } ) ,  

where VN is the alphabet of non-terminal symbols, VT is the alphabet of terminal 
symbols, VN N VT = 0, # q~ VN U VI.; P is a finite non-empty set of n-dimensional 
accepting array productions over VN U VT, and {(v0, S)} is the final array (goal). G 
is called A-free if every production in P is A-free. 

We say that  the array B~ �9 V *~ is directly derivable from the array B2 �9 V *~ 
in G, denoted B2 ~-v B1, if and only if there exists an n-dimensional accepting array 
production p -- (W, AMs, AM1) in P such that  B2 ~-p B1. Let ~-~ be the reflexive transit ive 
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closure of ~-a. Then the (n-dimensional) array language accepted by G, Lace (G), is 
defined by Lac~ (G) = {A ] .4 E V~ n, A t-b {(v0, S)}}. 

For any X E {chum, # - c f ,  mon, smon, c f ,  scf, rag} the accepting array 
production (W, A2, A1) is said to be of type (ace, X ) ,  if the dual generating array 
production (W, .A1, ,42) is of type (yen, X ) .  G is called to be of type (ace, X ) ,  if every 
accepting array production in P is of the corresponding type. The corresponding 
families of A-free n-dimensional array languages are denoted by L (n, (ace, X ) ) .  

For any n-dimensional (generating respectively accepting) array grammar G = 
(n, VN, VT, # ,  P, {(v0, S)}), the corresponding dual n-dimensional (accepting respec- 
tively generating) array grammar G d = (n, VN, VT, ~,  F d, {(v0, S)}) is defined by 

pd = {(W, A2, A1) I (W, A1, A2) E P}.  

The following result is obvious from our definitions: 

L e m m a  3.1. I f  G is a generating (accepting, respectively) array grammar and 
G d is its dual accepting (generating, respectively) array grammar, then Lge~ (G) = 
L~c~ (G d) (and Lace (G) = Lge~ (Gd), respectively). Hence, for every n E g and for 
every X E {enum, ~ - c f,  mort, smon, c f ,  scf, rag} we obtain 

L (a c, X)) = L (n, (ge , X)) .  

Therefore, as in the string case we can also use the notation L (n ,X)  for both 
L (n, (acc, X) )  and L (n, (gen, X ) ) .  We shall also omit the subscripts gen and ace, 
respectively, in Lg~ (G) and L~c~ (G), respectively, if the derivation mode is clear 
from the context. 

4 .  C o n t r o l  M e c h a n i s m s  o n  A r r a y  G r a m m a r s  

In the following, we give the necessary definitions of ordered and programmed 
(graph controlled) array grammars and languages in the generating as well as in 
the accepting case. For detailed informations concerning these control mechanisms 
as well as many other interesting results about regulated rewriting in the theory of 
string languages, the reader is referred to [6]. 

Def ini t ion 4.1. An ordered (string) grammar is a construct 

Go = (VN, VT, (P, < ) ,  S) ,  

where VN and VT are disjoint alphabets of non-terminal respectively terminal symbols, 
S E VN is the start symbol, P is a finite set of (string) productions over VN U VT, and 
< is a partial order relation on the productions in P. For v, w E (VN U VT)* we define 
v ~-ao w if and only if there exists a production p E P such that w is the result of 
the application of p to v, whereas no other production q E P with q > p is applicable 
to v. With ~-* denoting the reflexive and transitive closure of the derivation relation Go 
[-ao the string language generated by Go is Lg~,~(Go) = {w E V~ I S ~-~o w} . 

A programmed (string) grammar (or graph controlled (string) grammar) with ap- 
pearance checking is a construct G p = ( VN , VT , ( R, Li , L I ) , S) ; VN and VT are disjoint 
alphabets of non-terminal and terminal symbols, respectively; S E VN is the start sym- 
bol; R is a finite set of rules r of the form ( l ( r ) :  p( l ( r ) ) , e ( l ( r ) ) ,~v  ( l ( r ) ) ) ,  where 
l(r) E Lab (Gp),  Lab (Gp) being a set of labels associated (in a one-to-one manner) 
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to the rules r in R, p (1 (r)) is a string production over VN U VT, cr (1 (r)) C_ Lab (Gp) 
is the success field of the rule r, and !P (l (r)) is the failure field of the rule r; 
L~ C Lab(Gp) is the set of initial labels, and L I C_ Lab(Gp) is the set of final 
labels. For r = ( l ( r ) :  p( l ( r ) ) ,a ( l ( r ) ) ,~ ( l ( r ) ) )  and v,w e (VN U VT)* we define 
(v, l(r)) ~-ap (w, k) if and only if 

�9 e i t h e r  p (l (r)) is applicable to v, the result of the application of the production 
p(l(r)) to is w, and k �9 (l (r)),  

�9 or  p (l (r)) is not applicable to v, w = v, and k �9 ~, (I ( r ) ) .  

The (string) language generated by Gp is 

L (ap) --~ {w �9 V~ I (S, lo) ~-ap (Wl,ll) ~-ap.:. (Wk, lk), k > 1, 
wj �9 (VN U VT)* and lj �9 Lab(Gp) for 0 < j < k, 
wk = w, 10 C Li, Ik �9 LS}. 

If the failure fields q~ (1 (r)) are empty for all r �9 R, then Gp is called a programmed 
grammar without appearance checking. If ~ (l (r)) = a (l (r)) for all r �9 R, then Gp is 
called a programmed grammar with unconditional transfer. 

An ordered (string) grammar, or a programmed (string) grammar, respectively, is 
said to be of type chum, mon, c f ,  cf  - A, or reg, respectively, if every production 
appearing in this grammar is of the corresponding type, i.e. an arbitrary, monotonic, 
context-free, A-free context-free, respectively regular production. For the types X �9 
{chum, mort, c f  , cf  - A, reg} , by 

L (gen, X ) ,  0 (gen, X ) ,  P~c (gen, X ) ,  P~t (gen, X ) ,  P (gen, X ) ,  

we denote the A-free (string) languages generated by grammars of type X and ordered 
grammars, programmed grammars with appearance checking, programmed grammars 
with unconditional transfer, and programmed grammars without appearance check- 
ing, respectively, of type X. 

In the following we list some of the most important results known [6], [8], [9], [15] 
for the control mechanisms defined above (for the sake of conciseness, we use U (X) 
instead of U (gen, X)): 

�9 L (X) = Y (X) for X �9 {reg, mon, chum} and Y �9 {O, P~c, Put, P} ; 

�9 L ( c f - A )  c P ( c f - A ) c P ~ c ( c f - A ) c L ( m o n ) ;  

�9 L ( c f - A )  c P = , ( c f - A ) C P ~ o ( c f - A ) C L ( m o n ) ;  

�9 P ( c f -  A) C_ P (c f )  C Pat(C f )  = L(enum); 

�9 0 (cf - A) C P=, (cf - A) C P~t (cf) C P~ (c f)  = n (chum); 

�9 L ( c f -  A) = L(c f )  C 0 (c f -  A) C_ 0 (c f )  C P~ (c f)  C n(enum).  

The definitions of ordered grammars and graph controlled grammars can im- 
mediately be taken over for accepting (string) grammars as well as for generating 
and accepting array grammars by taking accepting string productions or generating 
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and accepting array productions, respectively, instead of generating string produc- 
tions in the definitions given above, e.g. an ordered array grammar is a construct 
G = (n, VN, VT, # ,  (P, <) ,  {(Vo, S)}), where VN, VT, P, and {(Vo, S)} are defined as 
for an array grammar and < is a partial order relation on the array productions in P 
etc. 

An ordered array grammar (generating or accepting, respectively) or a graph con- 
trolled array grammar (generating or accepting, respectively) is said to be of type X 
if every array production appearing in this grammar is of the corresponding type X, 
too. 

Def ini t ion 4.2. For every X C {enum, ~ - c f ,  mon, smon, c f ,  scf, reg} 
and every 5 e {gcn, ace}, by L (n, (5, X ) ,  0) ,  L (n, (5, X ) ,  P ) ,  L (n, (5, X ) ,  P~t), 
L (n, (6, X),Pac)  we denote the A-free array languages described by ordered array 
grammars, programmed array grammars without appearance checking, programmed 
array grammars with unconditional transfer, and programmed array grammars with 
appearance checking, respectively, of type (5, X) .  

In the following we give some examples elucidating the control mechanisms defined 
above. 

E x a m p l e  4.1. According to [20], the set RH of hollow rectangles of thickness one 
over the one-letter alphabet {a} (with the left lower corner lying in the origin) cannot 
be generated by a context-free array grammar. Yet the following regular ordered array 
grammar G can generate RH, i.e. RH E L (2, (gen, reg), 0 ) .  

G = ( 2 , { S , A , B , C , D , E , F , Q } , { a } , # , ( P , < ) , { ( ( O ,  1 ) ,S )} ) ,  
~ #  A ~ r  A C a 

P = ]. S ~ a ' A ~ a , A # ~ a B ,  B # ~ a B ,  B # ~ a C ,  # ~ D '  

# ---~ D '  # --+ E ' D  a D a # E ~ E a ,  # E ~ F a ,  ~F __+ Q a , F ~ a } .  

The order relation < only consists of F --+ a < FF # ~ a Q , which guarantees that 

F --+ a is only applied when no blank symbol appears above the non-terminal symbol 

F, or otherwise the (forced) application of "~ --* Qa introduces the trap symbol Q. 

The derivation of a rectangle of side lengths n and m, n, m > 3, proceeds as 
follows: The left vertical line of the hollow rectangle is generated by first using the 

rule "~ --~ A and then using n - 3  times the rule "~ ~ A . After applying the r u l e  
D a 11 a 

A #  --+ aB, the upper horizontal line of the rectangle is generated by using m - 3  times 
the rule B #  ~ aB. The generation of the right vertical line of the rectangle starts 

C a 
with applications of the array productions B #  ~ aC and # ~ D ' whereafter 

D a D a 
we can proceed with repeated applications of # ~ D " By applying # --~ E 

the generation of the lower horizontal line is started, which proceeds by repeatedly 
applying # E  --+ Ea. After the application of # E  ~ Fa the final array production 
F ~ a can only be applied, if with the non-terminal F we have arrived exactly below 
the starting point of our derivation; otherwise the trap symbol Q is introduced by 



103 

:s t9 
the application of ~, --* a ' which is forced by the order relation < . Hence, we 

conclude 

L(G) = {{((O,j),a),((i ,n-1),a),((m- l,j + l),a),((i + l,0),a) l 
O< j < n - 2 ,  O<i <rn-2}  ln>_3 , m> 3} =RH. 

For the generation of the set SH of hollow squares with the left lower corner 
positioned in the origin (see [14]) regular array productions are not sufficient, i.e. 
SH can only be generated by a context-free graph controlled array grammar with 
appearance checking: 

Example  4.2. We consider the context-free graph controlled array grammar 
G = (2, {S, U, R, D, L, Q}, {a}, (R, {0}, {0}), {((0, 0), S)}) (with appearance check- 
ing), where P contains the labelled rules listed in Figure 1. 

) ) ~q ~ --~ a R ,{1},0 ; 1: V --~ a ,{2) ,0  ; 

(2: R#---~aR,{1,3} 0); ( 3 :  # # a D ) U -~ ,{4} O ; ' a ' 

/46: R~L ~-+aL'_+ La ,{5)'~) i{5},~ ; 15: D~+a~L ' 7 :  ~/~L -+ ,{6'~, {8}7} ';);," 

(8: L -+ a, {9} , O) ; (9: D--~a ,{0},0) .  

Figure 1. The rule set belonging to Example 4.2 

After using the initial rule 0, the generation of the hollow square of side length 
n > 3 proceeds as follows: By repeatedly using rules 1 and 2 in a loop, the left 
vertical line and the lower horizontal line grow in a synchronized manner. After the 
application of the sequence 3 and 4, the upper horizontal line and the right vertical 
line are grown in a synchronized manner by using the array productions 5 and 6 in 
a loop. Only if L has arrived just below D, the array production 7 can be skipped 
in the appearance checking mode without introducing the trap symbol Q, whereafter 
the derivation is finished by using the sequence of array productions 8 and 9. Hence, 
we conclude 

L(G) ~- {{((O,i),a),((i,n-1),a),((n- l,i + l),a),((i + l,O),a) l 
0 < i < n - 2 }  In _> 3) = SH, 

and therefore SH E L (2, (gen, scf), P~c). 
By replacing empty success or failure fields, respectively, in the rules above by 

the corresponding non-empty failure and success fields, respectively, we immediately 
obtain a graph controlled array grammar with unconditional transfer generating the 
same array language, i.e. S~ E L (2, (gen, scf), P~t), too. 

The previous two examples reveal an important difference between the applicabil- 
ity of a context-free string production to an underlying string and the applicability 
of a context-free array production to an underlying array: Whereas a context-free 
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string production A ~ w is applicable to the underlying string if and only if the 
non-terminal symbol A appears in this string, the applicability of a context-free array 
production (W, fl,1, ,42) with Jll (~in) = A to an underlying array not only depends on 
the occurrence of the non-terminal symbol A in the underlying array, but also on the 
"availability" of blank symbols in the neighbourhood of A on the relative positions 
v E W \ {fin}. This #-sensing ability is the basis of the some results proved in [14], 
i.e. in contrast to the string case, even #-context-free ordered array grammars can 
generate any recursively enumerable A-free array language. 

The following results directly follow from the definitions: 

L e m m a  4.1. For all n E N, for all derivation modes 8 E {gen, acc} , and for all 
types X,  Y E {cnum, # - cf, mon, smon, c f ,  scf, reg} with X C_ Y, as well as for 
all control types U E {P, Put, P~c, O} we have L (n, (6, X ) ,  U)C_ L (n, (6, Y), U). 

L e m m a  4.2. For all n E N, for all derivation modes 6 E {gen, ace}, and for all 
types X E { e n u m , #  - c f ,  mort, smon, c f ,  scf, reg} we have 

L (n, (8, X)) C_ L (n, (8, X) ,  P) C_ L (n, (8, X ) ,  P=c), 

L(n , (5 ,X))  C_ i (n , (5 ,  X),e~,t) C_ i (n , (5 ,  X),Pac) 

as welt as L (n, (6, X))  C i (n, (6, X ) ,  0 ) .  

L e m m a  4.3. For every n E N and for every X E {enum, ~ - c f ,  mon, smon, 
c f,  scf, rcg}, we have L (n, (gen, X),  0) C L (n, (gcn, X ) ,  Put). 

Proof. Let G = (n, VN, VT, # ,  (R, <) ,  {(v0, S)}) be an ordered generating array 
grammar of type X, and let Lab be the set of unique labels for the rules in R. 
We construct an equivalent graph controlled generating array grammar with uncon- 
ditional transfer of type X, G' = (n, VN U {F},  VT, # ,  (R', Lab, Lab), {(v0, S)}), in 
the following way: For each labelled rule r : (W, A1,A2) from R, r E Lab, with 
F (r) = {(r, i) l 1 _< i G k (r)} denoting the set of labels of the rules p~,i greater than 
r with respect to the order relation <, in R' we take 

((r, i ) :  pC, {(r,i + 1)}, {(r, i + 1)}), for 1< i < k (r) and 

((r,k(r) 4- 1): (W,.A~,,42),Lab, Lab), 

where we identify the labels (r, 1) and r. 
For any generating array production p in R, p = (W, .41, .A2), the corresponding 

failure production pe is defined by pe = (W, .41, Fw), where Fw = {(v, F) ] v E W}.  
Such a failure production pe therefore introduces the trap symbol F whenever it 
cannot be skipped in the sequence controlling the application of an array production 
from R. 

In the regular case, for the rules of the form r : A --~ a and of the form r : A v #  
avB, respectively, we need a slight modification of the construction given above: If 
the set F (r) contains a label identifying a production of the form A --~ b we simply 
can forget about the rule r. Otherwise, we only have to check the applicability of 
the rules greater than r of the form Au~ ---+ CuD, and therefore we can exclude 
all labels belonging to productions being not of this form Au#  ~ CuD from F (r) 
and then proceed as above with this reduced set of labels of productions greater 
than r. The corresponding failure production pe for p = Cu#  ~ cuD is defined by 
pe = Cu~  ~ cuF. [] 
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L e m m a  4.4. For every n E N and for every X E { e n u m , #  - c f ,  mon, smon, 
c f ,  scf, reg}, we have L (n, (acc, X ) ,  O) C_ L~c~ (n, (acc, X ) ,  P~t). 

Proof. Let G = (n, VN, VT, ~,  (R, <) ,  {(v0, S)}) be an ordered accepting array 
grammar of type X, and let Lab be the set of unique labels for the rules in R. 
We construct an equivalent graph controlled accepting array grammar with uncon- 
ditional transfer of type X, G' = ( n, VN U {F},  VT , # , ( R', Lab, Lab), {(Vo, S)}),  in 
the following way: For each labelled rule r : (W,,41, .42) from R with F (r) = 
{(r, i) ] 1 < i < k (r)} denoting the set of labels of the rules pT,i greater than r with 
respect to the order relation <, in R' we again take 

((r,i) " e r -Pr,i, {( ,i + 1) ) ,{ ( r , i  + 1)}) for 1 < i < k(r)  and 

((r, k (r) + 1): (W, A~, .A2), Lab, Lab), 

where we identify the labels (r, 1) and r. 
For any accepting array production in R, p = (W, A1, ~42), the corresponding 

failure production pe now is defined by pe = (W, As, MR), where A F = {(f~n, F)} U 
{(v,.42 (v)) [ v e (W \ {fin})}, i.e. at the position ~ ,  which is always occupied by 
a non-blank symbol, the trap symbol F is introduced instead of the original symbol 
A2 (f~n) in case the production pe has to be applied. [] 

Observe that in the accepting case, the proof also works for the regular array 
grammars. 

As in the string case (see [1], [2]), it is easy to see that generating and accepting 
programmed array grammars without appearance checking describe the same family 
of languages. Hence, we find: 

L e m m a  4.5. For every n G N and for every X E {enum, ~ - c f ,  mon, 8rnon, 
c f ,  scf, reg}, we have n (n, (gen, X ) ,  P) = L (n, (ace, X ) ,  P) .  

Proof. The results directly follow from the duality of generating and accepting 
array productions, respectively, and the corresponding derivation mechanisms: 

Let G = (n, Vlv, VT, # ,  (R, Li, LI) ,  {(v0, S)}) be a graph controlled generating ar- 
ray grammar of type X without appearance checking. Then we can construct a 
graph controlled accepting array grammar of type X without appearance checking 

d d G d = (n, VN U {F},  VT, # ,  (R d, Li, L f ) ,  {(v0, S)}) ,  where F is a new non-terminal 
symbol ~ VN U VT U {#} .  We take a new accepting (regular) array production a ~ F 
and assign a new label f to it, i.e. R e contains ( f  : a ~ F, ~, ~). Moreover, we define 
L} = {f} and L d = {s I r e a(s)  for some r e L f} .  For ( r :  (141, A1,A2),c~(r),0) 
in R we take ( r :  (W, A2,A1) ,a  - l ( r )  ,0) into Rd; the set c~ -1 (r) is defined by 
cr -~(r) = { s l r � 9  for r ~ Li and ~r - l ( r )  = { s l r � 9  for r �9 L~. 
Hence, to every (generating) derivation in G, 

({(vo, S)}, r0) ~ ... (S~-~, r~-~) ~ (S~, v~) 

of a terminal array Bm �9 V +~ with r0 �9 L~ and rm �9 L] there corresponds the 
(accepting) derivation in G d 

(Bm,r,~-l) ~-ce (13,~-x,rm-2) ~ad ... (Bl,r0)t-on ({(v0,S)} , f ) .  
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A similar construction allows us to build up a graph controlled generating array 
grammar of type X without appearance checking for a given graph controlled accept- 
ing array grammar of type X without appearance checking. [] 

In the string case, the analogue of the following result (with the same idea of a 
purely structural proof) has been shown in [3]. 

Lemrna  4.6. For every n C N and for every X E {enum, ~= - c f ,  mon, of}, 
L (n, (gen, X ) ,  P~) C n (n, (acc, X ) ,  P~).  

Proof. Let G = (n, VN, VT, #,  (R, Li, n l ) ,  {(v0, S)}) be a graph controlled gener- 
ating array grammar of type X. Then we can construct a graph controlled accepting 
array grammar of type X 

= (R,  L,, {(,o, S)}), a d 

R d = R ' U R " , L  d = {s ' , s t ' l r  e a(s) for some r e LI},Ldl = {f', f " } ,  

where for ( r :  (W, A1, ,42) ,or (r),  ~ (r)) in R we take 

(rt : (W, ~2, r (if-1 (r))t U (~-1 (r))t', O) into ~! and 
(r": (W, A,, A,) ,  0, ( a - '  (r))' U (T- '  (r))") into R"; 

moreover, we take ( f ' :  F --+ F, 0, 0) into R' and ( f " :  F ~ F, 0, 0) into R"; the sets 
a -1 (r) ,  ~ -1 (r) are defined by 

cr - l ( r )  -- {s ] r e c r ( s ) }  a n d ~ - l ( r )  = {s Ir  e~p(s)} for r ~L~ and 

cr - l ( r )  = { s l r e a ( s ) } U { f }  a n d ~ - ' ( r ) = { s l r � 9  f o r r � 9  

For any set of labels L we define 

L'= { s ' l s  �9 L}, n"= {s" I s �9 n}. 

With the accepting array productions assigned to primed labels we simulate the 
dual generating array production in the reverse direction, whereas when choosing a 
rule with a doubly primed label we can only proceed (without changing the current 
array) if the corresponding generating array production could not be applied. [] 

Observe that the proof method used in the proof of the preceding lemma does not 
work for the types smon, scf, and reg, because the productions (W,.41, A1) we use 
are not of the desired type. 

In the regular case, the families of array languages L(n,(gen,  reg),O) and 
L (n, (acc, reg), P~) as well as L (n, (gen, reg), P~) and L (n, (dec, reg), O) are even 
incomparable for each n ~ 2, which we shall prove next. 

L e m m a  4.7. For each n > 2, 

i2,~ ( RH) �9 L (n, (gen, reg) , O) \ ( L (n, (acc, reg), P~) U L (n, scf) ) . 

Proof. According to Example 4.1, i~,~ (Ru) G L (n, (gen, reg), 0 ) ,  because by 
replacing every vector v occurring in the two-dimensional ordered array grammar 
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there by the corresponding n-dimensional vector i2,n (v) we immediately obtain an 
n-dimensional ordered array grammar generating i2,~ (RH). 

On the other hand, no n-dimensional accepting graph controlled array grammar 
with appearance checking can exist that describes i~,~ (RH) : 

After the first derivation step the underlying array contains exactly one non- 
terminal symbol. The rectangle is cut at some position, yet with accepting array 
productions we cannot check the closure of the line to both directions from this start- 
ing position, hence if we proceed in one direction from the starting point, even the 
control mechanism of programming cannot guarantee that we close the line at the 
end of the analysing procedure. A usual pumping argument shows that the last of 
the four lines of the rectangle need not be analysed in total, which would allow the 
acceptance of arrays not in RH; the details of this pumping argument are left to the 
reader. 

As we proceed along a single line when analysing a rectangle, even by using strictly 
context-free accepting array productions we can follow the argumentation in the pre- 
ceding lines and conclude RH ~ L (2, (ace, sc f )  ) . [] 

On the other hand, the arguments used in the previous proof do not carry over 
to ordered array grammars with regular accepting array productions as well as array 
productions of the form 

{((0, 0 ) ,A) ,  (v, #)}  ~ {( (0 ,0) ,B) ,  (v, #)} 

for some v G Z 2 with IIvH = 1, i.e. the construction in the following example using 
only one rule of this special form already allows us to generate RH : 

E x a m p l e  4.3. The set -RH of hollow rectangles of thickness one over the one- 
letter alphabet {a} (with the left lower corner lying in the origin) can be described 
by the following context-free ordered accepting array grammar G : 

G 

P = 

(2, {,5', A, B, C, D, E, F, Q}, {a}, #, (P, <), {((0,1), S)}), 

---+ -"+ , aB --* A#, aB --+ B~=, 
a S ' a 

a C a D a D 
a C - - + B # ,  D --* # '  D ~ # '  E ~ ~ : '  

Ea---+~=E~ Fa-- -+~E,  #F ---r ~ , a - - ~ F } .  

A~ 
The order re la t ion< only consists o f F a ~ # E <  ~ --* ~ . The ru led--*  F 

initiates the parsing process; this rule can only be applied once at the first step of the 
derivation, otherwise the goal {((1,0), S)} cannot be derived. 

In the second derivation step we have to apply the rule F a  ~ # E ,  which is 

supervised by the rule ~ --~ ~ introducing tile trap symbol Q, which guarantees 

that above the starting position indicated by the generation of the symbol F we will 
find a symbol a at the end of the derivation. 
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The remaining rules accomplish the analysis of the array just in the opposite 
direction as the generation of the same array was described by the corresponding 
dual rules in the ordered regular array grammar in Example 4.1. In sum, we obtain 
L (G) = RH, i.e. we conclude RH e L (2, (acc, c f ) ,  0 ) .  

In fact, taking into account the duality of these two array grammars, the only 
difference between the ordered accepting array grammar in this example and the 
ordered generating array grammar is that here we have to use the (context-free but 

non-regular) blank-sensing trap rule ~F ~ ~ instead of the (regular generating) 

Observe that Lemma 4.6 is also valid for an extended regular case where we 
admit array productions of the form {(a,~, A), (v, ~)} ~ {(f~, B) ,  (v, #)},  since 
we then can simulate a generating rule ( r :  (W, "41, "42) , ~ (r) , ~' (r)) with "41 = 
{(am, B) ,  (v, ~)}, "42 = {(am, a), (v, C)}, via r' aald r" as de~ned in the proof of 
Lemma 4.6, because now the array production (W, .41, .,41) used in r" is of this new 
form. 

Also the programmed use of strictly context-free accepting array productions al- 
lows us to accept RH : 

Exa m ple  4.4. The set RH of hollow rectangles of thickness one over the one-letter 
alphabet {a} (with the left lower corner lying in the origin) can be accepted by the 
following strictly context-free graph controlled accepting array grammar G without 
appearance checking: 

G = (2, {S, A, B} ,  {a}, # ,  (R, {1}, {10}), {((0,1), S)}) 

with R containing the rules listed in Fig. 2. 

(1:  a - ~  S , { 2 } , r  

: s --' # ' { 6 } '  ; 
a S 

(9: . s  ~ s # , { 1 0 } , ~ ) ;  

(2: s~  ~ # s ,  {3} ,~ ) ;  
(4: Sa ---+ #S ,{5} ,0) ;  

(6: a -~ A, {5, 7} ,  0); 

( s :  BS~S#,{S,9},O); 
( S ~ '{1~176 ) 

10: A -+ 

Figure 2. The rule set belonging to Example 4.4 

With each symbol a consumed by rule 2 on the lower horizontal line, a symbol B 
arises on the upper horizontal line, which symbol afterwards is consumed by rule 8. In 
the same way, a symbol A arises on the left vertical line with each application of the 
rules 5 and 6, which then is consumed by an application of rule 10. In this way we can 
control the corresponding lengths of the horizontal and the vertical lines, respectively. 
In sum, we obtain L (G) = RH, i.e. we conclude RH E L (2, (acc, sef) ,  P) .  
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E x a m p l e  4.5.  The set L 1 of lines of thickness one over the one-letter alphabet  
{a} with the starting point lying in the origin and ending with a free end can be 
defined by being generated by the following context-free array grammar  G : 

G = (2, {S} , {a} , # ,  P, {((0, 0) , S)}) , 
P = {{((0, 0) , S) , (v, # )}  ~ {((0, 0) , a) , (v, S)} Iv �9 U4}U 

{{((0, 0) , s)} u {(~,#) I v �9 u~ \ {~}} -~ 
{ ( ( O , O ) , a ) } U { ( v , # ) ] v C V 4 \ { u } ) l u � 9  where 

U4 = { ( 0 , 1 ) , ( 0 , - 1 ) , ( 1 , 0 ) , ( - 1 , 0 ) } .  

On the other hand, the array language generated by this context-free array gram- 
mar  G can also be accepted by an ordered regular array grammar  G ~ the construction 
of which is rather obvious but tedious and therefore left to the reader. 

L e m m a  4.8. For each n >_ 2, 

i2,n (LIF) �9 (L (n, (acc, reg) ,  O) n L (n, c f)) \ L (n, (gen, reg), P~).  

Proof. From the preceding example we immediately infer 

i2,~ (LIE) e ( L (n, (acc, reg) , 0) N L (n, cf) ) . 

A pumping argument  shows that  i2,~ (L~) ~ L (n, (gen, reg), P~c). The details are left 
to the reader. [] 

We even conjecture that  

i2,~ (L~) �9 n (n, (gcn, smon)) \ L (n, (gcn, scf) ,  P~).  

Moreover, we conjecture that  the array language i2,~ (LF) ,  where LF is the ar- 
ray language from L (n, (gen, c f ) )  defined in the following example, even is not in 
L (n, (gcn, smon), P~).  So far proofs of these conjectures remain as open problems. 

E x a m p l e  4.6.  The array language LF containing arrays representing an arbi trary 
number  of lines starting in the origin and ending with free ends is generated by the 
following context-flee array grammar:  

G = (2, {S} , {a} , # ,  P, {((0, 0) , S)}) , 
P = { { ( ( 0 , 0 ) , S ) , ( v , # ) }  --~ { ( ( 0 , 0 ) , a ) , ( v , S ) }  Iv e U4}U 

{{((0, 0), s)} u {(v, # )  I v �9 u4 \ {u}} 
{((0, 0), a)) u {(v, #)  I ,  �9 u4 \ {~)) I u �9 u~) u 
{{((0,0) , s ) , ( v , # ) )  -~ { ( (0 ,0 ) , s ) , (v ,S ) )  Iv �9 g~) 

Most of the examples elaborated above cannot be taken over to the one-dimensio- 
nal case. As a consequence, in the one-dimensional case, some more families of array 
languages collapse into one class: 

T h e o r e m  4.1. For every U �9 {0,  P, P~, P~c} , we have 

L (1, reg) = L (1, (acc, reg), U) = L (1, (gen, reg), U) C L (1, scf) 
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Proof. Obviously, L (1,reg) C_ L (1, scf). The strictness of this inclusion fol- 
lows from the fact that one-dimensional arrays generated by a regular array gram- 
mar can grow only to the left or to the right from the start position, whereas 
strictly context-free array grammars can grow the array to the left as well as to the 
right; hence, e.g. { { ( ( - i ) , a ) l l < i < k } U { ( ( j ) , a ) 1 0 < j < m } l k > 0 ,  rn>_0} �9 
L (1, scf) \ n (1, reg). Therefore, it only remains to prove that we have L (1, reg) D_ 
L (1, (5, reg), P~c) for 5 �9 {gen, acc}. 

Yet these inclusions can be proved by the standard techniques known from the 
string case, i.e. all we need for the control mechanism can be stored in the single non- 
terminal of the intermediate sentential forms together with the information to which 
side from the start position the array is grown. The technical details are obvious and 
therefore left to the reader. [] 

When considering equivalence classes of arrays, we even obtain (see [I2]). 

Coro l la ry  4.1. For every U �9 {O,P,P~t,P~c} , we have 

[L (1, reg)] = [L (1, (acc, reg), U)] = [L (1, (gen, reg), U)] = [L (1, scf)]. 

Pro@ The inclusion [L (1, scf)] C [L (1, reg)] was proved in [121. The remaining 
statements then follow from Theorem 4.1. [] 

For families of strictly context-free one-dimensional array languages we obtain the 
following inclusions implied by the results in [13], [14] and some results previously 
proved in this paper. 

T h e o r e m  4.2. For every U �9 {0, P, P~, P~c} we have 

L (1, scf) 
L (1, scf) 
L (1, scf) 
L (1, scf) 

C L (1, (gen, scf),  U) C L (1, smon) = L (1, ?/'~Onl) a L (1, mon), 
C L (1, (ace, scf),  U) C_ L (1, ~mon), and moreover, 
C L(1,(gen, sc f ) ,P)  C L(1,(gen, sef),P~c) C L(1,monl) ,  
C L (1, (acc, scf),  O) C_ L (1, (acc, scf),  Put) 
C_ L(1,(acc, scf),P~c) C L(1,monl).  

Pro@ The strictness of the relation L (n, (gen, scf ) , U) C L (n, mon) was proved 
in [13], where the array representation of the context-free string language 

L = {xcxndycyRlx, y �9 {a,b} +} 

(x R is the mirror image of x) was shown to be in L (1, mon) \  L (1, (gen, sc f ) ,  U); 
from the proof given there it is clear that even for any n �9 N we have 

il,n (L) �9 L (n, mon)\  L (n, (gen, ~cf), U), 

which concludes the proof. [] 
In the string case, the analogue of the following result has been shown in [1]. 

T h e o r e m  4.3. For every n �9 N, we have L (n, mon) C L (n, (ace, c f ) ,  0) .  
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Proof. Combining the KUROI)A-like normal form result for generating monotonic 
array grammars [14] with Lemma 3.1, we can assume that an arbitrary monotonic 
array language is given by a monotonic accepting array grammar 

a = (n, VN, VT,#,P,{(Vo, S)}) 

which only contains accepting array productions of one of the following forms: 

1. a ~ X, where X E VN, a E VT; 

2. Y --~ X, where X E VN, Y E VN; 

3. {(9~n, B) ,  (v, C)} --+ {(fin, A), (v, #)} ,  where A, B, C e VN; 

4. {(9tn, B) ,  (v, #)} ~ { ( ~ ,  d ) ,  (v, #)} ,  where A, B e VN; 

5. {(~n,B),(v,C)} ~ { ( ~ , d ) , ( v , D ) }  , where A , B , C , D  E VN. 

As the first four kinds of rules are already accepting context-free, we only 
have to show how the inherent non-context-free array productions of the form 
{(fin, B) ,  (v, C)} --~ {(~2~, A), (v, D)}, where A, B, C, D �9 VN, can be simulated by 
using only context-free array productions together with the control mechanism of an 
order relation: 

For each labelled array production r : { ( ~ ,  B),  (v, C)} ~ {(gt~,d), (v, D)}, 
r �9 Lab, we introduce the following accepting array productions: 

1. B ~ [B, r, 0] less than (supervised by) [X, s, i] ~ F for all X �9 VN, s �9 Lab, 
i �9 {0,1,2}; 

2. C ~ [C, r, 1] supervised by [X, s, i] -+ F 

for all X �9 VN, s �9 Lab, i �9 {0, 1,2} such that (X, s, i) # (B, r, 0) ; 

3. [B, r, 0] ~ [a, r, 2] supervised by: 

[B, r, 0] v Y  --+ F v #  for all Y �9 VN U VT U {#},  

[B,r,O]v[X,s,i] -* F v #  for all X �9 Vy, s �9 Lab, i �9 {0,1,2} such that 
(X , s , i )  # (C,r, 1), 

[X,s,i] --+ F for all X �9 VN, s �9 Lab, i �9 {0,1,2} such that (X,s,i)  q~ 
{(B, r, 0), (C, r, 1)} ; 

4. [C, r, 1] -~ D supervised by: 

[C,r, 1] ( -v)  Y ~ F ( - v ) #  for all Y �9 VN U VT U {#},  

[C,r, 1] ( -v)[X,s , i ]  ~ F ( - v ) #  for all X �9 VN, s �9 Lab, i �9 {0,1,2} such 
that (X, s, i) # (A, r, 2), 

[X,s,i] --~ F for all X �9 VN, s �9 Lab, i �9 {0,1,2} such that (X,s, i)  q~ 
{(A, r, 2), (C, r, 1)} ; 

5. [A, r, 2] --+ A supervised by IX, s, i] --* F 

for all X �9 VN, s �9 Lab, i �9 {0, 1, 2} such that (X, s, i) ~ (A, r, 2). 
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Hence, each derivation step in G using an accepting array production of the form 
{ ( ~ ,  B) ,  (v, C)} ~ {(gt~,A), (v,D)} is simulated by a sequence of five context- 
free accepting array productions in the ordered accepting array grammar constructed 
above: By the array productions B --+ [B, r, 0] and C ~ [C, r, 1], respectively, two 
positions in the underlying sentential form are marked. By the supervising array 
productions in 3 it is guaranteed that we can only proceed without generating the 
trap symbol F if in the first two simulation steps a subarray of the desired form, i.e. 
{(w, [B, r, 0]), (w + v, IV, r, 1])}, has been marked. No more than two symbols can be 
marked at the same time without finally enforcing the generation of the trap symbol F. 
By the array productions [B, r, 0] ~ [A, r, 2], [C, r, 1] ~ D, and [A, r, 2] ---* A in 3, 4, 
and 5 we can finish the simulation of the array production labelled by r, thus yielding 
the subarray {(w, A), (w + v, D)}. The supervising array productions guarantee the 
correct sequence of applying these simulating accepting array productions. [] 

R e m a r k  4.1. As we shall show later in this paper, we even have 

L (n, mon) = L (n, (acc, c f ) ,  0 ) .  

By also allowing accepting array productions of the form # ---* A, A E VN, in the 
normal form given above, we immediately obtain a normal form for arbitrary accepting 
array productions and grammars, respectively, as well as according to the definition 
of the type :~-context-free, we readily obtain 

L (n, enum) = L (n, (acc, ~ - c f ) ,  0 ) .  

In [14] it was already proved that (for n = 2, yet the result holds true for every n ~ 1) 
we have L (n, chum) = L (n, (gen, ~ - c f ) ,  0 ) .  

Hence, according to the thesis of Turing and Church, for the arbitrary case we can 
already state (also using Lemmas 4.2, 4.3, and 4.4 as well as results from [14]): 

L (n, enum)= L (n, (5, # - c f ) ,  U) 

for all 5 C {gen, ace} and V E {0, P~, Pa~}. 

In the monotonic accepting case, so far we have shown (see Lemma 4.2, Lemma 4.4, 
and Theorem 4.3) that 

L (n, mon) C_ L (n, (acc, c f ) ,  O) C L (n, (ace, c f ) ,  Put) C_ L (n, (acc, c f ) ,  P~) .  

In order to show that all these inclusions are equalities, it only remains to show 
the following lemma: 

L e m m a  4.9. For every n C N, L (n, (acc, mon),  Par) C n (n, mon).  

Proof. Let G = (n, VN, VT, # ,  (R, L~, LI) , {(v0, S)}) be a graph controlled accept- 
ing monotonic array grammar, and let Lab be the set of unique labels of the rules in 
R as well as Uc = {v e Z~]0  < IIvH ~ IIGH}. Then we can construct an equivalent 
monotonic generating array grammar G' = (n, V/v , VT, ~, P, {(v0, S)}) with 

V~v -= {[x,Y,s,u,U] [ x E VT,Y E VNU VTU { # )  ,u E Ua, O C U C UG, 
s C { A , I , F }  U {(p,d) I P E nab, d E { Y , N , C , D , R } } }  U {S} 

and P containing the following array productions: 



1. S --~ [a, a, A, ft, ,  0] for all a �9 VT. 
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Such an array production starts the non-deterministic generation of an arbitrary 
array, which is continued by the array productions in 2. 

2. { (~ ,~ , [a ,a ,A ,u ,U]) , (v ,# )} - - -*  

{(gin, [a, a, A, u, U O {v)]), (v, [b, b, I , - v ,  O])} 

for all a, b e  VT, u e  Uc U {~,~}, v �9 Ua, @C U C  Ua. 

The quintuples of the form [x, Y, s, u, U] contain the following information: 

(a) x is the symbol that finally has to appear in the terminal array generated 
by Gq 

(b) Y is the current symbol at this position during the simulation of G by G'. 

(c) The state s describes the current phase of the simulation at the underlying 
position. 

(d) The vector u points to the relative position from which the underlying 
position has been reached first by an array production in 2 (except for the 
starting position v0, which therefore contains fl~ as fourth component). In 
this way, a connectivity tree (with the root in v0) is codified. 

(e) The set U contains the relative positions of the children (successors) of the 
underlying position in this connectivity tree. Hence the fourth and the fifth 
component allow us to go forth and back in the connectivity tree. 

3. { (~ ,~ , [a ,a ,d ,u ,U]) , ( v , [b ,b , I ,w ,W]) ) - - -*  

{(n~, [a, a, I, u, U]), (v, [b, b, A, w, W])} 

for all a, b �9 VT , u, w �9 UG U {f~},  v � 9  UG, O C_ U, W C_ UG. 

In the first phase, when generating an arbitrary array by using the array produc- 
tions in 1,2, and 3, exactly one position in the current sentential form carries tbe 
active state A, whereas all the other non-blank positions carry the non-active 
state I. The array productions in 3 allow us to move the active state from one 
non-blank position to another one. 

4. [a,a,A,  gt,~,U] ---+ [a ,a , (p ,$) ,an ,U]  

for all a �9 VT, 0 C. U C UG, p �9 L~, ~ �9 {]I, N}. 

The simulation of G is started by introducing an initial active state (p, 5), which 
can be moved around by the array productions in 5. 

5. { (g t ,~ , [a ,X , (p ,~) ,u ,U]) , (v , [b ,Y , I ,w ,W]) ) - - -+ 

[a, x ,  x, v]),  (v, [b, y, (p, w, w])} 
for all a,b �9 VT, X , Y  �9 VNUVTU{(r  , u , w  �9 U a U { f ~ J  , v �9 Uo, 0 C_ U, W C 
Uc, p �9 Lab, ~ �9 {Y, g } .  

6. {(a . ,  [aa,,, Xen, (p, Y),  w~,,, We,,D} U 

l v �9 v }  
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. 

. 

{(~., [an., Yn., (q, 6), w.~ w~~ u 

{(v,[av, Y~,X, wv, wd)  I v �9 v} 

for all a. �9 VT, X.,Y~ �9 VNUVTU {#}, w. �9 Ua U {~..}, ~ C_ W. ___ Ua, 

for v �9 V U {an}, p �9 Lab, q �9 o(p) ,  6 �9 {Y,N}, 

and the rule labelled with p is 

{(v, X,)  I v �9 V U {aN}} -* {(v, ~ )  I ~ e V U {a~}} ,  an ~ Y. 

If the application of the array production p has to be simulated, the active state 
(p, Y) is moved to a suitable position from which the simulation is possible. 

[a, X, (p, N) ,  an, U] ---* [a, X, (p, C),  ~ ,  U] 

for all a �9 VT , X �9 VN U VT U { # } , O C_ U C Ua, p �9 Lab. 

The check for the non-applicability of an array production p (which non- 
deterministically has been guessed by introducing the active state (p,N))  is 
started at the position v0 by the suitable array production in 7. From there, the 
state (p, C) is propagated forward to all non-blank positions along the connec- 
tivity tree by the array productions in 8. 

{(a~, [.~o, xn . ,  (p, c ) ,  w~~ w n j ) }  u 

{(~, [~. ,x. ,  I ,w. ,  wd)  I ~ �9 wn.}  -~ 

{(an, [an,,, Xn,,, (p, C),  wn,,, Wfl,,]) } U 

{ ( v , [ a . , X . , ( p , C ) , w . ,  W.]) l v �9 Wn.}  

for all a~, �9 VT, X .  �9 VNU VT U {~},  w. �9 Ua U {~/~}, 0 C W. C Uc, 

for v �9 Wa. U {a~}, p �9 Lab. 

{(aN, [ac~., Xr~,,, (p, C),  w~,~, Wn,,]) } U 

{(v,[a.,x.,~.,~.,Wd) lv e ~ }  u {(v,#)  I v e �89 -~ 

{(a,~, [an,,, Xn,,, (p, D),  wn,,, Wn,,]) } U 

{(v, [a~, X. ,  ~., ~.,  Wd) I v �9 Y~} u {(v, #)  I v �9 � 89  

where V1 and V2 are disjoint finite subsets of Z ~, V1 U �89 C Ua, 

for all a. �9 VT ) X .  �9 VN U VT U { # } , wv ~ UG U { ~n } , ~ Z Wv Z UG, 

for v �9 V~ U {a . } ,  p �9 Lab, 6. �9 { (p ,C) , (p ,D)} ,  

and the rule labelled with p is of the form 

{(v, Z,,) I v �9 Vl U �89 U {a , , } }  ~ { ( v , ~ )  I " e V, U �89 U {a , , } } ,  

Z.,Y. �9 VNU VTU { # }  for v e V~ U �89 U {a,,} , 

but not of the form 

{(v,X~,) I v �9 V, U {a,,}} U {( , - , ,#) Iv �9 �89 

{(v, ~ )  I .  �9 v, u �89 u {a, ,}} .  
At each position, from the state (p, C) the state (p, D) is generated if the array 
production p cannot be applied here. 
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10. [a,X,(p,D),%0]---+ [a,X,(p,R),u,O] 

for all a E VT, X E V N U V T U { # } ,  u E UaU {a~}. 

From the leaves of the connectivity tree (indicated by the empty set as the fifth 
component), the information of the non-applicability of p is propagated back to 
the root at position v0 by the array productions 10 and 11. 

11. {(f~,  [an., Xe. ,  (p, D) ,  we., W~.])) U 

{(v, [ao,xv, (p,R) l v c - +  

xa.,  (p, R), u 

{(v, [a,,Xv,I,w~,W~]) l v E W a . }  

for all a~ E VT, Xv E V N U V T U { ~ } ,  wv E UG U {~n}, {~ C_ Wv C_ UG, 

for v E Wen U { ~ } ,  p E Lab, Wan r 0. 

12. [a,X,(p,R),f~n,U]--~ [a,X,(q,6),f~n,U] 

for all a E VT, X E VN U VT U {--ff:} , O C U C UG, 

p E Lab, q E r ~ E { Y , N } .  

At the root, i.e. at position v0 marked with the fourth component being ~ ,  the 
successful check for the non-applicability of p allows us to guess the next active 
state (q, 6), where q has to be from the failure field ~o (p). 

13. { ( ~ ,  [an.,S, ( p , ~ ) , ~ , W e . ] ) }  U {(v,[av,#,I,w~,,W~,]) I v E We,,} ----+ 

u T v e 

for all a.  E VT, w,, EUG, 0 C W,, CUa,  for v E We. U { ~ } ,  

p E L S, ~ E {Y,N}. 

14. {(a~,[ae,~,(C,F,w~,~,Wa.])} U {(v,[a~,,#,I,w~,Wv]) ] v G Wf~,,} -+ 

for all a .  E V~., w~ E Ua, ~ C_ W. C_ Ua, for v 6 Wa. U {~ .} .  

When we reach a final state, indicated by the active state (p, f) with p E L I ,  we 
can initiate the generation of the terminal array by applying an array production 
13, provided that at position v0 the third component is S, by introducing the 
active symbol F and then continue with the array productions in 14, provided 
that at every other position the third component is # .  This terminating phase, 
indicated by the state F, successfully ends at the leaves of the connectivity 
tree (which have the empty set as fifth component) if and only if we first have 
successfully guessed the initial array generated by the array productions 1,2, and 
3, and then have successfully simulated an accepting derivation of the array in G 
by G' finally obtaining the array {(v0, S)} encoded in the third components. [] 

Hence, for the monotonic case we have proved that for every n E N and every 
U E {O,P~,,,P~,~}: 

L (n, mon) = L (n, (acc, c f ) ,  U) = r (n, (acc, mon),  U) = L (n, (gee, mon),  U). 
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Finally, let us mention that the proof of Lemma 4.7 given above is considerably 
more involved than its analogue in the string case, where a simulation of non-erasing 
grammars by linear bounded automata is quite obvious. 

Strictly monotonic array grammars cannot check for the context of blank symbols 
as monotonic or even context-free array grammars can do by using array productions 
like 

{(a~, A), (v, #)} -+ {(a~, B) ,  (v, # ) } ,  

which were inevitably used in the previous proofs. Surprisingly enough, appearance 
checking can overcome this difficulty when we restrict ourselves to array grammars 
with norm 1, which is shown in the following lemma: 

L e m m a  4.10. For every n E N, if G is an n-dimensional monotonic generating 
or accepting array grammar with IIGI[ = 1, then we can construct an n-dimensional 
ordered strictly monotonic generating or accepting, respectively, array grammar G ~ 
with []G'I[ = 1 such that L (G') = L (G).  

Proof. Let G = (n, VN, VT, # ,  P, {(v0, S)}) be a generating or accepting mono- 
tonic array grammar in normal form (see Theorem 4.3). Then we construct 
an equivalent ordered monotonic generating or accepting array grammar G' = 
(n, V/v, VT, # ,  (P, <) ,  {(v0, S)}), with L (G') = L (G) by eliminating the rules r of 
the form {(f~, A),  (v, #)} --+ { ( ~ ,  B) ,  (v, ~ )} .  We replace such a rule by the follow- 
ing set of rules: 

1. A ~ A~ supervised by 

Xq --* F for all X C VN and all q that are labels of a rule of the form above; 

2. A, ~ B supervised by 

{ ( f~ ,A , ) ,  (v,X)} ~ {(a~, F) , (v, F)} for all X E VN U VT (which inevitably 
destroys the normal form). Observe that the newly introduced array productions 
are of the desired type. o 

Summarizing some of the most important results elaborated in this paper, we 
can state the following theorem (for the string case, analogous results concerning the 
accepting mode of derivation were stated in Theorem 3.3 and Corollaries 3.5 and 4.8 
in [1]): 

T h e o r e m  4.4. For every n E N and every U E {0 ,  P~t, P~} ,  we have 

L (n, chum) = L (n, (gen, # - c f ) ,  U) = L (n, (ace, # - c f ) ,  U) ; 
L (n, mon) = L (gen, mon), U) = L (n, (acc,. on), U) ; 
L (n, mon) = L (n, (ace, c f ) ,  U) D_ L (n, (gen, c f ) ,  U).  

5. F i n a l  R e m a r k s  

Several problems for accepting array grammars with various control mechanisms 
have remained open in this paper, hut some problems for generating array grammars 
with various control mechanisms are still open, too. 

In [10], we discussed how to interpret generating array grammars in an analysing 
manner for character recognition purposes. This is done in the following way: 
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1. productions are read from left to right, i.e. we use the generating rules as they 
are given, indeed, 

2. a production is applicable if the result of the derivation step still matches the 
given pattern. 

Point (2) allows to prune subcases which can never lead to a complete match with 
the given pattern, hence reducing the non-deterministic choices inherent in Chomsky- 
like grammars. In this way, we can accelerate the derivation considerably. Observe 
that there is a crucial difference between this interpretation of an analysing grammar 
and the accepting grammars discussed in this paper. It is not obvious how to use the 
matching interpretation described above when applying the accepting grammars in 
the sense introduced in this paper. This remains as an interesting theoretical prob- 
lem with possibly significant impact on practical algorithms for syntactical pattern 
recognition. 
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A b s t r a c t .  Motivated by natural language analysis we introduce restart- 
ing automata with rewriting. They are acceptors on the one hand, and 
(special) regulated rewriting systems on the other hand. The computa- 
tion of a restarting automaton proceeds in cycles: in each cycle, a bounded 
substring of the input word is rewritten by a shorter string, and the com- 
putation restarts on the arising shorter word. 

We show a taxonomy of (sub)variants of these automata taking into ac- 
count (non)determinism and two other natural properties. 

Theoretical significance of the restarting automata is also demonstrated by 
relating it to context-free languages (CFL),  by which a characterization 
of deterministic C F L  is obtained. 

1. Introduction 
Our motivation for introducing the restarting automata is to model so called el- 

ementary syntactic analysis of natural languages. The elementary syntactic analysis 
consists in stepwise simplification of an extended sentence until a simple sentence is 
got or an error is found. Let us show it on the sentence 

'Martin, Peter and Jane work very slowly.' 

We work with the wordforms in the examples; instead of wordforms, the elemen- 
tary analysis uses their lexical characterizations (categories). This sentence can be 
simplified for example in this way: 

'Martin, Peter and Jane work slowly.' 

'Martin, Peter and Jane work.' 

'Martin and  Peter work.' or 'Peter and Jane work.' or 'Martin and Jane 
WOrk.  ' 

'Martin w o r k s . '  or some other variant of the corresponding simple sen- 
tence. 

1Supported by the Grant Agency of the Czech Republic, Grant-No. 201/96/0195 
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Notice, that  every simplification is realized by deleting and possible rewriting 
(marked by the bold face) of words. 

The restarting automaton with rewriting (RW-automaton),  introduced in [7], can 
be roughly described as follows. It has a finite control unit, a head with a lookahead 
window attached to a linear (doubly linked) list with sentinels, and it works in certain 
cycles. In a cycle, it moves the head from left to right along the word on the list (any 
item contains exactly one symbol); according to its instructions, it can at some point 
replace the scanned string by a shorter string and "restart" - i.e. reset the control 
unit to the initial state and place the head on the left end of the list (which now 
contains the shortened word). The computation halts in an accepting or a rejecting 
state. 

Using cycles we define yield relation for a RW-automaton M. From a string a 
contained in the list by the start of a cycle M yields a string fl remaining in the list 
after finishing the cycle (denoted by a ==~M fl)" Together with the yield relation, a 
RW-antomaton  can also be considered as a (regulated) rewriting system. 

Formerly, in [4], we have introduced restarting automata without rewriting - R- 
automata - by which the replacing string is a proper subsequence of the replaced 
string. They are considered as a transparent model for grammar checker (of natural 
and formal languages as well). Having found an error in a sentence, the grammar 
checker should specify it - often by exhibiting the parts (words or more exactly their 
lexical characterizations) which do not match each other. The method can be based 
on stepwise leaving out some parts not affecting the (non)correctness of the sentence. 
E.g. applying it to the sentence 

'The little boys I mentioned runs very quickly' 

we get after some steps the "error core" 

'boys runs'. 

There are other paradigms modelling the elementary syntax in the generative way, 
e.g. pure (generalized) grammars with strictly length-increasing rules (c.f. [8]). These 
grammars work on strings of terminals and do not introduce any nonterminals. This 
type of grammars realize, similarly as Marcus grammars ([612), a (generalized) rewrit- 
ing system with an yield relation ~ a  (a  ~ a  fl means that  a can be rewritten to fl in 
one step according to a grammar G), which should capture the stepwise development 
from simple sentences. The yield relation has the so called correctness preserving 
property, which means that if a is a correct string according to some grammar G and 
a ~ a  fl, then fl is a correct string again. 

The yield relation corresponding to a RW-automaton has a dual property compar- 
ing to the yield relation corresponding to a pure (generalized) grammar with strictly 
length-increasing rules. RW-automaton yields strings in the strictly length-decreasing 
way, and has the error preserving property: if a contains error (is not in the lan- 
guage recognized by the RW-automaton M) and a ::~M fl, then fl contains an error. 
This duality will allow to consider RW-automata as another type of generalization of 
pure grammars with strictly length-increasing rules. The RW-automata allow to add 
regulation of the yielding by their control units. 

2A comprehensive presentation of these grammars can be found in the forthcoming monograph 
Gh. P~un, Contextual Grammars. From Natural Languages to Formal Languages and Back. 
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Section 2 contains definitions of RW-automata and R-automata. There are also 
described some basic properties of these automata and their computations. As usual, 
we define nondeterministic and deterministic versions of the automata. In second sub- 
section we show that  RW-automata are stronger than pure grammars. In the third 
subsection we consider a natural property of monotonicity (during any computation, 
"the places of restarting do not increase their distances from the right end") and show 
that  the monotonicity is a decidable property. In Section 3 we show that  monotonic 
RW-automata recognize a subset of the class of context-free languages ( C F L )  and 
deterministic monotonic RW-automata recognize only deterministic CFL (DCFL). 
Moreover any deterministic context-free language can be recognized by a deterministic 
monotonic R-automaton. From this results we get two characterizations of DCFL. 
The paper continues in Section 4 with separation theorems for rewriting and non- 
rewriting classes of automata and some related results. In conclusions (Section 5) 
beside discussion of future directions of our study, also another type of automata  with 
similar features as RW-automata - contraction automata - is mentioned. 

2. Def in i t ions  and Basic  Propert i e s  
We present the definitions informally; the formal technical details could be added 

in a standard way of the automata theory. In the first subsection we introduce restart- 
ing automata  with rewriting, in the second subsection we relate RW-automata to pure 
grammars and in the last subsection we introduce the monotonicity property for RW- 
automata  and a normal form of this automata - (strong) cyclic form. 

2.1. Restarting Automata with Rewriting 

A restarting automaton with rewriting, or a RW-automaton, M (with bounded 
lookahead) is a device with a finite state control unit and one head moving on a finite 
linear (doubly linked) list of items (cells). The first item always contains a special 
symbol ~, the last one another special symbol $, and each other item contains a symbol 
from a finite alphabet (not containing ~, $). The head has a lookahead "window"of 
length k (for some k ~ 0) - besides the current item, M also scans the next k right 
neighbour items (or simply the end of the word when the distance to $ is less than k). 
In the initial configuration, the control unit is in a fixed, initial, state and the head is 
attached to the item with the left sentinel r (scanning also the first k symbols of the 
input word). 

The computation of M is controlled by a finite set of instructions of the following 
two types: 

(1) (q, au) -"+M (q', MVR) 

(2) (q, au) ~M RESTART(v) 

The left-hand side of an instruction determines when it is applicable - q means 
the current state (of the control unit), a the symbol being scanned by the head, and u 
means the contents of the lookahead window (u being a string of length k or less if it 
ends with $). The right-hand side describes the activity to be performed. In case (1), 
M changes the current state to q~ and moves the head to the right neighbour item. In 
case (2), au is replaced with v, where v must be shorter than au, and M restarts - i.e. 
it enters the initial state and places the head on the first item of the list (containing 
r 
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We say that  M is a restarting automaton (R-automaton) if in each instruction of 
the form (q, an) -+M R E S T A R T ( v )  the word v is a proper subsequence of the word 
a?2. 

We will suppose that  the control unit states of M are divided into two groups: the 
regulating states (nonhalting states - an instruction is always applicable when the unit 
is in such a state) and the halting states (a computation finishes by entering such a 
state); the halting states are further divided into the accepting states and the rejecting 
states. 

In general, a RW-automaton is nondeterministic~ i.e. there can be two or more 
instructions with the same left-hand side (q, an). If it is not the case, the automaton 
is deterministic ( det-RW-automaton). 

An input word w is accepted by M if there is a computation which starts in the 
initial configuration with w (bounded by sentinels r on the list and finishes in an 
accepting configuration where the control unit is in one of the accepting states. L ( M )  
denotes the language consisting of all words accepted by M; we say that M recognizes 
the language L(M) .  

It is natural to divide any computation of a RW-automaton into cycles: in one 
cycle, the head moves right along the input list (with a bounded lookahead) until a 
halting state is entered or something in a bounded space is rewritten - in that  case the 
computation is resumed in the initial configuration on the shortened word (thus a new 
cycle starts). It immediately implies that any computation of any RW-automaton is 
finite (finishing in a halting state). 

The notation u ---~M v means that there exists a cycle of M starting in the initial 
configuration with the word u and finishing in the initial configuration with the word 
v; the relation ----*~ is the reflexive and transitive closure of ~M- We say that u 
yields v by M if u "---~M V. 

The next three claims express the basic properties of the yield relations corre- 
sponding to RW-automata. 

C l a i m  2.1. ( T h e  e r r o r  p r e s e r v i n g  p r o p e r t y  (for  all R W - a u t o m a t a ) )  Let 
M be a RW-automaton, and u -----~*M v for some words u, v. I f  u ~ L ( M ) ,  then 
v q~ L ( M ) .  

Proof. Let u ~4 v such that v E L(M) .  Since v E L ( M )  there is some y such 
that  v ~ y, where y can be accepted by M in one cycle. Because of u ~ v, 
the relation u - - - - ~  y holds. Hence u is accepted by M. [] 

C l a i m  2.2. ( T h e  c o r r e c t n e s s  p r e s e r v i n g  p r o p e r t y  (for  d e t - R W - a u t o m a -  
t a ) )  Let M be a deterministic RW-automaton and u ---~ *M v for some words u, v. I f  
u e L ( M ) ,  then v E L ( M ) .  

Proof. Let M be a deterministic RW-automaton, u E L ( M )  and u -----*~ v for some 
word v. Because of determinism of M there exists exactly one accepting computation 
for u by M. The computation represented by sequence of cycles u *~/ v is a 
prefix of this computation. Thus the rest of this computation (starting in the initial 
configuration with v on the list) is an accepting computation for v and v E L (M) .  [] 

As a consequence of the previous two claims 2.1 and 2.2 we get: 

C l a i m  2.3. Let M be a deterministic R-automaton and u ----~ *M v for  some words 
u, v. Then v E L ( M )  if and only i fu  E L (M) .  
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2.2. P u r e  G r a m m a r s  

Next we will show that  RW-automata  can be considered as regulated acceptors 
(analysers) for pure grammars  with str ict ly length-increasing rules. 

A pure grammar is a t r iple G = (V, P, S) where V is a finite set of symbols,  S is a 
finite subset of V*, and P is finite set of productions of the form v --+a w, v, w E V*. 

For x , y  E V*, the yield relation x :=>a y is defined by x -- zlvz2, y = zlwz2, 
v -+a  w E P ,  where v ,w ,  zl, z2 E V*. 

= ~  is the  reflexive and transi t ive closure of o a .  The language generated by G is 
defined as L(G) = {y l x =>* a Y for some x E S}. 

We can easily see tha t  = ~  has the correctness preserving property,  i.e. if x E L(G) 
and x 0 "  L(G).  a Y then y C 

We say tha t  a g rammar  G has str ict ly length-increasing rules if I v] < Iwl for each 
v - + a w E  P. 

We can easily see tha t  for any pure grammar  G with str ict ly length-increasing 
rules there is a RW-automaton M with one regulating state (the s tar t ing s tate) ,  one 
rejecting and one accepting state only, such that  L(G) = L(M) ,  and the relation ~ a  
is the  opposi te  relation to ~ M .  

The  opposi te  implicat ion is not true. Let us show that  the RW-au tomata  with one 
regulat ing s tate  are more powerful than pure grammars.  

Let us take the following language La = {anb ~ I n > 0} U {a ~ ] n > 0}. 

C l a i m  2.4. The language L~ cannot be generated by any pure grammar G with 
strictly length-increasing rules. 

Proof. Let us suppose that  some pure grammar  G = (V, P, S) with str ict ly length- 
increasing rules generates L~. 

Let us consider a sufficiently long word w = a "~, where m is greater  than the  size of 
any string from S. We can see that  there is v = a n such that  v =:>a w, and therefore 
P contains a rule of the form a p --~a a p+q, where p >_ 0 and q > 0. 

Let us consider word z = arab ~. We can see that  z E L~ and z =>a zr, where 
z ~ = am+% "~. Since m + q > m > 0 the word z ~ is not in L~, that  is a contradict ion 
to the  correctness preserving proper ty  of :=~a. [] 

C l a i m  2.5. There is a RW-automaton M with one regulating state recognizing 
the language L~. 

Proof. Let us describe the automaton M: M has lookahead of the  length 3, one 
regulat ing s tate  (the initial  s tate q0), the accepting s tate  q~ and the rejecting s tate  
qT. The au tomaton  in one cycle accepts the empty  word, deletes a from the words 
containing only a's, deletes ab from the word ab and deletes ab from the words with the  
prefix a+bb. The working alphabet  of M is {a, b} and M has the following instructions: 

(qo, r ~ u  (q., MVR), 
(qo, ~a$) --'l" M R E S T A R T ( r  

(q0, CabS) --~M RESTART( r 
(q0, CadS) --+M RESTART(r 
(qo, eaaa) --+M (qo, MVR), 

(q0, ~aab) ---~M (q0, M V  R), 
(q0, aaaa) -+M (qo, M V R ) ,  
(q0, aaab) "-~M (q0, M V R ) ,  
(qo, aabb) --+M R E S T A R T ( a b ) ,  
(qo, aaa$) ~ M  R E S T A R T ( a d S )  

(q0, u) --+M (q,, M V R )  for any u of the length four not covered in the previous cases. 
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We can see that M recognizes L. and that M is actually a deterministic R- 
automaton. [] 

2.3. M o n o t o n i c i t y  and  Cyclic Forms  of R W - A u t o m a t a  

In this subsection the monotonicity property of RW-automata is defined, its de- 
cidability is shown and so called cyclic forms of restarting automata with rewriting 
are introduced. 

The property of monotonicity (for a computation of a RW-automaton): All items 
which appeared in the lookahead window (and were not deleted) during one cycle will 
appear in the lookahead in the next cycle as well - if it does not finish in a halting 
state (i.e., during a computation, "the places of changes in the list do not increase 
their distances from the right endmarker $"). 

By a monotonic RW-automaton we mean a RW-automaton where the property of 
monotonicity holds for all computations. 

T h e o r e m  2.6. There is an algorithm which for any RW-automaton M decides 
whether M is monotonic or not. 

Proof. We sketch the idea briefly. Consider a given (nondeterministic) RW-auto- 
maton M; let its lookahead be of length k. Recall that all computations of a monotonic 
automaton have to be monotonic. The idea is to construct a (nondeterministic) finite 
automaton which accepts a nonempty language if and only if there is a nonmonotonic 
computation of M. 

Suppose there is a nonmonotonic computation of M. Then there is a word w 
on which M can perform two cycles where in the second cycle it does not scan all 
(remaining) items scanned in the first cycle. 

Now consider the construction of the mentioned finite automaton A; we can sup- 
pose that it has lookahead of length k. A supposes reading the described w. It moves 
right simulating two consecutive cycles of M simultaneously. At a certain moment, 
A decides nondeterministically that it has entered the area of rewriting in the sec- 
ond cycle - it guesses the appropriate contents of the lookahead window which would 
be encountered in the second cycle. Then it moves right coming to the place of the 
(guessed) rewriting in the first cycle and verifies that the previously guessed lookahead 
was guessed correctly; if so, A accepts, n 

Considering a deterministic RW-automaton M, it is sometimes convenient to sup- 
pose it in the strong cyclic form; it means that the words of length less than k, k 
being the length of lookahead, are immediately (hence in the first cycle) accepted or 
rejected, and that M performs at least two cycles (at least one restarting) for any 
longer word. 

For a nondeterministic RW-automaton M, we can suppose the weak cyclic form - 
any word from L(M) longer than k (the length of lookahead) can be accepted only by 
performing two cycles at least. The cyclic forms are justified by the following claim. 

C la im 2.7. For any RW-automaton (R-automaton) M,  with lookahead k, there 
exists an RW-automaton (R-automaton) M 1, with some lookahead n, n > k, such that 
M '  is in the weak cyclic form and L(M) = L(M').  Moreover, if M is deterministic 
then M ~ is deterministic and in the strong cyclic form, if M is monotonic deterministic 
then M ~ is monotonic deterministic and in strong cyclic form. 
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Proof. To prove this claim we can proceed in the same way as for R-au tomata  (see 
[5]). 

First notice that  we can easily force an RW-automaton M to visit all i tems of the 
input list before accepting or rejecting - instead of an "original" accepting (rejecting) 
state, it would enter a special state which causes moving to the right end and then 
accepting (rejecting). 

Now suppose that  (the modified) M accepts a long word w in the first cycle 
(without restarting). If w is sufficiently long then it surely can be writ ten w = 
vlauv2auv3 where M enters both occurrences of a in the same state q during the 
corresponding computat ion (as above, by a we mean a symbol and by u a string 
of length k). Then it is clear that  the word vlauvs (auv2 has been deleted) is also 
accepted. In addition, we can suppose that  the length of auv2auv3 is less than a fixed 
(sufficiently large) n. 

We sketch a desired M r with lookahead n. Any word w shorter than n is immedi- 
ately accepted or rejected by M' according to whether w E L ( M )  or not. On a longer 
w, M r simulates M with the following exception: when $ appears in the lookahead 
window, M r checks whether M could move to the right end and accept; if so, M ~ 
deletes the relevant auv2 (cf. the above notation) and restarts (recall that  n has been 
chosen so that  such auv2 surely exists). Obviously, L ( M )  = L(M' )  holds. 

In case M is deterministic, M ~ can work as above; in addition it can safely delete 
the relevant auv2 also when M would reject (due to determinism, the resulting word 
is also rejected by M). 

It should be clear that  monotonicity of M implies monotonicity of M r in the 
deterministic case. 

Further it should be clear that  we get by this construction from a R-automaton 
M a R-automaton M r. [] 

R e m a r k  2.1. For the nondeterministic monotonic RW-automata  the construction 
does not ensure monotonicity of the resulted automaton.  

For brevity, we use the following obvious notation. R W  denotes the class of all 
(nondeterministic) restarting au tomata  (with rewriting and some lookahead). R de- 
notes the class of all (nondeterministic) restarting au tomata  without rewriting. Prefix 
det- denotes the deterministic version, similarly mon- the monotonic version. For any 
class ,4 of au tomata , / : ( .A)  denotes the class of languages recognizable by au tomata  
from A, and A-language is a language f rom/ : (A) .  E.g. the class of languages recog- 
nizable by deterministic monotonic R-automata  is denoted by s 

Throughout  the article we will use the following notations for the inclusion rela- 
tions: A C B means that  A is a subset of B and A C B means that  A is a proper 
subset of B (A C B and A # B). q} denotes the empty  set. 

3. Charac ter i za t ion  of  DCFL 

In this section, we show a (twofold) characterization of D C F L ,  namely D C F L  = 
s  det-mon-R) = s  det-mon-RW). In addition, we also get f_.(mon-RVV) C C F L. 

L e m m a  3.1. D C F L  c f_.(det-mon-R). 

Proof. We use the characterization of deterministic context-free languages by 
means of LR(0) -g rammars  and LR(0)-analysers  (cf. e.g. [2]); generally LR(1) -  
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grammars  (lookahead 1) are needed, but it is not necessary when each word is finished 
by the special sentinel $. 

Let L ~ be a deterministic context-free language. Then there is an LR(0 ) -g rammar  
G generating L = L '$  (the concatenation L ' .  {$} supposing $ being not in the alphabet  
of Lt), and there is a corresponding LR(0)-analyser  P.  

For any word w E L there is only one derivation tree T~; it corresponds to the 
analysis of w by the analyser P.  In fact, P simulates constructing T~ in the left-to- 
right and bot tom-up fashion. Due to the standard pumping lernma for context-free 
languages, there are constants p, q s.t. for any w with length greater than p there 
are a (complete) subtree T1 of T~ and a (complete) subtree T2 of T1 with the same 
root labelling; in addition, T~ has fewer leaves than T1 and T1 has q leaves at most.  
(Cf. Fig. 1; A is a nonterminal of G). Replacing T1 with T2, we get the derivation 
tree for a shorter word w t (w could be written w = u l v l u 2 v 2 u 3  in such a way that  
W ! _.~ 'alU2'/s 

Ul Vl '//'2 V2 U3 

Figure 1. 

Now we outline a d e t - m o n - R - a u t o m a t o n  M with lookahead of length k > q which 
recognizes Lq 

M stores the contents of the lookahead in a buffer in the control unit. Simulating 
the LR(0)-analyser  P,  it constructs (in a bounded space in the control unit) all 
maximal  subtrees of the derivation tree which have all their leaves in the buffer. If 
one of the subtrees is like the T1 above, M performs the relevant deleting (of at most 
two continuous segments) in the input list and restarts. If it is not the case then 
M forgets the leftmost of these subtrees with all its n > 1 leaves, and reads n new 
symbols to the right end of the buffer (shifting the contents left). Then M continues 
constructing the maximal  subtrees with all leaves in the (updated) buffer (simulating 
P). 

In general, the input word w is either shorter than p,  such words can be checked 
using finite memory, or it is longer. If it is longer and belongs to L then M must 
meet  the leftmost above described T1 (with the subtree T2); it performs the relevant 
deleting and restarts on a new, shorter, word. If the (long) input word w does not 
belong to L, M either meets $ without restarting and stops in a rejecting state or 
performs some deleting and restarts. It  suffices to show that  the resulting shorter 
word (in both cases) is in L if and only if w is in L. 

It can be verified using the following properties of the LR(0)-analyser .  
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a) For each word w E L there is exactly one derivation of w in G which corresponds 
to the analysis of w by P.  

b) Let u be the prefix of the input word w = uv which has been already read by 
the LR(0)-analyser P.  If P did not reject the word until now, then there exists 
a suffix word v r s.t. uv ~ is in L, and the computation of P on the prefix u is 
independent w.r.t, the suffix. 

Let u be the prefix of the input word, the last symbol of which corresponds to the 
last symbol in the lookahead window just before M performs a RESTART-operation; 
let ~ be the rest of u after performing the RESTART-operation. There exists a suffix 
v t such that  uv ~ is in L. uv  ~ has a derivation tree in which there is a complete subtree 
T1 (with a subtree T2; as above) corresponding to the place of cutting. Then in the 
computation of M on K the tree T2 will appear in the buffer above the same terminal 
leaves as in the computation on u (it follows from the presence of T2 in the derivation 
tree of Kv ~ and from the independence of computation on the suffix). 

Let w = uv is in L, then obviously ~v is in L. Conversely if uv is not in L then 
~v is not in L (otherwise, in the corresponding derivation tree of ~v, the subtree T2 
appears over the corresponding terminal leaves of K and replacing the tree T2 by T1 
yields a derivation tree for uv - a contradiction). 

The monotonicity of M should be clear from the above description. [] 

Lemma 3.1 (together with Claim 2.7) is a means for short proving that  some 
languages are not in D C F L .  We illustrate it by the next two examples. 

E x a m p l e  3.2. Consider the language L1 = { w w  R [ w E {a, b}*}. If it were in 
D C F L ,  it would be recognized by a deterministic R-automaton M with the length of 
lookahead k (for some k); M can be supposed in the strong cyclic form. Let us now 
take a word a~b'~bma ~ (n~ m > k), on which M performs two cycles at least. In the 
first cycle, M can only shorten the segment of Us. But due to determinism, it would 
behave in the same way on the word a~bmbma~a~bmbma ~, which is a contradiction to 
the correctness preserving property (Claim 2.2). 

E x a m p l e  3.3. The language L2 = {arabic p [ m , n , p  >_ 0 :  (m  = n o r n  = p)} is 
not in D C F L .  This can be shown in a similar way as in the previous example. But 
using the error preserving property for RW-automata we will show stronger result - 
the language L2 cannot be recognized by any RW-automaton. 

The next claim shows that RW-automata do not recognize all context-free lan- 
guages and will be used in the proof of the next lemma. 

C l a i m  3.4. The language L2 -- {a'~b~c p I m ,  n , p  >- O : ( m = n  o r n = p ) }  is not  
a RW-language.  

Proof. Let us suppose that L2 is recognized by some RW-automaton M2 in the 
weak cyclic form with the size of loolmhead k. Let us consider an accepting com- 
putation on a word a~b ~, where r > 2(k -}- 1). In the first cycle of the accepting 
computation, M2 can only shorten both segments of a's and b's in such way that  after 
the first cycle the resulting word will be a~-'~b~-m for some 0 < m < k (i.e. the 
restart with rewriting occurs in the middle of the word; M2 cannot rewrite a suffix of 
the word in order to get a word of the form a~bmc m for some m > 0). But M2 can 
behave in the same way also on the word a%~+mc~ f[ L2 from which it can get after 
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the first cycle a*-'~bTc ~ C L~. This is a contradiction to the error preserving property 
of RW-automata (Claim 2.1). [] 

L e m m a  3.5. 

a) f~(mon-RW)c CFL, 

b) f~(det-mon-RWC_ s 

Proof. At first we show that f~(mon-RW) is a subclass of CFL. Let L be a lan- 
guage recognized by mon-RW-automaton M, with lookahead of length k. We show 
how to construct a pushdown automaton P which simulates M. The construction 
is similar to the construction of a deterministic pushdown automaton which should 
simulate a given det-mon-R-automaton (see [4]). The difference is following: Instead 
of one step simulation of a single MVR-step, P will simulate in one step all possible 
"nondeterministic" MVR-steps performed on the simulated scanned item simultane- 
ously, and the simulation of a restart without rewriting is replaced by a simulation of 
a restart with rewriting. 

P is able to store in its control unit in a component CSt the set of possible current 
states of M (i.e. any subset of the set of states of M) and in a component B a word 
of length at most 1 -{- 2k. P starts by storing {q0}, where q0 is the initial state of M, 
in CSt and pushing # (the left endmarker of M) into the first cell of the buffer B and 
the first k symbols of the input word of M into the next k cells of the buffer B (cells 
2 , 3 , . . . , k  + 1). 

During the simulation, the following conditions will hold invariantly: 
- CSt contains the set of all states of M, in which can be M visiting the simulated 
(currently scanned) item, with the current left-hand side, and the current lookahead, 
- the first cell of B contains the current symbol of M (scanned by the head) and the 
rest of B contains m right neighbour symbols of the current one (lookahead of length 
m) where m varies between k and 2k, 
- the pushdown contains the left-hand side (w.r.t. the head) of the list, the leftmost 
symbol (r being at the bottom. In fact, any pushdown symbol will be composed 

- it will contain the relevant symbol of the input list and the set of states of M in 
which this symbol (this item) could be entered (fl-om the left) by the situation, which 
corresponds to the last simulated visit. 

The mentioned invariant will be maintained by the following simulation of instruc- 
tions of M; the left-hand side (q, au) of the instruction to be simulated is determined 
by the information stored in the control unit. The activity to be performed depends 
on the right-hand sides of applicable instructions of M. P can either 

1. nondeterministicalty simulate one of RESTART instructions of M, or 

2. simulate all possible MVR instructions in one step. 

(1) RESTART(v)  is simulated by deleting and rewriting in the buffer B (some 
of the first k + 1 symbols are deleted and the rest is pushed to the left and possibly 
rewritten). Then k + 1 (composed) symbols are successively taken from the pushdown 
and the relevant symbols are added from the left to B (shifting the rest to the right). 
The state parts of k (composed) symbols are forgotten, the state part of the (k + 1)-th 
symbol (the leftmost in the buffer) is stored in CSt. Thus not only the RESTART(v)  
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- operation is simulated but also the beginning part of the next cycle, the part which 
was prepared in the previous cycle. 

(2) P puts the contents of the first cell of B and CSt as a composed symbol on 
the top of the pushdown, stores the set {q' I (q, au) -"+M (q', MVR),q E CSt) of 
simulated new states which can be entered after MVR-step from some state in the 
original CSt with the lookahead an, and shifts the contents of B one symbol to the 
left; if the (k q- 1)-th cell of B is then empty, then P reads the next input symbol into 
it. 

It should be clear that due to monotonicity of M the second half of B (cells 
k -~ 2,k q- 3 , . . . ,  2k) is empty at the time of simulating a RESTART(v)-operation. 
Hence the described construction is correct which proves f~(mon-RW) C_ CFL. To 
finish the proof of the first part of the proposition can show a context-free language 
which cannot be recognized by any RW-automaton. But this was already done in 
Claim 3.4. 

Obviously the above construction applied to a det-mon-R-automaton yields a de- 
terministic push-down automaton - this proves part b) of the statement. [] 

T h e o r e m  3.6. s det-mon-RW~ = DCFL = s det-mon-R). 

Proof. The statement is a consequence of Lemma 3.1, Lemma 3.5 and the trivial 
inclusion s det-mon-R) C_ s det-mon RW). [] 

It can be worth noting that the closure of deterministic RW-languages under com- 
plement is immediately clear when considering deterministic RW-automata (det-R-, 
det-RW-, det-mon-R- and det-mon-RW-automata). Since all computations of deter- 
ministic RW-automata are finite it suffices to exchange the accepting and the rejecting 
states to get a deterministic automaton of the same type (det-R-, det-RW-, det-mon- 
R- or det-mon-RW-automaton) recognizing the complementary language. 

Cla im 3.7. The classes of languages f.( det-mon-R), f~( det-mon-RW), s det-R) 
and f~( det-RW) are closed under complement. 

4. Taxonomy of RW-languages 
In this section we will study relations between different subclasses of s The 

resulting relations are depicted in Figure 2. 
Next we will prove all the relations depicted in this figure. We will start by proving 

that a det-R-automaton can recognize a language which is not mon-RW-language. 

T h e o r e m  4.1. E(det-R) - f~(mon-RW) # 

Proof. To prove the theorem, it is sufficient to give a det-R-automaton M which 
recognizes a non context-free language L = L(M). L cannot be recognized by any 
mon-RW-automaton, because according Lemma 3.5 all languages recognized by mon- 
R-automata are context-free. We will use a det-R-automaton M which recognizes a 
non context-free language from [5]. 

The main idea is to start with a non context-free language L t -- {a 2k I k > 0}. The 
automaton M will work in phases. A phase starts with a word from L' on the list and 
consists of several cycles in which the length of the current word is reduced by factor 
2 and simultaneously the parity of the length of the word on the start of the phase is 
checked. But restarting automaton can shorten the word by at most constant number 
of symbols in one cycle. Thus we must modify the language to enable to "mark" 
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already shortened part of the working list - instead of one symbol a we use a pair ab. 
Working on a word of the form (ab) ~ for some n > 1, M at first deletes the second 
a out of each subword~abab, proceeding stepwise from the right to the left. Then M 
deletes one b out of each abb and proceeds also stepwise from the right to the left. 
The automaton recognizes the language L(M) for which 

L(M) n {(ab) ~ 1 n > 1} = {(ab) 2k ] k > 0} 

Thus the language L(M) is not context-free and also is not a mon-RW-language 
(Lemma 3.5). 

 (Rw) 

L( mo, -nw) c( 

f . . . . . .  
E(mon-R) E(det-R) . . . . . . y  
C( det-mon-R) = s det-mon-RW) 

Figure 2. Taxonomy of RW-languages. Solid arrows 
show the proper inclusion relations, depicted classes not 
connected (by an oriented path) are incomparable. 

The automaton M works as follows: 

1. reading ~abab or r it moves to the right; 

2. reading ababa or babab it moves to the right; 

3. reading abab$ it deletes second a and restarts; 

4. reading ababb it deletes the first a and restarts; 

5. reading abbab or bbabb or babba it moves to the right; 

6. reading babb$ it deletes the second b and restarts; 

7. reading bbab$ or bbaba it deletes the first b and restarts; 

8. reading eabb$ it deletes the first b and restarts; 

9. reading ~ab$ it accepts; 

10. in all other cases the automaton halts in a nonaccepting state. 
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Clearly the automaton M is deterministic. To prove (1) let us consider a word of the 
form (ab) ~ for some n ~ 1. Then the following two conditions hold 

(i) (ab) ~ ----**M (ab)~ when n is even, 
or (ii) (ab) n ----+*M b(abb)-~ when n is odd. 

In the case (i) the automaton makes 2 cycles (using points 1, 2-4), and gets the 
word (abb)~, then after another ~ cycles it gets the word (ab)~ (using points 1, 5-8) 

In the case (ii) the automaton makes ~ cycles (using points 1, 2-4), and gets 

the word b(abb)a-~, which will be rejected in the next cycle. 
Thus let the input word be of the form (ab) ~, where n = 12 k for some integer k > 0 

and some odd integer I >_ 1. 

�9 I f n  is a power of 2 (i.e. l = 1 and k >_ 1), then according (i) (ab) ~ ---~*M 
/ 7 \ 2 k - 1  , [ 1 \ 2  k - 2  , ~ao) --+M (ao) --+M �9 ~ *M ab and according point 9 the input word 
will be accepted. 

�9 If n is not a power of 2 (i.e. I > 1), then according (i) (ab) ~ '*M (ab) l, l > 1 
and odd. Further according (ii) (ab) z ----+*M b(abb)~ and this word will be 
rejected by 10. [:] 

This theorem implies some relations between several classes of languages from 
Figure 2. These relations are depicted in Figure 3. Solid arrow from A to B means 
that  A C B, dotted arrow from A to B means that  B - A # 0 (and A C B is still 
not excluded). 

~(RW)  

J 
s mon-RW) ................. *-s det-RW) 

�9 . " . . .  . .  
�9 . . . ~  . :  

'.... . . .  

s mon-R):::" ......... ~ d e t - R )  

f~( det-mon-R= f_.( det-mon-RW) 

Figure 3. Relations which follow from the Theorem 4.1. 
Solid arrows depict proper inclusion relations, dotted 
arrows depict non-inclusion relations (in the following 
shown as incomparable by inclusion) - dotted arrow 
from A to B means A ~ B. 

The next theorem shows a symmetric  statement to the previous theorem. 

T h e o r e m  4.2. s - s ~ 0 

Proof. We will show that  the language 

L = {a% j I 0 <_ i <_ j <_ 2i) 
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is a mon-R-language and is not a det-RW-language. 
L is recognized by a (nondeterministic) mon-R-automaton M with lookahead 4 

which: 

�9 immediately accepts the empty word, 

�9 immediately rejects any nonempty word starting by b, 

�9 on a nonempty word starting by a, moves to the right to this a. If the lookahead 
contains b$ (bb$, abb$, resp.) then deletes ab (abb, aabb resp.) and restarts. 
Otherwise M moves through a's to the right until its head scans a followed 
immediately by a different symbol. If its lookahead is not bbbb or bbb$, the word 
is rejected, else M nondeterministically deletes ab or abb and restarts. 

Obviously M recognizes L. 
On the other hand the language L cannot be accepted by a deterministic RW- 

automaton (in the strong cyclic form). Working on the word a~b ~ for sufficiently large 
n (greater than lookahead of the automaton) this deterministic automaton should 
shorten the word in a cycle by keeping the correctness preserving property. Thus 
a ~bn "~M a rbs for some r < n and s > r, i.e the automaton must decrease the 
number of a~s in the word~ thus rewriting can occur only when the head is visiting 
some a in the word. Because of determinism and fixed size of lookahead the automaton 
must work in the same way on the word a~b 2~. But the resulting word at the end of 
the first cycle is a~b ~+~, where s + n > 2r, which is not in L. This is a contradiction 
to the correctness preserving property of det-RW-automata (Claim 2.2). [] 

This theorem implies new proper inclusion relations and non-inclusion relations. 
We compose them with the relations depicted in Figure 3. In the resulting Figure 
4 we use the same notation as in Figure 3 except that  the incomparability relations 
which follow from the already proved theorems are depicted by dotted arcs. 

 (Rw) y ' . . . .  
s mon-RW) .................. s det-RW) 

".... L(.R) ...." 

s ............. /::~:(it det-R) 

s det-mon-R) = f~( det-mon-RW) 

Figure 4. Relations which follow from Theorem 4.1 and 
Theorem 4.2. Dotted arcs (not the dotted arrows) de- 
note already proved incomparability relations. 

As a consequence of the next theorem and Theorem 4.2 we get the incomparability 
of classes s and s  
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T h e o r e m  4.3. f~(det-RIl 0 - f~(R) • 0 

Proof. We will construct a deterministic RW-antomaton M such, that  L(M) 
cannot be recognized by any R-automaton. The idea of the construction is similar 
to that  one used in the proof of Theorem 4.1. We are going out of the language 
{a 3" [ n _> 0}. The automaton M will work in phases. One phase consists of several 
cycles. During a phase the working word will be reduced by factor 3 and its length 
will be checked whether it is divisible by 3. A marking of the already reduced part 
of the word is done by a single symbol b in the list. Let us describe the automaton 
M: M has lookahead of the length 3, and three states only - the initial state q0, the 
accepting state q, and the rejecting state q~. The working alphabet of M is {a, b} and 
M has the following instructions: 

1. (qo, r --~M (qa, MVR), 
2. (qo, eba$) --+M RESTART(r 
3. (qo, ebaa) ---~M RESTART(r 
4. (qo, eaaa) --~M (qo, MVR), 
5. (qo, aaaa) --+M (qo, MVR), 

Actually 

6. (qo, aaab) ~M RESTART(ha), 
7. (q0, aaa$) --+M RESTART(ba$), 
8. (q0, u) ~ M  (qr, MVR) for any other 

u of the length four not covered in the 
previous cases. 

L(M) • {a~li >_ 1} = {a 3" I n _> 0} (2) 

i.e. an intersection of L(M) and the regular language a* is a non context-free language, 
thus L(M) cannot be from CFL. We can show that: 

a3~+J ~*M aJba~ for i > 0 and 2 >_ j > 0 

The automaton M makes cycles (using instructions 4 - 7) until the symbol b appears 
in the lookahead window in the initial configuration of a cycle. If it is the first symbol 
after r then this b is deleted (according 3 or 2). Otherwise the current word is rejected. 
From this the observation (2) directly follows. 

L(M) cannot be recognized by any R-automaton: Suppose that an R-automaton 
MR in the weak cyclic form recognizes L(M) and the length of its lookahead is k. 
Then for a sufficiently large m (e.g. greater than k) such automaton accepts the word 
a 3" and a 3" - + M R  al in the first cycle of an accepting computation on the word a 3m. 
But 1 cannot be a power of 3 (3 '~-1 < 3 TM - k - 1 < l < 3m). This fact contradicts 
the error preserving property (Claim 2.1). [] 

Moreover the previous proof shows, that  RW-automata are stronger than R- 
automata  outside CFL. 

As a consequence of the next theorem and Theorem 4.1 we get the incomparability 
of classes f_.(mon-RW) a n d / : ( n ) .  

T h e o r e m  4.4. f~(mon-RW) - Z(R) # O. 

Proof. Obviously s is a subclass of f~(RW). 
At first, we will show that  the language 

Lc = {ww n I w �9 {a,b}*} U {wcw n ] w �9 {a,b)*} 

can be recognized by a mon-RW-automaton Me: 
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1. M~ immediately accepts the empty word and the word c. 

2. Working on a word (of length greater than 1) containing one symbol c the 
automaton Mc can scan the word until this symbol and to check whether it is 
surrounded by the same symbols (a or b). If it is so, then Mr deletes the left 
and right neighbour of c and restarts, otherwise rejects. 

3. Working on a word without c the automaton can "guess aa or bb in the center" 
of the word, replace it by c and restart. 

4. Mc is nondeterministic, but when it makes a mistake - inserts c in a word already 
containing c or inserts c not in its center, then the test according the point 2 
above will fail later. 

Mc can be constructed in such a way that the following properties holds: 

(il) xaay ~Mc xcy, for any words x, y E {a, b}*. 

(i2) xbby ~M~ xcy, for any words x ,y  E {a, b}*. 

(i3) xacay )Mo xcy, for any words x, y E {a, b}*. 

(i4) xbcby )Me xcy, for any words x , y  E {a,b}*. 

(i5) Mc accepts the one-symbol-word c immediately. 

(i6) Mc rejects in a cycle any word of the form cy or yc, where y is any nonempty 
word. 

(i7) Any cycle performed by Mr is one of the types i l ,  ...,i6. 

Secondly, we will show that Lc cannot be recognized by any R-automaton by a 
contradiction. W.l.o.g. let us suppose that L~ is recognized by some R-automaton M 
in the weak cyclic form. Let us consider an accepting computation on a sufficiently 
long word a~b'~bma '~, where m, n are greater than the size of lookahead of M. In the 
first cycle of the accepting computation, M can only shorten the segment of b~s. We 
will get a word of the form a~b2m'a~, for some m ~ < m, after the first cycle. But 
M can make the same first cycle in the computation on the word a~b2"~a~a~b2~'a ~, 
which is not in L ( M )  and get the word a%2m'a~a%2m'a ~ which is from L(M) .  This 
is a contradiction to the error preserving property of RW-automata (cf. Claim 2.]; 
R-automata are a special type of RW-automata). [] 

The language Lc used in the previous proof is a context-free language. Thus we 
have proved that  RW-automata are stronger than R-automata even inside C F L .  

The last two theorems imply the relations depicted in Figure 5. 
Composing Figure 4 and Figure 5 we get the complete picture in Figure 2. 
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s mon-RW) 

L(R) 

s det-nw) 
....'~ 

 (mon-R) R) 

Figure 5. Relations which follow from Theorem 4.3 and 
Theorem 4.4. 

5. C o n c l u s i o n s  

In the previous sections we have shown typical results concerning RW-languages 
and R-languages. We have compared deterministic, nondeterministic, monotonic, 
nonmonotonic, rewriting and nonrewriting RW-languages. The nondeterministic RW- 
languages can be possibly studied ill a similar way by (regulated) generative tools. On 
the other hand the results concerning the deterministic RW-languages can be hardly 
achieved by generative tools in a natural way. 

Considering RW-automata as analysers we are interested in properties of the corre- 
sponding yield relations as well. There is exactly one difference between the presented 
taxonomy of languages and the corresponding taxonomy of yield relations. The class 
of yield relations corresponding to det-mon-RW-automata is greater than the class 
of yield relations corresponding to det-mon-R-automata. We have omitted the part 
about the taxonomy of yield relations here, because the nonequality results can be 
obtained by simple observations of finite yield relations (with finite number of pairs 
u :=k v). 

In [4], we have introduced restarting automata as a further model of list automata 
(in particular forgetting automata (see [3])). Later, by reading the book by Dassow 
and Pgun (see [1]) we have met contraction automata (introduced by von Solms 
in [9]). The contraction automata have (some) similar features as RW-automata. 
A contraction automaton works as a restricted linear bounded automaton. It simulates 
the operation deleting using a special symbol, and works in cycles. Any cycle starts 
on the right sentinel, and uses one reversal on the left sentinel. To any contraction 
automaton M, a complexity (n, k) is associated where, roughly speaking, n means the 
number of non-input symbols which can be used by M, and k is the maximal number 
of changes, which can be performed on the tape during a cycle. The contraction 
automata work also with some technical restrictions, which allow characterizations 
of matrix languages, certain class of random context languages and a type of ETOL 
languages. 

Inspired by contraction automata we propose to study measures of regulation of 
(generalized) RW-automata in the future. Also we propose to compare (generalized) 
RW-automata with different types of regulated generative tools. Some such steps been 
already done for (generalized) R-automata. 

We plan to take RW-automata as theoretical background for a program for (robust) 
syntactic analysis of Czech sentences. That can be a nice tool to learn the basic syntax 
of the Czech language. 
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Chapter 2. Cooperating Distributed Grammar 
Systems 
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A b s t r a c t .  Subclasses of grammar systems that can facilitate parser con- 
struction appear to be of interest. In this paper, some syntactical condi- 
tions considered for strict deterministic grammars are extended to cooper- 
ating distributed grammar systems, restricted to the terminal derivation 
mode. Two variants are considered according to the level to which the 
conditions address. The local variant, which introduces strict determin- 
istic restrictions for each component of the system apart, results in local 
unambiguity of the derivations. The total variant, which extends the strict 
deterministic constraints at the level of the entire system, results in some 
cases in global unambiguity of the derivations. 

1. I n t r o d u c t i o n  

Cooperating distributed (CD, for short) grammar systems have been introduced 
in [3]. A similar generating device was considered in [11], while a particular variant 
of it appears in [1]. Most of the results known in this area until the middle of 1992 
can be found in [4], while newer results are surveyed in [7]. 

However, there are still lots of classical topics in formal languages theory or in 
related areas which have not been studied so far in the grammar systems set-up. 
Constructing parsers is such a topic, which is not only of theoretical interest, but it 
will make grammar systems more appealing to researchers in applied computer science 
as well, since it will open the possibility of using grammar systems in domains where 
just Chomsky-like grammars are currently used (for instance, in natural language 
processing, or in compiler construction). This will clearly bring to the user all the 
advantages of having a model which can cope with ~such phenomena as cooperation 
and distribution of the work carried out by several processors. 

Of interest to this aim are the results of [2] and [6]. Thus, [2] approaches CD 
grammar systems from the accepting point of view, comparing their accepting capac- 
ity to their own generating capacity, or to that of other classes of grammars in the 
regulated rewriting area. [6] considers pushdown automata systems, with the scope of 

1 Research supported by the Academy of Finland, Project 11281, and the Alexander yon Humboldt 
Foundation 

2Current address: Turku Centre for Computer Science (TUCS), LemminkKisenkatu 14 A, 4th 
Floor, 20520, Turku, Finland 
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characterizing the languages generated by grammar systems in terms of recognizers; 
but their model turns out to be much more powerful from the point of view of the 
recognized languages class. 

We believe that  a more involved study of the derivations in a CD grammar system 
would be very useful to a possible parser constructor for the languages generated by 
grammar systems. This is the aim of the present paper: we address subclasses of CD 
grammar systems which can facilitate a parser construction, due to some unambiguity 
properties of the derivations in such systems. 

More precisely, the present paper studies the effect on CD grammar systems of 
syntactical constraints similar to those considered for strict deterministic context-free 
grammars. It is known that the family of languages generated by strict deterministic 
context-free grammars is the same as the family of languages generated by LR(O) 
grammars (see Theorem 11.5.5 in [8] and Theorem 10.12 in [9]), which are ones of 
the most useful class of grammars for parsing. Therefore, our intention was to see 
what happens if the conditions for strict deterministic grammars are extended to 
CD grammar systems. To our surprise, we obtained that the unambiguity of the 
derivations holds for some classes of grammar systems as well. 

When introducing the restrictions for strict determinism in CD grammar systems, 
two variants should be taken into consideration, depending on the level, local/global, 
to which the restrictions address. In the local level case, the generative capacity of 
the systems remains the same, but the behaviour of each component is unambiguous. 
The generative power decreases when global level is considered, whereas for some 
more restrictive classes the derivation is totally unambiguous. 

2. D e f i n i t i o n s  a n d  E x a m p l e s  

We assume the reader accustomed to the basic facts in formal language theory [9]. 
For details concerning the grammar systems we refer to [4]. 

For an alphabet V, we denote by V* the set of all words over V and by )~ the 
empty word; moreover, V + = V* - {~}, while IVI stands for the cardinality of V. For 
a string x, denote by ]x I the length of x and by Prefk(x) the prefix of length k of 
x, Ix[ > k. 

If r is a partition of V, then we write a ,,~ b iff there exists M E ~r such that 
{a, b} _C M. 

A cooperating distributed grammar system is a construct 

F = (N,T ,S ,  P1,P2,.. .  ,Pn), 

where N , T  are disjoint alphabets, S C N, and Pi,1 ~ i < n, are finite sets of 
context-free rules over N U T. 

The sets Pi are called the components of F. (If we want to point out grammars 
as components, then we can consider grammars without axioms, of the form Gi = 
(N,T,  Pi), 1 < i < n.) 

For a component P~ of a grammar system F as above, we denote dom(P~) -= {A E N 
I A -~ x C P~}, and T~ = (N [J T) - dom(P~). 

Let F = (N, T, S, P1, P2 , . . . ,  Pn) be a CD grammar system as above and let ~ri be 
a partition of N U T, for any 1 < i < n. The partition ~ri is a local strict partition if 
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the following conditions hold: 

a) T �9 7r~, 

b) T i -  T e ~ri, 

c) for any A, A' �9 dom(Pi), if A ~ "  A' and A ---+ xy, A' ----* xy' C Pi, 

x, y, f �9 (N U T)*, then we have either 

(i) y ,y '  # ~ and P r e f l ( y ) ~ '  Pref l (y ' ) ,  or 
(ii) y = yt = A and A = A'. 

We say that  a component P~ is a strict deterministic component of F iff there  exists 
a local str ict  par t i t ion  r~. 

The system F is said to be local strict deterministic iff all its components are strict  
deterministic.  

If F is a CD grammar  system and ~r is a par t i t ion of N U T, then 7r is a total strict 
partition iff: 

a) T c ~r, 
n 

b) for any A, A' �9 N, if A ~.7 A' and A , xy, A' ~ xy' �9 U Pi, 
i = l  

x , y , y '  E (N O T)*, then we have either 

(i) y ,y '  # )~ and Pre f l (y )  ~ Pref l (y ' ) ,  or 
(ii) y = y' = A and A = A'. 

The system F is said to be total strict deterministic iff there exists a to ta l  strict  
par t i t ion  of N O T. 

We will later  on provide grammar  systems which are total  strict determinist ic  but  
not local strict determinist ic,  and vice versa. 

Among the derivation modes in CD grammar  systems, our concern here is re- 
s t r ic ted to the terminal (t) mode. Therefore, we next recall only the definition of this 
o n e .  

On (NUT)* one can define the usual one step derivation with respect to Pi, denoted 
by :==:=:=~Pi- Formally, x :====::~Pi Y i f fx  = XlAa,  y = XlZOL, X 1 �9 T~,  z ,  oL �9 ( N O T ) * ,  and 
A ~ z �9 Pi. The reflexive and transi t ive closure of the  relation ===~pl is denoted by 
= = , ~ .  Furthermore,  we write x ==*~ y if z ==~,~ y and there is no z �9 (N  U T)* such 
tha t  y ==*p~ z. 

Note tha t  we work here with leftmost derivations: see again the condition xl �9 T* 
in the previous definition of x =:=~p~ y. 

The language generated by the system F is 

* t t n ( r )  = {w I w �9 T , S ~ , 1  wl ~ p , ~  . . .  ~ p , .  ~,~ = w, 

rn_> 1,1 < i j _ < n , 1  <_j <_m}. 

E x a m p l e  1. Consider the system 

F1 7-- ( { S , A , C , X , Y } , { a , b , c } , S ,  P1,P2,P3), 

P1 = {S----+ AC, X , A , Y - - - ~ C } ,  

P2 = {A  , aXb, C ----* cY},  

P3 = {A , ab, C- - -~  c}. 
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One can observe that F1 is local strict deterministic under the local partitions 

~rl = { { S } , { A , C } , { X , Y } , { a , b , c } } ,  

= = { { S , X , Y } , { A , C } , { a , b , c } ) ,  

but it is not total strict deterministic. 
The language generated by F1 is {a~b~c~ I n > 1}. 

E x a m p l e  2. Consider now 

F2 = ( { S , A , B , C , D } , { a , b , c } , S ,  P1,P2), 

P1 = {S ~ aA, S ~ aB,  A ) aAa, A ~ bC}, 

P2 = {B  ~ a B , B  ~ bD, C- - -*  bC, C ~ a ,D  : bDc, D ~ c}. 

The grammar system above is total strict deterministic under the partition 

~r = { { S } , { A , B } , { C , D } , { a , b , c } }  

which is a total strict partition. However, its first component is not deterministic. 
The generated language is 

L(r:) = {a'~bka ~ ] n, k k 1} U {a~bkc k I n, k k 1}. 

3. Properties of Derivations 
Due to the explicit motivation for the introduction of local/total strict deter- 

ministic restrictions on CD grammar systems, we first study the derivations in such 
systems. 

In the local case, we obtain that all the components of the system are unambigu- 
ous. This is not the situation anymore for total strict deterministic CD grammar 
systems. However, also in this case the deterministic constraints have a clear impact 
on the derivations: one can eliminate left-recursion from a total strict deterministic 
CD grammar system. Moreover, if the system is such that no production rule be- 
longs to two different components, then the unambiguity of the derivations (properly 
defined) at the level of the system holds as well. 

A few additional notations and definitions are necessary. 
Let F = (N, T, S, P1, P2,- �9 P~) be a CD grammar system whose rules are labelled. 

Let Lab(Pi) be the set of labels of the rules in Pi. For a derivation D : x ==~t v~ y w e  
denote by C(D)  the control word associated to the derivation D (that is, the word 
consisting of the labels of productions used in the derivation D, in the corresponding 
order). Therefore, C(D) is a string in (Lab(P~))* that  represents the sequence of rules 
of Pi used in the derivation D. 

A component Pi is ambiguous if there exist two derivations D1 : x : : : ~  y and 
D2 : x ==a~ y with C(D1) 7 ~ C(D2), for some x , y  e (N U T)*. Otherwise, the 
component is called unambiguous. 

For a word w E L(F), we say that a derivation 

t t t t 
S = XO =:::=::~P/1 x l  ::::::::~Pi2 x2  ::=::=:~Pi3 " ' "  =::===~Pis x z  = W 
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is a leftmost derivation of w if for any j, 1 < j < s, the derivation in the component 
Pij is such that  at the first step the very leftmost nonterminal symbol in x j-1 is 
rewritten, and afterwards, the leftmost possible nonterminal in the resulted sentential 
form is rewritten by Pi,. Formally, the following conditions hold: 

i) Xi_l = ~ j - lA j f l j -1 ,  for ~j-1 E T*, 

xj is of the form Aj ii) the first production used in the derivation xj-1 ==~p~, 

7j-1 C Pii, resulting in the string z = ~j-17j- l f l j -1 ,  

xj proceeds by rewriting at any step the iii) afterwards, the derivation z ~ p , j  

leftmost possible nonterminal in the current sentential form. 

In order to point out that  a derivation is leftmost, we will use the notation tl 
(terminal leftmost) instead of t, when we specify the derivation mode. 

A CD grammar  system P is said to be unambiguos if for any w E L(F) and for 
any two leftmost derivations of w in F, 

0 1  : 

D2 : 

the following hold: 

t l  t l  t l  
= X o  ====:==>'pi 1 X l  :====:~pi 2 . . .  =====:~Pi~ Z s  ~-  W ,  

tl / :====:~ tl tl i 
S = x' o ~ P J l  xl  Pi2 "'" ~ P J t  xl = w, 

(i) s = l, 

(ii) P r=Pjr, l < r < s ,  
(iii) xT=x 'r ,  O < r < s .  

We shall shortly say that  D1 = D2 holds. 
Remark that  the definition of leftmost derivation does not imply that  for any 

w E L(F) a leftmost derivation of w exists. 

We can now proceed in analysing the derivations in a CD grammar  system. We 
first consider the case of local strict deterministic systems. The next theorem states 
the local unambiguity of such systems. 

T h e o r e m  1. Any local strict grammar system has only unambiguous components. 

Proof. Let F = (N, T, S, P I , . . . ,  P=) be a CD grammar  system, local strict deter- 
ministic under the partitions ~i, 1 < i < n. We have to prove that  for any i, 1 < i < n, 
and for any two derivations 

Dl : O: ::::::~tp, x, D2 : a:::::=~tp, X, 

the relation C(D1) = C(D ) holds. 
We need the following fact which we give without proof. The reader interested in 

details may  consult [8] (Lemma 11.4.1), since the corresponding proof there can be 
easily adapted to our situation. 

Fac t :  For any A, A r C N with A ~ "  A ~ such that  A :::~kp~ xy  and A' :==@,~ xy  ~, 
one of the following situations holds: 
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i) y ,y '  ~ A, and Pre f l ( y )  . ~  Pref l (y ' ) ,  

ii) y = y l = . ~ , a n d A = A q  

Here ====~k means a k-steps derivation in the component P~. We shall prove now our 
theorem by induction on the length of a.  

Suppose lal = 1, hence a = A. Assume that  each of the derivations D~, 1 < i < 2, 
uses qi productions,  respectively. Then q~ = q2 must hold. Indeed, if ql < q2 or q2 < ql, 
by the above fact, a symbol in dom(P~) would result equivalent with respect to 7r~- to 
a symbol in Ti, which contradicts  the definition of local strict  determinism. Denote 
q = ql = q2. 

We continue the proof by induction on q. The assertion is t r ivial ly t rue for q = 1. 
Assume tha t  the  assertion is true for any derivations of length q - t ,  and let 

D1 : A =::~1  x lBx2 ~ p ~  x, 

D 2 : A  ~ - [ 1  , , ,  X l B  X 2 ===~p~ X. 

Clearly, x~ = x~ (since the derivation is leftmost) and B ,-~ B'.  
Assume now that  x lBx2 ==~p~ x by using a rule B --* z, while xlB~x~ ~ p ~  x by 

~ it follows that  z is a prefix of z ~, or using a rule B ~ ~ z' .  Since x = xlzx2 ~ x l z  x2, 
z ~ is a prefix of z, or z = z'. Due to B ,.~ B',  none of the  first two cases can hold. 
Therefore, z = z ~, which implies B = B', and x2 = x~. 

By the induction hypothesis,  it then follows that  the derivation 

A ==~-[1 XlBX~ 

is unambiguous,  hence C(Da) = C(D2). 
Suppose now the s ta tement  holds true for each word a with [a I < p, and let 

t 
D1 : o~ = :=~ ,  x,  D2 : a ===~Pi x,  

with ]a I = p. 
If a = Aa',  with A C ( g  U T) - dom(P~), then C(D1) = C(D2) holds by the 

induction hypothesis.  
If A C dom(P~), then there are yl, y2, z~, z2 e (T~)* such that  

A ====~p~ yl, a' t =:=~p~ zl, 

A ===~ Yz, a' ==~p~ z~, 

and x = ylzl = y~z2. 
Assume that  Yl is a proper  prefix of y2 (the case of Y2 a proper  prefix of Yl 

can be t rea ted  similarly),  and let us point out the lengths of the derivations result- 
ing into yl ,y2,  that  is, let A ===>~ yl, A ~ y2. We have neither  ql < q2, nor 
q2 < ql. Consequently, ql = qu and yl = y2. Moreover, the derivation A ===~tp~ y~ 
is unambiguous.  I t  then follows tha t  z~ = ze. Since [a~ I < p, by the induct ion hy- 
pothesis we infer tha t  the  derivation a '  : = ~  z~ is unambiguous, which concludes the 
proof. [] 

For the case of total  strict determinist ic  systems, some global (i.e. at the  level 
of the  system) propert ies of the derivations follow directly from the case of strict  
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deterministic context-free grammars, see [8]. The two propositions that follow present 
them. 

P r o p o s i t i o n  1. Let r = (N, T, S, P1 , . . . ,  P~) be a reduced CD grammar system 
(i. e. all the productions and all the nonterminals of r are used during terminal 
derivations) without )~ - productions, and let P = U ~ I  P~. / f  F is total strict de- 
terministic under the partition rr, then for any A , B  E N such that A ,..~ B ,  no 
derivation B ~ + Aa,  a E ( N U T)*, is possible. 

We make the observation that the requirement for the system F to be reduced in 
the theorem above is not a restriction at all, due to the fact that  for any CD grammar 
system there exists an equivalent (with respect to the generated language) reduced CD 
grammar system, [10]. Moreover, the proof of [10] only eliminates the non-necessary 
productions and nonterminals, and therefore does not affect the eventually total strict 
deterministic partition of the system. 

Yet remark that  for the case of local strict deterministic systems, a property similar 
to Proposition 1 holds locally, in each component grammar. 

As a consequence, one can eliminate left recursion from a total strict deterministic 
CD grammar system. 

P r o p o s i t i o n  2. For any total strict deterministic CD grammar system r = 
(N, T, S, P 1 , . . . , P n ) ,  there exists a total strict deterministic CD grammar system 
F' = (g ' ,  T, S, P~ , . . . ,  P~), with L(F') = L(F), such that no derivation A ~ +, d a ,  
a E (N '  U T)* is possible, for  any A C N' .  

It is worthwhile mentioning that in case of total strict deterministic systems, a 
property similar to Theorem 1, with respect to a global derivation in the system, does 
not hold. For instance, consider the grammar system in Example 2, to which we add 
a new component, P3, defined as 

Pa = {C ~ bC, C ~ a}. 

One can observe that for any word of the form a~bka ~, n, k > 1, two distinct leftmost 
derivations can be pointed out: one in the components P1 and P2, and the other in 
the components P1 and Pa. 

Therefore, additional restrictions to the system should be considered in order to 
cope with such situations. Surprisingly enough, we find out that  if the components 
of the system are mutually disjoint, than the unambiguity of the system follows as 
well. 

T h e o r e m  2. Any total strict deterministic CD grammar system whose compo- 
nents are mutually disjoint is unambiguous. 

Proof. Let r = (N, T, S, P1 , . . . ,  Pn) be a total strict deterministic CD grammar 
system such that  Pi M Pj = ~ for any i , j ,  1 << i , j  < n, i ~ j .  

Denote P = Ui=l Pi, and let G = (N, T, S, P)  be the context-free grammar as- 
sociated to F. Clearly L(r) c_ L(G). Due to P being total strict deterministic, G 
is a strict deterministic context-free grammar ([8]). In particular, the fact that  G is 
unambiguous follows, i.e. for no word in L(G) two distinct leftmost derivations exist. 

We prove that  for any word w G L(P) such that  there exist leftmost derivations 

01 : S -= Xo ~ tl tt tt Pil x l  =:::==~Pi2 " ' "  ===:~Pis x s  = W ,  
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/ tl / tl tl D2 : S = x 0 :==~g,1 Xl ==~gJ~ " "  ==~PJ~ xz = w, 

then D1 = D2 follows. 
We first prove i l  = j l ,  by contradiction. 
Assume il ~ j l .  Let pl,p~ be the productions used at the first derivation steps in 

P6,  PJl, respectively. Since Pil N Pk = ~, then Pl -~ p~ results. But this implies tha t  
in the grammar  G there exists two distinct leftmost derivations of the word w, that  
is, there exists leftmost derivation 

S ==>w * =:=>v~ , G a = = ~ v w ,  S V fl:==~a w, 

which contradicts  the unambigui ty of G. 
Hence i l  = j l  holds. Denote i = il.  
We now prove that  any two leftmost derivations 

OL :::=~ tl a fl 0 ) ,  

= 4 ,  "~ (2), 
which are used in leftmost rewritings of w, actually coincide. 

The assumption that  the derivations above are used in leftmost rewritings of w 
implies that  there exist leftmost derivations (in F) 

�9 OL , t l  * 
S ==~r =======2pi f l  :======k r W ,  

We point out the first productions applied in the rewriting of c~, tha t  is, ~ = ~1A~2, 
with c~ E ( (gUT)-dom(P~))* ,  ~ is a production ~ : A --* 51 E P~, ~ is a product ion 
P2 : A --+ 52 E P~, and in the derivations above we have 

tl * = ~1A~2 ~ ~161a2 ~ p ~  fl ~ p ~  w, 

a = alAa2 ==J~p~ a]52a2 ==~e~tz 7 ~e~* w. 

Two situations might occur: 

Case a): al E T*. 
Then~ in a similar manner as in the proof above for i~ = j l ,  one can deduce tha t  

if ~ ~ P2, then a contradiction results. 

C a ~  ~): ~1 = ~ I B ~ ,  for a ~ ~ N - dom( P &  ~1 ~ ~*, ~ ~ (T  U ( N - dora(Pal)*. 
Then one can point out leftmost derivations in the associated grammar  G of the 

form 

�9 �9 ~ * 
S ::=::~G a = a l A a 2  = y l B y ~ A a 2  ::::::~a y l z 2 A a ~  G y l z 2 5 2 a ~  ::::::~G w ,  

where By~ ~ Zl and By~ ==~ z~ are leftmost terminal  derivations in G. Since 
either z] is a prefix of z~ or z~ is a prefix of z], it follows that  Zl = z~ holds. But this 
again leads to a contradiction if ~ ~ ~ is assumed. 

In any of the two cases, p] = ~ must hold. By inductively repeat ing this argument,  
we obtain that  the derivations (1) and (2) above are actually the same. 
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But this assertion allows us to repeat the reasoning which lead to concluding 
il = j l ,  and we then obtain that  in derivations D1 and D2 we have s = l, ik = jk 
for any k, 1 < k < s, and any two leftmost derivations in a component concide, and 
therefore the theorem follows. [] 

4. T h e  G e n e r a t i v e  P o w e r  

The subject matter  of this section is the language generated by local/total strict 
deterministic CD grammar systems. We first prove that a total system is local as well, 
if some additional constraints are satisfied. Then we show that the problem of whether 
or not a system is local or total strict deterministic is decidable. Also the hierachy 
on the number of components is addressed, proving that it collapeses to systems with 
only 3 components for the local case. Finally, the generative capacity of the systems 
is compared to that  of usual CD grammar systems, or to that of context-free gram- 
mars. 

Theorem 3. Let P = ( N , T , S ,  P1 , . . . ,P~) ,  be a CD grammar sysetm, strict 
deterministic under the partition 7c, satisfying the additional restriction that for  any 
A , B  E N,  A , . ~  B,  such that A E dom(P~) for an i, 1 < i < n, then B E dom(P~) 
holds as well. Then F is local deterministic. 

Proof. Let F be a CD grammar system as in the hypotheses of the theorem and 
let ~r be the partition. One can observe that partition ~r can be written as 

= {T} U {[A]~ I A E N}. 

The requirement that  for any A, B E N, A ~ B, A E dom(Pi), for an i, 1 < i < n, 
implies B E dom(P~) as well, means that for any A E N, and for a n y  i, 1 < i < n, 
either [A]~ C dom(P~), or [A]~ C_ N - dom(P~). Then for any i, 1 < i < n, one can 
consider the partition 

7rl = {T) U {N - dom(Pi)} U {[A]~ I A E dom(Pi).} 

The fact that  F is local deterministic under the partitions ~r~, 1 < i < n, follows. [] 

T h e o r e m  4. Let F = ( N , T , S ,  P1,P~, . . . ,P~)  be a CD grammar system and let 
: t u in=l  Pil" 

1. It is decidable in O(k 2. IN[) whether or not F is total strict deterministic. 
0 n 2. It is decidable in (E~=I Id~ " IPi[ 2) whether or not F is local strict de- 

terministic. 

Proof. The assertions above can be proved by constructing algorithms which rely 
on the same idea. We shall briefly explain it in the hypothesis of the first point. See 
[8] for more details. 

For two partitions of N U T we say that ~rl is smaller or equal than 7r2, if [X]~ 1 C 
[X]~, for any X E N U T. The notation [X]~ stands for the equivalence class of X 
with respect to the partition r .  

One starts with the smallest possible partition 7r = {T} U {{A}IA E N}. By 
?z 

examinating the rules of Ui=l Pi whose left-hand sides are in the same equivalence 
classes, with respect to the current partition, the following situations may occur: 
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1. A nonterminal and a terminal are to be put in the same equivalence class. 
But this is not possible, due to the definition of the total strict deterministic 
partit ion, therefore the grammar  system is not total strict deterministic follows. 
This is a consequence of choosing the sequence of current partitions in increasing 
order. 

2. Two nonterminals, say A and B, should be considered in the same equivalence 
class, and they are not equivalent with respect to the current partition. Then, 
the current parti t ion becomes 

~r = (Tr \ {[A]., [B]~}) U {[A]. U [B]~} 

Now, the process goes on by examinating again the productions of F. 

3. No change of the current parti t ion had to be performed during the last exam- 
ination of the productions of F. Then it follows that  the grammar  system is 
total  strict deterministic, and the current partition is a total strict partition. 

The correctness and the complexity of the algorithm are easy to be checked. [] 

We now turn our attention to the generative capacity of total / local  strict deter- 
ministic CD grammar  systems. 

T h e o r e m  5. For any local strict deterministic UD grammar system of degree n, 
there exists an equivalent (with respect to the generated language) local strict deter- 
ministic CD grammar system of degree 3. 

Proof. The proof parallels the reduction of the number of components to 3 in 
the case of usual CD grammar  systems (deriving in the terminal mode), see [1]. Let 
P = (N, T, S, P1, P2, �9 �9 �9 P~) be a system of degree n, which is local strict deterministic 
under the partitions 7ci, 1 < i < n. Consider 

n 

N ' - -  U{A(0  ] A e g } ,  
i=O 

and for any i, 0 < i < n, define the morphisms hi : N U T ~ N '  U T by 

f x,  for X e T 
hi(X)  X (0, f o r X E N .  

For the sake of simplicity, for a set M, we denote hi(M) = {hi(A) I A C M } .  Consider 
P' = ( g ' ,  T, P~, P~, P~, S(~ where 

n 

P; = U { A  (i) hi( ) I A e Pi}, 
i = l  

{A(0 ~ A (i+1) ]A E N, 0 ~ i < n, i even number}, i f n  is odd, 
P~' = {A (0 ~ A (i+x) I A �9 N, 0 < i < n, i even number}t.) 

U{A(~) ~ A0)}, if n is even 

{ {A(0 ~ A (i+1) ]A �9 N, 0 ~ i < n, i odd number}, i f n  is even, 
_P~ = {A (0 --~ A (~+1) ]A �9 N, 0 < i < n, i odd number}U 

u{A (~) --~ A(~ if n is odd 
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Then F' is local strict deterministic under the partitions 

n 

7r~ = {T} U U{h,([A]~,) [ A E dom(P~)} U {N' - dom(P~), 
i = 1  

7r 2 = ~r 3 {T} U { {A (0} ] A E N, 0 < i < n, i even number} 

U { {A ( 0 } [ A E N , 0 < i < n ,  i odd number}. 

On the other hand, L(F') = L(F) can be proved in a similar manner as in [1]. [] 

T h e o r e m  6.For any CD grammar system there exists an equivalent local strict 
deterministic CD grammar system. 

Proof. Let F = (N,T,S,  P1,P2,...,Pn) be a CD grammar system in which all 
rules are labelled by distinct labels. Without loss of generality, we may assume that  
no Pi contains erasing rules. If the rules of Pi are labelled by r~,l,ri,2,... ,rl,k~, then 
consider the set of new nonterminals 

N ' =  (U{[ i , j ,X]] I  < j  < k, ,X E g UT})  U {Xi[1 < i < n ,X  E N} U {F} 
i = 1  

We construct the grammar system 

where 

F ' =  (N U N',T,S,P~,P~,...,P:,P~+I), 

P" = {A ~ [i,j,X]y ] ri,j: A ~ Xy E P~} U {A~ ~ A IA E N} 

U { [ t , s , X ] - - - - + F l l < t < n , t # i , l < s < k t , X E N U T }  

U {Aj ) F I A E N ,  I < j < _ n , j # i } ,  l < i < n ,  

Pn+l = {[i,j,a] , a l a E T ,  l < i < n , l < j < k i }  

U {[i,j,A] > A i l A E N ,  l < i < n , l < j < _ k i }  

For any 1 < i < n, denote by Q~ the set of all A~ such that  A is a nonterminal in 
which appears on the first position of a right-hand side of a rule in P~. Consider the 
partitions 

~r, = {dom(P~)UQ~U{Aj [ j ~ i , A E N } }  

U {N'\(dom(P~)UQ, U{Aj ] j ~ i ,  A E g } ) , T } , l < i < n ,  

71"n+ 1 = {T, g U { d i t  A E N, 1 < i < n}} 

U {{[i,j,X]}] I < i < n , I < j < k ~ , X E N U T } .  

Obviously, the above partitions are local strict partitions. Since any derivation in 
a component P~ is simulated by an arbitrary number of derivations in the pair of 
components P ' ,  P~+I, it follows that L(F) = L(F').  [:] 

As far as the generative power of total strict deterministic CD grammar systems 
is concerned, one can observe that this decreases as shown by the next theorem. 

T h e o r e m  7. Every language generated by a total strict deterministic CD grammar 
system is prefix-free. 
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Proof. It is known that every ianguage accepted by an LR(O) grammar is prefix- 
free. If I' = (N, T, S, P1, P2,. �9 P=) is a total strict deterministic CD grammar system, 
then L(F) C L(G), where G = (N, T, S, U~=IP~). 

But L(G) generates a language that can be generated by an LR(O) grammar, 
hence prefix-free and the proof is complete. [] 

On the other hand, there are non-context-free languages that can be generated by 
total strict deterministic CD grammar systems. An example is provided by the CD 
grammar system with the components given by 

P1 
P2 = 

Pa = 

and the total strict partition 

{S -*  AC, X -+ A , Y  ~ C} 

{A ~ aXb, C ~ cY} 

{A ~ d,C ~ d} 

= {{s},  {A), {C), (X}, {Y}, {a, b, c, d)) 

The language generated by the above grammar system is {a~db~dc~d [ n >_ 1}. There- 
fore, we have proved: 

T h e o r e m  8. The family of context-free languages and the family of languages 
generated by total strict deterministic CD grammar systems are incomparable. 

5. F i n a l  R e m a r k s  

It is worthwhile mentioning that the restrictions we have imposed on CD grammar 
systems have meaningful interpretations in terms of the blackboard architecture of 
problem solving, which CD grammar systems are a formal representation for, [5]. 
Briefly stated, the blackboard model consists of three basic parts [12]): 

�9 the knowledge needed to solve a given problem, which is partitioned into separate 
and independent knowledge sources; 

�9 the global data base, the blackboard, representing the current state of the prob- 
lem solving process, and in which the knowledge sources can make changes; 

�9 the control of the opportunistic responds of the knowledge sources to make 
changes in the blackboard. 

In the formal modelization, the knowledge sources correspond to grammars and 
the blackboard to a sentential form. Rewriting a nonterminal can be interpreted as a 
developmental step of the information contained in the current state of the blackboard, 
a solution of the problem corresponds to a terminal word, and the control mechanism 
states the conditions under which a grammar can start or stop its work. 

Therefore, it is natural to try to encapture in the CD grammar systems architecture 
other features of their Artificial Intelligence counterpart. To this aim, if one regards 
nonterminal symbols as corresponding to subproblems to be solved, then it is of 
interest to study in detail CD grammar systems in which a relation partioning the 
subproblems, according to their state of the art with respect to the process of finding 
solutions, holds. But this is exactly what the strict determinism features considered 
here for CD grammar systems formally model. More precisely, the partitions of the 
symbol set of a system can be regarded as follows: 
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all the terminal symbols (at the level of the system, and also at the level of each 
component, when a local relation is considered) are related, since they all are 
(partial) solutions to some problems, the presence of a terminal symbol on the 
blackboard does not require any subsequent study of this symbol; 

ii) nonterminal symbols (corresponding to subproblems to be solved) are considered 
related if, once one has started to build a solution of a subproblem, this is a 
beginning of a solution of a related subproblem as well. 
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A b s t r a c t .  The paper deals with a new type of restriction considered for 
the cooperation protocol of grammar systems. The effect of this strategy 
is investigated for all modes of derivation. Some connections are made 
with the usual concept of fairness [1], [6] and that introduced for grammar 
systems [5]. 

1. I n t r o d u c t i o n  

The cooperating/distributed (CD for short) grammar systems were introduced 
first in [9] with motivations related to two level grammars. An intensive study of 
CD grammar systems has been started after relating them with artificial intelligence 
concepts [2], [4] such as the blackboard models in problem solving [10]. A CD grammar 
system is a construct consisting of several usual grammar% working together on the 
same sentential form to generate words. Informally, such systems and their work can 
be described as follows (see [3]): initially, the axiom is the common sentential form. 
At each moment, one grammar is active, that means it rewrites the common string, 
while the others are not active. The conditions under which a component can become 
active or it is disabled and leaves the sentential form to other component are specified 
by the cooperation protocol. The language of terminal strings generated in this way 
is the language generated by the system. As basic stop conditions usually considered, 
we mention: each component, when active, has to work exactly k, at least k, at most 
k, or the maximal number of steps (a step means the application of a rewriting rule). 
Many other stopping conditions were considered or added to the above mentioned ones 
(see [3]). Among these strategies a fairness restriction is considered in [5]. Under the 
fairness assumption, the strategy of cooperation requires that all components of the 
system have approximately the same contribution to the common work, concerning the 
time spent by each of them during the derivation process. In [5] two fairness strategy 
are considered. The first one, called weak fairness, requires that each component has 
to be activated almost the same number of times (the difference between the number 
of times for which any two components are activated is bounded). But this concept 
says nothing about the period of time in which a component is working. The second 
one, called strong fairness, requires more fair behavior from the system by imposing 
the number of applications of rules of components during the whole derivation, to 
be almost the same - the difference between the number of applications of any two 
arbitrary components is bounded. 

In this paper we focus on the case when a rule from a component P is applied and 
there are some applicable rules in a component Q. We view this as a neglect of Q and 
we consider Q will recover later all or at least a part of these lost opportunities to 
use its rules. Moreover, if there are more %eglected" components at a given moment, 
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then the most neglected is selected as active component, having the highest priority. 
This approach has some links with the fairness concepts introduced and studied in 
relation with the behavior of parallel processes [1], [6]. Our concept is different from 
the strategies used in [5] due to the fact that a component which had no opportunity 
to apply its rules does not disturb the derivation process. 

Informally, we associate to each component P an integer variable v to hold the 
difference between the number of applications of the rules from P and the number of 
neglects of P. The higher this difference is, the lower is the priority. Initially, v = 0 
for all components, giving equal priorities to all the components. If a rule from P is 
applied in a derivation, then the value of v is increased by one (v := v + 1), decreasing 
its priority. By contrast, the values of all neglected components are decreased by 
one, increasing their priorities. The other components does not change their current 
priorities. Hence the priority of a component may be changed during the derivation. 
In the strongest strategy, all neglected components are recovered and the derivation 
have to end with v = 0 for all components. Weaker strategies may be considered by 
allowing a fixed number of components to have a bounded number of unrecovered 
neglects or surplus of applications. This new strategy of cooperation is considered 
together with the well known modes of derivation, usually applied for CD grammar 
systems, and it is proven that the generative capacity of these mechanisms is generally 
increased. The strong fairness concept [1], [6] is also studied in connection with these 
CD grammar systems. 

2. Basic Definitions,  Notat ions  and Prel iminary Resul ts  
For an alphabet V, we denote by V* the free monoid generated by V under the 

operation of concatenation; the empty string is denoted by ~, and we set V + = 
v* \ 

The length of x E V* is denoted by Ix]. If x e V* and U C V, then [xlv is the 
number of occurrences of symbols of U in x (the length of the string obtained by 
erasing from x all symbols in V \ U). 

By REG, CF and ETOL we denote the families of regular, context-free and ETOL 
languages, respectively (see [11], [12]). 

A CD grammar system of degree n, n ~ 1, is a construct 

F = (N,T ,S ,  P1, . . . ,P~),  

where N, T are disjoint alphabets, S E N, and P1, . . - ,  P~ are finite sets of rewriting 
rules over N U T. 

The elements of N are nonterminals, those of T are terminals; P 1 , . . . , P ,  are 
called components of the system. Here we work with CD grammar systems having 
only regular rules, i.e. rules of the form A -+ aB or A --~ a with A, B E N, a C T, 
right-linear rules, i.e. rules of the form A ~ xB or A ~ x with A, B C N, x C TU {A} 
or context-free rules, i.e. rules of the form A --* w with A E N, w E (N U T)* and 
denote them by REG, RL and CF, respectively. 

The domain of the i th component denoted by dom(Pi) is defined as 

dom(Pi) = {A I A ~ x e Pi}. 

For (N U T)* one can define the usual one step derivation with respect to Pi, 
denoted by ==~Pi. The derivations consisting of exactly k, at most k (but at least 
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one), at least k such steps :==~p, are denoted by ~ p ~ ,  <~ >k ==~p~ , = :=~  , respectively. 
Furthermore,  we write x ==~o~ y iff x ==~,1 y and there is no z �9 (N U T)* such tha t  
y ==~p~ z. We note also by x ==~), y an arbitrary derivation. Let 

M = {t,*} U U{-< k , =  k , >  k}. 
k > l  

Let 
-'-m2 , , .  ~ m t  

D : S =====~pir~ 1 w l  =====:~pi 2 =====~pi t W k  

be a derivation in the f -mode ,  f �9 M,  1 _< ij _< n, with ij ~ ij+t for all j (i.e. mj  
gives the number of derivation steps performed by the component Pij in D). For any 
1 _< p < n, we write 

r = 1 and  D(p) = m; ,  
~j=p ~jmp 

Conventionally, the empty  sum delivers zero. 
Let F be a CD grammar  system with at least two components. Then we set 

dw(D) = max{leD(i) -- eD(J)I I 1 < i , j  <_ n} 

and 
ds(D) = max{i~n(i ) -- ~On(J)l I 1 _< i , j  <<_ n}. 

Moreover, for u e {w, s}, x e (N V T)* and f C M, we define 

du(x, f )  = min{du(D) I D is a derivation in the f - mode for x}. 

For a CD grammar  system F of degree n > 2 and f E M it is denoted by LI(F)  
the language generated by F. Taking F and f as above and a natural  number  q > 0, 
in [5] it is defined the weakly q-fair language generated by F in the f -mode  as 

n l ( F , w -  q) = {x I x e L~(F) and dw(x, f )  < q} 

and the strongly q-fair language of F as 

Ls(F, s - q) = {x I z e Ls ( r )  and ds(x, f )  < q}. 

For X E {REG, RL, CF},  f E M, n > 1, the family of languages generated by CD 
grammar  systems with n components in f - mode are denoted by CDLn(X, f ) .  The 
union of the families CDL,(X,  f) ,  for all n, is denoted by CDL~(X,  f).  

For X e {REG, RL, C F } , f  E M, and integers n k 2 and q > 0, C D L , ( X , f , w -  
q) and CDL,(X ,  f ,  s -q)  represent the families of weakly and strongly q-fair languages, 
respectively, generated by CD grammar  systems with n components. 

D e f i n i t i o n  1. On (NUT)* we define the one step counting derivation with respect 
to P~, denoted by c ~ p ~ .  Let vl , . . . ,v= and u l , . . . , u ,  be integer values associated to 
P1, .-., P ,  before and after a derivation step, respectively. Formally, we write 

(v, vl, ..., v~) c ~ p ~  (u, ul, ..., un) 
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if v = xAy,u = xwy, A --+ w E Pi and: 
u~ = vl + 1; 
uj = vj - 1 if i r j and ]Vldo,~(P2 ~ 0 (i.e. Pj is a neglected component); 
uk = vk otherwise. 

Moreover, if v~ = min{vj I 1 < j <_ n and IVldo~(pj) # 0} then we have a prior 
derivation. It is denoted by (v, vl .... , vn) p ~ p ~  (u, Ul, ..., un). 

The derivation ~ ==~/p~ with f E M has the usual meaning, each step being a 
counting derivation and the first one is a prior derivation. 

R e m a r k .  When the symbol f used in the above notation is understood, it can 
be replaced by another symbol denoting how many times is applied the derivation. 

Def in i t ion  2. Let F be a CD grammar system with n components, p and q natural 
numbers, 0 < p < n. One can define the language generated by F in the counting 
derivation mode f E M with p components relaxed to the interval [-q,q], as being 
the set: 

L f ( r ,  p, q) = {w I w c ~'*, (S, Y0) = (w0, V0) c ~ P , 1  (Wl, V~) c ~P,2~ ' 

~ f p ~  (wm, V,~),wm =w, m > l , 1  < i j  < n , 1  < j  < m ) .  

where: V/ = (vi,1,..., vi,n), is the vector with the associated values for the n compo- 
nents of F, 

1) the first step in (wj-1, Vj-1) ~ ==~/p~ (wj, Vj) is a prior derivation, 

2) v0 = (0, ..., 0),  
3) there are p components Pj~,..., Pj~ such that - q  < v~,2~ < q, for all 1 < r < p, 

a n d v m , ~ = 0 f o r i e j ~ , l < r < p .  

R e m a r k .  This type of derivation introduces a kind of priorities among the com- 
ponents to be chosen after P~ was used. These priorities are computed ~t each 
step. 

The corresponding classes of languages are denoted by CDLn(X, f,p, q), where n 
is the degree of the grammar system, X E {REG, RL, CF} indicates the type of the 
components (regular, right-linear or context-free) and f E M. 

T h e o r e m  1. For all modes of derivation f G M and any type of grammars X, 
we have CDL,~(X,f,p,q) C CDLn,(X,f,p',q'), n < n',p < p',q < q'. 

Proof. Directly from the definitions. [] 

R e m a r k .  The meaning of CDL,(X,f,p,O), CDn,(x, f ,O,q),  L](r,p,O), 
L/(P, 0, q) does not depend on p or q. We frequently use CDL,(X,f,O,O) and 
LI(P, 0, 0) for expressing these cases. 

Let us illustrate the introduced concepts by two examples. We shall give just 
the components of the systems, the other elements can easily be deduced under the 
assumption that S is the axiom. 

E x a m p l e  1. We consider the grammar system Y with the components 

P1 = {S--* aS, S ~ aA, A ~ aX), 
P2 = {A  -~ hA, A -~ b, S -~ bX }  
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We have 

L>_k(r, 0, 0) = {a~b ~ I P >- k} 
L . ( r ,  0, 0) = {aPb ~ I P > 1}. 

Indeed, any counting derivation producing a terminal string in F has the form 

(S, O, O) c ~ 1 p ,  (akA, ul, u2) c ~ f p :  (a%m, vl, v2) 

where Ul - k, u2 = - k ,  Vl -= k - m ,  v~ = - k + m .  From a% m E L/(F ,0 ,0)  we deduce 
va = v 2 - 0 ,  i.e. k = m .  

Note that  the rules A ~ aX ,  S ~ bX are used only for counting�9 

E x a m p l e  2. Let F be the grammar system having the following components 

P1 = {S  ~ abB, S ~ aAbB, A --+ aAb, A -.-* ab, B ~ F} ,  

P2 = {B---+ cB, B ~ c ,S  ~ F ,A- -*  F} .  

It follows that, for all f ~ {= 1 ,>  1,*} U {5  k [ k > 1} and q _> 1, 

L](F,  2, q) = {a"b"c~ l n >_ 1,m _> 1, I n - m r  <_ q} 

holds (the two components are alternatively used) whereas for q = 0 

Lf(F,  0,0) = {a~b~c ~ In  > 1}. 

We mention that  all the above mentioned languages are not context-free. Moreover, 
by taking q - 0 and = k or > k derivation mode, for all k > 1, we have 

n = k ( r , 0 , 0 )  = {a%~c~ln=p.k,p> 1}, 
L>_~(r, 0, 0) = {a~b"c ~ r n _> k}. 

T h e o r e m  2. Let F be a C D  grammar system with the degree n = 2. Every 
counting derivation 

(s, 0, 0) c ~ , ~  (~1, Ul, Vl) c ~ ,  ... ( ~ ,  ~ ,  v~) 

has the property Uk + vk >_ O, for k >_ 0 and f ff M .  Moreover, i f  there is an i such 
that ul + vi > 0 then ui+j + vi+j > O, for j > O. 

Proof. We prove by induction on the length of the derivation. For k = 0 the result 
is trivial. Suppose that uk + vk > 0 and (ak,uk,  vk) ~ ~ f  (ak+l,uk+l,vk+~). 

Let us consider i~+1 = 1 (the other case is similar). Then we have uk+a = uk + j ,  
vk+l = v~ - r, 0 < r < j ,  where r counts how many times the component P2 was 
neglected. Obviously, Uk+l -~ V k +  1 ~ O. V] 

C o r o l l a r y  3. Let r be a C D  grammar system with the degree n : 2. Every 
counting derivation 

(s, o, o) ~ ~ , ~  . (~ , , ,~ ,  ~ )  ~ ~ s  . (~, o, o) � 9  Pik+l " .  

has the property Uk + vk = 0 for  k > 0 and f E M .  
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Corollary 4. CDL2(X, t, O, O) = {0}, X C {REG, RL, CF}. 

Proof. Suppose there exists F such that L~(F, 2, 0) # 0. Then we have a counting 
derivation 

c t ( a l , u l , v l )  c ~ . . . (X, Uk, Vk) (S, o, o) ~P,1 ~P,2 
w h e r e x C T * , k > l a n d u k = v k = 0 .  

Assume il = 1. In fact we have k > 2, otherwise uk ~ 0. If after the derivation 
(S, 0, 0) ~ ==~11 (a~, Ul, Vl), the first applied rule is of the form B --+ x E P2, then 
there is no rule B --+ y E P1. Hence after applying the rule B --+ x C P2 we get 

( a l , u l , v l )  c ===> (a ' ,u ' ,v ' ) ,u '  = Ul ,V '= Vl + 1, 

so, u' + v' > 0, a contradiction with Theorem 2. [] 

L e m m a  5. CDLI (X , f ,O ,O)  = {~},X E {REG,  RL,  C F } , I  C M. 

Proof. For a counting derivation (S, 0) c ==~]p~ (x, v) having at least one step we 
have v > 0. [] 

3. The  Regular Case 
Lemma 6. {a} 6 CDL,(REG,  f ,  O, O) for ,U ~ > 2, f E M. 

Proof. Suppose we have a CD grammar system F such that  LI (F ,0 ,0)  -- {a}. In 
this case there is a component Pi such that S --+ a E P~. The only way to generate a 
is to use such a rule. But in a counting derivation (S, 0 , . . . ,  0) ~ ===~fe, (a, v , , . . . ,  v=) 
we have vi = 1. This contradicts a E LI(F, O, 0). [] 

T h e o r e m  7. CDL2(REG,  f,O,O) C REG,  I E {= k I k > 1}. 

Proof. Let P = (N,T,  S, P1, P2) be a CD grammar system with two components 
and a derivation 

(x, ~,, u~)~ ~ ,  (~, v~, v~). 
From Corollary 3 we have u~ +u2 = v~ +v2 = 0, so it results that  dom(P~) = dom(P2). 
The rules of the two components are alternatively applied, k times each one. The 
following regular grammar is constructed: 

G = ( N ' , T , S , P ) ,  

where, for k > 2 

N'  = { S } O { A ~ j , I [ A E N ,  I < i < _ 2 , 1 < j < _ k , I  <I<_2} ,  

P = {A{ , j j -+aB~, j+I , z [A- -+aBEP{ ,1  < i < 2 , 1 _ < j  < k , 1  < 1 < 2 }  

U{Al,k,l ~ aB~,x,l I A --* a B e  Pl,1 < l < 2} 

U{A2,k,z --* aBl,l,l I A ~ aB  E P2, 1 < l < 2} 

U{AI,k,2 --+ a I A -+ a �9 Px} tJ {A2,k,1 -+ a I A -+ a �9 P2} 

U{S --+ aA~,2,i I S ~ aA �9 Pi, 1 < i < 2}. 

Clearly, each derivation in F, in the above specified conditions, is simulated by a 
derivation in P ,  starting with S ~ aAi,~,~ and continuing by alternatively applying 
k times rules from P1,P2; at the end a rule A1,},2 -+ a or A2,k,1 ---* a is used. The 
strict inclusion follows from Lemma 6. [] 
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T h e o r e m  8. R E G  and C D L=( R E G ,  f ,  0, 0) are incomparable for: 
a) f E {*} tJ{___ k i k  >_ 1} a n d n  > 2; 
b) f E { < k l k >  l } U { = k l k >  l } U { t  } a n d n > 3 .  

Proof. From Lemma 6 we have a regular language which can not be generated 
with counting derivation. 

Conversely, the point a may be proved using Example 1. To prove b we first 
show that  {amb'~c TM I m > 1} E C D L 3 ( R E G ,  t,O,O). Indeed, the system having the 
following components: 

= 

P 3  = 

{S  ---* aS, S ---+ aA, B ~ bX},  

{A --* hA, A ~ bB, S ~ aX} ,  

{B  ~ cB, B --* c, A --* cX}  

generates the considered language in the counting derivation mode t. 
We see that  such a derivation has only the form 

and then 

~ t (akb'~B, k, m - k, - m )  

c t (akb'*c r , k - r , m - k , r - m ) .  (akb~B, k, m - k, - m )  ~ P 3  

Note that  the first step in c = = ~  must be a prior derivation and after the last 
derivation all priorities have to be zero. Thus, we get k = m = r. Finally, Theorem 1 
and Corollary 4 state that  n ~ 2. 

For the derivation modes < k, = k we consider the system F with 

P1 = {S---~ aS, S ~ aA, A---+ aX} ,  

P2 = ( A - +  bA, A ~ b}, 

P3 = P2. 

We have L=k(F,0,0)  = {a2Pkb 2pk I P >- 1}. It is easy to see that  every counting 
derivation producing terminal strings in the mode = k has the form 

(S, O, O, O) ~ =:~p~ (akS, k, O, O) c =:=~pk . . .  

c =k (arkbkA, (r -- 1)k, k , - k )  . . .  (a~kA, rk,  O, O) ::::::~P2 

c ~p~=, (a~r (r - e)k, O, o) . . .  ~ ~=~ (a~*b ~ ,  (r - 2p)k, O, O) 

where p > 1. We must get (r - 2p)k = O, hence the result is proved. 
We also have 

L<k(F, 0,0) = {a2Vb2p]p > 1}. 

Indeed, every counting derivation producing terminal strings in the mode _< k has the 
form 

(s, o, 0, o) ~ ~ (a~A, r, O, O) ~ ~ :  

<k (arb,~b~[ r rl ' rl ' ' - r l )  ( a ~ b n A ' r - r l ' r l ' - r l )  ==~P3 ' -- - - r l '  - - r l ' r l  

C : : = : : : ~ : . . .  ( a r b q + m  r - q - m, q - m, m - q). 



157 

We must get r - q - m = q - m = m - q = 0 and the result is proved. [] 

T h e o r e m  9. a) REG C CDLn(REG, f,  2, 1), for all n > 2, f C {*, = 1, >_ 1}U 
{ _ < k l k > _ l } ,  

b) REG c CDL,~(REG, t,2, 1), for n > 3; the inclusion is strict for: 
c) n > 2, f e {%>_ 1}, 
d) n>_3, f e { t ,=l}U{<_k]k>__l} .  

Proof. Let G = (N,T, S, P) be a regular grammar. We consider another set 
N '  = {A' I A E N} containing copies of G nonterminMs and a new trap nonterminal 
X ~ N U N' .  Let F = ( g  U N '  U {X}, T, S, P1, P2) be a grammar system of degree 2 
where 

P I = { A - + a B ' [  A - - + a B E P } U { A - + a [  A - + a E P } U { A ' - - + a X ] A e N } ,  

P2={A'---+aBI A - - + a B C P } U { A ' - - + a  I A - - + a E P } U { A - . - ~ a X I A c N } .  

We note that  in the mentioned modes f every counting derivation in F starts with 
a rule from P1 and uses alternatively rules from P1 and P2 due to the parasitic rules 
A ---+ aX, A' ---+ aX. It is easy to see that every derivation of G 

S ~ xlA1 ~ x2A2... 

can be simulated by the counting derivation in P 

(S,O,O) c =:::~P1 (xlA'I, 1 , - 1 )  ~ ~ f  p2 (x~,a2,0,0).. .  

Hence, L(C) C_ Ls(r,2,1). Conversdy, Lf(r,2,1) c_ L(G) due to the fact that 
excepting the parasitic rules the productions from P1 and P2 are copies of those from 
P.  

For f = t the following grammar system is taken 

where 

F = (N,T, S1,P1,P2,P3), 

/~ =-- {A1 ---+ aB21A -+ a B e  P} U {A1 -+ alA ~ a E P} U {Aa ~ aXIA e N,a E T} 

P2 = {A2 ~ aB3[A ~ aB C P} U {A2 --+ alA--+ a E P} U {A1 --+ aXIA E N,a C T} 

P3 = {Aa --+ aBllA ~ aB C P} U {Aa --+ alg--+ a e P} U {d2 --+ aXIA e N,a  e T} 

Clearly, L,(r, 2, 1) = L( G). 
Applying Theorem 1 and Theorem 8 the proof is over. [] 

T h e o r e m  10. a) REG C CDL,(RL,  f,O,O), for n > 2, f C M \ {t} and for 
n > 3, f = t. The strict inclusion holds for 

b) n k 2, f e {*}U{> k l k >  l}, 
c) n>_3, f E { t } U { = k l k >  l } U { < _ k l k >  l }. 

Proof. Let G = (N, T, S, P)  be a regular grammar. We construct the grammar 
system P = (N ,T ,S ,  P1,P2) where P1 = P2 = P U {A -+ A I A E N}. It is easy to 
see that  L(G) C L](P,0,0). Indeed, every derivation S ~ x may be written as a 
derivation with right linear rules having an even numbers of steps (we may start with 
S --+ S whenever needed). Such a derivation may be simulated in F by alternatively 
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applying rules from/)1 and t~ For the cases = k, > k the rules A --+ A may  be used 
to obtain a derivation 

~ ~ ~ . . . ( ~ , o , o )  (s, 0, 0) ~ ,  (~,  k ,-k)  ~ 

in an even number  of steps. For the case f = t, the last part  of the proof of Theorem 
9 is considered and appropriately modified to prove the required inclusion. 

The strict inclusions follow from Theorem 8 and using Theorem 1 the proof is 
over. [] 

The following two results set out some relations among the strong fair languages 
and the languages generated by CD grammar  systems with counting~priority mecha- 
nism in the case f = t. 

T h e o r e m  11. For any right linear CD grammar system F = (N, T, 5, P 1 , . . . ,  P~) 
there exists a right linear CD grammar system F' = (N',  T, S', Po, P 1 , . . . ,  P~) such 
that 5' occurs only in the left hand side of the rules belonging to Po and L,(F, s - 0 )  -- 
n , ( r ' ,  s - 0). 

Proof. If F -- (N, T, 5, P1 , . . . ,  P~) is an arbitrary CD grammar  system, then the 
new elements defining F'  are 

N' = N u (S'} 
P0 = { S '  -~  5 ' ,  5 '  ~ S } .  

If 5 ====>* w in F and each component works p times, then in F' the following derivation 
occurs S '  =====:=~p-1 5!  ~ S ==::::=~* W. [] 

T h e o r e m  12. CDL~(RL,  t, s - O) c CDL~+2(RL, t, O, 0). 

Proof. Let us consider for an arbitrary language L e CDL~(RL,  t, s -  0) a right 
linear g rammar  system F with n components. From Theorem 11 we get an equivalent 
g rammar  system F' = (N', T, S', P0, P 1 , . . . ,  P~). The following grammar  system is 
constructed, using the definition of r '  

where 

P " - -  (N" ,T ,S ' ,P~ ,P I , . . . ,P~ ,P ~+I )  

N"  = { A , ] A e N \ { S ' } , I  < i < n } U { F , X } ,  

pg = { s ' - ~ s ' , x - ~ x } u { s ' - ~ 5 ~ l l  < i < ~ } ,  
P" = {Ai--+ aBi I A ~ aB 6 P~,B r dom(Pi) , l  < j << n , j  7~ i} 

U{Ai --+ aBi I A --+ aB  C Pi} 

U{A~ ~ a X  I A --+ a E e i }  

u { S '  ~ F } ,  1 < i < n,  

P~+I = {S'  -+ F , X  --+ X , X  -+ ~}. 

For any derivation in F', S '  ==~* w, having for each component the same number  of 
applications, p, the following derivation steps are constructed in F": 

(s' ,0,. . .  ,0) ~ ~ o  (S ,p , -p , . . . , - p )  
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(due to the rules S' --+ F E P~, 1 < i < n + 1) and then 

(S,,p,-p,..., -p)~ ~ ,  ... (wX, p, 0,..., 0,-p) 

(using the rules of P1,. . . ,  P,~, P times each); at the end the rules of P=+I are used p 
times and so we get 

(wX, p, 0 , . . . ,  O,-p) ~ t ~ p o + ,  (w,O,...,O). 

It follows that w E L~(F", 0, 0) and the proof is over. O 

4.  T h e  C o n t e x t - F r e e  C a s e  

The main results concerning the generative capacity of the context-free grammar 
systems with the counting/priority support are stated by the next theorem. 

Let 
M1 = { : ] , ~ _ l , * , t } l - J U { ~ k  }. 

k > l  

T h e o r e m  13. i) For all n > 2, and 
. f e M~ \ {t}, 

CDL~(CF, f )  C CDL~(CF, I,O,O). 

. q > _ l ,  

ii) For all n >_ 3 

CDL2(CF, t) C CDL2(CF, t, 1, q). 

CDL~(CF, t) c CDL~(CF, t,O,O). 

iii) F o r a I l n > 2  a n d k > 2  

CF C CDL~(CF,= k,O,O) NCDL~(CF,> k,O,O) 

Proof. First we recall (see [3]) 

a) CF = CDL~(CF,  I ) , I  e M~ \ {t}, 

b) CF = CDL~(CF, t) = CDL2(CF, t) C CDL~(CF, t) = ETOL, 

c) CF C CDL~(CF,=k)  NCDL~(CF,> k ) , n >  2, k > 2. 

i) For f C M1 \ {t} and an arbitrary context-free grammar G = (g ,  T, S, P), the 
following grammar system is constructed 

F = (N',T,S' ,P1,P2} 

with 

N = N u { S ' , X } , S ' , X  

P, = P2 = P U { S' --+ S X, X ~ X, X --~ )@ 

For a derivation S ~ *  u in G, the following derivation steps are obtained in F 

(s',o,o) ~ ~ ,  ( s x , 1 , - 1 )  . . .  c ~  (uX, a,~) o ~ ,  (u,O,O) 

where P, P '  are any of P1, P2 and a + b = O. 
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For f = t and an arbitrary context free grammar,  it can be constructed the 
g rammar  system with the components: 

PI = P U  {S'  ~ S X ,  Y --~ ? } ,  

P2 = P U { X  ~ Y , Y  ~ Y , Y - ~  A , S ' - .  F} ,  

where S',  X, Y are new symbols, S '  being the start  symbol. A derivation in G for a 
word u has the following corresponding derivation steps in F: 

(S', O, O) c ~ p ~  (SX ,  1, - 1 )  c :==~  (uX,  s + 1, - s  - 1), 

P ~ P 2  (uY, s + 1, - s )  ~ ~ P 2  (u, 1, 0). 

For f mode, f C M1 \ {t}, the grammar  system F considered in Example  2 gives, 
for counting derivation style, non-context free languages. In the t mode the gram- 
mar  system can be modified such that  it also generates a non-context free language. 
Combining these results with the relations a), b), mentioned at the beginning of this 
proof, we get the announced inclusions. 

ii) For showing CDLn(CF,  t) C_ CDL~(CF,  t, 0, 0), n _> 3, let us consider a lan- 
guage L E CDLn(CF,  t). From the last inclusion stated by relation b) it follows that  
L can be generated by some ETOL system G = (V, Ti S, T1, T2 , . . . ,  Tin) with the al- 
phabet  V, containing the set T of terminals, the start word S which can be considered 
without loss of generality as an element of V \ T and the tables T1, T2 , . . . ,  T,~. 

For an element a E V, 0 < i < m and 1 < k < 3, we introduce the new elements 
a~,k. For a word x over the alphabet V, the string xl,k is defined inductively in an 
obvious way. 

The following CD grammar  system is constructed: 

r = (N,T,S,  PI,P2,P3) 

with 

N = { S , F , Z ,  E 1 , E 2 , R , R , , R 2 ,  V, V1,�89 V3, W , X }  

U{ai,k ]a C V, 0 < i < m, 1 < k < 3} 

U { Z + , k l 0 < i < m , l < k < 3 }  

U { X i , k l O < i < m ,  1 < k < 3 } ,  
5 

PI = UPI,~, 
i = l  

P~,I =- {ai,1 --~ ai,2 ] a E V, 0 < i < rn} U {Zi,1 --+ Zi,2 I 0 ~ i < rn} ,  

P1,2 = { Xi,1-+ Xi,2 l O < i < m}, 
P1,3 = {El --+ El ,E1 --+ E2,E1 -+ R, E1 --+ R2,E1 ~ Z, E1 ~ A}, 

P1,4 = {R,  ~ F} ,  
P,,5 = { V ~ V~,V~ ~ V~,V~ -* V2, W--*  F, �89 ~ F }, 

5 

P2 = UP2 , .  
i = l  

P~,l = {a~,~ -~  a~,31 a e V, 0 < i < .~}  U {Z~,I -"  Z~,3 I 0 < i < m } ,  
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P 2 , 2  "~ 

P2,3 = 

P2,4 

P2,5 

Pa 

P3,1 
P3,2 ~-~ 

P3•3 
P3,4 ~'~ 

P3,5 

P3,6 

P3,7 

P3,8 

For a derivation 

{Zl ,2  ~ Xi,1 I 0 < i < m } ,  

{ E~ -+ E~, E~ --, R, E~ -+ R1, E~ ~ Z, E~ -+ )0 , 

{n~ -+ F},  

{y~ + v~, y~ -~ y~, v~ + w, y~ -~F} ,  
8 

U Pa,i, 
i=1 

{ S  ~ Xo , l ,Xo ,  1 -'=+ Xo,1, Xo,1 ~ So,lZo,1}, 

{ai,2 ~ ai+l,1 J a C V, 0 < i < m - 1} 

U{Zi,2 ----+ Zi+l,1 IO < i < m - 1}, 

{ al,a ~ Woj l a ~ w E Ti ,  1 < i < m } , 

{z~,~-+ Zo,1 I1 < i  < m }  

U{Zi,a ~ Xi,j I 1 < i < m , j  = 1,2} 

U { X i j  ~ Zi,a I 1 < i < m , j  = 1,2} 

U{Xi , j  "-~ Zo,1 I 1 < i < m , j  = 1,2}, 

{ a o , a - - + a [ a e T } U { a 0 , a + F l a e  V \ T }  

u{z0,~ -~ z, Z0,~ ~ ~}, 

{Z  ~ El ,  Z ~ E2, Z --, R, R ~ R, R -+ ,X}, 

{Z ---+ R1, Z ---+ R2, R1 ---+ R1, R1 -+ R2, R2 ---4 R2, 

{ R---, v , w - - ,  w , w - - ,  x , x - - - ,  x , x - - ,  ),,yl --, F }. 

D : S ==* x (1) ~ x (2) ~ . . .  ~ x (n) ~ x,  x E T" ,  

in the ETOL system, with the observation that x (j) is obtained in the table Tij, we 
construct the following derivation steps in F: 

a) The derivation starts by applying only some rules from P3 component (Pa,1 
subset); so we get 

(S, 0,0,0) c ==a~3 ( X o a , - n +  1,0, n) c ~ p ~  (So,lZo,l,--D., 0,D. -~ 1). 

After getting the last string, the component P3 is left. Let us denote by k, the length 
of the string SoaZoa. Clearly, we have n _> 1, k >_ 2. 

b) For simulating the first step in G, S ==~ x (1) (using the rules of the table T~I) , 
it is necessary to apply in I', alternatively rules from P1 (P1,1 subset) and P3 (P3,2 
subset) and then P2 (P2,1 subset) followed by P3 (Pz,a, Pa,4 subsets). Applying first 
rules from P1,1 and then from P3,2, we get the derivation 

(S0,1Z0,1, - n ,  0, n + 1) c :=:=~P1 (So,2Z0,2, - n  + k, - k ,  n + 1 - (k - 1)) 

: ~P3~ (SllZ11,-n+l,-2k+l,n+l+l)., , 

The number of rules used in each mentioned component is the same and it equals the 
length of the string. 
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c) Applying j times the rules of the components P1,1 and P3,2, alternatively, the 
following derivation can be defined 

(So,xZo,~, - n ,  0, n + 1) ~ = = ~  . . .  (Sj,IZj, 1 , - n  -~- j ,  ( - 2 k  + 1)j, n + 1 + j ) .  

After leaving P3 component,  and for applying again P1 component instead of P2 
(both components could be applied to the string Sj,IZj,1), it is necessary to have 
- n  + j < ( - 2 k  + 1)j, i.e.: 

n > 2kj .  

Let us denote by I the first value of j for which the relation above is not true; so we 
have 

2 k ( l -  1) < n < 2kl. 

In this case (when j = l), the rules from P~ (P2,~ subset) and then those from Pa can 
be applied. So the derivation becomes: 

c t " ' "  ( ~ l  1Z l ,1 ,  "/11, '/12, u3)  (x,0,0,0) ~ p ~  

c t ( S l  3 Z l  3, Vl, v2, v3) c :::=~t (1) =::::~P2 , , P3 ( x o , l Z ~  

After leaving P2,1 only the rules of P3 (P3,3 or P3,4 subsets) can be applied. Clearly, 

l = il and then ~(1) corresponds to x 0), the first string in the derivation D. ~0,1 
d) After getting /x(~)Z 0,1 0,1, nl, n2, n3), for some s < n, for restarting the derivation 

in order to simulate the application of the table Ti~+~, it is necessary to have 

nl = n2 -- n, 

where n satisfies 2k(/ 1) < n < 2kl for I i~+l,k (3) - = = ]xo,lZo,1 I. In order to 

obtain relation nl = n2 - n the string ~0,1~0,1, 1, 2, 3j must be derived from 
(xi~,3Z~,3, ml ,  m2, ms) by applying the rules of Ps,a and Pa,4 in the following way: 

* if we need to decrease ml  instead of m2 (m2 instead of m 0 then are applied first 
the rules from P3,4 for j = t (j  = 2) and we get the string (x~s,~Zo,i , hi, h~, hs); 

. at the end are applied the rules belonging to P3,3 (these rules change both hi 
and h2 at each step of the derivation). 

e) The process described until now, ends when the string (x(~)Zo,l ,Pl,p2,p3) is 

obtained rx (~) corresponds to x (~), the last string in D). For ending the derivation in k 0,1 
F, the string above mentioned must be derived using rules of P2 (P2j subset) instead 
of P1 (P1,1 subset), so it is required to have pl >_ P2. In order to get this relation the 

x(~) rules belonging to P3 applied to the string deriving (o , lZo, l ,Pl ,p2,p3)  are managed 
in a similar way to those used for step d). The derivation can further be described as 

~ (z( ,~)U,u,v,p).  

The rules used for the last part  of the derivation are those from P3 (Ps,~ subset). The 
string x (~) is just the string obtained in the derivation D and U is Z or A. 

f) If u = v = p = 0, U is A and the derivation stops. Otherwise U is Z and from 
(x(~)Z, u, v, p) we get the string (x (=}, 0, 0, 0). 

Indeed, i fu  # 0 or v # 0 then we first transform (x (=)Z ,u ,v ,p )  into (x(=)U, O, O, rn), 
where U is R if m # 0 otherwise U is A. For getting the string (x('OU, O, O, m)  the 
following cases are distinguished: 
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�9 for u < 0, v < 0, the string (x(~)Z,u,v,p) is derived using Z -~ E1 or Z ~ E2 
belonging to P3,6 and then the rules from P~,3 and/or P2,3; 

�9 for u >_ 0, v > 0, the string (x(~) Z, u, v, p) is derived starting with Z --+ R1 or 
Z ~ R2 from P3,7 and continues by using suitable rules belonging to P3,r, getting 
u = 0, v = 0 due to the rules from P1 (P~,4 subset) or P~ (P2,, subset); 

�9 for u > 0, v < 0 or u < 0, v > 0, the string (x(~) Z, u, v, p) is derived starting 
with Z --+ E1 if u < 0 (Z ~ E2 if v < 0) continues by applying the rules belonging 
to Pl,a (P2,3), obtaining (x(~)R2, u',v',p') (or obtaining (x(n)Rl,U', v',p')) and ends 
by using rules of Pa,7. When the rules from Pa,r are selected it is necessary to have 
v' > p'(u' > pr). This condition can be achieved by first using Z -+ E2, E2 --~ E2 
(arbitrary times) and then E2 ~ Z (or Z --* E~, Ea --* Ea (arbitrary times) and then 
E~ ~ Z) 

If we get (x(~)R, O, O, m), m 7t O, then we distinguish two cases: 
�9 For m < 0 we get (x (~),0,0,0) from (x(~)R,O,O,m) by iteratively applying 

R --+ R and then R --+ A. 
�9 For m > 0 we first derive (x(~)R, O, O, m) with R ~ Y from P3 (Pa,s subset) and 

so we get m > 1. The rules V --+ 1/1, V1 ~ 1/1 (2. m - 1 times) and Vi -~ V~ from 
P1 are then used to get the string (x(~)V2,2 �9 m + 1 , - 2  �9 m , - m )  (due to the rules 
V1 --* F belonging to both P2,5 and Pa,s). This last obtained string is further derived 
by applying the rules V2 --~ V3, Va ~ Va (2- m - 2 times) and V3 --* W from P2 and 
getting (x(~)W, 2, O,-m)  (due to the rule V3 --+ F of P1,5). At the end, this string is 
transformed by using the rules of P3,s: W ~ W, W -~ X, X --~ X (m - 3 times) and 
then X --~ A, m > 3 or W ~ X , X  ~ A, m = 2. 

iii) Let us consider a context free grammar G = (N, T, S, P)  and construct similar 
to Theorem 4 (see [5]) 

r = (N u {X},T,S,P~,P~),  

with 
P~ = P2 = P U  {A ~ wX  : A--* w C P} U {X  ~ X , X  ~ A}. 

Clearly, ns(r) = L(G) , f  E {= k : k >_ 2} u {>_ k : k > 2}. Combining this 
construction with Example 2, the proof is over. [] 

5. Strong Fairness and Grammar Systems with Priority 

Usually, fairness is defined as a restriction on some infinite behavior according to 
eventual occurrence of some events. The term is used as a generic name for a mul- 
t i tude of concepts. In the contexts where an event occurrence can be either enabled 
or disabled, two kinds of requirements are stated by weak fairness and strong fair- 
ness concepts [1], [6]. According to weak fairness, an event will not be indefinitely 
postponed provided that  it remains continuously enabled from some time instant un- 
til occurring. Strong fairness guarantees eventual occurrence under the condition of 
being infinitely often enabled, but not necessarily continuously. 

In CD grammar systems we consider as event occurrence the intervention of some 
given component P in the derivation process, i.e. the ==~]p occurrence. Such an event 
occurrence is considered enabled at a given step of the derivation process if the given 
component contains some rules that can be applied in the current sentential form. 
From among the enabled components the component with the highest priority will be 
activated. 
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In this section we confine our attention to strong fairness of the CD grammar  
systems with dynamical priorities. 

D e f i n i t i o n  3. Let D :  (a0, 0 , . . . ,  O) ~ ~]P~o " " " ~ ~P~k-if (ak, vk,1,. . . . . . ,  vk,,~) 

be a counting derivation (possibly an infinite one), where a0 -- S, k > 0. A component 
P is said to be enabled at the U ~ step of the derivation if [akldo,~(P) >-- 1, i.e. there 
are some rule A ~ fl C P and ak = 7 A s  A component Pij, 0 < j < k -  1, 
appearing in this derivation is said to be the activated component at the step j .  By 
Ej,  0 <: j < k, we denote the set of all components enabled at the jth step. The  
pair (Ej, ij), 0 < j < k - 1, is said to be a selection (from among n components) 
and consists of the nonempty set Ej C { 1 , . . . , n }  of enabled components and the 
activated component ij C Ej.  Of course, vj,i i < vj~ for all r E Ej. We associate to 
the derivation D a run, i.e. the sequence of se]ections (E0, i0) . . .  (Ej, i j ) . . .  

N o t e .  Instead of a component name Pi we simply use the index i. 

E x a m p l e  3. Let F be a CD grammar  system with the following components: 

P1 = {S--+ A , A - ~  B , B  ~ C , C - *  D , D  ~ E , E - - *  F} ,  

P2 = {F  ~ A , A  ~ S ,C  ~ X ,E- -+  X } ,  

P3 = {F "-> a}. 

For the mode = 2, we have the following counting derivation: 

(S, 0, 0, 0) ~ :::~p~ (d ,  1,0, 0) ~ ==:Vp~ (B, 2, - 1 ,  0) ~ =::~p~ (C, 3, - 1 ,  0) 

::=~p, (D, 4, - 2 ,  0) r ::=V-p1 (E, 5, - 2 ,  0) ~ =:::Vp~ (F, 6, - 3 ,  0) 

=::~t'~ (A, 6 , - 2 , - 1 )  ~ =:::~p~ (S, 5 , - 1 , - 1 )  ~ ::~p~ . . . ,  

that  is 

(S, 0, 0, 0) c (B, 2 , -1 ,0)  (D, 4, -2 ,  0) 
- --2 (S, 5, _ l ,  _ l )  c (B ,  7, _ 2 ,  _ l )  . (r ,  6, -3 ,  o) .. 

Its associated run is: 

[({1}, 1)({1}, t)({1}, 1)({2, 3}, 2) ] . . .  

The component P3 is never activated, despite the fact that  it is enabled infinitely 
often at the steps 3, 7, 11 . . .  of the = 2 derivation. Obviously, the intervention of the 
component P3 which could terminate the derivation is systematically forbidden. 

D e f i n i t i o n  4. A derivation is called strong fair if its associated run satisfies the 
following condition: 

Vi(1 < i < n)A ~ j E No(i e Ej) . o~ J e No(i = ij) 

Here, the quantifier ~ stands for "there exists infinitely many" and No denotes the 
set 0 , 1 , . . .  of natural  numbers. 

R e m a r k .  In a strong fair derivation every component which is enabled infinitely 
often, is also activated infinitely often. In particular, every finite derivation is strong 
fair. 



165 

D e f i n i t i o n  5. A C D  grammar  system P is said to be strong fair in the  derivation 
mode f if all the  mode f counting derivation are strong fair. 

T h e o r e m  14. For the degree n > 3 and for the derivation modes t, *, < k, = k, >__ 
k, where k > 2, there are C D  grammar systems which are not strong fair. 

Proof. See Example  3 for t, *, < k. For = k, >_ k this example can be slightly 
modified. [] 

T h e o r e m  15. Let F be a C D  grammar system with the degree n = 3. For the 
derivation mode = 1, at every step of a counting derivation we have at most two 
components with the priority value less than or equal to - 1 ,  at most one component 
with the priority value less than or equal to - 2  and no component with the value less 
than or equal to - 3 .  

Proof. We proceed by induction on the length k of the counting derivation. For 

c = ,  c = ,  vk,  z )C =l (S,O,O,O) ~P,1  "'" ~P , k  G+I 

let us assume ik+l = 1. We have uk+l = uk + 1 and for vk+l, Zk+l the following cases: 
a) v k + l  ~ Vk - -  1, z k + l  = z k - -  1, u k  ~ v k ,  Uk ~ Zk; 

b) Vk+ 1 : Vk,  Zk+l  = Zk --  1, uk <_ zk;  

C) Vk+l  = Vk~ Zk+l  = Zk, 

It is easy to see tha t  assuming one component has the vMue less than  or equal to - 3  
we contradicts  the inductive hypothesis. The other cases are similar. [] 

T h e o r e m  16. For the degree n = 3 and for the derivation mode = 1, the C D  
grammar systems are strong fair. 

Proof. Let us assume that  there exists a C D  grammar  system with a derivation 
which is not strong fair. We deduce that  in its associated run (Eo, io ) . . .  (Ej, ij) there 

exists a component  i and a step k of the derivation such that  ~ j (j >__ k)/~ V m ( m  > 

k ~ i r ira). Let Jo, . . .  j l . . .  be the infinite sequence deduced from ~ j ( j  > k). If vk,i 
is the  associated pr ior i ty  of the component i at the step k, from i C Ejo , . . .  i E Ej~ . . .  
and i ~ i j, we deduce tha t  v i & , . . ,  v i& . . ,  is a strict decreasing infinite sequence. So, 
we obta in  tha t  there exists a component i having its priori ty less than or equal to - 3 ,  
a contradict ion with Theorem 15. [] 

T h e o r e m  17. For the degree n = 2 and for all modes of derivation f C M the 
C D  grammar systems arc strong fair. 

Proof. Let assume that  there exists a derivation D which is not strong fair. Hence, 
we have a component  infinitely often enabled but  never act ivated from some moment  
on. Let 2 be this component.  We deduce that  in the run of D there exists a j0 such 
that  for all j > j0 we have Ej  = {1,2}, ij  = 1, %1 <_ vj,~ and vj+~,2 < vj,2. Let 
m > J0 be a value such tha t  v,~,2 < 0. From Theorem 2 we have Vm,1 >_ --Vm,2 > O, a 
contradict ion with vj,1 <_ vj,2. [] 

6. C o n c l u s i o n s  
In this paper  we introduced and studied a new protocol mechanism for cooperat ion 

in CD grammar  systems. The generative devices obtained have an increased gener- 
ative power for all types of production rules. Connections between the dynamical  
priorities and strong fairness concepts (see [6], [1]) are also made. 
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Some open problems remain to be solved, especially related to context-free case 
and concerning the relations with other families of languages generated by different 
CD grammar systems. 

We are further interested to study other kind of counting/priority conditions of- 
fering more opportunities for studying the behavior of some parallel computations 
(see [8], [7]). Also, all these restrictions can be studied as regulated rewritings for 
context-free grammar case. 
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Characterization of RE Using CD Grammar Systems  

with  Two Registers and RL Rules 1 

Sorina DUMITRESCU 
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Str. Academiei 14, Bucharest, 70109 Romania 

Abstract. We prove that each recursively enumerable language can be 
generated by a cooperating distributed grammar system with two Q+ 
registers and right-linear rules. 

1. Introduction 

The cooperating distributed (CD, for short) grammar systems were introduced in 
[1] as a model of the blackboard architecture in the artificial intelligence. Intuitively, 
a CD grammar system consists of a set of grammars, each grammar working, in turn, 
on the same sentential form. Different conditions for the start or the stop of the work 
of each grammar may be imposed. All the terminal strings obtained in this way form 
the generated language. 

The CD grammar systems with two registers were defined in [3], starting from 
usual CD grammar systems, in which two valences are assigned to each production 
rule, a valence being an element of a given group. The valences of the rules contribute 
to the contents of the registers. When the derivation starts these contents are empty 
(i.e. equal to the neutral element of the group). When a rule is applied the content of 
each register changes according to the corresponding valence of the rule applied. The 
work of a grammar of the system may stop only if the first register is empty. After 
the stop of the application of one grammar, a transfer step must be performed. This 
means that the whole content of the second register is transferred into the first one. 
The system stops its work only if a terminal string is obtained and both registers are 
empty. 

Results obtained so far concerning the CD grammar systems with registers can 
be found in [3], [4], [6], [7]. For a survey of the results in the area of CD grammar 
systems we refer the reader to [2]. 

We prove in this paper that the CD grammar systems with two registers and 
right-linear rules, in which the valences of the rules are elements of the multiplicative 
group of strictly positive rational numbers, can generate all the recursively enumerable 
languages. 

2. Definitions and Notat ions  

For an alphabet V, we denote by V* the free monoid generated by V; A is the 
empty string, Ix[ is the length of x E V*, [xlv is the number of occurrences of symbols 
in U C V in x C V*. We assume the reader familiar with the basic notions and results 
of formal language theory. For details we refer to [5]. 

1Research supported by the Academy of Finland, project 11281 
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D e f i n i t i o n  1. A cooperating distributed (CD, for short) grammar system of degree 
n, n > 1, is a structure 

7 = ( N , T , P ~ , . . .  ,P~,S) ,  

where N and T are finite, disjoint alphabets (called the nonterminal and the terminal  
alphabet,  respectively), P 1 , . . . , P n  are sets of production rules (they are called the 
components of the grammar  system) and S C N is the axiom. 

D e f i n i t i o n  2. Take a group (H, o, e). 

(i). A cooperating distributed (CD) grammar system with two H registers, of degree 
n, n > 1, is a structure of the form 

7 = (N ,T ,  P 1 , . . . , P ~ , v l , . . . , v n ,  u l , . . . , u n ,  S), 

where (N, T, P 1 , . . . ,  Pn, S) is a CD grammar  system and vi and u, are applica- 
tions vi, ui : Pi ----* H, 1 < i < n. 

(ii). Take (x, a ,  fl), (y, a ' ,  ~') E (N U T)* x H x H and r E Pi for some i, 1 < i < n. 
Then we write 

(y, 
iff x = xlux2, y = xlwx2, r :  u ~ w and a '  = c~ o vi(r), ~' = fl o ui(r). 

(iii). For (x ,a ,  f l ) , (y ,a ' ,~ ' )  E ( N U T ) *  x H x H and i �9 { 1 , . . . , n }  we write 

(x, ( y ,  

iff x = y , ~  -- a ' , f l  = ~' or there are t > 0, r l , . . . , r ~ + l  �9 P~, a l , . . . , a t , ~ l ,  
. . . ,  r �9 H and X l , . . . , x t  E (N  U T)* such that  (x ,a ,  fl) ~ (x~,a~,/~l) 

. . .  ( y ,  

(iv). The language generated by 7 is 

L(7) = {z e T* ] there are t > 0, Xl , . . .  , xt �9 (N  U T)*, i l , . . . , i t+l �9 

{1 , . . . ,  n}, and i l l , . - - ,  ~t �9 H such that  (S, e, e) =:=~h~ 

(Xl'E'~I) ~ (Xl'~l'e) ===:=~2 (X2'e'~2) ~ (x2'/~2'e) 
. . .  

(For any triple (x, a,/3) which appears in a derivation as above - we shall call such a 
triple a configuration - we say that  a is the content of the first register and 3 is the 
content of the second register. The step denoted by ~ represents the transfer of the 
whole content of the second register in the first register and may be performed only 
after the first register becomes empty  (i.e. its content becomes equal to e). Note that  
the change of the component which is working at one moment  may have place only if 
the first register is empty  and before this change a transfer step must be performed. 
On the other hand, it is allowed that,  after a transfer step, the applied component  
is not changed (it means that  we may have P~j = P~j+I for some j,  1 _< j _< t). Also 
mention that  a terminal derivation starts and ends with both registers empty.) 

We denote by C D ( X , 2 Q + )  the family of languages generated by CD grammar  
systems with two Q+ registers ( (Q+, . ,  1) is the multiplicative group of strictly positive 
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rational numbers) and rules of type X. In what follows we consider X = RL (right- 
linear rules; we also allow )t-rules). The notations C F  and R E  are for the families of 
context-free and recursively enumerable languages, respectively. 

3. Characterizing R E  

In [4] it is proved (Theorem 14) that  C F  C CD(RL,  2Q+).  We shall prove here 
that  the family CD(RL,  2Q+) is closed under intersection. Using the well-known 
characterization of recursively enumerable languages as homomorphic images of the 
intersection of two context-free languages, we shall obtain that  RE C_ CD(RL,  2Q+).  
According to Turing-Church thesis the converse inclusion is also true. Hence the 
equality of the two families follows. 

L e m m a  1. Let 7 be a CD grammar system with two Q+ registers and right-linear 
rules. Then there is a CD grammar system with two Q+ registers, 7', such that L(7) = 
L('~') and whose components have only rules of the form A -~ aB, A --~ B,  A ~ a or 
A ~ )t, for A and B nonterminals and a terminal symbol. 

Proof. Take 3' = (N, T, P1,. �9 �9 P=, Vl , . . . ,  v~, u l , . . . ,  u~, S). Take i, 1 < i < n, and 
the rule r E Pi , r :  A ~ xB,  where x E T*,Ixl > 2, and B E N U {~}. Assume that  
x = a le2 . . .  %, where e l , . .  :, ap E T. Replace the rule r in P~ by the rules 

r, : A ---+ a~[r, 1],r2 : [r, 1] --~ a2[r, 2],.. .  ,rp : [ r , p -  1] --~ % B ,  

with the valences v~(rl) . . . . .  v~(rv-1) = u~(rl) . . . . .  u~(rp_~) = 1, v~(rp) = vi(r),  
u;(rv) = ui(r), where It, 1], [ r ,2 ] , . . . ,  [ r , p -  1] are new nonterminals. 

We continue in this way until we replace all the uncorresponding productions from 
Pi. Denote the obtained set by P[. Denote by 7' the grammar  system obtained after 
we have modified in this way all the components P~, 1 < i < n. Hence 

7 '=  (N ' ,T ,  P 1 , . . . , P ' , v , , . . . , v ~ , u l , . . . , u ~ , S  ). 

We will show that  L(3') = L(3"). The inclusion C is obvious. It remains to 
prove the other inclusion. Let D r be a derivation in 3". We will show that  for any 
configuration (zB,  fl, fl') in D'  obtained during the application of a component P(, 1 < 
i < n, and not immediately after a transfer step, where B E N U {~} (hence B is 
not a new nonterminal) there is a derivation (S, 1,1) ~ *  (zB, fl, fl') in 7, where the 
last applied component  is P;. We shall prove this by induction on the length of the 
subderivation (S, 1,1) ~ *  (zB,  ~, ~') of D'.  (By the length of a derivation we mean 
the number  of the rewriting steps, hence we do not count the transfer steps.) For the 
configuration (S, 1, 1) the s tatement  is true. Suppose that  the assertion is valid for 
any subderivation of D'  which fulfils the conditions in the hypothesis and of length 
at most m, for some m > 1. Take the configuration (zB, fl, fl') in D'  such tha t  the 
corresponding sub derivation has the length m + 1 and B E N U { $}. If the last applied 
rule is a rule r in P~ which is also in Pi, then we consider the previous configuration or, 
if this is obtained immediately after a transfer step, we take the configuration before 
it. Then this configuration has the form (z'A, a, a'), A E N. In the first case we have 
(z'A, a, ~') ~ (zB, fl, fl') in 7', hence/3 = ~.  vi(r), fl' = ft. ui(r). In the second case 
we have (z 'A ,a ,  er') > ( z ' A , a ' , l )  ~ ,  (zB, fl, fl') in 3". Hence, a = 1, fl = a ' .  v~(r) 
and/3 '  = u~(r). In both cases (z'A, a, c~') satisfies the necessary conditions to apply 
the inductive hypothesis, hence there is a derivation (S, 1, 1) ~ *  (z'A, c~, a t) in 7 
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which, in the first case has the last applied component P/. This derivation can be 
continued by using the rule r in the first situation and by using a transfer step and 
then the rule r in the second situation. In both situations we obtain a derivation in 
"y of the form (S, 1,1) ~ *  (zB, fl, fl'), in which the last applied component is P,. 

If the rule applied before obtaining (zB,/3, 8') is one of the new rules, then it 
follows that  all the productions that  replace the corresponding rule in P, have been 
applied (in the corresponding order). Let r l , . . . ,  rp E P[ be these productions and 
r be the rule from P; which was replaced by them. If the applications of the rules 
r l , . . . ,  rp are not separated by transfer steps, then these applications can be simulated 
in 7 by using the production r and the proof is similar to the proof of the previous 
case. If the applications of the rules r l , . . . ,  rp are separated by transfer steps, then, 
supposing that  (zlA, a, ~1) is the configuration obtained before the use of r l ,  we must  
have A E N and o~ = 1. (Indeed, the rules rl , . . .  ,rp-1 does not change the content of 
the first register and since before a transfer step the content of the first register has 
to be equal to 1, it follows that  a = 1.) If there is only one transfer step, then we 
have 

(z'A, 1, c~') ~ ,  (Z'XlA1, 1, ~') ~ (z'xlA1, ~', 1) ~ ,  (zB, ~'. vi(r), ui(r)), 

with A e g ' ,  xl G T +. Consequently, a ' -  vi(r) = /~  and u~(r) = ]Y. When (z'A, 1, o/) 
follows immediately after a transfer step, we must have ~r = 1, hence the next transfer 
step can be removed. Thus we are in the previous situation. When (z'A, 1, ~l) does 
not follow immediately after a transfer step, we can apply the inductive hypothesis, 
hence there is a derivation in 7 of the form (S, 1,1) ==~* (z'A, 1, c~'). This derivation 
can be continued as follows: 

(z'A, 1, ~') ~ (z'A, ~', 1) ~*p, (zB, ~'. vi(r), ui(r)) = (zB, 8, 8'). 

(After the transfer step the rule r �9 P /have  been applied.) 
If the applications of the rules r l , . . .  ,rp are separated by several transfer steps, 

then a ~ = 1 and the transfers can be eliminated. Thus we come back to one of the 
previous situations. The proof is complete. 

L e m m a  2. The family CD(RL, 2Q+) is closed under intersection. 

Proof. Take the CD grammar  systems with two Q+ registers and right-linear rules 

71 and ~/~, 
3', (Ni, T, p~O, p(O o (0 v(~'], @), u (0 S,), 

" ' ' , ' n i  , ~ 1  , ' ' ' '  " ' ' '  h i '  

i = 1, 2. According to the previous lemma we may assume that  71 and 72 have only 
rules of the form A --+ aB, A ~ B, A ~ a or A --* A, where A and B are nonterminals 
and a is a terminal symbol. For each 3',, i = 1, 2, construct the system 7~ of same 
type, as follows. Mention first that  if R is a subset of Q+, then we denote by prim(R) 
the set of all prime numbers that  appear in the decomposition in prime factors of the 
numerator  or of the denominator of a number of R, written as irreductible rational 
fraction. Suppose that  

prim({vJO(r), u~O(r) lr �9 P(i), 1 _< j _< n,}) -- {p~0, �9 �9 �9 vt,~(i) 1.j, i �9 {1, 2}. 

Consider the sets of prime numbers R} ~) f.(i) ~(i) ~ such that  ~-~ I . ' ~ j , 1 , ' ' "  ,tlj,tiI, 1 <__ j <__ n,, 
R~ 0 D R~ ) = O, R~ i) D {p~0, "'" ,P(i)}t~ = 0, 1 _< j , j '  _< ni,j ~ j'. 
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Construct  the functions ~ ~(i) p(i) ~ j  : - - +  Q + , I  _< j _< nl, i �9 {1,2}, such that  for 
(i) ~ ~(i)/_~ any i �9 {1,2}, 1 _< j _< nl, and r �9 P~ ,~ j  ~,) is obtained from v~i)(r) by replacing, 

in its writing using prime numbers, p~i) by .(4) for any k, 1 < k < ti. 'tj,k, 

Consider for each i �9 {1,2} the CD grammar  system with two Q+ registers 7~, in 
which the set of terminal symbols is T, the set of nonterminal symbols is 

N[ = Ni U {A', A" I A �9 Ni} U {(A, k), (A', k), (A", k) I A �9 Ni, 1 < k < 2t,} 

and the components are denoted by _P~(.09 , _P!i)j,~, 1 _< j _< nl,r E p(i), and constructed 
as follows. 

For j e { 1 , . . . , n i }  and r �9 --P}0,r: A --+ x (it follows that  x = aB or x = B or 
x = a or x = )L for A , B  �9 Ni, a �9 T) we have 

,(0 (0 r {(r,~j (r),~j ( ))}U 
2ti 

U U { ( A  --+ ( A , k ) , l , 1 ) , ( ( A , k )  -~ A, 1, 1 ) , (d  ~ (A', k), 1, 1)), 
k=l 

((A', k) --* A, 1, 1)} U 
t l  

U U { ( ( A , k )  'A  k '  (0 1 , ((A, ti k) (A, ti k), 1 .(~)~ --~ I. , ), qj,k, ~ ) ,  + "+ + -~-~, uj,k), 
k = l  q j,k 't j,k 

k '  1 (i),~ k" (0 1 , ((A',t i  k) + ),-2-~,Pk )I. ( (A' ,k)  --+ ( A ' , ) , P k  , - ~ ) ,  + --* (Ar, t~ 
Pk Pk 

For 1 <_ j _< ni we have 

p'(O 
3 

2tl 

U U {(A -* (A" , k ) , l , 1 ) , ( (A" , k )  ---* A, I , 1 )}  U 
AENi k = l  

ti 

u U U{((A", k) -~ (A",),p~ , ~ ) ,  
AENi k = l  qj,k 

((A",t~ + k) -* (A",t~ + k), ~ .(0~l (i), Uj,k J J" 
Pa 

The initial symbol of the system 7~ is Si, too. 
Note that  each component  of the system 7~, i = 1,2, contains at most one rule 

which introduces a terminal symbol in the sententiM form. 

A s s e r t i o n  1.  L(Ti ) = 5(7~) ,  i = 1, 2. 

Proof of Assertion 1. During this proof we shall not use the index i. Hence 7 will 
mean "/i, 3 'r will mean 3'~ and the elements of the two systems 7 and 7 r will be denoted 
as the corresponding ones in the systems 7i, 7~, respectively, removing the index i. 

(C) Take a derivation D in 7, 

D : (xA, fl, 1) ==~T1 (XlA1, ill, fl~) :::::~r2 (x2A2, t32, ~ )  ~ T 3 . . .  
~ m  (xmAm, Zm, Z2), 
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where r l , . . . , r m  E Pj, for some j, 1 < j <_ n, and/3,~ = 1. We have the following 
corresponding derivation in q,' 

D' : (xA,/3, 1) ~ (xA, 1, (5) ~ (xA, (5, 1) ~ ' ~ , r ~  (XlAl: 1, (51) 

(Xldl ,  (51,1) ~; ' , ,~2 (x2A2,1, (5,~) > ... ~*~,,rm (xmAm, 1, (sin), 

where (5 is obtained from/3 by replacing each occurrence of the factor Pk in the writing 
of/3 by qj,k,1 <_ k < t and (51 = (5. v~(rl) ,  uj(r) ,  (52 = (51" v~(r2), uj(r2), . . . ,(5m = 
(5~_~. ~j(~,~) �9 ~,j(~,,). Hence (5~ = (5. ~j(~0 - . .  v j ( ~ ) -  ~ j ( ~ ) . . . . - ~ j ( ~ ) .  Since 
f l . v j ( r l ) . . . . . v j ( r , ~ )  = 1, it follows that  ( 5 " v j ( r l ) ' . . . ' v j ( r , ~ )  = 1. Moreover, 
~j (~ l ) - . . . -u , (~m)  =/3".  From here we obtain that (5~ = /32 .  It is clear now that for 
any terminal derivation in 7 there is a terminal derivation in 7' of the same word. 

(_D) Let us consider a derivation in 7' of the form 

D' : ( ,Y, (5, 1) ~ 7 ~ ,  .... (~1Y1, 1, (51) b (~Y~, (51, 1) ~ 7 ~  .... (~2Y~, 1, (52) 

b (x25 ,  (52,1) ~ 7 % , ~  . . .  ~ 7 ~ ,  . . . .  ( ~ Y m ,  1, (5~) b ( ~ Y m ,  (5~, 1) 

where m _> 1, 1 <_ j l , j l , . . . , j , ~ + l  _< n, rk E Pjk ,x ,xk  E T*, I  < /c < m, Y E N, Yk E 
N', (5,(5~ e Q+, 1 < /~ < m + 1,(5 does not contain any prime factor pk,1 <_ k <_ t. 
Note tha t  if during the application of a component PJk,,~ the rule rk is not used, then 
we obtain (sk = (5k-1 for k _> 2 or (sk = a for k = 1, hence the application of this 
component changes nothing and it can be removed. That  is why we assume that  at 
the application of the component Pj~,r~ the rule rk is used at least once, 1 < k < m. 
Let us denote by sk the number of applications of the rule rk during the application 
of PJ~,~k, 1 < k < m (hence sk > 1, 1 </c  < m). It follows that  

(51 : (5" ( v i i ( r 1 ) "  ?2j l ( r l ) )  s,,  
(52 = ~51" (v}=(r~). uj2(r2)) *', (1) 

and, further, 

(sin . . . .  (5 (v~,(~l)) ~' . . .  (vj~(~))'  "m �9 ( ~ j , ( ~ l ) ) " . . . . .  ( ~ j ~ ( ~ ) ) ' ~ .  (2) 

Since at the last step the component P: can be applied, it follows that  (Sin 3m+l 
contains in its writing (as irreductible fraction) only prime factors from the set 
{Pl , . . .  ,P*}. On the other hand, (5 does not contain any factor pk, 1 < k < t, hence, 
using relation (2) it follows that  

(5. (v;~(r~)) '~. . . . .  (v~=(rm)) "= = 1. (3) 

There are two cases: 

l T '  s 2  . . . ~ V ! C a ~  z. We have(5"%x(rO) ~ # I,(5-(~;.,(~i)) ~ "%~(~)) # ~, (5"( j,(~'i))~" 
. . . .  (q~_~(,-,,_x))~-~ # i. 

Since at the first step the component Pj~,~ can be applied, it follows that  6 does 
not contain factors qj,k, 1 < j < n , j  ~ j l ,  1 < k < t. As after that  the component 
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Pj~,r~ can be applied, we obtain, by using the first of the relations (1) and the fact that  
the sets R j , R y  are disjoint, 1 _< j , j '  <_ n , j  ~ j ' ,  that  j l  = j2 or 6 .  (vii(r1)) sl = 1. 
But the second situation is not possible, hence j l  = j2. By a similar reasoning, it 
follows that  j l  = j2 . . . . .  jm. 

Note that  8,~+1 is obtained from 8m by replacing the occurrences of the factors p~ 
by qJm+l,k, 1 < k < t. Denoting by/~ the number which is obtained by replacing in 
any factor qjl,k by Pk, 1 < k < t, and by using the fact that  Y E N and the relations 
(1), it follows that  there is a derivation D in 7 which consists of the application of 
the component  Pjl as follows 

D : (xY, Z,1) T1 

Sl Ori S2 Or{ 

(x2A2, f12, Z'2) ~ . . .  ~ (xmA~,/~m, f l : ) ,  

where Am = Y,~+I (by applying the component P~ in 7 ~, in the second register only 3rn+l 

factors from the s e t  Rj,~+~ are introduced, hence, when continuing the subderivation 
D ~, after a transfer step it is compulsory to apply a component Pj~+I,~, hence Ym+l E 
N - from the form of the productions of the system 7~), A1 , . . . ,  A~ E N, ~1 = fl �9 
( V j l ( r l ) )  s l ,  ]~2 = ]~1" ( V j l ( r 2 ) ) s 2 ,  . . .  ,Zrn = Z m - l "  ( V j l ( r m ) )  sm,  /~1 = ( U j ] ( T 1 ) ) s l ,  . . .  ,Ztrn = 

3~-1" (uj,(rm)) ~"  It follows that  3m = /~" (v i , ( r l ) ) '~ '  . . -  " (vj~(rm)) ~ and / ~  = 
(uj~(r~)) '~. . . .  . (uj~(rm)) ~ .  From the relation (3) and from the way we defined t3, 
it follows that  fl,~ = 1 and fl~m is the number obtained from 8m+I by replacing the 
occurrences of qjm+x,k by Pk, 1 < k < t. 

C a s e  2. There is some u, 1 _< u < m, such that  

V I sl �9 . . . . .  % o ( r o ) )  1 (4) 8 ' 

Assume, without restricting the generality, that  u is the smallest number for which 
the relation (4) is fulfilled. Then the subderivation D" of D t, 

D" : (xY, 6, 1) ==~,~,~ (x~Y1, 1, 81) ~ (x~Y1,51, 1) ==::=~j2,r2 . . .  

~ * v j  .... (x~Y~, 1, ~ )  

fulfils the conditions in Case 1 (replacing m by u). By a similar reasoning to that  
in Case 1, it follows that  j l  ----- j2 . . . . .  ju and there is a derivation D1 in 7 
corresponding to the subderivation D" it will correspond a derivation D1 in 7 using 
the component Pj~ 

. . .  . . .  

sl ~imes 

(for the derivation D we have proved that  tim -- 1 and Am = Ym, hence the corre- 
sponding relation for u is also valid here). 

The subderivation which continues the subderivation D" - after the transfer step 
has been performed - until D t is obtained, can satisfy or not the conditions in Case 
1. If the second situation occurs, then we do the same as for D r (in Case 2) and so 
on, until we obtain that  D' is a chain of subderivations - separated by transfer steps 

- all of them, excepting the last, being as D" and the last as D t, all satisfying the 
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conditions in Case 1. Hence we can associate to D '  a derivation in 7 obtained by 
chaining the derivations as D1 or D, with transfer steps in between, corresponding to 
the subderivations of D ~. It is easy to see now that  a terminal derivation of -)/ is  a 
chain of subderivations of the form D ~ separated by transfer steps and which, being 
replaced by subderivations similar to D or D1 corresponding in V, lead to a terminal  
derivation in 7. 

Now the proof of the fact that  L(3`r = L(7~), i = 1,2, is completed. 

We shall construct now a CD grammar  system with two Q+ registers, 3', as follows. 
The set of terminal symbols of 3' is T, the set of nonterminal symbols is N = N~ x N~ 
and the axiom is (S~, $2). For each pair (P1, P2), Pi being a component of 3'~, we 
construct a component in V with the following rules: 

(i) ((A~, A~) - ,  x(B~, Bz), cq . a~,/~1" ]~2), 

where (Ai ~ xB,,  a, ,  ~,) e Pi, x e T U {;~}, Ai, B, e N[, c~i,/~i e q + ,  

i = 1, 2, 

(ii) ( (d l ,  d2) --~ z, c~1- ~2, i l l '  f12), 

where (Ai ~ x, ai,/~i) E Pi, x C T t2 {A}, A~ C N[, ai, fll E Q+, 

i = 1,2, 

(iii) ((Ai, A2) -+ (B1, B2), a l "  ~2, fix" f12), 

where (A~ --* Bi, a~, fli) ~ Pc, Aa-i = Ba-i, c~a-i = fla-i = 1, Ai, Bi ~ N~, 

Aa-i e N~_i, ai, f l / e  q + ,  for some i e {1, 2}. 

A s s e r t i o n  2. L(7) = L(7~) n L(7~). 

Proof of Assertion 2. Let us examine first the way the rules in 3' are constructed. 
Note that  each rule of the form (i) or (ii) corresponds to a pair of rules - one from 7~ 
and the other one from 7~ - which have in common the terminal symbol in the right 
side of the rule and the presence or the absence of the nonterminal symbol in the 
right side. Each rule of the form (iii) is associated to a pair containing a rule of one 
of the systems 7~ and a nonterminal of the other system. We may assume, without 
restricting the generality, that  the valences of the rules in 7~ have no common prime 
factor with the valences of the rules in 3̀ ~ (we speak about pr ime factors appearring 
in the decomposition in prime factors of the numerator  or of the denominator of a 
valence when it is written as an irreductible fraction). 

(C_) Take z E L(7). Then there is a terminal derivation 3', 

* r r , t (1)  A(1)'~ 1,iS1) ~ (zl(A~I) A~I)),t~I,1) =:=~.p~ D : (($1, $2), 1,1) : = * n  (Zl~.Zll ' z x 2  } '  * 

~Z2i.zx I ,zx 2 ),  . . .  

- - ' = : : ~ p ~ k ~ m \ ' ~ l  ,~2 1, (.Zrn(~l ,"~2 ),~m,1)===~P~+ 1 

=~,2+~ (z, 1, 1). 

Let us suppose that  for each i, 1 < i < m + 1, P~' corresponds to the pair (P~,i, P2,i) 
of componts of the two systems 7~, 7~, respectively. Note that  to the first par t  of the 
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subderivation D - until the first transfer step - it corresponds a pair of subderivations 
D1 and D2 in the systems 71, 3'2, respectively, 

D j :  (Sj ,  1, 1) ==~j.1 (z1A~ 1), olj, flj), 

where j = 1,2. From the form of the rules in % it follows that a l " a 2  = 1 and 
~1 " f12 = (~1' According to the supposition made above, the valences of the rules in 7~ 
and the valences of the rules in 71 have no common prime factor, hence al  �9 c~2 = 1 
if and only if oz 1 ~ 1 and a2 = 1. It follows that each of the derivations D i may be 
continued by a transfer step and then by applying the component Pj,2. By a similar 
reasoning we obtain the derivations D~ and D~ in 7~, 71, respectively, 

Dj : (S j ,  1, 1) ===>pj.1 (ZlA~ 1), 1,/3j) ~ (7) . ' * ( z lA j  , #j ,  1) ~ p j , ~  

==:~Pj,2 (z2A~2), 1 ' ~  2)) ~ (z~A!2): fl~2), 1) =::~j,3 "'" 

==#vj,m* (zmA~ "~)' 1,/~m)) ~ ~'~J{- ~(,~), ~'J~(m)' 1) ~p~,m+~* (z, 1, 1), 

f o r j  = 1,2. 

(_D) First we shall prove that,  if D is a terminal derivation in 7~ (for i = 1 or 
i = 2), then there is a terminal derivation D' in 7~ of the same word such that  at 
each application of a component P(,~), 1 _< j _< n~, r C p(0,  the rule r is used at most 

once. Let us suppose that in D we have an application of the component P(,~) in 
which the rule r is used s times, s _> 2. This fact is possible only if r has the form 
A --~ hA ,  A C N~ and a E T. We may assume, without restricting the generality, 
that  all the ~ applications of the rule r are consecutive. Hence the application of the 

i component p(,0 can be represented as follows 

D~' : ( w X ,  a, 1) ==:>* (wA ,  oL1,/~1) :~:~r (waA ,  as,  #2) ~ . . . .  

: : = > *  1, # ) ,  

(0'~ ~ ~ ~i) for w E T * , X  E Nf ,  Y C N [ LJ {A} and a,~ = a~_~ . vj ( r ) , p ~  = flm_l . ~ ( r ) ,2  
m ~ 8 .  

This subderivation may be replaced by the subderivation D~ ~ which consists of s 
consecutive aplications of the component P(,'~), in each application the rule r being 
used only once: 

D~' : ( w X ,  a, 1) ~ *  (wA ,  a l , # l )  =:=~ (waA ,  a~,fl2) ~ *  (waA ,  l,13~, a2) 

( aA, . 1) . 

(za A, 1, 1) . . .  

�9 .. ~ (za  " - IA ,  f l s - l"  OLs-1, 1) ====>, ( z a ' A ,  f l s - l"  OLs, u!i)(r)) ::=::==~* 
===>* (za~A, as, fls) ===>* ( zanY, 1, fl). 

We have also used above the fact that  the rules of the component P(,'~), different 
from r have the role to transfer the content of the first register into the second one. 

Take now a word x e L(-/~) M L(7~). Then there is a derivation D~ in 7~ of x and 
a derivation D2 in 7~ of x. We shall construct a derivation D of x in 7 by following 
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step by step the derivations D1, D2, sometimes simultaneously, othertimes advancing 
only in one of them and waiting in the same position of the other. The derivation 
D begins, obviously, by the configuration (($1, $2), 1, 1). Let us assume that at one 
moment we are in the derivation D at the configuration (z(X1, X2), 51-52, 1) obtained 
immediately after a transfer step, the corresponding configurations in D1, D2 being 
(zX~, 51, 1) and (zX2, 52, 1), respectively, obtained after a transfer step, too. Assume 
that in D~ the application of the component P~,i = 1,2 follows. We obtain several 
situations: 

1) If the application of the two components leads to the occurrence of a terminal 
symbol both in D, and in D2, then this symbol is the same. Let us denote it by b. 
(According to the facts proved above we may assume that in D1 and in D2, during the 
application of a component, at most one terminal symbol is introduced.) In this case 
in the derivation D will follow the application of the component corresponding to the 
pair (P1, P2) by using once a rule of the form (A~, d2) -* b(B~, B2) or (A1, A2) --+ b 
and, if neccesary, rules of the other forms until the configuration (zb(Y~, Y2), 1,5~. 51) 
is obtained, corresponding to the configurations (zbY~, 1,5~) in Di, i = 1, 2, situated 
before the transfer step. Then the transfer step follows in D (the same way as in D1 
and D~) and (zb(Y~, �89 5~. 5~, 1) is obtained (if the derivation is not finished yet). 

2) If the application of the components P1 and P2 does not lead to the insertion of a 
terminal symbol, then in the derivation D it follows the application of the component 
corresponding to the pair (P1, P2), in a similar way as in case 1) (the only difference 
is that in the obtained sentential form a new terminal symbol does not appear). 

3) In the case when, for some io E {1,2}, the application of P~0 in Dio leads to 
the appearence of a new terminM symbol b, and the application of Pa-i0 in D3-~0 does 
not introduce any symbol, we introduce in Di 0 a subderivation of the form 

(zXio, S~ o, 1) = ~ } ~ )  (zXio, 1, 51o) ~ (zXio, 5~01) 

before the application of P~0, for some j E {1,. . .  ,n} and r E p(~0) suitably choosed 

such that the applications of p!i0) to be possible. In this way Pi0 will be replaced by 3,r  

P(,~) and we will be in situation 2). 
The above considerations should be enough for describing the form of the deriva- 

tion D. 
Now the proof of Assertion 2 is over. 
From Assertions 1 and 2 it follows that L(7) = L(71) C/L(72 ). Hence the family 

C D ( R L ,  2Q+) is closed under intersection. [] 

L e m m a  3. The family C D ( R L , 2 Q + )  is closed under arbitrary homomor 
phisms. 

Proof. Take the CD grammar system with two Q+ registers and right-linear rules 

7 = (N ,T ,  P1 , . . . ,P ,~ ,v l , . . .  , v~ ,u l , . . .  ,u~,S) ,  

and the homomorphism h : T* ---+ V*. Construct the CD grammar system 7' 

' S ) ,  7' = ( N, T, P~, . . . , P:, 'v,, . . . . . .  , v~; 'ul, , u~, 
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where, for each i, 1 < i < n, we have 

P[ = { ( A ~  h(x)B,~,~)[(A --*xB,~,~) E P~,Ac N,B E NU{~},  

x ~ T*, ~,/~ ~ O+}. 

It is easy to see that L('~') = h(L(7)). [::] 

Theorem.  RE = C D( RL, 2Q+). 

Proof. Using the result proved in [4] (Theorem 14) that CF C CD(RL, 2Q+), 
Lemmas 2 and 3 and the characterization of recursively enumerable languages as 
homomorphic images of the intersection of two context-free languages, we obtain that 
RE C CD(RL,2Q+). The other inclusion follows from the Turing-Church thesis. 
Hence the equality in the theorem is valid. [] 
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A b s t r a c t .  Cooperating distributed grammar systems [1] constitute a for- 
mal model of the blackboard model for problem solving. In this paper, we 
replace the grammars in such systems by uniformly k-limited 0L systems 
[9]. In this way we can define quite a lot of different language families. 
We compare these families with each other in respect to inclusion. The 
connections with other language families and closure properties are also 
investigated. For instance, it is shown that the new introduced families 
are incomparable with the families of T0L or uniformly k-limited T0L 
languages. 

1. Introduction 
Motivated by the blackboard model of artificial intelligence, Csuhaj-Varjfi and 

Dassow [1] introduced the concept of cooperating distributed grammar systems. In 
their model, the distributed knowledge sources are represented by grammars, the 
actual state of the problem corresponds to a sentential form, and the application 
of some production of a grammar corresponds to an action at the blackboard. The 
distributed grammars have to cooperate to obtain a solution. The actions at the 
blackboard are controlled according to different modes. These modes determine how 
long a certain grammar is allowed to manipulate the sentential forms before giving 
back control to the system. Cooperating distributed grammar systems and some 
variants have been also considered in [2], [4] and [5]. A comprehensive text-book 
presentation is given in [3]. 

In [9], we have introduced the notion of uniformly k-limited T0L systems (see 
also [6], [12]). These systems represent a limitation of the parallel rewriting of T0L 
systems. In short, a uniformly k-limited T0L system (abbreviated as uklTOL system) 
G = (E, H, w, k) is given by the limitation k C N (where N is the set of natural 
numbers) and a T0L system (E, H, ~o) with alphabet ~, finite set of tables H (where a 
table is a finite substitution on V,), and axiom w E E*. A derivation step of a uklTOL 
system differs from that of a T0L system in such a way that instead of the fully parallel 
rewriting of L systems, now at each step of the rewriting process, exactly rain{k, [wl} 
symbols in the word w considered have to be rewritten (where Iwl is the length of 
w). A derivation step from Wl to w2 according to G is denoted by wl ==~a w2. If no 
misunderstanding is possible we write ===~ instead of ~ a .  Let ===~* be the reflexive 
transitive closure of the relation ===~. Then L(G) = {w E E* I w ~ *  w} is the 
uklTOL language generated by G. If there is only one table, we talk of a ukl0L system 
and write G = (V. h,w, k) where h is a finite substitution on E. By f~(ukITOL) and 
f-.(uktOL), we denote the corresponding families of all uklTOL or ukl0L languages, 
respectively. 
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If the derivation mechanism is changed in such a way that  at each step of the 
rewriting process, for every a C P~ exactly min{k, #~w} occurrences of the symbol a in 
the word w considered have to be rewritten (where #~w is the number of occurrences 
of the symbol a in w), then we get the definition of klTOL and kl0L systems as 
introduced in [8]. 

Every derivation step of a uklTOL system (or klTOL system) has to be carried out 
with the same limitation k. If we want to change the limitation during the deriva- 
tion process then we can reach this aim by replacing the grammars of cooperating 
distributed grammar systems by ukl0L systems (or kl0L systems, respectively) with 
different limitations k. 

In the case of kl0L systems, such cooperating distributed limited 0L systems 
(CD10L systems) have been already investigated in [10]. Furthermore, in [11] there 
have been considered extended CD10L systems. In this paper, we start the investiga- 
tion of cooperated/distributed uniformly-limited 0L systems. The exact definition of 
such a system (CDul0L system) is given in Section 2. Quite a lot of different language 
families are defined. In Section 3 we compare CDul0L language families with each 
other in respect to inclusion. Relative to this aspect we get nice characterizations 
of the so-called C D ( k l , . . . ,  k~)ul0L language families where only some special cases 
remain open. In Section 4 we compare the CDul0L language families with other fam- 
ilies. Especially, all propagating CDul0L languages are context-sensitive. Finally, in 
Section 5 we shall see that all CDul0L families are anti-AFL's. 

In the sequel, we denote by N the set of all natural numbers (where 0 ~ N).  Then 
No = N U {0}. 

2. CDulOL Systems, Definitions and Simple Results  
A cooperating distributed uniformly limited 0L system (CDnl0L system for short) 

is a construct 
a = (hi,  k , ) , . . . ,  (hT, 

for r E N (the number of components of the system), alphabet ~, a word w E 2" (the 
axiom), finite substitutions h 0 (the tables of the system) and natural numbers k 0 C N 
(the limitations) where p = 1 , . . . , r .  Obviously, G o = (P~, hp, w, leo) , p = 1 , . . . , r ,  
can be considered as a uk010L system. Especially, a system G as above is also called 
a C D ( k l , . . . ,  k~)nl0L system. If r = 1, we also write CDklul0L system. G is called 
deterministic if all hp, p = 1 , . . . ,  r, are homomorphisms. G is called propagating if the 
empty word e r ho(a ) for all p E { 1 , . . . , r }  and a C E. If w G hp(a) for some a E E, 
w C E*, then a -+ w is called a production of h 0. We also talk of the production 
w h0(a). 

Let v , w  C P,*, p = 1 , . . .  ,r ,  and s E N. We write 

v ~ p  w 

if there are words w l , . . . ,  w~ = w E P,* such that there exists a derivation 

V ~ G p  Wl ==::~Gp W2 :====~Gp �9 �9 �9 =:==:~Gp Ws-1 =:==:~Gp Ws : W 

according to the uniformly k0-1imited 0L system G 0. s is called the length of the 
derivation v ==*; w. We write 

u ==*<~ w (u ~ > 8  w, respectively) 
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if u ==:~' w for some s '  < s (s '  > s, respectively). Finully, let 

u ==~*p w 

if u = = ~  w for some s E N0. Sometimes, the index p is replaced by Gp. 
Let G be a CDul0L system as above and 

m E { * , 1 , 2 , 3 , . . . , 6 1 , _ < 2 , < 3 , . . . , > 1 , > 2 , > _ 3 , . . . } .  

The language generated according to the m-mode by G is defined by 

L,~(G) = {w �9 E*iw = w or there exist n �9 No, wi �9 E* and pi �9 {1 , . . .  , r} ,  
m m FI~ ~ W}.  i = 1 , . . . ,  n, such that  w :==~pl Wl ==~p~ �9 �9 ==~p. wn 

By s we denote the family of all those languages generated according 
to the m-mode by CDulOL systems. Omit t ing the index m we have s as the 
family of languages generated according to an arbitrary m-mode by CDulOL systems. 
We call i t  also family of CDuIOL languages. If k l , . . . ,  kr E N for some r E N,  then by 
s  k 2 , . . . ,  k,, ulOL) we denote the family of those languages generated according 
to the m-mode by CD(kl,...,k~)ulOL systems. Especially, if kl . . . . .  k~ = k, we 
write s ~, ulOL). For every r E N,  we define 

s U s 
ki eN 

i=l,...,r 

and furthermore,  if k E N, we set 

s k)(CDulOL) = U s  kT, uIOL) for r E N,  
~iEN,ki<~ 

i=l,...,r 

k)(CDulOL) = U C,,,(_ k)(CDulOL). 
t E N  

We see that  k is a common bound for all l imitat ions of the components of the  systems 
generating these families. Let 

s 

s 

= U Cm(kl,...,kr,uIOL) f o r r E N ,  
ki=k 

i=l,...tr 

= U s 
t E N  

We remark tha t  in all these cases we can consider determinist ic  and /o r  propagat-  
ing such systems which give rise to corresponding language families. For instance, 
by Z(CDuIPDOL) we denote the family of propagat ing and determinist ic  CDul0L 
languages. If we write s we mean tha t  the let ters P and D may  be 
present in the corresponding position or not. This leads to four language families. 

Because of the definitions the following results are obvious. 

T h e o r e m  2.1. Let G be a CDulOL system. For all t E N, we have 

L.(G) = LI(G) = L>I(G) = L<~(G). 
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C o r o l l a r y  2.1. Let r E N ,  k l , . . . ,  k, C N,  t C N.  

and 

Then 

~ . ( k l , . . . ,  ~r, ttlOL) = ~1(]~1,..., kr, ulOL) = 

~_>l(kl, . . . ,  kr, ulOL) = ~_<t(]~l,..., kr, ~tlOL) 

s  = s = s = s 

Because of this Corollary, the m-mode is considered in the following only for 
m C {1 ,2 ,3 , . . . ,_>  2 , >  3, . . .} .  

As in the case of uniformly k-limited T0L systems (see [9], Theorem 2.1) the 
growth of the lengths of the words in a CDul0L language is bounded. More precisely, 
let G = (E, (h i ,k1) , . . . ,  (h , , k , ) ,w)  be a CD(kl , . . .  ,k,)ul0L system and L,~(G) its 
language generated according to the m-mode. Let m = t or m = (> t). Set 

s = max({spls p = tkp(s 'p- ]),Jp = max{]w] Iw E hp(a),a E E},p  = 1,. .  , r )  

= tk, ,~ e hp(a),a e E,p  -- 1 , . . . , r } ) .  

Then for all words w, w' E Lm(G), there exist q E N and words Wo = w, Wl, ., Wq = 
w' e L,~(G) such that ] ] w i [ - [ w i - 1 ] l <  s for all i, i = 1 , . . . , q .  

In case of the t- or > t-mode, t > 2, for some C D ( k l , . . . ,  k,)ul0L system G there 
may exist symbols of the alphabet which are used in elementary derivation steps 
(according to some ukpl0L system Gp) but which do not occur in any word of L(G). 
We consider the following example. 

E x a m p l e  2.1. We define the deterministic CD4ul0L system 

G = ({a, b, c, d}, (h, 4), a2c) 

with h(a) = b, h(b) = cd, h(c) = c 2 and h(d) = d 2. According to the 2-mode, 

a2c and cdcdc 4 

are the shortest words of L2(G). Other words belong to c+d+c+d+c +, but obviously, 

c4dcdc 4, c2dc2dc 4 • L~(G). 

Assume that this language is generated by a CD4ul0L system 

G' = ({a,c,d},  (h ' ,4),w) 

according to the 2-mode. Assume that ~ E h'(c) or ulxu2 E h'(c) for x C {a,d} and 
some ul, u2 C {a, c, d}*. We get the derivations 

cdcdc 4 =:=~2 h, cdcd or cdcdc 4 ==r (ttlXU2)d(ttlXU2)dc2(ltlxu2) 2, respectively. 

c must be a prefix of Ul. It follows that both derivations lead to words not belonging 
to L2(G), a contradiction. We conclude that h'(c) C c +. Analogously, h'(d) C d +. 
Frequently, a similar conclusion shall be used in the sequel. It follows that  w = a2c 
and 

D : a2c ~ ,  cdcdc 4. 



182 

Firs t  we note tha t  e E h'(a) is not possible since otherwise a production UlXU 2 �9 h'(c) 
with x ~ c would be necesarry which is not possible as demonstra ted above. Since 
there are words with arb i t ra ry  many occurrences of c, a production c ~ �9 h'(c) for some 
i > 1 must  exist. Therefore, if a �9 h '(a) ,  the word a2c would derive words with 2 
occurrences of a and more than one occurrence of e, a contradiction. If c �9 h ' (a) ,  
then from a2c words of c + could be generated. If cdc �9 h'(a) is used in D, then we 
need du �9 h'(a) to generate,  if at all, the word cdcde 4, but then a word beginning 
with d would belong to L2(G). A production cdcd �9 h'(a) would again lead to words 
not belonging to L2(G). We conclude that  cd �9 h'(a). Thus, the derivation D is of 
the form 

a 2c ~ h '  cdcdc ~ ~ h '  cdcdc 4 

for s o m e i  �9 {1,2,3,4}.  I f i  = 1 o r i =  4, then {c,c 4} C h'(c). We conclude that  
cdcdc4 ~ h ,  c4dcdc4" If i = 2 or i = 3, then c 2 �9 h'(c) and c �9 h'(c) or d �9 h'(d). It 
follows that  cdcdc 4 ~ 2  h, c2dc2dc 4. In both cases we get a contradict ion to the shape 
of the words in L2(G). 

We see that  the language L2(G) cannot be generated by a CD4ul0L system ac- 
cording to the 2-mode without an auxiliary symbol. 

While  in this example a symbol not occurring in a word of the language has 
been necessary, it  is t r ivial  that  in case of the 1-mode every symbol occurring in a 
derivation belongs to a word of the language. The following lemma shows tha t  for 
many languages we can assume that  no auxil iary symbols occur. 

L e m m a  2.1. L e t m  = t o r m  = (> t) where t  �9 N .  Let L �9 s  . . . ,  kr, 
CDuIOL) with L C E* where every symbol of E occurs in some word of L. I f  for  every 
a �9 E there exists a word w �9 L with 

# a w  > 1 and Iwl > kptVp �9 { 1 , . . . , r } ,  

then L can be generated by a CD(k l , . . .  ,kr)ulOL system with alphabet E. 

Proof. Assume the contrary. Then there must  exist a C D ( k l , . . . ,  k~)ul0L system 
G = (E ' , ( hx , k l ) , . . . , ( h~ , k~ ) ,w )  with E C E' and L,~(G) = L which fulfills the  
following property:  there are symbols x �9 E' - E and a �9 E such that  UlXU2 C hp(a) 
for some p �9 { 1 , . . . ,  r} and u~, u2 �9 E'*. Let w �9 L with #~w > 1 and ]w] > kpt. We 
conclude that  w = = ~  w' with w' �9 L and #~w'  > 1, a contradiction. [] 

We mention that  in the non-uniformly limited case, coopera ted /d is t r ibu ted  l imited 
0L systems (CD10L systems) and languages are defined from kl0L systems analogously 
to the definition of CDul0L systems and languages from ukl0L systems above (see 

[10]). 

3. Comparison of Different Families of CDuIOL Languages 

The following lemma is obvious. 

Lemma 3.1. Let m E { t , 2 , 3 , . . . , >  2 ,>  3 , . . . } ,  r,s E N with r <_ s, and 
furthermore, let kl , . . . ,  kr, k~,.. . ,  k~s E N. If the multiset { k l , . . .  , kr} is included in 
the multiset  {k~, . . . ,  k'}, then 

�9 k t . ' ulOL). .t~m(lgl,.. , k , ,u lOL)  C s 1, " ' , k s '  
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We shall see (Corollary 3.2) that  this result can be strengthened in nearly all 
cases in such a way that  the inclusion of the language families is strict if the multiset 
inclusion is strict. But the case of limitation 1 behaves a little bit individually. By 
the definitions, we get 

T h e o r e m  3.1. For all r E N,  s = s = s 

L e m m a 3 . 2 .  For all m E { 1 , 2 , 3 , . . . , ~ 2 , _ > 3 , . . . }  and all r,s,  k l , . . . , k s  E N ,  

/:1(1 ~, ulOL ) C ~m(]gl , . . . ,  ]gs, ulOL ). 

Proof. By Theorem 3.1, it suffices to consider an arbitrary ullTOL system G = 
(E, h,w, 1). We choose any k E { k l , . . . ,  ks} and consider the CDk'ul0L system 

G' = (E , (h ' , k ' ) ,w)  with h'(a) = {w ]w E h(a)} U {a}Ya E E. 

According to any m-mode,  G' generates L(G). With Lemma 3.1 we get s T, ulOL) C 
s ulOL) C s  ks, ulOL). [] 

In the next theorems we shall show that  in nearly all other cases, if the modes do 
not coincide, the resulting language families are incomparable. 

T h e o r e m  3.2. Let m' = tl or m' = (~ tl) and m = t 2 or m = (~  t2) , t l , t  2 E N, 
and let r ,s  E N,  k l , . . . , k r ,  k~,. . . ,k 'sE N .  I f  t~ ~ t2, kptl ~ 1 for at least one 
p E { 1 , , . . , r } ,  and if it is not true that kp = 1 for al lp E { 1 , . . . , r }  such that there 
exists a E { 1 , . . . , s }  with k: = 2 and kil l  = t~ = 2t2 = k~t2, then 

~ m ' ( k l ,  . . .  , ]gr, uIOL) ~_ s  k:, ulOL). 

Proof. There are two cases. In case (1), 

(a) there exists p E { 1 , . . . , r }  such that  1 # kp.t~ # k:.t~Vc~ = 1 , . . . , s ,  or 
(b) thereex is t  p E {1 , . . . , r} ,c~  E { 1 , . . . , s }  such that  k p . t l  = k~ ' t2  and k~ < kp. 

By the assumptions, in the opposite case (2), 

Vp E { 1 , . . . , r } ,  there exists c~ E { 1 , . . . , s }  such that  
]c o �9 tl = k~ �9 t2, k~ > k o and k~ > 3. 

We consider case (1). We choose an index p with the properties above. Without  
restricting generality, we assume that  p = 1. Set p = k lh  and g = m a x { k [ , . . . ,  k's}. 
We remember  that  by the assumptions p > 1. We define a CDklul0L system (also 
being a ukll0L system) 

a l  =- ({h i , . . .  ,ap}, (h, ]~1), h i . . .  apa~.., a~) 

by h(ai) = {a 2} for all i E {1, . . .  ,p}. By L1, we denote the language generated by G1 
according to the rn'-mode. By Theorem 3.1, L1 E s  k~, ulOL). L1 contains 
the axiom a l . . .  apa~...  @, and the words of second shortest length are of the form 

al+~z l+~p g+~p+~ a g+~2p with X 1 + " ' "  + X2p kltl for xi E N0, i E {1 , . . .  ,p}. 1 . . .  ap a I . . . . .  p 
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Especially, we have Wl a~.. 2 g = .ava 1 . . . . .  a~ C L1. Obviously, L1 C a +. %+a 1 + . . . a  +, 
and for every n E N there exist nl, m~ E N ,  i C {1 , . . . , p} ,  n~,mi  > n,  with 
a ~  . . . @ P  a ~  . . . a ~  p E L1. 

Assume that L1 is generated by a CD(k~, . . . ,  k',)ul0L system 

a l  = (hx, (h,, k',), 

according to the m-mode. By Lemma 2.1 we can assume that  E = { a l , . . . , % } .  By 
the shape of the language L1, it is clear that  G[ is propagating and h'(a~) C a + 
for all ~r e { 1 , . . . , s }  and i e {1 , . . . , p} .  Thus w = a l . . . % a ~ . . . a ~ .  Since there 
does not exist a production e E h'~(ai) for any i and c~, we conclude that no word of 
second shortest length can be generated from a longer word or from another word of 
second shortest length according to the 1-mode or according to an arbitrary m-mode. 
Especially, it follows that  there exists a C {1, . . .  ,s} such that  

g : : ~ 2 a ~  2 g g =Wl .  D :  a l . . a p a ~ . . . a v  . . . .  a p a l . . . a  p 

Thus a,2 E h ' (a i )  for all i e {1,. .  . ,p}. If m = (> t2), then only the subderivations 

r :==~ta~ r ==~o" Wl o r  r =::::~) w I =:=~* w I 

are possible. In the first case there must exist an i' C {1, . . .  ,p} such that  a~, E h'(a~,). 

It follows that  

a l a 2 . . . a v a l . . . a p .  

Since p > 1 the derived word does not belong to L1, a contradiction. Thus we can 
assume that 

2 g 
D :  al . . .apagl  �9 ap ap . . . . .  apa 1 �9 �9 �9 = Wl. 

We see that  at least the first occurrences of the symbols a l , . . . ,  ap have to be substi- 
tuted during this derivation process. Obviously, this is not possible for k' t~ < kit1. 

For k:t2 > kit1, there must exist an i' E {1, . . .  ,p} with a~, C h'(a~,). It follows that  

g .apa .. ap a l  � 9  ~ � 9  . .  . 

which is a contradiction as proved above. In the subcase (a), we are ready. In the 
subcase (b) let the derivation D be given by a table h" with k ' t2  = k l h  and k'~ < kl. 
Obviously, we get 

g :::::::~ ~1"{-t2 1+t2 . . . a p a ~ . .  g 
a l . . .  ava~ . . ,  ap u 1 �9 �9 ak,  ~ a k , + l  . ap.  

This derivation again leads to a word not belonging to L1, a contradiction. 
Finally, we consider case (2). Since kl < k~ where k~ > 3 we know that  t~ > 1. 

Let g = max{k~, . . . ,  kP~} again. We regard the CDk~ul0L system 

a2 = (h, ki), 

where h(a) = {a 2} and h(x)  = {x2}. Let L2 be the language generated by G2 
according to the m'-mode. Then 

ak~ -2A-k1 tl - l  x g  a2 
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is one of the  words of second shortest length g + k~ + klt l  - 1 of L2 C 
s  Obviously, L2 C a+x+a +, and for every n E N there exist 
nl ,n2 ,n3  such that  a=lx=~a ~ C L2. 

Assume tha t  L2 is generated by a C D ( k ~ , . . . ,  k's)ul0L system 

G 2 --- ({a, x}, (hi,  1~1),'--, (hs, k : ) ,w)  

according to the m-mode.  Obviously, G~ is propagating,  w = ak'~-2xga, h(a) C a +, 
h(x) C x +, and analogously to case (1) we can assume that  

D : w ==*~ ak~-2+klh-lxga 2 

for some q C { 1 , . . . , s } .  Because of this derivation there must exist a product ion 
a 2 e hi(a ). 

If k~t2 < kit1 = k~t2, then k~ < k~. Then from w, we may derive a word w with 
g + k~ - 1 < ]w] < g + k~ + kit1 - 1 which does not belong to L2, a contradiction. 

If k'~t2 >_ kl t l ,  then k~ _> k~. Since #~w = k~ - 1, in the first step of the derivation 
D the symbol x has to be subst i tuted at least once. It follows that  x E h i (x  ). Since 
a 2 E hi(a ), we conclude that  w ~ 2  ak'~-2xga 2. Because of t~ > 1, such a word does 
not belong to L2. [] 

If kptl = 1 for all p E {1 , . . .  , r} ,  we have the si tuation of Lemma 3.2. If kp = 1 for 
all p E { 1 , . . . , r }  such tha t  there exists ~r C { 1 , . . . , s }  with k" = 2 and kpt~ = t~ = 
2t2 = k~t2, then the exact status of the comparison is not known. 

C o r o l l a r y  3.1. Let m E {t,>_ t ] t E N},  r , s  C N,  k l , . . . , k s  C N ,  such that 
kr . t # l for  ar least one r C { 1 , . . . , s } .  Then 

~l ( l r ,u lOL)  C ~m(]Cl,- . . ,  k~,ulOn). 

Proof. Case (1) of the proof of Theorem 3.2 shows that  s  ,k~,ulOL) 
s  uIOL). By Lamina 3.2, the result follows. [] 

In Theorem 3.2 we have assumed tha t  t l  # t2. In the following theorems, we 
consider the case t l  = t2 with m # mq 

In Lemma 3.1, if m = m ~ and the mult iset  inclusion is given, then we have 
s  k~,ulOL) C s  k'~, ulOL). If the mult iset  inclusion is not valid, 
non-inclusion results follow. More generally, we get the following theorem. 

T h e o r e m  3.3. Let t C N ,  m = t or m = (> t) and m'  = t or m '  = (>_ t). 
Furthermore, let r , s  E N and k l , . . . , k ~ , k ~ , . . . , k ~  E N .  I f  there exists k E N such 
that #{plkp = k ,p  = 1 , . . . , r }  > ~{cr]k~ = k , a  = 1 , . . . , s }  and kt r 1, then we have 

s  k,,ulOL) q~ s  k:,ulOL). 

Proof. Set 

P -- # { p I G  = k, p = 1 , . . . ,  r} and q = #{~lk"  = k, ~ = 1 , . . . ,  s}. 

By the assumptions,  p > q. Wi thout  restr ict ing generality, let 

k~ . . . . .  k~ = k and  k~ . . . . .  k'~ = k. 
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Since ~m(]gl , . . . ,  kp, ulOL) C ~m(lgl, . . . , /gr,  ulOL) it suffices to prove 

s  p, ulOL) q: s  k's, ulOL). 

Let g = max{k~ , . . . ,  kt~}. Consider the CDkPulOL system 

G = ( { h i , . . . ,  akt}, (hi, k ) , . . . ,  (hp, k), a~ . . .  aft ) 

where hi(hi) = {a~ +j} for all i E { 1 , . . . , k t }  and j e { 1 , . . . , p } .  Obviously, L = 
L,~(G) C a + "  �9 %r  + The words 

g and wj = a~  + p + j - 1  . .  a g+p+j-1 a ~ . . . a k t  �9 kt , j = 1 , . . . , p ,  

belong to L where wl is one of the words of second shortest length of L. For other 
words w E L there exists i C {1 , . . . ,  kt} with # ~ w  >_ g + 2p. 

Suppose that  L is generated by a CD(k~, . . . ,  kl~)ulOL system 

G t : ( ~ ,  ( h i ,  ] g ) , . . . ,  (h tq ,  ]g), ( h tq+ i ,  IgtqTi, . . .  , ( h i ,  ~ i ) ,  09) 

according to the m~-mode. By Lemma 2.1, E = {a l , . . . , ak t } .  Obviously, G I is 
propagating and w = a~. a g Since G' is propagating, all words wj, j = 1, , p, can "" k t  . . . .  
only be directly generated, if at all, from w or from some wj, with j '  < j .  A derivation 
wj, ===~ wj (a e {1 , . . .  ,s}) would imply w ~ y  w with g < # ~ w  _< g + p - 1 for 
all i E { 1 , . . . ,  kt}, a contradiction. We conclude that  D : w ~ wj where we can 
assume, analogously to the proof of Theorem 3.2, that  

D : w ~ t ~  wj. 

Obviously, if k~ < k such a derivation step is not possible. If k~ > k, there must 
exist an i E { 1 , . . . , k t }  such that  a~' C h~(a~) with x~ _< p where at least two 
occurrences of ai are substi tuted in the course of the derivation D. If 1 < xi < p, by 
substituting only one occurrence of hi, we get w ~ t  w with g < # ~ w  < g + p  - 1, 
but w r L. Else it is necessary that  {hi, a~ +j} C h'(ai)  where both the corresponding 
productions have to be used in D. If an application of al ~ a~ +j in D is replaced by an 
application of ai ~ hi, then w ~ t  agl + p + j - 1  �9 �9 �9 ag+P+J-l"g"g+P+J-li-1 ~ i  t~ i+l  �9 ' '  ag+P+J-lkt ~ L, 
a contradiction. We conclude that  k~ = k. 

Thus we know that  for all j C {1 , . . . , p} ,  w ~ ,  wj for some a '  C {1 , . . .  ,q}. 
It follows that  u,-P+J E h~,(a~) for all i E { 1 , . . . , k t } .  Assume that  some wj 
and wj,, j , j '  C { 1 , . . . , p } ,  j ~ j ' ,  are generated by the same table h~,. Then 
{P+J P+J'~ h',(ai) for all i {1 , . . . , k t } .  It follows that  from w, we may  generate ai , ai I C C 
ag+p+j'-l_g+p+j-1 .g+p+j-1 which does not belong to L, a contradiction. [] 1 it2 " �9 �9 ~kt  

By Theorem 3.3 and Lemma 3.1 we get the following corollary. 

C o r o l l a r y  3.2. Let m C { 1 , 2 , 3 , . . . , >  2 , >  3 , . . .} ,  r ,s  E N with r < s, and 
furthermore, let h i , . . . ,  k~, k~ , . . . ,  kPs E N where the multiset {k~, . . . ,  k, } is strictly 
included in the multiset {k~, . . . ,k~}.  If  m = 1, assume that there exists a ~r E 
{ 1 , . . . , s }  with k~ # l. Then 

s  k,, ulOL) C Em(k~, . . . ,  k'~, ulOL). 

It remains the case that  tl = t2, m # m I and that  the multiset inclusion is given. 
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T h e o r e m  3.4. Let t E N,  t > 2, and r, s E N,  k l , . . . , k ,  E N ,  k~, . . . ,k ' ,  E N 
where the multiset { k l , . . . ,  kr} is included in the multiset {k~, . . . ,  k',}. Then 

~ t ( k l , . . . ,  kr, ulOL) • s  k'~, ulOL). 

, ~,(t+l) for allc~ C {1, . , s} ,  I f  in addition, there exists p E { 1 , . . . ,  r} such that k~ ~ ---7--- "" 
then 

~ t  (~1, . . .  , ]gr, ulOL) r ~.~t(]gi,... , ]gts, ulOL).  

Proof. Especially, we choose k = kl. Let y = max{k~,.  , ~}. We define a 
CDkul0L system by Gt = ({a}, (h, k), a(g+l)kt) with h(a) = {~}. Obviously, 

Lt(Gt) = {a (g+l)~t} U {a"kt[ , = 0 , . . . , g }  and 

L>_t(Gt) = {a (a+l)kt}U {avk I b' = 0 , . . . , g t} .  

First, assume that  Lt(G~) is generated by a CD(k~, . . . ,k 's)ul0L system G~ = 
(E, (hl, k~) , . . . ,  (h's, k'~),w) according to the (>_ @mode.  By Lemma 2.1 we can as- 
sume that  E = {a}. We conclude that  w = a (g+~)kt and h~(a) C {e,a}. For some 
a E { 1 , . . . , s } ,  we have 

D : a (a+l)kt :::::~t agkt. 

Obviously, s C h~(a). If k'~ < k, then we get a (g+l)kt ~ a (g+l)kt-k~t where ( g +  1 ) k t -  
k'~t > gkt,  a contradiction. If k~ > k, then we also need a E h'(a).  We conclude 
that  w ~ a (a+l)kt-1 ~ Lt(Gt), a contradiction. This implies that  the derivation D 
is only possible if k'~ = k. It follows that  the derivation 

a(a+l)k~ ::::~a agkt ::::::~z a akt-k 

leads to a word of L>_,(G~) not belonging to Lt(Gt), a contradiction. 
Next, assume that  the additional condition of the theorem is valid. Without  

restricting generality, let k = kp and k'~ ~ ~ for all a E { 1 , . . . ,  s}. Suppose that  
L>_t(Gt) is generated according to the t-mode by a CD(k~ , . . . ,  k:)ul0L system G' t as 
above. Again, we have w = a (g+x)kt and h~(a) C {~, a}. Consider 

D' : a gkt :==~t a a akt-k, 

a derivation from the word of second longest length to the word of third longest length. 
If k~ < k, we get a contradiction as demonstrated before. If k~ >_ k, then the derivation 
D'  would be only possible if h~(a) = {r a}. It follows that  a (a+~)kt ~ a (g+~)kt-1, a 
contradiction. This implies that  

~d ~ t  agkt-k 

As above, a r h~(a). We conclude that  

k" -- kt + k 

which contradicts the additional assumption. Thus, L>t(Gt) cannot be generated 
according to the t-mode. [] 

Unfortunately, we have not succeeded in proving this theorem for all k~. The 
equation k~' = k,(t+l)t is only possible if t divides kp. If for all p E {1,. .  . ,  r} there 
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exists a E {1 , . . . ,  s} such that this equation is fulfilled and if the multiset {k l , . . . ,  kr} 
is included in {kl, . . . ,k 's},  then we do not know whether s  kr, ulOL) 
s  k's, uIOL) or not. To prove the non-inclusion result also for this case, we 
tried different examples of propagating systems, but all these examples only worked 
under the restriction of Theorem 3.4. 

E x a m p l e  3.1. We give some examples for the case m = 4, m' = (> 4) and vice 
versa. By Theorem 3.3 

s ulOL) • s utOL) and s utOL) q: s ulOL). 

By Theorem 3.4, we know that 

s ul0L) r s 5, 8, ul0L), 

but it is open whether s ulOL) ~ s 5, 8, ulOL) or not. 

Theorem 3.2, Theorem 3.3 and Theorem 3.4 give a nearly full characterization 
of the families s  k~,ulOL) in respect to mutual inclusion, but some special 
cases remain open. For the different theorems, we have used different examples and we 
could not find a common example for all cases. In the non-uniform case, Theorem 3. t 
of [10] gives a full characterization of the corresponding families s  k~, 10L). 
In contrast to the corresponding cases here, its proof has been carried out with the 
help of only one common example for all cases. Since the k-limitation of a kl0L system 
is imposed seperately on each symbol of the alphabet E, the special structure of the 
example in [10] implies that all its generating systems have to be deterministic. Thus, 
the possible derivations remain better arranged than in the case considered here. 

In [9] we have introduced, for all r E N, the family s of languages 
which are generated by uklTOL systems which possess r tables. Since s ~, ulOL) = 
s from Corollary 3.2 we derive 

Coro l l a ry  3.3. For all k E N, k > 2, and r E N,s C s 

Corollary 3.3 equals Theorem 5.1 of [9]. 

Coro l l a ry  3.4. Let k, k' E N, k r k', k r 1, k' # 1. Then any of the eight fami- 
lies of s uklPDTOL) is incomparable to any of the eight families of s 

Proof. Consider s ) = s ( k, ulOL ) and, for all s E N, schr Ll ( k '~, ulOL ). Let 
L E s ulOL) with L r s for all s E N be the language of the proof of 
Theorem 3.3 which is independent of s because of g = max{ k~, . . . ,  k'~ } = k'. It follows 
that L r s  = U s The system G of the proof of Theorem 

scN 
3.3 is also deterministic and propagating. Thus we conclude that L E s 1PDOL), 
Since s 1PDOL) C s uIOL) C s the result follows. [] 

Corollary 3.4 equals Theorem 3.6 in [9]. The proof using Theorem 3.3 given here 
depends on another example than that of [9]. 

More generally than Corollary 3.3, we get 

T h e o r e m  3.5. Let t E N, m = t or m = (> t). Furthermore, let r E N and 
k E N .  Then 

< 1))(CDuIOL) s k)(CD~IOL) c s (k + 
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and s  k)(CDulOL) C s C s 

If also kt ~ 1, then 

r < ~r+l (~  k)(CDulOL). Era(- k)(CDulOL) C 

Proof. The simple inclusions are obvious by Lemma 3.1 and the definitions. To 
prove the last strict inclusion, for kl . . . . .  kr+l -- k E N with kt ~ 1, we define a 
CDkr+lul0L system G according to the proof of Theorem 3.3 where g - k. Clearly, 
L = L(G) �9 s  k)(CDulOL). By the construction of the proof of Theorem 
3.3, L • s for all k~ �9 N, k~ < k, i = 1 , . . .  ,r.  We conclude that 
L r s k)(CDulOL). Thus, the last inclusion is proved. 

Similarly, we define a CD(k + 1)*ul0L system G' according to the proof of The- 
= T < 1))(CDuIOL), orem 3.3 where g k again. It follows that nm(G') �9 s  (k + 

but Lm(G') ~_ s  k)(CDuIOL) which proves s k)(CDulOL) C s  (k + 
1))(CDulOL) and thus also s  k)(CDulOL) C s 

The proof o f / : ~  (CDulOL) C t :~ +I(CDuIOL) cannot be directly carried over from 
Theorem 3.3 because there does not exist a common g which may be used for all 
CD(k~, . . . ,  kr~)ul0L systems in the same way as in that theorem. Therefore, the con- 
struction must be changed a little bit. We define a CD2~+lul0L system 

G =  ({a , , . . . , a2 t} , (h l ,2 ) , . . . , (h r+ l ,2 ) , a , . 2  ..a2t) 

with hp(ai) = {a~ -+~+p} for all i �9 {1 , . . . , 2 t}  and p = 1 , . . . , r  + 1. Obviously, 
L = L,~(G) C a+l.., a+t. The words 

a2 . . .a2t  and wp = a~+2+P...a2 +2+p, p = 1,. . . , r  + 1, 

belong to L. For other words w �9 L, there exists i �9 {1 , . . . , 2 t }  with ~,~w > 
2 +  2(r + 1). Every word w �9 L fulfills # , ,  = 2 or ~ , ,  > r + 3  for all i �9 {1 , . . . , 2 t} .  

Suppose that,  according to the m-mode, L is generated by an arbitrary 
CD(kl, . . . ,  k~)ul0L system 

G' (Z,(h~,kl) ,  ' ' . . . .  ,(h~,k~),~). 

By Lemma 2.1, E = { a l , . . . ,  a2t}. As in the case of the proof of Theorem 3.3, G' is 
propagating, w = a2...  a~t and the words wp, p = 1 , . . . ,  r + 1, can only begenerated,  
if at all, from w or from some wp, with p~ < p. Since 1 < #,,wp - ~ W p ,  ~ r for 
all i �9 {1 . . . .  ,2t}, a derivation step wp, ~ y  wp for some a �9 { 1 , . . . , r }  would 
implya~ e h'~(a~) with 1 < x~ < r + l  for a l l i  �9 {1, . . .  2t}. Since Iwl > 4 > 2 
according to G and using h~ we may derive a word w' = a~a~+~2.., a~ +~ �9 L with 
z2 + .. .  z2t = 2t(r + 1). Using the table h~ above and substituting one occurrence of 
al, we have a derivation w ~ =:=~ w" with 2 < #,~w" = 1 + xl < r + 2, a contradiction 
to the shape of the words of L. We conclude that  for all p �9 {1 , . . .  ,r  + 1}, 

D : w =====>t Wp 

for some a �9 {1 , . . .  ,r}. Obviously, if k~ < k, such a derivation step is not possible. 
We consider the case k~ > k. By the considerations above we know that a i �9 
with 1 < x~ < r + 1 is not possible. This implies that the derivation D is only 
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possible if a[ +I+p E h'(a~) for all i E {1 , . �9  2t}�9 It follows that  the r + 1 derivations 
w :===~ wp are carried out by at most r different tables h i .  Assume that  wp and wp,, 
p < p~, are generated by the same table h~,. Then {a~ +I+p, ~+l+p'~ C h',(a,) for 
all i E {1 , . . . , 2 t} .  In the last step of the derivation w ==~,  wp using a non-trivial 
production ai --~ a~ +I+p for some i, we replace this production by a; --* a~ +I+p' which 
leads to a derivation w ~ ,  a~ +2+p ~+2+v ~+2+p' ~+2+p ~+2+p generating a �9 . . a i _  z ai ai+l ...a2~ 
word not belonging to L, a contradiction�9 [] 

By Theorem 3.1 we know that  s  1)(CDulOL) = s 
The different results show that  there exist infinitely many language families which 

are incomparable to one another. But on the other side we have also recognized that  
there exist infinitely many  infinite hierarchies of language families. 

4. Comparison of CDul0L Language Families wi th  Other 
Language Families 

In case of the non-uniformly limited systems, we have shown in [10], Theorem 4.1, 
that  s  s s ~ ( C D I O L ) ,  s k')(CDlOL) 
(for all k' E N)  and f~(CDIOL) are incomparable with any family of L:((P)(D)(T)0L) 
or with the families of finite, regular or context-free languages. We begin this sec- 
tion with the comparison of CDul0L language families with the families of T0L lan- 
guages and with the families of CD10L languages. The proof of the corresponding 
results is similar to that  of the special case of the comparison of f~(uklTOL) with 
s  and / : (kl(P)(D)(T)0L) in [9], Theorem 3.1 and Theorem 3.2, but 
some modifications are necessary. 

T h e o r e m  4.1. For all m E { 1 , 2 , 3 , . . . , >  2 , >  3 , . . . } ,  r,S, k l , . . . , k r  E N with 
kl �9 �9 . . �9 ]C r # 1, and k~, . . . , k'~ E N,  any family 

s ( k~, . . . , k~ , ulpdOL ), s  1 ulpdTOL ), s ( C DulpdOL ), 

s  ( C DulpdOL ), s  (<_ k')( C DulpdOL ), 

for all k' E N and s is incomparable with any family 

s  (P) (D) (T)OL ), s k~, . . . , k'~, lpdOL ), s  k~ IpdTOL ), 

s L~(CDIpdOL), f ~ ( <  k")(CDlpdOL) 

b r  all k" E N and s but the families are not disjoint. 

Proof. {a} is a member  of all language families considered. Furthermore, we 
have L = {a2~]n E No} E s but L is not a member  of any of the CDul0L 
language families because of the remarks after Corollary 2.1 concerning the difference 
of the lengths of the words in a CDul0L language. By the definitions we know that  

s ulOL) C •rn(kl , �9  ]~r, ulOL) C s C s C s 

s C s kl)(CDulOn) C s and 

s  ulOL) = s C s C s 

The corresponding inclusions are also valid in the propagating and/or  deterministic 
case and also for non-uniformly limited systems�9 It remains to prove that  there exists 
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L' C / : ,~(kl ,uIPDOL) with L' r s U s and that there exists L" C 
/:,~(kl, IPDOL) with L" r s  We begin with the latter case. Denote k = kl 
and consider the CDklPDOL system 

G2 = ({a, b}, (h, k), akb k) with h(a) = a 2 and h(b) = b 2. 

Let m = t or m = (_> t ) for  somet  C N. Obviously, {ak+S~kb k+stk ] s �9 No} subsetL" = 
Lm(G2) C a+b +, and if w �9 L", then #~w = #bw. Let m = t '  or m'  = (> t') 
for some t '  C N. Assume that according to the m~-mode, L" is generated by a 
C D ( k l , . . . ,  k~)ul0L system 

G' = (hi, k l ) , . . . ,  

By Lemma 2.1, E = {a, b}. Obviously, G~ must be propagating. There must exist a 
table h0, p �9 { 1 , . . . , r } ,  with a ~ C hp(a) and i > 1. Choose an So �9 N with k + s o t k  > 
kp �9 t'. Then a derivation ak+~~176 ==~p'~' W" with #~w" # k + sotk = #bw" is 
possible. But this contradicts the shape of the language L". Thus L" r s  

Next, for k ~ 2 we consider the CDkulPDOL system 

G~ = ({a, b}, (h, k), ab) with h(a) = a 2, h(b) = b 2. 

Assume that  k = 2 p + q for some q with 0 _< q < k. Depending on m, the shortest 
words of L I = L,~(G1) are among the words 

ab, a 2b 2, a 464, . . . , a2P b 2p. 

Other words of L ~ which do not possess more than k occurrences of a, are of the form 
akb 2p+~+'k for appropriate ~ �9 N depending on m. But obviously, there exist infinitely 
many different such words belonging to L'. Assume that L' is generated according to 
the m'-mode by a CD(k~, . . . ,  k's)10L system 

G = b), 

It is clear that  G~ must be propagating. Suppose that there exists a a �9 { 1 , . . . ,  s} 
and an i �9 N,  i > 1, such that  a �9 h '(a)  and b ~ �9 h'(b). It follows that  ab ===>~' ab j 
for an appropriate j �9 N,  j > 1. Since k # 1, abJ r L'. Therefore, the infinitely many 
words of L'  of the form a~b 2p+~+~k can only be directly generated from words with less 
than k occurrences of a. But there are only finitely many such words, a contradiction. 
Thus L' r s  

If we assume that  L' is generated by a T0L system, we get the same contradic- 
tion. [] 

By s  s  s  s  we denote the families of finite, regular, 
context-free, or context-sensitive languages, respectively. The following result shows 
that  in case of propagating systems, all generated languages are context-sensitive. 

T h e o r e m  4.2. s  C s  

Proof. We consider an arbitrary t �9 N and an arbitrary C D ( k l , . . . ,  k,)ulPOL 
system 

a = 
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We define a grammar H generating Lt(G) which can be generalized to a grammar for 
L>_t(G). The terminal alphabet of H is given by E. The nonterminal symbols are 
given, together with the productions, in the course of the following construction. Let 
X0 be the start symbol. The production 

Xo --+ w 

is only necessary to derive the axiom of G. After an application of a production 

Xo -+ LT~wR1 for p C {1 , . . . ,  r} 

begins the simulation of a derivation step w ==~ ~ according to a table hp. If LT~wR1 
with w E Lt(G) has already been derived, then 

t W t D : w =:=::~ p 

is simulated with the help of the following productions where the non-terminals T[, 
i = 0 , . . . ,  k, count the number of substitutions effected in a single derivation step of D 
while the non-terminals Rj, j = 1 , . . . ,  t, count the number of these single derivation 
steps. First, a single derivation step of D is simulated with the help of the productions 

T~a --4 a'T~, T~a -+ vT~+ 1 for a e ~ ,  v e hp(a) and i �9 {0 , . . . ,  kp - 1}, 

where, for every a �9 E, a ~ is a new nonterminal symbol. By these productions, the 
symbol T[ passes from left to right in the course of which the index i is incremented 
by 1 if an application of a production is simulated. If at the right side of the word 
considered, the symbol T[o meets Rj, then in this simulation step exactly k o symbols 
of the word considered have been substituted. By the productions 

T;pRj ~ Z~ j E {1,. . .  , t -  1}, 
aZ p ~ ZPa, aIZ p ~ ZPa for a E E and L Z  p -+ LTg, 

the (j + 1)-st derivation step according to hp is initiated. If instead of the situation 
above, at the right side of the word considered, a symbol T[, i C {0 , . . . ,  kp - 1}, meets 
a symbol Rj, then a single derivation step has only been successfully simulated if no 
symbol a' for a E E occurs in the word considered. Thus, by 

Ts ---* ZPRj_t_I, j e { 1 , . . . , t -  1}, i e {0, . . .  ,kp - 1}, 
aZp ~ 2pa for a E E and L2P ---, LTg, 

only if there is no such a ~, a next single derivation step according to hp is initiated. 
Otherwise, the derivation stops. After the last single derivation step, that is after the 
simulation of D, TO, i �9 {0 , . . . ,  kp}, meets the symbol Rt at the right side of the word 
considered. Then by a production 

T~Rt ~ Z / R o  for p' �9 {1 , . . . ,  r} 

o r  

TORt ----, ZgRo for p 'E  {1 , . . . , r} ,  i e {0, . . . ,kp - 1}, 

we can start a further derivation w ~ ==~o' w", or else by 

T~Rt ---+ S, aS  ~ Sa, atS ---* Sa for a C E and L S  ~ 
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o r  

T~Rt --+ S, aS --+ Sa for i E { 0 , . . . ,  kp - 1}, a E F~ and LS ---+ r 

we derive the word w' E L~(G). By the construction it is obvious that  the g rammar  
generates Lt(G). Since G is propagating, the workspace theorem (see [7], Theorem 
]II.10.1) shows that  Lt(G) is context-sensitive. If we want to generate L>~(G), then 
it is clear that  we only have to add the productions 

T;R~ -~ Z"R~ and T~R~ -~ 2"R~, i E { 0 , . . . ,  k ,  - 1} .  

The language {a 2~ I n  E No} E s  cannot be a CDu0L language because of 
the considerations following Corollary 2.1�9 Thus the strict inclusion holds. [] 

It  is open if the result of Theorem 4.2 is also valid for arbi trary CDul0L languages�9 
The following theorem shows that  the different CDul0L language families cannot 

be inserted into the hierarchy s  C s  C s  of Chomsky language 
families. The corresponding result for the families s has already been proved 
in [9], Theorem 3.9, and for the families of CD10L languages in [10], Theorem 4�9 

T h e o r e m  4.3. For all 

s  E { s  s  - s  s  - s  s  - s  
s E {s �9 �9 kr, ulOL), s s s  kl)(CDulOL), 

s163 I m = t or m = (> t) , t  E N , r  E N,  k l , . . . , k r  E N )  

there exist languages L1 E s with L1 E s (with the exception of the case s = 
s  - E(CF)  together with s E { L ~ ( k l , . . . ,  k~, ulOL), s I k l . . . . ,  k~ = 
1}) and L2 E s with L2 r E2. 

Proof. Let m = t or m -- (>_ t) for t E N.  We begin by proving the first half of 
the s ta tement  of the theorem. Because of the inclusions of the proof of Theorem 4.1, 
it suffices to demonstrate  that  for every s as above there exists L1 E s ulOL) 
with L1 E s We set k = kl. 

Obviously, {b} E s ulOL) M s  Furthermore, the CDkulPDOL system 
G1 = ({b), (hi, k), b k) with hi(b) = b 2 generates 

L~(G1) = bk(btk) * e s ulOL) M (s  - s  and 
L > t ( e l )  -~ b k U b ( t + l ) k ( b k )  * e s  ulOL) O (s  - s  

The language {ak+~ba k+= I n E No} E s 1 6 3  is generated, according to 
any m-mode,  by the CDkulPDOL system G2 = ({a, b}, (h2, k), a%a k) with h2(a) = a 
and h2(b) = aba. 

For k > 2, we consider the CDkulPDOL system 

G 3 = ({hi, .  �9 �9 , ak}, (h3, k), a l . � 9  akai) 

with h3(al) = a~a2, h3(a~) = a2a3,..., h3(ak) = akal. Obviously, 

Lt(G3) N a+l a+ . . a+a + {a~ +~ l+t'~al+t~ �9 k 1 . . . .  ak 1 I n E N o } a n d  
L>,(G3) M a+a+�9 -+a + ~+,~ t+~ N}. ~ k  1 {al. akal} U {a~ +n. t n E . .  -~ . . . .  a k a l  

By the Lemma  of Bar-Hillel, these intersections are not context-free�9 Since a + .. + + �9 a k a 1 
is regular, Lt(G3) and L>t(Ga) cannot be context-free, too. On the other side, by 
Theorem 4.2 we know that  L~(G3) and L>~(G3) are context-sensitive. 
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For the second half of the proof it suffices to show that for every family L:I as above 
there exists a language of s which cannot be generated by any C D ( k l , . . . ,  k~)ul0L 
system. First we consider the finite language L1 = {b, b 2} and assume that  it is 
generated by a system G = (~,(hl ,kl) , . . . , (h~,k~),w).  (Note that for t # 1 we 

"~ b 2 for some cannot assume that  ~ = {b}.) If w = b is the axiom of G then b ~ ,  
p, p = l ~ . . . , r .  This means that there exists t '  E N,  t '  > t, such that b 2 is derived 
from b in t '  derivation steps according to the underlying ukpl0L system. We corrtinue 
the derivation with further t '  steps according to hp such that from the first b of b 2 
the derivation is carried out exactly as before. From the second b we try to do the 
same but depending on kp, it might be possible that some substitutions have to be 
postponed to later steps. But in any case it is obvious that  in any intermediate word 
of this derivation b ~ m ==:~p w, there exists at least one symbol arising from the second 
b. It follows that  Iwl > 3, a contradiction. If w -= b 2, then b 2 ==~pm b according to t '  
steps as before. Similarly as before, it follows that b ~ r a contradiction. 

For the next cases, consider L~ = {b, b 2} U A~, i = 2, 3, where A2 = {b2}+c + and 
A3 = {b%~In C N , n  > 2}. Obviously, L2 E s  - s  n 3 ~ ~ ( C f i  ~) - 

s  Assume that  L~, i = 2,3, is generated by a CD(k~, . . . ,  k~)ul0L system. By 
Lemma 2.1 we can assume that D = {b, c}. It follows that G is propagating, w = b 
and hp(b) C b +, hv(c) C c + for a t lp ,  p = 1 , . . . , r .  hp(b) C b + ~mpliesthat w = b 
cannot derive b~c ~ C Li, i = 2, 3, a contradiction. 

Finally, let L4 = {a2~In E No} E E ( C F ) - s  In Theorem 4.2 we have shown 
that  L4 ~ s [] 

5.  N o n - C l o s u r e  P r o p e r t i e s  

T h e o r e m  5.1. All CDul0L language families f~2 of the set of Theorem 4.3 are not 
closed with respect to (a) union, (b) intersection with regular sets, (c) e-free iteration, 
(d) c-free homomorphism, (e) inverse homomorphism, (f) concatenation. 

Proof. For a derivation according to the m-mode we assume that  m = t or 
m = ( > t )  for s o m e t E N .  

(a) Obviously, {b}, {b 2} e s for all such language families, but {b,b 2} r 
s (see proof of Theorem 4.3.). 

(b) For an arbitrary k C N, consider the CDkul0L system G = ({b}, (h, k), b) with 
h(b) = {b, b2}. According to any m-mode, {b,b 2} C L~(G). But {b,b 2} E 
s  and Lm(G) N {b, b 2} = {b, b 2} r s 

(c) We have {b2c ~} E s for all CDulOL language families /:2. Let L = 
{b2c2} + e ~(CDuIOL). By Lamina 2.1 we can assume that L is generated by 
a CD(kl, .  �9 �9 k,)ul0L system G = ({b, c}, (hi, k l ) , . . . ,  (hT, k,), w). Obviously, G 
is propagating. To derive words longer than the axiom b2c 2, it is necessary that  
there exists hp, p = 1 , . . . ,  r, such that ~ C h,(b) or ~/C hp(c) with [fl[ > 2 or 
h'l -> 2. Without  loss of generality let ~ E hp(b). Consider (b2c2) k.t e L. Then 
there is a derivation step (b2c2) ~"t ~ t  (~bc2)k,t. Since ]~l > 2, (flbc2) k"~ E L 
implies that  b 2 is a prefix of ft. Now we consider the also possible derivation step 

(b~c2) k.t. We recognize that b 3 is a prefix of the derived word, a (b2c~) k.~ ~ p  
contradiction. 
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(d) For an arbitrary k C N, consider the CDkul0L system ({c, d}, (h, k),c) with 
h(c) = d and h(d) = d which generates {c, d}. Let g be an e-free homomorphism 
defined by g(c) = b, g(d) = b 2. Then g({c, d}) = {b, b 2} • s 

(e) For any k C N, the language {c, b, b 2} is generated by the CDkul0L system G = 
({b, c}, (h, k), c) with h(c) = {b, b 2} and h(b) = {b}. Define a homomorphism g 
by g(b) = b. It follows that g-l({c, b, b2}) = {b, b 2} r s 

(f) Obviously, {b} and {e, b} are languages of every CDul0L language family s 
But {b}{e, b} = {b, b 2} r s [] 

The theorem proves that all CDul0L language families are anti-AFL's. The case 
s has been proved in [9], Theorem 4.1. The proof given here is shorter than 
that of [9]. As a simple positive closure result we get at once that all CDul0L language 
families are closed with respect to mirror image. 
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A b s t r a c t .  The study of teams in grammar systems so far has evolved 
around teams being formed from a finite number of sets of context-free 
productions. Here, the generative power of teams in grammar systems 
consisting of regular, linear and metalinear sets of productions is investi- 
gated. 

For these sub-context-free cases the forming of teams strictly increases the 
generative power of the underlying grammar systems in many cases. 

1. I n t r o d u c t i o n  

When an agent is unable to tackle a complex problem, due to limited capabilities, 
it seems natural to try to tackle the problem by more than one agent. This results in 
what they call in Artificial Intelligence (AI) a multi-agent system. An example of the 
idea of multi-agent systems in Distributed AI are is the so-called blackboard model of 
problem solving. 

This model starts with a given problem specified on the blackboard. Several 
knowledge sources contribute, regulated by a certain strategy, to solving the problem 
by changing the current state of the blackboard. During the problem solving, the only 
way in which these knowledge sources can communicate with each other is by using 
the blackboard. Finally, in the case of successful cooperation, the solution appears on 
the blackboard. 

The link between this blackboard model of problem solving and formal languages 
was established in [5]. The knowledge sources correspond to grammars, changing 
the current state of the blackboard corresponds to rewriting the sentential form, the 
strategy is regulated by so-called derivation modes and the solution is represented by a 
terminal word. In [3], cooperating distributed grammar systems, CD grammars systems 
for short, have been introduced as a formal realisation of this link. These systems have 
been investigated intensively. Moreover, they have initiated the development of the 
theory of grammar systems. This theory has already resulted in the monograph [4], 
which contains an exhaustive survey of the state of the art in the area until ca. 1992. 

Already, several well-motivated enhancements of these CD grammar systems have 
been introduced, such as hybrid CD grammar systems ([15]), team CD grammar sys- 
tems ([13]) and, most recently, hybrid team CD grammar systems ([2]). In hybrid CD 
grammar systems, a more realistic approach to cooperation is considered, by assum- 
ing the grammars to have different capabilities. In teaxn CD grammar systems the 

1This research was supported by a scholarship from the Hungarian Ministry of Culture and 
Education. Moreover, the facilities provided by the Department of General Computer Science of the 
EStvSs Lors University and in particular by the Computer and Automation Research Institute of 
the Hungarian Academy of Sciences were essential. 
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natural idea of work being done in teams is incorporated in the system by grouping 
several grammars and use them to rewrite in parallel. The teams are either formed 
automatically or prescribed and several versions of the maximal competence strategy 
in CD grammar systems are defined. Hybrid team CD grammar systems combine 
these two ideas. 

In [13] it was shown that there are situations in which the forming of teams enlarges 
the power of the underlying CD grammar system and that they form an AFL when 
working in the maximal competence strategy. Moreover, in [6] it was proved that 
teams of size two suffice. In [19] it was shown that there are situations in which 
exactly the power of programmed grammars is obtained (reeursively enumerable when 
A-productions are allowed) and in [11], this result was extended to cover more cases 
of teams in grammar systems. Another surprising result is that the different maximal 
competence strategies introduced in each of these papers lead to the same generative 
power. In [2], finally, it was proved that when hybrid teams are allowed the generative 
power is not enlarged any further. However, every recursively enumerable language 
can be generated by a hybrid prescribed team CD grammar system with teams of 
two members. Moreover, concerning syntactic complexity these systems could well be 
favoured. 

Until now, only team CD grammar systems with context-free productions have 
been considered. Here, the case of a restriction to regular, linear and metalinear 
productions is studied. For (hybrid) prescribed team CD grammar systems with teams 
of constant size and regular productions, the team-forming enlarges their generative 
power beyond the class of regular languages to the class of regular simple matrix 
grammars. Hence it extends also beyond the power of regular (hybrid) CD grammar 
systems. The same holds in the case of a restriction to linear productions. These 
results lead to several corollaries, one of these being that the class generated by 
(hybrid) prescribed team CD grammar systems with a restriction to regular or linear 
productions and teams of constant size is incomparable with the class of context-free 
languages. On the other hand, (hybrid) (team) CD grammar systems with context- 
free productions include that class, whereas for the metalinear case, incomparability 
is only conjectured. 

In the case of teams of variable size, no more than the class of regular or linear lan- 
guages can be generated by (hybrid) prescribed team CD grammar systems with only 
regular or linear productions, respectively. However, when restricted to metalinear 
productions, the generative power of (hybrid) prescribed team CD grammar systems 
extends beyond the class of metalinear languages. Moreover, already the class gen- 
erated by prescribed team CD grammar systems with this restriction to metalinear 
productions is equal to the class of programmed grammars with the same restriction 
and appearance checking in the case of the maximal competence strategies. For the 
other modes of derivation, the results hold only without appearance checking. 

2. P r e l i m i n a r i e s  

In this section, some prerequisites necessary for understanding the sequel are de- 
fined. For details and unexplained notions, the reader is referred to [22] for formal 
languages, [9] for regulated rewriting, [21] for Lindenmayer systems and [4], [7], [8] 
and [17] and [2] for (variants of) grammar systems. 

The set of M1 non-empty strings over an alphabet V is denoted by V +. If the empty 
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string, A, is included, the notation becomes V*. The length of a string x is denoted 
by lxl- 

An inclusion is denoted by C_, whereas a proper inclusion is denoted by C. 
Sometimes, the notation for a family of languages contains a A between the brackets 

[ and ]. This means that  the s tatement  holds in the case of allowing A-productions 
(indicated by the A inbetween brackets) as well as in the case of a restriction to A-free 
productions (thus neglecting the A inbetween brackets). Also other symbols between 
brackets must now be understood. 

Without  definition, the family of regular (PEG), linear (LIN) ,  metalinear 
( M L I N ) ,  context-free (CF) and context-sensitive (CS) languages are used in the 
sequel. Their definitions can be found in, e.g., [9]. The same holds for the family of 
languages generated by ETOL systems (ETOL). Finally, also the family of languages 
generated by [hybrid] CD grammar  systems ([H]CD) shall not be defined here. How- 
ever, their definitions can be found in [4] and will become clear in the sequel. 

None of the above families of languages will be used in any construction in the 
proofs. Those families of languages that  are used in (some of) the proofs below, are 
defined next. 

An unordered scattered context grammar with appearance checking ([14]) is a con- 
struct G = (N, T, S, P, F) ,  where N is the set of nonterminals, T is the set of terminals, 
S E N is the axiom, P = {pa,p2,... ,pn} is a finite set of rules (rules are of the form 
Pi: (al, a2 , . . . ,  am,) --+ (ill, f12,..., tim,), where a j  --+ flj are productions over g U T) 
and F is a set of occurrences of productions in P,  1 < i < n. For w, w ~ C (N U T)* 
and 1 < i < n it is said that  w directly derives w ~, written as 

w ===k w ~ iff W=Wlaiiw2ai2 ...w,~almw,~+l, w~=wlflilw2fli2 ...w,~fli,~W~+l, 

Pi : (OL1,O/2,-' ' ,O~,) -"+ ( ~ 1 , ~ 2 , ' ' ' , ~ , )  �9 P, (O~il,Oli2,...,oLi~) is a 

permutat ion of a subsequence of (a l ,  a 2 , . . . ,  ap), wl �9 ( g  U T)* 

a n d l < l < m + l  

and a j  in {al ,  a : , . . . ,  ap} and not in {a~,  a~ : , . . . ,  a~m} implies that  

a j  is not contained in w and a~ --+ flj �9 F. 

If F = 0, the unordered scattered context g rammar  is called an unordered scattered 
context grammar without appearance checking and F is omit ted from the construct. 
Moreover, if F contains all occurrences of productions in P,  the unordered scattered 
context g rammar  is called with unconditional transfer. The language generated by 
a is L(G) = {w �9 T* [ S ~ *  ~}, where ==#* denotes the reflexive and transit ive 
closure of ~ .  

The family of languages generated by unordered scattered context grammars  with 
A-free context-free productions in P is denoted by USC~ in the case of grammars  with 
appearance checking; when grammars  without appearance checking are considered the 
subscript ac is omit ted and when grammars  with unconditional transfer are considered 
the subscript ac is replaced by ut. 

A programmed grammar ([20]) is a construct G = (n ,  T, S, P) ,  where N is the set 
of nonterminals,  T is the set of terminals, S �9 N is the axiom and P is a finite set 
of productions of the form ( r :  a --+ fl, ~(r) ,  ~(r)) ,  where r :  a ~ ~ is a production 
over N U T, labelled by ~. Denote by Lab(P) = {r I ( r :  a ~ fl, a ( r ) ,  ~2(r)) �9 P}  the 
set of labels of productions of G. Then a(r) C_ Lab(P) is called the success field of 
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production r and ~o(r) C Lab(P) the failure field. For (r 1 : a -~ fl, O"(7"1) , ~o(rl) ) e P 
and w, w' C (N U T)* it is said that w directly derives w t, written as 

(w, r l )  ~ (wt, r2) i f [  w = W l a W 2  , w '--~ W l f l W  2 and  r2 e ~(r~) 

or w = w ~, a --~ fl cannot be applied to w and r2 C ~o(rl). 

If the failure fields axe empty for every production, the programmed grammar is 
called without appearance checking; otherwise it is called with appearance checking. 
Moreover, if the success field and the failure field coincide for every labeled produc- 
tion, the programmed grammar is cMled with unconditional transfer. The language 
generated by G is L(G) = {w e T* ] (S, ro) ~ *  (w, rl), to, rl e Lab(P)} ,  where 
==** denotes the reflexive and transitive closure of =:*.  

The family of languages generated by programmed grammars with ),-free context- 
free productions in P is denoted by PR~r in the case of grammars with appearance 
checking; when graxnmaxs without appearance checking are considered the subscript 
ac is omitted and when grammars with unconditional transfer are considered the 
subscript ac is replaced by ut. 

A matrix grammar with appearance checking is a construct G = (N, T, S, M, F) ,  
where N is the set of nonterminals, T is the set of terminals, S C N is the axiom, M is a 
finite set of matrices of the form m : (rl, r2 , . . . ,  r~), where r~ : ai --~/~i are productions 
over N U T  and laiN >_ 1, 1 < i < n and F ,  finally, is a set of occurrences of productions 
in M. For w, w' C (N O T)* and m :  (a~ ~ fl~, a2 --* f12,..., a~ --*/~) E M it is said 
that  w directly derives w ~, written as 

w ~ w ~ iff 

either 

or  

there exist wo, w l , . . . ,  w, C (N U T)* such that  

w0 = w and w, = w' and for all 0 < i < n -  1 

= and = 

for some w~_l, w~r_l e ( g  U T)* 

the production ai --*/3i cannot be applied to wi-1, 

a~ ~ fli E F and wi = wi-1. 

If F ---- O, the matrix grammar is called a matrix grammar without appearance 
checking and F is omitted from the construct. Moreover, if F contains all occurrences 
of productions in M, the matrix grammar is called with unconditional transfer. The 
language generated by G is L(G) = {w E T* I S ~ *  w}, where ~ *  denotes the 
reflexive and transitive closure of =:*.  

The family of languages generated by matrix grammars with )`-free context-free 
productions in M is denoted by M A T ~  in the case of grammars with appearance 
checking; when grammars without appearance checking are considered the subscript 
ac is omitted and when grammars with unconditionM transfer are considered the 
subscript ac is replaced by ut. 

A simple matrix grammar ([12]) of degree n, n >>_ 1, is a construct G - 
(N1, N2,. �9 N~, T, S, M), where N1, N2 , . . . ,  N~ (sets of nonterminals) and T (the set 
of terminals) are pairwise disjoint alphabets, S ~ ([.J~l N~ U T) is the start symbol 
and M is a finite set of matrices, each of one of the following forms. 

(a) ( s  for x T*, 
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(b) (S --* A IA2 . . .  A~), for A~ E N~ and 1 < i < n or 

(c) (A1 --* Xl, A2 ~ x2 , . . . ,  A~ --* x~), for A~ E N~, xi E (N~ U T)* and 
Ix lN, = IxjIN  for all  1 < i , j  < n.  

For w, w' E (UP=I Ni u T U {S})* it is said that w directly derives w', written as 

w = = ~ w '  iff w = S a n d ( S ~ w ' ) E M  

o r  w = V l d l W l V 2 d 2 w 2  . . .  v n A n w n ,  w I ~ -  V l X l W l V 2 X 2 w  2 . . . V n X n W n ,  

A~EN~, v i ET* ,  w~,x~E(N~UT)*, l < i < n a n d  

(A1 --+ xl ,A2 ~ x 2 , . . . , A s  ~ x~) E M. 

The language generated by G is L(G) =- {w E T* [ S ===>* w}, where ~ *  denotes 
the reflexive and transitive closure of ==--=~. 

A simple matrix grammar is called regular, linear, context-free or ),-free iff the 
productions appearing in matrices of type (c) in M are all regular, linear, context- 
free or ),-free, respectively. The family of languages generated by ),-free context-free 
simple matrix grammars of degree n, n > 1, is denoted by SM(n) .  Furthermore, 
denote S M  = U~>l SM(n)  and likewise for the other cases. 

For all generative devices mentioned above, only the notation in the case of ),-free 
context-free productions was given. However, when the productions are of type X, for 
X E {REG,  L IN ,  M L I N } ,  a subscript X is added to the notation. Moreover, when 
there is no restriction to ),-free productions a superscript ), is added to the notation. 

3.  H y b r i d  P r e s c r i b e d  T e a m s  o f  G r a m m a r s  

Def in i t ion  1. Let N and T be two disjoint alphabets. A production over (N, T) 
is a pair (A, x) E N • (N U T)*. Usually, A --* x shall be written instead of (A, z). If 
x ~ ),, then A ~ x is called a ),-free production. A team over (N, T) is a multiset of 
sets of productions over (N, T). The sets of productions occurring in a team shall be 
referred to as components. 

A team rewrites a string in the following manner. 

Def in i t ion  2. Let N and T be two disjoint alphabets. Let Q be a team over 
(N, T) and x, y E (N U T)*. Then x is rewritten by Q into y, written as 

x ~ Q  y iff x = XlAlx2A2...x~A~X~+l, y = Xlylx2y2...xnynx~+l, 

x I E ( N U T ) * ,  l < i < n + l ,  A j - - ~ y j E P j ,  l < j  < n a n d  

Q = {P1,P2,...,JP,~}. 

A derivation step of a team thus consists of choosing a production from each 
component of this team and apply these in parallel on the string to be rewritten. If Q 
is a singleton team, i.e. Q = {P} for some set of productions P, then x :===::~p y shall 
be written instead of x ==~{p) y. It is clear that in that case only one symbol in x is 
rewritten, using a production from P. 

So-called modes of derivation axe used to prescribe halting requirements on the 
use of a team. These modes can be divided into three groups. Firstly, mode * has 
no restrictions whatsoever. Any number of derivation steps is allowed. Secondly, 
modes < k, = k and > k restrict the number of derivation steps to at most, exactly 
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and at least k derivation steps, respectively. Thirdly, modes to, ta f derivation steps. 
All three prescribe a slightly different condition which needs to be fulfilled before a 
team is considered to have successfully worked in that mode. In the case of mode to 
the work of a team ends successfully when no further derivation step can be done as 
a team, in the case of mode tl the work ends when no component of the team can 
apply one of its productions any longer and in mode t~, finally, the work of a team 
ends when there is at least one component that can no longer apply one of its produc- 
tions. 

Def in i t ion  3. Let Q = { P I , P 2 , . . . , P n }  be a team over ( N , T )  and let f e 
{~ k , =  k,_> k I k > 1} U {*,to, t l , t2} be a mode (of derivation). Furthermore, let 
x, y, z E (N U T)* and k E N. Then x is rewritten by Q, working in mode f ,  into y, 
written as 

k' k~ 
x ==,~k Y iff x ~ Q  y f o r s o m e  _<k, 

x ~ k y  iff x ~ y ,  
>k k t kt 

X = : ~  y iff X:=~Q y f o r s o m e  > k ,  

x ~ y iff x = = : ~ y f o r s o m e k ,  

x ==*-~ y iff x = = ~  y and there is no z such that  y ==*Q Z, 

x = = ~  y iff x = = ~  y and for no component P i � 9  

there is a derivation y ==*p~ z and 

x ====*~ y iff x = = = * ~ y a n d t h e r e i s a c o m p o n e n t P i C Q  

for which there is no derivation y ~ p ~  z. 

The three variants of the t-mode of derivation first appeared in [11] (to), [13] (tl) 
and [19] (t2); the other modes of derivation are the natural extension of the modes in 
CD grammar systems (see [4]) to teams of grammars. 

Now the definition of hybrid prescribed teams in the theory of grammar systems 
from [2] can be introduced. 

Def in i t i on  4. A hybrid prescribed team CD grammar system is a construct 

F = ( N , T , S ,  P I , P 2 , . . . , P ~ , ( Q ~ , f ~ ) , ( Q 2 , f 2 ) , . . . , ( Q , , , f , ~ ) ) ,  

where N is the set of nonterminals, T is the set of terminals, with N n T = 0, S �9 N 
is the axiom, P1, P2, . . .  ,P~ are sets of productions over (N, T), Q1, Q2 , . . . ,  Qm are 
teams with components from P1, P2 , . . . ,  P~ and f l , f 2 , . . . ,  f,~ are modes of deriva- 
tion. 

This definition is more general than those from [13] and [19]. If, in this construct, 
fi = f j  for all 1 < i , j  <_ m: the definition of a prescribed team CD grammar system 
as in [19] is obtained. 

Note that  in this definition, there is no restriction on the size of a team. In the 
original definition of teams in [13], however, they are of constant size. A natural 
number s > 1 is given and the teams are formed such that the number of components 
of every team is exactly s; these teams are called of constant size s. Moreover, in that  
definition the teams are not prescribed, but each set of components can be a team 
(so-cMled free teams) as long as the size restriction is fulfilled. 
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It is now clear that one can differentiate between the following four variants of 
teams in the theory of grammar systems. For all four, hybridity is another possibility. 

Free teams of constant size: this is the original definition of [13], as explained above. 

Free teams of variable size: each subset of components can be a team. 

Prescribed teams of constant size: all prescribed teams consist of the same number of 
components. 

Prescribed teams of variable size: these are defined in Definition 4. 

In the case of teams of constant size, whether prescribed or free, a finite set of 
axioms W C_ (N U T)*, with only one string in it containing nonterminals, is allowed. 
This is done since otherwise in the case of A-free productions no string shorter than s 
could be generated. In the case of free teams with teams of constant size, the construct 
thus becomes F = (N, T, W, P1, P2, . . . ,  PT,). The modifications in the other cases are 
obvious. 

Def in i t i on  5. Consider a hybrid prescribed team CD grammar system P as in 
Definition 4. Then the language generated by F is 

f i  I __...._~fi 2 l ip  L ( r )  = {z ~ T* I S ~ q , 1  w~l ----,q,~ . . .  ~ r  w~p = z, 1 < ii  < m, 1 < j < p}. 

When dealing with a language generated by teams of constant size, the notation 
of Definition 5 is modified to L(F, s). When the teams axe not hybrid, the mode of 
derivation is added as a subscript to this notation. 

The family of languages generated by CD grammar systems with hybrid prescribed 
teams of variable size and A-free productions of type X is denoted by H PT ,  CDx.  
When teams are of constant size s, the �9 in the notation is replaced by s and when 
there is no restriction to A-free productions, A is added to the notation as a super- 
script. When dealing with context-free productions this need not be specified and the 
subscript is thus omitted. Finally, when the teams are not hybrid (prescribed) the H 
(P)  in the notation is omitted. 

Some relations concerning the generative power of several of these grammar sys- 
tems discussed above are given next. A more complete overview can be found in 
[1]. In the first paper on teams in grammar systems, [13], it was proved that,  for 
f E { = l , > _ l , * } U { < k l k ~ l } ,  

CF = TICD(f)  C T2CD(f) and 

ETOL = TICD(t) C T2CD(tl). 

These relations prove that there are modes of derivation for which the forming of 
teams strictly increases the power of CD grammar systems, since CD(t) = ETOL and 
CF  = CD(= 1) = CO(>_ 1) = CO(*) = CO(<_ k) for a k > 1 were already known to 
hold (see, e.g., [4]). In [6] it was proved that teams of size two suffice, i.e. for s >_ 2 

TsCD(tl) C_ T~CD(tl). 
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The main results of [19] are, for s > 2, f C {*} U {< k ,=  k ,>  k I k > 1} and 
g E {tl,t2}, 

P R  [~l = gTsCD[~](f) = PT.CD[~](f) and 
P R ~  = T, CO~J(g) = PT~CDC~(g) = pT.CDt~l(g) 

and the main result of [11] is, for s >_ 2 and h E {t0,tl}, 

MAT!~c] = TsCD[~](h) = PT~CD[~I(h) = PT.CD[~](h) = T.CD[~I(h). 

In [2] it was proved that H P T . C D  C_ MAT~c which, together with the results stated 
above, leads to the following relations for hybrid teams. For s > 2 

pR~I = HPT,  CD [~] = HPT.CD[A]. 

4.  T h e  S u b - C o n t e x t - F r e e  C a s e s  

In the previous section, results concerning (hybrid) (prescribed) team CD grammar 
systems with context-free productions were presented. In this section some results 
concerning a restriction to regular, linear or metalinear types of productions will be 
presented. 

Recall the fact that, whether free or prescribed, teams with constant size are 
allowed to have a string axiom, whereas teams of variable size always have a single 
start symbol. 

4.1. The  Regula r  and the  Linear  Cases 

First, a result for the regular case of prescribed team CD grammar systems with 
constant team-size 1 is presented. 

L e m m a  1. F o r f  C { , , t } U { < k , = k , > k  I k > 1} andg G { = k , > k  I k > 
2} [.J {to, tl,t2} 

R E G  = CDaEa(f )  C PT1CDREv(g). 

Proof. The equality is proved in [4] and it is obvious that CDREa(f)  C_ 
PT1CDREG(g) for f E {*,t} U {<_ k ,=  k,_> k I k _> 1} and g E {*,to, t l , t2} U {<_ 
k, = k, >_ k ] k _> 1}. Furthermore, the prescribed team CD grammar system, with 
teams of constant size 1, 

F~ = ({A0, A'o, Aa, A ' I , . . . ,  A'k_2, B, B'},  {a, b}, AB,  Pa, P2, P3, {P~}, {P2}, {P3}), 

where 

P1 = {Ao --* A1, A1 --+ A2, . . . ,  Ak-2 --+ aA'o, B ~ bB'}, 
' ' ' A' Ao, B' B} and P2 = {Ato-* A1,AI--* A2, . . . ,  k-2--* -~ 

P3 -- {A --+ A1, A1 --+ n2 , . . . ,  Ak-2 ---+ a, B --* b}. 

contains only regular productions and it generates L](rl, 1) = {a=b ~ I n > 1} e 
PTICDnEa( f )  \ R E G  for f C { = k , > k  ] k > 2} U {to, t l , t2}. [] 

Hence already a prescribed team CD grammar system with only regular produc- 
tions and teams of size 1 can generate more than the class of regular languages and 
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more than a CD grammar system with only regular productions. The next lemma 
states that also in the linear case the prescribed team CD grammar systems with 
teams of any constant size can generate more than the class of linear languages as 
well as more than CD grammar systems with only linear productions. 

L e m m a  2. F o r f  E { . , t } U { < k , = k , > k  [ k > 1}, g C { = k , > k  I k >_ 
2}U{t0, tl,t2} a n d g ' e { * , t o ,  t l , t 2 } U { < k , = k , > _ k ] k >  1} 

L I N  = CDLIN(f) C PT~CDLzN(g) C PTICD(g') = CD(f ) .  

Proof. The first equality can be proved with a similar proof as for the regular case 
(see Lemma 1) and COLiN(f)  C PT1CDHN(g) is obvious, for f E { . , t}  tJ {< k , =  
k , > k  [ k > 1} a n d g  E {*,to, t l , t 2 } U { < k , = k , > _ k  [ k > 1}. Furthermore, the 
prescribed team CD grammar system, with teams of constant size 1, 

r2 = ({A0, A0, dl ,  A~, . . . ,  d'k_~, B, B'}, {a, b, c}, AB, PI, P2, P3, {P~}, {P2}, {P3}), 

where 

P1 = {A0 ---+ A1,A1 ---* A~, . . . ,Ak-2 ~ aXob, B ~ cB'}, 
I ! I I P2 = {A0-* A1,A1 ~ A2,. . . ,Ak_2 --* A0,B' ~ B} and 

P3 = {A ---* A1, A1 ---+ A2, . . . ,  Ak-2 ---+ ab, B --~ c}. 

contains only linear productions and it generates Lf ( r~ ,  1) -- {anb~c ~ ] n > 1} e 
PT~CDLm(f )  \ L I N  for f E {= k, > k [ k >_ 2} U {to, t~, t2}. The last inclusion in the 
statement of the lemma is obvious and to prove the last equality, only the inclusion 
PT~CD(g') C_ C D ( f )  is not obvious. To prove this inclusion, all teams of size ] 
become a component of the CD grammar system and a component {S --~ S, S --~ w I 
w C W}, S being the axiom of the CD grammar system and W being the finite set 
of string axioms of the prescribed team CD grammar system with teams of constant 
size, is added. The mode of derivation remains the same, except that for to, tl and t2 
it becomes t. 

These two results lead to the following corollary for hybrid prescribed team CD 
grammar systems with teams of constant size 1 and only regular or linear produc- 
tions. 

C o r o l l a r y  1. 

REG = HCDREG C HPT1CDREG C HPT1CDLIN and 
L I N  = H C D L I N  C HPT~CDLrN C_ HPT1CD = HCD. 

Proof. The equality REG = HCDREa is proved in [15], a similar proof can prove 
this equality for the linear case. The inclusions of hybrid CD grammar systems with 
only regular or linear productions in hybrid prescribed team CD grammar systems 
with teams of constant size 1 and only regular or linear productions, respectively, are 
obvious. Moreover, Lemma 1 and 2 prove their properness. The remaining two inclu- 
sions are also obvious and the last equality can be proved with a similar construction 
as for the proof of PT1CD(g') = CO( f )  in Lemma 2. [] 

Hence also hybrid prescribed team CD grammar systems with only regular (linear) 
productions and teams of size 1 can generate more than the class of regular (linear) 
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languages as well as more than hybrid CD grammar systems with only regular (linear) 
productions can. 

In fairness, it must be noted that all proper inclusions proved in this section so 
far are due to the existence of a "non-linear" axiom, not to the very use of teams. 

In fact, the following holds. To be more precise, denote [H]P~T1CDx(f) for the 
class of [hybrid] prescribed team CD grammar systems with at most n occurrences 
of nonterminals in the string axiom, teams of size 1, only components of type X and 
working in mode f (omitted in the hybrid case). 

T h e o r e m  1. Forn > 1, X E {REG, LIN}  and f E {to, t l , t2}U{=k, >_k I k > 2} 

HPnTICDx = PnTICDx(f) = SMx(n)  = 

SM•(n) = P~TICD)r = HP, TICD~. 

Proof. In [4], so-called extended CD ~ grammar systems are defined. In the termi- 
nology of this paper, these systems are CD grammar systems with a string axiom. In 
[10] these extended CD J grammar systems with only regular productions, at most n 
nonterminals in the string axiom and working in mode f C {t} U {= k, _> k [ k >_ 2} 
(E,~CD~Ea(f)) are proved to be equal to the regular simple matrix grammars of 
degree n. 

Clearly, E~CD'REa(f) = P,~T~CDREa(f) for f E {*} U {_< k, = k, _> k [ k >_ 1} 
and E~CD~Ea(t) = P~TICDREa(g) for g E {t0,tl,t2}. When observing the proof, 
it can be seen that it holds for the linear case as well. Moreover, the construction 
can easily be modified to hold for the hybrid case as well. (One just has to code 
all nonterminals, thus indicating which mode is currently being simulated.) Finally, 
SM)(n)  = SMx(n)  for X E {REG, LIN}  was proved in [16] and the proof thus 
holds for both the case of forbidding and the case of allowing ),-productions. D 

This theorem has some interesting corollaries, since the families of regular and 
linear simple matrix grammars are well-investigated. A survey of simple matrix gram- 
mars can be found in [9], where the proofs of the results corresponding to the coming 
corollaries can be found. 

Coro l l a ry  2. For n > 1 and f C {=k,__k I k > 2} U {tO, t~,t2} 

PnT1CDREG(f) = HP~T1CDREG C PnT1CDLIN(f) = HP.~T1CDLIN. 

Coro l l a ry  3. The number of nonterminal occurrences in the axioms of pre- 
scribed team CD grammar systems, with teams of size 1 and only regular or only 
linear productions, defines an infinite hierarchy of languages generated in all modes 
f E {= k, >_ k I k > 2} U {to, h , t2) .  The same holds for the hybrid versions of these 
families of languages. 

Coro l l a ry  4. For s >_ 1 and f E {=k, >_k l k >_ 2} U {to, ta,t2} 

[H]PT~CDREa(f) is incomparable with L I N  and 

[H]PT~C DLIN(f) is incomparable with C F. 

The question is now what can be said about the generative power of (hybrid) 
prescribed team CD grammar systems with only regular or linear productions and 
teams of constant size s, for s > 2. From the results presented in Section 3, a 
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comparison with the programmed (or matrix) grammars  with only regular or linear 
productions seems natural.  These, however, are equal to the classes of regular and 
linear languages, respectively, even when appearance checking is used. The proofs for 
these equalities in the regular case can be found in [9] and the proofs for the linear case 
can be proved similarly. Hence the inclusions PRREa = PRnEa,ac C PT1CDREG(f) 
and PRLIN = PRLIN,a~ C PTICDREa(f), for f E {= k, > k[ k _> 2} U {to, tl, t2}, are 
obvious. 

Moreover, the equalities between the programmed grammars  and matr ix  grammars  
hold in the regular and linear case as well, even with appearance checking. Again, 
proofs of these equalities can be found in [9]. Note that  these proper inclusions hold 
already for teams of constant size 1. Thus to find a good comparison for the generative 
power of (hybrid) prescribed team CD grammar  systems with only regular or linear 
productions and teams of constant size s, s >_ 2, remains an open problem. 

After these results for (hybrid) prescribed team CD grammar  systems with teams 
of constant size, some results for the case of teams of variable size are presented next. 
The difference is the use of a single nonterminal as axiom in the case of teams of 
variable size, whereas in the case of teams with constant size a finite set of string 
axioms, with only one of them containing nonterminals, is used. 

L e m m a  3. For f  C {*,to, tl,t2} U { ~ k , = k , > k  ] k > 1} 

HPT,  CDREa = PT, CDnEa(f) = REG and 

HPT.CDLxN = PT.CDLIN(f) = LIN. 

Proof. For teams with more than one component at least two nonterminals must 
be present in a sentential form, in order to use that  team to rewrite that  senten- 
tial form. This is in contradiction with the facts that  every F C {HPT.CDREa, 
PT.CDREa(f),  HPT.CDLIN, PT.CDLIN(f) I f C {*, to, tl, t2} U {_< k, = k, >_ k I k _> 
1}} has a single nonterminal as axiom and regular or linear productions, respectively. 
For teams of size one, the equality with (hybrid) CD grammar  systems is obvious for 
the regular case as well as for the linear case, keeping in mind the use of a single 
nonterminal as axiom. From [4] ([15]) it is known that  (hybrid) CD grammar  sys- 
tems with only regular productions do not generate more than the class of regular 
languages and similar proofs can be used to prove these results for the linear case as 
well. [] 

4.2. The  Metal inear  Case 

It  is obvious that  the (hybrid) prescribed team CD grammar  systems with teams 
of variable size and metalinear productions are able to generate languages beyond the 
class of regular or linear languages. What ' s  more, the following lemma holds. 

L e m m a  4. For f  6 { * , t } U { < k , - - k , > _ k  I k _> 1} andg 6 {= l ,> l ,* , t o ,  tl,t2}U 
{_<klk>_ 1}} 

M L I N  = CDMLm(f) = HCDMLIN C PT, CDMLIN(g). 

Proof. The first two equalities can be proved by the proofs of REG = CDREc(f) 
([41) and REG = HCDREa ([151), with the obvious modifications. Furthermore,  it is 
clear that  M L I N  C PT.CDMcIN(f), for f C {% to, tl, t2} U {< k, = k, > k I k > 1}}. 
Moreover, the prescribed team CD grammar  system 

F3 = ( { S , A , B , C } ,  {a,b,c},S, P1,P2,...,PT, {P~}, {P2, Pa,Pa}, {Ps,P6,Pr}), 
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with teams of variable size and the metalinear productions 

Pl = {S -+ ABC} ,  P2 = {A ~ aA}, P5 = {A ~ a}, 

P3 = {B --~ bB}, P6 = {B --+ b}, 

P4= { C - * c C }  and P T = { C ~ c ) ,  

generates L(r3) = {aUb~c ~ I n  > 1} E P T . C D M m ~ ( g ) \  CF, for g e {= 1,_> 
1,*,to, tl,t2} U {<_k J k >_ 1}}. Since it is known that {anb~c ~ ] n >_ 1} E C S \  CF 
and from the Chomsky hierarchy that M L I N  C CF C CS, the inclusion is proper 
indeed. [] 

Hence even languages beyond the class of metalinear languages can be generated 
already by a prescribed team CD grammar system with teams of variable size and met- 
alinear productions for some modes of derivation. For prescribed team CD grammar 
systems with teams of constant size, no version containing only metalinear produc- 
tions is defined due to the string axiom they already possess. Note, however, that the 
lemma above does not cover all modes of derivation, which Lemma 7 below will. 

The following theorem is obtained by combining the results of the previous section 
and the results obtained so far in this section. 

T h e o r e m  2. For f E {*,to, t l , t2}U { < k , = k , > _ k  ] k >_ 1} and g E {= 1, 
>l,* , to ,  tl,t2} U {_<k I k _> 1} 

PT.CDREa(f)  = HPT.CDREa C PT, CDLIN(f) = HPT.CDLIN C 

M L I N  C PT.CDMLIN(g) C HPT.CDMLIN. 

The question is now how far these (hybrid) prescribed team CD grammar systems 
with teams of variable size and metalinear productions extend beyond the class of 
metalinear languages. Before presenting a theorem that answers this question, two 
lemmas are needed. 

The proofs of these lemmas are given because the metalinear case is not covered 
in [9]. Moreover, since the proofs are based on the proofs for the context-free case in 
[9], they explain the techniques that are used to prove those frequently used results 
of the next lemmas in the context-free case. 

L e m m a  5. 

uq~[~] C P~[~] and rrq~[~] C PR[~] 
~ M L I N  - -  ~ M L I N  v ~ ' M L I N , a c  - -  ~ M L I N , a c "  

Proof. Only the second statement is proved here (for the A-free case), the others 
can be proved in a similar way. Consider an unordered scattered context grammar 

G = ( N , T , S , P , F )  

with appearance checking and only metMinear productions. Define the homomor- 
phism h from (N U T)* into ({A'] A e N} U T)* by 

h(a) = a for a E T and h(A) = A' for A E N. 

Next, for a rule r : (C~l, o~2,... , c~n) - - +  (ill, ! 2 , ' - ' ,  iin) e P, denote h(!l f l2 . . ,  fin) = 
WlB~W2B~... WmBImWm+l with wi E T* for 1 < i < m +  1. To simulate this unordered 
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scattered context grammar with appearance checking, construct the programmed 
grammar with appearance checking 

where 

N I 

U 

G ~ = ( N ' , T , S ' , P ' ) ,  

= N O  {A' I A e N} U {S'} and 

contains for S' the starting productions (s :  S' ~ 5', {[r, 1 , 0 ] I t  C P},  0) 

and for every production r :  (a l ,  a 2 , . . . ,  a~) ~ (/31,/32,...,/3~) 

in P the productions 

(It, i,0] : a,  + h(/3~), {[r,i + 1,0]}, {0 I ~i -~/3~ ~t F}  U 

{[r,i + 1,0] I a~ ~ f l i  E F}) ,  

([r,n,0] : a~ --+ h(/3~), {[r, 1, 1]}, {O I a~ -*/3~ • F}  u 

{[r, 1, 1] I a~ --+ ~.  e F}) ,  

([r,j ,  1]: Bj --+ Bj),  {[r,j  + 1, 1]}, {[r, j  + 1, 1]}) and 

([r,m,1] : B~ --+ Bin), {[p, 1,0] [ p e P},  {[p, 1,0] I p e P})  

for 1 < i < n and 1 _<j _<m. 

Since the scattered context grammar contains only metalinear productions, it is 
clear that  also the productions in this programmed grammar are all metalinear. More- 
over, the productions in the programmed grammar simulating the productions in a 
scattered context rule are applied in a fixed order, possibly passing over a production 
in case it is contained in F.  The use of primes guarantees that  the simulating pro- 
ductions are applied only to nonterminals already appearing in the sentential form to 
be rewritten and not to the ones introduced by a former production of the scattered 
context rule that  is being simulated. 

This allows the parallel fashion of a scattered context rule to be simulated by the 
sequential order of programmed grammar productions. Note that  the proof requires 
the unordered characteristic of the scattered context grammar, for a production a -+/3 
can rewrite any occurrence of a in the current sentential form. Obviously, L(G) = 
L (G  ~) and thus U S C M L I N , a c  C PRMLIN,~c holds. [] 

L e m m a  6. 

MaT[~] rrr ,~z- ~,-r,[,~] tropic] 
* •  M L I N  C and C - -  u ~ " J M L I N  . . . . . .  M L I N , a c  - -  L" U ~ J M L I N , a c "  

Proof. Again, only the second statement is proved (for the h-free case), the others 
can be proved in a similar way. Consider a matrix grammar 

G = ( N , T , S , M , F )  

with appearance checking and only metalinear productions. Denote 

Lab(M)  = {m,,j I m , :  (~1 + /31, ol2 ----+/32,..., Oln -"+ /3n) + M,  

M = { m l , m 2 , . . . , m m } , l  < i  < m, 1 < j < n}. 

To simulate this matrix grammar with appearance checking, construct the unordered 
scattered context grammar with appearance checking 

a ' =  ( N ' , T , S ' , P ' , F ) ,  
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where 

N I .~. 

P '  contains 

N U {[c~,fl] I ~ e (N U T),fl  E Lab(M)} U {S'} and 

for S '  the starting rules (S') ~ (IS, mi,1]) for 1 < i < n and 

for every matrix (with only metalinear productions) 

--, e M, 

flj e ( N U T ) ,  7J E ( N U T ) *  and 1 < j < n 

the scattered context rules 

([O/j, ryti , j] ) ~ ([~j, m i , j . t . l l ' ~ j ) ,  

m,,.]) ([Z., 
([6, Zj j), 

([~,m,,~],a~)--* ([~,mk,1],&7~) and 

for l _ < i , k < m ,  ~ ( N U T )  a n d T � 9  

The matrices can be simulated by unordered scattered context rules by adding a 
label to every symbol of the alphabet. The matrices are split and for every production 
of it some scattered context rules are created. The labels define an ordering on the 
use of the various scattered context rules, thus simulating the strict order of matrices 
by unordered scattered context rules. 

At any moment in time, the number of symbols with a label in the sentential form 
is zero or one. This can be seen from the definitions. If the number is zero, either the 
sentential form is a terminal one and the derivation is terminated or the sentential 
form contains a nonterminal and the derivation is blocked since every rule requires a 
labeled symbol (except the initial rules). If the number is one, it can be replaced by 
another labeled symbol (the label being the one of the next production in the matrix 
or the one of the first production of a new matrix if it was the last production of 
the matrix) while rewriting the symbol according to the production of a matrix being 

simulated. 
Naturally, a production of a scattered context rule can be "passed over" if the 

same production could be passed over in the matrix grammar, in which case the other 
production of the scattered context rule replaces the label by the label from the next 
production in the matrix or the one from the first production of a new matrix if this 
was the last production of the matrix. Naturally, terminating rules eliminating the 
labels are present, to be used only when a matrix has been completely simulated. It 
can now be seen that L(G) = L(G') and MATMLIN,~c C USCMLIN,ac holds. 

T h e o r e m  3. For f C {*} U {<k,=k,>_k l k >_ 1} and g �9 {to, tl,t2} 

Ur - p R[~L,N = M AT~]LIN = PT.C D[~LIN(f) C_ H PT.C D[~LIN and ~ M L I N  - -  

U SC[~]L,N,~c= P R~L,N,~c = M AT~]L,N,~c= PT.C D[~LIN(g) = H PT.C D[~LIN. 

Proof. It can be seen from the proofs of PR[~ ] C TsCD[a](tl) and PR[~ ] C 
TsCD[~](t2) in [19] that  these results continue to hold in the metalinear case. The 
same holds for the proofs, in [19] as well, of P R  [~l C PT~CDIa](f) and PT.CD[~I(f) C_ 
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M A T  [hI , for f e {*} U {< k ,=  k ,>  k [ k >_ 1}. Finally, also the proof of 

H P T . C D  [~] C MAT[~ ] in [2] can be seen to hold in the case of a restriction to 
metalinear productions as well. The theorem is hence a simple combination of these 
results and some obvious inclusions with Lemma 5 and 6. [] 

Note that this theorem strengthens Theorem 2 to an equality for modes to, tl and 
t2 instead of the last inclusion there. An open problem remains, however, for the other 
modes of derivation. The next lemma strengthens Lemma 4 and thereby Theorem 2, 
even more. 

L e m m a  7. For f �9 {*} U {<k,=k,__>_k [ k > 1} and g �9 {to, tl,t2} 

M L I N  C USCMLIN = P R M L m  = M A T M L m  = P T . C D M L m ( f )  CC_ 

PT .CDMLm(g)  = H P T . C D M L m .  

Proof. The first three equalities are proved in Theorem 3. Moreover, the unordered 
scattered context grammar 

G1 = ({S, A, B,  C}, {a, b, c}, S, {pl,p2,p3}), 

with the rules (consisting of only metalinear productions) 

p~ : (S) ~ (ABC) ,  

P2 : ( A , B , C )  -+ (aA, bB, cC) and 

P3 : ( A , B , C ) - - ~ ( a , b , c )  

generates L(G~) = {a~bnc ~ I n > 1} e USCMLIN \ CF.  Since it is known 
that {a~b~c ~ ] n > 1} �9 CS \ C F  and from the Chomsky hierarchy that 
M L I N  C C F  C CS,  the first inclusion is proper indeed. The last inclusion 
is obvious, since clearly USCMLIN C USCMLIN,ac and, according to Theorem 3, 
USCMLIN,ac = PT.CDMLIN( f )  for f E {to, t l , t2}.  Finally, the last equality was 
proved in Theorem 3. [] 

Hence already an unordered scattered context, programmed or matrix grammar 
without appearance checking and with ,~-free productions and only metalinear pro- 
ductions can generate languages beyond the class of metalinear languages. Moreover, 
also a prescribed team CD grammar system (for all modes of derivation) and a hybrid 
prescribed team CD grammar system, both with teams of variable size and only met- 
alinear productions, can already generate languages beyond this class of metalinear 
languages. 

For matrix and programmed grammars (with appearance checking) and regular, 
linear, context-sensitive or recursively enumerable productions only, it is known (see, 
e.g., [9]) that these cannot generate more than the class of regular, linear, context- 
sensitive or recursively enumerable languages, respectively. Hence, no interesting 
results may be expected for unordered scattered context grammars in these cases 
either. 

The next lemma says something about the relation between prescribed team CD 
grammar systems with teams of bounded size and exactly 1 metalinear production 
per component and linear simple matrix grammars of degree n. Because of Theorem 
1 and its corollaries, this establishes a relation, presented in Corollary 5 right after the 
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coming proof, with the (hybrid) prescribed team CD grammar systems with teams of 
size 1 and linear or regular productions only. 

To be more precise, denote PT(1,n)CDMLxN,I(f) for the class of prescribed team 
CD grammar systems with teams of size 1 for the teams containing a production 
with the axiom as its left-hand side, teams of size n for the teams containing other 
productions, only 1 production per component (the second 1 in the notation), working 
in mode f and containing only meta]inear productions. 

L e m m a  8. For n > 1 and f �9 {= l, > l, * , to, t~, t~ } U { <1~ I k >_ 1} 

SMLIN(n) C_ PTo,~)CDMLZN,I(f ). 

Proof. Consider the linear simple matrix grammar 

G = (N 1 ,N 2 , . . . ,N k ,T ,S ,M)  

of degree k, k > 1. To simulate this linear simple matrix grammar, construct the 
prescribed team CD grammar system 

F = (N,T ,S ,  P1,P2,... ,P~,Q1, Q2,.. . ,Q,~), 

where 

N = UN~,  
i=l  

P1, P2,- - . ,  P ,  are the components {a --~ fl} for every a --+ fl in matrices 

0 of M, c~ e {S} U Ni and fl e ( m  Ni U T)* and 
i = l  i=l  

Q1, Q2, . . . ,  Q,~ are the teams {{S -+/3}} for every matrix (S -+ fl) �9 M 
7~ 

and/~ �9 U N~ u T* and 
i = l  

the teams {{A~ --+ x~}} for every matrix of the form 

(A1 -+ xl,A2 -+ x2 , . . . ,Ak  --+ xk) �9 M,A~ �9 Ni 

x~ e (iv~ u T)* and 1 < i , j  < k. 

Note that due to the pairwise disjoint alphabets of simple matrix languages a 
production A t --~ xj, 1 < j < k, does not rewrite a nonterminal introduced by a 
production A; --+ xj, 1 < i < j _< k, of the same matrix, but a nonterminal already 
present in the sentential form before applying this particular matrix to it. It is this 
property of simple matrix grammars that allows the strict sequential order of rewriting 
of them to be simulated by one parallel rewriting step of a team of a prescribed team 
CD grammar system. 

Do note Mso that a characteristic of linear simple matrix grammars is that there 
can never be two of the same nonterminals in any sentential form. Hence leftmost 
rewriting is equal to free rewriting in linear simple matrix grammars, thus free rewrit- 
ing in the simulating prescribed team CD grammar system suffices. These notes imply 
the restriction to the modes of derivation as stated in the lemma. Moreover, the met- 
alinear productions of the prescribed team CD grammar system allow exactly the 
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axiom to be the left-hand side of non-linear productions, which are precisely the only 
non-linear productions in a linear simple matrix grammar. 

It is clear that L(G) = L(F). Furthermore, it is easy to see that teams with one 
component are constructed for productions with the axiom as left-hand side and teams 
of k components, k being the degree of the simple matrix grammar, are constructed 
for the other productions. Moreover, all these components of the prescribed team CD 
grammar system contain only one production. [~ 

Compare the following relations with Theorem 2. 

Coro l l a ry  5. For f E {to,tl,t2} U {=k,>_ k I k > 2}, g E {*} U {< k , =  k,>_ k I 
k _> 1} andg' E {to, tl,t2} 

PT1CDm~G(f) = HPTICDRI~G C PTICDLIN(f) = ttPTICDLIN C_ 

PT, CDMLIN(g) C_ PT.CDMLIN(g') = HPT.CDMLIN. 

R e m a r k  1. According to Corollary 4, there is a language that can be generated by 
a (hybrid) prescribed team CD grammar system with teams of size 1 and only linear 
productions, but which cannot be generated by a context-free grammar. Hence the 
inclusion PT1CDLIN(f) C_ PT.CDMLIN(g) in the above corollary is either proper and 
CF C_ PT.CDMLIN(g) holds or the family of languages generated by prescribed team 
CD grammar systems with teams of variable size and only metalinear productions is 
incomparable with the class of context-free languages. 

My conjecture is an incomparability result. An intuition supporting a pos- 
sible proof is the following. It is clear that the context-free grammar G2 = 
({S, A}, {a, b}, S, {S --+ aAbS, S -+ aAb, S ~ ab, g ~ aAb, A -+ ab}) generates 
L(G2) = {anb ~ ] n > 1}+ e C F .  A characteristic of this language is its unknown 
width and depth, i.e. the number of a~b ~ [ n > l ' s  next to each other and for 
each the amount of n are unknown. Obviously, metalinear productions can simu- 
late the depth with productions similar to the last four productions in G2. The 
width,  however, has to be known in advance in the case of metalinear produc- 
tions since the axiom is the only production which can have more than one non- 
terminal on its right-hand side and should thus introduce a sufficient amount of 
them. This amount has to be known in advance and the set of productions is fi- 
nite, hence it seems that {a~b ~ [ n > 1} + ~ (PT.CDMLIN(f) U PT.CD~cLXN(f) ) for 
f E {*,to, t~,t2} U { < k , = k , > k [  k > 1}. 

Finally, note that if this conjecture holds, then also the classes of unordered scat- 
tered context, matrix and programmed grammars (even with appearance checking) 
with only metalinear productions are incomparable with the class of context-free lan- 
guages. For a proof of this, consider for example Theorem 3 and the proof of Lemma 
7. 

Hence for linear (and regular) simple matrix grammars, a prescribed team CD 
grammar system with only metalinear productions can be constructed generating the 
same language. Whether this also holds the other way around and for other modes 
of derivation, is an open problem. 

Another open problem is the relation between simple matrix grammars with only 
context-free productions and prescribed team CD grammar systems and hence also 
matrix grammars with only context-free productions (and appearance checking). The 
leftmost rewriting of simple matrix grammars makes it unlikely to have a similar 



214 

relation between them and prescribed team CD grammar systems, though. For matrix 
grammars with only metalinear productions, however, the following corollary does 
present an interesting relation with regular and linear simple matrix grammars. 

Coro l l a ry  6. For n > 1 

SMREG(n) = SM~Ec(n) C SMLIN(n)= SM~xy(n) C MATMLXN C MATbLIN. 

Proof. For n _> 1, SMREG(n) = SM~EG(n ) C SMLIN(n) = SM~IN(n) (see, e.g., 
[9]) From Lemma 8 follows that SMLIN(n) C_ PT(1,~)CDMLIN,I(f) for n >_ 1 and f C 
{= 1, _> 1, *, to, h ,  t2} U {_< k [ k > 1}. Moreover, it is clear that PTo,~)CDgLtN,~(f ) C_ 
PT.CDMLIN(f) for all modes of derivation and thus SMLIN(n) C_ PT.CDMLIN(f) is 
obtained for n _> 1 and f C {= 1, _> 1, *} t3 {< k [ k > 1}. Finally, Theorem 3 finishes 
the proof of the corollary. [] 

CF=CD(*) =CD(=I)=CD(> 1)=CD(_<k) (for a k >_ 1) 

P T . C  D M L I N (  h2 ) = H P T .  C D M LIN = U S C MLIN, ac = 

/ / •  h2 �9 {to, h, t2 } P I ~ M L I N , a  c = M A T M L I N , a c  

t 
M L I N  = [H]CDMLIN(f) ] �9 {., t} o 15 k, = k, > k ] k >_ 1} 

" ~  h 1 �9 {=1,>1,*} I 

P T . C  D M L I N (  h l  ) = U S C MLIN = P I~MLIN  = M A T M L I N  

I 
LIN= [H]CDL,N(f) [ H ] P T . C D L z ~  [H]PTICD[L~N(g) - r a'~[~] -- ~-~ ~'~ LIN 

§ 

f E {*,t}U{<_k,=k,>_k]k >_ 1} 9 E {tO,tl,t2} O{=k ,>k[k  >_ 2) [ 

! 

R E G  = [H]CDREa(f )  = [H]PT, C DRE~( Y~H]PT~C D G a ( g  ) = S M E~I REG 

A very interesting corollary indeed, knowing that S M L I N ( n )  C SM(n) for n Z 1 
(see, e.g., [9]) and keeping in mind the unknown relation between simple matrix 
grammars and matrix grammars, in the case of context-free productions only, already 
mentioned above. 

5. S u m m a r y  

A summary of the results presented here will be given in the form of a diagram. 
A hierarchy along the lines of (the sub-context-flee part of) the Chomsky hierarchy 
(see, e.g., [9]), is chosen. In this way, readers will obtain a clear insight into the power 
of teams in grammar systems in the sub-context-free cases. 

In this diagram, a dashed arrow indicates an inclusion which is not known to be 
propel', whereas a straight arrow indicates a proper inclusion; in both cases the class 
the arrow leaves is included in the class the arrow points at. Families which are not 
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connected are not necessarily incomparable. Moreover, all relations of which a proof 
is included in here axe printed in boldface. 

Observing this diagram, it is clear that some open problems remain, even though 
a good insight into the power of (hybrid) prescribed teams in CD grammar systems 
is offered. One such an open problem concerns a possible hierarchy that can be found 
in this diagram and it is formulated next. 

What is the generative power of prescribed (hybrid) team CD grammar systems 
with only regular or linear productions and teams of constant size s, for s > 2? 

Acknowledgements .  This work has benefited from discussions with and com- 
ments and suggestions from E. Csuhaj-Vaxjd, H.C.M. Kleijn and Gh. Pgun. This 
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Abstrac t .  We show that the family of languages generated by cooperating 
distributed (CD) grammar systems with context-free components in the 
derivation modes = k, > k, for k > 2, and the family of E0L languages are 
incomparable. 

1. Not ions  and Results  

For formal definitions we refer the reader to the monograph [1]. We only specify 
some notations. A CD grammar system of degree n is a construct 

G= (T, G1, G2,...,G=, S) 

where G{ = (Na{, TGi, P{), 1 < i < n, are Chomsky grammars without an axiom, T is 
the terminal alphabet such that T C_ Ui=l{ . . . .  Ta{ and S 6 u{=I{=~NG{. 

A k step derivation with respect to a component grammar G{ is denoted ===~k 
< k  > k  , and =:==~, ==~0~, ===~a~, denote a derivation consisting of at most k steps, at least 

X * k steps, an arbitrary number of steps, respectively. If ~ a ~ Y  and there is no z 6 
"' ' i = n t T  N * * tui=l t a~ U a~)) , such that y = = ~  z then we write x = = ~  y. 

The language generated by G according to the mode of derivation f, for f E 
{*,t} U {< k ,=  k,> k lk >_ 1} is defined as 

L/(G) = { x E T * l S = x o ~ ,  l x 1 ~ ,  2x2 . . .~sG, ,~xm=x,  

m>_ 1, 1 <_i i <_n, 1 < j <m}.  

We denote by s the family of languages generated by CD grammar 
systems with context-free components working in the mode f ,  for f G {*,t}U {< k, 
= k ,>  k I k > 1}. We also denote by s s f-(ETOL), f (MAT)  the 
families of context-flee, EOL, ETOL and matrix languages, respectively. 

Recall that the length set of an arbitrary language L is the collection of lengths 
of its words, that is lg(L) = {Ixl l x E n}. 

We have 

1Research partially supported by Gdafisk University, Grant Nr. BW 5100-5-0069-6. 
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T h e o r e m  1. [2] I f L  6 s  6 {= k,_> k [ k  _> 2}, is an infinite 
language, then lg(L) includes an infinite arithmetical progression. 

T h e o r e m  2. The family s is incomparable with each of the families 
s  6 {= k,>_ k lk  >_ 2}. 

Proof. Consider the languages 

L~ = {a 2~ In  >__ 1}, 
L2 = {anbma n ] m  > n > 1}. 

The first language is in s [4] and not in s  f 6 {= k, > k ] k > 2} 
(as a consequence of Theorem 1). In Corollary 4.7 in [4] it is proved that  the second 
language L2 ~ s On the other hand, for the CD grammar  system 

!72 -- ({a, b), Gi, G2, G3, a4, Gs, $) 

with 

we have 

G1 = ({A, B}, {a}, {A ~ a,B ~ a}), 
G2 = ( { A , B } , { a , b , X , A ' , B ' } , { A ~  aA'X,B ~ aB'}), 
G~ = ( { A ' , B ' } , { A , B } , { A ' ~  A , B ' ~  B}), 
G4 = ( { S , S ' , } , { A , B , X } , { S +  S',S'---* AXB}),  
a~ = ( {X ,X' ) , {b } , {X  ~ X',X' ~ bX',X' - ,  X' ,X'  ~ b}). 

L=2(r2) = L>2(r2)  = {anb'~a~lm > n > 1}. 

In the above grammar  system, we note that  

�9 every symbol X is eventually replaced by one b or several b's, 

* the derivations start  by using G4, thus generating the string AXB, 

�9 all sentential forms contain at most one occurrence of the nonterminal pair 
(A, B) or (A', S ' ) .  

The component  g rammar  G2 transforms a string aiAXi-q+l(b'~q)qaiB, i,q > 
0, q < i, mq > 0 to a~+lA'Xi-q+2(bmq)qai+lB' (at the beginning, ~fter using G4, 
we have i = 0 and either G1, G~, or G2 can be applied). After using G2 we have to 
apply G3 and we get the string ai+lAXi-q+2(b'~q)qai+lB which is of the form we have 
started with, hence G2, G3 can be iterated. This iterative process ends by applying 
G~ and finally (or possibly between two uses of G2, G3) we use G5 to rewrite X by b or 
generating arbi trary many  number of b's. In conclusion we obtain a~b'~a ~, m > n > 1, 
hence the derivation is terminated. (Clearly, the > 2 derivations in F2 are in fact = 2 
derivations.) 

For k > 3 we replace the first rule, let us denote it by Z --+ w, of each set Pi, 
1 < i < 5, by the following k - 1 rules (all Zj, 1 < j < k - 2, are new symbols) 

Z ~ Z 1 , Z  1 --+ Z 2 , . . . , Z k -  3 "--+ Zk-2 ,  Zk_2 -"+ w .  
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Denote by F~ the obtained CD grammar system. As in the case of 172, it is easy to 
see that L=k(rk) = L>_k(rk) = L2, which completes the proof. [] 

In Corollary 1 in [2] it is shown that ~(EOL) is incomparable with each of the 
families T~I(CDCF), f e {= k, >_ k ] k >_ 2}. To this aim, one uses the languages 

L1 = {a 2" In >_ 1}, 
L2 = {anbnc ~ In > 1}. 

The language L2 = {a~b~c ~ I n > 1} is supposed not to be in f~(EOL), which 
however is not true: see Example 1.13 in [4]. 

The above theorem shows that the result in [2] is still true, there are languages 
L C f-.i(VDVF) -/:(EOL), f �9 {= k, ~ k [ k >__ 2} (hence the involved families are 
incomparable, indeed). 

At the end of [2] it is asked whether or not the one-letter languages in fam- 
ilies E~I(CDCF),f �9 {= k,>_ k [ k >_ 2}, are regular. Because the similar 
conjecture for f_.(MAT) has been recently confirmed, [3], in view of the inclusion 
f~/(CDCF) c_ s f �9 {= k, >_ k I k > 2} [1], the property holds also for the 
families f~](CDCF), f as above. On the other hand, in view of the relations, 

f~f(CDCF) = s  �9 {%= 1,>_ 1} U {< k, I k >_ 1}, 

f~t(CDCF) = f~(ETOL), 

(shown in [1]), the family f~,(CDCF) contains non-regular one-letter alphabet lan- 
guages. Thus we have a full characterization of languages over one-letter alphabet 
generated in the basic derivation modes by CD grammar systems. 
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1. Introduction 
Considering complex systems we typically need - cf. (McClamrock, 1995) - to 

know what a complex system is doing at a higher level in order to find out how at 
the lower level it accomplishes that task. In other words, we often need to know the 
function of the complex system being analyzed to know what aspects of structure to 
look at. Understanding the behavior of a complex system requires knowing which 
aspects of the complex mass of lower-level properties are significant in making a 
contribution to the overall behavior of the system. In real situations such a distinction 
may be problematic because the identification of which aspects of the lower-level 
activity of the system are significant and which are noise - the process of the so called 
destillation strategy (McClamrock, 1995) - is often complicated. 

In the following we deal with complex systems which behave without noises. We 
will concentrate to systems which produce (infinite) sets of strings of symbols, and we 
will look for as simple as possible structure (architecture) of such systems. Simplicity 
means in our context, roughly speaking, 

- the simplicity of rules which describe the behavior of the components of our 
complex systems, and 

- the simplicity of communication between the components in order to provide the 
behavior of the complex system. 

Another difficult problem is to find the right boundaries of a complex system; cf. 
(Bechtel, Richardson, 1993). The solution is crucial for identification of the loci of 
control of the complex systems. There are two extremes here: 

- to consider the environment of the system as the locus of control - the case of 
external control, and 

- to consider the system itself as the locus of its own control - the case of internal 
control. 

The result of emphasizing the external factors is, according to (Bechtel, Richard- 
son, 1993), to reduce the importance of the system, treating it as responding to 
external factors, or shaped by them, but not itself an important element in account- 
ing for the responses. On the other hand, limited responsivness in the face of wide 
environmental variation it taken as an indicative of internal control, and the solution 
is to search for specialized and complex internal mechanisms. The system makes its 
own contribution and influences what happens to it. We will deal with both of the 
mentioned cases in the framework of the presented formalisation. 

1Research supported partially by the Grant No. 201/95/0134 of the Grant Agency of the Czech 
Republic. 
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Concerning complex systems, our considerations will be motivated mainly by the 
situation in today artificial intelligence (AI) research. In AI, two main point of views 
appeared in the past decade - the traditional deliberative line of systems designing, 
and the point of view which stress the idea of situated action, or reactivity of systems 
(Maes, 1993), (Kushmerick, 1996). 

The traditional view of AI emphasizes the role of internal symbolic representation 
of the outer environment of the systems, and the symbolic computations of plans 
of systems behavior on the base of these representations, so, this view supposes the 
internal control of the systems. The situated action view stresses the pure reactivity 
of systems to situations sensed when observing their outer environment. Systems 
components purely react to the observed situations. Their behavior is controlled 
externally, by situations sensed in the systems environments. 

The situated action and the symbolic deliberative approaches are often consid- 
ered to be antithetical. However, (Vera, Simon, 1993) argues that there is no such 
antithesis2: situated action systems are in fact symbol systems, and some past and 
present symbol systems are situated action systems. We will show a possibility to deal 
with situated action (reactive) systems in the symbolic formal framework, and we will 
sketch a border-line between the pure reactive symbol systems and those capable to 
deliberate. We will formulate precisely the possible behavior (generative power) of 
some classes of reactive symbol systems. 

2. Reactive Systems 

The destillation strategy applied in the following to study complex systems leads 
us to consider as simple as possible components appearing in the architecture of 
complex systems organized in as simple as possible ways. We will attempt to describe 
the possible behaviors of complex systems set up from such simple components with 
respect to the principles of their communication. 

To consider as simple as possible components leads to considering outer control of 
the complex systems. The control of actions of complex systems lays in this case in 
the structure and dynamics of the systems environment. Actions are in such cases in 
fact reactions of systems components to environment structure and changes, only. 

In the case of reactivity, the systems macro-goals may be explicit. However, the 
local details of the (generation of) behaviors are determined by reactions of systems 
components to the feedback acquired during the activities; cf. (MeClamrock, 1995). 
In this sense the current state of the environment may trigger some macro-goals, 
too. Benson and Nilsson (1994) write in this context on teIeo-reactivity: teleo-reactive 
systems can react appropriately and rapidly to commonly occurring situations that 
require stereotypical programs of actions. But their functions are influenced by their 
macro-goals (hence "teleo"). Teleo-reactivity in dynamic, uncertain environments 
implies a short sense-act cycle of the sort common in feedback control systems. 

In order to emphasize the "short sense-act cycles" and the requirement to allocate 
the control into the environment in the framework of symbol processing systems, a 
reactive component will be formalized as a component capable to execute only a finite 
number of computations which need no iterations (because of the shortness of the 
sense-act cycle), and triggered only by appearence of some %tart-symbols" in the 

2This view is supported also by some more technical approaches, e.g. by that presented in 
(Benson, Nilsson, 1994). 
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structures which will formalize the environment of the systems. So, the simplest type 
of components - when triggered by start-symbols appearing in their environment - 
will generate - without any iterations - only a finite number of behaviors. 

To be reactive only to the states of the outer environment of the systems, the sim- 
plest organizational principle of cooperation of reactive components consist in shar- 
ing the common symbolic environment in which the components are able to execute 
changes (rewritings), and which they are able to "sense". 

Systems set up from just specified reactive components which communicate only 
through the shared environment we will call reactive systems. 

3. C o l o n i e s  - M o d e l s  o f  R e a c t i v e  S y s t e m s  
in  S t r u c t u r e d  b u t  S t a t i c  E n v i r o n m e n t s  

A colony is a formal model of reactive systems, where the systems reactive compo- 
nents are modelled by very simple formal grammars, and the structured (but static) 
environment by a string of symbols over which the formal grammars operate either in 
sequential or in parallel manner. Very simple means regular grammars which gener- 
ate finite languages only. This capacity of grammars models the intuitively specified 
capacity of already mentioned reactive components of reactive systems. The envi- 
ronment (the string of symbols) is static in the sense that its changes appear as 
consequences of components activity (rewritings of symbols appearing in the string 
by grammars) only. 

Colonies represent the simplest architecture reflecting the idea of total decentral- 
ization and completely emergent behavior of systems set up from purely reactive 
components. Particular experiences, e.g. in (Connell, 1990), prove the practical 
usability of the architecture, e.g. in real-world robotic systems design. The for- 
malized concept of colonies proposed first in (Kelemen, Kelemenovs 1992) offers a 
formal framework for description and study of the behaviors of systems set up ac- 
cording this architecture principles from purely reactive (non-iterating) components. 
For further technical details and results concerning colonies see e.g. (Dassow et al. 
1993), (Csuhaj-Varjfi, P~un, 1993-1994), (Kelemenovs Csuhaj-Varjfi 1994a,b), (Kele- 
menov~, Kelemen 1994), (P~un, 1995), (Ban~k 1996), etc. 

3.1. The  Basle Mode l  

The above described basic model of a colony as well as of some of the closely 
related notions are formally described as follows. 

A colony C is a 3-tuple C = (7~, V, T), where 

(i) T~ = {Ri ] 1 < i < n } is a finite set of regular grammars Ri = (Ni, T~, Pi, S~) 
producing finite languages L(Ri)  = Fi for each i. Ri will be referred to as a 
component of C. 

(ii) V = 6 (T~ tO Ni) is an alphabet of the colony, and 
i = l  

(iii) T C V is a terminal alphabet of the colony. 

We note that a terminal symbol of one grammar can occur as a nonterminal symbol 
of another grammar. 

Elementary changes of strings are determined by a basic derivation step of a colony: 

For x, y E V* we define x ~ y if[ 
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X = X l S i Z 2 ,  y = xlzx2, where z E Fi for some i, 1 < i < n. 

The language determined by a colony C starting with the word w0 C V* is given by 

b 
L(C, w0) = {v ]w0 ==~* v, v e T*}. 

A colony g is stable on a set W C (N t3 T)* if[ L(C, w~) = L(C, wj) for arbitrary w~ 
and wj from W. The language generated by g from elements of W will be denoted 
by L(C, W). 

If it is sufficient for formulation and solution of problems, components are charac- 
terized simply by pairs (S~, F~). 

3.2. S o m e  Var ia t ions  of the  Basic  Mode l  

Many natural variants of colonies have been defined which differ in the definition 
of single derivation step, in the choice of terminal alphabet or other termination mode, 
in global characterization of derivation process (additional limitations and controls of 
derivation process can be considered), etc. 

Basic differences among the definitions of derivation steps are due to the number of 
components used in one step as well as to the amount of start symbols (of components), 
rewritten in one step by each component. 

In a colony with sequential derivation exactly one component works in a derivation 

step. The basic derivation step ==~ is a sequential derivation step in which one 
component changes one letter of the string. 

In a sequential model discussed in (Kelemenovs Csuhaj-Varjfi, 1994a), in the 

derivation step (denoted by ~ )  one component is used to rewrite all occurrences of 
its start symbol in string (not necessary by the same word). 

In (P~un, 1995), intermediate situations between x ~ y and x ~ y are studied 
for a given k, where exactly (less than, more than) k occurrences of o~ are rewritten. 

In (Dassow et al., 1993) a parallel model of derivation is proposed and studied. 
According to this model of rewriting all components of a colony which can work must 
work simultaneously on the tape and each of them rewrites at most one occurrence of 
its start symbol. The case when more components (S~, Fi) have the same associated 
nonterminal Si requires a special discussion: 

If (S, Fi), and (S, Fj) are two components of a colony g and if (at least) two 
symbols S appear in a current string, then both these components must be used, each 
rewriting one occurrence of S. 

If only one S appears in a current string, then each component can be used, but 
not both in parallel, hence in such a case we discuss two possibilities: 

- the derivation is blocked - strongly competitive parallel way of derivation denoted 
by ~ ,  and 

- the derivation continues and the maximal number of components is used, nonde- 
terministically chosen from all the components which can be used - weakly competitive 
parallel way of derivation denoted by ==~. 

If the start symbols of all components in a colony are different, then both ~ and 
define the same relation denoted by ==~. 

According to different selections of the terminal set of a colony colonies with 
different styles of acceptance are distinguised in (Kelemenovs Csuhaj-Varjd, 1994a,b). 
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The colony e = (~ ,  IT, T) with components Ri = (Ni, T~, Pi, S0, (1 < i < n) has - 
by the definition - an acceptance style 

- "arb" iff T C_ [.Ji=l Ti; 
- "one" iff T = Ti for some i (1 < i < n); 

n 
- "ex" iff T = U i = l  T~; 

n 
- "al l" iff T = ~ = a  T~-; 

- "dist" iff T = (U,~I Ti) - (U~=I Ni). 

The language generated by C with the derivation step = ~  for x E {b, t, = k, < 
k, > k, sp, wp, p} starting with w0 E V* is defined by 

L,(C, Wo) = {v I wo ~ *  u, v C T*}. 

The corresponding families of languages are denoted by COLt  or by COL~ in 
order to stress the style of acceptance f E {one, arb, ex, all, dist}. If colonies with 
exactly n components are considered, COL,(n)  and COLI~(n) are used to denote this 
fact. 

Further mechanisms used for regulation of derivation in colonies are time delays 
of components,  hypothesis languages and transducer-colony pairs. 

A time delay, associated to each component of a colony, was proposed and studied 
in (Kelemen, Kelemenovs 1992). It determines a minimal "time" period between 
two consecutive applications of a component using the so called delay vector d = 
( d l , . . . ,  dk) of nonnegative integers for a colony C:r. 

A derivation step of a colony with delay is defined for pairs (w, tl, where w is 
a string and t is a n-tuple of integers (determining possible active components of a 
colony). So, Let C7" = (T~, V, T, d) be a colony with delay. Then 

(wl , t )  ~ c r  (w2,t') iff Wl = XlSjX2, t = ( t l , . . . , t ~ )  with tj = 0 for some j ,  
1 < j < n w2 = xazx2 for some z E L(Gj), t '  = ( t~, . . . , t 'k) ,  where t~ = dj and 
t~ = max{O, mi - 1} for all i, i ~ j. 

Note that  to put d = ( 0 , . . . ,  0) gives the basic definition of colonies. The derivation 
step for a colony without delay corresponds to t being the zero vector. 

A language defined by a colony C~- with axiom w0 and with start  delay vector to 
is the set 

L(er ,  wo, to) = {w �9 T* I {wo,to} ~ ; ,~  (w,t)}. 
The corresponding family of languages is denoted by DCOL. 

A colony is a model of a system designed for solving certain problems, hence it is 
supposed that  its actions tend to some expected results. This can be captured in the 
framework of colonies e.g. by considering a target language for selecting the sentential 
forms generated by the colony (Pgun, 1995). 

A colony with a (regular) hypothesis language is a quadruple 

Cn = (Ti, V ,T ,H) ,  

where (T~, V, T) is & colony and H is a regular language in V* - T*. 

For f � 9  {*, t} U {_< k, = k, >_ k [ k > l }  a n d i ( 1  < i < n , ) t h e c o l o n y a c c e p t s a  

derivation x -~Y y only if y �9 H or y �9 T*. 
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The language generated by Cn in the mode f starting with w0 is the set 

nl(d~,Wo)= {x e T* } Wo ~ Wa ~ . . .  ~ w~ = x, 

s >_ l, l <_ ij < n, l <_ j <_ s, and 

wj E H, 1 < j  < s -  1}. 

(No hypothesis is made about the last string, the terminal word.) 

(P~un, 1995) proposes a model for situation when different components "speak 
different languages", and a transducer is required to intermediate them: 

A colony-transducer pair is a couple (C, g), where C --- (T~, V, T) is a colony, and 
g = (V, V, Q, so, F, P) is a generalized sequential machine (gsm) (Q is the set of states, 
so is the initial state, F is the set of final states, P is the set of translation rules of 
the form sa --* xs', s, s' e Q, a e 17, x �9 V+). 

The language generated by a colony (C, g) in the mode f starting with w0 is 

n f ( C , g ,  w o )  = {x �9 T* I w =====~{1 Wl ======:=~ g(wl)  ==:=~/f2 w2 ====:~ g(w2) ~ . . .  

. . . ~ {  w ~ = x , s > l , l < i  i < n , 1  < j  <_s}. 

Variants of colonies for modelling "life-like" features as parasitism and symbiosis - 
the so called structured colonies - are proposed and studied in (Csuhaj-Varjfi, P~un, 
1993-1994): 

A structured colony is a construct a = (N,T ,w,  CI , . . . ,C~,r  where 
(N,T,  w, C1, . . . ,  C,) is a colony and r : {C1,. . . ,  Cn} --* 2 {c'' ' ' 'c") is a mapping. 
(r describes the dependences between the components.) 

By different usage of r different modes of derivation can be defined, for instance: 
For x, y �9 (N U T)* we say that x derives y in a by a direct derivation step under 

strong dependence relation, denoted by x ~ z  y, if[ either 
- ~ = ~ l & S ~ , S ~ . . . s j , ~ ,  r  = {G} ,  and y = ~ , z , z 3 , % . . . ~ j , z ~  or 
- Z l S ~ . . .  Sj~Sj, S~z2, r  = {Cj}, and z a z j , . . . % z ~ , z ~ x 2  

for zi e L~, zj �9 Lj, zk~ �9 Lk~, 1 < s, r C {G, Ck~}, Ck~ �9 r r C 
{ e k e , G } ,  C~ �9 r  r  c {Ck~_,,C~,+,}, C~+, �9 r  2 < r < s - 1, 
r ) ~ { C k s _ l  } ,  or 

- x = x~Sk~... Sk, SjSiS, S h . . .  S~px~, r = {Cj, Cl} and 
y ~ X l Z k ~  . . .  Z k l Z j Z i Z l Z t l  . . .  Z t p X  2 or 
- ~ = ~ s ~ , . . .  & ~ s ~ s ~ s j s ~ . . .  s ~ ~  r  = {cj ,  c ,}  ~ d  
y ~ X l Z t p  �9 �9 . Z Q Z l Z i Z j Z k l  �9 �9 �9 Zk~X2 

f o r z i � 9  z j � 9  z tEL l ,  z ~ . � 9  z k . � 9  andfor  
- r  c_ {c, ,c~},  c~, �9 r  r c_ {c~ ,G} ,  c~ �9 r r c 

{Ck,_,, Ck,+,}, Ck,+, �9 r 2 < r < s - 1, r C_ {C~,_,}, and 
r c {c , ,c , , ] ,  c,, �9 r r c {c, , ,c , } ,  c,~ �9 r r c 

{G . . . .  C,.+,}, C,.+, �9 r 2 < r < p -  1, r C_ {Ct,_,}. 

The language L~(a) generated by a colony (r (by a-derivations, where a means a 
particular type of derivation step among those definable for structured colonies) is 

n=(a) = {w I S ==~* w, w �9 T*}. 

The above notion of strong dependence covers both the symbiosis and the para- 
sitism: when Cj �9 r and Ci �9 r we have a symbiotic dependence of Ci and 
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Cj but when Cj E r Ci ~ r we can say that  a parasitic dependence of Ci 
and Cj is met  (C~ is supported by Cj, cannot live alone, whereas Cj is independent of 

CO. 
The most intensively studied topic of colonies is their generative power. The 

reader can find such type of result in all of the above cited literature. However, in the 
following we will concentrate on slighly different questions. 

4. On the Rationality of Behavior of Reactive Systems 

Considering another aspect of colonies behavior, we start  with an example of a 
very simple mechanical device mentioned in (Thorpe, 1989). Ch. Thorpe in his critics 
of the idea of reactive robotics mentioned that  "it is possible to build an extremely 
simple robot with no models, only reflexes, that  does some tasks such as wanders on 
a table top and turns when it encounters an edge. Such robots don' t  need models, 
computers,  or even electronics; everything is done mechanically." 

The next three figures offer a particular design of the Thorpe 's  Machine - a fully 
mechanical child-toy in camouflage of a s - together with the main layers of 
its subsumed parts ~'(.07~ providing the forward motion, and gb/7~l) making curving 
possible. 

I I 

Figure 1. The s  

The s wanders a table top, and turns when it encounters an edge, so it 
(almost) never crashes off the table. In other words, the behavior of the s  
is in certain intuitive sense a rational because: 

- it has perceptual capabilities (to identify the edge of the table by its antennae),  
- it has a possibility to execute different actions (through wheels it may roll straight- 
forward and it may change the direction of rolling) - it executes actions having the 
maximal  expected utility for it (it finds the direction of the rolling in order to avoid 
crashing off the table). 

In terms of expectations and beliefs about utilities of performable acts in actual 
states of environment the systems rationality means that  the executed acts are of the 
maximal expected utility for the agent among the actions available at some instant 
(Doyle 1988). This is the core of the formalization of rationality in the framework of 
the classical decision theory. 

The mathemat ical  way of formalization of such concept of rationality is as follows; 
cf. (Pollock 1992): 

Let .A be a system with sensation and action capabilities which connect it with 
its environment - the so called agent - described by a finite set A of alternative acts 
between which it must decide, a finite set O of possible states of the world, a function 
u assigning numerical values - utilities - to the possible states of the world, and a set 
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of beliefs about the values of the probabilities p(O/A)  of each possible state of the 
world on each act. The expected utility of an act a is then defined as 

oEO 

A decision problem for the agent .3, consists in maximizing the expected utility of 
its acts. An agent which is able to solve the decision problem is a rational agent. 

I I 

Figure 2. The part ~ ' O ~  of the s  

In (Kelemen 1996) a special type of rationality - the so called low-level rationality 
of agents - is defined and studied. The idea behind that level of rationality consists 
of eliminating probabilities and minimizing the number of considered states of the 
world. 

I - I 

Figure 3. The part CL/Ts of the ~. .AgyBblg 

Formally, an agent A with a finite set A = {al, a2 , . . . ,  an} of acts has the property 
of low-level rationality (is an lit-agent) if it is able to solve the decision problem under 
the conditions that: 
(i) A "recognizes" only two states of its world, so O = {t, f} ,  
(ii) A has a binary utility function defined by u(t) = 1 and u( f )  = O, 
(iii) the belief function of .4 for given ai is either 

o r  

Consequently, 

p(t/al) = 1 and p ( f  /al) = 0 

p(t/ai) = 0 and p ( f  /ai) = 1. 

1 for p(t/ai)  = 1 
e(m) = 0 for p( t /m)  = 0 
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The behavior L.~ of an llr-agent A is the set of all sequences a l . . .  ak (k > 1) of 
acts of A such that e(al . . ,  a~) = 1 where e(al . . ,  ak) = e(al) . . ,  e(ak). 

An equivalent characterization of the behaviors of llr-agents can be given as follows: 
The behavior L.4 of an llr-agent `4 is the set of all sequences a l . . .  ak (k > 1) of acts 
of`4 such that p(t/ai) = 1 for arbitrary ai (1 < i < k) appearing in h i . . .  ak. For the 
proof see (Kelemen 1996). 

5. A Language-Theoret ic  Treatment of Systems 
Rational i ty  

To act in an environment means for an agent to perform a sequence of acts. Each 
such sequence may be labeled by the corresponding sequence of symbols denoting the 
individual acts performed by the agent. From a language-theoretic point of view, the 
set of symbols denoting acts from A of an agent ,4 may be understood as a finite 
alphabet, and a behavior of ,4 (the set of sequences of acts performed by this agent) 
can be considered as a language L.a over that alphabet. Formally, L~ C_ A*, where A* 
states for the set of all (finite) sequences (including the empty sequence) defined from 
the elements of A with respect of the binary operation of concatenation of (strings 
of) symbols. Thus: 

- A* states, in fact, for all possible sequences (including the empty one) which 
may be formed from the acts performable by ,4, 

- L~t is the set of all sequences, which can be effectively generated by ,4, 
- if ,4 is a procedurally rational agent, then there are some mechanisms of ,4 for 

selecting (generating) only a subset L~ "t C_ L~ of rational behaviors of ,4, 
- if ,4 is a substantively rational 3 agent, then ,4 is able to produce only behaviors 

from L~*, so L~ "t = L.4. 

From the definition of the expected utility function it follows that the behavior 
LA of an arbitrary llr-agent ,4 has the following property: 

For arbitrary i , j  (1 < i < k;1 < j < k), if a l . . . a l . . . a i . . . a k  C L.4 then 
a l . . .  a j . . .  h i . . .  ak E LA . There exists an infinite class of infinite languages which 
satisfy this property. 

The rational behavior of the L,4:Dyl3ltG can be (approximately) described by the 
set of all finite sequences of acts f (executable because of the physical limitations of 
the table maximally k-times) and c (executable because of the same reason maximally 
/-times), so we have: 

L7.~={(g'~c"gr) + t l  < m < k ; l  < n < l ; 1  <r  <k} .  

Clearly, this is a regular language. 

6. Low-Level Rational i ty  of Colonies 
The decision-theoretic model of the/:,479yB/4G presents it as a system with in- 

ternal and centralized control. It does not reflect the architectural principle applied 
in construction of the/~,47932B/dG considered as a totally decentralized set of inde- 
pendent, autonomous, fully reactive components acting in a shared environment. 

However, we mentioned already that the L:,4793?BL/~ is set up from two function- 
ally separable mechanical parts, .T'OTr and CL/T~I). Realize now that none of these 

3The notions of substantive and procedural rationality are taken from (Simon 1982); also cf. (Simon 
1978). 
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parts has any level of rationality - both of them (under suitable conditions, see be- 
low) crash off the table. But subsuming them into an agent they generate a rational 
behavior thanks to their reactivity to situations sensed in their shared environment. 
So, we can consider the s also as a decentralized system with an external 
control. 

Let the behaviors of the parts are 

L~:ora = {f'~sl I0 <_ m <_ k}, 

and 
Lcunv = {c%2 I O < n < 1}. 

Both of behaviors are finite because in all cases the strings of actions of the components 
lead (after executing a number of forward or curving steps) inevitably to the state 
Sl and s2, resp. (by crashing of the $'OT~ or C/,/?EI2 off the table; let us suppose a 
slighly idealized conditions that the table is quite small, so that the "infinite" rotation 
of C/,/'RY is eliminated, that there are no obstacles on the table, no problems with 
parts'  energy income, etc.). 

Trying to describe 2-O7~ and C/,/'R.13 as llr-agents in the decision-theoretic frame- 
work we have serious troubles with defining the beliefs: accepting the previous ideal- 
izations we may easily realize, that if the parts S 'OR or Cb/RV roll towards the table's 
edge, they necessarily crash (so, that p(crash/g) = p(crash/c) = 1). Thereupon, the 
parts 2"O~ and C/,/TEY are not llr-agents. However, both of the behaviors can be 
described by corresponding formal grammars in an obvious way. 

The languages LJ:ora and Lcunv are finite, while the colony formed with their 
grammars generates an infinite language, L~-~. 

In (Kelemen 1996) is proved that the class of lit-agents with behaviors generated 
by colonies is infinite. 

This proposition shows, that at least the low-level rationality of systems may 
appear as an emergent effect of unsupervised individual behaviors of a finite number 
of autonomous purely reactive and non-rational components. It is also clear that this 
rationality is substantive in its nature, because of the lack of any internal control 
mechanisms in colonies. 

7. Integrative Societies of Agents 
Societies (at least the animal and robotic ones) can be grouped into two basic cat- 

egories (Parker 1993): In the case of differentiating societies the individual members 
of the societies are formed within the group according to the needs of the society. In 
this case, the individual exists for the good of the society. On the contrary, societies 
that integrate depend upon the attraction of individual independent components to 
each other. In the case of integrating behavior, the components of the society are 
driven by a selfish motivation which leads them to seek group life because it is in 
their own best interests. 

One of the most important problems of inventing any particular architecture for 
robots intended as individual agents in integrative societies consists of inventing mech- 
anisms of adaptive action selection by an individual agent which selects actions appro- 
priate with respect its individual mission. Actions must be selected on the one hand 
without any global control strategy, on the other, they must contribute to emergence 
of a global behavior of the society accomplishing certain global task. This section 



230 

shows how one mechanism of action selection - the mechanism of motivation pro- 
posed in (Parker 1993) - may be considered as externally controlled and treated in 
the formal framework of colonies; for more details see (Kelemen 1993). 

According to Parker's proposal, the individual agents are supposed to be designed 
using the behavior-based approach as collections of simple reactive components each 
receiving sensory input and controlling some aspects of the actuator output. The 
behavior of each agent emerges from the behaviors of its parts without any central 
control or global strategy of cooperation of its components. 

A robot receives information from its environment through its sensors and through 
an explicite communication with the other robots. Communication is, however, 
treated as a behavior. Both sensory data and explicit communication are inputs, 
and make the action selection adaptive to tasks performed by other agents without 
introducing any global control. 

Unlike typical behavior-based approaches, the architecture delineates several be- 
havior sets that are either active as a group or are hibernating. Each behavior set 
corresponds to those levels of competence required to perform some task. 

Because of the alternative goals that may be pursued by the agents, they must 
have some means of selecting the appropriate behavior set to become active. For 
achieving this action selection the motivational behavior is utilized, which controls 
the activation of each behavior set. 

The output of a motivational behavior is the activation level of its corresponding 
behavior set. When this activation level exceeds a given threshold, the behavior set 
becomes active. Once a behavior set is activated, other behavior sets are suppressed. 
Then, over the time, the motivation for performing a behavior set increases as long 
as the corresponding task is not accomplished, as determined from sensory feedback. 

Suppose now that a robot belonging to a society is described formally by a colony C 
each component of which being a description of the reactive behavior of a correspond- 
ing component of the robot. Suppose g to be stable on a set W, and the behavior 
of g to be L. Let W be the set of the samples of data observed by the real agent 
and communicated by other real agents. Because of the finite scalling capacity of any 
sensor and the limited exchange of information among the real agents, we suppose W 
to be finite. 

As it was already mentioned, a real agent is able to perform different (but a finite 
number of) behavior sets. Describing the real agent by a corresponding colony g, 
these sets can be formally expressed as subsets Li of the behavior L of a colony C 
such that L = U ~ I  Li. A motivational behavior for the behavior set L~ is then a set 
W~ such that g is stable on W~ and L(g, Wi) = Li. 

Having in the mind the sensory and communication limitations of real agents it 
is meaningful to suppose also W~ to be finite. Then to motivate an agent to select 
a behavior set L~ means to generate the appropriate motivational behavior W~ for it. 
Because W~ is finite, this task can be done by extending the original architecture 
of C by a simple specialized component-like agent with behavior W; which is sta- 
ble on certain set U~. Note that the set Ui may contain also elements consisting of 
sensed/communicated data which are inaccesible to the original g. This extension 
models certain aspects of action selection and envisions the basic architectural prin- 
ciple which makes the purely distributive cooperative control scheme possible. Since 
individual agents remain fully autonomous, they have the ability to perform useful 
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actions even amidt the failure of other agents. 
The basic theoretical question concerning action selection by motivation can be 

now posed as follows: Is it possible to find an appropriate motivational behavior Wi 
for a given behavior set Li of C, and a colony with the behavior Wi which is stable 
on a set U~? The answers proved formally in (Kelemen 1993) may be recapitulated as 
follows: 

For motivation of disjoint behavior sets the corresponding motivational behaviors 
must be disjoint. I f  the motivational behaviors are not disjoint, then they cannot 
motivate different behavior sets. 

I f  the behavior sets are disjoint then motivational behaviors for them must be dis- 
joint, too. 

I f  disjoint finite sets are given then it is possible to construct an agent with such 
sets as behavior sets motivated by disjoint motivational behaviors. 

8. T h e  Role  of the  Env ironment  

In the previous sections we demonstrated how some "mentalistic" explanations 
of rationality may be (at least in certain level) replaced by "interactionistic" ones 
which emphasize the interactions among the (relatively) independent (autonomous) 
non-rational parts of a rational system. Now, we complete our views by adding some 
remarks on the role of interactions of rational systems with their environments. 

It is clear, that an agent is rational only in some "natural" surrounding envi- 
ronment. (All the human rationality disappears if the hunam being is faced with 
an absolutely unknown environment; in fact, we can't imagine such an environment. 
Similarly, all the low-level rationality of the/:A:DyBb/~ disappears in an environment 
with vertical obstacles - say, boxes on the table top.) As (Horswill 1995) pointed out, 
a rational agent should take advantage of the special properties of its environments 
which may simplify the decision problems which face it. Thus, from the standpoint 
of the agent and its designer, environments have some important properties. If we 
try to understand the behavior of an agent in its environment, we must make these 
properties explicite and draw out their significance for the agent. We will try to do 
that and expand appropriately our previous grammatical model. 

Horswill (1995) considers an environment as a concrete thing, a place in which 
a particular agent acts. The set of environments in which an agent can perform its 
activities he calls a habitat. A habitat constraint is a predicate on environments. Its 
extension is the set of environments which satisfy it. A given environment or habitat 
can be partially characterized by the set of constraints which it satisfies. Thus the 
habitat forms a useful descriptive language for environments and habitats. 

In our framework we understand a habitat of an agent as a formal specification of 
the states of agent's environment in terms in which the agent's possibitities to act in 
this environments are expressed. 

Formally, let L~ ~* be the set of rational behaviors of an agent modelled by the 
colony C. Then the set H C (Nc [3 Tc)* we will call the habitat of C if for arbitrary 
w E H, w ~ * x  implies x C L~ ~. 

Relating the concept of habitat to the concept of the stability defined in Section 
3, we can - immediatly on the base of definitions - state that every set in which the 
colony C is stable forms a habitat for the agent modelled by C. 

With respect of the ~A:DyI3btG, in Section 5 we specified its behavior as the 
language LTM. The parameters k and l appearing in its specification reflect some 
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physical  propert ies  of a part icular  table on which the s  rolls, some proper- 
ties of s  environment.  To construct a habi ta t  for the s  means 
to determine the descriptions of s environments in which it behaves ratio- 
nally (does not fall the table  top). Wha t  is very impor tant  in this respect is to express 
the environments regularit ies (the minitheory of the environment) in concepts which 
are related to the s  concepts of it environment. In this par t icular  example 
this means to express the characteristics of the environment in s  possi- 
bilities to sense the table  tops edge, and to move forward or to change the direction 
of the motion. 

9. Colonies in Dynamic Environments 

The agent /environment  interactions play a crucial role mainly in si tuations when 
the environments in which the agents act have their  own dynamics.  For the  si tuations 
when the laws of environment dynamics are known and may  be characterized in the 
symbolic level, in (Csuhaj-Varjfi et al. 1994b, 1996) a formal framework - the concept 
of so called eco-grammar system is proposed and studied. Colonies may be considered 
as a simplfyied variant of such systems based on purely reactive components  sharing 
a common string - their environment - which has its own dynamics governed by some 
rules. We may imagine these rules in the form of rewritings. The overall dynamics of 
the whole system set up in this style consists then in two main phases: In the first 
one the colony executes one step of its modification of the environment. Then, in the 
second phase, the  rules describing environments dynamics are appl ied - in paral lel  - 
and execute environment changes. 

More formally, a colony with dymanic environment - or an extended colony, ac- 
cording (Csuhaj-Varjfi,  1996) - may be defined as a s tructure 

E = (V,T,  H 1 , . . . , H ~ , R 1 , . . . , R ~ , S )  

where V and T (T C_ V) are the total  and the terminal  alphabets  of E,  H~ is a finite 
set of context-free or regular rewriting rules defined over V, R~ is a component  defined 
as in the basic case of colonies (Vi C_ V), S - the star t ing symbol of E - is an element 
from V, and T is a subset of the union of all T~s. 

The functioning of the structure consists of an action of a component on the 
environment as in the case of basic colonies, and of a development of the  environment 
acording the rules included in His and apphed in a parallel  way in the sense accepted 
in the theory of L-systems - in the 0L manner; cf. (Rozenberg, Salomaa, 1980). 

The basic model  of derivation in colonies with dynamic environment can be defined 
as follows: 

Let x, y E V +. Then x directly derives y (in the basic mode of derivation; in the  
b-mode), if one of the following cases hold: 

- there  is a s tar t  symbol  Si of some of components R~ such tha t  x = xlSix2,  Xl, x2 E 
V*. Then y = y lwy2 ,w  e L(P~), and xl ~ H j  y l ,x2  ~ g  i Y2, for some j ,  and H i is 
applied in the 0L style. 

- x # xlS~z2 for any i for xl ,  x2 E V*. Then x ==~znj y for some j ,  and Hj is 
applied in the 0L manner.  

The language defined by such a type of colonies can be defined in the usual way. 
Similarly as in the cases discussed in Section 3, we can define the  acceptance styles 
arb, one, all and ex. 
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The generative power of the just defined type of colonies overcomes the generative 
power of ETOL-systems for the basic variant of derivation and the acceptance style 
arb. 

10 .  C o n c l u s i o n s  

The previous sections present a conceptual framework for dealing with some prop- 
erties of systems set up from simple, purely reactive components. The framework is 
based on the theory of grammar systems - a well founded mathematical approach to 
distributed or decentralized processing simple symbol structures (Csuhaj-Varjfi et al., 
1994a). Thus, the presented approach is in many directions limited. No formalization 
reflects the whole complexity and all of the details of the formalized entities and/or 
phenomena. 

The presented framework is intended mainly to express formally the idea of pure 

reactivity, and minimal comunication of the individually simple components - the 
architectural principle of and the mechanisms of emergence of complicated behaviors 
from the simple ones. It is not intended for dealing with another very important 
aspect of systems set up from real reactive parts - their situatedness in real dynamic 
environments with a lot of uncertainties and sensory noises. Any sensor of a real 
robotic system realizes only a many-to-one mapping from states of a world to the just 
sensed data. Moreover, the robot deals with noises when interpreting sensor data. 
The robotic system decides its actions based on these data, leading to unexpected 
changes in the environment caused by robots actuators. 

In a grammar agent, however, when a symbol is read, the agent is assured that it 
really did read that particular symbol - i.e. it does not have to deal with noises when 
interpreting the sensed data nor when expecting the changes in the sentential form 
just under rewriting, when executes a rewriting step. Likewise, when a grammar agent 
changes some part of a string, it can be assured that the update was what the agent 
intend - writing a symbol A will result in an A being written. When a robot decides to 
grasp an object A, the result may or may not the A being grasped. Thus, the abstract 
description of an environment equals the actual environment for the grammar agents 
which is not the usual situation in the case of real embodied robots situated in real 
changing environments. Only having these in mind we can state that the components 
of a colony of grammars are situated in their symbolic environments. 

However, the behavior of a colony really emerges from interactions of its compo- 
nents acting autonomously in their symbolic environment and can considerably over- 
come the individual behaviors of the components. Similarly, the analysis of the level 
of rationality of colonies proves that at least this level of rationality may in principle 
appear in behaviors of the real purely reactive robots or other kinds of agents. The 
framework enables also to deal with some aspects of the interactions of environments 
and agents, and with some phenomena appearing when we see agents as societies of 
simple autonomous components. 

As a generalization, let us repeat the position expressed first in (Kelemen 1993): 
We recognize four main principles reflected by the grammatical theory of colonies, 
which appear in behavior-based robotics and in some other branches of research con- 
nected with autonomous agents as well. There are: 

�9 The principle of total decentralization of complex systems into simple compo- 
nents. 
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�9 The transparent simplicity of components behaviors in comparison with the be- 
havior performed by the whole system. 

�9 The principle of liberalism - components behave without any explicitly defined 
obligatory strategy of cooperation. 

�9 The principle of emergence - the behavior of the system emerges as some kind 
of side-effect of the behavior of components. 

The sketched framework enables us to deal with any of these principles in a symbol- 
manipulating level. In discussions on the reactionistic and cognitive approaches to 
intelligent systems (el. e.g. (Vera, Simon 1993)) our framework supports the idea 
that some of the principles are present in both of them, but has been emphasized 
with different intensity up to now. 
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Abstrac t .  A concept of accepting colonies is introduced. A hybrid 
connectionist-symbolic architecture ("neural pushdown automaton") for 
inference of colonies based on presentation of positive and negative exam- 
ples of strings is then described, together with an algorithm for extracting 
a colony from trained neural network. Some examples of the inference of 
colonies generating/accepting simple context-free languages illustrate the 
function of the architecture. 

1. I n t r o d u c t i o n  

The problem of grammatical inference is generally hard and even for regular lan- 
guages it is NP in the worst cases. There have been various heuristic methods de- 
veloped, trying to find a suitable solution with reasonable computational expenses. 
We shall focus our attention on hybrid architectures coupling principles of neural and 
symbolic computation. 

There have been many such architectures presented, concerning mostly (but 
not exclusively) the connectionist-symbolic grammatical inference of regular [1], [6], 
context-free [22] or context-sensitive [2] language acceptors. For a broader description 
of these results we refer to [21]; a brief overview can be found in [20]. The unifying 
approach of these results inheres mostly in unfolding input strings into the time-series, 
so they are presented one symbol at a time and processed serially. This seems to be 
not due to the nature of artificial neural networks (ANNs), which is inherently par- 
allel. In fact, this drawback isn't overcome in this paper still, but some attention is 
devoted to accepting grammar systems (GS) - possibly parallel accepting devices. 

There are many links between ANNs and GSs: parallelism, independently work- 
ing elements (agents/neurons), communication of the elements, absence of centralized 
control. On the other hand, there remain many problems of representing one paradigm 
by another: fixed communication graph of ANN vs. dynamic communication of GS, 
virtually unlimited potential of GS agents (each agent must be able to act simultane- 
ously on an arbitrary number of symbols of the generated string), and so on [20]. The 
model of the accepting grammar system presented here doesn't involve some of these 
problems (balanced by its less accepting power) and can be successfully extracted 
from a trained ANN. 

2. Bas ic  Def in i t ions  and Proper t i e s  

In this section the basic definitions of the constructions necessary to describe our 
model are given. Often only a special form of a definition is given, simple enough to 
have the properties necessary for the model; the general forms can be found in the 
references cited. Also some properties of accepting colonies are derived. 

~Research supported by the Grant Agency of Czech Republic, grant No. 201/95/0134. 
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We denote the classes of finite languages, regular languages, linear languages, Dyck 
languages, languages accepted by the deterministic pushdown automata without S- 
transitions (DPDA) and context-free (CF) languages by s s s 
s s and s respectively. 

If z C V*, where V is some alphabet, and if W _C V, then Ixlw denotes the number 
of occurrences of letters from W in x. 

2.1. Artif ic ial  N e u r a l  N e t w o r k s  

Here we only briefly describe the basics of the ANN model used below. For a more 
detailed tutorial we refer to [9], a broad explanation can be found in [8]. 

Our ANN is a finite set of interconnected autonomous agents - neurons. All the 
neurons in the network compute the same function 

N 

= a i j x j ) ,  
j = l  

where xij are the inputs, the yi is the output of the neuron, 0 is the threshold function, 
see figure 1. The constants aij are called the weights of the inputs. 

The input of ANN is some n-tuple and the output some m-tuple of real-valued 
signals. There are feedforward and feedback connections, which leads to nontrivial 
dynamics of the network. Such a type of network is called a recurrent neural network 
(RNN). 

a i 2  = ~ Y i  x2 a i ~ ~  

x N ~  Oi 

.O(z) 

I I , 

-2 -1 

~ - ~ - 1  

Figure 1. The basic model of neuron and the treshold function. 

2.2. Colonies  

Colonies and the languages they generate have been described e.g. in [15], [11], 
[12]. There have been various generating modes and styles of acceptance defined. 
Here we restrict ourselves to the basic mode and the dist style of acceptance used 
in our model, although the other styles could be modelled as well. In this sense the 
following definitions are simplified compared to the original ones. 

Def in i t ion  2.1. A colony is an (n + 3)-tuple C = (N, T, R1 , . . . ,  Rn, S), where 

(i) N is the set of nonterminals of C; 

(ii) T is the set of terminals of C; N N T = 0; 

(iii) R~ = (Si, F~), for every i, 1 < i < n, is the component of C; Si C N is the start 
symbol of R~; F~ C (T U N - {S~})* is a finite language; 

(iv) S = Si for some i, 1 < i < n; S is the start symbol of C. 
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We denote the total alphabet of C by V, i.e. V = T O N. We can assume 
N = {S1,$2,. . .  ,Sn} and Fi ~ 0 for every i,1 < i < n, without loss of generality. 

Def in i t i on  2.2. Let C = (N,T, R1, . . . ,Rn,  S) be a colony and let x,y  E V*, 
where V is the total alphabet of C. We write x =~g~n y, iff there is a component Ri of 
C for some i, 1 < i < n, such that x = xlSix2 and y = xlwx2 holds, where xa, x2 C V* 
a n d w  E Fi. 

Def in i t i on  2.3. Let C = (N, T, R1 , . . . ,  R~, S) be a colony. The language gener- 
ated by C is defined by Lg~n(C) = {w I S ~*ge~ w, w C T*}, where ~ge~ denotes the 
reflexive transitive closure of ~ g ~ .  

Let us denote s the class of languages generated by the colonies defined 
above. It has been proven in [10], that  f~gen(COL) = s  

2.3. A c c e p t i n g  Colon ies  

A concept of accepting grammar systems has been introduced in [3], [4], [5]. We 
now introduce accepting colonies in a similar way, together with the concept of deter- 
minism, since our neural model is deterministic. 

Def in i t i on  2.4. Let C = (N~T, R1, . . . ,Rn,  S) be a colony and let x,y  E V*, 
where V is the total alphabet of C. We write y ~ c ~  x, iff x ~g ,n  y. 

Def in i t i on  2.5. Let C = (N,T, R 1 , . . . , I ~ , S )  be a colony. The language ac- 
cepted by C is defined by Lace(C) = {wlw ~*c~ S, w e T*}, where ~*c~ denotes the 
reflexive transitive closure of ~ c ~ .  

We denote f~acc(COL) the class of languages accepted by the colonies defined 
above. 

If y =~e~ xl and y : = ~  x~ implies Xl = x2 for every y C L~e(C), then we call the 
system dynamically deterministic; in this case, we add the letter Dd to the notation 
of the system. This form of determinism guarantees that the accepting colony can at 
each derivation step perform at most one possible action; if there are more possibilities, 
the string is rejected. 

If Fi A F i = 0 for every i, j, 1 <_ i < j <_ n, we call the system statically determin- 
istic; in this case, we add the letter D, to the notation of the system. This guarantees 
that for every y there is at most one i such that y ~ Si. 

If no set Fi contains the empty word I ,  we call the system propagating; in this 
case, we add the letter P to the notation of the system. 

T h e o r e m  2.6. 

(i) s162162 [Dd/D~]COL) = s ([P][Dd/D~ICOL), 

(ii) s162 = f ~ ( D d C O L )  C s s162 and t:(REG) are 
incomparable, 

(iii) s COL)= s 

Pro@ (i) The statement follows directly from definitions. Note that  the concept 
of both the dynamic and the static determinism is the same for the generating and 
the accepting case. 
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(ii) First, note that  the existence of the empty  word s in some Fi would destroy the 
dynamical  determinism. Now, let C = (N, T, R 1 , . . . ,  R~, S) be a colony in the class 

DdCOL. Without  loss of thee geenerality, we can assume that  for every x E 0 Fi 
i = 1  

there exists a derivation S ~ e n  wSiy :::r162 wxy ~*g~, u, u E T* for some i, 1 < i < n. 

Then Ixly < 1 for every x E U Fi. Let us assume for contradiction, that  there existed 
i = 1  

* * ! ! I ! I ! ! T �9 a derivation S :::~ge, wSiy ~g~n wxlSjx2Skxay ~g~n w XlZlX2z2xay - u, u E such, 
that  Sj ~;~n z~ ~g~n Z~ and Sk = ~ ,  z2 =~g~. z~ for some i , j , k ,  1 < i , j , k  < n and 

t t T +  V +.  some wt, x~,x~2,xta,y~ E T*, W, Xl, X2,X3, y C V*, 21,2/2 E and zl,z2 E Then 
u E Lac~(C) and u =%~c w'xlzlx'2z~x'ay' and u ~ w'x'~z~x'2z2x'ay' would hold. 

Now, let G = (N, T, P, S) be a context-free grammar  such that  P = 0 ( U si  --~ 
i = 1  xEFi 

x). Then L(G) = L~c(C) and G is linear. For the proof of the second statement ,  note 
that  {anln >_ 1} r s162162 and {a'W~ln >_ 1} E s162 

(iii) We follow the proof of Lemma 2.3 in [4]. 
Let C = (N,T ,R~, . . . ,R ,~ ,S)  be a colony. We define N '  = N U {S~+I}, where 

S~+~ is a new symbol. Let R~+~ = (S~+I, {,X}) be a new component  of the colony. 
For each Fi, 1 < i < n, we define 

Define 

conflict(Fi) = {x E F/I(3j 7 ~ i)(x E Fj)}, 

no - confiict(Fi) -- Fi - conflict(F/). 

DET(RI)  = (S/,no - conflict(F/) U {xS~+ 1 tX E conflict(Fi)}). 

Consider the statically deterministic system 

C '  = (N' ,  T, DEW(R1) , . . . ,  DET(R~),  Rn+1, S). 

It is easily seen that  ngen(C)  --  Lgen(C'). [] 

We do not know much about the class s we conjecture that  it 
contains f-.(DPDA). 

3 .  H y b r i d  N e u r a l - S y m b o l i c  A r c h i t e c t u r e  

The idea of these architectures was introduced first in the classical paper  [13]. As 
it was mentioned in [20]~ RNN needs some external stimuli during its work, otherwise 
it tends to reach a stable state soon, which is in contrast with recurrent application 
of the saxne rules during the accepting of a string by a g rammar  system. Moreover, 
the RNN should be of finite size, but the grammar  system should be able to accept a 
string of an arbi trary length. 

The simplest possibility of how to solve these problems is to present the input 
string serially, which nevertheless leads to a lack of parallelism. The occurrence of the 
empty  string ;~ in some F/would  cause another problem, so we will restrict ourselves 
to the propagating systems. 

Consider an accepting colony C = (N, T, R 1 , . . . ,  R~, S) with the serial access to 
the accepted string w. We start  with the leftmost part  of the string w and find a 
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component Ri for some i, 1 < i < n, such that there is x E Fi, x = uy  and w = uv 
for some u, v E T + and some y C ({)~} U N V * ) .  Hence the component Ri becomes 
active. Whenever there occurs the symbol Sj C N within x for some j ,  1 < j < n, the 
component Rj becomes active, but we must remember that after it finishes its work, 
the component Ri may has to continue. On the one hand it becomes clear that  there 
has to be a stack for storing calling sequence of the components of the colony. 

On the other hand, we must take into the account the fact that  in the phase of 
inference we know neither the number nor the language of components of the colony 
being inferred; they must be the result of the inference algorithm. As it seems to 
be much more difficult to change the structure of the RNN in the phase of learning 
than to change the weights of the neurons only, it follows that we perhaps should 
not incorporate an expected structure of the colony into the network topology. More- 
over, as storing and retrieving information to/from the stack have to be subjected to 
adaptation, these operations must be continuous in some sense (see the next section). 

Again, the simplest solution seems to be the use of a homogeneous RNN, which 
can store/retrieve to/from the stack some information, no matter  what they represent. 
Then after training we can extract the result from the structure of the internal states 
of the network and assign an interpretation to it. 

3.1. Neural  Determinis t ic  Pushdown A u t o m a t o n  

It has become clear during the last years that enhancing the computational power 
of an RNN over that of finite automata requires an expansion of resources. The 
disadvantage of many models as in [17], [18] is that  they do not involve effective 
adaptation. 

The idea of deterministic neural pushdown automaton (NPDA) has been reported 
first by [17]. We follow the model described in [22], which has the following advantages: 

�9 the stack is considered to be external and not necessarily represented within the 
RNN; some arguments supporting this approach can be found in [20]; 

�9 the model needs only very brief preliminary information about the expected size 
of the inferred system; 

�9 both the finite neural automaton and the stack operations are subjected to an 
adaptation process, thanks to the concept of continuous stack memory; 

�9 effective procedures for training such a system have been provided, together with 
algorithms for extracting the pushdown automaton from the trained network. 

There are also some necessary restrictions of the described model; the most im- 
portant seems to be the request that  every rule of the NPDA must be in one of the 
following forms: 

(a) g(qi, a, b) = (qj, ~), 

(b) 5(q~, a, b) = (qj, b), 

(c) (~(qi, a, b) --- (qj, ab). 
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Moreover, the tape and the stack alphabets are the same, except the starting 
stack symbol _l_. No A transitions are Mlowed. If there are no restrictions applied to 
the strings stored into the stack in the rule forms (b) and (c), the automaton is be 
equivalent to a CF grammar in the 2-SNF [23] and it is be able to accept any language 
in E(DPDA). With these restrictions the class of accepted languages is reduced. 

T h e o r e m  3.1. Let M = (Q, E, F, 5, s, F) be a DPDA such, that P = E U {_s and 
each rule of 6 is in one of the forms (a),(b),(c), where q, qj e Q, a b r. Denote 
s  the class of the languages accepted by the automata of the described type. Then 
Z ( D Y C K )  c Z(M) c Z(DPOA) and is incomparable with Z(LIN) 

Proof. As it has been shown in [23], the rule forms (a) and (c) are enough for 
constructing a DPDA with one state accepting any Dyck language. The form (b) 
together with more states extends the power of the automaton over the class of DYCK 
languages. Note, that for instance {a2nb~]n > 1} E s and {a2% ~ I n > 1) 
s  

Now, consider the language generated by the linear grammar G = 
({S}, {a, b, u, v, w, x}, {S -~ aaSu/abSv/baSw/bbSx/A}, S). It is easily seen that 
L(G) e s  and L(G) r s To finish the proof, it remains to note that 
there are nonlinear Dyck languages. [] 

The whole NPDA consists of a finite size neural network controller (an extended 
version of & neurM network finite state automata) and an infinite continuous stack 
memory. The controller is an RNN consisting of third order neurons (also second order 
would be possible) trained by the real-time recurrent learning (RTRL) algorithm. The 
infinite continuous stack memory consists of two parallel stacks: the discrete one, 
which stores the symbols, and the continuous one, which stores the continuous length 
L of every symbol, 0 < L < 1. There are three actions defined upon the stack memory, 
each of them having the strength Ai, 0 < Ai < 1: 

�9 push, which stores the input tape symbol onto the top of the stack with the 
assigned length Ai; 

�9 pop, which removes the top symbol(s) so that the total depth of the continuous 
stack is decreased by A~; 

�9 no-op, which causes no change in the stack memory. 

The configuration of the automaton is defined in the usual way. The language 
accepted by the NPDA consists of the strings which transfer the automaton from the 
initial configuration (qx, • w) to the configuration (qf, A, ~), so that the final state 
must be reached and simultaneously the stack must be emptied. Each input string is 
finished with a special symbol e. 

The schematic diagram of the model is presented in figure 2. For more details about 
the continuous stack, training algorithm, symbol representation and state dynamics 
we refer to [22], [14]. 

3.2. E x t r a c t i o n  of  a Colony f r o m  the  Tra ined  N P D A  

The NPDA is trained using a set of positive and negative samples of strings (that 
have to be accepted/rejected) of some language in E(M). During the training the 
topology of the NPDA is not changing, but the space of the internal states is evolving. 
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The training is finished, when (almost) every string of the training set is correctly 
classified. But the final output state consist of analogous values between 0 and 1, so 
the classification is not strict. There exist analogous errors, which can accumulate as 
the input string become longer, due to the NPDA nature of a continuous dynamic 
system. 

11 r 
next state action on stack 

I i r I 

L I l J I I 
state neurons input symbol top of stack 

_ U  
--[_ 

continuous 
stack 

Figure 2. The architecture of the NPDA. 

For a correct classification of strings of an arbitrary length, it is necessary to  extract 
a discrete accepting device from the trained NPDA. The result of this process highly 
depends on the quality of the extracting algorithm, based mostly on clustering in the 
space of neuron states. Generally, we want to extract as small an accepting device 
as possible, but still homogeneous with the set of training samples. More detailed 
descriptions of the clustering algorithms can be found in [1], [6], [22], etc. 

We present here an algorithm for extracting a colony from the NPDA M = 
(Q, E, F, 3, s, F) having already performed hierarchical clustering of states. It em- 
ploys some special features of the NPDA to obtain as simple a grammar system as 
possible. Let us denote by q~,... ,qF the clusters of state neuron output values of 
NPDA, let us quantize the action neuron states to three levels with assigned labels 
push, pop, no-op. Let us express the state transitions in the form of the oriented graph 
with the starting node ql and the final node qF. To every edge a triple (a, b, act) is 
assigned, for a E E, b E F, act C {push, pop, no-op}. The nodes from which the final 
node is inaccessible are ignored. 

A l g o r i t h m  3.2. 

1. Let us denote C = (N, T, R1,..., Rn, S) the derived colony. Let us assign T := 
~, N : =  {[ql, _L, qF]}, n : =  0. 

2. If there is [q~, b, qj] C N such that [q~, b, qj] is not the starting symbol of any 
component Rk for some k, 1 < k < n, then continue, otherwise go to step 5. 

3. Assign n :=  n + 1, add a new component R~ :=  ([q~, b, qj], 0) to the colony. For 
every edge (a, b, act) from the node q~ to the node q,~ for some qm E Q do the 
following: 
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(a) if act = pop and q,~ = qj, add the string a to the F=; 

(b) if act =no-op, add the string a[q,~, b, qj] to the Fn; add the symbol [q,~, b, qj] 
to N; 

(c) if act = push, add the string a[q,~, a, qp][qv, b, qj] to the F= for every qp E Q 
such that the node qp is accessible from the node q~ and qj is accessible 
from qp; add the symbols [qm, a, q~], [qp, b, qj] to N; accessible means the 
transitive non-reflexive closure of the graph edge transitions. 

4. Go to step 2. 

5. Apply an algorithm for excluding the nonterminating components of the colony 
(quite similar as excluding the nonterminating symbols of the CF grammar). 
Exclude S~ from N for any nonterminating component (Si,F~). Exclude the 
strings containing S~ from F~ for every j,  1 < j < n. Adjust the value of n. 

6. For every component (Si, Fi) for some i, 1 < i < n, such that F~ C T*, do the 
following: 

(a) Replace every string XlSiX2 in Fj for some j, 1 < j < n and Xl,X2 e V* 
with the strings xxyx2 for every y E F~. 

(b) Exclude the component (S~, F~) from the colony. 

7. For every two components (S~,Fi),(Sj, Fj), for some i , j ,  1 < i < j < n, such 
that F~ = Fj, do the following: 

(a) Replace every string xlSjx~ in Fk for some k, 1 < k < n and x l ,x2  E V* 
with the string XlS~X2. 

(b) Exclude the component (Sj, Fj) from the colony. 

8. For every component (Si, Fi) for some i, 1 < i < n, such that there is a string 
xlSix2 C Fi for some Xl, x2 ff V, do the following: 

(a) Assign n := n + 1, a d d  a new component R~ := (S~, {Si}) to the colony. 

(b) Replace all occurrences of Si within the strings in F~ with S~. 

it is easily seen that L(C) = L(M) ,  where C is the colony derived from M by the 
use of the algorithm described above. 

4. S i m u l a t i o n  Resu l t s  

There are three examples given in [22]. Due to the fact that we use the same 
training process in our model, we can utilize these results at the situation when the 
RNN has been trained and the hieraxchical clustering of the states has been already 
performed. Then our algorithm for extracting a colony from the trained network will 
be applied and the results will be presented. 

E x a m p l e  4.1. The Balanced Parenthesis Language 
The input alphabet consists of symbols [, ] (we omit the final transition coupled 

with an end symbol e). The training set contains fifty strings with an approximately 
balanced number of the strings to accept and to reject. The trained NPDA is presented 
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in figure 3 (the nodes from which the final node is inaccessible are omitted). The state 
(1, .25, .25) is final. 

([, [, push) 
(], [, pop) 
([, • push) 

Figure 3. Trained NPDA accepting balanced parenthesis language. 

After applying Algorithm 3.2, the resulting colony with five components 
looks as follows: C = ({S, Sl,S2, S3, S4},{[,],e},(S,{[SlS2}), (Sl,{[S3S3,0}), 
(S2,{IS, S4, e}), ($3,{SI}), ($4, {S2}),S). 

Example  4.2. The language 1nO n 
The input alphabet is {0, 1}. The training set consists of 12 legal and 15 illegal 

strings. In order to have only short strings in the training set, and due to the fact 
there are relatively few short legal strings in this language, the training set replicates 
some of the short legal strings. The trained NPDA is presented in figure 4. The 
state (1: 1, 1,1, 1), (1, 0, 1, 1, 1) is final. This state (and the second one denoted by two 
vectors of the neuron outputs) was created by merging of two equivalent clusters. 

( 
0 ( 
0 • ( 

(0, 1, pop) 
(0, ]_, push) 

push ) ( ~ ( O ,  O, push ) ( 

/'/1,1J (1, 

(1, 1, push) 

(0, ]_,push) 

Figure 4. Trained NPDA accepting 0~1 ~ language. 

The resulting colony with three components is C = ({S, S1,S~},{O,I,e}, 
(S, {iSle}), (S~, {1S20,0}), ($2, {S~}),S). 

Example  4.3. The Palindrom Language 
This problem was found to be the most difficult among the presented ones. It 

has been shown in [14] that the described neural structures are not able to learn this 
grammar without "hints". The so called full third-order network structure has been 
used in [22] to overcome this problem. 

The input alphabet is {a, b, c}, the palindroms are of the form wcw T, w E {a, b} +. 
Two training sets containing 39 and 363 strings were used. The trained NPDA has 
six states from which the final state is accessible. The resulting colony with five com- 
ponents is C = ({S, $1, S~, $3, $4}, {a, b, e}, (S, {bSIe, aS~e}), ($1, {[bS3b, aS4b, cb}), 
($2, {aSaa, bS3a, ca}), ($3, {S~}), (S4, {$2}), S). 



245 

5. C o n c l u s i o n  

The class of accepting colonies has been defined and some of its properties have 
been derived. It was shown that to present an input string serially (which is needed 
for the described hybrid connectionist-symbolic architecture), it is necessary to have 
an infinite memory (sta&). 

The adaptive neural pushdown automaton together with the algorithm for extract- 
ing a colony from the learned neural network was presented and some colonies were 
successfuly inferred. This documents the possibility of constructing the artificial life 
models with the ability of adaptation to the surrounding environment. 

The drawback of this model is its serial access to'the input string. So the direction 
of the further research is constructing parallel adaptive neural models of parallel 
working grammar systems, which could couple the abilities of the both paradigms. 
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Abstrac t .  I t  is shown that nondeterministic logarithmic space-bounded 
Turing machines recognize exactly the closure (under log-space reduction) 
of the languages generated by a variant of regular paraltel communicating 
grammars systems. 

1. Introduction 
Establishing correspondences between resource-bounded computational models 

and classes of generative grammars has long been an important research activity 
in theoretical computer science. Such correspondences yield valuable insights into 
the behavior of both computational models and grammars. Typical examples in- 
clude the equivalence of finite state automata and regular grammars, nondetermin- 
istic pushdown automata and context-free grammars, and nondeterministic linear 
space-bounded Turing machines and context-sensitive grammars [7]. Some resource- 
bounded computational models do not seem to have equivalent grammars. One ap- 
proach to characterizing those systems grammatically has been to show that they 
are equivalent to a closure of the class of languages generated by a given grammar, 
under an appropriate notion of reduction. For instance, it has been proven that loga- 
rithmic space-bounded nondeterministic Turing machines (log-space NTMs) with the 
help of a stack (e.g., auxiliary push-down automata) recognize exactly the closure 
(under log-space reduction) of the context-free languages [4], [18]. Although context- 
free grammars characterize auxiliary push-down automata from the point of view 
of complexity theory, we know of no grammar that has been shown to characterize 
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logarithmic space-bounded nondeterministic Turing machines (without a stack). This 
paper demonstrates that the closure (under log-space reduction) of the languages gen- 
erated by a variant of regular parallel communicating grammars systems characterizes 
this model of computation. 

Recently, parallel communicating grammar (PCG) systems have been introduced 
to characterize, at the syntactic level, the behavior of complex systems [13]. Charac- 
teristics of PCG systems have been studied by several authors [5], [6], [10], [12], [14], 
[16], [17]. A PCG system consists of a finite number of grammars whose derivations 
proceed synchronously in parallel. The separate derivations can query one another, 
and so communicate. The querying mechanism allows any component to copy what 
another component has produced. To make a query, a derivation generates a query 
symbol that refers to the grammar whose derivation is to be queried. Several com- 
ponents may copy the same string by generating the same query symbol at the same 
time. 

It has been proven that PCG systems with more than one component grammar 
of any type in the Chomsky hierarchy is more powerful than a single grammar of the 
same type. For example, there are regular PCG systems that generate non-context- 
free languages. The complexity of languages generated by PCG systems have been 
studied by [2], [3], [8], [9]. 

The generative power of PCG systems depends on the communicating protocol 
or the query mechanism for derivations. Under the query mechanism introduced in 
[13], it has been proven that any language generated by a linear PCG system can 
be recognized by a log-space NTM [2], [3]. The query mechanism of [13] does not 
seem powerful enough to generate the computationally hardest languages recognizable 
in logarithmic space. A small, natural change to the query mechanism, however, 
increases the power of regular PCG systems sufficiently to generate log-space complete 
languages. According to the definition in [13], when one component queries another, 
it gets the string generated by the latter so long as that string does not contain any 
query symbols. If this string happens to contain a nonterminal symbol that is not 
in the grammar of the querying component, the entire derivation fails. We propose 
allowing the querying component to wait until every nonterminal in the string being 
queried is in its grammar. The motivation for extending the query mechanism in 
this way is that the information returned from a query would always be coherent 
with the querying grammar. Moreover, this protocol allows a querying component to 
wait any number of steps before completing a query, making synchronization among 
components much easier to achieve. We call this query mechanism coherent queries. 
Grammar systems whose derivations use coherent queries are called coherent PCG 
systems, or CPGC systems. 

We prove that regular CPCG systems can generate one of the computationally 
hardest languages that can be recognized by log-space NTMs. In particular, we show 
that the language O R D E R E D  R E A C H A B I L I T Y  (a variant of graph teachability) 
can be generated by a CPCG system of fifteen regular grammar components. On the 
other hand, we show that log-space NTMs are still powerful enough to recognize any 
language generated by a regular CPCG system. These two results establish that log- 
space NTMs recognize exactly the closure (under log-space reduction) of the languages 
generated by regular CPCG systems. 

The paper is organized as follows. Section 2 defines CPCG systems. In Section 
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3, we define the language O R D E R E D  R E A C H A B I L I T Y  and construct a regular 
CPCG system that  generates it. Section 4 presents the main result. We conclude in 
Section 5. 

2. Pre l iminar ie s  

In this section we define CPCG systems. We are only interested in PCG systems 
whose components are regular grammars. See [5], [13] for more general definitions of 
PCG systems, on which our definition will be based. 

We assume that  the reader is familiar with log-space NTMs and log-space re- 
ducibility, as described for example in [7], [1], [11], and with basic concepts of formal 
language theory as can be found in [15]. We use )~ to denote the empty string. 

Def in i t ion .  A Coherent Parallel Communicating grammar system (CPCG sys- 
tem) with k >__ 1 regular components is a (k + 2)-tuple F = (Q, E, G1,..., Gk) where 
E is a terminal alphabet, Q = {Q1, Q2,.. .  ,Qk} is a set of query symbols, and each 
G~ = (N~ O (Q - {Q~}), E, P~, S~), for i = 1 , . . . ,  k, is a Chomsky regular grammar 
with nonterminal set N~ U (Q - Qi), terminal set E, productions Pi and start symbol 
S;. It is required that  sets N1 U . . .  U Nk, Q and E are mutually disjoint. Let ~ i  be 
the single-step derivation relation for grammar G~. 

Informally, a derivation in a CPCG system consists of parallel, synchronized deriva- 
tions of its component grammars. The separate derivations are independent of one 
another up to the point where one derivation does a query of one of the others, in 
which case information can flow from one component to another. 

Derivations for system F are defined as follows. Consider a k-tuple (x l , . . . ,Xk)  
that  has been derived so far. For i = 1 , . . . ,  k, if xi 9~ E*, choose Xi to be the member 
of N i U Q  that  occurs at the end of x~, and let x~ = z~Xi. If xl E E*, then let 

Say that  

1. If Xi = ,~, then one of the following holds. 

(a) If there is no j such that Xj = Q~, then y~ = xi. 

(b) If there is a j such that Xj = Q~, then y~ -- Si. 

2. If X~ E Ni, then one of the following holds. 

(a) If there is no j such that Xj -- Q~ and X~ C Nj, then xi =====~i yi. 

(b) If there is a j such Xj -= Q~ and X~ e Nj, then y~ = S~. 

3. If Xi = Q j, then one of the following holds. 

(a) If Xj = A or Xj E Ni, then y~ = z~xj. 

(b) If Xj # )~ and Xj • N~, then y~ --- x~. 

We would like to explain the difference between our definition of PCG systems 
and the original definition in [13]. According to [13], when one component queries 
to another, it waits and gets the word generated by the latter so long as the word 
does not contain query symbols. However, the word to be queried might contain a 
nonterminal symbol that never occurs in the querying component. This causes the 

Xi = -~. Let ==~i be the single-step derivation relation for grammar Gi. 
( x l , . . . ,  xk) ==~ (Yl , . . . ,  Yk) if one of the following cases holds. 
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derivation to cease, and no string of terminals to be derived. When coherence is 
introduced, this circumstance is avoided by allowing the querying component to wait 
until all nonterminal symbols in the word to be queried also belong to the grammar 
of the querying component. 

The CPCG systems defined here are called returning systems since each derivation 
component returns to its .start symbol once it is queried by another component. A 
system is non-returning if a queried component proceeds with its normal derivation 
in spite of the query. Only returning PCG systems are discussed in this paper. 

By ==~* we denote the reflexive transitive closure of relation ==~. Say that 
(y l , . . . , yk )  is derivable in t steps from ( x l , . . . , x k )  if there is a chain of tuples 
so ~ Sl ---~ ""  ~ st where so = ( x l , . . . ,  xk) and 8~ = (Yl , . . . ,  Yk). 

The language generated by a PCG system Y is 

L(r)  = {, e ~* I ($1, $2, . . . ,  Sk) ~ *  (x, ~ , . . . ,  ~ )  for some a2, . . . ,  ak} 

3. Generating NL-Complete Languages 
In this section, we show that regular CPCG systems are powerful enough to gen- 

erate NL-complete languages. 
We will use a variant of the graph teachability problem, which is known to be 

NL-complete. Stated in terms of graphs, the graph reachability problem is "Given a 
directed graph G and vertices s and t of G, decide whether there is a directed path 
in G from s to t". For discussing languages, we must encode graphs as strings. Let 
(G) be an encoding of G of the form (u~$vl).." (um$v~), where (Ul, Vl) , . . . ,  urn, v,~) 
are the edges of G. Vertices are encoded as strings over alphabet {0,1}*, where the 
vertices of a graph with n vertices must be encoded as the binary representations of the 
numbers 0 , . . . ,  n - 1. Our encodings of graphs do not explicitly mention vertices; the 
vertices are those mentioned in edges, and we forbid graphs with isolated vertices. In 
our encodings of graphs, we permit an edge to occur more than once in the encoding; 
duplicated edges occur only once in the graph though. 

We use the following variant of the graph reachabitity problem. Given an en- 
coding (G) of a directed graph G, an ordered path in (G) is a directed path p in 
G whose edges occur in (G) in the same order in which they occur in path p. So 
if a (G) has an ordered path from vertices s to t, then (G) must be of the form 
�9 .. (S$Vl) ."  (Vl$V2)"" (vh-~$Vh)''' (vhSt) ' ' '  for some h _> 1, where vi C {0,1}*, for 
i = 1 , . . . , h .  Define 

ORDERED REACHABILITY ---- 

{ s # t # ( G )  : (G) has an ordered path from s to t } 

T h e o r e m  3.1. Language ORDERED REACHABILITY is NL-complete. 

Proof. First we show ORDERED REACHABILITY to be in the class NL. It is easy 
to see that  the syntax of the encoding s # t # ( G )  can be checked deterministically in 
logarithmic space. To check for an ordered path from s to t, copy s and t to  a work 
tape, and copy s to a tape that holds the "current vertex". Scan through the edge 
list for a nondeterministically chosen distance until an edge of the form (s,v) is found, 
and copy v to the current vertex tape. Continue scanning ahead, each time searching 
a nondeterministic distance for an edge that goes from the current vertex to another 
vertex. At the end of the edge list, check that the current vertex is t. 
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It is straightforward to reduce graph reachability to ordered graph teachability. 
Given a graph G of n vertices, simply write n consecutive copies of all of the edges in 
G, and ask whether there is an ordered path in the resulting encoding. [] 

In the following, we show that there is a regular PCG system that generates 
language ORDERED REACHABILITY. 

T h e o r e m  3.2. There are regular PCG systems generating language ORDERED 
REACHABILITY. 

Proof. We construct a PC grammar system F with 15 components that can exactly 
generate members of ORDERED REACHABILITY. Let F = (Q,E, Go, GI , . . . ,G14)  
where Q = { Q 0 , ' " ,  Q~4} is the set of query symbols, E = {0, 1, (,), $, •} is the set 
of terminal symbols and the components Go,- . . ,  G14, categorized in six groups, are 
described as follows. 

Group I consists of three components that generate word s and duplicate it. 

GI: G2: G3: 
S1 "---> 0S11 xs110SI 1S S~ ~ Q1 $3 ~ Q1 
S--+ S S--* V S -~  J 

V--~ V J--~ J 

Group II, similarly to group I, consists of three components that generate the word t 
and its duplicate. 

G4: Gs: G6: 
$4 --~ 0St] 1S410T I 1T $5 ~ Q4 $6 ~ Q4 
T ~ T  T ~ L  T ~ K  

L ~ L  K ~ K  

Group III consists of two components that generate a sequence of edges of the form 
(usv)... (x y) 

GT: Gs: 
S ~ ( A  Ss-+ Q~]A 
A --* 0A I 1A I 0$B I I$B C --+ Q~ I D 
B --* OBI1BIO)CI1)C D ~ D 
C ~ C  

Group IV consists of three components generating word wi and its duplicate for each 
i 

G9: GlO: Oil: 
$9 -+ 0So 11S910w 11w $10 ---> Qll $11 ~ H 
W - - ~ W  H ~ I  H ~ Q 9  

I ~ Q 9  W--+ Y 
W - +  X Y ~ Y I Z  
X ~ X  

Group V consists of two components that can generate the first and last sequences of 
edges in the graph 
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G12: 
$12 -* (A 
A ~ OAI1AIO$BII$B 
B --, OB I IB I O)C I1)C 
C ~ C  

Group VI consists of only one 

G13: 
5'13 --* Q121C 
C ~ Q121C 

G14: 
$14 ~ QI~ I E 
E--~Q12IE[F 

component, the master component 

Go: 
So ~ Q2 D --4 (Ql l  
V ~ # Q 5  Y - ~ $ Q l o  
L - -+ #QIa  Z--~$Qo 
C -* (Q3 K --+)Q14 
J --+ $Q1o F --r 
X ~)Qs 

We briefly explain how the system F works to generate a word of the form 
s # t # . . .  (SSWl ) . . .  ( w 1 5 ~ 2 ) . . .  ( ~ h - r  (~hSt)  �9 �9 �9 

In order to derive the s# t# ,  component Go first makes a query to component G2 
that derives the word s, a copy of which is derived by component G3. Then Go makes 
a query to component G5 that derives word t. A copy of t is derived by G6 at the 
same time. Go then is ready to derive the encoding of a graph. 

Go generates an arbitrary sequence of edges by making a query to component G13. 
Then Go derives an edge (s, Wl) by making queries to G3 that has kept the copy 
of s and to Glo that derives word Wl. At the same time, component Gll generates 
the duplicate of Wl. The subsequent derivation process of F can be described in the 
following loop. 

Let i = 1. Go makes a query to component Gs that generates an arbitrary sequence 
edges. Then Go derives edge (wl, W~+l) by making queries to component Gll that has 
kept the copy of w~ and to component Glo that has just generated word w~+l. At 
the same time, component Gll generates the duplicate of wi+l. Let i +-- i + 1. The 
system repeats the above process until Go derives an edge (Wh, t) by making queries to 
component G6 and Gll that have kept the copies of t and of Wh respectively. Finally, 
Go makes a query to G13 to get the last sequence of edges. 

It is instructive to examine the interactions among Go, Gg, Glo and Gll. Grammar 
G9 is responsible for derive a new word wi. Grammar Glo carries this to Go, and Gll 
keeps a copy of wi. It is necessary to make simultaneous copies of queried strings, 
since the derivation rules are returning. Note that Glo will not be able to query G9 
to get a new word wi+l until the copy of w~ maintained by Gll is queried by Go. The 
production rules in G10 force Glo to query Gll before querying Gg. Since Glx holds a 
word w~Y in which symbol Y does not belong to component Glo, Glo has to wait until 
Gll being queried by by Go and returning to its start. Therefore the synchronization 
is established for GlO and Gll to generate the same copy of the new word wi+l, for 
i =  1 , . . - , h - 1 .  

Whether to terminate the looping process or not can be decided by choosing rules 
Y ---* Y or Y ~ Z in component Gll. Symbol Y allows the loop process to repeat, and 
symbol Z forces Go to derive (Wh,t) and may lead to terminating the whole process. 

Finally, it is easy to see that our construction of the grammar system only generate 
words that encode s#t#(G) where G contains an ordered path from s to t. [] 
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Corollary 3.1. There are NL-complete languages that can be generated by regular 
PCG systems. 

4. Simulating Regular PC Grammar Systems in 
Small Space 

T h e o r e m  4.1. All languages generated by regular CPCG systems can be recognized 
by log-space NTMs. 

Proof. Given a CPCG system F = (Q, E, G I , " ' ,  Gk) with k regular components, 
we construct a Turing machine M such that,  for any input x E E*, M simulates the 
derivation of x by F and accepts x if and only if x C L(F). 

During the process of a derivation by the system F, at each step and for each 
i = 1,. �9 �9 k, component i would like to remember the string aiXi derived up to that 
step, where al C E* and Xi C Ni U Q u {,~}. Unfortunately, the length of c~i may 
be larger than logarithm of the input length, so ai cannot be directly stored in the 
work-tape of the machine M. We follow the construction in [2] to overcome this 
difficulty. 

The idea for the construction of M is based on the following observation. If 
component Gi derives word c~iXi where ai is not a substring of the input x, then ai 
will not contribute to recognition of the input x. The reason is that  if the master 
component G1 makes a query to Gi, then it will not derive x unless it is later queried 
by some other component and returns to its start symbol. 

If component G~ derives word aiX~ for some a~ that is not a substring of the input 
x, then Gi is called void until it is queried and returns to its start symbol. Note that  
it suffices to store only the terminal strings derived by components that are not void. 
Because any such a string is a substring of x, its information can be recorded by two 
indices that  point to the beginning and ending positions of the terminal string x in 
the input tape. Turing machine M stores the indices instead of the terminal string in 
the simulation. As a result, M is log-space bounded. 

Besides the terminal strings ai and nonterminal symbols Xi, machine M records 
the query relationship between each pair of components. At each step, M works 
according the the information given in the k-tuple ( O L 1 X 1 ,  �9 �9 " , O~kXk). Initially, a~ = ,k, 
X~ = Si and void(Gi) = F A L S E  for i = 1 , . . . , k .  For each i = 1 , - . . , k ,  and each 
step, M performs one of the following computations 

1. If X~ C E* and there is no j such that X d = Q~ then M does not change a~ or 
X~. 

2. If X~ • Q and if there is no j such that Xj = Q~ or there is a j such that  Xj  = Q~ 
but X~ r Nj U {),}, then M choose a production X; ---* fl~Y~. If there is no such 
production, then M rejects x and halts. Otherwise, M updates X~ with Yi and 
a; with a;fl;. If the new a~ is not a substring of x, M sets void(Gi) = TRUE; 

3. If X; r Q and there is a j such that Xj = Q~ and Xi e Nj U {,k}, then M sets Xj 
to be X;, aj  to be c~ja~, X; to be S~, and ai to be ~. M sets void(Gi) = F A L S E .  
If the new aj is not a substring of x, M sets void(Gj) = TRUE; 

M repeats (if it can) the above steps until either G1 derives the word x or there 
is a circular query. In the former case, it accepts x. In the latter, it rejects x. 
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It is easy to verify that the above strategies follow precisely the derivation process 
defined in Section 2, and that the space is logarithmic in the length of the input. [] 

Now we are ready for our main result 

Theo rem 4.2. Log-space NTMs recognize exactly the closure under log-space 
reductions of the class of languages generated by regular CPCG systems. 

Proof. Since the composition of two log-space reductions is also a log-space reduc- 
tion, by Theorem 4.1, the closure under log-space reductions of the class of languages 
generated by regular PC grammar systems can be recognized by log-space NTMs. 

On the other hand, by Theorem 3.2, any language reducible via log-space reduc- 
tion to language ORDERED REACHABILITY is in that closure. By Theorem 3.1, all 
languages recognized by log-space NTMs belong to the closure. [] 

Finally, note the following relationship between regular CPCG systems and a long- 
standing open problem in computational complexity. 

Theo rem 4.3. If regular CPCG systems can generate all context-free languages, 
then log-space NTMS are equivalent in power to auxiliary pushdown automata. 

Proof. It has been shown [18], [4] that auxiliary pushdown automata recognized 
exactly the closure of context-free languages under log-space reduction. D 

5. Conc lus ion  
We have shown that the class NL is exactly the closure under the log-space reduc- 

tion of the class of languages generated by regular CPCG systems, and have given 
the first grammatical characterization for logarithmic space-bounded Taring compu- 
tations. 

We would like to point out that the query mechanism adopted for CPCG systems 
is natural for describing inter-component communications of complex systems. Yet it 
does not greatly increase the power of regular PCG systems. 
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Abstract. In this paper we investigate the computational complexity for 
Parallel Communicating Grammar Systems (PCGSs) whose components 
are context-free grammars. We show that languages generated by non- 
returning context-free PCGSs can be recognized by O(n) space-bounded 
Turing machines. Also we state a sufficient condition for linear space com- 
plexity of returning context-free PCGSs. Based on this complexity charac- 
terization we also investigate the generative power of context-free PCGSs 
with respect to context-sensitive PCGSs and context-sensitive grammars. 

1. I n t r o d u c t i o n  

Parallel Communicating Grammar Systems (PCGSs) have been introduced as a 
language-theoretic treatment of multiagent systems [4]. A PCGS consists of several 
components (grammars) which work in parallel, in a synchronized manner. This is 
done according to the communicating protocol in which one grammar (component) 
may query strings generated by others and several components may make queries at 
the same time [4]. Formal definitions will be reviewed in the next section. Because of 
the synchronization and communication facilities, PCGSs whose components are of a 
certain type are more powerful than a single Chomsky grammar of the same type [1], 
[4]. 

The study of computational complexity of PCGS is a stand alone problem. It 
is Mso a feasible approach toward the generative power of PCGSs. By proving the 
upper-bound or lower-bound complexity for PCGSs of a certain type, it is possible 
to find out the relationship between the generative power of such PCGSs and that of 
other generative devices. 

In this paper, the study of the computational complexity of context-free PCGSs 
is based on space-bounded Turing machines. We will show that languages generated 
by non-returning context-free PCGSs can be recognized by nondeterministic Turing 
machines using O(Iw]) tape cells for each input instance w, This result is obtained for 
both centrMized and non-centralized non-returning PCGSs and a sufficient condition 
for the returning case was stated. Starting from these results, we will analyze the 
generative power of context-free PCGSs according to the generative power of context- 
sensitive grammars and context-sensitive PCGSs. 

The present paper is organized as follows. The next section reviews some funda- 
mental concepts, the third section presents the computational complexity of context- 
free PCGSs and the fourth section discusses the generative power of this kind of 
PCGSs. We present some final remarks and further studies in the last section. 
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2 .  F u n d a m e n t a l s  

In this section, we will briefly review the notion of PCGS and that  of space- 
bounded Turing computation. More detailed descriptions can be found in [1] and [2] 
respectively. We also assume that the reader is familiar with basic concepts in formal 
language and computational complexity theories. 

We will use the notations from [1]. For x E V*, and a set U, N u  denotes the 
number of occurrences of elements of U in x. We also define IIUII to be the cardinality 
of set U. The null string is denoted by ~. 

The next definitions are also conforming to [1]. 

Def in i t i on  2.1. Let n > 1 be a natural number. A PCGS with n components is 
a (n + 3)-tuple 

F -= ( N , K , T ,  G 1 , . . . , G n ) ,  

where N is the set of nonterminals, T is a terminal alphabet, K = {Q1, Q2 , . . . ,  Q~} 
(the sets N,  K and T are mutually disjoint) and G~ = (N U K, T, P~, S~), 1 < i ~ n, 
are Chomsky grammars. Let Vr = N U K U T. 

The grammars Gi, 1 < i < n, are the components of the system and the elements 
of K are called query symbols; their indices point to GI, . . . ,  Gn respectively. 

The derivation in a PCGS is defined as follows. 

Def in i t i on  2.2. Given a PCGS F = ( N , K , T ,  G 1 , . . . , G ~ )  as in the definition 
above, for the tuples (xl, x2 , . . . ,  xn), (Yl, Y2,..., Y~), xi, Yi E V~, 1 < i < n, we write 
(xl, x 2 , . . . ,  x~) ~ (y~, y2 , . . . ,  yn) if one of the following cases holds: 

1. Ixilg = O, l < i < n, and for all i, l < i < n, we have x~ =V yi in Gi or x~ C T* 
and xi = y~; 

2. there is i, 1 ~ i _ n, such that ]Xilg > 0 and for each such i let xi = 
zlQilz2Qi~iztQi, zt+l, t >_ 1; in that case, for z~ e V~, ]zi] K = 0, 1 < j < t + 1, if 
IX~IK = 0, 1 < j _< t, then y~ = ZlX,lZ2Xi~...ztx~,zt+~ [and Ylj = S~j, 1 <_ j < t]. If 
exists j ,  1 < j < t, and Iz~ Ig ~ 0 then Yi = xl. For all i, 1 < i < n, for which y~ was 
not specified above we have yi = xl. 

The first case is called a componentwise derivation step and the second a communi- 
cation step. Note that communications have priority over componentwise derivations. 
The query symbol to which a string has been communicated is called satisfied. 

A tuple (xl~ x2 , . . . ,  x~) is called a configuration of the system. We will call xi a 
component of the configuration. 

Note that  rules Qj --~ a are never used~ so we can assume that there are no such 
rules [1]. 

The derivation in a PCGS is blocked if no rewriting rule can be applied to a non- 
terminal symbol in any component or circular queries appear (this happens when Gi~ 
introduces Qi~, Gi2 introduces Qi3, . . . ,  Gik_~ introduces Qik and Gik introduces Qi~; 
in this case no rewriting step is applicable, because the communication has priority, 
but also no communication steps are applicable). 

De f in i t i on  2.3. The language generated by a PCGS F is: L(F) = {x C T* I 
( s , , s ~ , . . . , s ~ )  ~* ( ~ , ~ , . . . , ~ ) , ~  e v~,2 < i < n). 

The derivation starts from the tuple of axioms ($1, $2 . . . .  , S~). A number of 
rewriting and/or  communication steps are performed until G1 produces a terminal 
string. Note that  L(F) contains only strings generated by the first component, with 
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no care about the strings generated by the others, which may contain query sym- 
bols. 

Def in i t i on  2.4. Let F = (N, K, T, G1 , . . . ,  G~) be a PCGS. If only G1 is allowed 
to introduce query symbols, then F is called centralized. The unrestricted case is 
called non-centralized. 

Def in i t ion  2.5. A PCGS is called returning (to the axiom) if, after communica- 
tion, a component which has communicated a string resumes the work from its axiom 
as described by sentence [and yij = SiC, 1 < j < t] in the second case of Definition 
2.2. A PCGS is called non-returning if components continue working using the current 
string after a query (i.e. the sentence above is erased from the definition). 

N o t a t i o n s :  A centralized, returning PCGS with components of type X is denoted 
by PC.X .  For the centralized case we add a C and for non-returning case a N (see 
[1] for details). We obtain the classes PC, CPC, NPC,  NCPC.  

The notion of the coverability tree of a non-returning PCGS has been introduced 
in [5]. We will summarize here this notion and its relevant properties for this paper. 

The set of natural numbers N is extended by a special symbol w to the set N~ = 
N U {w}. The operations +,  - , .  and the relation _< over N are extended to Nw by 
w + w = w +  n = n  + w = w , w - n = a J ,  w . n = n . c o = w ,  n < w  for all n E N. 

The set N (of nonterminals) of a PCGS F = (N, K,T,  G1 , . . . ,  G~) is ordered: 
A1,...,A~+,~, m >> 0, such that A1 = S1, . . . ,  An = Sn. 

Let w = (w~, . . . ,  w~) be a configuration of I'. Mw denotes the vector 

M~ = ( ( ] w l I x l  ,""  ' ,  Iwllx2o+fl,. . . ,  (Iw~lxl , . . . ,  Iw~lx~~ 
whereXi  = Ai, 1 < i < n + m, Xn+,~+~ = Qi, 1 <_ j <_ n. Mw(i, j)  denotes the 
element IWdxj. 

We can assume [5] that for each component of r there is a phantom production 
which does not change the string and which can be applied only to terminal strings in 
the synchronized case. So, a rewriting step in I '  is an n-tuple t = ( r l , . . . ,  r~), where 
ri denotes either a production in Gi or the phantom production, for all 1 < i < n. For 
uniformity, we say that communication steps are produced by a special transition A. 
The set of all t = ( r l , . . . ,  rn) a s  above is denoted by TR(r), 1 e TR(r) A transition 
t is enabled in a certain configuration if the corresponding rewriting or communication 
step can be applied in that configuration. 

If a transition t is enabled for a configuration w of F then we write M,[t  >r ;  if, 
after t is performed, the new configuration is w' then we write M~[t > r  M~,. 

Let A and B be two arbitrary sets. T(V, E, l~, 4) is an (A, B)-labeled tree if (V, E) 
is a tree and 11 : V -~ A is the node labelling function and 12 : E --* B is the edge 
labelling function. We denote by d~-(Vl, v2) the set of all nodes on the path from vl 
to v2. 

((N 2 ~ + ' ~  TR(r))- labeled tree called the coverability For each PCGS r there i s a  tt ~ j , 
tree for r defined as follow, [5]. 

De f in i t i on  2.6. Let r = (N ,K ,T ,G~ , . . . ,G~)  be a PCGS. An ((N~+m) ~, 
TR(r))- labeled tree, ~r = (V, E , /1 ,4) ,  is called a coverability tree of r if the following 
hold: 

1. the root, denoted by v0, is labeled by M~0, where x0 = (S~, . . . ,  S~) (the initial 
configuration); 
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2. for any node v �9 V the number of outgoing edges Iv+l is 

�9 0, if either there is no transition enabled at ll(v) or there is v' �9 d•(vo,v) 
such that v ~ v' and li(v) = l~(v') 

�9 the number of transitions enabled at ll(v) otherwise; 

3. for any v �9 V with Iv+l > 0 and any transition t which is enabled at ll(v) there 
is a node v' such that: 

(a) 

(u) 

(c) 

(v, v') �9 E,  

1 (v, v') = t, 

ll(~)' ) is given by 

�9 let M be such that ll(v)[t > r  M; 

�9 if M contains queries then ll(v I) = M else 
if exists v* �9 d~-(vo, v) such that ll(V*) < M and l l (v*)(i , j )  < M ( i , j )  
then l l (v ' ) ( i , j )  = w else 
ll(V') (i, j )  = M(i ,  j ) ,  
for al l i ,  j , l < i < n a n d l < j _ _ _ 2 n + m .  

For non-returning synchronized PCGSs such a tree is always finite and can be 
effectively constructed (see [5] for demonstrations and details). The coverability tree 
for a PCGS r is denoted by :r(r). 

From the construction of the coverability tree it follows that  if, for some con- 
figuration w, M~( i , j )  = w, then, in that configuration, the number of occurrences 
of Xj  in the i-th component can be made arbitrarily large [5]. This implies that  if  
M~( i , j )  = w then Xj  cannot be totally removed by any successive derivation steps 
from xl, i.e. such nonterminals cannot block the derivation. 

Def in i t ion  2.7. Given a Turing machine M and an input string x C T*, the 
working space of M on x is the length of work tapes for M to halt on x. More generally, 
let S be any function from N to N; let L C T*. We say that  M decides I L in space 
S provided that  M decides L and uses at most S(n)  tape cells on any input of length 
n in T*. If M is a nondeterministic Turing machine we write L E N S P A C E ( S ( n ) ) .  
We say also that M is a S(n)  space-bounded Turing machine. 

For the rate of growth of a function we have the following definition [2]: 

De f in i t i on  2.8. Let f and g be natural functions. We write f = O(g) iff there is 
a constant c > 0 and an integer no such that f ( n )  < cg(n)  for all n > n0. 

3 .  T h e  C o m p l e x i t y  o f  C o n t e x t - F r e e  P C G S  

In this section we will study the computational complexity of PCGSs whose com- 
ponents are context-free grammars. We suppose that there are not A-productions. A 
discussion on A-productions will be done at the end of this section. 

1A Turing machine M decides a language L if, for any input  string w, M halts and writes on its 
tape a specified symbol Y if w C L or another symbol N if w ~ L. If M writes Y we say it accepts 
the string, otherwise it rejects the input [2]. 
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D e f i n i t i o n  3.1. During a derivation process in a PCGS, a component  of the 
current configuration xl is called non-direct-significant for the recognizing of the string 
w if 

(i) either i ~ 1 and x~ is not queried anymore or 
(ii) i=1 and the derivation from Xl to w in G1 cannot end successfully unless xl 

is reduced to the axiom sometime in the future or 
Off) i # 1 and xl is queried by xj, j # i, and xj becomes non-direct-significant. 
All the others components are called direct-significant. Any component which is 

reduced to the axiom becomes direct-significant. 

In other words, a non-direct-significant component of a PCGS cannot directly 
part icipate at a successful derivation. It can only produce lateral effects (by queries 
which can modify other components) or block the derivation (by circular queries or 
by its nonterminals for which there are no applicable rewriting rules). 

This definition introduces the class of components for which the structure is irrele- 
vant for the derivation. Therefore, these components can be erased if the information 
relevant for lateral effects is kept. 

Starting from this definition we can consider the following lemmas. 

L e m m a  3.1. Let F = (N ,K ,T ,  G1, . . . ,G~) be a centralized PUGS (P E 
C P C . C F  U N C P C . C F )  and w E T* a string. Let also ( x l , . . . , x~ )  be a configu- 
ration of the system. Then, if the length of a component xl becomes greater than ]w]j 
that component becomes non-direct-significant for the recognizing of w. 

Proof. We will consider two situations: 
(i) Let i = 1. If IXlIg = 0, then x~ will be rewrited using the rules of G1. 

But these are context-free rules and there are not A-productions, so the length of xl 
does not decrease. If [xllh- ~ 0, a communication step will be performed. But the 
communication step does not reduce the length of the component  because there are 
not null components to be queried (there are not A-productions). So, the length of 
Xl does not decrease anymore and this leads to the rejection of w because the first 
component is not queried (we have a centralized PCGS) so it can not be reduced to 
the axiom. Therefore Xl is non-direct-significant according to the Definition 3.1. 

(ii) For i > 2, only the first component can introduce query symbols, so if x~ is 
queried by the first component (if x~ is not queried then it is obviously non-direct- 
significant), the length of xl becomes greater than Iwt, therefore xl becomes non- 
direct-significant (according to the point (i)). So x~ is non-direct-significant. [] 

L e m m a  3.2. Let F = ( N , K , T ,  G1 , . . . ,  G~) be a non-centralized non-returning 
PUGS (F C N P C . C F )  and w E T* a string. Let also ( x l , . . . , x ~ )  be a configuration 
of the system. Then~ if the length of a component xi becomes greater than [wt, that 
component becomes non-direct-significant for the recognizing of w. 

Proof. The proof is basically similar to the proof of Lemma 3.1. The case i = 1 
has the same proof as the case (i) in the proof above, because Xl can not decrease 
even if it is queried (the system is non-returning). 

For i > 2, either the component xi is never queried therefore it is non-direct- 
significant, or it is queried by the first component and we have the same situation as 
in the case (ii) of the proof above, or it is queried by another component xi, j ~ i, 
j ~ 1, which becomes in this way longer than w and also can not decrease. [] 
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L a m i n a  3.3. Let F = (N, K ,T ,  G1 , . . . ,  G~) be a non-centralized returning PCGS 
(F E PC,  CF) and w E T* a string. Let also ( x i , . . . , x ~ )  be a configuration of 
the system. Then, if the length of a component xl becomes greater than Iwl, that 
component becomes non-direct-significant for the recognizing of w. 

Proof. We have the same proof as for Lemma 3.2 with the mention that,  if a 
component is queried, it is reduced to the axiom and then it become direct-significant. 
But this situation is allowed by the definition (a non-direct-significant component can 
become direct-significant iff it is reduced to the axiom). 

Using the lemmas above, the complexity of context-free PCGS can be studied. We 
first consider the non-returning case. 

L e m m a  3.4. Let F be a non-returning PCGS with n context-free components 
(n >_ 1). Then there is a Turing machine M that recognizes the language L(F) using 
at most O(Iw[) amount of work tape space for each input instance w. 

Proof. Let F = ( N , K , T ,  G1, . . . ,G~) be a non-returning PCGS, where G~ = 
(N U K, T, Pi, Si), 1 < i < n, are context-free grammars. We will construct the 
nondeterministic Turing machine M which recognizes L(F). 

M will be a standard Turing machine, with a work tape equipped with a 
read/write-head. The alphabet of the tape of M is NUKUTU {~, w}, @, w ~ Nt2KUT. 
Given an input string w C T*, M will simulate step by step the derivation of w by F. 
First, M computes the coverability tree T(F)  of F. Note that  this computation can be 
done [5] and its space complexity is not w-dependent, so it does not modify the space 
complexity of the whole computation if this complexity is a function of w. Then M 
finds the number mm,~ = max{Ii(v)(i , j)  I 1 < i < n, 1 <_ j < 2 n + m ,  l l(v)(i , j)  ~ w}. 
After that ,  M erases the coverability tree and keeps on its tape the number  m ~  2 

The simulation of the derivation is done according to Definition 2.2. Therefore, 
there are two types of derivation steps to simulate: the eomponentwise rewriting and 
the communication. M will keep on its tape the current configuration and will work 
on it as follows: 

(i) If IX~lK = 0 for all i, 1 < i < n, M simulates rewriting for each component x~, 
1 < i < n. If IXilN = O, then x~ remains unchanged. Otherwise, M nondeterministi- 
caly selects a rule from the rule set Pi and rewrites xi according to this rule. If there 
are some i for which such a rule does not exist, then M rejects the input and halts. 

If [x~l > Iwl then, according to Lemma 3.1 (if we have a centralized PCGS) or 
3.2 (if the system is non-centralized), xi becomes non-direct-significant. Therefore its 
structure is irrelevant and it will be replaced by the string 

~tlT1. . . tjTjqlQ1. . . qkQk (1) 

where Q is a special symbol (@ ~ N U T U K ) ,  T1, . . . ,  Tj are the distinct nonterminals 
in xl and Q1, - . . ,  Qk are the distinct query symbols in xl; th (1 < h __ j)  is either the 
number of occurrences of the nonterminal Th in xl if the number of these occurrences 
is smaller than m , ~  or w otherwise. Also qh (1 < h < k) is either the number of 
occurrences of the query symbol Qh in x~ if these occurrences are fewer than m , ~  or 
w otherwise. 

~Or, m,~a, being a property of Y and not of w, it can be considered a parameter of M. Therefore 
it should not be computed (and so M does not need to compute 7(r)) but it should he on the tape 
at the beginning of the computation 
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Note than if the number of occurrences of X in xl ,X C K t3 N,  becomes greater 
than m . . . .  then ll(v) must contain w in the position corresponding to xi and X (where 
v is the node in 7-(F) corresponding to the current configuration), so the number of 
occurrences of X cannot decrease (in fact it can grow indefinitely), therefore X cannot 
be eliminated from x~, so it is not necessary to count its occurrences in x~ anymore. 

We have to explain now how the rewriting works on strings of the form (1). Let the 
rewriting rule be A -+ alAla2A2. . ,  a,,A,~a,~+l, where A E N, A1 , . . . ,  A,~ E N U K 
and a l , . . . , a m  E T*. Then, there is Tr = A, 1 _< r _< j (if not, the rule is not 
applicable) and M increases the counter for each nonterminals or query symbol Aj 
(if that  counter is w then it remains unchanged), 1 _< j < m, in xi; if that  counter 
becomes greater than m . . . .  then it is replaced by w and if Aj does not already exists 
in x~, then a new pair 1Aj is added to x~. Finally, M decrements the counter of A, 
excepting when this counter is w, when it remains unchanged. If that  counter becomes 
zero, both this counter and A are erased from xi. 

The reason for keeping nonterminals in non-direct-significant components is that  
these nonterminals can introduce query symbols when a rewriting is performed. Also 
the absence of a nonterminal can block the derivation. 

(ii) If there are query symbols in the current configuration, then M simulates 
communication steps. If there are circular queries, M rejects the input and halts. 
Otherwise, M nondeterministicaly selects a component xl for which Qj, 1 <_ j < q, 
are all the query symbols and IXjlg = O, 1 < j <_ q. M sequentially replaces Qj by 
xj. If either the current xj is of the form (1) or, after replacement, xi becomes longer 
than Iwl, then x~ becomes non-direct-significant, so it will be replaced by a string of 
the form (1). 

This communication step is repeatedly performed until there are no query symbols 
in the current configuration. 

M repeats steps of type (i) and (ii) until: 
1. either xi and w are identical or, 
2. the first symbol of xl is @ or, 
3. the number of iterations exceeds a fixed positive number c. 
In the first case M accepts the input and halts, in the other two cases M rejects 

w and halts. 
Let us count the amount of work space used by M during the derivation. If the 

length of a component x~ is smaller than Iwl then this component is kept on the tape 
as it is, so less than Iwl tape cells are necessary in order to keep it. If a component has 
a length greater than Iwh it become of the form (1). Because we have a fixed finite 
number t of nonterminals for a given PCGS and exactly n query symbols, the length of 
such component on the tape is independent of ]w] and is less than ] + log mma~(t + n ) ,  

where t = Ilgll . 
A communication step may use temporary an amount of tape space double than 

the space used by a single component (e.g. a string of length Iwl is queried by another 
string of length Iwl; before the reduction to form (1) we have to use 21wl tape ceils). 

Therefore, the number of cells used by a component is smaller than 

2max(Iwl, 1 + log mm~,(t + n)). 

We have n components and we need some extra space on the tape to keep the rules 
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of the system and m , ~ .  So, the space used by M is upper-bounded by 

2n. max(Iwl, 1 + log m,~ , ( t  + n)) +pl  + l o g m  . . . .  

But t, n and m , ~  are not Iwl-dependent so, conforming to Definition 2.8 of the rate 
of growth of the functions, the space used is 

O(2nlw I -4- pl -4- log mm~x). 

Finally we have to show that the fixed integer c we claimed before exists. But this is 
immediate from the following property of space-bounded Turing machines [2]: 

N S P A C E ( S )  C_ U { N T I M E ( d  s) I d >_ 1}. 

If the number of the iterations of M becomes greater than c, M have repeated 
some configurations, so M should reject the input because, if the input is in L(F), 
it would have been accepted bei%re the configuration is repeated at the second time 
(this happens because of the nondeterminism of M). [] 

The same result cannot be obtained for returning PUGS unless there is a limit 
for the number of significant occurrences for each nonterminal (i.e. if the number of 
occurrences of any nonterminal in any component xi of the configuration exceeds that 
limit, then that nonterminaJ cannot be eliminated from xl by any further derivation). 
We will call this limit a limit of significant occurrences. 

Note that this limit was found for the non-returning case by constructing and 
inspecting the coverability tree of the system in discussion. This is possible because 
this tree can be effectively constructed for the non-returning case [5]. The construction 
of the coverability tree is not necessary effective for returning PCGSs. 

L e m m a  3.5. Let F be a returning centralized PUGS with n context-free compo- 
nents, (n >_ 1). Then there is a Turing machine M that recognizes the language L(F) 
using at most O(Iwl) amount of work tape space for each input instance w if there 
is a finite limit mmo~ = m(Iwl) of significant occurrences for anu nonterminal, where 
m : N--+ N,  m = O(d=), d > 1. 

Proof. Let F = ( N , K , T ,  G1 , . . . ,G~)  be a non-returning PCGS, where Gi = 
(N  U K,  T, Pi, Si), 1 < i <_ n, are context-free grammars. We will construct the 
nondeterministic Turing machine M which recognizes L(F). 

M will be a standard Turing machine, with a work tape equipped with a 
read/write-head. The alphabet of the tape of M is N U K U T U {@,w,}. Given 
an input string w C T*, M will simulate step by step the derivation of w by P. The 
construction of M is basically similar to the one used in the proof of Lemma 3.4 
excepting that M does not compute the coverability tree of F. 

The reference to Lemma 3.2 from the above demonstration should be replaced in 
the current demonstration by the reference to Lemma 3.3. 

Differently from the non-returning case, when a component xi is queried, M has 
to simulate the returning of xi to the axiom. This is done by replacing xi by the 
axiom of its grammar (Si). 

Note that this replacement does not depend of the form of xi so the processing of 
strings longer than Iwl is correct, i.e. the rewriting of such components in the form 
(1) does not lose any necessary information. Moreover, a number of occurrences (of 
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any terminal X in any component of the configuration x~) greater than mm~ implies 
that  X cannot be eliminated from zl, as in the proof of Lemma 3.4. Therefore, the 
non-direct-significant components are correctly stored. 

M halts if 
1. xl is identical with w; in this case M accepts the input or 
2. no derivation steps are available (there are not rules applicable for some com- 

ponents or there are circular queries) and M rejects the input or 
3. the number of iterations exceeds a fixed positive number (similar with the one 

in Lemma 3.4); Mso in this case M rejects the input. 
Even if the circularity of a PCGS is not a decidable problem for the returning case, 

M halts in any situation because of the limit c of its possible configurations. M does 
not decide the circularity of the system at the beginning of the derivation (which can 
be an undecidable problem) but it halts when any circularity appears. 

Finally, the space used by M is, analogous with the proof of Lemma 3.4, 

O(2n'max(lwl, 1 + log r n ~ ( t  + n)) + pl + log r n ~ )  = 

= O(2n'max(lw h 1 + log m(lwl)(t + n)) + pl + log m.~ . )  = 

= O(2n'max(lw h 1 + log dl~l)(t + n)) + pl + log d I~l) = 

= o ( - ~ a x ( l w h  Iwt) + I~l) = o(1~1) 

(because m . ~  = o(2M)) ,  and a limit c for the possible configurations of the tape 
can be found. [] 

By Lemmas 3.4 and 3.5 we have 

T h e o r e m  3.1. s CF) c_C_ NSPACE(n) for X �9 {NPC, NCPC} and there 
are no A-productions. 

T h e o r e m  3.2. s  C_ NSPACE(n) for X �9 {PC, CPC} and there are no 
A-productions if a limit in O(dlwl), d > 1, of significant occurrences exists. 

Also we can consider a subclass of context-free PCGS with A-productions. This 
subclass is very restrictive but we can consider in this way PCGSs which can generate 
the null string. 

Def in i t i on  3.2. We say that P �9 X, CFa,, X �9 {PC, NPC, CPC, NCPC}, if 
F �9 X,  CF, X as above, and either P does not contain A-productions or 

(i) Pi, i > 1, do not contain A-productions and 
(ii) P1 contains only the three productions $1 -+ A, $1 --* $1 arid $1 --+ Q~ and 
(iii) Xl is not queried anymore (i.e. Q~ does not appear in the right side of any 

production of the system). 

Note than the subclasses introduced by this definition are similar with usual 
context-free grammars in which A-productions are eliminated [2]. 

We have the following theorem. 

T h e o r e m  3.3. s C_ NsPACE(n),  X �9 {NPC, NCPC}. 

Proof. Let F = (N, K, T, G1 , . . . ,  G,~). We will construct Turing machines which 
simulate the derivation of an input string w. Such a machine M works as follows: 

If w is the null string, which belongs to the language in discussion, M ac- 
cepts it and halts. Otherwise, M continues the derivation for the system F' = 
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( N , K , T ,  G2 , . . . ,G~)  as the machine for the appropriate class X.CF does. Note 
that, by erasing the first component, the system becomes without A-productions, so 
the machine works properly. Also, the first component in F only waits for the second 
component to obtain a terminal string and queries it. [] 

Coro l l a ry  3.1. L(X.CF~.) C NSPACE(n), X E {PC, CPC}, if a limit in 
O(dl~E), d > 1, of significant occurrences exists. 

4.  G e n e r a t i v e  P o w e r  o f  C o n t e x t - F r e e  P C G S  

In this section we will analyze the generative power of context-free PCGS with 
respect to context-sensitive grammars but also to other types of PCGSs. 

Theorrem 4.1. Z(X.CF) C s X E {NPC, NCPC}. 

Proof. It has been proved that the class of languages recognized by linear space- 
bounded Turing machines is identical to the class of context-sensitive languages [2]. 
This and Theorem 3.1 imply that s includes s [] 

Coro l l a ry  4.1. ~(X.CF) c_ Z(Y.CS), X E {NPC, NCPC}, Y E {NPC, 
NCPC). 

We have proved that any language generated by non-returning context-free PCGSs 
is context-sensitive. An open problem is if there are context-sensitive languages which 
can not be generated by such PCGS~ i.e. if the inclusion in the Theorem 4.1 is proper. 

The above results are obtained for the classes X.CF, X E {NPC, NCPC}, but 
they can be extended for X C ~PC, CPC} if a limit of significant occurrences as 
above exists. Also these results are true for the classes X.CF~., X as above. 

5.  C o n c l u s i o n s  

In this paper we have investigated the computational complexity of context-free 
PCGSs. We have proved the linear space complexity of languages generated by non- 
returning context-free PCGS, proving so that these languages are context-sensitive. 
Also, we have found some results concerning returning systems. Finding the limit of 
significant occurrences we mentioned above is an open problem which we are working 
o n .  

Systems which contains A-productions were not considered and this is a possible 
extension of this study. We think a feasible approach to this problem consists in 
finding some transformations which eliminates A-productions (in the same manner as 
for context-free grammars [2]) even if there are synchronization problems. Theorem 
3.3 is a support for this approach. We believe that these systems have linear space 
complexity too. 

Also a possible extension of this study is the investigation of time-bounded com- 
plexity of context-free PCGSs. We intend to pursue further studies on these issues. 
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Abstrac t .  We consider PC grammar systems with communication by 
request, but with the communicated strings defined dynamically, accord- 
ing to certain regular languages associated to system components (like in 
CCPC grammar systems). The power of such systems is investigated. 

1. Introduction 
The orientation of the contemporary operating systems to multitasking, the build- 

ing of computers with multiprocessor architectures, as well as the last projects in the 
area of the distributed operating systems (for instance: Plan 9, Spring) show us the 
great importance of the parallel and distributed architectures. 

To investigate them it can be a valuable source to elaborate relevant theoretical 
models of the parallel and distributed computing. In view of this, we consider, as a 
start point, the UNIX operating system, a first major system oriented to multitasking, 
that  can be met on all hardware platforms (from microcomputers to supercomputers) 
and that  has decisively influenced the building of most of the contemporary operating 
systems. 

It is often desirable to construct software systems that consist of several cooper- 
ating processes rather than a single, monolithic program. There are several possible 
reasons for this: 

�9 a single program might, for example, to be too large for the machine it is running 
on (in terms of physical memory or available address space, for instance), 

�9 part of the required functionality may already reside in an existing program, 

�9 it is easier to design small programs, with a well-defined functionality, rather 
than a big program with several functionalities. 

Therefore, the problem might be solved in a better way with a server process 
that  cooperates with an arbitrary number of client processes. Of course, for two or 
more processes to cooperate in performing a task, they need to have interprocess 
communication mechanisms and, luckily, UNIX is rich in such mechanisms. 

In what follows we shortly describe one of the most used mechanisms in UNIX, 
the communication by signals (see [4], [5]). In UNIX a signal is a query sent from 
a process to another process or from a process to a group of processes. Whenever 
a process receives a signal it performs a special routine to handle this signal (for 
instance, the routine transmits on a communication channel some information that  
was processed of it). 

Several facts are worth mentioning: 
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on a UNIX system, there exists a well-defined number of signal types (regardless 
of the number of processes in the system); 

for each type of signal, a process has at most one routine to handle it, whatever 
process has sent it; 

if, for a type of signal, a process has not a routine to handle it, then there exists 
a default routine defined by system, the same for any process; 

the process that receives the signal has no information about the sender process, 
hence, the responsibility for the correctness of the received dates belongs to the 
receiver process. 

Because, from the point of view of the receiver process, the signal may come 
asynchronously with the execution of the process (for instance, the receiver process can 
not communicate the information to the sender process because it has not processed 
all data), we need a mechanism to synchronize the execution of the processes according 
to the reception of the signals. 

For this, the UNIX systems provides a waiting mechanism by means of which a 
process turns on an inactivity state. This action will be performed a well-determined 
period of time or a undetermined period that lasts until a event would occur. Thus 
a process may turn on a waiting state whenever a signal was not satisfied and waits 
until it is satisfied. 

2. P r e l i m i n a r i e s  

For an alphabet V,  we denote by V* the free monoid generated by V under the 
operation of concatenation. The empty string is denoted by )~ and V + = V* - {~}. 
The length of x E V* is denoted by Ixl. If x E V* and U _C_ V then ]xlu is the number 
of occurrences in x of symbols in U (the length of the string obtained by erasing from 
z all symbols in V - U). If Va is a set of symbols we denote Y '  = {a' I a E V} .  
A Chomsky grammar is denoted by G = (N, T, S, P),  where N is the non terminal 
alphabet, T is the terminal alphabet, S C N is the axiom and P is the set of rewriting 
rules (written in the form u -+ v, u, v e (N U T)*, ]ulN _> 1). 

The direct derivation step with respect to G is defined by: 

x :=> y iff x = x lux2 , y  = xlvx2,  for some u --~ v E P. 

Denoting by ~ the reflexive and transitive closure of the relation =~, the language 
generated by G is define as follows: 

L(C) = {x C T" I s ~ x). 

A P C  grammar system ([6], [1]) is a construct of the form: 

F = (N, T, K, (S1, Pl), (S2, P2),-.., (Sn, Pn)), 

for some n > 1, where N is the nonterminal alphabet, T is the terminal alphabet, 
K = {Q1, Q2 , . . . ,  Q,} is the set of query symbols (N, T, K are pairwise disjoint sets), 
and (S~, Pi), 1 < i < n, are the components of the system. 
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S~ is the axiom, and P~ is the set of rewriting rules (over N U T U K) of the i-th 
component. 

The work of the system starts from the initial configuration ($1 , . . . ,  S,) and pro- 
ceeds by componentwise rewriting steps and communication steps, resulting in new 
configurations. 

In the case of componentwise rewriting steps each component rewrites its current 
sentential form by applying a rule to it. 

In the case of communication steps, when a component Gj introduces some query 
symbol Qi, 1 < i < n, then the currently generated string of the i-th component is 
transmitted to the j - th  component in order to replace Qi in its sentential form. 

The communication has priority over rewriting. If a query symbol appears in 
the sentential form of some component, then a communication must be executed. If 
circular queries are introduced, then the process is blocked; the system also gets stuck 
when a derivation must be done and a component is not able to rewrite its sentential 
form, although it is not a terminal string. After sending its sentential form to another 
component, a component either resumes working from its axiom (the returning mode), 
or it continues processing the current string (the non-returning mode). 

The set of terminal strings generated in this way by the first component is the 
language generated by the system. 

We denote by REG, LIN, CF, RE the families of regular, linear, context-free, 
context-sensitive, recursively enumerable languages, respectively. 

3. D e f i n i t i o n s  a n d  E x a m p l e s  
Defin i t ion  3.1. Let n >__ 1 be a natural number. A parallel communicating 

grammar system with communication by signals (an SPC grammar system, for short) 
of degree n is a (n + 3)-tuple: 

P = (N, T, K, (Sl, P1, R1), ($2, P2, R2) , . . . ,  (S=, Pn, R~)), 

where N is a nonterminal alphabet, T is a terminal alphabet, K = {Q1, Q2, . . . ,  Qp} 
is the set of signals of the system (the sets N, T, K are mutually disjoint), P; is a finite 
set of rewriting rules over N U T U K, Si E N, and Ri is a set of p regular languages 
over N U T associated to symbols Q1, . . . ,  Qp, for all 1 < i < n 

We denote Vr = N U T U K. The sets Pi~ 1 < i < n, are called components of the 
system. 

Here we work only with A-free SPC grammar systems. 
The derivation in an SPC grammar system is defined as follows: 

Definition 3.2. Let F = (N, T, K, ($1, P1, RI), ($2, P2, R2) , . . . ,  (S~, P,~, Rn)) be 
a SPC grammar system and two n-tuples (Xl, x2,... ,  x~), (y~, y2, . . . ,  y~), xi, yi C 
V~, 1 < i < n (we call them configurations). We define two types of derivation: 

1. (derivation without waiting): (x,, x2 , . . . ,  x~) =~ (y~, y2,-- . ,  y~), where x,- ==~ y~ 
b y a r u l e f r o m P i ,  x ~ C ( N t J T ) * , l < i < n ,  o r y i = x i i f x ~ E T * , l < i < n .  

2. (derivation with waiting): (Xl, x2 , . . . ,  x~) ~ (y~, y2 , . . . ,  y~), where x{ ~ y~ by 
a r u l e f r o m P { , x i C ( N U T U K ) * , l < i < n o r y { = x { i f x i c T * , l < i < n ,  or 
x{ E (N tJ T U K)* contains at least a signal QI E K, 1 ___ l < p, and we cannot 
use any rules from P~ to derive x~. If there exist no components to derive the 
configuration and Xl r T*, then F is blocked. 
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D e f i n i t i o n  3.3. We denote the step of communication by 

(Xl, x2 , . . . ,  Xn) ~- (Yl, Y2,. . . ,  Yn) 

and we define it as follows: 
For x~ = alQ~ic~2Qi:...Qir a word with Q~ E K, 1 

(T U N)*, 1 < l _ j + 1, we define for each Qi,: 

xk, if x k E R . Q ~ , , k r  
~i(Qi~,Xk)= )~, if x k C R ~ ,  or k = i ,  

for l < k < n .  
We denote ~(Q~,) = ~,(Oi,, ~1)~(0~,, ~ ) . . .  ~(O~,, ~ )  and 

f (fi(Qi,), if ~i(Qi,) # A, A~(Qi,) 
Q~,, if ~(Q~,) = A. 

Finally: 

_< I _< p, and at E 

D e f i n i t i o n  3.4. We define the language generated by F as follows : 

i ( r )  = {w E T* I ( S l , S 2 , . . . S n )  ~ (x~ 1),x~l), . . . ,x(n 1)) [- (y~i)y~l) . . . ,y(n l ) )  
r (2) (2) , (~) (2) 

==~ (Xl 'X2 ' ' ' ' '  X(n 2)) ~- (,Yl ~ Y2 ," . . . .  , y(2)) ==~ . . .  ~ (X~S)X~S) ", X(nS)), 

for some s > 1 such that  w = x~ ~), where ~ e  {=~, t-}}. 

In words, r has a set of signal types K and the appearance of a symbol Ql E K 
in the sentential form of the component Gi means sending of the signal Ql from Gi 
to all other components of the system F (all components of r are seen as a group of 
processes). The routine of any component Gj, 1 <_ j <_ n, for handling the signal Q1 
consists in the writing of its sentential form on an accessible communication channel 
to all components of F (i.e., the group of processes). From the communication channel 
the component Gi selects the data sent by G~ only if them are acceptable according 
to the regular language R i (thus Gi verifies that  the signal Q1 was properly satisfied Q, 
by Gj). With respect to the type of derivation of F we have: 

�9 in the case of the derivation without waiting, the system is blocked whenever a 
signal is not satisfied, 

�9 in the case of derivation with waiting, if a signal (of a component G,') is not 
satisfied at a step of communication and at the next step (of derivation) we can 
not perform a rule from Pi, then G~ turns on a waiting state (until the signal 
will be satisfied). 

D e f i n i t i o n  3.5. Let F = (N, T, K, G1, G 2 , . . . ,  G~) be an SPC grammar  system. 
If only G1 is allowed to introduce signals, then we say that  F is a centralized SPC 
grammar  system; in the unrestricted case F is called non-centralized. 

A SPC grammar  system is said to be returning (to axiom) if, after a communicating 
step, each component that  has communicated its string to another component  returns 
to axiom. The other systems are called non-returning. 
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Nota t ions .  We denote SPC,~X the class of non-centralized, returning SPC gram- 
mar systems of degree at most n of type X with derivation without waiting. When 
we use only centralized SPC grammar systems we add the letter C, thus obtaining 
the classes CSPC~X.  When non-returning systems are considered, we add the letter 
N, thus obtaining the classes N SP C ~X ,  N C S P C n X .  If we consider the systems 
with derivation with waiting we denote that by WG where G E {SPC~X,  CSPC,~X, 
N S P C ~ X ,  N C S P C ~ X } .  We denote all these classes by Cspc. X can be REG, L IN ,  
CF, CS, RE  (for REG we consider right-linear grammars) and we suppose that P~, 
1 < i < n, contains only A-free rules. 

If we consider n = oo in the previously notations, then we say that we have 
grammar systems with an arbitrary number of components. 

The first component of F is cMled the master of the system. 
In the following constructions we shall assume that when the regular language 

associated to a signal Qt E K is not specified, then, by default, R i = 0 (and Ql does @, 
not appear in any right member of the rules from Pi). 

Here are two examples: 

E x a m p l e  3.1. Consider the system 

F~ = (N, T, K, (S,, P1, R1), (S2,132, R2)), 

N = {S1, S~, $2), f< = {Q1}, T = {a, b}, 
P, = {St  --+ a2S',, S~ --+ aS' , ,  S', ~ aQ,, $2 ~ b}, 

= bs }, = rs . 

We have: 
($1, $2) ==~ (a2S~, bS2) =>. . .  =~ (an-lS~,bn-2~2) 

:::> (anQl, b~-l s1) [- (a~b~-lS2, S2) => (anbn, bS2) 

Hence, L(F1) = { a %  ~ I ~ > 3}e L I N  - R E G .  

Exa m ple  3.2. Consider the system 

P2 = (N, T, K, (S,, P,, R1), ($2,/)2, R2)), 

N = {$1, S'~, $2}, It" = {Q1), T -- {a, b, c}, 

Pl : {Sl ~ a 2 ~  C2, St 1 ---4, aS lc  , ~; ~ aQ~c, $2 ~ b}, 

We have: 

($1,$2) =~ (a2S~c2, bS2) =>... ::4" (an-l S~c=-l, b'-2S2) 

=~ (anQlc n, b=-l S1) }- (a'~b=-l S2c ~, $2) => (anbn c ~, bS2) 

Hence, L(F1) = {a'~b=c ~ In _> 3}e CS -- CF. 

4. O n  t h e  G e n e r a t i v e  C a p a c i t y  

From definitions, the following results are true: 

L e m m a  4.1. X = G1XC G2XC...C_G~oX, for all X E {REG, LIN, CF, CS, 
RE},  G E C s p c .  
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L e m m a  4.2. GnX c_ GnY, for all n >_ 1 ,X C Y , X , Y  G {PEG, LIN, CF, CS, 
RE}, G ~ CsPc. 

From the previous examples, we have: 

L e m m a  4.3. (1) PEG C G2REG, (2) LIN C G2LIN, where G E Cspc. 

L e m m a  4.4. WSPC3REG contains one-letter non context-free languages. 

Proof. Let F be the system 

F = ( g ,  T, K, (Si, Pl,  R,) ,  (S2, P2, R2), ($3,/ '3, R3)), 

g = {S1,S2, SO,A,B}, If = {Q1}, T = {a}, 

Pl = {$1 --* A,B ~ m ,u  ~ a, S1 --+ Q1}, R~I = B +, 

P 2 = { S 2 ~ Q I , A - * B } ,  R~I = d  +, 

P3 = {SO -+ Q1, A --* B}, RaQI = g +. 

Examine a derivation in P. From (S1,S2,SO) we can either perform 
(S~, $2, SO)~ (Q1, Q1, Qi) or ($1, $2, $ 3 ) ~  (A, Q~, Q1)~- ($1, A,A).  In the first 
case we are blocked. In the second one we can either continue ( S 1 , A , A ) ~  
(d,  B,  B) and we are blocked, or ($1, A, A)=V (Q1, B, B) t- (BB, SO, $3) 

(AB, Q1,Q1)~ (AA, Q,,Q,)b (S~,AA, AA). We can continue with 
($1, AA, A A ) ~  (A, BA, BA) and we are blocked, or (S~, AA, d d ) ~  (Q,, BA, B A ) ~  
( Q i ,  B B ,  B B ) [ -  ( B  4, $2,  S3)  * 4 . . . .  2 n-1 - 2  n - l - *  =*(A , Q1, Q1) I- ($1, A 4, A 4) ~ . . . l - ( ~ l ,  J t  , A ):::~ 
( ~  ~2n-1 ~2n-I -[_ * 2 n (21,H ,1J ) (B2~,S2, S3)~(a ,Q~,Q1). 

It follows that  L(F)  = {a :~ I n > 1}, which is not a context-free language. [] 

T h e o r e m  4.1. LIN  C WSPC~c(REG). 

Proof. Because WSPCa(REG) - CF ~ ~ (Lemma 4.4), we have to prove LINC 
WSPC~(REG).  

Let L E L IN  and G = ( g ,  T, S, P)  such that  L = L(G). We can write: 

n = (L M {A}) U U O:(L){a}, 
aET 

(where 02 denotes the right derivative with respect to the symbol a). We denote 
L~ = O~(L). We have L~ E LIN  for each a E T. 

Let G~ = (N~, T~, S~, P~) be a grammar  such that  L(G~) = L~. We construct 
F~ E WSPC~(REG) such that  L(F~) = L~{a}. We define a relation m on the set of 
rules P~ such that ,  if: 

t ! I r : X1 ~ uX2v E P~,r' : X~ --* uX2v E P~, 
t t __  I w i t h  X I , X 2 , X I , X  ~ E N~ and  u , v , u ' , v  ~ E T * ,  we  say t h a t  r N r ! i f f X ~  - X 2. 

The relation N divides P~ in a set of classes Adsuch that  each M EAd is associated 
to a nonterminal A E N~ such that  

M = {X ~ u Y v  E P~ I X, Y E N~,u,v E T*,Y = A}. 

If p = max{2, max{card(M) I M E 3,/}} then we define K = {Q, Q~,Q2,..., Qp}. 
Let m = card(Ad). For each Mk E .hd, 1 _< k _< m, we number  its rules with 
1, 2 , . . . ,  rk. We define F~ as 

- -  R1)," ~- , ~1), (Sl, P1, . . ,(S,~,P,~,R,~),(S,,P~,Rm)), F~ (N, T~, K,  (So, P0, R0), (S,, P~ ' ' ' ' ! 
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where: 
rrt r k 

-N= {S, So, S,,S[,. . . ,S~,S'} U N~ U N~ U U U {[X,k,il l X E N,,}. 
k=l i=1 

We define the components of F~ as follows: 

Po = {S -* a}U{S0 -+ Q}U{A'  -* A I VA �9 N o } U { &  ~ z A I  A -* x �9 Pa,X E T*}. 

Moreover,/~Q = T*S U {T*A'[ A �9 N~}. Let M~ �9 M be the class associated to the 
nonterminal  A �9 N,.  To Ma we associate the components Pk, P~ of F~ defined by 

Pk = {Sk ---+ Q} u {A ~ v[X,k , j ]  l j : X ~ uAv} ,  

where j is the number  of the rule in Mk. Moreover R~ = T*A. 

P/~ = {S'k --e uQj I J :  Z --e uAv}  U {[A, k,j] --* A' I 1 <_ j <_ rk} 

U { [ A , k , j ] ~ - S I l < _ j < _ r k ,  i f A = S ~ } .  

Moreover, R 'k = T*[X, k, j]. % 
From the definition of the languages Ro, R j , R } , I  <_ j <_ m, we observe that  

P0 communicates to Pi, 1 < i < m, Pi communicates to P[,1 <_ i <_ m, and P[ 
communicates to P0,1 < i < m. If 

SO ~ U l X l  Vl ~ UlU2X2V2Vl =:~ . . .  ~ U l U 2 . . .  u n X n v n V n _ l  . . .  Vl 

= ~  U l U 2 . . .  UnWVnVn- - i . . .  Vl = X �9 T*, (*) 

is a derivation in G~ then we have in P~ a derivation that  gets xa, in the reverse way 
to ( , ) ,  with the following rules: 

i) So starts the derivation by the rule So --~ wX,~. 
ii) If X~-I -~ u~X~v~ �9 Mk, (with the number j in Mk~) is a rule that  has to be used 

in ( , ) ,  then a communication step between Po and Pk, (being in a waiting state after 
using the rule Sk, --~ Q) we shall apply the rule X~ --~ v~[X~_~, k~,j] and, after that ,  we 
shall communicate to P~, (being in a waiting state after using the rule S'k, -~ uiQj). 
In P~, we use the rule [X,-1,ki, j] ---+ X[_ 1 if i > 1, otherwise (when Xi-1 = Sa) we 
can, also, use the rule [X~_~, k~, j] --+ S and we communicate to P0 (being in a waiting 
state after using the rule So ~ Q). 

iii) The last rule to apply will be in P0, that  is S --* a, obtaining the string xa. 
We can easily observe that  any deviation from this scenario leads to blocked deriva- 

tions in F, .  Consequently, we obtain L(F,)  = L,{a} .  
We suppose that  we constructed F,,  for all a �9 T. 
Let F~, Fb be two systems as above. We construct F~b such that  L(F~b) = L(F~) U 

L(G). We assume: 

F~ = ( N ' , T ' , K ' , G ' I , G ' 2 , . . . , G ' ) ,  

Fb (N" ,T" ,  " " " " = K ,G1 ,G2 , . . . ,Gm) .  

We define: 

Pab = ( N ' U N " U { S o } , K ' U K " U  ' " T' T", ' ' {Qo, Qo}, u Go, G1,G2, 
G I ~ -  E -  

"" " , n ,  ~ 1 ,  ~ 2 , "  " " ,  G m ) ,  
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with So, Q~, Q~ new symbols. The rules of Go are So --+ Q~, So ~ Q~, and the 
associated languages are R~; = T'*a, R~ o, = T"*b. Obviously, we have L(Y,b) = 

L(r~) u L(rb). 
In the same manner  we recursively construct a g rammar  system such that  L(F) = 

[.J~eT L ( r ~ ). [] 

The following example illustrates the previous algorithm. 

E x a m p l e  4 .1 .  Consider the linear language L = { a ~ b  ~ I n >_ 1}. We have 

L = O~(L){b}, O~(L) = { a n b  n -1  In >_ 1} 

and O~(L) is generated by Gb = ( { X , A } , { a , b } , X , { X  ~ aA, A ~ aAb}). We 
construct Fb such that  L(Fb) = cO~(L){b}, with 

= {S, So, S~, S~} O {X, A', X, A'} U {IX, 1,1], iX, 1, 21} O {[A, 1, i], [A, 1,2]}, 

Po = {So --+ Q , X '  --+ X , A '  + A,-S + b, So ~ abA},R~ = T*S U T*X'  U T*A', 

P~ = {S~ -+ Q ,A  ~ [ X , I , I ] , A  -+ b[A, 1,2]},R~ = T ' A ,  

f'; = {S~ ~ aQ~, S~ ~ aQ~, IX, 1,11 ~ X ' ,  [A, 1, 2] ~ A', [X, 1, 1] ~ S}. 

Moreover R'  = T*[X, 1,11, R ~  = T*[A, 1,2]. Q1 
Here is a derivation in r :  

T h e o r e m  4.2.  CS 

Proof. Let L be a 
L(G) = L. 

We suppose that  G 

(So, $1, S'1) ~ (abA, Q, aQ2) F- (So, abA, aQ2) ~ (Q, ab2[A, 1,2], aQ2) ~- 
(Q, $1, a2b2[A, 1, 2]) =~ ( Q, Q, a2b2 A ') }- (a~b2 A ', Q, S~) ::~ ( a~b2 A, Q, aQ1) }- 

(So, a2b2A, aQ1) ~ (Q, a2b2[X, 1, 1], aQ1) t- (Q, S~, a3b2[X, 1, 1]) 
(Q, S~, a3b2S) F- ( a 3 b 2 S , - , - )  ==> (a3b 3, - , - ) .  

C W S P C ~ ( C F ) .  

context-sensitive language and G = (N, T, S, P)  such that  

is in (weak) Kuroda normal form, hence it has the rules of 
the form: A -+ a ,A  --~ B , A  -+ BC, A B  --+ CD, where A , B , C , D  C N and a E T. 
Without  loss of the generality, we may assume that  A ~ B in rules of the form 
A B  ~ CD (if r : AA ~ CD C P, then we replace it by A ~ [A, r], [A, r]A -+ CD). 

We define a relation N on the set P of the rules. If 

rl : X Z  ~ a E P, r2 : Y Z '  ~ fl E P, 

where Z, Z '  E N U {A}, X, Y E N and a,/3 E (N 12 T)*, we say that  rl Pq r2 iff X = Y. 
The relation • divides P in a set of classes M ;  let n = ca rd (M) .  We define F a 
g rammar  system such that  L(F) = L as: 

where 

N 

r = ( N , T , K ,  Go, G1,G2,. . .  , g~) ,  

U 

N U N ' U { S o ,  S1 , . . . , Sn}  
{[A,r] I A C N and r :A--+ z e P or r : A B  ~ CD E P 
or r : B A - ~  CD e P},  
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K = {Qo, Q,,Q2,.. . ,Q~}, 

eo = (so ~ Qo} u {A' -~ a IrA e N)  
U { A - - , [ A , p ] I p : A ~ a E P o r p : A ~ B E P o r p : A - + B C E P }  

U {A ---* [A, q], B ~ [B~ q] [ q: AB ---* CD E P}, 

R~o = (TUN')*, 
Pk = {Sk ~ Q~} u {[A,p] ~ a ] p :  A ~ a} U {[A,r] --+ B'C' I r: A ~ BC} 

U { [ A , s ] - ~ B ' I s : A ~ B } U { [ A , q ] ~ C ' , [ B , q ] ~ D ' I q : A B ~ C D  }, 

n ~  = { a [ A , p ] f l l a ~ f l E ( N U T ) * , p : A ~ a E  P o r p : A - ~  B E F  

or p: A ~  BC E P} 

u {a[A, ql[B, q]fl I '~, Z c (N U T)*, q: A B  -~ CD e P}, 

for Mk E JP[ asssociated to A E N. 

From the definition of the languages Ri, 0 < i < n, we observe that the communication 
is made only between Go and a unique component G~, 1 4_ i <_ n, or between Gr 
1 _< i _< n, and G0 (the communication between Gi and Gj, 1 < i , j  <_ n, is not 
possible). From this construction, it follows that L(G) = L(F). [] 

Defini t ion 4.1. Let F be a PC grammar system given by: 

F .~ (N, T, K7 G1, G2,..., Gn) 

and a query symbol Q~ E K, 1 < i < n. 
We say that Q~ has "the property C" if every replacing of it by a communicated 

string ulXlu2X2.. .  Xv%+l (Xi E N, 1 < i < p, ui E T*, 1 <_ i <_ p + 1) in a compo- 
nent Gk, 1 < k _< n, is followed by the transformation of all non-terminal symbols 
X~, X2, . . . ,  X~ (by rules from G~) before G~ performs a communication step. 

A derivation in P is called "with the property C" if all query symbols that appear 
in it, have the property C. We define: 

LC(F) --- {x E T* Ix E L(F) and x is obtained by a derivation with propery C}. 

Moreover, we define PC~(X),  the set of languages generated by derivation with prop- 
erty C in PC grammar systems of type X and degree n. Analogously we define 
CPCc~ (X), NPCc~ (X), NCPC~(X).  

From the definitions we obtain the following result: 

L e m m a  4.5. GC~(X) = G~(X) where n > 1, G E {PC, CPC, NPC, NCPC} and 
X e {REG, LIN}.  

Theorem 4.3. a~(X)  c H.(X)  whe~ ~ > ~, X �9 {REa,  L~N, CF, CS, RE} 
and (G, H) e {(PC, SPC), (CPC, CSPC), (gPC,  NSPC),  (NCPC, NCSPC)}.  

P~oof. we suppose X = CF and (C,H) = (PC, SPC) (the other ca~e~ are 
analogous). 

Let F = (N, T, K~ G1, G2, . . . ,  G~) be a PC grammar system with property C. We 
t t t construct a SPC system F ' =  (N, T, K ,  G,, G2, . . . ,  G'~) such that LC(F ') = L(F), as 

follows: 

= U { [ A , j ] / A  E N} and K' = {Q'~,Q'2 . . . .  Q'~}. 
j = l  
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Let Gi = (N U K, T, Si, P/), 1 < i < n. We define G~ = (N [J K', T, [Si, i], P[) where 
P" is given by: 

n 

P[ = [,_J{[A,j] ~ Ul[Xl,i]u2[X2,i]... [Xp,i]up+l I A --+ uaX, u2X2...XpUp+l E Pi, 
j= l  

* X . Ul,U2,...,Up+I C T  ,X1, 2.. , X p ~ N } .  

Moreover, we define R~j = (T U Nj)*, where Nj = {[A,j] I A C N},  1 < j _< n. 

The theorem follows from the following observation: F ~ works like F and the 
property C of r gives us the possibility to communicate at the same t ime as in F. [] 

C o r o l l a r y  4.1. LIN C SPCoo(REG). 

Proof. It is known that  LIN  C PC~(REG) (see [3]). From Lemma 4.5 and 
Theorem 4.3 we have LIN  C PC~(REG) = PCC(REG) C_ SPC~(REG). [] 

5. A G e n e r a l i z a t i o n  

As we said in Introduction, in UNIX it is possible to send signals to a group of 
processes (a case modeled by SPC grammar  systems), but also to a process with a 
defined address. 

We model this general case by the concept of "Parallel communicating grammars 
systems with communication by signals to addresses" (ASPC, for short). 

Definition 5.1. Let n _> 1 be a natural  number. A parallel communicating 
g rammar  system of degree n with communication by signals to addresses is an (n + 3) 
- tuple:  

F = (N, T, K, ($1, P1, R1), ($2, P2, R : ) , . . . ,  (S~, P~, R~)), 

where N is a nonterminal alphabet, T is a terminal alphabet,  K = {Q1, Q 2 , . . . ,  Q~} 
is the set of signals of the system (the sets N, T, K are mutually disjoint). We define: 

= [-J~=i Qk( -1 )  U [J~=i [ J ~ ,  Qk(i). Qk(-1 )  means that  the signal Qk is sent to all 
components of the systems (like in $PC systems) and Qk(i) means that  the signal Qk 
is sent to the component Pi of the system. 

P~ is a finite set of rewriting rules over N U T U K and S{ E N,  for all 1 < i < n 

For all 1 < i < n, Ri is defined as a set of regular languages R/ = (RQj)I<_~<_pi . 

where R~j is a regular language associated to the signal Qj (of the component Pi of 
r). 

We assume that  the rules of Pi, 1 < i < n, axe ,k-free and there exist no rules 
Q t ( j ) ~ a C P ~ , l  < i < n , l  < I < p , j = - l o r  l < j < n .  

The derivation in an ASPC grammar  systems is defined as follows: 

Definition 5.2. Let F = ( g ,  T, K, (S~, P1, R1), (5'2, P2, R 2 ) , . . . ,  (Sn, P,~, R,~)) be 
an ASPC grammar  system and two n-tuples (Xl, x2 , . . . ,  x~), (Yl, y2 , . . . ,  Y,~), xi, Yi e 
Vr*, 1 < i < n. We define two types of derivation: 

1. ( d e r i v a t i o n  w i t h o u t  wa i t ing ) :  ( X l , X 2 , . . .  ,Xn) ~ (Yl,Y2,. . .  ,Yn), w h e r e  xi ~ Yi 
b y a r u l e f r o m P i ,  x i C ( N U T ) * , l < i < n o r y i = x i i f x ~ c T * , l  < i < n .  
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. (derivation with waiting): (Xl, X2,. . . ,  Xn) ~ (Y l ,Y2 , . . . ,  Y~), where x~ =~ Yi by 
a ru l e f romPi ,  x i E ( N U T O K ) * , l < i < n ,  o r y i = x l i f x i E T * , l  < i < n ,  or 
xi E (N U T O K)* contains at least a signal Qz(j) E K ,  1 <_ l <_ p, and we can 
not use any rules from P~ to derive xi. If there exist no components to derive 
the configuration and x~ 9~ T* then r is blocked. 

Defini t ion 5.3. We denote the step of communication by (Xl,Z2,...,Xn) ~- 
(Yl, Y2,' �9 ", Yn) and we define it as follows: 

If xi = c~IQil(jl)(~2Qi~(j2)... Qh(j,)c~,+l a word with Qi~(jk) C I f ,  1 < k < l, and 
c~k E (T U N)*, 1 < k < l + 1, then, for Q~k(Jk) with jk = - 1  communication is done 
like in the SPC systems, otherwise (when 1 < j~ < n) we replace Q~k(Jk) by xj~ if 
xjk E RiQ~ k else it remains unmodified. 

The definition of the language generated by an ASPC grammar system is the same 
as for SPC systems. 

From the definitions, we have: 

T h e o r e m  5.1. i) The S P C  systems are a particular case of A S P C  systems when 
all addresses are - 1 .  

ii) The P C  systems are a particular case of A S P C  systems with derivation without 
waiting, withall addresses different from - 1  and no control on the received information 
by communication (i.e, R i = ( N  U T)*, 1 < i, j < n). Qi -- -- 
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Abstract. We systematically examine the possibility of generating the 
three basic non-context-free constructions in natural and artificial lan- 
guages - replication, multiple agreements and crossed agreements - by 
means of various types of parallel communicating grammar systems. An- 
swering a problem left open in [2], we prove that also the last construction 
specified above can be covered by centralized (context-free) parallel com- 
municating grammar systems, both in the returning and the non-returning 
case. Several problems remain open (mainly concerning stronger forms of 
the results mentioned here). 

1. Introduction 
The parallel communicating (PC) grammar systems were introduced in [7], as 

a grammatical model of parallel computing. Roughly speaking, several grammars 
work together, synchronously, each one on its own sentential form; when certain 
special symbols are introduced, a communication operation is performed: the current 
sententiM form of a component grammar is transmitted to the component which 
has introduced the query symbol, and the occurrences of the query symbol in the 
sentential form of the receiving component are replaced by the communicated string. 
The language generated in this way by a specified component of the system (the 
master) is the language generated by the system. 

Two basic classifications of PC grammar systems are the following ones. When 
only the master is allowed to introduce query symbols, then the system is said to be 
centralized; non-restricted systems are called non-centralized. On the other hand, a 
system is called returning if every component resumes working from its axiom after 
communicating its string to another component; if, after communicating, the com- 
ponents continue the rewriting of the current string, then the system is called non- 
returning. According to the form of the rules, a PC grammar system can be regular, 
linear, context-free, etc. 

We refer to the monograph [1], to [2], etc. for results in this area. We only mention 
that the cooperation of grammars in the form of a PC grammar system increases the 
power of regular and of context-free grammars: systems of all forms mentioned above 
with regular rules are able to generate non-context-free languages. This is useful in 
view of the fact that one knows that naturM languages as well as most of the significant 
artificial languages are not context-free (see, e.g., [3], [4], [8]). 

The three basic non-context-free constructions in natural and artificial languages 
are the replication, the multiple agreements, and the crossed agreements, modelled by 
the following languages 
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nl -= {xx I x E {a,b}+}, 

L2 = (a~b~c~ In >_ 1}, 

La = {a%mc~d "~ I n, m > 1}. 

They are used in many papers as common examples of languages generated by 
PC grammar systems of various types. However, several problems are still open in 
this area. For instance, in [6] it is proved that La can be generated by context-free 
non-centralized PC grammar systems both in the returning and the non-returning 
modes, but it is formulated the conjecture that centralized systems cannot generate 
this language. The problem of the place of this language in the hierarchy of families 
of languages generated by PC grammar systems is formulated as open Mso in [2]. 

We solve here this problem, proving that Ls can be generated by centralized sys- 
tems both in the returning and the non-returning modes. Still, we do not know 
whether or not regular PC grammar systems can generate this language (the answer 
is affirmative in the case of the language L1, for systems working in the non-returning 
mode). 

2. PC Grammar Systems 

As usual, we denote by V* the free monoid generated by an alphabet V; its identity 
(the empty string) is denoted by A and V* - {A} is denoted by V +. The length of 
x E V* is denoted by Ix[, whereas ]xlv is the number of occurrences of symbols in 
U C V in the string x E V*. The families of regular, linear, context-free, context- 
sensitive, and recursively enumerable languages are denoted by REG, LIN, CF, CS, 
RE, respectively. Further elements of formal language theory we shall use here can 
be found in [9], [10], etc. 

A PC grammar system (of degree n, n _> 1) is a construct 

r = (N, K, T, (Sl, P1), . . - ,  (S~, P,)),  

where N, K, T are mutually disjoint alphabets, with K = {Q1,. . . ,  Q~}, S i e  N,  and 
Pi are finite sets of rewriting rules over N U K U T, 1 < i < n. 

The alphabet N is the nonterminal one, T is the terminal alphabet, the elements 
of K are called query symbols, and the pairs (S~, Pi) are the components of the system. 
Often, we call Pi a component. Note the one-to-one correspondence between the query 
symbols and the components. The symbol S~ is the axiom of the component i. An 
n-tuple ( x l , . . . ,  x~), with x~ E ( g  U K U T)*, is called a configuration of F. 

For two configurations (Xl, . . . ,x~),  (y l , . . . ,y~)  with Xl ~ T*, we write 
( x l , . . . ,  x,~) ~ r ~  (y l , . . . ,  Y~) iff the following conditions hold: 

1. Ixilg = O, for all 1 < i < n; 

2. either xi ~ p ~  Yl, or xl = Yl E T*, 1 < i < n. 

For two configurations as above, we write ( z l , . . . ,  x~) ==~ . . . . .  (y l , - . . ,  y,~) iff the 
following conditions hold: 

1. there is i, 1 < i < n, such that ]xitK > 0; 
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2. if x i = ZlQi lZ2 . . .  ZkQikZk+l, ~ ~ l, for zj E (N U T)*, 1 < j _< k + 1, 
and Ix~jlg = 0 for each j ,  1 < j < k, then yl = zlx~z2...zkx~kzk+l and 
[Yii = Sij, 1 _< j < k]; otherwise, yi = xi; 

3. for all i for which y," has not been defined at point 2, we have yi = x~. 

The relation ===~,.w represents a rewriting step (performed in parallel, syn- 
chronously, on all components whose current sentential forms are not terminal),  the 
relation ~ . . . . .  defines a communication step. The query symbols are replaced by 
the strings identified by their indices (we say that  the query symbols are satisfied), 
providing that  these strings do not contain further query symbols. The communica- 
tion has priority over rewriting. If some query symbols are not satisfied at a given 
step, then they might be satisfied at the next ones, providing that  the requested 
strings were modified by the previous communications in such a way that  they do 
not contain query symbols. If circular queries appear, the system is blocked. The 
system can be also blocked in the rewriting mode, when a component cannot rewrite 
its sentential form although it is a nonterminal one. Note that  neither a rewriting 
nor a communication is possible when the sentential form of the first component,  xl 
above, is terminal. The work of the system stops in that  moment.  

The above defined communication step is a returning one: after communicating, a 
c6mponent resumes working from its axiom. If we remove the brackets, [yij = S~, 1 _< 
j < k], then we obtain a non-returning communication, denoted by ~ . . . . . .  : after 
communicating, a component continues processing the current sentential form. 

We write, in general, ~ r ,  ==:~,~ for denoting both a rewriting and a communicat-  
ing step (this second one in the returning or non-returning mode, respectively), and 
==~*, ==a*r for the reflexive and transitive closure of these relations. The  language 
generated by F in the mode q E {r, nr} is 

nq(r) = {x e T* I (S1, . . . ,Sn) ~ (x ,y: , . . . ,y~) ,  
y ~ E ( N U K U T ) * ,  2 < i < n } .  

The first component of the system is called the master; its language is the language 
of the system. Note that  no restriction on the sentential forms of the other components 
is imposed. 

When only the master  can introduce query symbols (formally, ]wlK = 0 for all 
A --* w G ~ ,  2 < i < n), then we say that  the system is centralized; otherwise, the 
system is non-centralized. 

We denote by PC~X the family of languages L,(F) generated (in the returning 
mode) by non-centralized PC grammar  systems with at most n components,  n > 1, 
of type X. When centralized systems with at most n components, n >_ 1, are used, 
we write CPC~X,  when the non-returning mode of working is used we add the let- 
ter N, getting NPC~X,  N C PU~ X.  When no bound is imposed on the number  of 
components,  we replace the subscript n with *. In what concerns the type of the com- 
ponents, we consider here X E {REG, CF},  where R E G  indicates A-free right-linear 
rules (that is rules of the form A --+ xB,  A -+ x, where A, B are nonterminal symbols 
and x is a terminal string, different from A) and C F  indicates A-free context-free rules. 
When defining the type of rules, the query symbols are considered nonterminals. 
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RE 

CPC.CF / /~CPC.CF 

REG 

Syntheses of the results about the generative power of PC grammar systems can 
be found in [1], [5], [6]. The diagram in figure above is borrowed from [2]. An 
arrow from a family F1 to a family F2 indicates the (not necessarily proper) inclusion 
F1 C F2 (MAT is the family of languages generated by h-free matrix grammars 
without appearance checking). 

3. The Languages L1, L2, L3 in the PC Hierarchy 
The following results are known (see the papers mentioned in the previous section): 

1. L1 C CPC2CF N NCPC2CF, 
2. L2 E CPC3REG n NCPC3REG, 
3. L3 E PCaCF N NPCloCF. 

In [6] and [2] it is asked whether or not Ls can also be generated by centralized PC 
grammar systems. We shall affirmatively answer this question, but first we improve 
the first result above: in the non-returning case, L1 can be generated also by regular 
centralized PC grammar systems. 

T h e o r e m  1. L1 E NCPC2REG. 

Proof. Let us consider the following system 

r~ -- (N, K, {a, b}, (P~, $1), (P~, S~)), 
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N = {St,  S 2 , A , B , X , Y ,  [a], (a), [hi, (b)}, 

Px = {Sl  ~ aa, Sl ~ bb, S i v A ,  A ~ B ,  B ~ A, B ---* Q2, 

[a] --~ aQ2, [hi - ,  bQ2, (a) ~ a, (b) ---+ b}, 

P~ = { S~ ~ aX,  S~ --, bX, X ~ S~, 

$2 --~ [a], $2 --~ [b], [a] ~ (a), [b] ~ (b), (a) ---+ Y, (b) ---+ Y}. 

The derivation in the first component,  if it is different from the one step derivations 
St ~ aa and $1 ~ bb, starts with $1 ==~ A ~ B and continues with pairs of 
steps B ==~ A ==~ B. Only B can "break" such a cycle, by the rule B ~ Q~. Hence 
Q2 is introduced after an odd number of derivation steps. If the second component 
starts by one of the rules $2 -* [a], $2 --~ [hi, then after two more steps we get the 
symbol Y which cannot be rewritten in P2 or in P1, hence the derivation is blocked. 
After using S2 --+ a X  or $2 --~ bX, we have to use X -+ $2. These cycles can be 
iterated, hence at even moments we have in the second component a string of the 
form xS2. The symbol X cannot be rewritten in P1, hence when P1 introduces Q~ 
we have to have in the second component a string of the form x[a] or x[b], for some 
x e {a, b} +. We get the configuration (x[a], x[a]), a �9 {a, b), hence we continue by 

(x[~],x[~]) ~ (~q2,~(~)) ~ (~(~) ,~ (~) )  ~ o ~  ( x ~ , x y ) ,  

for a �9 {a,b}. Consequently, L~(r~) = L1. [] 

We believe that  the result above cannot be extended to regular centralized PC 
g rammar  systems working in the returning mode. Clearly, from Figure 1, the previous 
theorem and the relation L1 �9 C P C 2 C F  N N C P C 2 C F ,  this is the only case which 
remains to be settled for the language L1. 

For the language L~, the results pointed out at the beginning of this section are 
the strongest possible (if not considering the question of the number  of components 
of the involved PC grammar  systems). We consider now the language L3. 

T h e o r e m  2. L3 �9 CPC4CF.  

Proof. Let us consider the system 

F2 = (N, K, {a, b, c, d}, (P1, ~1), (P2, $2), (/~ $3), (P4, $4)), 

where 

N = {S1,S2,S3, S 4 , A , A ~ , A 2 , B ,  B 1 , B 2 , B 3 , X ,  X1,X2,  Y , C , D , } ,  

P1 = {$1 ~ A1, A~ -'* A2, A2 -"+ aAcC, A2 ----) a~Ac2C, 

$1 -'~ aB1, B1 --+ aB2, B2 ~ aB3, B3 ---+ aB1, 

B2 ---* aAQ4, B2 --+ a~AcQ4, B2 ~ a3Ac2Q4, 

A ~ Q2, C ~ Q3, B ---, b, D----~ d), 

P~ = {s~--~ x ,  x - - ~  Y, Y---, s~, X ~ b A ,  

S2-- ,  X~, XI --, X2, X2 ~ B } ,  

P~ = { S~ -~ X,  X ~ Y, Y - , U ,  U --, X,  U --~ dC, 

S 3 ~ U ,  U ~ D } ,  

P~ = { & -+ ~c, c -~ ~c }. 
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If the derivation in the first component starts by using the rule $1 --+ A1, then 
after two more steps we get here the sentential form aiAciC, i E {1, 2}; hence the 
configuration is (aiAc~C, u, v, c3C). The symbol Q4 will be never introduced in P1. 

If the first used rule in P1 is $I -* aB1, then after one more step we get the string 
a2B2, that  is we have a configuration of the form (a2B2, ul, vl, c2C), for some strings 
ul, Vl which will be specified latter. We have to continue with 

(a2B2, u,, vl, c2C) 3 "  (a31+2B2, u2, v2, ca'+2C) 
~ r  ( a3(Z+l)+i Ac~Q4, u3, v3, c3(1+1)C) =:=~ (a3(l+l)+i Ac3(~+l)+iC, u3, v3, $4), 

where the phase ==~* consists of 3I derivation steps, l > 0, and i E {0, 1,2}. 
Therefore, after 3 ( / +  1) rewriting steps and a communication step we get a con- 

figuration 
(a'~Ac'~C, u, v, y), 

where n = 3 ( / +  1) + i, for l > 0, i E {0, 1, 2}, hence n >_ 3. From now on, the symbol 
Q4 will be never introduced in P1. 

Let us now examine the work of P2, Pa in the first 3(l + 1) derivation steps. After 
the first derivation step we get a configuration of the form (xl, a ,  ~, yl). 

If a = )(1, then after two more derivation steps one introduces the symbol B which 
cannot be rewritten in P2, hence the system is blocked (no query from P1 can appear  
at that  time). Therefore, we must have a = X,  which has to continue by using the 
rule X --+ Y (using X ~ bA blocks the system). 

Now, if ~ = U, then we obtain 

(xl,x, U, Vl) ~ T  (x2,Y,X,y~) =*T (~3,s~,Y,y~) ~ :  (a~A~C,S~,Y,y~), 

where the phase :=:~* consists of 31,1 _> 0, rewriting steps followed by a communication 
step. (In P3 we cannot use one of the rules U -~ dC, U ~ D because they block the 
system.) If we continue by using the rule A --* Q2 in P1, then the symbol X or )(1 is 
brought from P2 to the master;  if one applies C ~ Qa in P1, then one communicates 
from Pa to the master  the symbol U. In all cases the system is blocked. Consequently, 
we must  have fl = X and the derivation is 

(S~,S2,Sa, S4) ~ ( X l , X , X , y , )  ==:>-~ (x2, Y,Y,  y2) 

~ (xa, $2, U, Y3) ==~* (a'~Ac'~C, $2, U, Y4), 

where the phase ==~* consists of 3l, l 2 0, rewriting steps followed by a communication 
step. 

Therefore, after 3(l + 1) derivation steps, the only possible configuration is 

( a ~Ac~C, S2, U, Y4). 

If we continue by using A --* Qx in P1, then the derivation is blocked. Hence, we 
have to continue with C ~ Qa, that  is we have 

(a~ Ac~C, &,  U, y4) ~ (a~Ac~Qa, u4, v~, y~). 

If v4 = X,  then the system is blocked. We distinguish several cases: 
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1. If u4 = X1 and v4 = dC, then after the communication step we obtain 
(a~Ac~dC, X1, $3, Y4) and the system is blocked after one rewriting step (A --+ Q2 
or C ~ Q3 in P1) and a communication step (we bring one of X2,X, U to the first 
component). 

2. ff u4 = X and v4 = dC, then we can continue, leading to the configuration 
(a~Ac'~dC, X, Ss,ys). If we use now C ~ Q3 in P1, then the system is blocked after 
communicating X or U to the master. We have to continue with A ~ Q2 in P1. If 
in P2 we use X --* Y, then Y will be communicated to the first component and again 
the system is blocked. The only remaining possibility is to use X ---+ bA in P2. If in 
P3 we use $3 ~ X,  then we have 

(anAc~Qs, X, dC, ys) ==~r ( a'~Ac~dC, X, Sa, Ys) ==~ (a'~Q2c'~dC, bA, X, Y6) 
=:=~ (a'%Ac~dC, $2, X, y6) 

and after a rewriting step (A --* Q2 or C --~ Q3 in P1) and a communication step one 
of X, X1, Y is obtained in the first component, blocking the system. Thus, the only 
possibility is to use $3 --~ U in P3 at the last step above, hence we get the configuration 

(a~bAc'~dC, Su, U, y~). 

We have a configuration with the same nonterminals as those we have started with, 
hence the operation can be iterated. 

3. If u4 = X and v4 = D, then the derivation can continue by 

(a~Ac'~Q3, u4, v4, ys) ==~ (a '~AcnD, X, Ss, ys). 

If we apply D --~ d in the first component, then the system will be blocked after 
using in P~ one of the rules X ~ Y, X ~ bC, because Q2 is introduced in the 
first component. The system is blocked also when we continue with A ~ Q~ in P1, 
whichever is the continuation in P2: the use of X --~ Y blocks the system immediately; 
if we apply X ~ bA, we get 

(a~Q2c~D, bC, vs, y6) ==~  (a ~bdc'~D, $2, vs, y6). 

If we apply the rule A --* Q2, then the system is immediately blocked (one of 
X, X1 is introduced on the first component). 

ff we apply the rule D --+ d, then the system is blocked in three steps, irrespective 
which is the continuation; for instance, consider 

(a'~bAc'~D, $2, vs, y~) ~ (a'~bAc'~d, X, v6, Yr) 

(anbQ2c'~d, bA, vT, ys) ~ (a'~b2Acnd, $2, vT, ys), 

hence at the next communication step we bring X or X1 in the first component. 
4. If ua = X1 and v4 = D, then we produce the configuration (a~Ac'~D, X1, $3, Y4). 

If we use A --~ Q2 in P1, then we bring X2 to the master and the system is blocked. 
If we apply D ~ d, then we continue as follows. 

(a'~Ac~d, X2, vs, ys) :::::=~,- (a'~Q2c'~d,B, v6,y6) :::~r (a'~Bc~d, S2, v6,Y~) 
::=:~ (a'~bc'd, us, vT, yT). 
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Consequently, after a phase 

(S,, S~, Sa, $4) ==>: (a'~Ac'~C, $2, U, y), 

consisting of 3 ( / +  1), l >_ O, derivation steps, we have two possibilities to continue 
without blocking the system: 

1. (a~Ac~C, S2, U,y) ~ *  (a~bAc~Cd, S2, U,y'), and 

2. (~Ac~C,&,g,y) ~ ;  (~bc~d,~,v,v'), 

where n > 1. 
Using m - 1 times the first derivation (it can be iterated, because the nonterminals 

in the obtained configuration are the same as in the starting configuration), and then 
the second derivation, we get on the first component the string a~b'~c~d "~. Therefore, 
L3 C_ L~(P2). From the above discussion, we see that also the converse inclusion is 
true, that is L~(F2) = L3 .  [] 

A similar result holds true also for the non-returning case. 

T h e o r e m  3. La C NCPC4CF. 

Proof. Let us consider the PC grammar system 

where 

N 

['a = (N, K, {a, b, c, d}, (P1, S,), (P2, $2), (P3, $3), (P4, $4)), 

= {$1, $2, $3, $4, $5, A, A', A1, A2, B, B1, B2, Ba, X, X1, X2, 
Y,C,C' ,C~,C~,D,},  

P1 = {S1 --'* A1, A1 -* aAcC, $1 ~ abcd, 
S1 ~ aB1, B1 ---* aB2, B2 -*-4 aB1, B1 --+ aAQ4, B1 -* a2AcQ4, 

$1 ---* aC1, C1 -* aC2, C2 ---* aC1, C1 ~ aA'Qs, 
A ~ Q 2 ,  C - * Q a ,  B - * b ,  D ~ d ,  A'--*b, C I -*d} ,  

P2 = {S2-*bX, X ~ A ,  A - * Y ,  Y - * A ,  

A-*X1 ,  XI --+ X2, X2--.+ B, B-..+ X3} , 

P3 = { & -* dX, X - * Y ,  Y - , C ,  C ~ Y, 

Y - + D ,  D-"+ X1, XI'"+ X2, X2---~ Xa}, 
{S4 --, cC, C -* cC}, 

{ & ~ cC', C' --, cC'}. 
P 4  ~--  

P5 = 

The analysis of the work of this system, in the non-returning mode, is similar to 
the argument in the previous proof. 

For instance, after 2k, k > 1, derivation steps in Fa, we can perform a communi- 
cation from the second or from the third component to the master, and we get 

(&, &, &, S4, &) ~ : r  ( a~Ac~C, ~, fl, x, y), 

where n > 1. 
We have a C {bA, bX2, bX3} and ~ E {dY, dX1, dX3}. 
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If a = bX3 or fl E {dXl,dX2},  then the system will be blocked in a few further 
steps. If cr = bX2, ~ = dY,  then we obtain the derivation 

(anAcnC, bX2, dY, x, y) ~ T  (a~Q2cnC, bB, dZ, x', y') 
=::~nr (a%Bc~C, bB, dZ, x', y'), 

where Z E {D, C}. If Z = D, then in at most two steps we bring to the master a 
symbol which cannot be rewritten. If Z = C, then after one more step the system 
is blocked, because /)2 cannot continue rewriting its string. The only non-blocking 
possibility is c~ = bA, fl = dY,  that is we have the derivation (consisting of 2k steps) 

($I, $2, $3, $4) ==6"~ (anAc~C, bA, dY, y). 

In the same way as in the previous proof, one can see that there are only two 
possible continuations which do not block the system: 

1. (a~gc=C, bA, dY, x, y) ~ * ~  (a=bAc~dC, hA, dY, x', y'), and 

2. (anAc=C, bA, HY, x, y) ~ * ~  (a~b2c=d 2, u, v, x", y"), 

where n > 1. 
The first derivation can be iterated. Using it m - 1 times, m > 1, then closing the 

derivation by a derivation of type 2 above, we can generate every string a~b "~+lc~d ~+1 
on the first component of the system. 

The strings of the form a=bc~d, n > 2, can be generated by starting the work of 
the master with the rule $1 --* aC1. Then the derivation runs as follows 

(S~, $2, $3, $4, $5) ~ * ~  (an-XC1, x,, yx, z~, c~-~C') 

(a A'Qs, ') (a A'cnC', ') 
~ ,  (a%c~C ', x3, y3, z3, c=+XC') ~ (a%cnd, x4, y4, z4, c~+2C'). 

The string abcd is directly produced by the rule $1 ~ abcd. 
Conversely, all the terminal strings obtained by the master component of F3 are 

of the forms discussed above, hence L~(F3) = L3. [] 

We do not know whether or not the language L3 can be generated also by regular 
PC grammar systems (centralized or not). A related question is whether or not 
Theorems 2, 3 can be improved by using systems with less than four components. 
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Abs t rac t .  We intend to approach some phenomena of natural languages 
by means of grammar systems. Problems as word order, constituents 
movements, subcategorization and the working of the linguistic system - 
considered as a set of independent modules that work together to produce 
natural language- will be tackled taking into account grammar systems 
theory. 

1. Word Order and Grammar Systems 
The way in which the elements of a sentence are arranged from left to right varies 

in the different languages. In the research work about word order, three elements 
have been identified as relevant in the sentence pattern (subject, verb, and object), 
and taking into account their position in the sentence some language classifications 
have been proposed. In the same way, we have heard about free word order languages 
and fixed word order languages. In spite of such theoretical classification, it seems 
that we may not speak in absolute terms neither about fixed word order languages, 
nor about languages whose word order does not admit the simplest transformation. 

In generative syntax, it has been raised the question of determining whether word 
order is or not a phenomenon coming from deep structure. The most preponderant 
opinion has been that one in which it has been defended that disarrangements between 
underlying word order and surface word order must be solved using transformations. 

In Spanish, the basic word order is equivalent to the pattern SVO (subject-verb- 
object), though this pattern can be frequently altered. With regard to these word 
order alterations, we will pay attention to the following two cases: left-dislocation 
and topicalization. 

Some linguists have defended the existence of a sentence functional structure or- 
ganized around two elements: the theme, or subject which a sentence deals with, and 
the rheme, or enunciation about that subject. 

The known information or theme usually appears at the beginning of the sentence, 
being followed by the new information or rheme. However, some movements can occur 
in such order. Some people talk about an objective order, where the theme precedes 
the rheme, and a subjective order, where the rheme goes before the theme. 

Starting from the above-mentioned dichotomy, we can define two procedures by 
means of which the selection of the constituent operating as theme or rheme can 

1Research supported by a FI fellowship from Direcci6 General de Recerca/CIRIT, Generalitat de 
Catalunya. 
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cause important modifications in the syntactical configuration of the sentence: left- 
dislocation and topicalization. 

1.1. Lef t -Dis loca t ion  and  P C  G r a m m a r  S y s t e m s  wi th  R e n a m i n g  

First of all, we will talk about left-dislocation. It is defined as a device which makes 
the theme to have a peripheral position within the sentence, being this position usually 
an initial one. Some examples of left-dislocation are the following: 

(1) A Mar(a Juan la vio ayer. [Spanish] 

(2) A tu hermano, Juan no 1o puede niver.  [Spanish] 

(3) Ese libro el nifio debe leerlo cuanto antes. [Spanish] 

(4) A Pedro Ia carta hay que escribfrsela pronto. [Spanish] 

(5) Di questo non ne voglio partare. [Italian] 

(6) A R o m a  io no ei vado. [Italian] 

(7) Al jardiels hens s 'hi diverteixen molt. [Catalan] 

The main syntactical features involved in these examples of left-dislocation are: 

a) the constituent occupying a thematic position (itMics in the examples above) 
can belong to different syntactical categories; 

b) there is no theoretical boundary as for the number of phrases occupying a left 
position; 

c) within the sentence, the left-dislocated constituent has a correlative pronominal 
element which must be a clitic (bold in the examples above); 

d) a close structural link between the left-dislocated constituent and the clitic one 
with which it is associated is set up: the left-dislocated element must carry out 
the same grammatical function and must be given the same thematic role as the 
pronoun. 

The problems arisen in the research about left-dislocation turn on the question 
whether the left-dislocated element either is the result of a moving process or, on the 
contrary, is already present in the deep structure in the position of theme. Several 
reasons, among them the clitic presence, have supported the idea that left-dislocated 
constituents are already born in the theme position, because, if this would not be the 
case, i.e. if left-dislocation were a moving process result, the position taken up in the 
deep structure by the moved phrase should be occupied by a trace, that is to say an 
empty element. 

Putting aside all these questions arisen in generative syntax, the left-dislocation 
phenomenon might be easily explained using a new type of PC grammar system: the 
so-called PC grammar system with renaming (introduced by Gh. P~un in May 1996: 
personal communication). 

Def in i t ion  1. A PC grammar system with renaming is a construct: 

F = ( N , K , T , ( S 1 , P 1 ) , . . . , ( S n , P ~ ) , h l , . . . , h m ) ,  
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where N, K,  T are disjoint alphabets, K = {Q1, Q2, . - - ,  Q~}, (5'1, P1) , - . - ,  (S~, P~) 
are the constituents of the system, and hi , . .  �9 hm are weak codes. 

The elements of N are non-terminals, the ones in T are terminal, and 
Q1, Q 2 , - . . , Q ,  are query symbols associated through a one-to-one correspondence 
with the system components. Si E N, is the axiom and Pi are finite sets of rewriting 
rules over N U T U It" U K' ,  where K' = {[hj, Qi] I 1 < i < n, 1 <_ j <_ m} and each 
[hj, Qi] is considered a symbol. Moreover, hi: (N U T)* -o (N U T)*, 1 <_ j <_ m, are 
weak codes such that: 

(i) hi(A) = A, for A �9 N, 

(ii) hi(a) e T U {~}, for a e T. 

These systems work in the same way as usual PC grammar systems, [4], [9], with 
the only difference than when the symbol [hj, Qi] appears in the sentential form, it 
has to be replaced not by the string xi, as it is done in a usual PC grammar system, 
but by hi(xi). 

This modification, therefore, Mlows us to rename a string, that is, to get the same 
string with a different form. This idea fits quite well all the facts previously mentioned 
about left-dislocation. We have stated that the left-dislocated constituent has a cor- 
relative pronominal element in the sentence with which it has a close structural link, 
due to the fact that both carry out the same grammatical function and are given the 
same thematic role. So, really they are a unique string with a different form, which 
is the same string that has been renamed. 

For a PC grammar system with renaming to give account of left-dislocation phe- 
nomena, it would be enough to consider a grammar system where each constituent 
generated a particular phrase type (NP, VP, PP) and, at the same time, the master 
introduced, in a certain moment, two query symbols, Qi and [hi, Qi], placing the first 
one in an initial position and the second one in an inner position of the sentence. In 
this way, the left-dislocated phrase xi would be placed in a peripheral position, and 
the same phrase translated by a morphism h(xi) - that  is, a pronominal form- in an 
internal position. 

1.2. Topiealization and Grammar Systems 

As it has been said previously, with regard to the objective order, the sentence 
constituents in a final position are understood as new information or rheme. Now, 
in the subjective order the theme is placed in initial position. The syntactical pro- 
cesses due to which the rheme appears in a first position within the sentence are 
called topicalization. The two processes involved in topicalization are emphasis and 
questions. 

Examples of emphasis could be the following: 

(8) EN VERANO visitd Maria Budapest. 

(9) DE DOS PARTES consta el exaxnen. 

(10) CON ANTONIO se casars Maria. 

(11) UN TRABAJO necesitas ttl. 

(12) EN PEDRO conga Maria. 



291 

(13) LAS ACELGAS detesta Maria. 

Among the syntactical features attributed to topicalization, we can take into ac- 
count the following: 

a) it can affect to distinct syntactical categories, 

b) it involves obligatorily the inversion of subject-verb order, 

c) there cannot be a clitic coindexed with the topicalized element, 

d) there cannot be more than one emphasized constituent. 

Keeping apart all problems generative linguists have had to face when talking 
about topicalization phenomena, we can here approach these processes using grammar 
systems. 

A PC grammar system might be used in which each one of the components gen- 
erated a type of phrases, with the master introducing a query symbol in whatever 
position it wanted. Thus, if we intend to get an objective order (theme in final po- 
sition), the master will introduce the query symbol that settles the rheme sending in 
a final position; on the other hand, if we wish to emphasize a particular information 
-that  is, topicalize a particular constituent-, the master will place the corresponding 
query symbol in an initial position. 

At first sight, the existence of a prominent component -the master- in PC grammar 
systems [4], [9] seems to offer a lot of possibilities to give account of movements of 
constituents and word order alterations within the sentence. Given that the language 
generated by a PC grammar system is the one produced by the master, this one has in 
its hands the chance to order the strings produced by the other system components in 
the most suitable manner. So, the movements produced in processes like topicalization 
could be explained only mentioning the master's freedom to introduce query symbols 
in any place in the string. 

More difficult to be solved would be the subject-verb inversion within the sentences 
with topicalization. Nevertheless, the easy solution could be chosen again, and it could 
be pointed out that in cases of topicalization the master of the grammar system places 
the query symbol referring to the subject after the query symbol referring to the verb. 

The matter about interrogative sentences would have the same treatment as em- 
phasis, so that we might distinguish interrogatives like: 

(14) LA quifin enviars Juan una postal? 

(15) ;Cus viene Mar{a? 

(16) ;Ddnde ha ido Pedro? 

from interrogatives with the form: 

(17) L Juan enviars una postal a quifin? 

(18) LMar{a viene cus 

(19) LPedro ha ido ddnde? 
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We should talk again about the introduction of query symbols in some place or 
another in the string: in the first type of interrogative sentences the master would 
choose the introduction of the query symbols in initial position, with the corresponding 
inversion subject-verb, while in the second type the query symbol would be placed in 
final position. 

2. X-bar Theory and Grammar Systems 

The X-bar theory states that every complex syntactical constituent is the result of 
the expansion or projection of a nucleus. Due to the structural similarities among the 
lexical nucleus projections, two schemes that cover all of them under a unique basic 
type are proposed: 

X" --+ (Esp)X', 

X '  ~ X'(Compl). 

These schemes allow us the interpretation of the apparent variety of syntactical 
structures as realizations of a single underlying pattern. 

To the different grammatical categories (N, Adj, V, P) can be given some comple- 
ments and specifiers, as well as they can reject others, that is to say there are several 
restrictions at the moment of giving a complement to a particular category: not all 
the categories are given the same type of complement. This idea of restriction might 
be collected in a PC grammar systems variant: the so-called PC grammar systems 
with communication by command. 

Before establishing the possible relation between this variant and X-bar theory, 
let's see which are the differences provided by this new type with regard to the stan- 
dard PC grammar systems. 

While in usual PC grammar systems the communication is achieved by means 
of request -that is, in a particular moment a component of the system introduces 
a query symbol that determines the communication of a particular string-, in this 
type of PC grammar systems communication is achieved by means of commands. We 
have a system made up of differents grammars, like in a usual PC grammar system, 
which operate separately, have their own sentential forms and also have a regular 
language or a pattern associated to them. On some particular occasions, rewriting is 
interrupted because some components send their sentential form to other components, 
particularly to those ones that have the mentioned sentential form in their selector 
language. As in a usual PC grammar system, the set of terminal strings generated by 
the master is the language generated by the system. 

Definit ion 2. A PC grammar system with communication by command is a 
construct 

F-~ (N,T,(Sl ,P1,R1) , . . . , (Sn,  Pn, Rn)),n >__ 1, 

where N,T are disjoint alphabets, and (S,, P1, RI ) , . . . ,  (S~, P~, R~) are the compo- 
nents of the system. The elements of N are nonterminals, the ones in T are terminals, 
Si E N is the axiom, P~ are the production rules over N W T, and Ri C_ (N O T)* is 
the selector language of the i - th component. 

In this new type of PC grammar system, a message or string x will be sent to the 
component i when x will be part of Ri. Ri can be defined either as a regular set or 
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as a pattern. If it is considered as a pattern a', then 

Ri = LNuT(Tri), 1 < i < n. 

A pattern can be defined as follows: having an alphabet with constants A and 
another alphabet with variables V, a pattern is a string over A U V. The language 
associated to a pattern ~r over A U V is denoted with LA(Tr) and consists of the 
strings obtained from 7r consistently replacing the variables by non-empty A strings 
("consistently" means that all equal variables will be replaced by the same strings). 

For instance, having two alphabets A = { a , b } , V  = { X 1 , X 2 }  , a pattern rr = 
aaX1XlbX2bb  defines the set of all strings over A with two occurrences of a, a redu- 
plication of any string over A, one occurrence of b, any string over A, and a double 
occurrence of b. So that,  x = aa(abb)(abb)b(bab)bb has the form specified in ~r , but 
y = aaabbababbabbb has not. The language associated to the pattern 7r will be 

LA(Tr) = {aawwbzbb l w , z e (a,  b}+}. 

Two kinds of derivations in a PC grammar system with communication by com- 
mand can be distinguished: 

a) rewriting, 

b) communication. 

Concerning rewriting steps, we can discern two possibilities: 

a) each component may use a rule rewriting its sententiM form, except those com- 
ponents whose strings are terminal; 

b) each component must perform a maximal derivation, that  is the rewriting step 
may finish only when it is not possible to go on rewriting its sentential form. 

In both a) and b), when the rewriting step has finished, it is checked whether it is 
possible or not to execute a communication step. In the second case, if a communi- 
cation step cannot be fulfilled, we cannot carry out any other step. In the first case, 
on the contrary, if we cannot communicate the string, we continue rewriting. 

Defining a communication step needs tackling the following three problems: 

a) definition of the string to be communicated, 

b) solution of problems at target components, 

c) definition of the next string for the components which have sent messages. 

The first problem admits two solutions: 

1. Communication without splitting, in which only the completed strings are con- 
sidered as messages. If xi E Rj, then xi as a whole is transmitted to the 
component j .  
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2. Communication with splitting, where, for each decomposition: 

X l  ~ X i , l ~ i , 2 .  �9 �9 X i , k ,  k > 1 

such that  xi,i C R~j (for some 1 ~ s i < n,1 < j ~ k), the component  i will 
produce the messages X~,l,Xi,:,... ,xl,k which will be sent to the components 
8 1 , 8 2 ,  �9 . . , 8 k .  

With regard to the second problem, we can take into account two possible solu- 
tions: 

1. the messages received can be enclosed in the string of the component that  re- 
ceives them, or 

2. they can replace the string of the component to which messages are sent. 

In both 1 and 2, we can either choose a single message among the ones sent or use 
all messages sent, concatenating them in a specified order. 

Finally, the third problem can be solved taking into account a returning or non- 
returning derivation mode, like in usual PC grammar  systems. 

Formally, rewriting and communication steps (considering a system with maximal  
derivation, without splitting, replacing the strings of the target component by a con- 
catenation of the messages received, and in the returning mode) can be defined as 
follows: 

Defin i t ion  a. (rewriting): (Zl , . . . ,  z~) ~ (Yl , . . . ,  Y~) iff: 

xi =~* yi in Pi and there is no z~ E (N U T)* 

such that  yi =~ zi in P~ 

(if xl E T*, then y~ = x~; otherwise, x~ ::~+ Yi). 

D e f i n i t i o n  4. (communication): We denote: 

5 i ( x i , j )  = 

5 ~ ( x i , j )  = 

~X(i )  = 

5 ( i )  = 

A, i f x i ! t R j o r i = j ,  

xi, i f x i c R j a n d i # j ,  for l _ < i , j < n .  

5(Xl, i )$(x2, i ) . . .  5(x,~, i), for 1 < i < n. 

5(xi, 1)6(xi, 2 ) . . .  5(xi, n), for 1 < i < n. 

Under such conditions, ( x l , . . . ,  xn) ~- (Yl , . . - ,  Y~) iff, for 1 < i < n: 

y, = A(i),  i fA( i )  r A, 

y, = z;, if A(i) = A and 5(i) = A, 
Yl = Si, if A(i) = A and g(i) 7~ A. 

D e f i n i t i o n  5. The language generated by a PC grammar  system with communi- 
cation by command is the following: 

L(r)  = {w e T* [ ($1, . . . ,  S~) ~ (z~l),. . . ,  z(~ 1)) ~- (y~l),.. . ,  y(1)) 
(x~2),..., x(g))~ (y~),... , r  ~ (x~s),..., x(:)), 

for some s > 1 such that  w = x~)}. 
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After seeing how a PC grammar system with communication by command works, 
we can relate this variant with X-bar theory. The restrictions existing at the moment 
of including a particular complement or specifier in a particular grammatical category 
can be connected with the idea of a selector language. Thus, we could say, for example, 
that the fact that in Spanish the items which can function as noun complements are 
the Adjectival Phrase, the Prepositional Phrase and the Relative Sentence is due to 
the fact that the component of our grammar system with the task of generating Noun 
Phrases has a pattern already defined in its language selector, this pattern stating 
that only strings with the form AP, PP or Relative Sentence can be admitted as 
Noun Complements. The selector language itself would determine the limited stock 
of items that can occupy the position of NP specifier. 

To sum up, following the idea mentioned above, a syntactical category could only 
be given those complements or specifiers with a structure equal to the pattern defined 
by the selector language associated to it. So, the task now for linguists would be to 
define such patterns for a particular natural language. 

3. Subcategorization and Grammar Systems 
In generative linguistics theoretical framework, every lexical entry is considered as 

a matrix of features, and through it phonetic, semantic and syntactical characteris- 
tics can be expressed. According to this theory, we can distinguish several types of 
syntactical information in the lexicon: 

a) categorial features, which specify the grammatical category a particular word 
belongs to; 

b) grammatical features, like person, number and gender, which axe present in the 
morphological agreement existing between some elements; and 

c) categorial selection features. 

The categorial selection features which are the only ones we will be concerned with 
in this paragraph state the syntactical context in which a particular lexical entry can 
appear. Thus, for example, the verb 'introduce' would be defined as follows: 

introduce [+ NP PP], 

that is to say, such verb selects two complements realized as a Nominal Phrase and a 
Prepositional Phrase; thus, the verb 'introduce' is subcategorized to take a NP and a 
PP. 

The idea that each lexical entry is subcategorized to take a particular type of 
complements might also be covered by the concept of a PC grammar system with 
communication by command. This variant of PC grammar systems seems to be near 
the subcategorizations claimed by generative linguists. So that we could say that 
each entry has a selector language Ri associated to it which specifies the class of 
complements it can be given. We would say, for example, that the selector language 
of the verb 'introduce' specifies that this verb will only admit strings with the form NP 
and PP, that is this component will only be allowed to receive strings with the pattern 
the selector language has associated to it. Again, the work is now for descriptive 
linguists. 
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4.  Human Language D e v i c e :  a Grammar System with  
Grammar Systems as Components?  

Grammar systems can have different types of generative devices as components. 
Besides Chomsky grammars, also Lindenmayer systems, pure grammars or contex- 
tual grammars, among others, can appear as components. If we think a bit about 
the linguistic system working, we will find a system in which distinct independent 
modules operate (syntax, semantics, phonology, lexicon) interplaying. Such modules 
are in their turn divided into submodules, being also independent and interrelated. If 
we approach closely this functioning, it seems reasonable to think that each one of the 
linguistic system modules might be seen as a grammar system made up of different 
grammars working independently and interplaying in particular moments. It seems 
coherent too to think that the linguistic system as a whole is a grammar system, com- 
posed by different generative devices that work independetly and interchange informa- 
tion, contributing to the common task to produce a (complex) language. Therefore, 
should we talk about a grammar system with grammar systems as components? 

If, instead of considering the linguistic system as a grammar system with grammar 
systems as components, we considered that it is just a system in which the components 
are usual Chomsky grammars or any other generative device, we would lose many of 
the advantages that grammar systems theory offers. For instance, one aspect of the 
theory which makes it to be felt attractive for a linguist is the easy generation of 
non-context-free structures present in natural languages; structures like: 

{a'~b'~c '~ I n >_ 1}, 

{xx Ix e {a, b}*}, 
{a bmc d m I ,m _ 1} 

are generated without any difficulty (even with rules less powerful than context-free) 
using a grammar system (see [1], [8]). But, if we thought that the linguistic system 
is a grammar system whose components are Chomsky context-free grammars, for ex- 
ample, then we would have to claim that syntax -one of the system modules- is just 
represented by a Chomsky context-free grammar, clearly losing in this way the possi- 
bility of generating, among others, non-context-free structures as the ones mentioned 
previously. This problem would be solved if we support the possibility of a grammar 
system whose components were grammar systems. 

If we support the possibility of a grammar system with grammar systems as com- 
ponents, we have to wonder which kind of grammar systems should be used. We 
propose that the linguistic system is a PC grammar (macro)system, with each one 
of its components working in an independent way and intercommunicating on some 
occasions. The components of such (macro)system might be either CD grammar 
(micro)systems or PC grammar (micro)systems: the problem remains open. 

We could also go even further with this intuition and regard the linguistic system 
as a PC grammar system with renaming. In fact, generative linguists have claimed 
that the semantical features of lexical items determine to a great extent the syntactical 
structure of a sentence. There has been talked about structural canonical realizations, 
a device to define the categorial nature of an argument depending on the thematic 
properties of the predicate selector. According to this hypothesis, each argument 
is carried out in a particular categorial form: the structural canonical realization. 
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For example, the structural canonical realization of a Theme or of an Agent will 
be a NP, whenever this syntactical category can satisfy the requirements imposed 
by such thematical roles; on the contrary, the structural canonical realization of a 
Locative will be a PP. Thus, we can see how to a particular semantic information a 
particular syntactical structure corresponds. Therefore, we could hold up that the 
syntactical component (which is a grammar system) receives the information from 
the semantic component (which is also a grammar system), translating it by means 
of the weak codes existing in the linguistic system (which is a PC grammar system 
with renaming). When the syntactical component introduces a query symbol referring 
to the semantic component string, it does not introduce a simple symbol Q, but a 
complex symbol [hQ]; if the syntactical component string was, in a particular moment, 
[Agent- Theme-Locative], it would not introduce the query symbol Q, which would 
have as a consequence the sending of the mentioned string to the syntax module, but 
it would use the symbol [hQ], which would translate the semantic information into 
syntactical information ([NP-NP-PP]), through the codes the grammar system has: 

h(Agent) = NP, 
h(Theme) = NP, 
h(Locative) = PP. 

We would have to set out something similar in the case of interrelations between 
the other components of language. 

Thus, stating that the linguistic system is a PC grammar system with renaming, we 
will have the possibility to translate or rename the information of any component of the 
system. So, when a component receives the information from any other component, 
it receives it in its own language, not in the component's one it has interplayed with. 
Going on with the previous example, we will say that the syntactical component would 
not receive strings like [Agent-Theme-Locative], but, before introducing them in its 
sentential form, it would translate them using codes of the linguistic system to obtain 
strings like [NP-NP-PP], that is, strings written in a language it knows. Such new 
strings written in syntactical language would respect the whole set of features of the 
semantic strings from which they come: they would say the same but in a different 
m a n n e r .  

5.  F i n a l  R e m a r k s  

In this paper we have attempted to tentatively apply some notions of grammar 
systems theory to some aspects of natural languages. We have seen the potential 
utility provided by grammar systems for a rigorous description of phenomena such 
as word order, subcategorization and the functioning of the linguistic system itself. 
What has been presented in this paper has been just a series of intuitive ideas about 
possible applications in the field of natural language description. The whole set of 
applications of these new generative devices are not known thoroughly yet. However, 
it seems beyond any doubt that they can be quite useful in the study of natural 
languages, due to the fact that they show clear advantages with respect to classical 
models, and they also perfectly agree with the idea of modularity that has a system 
like the linguistic one, in which different components work separately and cooperate 
to reach the common aim to build a language. 
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Abstract. A network of language processors (an NLP system) consists of 
several language identifying devices (language processors) associated with 
nodes of a network (in particular case with nodes of a virtual complete 
graph). The processors rewrite strings (representing the current state of 
the nodes) according to some prescribed rewriting mode and communicate 
them along the network via input and output filter languages. In this paper 
we study properties of NLP systems with L systems in the nodes. 

1. I n t r o d u c t i o n  

Parallel and distributed symbolic processing has been in the phocus of interest in 
present day computer science. One of the recent paradigms for data flow in parallel 
and distributed environment is the Logic Flow paradigm ([13], [4], [5]) in which data 
is organized by a virtual graph and the processing is performed by moving agents 
(processes) that navigate in this graph. This concept can serve as a basic architecture 
for parallel symbolic processing, with slmplifications as in the Connection Machine 
design ([7]). Namely, a symbolic process develops in the virtual (complete) graph 
which has nodes being processors that are able to handle data. The process starts by 
injecting some data in the nodes, or in some node(s). Then each node processor starts 
with local data processing (there are strict conditions which prescribe the way and 
the time of these actions), and, then the data is communicated to some target nodes, 
where the local data processing continues. Only such data can be communicated that 
match some (previously fixed) patterns, that is, successfully pass a filtering process. 
The target nodes handle the simultaneously arriving messages according to some 
strategies; for example, the Boltzmann machine ([6]) and the Connection machine 
([7], [141) combines from the multiple messages a single output in various ways. 

Since data can be given in the form of strings, it is reasonable to investigate how the 
above idea can be interpreted in terms of formal grammars and languages. There have 
been several models introduced and examined in formal language theory, each of them 
having the following properties: the system consists of several language identifying 
devices (language processors) associated with nodes of a network (in particular cases 
with nodes of a virtual complete graph) that rewrite strings (representing the current 
state of the nodes) according to some prescribed rewriting mode and communicate 

1Research supported by the Academy of Finland, Project 11281 
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the obtained strings along the network using input and output filter languages. A 
string of some node can be successfully communicated to another one if it is able 
to pass the output filter of the node (it is a member of the corresponding language) 
and it can pass the input filter of the target node. The system is functioning by 
alternating rewriting and communication steps. The communicated string can be 
data (a sentential form) or it can be program (a production, for example), thus, 
we distinguish data and/or program communicating system. Since all the models 
have the above common characteristics, we can introduce a general framework for 
them, called networks of language processors (NLP systems). Networks of language 
processors are both computational and language identifying devices, but the concept 
can be extended to a framework for modelling parallel and distributed computation 
of multisets of strings (string collections with several occurrences of the same string), 
too. In this this case we speak about networks of multiset string processors (NMP 
systems, for short). Both NLP systems and NMP systems provide new aspects in the 
description of string collections. 

Particular cases of NLP systems exhibit nice properties: a recent model, the par- 
allel communicating grammar system with communication by command, the CCPC 
grammar system, for short (introduced in [2]), with regular grammars and regular 
filter languages in the nodes and with concatenating the arriving messages, exhibit 
the universal computational power, that is, they are able to identify any recursively 
enumerable language (for details see [2], [8], [9]). 

Another example, with a local string processing mechanism essentially different 
from a grammar, is the test tube distributed system based on splicing, a concept 
from DNA computing ([1]). In this case the components (the test tubes) are splicing 
schemes (in the sense of T. Head) which communicate with each other by redistribut- 
ing their available sets of strings (the contents of the test tubes, in a similar way to the 
separate operation of Lipton-Adleman) according to filter languages. Such systems 
with finite initial contents of the tubes and finite sets of splicing rules associated to 
every component are not only computationally complete (that is they are able to com- 
pute any recursively enumerable language), but the existence of universal test tube 
distributed systems can be proven on this basis, that is, such systems provide the 
possibility of designing universal programmable computers based on their structure. 

In this paper we deal with networks of parallel language processors, that is, we 
study properties of NLP systems with 0L systems (TOL systems) and finite sets of 
axioms in the nodes. We show that if we design a master node for selecting the 
words of the language determined by the system and we describe filter languages 
by context conditions, then these networks of language processors are as powerful 
as ETOL systems with the same kind of context conditions. The results imply that 
such networks of parallel language processors with regular (or some special regular) 
filter languages are of the universal computational power. We provide a result about 
the string population of NMP systems (networks of multiset string processors): we 
show that the growth of the string population in a network with D0L systems, finite 
multisets of axiom strings, and random context exit and entrance filters in the nodes 
can be characterized by a growth function of a D0L system. Finally, we give some 
examples of the rich possibilities that become available when the nodes are represented 
by DTOL systems and the choice of the developmental tables depends on the work of 
the other agents in the network. 
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2. Formal Language Theoretic Prerequisites 

Throughout the paper we assume that the reader is familiar with the basics of 
formal language theory. We list here only some notions, notations and properties 
which are necessary to follow the paper; for more details we refer to [12], [11] and [3]. 

For an alphabet V, V + denotes the set of all nonempty strings (words) over V. The 
empty string is denoted by ,~, V* stands for V + U (,~}. A language L is a subset of 
V*. The cardinality of L is denoted by card(L). The length of a string w E V* is the 
number of symbols in w, denoted by Iwl. For a word w, we use notation alph(w) for 
the set of symbols that  have an appearance in w (we say w is with alphabet alph(w).) 

Throughout we use the following convention: if V is an alphabet, then V(i), 1 <_ 
i < n, denotes (A (i) I A E V}. For a word w E V*, where w = x l x 2 . . . x ~ ,  xj E V, 
1 < j < n, we denote by w (~) the string ~(0~(0 x(0 

- -  ~ 1  a ' 2  , . -  n �9 

A collection of strings that is allowed to have multiple occurrences of the same 
string is said to be a multiset of strings. A multiset of strings over an alphabet V 
with elements, say, a, a, b, c, c, c E V, is denoted by {{a, a, b, c, c, c}}. The elementary 
operations: union, intersection, etc. are defined for multisets of strings in the same 
way as in the case of languages. A multiset M of strings is finite if it consists of a 
finite number of elements. 

We denote the family of context-free, context-sensitive and recursively enumerable 
languages by CF, C S  and RE,  respectively. If no confusion arises, then we use the 
same notation, C F  and CS, for the corresponding grammar class, too. 

A OL system (an interactionless L-system) is a triple H = (V, P, w), where V is an 
Mphabet, w E V*, the axiom, and P is a set of productions (rules) of the form a -+ v, 
where a E V and v E V*. Moreover, production set P is complete: for every a E V 
there is a rule of the form a ---* v, v E V* in P. If for each a E V there is exactly one 
production of the form a -+ v in P, then we speak of a deterministic OL system or 
a D0L system. If the axiom is replaced by a finite language, then we have an F0L 
system, an 0L system with a finite number of axioms. 

The direct derivation relation in an 0L system H = (Is', P, w) is defined as follows: 
for x , y  E V* we write x ~ p  y if x = a l . . . a ~ ,  y -- ZlZ2.. .z~, a~ E V, zi E V*, 
l < i < n ,  a n d a i - - ~ z i E P .  

We denote by ==a}, the reflexive and transitive closure of ==~p . 
The language generated by H is L(H)  = {v E V* I w :==a*p v}. 
Since production set P in the case of a D0L system H = (V, P, w) defines a 

homomorphism h : V --* V*, therefore we often write H = (17, h ,w)  instead of the 
first notation. 

By a word sequence of a D0L system H = (V, h, w) we mean the following sequence 
of words :  h~ = w, h(w), h2(w), ha(w) , . . . .  The function f :  IN ~ IN defined by 
f(t) = Iht(w)l, ~ __ 0, is called the growth function of H, and the sequence Ih~(w)l, for 
t = 0,1, 2 , . . . ,  is said to be its length sequence. 

L systems with several sets of productions (tables) are called tabled L systems. 
A TOL system (a tabled 0L system) with n tables, n >_ 1, is a construct H = 

(Is', P1 , . . . ,  P , ,  w), where each triple (V, P~, w) is an 0L system. A string x directly 
derives a string y in H, x, y E V*, iff y is directly generated from x by applying some 
of the tables of H, say, Pi. 

A T0L system, whose alphabet is divided into two disjoint sets (the nonterminal 
alphabet, N, and the terminal alphabet, T), written as H = (N, T, P1 , . . . ,  P , ,  w), 
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is called an ETOL system (an extended T0L system) and its language is defined by 
L ( H )  = {v e T * l w  ~ *  v}. 

The class of languages generated by DOL, 0L, FOL, TOL, FTOL and ETOL systems 
is denoted by DOL, OL, FOL, TOL, FTOL and ETOL, respectively. If )~-rules (rules of 
the form a -~ A) are not allowed to use, then we speak about propagating L systems 
and use notations PDOL, POL, PFOL, PTOL, P F T O L  and EPTOL,  respectively, to 
denote the corresponding families of languages. 

Some basic relations concerning the above language classes are the following: 

�9 C F c C S c R E ,  

�9 DOL C OL C FOL C ETOL, 

�9 OL C TOL C TFOL C ETOL, 

�9 C F  c ETOL c CS, 

�9 C F  is incomparable with both 0L and TOL. 

Further regulations in the application of the productions can lead to the enhance- 
ment of the generative power of the grammar class. One of the variants is where 
the production (or the table) can be applied only to that string which satisfies some 
context condition associated with the production (with the table). 

By a context condition p over V*, where V is an alphabet, we mean a mapping 
p : V* --~ {true, fa lse} .  

We say that p is of type 

�9 reg, or it is a regular context condition over V*, given by a regular language 
L C V*, if p(w) = true for any w e V* where w E L otherwise p(w) = fa!~e_. 

�9 sc, or it is a semi-conditional context condition over V*, given by a pair of strings 
(u,v), with u,v  E V +, if p(w) = true for any w E V* which has as a subword u 
but not v and p(w) = fa l se  otherwise. String u is called the permitting context 
condition and v is the forbidding context condition. If either u or v or both 
are not given, then no corresponding context check is required. In this case we 
speak of a corresponding empty context condition and we indicate the empty 
set in the notation. 

�9 rc, or it is of random context condition over V*, given by a pair (Q, R), where 
Q, R c_ V, if p(w) = true for any w E V* which contains each element of Q 
but no element of R and p(w) ~ fa l se  otherwise. By definition, Q and R 
can be empty sets, in this case we omit the corresponding context check. As 
above, Q forms the permitting context condition and R is the forbidding context 
condition. 

Context conditions can be introduced for any kind of rewriting mechanisms, for 
further information we refer to [3], here we restrict ourselves only to the case of ETOL 
systems. 

By an (X)-type conditional ETOL system (an E(X)TOL system, for short), where 
X C {reg, sc, rc) we mean a construct H = (N,T, pl : P1,. . . ,P~ : P~,w), where 
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(N, T, P1 , . . . ,  P~, w) is a usual ETOL system and Pi is a context condition over V* = 
( N U T ) * ,  1 < i < n. 

The direct derivation step in H is defined in the following manner: for x, y C V* 
we write x ==~H Y iff there is a table P~, 1 < i < n, such that  x satisfies context 
condition p~ and y is obtained from x by applying table P~. 

The language class generated by ETOL systems of (X)-type context conditions is 
denoted by E(X)TOL,  in the propagating case we write E(X)PTOL.  

The following important relations will be used in the sequel: 

�9 ETOL C E(rc)TOL, 

�9 E(rc)PTOn C E(sc)PTOL = E(reg)PTOL = CS, 

�9 E(rc)TOL C E(sc)TOL = E(reg)TOL = RE. 

3. NLP Systems: the Basic Definitions 

In this section we introduce a basic variant of NLP systems and define its function- 
ing. We discuss some possible definitions of the languages associated to such systems~ 
and illustrate the notions by an example. 

Networks of parallel language processors are NLP systems with L systems as com- 
ponents. We start with the simple case where the nodes are represented by F0L 
systems, that  is~ by 0L systems with a finite set of axioms. 

Definit ion 3.1. An NLP_FOL system (of degree n, n > 1 ) is a construct 

r = (V, (P1,F, ,p l ,a l ) , . . . , (P~,Fn,pn,  q~)), 

where 

�9 V is an alphabet (the alphabet of the system), 

�9 (P~, F~, p~, ~) ,  1 < i < n, is called a component (a node) of the system (the i-th 
component or the i-th node), where 

�9 Pi is a set of 0L rules over V, the production set of the component; 

�9 F~ C V* is a finite set, the set of axioms of the component; 

�9 pi and ~r i are context conditions over V* 

(mappings from V* to {true, false}),  called the exit filter and the entrance filter 
of the component, respectively. 

(Notice that  the axiom set of a component can be empty set.) 

According to the type of context conditions, p; and ai, 1 < i < n, we distinguish 
regular, or semi-conditional or random context exit and/or  entrance filters. We say 
that  an NLP_FOL system is with exit and entrance filters of type (X) iff its each 
component is associated by an (X)-type exit filter and entrance filter, where X E 
{reg, sc, re}. 

If each Pi (the production set of the i-th component) is chosen to be a set of D0L 
rules or is replaced by tables of a T0L system, then we speak of an NLP_FDOL system 
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or an NLP_FTOL system, respectively. If each axiom set consists of a single word, 
then we omit  letter F from the notation. 

The NLP system is functioning via changing its configurations (states). 

D e f i n i t i o n  3.2. By a configuration (a state) of an NLP_FOL system P = 
(V, (P1, F1, Pl, r  (P~,-Fn, P~, an)), n _~ 1, we mean an n-tuple C = (L1 , . . . ,  L~), 
where Li C_ V*, 1 < i < n, 

Li is called the state of the i-th component (node) a n d  it represents the set of 
strings which are present at component (at node) i at that  moment .  

Co = (F~ , . . . ,F~ )  is said to be the initial configuration (initial state) of the 
system. 

A configuration can change either by a rewriting step or by a communication step. 
When a rewriting step happens, then every node derives from its each available string 
a new one, by applying its productions in the 0L manner.  At a communication step, 
each node j receives a copy of all of such strings that  are present at some other node, 
say, node i, and are able to pass the exit filter of node i and the entrance filter of node 
j. (These strings satisfy context conditions pi and aj).  Each rewriting step is followed 
by a communication step, and reversely, resulting in a pulsating way of functioning. 

D e f i n i t i o n  3.3. Let F = (V , (P~,FI ,p~,aI ) , . . . , (P~,F~,p~,an)) ,  n >_ 1, be an 
! ! 

NLP_FOL system and let C1 = (L~ , . . . ,  L~), and C2 = (L~ , . . . ,  L~), be two configu- 
rations of F. 

We say that  C1 directly changes for 6'2 by a rewriting step, written as 

(L1 , . . . ,  Ln) =:==# (L~ , . . . ,  L'~), 

if L~ is the set of words obtained by performing a derivation step on each element of 
Li by production set Pi in the 0L manner. 

By definition, if L~ is the emptyset ,  then L~ = ~. 

Notice a significant point in the definition: by a rewriting step we obtain from any 
available string exactly one new string, L~ is not necessarily the same as the set of 
words that  can be derived from the elements of Li by one derivation step. 

In the case of NLP__FTOL systems the rewriting step is defined by the obvious 
modification: for producing words of L~ from L~ the same nondeterministicMly chosen 
table (production set) of node i is used. 

The communication step is defined as follows: 

D e f i n i t i o n  3.4. Let C1 = ( n l , . . . ,  L,~) and C2 = (L~ , . . . ,  L ' )  be two configura- 
tions of an NLP_FOL system F = (V, (P1, F1, P l ,  ~  �9 �9 , (Pn, F~, Pn, am)), n >_ 1. We 
say that  C1 directly changes for C2 by a communication step in F, writ ten as 

(L1 , . . . ,L~)  ~- (L~ , . . . ,L~) ,  

if for every i, 1 < i < n, 

L'~ =L~ (.J A~,j, 
j=l,j#i 

where Ai,j = {v I v E L j ,  pj(v) = true and c~(v) = true}. 
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The output filters, formally, provide broadcast of the strings along the network, 
but together with the input filters they implicitly determine a dynamically changing 
virtual digraph describing the actual successful communication actions in the system: 
at any moment in time there is an edge leading from node i to node j in the digraph if 
the i-th component of the NLP system successfully communicates at least one string 
to the j- th component. 

During the functioning of the NLP_FOL system configurations follow each other, 
each of them arising either from a rewriting step or a communication step. Such 
sequence of configurations determines a computation in P. 

Defini t ion 3.5. Let F = (V, (P1, FI, Pl, (T1),..., (Pn, Fn, p~, a~)), n > 1, be an 
NLPA~0L system. By a computation C in F we mean a sequence of configurations 
Co, C1,. �9 where 

�9 C ~ C i + l i f i = 2 j ,  j > 0 ,  and 

�9 C ~ - C ~ + l i f i = 2 j + l , j > _ O .  

Thus, a computation is an alternating sequence of rewriting steps and communi- 
cation steps in F. 

We speak about a finite computation in F if the sequence of configurations is finite. 
The result of a computation C at node i at step t, for i, 1 < i < and t > 0, 

supposing that the corresponding configuration is (L~t),..., L~)): is L!t)n. ' - 
Thus, the result of a finite computation at node i is the result of this computation 

at this node at the last step. 

NLP_FOL systems are both computational and language identifying devices; the 
latter property arises from the fact that the nodes, at any moment in time during the 
functioning of the system, are associated with sets of strings. The first aspect provides 
information on the dynamism of the behaviour of the system, while the second one 
refers to the set of all possible behavioural stages of the network. 

Languages can be associated to networks of F0L systems in various manners. One 
possibility is, if we distinguish a master node (a selector node) and collect all strings 
into a language which are results of a rewriting step at this node during some finite 
computation. Another reasonable variant is, if all such strings that appear at any of 
the nodes identify the language of the NLP system. 

The first notion resembles to the notion of the language generated by an extended 
L system (any extended L language can be generated by an NLP system with two 
nodes, where the first node produces sentential forms of the corresponding L system 
and the second node selects the terminal words), while the second variant is analogous 
to the definition of the language of a non-extended L system, namely, every string that 
is produced by some derivation (computation) in the system belongs to the language. 

The behaviour of the NLP system can also be characterized by languages describ- 
ing communication happened during the functioning of the system: the collection 
of strings that are succesfully communicated from one node to another one at some 
computation step form the language of communication of the network of language 
processors. It provides information both on the filters and the inner rewriting mech- 
anisms of the components. Also, those strings that cannot be communicated from 
some node to another one, form a language that gives an insight into the intricate 
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inner behaviour of the components. Notice that  this case differs from the definition of 
the language of the master  node, among the words of that  language there are allowed 
to be ones that  can be successfully communicated. 

We choose the first variant, namely, we define the language of the master  node. 

D e f i n i t i o n  3.6. Let F = (V, (P1, F1, Pl, o'1),- - �9 , (P~, F~, Pn, cry)), be an NLP_FOL 
system. 

The  language L(F) identified by P is 

i ( r )  = {w e L~S) [ ( F 1 , . . . ,  F,~) = (L~~ L (~ ===> (L~I) , . . . ,  L (1)) 

f- (L~2),.. . ,  L (2)) ===>... ~ (L~S),..., L(')), s > 1}. 

Thus, the language L(F) identified by F is the result of any finite computat ion in 
the system that  ends by a rewriting step at node 1. This definition supposes at least 
one rewriting step performed in the system, thus, the elements of the axiom set of 
strings at the master  node belong to the language only in that  case if they can be 
obtained as a result of some rewriting step. 

Let us have a very simple example for NLP_FOL systems. 

E x a m p l e  3.1. Let L = {a2'~,a an I n > 0}. It is easy to see that  L ~ TOL, 
moreover, L ~ (rc)TOL. 

However, L C E(rc)TOL,  since it can be generated by the E(rc)W0L system 
H = ({a, b, c, d}, {a}, ({b}, 0) : {e --+ c, b --+ b 2, a ~ a, d --+ d}, ({d}, 0) : {c --* 

c,d ~ dZ, a --+ a,b ~ b} ,{b  ~ a ,d  --+ a ,a  ~ a,c  ~ c } , { c  ~ b,c --* d ,c  ~ a ,d  --+ 
d,b ~ b,a ~ a} ,c) .  

This language can be generated by a very simple N L P _ F O L  system F with three 
components. Moreover, there is only one symbol, a, in the system. Let F have the 
following components: 

P1 = {a ~ a}, 
E 1 = {a}, 
pl(u)  = f a l s e  for u e {a}*, otherwise pl(u)  = true,  
a l (u )  = true  for u e {a}*, otherwise a~(u) = fa l se .  
(The component collects the strings of the form a ~ ,  a 3~ and does not issue any 

string.); 
P2 = {a -~  a~}, 
F2 = {a}, 
p2(u) = t rue  for u e {a}*, otherwise p~(u) = fa l se ,  
and a2(u) = f a l s e  for u E {a}*, otherwise o-2(u) = true.  
(The node produces the strings of the form a 2" and does not accept any string.); 
P3 = {a ~ a3}, 
/73 = {a}, 
p3(u) = true  for u e {a}*: otherwise p3(u) = fa l se ,  and 
a3(u) = f a l s e  for u e {a}*, otherwise a3(u) = true.  
(It provides strings of the form a 3" and does not accept any string from the other 

nodes.). 
By the above explanations we can easily see that  /,(P) = L. 

We can observe that  the set of all strings that  appear at the nodes at some compu- 
tation step is the same language, L = {a 2~, a a" I n > 0}, and if we take those strings 
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that never leave the first node, we obtain again the same set of words. Moreover, the 
language of the successfully communicated strings is L - {a}. 

Already the above example suggests that NLP__FOL systems are able to compute 
complicated languages. Before starting with the examination of the language classes 
they determine, we introduce some notations. 

We denote by (X)NLP~_Y,  where X E {reg, so, re}, Y E {DOL, PDOL, og, 
POL, FOL, FPOL, TOL, PTOL, FTOL, etc.}, n >_ 1, the class of languages generated 
by NLP_Y systems with n components and X-type filters. 

If the number of the components is not significant, then we omit n from the 
notation. 

4 .  L a n g u a g e  C l a s s e s  o f  N L P  S y s t e m s  

In this section we study language classes of networks of language processors with 
F0L and FTOL systems as components. We prove that in both cases the determined 
language class (of the master node) equals to the corresponding class of context condi- 
tional ETOL systems (if the NLP system is with X-type filters, then the same kind of 
context conditions are associated to the tables of the corresponding ETOL system, and 
reversely), and thus, NLP_FOL systems and NLP_FTOL systems are equally powerful 
devices. In the case of regular or semi-conditional filters and without erasing rules 
()~-rules), the above networks of parallel language processors reach the power of the 
context-sensitive language class, and having erasing rules they exhibit the universal 
computational power, that is, they are able to identify any recursively enumerable 
language. 

We first show that X-conditional ETOL languages (random context, semi- 
conditional or regular context conditional ETOL languages) are languages of NLP_FOL 
systems with the same kind of filters. 

T h e o r e m  4.1. Let L be a language generated by an E(X)TOL system with n 
components, where X E {rc, reg} and n >_ 1. Then L is a language that can be 
identified by an (X)NLP_FOL systems with n + 2 components. 

Proof. We give the proof only for the case x = reg, the case x = rc can be 
proven by using the same construction with the appropriate modification in the filters. 
Let H = (N,T,  Ki : H i , . . . , K ~  : H~,w) be an ETOL system with regular context 
conditions (K1 , . . . ,Kn  axe the corresponding regular languages). We construct a 
(reg)NLP_FOL system F such that L ( r )  = L(H) holds. 

Let V = NUT, and let V(0, N(0, T(0 denote superscripted variants of the alphabets 
V, N, and T, respectively, where i = 1 , . . . ,  n. Let Y be a symbol not in any of the 
above alphabets. Let us denote ~z = V U~= i V(0 U {Y}. 

Let us define components of F = (~z, (P0, F0, P0, a0) , . . . ,  (P~+i, F~+I, p~+l, 
a~+l)) as follows: (For the simplicity of reading the construction, we denote the master 
component by (Po, F0, P0, (~0).) 

Let 
P0 = {A ~ A I A E V} U~ x {A(0 ~ A(0 I A(0 E V(0} U {Y ~ Y}, 
F 0 = 0 ,  
po(u) = false for any u E ~z* and 
po(u) = true otherwise, 
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~o(U) = true for u C T* and ~r0(u ) = fa l se  otherwise 
(The component selects the terminal strings.); 
for i = 1 , . . . , n  
P{ ---- {A --+ o~(0 I A ---+ a �9 H,} U {A(') --+ YIA(O E V(0} U {r  --+ r},  

F~=0, 
p (u) = true for any u e (V(0)* and p,(u) = faUe otherwise, and 

= true for u K, and = false otherwise. 
(The node accepts the strings satisfying K{, starts with the simulation of the 

application of table Hi and sends the rewritten string to the (n + 1)-st node in order 
to complete the simulation.); 

P~+I = U~=I{A(0 -~ A NA e Y }  U {A ~ A I A c V} U { Y  ~ Y} ,  
-v +l = {w}, 
p~+l(u) = true for any u E V* and pn+l(U) = fa l se  otherwise, 

and crn+l(u) = true for u e (U~=I(VC0)* and cr~+l(U) = fa l se  otherwise. 
(The component completes the simulation of the application of the corresponding 

table and, then, sends the strings to the other components either to continue the 
rewriting or to be selected as a terminal string.) 

By the above explanations it can be seen that F produces all words of L(H) .  We 
show that only words of L(H)  can be obtained by F. We prove that only such strings 
are able to reach the master node that correspond in any state of their computation 
to an appropriate sentential form in a terminating derivation in H. This holds for 
the following reasons: At any moment in time, only such strings are present at nodes 
1 , . . . ,  n that are either sentential forms of H, or appropriate coded versions of senten- 
tim forms of H, or they are strings consisting of letter Y. Since only the coded versions 
of the sentential forms of H are communicated to another nodes (by sending a copy 
of them), and only these strings take part in the further computation steps, therefore 
nodes 1, . . .  ,n do not issue any string which does not satisfy the above criteria. We 
examine strings appearing at node n + 1. After arriving at node n + 1 from some 
other nodes, say, from node i, and being rewritten to the corresponding string over 
V, the new string will be never changed during the further computation steps, but 
only communicated. Thus, node n + 1 has only such strings available at any moment 
in time that correspond to some sentential form generated in H. Moreover, because 
each communication step follows a rewriting step, and reversely, any computation in 
P corresponds to a derivation in H. 

Hence, P does not produce any word which does not belong to L(H) .  Thus, L(r) = 
L( H).  [] 

Since any ETOL language can be generated by an ETOL system with two tables 
we obtain 

Corollary 4.1. ETOL c_ (reg)NLP4_OL. 

Next we turn to the case when the context condition is semi-conditional. Remem- 
ber that in this case the pres(inee and/or the absence of a subword in a word has to 
be decided, so, whether or not a string is in T* cannot he checked in one step. 

T h e o r e m  4.2. Let L be a language generated by an E(sc)TOL system H = 
(N, T, p~ : H ~ , . . . ,  p~ : H~, w). Then L van be identified by an ( s c )NLP_FOL system 
with n + m + 2 components, where m = card(N).  
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Proof. The proof is based on similar ideas to that  of the proof of Theorem 4.1, 
therefore we give only the necessary details. We first note that  instead of contructing 
an (sc)NLP_FOL system for L(H)  we shall construct a system P such that  L(r) -- 
eL(H) ,  where c is a symbol not in V = N U T. 

Because E(sc)TOL = C S  and the context-sensitive language class is closed under 
operation left derivative, therefore we can make this modification without losing the 
generality. Moreover, we explicit context condition pi in the form (ui, vi), 1 < i < n. 
(Remember,  p~ holds true for x E V* iff ul is a subword of u but vi is not. If no 
context check is required, then the empty  set is given as context condition.) 

We construct P with the following components: 
Let, first, N = {B1, . . .  ,B, ,}  and let us denote by V (i), 1 < i < n, V_ 0), 1 <_ j < 

m = card(N) ,  superscripted variants of V. 
Let Z, Zo, Z I , . . . ,  Z,~, Y and c be symbols not in any of the above alphabets.  

Let us denote by g = V to~l V(0 to~=x V- (j) tO {Z, Z 0 , . . . ,  Zm, Y, c}. (We note that  
for simplicity of reading, we list only that  productions at the components which are 
necessary to understand the construction: for any letter D E V for which there is 
no production with D on the left-hand side indicated, production D -+ D has to be 
added to the production set. Moreover, we slightly differ from the customary notation, 
we denote the master  node by (Po, F0, po, a0): P0 is the set of productions, F0 is the 
set of axioms, po is the exit filter and a0 is the entrance filter of the component) .  

Let f o r i = l , . . . , n  
Pi = {A --+ a(i) I A ---+ ce C H~} 0 {d(O -+ y [ A(O e y(O} tO {Y -+ Y} U {Z0 -+ Z, 

Z --+ Y}, let 
F~ = O, and let the exit filter be defined by (0, O) (no context check is necessary, 

copies of the strings can leave freely the node), and let the entrance filter be given by 

(ui, yd. 
Let us define 
P~+I = vi=l m l a(O -+ A} U {A -+ Y I A e v }  u {z -+ Zo, Zo --, Y } ,  
F,~+I = {Z0w} and let the component be with exit filter (O, 0) and with entrance 

filter (Z, 0). 
These components simulate the application of the tables of H, in the same manner  

as we have shown it in the previous proof, therefore we omit the detailed explanations. 
The further components are for selecting the terminal words. 

Let 
Pt.1 = { Z 0  --+ Zl, Z1 -+ Y} U {A ~ A (1) I A r V} U {A 0) --* Y} U {Y --~ Y}, 
F, a = 0, and let the entrance filter be given by (Z0, Bx) and the exit filter defined 

by (~, 0). (In the latter case no context check is necessary.) 
Let us define for j ,  2 _< j _< m, 
Pt,j = {Zj_1 ~ Zj, Z~ --* Y} to {A (j-~) --+ A 0) I A e V} U {A 0) ~ Y} to {Y ~ Y}, 

, , ,  ~0-1)~ and the exit filter F~,j = 1~, and let the entrance filter be given by (nj- l ,~_j  j 

by (0, 0). (B__5 j- l )  denotes the j - 1-th coded version of nonterminal Bj.) 
Finally, let 
Po = {Z,~ --~ c, c --* c} to {A ('~) ~ A, A ~ A I A C V}, 
F0 = ~, where the entrance filter is given by (Zm, 0) and the exit filter is defined 

by (Y, 0). 
We explain the work of the components (t, 1 ) , . . . ,  (t, m)  given above. Suppose that  

we have stopped with the simulation of the application of the tables of H (at some 
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derivation in H)  at node n + 1 and we would like to decide whether the obtained string 
is of the form Zov or not, where v is a terminal word in H. This is simulated in F in the 
following manner: From component n + 1 string Zov is communicated to node (t, 1). 
The arrival is successful, if nonterminal B1 does not appear in v. Then the string, after 
the appropriate coding, continues its way along components (t, 2 ) , . . . ,  (t, m). Every 
component (t , j) ,  2 < j _< m - 1, checks whether v contains the corresponding coded 
variant of nonterminal Bj, and, if the answer is negative, after coding the string is 
communicated to the next node, ( t , j  + 1). The communication is successful only in 
that  case if the coded variant of nonterminal Bj+a is not present in the string. At 
the end of this procedure, if the original string, v, does not contain any nontermin&l, 
then the corresponding coded word Z~v (t'm) is communicated to node 0 and there it 
is rewritten onto cv. If v is not a terminal word in H, then the above procedure stops 
before the last coded variant of the string reaches node (t, m),  because at some state 
during the computat ion the coded string cannot be communicated from the node, say, 
(t, k), 1 < k < t anymore. 

Thus, cL(H) C L(r). We show that  the reverse inclusion also holds. During any 
computat ion in F each component communicates only such string that  is either a 
sentential form or it is some coded variant of a sentential form from a terminating 
derivation in H. Moreover, because after one rewriting step the string is communi- 
cated, but it is never communicated successfully after being rewritten more than once 
at the node, the rewriting steps and the communication steps, together, in F corre- 
spond to derivation steps in H. Thus, L(F) has no element which is not in L(H) ,  
hence L(F) = L(H). [] 

Next we show that  conditional ETOL systems simulate networks of parallel lan- 
guage processors with TOL components. 

T h e o r e m  4.3. For X E {rc, sc, reg}, (X)NLP_FTOL C E(X)TOL. 

Proof. Let F = (V,(PI,1, . . . ,PI,ml,FI,pl,c~I), . . . , (P~,I, . . . ,P~ . . . .  F ~ , p ~ , ~ ) ) ,  
n > 1, m~ > 1, 1 < i _< n, be an (X)NLP__FTOL system for X G {rc, sc, reg}. 
We construct an E(X)TOL system g such that  L(r) = L(H) holds. Here we take 
x = rc, the other cases can be handled analogously. 

The idea of the proof is that  the constructed tables of the E(X)TOL system simulate 
the way of the strings around the nodes of F and indicate the status of the string, 
that  is, whether it is a copy of a string just going to be communicated,  it has just 
been communicated,  or it is going to be rewritten at the node. 

First, instead of notations pi and ~r~, 1 < i < n, we use notations (Q~,/~-) and 
(Q~, R~), respectively, that  is, to satisfy p~ (respectively, a~) the string has to contain 
each letter of Q~ and no letter o f / ~  (respectively, Q~ and R~). (If some of the above 
sets is empty, then we omit the corresponding context check.) 

Let us denote by V (0, if(0, V(~,J), 1 < i < n, 1 ~ j < ml, superscripted variants 
of alphabet  V, and let S be a symbol not in any of the above alphabets. Moreover, 
let V = V O~= 1 V (0 (3 if(0 U~=I O~d 1V (~J). 

Tables of H are constructed as follows: 
(We note that ,  as in the previous case, we indicate only those productions which 

are necessary to understand the construction: for any letter D from ~V for which there 
is no production with D on the left-hand side, we consider production D ~ D to be 
included in the table.) 
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Let 
H~= { S - ~ e  (0 1 ~ e F~,I < i < ~ }  
(It simulates the starting configuration). 
Let for each i, 1 < i < n, and for each l, 1 < l < m~, 
H~ i'0 = {A(0 --+ A(0, ~(0 -.+ ~(i,0 [ A e V}, 
(The string at node i is going to be rewritten by table P~,t.), and let 
H (''0 = {A (''t) --+ a (i't) I A --, a e P{,l} u {A (i,0 ~ A(',o I A C V}, 
(The string, present at node i, is rewritten by table Pi,l.). 
Let 
HI ~'0 = {A(~,0 --+ A(i),A(0 --+ A(0[A C V}, 
(The string is prepared for rewriting and communication.). 
Let f o r l _ < i , k < n , i # k ,  
(Qik, Rik) : p(~,k) = {A(1) _._+ ~(k), A(k) ~/](~),  I A E V}, 
where Qik = Q~i) tO Q,(i) and R/~ = RI O u R'~ O. 
(A copy of the string leaves node i and arrives at node k passing successfully the 

exit filter of node i and the entrance filter of node k.) 
And, finally, let 
H~ = {a  (1) ~ a , a  ~ A I A E V}. 
(It selects the terminal strings.) 
The terminal set of E(rc)TOL system H is V, any other symbol appearing in any of 

the tables is a nonterminal letter for it. The startsymbol of H is S. By the explanations 
added to the tables, it comes easily that any string which appears at the first node just 
after performing a rewriting step during a finite computation of r can be generated 
by the E(rc)TOL system H. Moreover, H generates only the words of the language 
identified by F, because the tables of H can be applied after each other only in such 
sequence that simulates the way of a string in a terminating computation in F. [] 

Summarizing Theorems 1, 2 and 3, we obtain: 

T h e o r e m  4.4. For x e {rc, sc, reg}, we have E(x )TOL = ( x ) N L P _ F O L  = 
( x ) N L P _ F T O L .  

Coro l l a ry  4.2. 

(i) C S  = E(sc )PTOL = ( s c ) N L P _ P F O L  = ( s c ) N L P _ P F O L  = ( r e g ) g n P _ P F O n  
= ( r e g ) N L P _ P F T O L  

(ii) R E  = E(sc)TOL = ( sc )NLP_FOL = ( s c ) N L P _ F T O L  = ( r eg )NLP_FOL = 
( reg )NLP_FTOL.  

R e m a r k  4.1. The proof of Theorem 4.3 gives a direct method for constructing an 
equivalent NLP_FOL system for any NLP_FTOL system: each table of the E(X)TOL 
system corresponds to a production set of some node and the asssociated context 
condition to the entrance filter of the node. The exit filters in the system are empty, 
the string copies can freely leave the nodes. The axiom sets are empty sets except of 
one node that has strings {~(k) [ w E Fk, 1 < k < n} as axioms. 
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5. Size  of  Str ing Popula t ions  

In the previous sections we considered networks of language processors as language 
identifying devices, but thc concept is a convenient tool for describing such commu- 
nicating symbol processing mechanisms where the processors compute multisets of 
strings, that is, the collections of strings are allowed to have multiple occurrences of 
the same word. In this section we deal with the size properties of such string pop- 
ulations. We prove that the growth of the number of strings being present during 
the computation in a system which has random context filters and deterministic F0L 
systems as components can be described by a growth function of a D0L system. The 
number of the communicated strings and the size of the string population at a fixed 
node can be calculated from the length sequence of this D0L system. 

Networks of multiset string processors (NMP systems, for short) operate in the 
same way as networks of language processors, therefore we settle only the necessary 
formalism. 

Definition 5.1. An NMP_FOL system (of degree n, n > 1,) is a construct 

F = (V, (P1, F1, pa, a l ) , . . . ,  (P,,  F~, p,, a=)), 

n _> 1, where components V, P~, Pi, ai, 1 < i < n, are defined in the same manner as in 
Definition 3.1 (the alphabet of the system, the components: the production set, the 
exit filter and the entrance filter of the component, respectively) and Fi, 1 < i < n, 
is a finite multiset of strings over V*. 

By a configuration (a state) of an NMP_FOL system F = (V, (P1, F1, Pl, or1), --- ,  
(P=, F~, p=, cry)), n > 1, we mean an n-tuple C = (M1, . . . ,  M=), where Mi, 1 < i < n, 
the current state of the i-th component, is a multiset of strings over V*. 

According to the type of the filters and the type of the productions sets we dis- 
tinguish different classes among NMP systems. We denote by (X)NMP_Y the class of 
NMP systems with (X)-type filters and Y components, where X C {reg, sc, rc) and 
Y E {DOL, PDOL, 0L, POL, TOL, PTOL, etc.}. 

NMP systems are functioning in the same manner as NLP systems, by modifying 
collections of strings representing the current state. Since the notions are isomorphic, 
therefore we omit the definitions. 

In the following we examine the size of the changing string populations. If the 
processors are represented by deterministic FOL systems, we can describe the changes 
by functions. 

Definition 5.2. Let F = (V, (P1,Fl ,p l ,a l ) , . . . , (P~,F~,p~,cr~)) ,  n > 1, be an 
(X)NMP_FDOL system, where x �9 {re, sc, reg} and let (M~0, . . . ,  M (0) be the state 
of F at step t during the computation in F, where t > 0. 

�9 The function m( t ) :  IN ~ IN defined by m(t) = )-~,=~ IM(OI for t > 0 is called 
the population growth function of F. 

�9 The function m, ( t ) :  IN ~ IN defined by mi(t) = [M(0[ for t > 0 is called the 
population growth function of F at node i, 1 < i < n. 
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�9 The function f~,j(t) : IN --, IN defined by f~,j(t) = ]{{v e M~ ~) ] p,(v) = 
true and ~j(v) = true}}] for t _> 0 is called the communication function of I '  
from node i to node j ,  1 < i , j  < n, i ~ j. 

(Remember  that  a multiset with elements say, a, b, a, c is denoted by {{a, b, a, c}}.) 

T h e o r e m  5.1. Let P = (V, ( P 1 , F l , P l , a x ) , . - - ,  (P~, F~, p,,, an)), n > 1, be an 
( rc )NMP_FDOL system. Then there is a DOL system H = (E, h, w) such that 

(i) re(t) = f ( t ) ,  where re(t) is the population growth function of P and f ( t )  is the 
growth function of H, 

5i) mi(t) -= ]hi(he(w))] for some erasing homomorphism ]~ : ~ --+ ~, for 1 < i < n, 
where mi(t) is the population growth function o f f  at node i, 

(iii) fi,j(t) -= ]hi,j(ht(w))l for some erasing homomorphism hi,j : ~ --* ~, for 1 
i , j  < n, i ~ j,  where fid(t) is the communication function of P from node i to 
node j,  1 < i , j  <_ n, i T~ j.  

Proof. (i) The proof is based on the following simple considerations: Since D0L 
systems define homomorphims,  therefore, if we know how many strings with a fixed 
alphabet are present at some node, then we are able to give the number  of strings with 
the same alphabet obtained after performing a rewriting step at the node. Moreover, 
because by applying the context conditions we check the presence and/or  the absence 
of some symbols in the string, therefore, if we know the alphabet of the string then 
we are able to decide whether the string satisfies the context condition or not. Thus, 
in this case we can represent any multiset of strings which are present at some stage 
of some computat ion in F by the multiset of their alphabets. We show that  at any 
computat ion step in P the multiset of the alphabets of the words computed by the 
system is equal to the multiset of the letters of some word of a D0L system H. More- 
over, H generates only such words which represent, in the above described manner ,  
states (string collections) of F. 

Let us construct components of D0L system H = (~,  h, w) as follows: 
First, let production sets P 1 , . . . ,  P~, of components of P define homomorphisms 

h l , . . . , h n ,  respectively, and let us explicit context conditions p~, a~, 1 _< i < n, 
by using notations (Q,, Ri) and (Q~, R~), where Qi, Q~ are the corresponding sets of 
permit t ing symbols and Ri, R~ are the corresponding sets of forbidding symbols. 

Let {V~,...,V2-~} be the set of subsets of V, where m = card(V), and let ~ = 
{r~,c~j 1 1 < i < n, 1 _<j < 2m}. 

For the simplicity of reading, instead of defining homomorphism h of H we present 
the corresponding production set, P. 

Let P consist of the following rules: 
For e v e r y i , j  l < i < n, 1 < j < 2 re,let  

(i) ri, ~ c,, C P if alph(hi(Vj)) = Vl, where 1 < l < 2 "~. 

Let P have, furthermore, for 1 < i < n, 1 < j < 2 "~, productions 

(ii) ci, --* rijrkl, rk2j...rk~i, where k l , . . . ,  ks are pairwise different numbers,  and 
{ k l , . . . ,  ks} is the maximal  subset of {1 , . . . ,  n} - {i} such that  for every kl it 
holds that  Qj c Vj, R~ N V~- = 0 and Q~, c_ Vj and R'k, gl Vj = 0, for 1 < l < s. If 
there is no k l , . . . ,  ks with the above properties, then P has production clj --~ r~j. 
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Let Fi = {{v~l, . . .  ,vim,}}, where m, = card(F~). Let g(Fi) = g(vil)...g(v~,~,), 
where g(vi,) = ri~, where alph(vij) = Vl, 1 < l < 2 m. Let, moreover, g(Fi) = ~ if 
Fi = 0. Let w = g(F1). . ,  g(F~). 

We show that the growth function of H is equal to the population growth function 
of F. It is clear that any symbol, say r~k, in w corresponds to a word in ~ with 
alphabet Vk, and reversely, thus, the length of w is equal to the number of axioms of 
F. Productions given by (i) describe a rewriting step in F : P~ derives from a word with 
alphabet Vj a word with alphabet Vl. Since the productions are applied in a parallel 
manner, therefore the whole new string population at node i, 1 < i < n, is represented 
after a rewriting step. Productions of (ii) describe the communication step: if a word 
consisting of letters of Vj at node i can be communicated to nodes k l , . . . ,  ks, then 
a new word, that is, the copy of the string, over Vj will appear at those nodes. If 
the string cannot be communicated, then it remains at the node and no other string 
population will be added by its copy. The above explanations imply that if w~ is the 
t-th member of the D0L sequence of H, then the length of w~ is equal to the total 
number of strings being present at the nodes at step t during the computation in r .  
Thus, m(t) = f ( t )  holds. 

(ii) By choosing hi : ~ ~ ~' with hi(ri~) = r~j, h~(ci~) = %, 1 < j < 2 m, and 
h~(rkj) = ~, 1 < k < n, k # i, 1 < j < 2 m, we immediately obtain the result. 

(iii) The statement follows by choosing h~j : ~ ~ E as follows: 
For 1 _~ k < n, 1 < l < 2 "~ let hli(r~,) = ~, h~i(cik) = rjk, if c~ = rikarjkfl, 

a, f~ C E*, and cik = ~ otherwise. 

Thus, Theorem 5.1 shows that we are dealing here with D0L and HDOL growth 
functions. Consequently, their decidability theory is readily available, see ([11]). We 
mention here only the following two results. 

Coro l l a ry  5.1. The population growth function of an (rc)NLP_MDOL system 
is either exponential or polynomially bounded. 

Coro l l a ry  5.2. For (rc)NLP_MDOL systems it is decidable whether the popula- 
tion growth function is exponential or polynomially bounded. 

Population growth functions are also interesting in the case of DTOL systems as 
components, in particular when the selection of the tables to be applied for rewriting is 
done according to some constraints. Communication functions are of worth to study, 
too, because they provide information about the information flow in the system. 

6. R e m a r k s  on Func t ion ing  M o d e s  

Networks of parallel language processors are models of communities of developing 
and communicating agents. The local development at the nodes and the communi- 
cation protocol of the components together determine the functioning of the system 
that determines the system's descriptive power. T0L systems in the nodes provide 
the possibility of sophisticated functioning modes. One of the variants is, if we drop 
the nondeterministic selection of the tables (which is given by the basic mode of func- 
tioning) and we formulate some conditions for the choice of the table to be used in 
the next rewriting step. 

In the following we illustrate these variants by some examples. 
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Let us have an NLP system with two components, one represented by a D0L 
system and the other by a DTOL system with two tables. We specify only the D T O L  

component in full details. 

Let F1 = (Y U {a, b, c}, (P1, F1, pl, (rl), (P2j,  P2,2, F2, p2, a2)), where V n {a, b, c} = 
, 

�9 P1 is a D0L set of rules; 

�9 F1 = {w} for some w �9 V+; 

�9 p l ( u )  = t r u e  iff u �9 V*. 

�9 ~ l ( u )  = f a l s e  if[ u �9 V*. 

(This component,  from t ime to time, sends a copy of its generated word to the 
other component.  This node does not accept any string.) 

Let 

�9 P2,1={a~ab,  b -+b}U{d- -+A]dEV} ,  

�9 P2,~ = { a  -~  ac,  c ~ c} u {d  ~ ~ I d �9 V } ,  

�9 F~ = { a } ;  

�9 p2(u)  = f a l s e  if[ u �9 V*; 

�9 a2(u )  = t r u e  for any u �9 V* which contains any letter from a fixed alphabet  
V' _ V but no letter from V - V'. (u is with alphabet V'.) 

(If the word generated by the D0L system is with alphabet V' then it is successfully 
communicated to this node.) 

Moreover, suppose that  there is at least one word u generated by H for which 
a I p h ( u )  = V '  holds. 

Let us define the second component of F as the master  node. Clearly, if there is 
no restriction on the usage of the tables, then L(F) = { a s  I ~ �9 {b,c} +} W {A}. This 
language is a regular language. 

Let us introduce now some control for the selection of tables to be applied. Sup- 
pose tha t  F is functioning in the following manner: whenever at least one string is 
successfully communicated to the node (at least one message arrives), then the node 
chooses such table for rewriting which is different from that  was used in the preceding 
rewriting step (supposing that  there are at least two tables at the node; if the node 
has only one production set, then, obviously that  table is applied). If no string is 
communicated to the node, then the T0L system selects a table in nondeterministic 
manner.  (Thus, the successful communication means an impulse for changing the 
developmental process.) 

It  can be easily seen that  the above way of impulse controlled functioning, from the 
point of view of the generative power, is at least as powerful as the original working 
mode. 
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Suppose that r = (v, (P,,1, . . . ,  Pl,m,, F1, pl, o , ) , . . . ,  (Pn,l , . . . ,  Pn . . . .  Fn, Pn, On)), 
n _> 1, mi _> 1, 1 < i < n, is an arbitrary N L P _ F T O L  system working in the basic 
mode of functioning. 

Let X, Y be symbols not in V and let us have F' = (V U {X, Y}, (P~,I, P"1,1, . . . ,  
P~ . . . .  P"a ,m l ,F l , px ,o l ) , . . . ,  (P~, I ,P" , ,1 , . . . ,P~  . . . .  P " ,  . . . .  F , , p , ,  o ,)) ,  n > 1, where 
P[,j = Pij U { X  ~ X , Y  --* Y} ,  P"i,j = Pit O { X  --+ Y , Y  -+ X } ,  1 < i < n, 
l < j < m i .  

Then, it is easy to see that F ~ in the above impulse controlled manner generates 
the same language as F in the basic mode, because independently from the number 
of arriving strings, it can choose a table that simulates the table chosen by F. 

Let us compute the language identified by the NLP_FTOL system F1 of the above 
example. 

It is known (see [11]) that  if w0, wa, w2,. . ,  is a word sequence generated by a DOL 
system H = (E, h, w), then the sets Ei = alph(wi), i >_ O, form an almost periodic 
sequence, i.e., there are numbers p > 0 and q > 0 such that Ei = Ei+p holds for every 
i k q .  

We shall use this statement in the sequel. Suppose that W = alph(wi) for some 
word wi, i > 0, from the word sequence of the first component and let i be the first 
number for which this property holds. Then, for appropriate p, a successful string 
communication takes place at any step of number i + rp, where r > 1, which means 
that  Y will change the table at any step of number (i + rio). 

Then, the computed language contains A and it contains all prefices of words of the 
form acwlv2. . .v~,  n _> 1, where a is a fixed word, a e {b,c} +, lal = i, Ivjl = p, for 
1 < j _<< n, and if vk = ut, fl and Vk+l = 7zk, 1 < k < n - 1, then/3 r 7 , /3 ,7  C {b,c}, 
uk, zk ~ {b, c}*. 

This language is a regular language, that  is, the controlled table selection did not 
add power. 

The same happens if we modify the above model as follows: when a string suc- 
cessfully arrives at a node, then the node changes the developmental table (chooses 
such table that  differs from the preceding one) and keeps this table for rewriting till 
such an event again takes place. 

In this case, using the above statement concerning D0L systems, we can easily 
see that F1 computes ~ and all prefices of the words of aa(bPcP) *, where a is a fixed 
word of length i, numbers i ,p are defined as above, and a E {b, c}*. This language is 
a regular language, too, due to the periodic behaviour of D0L sytems with respect to 
symbol occurrence in their words. However, the natural expectation is that  controlled 
functioning adds power to the mechanism, there are cases when the further regulations 
decrease the generative capacity. 

Let us have now an example for such functioning mode when F1 determines a 
non-context-free context-sensitive language. 

In this model, the D0L component sends a message to the DTOL component 
whenever the new word obtained by a rewriting step is shorter than the old one 
and this is the only case when a message from the first component to the second is 
communicated. 
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The DTOL component has the following strategy for table selection: if the message 
comes, then the second table of the DTOL component will be applied. If no string 
arrives at the node, then at the next rewriting step table 1 will be applied. In this 
way, the changes in the development of the first component control the way of the 
development at the second component. 

By [10] it is known that there exists a D0L length sequence x0, x l , . . . ,  such that 
there are infinitely many n E N with x= 0 > x=0+l and for any k there is an io such 
that Xio < xlo+l < . . .  < xio+k holds. 

Roughly speaking, there are infinitely many points in the development of the D0L 
system where its growing or stagnating tendency changes but there are arbitrarily 
long periods without change. 

Then, supposing that the D0L component of P1 is a D0L system that has the 
above property, we obtain that I'1 identifies a non-context-free subset of a(b*c)*. 

This Section 6. has a preliminary character. We have only tried to give some 
examples of the rich possibilities that become available when the hoice of the tables 
depends on the work of other agents in the network. 
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Chapter 4. Splicing Systems 
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Abstract. In this paper we prove that each recursively enumerable lan- 
guage can be generated using a distributed splicing system with a fixed 
number of test tubes. This improves a recent result by Csuhaj-Vaxjfi, 
Kaxi, Pgun, proving computational completeness only for a system with a 
number of tubes depending on the cardinality of the used alphabet. 

1. I n t r o d u c t i o n  

The family of recursively enumerable languages, RE for short, marks in the usual 
Chomsky hierarchy for formal languages the computational power equal to that of 
Turing machines. That 's  why this family is a benchmark for studying the computa- 
tional power of new models for formal languages and/or for computation itself. 

This is the case with the models of DNA computation recently brought to attention 
[1], [6] as an alternative machinery to the usual silicon based computers. To compare 
these models to RE we first need to map them to a suitable formal language system, 
and since they axe based on the massively parallel interactions of billions of strings 
being transformed (DNA sequences), the mind goes to the ideas of grammar systems, 
[2]. 

A formal model apt to this domain was already suggested in 1987 by Head [4]. It 
is called splicing system model, and it describes one specific DNA transformation, the 
one operated by restriction enzymes. They cut DNA sequences at the occurrence of 
specific subsequences, and the thus created halves can successively rejoin with others 
to create new complete molecules. 

The model we consider here has been defined through certain modifications of the 
original splicing model. As we will see when giving the formal definitions, it considers a 
set of terminals, as the original model, but also a set of nonterminals. Also, it considers 
the strings-molecules interacting in groups assigned to different test tubes, and to be 
from time to time redistributed among the different tubes according to filtering rules, 
as defined in [3]. So we have a system generating strings by interactions at two levels: 
inside the tubes among strings, and among the tubes in the redistribution of the sets 
of strings. 

The aim of this paper is to improve a result from [3], using the same formalism and 
some similar ideas, but proving how to reach the power of RE with a fixed number 
of test tubes, instead of a number dependent on the number of symbols contained 
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in the alphabet.  We do this by designing a kind of simple encoding/decoding sub- 
procedure based only on splicing. This result opens way to considerations related to 
the practical feasibility of this model for DNA computations and, perhaps even more 
important ,  to the effectiveness of new general purpose algorithms natively defined for 
splicing systems. We will diffuse on these issues in the closing section of the paper. 

2. B a s i c  D e f i n i t i o n s  

As usual, V* is the set of all (finite) strings over a finite alphabet V. The empty  
string is denoted by A. 

The families of recursively enumerable languages and of finite languages are de- 
noted by RE and FIN,  respectively. 

We now introduce the definitions of splicing system, and of distributed splicing 
system. This is a kind of PC grammar  system where the components are basically 
splicing systems. 

A Head splicing system (or H system) is a triple H = (V,A,R), where V is the 
alphabet of H,  A C V* is the set of axioms, and R is the set of splicing rules, with 
R C V*#V*$V*#V* ($, # are special symbols not in V). 

For x, y, z, w C V* and r = Ul~:~u2$u3~/:u4 in R, we define 

(x, y) br (z, w) if and only if x = XiUlU2X2, y : Yl~3?z4Y2, and 
Z ~ X l U l ? 2 4 Y 2 ,  W ~ Y l ~ 3 U 2 X 2 ,  

for some xl,x2, yl,y2 E V*. 

For an H system H = (V, A, R) and a language L C V*, we write 

~r(L) = {z e V* I (z, y) F-r (z, w) or (z, y) t-r (w, z), for some x, y e L, r e R}, 

and define 
= [.J 

i > 0  

where 

a~ = L 

ai+l(L) = ~i(L) tJ c~((ri(L)) for i >_ 0. 

An H system is meant to operate starting from the set of strings A, and then 
generate new strings iterating the splicing step ~-, on them and on the strings generated 
during this process. The language generated in this way is a*(A). 

A test tube system, TT for short, is a construct 

r = (y,  (A1, R1, 

where Ai C_ V*, P~ C_ V*#V*$V*#V*, and K C V, for 1 < i < n. V~ is c~lled the 
selector of tube i. 

Each triple (Ai, Ri, V~), also called a tube, operates individually in the same way 
as an H system (V, A~, R~). According to the definition of H systems, they would 
generate the language denoted by cr*(A~), but we will see that  in a T T  they interact 
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among them, accepting from the others the strings belonging to Vi*. The set B of 
strings outside any language V~* is defined as follows 

B = V * - 0 W  
f=l  

Each tube i in the system starts containing only the strings of Ai. One processing 
step ('=-~') of the system, moves it from the configuration (L1,. . . ,L~),  where each 
tube i contains the strings of L~, to a configuration (L~,. . . ,  L~), according to the 
following definition 

(La , . . . ,L , )  ~ (Li , . . .  ,L~)iff 

L~ = 0 (o-;(Sj)n W) U (o~'(L,)n B)) 
j = l  

for each i, 1 < i < n. 

Finally, we state that the language generated by a TT F is the set of words 
appearing in the tube 1 at any processing step~ when starting from the configuration 
(Aa, . . . ,  A~): (=:~* is the reflexive and transitive closure of the relation =>) 

n(r) = {w 6 V* I w c L1 for some (AI , . . . ,  As) o*  (L1, . . . ,  L~)} 

We denote by TT~(F1, F2) the family of languages L(F) such that F is a splicing 
system with at most n tubes, each with set of axioms from Fa and set of rules from 
F2. The set of languages generated using any number of tubes is defined by 

TT.(rl, F2) = U TT.(F~, F2) 
n> l  

3. T e s t  T u b e  S y s t e m s  a n d  R E  L a n g u a g e s  

In this section we prove in details our main result. 

T he o r e m 1. TTlo(EIN, FIN) = TT.(FIN, FIN)  = TT.(F1, F2) = RE for all 
families F1,F2 such that REG C Fi C_C_ RE, i = 1,2. 

Proof. The inclusions TTlo(EIN, FIN) C TT.(FIN, FIN) C_ TT.(Fa, F2) are 
obvious. The inclusion TTlo(FIN, FIN) C_ RE is obvious from the Turing/Church 
thesis. Hence, it is sufficient to prove that RE C_ TTlo(FIN, FIN).  

Take a type-0 Chomsky grammar G = (N, T, 5:, P). Denote U = N U T and 
construct the system 

F = (V, (A~, R,, V~), (A2, R2, �89 (A3, R3, V3), (A4, R4, �88 (As, Rs, Vs), 

(As, P~, Vs), (AT, RT, V~), (As, Rs, Vs), (Ag, ng, V9), (A10, R~o, V10)) 

with 
V = N U T U {X ,X ' ,Y ,Y ' ,Z ,Z ' ,H ,H ' ,R ,K ,B ,~ ,Y~} .  

Denote with Ua,...,U~ the symbols of the alphabet U (i.e. non terminal and 
terminal symbols of G) and with U.+I the special symbol B. 
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Define 

A 1 = {~ 

R~ = O, 

171 = T, 

A2 = { X B S Y ,  Z ' Z }  U { Z v Y  l u--~ v E P}  U {Z@Iy  ' [ l < i < n + l} ,  

R2 = { # u Y S Z # v Y  ] u ~ v E P}  U { # U y $ Z # @ ~ Y  ' ] U~ E U U {B}} 

U { Z ' # Z S X B # } ,  

V~ = U U { B , X , Y } ,  

Aa = {ZY~,HH'}  

Ra = {#@Y'$Z#Y~}  U { a # Y ' $ H # H '  I o~ E U U {B}}, 

Va = U U { X , B , @ , Y ' } ,  

A4 = {X '@Z} ,  

R .  = { X # $ X ' ~ # Z } ,  

V4 = U U { X , B , @ , Y ~ } ,  

A~ = { ZY'} ,  

R5 = { # Y ~ $ Z # Y ' } ,  

Y~ = U U { X ' , B , ~ , Z ~ } ,  

A6 = {XZ} ,  

P~ = { x ' # $ x # z ' } ,  

�88 = U u { X ' , B , Y ' , Q } ,  

Ar = { X U ~ K l l < i < n + l } ,  

R~ = { X Q ~ # ~ $ X U ~ # K  I ~ e u u {B}}, 

�89 = U U { X , B , @ , H ' } ,  

As = { R Y } ,  

Rs = {o~#H'$R#Y I c~ E Ut2 {B}}, 

Vs = U U { X , B , H ' } ,  

A9 = {ZZ} ,  

R~ = { # Y S g Z # } ,  

V9 = T U { Y , Z ' } ,  

Alo = { Z Z } ,  
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n~o = { # z z s z ' # ) ,  
V~o = T u {Z '} .  

Let us examine the work of F. 
The first component only selects the string produced by the others components 

that  are terminal according to G. No such terminal string can enter a splicing, because 
all rules involves at least one special symbol that we add to the set of terminal and 
non terminal symbols. 

In tube 2 applications of productions of the form u ~ v E P to sentential forms 
XwlBw2uY  are simulated, where w2uwa is a sententi~l form of G, and X, Y, B are 
special symbols, indicating respectively the left end and the right end of the sentential 
form in F and the beginning of the rotating string representing the corresponding 
sentential form in G. 

Tubes 3, 4, 5, 6, 7 and 8 are used to rotate the symbols, so we can simulate the 
productions of G in the correct place. 

Tubes 9 and 10 are used to eliminate special symbols X and Y, so we obtain a 
terminal string. 

The construction works as follows: 
In the initial configuration (Aa, . . . ,A10),  only the second component can exe- 

cute a splicing. There are three possibilities. We can either use a rule of the form 
# u Y $ Z # v Y ,  for u ~ v E P (we call this a splicing of type 1), or a rule of the form 
#U~Y$Z#@IY ' where U/ is the i-th symbol of the alphabet U or, if i = n + 1, the 
symbol B (splicing of type 2), or the rule Z ' # Z $ X B #  (splicing of type 3). In the 
following, while describing these three cases, we will denote by k-~ any splicing of type 
i, for i = 1,2,3. 

Consider the general case of having in tube 2 a string X w Y ,  with w E U*BU*; 
initially, w = BS. We have three possibilities for splicing : 

1. (XWlluY, Z[vY) bl (XwlvY,  ZuY),  for u --+ v E P and w = wlu 

2. (Xw, lViY , Z l~iY  t) F-2 (XwlQiV ', ZUiY), for U~ E U U {B} and w = wlV i 

3. (Z'IZ, XBIwlY) ~-~ (Z'wIY, XBZ), for w = Bwl 

Let us examine the strings we have just created. 
The string X w l v Y  is of the same form as X w l u Y  so it will remain in tube 2, 

entering new splicing of one of the three types. Clearly, the passage from X w l u Y  to 
X w l v Y  corresponds to using the rule u --+ v E P on a suffix on the string bracketed 
by X, Y. The string ZuY  will remain in tube 2, too. Such a string ZuY can enter a 
splicing in three cases: 

1. ZuY  is an axiom, then nothing new appears. 

2. Z u Y  is used as the first term of a splicing of the form (Zu~lu'Y, Zv 'Y)  t-~ 
(Zulv'Y, Zu'Y),  for u = UlU' and u' ~ v' E P;  we obtain two strings of the 
same form, ZxY ,  which will remain in tube 2. 

3. ZuY  is used as the first term in a splicing of the form (Zu~IU~Y , ZI@~Y ') ~-2 
( Zul  @~Y ', ZU~Y), for u = Ul Ui, Vi E U [,.J {B} ;  the string ZUl~iY t cannot enter 
new splicings and cannot be transmitted to another tube. 
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After any sequence of such splicings, the obtained strings will still be of the form 
ZxY,  hence they will remain in tube 2 and will enter other "legal" splicing, when they 
are axioms, or they will enter splicings producing "useless" strings ZyY. Therefore, 
after a series of splicings of type 1, eventually in tube 2 a splicing of type 2 will be 
performed, producing strings of the form XWa@iY ' and ZUiY. The second string 
behaves exactly as we discussed above for the string ZuY. If a string X w ~ i Y  ' enters 
a new splicing in tube 2 this can only be splicing of type 3, 

(Z'[Z, XBIw2@'Y') t-3 .(Z'w2@'Y', XBZ)  

for wl = Bw2. The string Z'w2@iY ' cannot enter new splicings in tube 2 and cannot 
be transmitted to another tube. If the string X B Z  enters a new splicing, this can 
only be of type 3 

(Z'pZ, XBIZ) 1-3 (ZlZ, XBZ) 
so nothing new can be created. 

Any string Xwl@iY ~ is moved from tube 2 to tube 3 where we have to perform 

(Xw~@'-~l@Y ', Z[Y~) 1- (Xwl@~-'Z~, Z@Y'). 

The second type of rule of tube 3 will be examined below. 
The string Z@Y' cannot be transmitted to another tube and can enter only a 

splicing of the form 
(ZI@Y' , ZIY~ ) 1- (Z@Y', ZY~), 

hence creating nothing new. 
The string Xwl@~-IY~ cannot enter new splicing in tube 3, it will be transmitted 

to tube 4 where we have to perform 

(Xlwl@i-'Y@, X'~IZ ) 1- (X'~wl~i-'Y@, XZ)  

The string X Z  cannot be transmitted to another tube and can enter only a splicing 
of the form 

(XIZ , X'~[Z) 1- (XZ, X '~Z)  

hence creating nothing new. 
The string X~@wt@i-lYu cannot enter new splicing in this tube; it will be trans- 

mitted to tube 5, where the only possible splicing is 

(X'@wl@i-'lY~, ZIY' ) 1- ( X t ~ W l ~ i - l y  ', ZY~) 

The string ZY~ cannot be transmitted to another tube and can enter only a splicing 
of the form 

( Z[Y+, Z[Y') 1- ( ZY+, ZY'), 

so it can creates nothing new. 
The string X~@wl@i-lY ~ cannot enter new splicing in this tube; it will be trans- 

mitted to tube 6. In tube 6 we can only execute 

(X'l@Wl~i-'r' , XIZ') 1- (X~wl~ ' - IY  ', X'Z') 

The string X'Z' cannot be transmitted to another tube and can only enter splicing 
of the form 

(X'lZ',XlZ') 1- (X'Zl, Z Z  ') 

hence producing nothing new. 
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The string X@wlQ~-IY ~ cannot enter new splicing in this tube; it will be moved 
to tube 3. 

We started from tube 3 with the string XWl@iY ' and now we returned to tube 3 
with the string X@wl@i-IY '. A symbol ~ from the right end of the string bracketed 
by X , Y '  has been moved to the left end. The string XQwl@i-IY ~ cannot enter a 
splicing of the second type in tube 3, but can enter a splicing of the first type in 
tube 3. By repeating the operations just described, we will return to tube 3 with the 
string XQ@wlQ~-2Y l (i.e. we will rotate another symbol @). This sequence will be 
repeated until all symbols @ will be moved from the right end to the left end of the 
string bracketed by X, Y'. It will take i steps. 

Then, in tube 3 we obtain a string of the form X@~wlY '. This string cannot entera 
splicing of first type in tube 3, but it can enter a splicing of second type in this tube, 
so we can perform 

(X~iw2a[Y ', HIH' ) ~- (X@~w2aH ', HY'), for W 1 -~- W2Ol, O~ e g I,.J { B } .  

The string HY ~ cannot be transmitted to other tubes, and can only enter splicing of 
the form 

(HIY',  HIH') t- (HY', HH') 

hence creating nothing new. 
The string XQ~wlH ' cannot enter a new splicing in this tube; it will be transmitted 

to tube 6. In tube 6 we have to perform : 

(X~il/3w3H',XU,[K) t- (XU, flw3H',X@{K), for wl =/~w3,/~ E U U {B}. 

With this operation we decode the symbol Ui from @4 (we coded Ui in @~ with the 
splicing of type 2 in tube 2). 

The string X@~K cannot be transmitted to another tube, neither enter new splic- 
ings in this tube; hence, it can not create nothing new. 

The string XU~wlH' cannot enter new splicings in this tube; it will be transmitted 
to tube 7, where we have to perform 

(XU~w4x[H',R[Y) t- (XU~w4xY, RH'), for wl : w4X, X �9 U [.J {B}. 

The string R H '  cannot be transmitted to another tube, neither enter new splicings in 
this tube, so it can' t  create nothing new. 

The string XU~wlY cannot enter new splicing in this tube. It will be moved to 
tube 2. 

After this sequence of operations, we can note that having started with the string 
XwlU~Y in tube 2 we have returned to tube 2 with the string XU~wlY. A symbol 
from the right end of the string bracketed by X, Y has been moved to the left end. In 
this way, the string bracketed by X, Y can enter circular permutations as long as we 
want them to do that. This allows us to pass from a string XWlBw2Y to any string 

' ' In this way we can "rewind" the string until its Xw'IBw'2Y such that  W2Wl = w2w 1. 
suffix is the left-hand member of any rule in P that we want to simulate by a rule 
in R2 of the form #uY$~vY.  As the symbol B is always present (and exactly one 
copy of it is present as long as we do not use the rule Z ' ~ Z $ X B #  in R2), in every 
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moment we know where the "actual beginning" of the string is placed. Consequently, 
using splicings of type 1 and 2 in tube 2 and splicings in tubes 3, 4, 5, 6, 7 and 8 as 
described above, we can simulate every derivation in G. Conversely, exactly strings 
of the form XwlBw2Y can be obtained in this way, they correspond to strings w2wl 
that  are sentential forms of the grammar G. 

We have now to consider the splicing of type 3 in tube 2 and the tubes 9 and 10. 
We consider first of all the splicings of type 3 in tube 2. We have already seen 

what happens for the strings X B Z  and Xw@iY ', so we have now to consider the 
strings of the form X B q Y  for q E U*. Using a splicing of type 3 we have 

(Z'[Z, XBIqY ) t-a (XBZ, Z'qY). 

If a string Z'qY enter a splicing in tube 2 this can be of type 1 and 2: 

(Z'ql]uY, Z]vY) ~-1 (Z'qlvY, ZuY), for u ~ v E P,q = qlu 
(Z'ql]UiY, Z]@iY ') F-2 (Z'ql@iY ', ZUiY), for Ui E U U {B},q = qlUi 

We have already discussed the case of ZuY, ZUIY and Z'ql@iY '. The string Z'qlVY 
can be obtained by performing first 

and then 

(XBq~[uY, Z[vY) P1 (XBqlvY, ZuY) 

(z'lz, XBIqlvY) e3 (Z'qlVY, XBZ), 
so it is a "legal" string. 

If the string Z'qY, obtained with a splicing of type 3 in the tube 2, have the 
property that  q C T* (i.e. q is a terminal string) it can be moved to tube 9. Here the 
only possible splicing is 

(Z'qlY , ZZl) ~" (Z'q, ZZY). 

If ZZY will enter new splicing, these are of the forms 

( Z' xlY , Z ZJY) ~ ( Z'xY, Z ZY) 
(ZZ[Y, ZZlY) ~ (ZZY, ZZY) 

hence no new string is obtained. 
The string Z'q cannot enter new splicing in tube 9. It will be moved to tube 10, 

where we have to perform 

([ZZ, Z'lq ) P (q, Z'ZZ). 

If the string Z'ZZ enters new splicings, these are of the forms 

(Z'lZZ, Z'lx) P (Z'x, Z'ZZ) 
(Z'IZZ, Z'IZZ) + (Z'ZZ, Z'ZZ) 

hence nothing new can be created. 
The string q is terminal. It will be transmitted to all tubes, including the first 

one. No splicing can be done on a terminal string. As we seen above, such a terminal 
string q is a string in L(G). 
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No parasitic string can reach the first tube, consequently L(F) = L(G). [] 

The basic ideas of the construction we have presented here are those already used 
in [5] and [3]: We simulate the productions of the grammar using splicing operations 
in tube 2. Unfortunately, using the splicing operation, we can simulate a production 
(in one step) only if the sub-string we are going to substitute is placed at one end of 
the string. The splicing operation is not able to do such a substitution (using a finite 
number of rules) if the sub-string is placed in the internal part of the string. 

To deal with this problem, we use the rotation of the symbols. Look at Example 1 
below: to simulate the production u ~ v we rotate the symbols x3, x4 and x~ so that  
we can move the sub-string u to the right end of the string. This position is optimal 
to simulate the production using a splicing operation. After that, we rotate the string 
v (one symbol at time), and then the symbol xl and x2. Starting with XlX2UX3X4X5 
we obtain xlx2vx3x4xs, so we have simulate properly the production u --~ v of the 
grammar.  

E x a m p l e  1: 

X l X 2 U X 3 Z 4 X  5 ~ Z5XlX2?AX3X4 ~ 3~4X5XlX2?AX 3 ~ X 3 X 4 X 5 X l X 2  ~ 

~.~ X3X4X5XlX2?A ~.~ :~3X4X5XlX2V 

X 3 X 4 X 5 X l X 2 V  ~ Y x 3 x 4 x s x l x  2 ~,~ 3 c 2 v x 3 x 4 x 5 x  1 ~ Z l X 2 V X 3 X 4 X  5 

The rotation solves the problem we have just mentioned, but it introduces a new 
problem. When we rotate a symbol, we move it from one end to the other. Using 
splicing rules, this operation requires more than one step, so the problem we have 
to deal with, is how to delete the symbol from the right end of the string and to 
put the same symbol in the left end of the string. Due to the multi-step process, we 
could delete a symbol from the right end and put in the left end a different symbol, 
generating a word which the grammar was not able to create, even if we do not want 
to do so. 

In [3] the solution to this problem was to substitute the symbol to rotate with a 
symbol that  contains the information on the symbol substituted and then to send the 
string obtained to a "special" tube that  rotates that specific symbol. In Example 2 we 
show how this can be done. 

E x a m p l e  2: We consider the string xlx2x3x4x~w; the symbol w is replaced with 
Y~. 

Z l X 2 X 3 X 4 X 5 W  ~ X l X 2 X 3 X 4 x s Y w  

Then, the string xlx2x3x4xsY~ is sent to the "special" tube, the only tube able to 
receive this string. This special tube is the only one that  contain the symbol Y~ in 
the filter, and its function is to rotate the specific symbol w. We are sure, in this case, 
to put in the left end of the string the same symbol we have deleted from the right 
end of the string. 

The problem in this solution is that  we need one of these "special" tubes for every 
symbol of the language we are going to generate (because we need one tube for every 
type of symbol to rotate). Thus, the number of test tubes needed to generate a 
language depends on the number of different symbols used in the language we have 
to generate. 

In the model presented here, we introduce some differences. First of all, we number 
the symbols of the grammar. Before rotating a symbol, we encode it to a number of 
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special symbols @, not present in the alphabet of the grammar. The i-th symbol in 
the order we give, is substituted with i copies of this symbols. This operation is done 
by the splicing of type 2 in the second component test tube. 

Then the symbol is moved to the left end by rotating, one at a time, the special 
symbols @. These rotations are executed by the component tubes 2, 3, 4, 5 and 6. 

When all the special symbols have been rotated, we decode i special symbols with 
the correspondent symbol Ui. This is done with the component 7. 

In the example below we illustrate these three main phases. 

E x a m p l e  3: We show here the three main phases of the rotation of the symbol 
x5 of the string xlx2x3x4xh: 

Encoding : Xl X2X3X4x 5 
Rotation : @XlX2X3X4@@@@ 

@@@XlX2X3X4@@ 
@@@@@3~lX2X3X 4 

Decoding : @@@@@XlX2XaX4 

This solution offer three advantages: 

XlX2X3.T'4@@@@@ 
-'x.4 @@XlX2X3X4@@@ "-',-.4. 

@@@@XlX2X3X4@ 

~-~ XhXlX2X3X 4 

�9 A symbol is encoded when it is placed in the right end of the string, thus in a 
suitable place for the application of splicing rules. 

�9 The only symbol that actually rotates is the special symbol @, so we need just 
one of the "special" tubes used in [3], about which we have discussed before. 

�9 A symbol is decoded when it is placed in the left end of the string, thus in a 
suitable place for the application of splicing rules. 

These advantages permit us to limit the number of tubes with respect to the 
construction presented in [3]. Using the construction we have explained, the number 
of tubes does not depend on the number of the symbols of the language we have to 
generate: ten test tubes are enough to generate any R E  language. 

We conclude just saying that the components 8, 9 and 10 are used to control the 
communication of the strings through the tubes and the component 1, as said in the 
proof, is used to select the strings which contain terminal symbols only. 

4. Conclusions and Perspectives 
We proved how to build a distributed splicing system powerful enough to generate 

any language in RE,  and using a fixed number of 10 test tubes. 
This is still different from designing in detail a universal splicing system, similar to 

the current programmable computers, but it takes us closer to a practical implemen- 
tation of a DNA computer: for each computation (language) we want, we just change 
the starting molecules and the restriction enzymes introduced in the test tubes, we 
do not change the layout on our workbench for each alphabet we need. Of course it 
is still a practical problem to have enough real restriction enzymes. 

From the grammar systems point of view, this work has been insightful to study 
a case where a simple algorithm has been designed directly in terms of splicing: an 
algorithm not simply reproducing an usual grammatical production rule, but doing 
some different basic operation (encoding/decoding). This, of course, is not the first 
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case in literature, but we feel that the interest in this molecular algorithm engineer- 
ing can eventually lead us to build a kind of universal grammar systems based on 
molecular-like operations, avoiding the uneffective translations of universal Turing 
machines seen so far. 

Many interesting open problems suggested in [3] still are open, concerning the 
power of different numbers of test tubes and comparisons to different levels of Chomsky 
hierarchy. We can only add now that it is interesting to check whether it is possible to 
use less than 10 tubes for RE, since it is not proved that TTg(FIN, FIN)  is properly 
contained in RE 2. 
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Abst rac t .  The generative capacity of splicing grammar systems is inves- 
tigated in this paper. It is proved that: 1) any linear language can be 
generated by a splicing grammar system with two regular components; 2) 
any context-free language can be generated by a splicing grammar system 
with three regular components; 3) any recursively enumerable language 
can be generated by a splicing grammar system with four right linear 
components. The first two results answer a problem left open in [18], the 
last result improves results in the same paper. 

1. Introduction 

In the last years a series of researches were initiated in the field of DNA recombi- 
nation and computing ([9], [11], [14], [21]). This area is very rich both in theoretical 
and practical problems, motivated by the possibility of using DNA as a support for 
computing, [1]. 

A specific model of DNA recombination is the splicing operation which consists of 
cutting DNA sequences and then pasting the fragments again, under the influence of 
restriction enzymes and ligases. 

Some generalizations were recently considered in the field. One was to consider 
arbitrarily large sets of splicing rules, codified in a natural way as strings, hence giving 
languages of splicing rules ([15]). Several ideas about how to handle a regular set of 
splicing rules were explored in [3], [4], [7], [17], [19], [26]. Another idea was to count 
the number of copies of the used strings: [6], [7], [16]. 

A different approach was started in [4], [5]: to use distributed architectures as in 
grammar system theory [2]. Here we investigate the idea introduced in [5]: to con- 
sider a parallel communicating grammar system, as in [23], with the communication 
replaced by a splicing operation. Thus, a splicing grammar system can be viewed as 
a set of grammars working in parallel on their own sentential forms and, from time 
to time, splicing the current strings of two components. 

In [5] it is proved that context-free splicing grammar systems with three compo- 
nents can generate all recursively enumerable languages and it is formulated as an 
open problem the question whether or not two components are enough. 

The problem is solved in [18] where the following results are proved: 

1) Every recursively enumerable language can be generated by a splicing grammar 
system with two context-free components. 

1Research supported by the Academy of Finland, project 11281. 
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2) The family of languages generated by splicing grammar systems with two regular 
components contains non-context-free languages. 

1) Every recursively enumerable language L C T* can be written as the intersec- 
tion of a language generated by a splicing grammar system with three regular 
components and T*. 

In the above paper are left open the problems whether or not the families of 
linear and context-free languages are included in the family of languages generated 
by splicing grammar systems with regular components. We shall prove that every 
linear language can be generated by a splicing grammar system with two regular 
components and every context-free language can be generated by a splicing grammar 
system with three regular components. Also, we shall prove that each recursively 
enumerable language can be generated by a splicing grammar system with four right 
linear components. 

2. Pre l iminar i e s  

We assume the reader to be familiar with some basic notions in formal language 
theory [25]. For grammar system theory, we refer to [2]. 

For an alphabet V, we denote by V* the free monoid generated by V under the 
operation of concatenation; the empty string is denoted by )~ and V* - {)~} is denoted 
by V +. The families of finite, regular, linear, context-free, context-sensitive, recur- 
sively enumerable languages are denoted by FIN, REG, LIN, CF, CS, RE, respecti- 
vely. 

Conven t ion :  Two languages are considered equal if they differ by at most the 
empty string (51 = L2 if[ ix - {)~} = 52 - {~}). 

A splicing grammar system (SGS for short) is a construct 

r ~-- ( g ,  T ,  ( S l ,  P1) ,  (S2, P 2 ) , - - - ,  (Sn,  P=), i ) ,  

where 

(i) N, T are disjoint alphabets and P~, 1 < i < n, are finite 

sets of production rules over N U T~ 

(ii) M is a finite subset of (N U T)*#(N U T)*$(N U T)*#(N U T)*, 

with # ,  $ two distinct symbols which are not in N U T. 

The sets Pi are called the components of F. 
For two n-tuples (we call them configurations) x = (xl, x2 , . . . ,  x~) and y = (yl, y~, 

�9 ..,Yn), xl, yi E (N U T)*,I  < i < n, we write x ==~ y if and only if one of the 
following two conditions holds: 

(i) 
(ii) 

for each 1 < i < n~ xi ~ p ~  y~, 
! H ~--- X ! ?Z H there exist 1 < i , j  < n such that x~ = xiulu~x~, xj j 3u4xj, 

and Yl = X~UlU4X~, yj = x~u3u2xT, for ul#u2$u3~u4 e M; 
for k ~ i , j ,  we have yk = xk. 
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In the above definition, point (i) defines a rewriting step, whereas point (ii) defines 
a splicing step, corresponding to a communication step in parallel communicating 
grammar systems. Note that no priority of any of these operations over the other 
one is assumed. In case (ii) we usually denote the passing from (x;, xj) to (y~, yj) by 

The language generated by the ith component of F is 

L,(F) = {x, e T * ] ( S , , . . . , S , )  ~ *  (Xl,... ,Xn), xj e ( N U T ) * , j  # i}, 

where ~ *  is the reflexive and transitive closure of the relation ==~. 
The total language associated to F is 

n 

L (r) = U L,(r). 
i=1 

We denote by ISGS , (X) ,  TSGSn(X) the families of languages LI(F), L,(F), re- 
spectively, generated by splicing grammar systems of degree at most n, n > 1, with 
components of type X,  where X E {REG, LIN,  RL, CF)  when the components are 
regular, linear, right-linear or context-free, respectively. When no restriction is im- 
posed on the number of components, then we replace the subscript n with *. 

3.  R e s u l t s  

T h e o r e m  1. L I N  C YSGS2(REG), Y e {I, T). 

Proof. Let L be the language generated by a linear grammar G = (N, T, S, P). 
We can suppose that S does not appear in the right-hand side of any rule from P. 
For u, v e T*, re(u, v) denotes max{]u[, Iv[}. For p, q two positive integer numbers we 

0, i fp  < q 
denote0(p ,q)=  p - q ,  i f p > q "  

We construct a SGS with two regular components as follows: 

F = (N',T',(S1,P1),(S2, P2),M), 

where 
N'  = {S1,S~,St, S~,Y} UNz U {(uA, i) [ B - ~  uA E P, 1 < i < [u[}U 

{[uAv,i],[uAv, i]' [ B ~ uAv e P, 1 < i < m(u,v)}U 
{[uAv], [ugv]' [ B -~ uAv e P}, 

T t = T U {Cl, c2}, Cl, c2 ~ T, 

Pl ~-- {S~ ~ ClS~}U (1) 

al  E T U {~), a2.. .ak E T, Zl, ' ' '  Zk-1 ~ Nz}U (2) 
{S~ ~ aa(uA, 1) I S ~ um E P, u = alu', al  C T}U (3) 
{(uA, i) ~ ai+,(uA, i+  1) I~ = ~ "  "'a,~b 1 -< i < tul}U (4) 
{(uA, I 1) -~ al(vB,1) I A -+ vB e P,v = a~v')U (5) 
{(uA, lul) -~ a lZ1 , " ' ,  Zk-1 --* ak I A -+ a l " ' a k  E P, 

Z1,'" Zk-1 ~ Nz}U (6) 
{(uA, lul) --* a[u'Bv', 1) I A ~ u'Bv' e P, v' ~ )~, 

Cl, if u' = ~ }U (7) 
k 

a l ,  i f  u 
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{[uAv, i] ---* o~[uAv, i + 1) I 1 <_ i < m(u ,v ) , u  = a l . .  "%4, 
a = { cl, if ]u] < ]v],i > lU]}u (9) 

ai+l, otherwise 
{[uAv, m(u,v)]'---* Cl[UAv]' i B ~ uAv e P}U (10) 

{[uAv] ~ a[u'Bv', 11 [ A ~ u'Bv' e P, o~ = { c~, if u' = ), U (11) 
t "  

as, i fu '  = alu "} % 

{[uAv] ---+ a l Z 1 , ' " ,  Zk-1 ~ ak t A ---+ a l ' " a k  e P, 
Z 1 , ' "  Zk-1 E Nz} ,  (12) 

P2 : {& ~ c2s~}u (13) 
{S~ ~ c2(uA, 1)'}U (14) 
((uA,  i ) ' ~  cffuA, i +  1)'11 < i < [ul}U (15) 
{(uA, M)' ~ c~(uA, M)'}u (16) 
{(uA, lul)' ~ b[u'Bv', 1]' [ A �9 N, v' r A, v' = bv", b �9 T}U (17) 
{S~ ~ b[uAv, 1]' [ S ---+ uAv �9 P, v # A, v = bv', b �9 T}U (18) 
{[uAv, i]' ~ j3[uAv, i + 1]' I 1 < i < m(u ,v ) , v  = h i . . .  blvl, 

fl : { c2, if Ivl < [ul,i > Ivl }u (19) 
b~+l, otherwise 

k 

{[uAv, m(u,v)] --~ c2[uAv] l B ---* uAv �9 P}U (20) 
{[uAv]' ---+ fl[u'Bv', 1]' I A ~ u'Bv' �9 P, 

f l =  {bl,c2, otherwiseifV'#X'v'=blv"}U (21) 

{[uAv]' ~ c2Y, Y ~ c2Y I B --* uAv �9 P},  (22) 
M = { :~#~S~$c2#S~}u (23) 

{u[uAv,m(u,  v)]#A$Cl#VCk2[uAv,m(u,v)] ' I B ~ uAv �9 P, 
k = o (M,  Ivl)}u (24) 

{[~Av, m(~,v)]v#c~[,~Av, m(u,v)]'$~#a i B ~ uAv �9 P, 
Z �9 {Cl,C2},a �9 T, k =  0(M, Ivl),}U (25) 

{u#cka[uAv, m(u, v)]$z#[uAv, re(u, v)]' [ 
B ~ uAv �9 P,z  �9 {c~,c2}, k = O(Ivl, M)}u  (26) 

{)@c~[uAv]'$zc2#[uAv] l B ~ uAv �9 P, z �9 {Cl, c2}}. (27) 
t ! In order to simplify the proof, we denote Gi = ( N~, T~, Si, Pi), i = 1, 2. 

The idea of the construction is the following one. For every linear rule A 
uBv  �9 P,  we introduce the nonterminal symbols [uBv], [uBv]', [uBv, i], [uBv, i]', 1 < 
i < rn(u, v). Then we try to generate u in P1 and v in P2 in a regular manner. When 
lul < [v], then uc~ "1-1~1 is generated in P1, rand when Iv] < lul, then vc~ ~1-1"1 is generated 
in P2, where cl, c2 are two terminal symbols different from the symbols from T. Then, 
by using some splicing rules we remove c~ from G1 (if k > 0), and we put together 
substrings u and v such that we will obtain in Ga the substring u[uAv, m(u, v)]v. 
Then we continue until a terminal string is obtained. 

O b s e r v a t i o n  1. We notice that,  in order to apply the splicing rules and thus to 
obtain a terminal string, it is necessary that the noni~erminals which appear in the 
two components of the grammar are paired, i.e. at every step of a derivation, the two 
nonterminals are of the form 

([uAv, i], [uAv, i]'), or ([uAv], [uAv]'), 

where 1 < i < re(u, v) and there is B --~ uAv a rule in P. 
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There is only one exception from such a derivation, namely when we apply rules 
of the form (3), (4), (5) in G1 (which means rules of the form S ~ ulA~, A1 ~ u2A2, 
�9 " ,  Ak-1 ---+ ukAk in G), followed by terminal rules of the form (6) (i.e. a rule of the 
form Ak ~ Uk+l, Uk+l C T in G). Then the string Ul...  uk+l E L(G) is obtained in 
Ll(r). 

Let us examine a derivation in F. The derivation must start with: 

(Sl, S2)(1)T~3)(ClSgt ' C2S; ) (~)(S;, C2CLS2), 

Then it will continue with 

a) (Si, S~)(8~1.8)(a[uAv, 1], C2Clbl[u'A'v', 1]), where v ' ~  A, v '= blV", bl E T. 

According to Observation 1, we must have u = u',A = A',v = v'. Then the 
derivation will continue with 

(9)+0~) 
(a[uAv, 1], c2cibl[uAv, 1]) ~ *  uc~[uAv, m(u, v)], c2clv4[uAv , re(u, v)]': 

k = 5(I.I, I~l),p = ~(1~1, I~l). 

b) We apply k times, k > 1, rules of the form (3), (4) and (5) in G1 and rules of 
the similar form in G2, Le. (14), (15) and (16). Because the nonterminals of the 
form (uA, i) do not appear in the strings of M, no splicing rule can be applied. 
Then, if we apply rules of the forms (6) and (16) in G~ and G2 respectively, 
then we obtain a terminal string in C1 which is also in L(G). If we apply rules 
of the form (7) and (17), then we obtain 

(Ta[uAv, 1],c2obl[uAv, 1]')a �9 TU {O},v # A,v = blv', 7 �9 T*. 

In the general case, we distinguish the following cases: 
(i) ($1,$2) ~ (Tu[uAv, ra(u,v)]3,#c~v[uAv, m(u,v)]'), where 7,5 E T*,5 

A, gcl E {c~, c2} +, ]u I = [vl. Then the derivation will continue with 

(24) 
F- 

(25) 

(2s) 
F- 

(lO)~2o1 

(2z) 

7u[uAv , re(u, v)]5, gcl v[uAv, re(u, v)]') 

7u[uAv , m( u, v) ]v[uAv, re(u, v)]', #c~5) 

~u[uAv, m(~, v)].5,.c~[~d~, m(~, v)]') 

7u[uAv, re(u, v)]', #ct[udv, re(u, v)lvS) 

7ucl[uA.]',~ClC2[uAv]~5) 

7u[uA~]vS,,clc2c~[uA.]'). 

(ii) (S,, $2) ~ (Tuc[[uAv, m(u,v)]5, l~c,v[uAv, m(u,v)]'), where 7, 5 e T*, 5 :~ 
A, #cl E {cl, c2} +, [u] < Iv], k = Iv[- ]u]. In this case the derivation will continue with 

(~4) 
F- (Tuc~[uAv, re(u, v)]v[uAv, m(u, v)]', #c15) 

(2s) 
~- (Tuc~[uAv, m(u, v)]vS, #c, [uAv, re(u, v)]') 
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(26) 

00)~26) 

(2r) 

(Tu[uAv, re(u, v)]', #c~c~[uAv, re(u, v)]vS) 

(7gel [ u A v ]  ', # c  1 c f  c 2 [?2Av]v(~) 

(7u[uAvlvh, c k u ' ~clc~.c~[ Av] ). 

(iii) (S~, $2) =:~ (Tu[uAv, m(u, v)16, #Clvck[uAv, re(u, v)]'), where 75 e T*, 8 r 
;~, #cl E {Cl,C2} +, lul > [vl, k = lu l -  Ivl. Then we obtain 

(iii') v r A; 

(iii") v = ~; 

(24) 

(25) 

(26) 

0 0 ) ~ 6 )  

(27) 
F- 

7u[uAv , re(u, v)]5, #Cl vck[uAv, re(u, v)]') 

7u[uAv , re(u, v ) ]vck2 [uA v , re(u, v)]', #c15) 

7u[uAv, m( u, v)]vS, #c~ c~ [uAv, m( u, v)]') 

7u[uAv, m(u, v)l' , #c~c~[uAv, m(u, v)lv5 ) 

7uo [uAv]', #clc~c2 [uAv]v6) 

(Tu[uAv]vS, #Cl ck-I'' C I[uAv]'). 

(26) 

(10)~0) 

(27) 

(7u[uA, lulF, #ClC~'~l[ uA, lull') 

(~u[uA, I~1]', ~c,c~ ~1 [uA, [ut]5 ) 
(7ucl [uA]', #c, c~ "1c2 [uA]8) 

(7u[uA]8, ]uH'I r A'b*~, #ClC 2 Cl [U2tl 1. 

At the end of the derivation in cases ( i ) ,  ( i i ) ,  ( i i i ') ,  (iii") we can apply rules of 
forms (11) and (21) in G1 and G~ respectively. Namely, for #% E {Cl, c2} +, we have 

(Tu[uAvlvh, #%1 [uAv]') (11)~1) (7ua[u'B'v', llvh, #%1b[u"B"v", 1]). 

According to Observation 1, it is necessary that  u' = u", B' = B", v' = v". Then 
the derivation continues until we obtain 

(TUU' C~[u'B'v', m(u', v')]vh, #' Ov'4[u'B'v' , m(u', v')]'), 

for k = a(Ivl, I~l),p = ~(1~1, Ivl), and the process will be repeated in one of cases (i), 
( i i ) ,  ( i i i ') ,  (iii"). 

If at the end of the derivation in cases (i), (ii),  (iii'), (iii") we apply the rules 
(12) and (21), then we obtain a terminal string. 

From these explanations we obtain that LI(F) = Lt(F) C__ L. On the other hand, it 
is easy to deduce from the construction that  L C LI(F) = Lt(r) .  Thus, L = LI(F) = 
Lt(F) and the theorem is proved. [] 

T h e o r e m  2. CF C YSGS3(REG), Y E {I, T}. 
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Proof. Let L C T* be a language generated by the context-free grammar G = 
(N, T, S, P) in Greibach normal form. This means that all the rules from P are of the 
form A ~ ax or of the form A ~ a, a �9 T, x �9 (N U T)*. 

We construct a S G S  with three regular components as follows: 

r : (N', T', (S~, P~), ($2, P2), ($3, P3), M), 

where 

N ~ {$1, 22, 23, N:, N3}U 
{[AaX~ . . .  X,~,X~ . . .  X~] I A ~ a X I . . .  X,~ �9 P, 1 < i < m, 

m > 0, a �9 T, X I , . .  " ,Xm �9 N U T ) U  
{IX], [X]'l x �9 N U T}U 
{ (AaX1- ."  Xm,X~ ""  X~) I A ~ a X 1 . "  X,~ �9 P, m >_ O,a �9 T, 

X1 , . .  . ,Xm E N U T } U  
{ [AaX~. . .  X,~, X ~ . . .  X~]' [ A ---+ a x e . . .  X,~ �9 P~ m >__ O, a �9 T, 

X I , . . . , X m E N U T } ,  

Tt 

P1 

P~ = 

P3 = 

T U  N U {zo, d,e},zo, d,e q~ N U T ,  

{S 1 - - ~  a ] S --+ a E P, a E T}U (1) 
{S,  ~ a[SaX~ . . .  X ,~ ,X ,  . . .  X~] I S ~ a X 1 . . .  X,~ E P, m > 1, 

a E T, X 1 , . . . , X m  E NUT}U (2) 
{[AaX~ . . . X,~,X~ .. . X~] ~ X~[AaX, . . . X,~,X~ . . . X~_~] I 

2 < i < . q u  (3) 
{ [ A a X , . . .  X m ,  Xl]  ---)- X l ( A a X l  . . .  Xm, X l  "" " X m )  I 

A - + a X 1 . . . X , ~ E P ,  m > _ I , a E T ,  X 1 , . . . , X m E N U T } U  (4) 
{[X] ~ b[XbY~...  Yt, Y ~ ' "  Y~] [ X --+ bY1.. .  Yt E P, t >_ O, b E T, 

~ , - . - , ~  c N u T ) u  (5) 
{[X] --~ X[YbY~ . . .  Y~,Y~... Y~]'I Y ~ bY~ ...  Y~ E P, t > 0, 

b , X  E T,Y~,..-,Y, E NUT}U (6) 
{IX] ~ X [ Y ] ' l X ,  Y �9 T)U (7) 
{N2 ~ dN2}U (8) 
{N3 --~ dN3}U (9) 
{[Xb, A] ~ d[YcZ1. . .  Z~, Z1 . . .  Zt]' [ Y ~ cZ~ . . .  Zt �9 P, 

l >_ O,c �9 T, Z 1 , . . . , Z I  �9 NUT}U (10) 
{[Xb, A] ~ d[Y]' [ X ~ b �9 P, Y �9 T), (11) 
{s~ -~ z0N2}u (12) 
{N2 ~ dN2}U (13) 
{ (AaX1.  " X m , X l  " . .  X m )  --'+ d[Xl]' l A --* a X l  . . .  X m  �9 P,  

m > 1, a �9 T, X1,.. . ,X,~ �9 N U T,m > 1}U (14) 
{[Ab, A]-~ [Y] [A  ~ bE P , Y  �9 NUT}U (15) 
{N3 ~ dN3}, (16) 
{$3 ~ eN3}U (17) 
{N2 ~ dN2}U (18) 
{N3 ~ dN3}U (19) 
{[AaXl  . .. Xm, X l  " " " X m ] t  "-'4 a[AaXl " " Xm, X l  " " Xm] I 

A ~ a X I . . . X r ~ E P ,  m > O ,  a E T ,  X ~ , . . . , X m E N U T } U  (20) 
{[Y]' -* ~[Y] I Y �9 T}, (21) 
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M = {a#d~[AbX1 ... X~,  X1 . . .  X, nI'$A@N2 [ A -+ bX~ ... Xm E P, 
m > 0, a,b E T,k  = 0,1}U (22) 

{)@dN2$a#[AaXa.. .  X,~, X I . . .  X,~] I A ---* aXx . . .  X,~ E P, 
> o,a e T}u (23) 

{c@dkN2$e#N3 I a E {zo} U N U T, 
2 < k < m a x { l a  t - l l A - - * a  E P } + 2 } U  (24) 

{ a # X ~ . . .  XI (AaX~. . .  X , ,  X~. . .  X,~)$fl#N2 i A ~ aXa ... X,~ 
E P,m >_ 1,~ E { z o } U N U T } U  (25) 

{A#Xdk[X]Z$)@NsI X e g tAT, k = 1,2)U (26) 
{a~d2N2$e~[X] } X E N 13 T, a E T}U (27) 
{~#Xdk[XbY~ . . .Y~,Y, .-  .Yt]'$e#N3 I X ---+ bY1-"lit E P, 

t >  o,b e T,~ = 1,2)u (28) 
{a~:dN3$e~[XbY~... Yt, Y~ ""  Yt] I X --~ 5II1... Y~ E P, 

t > 0, b E T}U (29) 
{a#[Y]'$$#N~ I a, Y E T}U (30) 
{~#d~N~$ea#N~ [ /~ E {zo} U N t.J T, k > 0, a = d "~, 

o < m <max{la[ [A---~aa EP,  a E T } + 4 } U  (31) 
{a#dN3$A@[Y] l a ,Y  E T}U (32) 
{zo#[SaX~.. .  X,~,)(1. . .  X~]'$),#N3 I S ~ aXe. . .  Xm E P}U (33) 
{ag[AbY~...  Y,, II1... Y~]'$zodN~#~ I A ~ bye.. .  Y~ E P,t > O, 

,~, ~ e T)u (34) 
{a~[Y]'$zodN~#), l a, Y E T}U (35) 
{zo#dmN~$e#?v~ I 1 < m <_ max{ia I - 1 [ A ~ c~ E P}}. (36) 

Let us examine a derivation in F. We have the following cases: 
(i) ($1, &, $3) ==~ (a, zoN2, eN3) and the derivation is stopped, a E L~(P), a e 

{1,t}. 
(ii) 

( &,  s~, s3) ~ ( [ S e X y . . .  x m ,  X l  . . . xm], zoNe, ~N3)(*) 
(aXm... Xl(S~X1... X~,Xl... X~), zod~N2, ~+~N~) 

(36) 
t- ( a X m " ' X l ( S a X l " " X m , X l " " X m ) ,  zoN3, em+ldmN2) 

t- (aN2, zoN3, e'~+Id'~Xm... Xa(SaX~. . .X,~,X~ . . .X,~))  

and now the derivation is blocked. K, instead of rule (25) we apply the splicing rule 
(31) we obtain 

(31) 
1- ( a X m . " X l ( S a X l ' " X m , X l . ' . X m ) ,  zoN2, em+ldmN3) 

~- (aN2, X m " "  X1 (SaX1. ' .  Xm, X I " "  X,~), e'~+Id'~N3) 

==~ (adW2, zoX,~...X~d[X1]',.. ,  eN3) (**) 
(26) 
~- (adN2, zoXm . . . X~Na, . . . eX~d[X,]') 

(adeN,, zoX,~ . . . X2dNa,. " . eX~de[Xx]) 
(2r) 
}- (a[Xl],zoXm'.-X#Ns,'..eXxded~N~]) 
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(31) 
~- (a[X1], zoXm"" X 2 N 2 , . . .  d3N3]). (* �9 *) 

In order to simplify the proof, we denote Gi = (N ' ,  T ' ,  Si, Pi), i = 1,2, 3. 
The point (**) of the above derivation is characterized by the following fact. We 

started to simulate the rule S ~ aX1 . "  X,~ E P, m > 1. The symbol a, followed by 
some nonterminal, is generated in G1. In G2 we keep the string X1 ".. Xm in inverse 
order. G2 works like a stack. Then, the symbol of the top of the stack, i.e. X1, is 
processed. If X1 C N, then we have the case (iii). Otherwise, we have the other two 
cases. We notice that,  after the application the splicing rule (26) in point (**) , ) (1  
was removed from the stack, i.e. X1 does not appear in G2 from now on. 

We begin in this way in F a simulation of a leftmost derivation in G. 
(iii) We continue the derivation in point (***) in the following way: 

(5)+(~+(19) (ab[XlbY~. . .  Y~, YI"'" Y~], z o X m " "  X 2 d N 2 , " "  eN3), 

and, if t > 1, the derivation will continue as in the point (*). If t = 0, then we will 
continue by: 

(s)+(~(19) (ab[Xlb, ~], zoX,~ . . .  X2dN2,  " "  eN3) (a) 

(10)+(~+(19) ( a b d [ Y c Z l . . .  Zl ' Z l . .  " gilt ' ZoXm. .  " X 2 d g  2 ( . . .  eN3) (b) 
(22) 
~- ( a b N 2 , z o X , ~ . . .  X2d  ~ [ Y c Z 1 . . .  ZI, Z I ' "  Z z ] ' , ' "  eN3). (* * **) 

Now, the derivation can continue if and only if X2 = Y. Thus: 

(28) 
F- (abN2, z o X , ~ " .  X3N3,  " "  ed2[YcZ1 ' ' '  Zz, Z I . . .  Z,]') 

(8)+(~+(20) (abdN2, zoX,~ " " X3dN3,  " "  ed2 e[YcZ1 ' ' '  Zz, ZI " " Z~]) 
(23) 
~- (abe[YcZ~ . . .  Zl, Z ~ . . .  Z~], z o X , ~ " .  X 3 d N 3 , ' "  ed3N2) 

(31) 
(abc[YcZ~ . . . Zl,  Z~ . . . Z1], zoX,~ . . . X3N2 , ,  . . ed4N3). 

The derivation will continue as in point (*). 
( iv) Another way to continue the derivation in point (***) is, for X1 E T: 

(6)+(~+(19) ( a X l [ Y b Y ~ ' "  Y~,]I1.. .  Y~]', z o X m . . . X 2 d N 2 , . . "  eN3) (b') 

(22) 
[- (aXIN2 ,  zoX,~ . . "  X2d  [YbY~ . . .  Yt, Y I " '  Y~]',"" eN3) 

and now we have a case similar to the one in (****). 
(v)  For X1 E T, we apply in a~, in point (***), the rule [X~] -+ [Y]', Y E T. We 

obtain: 

(7)+(~+09) ( a X l [ Y ] ' , z o X m " "  X 2 d N 2 , ' "  eN3) (c) 
(30) 
t- ( a X N 2 ,  z o X , ~ . . .  X 2 d [ Y ] ' , ' "  oN3). 
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The derivation can continue if and only if X2 = Y. This is the case when both 
X,, )(2 are terminal symbols and they must appear in G, and must be removed from 
G2 (the stack). Thus, we have: 

(20) 
~- (aX, N2, zoX,~ " . X3N3, ' ' .  X2d[X2]') 

(s)+(~(2,) (aXldN2,zoXm'. .  XadN3,.. .  X2de[X2]) 
(a2) 
k- (aXe[X2], zoX,~... XadN3,. . . . . .  eX2dedN2]) 

(a) 
~- (aX,[X2], zoX,~.., x a g 2 , ' "  ed2N3]), 

and now the derivation continues as in case (***). 
The examined derivation can be successfully stopped in the points (a), (b), (b') or 

(c), when the splicing rules (33) (for the first case), (34) (for the follwing two cases) 
and (35) (for the last case ) are applied, respectively. The rules (33), (34), (35) can 
be applied only when in G2 there is the string zodN2. This means that 'the stack is 
empty'. Then, the nonterminal which appears on the right end of the string in G1 is 
removed. The terminal string from G1 is now in LI(F) and also in L,(F). 

Now, if we follow the examined derivation in F, (S,, $2, $3) ==~ (w, a, fl), w e T*, 
we can observe that we have simulated in P a leftmost derivation for w in G. Hence, 
w e L(G) and thus L, ( r )  = L,( r )  c_ L(G). On the other hand, from the construction 
of F it follows that L(G) C_ L,(F) = L,(F). The theorem is proved. [] 

T h e o r e m  3. RE = Y S G S 4 ( R L ) , Y  C { I ,T} .  

Proof. Let L C T* be a recursively enumerable language generated by a phrase- 
structure grammar G = ({S, A, B, C}, T, S, P) in Geffert normal form. This means 
that P contains rules of the from S --+ x and a single extra rule A B C  --+ A. 

We construct a SGS with four right linear components as follows: 

r = (N t, T t, (Sl, P,), ($2, P2), ($3, P3), ($4, P4), M), 

where 
N' 

T' 

= { & , & , & , & , N = , N 3 } u  
{[S --+ [ 5  " " E ,  ~], [S --+ 5 " " 5 , a ] ' , l  S--+ Y ~ ' " 5  e P , t  > 1, 
OL e {~1, Jg2,//, r, e}U 
{[Y, a], [Y,a]' [ Y e T V  { A , B , C } , a  e {#,,#=,v,r,e},  

= T U { g , B , C } U { z o ,  z , ,e , f } , zo ,  zl, e , f ~ N U T ,  

t'1 

/'2 

{& -+ z,g~, N2 --+ N~, N3 --, N3, $4 ~ S4}u (1) 
{[Y,~]' -~ [Y,~] I Y e T ,~  e { . ,~}}u  (2) 
{[Y,#,]' ---+ [Y,#~] J Y c { A , B , C } } ,  (3) 
{$2 ~ zoX,~.. .X~[S ~ Y~.." Yt,#l]' I S --* X~.. .X,~, 

S --* I/1..-Yt E P}U (4) 
{ &  --+ zoX,~.. .  X,[A,~,] '  I S ~ X l - . . X , ~  c P } u  (5) 
{ & o z o X ~ . . . x , [ Y , ~ ] ' l  S - - - ~ X , . . . X , ~ E P ,  Y E T } O  (6) 
{N2 --+ N2, Na --+ N3}U (7) 
{ [ s ~ . . . Y , ~ ] ~ Y ~ . . . y ~ [ s - - , z l . . . z , , 4 '  I s - ~  Y l . . . ~ ,  
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P3 

P4 

M 

S--,Z,...Z~EP, ~ E {,,~,]21}}U 
{[S--* Y~..- Yt, a] ~ Y~... Ya[Y,/3]' I S ~ Y ~ . . . Y t E P ,  Y E T U  

{ ]21, i f a = f f l , Y E { A , B , C }  
r, i f a = r ,  Y E T  

{A,B,C},aE{u,%]21},  f l= u, i f a = r , Y = A  
u, if a =  u, Y E { A , B , C }  
e, otherwise 

{[Y, o~1 ----4 [S--+ X l . . . X m , O l  It I Y e TU {A,B ,C} ,  
s -~ x l . . . x m  c P,~ E {]21, ~, ~}}U 

{[Y,a] --+ [Z, fl]' I Y, Z �9 TU {A,B ,C} ,  a E {]21,]22,/2, T}, 

{ ]2a, if O/ : ]21, Z ~ {A, B, C} 
]22, if O/ = ]A 1 , Z E T 

fl = T, i f a  = r , Z  E T 
v, i f a  = %Z = A }' 
u, if a = . ,  Z E {A, B, C} 
e, otherwise 

{$3 ~ ~N3, N~ -~ ~N~}U 
{[S-+ YI . . .  Yt,o~]' --e e[S--> Y~... Yt,a] [ S ---+ YI . . .  Yt E P, 

([c, v]' -~ ~[c,d}, 
{& ~ f & } u  
{[C, #i]' ~ f[C, #I]}U 
{[a,#2]' -+ [a,r] I a E T}U 
{[C, u]' -~ f[C, v]}, 
{A#S[S ~ II1... Yt, a] '$e#N3 [ S -~ Y~... Yt E P, 
o~ �9 {T, v , ]2 , } }u  
{A#Na$e#[S ~ YI" ' .  Yt, a] IS  ~ Y~'" "Yt E P,a E {T, Yt]21}}U 
{)~#N2$~#Y[Z,a]' t Y E T U {A ,B ,C} ,  a E {'r,v,,u,,]22}}U 
{Y#[Y,  a]$A#N2 I either Y E T, a E {r, u}, 

or Y E { A , B } , a =  ]21}U 
{a#ABC[C, u]'$e-C/:N3 t a E T}U 
{Z#ABC[C,  g] '$ /#$4 [ Z E {A, B, C}}U 
{ A# N2$ f ABC #[C, u]}U 
{,\#S4$ f ABC # N2}U 
{ A# N2$e#[C, T]}U 
{A#N3$~#N2}u 
{A#N2$zo[S ~ Ya... Y~, T]'#A [ S ~ ] I1""  Y~ E P}U 
{~#N2$zo[Y, r]'#A I Y e T}U 
{Z#ABC[C,  #1] '$f#$4 1 z e {A, B, C, Zl}}U 
{ )~# N~$ I ABC #[C, ]21]}u 
{A#z,a[a,/-~2]'$f#$4 I a E T } }U  
{A#N2$fzla#[a, T] l a E T}U 
{A#S4$IZl#aN2 [ a E T}. 

}u 

(8) 

(9) 

(lo) 

(11) 

(12) 

(13) 
(14) 
(15) 
(16) 
(17) 
(18) 

(19) 
(20) 
(21) 

(22) 
(23) 
(24) 
(25) 
(26) 
(27) 
(28) 
(29) 
(30) 
(31) 
(32) 
(33) 
(34) 
(35) 

Let us denote Gi = (N',  T', S/, Pi), i = 1,2, 3, 4. 

The idea of this construction is the following. First, we notice that  for every 
w E L(G) there is a derivation which has two parts. In the first part we use only rules 
of the form S ---* x. In the last part  we use only the rule ABC -+ A, as long as it 



341 

is necessary. Moreover, we can consider the first part  of this derivation as a leftmost 
derivation, because we use only context-free rules. Let 

S ==~* 7 ==:~* w,7 e ( T U  {A,B,C})* ,w E T*, 

be a derivation in G such that  the derivation S ~ *  7 is a leftmost derivation, where 
only rules S ~ x were applied, and in the derivation 7 =::~* w only rule ABC --~ A is 
applied. 

Now, we t ry  to simulate in F the mentioned leftmost derivation with the help of a 
stack. In the first component of F we obtain the terminal strings (which are prefixes of 
the terminal strings from L(G) when the derivation is suceesful), followed by a string 
over {A, B,  C}. G2 plays the role of the stack, Ga and G4 are used for removing some 
parasitic strings. Whenever a symbol X C T U {A, B, C} is obtained in the top of 
the stack (i.e. in G2), it is transferred to the first component of the system, by using 
a splicing rule. In order to distinguish whether or not X C T or X E {A, B,  C}, all 
nonterminals from F are of the form [S --+ Y~.-- Yt, a], IS --+ Y~...  Yt, a] ' ,  [Y, a], [Y, a]',  
where S --+ Y ~ ' " Y t  E P , a  C {#1, #2,U,T,e},Y E T t3 {A, B,  C}. (u stands for a 
nonterminal  symbol, T indicates for a terminal symbol, and e indicates for error; the 
significance of #1, #2 will be explained later.) If a = r (v), this means that  the last 
transferred symbol in G1 was a terminal (nonterminal, respectively) symbol. When 
a = u and the last four symbols from G1 are ZABC, Z E { A ,B ,C} ,  the substring 
ABC is transferred from G1 to G4 with the help of a splicing rule, and a remains 
unchanged. When the last symbols from G1 are of the form aABC, a C T, then 
ABC is transferred to G3 and a becomes T. There is a problem when 7 = q~lV2, 
where 3/1 C { A , B , C }  +. Then no terminal symbol is in G1 before 71, and we cannot 
distinguish between the two cases mentioned above, q 

Then, in order to solve this problem, at the first step of any derivation, the symbol 
zl ~ T is introduced in G1 and, moreover, initially a --- #1. As long as a symbol 
from {A, B,  C} is transferred from G2 to G1, a remains unchanged. When a terminal  
symbol is obtained in the top of the stack (i.e. in G2), a becomes #2. In this situation, 
we verify that  no symbol A, B or C is now in G1, with the help of the splicing rule 
( 3 3 ) : ) @ z l a [ a , # 2 ] ' $ f ~ S 4 , a  C T. Then a becomes ~-. 

In the other cases, unmentioned above, a becomes e, showing an error case. For 
example, if a is u (which means that  the last generated symbol in G1 is A, B or C) 
and then a terminal  string (from T) is in the top of the stack, this string should be 
transferred to G1 and thus a parasitic string, over {A, B, C}, cannot be removed from 
the string generated in G1 until this moment.  Then the derivation is blocked. 

Let us examine in some detail a derivation in F. 
The first step of any derivation can be: 

a) 

~- (zlY[r, #2]', zoX,~... X2N2, eN3, fS4) 
(33) 
~- ($4, zoX~. . .  X2N2, eN3, f z l r [Y ,  #2]') 

($4, zoX,~ . . . X~N~, eeN3, f zl Y[Y, ~']) 
(34) 

(s~, zoX,~.., x~[Y, ~], e~N~, f~IYN~) 
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(35) 
~- (YN~,zoX,~...X~[Y,'r],eeNa, fzlS,). 

b) 

($1, $2,$3,$4) :==b (zlN2, zoXra" .. XI[S ~ Y1 """ Yt,#l]', r fS4) 
(19) 

(20) 

c) 

If rule (8) is applied in G2, then we can continue in the same way, but if rule 
(9) is applied in G2, we continue as at the end of the next case. 

( ~ 1 , $ 2 ,  $ 3 ,  ~ 4 )  ~ (zIN2,zoXra. "XI[A,#I]',eNs, fS4) 
(21) 
F- (z~A[A, #1]', zoXm... X2N2, eNs, fS4) 

==~ (z~A[A, #1], zoX,~... X~N2, e2Ns, ffS4) 

~- (zlAN2, zoXm... X2[A, #~], e2Ns, f2S4). 

As long as the symbols A, B, C are generated in G2, they are transferred to G1 
with rule (21). When ZABC, Z C {A, B, C, Zl}, are the last symbols from G~, then 
the splicing rule (31) is applied and ABC is removed from G1. Now, if rule (34) 
cannot be applied, this means that  a string 7 E {A, B,  C} was generated in G1 from 
now in such a way that  ABC ~ A cannot be applied in G. Otherwise, after the 
application of the rule (33), we apply in G2 the rule (11) for a = #1, and a becomes 
#2. Moreover, the rightmost symbol of the string from G1 is a terminal one. 

After an arbi trary number of steps, assume that  we have obtained the configuration 

($1, $2, Ss, S,)  ::~ (al. . .  akN2, zoZl '"  ZpV,... eNs,. ' .  $4), (**), 

where a l , . . . , a k  C T , k  _> 1 , Z 1 , . . . , Z p  E N U T ,p  _> 0, V -- [S -~ Y l " ' Y t ,  a] or 
V = [Y,a], S ~ Y I " ' Y t  E P , a  E {r ,u},  Y E TU {A,B,C}.  

Suppose that  V = IS --~ Y I ' "  Yt, c~]. We have the following cases: 
(i) p _> 1, in G2 we apply the rule (8): 

(al. . .  a~:N2, zoZl '"  ZpYt... YI[S ~ Z I ' "  Zt, a]',.., eNs , . - -  Sa)). 

Then, for II1 ~ S', the derivation is blocked. But, if II1 = S, we obtain 

(19) 
[- ( a s  �9  �9 akN2, zoZ~... ZpYt... YINa,... S[S ~ Z i . . .  Zl, ol] ' ,  - �9 �9 $ 4 ) )  

(a, . . .  akN2, zoZ~... ZpYt... Y~Ns,... S[S ~ ZI . . .  Zt, a],.., fS4) 
(20) 
[- (al �9 �9 �9 akN2, ZoZl"" ZpYt. . .  Y2[S .---> Zl" '"  Zl, O / ] , . . .  eN3, �9 �9 �9 fS4).  

Now, we have a similar case as in point (**). 
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(i i)  p > 1, in G2 we apply the rule (9): 

( a l . . .  a k N 2 ,  Z0Zl �9 �9 ' ZpYt...  Y1 [~tT~ fi] ' , . . ,  eNa,- - �9 $4), Y E T. 

If Y~ # Y, then the derivation is blocked. Otherwise, the splicing rule (21) is 
applied: 

(21) 
I- ( a l . . .  akY[Y, I~]', ZoZl'" ZpYt... Y ~ N 2 , . . .  eN3, �9 �9 �9 5'4). (* * *) 

For ~ # A B C ,  we apply the rule (2) in GI: 

( a l  . . . ak  Y [ Y ,  ~],  z o Z l  . . . Z p Y t  . . . Y 2 N 2 ,  . . . e N 3 ,  . . . f S4  ) 

(22) 
( a l . . .  a k Y N 2 ,  zoZI"'" ZpYt... Y2[Y, ~],... e N 3 , . . ,  fS4),  

and now the derivation is in a similar case as in (**) (we will continue by applying 
one of the rules (10) or (11) in G2). 

(iii) In point (***) we have Y = C, fl = v, ak-1 = A ,  ak  = B ,  a k - 2  E T .  Then we 
will continue by 

al 
(23) 
~- (al 

(al 

I- (al 
(28) 
~- (al 

. . .  a k _ 2 A B C [ C ,  v]',  z o Z 1 .  . . Z p Y t  . . . Y 2 N 2 ,  . . .  e N 3 ,  " . . $ 4 )  

�9 . .  a k - 2 N 3 ,  z o Z l ' "  Z p Y t . . .  Y 2 N 2 , . . .  e A B C [ C ,  u ] ' , . . .  $ 4 )  

�9 . .  a k - 2 N a ,  z o Z 1 . . .  ZpY~ 

�9 . .  a k - 2 N 3 ,  Z O Z l " "  Z p ~  

. . .  a k - 2 N 2 ,  z o Z 1 .  " ZpY~ 

�9 . .  Y 2 N 2 , . . .  e A B C e [ C ,  T ] , . . .  f S 4 )  

. . . Y 2 [ C , T ] , . . . e N 2 , . . .  f S 4 )  

. . . Y 2 [ C , T ] , . . . e g 3 , . . .  f S 4 )  

and again we are in a similar situation as in (**). 
(iv) In point (***) we have Y = C ,  f l  = u, a k _ l  = A ,  ak  = B ,  ak_2  E { A , B , C } .  

Then we will continue by 

(al...  a k - 2 A B C [ C ,  u]', Z o Z l  . " Z p Y t  . . . Y 2 N ~ ,  . . .  e N 3 ,  . . . $4) 
(24) 

( a l  . . . a k - 2 S 4 ,  z o Z l  " " Z p Y t  . . . Y ~ N 2 ,  . . .  e N 3 ,  . . . A B C [ C ,  u]') 

==~ ( a l . . .  a k - 2 S 4 ,  Z o Z l ' "  Z p Y t . . .  Y 2 N 2 ,  . . .  e N 3 , . . .  A B C [ C ,  v]) 
(2s) 

(a~... ak-~S4, zoZl... Z ~ . . .  ~[C, v ] , . . .  ~ N ~ , .  �9 �9 IABCN~) 
(26) 
~- (al ... ak-~N~, ~oZl"" Z ~ . . .  ~[C, @... end,.., f ABCS~) 

and again we are in a similar situation as in (**). 
(v) In point (**) we have p = 0 ( ' the stack is empty') .  Then we can apply only 

the splicing rule (29), and now the string a l " "  a~ is obtained in G1. If we follow the 
' inputs '  and the 'outputs '  into and from the stack, we notice that  S :A~G a l . . .  ak. 
On the other hand, from the construction of F it follows that  L ( G 1 )  C_ LI(F) = L~(F). 

With  these explanations we have that L = LI(F) = L~(F) and L2(F) = L3(F) = 
L3(r)  = O. [] 
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4. Concluding Remarks 
Some problems still remain open in this area: Is every context-free language an 

element of YSGS2(REG), Y E {I, T} ? Can every recursively enumerable language 
be generated by a splicing grammar system with regular components? Is the inclusion 
YSGS2(REG) C YSGS3(REG) proper? 
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A b s t r a c t .  In this paper the concept of splicing is extended to arrays 
and array or 2D splicing systems are defined. Various subclasses of 2D 
splicing systems are defined and a restricted class viz. finite simple splicing 
systems is studied. The hierarchy among the various subclasses of finite 
simple splicing systems and their relationship to the strictly locally testable 
languages are established. 

1. In troduct ion  
In formal language theory, lot of work has been done on string languages [9], [4]. 

It was also found that using restrictions on the manner of applying the rules increased 
the power of a grammar. [2] gives a detailed discussion on regulated rewriting. The 
concept of grammar was then extended to arrays and graphs [8]. In these cases 
shearing and embedding produced some difficulties. Array and Matrix grammars 
were defined in [10], [11] and [5]. To keep the arrays rectangular, restrictions have to 
be put on the derivations. In Graph grammars, the embedding restrictions have to be 
defined properly so that, the grammar generates sensible graphs. Thus we see that, 
the regulated rewriting is inherent in array and graph grammars. 

In [3], Tom Head defined a new type of operation called splicing, motivated by the 
simulation of recombinant behaviour of DNA sequences. He defined Splicing Systems 
and the languages generated by them. Several subclasses were defined and studied. In 
[1], K. Culik and T. Harju defined the Splicing semigroups of dominoes. The systems 
defined in [3] and [1] are basically equivalent. P~un extended the definition of Head 
and defined Extended H-Systems. This system has been shown to be computationally 
universal [7]. 

In this paper, we give a definition of array splicing systems. The motivation is 
more from formal language theory, rather than biology, though such systems may find 
applications for describing splicing of several DNA sequences. We define an array 
or 2D splicing system and also several restricted classes. As in the case of array 
grammars, shearing imposes some restrictions on splicing between arrays. Mainly 
because of this factor, there is a basic difference in the hierarchy in 1D and 2D splicing 
systems. We define null-context, equM and uniform splicing systems and show that 
in a restricted class of splicing languages called Finite-Simple splicing languages, the 
following hierarchy exists among these three classes of languages. 
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uniform C equal C null - context 

Such classes in 1D or string splicing have been shown to be equivalent in 1D by 
Tom Head [3]. They have also been proved to be equivalent to the set of strictly 
locally testable languages. On extending the definition of strictly locally testability 
to 2D, we find that, they form a different class altogether. 

In section 2, we present the definition of 1D splicing systems and the subclasses, 
and the main results about them are also given. In section 3 some important notations 
regarding 2D or array languages are presented. Section 4 defines the 2D or array 
splicing systems and the main c]asses of such systems. Section 5 establishes the 
relationships among these classes and the class of strictly locally testable languages. 
Section 6 concludes the paper and lists a few directions for future work. 

2. 1D Splicing Systems or H-Systems  
One dimensional splicing system was introduced by Tom Head[3] and it has its 

roots in genetic engineering. An attempt to formalize the recombinant behaviour of 
the DNA has led to the H-systems. In this section we omit the biological perspectives 
of H-systems and present it from the point of view of formal language theory. The 
biological background is discussed in [3] and [12]. 

Def in i t ion  2.1. A splicing system S is a 4 tuple, S=< A, I ,  B, C >. 'A'  is a 
finite alphabet, over which S is defined. I, referred as the 'initial set' is the set of 
initial strings in A*. B and C are sets of triples < a, x, b >, a,b,x E A*. Each triple 
< a, x, b > is called a pattern and the string axb is called a site. The string x is 
called a crossing. Patterns in B are called left patterns and those in C are called right 
patterns. The language L=L(S) generated by the splicing system S consists of the 
strings in S and all strings that can bc obtained by adjoining to L uexfq and pexdv 
whenever ucxdv and pexfq are in L and < c, x, d > and < e, x, f > are patterns of the 
same hand. A language L is a splicing language(SL) if there exists a splicing system 
S for which L=L(S). 

Def in i t ion  2.2. Let S=< A, I ,  B, C > be a splicing system. Then S is persistent 
if for each pair of strings ucxdv and pexfq in A* with < c,x,d > and < e , x , f  > being 
the patterns of the same hand: if y is a subsegment of uex (respectively xfq) that is 
the crossing of a site in ucxdv (respectively pexfq) then this same subsegment y of 
ucxfq contains an occurrence of the crossing of a site in ucxfq. 

Def ini t ion 2.3. Let S=< A, I ,  B, C > be a splicing system. It is said to be null 
context if the patterns are of the form < 1,x, 1 >. x E A* and 1 is the empty string. 

Def in i t ion  2.4. A splicing system S=< A , I , B , C  > is said to be uniform, if 
B = C = { <  1, x, 1 >[ x C A k, where, k is a positive integer.} 

Def in i t ion  2.5. With respect to a language over the alphabet A, a string c in A* 
is a constant if, whenever ucv and pcq are in the language, ucq and pcv are also in 
the language. 

Def in i t ion  2.6. A language L over an alphabet A is said to be k-strictly locally 
testable if there exists sets U,V and W C A k, such that, 

L A AkA* = (UA* N A'V) \ A*WA* 

E x a m p l e  2.1. An example of a 1D splicing system is presented below. 
S=<A,I ,B,C>. A=c,x. I=cxcxc. B=<c,x,c>.  C=0. 
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The language generated L(S) is (cx)+c. Examples for the various types of splicing 
systems can be found in [3]. 

Some results in 1D splicing are presented in the theorem below. The proofs and 
detailed discussions can be found in [3] and [6]. 

T h e o r e m  2.1.1. The following conditions on a language L over an  alphabet A 
are equivalent: 

1. L is a persistent splicing language. 
2. L is a strictly locally testable language. 
3. The set of constants for L contains A p for some positive integer p. 
~. L is an uniform splicing language. 

This can be expressed by the following relationship. 
pers.SL r nullcontext SL ~=~ uniform SL ~ SLT language. 

In other words, these four classes are equivalent. Later, we shall see tha t  this 
equivalence is not valid in 2D splicing splicing systems. 

3. 2D languages and Array Grammars 
String languages have been widely studied in the past [9]. Grammars  which gen- 

erate arrays are called array grammars.  One type of array grammar  can be found in 
[11]. We omit  the formal definitions regarding arrays and array languages and refer 
the reader to [10], [11] and [5]. A few definitions and notations widely used throughout 
the paper  are presented here. 

D e f i n i t i o n  3.1.1.  If I is an image, R(I) represents the number of rows of I and 
C(I) represents the number of columns. R(A) = C(A) = 0, where A is the empty  
image. Size(I) is a 2 tuple, Size(I) -- < R(I ) ,C( I )  >. The relationships between 
sizes of images are defined as follows. Let 11 and 12 be two images. Let Size(I1) = 
< m, n > and Size(I2) = < ra', n '  >. Then, 

Size(I1) > Size(I2), if (m _> m '  and n > n') or (n _> n'  and m > m') .  
Size(I1) = Size(I2) if m = m '  and n = n' .  
if (In > m '  and n<n ' )  or (n > n' and m < m')  then their sizes cannot be 

compared. 

D e f i n i t i o n  3.1.2.  Let I be an image. Let Size(I) = < r, c >. Then, I[i,j] represents 
the element in the ith row and j th column. I[i,j] is defined if and only if, 1 < i < r 
and 1 < j _< c. The top-left element is represented by I[1,1]. 

N o t a t i o n .  ' r  represents column concatenation of two arrays. ' 0 '  represents the 
row concatenation. The word ' image'  refers to rectangular arrays. 

D e f i n i t i o n  3.1.3.  The column concatenation �9 of two images I1 and I2 is said 
to be 'defined' or 'legal' if and only if, 

1. 11 = A or I2 = A, where, A is the empty  image. 
or 2. /1 r A and I2 • A and R(I1) = R(I2). 

I1r is the image obtained by pu t t ing /2  to the right side of /1 .  Similarly, the row 
concatenation | of two images /1  a n d / 2  is said to be 'defined' or 'legal' if and only 
if, 

1. /1 = A or I2 = A, where, A is the empty  image. 
or 2. /1 r A a n d / 2  r A and C(I1) = C(I2). /~OI2 is the image obtained by 

pu t t i ng /2  below/1.  
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Def in i t i on  8.1.4. Let I be a non-empty set of symbols. The set of all arrays over 
I(including A) is denoted by I** and I ++ = I** - A, where, A is the empty image. 
I "~'~ denotes the set of all arrays with m rows and n columns defined over I. If 'a '  is 
a sysmbol a m'~ denotes an array of a's with m rows and n columns. 

N o t a t i o n .  Let I be an alphabet. I* denotes the horizontal sequences of letters 
from I and I + = I* - {A}. / .  denotes the vertical sequences of letters from I and I+ 
= / .  - {A}. For example a ~ denotes a horizontal sequence of n a's. And a= denotes a 
vertical sequence of n a's. 

De f in i t i on  3.1.5. Let I be an image defined over the alpahbet A and x be its 
subimage. Then, x is said to be 

a 'top-left '  subimage of I if, I c  (x~A**)OA**. 
a ' top-right '  subimage of I if, IE (A**r 
a 'bottom-left '  subimage of I if, IE A**O(x~A**). 
a 'bottom-right '  subimage of I if, IC A**O(A**egx). 

Def in i t ion  3.1.6.  A language L defined over an alphabet A is said to be p,q- 
strictly locally testable (SLT), if 5 sets U, V, Y, Z, W C A p,q can be constructed such 
that,  

L' = (Lu MLv M Ly NLz)  \ Lw 
where, 

L '  = L 

Lu = ((UOA**)OA**) 
Lv = ((A**r 
Ly = (A**@(Y~A**)) 
Lz  = (A**O(A**q~Z)) 
Lw = (A**~(A**OWOA**)r 

It can be easily seen that L' is the set of images in L with size greater than or 
equal to < p,q >, Lu is the set of images over A, with an image in U as ' top-left '  
subimage; Lv is the set of images over A, with an image in V as ' top-right '  subimage; 
Ly is the set of images over A, with an image in Y as 'bottom-left '  subimage; Lz is 
the set of images over A, with an image in Z as 'bottom-right '  subimage. Lw is the 
set of images with an image in W as their subimage. 

A l g o r i t h m  3.1.1. 
An algorithm to test whether an arbitrary image I belongs to a p,q-SLT language 

L or not, is presented. 
Input : The sets U,V,Y,Z and W of the language L, and an input image I, size(I) 

>< p,q > 
Output:  Answers whether I cL  or not 
Algorithm : 

1. Find the top-left, top-right, bottom-left and bottom-right 
subimages of I, say u,v,y,z respectively. 

2. If uEU, vEV, yEY and zEZ 
then 

if there exist a subimage w of I of size < p,q >, such that,  wEW, 
then 

output " IeL"  
else 
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output "IEL" 
e l s e  

output "I~L" 
This algorithm can be used to prove whether a language L is SLT or not. ff there 

is an image I, size(I) :>< p, q >, such that, I ~ L, but the alogorithm outputs "I E 
L", then L is not p,q-SLT. 

4 .  A r r a y  o r  2 D  S p l i c i n g  S y s t e m s  

Def in i t i on  4.1. Let S = <  x1,1, xl,2, . . . ,  xl,~, x2,1, x2,2, . . . ,  x2,~, . . . ,  x,~,l, xm,2, 
. . . ,  xm,~ > be a sequence of mn images defined over the alphabet E. Let, 

I1 = (Zl,l(I)Xl,2(I)z1,3 ( ~ , . .  CXl,n)O 
(x2,1r . . . '~x2,~)O 

(Xm,lOXm,2OXm,3r OXm,n) 
12 ~- (Xl,IOX2,1OX3,10. . .  OXm,1) r 

( z l ,20z2 ,~Ox3,20 . . .  Oz,,,,2)~ 
, . .  

(Xl,mOX2,mOX3,mO. . . OXm,n) 

If I1 and Is are legal (i.e the concatenation operations in the above two expressions 
are defined as per Definition 3.1.3) and I1 = 15 then the sequence S is said to be a 
proper sequence of cardinality < m, n >. 

N o t e .  The proper sequences can be easily understood by the following two prop- 
erties. Let S be a proper sequence of cardinality < m, n >. Then, 

1. If Xi,j r A, 1 < i < m, 1 _< j < n, then, R(xi,k)=R(x~,l), for 1 < i < m, 
1 < k, l < n. and C(x~c,j)=C(xzj), for 1 < k, l _< m, 1 < j < n. 

2. If some xi , j=A,  then x~,q--A, 1 < q < n or xp,j=A, 1 < p ~ m. 

Def in i t i on  4.2. Let S = <  x1,1,xl,2, . . . ,  xl,,~,x2,1,x2,2, . . . ,  x2,~, . . . ,  Xm,l,Xm,2, 
�9 . . ,  X,~,~ > be a proper sequence of cardinality < m, n >. Let, 

I = (xl ,1Oxl ,2Oxl ,3O. . .  OXl,~)O 
( Z 2 , 1 O X 2 , 2 ( ~ X 2 , 3 ( I )  �9 �9 �9 ( I}X2,n)  0 

(xm,l~Xm,2OX,~,3r r 

Then, I is called the matrix-image of S and is represented by MI(S,< m, n >). 

Figure 1. Matrix Split 

Def in i t i on  4.3. A sequence S of caxdinality < m, n > is said to be a matrix split 
of an image I, if and only if, S is a proper sequence and I is the matrix-image of S. 
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Figure 1 shows a matr ix  split of < m, n >. Note that ,  though the figure may  
misguide by showing x~,l and xl,2 to have same number of colums, it need not be the 
case. Note that  for a~n image more than one matrix-split  exists. 

D e f i n i t i o n  4.4. Let I be an image and M = <  x1,1, xl,2, . . . ,  xl,5, x2,1,x2,2, . . . ,  
x2,5,. �9 �9 x~,l, x5,2, �9 �9 x5,5 > be a matr ix  split of I of cardinality < 5, 5 >. We define 
a few prefixes and suffixes of I with respect to M, grouped under four types as follows. 
T Y P E  1 : 

Prefix : MI(<  X1,l,X1,2,x1,3, x.2,1,x2,2, x2,3, x3,1, x3,2,x3,3 :>, < 3,3 >).  
LRSuffix: MI(<  Xl,4, xl,~, x2,4, x2,5, xs,4, x3,5 >, < 3, 2 >).  
BUSuffix: MI(<  x4,1, x4,2, x4,3, xs,1, 3;5,2, x5,3 >,  < 2, 3 >).  
CSuffix: MI(<  x4,4, xa,5, xs,4, xs,~ >,  < 2, 2 >).  

T Y P E 2 :  

T Y P E  3 : 

T Y P E  4 : 

Prefix : MI (<  Xl,3, x1,4, x1,5, x2,3, x2,4, x2,5, x3,3, x3,4, x3,5 >, < 3,3 >).  
LRSuffix: MI(<  x1,1, Xl,~, x2,1, x2,~, x3j,  x3,2 >,  < 3, 2 >) .  
BUSuffix: MI(<  x4,3, x4,4, x4,5, xs,3, x~,4, xs,5 >, < 2,3 >).  
CSuffix: MI(<  x4,1,x4,2,x5,1, x5, 2 >, < 2,2 >).  

Prefix : MI (<  x3,1, x3,2, x3,3, x4,1, x4,2, x4,3, x5,1, x5,2, x5,3 >, < 3, 3 >) .  
LRSuffix: MI(<  x3,4, x3,5, x4,4, x4,5, x5,4, x5,5 >,  < 3, 2 >).  
BUSuffix: MI(<  x,,1, xl,2, xl,3, x2,1, x2,2, x2,3 >,  < 2, 3 >).  
CSuffix: MI(<  xl,4, xl,5, x2,4, x2,5 >, < 2,2 >).  

Prefix : MI(<  x3,3, x3,4, x3,5, x4,3, x4,4, x4,5, x5,3, x5,4, x5,5 >,  < 3, 3 >) .  
LRSuffix: MI(<  x3,1,x3,2,x4,1, x4,2, xs , l ,xs ,2 > , <  3,2 >).  
BUSuffix: MI(<  Xl,3, xl,4, xl,5, x2,3, x2,4, x2,5 >,  < 2, 3 >).  
CSuffix: MI(<  xl,1, xl,2, x2,1, x2,2 >~ < 2, 2 >).  

In the above definition LR stands for left-or-right;BU stands for bot tom- 
or-up;C stands for corner. It can be easily seen that  the image I can be expressed 
in terms of these prefixes and suffixes. If P,L,B and C represent Prefix, LRsui~ix, 
BUsuffix and CSuffix respectively, then I is 

T Y P E  1: I = ( P ~ L ) O ( B r  = (POP)  r  
T Y P E  2: I = ( L e P ) O ( C e B )  = (LOC) r  
T Y P E  3: I = ( B r  = (BOP) r  
T Y P E  4: I = (CeB)O(LOP)  = (COL) r  

These are represented by prefixing with their type. For example, 2-BUSuffix rep- 
resents a Type-2 BUSuffix. Figure 2 shows Type-1 prefixes and suffixes. 

D e f i n i t i o n  4.5. A 2D splicing system S is a 4 tuple S = <  E, I ,  B,  f >. E is the 
set of symbols used by S. E = A U A',  A N A' = O. A is the alphabet of the language 
generated by the splicing system, L(S). A' is called the set of special symbols, f is a 
mapping f : A' ---* A, and is described in detail later. I is the set of initial images. B is 
a 4 tuple, B = < B1, B2, B3, B4 >. B~ is the set of Type-i patterns.  A pat tern  'p '  is a 
9 tuple < Xl,.T,2,X3, X4~XS,X6, XT, X8, X 9 ~ ,  Xl,X2~X3,X4, X6,297,.T8, X9 E ~**, X5 ~ ~"+"]'~ 
subjected to the condition that  p is a proper sequence of cardinality < 3, 3 >. The 
middle t e rm x5 is called the crossing of p. The matr ix  image of p is is called the site 
of the pat tern  p. 
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Splicing p roduc t s :  Four types of splicing operations are defined on any two 
images and a splicing operation between the two images is uniquely specified by giving 
the two images, the type of splicing (1,2,3 or 4) and two matrix splits of cardinality 
< 5, 5 >, one for each of the two images. And the result of the splicing operation 
is two reusulatnts or splicing products. But, for the splicing to take place, certain 
conditions have to be satisfied. 

Prefix 

BUSuffix 

[ 

[ 

7eaq  7;0 

 [xTq 
 Tzq 

7vV 

 gr;q 

LRSuffix 

CSuffix 

Figure 2. Type-1 prefixes and suffixes 

Let X and Y be the two images. Let MX=< Xl,1, X l , 2 , . . .  Xl,5, x2,1, x2,2, . . . ,  2:2,5, 
�9 . . ,  XS,1, X5,2, . . . ,  X5,5 > and MY=< Yl,1, Yl,2, . . . ,  Yl,5,Y2a,Y2,2, . . . ,  Y2,5, . . . ,  Ys,1,Ys,2, 

- . . ,  Y~,5 > be the two matrix splits of cardinality < 5, 5 > of X and Y respectively. 
Type-i splicing between X and Y with respect to these matrix splits MX and MY can 
take place if and only if, the following conditions hold good. 

1. ~ X2,2: X2,3~ X2,4~ X3,3, X3,4, X3,5, X4,3~ X4,4, X4,5 ~ and < Y2,2, Y2,3, Y2,4, Y3,3, Y3,4, Y3,5, 
Y4,3~ Y4,4, y4,5 > are  Type-i patterns. 

2. Xa,3 = Ya,3. That is. the crossings are the same. 
3. For the four types of splicing operations, define R1 and R2 to be the following. 

X-P and Y-P represent the Type-i prefixes of X and Y with respect to MX and MY 
respectively. Similarly for suffixes. 

TYPE 1:R1 = (X-POY-L)O(Y-BOY-C) = (X-POY-B) ~(Y-LOY-C) 
R~ = (Y-POX-L)O(X-BOX-C) = (Y-POX-B) O(X-LOX-C) 

TYPE 2:R1 = (Y-LOX-P)O(Y-COY-B) = (Y-LOY-C) O(X-POY-B) 
R2 = (X-LOY-P)O(X-COX-B) = (X-LOX-C) O(Y-POX-B) 

TYPE 3:R1 -- (Y-BOY-C)O(X-POY-L) = (Y-BOX-P) O(Y-COY-L) 
R2 = (X-BOX-C)O(Y-POX-L) = (X-BOY-P) O(X-COX-L) 

TYPE 4:R1 = (Y-COY-B)O(Y-LOX-P) = (Y-COY-L) O(Y-BOX-P) 
R2 = (X-C~X-B)O(X-L~Y-P) = (X-COX-L) r 

Type-i splicing between X and Y with respect to these matrix splits is said to 
be defined/legal if the corresponding /ll and R2 are legal, i.e. The concatenation 
operations performed in the above expressions are all legal with respect to Definition 
3.1.3. The two images X and Y are i-compatible with respect to these matrix splits 
if and only if, the Type-i splicing is defined as per the above rules. We can see that, 
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if none of the prefixes and suffixes are A, then, the images will be i-compatible if and 
only if, the i-prefixes of the images are of same size. The four types of splicing and 
the corresponding resultants are shown in the Figures 3, 4, 5, and 6. In these figures, 
'c'  represents the crossing. 

No te .  Now, let us put the above definitions informally to explain the procedure 
to obtain the Type-i splicing products of two images X and Y. First, we have to locate 
two subimages in X and Y which are Type-i sites. The two sites are then matrix- 
split to get the corresponding Type-i patterns. The two patterns should have the 
same crossing. Let the pattern corresponding to X be < a l , a 2 , . . ,  a9 > and that of 
Y be < bl, b2... b9 >. The crossings as and b5 should be the same. X is split into 
subimages to obtain a matrix-split of < 5, 5 >, x1,1, xl,2. �9 3~1,5, . . . . . .  25,1, x5,1 - �9 �9 X5,5, 
such that, x2,2 = al;x2,3 : a2;x2,4 : a3;x3,2 : a4;x3,3 : a s , t h e c r o s s i n g ; x 3 , 4  = 

a6; x4,2 = aT; x4,3 = as; x4,4 = ag. Similarly, Y is split. Then, the Type-i prefixes and 
suffixes of X and Y with respect to these matrix splits is found. Now, the Type-i 
splicing prodcuts or resultants of X and Y w.r.t these matrix splits is obtained by 
exchanging the Type-i prefixes of X and Y. This splicing of X and Y w.r.t to these 
matrix-splits is said to be 'defined' or 'legal' if BOTH the products obtained are 
rectangular arrays. And X and Y are said to Type-i comaptible w.r.t these matrix 
splits. The compatibility condition ensures that the language of the splicing system 
S, viz. L(S) consists only of rectangular arrays. Note that, if none of the images in 
the matrix splits of X and Y are A, then the Type-i compatibility means that the 
prefixes of matrix-splits of X and Y are of the same size. Figure 7 shows the matrix 
split corresponding to the image X with the above mentioned notations. In the figure 
the subimages are shown with one possible sizes. 

I1 /2 
X1,1 X1,2 X1,3 X1,4 X1,5 YI,1 Y1,2 Y1,3 ]71,4 Y1,5 
X2,1 X2,2 X2,3 X2,4 X2,5 Y2,1 Y2,2 Y2,3 Y2,4 Y2,5 
X3,1 X3, 2 C X3,4 X3,5 Y3,1 Y3,2 c Y3,4 Y3,5 
X4,1 X4,2 X4,3 X4,4 X4,5 Y4,1 Y4,2 Y4,3 Y4,4 Y4,5 
X5,1 X5,2 X5,3 X5,4 X5,5 Y~,I Ys,~ Y5,3 Y~,4 Y5,5 

R1 R2 
X,,1 X1,2 Xl,~ Y1,4 YI,~ Y1,1 Y1,2 Y1,3 X1,4 Xl,s 
X~,l X2,~ X2,3 �89 Y2,s Y2,1 Y2,2 �89 X2,4 X~,5 
X3,~ X3,2 c �89 Y3,5 Y3,1 �89 c X3,4 X3,5 
Y4,1 Y4,2 Y4,3 Y4,4 Y4,6 )(4,1 X4,2 X4,3 X4,4 X4,5 
Y5,1 Y5,2 Ys,~ Y~,4 Ys,s Xs,~ X~,2 X5,3 X5,4 X~,5 

Figure 3. Type-1 splicing 
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L 
~,1 ~,2 ~,3 ~,4 ~,5 
~,1 ~,2 ~,3 ~,4 ~,5 
~,~ ~,~ c ~,~ ~,~ 
~,1 ~,~ ~,~ ~,4 ~,~ 
~,1 ~,~ ~,3 ~,4 ~,~ 

~,1 ~,2 ~,3 ~,4 ~,5 
�89 �89 �89 ~,4 �89 
~,~ �89 C �89 �89 
~,1 ~,2 ~,3 ~,4 ~,5 
~,~ ~,~ ~,3 ~,4 ~,~ 

R1 
YI,1 ]/1,2 X1,3 Xl,4 X1,5 
�89 Y~,~ X~,3 X~,4 X~,~ 
Y3,1 Y3,2 c X3, 4 X3,5 
]74,1 Y4,2 Y4,3 Y4,4 Y4,5 
Y5,1 Y5,2 Y5,3 Y5,4 Y5,5 

R2 
Xl,1 X1,2 Yl,3 Y1,4 Y1,5 
X:,, X~,~ Y~,3 �89 �89 
X~,~ X3,2 c Y~,4 �89 
X4,1 X4,2 X4,3 X4,4 X4,5 
X~,I X~,~ X~,3 X5,4 X~,~ 

Figure 4. Type-2 splicing 

L 
~,1 ~,2 ~,3 ~,4 ~,5 
~,~ ~,~ 4,3 ~,4 ~,~ 
~,1 ~,~ c ~,4 ~,~ 
~,1 ~,~ ~,~ ~,~ ~,~ 
~,~ ~,~ ~,~ ~,4 ~,~ 

~,1 ~,2 ~ , 3 ~ , 4  ~,5 
~,1 �89 �89 �89 ~,5 
~,1 ~,2 C ~,4 ~,5 
~,~ ~,2 ~,~ ~,4 ~,5 
~,1 ~,2 ~,3 ~,4 ~,5 

R1 
Y~I1 Y1,2 Y1,3 ',1,4 ~,~ 
Y2,1 Y2,2 ]/2,3 Y2,4 Y2,5 
Xs,~ Xs,~ c �89 �89 
X~,~ X~,~ 3;4,3 Y4,4 Y4,~ 
X~,I X~a X~,s Y~,4 Y~,~ 

R2 
Xl,1 X1,2 X1,3 X],4 X1,5 
X2,1 X2,2 X2,3 X2,4 X2,5 
Y3,1 Y3,2 c X3,4 X3,5 
Y4,, Y4,2 Y4,3 X4,4 X4,5 
Ms,1 Y5,2 Y5,3 X5,4 X5,5 

Figure 5. Type-3 splicing 

h 
~,1 ~,2 ~,3 Xl,4 ~,5 

~,1 ~,~ ~,3 ~,4 ~,5 

~,1 ~,2 ~,3 ~,4 ~,5 
�89 �89 �89 �89 �89 
~,1 ~,2 C ~,4 ~,5 

~,1 ~,2 ~,3 ~,4 ~,5 

R1 
Y~,I I/1,2 Y1,3 Y1,4 ~,5 
Y2,1 Y2,2 ]/2,3 Y2,4 Y2,5 
Y3,1 Ys,~ c Xs,4 X3,5 
Y4,1 Y4,2 X4,3 X4,4 X4,5 
Y5,1 Y5,2 X~,3 X5,4 X5,5 

R2 
Xi,1 X~,2 XI,3 XI,4 XI,5 
X2,1 X2,2 X2,3 X2,4 X2,5 
X3a X3,2 c �89 �89 
X4a X4,2 Y4,3 Y4,4 Y4,5 
Xs,1 Xsa Ys,s Ys,4 Y5,5 

Figure 6. Type-4 splicing 
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We have to note that there could be more than one site in an image and hence, 
the two images can splice in more than one way even for the same type of splicing. 
Hence, it is important to specify the < 5, 5 > matrix splits to uniquely specify a 
splicing operation between the two images. And specifying two < 5, 5 > matrix splits 
of the two images and the type of splicing, uniquely specifies the splicing operation 
desired and the resultants. 

/ 
Type-1 
Prefix 

I 

~ ' ~ S i t e  

Figure 7. Splitting an image to get splicing products 

Auxi l ia ry  language L' : The language of the splicing system S, L(S), is obtained 
as follows. An auxiliary language L' is formed by the following procedure. 

1. L' <- 0. 
2. Add images in I to L'. 
3. Select any two images I1 and 12 from L'. 

Splice them in all the possible four types, using all matrix splits. 
If the resultants are rectangular and are not in L' add them to L'. 

4. If no new images are added in step 3 exit else goto step 3. 
Language  L(S) : For an image X, define F(X), X E L', to be an image obtained 

by replacing evey special symbol s in X by f(s). Thus, F : E ++ --~ A ++. L(S) = 
{F(x) I x E L'} 

4.1. Classes of 2D Splicing Sys tems 

Defini t ion 4.1.1. Let S=< E, I ,B , f  > be a splicing system. E = A U A'. S is 
said to be a simple splicing system if A' = 0. That is there are no special symbols 
used. Consequently, f is not defined for a simple splicing system. Hence, a simple 
splicing is represented as S=< A,I ,B > and A is the alphabet of L(S). 

Defini t ion 4.1.2. A splicing system S=< E , I , <  B1,B2,Bz, B4 > , f  >, is said 
to be a finite splicing system if I, B1, B2, B3 and B4 are all finite. 
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Def ini t ion 4.1.3. A splicing system S is said to be null-context if all the patterns 
of S are of the form, < A,A,A,A,c,A,A,A,A >. And c ~ E++. Note that in such 
a system, the crossing itself is a site. The patterns of this form are called null- 
context patterns. In a null-context pattern of the 9 images, only the crossing 'c' is 
nonempty image. The null-context patterns are represented by < <  c >> ,  where, c is 
the crossing. 

Def ini t ion 4.1.4. A null-context splicing system S is said to an equal splicing 
system, if the four sets of patterns B1, B2, B3 and B4 are equal to each other, i.e B1 = 
B2 = B3 = B4. Such a splicing system can be expressed by a 4 tuple < E, I ,  B1, f >. 
B1 is the set of patterns, and the patterns can be used for any type of splicing. 

Def ini t ion 4.1.5. A null-context splicing system S is said to be uniform, if the 
set of patterns are such that, 

BI -- B2 -- B3 = B4 = {<< a >>I a C ~rn,n, for some m,n> 0}. 
That is every image in p m,n is a site of all the four types and these are the only sites. 
An uniform splicing system is represented as S--< A~f, rn, n >. Note that every 
uniform splicing system is also nu11-context. 

Defini t ion 4.1.6. An array language L is said to be a finite splicing language, if 
it can be generated by a finite splicing system. And L is said to be a simple splicing 
language if it can be generated by a simple splicing system. Similarly, null-context, 
equal and uniform splicing languages are defined. 

4.2. T h e  P u m p i n g  Technique  

In this section we introduce a technique called the pumping technique, which is 
used to generate infinite set of images from a finite set of images by splicing. It is 
very general in nature and hence, an example is provided next to exhibit it, instead 
of a formal discussion. 

E x a m p l e  4.2.1. The example given next is useful in two ways. It exhibits the 
concept of pumping infinite set of images from a finite set by splicing; gives a set of 
images called GRIDS used in a later section. 

Let Grid< X , Y , m , n  > represent an image G of size < m,n  >, where, m and n 
are odd positive numbers; m,n>3. G is defined by, 

X if i  is odd or j is odd 
G[i,j]= Y otherwise 

where, 1 < i < m, 1 < j _< n 
G is said to be a Grid defined over < X, Y > of size < m, n >. An example Grid 

is shown in Figure 8 GRIDS< X, Y > represents the set of all Grids over < X, Y >. 
GRIDS< X, Y > = {Grid< X, Y, m, n >, m and are odd, re,n> 3} 

Now let us exhibit the pumping technique by generating the infinite set of Grids 
from a single grid Grid< X, .~ 9, 9 >. Consider an initial set of images consisting 
only of Grid< X~.,9,9 > and let Grid< X, . ,5 ,5  > be a null-context Type-1 site. 
i.e < <  Grid < X, . ,5 ,5  > >  be a Type-1 pattern. Figures 9, 10 show the Type-1 
splicing between two images of the form Grid < X , . , 9 ,9  > (Figure 9) giving two 
resultants R l=Gr id<  X,. ,  9,11 > and R2=Grid< X,. ,  9, 7 > (Figure 10). The site 
used is Grid < X, , 5 , 5  >. 
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X X X X X X X 
X X X X 
X X X X X X X 
X X X X 
X X X X X X X 
X X X X 
X X X X X X X 
X X X X 
X X X X X X X 

Figure 8. Grid< X,. ,  9, 7 > 

No te .  In Figures 9, 10, for 11 the prefix is/1 itself and the suffixes are h. For I2, 
the prefix is Grid< X,. ,  9, 7 > and BUSuffix=CSuftix=A. 

11 = Grid  < X, . ,9 ,9  > 

X X X X X X X X 
X X X X 
X X X X X X X 
X X X X 
X X X X X X X 
X X X X 
X X X X X X X 
X X X X 
X X X X X X X 

I~ = Grid  < X, .,9,9 > 

Figure 

X X 
X X 

X X X X 
X X 

X X X X 
X X 

X X X X 
X X 

X X X X 

9. Splicing between Grids (I) 

X X X X X 
X X 
X X X X 
X X 
X X X X X 
X X X 
X X X X X 
X X X 
X X X X X 

X X 
X 
X X 
X 

X 

X 

X 

X 
X 
X 
X 
X 
X 
X 
X 
X 

A similar splicing between J~l and 11 produces Grid< X, .,9, 13 >. Thus all 
possible Grids over < X,.  > with number of rows as 9 and any number of columns 
can be generated. Now, let us consider the splicing between two images I1 = 12 = 
Grid< X,. ,  9, 13 >. The reader can draw the desired Type-1 splicing. From the 
definitions it is clear that Grid< X,. ,  11,13 > can be generated. Thus by repeatedly 
applying these two types of splicings we can generate all possible Grids over < X,. .  
with size greater than < 3, 3 >. 

P r o p e r t y  4.2.1. Whenever in a null-context splicing system, two Grids 11 and 
12 defined over < X, Y > splice, with a site s(which is also the crossing), size(s) 
> <  3,3 >, the resultants are also Grids defined over < X , Y  >. 

5. Finite  Simple Splicing Systems 
A splicing system S is said to be a finite-simple splicing system (hereafter referred 

as FS splicing system), if it is both simple and finite. As we have already seen, it can 
be expressed as, S = < A , I , B  >, where, I and the four sets of patterns are finite. 
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The FS splicing system is a direct extension of Tom HeM's original -unextended- 
splicing system [3] to the array languages or to the second dimension. It is interesting 
to study the properties of these FS splicing systems. The special classes of splicing 
systems, viz. null-context, uniform and equal are studied under the domain of FS 
splicing and an hierarchy is established. In the case of H-systems, the null-context 
splicing languages were shown to be equivalent to uniform splicing languages and 
strictly locally testable languages. This does not hold good in the case of 2D. In this 
section, the hierarchy of FS splicing languages is established and their relationship to 
the strictly locally testable languages is also discussed. 

5.1. H ie ra r chy  of FS Splicing Languages  

Let s  represent the set of all FS uniform splicing languages,/~e the set of all FS 
equal splicing languages and s162 the set of all FS null-context splicing languages. 

R1 = G r i d <  X,.,9,11 > -R2 = G r i d <  X,. ,9 ,7  > 

X X X X X X X X X X X X X X X X X X 
X X X X X X X X X X 
X X X X X X X X X X X X X X X X X X 
X X X X X X X X X X 
X X X X X X X X X X X X X X X X X X 
X X X X X X X X X X 
X X X X X X X X X X X X X X X X X X 
X X X X X X X X X X 
X X X X X X X X X X X X X X X X X X 

Figure 10. Splicing between Grids (II) 

Theorem 5.1.1. ~u C ~c- 

Proof. It is directly evident from the definition of uniform and equal splicing 
systems, that every FS uniform splicing system is an FS equal splicing system. Hence, 
s  _C/]c. Now, let us give an example of a language which is FS equal, but not FS 
uniform. [] 

Exa mple  5.1.1. Consider the following FS equal splicing system. S=< A, I, B >, 
1 1 

A={1,0}. I={00, b}, where b= 1 1 " And B=< Ba,B1,B1,B1 >. 

B a =  <<  1 ' > > '  < < 0 > >  �9 The language generated i sL (S )=L1 U L~ ,w h e re ,  

L I = 0  +, L 2 = ( 1 1 )  +. 

Now let us prove that this language cannot be produced by any FS uniform splic- 
ing system. By contradiction, let there be an FS uniform splicing system S'= 
< A, I', ra, n > producing this language. That is L(S') -- L(S). I should be such 
that, I = I1 U/2, where I1 C L1 and/2 C L2. As  S' is finite, I1 and I2 are also finite. 
From I1 the images have to splice and produce L1. But I1 C 0 + and is finite. So the 
sites for 11 should be of the form 01,k,k>0. Then only splicing can take place among 
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the images of 11. Thus, m = l .  Now, we can rewrite S' as S '=  < A, I ,  1, n >. This 
means that ,  (0 + 1) ~ are all sites and hence, 1 '~ is also a site. As (12) '~ belong to L(S'), 
consider the splicing shown in Figure 11. 

Images: 

Resultants: 

1 1 1 . . .  1 

1 1 1 . . .  1 
1 1 1 . . .  1 
1 1 1 . . .  1 

1 1 1 . . .  1 

1 1 1 . . .  1 1 1 1 
1 1 1 . . .  1 

Figure 11. Splicing for Example 5.1.1 

By this, 1 = (13) ~ e L(S'), which is not in L(S). So, L(S') • L(S). Hence 
1 

the proof. 

T h e o r e m  5.1.2. s C s 

Proof. It is directly evident from the definitions t ha t , / : e  C s An example of a 
language is discussed, which is FS null-context but not FS -equal. [] 

E x a m p l e  5.1.2. Consider the following FS-null-context splicing system. 
S = <  A , I , B  >. A = {X,+,-,1,2,a,b}. I = {i0, il,i2}. B = <  B1,9 ,9 ,0  >. B1 = 
{ < <  X > > , < <  cl > > } .  The crossing Cl and the initial images io, il and i2 are as 
shown below. a) 

io =XX,  il = 2 X X 1 , i2 = b X X a , 
2 1 b a 

Let, 
2 ( + )  + 1  b ( - F )  + 

L 0 = X  +, L I =  2 X 1 ,  L 2 =  b X 
2 - 1 b - 

L3 = 2 X a , L4 = b X 1 , L5 = 
2 - a b - 1 

L s =  a X 1 ,  L T =  2 X 1 ,  L s =  
2 - 1 b - 1 

They are generated as follows. 
io by 'pumping '  generates Lo. 
il by 'pumping '  generates L1. 
i2 by 'pumping '  generates L2. 

C 1 = 

a 

a , 

a 

2 
2 
b 

b 
b 
2 

+ ) +  a 
X a ,  
- -  g 

X a 
- -  g 

Images in L1 and L2 splice using < <  cl > >  to generate L3 and L4 
Images in LI and L2 splice using < <  X > >  to generate L5 and L6 
Images in L1 azad L4 splice using < <  X > >  to generate LT. 
Images in L2 and L3 splice using < <  X > >  to generate L8. 
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The languge L=L(S)=[.J Li, 0 < i < 8. Let La = L - L0. Now, we claim that 
there is no FS equal splicing system generating L. By contradiction, let there exist an 
FS equal splicing system S ' = <  A, I ' ,  B'  >, such that L(S') = L(S) = L. 

Lemma 5.1.1. B'  should include at least one pattern p of the form < <  X k > > ,  
for  some k>O. 

Proof. According to our assumption, L(S)=L(S'). I '  can be expressed as, I '  = 
IoUIa , -T0 C L0 and Ia  CLA.  If no pattern p of the form, < <  X k >> ,  for some 
k> 0 exists in B', then the initial images in I0 cannot splice. Let l = M a x { i / X  ~ E Io}. 
As images in I0 cannot splice, the image X t+l E L has to be generated by repeated 
splicing of images in Ia .  Note that none of the images in D, have any image of the 
form X j, j>0 as their prefix for any type of splicing. A simple induction on the 
number of splicing steps will prove that, neither the images in I a  nor the images 
generated by repeated splicing of images in Ia  in the splicing system S' have any 
prefixes of that form. If we include patterns in B' to generate such images L(S'), 
then some erroneous images not in L(S) will be produced in L(S'). But, to produce 
an image of the form X ~, a>0, by splicing, we need an image with an image of the 
form X i, i>0, as its prefix. Thus, Ia ,  even on repeated splicing cannot produce the 
image X I+1. This proves that, to generate all the images in L0, the images in I0 have 
to splice. To satisfy this requirement, B' should include at least one pattern of the 
form, < <  X k >>,  k>0. [] 

In view of this lemma there is k such that, a pattern p = < <  X k > > E  B I. Note 
that S' is an equal splicing system. So,X k is also a Type-2 site. Consider the Type-2 
splicing shown in Figure 12 between/ t  ,I2 E L(S') and the resultants R1 and H2. /~1 
and R2 E L(S'), by the rules of splicing. 

/l h 
2 + + + 1 b + + + a 
2 X X X 1 b X X X a 
2 - 1 b - a 

/1~ 1 R2 
b + + + 1 2 + + + a 
b X X X 1 2 X X X a 
b - a 2 1 

Figure 12. Splicing for Example 5.1.2 

As, rl, r2 ~ L(S), L(S) ~ L(S'). Hence, the proof. 

T h e o r e m  5.1.3. s  C s C/:~r 

Proof. Straightforward from Theorems 5.1.1 and 5.1.2. [] 

5.2. Strictly Locally Testability And FS Splicing Languages 

In the case of H-systems, the class of null-context H-system languages was shown 
to be equivalent to the class of strictly locally testable languges. But, that is not the 
case with 2D FS languages. In fact, the hierarchy established in the previous section 
is unrelated to the class of SLT languages. 

E x a m p l e  5.2.1. In this example, we present a language which is strictly locally 
testable, but cannot be generated by any FS null-context splicing system. 



361 

Let L be a language over the alphabet A= {1,0} defined as follows. L consists 
of all images of l 's  and O's which do not have 03,~ as subimage. That is the images 

( 0  0 0 )  
do not contain the subimage 0 0 0 . This language is obviously 3,3 - strictly 

0 0 0 
locally testable with 

W =  {0 a'a} a n d U = V = Y = Z = A  a '3 -W.  
Now let us show that this language L cannot be produced by any null-context 

splicing system. By contradiction, let there be a null-context splicing system S = <  
A, I,  B > with L(S) = L. As I is finite, the language L has to be produced by splicing 
only. So there should be atleast one pattern in S. Let it he a Type-1 pattern < <  X >>.  
Note that X cannot contain 0 a,a as its subimage. Let Size(X) = < r, c >. Consider two 
images/1 and I~. They are images of same size full of l 's  with 0 2'a and X embedded 
in them as shown in Figure 13. I1 and/2  do not contain 0 3,3 as subimage. Hence, 
both belong to L. A splicing as shown in the Figure 13 results in a resultant image 
with 0 3,3 as its subimgae. This image by the rule of splicing should belong to L(S) 
but does not belong to L. Thus, L(S) # L. 

h 
~ C - 2  * * C 

1 1  "-- 1 0 0  1 1  ..- 

1 1 " " 1 0 0  1 1 " -  

1 1 - " 1 0 0  1 1 . . .  
1 1 " - ' 1 1 1  1 1 " "  

X X 

* C . C 

1 0 

1 0 

1 0 
1 1 

1 
1 

One of the resultants: 
1 1 -.. 1 0 0 0 0 
1 1 . . .  1 0 0 0 0 
1 1 . . .  1 0 0 0 0 
1 1 . . .  1 1 1 1 1 

111 
X 1 1 

Figure 13. Splicing for Example 5.2.1 

Pads .  Let I be an image defined over an alphabet E of size < m, n >. Let P be 
an alphabet. Let us define Pad(I,P,a,b,c,d), where a,b,c and d are positive integers, 
to be the set S as 

S = Pad(I,P,a,b,c,d) = P('~+~+c)'aq~(P~"~OIOP~ 
If P is a has just one symbol then the Pad(I,P,a,b,c,d) defined above will have only 
one image. In such a case Pad(I,P,a,b,c,d) is used to represent that single image itself, 
rather than a set consisting of that single image. The images in set S are said to be 
padded images of I over the alphabet P of size < a, b, c, d >. Figure 14 shows an 
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example. For this example, I = G r i d <  1, 0, 5, 5 >. 
image in the set Pad(I,P,1,2,3,4). 

P={c}.  We give the the single 

C C C C C C C C C C C  

c c c c 1 1 1 1 1 c c 
c c c c 1 0 1 0 1 c c 
c c c c 1 1 1 1 1 c c 
c c c c 1 0 1 0 1 c c 
c c c c 1 1 1 1 1 c c 
C C C C C C C C C C C  

C C C C C C C C C C C  

C C C C C C C C C C C  

Figure 14. An e x ~ p l e  ~ r  padding 

P r o p e r t y  5.2.1. L e t / 1  a n d / 2  be two images defined over an alphabet E. Let 
I~ E Pad(I1,P,a,b,c,d) a n d / ~  6 Fad(I2,P,a,b,c,d). PNE = 0. Let m=Max{a,b,c ,d}.  
Then any two resultants R~ and R~ obtained by splicing I~ and I~ with any nullcontext 
site s, size(s) > <  m, m >, are always such that,  

R~ �9 Pad(rl ,P,a,b,c,d) and R~ �9 Pad(r2,P,a,b,c,d) 
for some rl,r~ �9 E ++. 

In simple terms, whenever padded images with a pad of size < a, b, c, d > splice 
with a nullcontext site s, then the resultants are also padded images with a pad of 
size < a, b, c, d >, provided s is not a subimage of the padding of the two images. 

For brevity, we omit the proof for the above property, but it can be easily proved 
formally. 

E x a m p l e  5.2.2. In this section we present an example of a language, which is an 
FS uniform splicing language, but not strictly locally testable. 

Let S = <  A , I ,  5,5 > be an uniform splicing system with A={0,1,a,b,c}, 
I={I1, I2, I3}. 

/1 = P M ( a r i d <  1, 0, 9, 9 >,{a},l,0,1,1) 
/2 = Pad(Grid< 1, 0, 9, 9 > ,{b} , l , l , l ,0 )  
Is = Pad(allO(a%40Grid < 1, O, 9, 9 > OaSb4)Obl~), {c}, 1,1,1,1) 

Now let us consider the language of the splicing system, L=L(S).  Let L1, L2 and 
L3 represent the languges produceable f r o m / 1 , / 2  and /3  alone respectively. Formally, 

L1 = L(Sl); $1 -- < A,{I1} ,5 ,5  > 
L~ = L(S2); $2 = < A,{I2} ,5 ,5  > 
L3 = L(S3); $3 = < A, {I3}, 5, 5 > 

Let 
L~ = {x I x = P a d ( G r i d <  1,O,i , j  >, {a}, 1, 0, 1, 1), i,j > 5, i a n d j  are odd} 
n~ = {x [ x = P a d ( G r i d <  1,0, i , j  >, {b}, 1, 1, 1, 0), i,j _> 5, i a n d j  are odd} 
L~ =- Pad(L~,  {c}, 1, 1, 1, 1}, where 
L3 ~ = (a(~+2)~((a(J+l)/%(J-1)/2)OGrid < 1, 0, i, j > O(a(J+l)/2b(J-1)/2))r 

i , j>5 and i and j odd. 
L~ consists of images of the same form as that  of /1,  but of all sizes. Similarly L~ 

consists of images of the same a.s that  of /2  but of all sizes. L~ consists of Grids with 



363 

a string a% k-l ,  where, k= [1/2*(length of the grid)], padded on the top and bottom 
and one pad of a column of 'a' on the left and one pad of a column of 'b' on the right. 
And L~ consists of images of La ~ with a padding of 'c' of size < 1, 1,1, 1 >. L~ consists 
of images of the form of/3,  but of all sizes. 

By pumping technique, it is clear that, L~ can be produced from 11. i.e L~ C_ L1. 
Similarly, L~ C_ L2 and L~ C L3. But the property of grids, Property 4.2.1 and the 
property of Pads Property 5.2.1 infer that, L~ = L1 and L~ = L2. But L~ is not equal 
to L3. Let L3 --= L~ ~.J L~. But again, as per Property 4.2.1 and Property 5.2.1, 

Lg C_ Pad(Pad(Grid< 1,0, i , j  >, {a,b}, 1, 1, 1, 1), {c}, 1, 1, 1, 1), i and j are 
odd, i,j>3 

Though L~ can be defined formally, the above subset property is enough for our 
purpose. Now, L(S) may contain images obtained by splicing two images, one from 
L1 and other from L2, L2 & L3 and L1 & L3. We shall prove that such kind of 
splicing cannot take place due to the lack of compatability. Only splicing among the 
images of the same language L1, L2 and L3 can take place. Note that the splicing 
system S, is an uniform splicing system and all the images of size < 5, 5 > can act 
as null-context site. Let us consider the case where, g=Grid< 1,0, 5, 5 > is used as a 
site for a Type-1 splicing between I1 E L1 and Is E L2. It can easily be noted that 
for any/1 E L~, the Type-1 prefix p~ with respect to the null-context site g, is always 
such that, size(p1)=< i , j  >, with i and j being even numbers. But the corresponding 
prefix p~ of any /2  E L2 is always such that, size(p2) = < i , j  >, with i being even 
and j being odd. Thus, the prefixes are not of the same size and splicing is illegal and 
can not take place. The Table 5.2.1 shows the nature of the size of the four different 
types of splicing prefixes of the images belonging to the three languages L1, L2 and 
L3 with respect to the site g. For example, the cell corresponding to L2 and Type-2 
reads, < even, even >. This means that, if an image sE L2 is spliced in Type-2, with 
the image 'g' as a null-context site, then the Type-2 prefix of s, will have even number 
of rows and even number of columns. 

Table 5.2.1 : The table for the Example 5.2.2 

[ [1 Type-1 Type-2 

L1 < even, even > 

L2 < even, odd > 

L3 < odd, odd > 

Type-3 Type-4 

< even, odd > < even, even > < even, odd > 

< even, even > < even, odd > < even, even > 

<" odd, odd > < odd, odd > < odd, odd > 

From the table it is clear that incompatibilities exist for splicing between 2 images 
belonging to two different languages of L1, L2 and La, with respect to the site g. A 
similar argument can be given for other sites of size < 5, 5 >. Thus, L = L1 U L2 U La. 

We shall show that L is not strictly locallay testable. By contradiction, let L be 
p,q-strictly locally testable. Let us consider the case where, p and q are even. For 
the other cases, the proof is similar. As L is p,q-strictly locally testable, there exist 
sets U,V,Y,Z and W consisting of images of size < p, q > satisfying the equMity 3.1.6. 
Let, 

11 = Pad(Grid< 1,0,p - 1,q - 1 >, {a},l,0,1,1). 
12 = Pad(Grid< 1 , 0 , p -  1,q - 1 >, {b},l,l,l,0). 

i.e 11 represents the image in L1 of size < p + 1,q >, 12 represents the image in L2 of 
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size < p + 1, q >. Let, 
u = Pad(Grid< 1 , 0 , p -  1,q - 1 >, {a},l,0,0,1) 
v = Pad(Grid< 1,0,p - 1 , q -  1 >, {b}, 1,1,0,0) 
y = Pad(Grid< 1 , 0 , p -  1,q - 1 >, {a}, 0,0,1,1) 
z = Pad(Grid< 1,0,p - 1, q -  1 >, {b}, 0,1,1,0) 

Note that, u and y are the top-left and bottom-left subimages of 11 of size < p, q >. 
v and z are top-right and bottom-right subimages of 12 of size < p, q >. As, ll, 12 E L, 
ucU; vEV; yCY; zEZ; Consider the image, 

X = a2p+3r 
where, Xg = Grid< 1,0,2(p - 1) + 3,2(q - 1) + 3 >. Let the top-left, top-right, 
bottom-left and bottom-right images of X be u,:, v,:, y~ and z~ respectively. Note 
that, u~=u; v~ =v;y~=y; z~=z. And hence, u~ EU; v~ cV. y~ EY; z~ EZ. Consider 
the image Xc=Pad(X,{c},l,l,l,1). X is a subimage of Arc. Thus, every subimage of X 
of size < p ,q  >, is also a subimage of X~. As, Xc EL, none of the subimages of Xc of 
size < p, q > belongs to W. This proves that, X belongs to the language in the right 
hand side of the equality in Definition 3.1.6. But, Xr L'. Hence, the equality does 
not hold good for the language L. Thus, L is not strictly locally testable. 

Figure 15 clearly depicts the hierarchy of FS splicing languages and SLT languages. 

Ex. 5.1.2 

Ex. 5.1.1- ' 

/ 7 *  
/ 

J 
Ex. 5.2.2 
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Finite 

SLT 
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Figure 15. Hierarchy of FS splicing languages and SLT languages 

6. Conc lus ion  
In this paper, we have defined 2D splicing systems and several restrictions of it. 

The hierarchy among these classes is studied. These classes have been compared to the 
class of strictly locally testable languages. There are several directions for future work. 
This paper mainly concentrates on hierarchy. Other features like closure properties 
can be studied. It has also been found that with this definition, by using the mapping 
function (i.e by using non-simple splicing systems) we are able to generate diffrent 
interesting languages of pictures more easily than by those given in [11]. 

In this paper, only finite-simple splicing systems have been considered. It would 
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be interesting to study the systems with infinite set of initial images and patterns. A 
broader definition as given in [7] can be extended to 2D. It has to be found whether the 
2D splicing systems will be universally computational in this case. Another direction 
of research could be to extend the definition of splicing to graphs. This might have 
more biological significance. We are working on these lines. 
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Abstract. The most of the previous work on the complexity of infi- 
nite words has measured the complexity as descriptional one, i. e. an 
infinite word w had a "small" complexity if it was generated by a mor- 
phism or another simple machinery, and w has been considered to be 
"complex" if one needs to use more complex devices (gsm's) to gen- 
erate it. In [5] the study of the computational complexity of infinite 
word generation and of its relation to the descriptional characterizations 
mentioned above was started. The complexity classes GSPACE(f) = 
{ infinite words generated in space f(n)} are defined there, and some fun- 
damental mechanisms for infinite word generation are related to them. It is 
also proved there, that  there is no hierarchy between GSPACE(O(1)) and 
GSPACE(log 2 n). Here, GSPACE(f) C GSPACE(g) for g(n) >_ f (n)  >_ 
log 2 n, f (n)  = o(g(n)) is proved. The main result of this paper is a new 
lower bound on the computational complexity of infinite word generation: 
real-time, binary working alphabet, and o(n/(log n) 2 space is insufficient 
to generate a concrete infinite word over two-letter alphabet. 

1. Introduct ion 
The most of the previous work on infinite word generation has measured the 

complexity of infinite words as a descriptional complexity. This means an infinite 
word y was of a "small" complexity if y was generated by a simple machinery (for 
instance, iterated morphisms [14]), and y has been considered to be "complex" if 
one needs to use more complex devices (for instance, double DOL TAG - system [2]) 
to generate y. Hromkovi~, Karhum~ki and Lepist5 [5] proposed to investigate the 
computational complexity (difficulty) of infinite words as well as its relation to the 
above mentioned descriptional characterizations. They have defined the time and 
space complexity of generating infinite word as well as the corresponding complexity 

1This author was partially supported by the Slovak Scientific Grant Agency Grant No. 
95/~305/277. 
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classes GSPACE(s)  = {infinite words generated in space s(n)}, and GTIME(t )  = 
{infinite words generated in t ime t(n)} for some functions s, t : N --* N. 

The  main results of [5] are the following ones: 

1. GSPACE(O(1))  = GSPACE(f )  = {ultimately periodic infinite words} for ev- 
ery f(n) = o(log 2 n), i.e., there is no hierarchy of space complexity classes below 
log 2 n, 

2. the infinite words generated by morphisms are in the smallest nontrivial space 
complexity class GSPACE(log 2 n), 

3. Kolakowski sequence [2] is in GSPACE(log 2 n), and 

4. the infinite words generated by an exponential double DOL TAG - system are 
in GSPACE((log 2 n)2). 

We recall that  Kolakowski sequence was considered as a nontrivial sequence in 
[2], and that  DOUBLE DOL TAG - system introduced in [2] as a unified model to 
generate infinite words has a very high generating power. 

This paper  continues the investigation of the computational  complexity of infinite 
word generation. The main attention here is devoted to the development of some lower 
bound methods on the complexity of infinite word generation. Our first result is the 
strong, infinite hierarchy GSPACE(f )  C GSPACE(g) for any g(n) >_ f(n) > log 2 n 
and f(n) = o(g(n)). The main effort of this paper  is devoted to the development 
of a lower bound method on the computational sources needed to generate a specific 
infinite word. Such a lower bound was already established by Fischer et. al. [4] 
who show that  real-time multicounter machines (i.e. Turing machines working over 
one-letter alphabet ) cannot generate a specific word. Here, we show that  real-time 1- 
tape Turing machines working in space o(n/(log 2 n) 2) over two-letter alphabet cannot 
generate a very natural  word. 

This paper  is organized as follows. Section 2 fixes the notation used. Section 
3 contains the hierarchy of the space complexity classes, and Section 4 involves our 
lower bound for our specific infinite word. 

2 .  D e f i n i t i o n s  a n d  N o t a t i o n s  

In this section we fix our computational  model - mult i tape Turing machine - used 
to define the t ime and space complexity of generating infinite words. 

Our model of computat ion is multitape (or k-tape) Turin9 machine, MTM (or 
k-TM) for short, which consists of 

- a finite state control, 

- k infinite one way working tapes each of which contains one two-way read/wri te  
head, 

- one infinite output  tape containing one one-way write-only head. 

Depending on the current state and the k symbols read by heads on the work- 
ing tapes the machine makes the following actions (corresponding to one step in a 
computation):  
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1. it changes the current state to a new one; 

2. it writes a symbol on the output tape and moves the head on the output  tape 
one unit to the right, or it does not do anything on the output tape; 

3. each head on a working tape writes a symbol from the finite working alphabet 
on the currently scanned square and possibly moves to the neighboring square 
in the right or left. 

A configuration of a k-TM is Q = (w,p, Xl,...~xk) where w is a content of the 
output  tape, p is a state, and x~ is the content of the i-th working tape including 
the position of the head. For a configuration Q, Q = (p ,  X l , . . .  , x 2 )  iS referred to 
as its internal configuration. The initial configuration is the one where all tapes are 
empty, i. e. containing only blank symbols. As usual a computation is a sequence of 
(consecutive) configurations Q0, Q1,.. .~ Q~, . . .  where Q0 is the initial one and the 
machine moves from Q~ to Qi+l in one step. We call the sequence Qo, Q1 , . - . ,  Q~, . . .  
the corresponding internal computation. 

Next we define central notions how an MTM operates on infinite words. 
An infinite word w C ~-]w is generated by an MTM M if the computation D = 

Qo, QI , . - -  of M has the following properties: 

(i) D is infinite; 

(ii) Q0 is the initial configuration of M, i. e. all the tapes are empty; 

(iii) In each configuration Q~ the content of the output tape is a prefix of w; 

(iv) For each i there exists an index j such that j > i and the content of the output  
tape in Qi is a proper prefix of that  in Qj. 

Let M be an MTM generating a word w. The time and space complexities of M 
are functions TM : N ~ N and SM : N --* N defined as follows: 

TM(n) = i~, where Q~ is the first configuration of the computation of M having 
the prefix of w of length n on the output tape. 

SM(n) = max{S(Q~) [ i  = 0 , . . . ,  TM(n)}, where S(Q~) is the space complexity of 
the configuration Q~ measured as the maximum of the lengths of words on working 
tapes. 

Finally, we define the complexity classes dealt with in this paper in a standard 
way: For any t, s : N --* iN 

GTIME(t)  = {w E }-]~ 13 an MTM M generating w and Tu(n) <_ t(n)}, 
GSPACE(s) = {w E ~]~ ! 3 an MTM M generating w and SM(n) <_ s(n)) ,  
GTIME - SPACE(t, s) = {w E ) -~  I 3 an MTM M generating w and TM(n) < 

t(n), sM(n) _< s(n)}. 

3 .  S p a c e  H i e r a r c h y  

In [5] it is shown that  GSPACE(f(n)) = GSPACE(g(n)) for any f(n) = O(1) and 
g(n) = o(]og 2 n). The natural questions appear: Does there exist an infinite hierarchy 
for space classes? If yes, how strong is such a hierarchy? 
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In this section we show that there is a strong space hierarchy for the generation of 
infinite words, namely, GSPACE(f(n)) C GSPACE(g(n)) for g growing quicker than 

f.  
T h e o r e m  3.1. Let f ,g be two nondecreasing functions from N to N with the 

following properties: 

1. f(n) < g(n) for any n e N, 

2. ~oof(n)/g(n) = O, 

3. g is space-constructibIe, 

4. g(n) >_ log 2 n for any n E N. 

Then GSPACE(f) C GSPACE(g). 

Proof. We see two possibilities how to realize the proof. One is to show a one to 
one correspondence between the generation of infinite words over two-letter alphabet 
and the recognition of languages over one-letter alphabet. Then, the hierarchy result 
for GSPACE(f) is a consequence of the hierarchy results for space-bounded classes 
of one-letter languages. Here, we prefer to give a direct short proof showing the 
modification of the well-known diagonalization. 

Let Co(T~), Co(T2),. . . , . . . ,  be the infinite sequence of binary encoding of 1-TMs 
in the lexicographical order. We note that we do not need to consider multitape TMs 
because each MTM can be simulated by a 1-TM with the same space complexity. As 
usual, there is a Turing machine which, for any given natural number n, constructs 
Co(T~). 

Let, for any 1-TM T~,C~1C~2C~3... be the infinite word generated by Ti. Now, 
we describe a g(n)-space bounded 4-TM M which generates an infinite word (,O M : 

dld2.., which differs from CilC~2Ci3... for any i such that Ti is f(n)-space bounded. 
We describe the work of M by giving the procedure of M to generate the n-th bit of 
0.; M . 

C u r r e n t  conf igura t ion  of M. The output tape contains the first ( n - l )  symbols 
of wM, and the first working tape contains the binary code of n. 

S tep  1. M computes the value g(n) and it marks the g(n)-th positions on all four 
working tapes. 

S t ep  2. M writes 1 g(~) on the second tape. 
S tep  3. M computes Co(Tk) on the third tape, for a k such that n = 1 + 2 + 

3 + . . .  + (j - 1) + j  + k and 1 < k < j + 1. This can be done in ICo(Tk)l space. If 
Step 3 requires more than g(n) cells of the third tape, then M halts and sets d,~ = 0. 
Otherwise M continues with Step 4. Note, that the way in which k is chosen ensures 
that every Turing machine Tk is infinitely many times asked for computing an element 
of the infinite word CaM. 

Step  4. M simulates the work of Tk from the initial configuration on the fourth 
tape except that the produced symbols CklC~2... C~(n-1) are not written anywhere. 
M uses binary alphabet to encode the working alphabet of Tk in this simulation. If 
g(n) cells are not enough to complete the simulation then M halts and sets dn = 0 . 
Besides this M computes the number of simulated steps of Tk on the second tape. If 
this number is equal to 2 a(~) then M halts and sets dn = 0. If M succeeds to simulate 
Tk and Tk computes the symbol Ck~, then M sets d~ = I1 - Ck~l. 
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S t e p  5. M writes d~ on the output  tape and adds 1 to the binary number  coded 
on the first tape. The contents of all other working tapes is made empty. 

Now, we show that  WM = did2.., is different from C~1Ci2... for any i such that  
Ti is f (n) -space  bounded. We prove it by contradiction. 

Assume that  there exists a j such that: 

(a) Tj is f (n)-space  bounded, and 

(b) dn = Cj,~ for all n E N. 

Let F be the working alphabet of Tj and let Tj have s states. Since ~ f ( n ) / g ( n )  = 0 
there exists a positive integer m such that  

(i) m = l + 2 + 3 . . . + ( r - 1 ) + r + j w i t h 0 < j < r + l ,  

(ii) g(m) > tCo(T~)l, 

(iii) g(m) > log2(IP I + 1). f(m), and 

(iv) 2"<m) > s. (Irl + 1 / ~ )  which is the number of all different configurations of Tj. 

Because of (ii) M is able to perform Step 2. Because of (iii) and (iv) M is able 
to simulate the generation of of Cjl...Cj,~ by Tj. Thus, d m =  1 - Cj,~ r C~m, which 
contradicts to (b). [] 

4. A C o n s t r u c t i v e  Lower B o u n d  

One of the hardest tasks in the complexity theory is to prove lower bounds, i. e., 
the nonexistence of complexity-bounded algorithms (TMs) for given computing prob- 
lems. Since nobody has been able to prove for a specific language L in NP that  
L r SPACE(log2 n) = DLOG it is very unprobably that  somebody wilt be able to 
prove for a specific infinite word w that  w ~ GSPACE(log 2 n). It is also nontrivial to 
find candidates for this property. 

To give a more concrete reason why it is so hard to prove that  some infinite word 
does not belong to GSPACE(log 2 n), we note that  each prefix of length n of any infinite 
word algorithmically generated has Kolmogorov complexity at most log 2 n (see [8] or 
the original sources [3], [7], [13] for an overview on Kolmogorov complexity). This 
means that  one can always store an encoded content of the output  tape on a working 
tape of the length log 2 n, and use the code of the prefix to generate further output  bits. 
From this point of view the first nontrivial space class GSPACE(log 2 n) seems to be 
very powerful. Thus, the proof of w ~ GSPACE(log 2 n) for some w generated by an 
iterative mechanism cannot be based on the idea that  it is impossible to store enough 
information on the working tape about the already generated prefix on the output  
tape - the oposite is clearly true. This means that  to prove w ~ GSPACE(log2 n) 
requires to prove the following facts about w: 

(i) there is a large prefix y of w whose main part  must be stored in order to be able 
to generate further bits of w, and 

(ii) if the information about y is stored in some word x of the length O(log~ n), then 
each algorithm decoding x in order to get the information about y, which is 
necessary for further generation, has the space complexity greater than log s n. 
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Recently, there has been developed methods to prove (i) [8], [6], but we do not 
know any method which would allow to go even a little bit in the direction of (ii). 

To be able to prove at least a nontrivial lower bound useful for further investigation 
we restrict the complexity of generation in a very strong way. A 1-TM M is called 
strongly real-time if its working alphabet is identical with its output alphabet (i. e. 
M cannot use a larger working alphabet than the output alphabet to speed-up the 
computation), and M writes an output symbol on the output tape in each step. 

We consider the following infinite word 

w~i~ = bin(O)bin(1)bin(2) . . . b in( i ) . . . ,  

where bin(i) is the binary encoding of i. We shall use Kolmogorov complexity to show 
that wbi~ cannot be generated simultaneously in strongly real-time and in logarithmic 
space. 

T h e o r e m  4.1. wbi~ cannot be generated by any strongly real-time I -TM working 
in space f (m)  = o(m/(log m)2). 

Proof. In order to explain carefully the lower bound proof method developed 
here, we first prove the following result which is weaker than the assertion of 
Theorem 4.1. 

T h e o r e m  A.1. wbin cannot be generated by a strongly real-time 1-TM working in 
logarithmic space. 

Proof. (By contradiction.) Let M be a strongly real-time 1-TM working in space 
log 2 m, and generating wbi~. Let Co(M) be the binary representation of the code of 
M and let M have s states. Let, for any Word w e {0,1)*, K(w) be the Kolmogorov 
complexity of w, i.e., the minimum over the lengths of the binary encodings of all 
Turing machines generating w. 

In what follows, if one has a procedure (algorithm) A with input I to generate a 
finite word w then we consider the Kolmogorov complexity of A, K(A), as the sum of 
the Kolmogorov complexity of the binary code of A (K(Co(A))) and the Kolmogorov 
complexity of the binary code of the input (K(Co(I))).  Obviously, K(A)  is an upper 
bound on K(w) in this case. 

Now, we prove a helpful technical fact. 
Fact  A . I .1 .  Let M be a strongly real-time 1-TM writing a word w E {0, 1}* on 

the output tape in a computation part D of the length Iwl. Then M visits at least 
K(w) - g ( C o(M) )  - [log 2 s] - log S Iwl - z 
different cells of the working tape during the computation part D, where z is a 

constant independent of w. 
Proof of Fact  A . I .1 .  Let M visit r(w) cells of the working tape during the 

computation part D in which w is generated. Then the following algorithm A can be 
used to generate w. 

A l g o r i t h m  A 
I n p u t :  

Output: 
Procedure: 

Co(M), the number of the state of M in which M starts to 
generate w, the contents X E {0, 1}* of the r(m) visited cells of 
the working tape, and the position of the working head on X in 
the configuration C from which M starts to generate w. 
W .  

A simulates the work of M from the given configurations C and 
generates w. 
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The Kolmogorov complexity of the algorithm A generating w is 
I f (Co(A))  + g ( C o ( M ) )  + [log 2 s] + K ( X )  + [log 2 IX[]. 
Thus, K(w)  < K(Co(A))  + K ( C o ( M ) )  + [log 2 s] + r(w) + [log2(r(w)] + z' for 

some constant z '  independent of w. Since clearly r(w) <_ [w I we have: 
r(w) >_ g ( w )  - K(Co(A) )  - K ( C o ( M ) )  - [log 2 s] - [log s IwH - z '  

>_ K(w)  - K ( C o ( M ) )  - [log 2 s] - log 2 Iwl - z 
for some constant z independent of w. [] 

Using Fact A.I.1 we conclude, that for any subword w generated by M: 

r(w) > g ( w )  - Flog2 [wJ] - c o n s t ,  

where const is a constant independent of w. It is well-known that  for any n E N 
there is a word x ,  C {0, 1}" with the property K(x~) >_ n. So, for any n E N there 
is ~ positive integer j~ such that 

(i) bin(j ,)  E 1. {0, 1} "-2" 0, 

(ii) g(bin( j~))  >_ n - 2. 

Let, for any jn ,D~ be the part of the computation of M in which bin(j , )  is 
generated. Since r(bin(j , ) )  > n - log 2 n - c o n s t  for any n E N, M must do at least 
n - log 2 n - coast steps in one direction (to the left or to the right) on the working 
tape in the computation part D~. Without loss of generality assume that M moves 
the working head at least n - log2 n - coast times to the right. Obviously, M moves 
the working head no more than log 2 n + const times to the left in D, .  Thus, in the 
first configuration of D~ the working head has the distance at most 3(log 2 n + coast) 
from the left endmarker of the working tape 2, and in the last configuration of Dn the 
working head is positioned on the d-th cells for some d > n - 3(log 2 n + coast). Note 
that the length of the working tape is bounded by n + log 2 n + 1 when generating 
bin(1)bin( 2 ). . .bin(j.  ). 

Let, for any n E 1N, bin(j~) = bini(j~)bin2(j,) where [binl(j,)] = In/3],  and let, 
for i = 1, 2, D~ be the part of D ,  in which bin~(j~) is generated. Let z(n) be the left- 
most cell of the working tape visited in D~. Since K(bim (j~)) >_ K ( b i n ( j , ) ) / 3 - l o g ~  n 
and g(bin2(j~))  >_ 2.  K(bin( j~)) /3  - log 2 n for large enough n. So 

> - 2(log  n + >_ 
> g ( b i m ( j , ) )  - 3(log2 n + coast) > 
>_ ( n  - 2 ) / 3  - 3(log  n + con t). (*) 

Here we needed the following basic properties of Kolmogorov complexity: for all 
words w,x ,  and y K(w)  <_ Iw] + d for some d independent of w, and K(xy )  < 
K(x )  + K(y)  + d' for some d' independent of x and y. 

Let X~ = x~(,~)x~(,)+l...x,~+log2,, be the suffix of the content Xl...x,~+log2, of the 
working tape in the first configuration of D~. Now, we give an algorithm B generating, 
for sufficiently large n, bin(j,~) having the Kolmogorov complexity smaller than n - 2, 
which will be a contradiction. Before giving the algorithm we note that  after the 
generation of bin(j , )  M generates bin(j ,  + 1) which differs from bin(j , )  only in the 
last bit. Obviously, for any n, K(bin(j ,~+l))  >_ n - b  where b is a constant independent 
on n. Fact A.I.1 and the fact that the working head of M is "almost" on the right 

2If not then M cannot realize n -  log2n- coast steps to the right on the working tape of length 
n in n steps of Dn. 
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end of the working tape in the last configuration of M imply that when generating 
bin(j~ + 1) M moves its working head mostly to the left. 

Algorithm B 
Inpu t :  X~, Co(M), n, the state in the first configuration of D~, and 

the position of the working head on X~ in the first configuration 
of D~. 

Ou tpu t :  bin(j~) 
P r o c e d u r e :  S tep  1: Simulate n - [n/3J steps of M (i. e. D~) to compute 

bin2(jn) 
Step  2: Simulate further [n/3J steps of M to generate the first 
Ln/3J bits of bin(jn + 1) which forms exactly binl(j~). (Note 
that M cannot leave the positions z(n) , . . .  ,n + log 2 n in [n/3J 
steps.) 
Step  3: Write binl(j~)bin2(j~) 

Now, we compute the Kolmogorov complexity of this procedure: For any n C N: 
K(B)  < K(Co(B)) + If(Co(M)) + K(X~) + [log2 n] + Ilog2 s] + log2(JX~]) 

_< IX~I + [log 2 n] + log2(IX~l ) + const' 
where const' is a constant independent of n. 
Following (*) we obtain 
K ( B ) <_ n+log 2 n -  z( n ) + 2 log 2 n + const' < n - ( n - 2 ) / 3 + 6  log 2 n + 3eonst + const' 
Thus, we have for large enough n: 

K(bin(j~)) < K(B)  < 3n/4 

which contradicts the assumption that for any n E N, K(bin(j~)) > n - 2. [] 

Now, we shall extend the above proof ideas to prove that wbi~ cannot be generated 
by any strongly real-time 1-TM working in space f (m)  = o(m/(log~ m)2). Observe, 
that each strongly real-time 1-TM works in space m because it cannot write more 
on the working tape than on the output tape. The idea of the proof is to take 
a generated subword bin(j~)bin(j~ + 1) . . .  bin(j~ + 2 n/21~ and to show, for any 
k E {0 , . . . ,  2~/21~ that the working head must move much more to the right (or to 
the left) than to the left (to the right) when generating the word bin(j~ + k). Thus 1- 
TM will use at least ~(n).2 ~/21~ space to generate bin(1)bin(2).., bin(j~ +2n/21~ 

Before starting the own proof, we give two helpful technical lemmas ensuring that 
bin(j~ + k) has still large Kolmogorov complexity for k C {1,. . .  2 '~/21~ and that 
bin(j~) and bin(j~ + k) do not differ in the prefix of the length [n/3J. 

L e m m a  A.1. Let i , j  be two positive integers. Then 

K(bin(i + j)) > K(b in ( i ) ) -  [log2j ] - k ' ,  

where k' is a constant independent of i and j.  

Proof. The following algorithm C can reconstruct bin(i) from bin(i + j) and j.  

A lgo r i t hm C 
Inpu t :  bin(i + j ) , j .  
Outpu t :  bin(i). 
P r o c e d u r e :  Subtract j times 1 from bin(i + j) and write the result bin(i). 
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Obviously, 
K(bin(i)) < K(C)  <_ K(Co(C)) + K(bin(i + j))  + [log2j ] 

<_ K(bin(i + j))  + [log 2 j ]  + k' 
for some constant U independent of i and j .  

L e m m a  A.2.  There exists no E N that for all n > no and all k E 
{1 , . . . ,  2"/21~ bin(j,) and bin(j, + k) do not differ in the first [n/3] bits. 

Proof. To prove Lemma A.2 it is sufficient to show that  bin2(j,~) contains at least 
n/21og 2n zeros. Let binz(j,) contain fewer than n/21og2n zeros. Then bin2(j~) 
can be generated by giving the d < n/2 log 2 n positions of zeros in bin2(j,). Thus 
K(bin2(j,)) < (n/2 log 2 n) .  [log 2 a] + c, where c is a constant independent on n. 

But, this contradicts to the fact 

K(bin2(j,)) >_ 2(n - 2)/3 - log~ n 

for large enough n proved in the proof of Theorem A.1. [] 

Now, we are ready for the proof. 

Proof of Theorem 4.1. Let M be a strongly real-time 1-TM generating wbi~. We 
again consider the words bin(j~) with properties (i) and (ii) for any n e N,  and the 
subwords bin(j~)bia(j~ + 1)...bin(j, +2  ~/~1~ for any n E N. Let b~ +1 be the position 
of the working head of M on the working tape after the generation of bin(j~ + r). 
Using Fact A.I.1 we see that  for any r E {1, ...,2 ~/21~ 

Ib r+ l  - br[ .~ K(bin(j ,  + r)) - 2[log~ n] - k', 

where k ~ is a constant independent of n and r. Thus, we have from Lemma A.1 

(1) mtb~ +1 - b~I >_ K(bin(j , ))  - n / 2 1 o g n -  2[log2n ] - k ' -  k > n -  n/log~n 

for all sufficiently large n. 
We may assume that b~ - b,~ > 0. Now, we show that this assumption implies that 

b~ +1 - b~ > 0 for any r E {1 , . . . ,  2~/2~~ Obviously, this will complete the proof of 
Theorem 4.1 because it implies 

2n/2 log2 n 0 
b. - b~ = 

2r*]2 log 2 r* 

Z b;+l  --  brn > 2n/2]~ n .  ( a  --  11, / log 2 n) .  

r=o 

Since the length m of bin(1)bin(2).., bin(j, + 2 ~/l~ is in O(n.  2 ~) and M uses 
at least space f ( m )  > 2 ~/21~ ~" (n - n~ log 2 n) we obtain f ( m )  C 12(m/(log 2 m)~). 

Now, we show that  b~ +1 - b ~  > 0 for any r E {1, . . .  ,2 ~/21~ by contradiction. 
property b, - b  n < 0. Then the Let d > 1 be the smallest positive integer with the d+l d 

relation b~ +1 - b~ < - n  + n~ log 2 n follows from (1). We know from Lemma A.2 that  
bin(j~ + ( d -  1)) = binl(j~)x and bin(j, + d) = binl(j,)y for some x, y E {0, 1} n-In/3]  �9 

Thus similarly as in Algorithm B in the proof of Theorem A.1, bin(j~ + ( d -  1)) can be 
generated by simulating first the generation of x by M and then the generation of the 

log2 n,b~ -b~ __ Smceb~-b~ >_ n - n ~  d+l d first In/3] bits of bin(jn+d) [b/nl(j~)] by M. " a d-1 
--n + n/log~ n, and K(x)  > 2K(bin(j~ + d + 1))/3 - logn - coast, the number of 
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visited cells of the working tape in this generation procedure can be bounded by 
2n/3 § n/log2n. This and Fact A.I.1 imply that g(bin(j~ + (d - 1))) < 2n/3 + 
n/log 2 n § log n-t-const  which is the contradiction with the result of Lemma A.1 
g(bin(j~ + (d - 1)) > (n - 2) - n/21ogn - k. [] 

Note, that the lower bound of Theorem 4.1 is for computationally powerful devices. 
The similar results in [4] are for much weaker machines, namely for real-time MTM's 
over one letter working alphabet. 

5. C o n c l u s i o n  

This paper presents a lower bound result of infinite word generation. Several 
problems remain open for further investigation. Now, we formulate two of them. 

P r o b l e m  5.1. Are the words generated by double DOL TAG-systems [2] in the 
class GSPACE(log 2 n)? 

P r o b l e m  5.2. Prove for some specific infinite word that logarithmic space and 
linear time do not suffice to generate it. Obviously, the most interesting problem is 
to prove x ~ GSPACE(log 2 n) for some specific infinite word x. But this problem is 
at least as hard as to prove L ~ DLOG for some L E NP. 
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O. I n t r o d u c t i o n  
The infinite or w-power is one of the basic operations to associate with a language 

of finite words (a finitary language) an w-language. 
It plays a crucial role in the characterization of regular and of context-free w- 

languages, that is, w-languages accepted by (nondeterministic) finite or pushdown 
automata, respectively (cf. the surveys [St87a, Th90]). But in connection with 
the determinization of finite w-automata it turned out that the properties of the 
w-power are remarkable elusive; resulting in the well-known complicated proof of 
MACNAUGttTON's theorem [MN66]. Later work [TBT0, Ei74, Ch74] showed a con- 
nection between the w-power of regular w-languages and a limit operation (called here 
6-limit) transferring languages to w-languages. It was, therefore, asked in [Ch74] for 
more transparent relationships between the w-power and the 6-limit of languages. It 
turned out that this 6-limit is a useful tool in translating the finite to the infinite 
behaviour of deterministic accepting devices (cf. [Li76, CG78, St87a, Th90, EH93]). 

As it was mentioned above w-power languages play a crucial role in the character- 
ization of w-languages accepted by nondeterministic finite or push-down automata. 
In fact, they are useful in general for the characterization of w-languages accepted by 
empty storage (cf. [St77]). 

Therefore, a general relationship between w-power and 6-limit could hint 
for instances where w-languages accepted nondeterministically via empty-storage- 
acceptance could be likewise accepted deterministically. 

In contrast to the w-power the 6-limit yields, similar to the adherence of languages, 
a transparent description of the w-language derived from the language. Particularly 
remarkable are the facts that in terms of the natural CANTOR-topology of the space of 
w-words it describes exactly Ge-sets (This being also the reason for calling it 6-limit.) 
and, moreover, it allows for a specification of the topological (BOREL-) subclasses of 
Ge in terms of the underlying (preimage-)languages (cf. [St87b]). 

No such properties, however, are known in general for w-power languages. Except 
for the representation as an infinite product, the w-power of a language W, W ~, is 
known to be the maximum solution of a linear homogenuous equation in one variable 
(see Eq. (H) below). The disadvantage of those equations is, in contrast to the 
language case, that they are not uniquely solvable in w-languages. This is, however, 
no obstacle to obtain an axiom system for w-regular expressions similar to the one 
for regular expressions given by A. SALOMAA in [Sa66]. K. WAGNER [Wa76] showed 
that the maximum solution principle of [Re72, St72] is sufficient for this purpose. 1 

Therefore, we start our investigations with the consideration of linear equations 
for w-languages. After introducing some necessary notation in the first section we 

1Other axiom systems for w-regular expressions were given in [DK84, II84] 
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derive the above mentioned maximum solution principle and some conditions under 
which equations are equivalent, that is~ have the same set of solutions. 

In the second section we consider the structure of the set of solutions of a linear 
equation. To this end we introduce the notion of atomic solutions, that  is, nonempty 
solutions which are in some sense indivisible. Section 3 is devoted to the case when a 
linear equation has a finite-state or even regular solution. This concludes our investi- 
gations on solutions of linear equations, and we turn to the consideration of w-power 
languages. 

In the fourt part we deal with relationships between the operations of w-power 
and G-limit. Thereby it is natural to consider also toplogical properties of w-power 
languages. It turns out that  already for topological reasons the S-limit is not able to 
describe all w-power languages. 
Moreover, we show which w-power languages can be found in several low level BOREL- 
classes (below the class G~). Here the behaviour of w-power languages is in contrast 
to the class of so-called strongly-connected w-languages (cf. [St80a, 83]). Strongly- 
connected w-languages are already closed if they are in the BOREL-class F ,  f3 G6, 
whereas we derive as well examples of open nonclosed as examples of nonopen and 
nonclosed w-power languages in F ,  fl G6. 

The final section of this paper deals with another topological property of w-power 
languages. It was observed in [St76, 80b] that finite-state (or regular) w-laaguages 
which are nowhere dense in CANTOR-space lack some subword (finite pattern). Here 
we generalize this result to finite-state w-languages nowhere dense in an w-power 
language. 

1. Linear Equations 

In this section we introduce some notation used throughout the paper. Further 
we give some basic results from the theory of w-languages which are necessary for our 
investigations. Additional information on the theory of w-languages can be obtained 
from the quoted above papers. 

After these preparations we introduce linear equations for w-languages and show 
how to solve them. An especially interesting way of solving is the maximum solution 
principle which will be illustrated at the end of this section by two examples. More- 
over, we derive a condition under which equations have the same set of solutions. 

By N = {0, 1 ,2 , . . .}  we denote the set of natural numbers. We consider the space 
X ~ of infinite strings (sequences) on a finite alphabet of cardinality card X > 2. By 
X* we denote the set (monoid) of finite strings (words) on X,  including the empty word 
e. For w E X* and b E X* U X ~ let w- b be their concatenation. This concatenation 
product extends in an obvious way to subsets W C_ X* and B CC_ X * U X  ~. As usual we 
denote subsets of X* as languages and subsets of X ~ as w-languages. For a language 
W C _ X * l e t  W ~  a n d W  ~ + I : = W  ~ .W.  T h e n W * : =  U W i i s t h e s u b m ~ 1 7 6  

~6N 
of X* generated by W, and by W ~ we denote the set of infinite strings formed by 
concatenating in W. Furthermore Iwl is the length of the word w E X*. 

A(B)  :=  {w : w E X* A 3b(b E X* U X ~ A w .  b C B)} is the set of all initial words 
(prefixes) of the set B C_ X* U X% For the sake of brevity we shall write w .  B,  W .  b 
and A(b) instead of {w}. B, W" {b} and A({b}) respectively, and we shall abbreviate 
the fact that  w is an initial word of b, that  is w E A(b), by w _E b. Moreover, we call 
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B C X* U X ~ prefix-free iff w U b and w, b E B imply w = b, a prefix-free subset 
C G X* \ {e} is also called a prefix code. 

We consider X ~ as a topological space with the basis (w �9 X~)~ex  ,. Since X is 
finite, this topological space is homeomorphic to the CANTOR discontinuum, hence 
compact.  In the asequel we shall refer to the space X ~ also as CANTOR-space. Open 
sets in X ~ are of the form W �9 X ~ where W C X*. From this follows that  a subset 
F E X ~ is closed iff A(fl) C__ A ( F )  implies fl E F.  

The topological closure of subset F C X ~, that  is, the smallest closed subset of 
(X ~, p) containing F is denoted by C(F). It holds C(F) = {~: A(r C_ A(F)} .  

Having defined open and closed sets in X ~, we proceed to the next classes of the 
Sorel hierarchy (cf. [Ks66]): 

F~ is the set of countable unions of closed subsets of X ~, and 

(36 is the set of countable intersections of open subsets of X 0+. 

For W C_ X* \ {e} and E G X ~ we consider the equations 

T = W .  T (H) 
T = W . T U E  (I) 

which will be referred to as the homogenuous and inhomogenuous equations, respec- 
tively. 

It was already observed by TRAKttTENBROT [Tr62] that  the simple equation T = 
X .  T has uncountably many  w-languages as solutions (cf. also [St83]). Therefore, in 
this section and the subsequent ones we address the problem which subsets of X ~ are 
solutions of the given equations. 

and [Re72] the following simple properties are known. Let W C From [St72] 
X* \ {e} and E C X% Then 

F C__ W .  W* �9 F implies 
W . F U E C F  implies 
W . F U E - = F  implies 

If F = W .  F then 

F C_ W ~ (1) 
W * . E C _ W * . F C _ F  (2) 
W * . E C F C W  ~ U W * . E ,  and (3) 
F U W*. E is a solution of Eq. (I). (4) 

Moreover, it was observed that  W*. E as well as W ~+ U W*. E are solutions of Eq. 
(I), according to Eq. (3) they are the minimum and maximum solution, respectively. 
As a corollary to the above properties we get the maximum solution principle which 
has been proved useful in establishing identities involving w-power languages W ~ (e.g. 
in [Lt88, 91a, 91b, StS0a, Wa76]. 

C o r o l l a r y  1. (Maximum solution principle) Let F C X ~ satisfy Eq. (I), and let 
W ~ C F. Then 

F = W ~ U W * . E .  

As a further corollary to Eq. (1) we get 

C o r o l l a r y  2. If F C__ W .  F then W*. F is the minimum solution of the homogen- 
uous equation Eq. (H) containing F. 

This yields the following relation between the solutions of the inhomogenuous and 
homogenuous converse to Eq. (4): 
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L e m m a  3. I f  F = W .  F U E  then F'  :=  W * . ( F \  W*.  E)  is the min imum solution 
of the homogenuous equation Eq. (H) such that F = F'  U W* �9 E.  

Proof. Wehave  F \ W * . E  = ( W . F U E ) \ W * . E  = W . F \ W * . E  C_ W . ( F \ W * - E ) ,  
and the assertion is immediate with Corollary 2. [] 

Next we consider pairs of coefficients (IV, E) and (V, E ' )  to be equivalent if the 
inhomogenuous equations T ~ W �9 T U E and T = V .  T U E I have the same set of 
solutions. 

We obtain the following. 

L e m m a  4. Let W U V C_ X* \ {e}, W* = V*, and W*.  E -= V*. E ' .  Then (I/V, E)  
and (V, E')  are equivalent. 

Proof. If F is a solution of Eq. (I), then W* �9 F = F.  This together with the 
inclusion W*. E C_ F and the identity W* = (W-W*)* yields F = W.  W*. F U  W*. E. 

Conversely, if F = W .  W* �9 F U W* �9 E = W .  (W* �9 F U W* �9 E) U E in virtue of 
W* = (W.  W*)* we have F = W*. F and W*. E C F.  Thus F = W .  (W*. F U  W*. 
E) U E = W -  F U E, and (W, E) is equivalent to ( W .  W*, W*- E). In the same way 
(V, E')  is equivalent to (V.  V*, V*. E') ,  and the assertion follows. [] 

C o r o l l a r y  5. Let e ~ W and W ~ C V C_ W . W*. Then F = W .  F U E implies 
F = V . F U W * . E .  

Proof. From F = W-  F U E we have the identity F = W .  F U W* �9 E. Inserting 
the right hand side of this identity n times into itself yields F = W =. F U W*. E. On 
the other hand F = W .  W* �9 F U W* �9 E, and the assertion follows. [] 

The converse statement, however, is not valid. Consider e.g. W := {a, b}, V :=  
{a, b} ~, F :=  Y*" {aa, be} ~. Then F = V.  F but F ~ {a, b}. F because (ab) ~ ~ F.  

As it was announced above we conclude this section with two instances whose 
proofs show the usefulness of the simple properties derived in Eqs. (1) . . .  (4) and 
Corollary 1 when solving equations like Eq. (H) or Eq. (I). 

To every instance we need some preparatory definitions. 
As in [Lt88] or [StS0] we define the stabilizer of an w-language E C X ~, 

Stab(E) := {w:  w G A(E)  \ {e} A w.  E C E}. (5) 

Since C(w.  E)  = w .  C(E),  we have Stab(E) C_ Stab(g(E)) .  Moreover, the stabilizer 
of an w-language E C X ~ Stab(E),  is closed under concatenation, that  is, is a 
subsemigroup of X*. 

Obviously, the stabilizer of an w-power language W ~ satisfies W* \ {e} C 
S t ab (W ~) C_ Stab(C(W~')) C_ A ( W  ~) and Stab(W~) �9 W ~ -= W ~'. 

We obtain ~ result which is similar to the construction of a minimal generator of 
the semigroup W*, (W \ {e}) \ ( (W \ {e}). (W* \ {e})). 

T h e o r e m  6. ([Lt88, Proposition IV.3]) 2 Let W C X* \ {e} and let V :=  W \ (W.  
Stab(W )). Then W = W 

Proof. The inclusion V ~' C W ~ follows from V C_ W. 
On the other hand, we have V . S t a b ( W  "~ D_ W * \ { e } .  Thus V . W  ~ = V .  

Stab(W~ . W ~ D_ W*" W ~ = W ~ and Eq. (1) implies W ~ C_ V% [] 

2cf. also [Lt91a, Lemma 2] or [Lt91b, Lernma 2.1]. 
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It  should be noted that ,  in contrast to the minimal generator of W* the language 
V := W \  ( W .  Stab(W~))  defined in Theorem 6 need not be a minimal w-generator of 
W ~ contained in W C_ X* \ {e}. In [Lt88, Example IV.4] and [Lt91a, Example  1] it is 
shown that  W = a.b*Oba.b* satisfies W = W \ ( W . S t a b ( W ~ ) ) ,  but W ~ = ( W \ { a b } ) %  

Next we derive an instance where the maximum solution principle is used. We 
give an explicit formula for the closure of W ~, C(W~). 

To this end let l sW := {( : ( E X ~ A A(~) C_ A(W)}  be the adherence of the 
language W C_ X*. Then it is known that  C ( W . E )  = W . C ( E ) U l s W  when W C X*, 
E C_ X ~ and E r 0. We obtain the formula 

C(W ~) = W ~ U W * - l s W  (6) 

Proof. Since C ( W  ~) is the closure of W ~, we have C ( W  ~) D_ W %  Now W ~ = 
W - W  ~, and from the formula mentioned above we get C ( W  ~) = C ( W .  W ~) = 
W .  C ( W  ~) U ls W. Our assertion follows from Corollary 1. [] 

2. Atomic  Solutions of the Homogenuous  Equation 
In view of Eq. (4) and Lemma 3 every solution of the inhomogenuous equation 

can be obtained by adding W*. E to a solution of the homogenuous equation. In this 
section we, therefore, analyze the structure of the set of solutions of Eq. (H). 

To this end we consider nonempty solutions of which are in some sense minimal. 
We call a nonempty  solution S of the homogenuous equation atomic if it does not 
contain two nonempty disjoint solutions of Eq. (H). It  is obvious that  a nonempty  
and minimal (with respect to set inclusion) solution of Eq. (H) is atomic, but as we 
shall see below the converse is not true. 

In order to construct atomic solutions we consider so-called W-factorizations of 
w-words ~ E W ~. A W-factorization is a factorization ~ = wo �9 W l . . . w ~ . . .  where 
w~ e w \ {e}. 

T h e o r e m  7. For every fl E W ~ there is an atomic solution of Eq. (H) containing 

/3. 
Proof. Let t3 = wo �9 w l . . . w l . . ,  be a W-factorization of /3 and define /3j := 

w j .  w j + l . . . w i . " ,  that  is,/30 :=/3 and/3j = wj./3j+1. 
It  is easy to verify that  S := W*. {& : j E N} is a solution of Eq. (H). It remains 

to show that  S is atomic. Assume $1, $2 C S, $1 M $2 = 0 and W. S m =  S,~ (m = 1,2). 
If {/3j : j E N} C 5'1 then $2 = 0. So let/3j..  E Sm a n d j ~  < j l  (say). Since 

W* " S 1 = S 1 ,  it follows/3j2 E $1, a contradiction to $1 91 $2 = 0. Q 

The proof of Theorem 7 provides us with a method for constructing atomic solu- 
tions of the homogenuous equation. 

C o r o l l a r y  8. Let 13 :- wo. w l ' . .  w i . . .  be a W-factorization of/3. Then for every 
infinite subset M C N the set SM : =  W *  " { f l j  : j E M }  is a solution of Eq. (H). 

From the above described construction of atomic solutions the following description 
of arbi trary solutions is obvious. 

L e m m a  9. I f  F = W .  F then F is the union of all atomic solutions of Eq. (H) 
contained in F.  
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Though it is not easy, in general, to obtain a concise description of atomic solutions 
containing t3 E W ~, for ultimately periodic w-words we have the following. 

P r o p e r t y  10. L e t / ~  C X ~ be u l t imate ly  periodic.  T h e n  every  a t o m i c  so lu t ion  

o f  Eq. (H) con ta in ing  ~ has the f o r m  W *  . v ~ f o r  an appropr ia te  v E W *  \ {e}. 
Converse ly ,  every  w- language  W *  �9 v ~ where v E W *  \ {e} is an  a t o m i c  so lu t ion  o f  

Eq.  (H) .  

Proof .  Let fl = w �9 u ' ,  and let fl = wo �9 w ~ " . w i . . ,  be a W-factorization of/3. 
Then there are infinitely many j E N such that/3j  = ~3 ~ for some ~) ~ e. Following 
Corollary 8 the set W *  �9 ~ is an atomic solution of Eq. (H). 

We have still to show that 75 ~' = v ~ for some v E W* \ (e}. To this end observe 
that if flj = flk = ~5~ and j < k then flj = v./3k for an appropriate v E W* \ {e}, 
whence flj = v% 

The second assertion is obvious. 

Atomic solutions containing a given fl, however, may be neither minimal nor 
unique. Lemma 9 and the proof of Theorem 7 yield only the following sufficient 
conditions. 

P r o p e r t y  11. I f  S is a unique a t o m i c  so lu t ion  conta in ing  an w - w o r d  fl then  S is 

the unique  m i n i m a l  so lu t ion  con ta in ing /3 .  

P r o p e r t y  12. I f  fl E W ~ has a unique W - f a c t o r i z a t i o n  fl = Wo'W1". . . .wi . .  . . (wi  C 
W )  then  the a t o m i c  so lu t ion  o f  Eq. (H) con ta in ing  ~ is unique.  

R e m a r k .  The latter condition is not necessary. Consider e.g. the suffix code 
C := {b, ha, an} .  Here ba~ has two C-factorizations ba TM = b. a a .  a a . . . .  = ba.  a a . . . .  
but C* - a ~ is the unique atomic solution of the equation T --- C-  T containing ba ~. 

The following example shows that atomic solutions containing a particular w-word 
fl may not be unique, even if W is a code s and fl is ultimately periodic. In addition 
this example verifies that, though fl has more than one W-factorizations all atomic 
solutions containing/3 are minimal. 

E x a m p l e  1. Consider the suffix code W1 = {ab, ha, baa},  and let fl~ :=  baa(ba) ~ = 
ba(ab)% By Property 10, W ; .  (ba) ~ and W ; .  (ab) ~ are the only atomic solutions 
containing fit. Obviously they are incomparable, thus minimal. 

Their intersection W ~  . (ha) ~ M W ;  " (ab) ~ = W [  . fl~ does not contain a solution of 
Eq. (H), because neither (ab) ~ C WI*" 131 nor (ha) ~ C W ~ .  ]~1. 

We add an example that atomic solutions need not be minimal. 

E x a m p l e  2. Let W2 := {aba,  ha, baa} (which is not a code). Then f12 := (baa) ~ = 
b a .  (aba)"  yields the following two atomic solutions W ~  " (baa) ~" and W ~  . (aba)% 

One easily verifies that (aba) ~ ~ W ~  . (bad) ~ whereas (baa) ~ E W ~  . (aba)% Hence 
W ~ .  (bad) ~ C W ~ .  (aba) ~, and the latter atomic solution is not a minimal one. 

Atomic solutions are countable subsets of X ~, hence, as countable unions of closed 
sets, F~-sets. Thus Eq. (H) has (if ever) among its nonempty solutions always F~- 
sets. Topologically simpler sets than F~-sets are closed sets. But for Eq. (I) and Eq. 
(H) it turns out that  they have at most one nonempty closed set as solution. 

~That is, for all words vl , �9 �9 �9 ~ vl , wl ,. �9 Wm E W the identity vl �9 �9 vl = wl �9 �9 " Wm implies I = m 
and vi = wl (i--- 1 , . . . , l ) .  
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L e m m a  13. Let W # 0. Then Eq. (I) has a nonempty closed solution i f f  
Is W U C(E)  C W ~ U W * .  E,  and moreover this solution is the maximum solution. 

Proof. First observe that  similar to Eq. (6) the closure of the maximum solution 
W ~ U W*. E is calculated as C(W ~ U W*- E) = W ~ U W*. Is W U W*. C(E), and it 
satisfies r  ~ U W*.  E) c_ W o" U W*.  E if ls W U C(E) c_ W ~ U W*- E. 

On the other hand if W ~' U W*. E = C ( W  ~ U W* . E)  = W ~ U W* . Is W [3 W* . C( E)  
the condition is trivially satisfied. 

The second assertion is obvious from W ~ C C(W* �9 F)  whenever W* �9 F is 
nonempty. [] 

As a corollary we obtain a necessary and sufficient condition for an w-power lan- 
guage W ~ to be closed. 

C o r o l l a r y  14. An w-power language W ~ C X ~ is closed i f  and only i f  ls W C 
W w . 

We conclude this section with a lower estimate for the possible number of solu- 
tions of the inhomogenuous equation Eq. (I). To this end we derive an intersection 
property. 

L e m m a  15. Let F = V .  F and E = W . E where V C_ W* \ {e}. I f  every w-word 
E E N F has at most one W-factorization then F N E = V .  (F  N E) .  

Proof. Since V C W*, the inclusion V . ( F N E )  C_C_ F N E  is immediate. To prove the 
converse we use that  every/3 E F n E has a unique W-factorization. First F = V- F 
implies t h a t / 3 = v . ~ f o r s o m e v � 9 1 4 9  ~. 

Let v = v l . . . v ~  and ~ = w o ' w l ' " w ~ ' "  wherevj,w~ �9 W \ { e } .  Thus /3  = 
v l . . . v ~  . wo �9 w l . . . w i . . ,  is the unique W-factorization of/3.  As v �9 W ~ and 
E = W ~. E,  it follows that  ~ C E. Hence/3 = v.  ~ �9 V .  (E N F).  [] 

As a second preparation we derive TRAKHTENBROT's [Tr62] description of all 
atomic solutions of the equation T = X �9 T. 

E x a m p l e  3. (Atomic solutions of T = X .  T) Utilizing the technique of the proof 
of Theorem 7 we observe that  for the equation T = X �9 T and /3 �9 X ~ it holds 
{/3i: i �9 N} = E(/3) where E(/3) is the set of all tails of/3. Hence F~ :=  X*-E( /3)  is 
the (unique, according to Property 12) atomic solution of T = X .  T containing/3. 

Consequently, either F~ = Fe or Ft~ N Fr -- (3. 

T h e o r e m  16. I f  the cardinality of  the set W ~ \ W*.  E satisfies card W ~ \ W*.  E -= 
2 s~ then Eq. (I) has 22~~ solutions. 

Proof. Clearly, Eq. (I) can have no more than 22"~ solutions. 
According to Lemma 3 the set F '  := W*. (W ~ \ W* �9 E) is the minimum solution 

of Eq. (H) such that  W ~ = F ~ O W * . E .  Now applying Lemma 15 and the fact 
that  each one of the sets Ft~ defined in Example 3 is countable we obtain that  the set 
{F '  n F~ : /3 e W ~ \ W*.  E} is an uncountable family of pairwise disjoint solutions 
of Eq. (H). Hence, Eq. (H) has all unions UZeM(F' N FB) where M C W ~ \ W*- E 

as solutions, that  is, it has at least 22"~ solutions. These solutions differ already on 
W ~ \ W* �9 E which proves that  the family of all unions U[3~M(F' n F~) U W* �9 E 

provides 22~~ solutions of Eq. (I). [] 
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3. Regu lar  and F in i t e -S ta te  So lut ions  

In this section we consider solutions of our equation which are closely related to 
the well-known class of regular w-languages. To this end we introduce the following. 

For a set B C X*UX ~ we define the state B /w  of B generated by the word w E X* 
as B / w  := {b : w �9 b E B}, and we call a set B finite-state if the number of different 
states B / w  (w G X*) is finite. Finite-state languages W C X* are also known as 
regular languages. Already TRACHTENBROT [Tr62] (cf. also [St83]) observed that  the 
class of finite-state w-languages is much larger than the class of w-languages accepted 
by finite automata  (so-called regular w-languages). An w-language F C X ~ is referred 
to as regular provided there are regular languages Wi, Vi __ X* (i --- 1 , . . . ,  n) such 
that F = ~J~l Wi- Vi ~. 

LITOVSKY and TIMMERMAN [LT87] have shown that a regular w-power language 
W ~ is already generated by a regular language L. In this section we consider the 
related case when the coefficients W and E of the inhomogenuous equation Eq. (I) 
are finite-state or even regular. Our general result follows. 

Theorem 17. If W and E are finite-state, then every solution of Eq. (I) is also 
finite-state. 

Proof. First we mention that W*. E is also finite-state if W and E are finite-state. 
Let W (") :=  {w : w E W * h l w ]  > n}. In view of Corol lary5 F = W . F U E  

implies F = W (") �9 F U W* �9 E for arbitrary n C N. 
Next, we use the property that W(M)/w = W*/w. Then F/w = (W (1~1) �9 F) /w  U 

(W*. E) /w  = (W*/w).  F U (W*. E)/w.  Thus the number of states of F is not larger 
than the product of the number of states of W* and W* �9 E. [::] 

In the rest of this section we verify that Theorem 17 does not hold in the case of 
regular sets, and that in order to have only finite-state solutions it is not sufficient to 
have one finite-state solution. 

The first fact is easily verified by the equation F = X .  F which has 22~~ solutions. 
Consequently, most of them cannot be regular. 

Next we give an equation which has a regular minimum solution but its maximum 
solution is not finite-state. 

Example 4. Let W4 := {a ~ ! ' b : n  E N} a n d E 4  :=  {a ,b}*-a% T h e n E q .  (I) 
has the minimum solution W4* �9 E4 = E4 which is regular, but its maximum solution 
W~ U W ~ - E 4  is not finite-state, because (W~ U W4*" E4) N (a*. b) ~ = W~ is not 
finite-state. 

Before proceeding to the next example we need the following lemma. 

Lemma 18. An w-language of the form V .  /3 is finite-state iff there are a regular 
language V t and a word u such that V . /~ = V I . u% 

Proof. Clearly, the condition is sufficient. Conversely, if V. /~ is finite-state then 
there are words w and w' such that w' ~ e, w. w' E fl and (V.  f l ) /w,  w' C (V.  fl)/w. 
Let ~ :=  f l / (w .w ' ) .  Since~ E Y . f l / w ,  we have w . ~  = v . / ~  for some v E V. 
On the other hand, w - w ' - ~  = ft. Consequently, w . ~  = v . w . w ' . ~ ,  that  is, 

= u ~ where w - u = v �9 w �9 w'. Then fl is also ultimately periodic. Now define 

v '  := {w :  r ~ ( v .  f l ) l~} .  [] 
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E x a m p l e  5. The equation T = X.TU{~} has always the finite-state (even regular) 
maximum solution F5 = X ~, but according to our lemma its minimum solution X*. 
is finite-state if and only if ~ is ultimately periodic. 

4. w-Power and b-Limit 

In the preceding sections we have seen that, in contrast to the case of languages, 
the linear equations Eq. (H) and Eq. (I) may have many solutions in the range of 
w-languages. One of the solutions of Eq. (H) and a particularly interesting one (its 
maximum solution) is the w-power W% 

In this section we investigate properties of the w-power operation and its relation 
to a limit operation mapping also languages to w-languages--the so-called g-limi& of 
a language W C_ X*, 

W ~ := {~: r E X ~ A A(Q o W is infinite}. (7) 

We also consider topological properties of w-power languages. In this section we 
investigate their relationships to BoaEL-classes, and in the subsequent one we focus 
on (relative) density. 

In connection with acceptance results for w-languages, like those ones as MAc- 
NAUGtITON's theorem, properties of w-power languages are remarkably elusive. In 
this respect the g-limit has more transparent properties. Therefore it would be desir- 
able to derive some relationships between the operations of w-power and ~-limit. To 
this end we first calculate the b-limit of the concatenation product and the KLEENE- 
star of languages (cf. [StS0a], [Lt88]). 

w .  v ~ c ( w .  v)  ~ c w .  v ~ u w ~ (8) 

Particular cases of Eq. (8) are obtained for W 6 =- 0 or e E V, respectively. 

( W . V )  ~ = W . V  ~ if W 8 = 0 ,  and (9) 
( W - V ) ' = W . V ' U W '  if e e V  (10) 

In virtue of the obvious inclusion W ~ C (W*) ~ we obtain via the maximum solution 
principle Corollary 1 the following. 

(W*) ~ = W ~ U W * . W  6 (11) 

We can improve Eq. (8). 

P r o p e r t y  19. Let C C_ X* be a prefix code and W, V C C*. Then 

w . v s c_ ( w  . v )  ~ c_ w . v ~ u ( w  ~ n (C* . v F )  �9 

Proof. If f~ C (W.  V) 6 \ W .  V ~ then/~ E W 6, that is, there are infinitely many 
prefixes wi of ~ in W. To each wi belongs a v i r  V such that wl �9 vi is a prefix of ft. 

Choose the family (W0~eN in such a way that [wj+ll > Iwj" vj[. Since C is a prefix 
code and wj+l,wj,vj E C* there is a Uj+l E C* such that wj .vj "uj+l = Wj+l. Hence, 
f l  "~  W 1 " V 1 " U 2 " V 2 " . . . "  U j  " V j  " . . .  e ( C *  �9 V )  w .  [ ]  

4The name 6-limit is due to the fact that  an w-language F C X ~ is a G~-set in CANTOR-space 
if and only if there is a language W __C. X* such that  F = W ~. 
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R e m a r k .  In Property 19 it is important that  C is indeed a prefix code. Consider 
e.g. the suffix code ~ C := {b, ba}. We obtain for W := e* and V :=  {b} the proper 
inclusion C o' = ( e * .  b) ~ D C ~ fl ( e* .  b) ~'. 

As a consequence of Property 19 we obtain that for a prefix code C C X* and 
V C C* it holds 

(c* .  v )  ~ = (e* .  v )  ~ u c* .  v ~. (12) 

We derive two further identities linking the operations of w-power and &limit for 
languages of a special shape e* v or W .  C* where C c X* is a prefix code and 
w, vc_e*. 

To this end let MinW := W W .  (X* \ {e}) be the set of minimal words with 
respect to "U" in a language W. 

( e * .  v )  ~ = (Mine*.  V*) ~ (13) 

(W" C*) ~ = ( W "  C*" MinW) e (14) 

The proof can be easily transferred from the proof in the special case e -= x which 
can be found e.g. in [Pc85, Lt88]. 

In studying the relations between the w-power and the 6-limit it is interesting to 
investigate as an intermediate operation the infinite intersection 

v(w) := n (w \ {~})~. x ~ 
iEN 

Though the assumption W ~ = (~ieN(W \ {e})'.  X ~ is tempting, it is well-known that 
in general W ~ and T)(W) do not coincide. It holds only the obvious inclusion 

W ~ C ~ ( W )  C (W*?.  (15) 

Next we give some examples which show that for both inclusions equality as well as 
proper inclusion in Eq. (15) may hold, independently of each other. 

First we observe that Eq. (8) implies W ~ = :D(W) = (W*) 6 whenever W 8 _C W% 
Thus, in particular, the equality W ~ = 79(W) = (W*) ~ holds if W is finite or W is a 
prefix code (in these cases W 6 = 0). 

In connection with the equality W ~' = T)(W) = (W*) ~ we mention the following 
connection to BOREL-classes. 

P r o p e r t y  20. I f  W ~ is closed then W ~ = ~?(W) = (W*) ~, and i f  W ~ = Z)(W) 

then W ~' is a G6-set. 

Proof. In virtue of Corollary 14 W ~ is closed iff ls W _ W% Since W ~ C ls W the 
first assertion follows from Eq. (8). The second assertion follows from the definition 
of ~ ( w ) .  [] 

Our next example shows that proper inclusion in both cases is possible. Moreover 
it gives examples of regular languages of special form (one being a suffix code, the 
othe being p1:efix-closed) whose w-power is not a G6-set. 

5This code has, in addition, a delay of deeipherability of 1, that is, whenever wl �9 w2 _C w~ - w~ 
for wl, w2, w[, w~ 6 C then wl = w[. 
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E x a m p l e  6. ([Pa81]) Consider the suffix code C6 := {a} U c.  {a, b}*- b. 
Then cbaba2ba3.. ,  e T)(C6) \ C~ ~ and cb ~ E (C~) 6 \ :D(C6), that  is, C~' C :D(Cs) C 
(c;) 

Moreover the intersection of C~' with the closed set c- {a, b} ~ C {a, b, c} ~' satisfies 
C~ f3 c.  {a,b} W = c- {a,b}*. b. a ~ E F ,  \ g , .  Hence C6 ~ 6 Gs. 

We continue this example with the prefix-closure of C6, W6 := A(C6) = {e, a} U 
c.  {a, b}*. Here we have similarly W~' N c- {a, b} ~' = c .  {a, b)*- a ~ E F~ \ G, ,  and 

Observe that as for C6 it holds cbaba2ba3...  E :D(W6) \ W~', and cb W E (W~)  6 \ 

The purpose of the next example (due to WAGNER and WECHSUNG, cf. [St86, 
Example 3]) is twofold. First it shows that :D(W) = (W*) 8 while W ~' C :/)(W), and 
second the proper inclusion holds although W ~ is a G~-set. 

i b ~ E x a m p l e  7. Let wl := a and wi+l :=  wi �9 �9 a for i > 1. Then w~ ~- w / r -  w~+l. 
i Put  C7 :=  {w~ : i > 1}. It holds Cr a = {q} where w; r- r/ for a l l i >  1. Thus 

~/ E :D(C~), but r/ 6 C~'. Moreover in [St86, Theorem 7 and Example 3] it is shown 
that  C~' is a G6-set. 

In view of the general identities :D(W) = W*.T~(W) and (W*) 8 = T ) ( W ) U W * .  W 8, 
we have C~. r /C :D(CT) whence the final conclusion C~' C :D(CT) = (C;) 6. 

It should be noted that  in view of Corollary 23 below the language in Example 7 
cannot be chosen regular. 

The fourth possibility can be verified again by regular languages. 

E x a m p l e  8. Consider Cs := b. a* which is a (suffix) code having a delay of 
decipherability of 1. 

Hence, C~ = g)(Cs) by Theorem 8 of [St86]. Since b.  a ~' E Cs a \ C~' we have 
=  (cs) r 

In Theorem 8 of [St86] it is shown that  for codes C C X* having a bounded 
delay of decipherability 6 the identity C ~ = :D(C) holds. We present another class of 
languages for which this identity is true. Since C~ = (b .  {a, b}*) ~' the subsequent 
lemma will also prove that  C~' = T)(Cs). 

L e m m a 2 1 .  Let W C X*  and W = W .  X* .  Then W ~ = ~ e N  W i  " X~'" 

Proof. If e E W the assertion is clear. 
Let e ~ W and ~ E NIEN W i  " Xw" We construct inductively a factorization 

= w l ' v l ' . - v ~ - l . w i - v / - . . w h e r e w ; E W a n d v ; E X * .  
We start with an arbitrary wl E W for which Wl f- r/. Having defined wl �9 vl - �9 �9 v/-1 - 
wi C r/let li :=  Iwl " v l . " v i - 1  �9 wil + 1. Since r/E W t' " X ~, we have w[ td . . .  w}: ') C , 

for words w[ ti) w (td , - " ,  l~ E W. By the choice of l~ it follows w ~ . v l . . . V ~ _ l - W /  _ 

w[ ~') . . .  w (~) Define v/ e X* such that  Wl �9 v~..- v/-1 �9 w/�9 v~ = w~ ~'} .- w (~d and l~--l' " l~--I 

w i + ~  :----- w g~) [] Ii  " 

A tight relation between W ~" and :D(W) is given by the following lemma. 

L e m m a  22. Let  v .  w ~" E :D(W) be an ul t imately periodic sequence. Then v .  w ~ E 
W w . 

SFor codes having a bounded  delay of decipherabili ty see also [BP85] or [Sa81]. 
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Proof. Let v �9 w ~ C :D(W). Then for every i E N there is a prefix U 1 " ' "  Ui of 
v .  w ~ such that uj E W* \ {e). Let Ul be longer than v and let i > Iwl. Then there 
are j ,  k _< i with j < k such that l u l . . ,  uk[ - [ u l ' "  uj[ is divisible by Iw[. Hence 
v . w  ~ = u l . ' - u j '  ( u j + l ' " u k )  ~. [] 

Since regular w-languages are characterized by their ult imately periodic w-words, 
:D(W) is not regular if W ~ is regular and :D(W) # W% Moreover, we have the 
following. 

C o r o l l a r y  2ft. I f  W is regular and 7)(W) = (W*) 6 then W ~ = (W*) 6. 

Next we characterize w-power languages in several BOREL-classes. A first result 
for closed sets has been obtained in Corollary 14. We start with the BOREL-class Gh. 
To this end we need the following operation. As in [St87b] we call 

w {v:v  VA3W( eWA E_vAW( E Ev-  r 

the continuation of the language W to the language V. In other words W I> V consists 
of all those words in V which are minimal (w.r.t. " E  ") prolongations of words in W. 
The following properties of the operation " !>" axe shown in [St87b]. 

( W  D V) s =  W s M V ~ (16) 

P r o p e r t y  24. W I> V is a regular language i f  W and V are regular. 

L e m m a  25. An w-power language W ~ is a Gs-set  i f  and only i f  there is a V C W* 
such that W ~ = (V*) ~. If, moreover, W is regular then V can be chosen to be also 

regular. 

Proof. The "if"-paxt is evident from the above remark on &limits. 
If W ~ C X ~ is a G6-set then there is a language U _C X* such that  W ~ = U s. 

Now set V := U 1> W*. We obtain from Eq. (16) that V ~ = U s n (W*) 8 = W% Then 
in virtue of V C W* the assertion (V*) ~ = V ~ O V* �9 V ~ = W ~ follows. 

The additional part on the regularity of V follows from Property 24 and the fact 
that  U can be chosen also as a regular language provided W ~ is a regular w-lan- 

guage. [] 

Now we turn  to the w-power languages which are open w-languages. 

L e m m a  26. An w-power language V ~ C X ~ is open i f  and only i f  there is a 
language W C_ V* such that V ~' -- W ~ = ( W .  X*) ~ = W .  X ~. 

Proof. Clearly, our condition is sufficient. 
If V ~ C X ~ is open there is a language V I C_ X* with V ~ = V' - X% Define 

w := v ' .  x* n (v* \ {e}) .  

Obviously, V ~ = V"  X ~ _C W .  X ~. As the inclusions W ~ C ( W .  X*) ~ C W .  X ~ are 
evident, it remains to show that V ~ C W% 

Let ~ -- v l ' . ' v i " "  where vi E V,  vi # e. Because of V ~ = V ' - X  ~ it holds 
E v' - X ~ for some v' E V'. Then v' E vl �9 -- Vl., I and, by construction, vi �9 -- vl., ] E 

W and v l~ , l+ l . - .v i . . .  E V% Thus V ~ C W .  V ~, and the assertion follows from 

(1). [] 
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For w-power languages of the form (W.  X*) ~' we have the following necessary and 
sufficient conditions to be open. 

L e m m a  27. Let W C C_ X* \ {e} be a nonempty language. Then the following 
conditions are equivalent: 

1. ( W .  X*) ~ contains a nonempty open subset. 

2. X* �9 W contains a finite maximal prefix code. 

3. ( W .  X*)= = W .  X ~. 

Proof. 3. =~ 1. is obvious. 
2. ~ 3. Let X * . W  contain a finite maximal prefix code C. Then X ~ = C ~ C 
( X * .  W) ~, whence ( W .  X*) ~ = W .  (X*.  W) ~ = W .  X ~. 
1. =~ 2. First we observe that ~ E (W �9 X*) ~ iff it has some w0 E W as prefix and 
contains infinitely many nonoverlapping subwords wi E W, that is, ~ has the form 

= wo �9 v0 �9 wl �9 vl �9 ' �9 w~ �9 v i . .  �9 where vi E X*. 
Let now u - X  ~' C ( W . X * )  ~ for some u E X*. Then every ~ e X ~ has the 

form ~ = v0 �9 wl �9 v l ' "  wi �9 v i ' "  where wi E W and vi E X*. Consequently, every 
( E X ~ has a p r e f i x i n  X * . W .  Thus X * . W . X  ~ = X ~, which is equivalent to 
Condition 2. [] 

This lemma allows us to present examples of w-power languages which are open 
but  not closed and which are neither open nor closed but a union of an open and a 
closed set, respectively. 

Property 28. Letr~ c X ~ \  {x ~ : x E X } .  Then X ~ \  {~} is an open nonclosed 
w-power language. 

Proof. It is evident that X ~ \ {~} is an open nonclosed subset in CANTOR-space. 
Moreover, X ~ \ {~} = (X* \ A(q) ) .  X ~. 

Since 7] ~ {x ~ : x e X}, it has a prefix a ~.  b (say) where a ,b  C X,  a 7 ~ b and 
n > 0. Consequently, (X \ {a}) U {a '~+1 } C X* \ A(~). Thus X ~+1 is a finite maximal 
prefix code contained in X*- (X* \ A(r/)), and X ~ \ {y} = ((X* \ A(r/)). X*) ~ follows 
from Lemma 27. [] 

We conclude with an example of an w-power language which is neither open nor 
closed, but  as a union of an open and a closed w-language a set in a low level BOREL- 
class. 

E x a m p l e  9. Let C :--- {a} U {bab}*. bbb. Then for X :-- {a, b} the language X * - C  
contains {a, ha, bba, bbb} - a maximal prefix code. Hence (C .  X*) ~ = C .  X ~ is open 
and, since C is an infinite prefix code, C �9 X ~ is not closed. 

Take the prefix code C and consider F := (C .  X* U {baa})% Due to the identity 
(V U W) ~~ = (W*. Y)~' U (W*. V)*. W" we obtain F = ({baa}*. C .  X*) ~ U ({bee}*. 
c .  x*)'-(baa) 

Now we calculate ( {baa}*.C.X*)a' = {baa}*.(C.X*.{baa}*) ~~ = {baa}*.(C.X*) ~~ = 
{baa}*. C .  X ~, and ({baa}*. C .  X*)* = {e} U {baa}*. C .  X*. 

Thus F = { baa}* . C .  X "  U ( {baa}*. C .  X*) . (ban) ~ U { (baa) ~} = {ban}*. C .  X ~ U 
{(baa) ~} is a union of the open set {ban}*. C .  X ~ with the closed set {(baa)~}. It 
remains to show that  F is neither open nor closed. 
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To this end observe that (baa) ~" ~ {baa}*. C .  X ~ thus F is not open, and that 
(bah)- e e(F) \ F. 

5. Topological Density 
In this section we study the density of regular and finite-state w-languages in 

w-power languages. It turns out that  in this case density and subwords are closely 
related. 

Topological density is based on the following notion. A set F is nowhere dense in 
E C_ X ~ provided C(E \ C(F)) = C(E), that  is, if C(F) does not contain a nonempty 
subset of the form E C/w �9 X ~'. This condition can be formulated as follows. 

L e m r n a  29. A set F C X ~ is nowhere dense in E if f  for  every v E A ( E )  there 
is a w E X* such that v . w E A ( E )  and v . w - X ~' c? F = ~. 

Cast in the language of prefixes, our Lemma 29 asserts, that  F is not nowhere 
dense in E ~ 0 if and only if there is a w �9 A(E)  such that E / w  C C ( F ) / w .  From 
the following equation 

C(E \ C(F))  = C(E \ (C(F) n E))  = e (C(E)  \ C(F))  (17) 

we see that F is nowhere dense in E iff F is nowhere dense in C(E) and iff (C(F) 0 E)  

is nowhere dense in E. 
A subset F _C X ~' is called nowhere dense if it is nowhere dense in X ~. For finite-state 
nowhere dense w-languages we have the following. 

L e m r n a  30. ([St76,80b])A finite-state set F �9 X ~~ is nowhere dense i f f  there is a 
pattern w �9 X* such that F C_ X ~~ \ X* �9 w . X ~. 

The aim of this section is to generalize the result of Lemma 30 to finite-state 
w-languages nowhere dense in an w-power language W ~'. 

We obtain the following version of Lemma 29. 

C o r o l l a r y  31. Let W C X*.  Then F C X ~ is nowhere dense in W ~" i f  and only 
i f  for  every v �9 W* there is a w G W* such that v .  w . X w fl F = 9. 

Cast again in the language of prefixes, we have that F is not nowhere dense in an 
w-power language W w if and only if there is a w �9 W* such that  W ~ / w  C C ( F ) / w .  W e  
obtain the following necessary and sufficient conditions for a finite-state w-language 
to be nowhere dense in an w-power language. 

L e m m a  32. Let W C X*,  and let F C_ X ~ be a finite-state w-language. Then the 

following conditions are equivalent. 

1. F is nowhere dense in W ~. 

2. Vu(u �9 W* ~ F l u  is nowhere dense in W w) 

3. Vw(w �9 Stab(C(W~')) U {e} =~ F / w  is nowhere dense in W ~ 

4. Vv(v �9 x*  ~ (e(F)  n W")/v is nowhere dense in W ~') 

5. Vv(v �9 X* ~ (C(F) M C ( W ~ ) ) / v  is nowhere dense in W ~) 
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R e m a r k .  Observe that,  in general, the stabilizer of C(W~), Stab(C(W ~) contains 
Stab(W ~) D W* \ {e}. Thus Condition 3 shows more states F/w of F to be nowhere 
dense in W ~ than Condition 2. 

Proof. The implications 5. =~ 4., 4. =~ 1., 3. =~ 2., and 2. =~ 1. are obvious. 

To conclude the proof, it suffices to show 1. ::~ 3. and 3. ~ 5. To this end assume 
first that  Condition 5 does not hold, that is, there is a v E X* such that  (C(F) M 
C(W~))/v is not nowhere dense in W% Then according to Corollary 31 there is a w C 
W* satisfying (C(F)MC(W~))/v.w D C(W~)/w. Since w e W* G Stab(C(W~))U{e}, 
we have C(W~)/w D_ C(W~). Consequently, u := v . w  C Stab(C(W~)) U {e}, and 
C(F)/u D_ W ~ which shows that F/u is not nowhere dense in W% 

Now assume Condition 3 to be violated, that is, let F/w be not nowhere dense in 
W ~ for some w �9 Stab(C(W~)) U {e}. According to Corollary 31 there is a v �9 W* C 
Stab(C(W~)) U {e} such that C ( F ) / w . v  D_ C(W~)/v. Consequently, u := w . v  �9 

Since F is finite-state, there are n , k  > 1 such that  F/u  n = F/u  ~+k. Hence 
C(W ~) C_ C(F)/u implies C(W~)/u ~+k-~ C_ C(F)/u ~+k = C(F)/u ~. 

Now observe that  C(W~)/u '~ C C(WW)/u ~+k-a C C(F)/u ~, because u �9 
Stab(C(W~)) U {e}, what proves our assertion. [] 

As a consequence of Lemma 32 we show the announced generalization of Lamina 
30 that  for finite-state w-languages nowhere dense in w-power languages W ~ there 
are patterns,  that  is subwords appearing in the w-power language W ~ which do not 
appear in the finite-state w-language F .  Those patterns can be shown to belong to 
W*. Due to the possiblity that F ~= C(W ~) we have to distinguish two cases. 

T h e o r e m  33. Let F C X ~ be finite-state, and let W* C_ X*. 

1. F is nowhere dense in W ~ iff there is a w �9 W* such that C(F) M C(W ~) C__ 
c ( w  \ W * . w .  x . 

2. If F C C(W ~) then F is nowhere dense in W ~ iff there is a u E W* such that 
F c_ c(w ) \ X *  . u . 

Proof. 1. If F is finite-state and nowhere dense in W ~ then according to Lemma 
32.2 the set F ~ := U~ew. F/u as a finite union of sets nowhere dense in W ~ is again 
nowhere dense in W ~. Hence, there is a w E W* such that F ~ M w - X ~ = 0. Assume 
that F M W* - w - X ~ # 0. Then there is some v E W* such that  F M v �9 w �9 X ~ = 
v.  (F/v)  M v .  w .  X ~ ~ 0, which contradicts the fact that F '  D F/v  and w - X  ~ are 
disjoint. 

To prove the converse direction, suppose F to be not nowhere dense in W ~, that  
is, according to Lemma 32.2 and Corollary 31 there is some u E W* such that  C(F)/u.  
w D C(W~)/w D C(W ~) for some w E W*. Hence, A ( F )  D w . u .  W* and there is no 
v E W* with F M u .  w.  v . X  ~ = O. 

2. In view of Lemma 32.5 from C(F) C C(W ~) we obtain that  the finite union 
F'~ := U~ex* F/u  is also nowhere dense in W w provided F is nowhere dense in W ~. 
Now the proof proceeds as in 1. The converse direction of the second part is an 
immediate consequence of the first part. [] 

For w-powers of codes we obtain the following corollary to Theorem 33.1. 
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Corol lary  34. Let F C X ~ be finite-state, and let C c_ X* be a code. I f  F is 
nowhere dense in C ~ then there are a k > 0 and a word u E C k such that F N C ( C  ~) C 
C((C ~ \ {u})~) 

The converse statement is, however, not true in general. Consider e.g. the suffix 
code C := U~eN{a, b} ~" b. aL Here C((C k \ {u}) ~) = C(C ~) = {a, b} ~ for every pair 
k > 0 and u E C k, but F := {a,b} ~ is dense in C% 
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Abstract. We introduce and investigate some shuffle-like operations on 
w-words and w-languages. The approach is applicable to concurrency, 
providing a method to define the parallel composition of processes. It is 
also applicable to parallel computation. The operations are introduced 
using a uniform method based on the notion of an w-trajectory. As a 
consequence, we obtain a very intuitive geometrical interpretation of the 
parallel composition operation. Our main results concern associativity. 
A rather surprising intercounection between associativity and periodicity 
will be exhibited. 

1. I n t r o d u c t i o n  

Parallel composition of words and languages appears as a fundamental operation 
in parallel computation and in the theory of concurrency. Usually, this operation 
is modelled by the shuffle operation or restrictions of this operation, such as literal 
shuffle, insertion, left-merge, infiltration product, etc. 

The shuffle-like operations considered below are based on syntactic constraints on 
the w-shuffle operation. The constraints are referred to as syntactic since they do not 
concern properties of the w-words shuffled, or properties of the letters that occur in 
these w-words. 

Instead, the constraints describe the general strategy to switch from one w-word 
to another w-word. Once such a strategy is defined, the structure of the w-words that 
are shuffled does not play any role. 

The syntactic constraints that we consider here are based on the notion of an w- 
trajectory. Roughly speaking, an w-trajectory is a line in plane, starting in the origin 

1The work reported here has been partially supported by the Project 11281 of the Academy 
of Finland and the ESPRIT Basic Research Working Group ASMICS II. All correspondence to 
Alexandru Mateescu. 
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and continuing parallel  with the axis O x  or Oy.  The line can change its direction 
only in points with nonnegative integer coordinates. 

An w-tra jectory  defines how to move from an w-word to another w-word when 
carrying out the shuffle operation. 

2.  B a s i c  D e f i n i t i o n s  

The set of nonnegative integers is denoted by w. If A is a set, then the set of all 
subsets of A is denoted by GO(A). 

A closure operator on A, see [21, is a funct ion ~ : GO(A) ) GO(A) such that ,  (i) 
for all B C A, B C_ ~(B) ,  (it)  if B1 ___/32, then ~(B1) _C ~(B2), where B1, B~ _ A, 
and ( i i i )  for all B C_ A, ~ (~ (B) )  = ~(B) .  

Let ~ be an alphabet ,  i.e., a finite nonempty set of elements called letters. The 
free monoid generated by Z is denoted by E*. Elements in Z* are referred to as words. 

The empty  word is denoted by t .  
I fw E E*, then twl is the  length ofw.  Note tha t  {]~[ = 0. I f a  E E and w E E*, then 

]w], denotes the  number  of occurrences of the symbol a in the word w. The  mirror  
of a word w = ala~+.., a++, where ai are letters,  1 < i < n, is m i ( w )  = a . . . .  a2al and 
mi()~) = ]~. A word w is a palindrome iff m i ( w )  = w. A weak coding is a morphism 
that  maps each le t ter  into a let ter  or into ]~. 

For all other notions and results concerning formal languages tha t  are used in this 

paper  we refer the reader to [10]. 
Let E be an alphabet .  An w-word over E is a function f : w -----+ E. Usually, the 

w-word defined by f is denoted as the infinite sequence 

f (O) f ( 1 ) f ( 2 ) f ( 3 ) f ( 4 ) . . .  

An w-word w is ult imately  periodic iff w = a v v v v v . . . ,  where a is a (finite) word, 
possibly empty, and v is a nonempty  word. In this case w is denoted as av  ~. An 
w-word w is referred to as periodic iff w = v v v . . ,  for some nonempty  word v E ~*. 
In this case w is denoted as v% The set of all w-words over E is denoted by E~. An 
w-language is a subset L of Z ~, i.e., L C E~. The set of all words and w-words over 

an a lphabet  E is denoted by ~ ,  tha t  is Z ~ = F+* U E ~. 
The notat ion "3*n " stands for "there exist infinitely many n ' ,  whereas the nota- 

t ion "3<~n '' s tands for "there are only finitely many n". 
Let F, be an alphabet  and let a --- aoala2a3. . ,  be an w-word over ~., where ai E 

for all i E w. The following notations will be used: a ( i , j )  = aiai+~. . ,  aj ,  where i < j ,  
and a ( i , w )  = aiai+la++2..., where i _> 0. Moreover, I n ( a )  denotes the set of those 
letters from ~ tha t  occur infinitely many times in a ,  i.e., 

I n ( a )  = {a E ~ l 3'+"n such that  a~ = a}.  

If L C__ ~* is a language, then L ~ denotes the the following w-language: 

L ~ = { a  E ~ I a = WoWtW2+.. ,where w+ �9 n , i  > 0}. 

Assume tha t  ~ and A are two alphabets.  Let ~ : ~ ) A* be a morphism and 
let a = aoa ta2 . . ,  be an w-word over ~ ,  where a+ �9 ~+, for all i ~_ 0. The image by 
of a is the w-word over A defined as: 

~(++) = ]~0Z,&... ,  

where fl~ = r for all i > O. 



397 

Analogously, if E : E ~ P(A*)  is a subst i tut ion,  then 

)-],(Ot) ~- {'~0"/1"~2... ]')'i E ~(ai) for all i > 0}. 

A Biiehi automaton is a quintuple A = (Q, E, qo, 5, F ) ,  where Q is a finite set of 
states, E is the input alphabet, qo E Q is the initial state, 5 is the transition relation, 
5 C__ Q • E • Q, and F C Q is the set of final states. 

Let a be an w-word over E, a = aoala2.. . ,  where a~ E E, for all i > 0. A run of 
A on a is a sequence of states s = SoSlS2..., such that  so = q0 and (s~,ai, s~+l) E 5, 
for all i __ 0. The run is successful iff In(s)  M F ~ O. a is accepted by A iff there  exists 
a successful run of A on a.  

The w-language recognized by A is: 

L(A)  = {a  E E ~ l a is accepted by A}. 

An w-language L is referred to as w-regular or Biichi recognizable iff there  exists 
a Biichi au toma ta  A such that  L(A)  = L. The reader is reffered to [11] or [9] for a 
survey on w-languages and automata .  

We now recM1 some operations for formal languages tha t  s imulate the parMlel 
composit ion of words. 

For general results concerning the theory of concurrency the reader may consult 

[81, [1] or [4]. 
The shuff‚ operation,  denoted by W, is defined recursively by: 

(au 111 by) = a(u �9 by) U b(au ~ v), 

and 
�9 = �9 u )  = 

where u, v E E* and a, b E E. 
The shuffle operat ion is extended in a natural  way to languages: the shuffle of two 

languages L1 and L2 is: 

L1 Ill L2 = U u ill v. 
uEL1 ,vEL2 

E x a m p l e  2.1. ab Ulbc = { abbc, abcb, babc, bach, bcab }. 

The literal shuffle, denoted by lllz, is defined as: 

{albla2b2. . .  a~b~b~+l.., bin, if n < m, 
ala2. . ,  a~ tlllblb2.., b~ = albla2b2 .amb,~a,~+l . . .  a~, if m < n, 

where a~, bj E E. 

where u E E*. 

E x a m p l e  2.2. aba Ulzbc = {abbca}. 



398 

3. w-Trajectories 
In this section we introduce the notions of the w-tra jectory and shuffle on w- 

trajectories.  The shuffle of two w-words has a natural  geometrical  in terpreta t ion 
related to la t t ice points in the plane (points with nonnegative integer coordinates) 
and with a certain "walk" in the plane defined by each w-trajectory. 

Let V = {r, u} be the set of Versors in the plane: r stands for the right direction, 
whereas, u stands for the up direction. 

D e f i n i t i o n  3.1. An w-trajectory is an element t, t E V ~. A set T, T C V ~, is 
called a set of w-trajectories. 

Let E be an alphabet  and let t be an w-trajectory, t = t o t l t 2 . . . ,  where t~ C 
V,i  >>_ O. Let a,/3 be two w-words over E, cr = aoa la2 . . . , / 3  = boblb2.. . ,  where 
ai, bj E S igma ,  i , j  > O. 

D e f i n i t i o n  3.2. The shuffle of  a with/3 on the w-trajectory t, denoted a Wt/3, is 
defined as follows: 

(:E J-!Jt/3 = C o C l C 2 . . . ,  where, if {tot l t2 . . .  ti[, = kl and [tot l t2 . . .  t~lu = k2, then 

J" akl-1, if t~ = r, 
Ci bk~-l, if t~ = u. 

R e m a r k .  The shuffle on (finite) t rajectories  of (finite) words is investigated in 
[7]. In this case a t ra jec tory  is an element t, t C V*. 

Let E be an alphabet  and let t be a trajectory,  t = to t1 . . ,  t~, where t~ E V, 1 < 
i < n. Let a, /3 be two words over S igma ,  a = aoa l . . . ap ,  fl = bobl . . .bq,  where 
ai, bj C ~,  0 < i <_ p and 0 < j  < q. 

The shuffle of a wi th /3  on the t ra jec tory  t, denoted a lilt~3, is defined as follows: 

if laI # It]r or I/~l # ttl~, then a 111~/3 = O, else 
a i11~/3 = cocic2. . ,  cp+q+2, where, if Itotx . . .  t~ir = kl and I to t l . . .  tiI~ = k2, then 

{ akl-1, if ti = r, 
c~ = bk2-1, if ti = u. 

Observe tha t  there is an important  dist inction between the finite case, i.e., the 
shuffle on trajectories,  and the infinite case, i.e., the shuffle on w-trajectories:  some- 
t imes the  result of shuffling of two words a and /3 on a t ra jec tory  t can be empty  
whereas the  shuffle of two w-words over an w-trajectory is always nonempty  and con- 
sists of only one w-word. 

Now we give a recursive definition of the operat ion lll~, where t C V% It will lead 
to the same notion of W, as Definition 3.2. 

D e f i n i t i o n  3.3. Let ~ be an alphabet  and let ai, i > 0 be let ters from ~. Consider 
the functions f i r s t  and last~ defined as: 

f i r s t (aoa~a2 . . . )  = ao and las t~(aoala2 . . . )  = axa2 . . .  

The operat ion Wt, where t E V ~, d C V is defined as follows: 

{ f i r s t ( a ) ( l a ~ t ~ ( a )  Ultfl), if d = r, 
a lltd,/3 = f i r s t ( /3 ) (a  Ill,lasts(~3)), if d = u. 
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K T is a set of w-trajectories, the shuff le  o f  a with fl on the set  T o f  w- tra jec tor ies ,  

denoted a LUTfl, is: 

Ol IIITfl = U Ol liltS. 
~ET 

The above operation is extended to w-languages over P,, if L1, L2 C_ E W, then: 

= U ~ lilT L1 IIITL2 beta. 
~E L1 ,flEL2 

N o t a t i o n .  If T is V W then lilT is denoted by 111~. 

E x a m p l e  3.1. Let a and fl be the w-words c~ = aoa la2a3a4asasaT . . . ,  fl = 
boblb2b3b4..,  and assume that  t = r2uarSuru  . . . .  The shuffle of c~ with fl on the 
trajectory t is: 

cr llltfl = { aoal bob~ b2a2aaa4asa~b3aTh . . . }.  

b4 

b3 t 

b2 

bl t t 

bo 

O a o  a l  a 2  a 3  a 4  a 5  a 6  a 7  . . .  x 

Figure 1 

The result has the following geometrical interpretation (see Figure 1): the tra- 
jectory t defines a line starting in the origin and continuing one unit right or up, 
depending of the definition of t. In our case, first there are two units right, then 
three units up, then five units right, etc. Assign ~ on the O x  axis and fl on the Oy 
axis of the plane. The result can be read following the line defined by the trajectory 
t, that  is, if being in a lattice point of the trajectory, (the corner of a unit square) 
and if the trajectory is going right, then one should pick up the corresponding letter 
from c~, otherwise, if the trajectory is going up, then one should add to the result the 
corresponding letter from ft. Hence, the trajectory t defines a line in the plane, on 
which one has "to walk" starting from the origin O. In each lattice point one has to 
follow one of the versors r or u, according to the definition of t. 

Assume now that  t '  is another trajectory, say: 

t ! ~_. u r 5 7 2 4 r  3 . . . .  
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The trajectory t ~ is depicted in Figure 1 by a much bolder line than the trajectory t. 
Observe that: 

a IIIt,fl = {boaoala2a3a4blb2b3b4asasa7...}. 

Consider the set of trajectories, T = {t,t '}. The shuffle of a with fl on the set T 
of trajectories is: 

a IIIT~ = {aoalboblb~a2asa4asa6b3a7b4..., boaoala2a3a4blb2b3b4asa6a~...}. 

The following two theorems are representation results for w-languages of the form 
L1 IJlTL2. 

Observe that we are using here the obvious associativity of the operation 111~. We 
will return to this matter in Section 4. 

T h e o r e m  3.1. For all w-languages L1 and L2, L1, L2 _ E ~, and for all sets T of 
w-trajectories, there exist a gsra M and two letter-to-letter raorphisras g and h such 
that 

L1 INTL2 = M(h(L1) Iflwg(L2) IllwT). 

Proof. Let E1 = {al I a E E} and E2 = {a2 l a E E} be two copies of E such that  
El, E2 and V are pairwise disjoint alphabets. Define the morphisms: g : E -----* E~, 
g(a) = al, a �9 E and h :  r~ ~ E~, h(a) = a2, a �9 r,. 

Now consider the gsm M = (Q, E', A, qo, 5, F) ,  where Q = {qo, ql, q2}, E'  = E1 U 
E 2 U V ,  A = E , F = { q o } a n d  

5(q0, r) = (ql, A), 5(q0, u) = (q2, A), 

5(q1, al) : (q0, a) and (~(q2, a9.) --- (q0, a), 

for all al �9 ~']~1 and a2 �9 E2. 
One can easily verify that i l  ItlTL2 = i ( h ( L 1 )  lll~g(i2) lllo~T). [] 

The next theorem shows that the gsm-mapping M of Theorem 3.1 is of a particular 
type. 

T h e o r e m  3.2. For all w-languages L~ and L2, L1, L2 C E ~, and for all sets T of 
w-trajectories, there exist a morphism ~v and two letter-to-letter morphisms g, h and 
a regular w-language R, such that 

L1 WTL2 = ~((h(L1) tll+g(L2) III~T) r3 R). 

Proof. Let 27 and E2 be as before. Define the morphisms: g : E ) E~, g(a) = at, 
a �9 E and h : E ~ E~, h(a) = a2, a �9 E. Let R be the regular w-language, 
R -~. (r21 U U~2) ~. 

Now consider the morphism: 

(~ : (El U E2 U V) ---+ E*, 

d e f i n e d  as: ~(~1)  = a ,  ~ (a2)  = a a n d  ~ ( r )  = ~ ( u )  = ~. 
It is easy to see that: L1 hJTL2 = (p((h(L1) lll~g(L2) m~T) FIR. [] 

T h e o r e m  3.3. I f  L1 and L2 are regular w-languages~ then L1 Ill,L2 is a regular 
w-language. 
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Proof. Without  loss of generality we can assume that  LI and L~ are over the same 
alphabet Z. Let A~ = (Q,, Z, q~, ~i, F~) be Bfichi automata such that  n(Ai)  = n~, 
i = 1,2. We define a Bfichi automaton A = (Q, E, q0, 5, F)  such that  L(A)  = LI ~IJ~L~ 
as follows. Q = Q1 x Q2 x {0,1, 2}. Elements in Q are denoted as [ql, q2, k], where 
q~ e Q~,i = 1,2 and 0 < k < 2. The initial state is q0 = [%',%2,0], the final states 
are F = Q~ x Q2 x {2}. The transition function ~ is defined in such a way that  it 
simulates nondeterministically on the first component the automaton A1 or on the 
second component the automaton A2. The third component of the states is used to 
record an occurrence of a final state from F~ (by storing the value 1). The value 2 is 
stored if at some stage later a final state from F2 does occur. The value 0 is stored in 
the third component whenever the first two components are not final states. 

Formally, the definition of ~ is: 

~([ql, q2, 01, a) 

~([ql,q2,0],a) 

g([ql, q2, 11, a) 

~([ql, q2, 1], a) 

~([ql, q2, 2], a) 

~([ql, q2, 2], a) 

= {[61(ql, a), q2, 0], [ql, ~2(q2, a), q2, 0]} if ~1(ql, a) r El, 

= {[~1(ql, a), q2, 1], [q~, 52(q2, a), 0]} if ~(q~, a) E F1, 

= {[~l(ql,a),q2, 1], [q~,$2(q2,a), 1]} if $2(q2, a) r F2, 

= {[~l(q~,a),q=, 1], [q1,~2(q2,a),2]} if ~2(q2, a) E F2, 

= { [~1(ql, a), q2, 0], [q~, g2 (q~, a), q2, 0] } if ~ (ql, a) r F~, 

= {[~1(ql, a), q2, 1], [q~, ~2(q2, a), q2, 0]} if ~(ql ,  a) E F1. 

Clearly, L(A)  = L1 L~L2. [3 

The following theorem provides a characterization of those sets of w-trajectories 
T for which La I~TL2 is a regular w-language, whenever L1, L2 are regular w-langua- 
ges. 

T h e o r e m  3.4. Let T be a set of w-trajectories, T C_ {r ,u}% The following 
assertions are equivalent: 

(i) for all regular w-languages L1, L2, the w-language L1 WTL2 is a regular w- 
language. 

(ii) T is a regular w-language. 

Proof. (i) ~ (ii) Assume that L1 = r ~ and L2 -- u ~ and note that  L1 ~TL2 = T. 
It follows that  T is a regular w-language. 

(ii) ~ (i) It follows from Theorem 3.2, Theorem 3.3 and from the closure proper- 
ties of regular w-languages under intersection and morphisms. [] 

4 .  C o m m u t a t i v i t y  a n d  A s s o c i a t i v i t y  

De f in i t i on  4.1. A set T of w-trajectories is referred to as commutative iff the 
o p e r a t i o n  ]-~T is commutative, i.e., a JllTfl = fl IIIT~ , for all alphabets E and for all 
a , ~ '  E ~ ~ . 
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E x a m p l e  4.1. Note that  w-shuffle is a commutat ive set of trajectories, whereas for 
instance, the literal w-shuffle, i.e., the shuffle over the set of w-trajectories consisting 
of only one w-trajectory t, 

t = ( r u )  ~ = r u r ~ r u . . .  

is noncommutative.  

N o t a t i o n .  The  morphism s y m :  {r, u} -, {r, u}* is defined by sym(u)  = r and 
sym(r)  = u. 

R e m a r k  4.1. A set T of w-trajectories is commutat ive iff T = sym(T) .  

P r o p o s i t i o n  4.1. I f  T is a regular set of w-trajectories, then it is decidable 
whether or not T is commutative. 

Proof. If T is a regular w-language, then s y m ( T )  is also a regular w-language. 
Hence, the equality T ~ s ym(T)  is decidable. [] 

N o t a t i o n .  Let C be the family of all commutat ive sets of w-trajectories. 

P r o p o s i t i o n  4.2. I f  (Ti)~eI is a family of commutative sets of w-trajectories, then 
T I , 

T'  = N T~ , 
iEI  

is also a commutative set of w-trajectories. 

Proof. Let ~ and fl be w-words over E. Assume that  w E ~ lilT,ft. It  follows that  
for all i, i C I ,  w C a lllT~fl. But, each T~ is commutative,  hence w C ~ IIITia , for all 
i, i E I.  Therefore, w C ~ WT, a. Thus, 

a tilT,/3 = /~  tUT,c~. 

This implies that  T '  is a commutat ive set of w-trajectories. [] 

D e f i n i t i o n  4.2. Let T be an arbitrary set of w-trajectories. The commutative 
closure of T, denoted T, is 

~ - -  N T'.  
TCT~,TIEC 

Observe that  for all T, T C_ {r, u)  ~ , T is an commutat ive set of w-trajectories and, 
moreover, 7 ~ is the smallest commutat ive set of w-trajectories that  contains T. 

R e m a r k  4.2. The function~,~: 79(Y ~) ~ 79(V ~) defined as above is a closure 
operator. 

R e m a r k  4.3. One can easily verify that: 

= T U sym(T) .  

�9 A s s o c i a t i v i t y  

The main results in this paper deal with associativity. After a few general remarks,  
we restrict the attention to the set V_~ of w-trajectories t such that  both r and u 
occur infinitely often in t. (It will become apparent below why this restriction is 
important .)  It turns out that  associativity can be viewed as stability under four 
particular operations, referred to as ~-operations.  This characterization exhibits a 
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surprising interconnection between associativity and periodicity, which in our opinion 
is of direct importance also for the basic theory of w-words. 

D e f i n i t i o n  4.3. A set T of w-trajectories is associative iff the operation UtT is 
associative, i.e., 

(~ ~T~) ~ = - ~ T ( ~  ~ ) ,  

for all c~,fl,~ E E ~. 

The following sets of w-trajectories are associative: 

1. T = { r , u } %  

2. T = {t  e Y ~ I ltlr < ~ } .  

3. T = {a0~0al f l l . . .  I a~ E r*, ~ E u* and, moreover, ai and fli are of even length, 
i > 0 ) .  

Nonassociative sets of w-trajectories are for instance: 

1. T = (r~) ~. 

2. T = {t E V ~ I t is a Sturmian w-word }. 

3. T = {wowlw2. . .  I w~ E L}, where L = { r ' u  ~ In  > 0}. 

D e f i n i t i o n  4.4. Let D be the set D = { x , y , z } .  Define the substitutions E, 
: V ---* P(D*) ,  as follows: 

~(r) = {x, y ) ,  ~(u) = {z), 

~(r) = { x ) ,  ~(u) = {~,z). 

Consider the morphisms ~ and r  ~ , r : V ~ D*, defined as: 

v(r) = x ,  ~(u) = y, 

r  = y ,  r = z. 

P r o p o s i t i o n  4.3. Let T be a set of w-trajectories. The following conditions are 
equivalent: 

(i) T is an associative set of w-trajectories. 

5i) ~(T) n @(T) ~ ~ )  = ~(T) n (r  ~ ~ ) .  

Proof. (i) ~ (ii). Assume that  T is an associative set of w-trajectories. Consider 
w such that  w E E(T)  t3 (~(T) 111 z~). It  follows that  there exists t~, t~ E T,  such that  
w E E(t l)  and there exists t, t E T, such that  w E ~(t) 111 z ~. Assume that  

t 1 ~ r i O u J l r  Q . . . u J ~ r  i~  . . . ,  

for some nonnegative integers i~,jh, 0 < g, 1 < h. From the definition of E we 
conclude that  
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Since w E ~(t)  m z ~, it follows that  t = sos1.. ,  s . . . .  , such that  sk E V* and Isk[ = ik 
for all k , 0 _< k. Therefore, 

w E (x ~ ~,y~) ~ , l z  ~- 

Because T is associative, there are t '  and t~ in T such that  

(x ~ ~ty~) ~t~z ~ = x~ ~ , ( y ~  ~ z ~ ) .  

Hence, we obtain that  w E x ~ W t , ( y  w lJ-[t~zW), for some t '  and t~ in T. Now, it is easy to 
observe that  this implies that  w E r (T )  M (r  W x~). Thus, E(T)  N (~(T)  • z ~) C 
T(T) M (r  W x~). The converse inclusion is analogous. Therefore, the equality from 
(ii) is true. 

(ii) ~ (i). Let E be an alphabet and let a,/3, 7 be w-words over E. Consider 
an w-word w, such that  w E (a  WTfl) WT'f. There exist t and ta in T such that  
w E (a lJJ.tfl ) Wtl")'. Let v be the w-word obtained from w by replacing each letter 
from a by x, each letter from fl by y and each letter from ~/ by z. Observe that  
v is in E(t l)  and also in ~(t)  111 z% Therefore, v E E(T) M (~(T) Wz~). By our 
assumption, it follows that  v E T(T) M (r  Wx~). Hence, there are t '  and t~ in T 
such that  v E T(t') M (r 1~ X~). Note that  this means that  v E x ~ Wt,(y ~ Wt,~z~). 
Hence, it is easy to see that  w E a W,,(~ 111t,,7), i.e., w E a [[[T(/~ UJT~' ). Thus, 
(Ol I[[T~ ) ]_k[T~' C o l  ].I.[T( ~ ]J-[T'~). The converse inclusion is analogous. Therefore, for 
all a,/3, 7 E E ~, 

= 

Thus, T is an associative set of w-trajectories. [] 

P r o p o s i t i o n  4.4. I f  T is a regular set of w-trajectories, then it is decidable 
whether or not T is associative. 

Proof. Observe that  if T is a regular w-language, then the languages E(T)  r 
(~(T)  KI z ~) and T(T) M ( r  KI x ~) are regular w-languages. Hence, the equality 
(ii) from the Proposition 4.3 is decidable. [] 

N o t a t i o n .  Let .4 be the family of all associative sets of w-trajectories. 

P r o p o s i t i o n  4.5. I f  (Ti)iei is a family of associative sets of w-trajectories, then 
T I , 

T' = N T~ , 
i c I  

is an associative set of w-trajectories. 

Proof. Analogous to Proposition 4.2. D 

D e f i n i t i o n  4.5. Let T be an arbitrary set of w-trajectories. The associative 
closure of T, denoted T, is 

T - -  N T'.  
TC_TI,Tt~,A 

Observe tha t  for all T, T C {r, u}* , T is an associative set of w-trajectories and, 
moreover, T is the smallest associative set of w-trajectories that  contains T. 

R e m a r k  4.4. The function - : 7)(V ~) ~ 7~(V ~) defined as ~bove is a closure 
operator. 
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N o t a t i o n .  Let V_~ be the set of all w-trajectories t E V ~ such that  t contains 
infinitely many  occurrences both of r and of u. 

Now we give another characterization of an associative set of w-trajectories from 
V~. This is useful in finding an alternative definition of the associative closure of a 
set of w-trajectories and also to prove some other properties related to associativity. 

However, this characterization is valid only for sets of w-trajectories from V~ and 
not for the general case, i.e., not for sets of w-trajectories from V ~. 

D e f i n i t i o n  4.6. Let W be the alphabet W = {x, y, z} and consider the following 
four morphisms,  pl, 1 < i < 4, where 

p~:W---~V~_ , 1 < i < 4 ,  

and 

pl(X) =~ , pl(y)=r, pl(Z) mU, 

p~(~)=r, p~(y)=~, p~(z)=~, 
p~(z)=r, p~(y)=r, p~(z)=~. 

Next,  we consider four operations on the set of w-trajectories, V~. 

D e f i n i t i o n  4.7. Let �9 1 < i < 4 be the following operations on V~. 

<>~ : v ~  • v ~  , v ~  , 1 < i < 4 ,  

Let t , t  I be in V.~ 

1. <>l(t,t') = pl((X ~ ~ y ~ )  ~ ,z~) ,  

2. %(t,  t') = p2((x ~ ~ y ~ )  ~ ,z~) ,  

3. %(t', t) = p3(~  ~,,(y~ ~z~ ) ) ,  

4. <>4(t',t) = p4(~  ~ , (y~  ~,z~)). 

D e f i n i t i o n  4.8. A set T G V.~ is stable under O-operations iff for all t l , t2  E T,  
it follows that  <>i(tl,t2) E T, 1 < i < 4. 

P r o p o s i t i o n  4.6. Let T be a set of w-trajectories, T G V_~. The following 
assertions are equivalent: 

(i) T is an associative set of w-trajectories. 

(ii) T is stable under O-operations. 

Proof. The idea of the proof is that  for two w-trajectories t, t '  and for the w-words 
x ~, y~ and z ~, the operation ~1 applied to t and t '  computes the (unique) t ra jectory 
t~ that  occurs in the equality: 

(x~ ~ y ~ )  ~, ,z ~ = x ~ Wt,(y ~ ~t,~z~). 
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The operation O2 computes the (unique) w-trajectory tl that  occurrs in the above 
equality. Analogously, O3 applied to tl and t~ computes the (unique) t ra jectory t 
whereas O4(tl,  t~) = t'. 

(i) ~ (ii) Assume that  T~. is an associative set of w-trajectories. Since T is 
associative, there are tl and t~ in T such that  

Hence, 

= 

[11 w W w o,(t,t') = ,y ) LU ,z = ,,(y = 

= r ~ tllr u ~ = t'i  E T .  

Thus T is stable for ~1. 
Analogously, 

02(t , t ' )  = p2((x ~ ~,y~) m,,z ~) = p2(x ~ m,l(y ~ mt, z~)) = 

-~- rOJ [H~I ~0 = t l  E T .  

Hence T is stable for 02. 
A similar proof shows that  T is also stable for Oa and 04. 
(ii) ~ (i) Now assume that  T C_ Vff is a set of w-trajectories stable under Oi, 

1 < i < 4 .  
Let E be an alphabet and consider a,/3, 7 E E ~ and t, t '  E T. 
Note that  O1(t , t ' )  = t~ and �9 = tl, for some tl, t~ E T. 
Now it is easy to see that  

Thus, we obtain that  

For the converse inclusion, the proof is similar, but using this t ime the fact that  
T is stable under ~3 and <>4" [] 

R e m a r k  4.5. Here we like to point out why we restricted our at tention to the 
set V ~ and not to the general case V% The operation ~1 is defined to produce + 

the w-trajectory t~ (see the above proof). However, if T contains a t ra jectory t 
that  is not in V ~ then 01( t , t )  is not necessarily in V% For instance t = rur ~, then + ,  

<>l(t,t) = ur ~ V% Thus the operation O 1 iS not well defined. A similar phenomenon 
happens with the operation ~3. 

C o m m e n t .  Observe that  ~D = (P(V~),  (<>i)1_<i<4) is a universal algebra. If T is 
a set of w-trajectories, then denote by T the suhalgebra generated by T with respect 
to the algebra ~D. 

P r o p o s i t i o n  4.7. Let T C V ~ be a set of w-trajectories. - -  + 

(i) T is an associative set of w-trajectories and, morover, 
(ii) T = T,  i.e., the associative closure o f t  is exactly the subalgebra generated by 

T i n ~ .  

Proof. (i) 2 ~ is stable under the operations O~, 1 < i < 4 and thus, by Proposition 
4.6, T is an associative set of w-trajectories. 
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(ii) Observe that  T C_ T and that T is associative, hence T C T. For the converse 
inclusion, let T '  C V ~ be an associative set of w-trajectories such that  T C T'. Note - -  + 

that  by Proposition 4.6, T '  is stable under the operations <>i, 1 < i < 4 and thus 
C_ T'. Therefore T C T. [] 

P r o p o s i t i o n  4.8. Let T C V_~ be a set o/w-trajectories. 
(i) I f  each t E T is a periodic w-word, then the associative closure o fT ,  T,  has the 

same property, i.e., each w-trajectory in T is periodic. 
(ii) if additionally, each t E T has a palindrome as its period, then the associative 

closure of T,  -T, has the same property. 
(iii) I f  T is a set of ultimately periodic w-trajectories, then the associative closure 

o f T ,  T, has the same property, i.e., each w-trajectory in T is ultimately periodic. 

Proof. (i) Note that the morphisms pi, 1 < i < 4, preserve the periodicity. Now 
consider the operation <>1. Let tl = s ~ and t2 = s '~. Define p and q by p = [s]~ and 
q = Isl~. Observe that  x ~ = (xP) ~ and y~ = (yq)~. Let v be the unique word x p III,yq 
(note that  this is the shuffle over a finite trajectory, see Remark 3.1). Observe that  
X w 1~ w V w flY ---- is a periodic w-word for some nonempty word v that contains both r 
and u (T C_ Y~). 

Now assume that  i = Is'IT, j = Is'Iv and k = Iv I. Let n be the smallest common 
multiple of i , j ,  k. Assume that n = ii' = j j '  = kk' for some positive nonzero integers 
i ' , j  I, k'. Note that  

( x   ,ly = LU,, z = = 

where a is the unique word v r W,j,z k'. 
Hence Ol(t~,t2) is a periodic w-word. Similarly, <>~(t~,t2) is a periodic w-word, 

2 _ < i < 4 .  
(ii) Observe that  the morphisms p~, 1 < i < 4, are weak codings and hence they 

preserve the palindromes. The proof now proceeds as above. The resulting periods 
are palindromes. 

(iii) The proof is similar with the proof of (i). [] 

The above proposition yields: 

C o r o l l a r y  4.1. The following sets of w-trajectories are associative: 
(i) the set of all periodic w-trajectories from V+ ~. 
(ii) the set of all periodic w-trajectories from V+ ~ that have as their period a 

palindrome. 
(iii) the set of all ultimately periodic w-trajectories from V+ ~. 

The next theorem provides a characterization of those w-trajectories that  are pe- 
riodic. As such it is also a direct contribution to the study of w-words, exhibiting 
an interconnection between periodicity and associativity. The theorem gives also a 
concrete example of a calculation of the associative closure of a set of w-trajectories. 

T h e o r e m  4.1. Let t be an w-trajectory such that t ~ r ~ and t ~ u ~. The following 
assertions are equivalent: 

(i) t is a periodic w-word. 
(ii) t is in the associative closure of (ru) 

Proof. (ii) ~ (i) It follows from Proposition 4.7, (ii) and Proposition 4.8, (i). 
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(i) ~ (ii)  Let A be the associative closure of the w-tra jectory (ru)% Assume 
J~ J~ d jk where d;p E {r, u}, 1 < jp, for tha t  w is a nonempty word from V*, w = d~di2 . . .  ~k, 

all 1 < p < k and, moreover, diq # diq+~, for all 1 < q < k. The degree of w,  denoted 
deg(w),  is by definition k. Note that  for each nonempty word w over V, deg(w)  is a 
unique integer greater than 1. Let t be a periodic w-word over V such tha t  t # r ~ 
and t # u% It follows that  t = w ~ for some nonempy word w. Clearly, deg(w) >_ 2. 

We prove by induction on deg(w) that  t = w ~ is in A. First  we prove two claims: 

Claim A.  For all i , j  > 1~ the w-trajectories  t = w ~, where w = r~u or w =- ur  J, 

are in A .  
Proof  o f  Claim A.  Note that  ~ l ( ( r u )  ~, (ru)  ~) = (uru)  ~. Moreover, � 9  ~, 

(ru)  ~) = (ur)  ~. Hence we obtain that  (ur)  ~ e A.  
Assume now that  w = r~u, i ___ 1. We show by induction on i that  t = w ~ ~ A. 

For i = 1, obviously t ~ A. Assume the s ta tement  true for all w = r~u with i < k 
and consider w = rk+lu. If k is an even number,  say k = 2 j ,  then let t l , t 2  be the 
w-trajectories t l  = (ru)  ~ and t2 =- (r iu)  ~. By the inductive hypothesis t2 is in A. 
Now observe that :  

~ 4 ( t l ,  t2) = ~4(X w [[[tl(yJz) w) = p4( (xy )Jxz )  w) = (r2j+l?s ~ = (rk+l?s w. 

Consider now the other case, i.e., k is an odd number,  say k = 2j - 1. Let t l , t 2  be 
the w-trajectories t 1 = (rJu) w and t2 = (ur)  ~. By the inductive hypothesis t l  is in A. 

Now observe that :  

O3(tl ,  t2) :- fl3(X ~ lilt, ( zy )  ~) = p3( (xJzxJxy)  w) = (r2Ju) ~ = (rk+lu) ~. 

Therefore (riu) ~ C A for all i > 1. 
A similar proof shows that  (uJr) ~, (urJ) ~, (ruJ) ~ e A for all j > 1. 

Claim B. For all i , j , p , q  >_ 1, the w-trajectories  t = w ~, where w = r iu  j or 
w = uPr q, are in A .  

Proof  o f  Claim B. Firs t  assume that  w = r~u j ,  i , j  > 1. The proof is by induction 
on the number  i + j .  Obviously, if w = ru, then t = w ~ E A. The inductive step: let 
t l  = (r~uJ) ~ be in A. By Claim A it follows that  t2 = (r~+Ju) ~ E A.  Observe that :  

% ( t l ,  = p ((x yJ)w  ,2z = p (x y z) = 

Hence Claim B is true also for w = r~u j+l. 
Note tha t  the w-trajectory t3 = (rub+J) ~ is also in A, see Claim A. Moreover, 

O4(tl ,  t3) = (r~+luJ) ~. Therefore, for all words of the form w = r~u j ,  i , j  > 1, w ~ C A.  
A similar proof shows that  for all words of the form w = uPr q, p, q > 1, w ~ E A. 

We are now ready to prove Theorem 4.1, (i) ==~ (ii) .  Let t = w ~ be a periodic 
w-word such tha t  t ~ r ~ and t ~ u% The proof is by induction on k = deg(w).  
The case k = 2 follows from Claim B. Assume the implication true for words w 
with deg(w)  < k. Let w be an word with deg(w) = k + 1, say w = rhu~2r~3.. ,  r~ku q. 
Denote Wl = r i~ ui2r ~3 . �9 �9 r ik and note that  by the inductive hypothesis the w-t ra jectory  
t ,  = (wl) ~ is in A. Consider also the w-trajectory t2 = (r~uq) ~, where s = Iwll and 
note that  t2 is also in A. Observe that :  

<>~(t~, t~) = p~((x'~y~ . . .  x~)  ~ z  ~) = p~((x '~y'~. . ,  x'~z~)~) = t. 
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If w = r'lu~2rZS.., u~kr p, then denote wl = r~lu~2r'3.., u ~k and note that again by 
the inductive hypothesis the w-trajectory tl = (Wl) ~ is in A. Consider also the w- 
trajectory t2 = (u~rP) ~, where s -- [w~] and note that t2 is also in A. Moreover, it is 
easy to see that: ~4(t2, t1) = t. 

The situation when w begins with u is similar. [] 

C o m m e n t .  Theorem 4.1 provides another proof of Corollary 4.1. The theo- 
rem can also be used for calculations of the associative closure of other sets of w- 
trajectories. For instance let T = {tl,t2}, where tl = (r2u) ~ and t2 = (r3u) ~ In 
order to compute T observe that ~ ( t l , t 2 )  = (ru) ~. Therefore T is the set of all 
periodic w-trajectories, except r ~ and u ~. 

�9 D i s t r i b u t i v i t y  

Observe that  for each set of w-trajectories, T, the operation l.[J. T is distributive 
over union both on the right and on the left side. Moreover, we adjoin to V ~ a unit 
element with respect to each WT, denoted 1. Note that 1 is not an w-word. Hence, 
we obtain the following mathematically important result: 

P r o p o s i t i o n  4.9. I f  T is an associative set of trajectories, then for  any alphabet 

s = u, 0,1) 

is a semiring. 

Proof. One can easily verify the axioms of a semiring, see [3]. [] 

5. F a i r n e s s  

Fairness is a property of the parallel composition of processes that,  roughly speak- 
ing, means that  each action of a process is performed with not too much delay with 
respect to performing actions from another process. That is, the parallel composition 
should be "fair" for both processes performed. 

Def in i t i on  5.1. Let T C_ {r, u} ~ be a set of w-trajectories and let n be an integer, 
n > 1. T has the n-fairness property iff for all t E T and for all t' ~ V* such that  
t = tit" for some t" E V ~, it follows that: 

I It'L  -It'l  n. 

This means that  all w-trajectories from T are contained in the region of the plane 
bounded by the line y = x - n and the line y -- x -b n, see Figure 2, for n -- 4. 

E x a m p l e  5.1. The w-literal shuffle, i.e., T -= (ru) ~ has the n-fairness property 
for all n, n >_ 1. 

Def in i t i on  5.2. Let n be a fixed number, n > 1. Define the language F~ as: 

F~ -- {t  C V~l [ [t'l~ - [t'[~ [_< n, for all t '  such that  t = t ' t" , t '  C V* , t "  E V~} .  

R e m a r k  5.1. Note that a set T of trajectories has the n-fairness property if and 
only if T C_ F~. 
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P r o p o s i t i o n  5.1. For every n~ n > 1, the language F~ is a regular w-language. 

Proof. We omit the straightforward construction of a Bfichi automaton for F~. [] 

C o r o l l a r y  5.1. I f  T is a regular set of w-trajectories and n is fixed, n >_ 1, then 
it is decidable whether or not T has the n-fairness property. 

Proof. Note that the inclusion problem for regular w-languages is decidable. Hence~ 
this corollary follows from Proposition 5.1. [] 

P r o p o s i t i o n  5.2. The fairness property is preserved by the commutative closure. 

Proof. Assume that T has the n-fairness property for some n, n > 1. This means 
that for all t E T and for all t ~ such that t = ttt" for some t" E V ~, it follows that  

Obviously, 

] It'l~ -It'iu I_< n. 

i ft'lr- It'l~ I=1 psym(t')lr --IsYm(t')l~ I" 
[] 

Proposi t ion 5.3. The fairness property is not necessarily preserved by the asso- 
ciative closure. 

Proof. Consider the set of trajectories T = (ru)% Using Theorem 4.1 we infer 
that  the associative closure of T does not have the fairness property. [] 

6. Conc lus ions  

Shuffle on trajectories provides a useful tool for the study of a variety of problems 
in the theory of w-words as well as in connection with parallel computation and the 
theory of concurrency. Besides, it opens a new view on the general theory of w-words, 
as shown by our exhaustive characterization of the periodicity of w-words. At the 
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time of this writing, a similar characterization for the ultimate periodicity of w-words 
remains an open problem. 

Other aspects from the theory of concurrency and parallel computation such as 
priorities, the existence of critical sections, communication and the use of re-entrant 
routines are studied using semantic constraints on the shuffle operation. Indeed, 
these aspects are more related to the inner structure of the words that are shuffled 
and cannot be investigated using only syntactic constraints. We like to emphasize 
that perhaps the most useful and realistic types of constraints are mixed, i.e., both 
syntactic and semantic. 

Of a special interest is to extend these operations to more complex objects such 
as graphs and networks or different types of automata. In this way one can obtain a 
more general framework to study the phenomena of parallelism and of concurrency. 
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Chapter  6. Algebraic Approaches  to Languages 

Generalized Lindenmayerian Algebraic Systems 
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Abstract. The Lindenmayerian algebraic systems of Honkala, Kuich [3] 
are generalized to arbitrary w-continuous semirings. On the other side, 
Lindenmayerian algebraic systems for languages with just one symbol are 
considered. If such a system has a special form then the components of 
its least solution are rational. 

1. Introduction 
Formal power series play an important role in generalizing the theory of formal 

languages and automata theory (see Berstel, Reutenauer [1], Kuich, Salomaa [6] and 
Salomaa, Soittola [8]). In [3], Honkala and Kuich gave a power series approach to a 
generalization of ETOL languages (see Rozenberg, Salomaa [7]). 

In this paper we generalize this approach to w-continuous semirings. The back- 
ground of this research is the following. In Kuich [5], we have shown that many classi- 
cal theorems of automata theory, of the theory of formal languages and of the theory 
of formal power series are, in fact, specialized versions of theorems on w-continuous 
semirings. For example, the Theorem of Kleene, the equivalence of context-free gram- 
mars or algebraic systems and push-down automata, and the Theorem of Parikh can 
be generalized to w-continuous semirings. 

In [3], Honkala and Kuich considered Lindenmayerian algebraic systems and gen- 
eralized some results of ETOL languages to Lindenmayerian algebraic power series. 
In the first part of this paper, we make---in the spirit of Kuich [5]--a further step 
of generalization. We generalize Lindenmayerian algebraic power series to certain 
subsemirings of w-continuous semirings and show some closure properties of these 
snbsemirings. 

In the second part of this paper, we consider Lindenmayerian algebraic systems 
with just one terminal symbol. If such a system has a special form then the compo- 
nents of its least solution are rational. 

It is assumed that the reader is familiar with the basics of semiring theory. Notions 
and notations that are not defined are taken from Kuich [5] and Honkala, Kuich [3]. 

2. Lindenmayerian Algebraic Systems 
In the sequel A is always an w-continuous semiring, A r is a subset of A containing 

0 and 1, and Y = {Yl,... ,Yn} is an alphabet of variables. 
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An A~-Lindenmayerian algebraic system (with variables in Y) is a system of formal 
equations 

y, = p , ( y l , . . . ,  y~, h11(yl) , . . . ,  h l~(y l ) , . . . ,  hnl(Yn) , . . . ,  hns(yn)), 1 < i < n, 

where P~(Yl,...  ,y~,z11, . . .  , z l s , . . .  ,Z~ l , . . . ,  z~) ,  1 < i < n, is a semiring-polynomial 
in A ' ( Y  0 Z)  and h~j : A -~ A are complete semiring morphisms such that  h~j(a) e A' 
for a C X ,  1 < i '~ n, 1 < j < s. Furthermore, Z = { z11 , . . . , z l~ , . . . , z~1 , . . . , zns }  
is an alphabet  with Y N Z = 0. We want to emphasize that  when we consider 
the polynomial p~ we do not assume that  each zlj actually has an occurrence in p~, 
l < i < n , l  < j < s .  

If there is no danger of confusion, we use a vectorial notation. We write y for 
y l , . . . ,  Y~, P for p l , . . .  ,p~, h for hi1,. �9 h i , , . . . ,  h~l , . .  �9 h~s and h(y) for hll(yl) ,  . . . ,  
hl~(y l ) , . . . ,  h~l (y~) , . . . ,h~(y~) .  By this vectorial notation, an A'-Lindenmayerian 
algebraic system as defined above is now written as 

y = p(y ,  h(y) ) .  

The development of the theory of X-Lindenmayerian algebraic systems parallels that  
of the usual A'-algebraic systems. 

A solution to the A'-Lindenmayerian algebraic system y = p(y, h(y)) is given by 
a E A ~ such that  a = p(cr, h(a)).  It  is termed the least solution iff a _ T holds 
for all solutions T of y = p(y, h(y)). Hence, a solution (resp. the least solution) of 
y = p(y, h(y)) is nothing else than a fixpoint (resp. the least fixpoint) of the mapping 
f :  A ~ --* A ~ defined by f ( a )  = p(~r, h(a)) ,  a e A s. 

By Theorem 3.2 of Kuich [5] we infer that  the mappings h~j, 1 < i < n, 1 <_ 
j < s, are w-continuous. Since w-continuous mappings are closed under functional 
composition, the mapping f is w-continuous. Hence, by the Fixpoint Theorem the 
least solution of an A'-Lindenmayerian algebraic system y = p(y, h(y)) exists and 
equals the least fixpoint f ix(f)  = sup{i f (0)  In  e N}. 

To compute this unique least fixpoint, we define the approximation sequence 

(TO, G1 ,G2 , . . . , o ' J , . . . ,  G j E A TM, 

associated to the A~-Lindenmayerian algebraic system y = p(y, h(y)) as follows: 

= 0, = p( J, j >__ 0. 

Then the least solution is given by sup{crJ I J E N}. This proves our first theorem. 

T h e o r e m  2.1. The least solution of the At-Lindenmayerian algebraic system y = 
p(y, h(y) ) exists and is given by 

sup{ aJ I J e N},  

where a ~ a l , . . .~  crJ,.., is the approximation sequence associated to it. 

The collection of all components of the least solutions of A~-Lindenmayerian alge- 
braic systems is denoted by LAlg(A' ) .  Clearly, we have AIg(A' )  C LAIg(A' ) .  

I We now connect our definition of an A -Lindenmayerian algebraic system with the 
L algebraic systems of Honkala, Kuich [3]. The basic semiring is now A((E*)), where 
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A is commutative, E is an alphabet, and A' is the semiring of polynomials A(E*). For 
each L algebraic system with least solution c~ there exists an A(E*)-Lindenmayerian 
algebraic system with least solution cr. 

T h e o r e m  2.2. AL~g((E*}) _C LAIg(A(2*)). 

Theorem 10 of Kuich [4] and application of the distribution laws prove the next 
theorem. 

T h e o r e m  2.3. Let A be one of the semirinys B,  N ~ or R ~ .  Then AL~lg((E*)} = 
LAlg(A(E*)). 

Our next theorems are similar to Theorems 7.2, 7.4 and 2.7 of Honkala, Kuich [3]. 

T h e o r e m  2.4. The components of the least solution of an LAlg(A')-algebraic 
system are in LAlg(At). 

Proof. Let 
Yi ~- p i (a~ , . . . , am ,y l , . . . , y~ ) ,  1 < i < n, 

be an LAlg(A')-algebraic system. The notation indicates that the coefficients of 
this LAlg(A')-algebraic system are a l , . . . , am C LAIg(A'). We now replace the 
coefficients a l , . . . ,  am by new variables Zl , . . . ,  z,~ and consider the A'-algebraic system 

Yi = p i ( z l , . . . ,  Zm, Yl , . . . ,  Y~), 1 < i < n, 

and the A'-Lindenmayerian algebraic systems 

yJ =pJ, l < j <_m. 

The variables of the j- th A~-Lindenmayerian algebraic system, i. e. the components of 
y J, are y~, . . . ,  y~j, 1 < j < m. We assume that the least solution of yJ = pi is given 

by v j with r~ = aj, 1 _< j _< m. 
We now construct a new A'-Lindenmayerian algebraic system 

yi = pi(y11,. . . ,y?,y~,. . . ,y~),  1 < i < n, 
yJ = pJ, l <_ j < m, 

with variables in {y~ I 1 < i < n} U {y~ I 1 < i < nj, i < j < m}. We observe that 
the yJ-subvector of the least solution of this new A'-Lindenmayerian algebraic system 
equals the least solution of the j- th A~-Lindenmayerian algebraic system yJ = pJ, 
i. e. 7-J, for j = 1 , . . . ,  m, and that the yi-component of the least solution of the new 
A'-Lindenmayerian algebraic system equals the y~-component of the least solution of 
the original LAlg(A')-Lindenmayerian algebraic system 

Yi = P i ( a l , . . . , a m , Y l , " . , Y n ) ,  I <: i < n. 

Hence, the components of the least solution of this LAlg(A')-Lindenmayerian alge- 
braic system are elements in LAIg(A'). [] 

Coro l la ry  2.5. Alg(LAlg(A')) = LAIg(A'). 

The next corollary means that LAIg(A') is fully rationally closed. 
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Corollary 2.6. Rat(LAlg(A'))  = LAlg(A'). 

In the next .theorem we consider complete semiring morphisms g : A ~ A, where 
g(b) E LAIg(A') for b E A'. The application of these complete semiring morphisms 
to elements of Alg(A') yields elements of LAlg(A'). 

T h e o r e m  2.7. Let g : A -~ A be a complete semiring morphism such that 
g(b) C LAIg(A') for b e A'. Then g(a) e LAlg(A') for all a C Alg(A'). 

Proof. We consider the X-algebraic system 

y i = p i ( a l , . . . , a , ~ , y l , . . . , y ~ ) ,  l < i < n .  

Here a l , . . .  ,am are the coefficients of the system and Yl,...,Y~ are the variables. 
Denote the least solution of this A'-algebraic system by cr. Then we show that g(ai), 
1 < i < n, are elements in LAlg(A'). The proof is similar to the proof of Theorem 7.4 
of Kuich [5]. 

By Theorem 2.4 we infer that the least solution T of the LAlg(A')-algebraic system 

yi = p i ( g ( a l ) , . . . , g ( a m ) , y l , . . . , y ~ ) ,  1 < i < n, 

is a vector of elements in LAlg(A'). We claim that T~ = g(a~), 1 < i < n. 
Let (a j) and (T J) be the approximation sequences associated to the systems 

Yi : p i ( a l , . . .  , a m , Y l , . . .  ,Yn)  and Yi = p i ( g ( a l ) , . . . . , g ( a m ) , . y l , . . .  ,Yn), 1 < i < n, re- 
spectively. Then we show by induction on j that r~ = g(a~), 1 < i < n, j >_ O. Since 
a complete semiring morphism g is w-continuous that will show our claim. 

We h a v e ~ - ~ 1 7 6  and, f o r j > O a n d l < i < n ,  

"r] = pi(g(al) , . .  . ,g(am), ~.~-1,..., T~_I) 
= P i ( g ( a l ) , . . . , g ( a m ) , g ( o ' ~ - l ) , . . . , g ( c r { - 1 ) )  

= g ( p i ( a l , . ,  j -1  .,a,~,c~ 1 , ' . .~a{-1)) 
= g ( 4 )  

Hence, T~ = g(ai), 1 < i < n, are in LAlg(A'). [] 

T h e o r e m  2.8. Let g : A ~ A be a complete semiring morphism such that 
g(b) �9 A' for b �9 A'. Then g(a) �9 LAIg(A') for all a �9 LAlg(A'). 

Proof. We consider the A'-Lindenmayerian algebraic system y = p(y, h(y))  with 
the least solution a. Then the A'-Lindenmayerian algebraic system 

Y0 = g(Y), y = p(y, h(y)) 

has the least solution g(a). [] 

3. L i n d e n m a y e r i a n  A l g e b r a i c  S e r i e s  w i t h  
O n e  T e r m i n a l  S y m b o l  

Througout this section, A denotes a commutative idempotent w-continuous semir- 
ing. 

We start with an example. This example shows that 

B~g(({x}*>> = Brat(({x}*)) C BL~g<({x}*)). 
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E xa mple  3.1. We consider the L algebraic system with just one equation y = 
h(y) + x, where h(x) = x 2. The approximation sequence associated to it is given by 
a0 ___ 0, a j = x 2j-1 +x  2~-2 + " -  +x  2 +x,  j > 0. Hence, the least solution of y = h(y) +x 
is given by o- = ~j>0 x~" Since {22 I J -> 0} is not semilinear, a is not contained in 
B~ag(({x}*)) = Brat(({x}*)). 

Observe that cr is (by the isomorphism between B(({x}*)/ and P({x}*) 
the language generated by the DOL system G = ({x} ,h ,x)  (see Rozenberg, 
Salomaa [7]). [] 

We now consider infinite Rat(AI)-Lindenmayerian algebraic systems with just one 
variable y of the form 

y = aj(y)y + (,) 
j:>l 

where aj(y) = c jh j l (y ) . "  hj~j(y)y mi-1, b, cj E Rat(A') and hjk : A ~ A are complete 
X-rational morphisms, nj ~ 0, mj > 1, 1 < k < hi, j ~> 1. Moreover, we assume 
that H ~ {hjk I 1 < k < nj, j > 1} is a finite set, IHI = m for some m > 0, and 

E cjz j l . . ,  zjniy mj-1 e Rat(A'((Z U {y})*)). 
j_>l 

Here Z = {zl,. �9 z,~} is a finite alphabet of variables corresponding to the morphisms 
of H and zjk E Z, 1 < k < nj, j >_ 1. 

We call these systems together with all properties described above infinite 
Rat(A')-Lindenmayerian algebraic (*)-systems (with one variable y). 

The definitions of solution, least solution and approximation sequence of these (.)- 
systems are anMogous to the respective definitions for A~-Lindenmayerian algebraic 
systems in Section 2 and so is the proof of the next theorem. 

T h e o r e m  3.1. The least solution of an infinite Rat(A')-Lindenmayerian alge- 
braic (.)-system exists and is given by 

sup{ aj I J C N}, 

where a ~ ~1, . . . ,  aj . . .  is the approximation sequence associated to it. 

It turns out that certain infinite Rat(A')-Lindenmayerian algebraic (,)-systems 
have a rational least solution. The proof of this result has similarities with Pilling's 
proof of the Theorem of Parikh (see Section 8 of Kuich [5]). 

T h e o r e m  3.2. Consider an infinite Rat(A')-Lindenmayerian algebraic (*)-sys- 
tem and assume h(a*)a* = a* for all h E H and a E Rat(A~). Then its least solution 
is given by 

aj(b))*b 
j~ l  

and a E Rat(A').  

Proof. We first show that (r E Rat(A').  Consider the complete (A'((ZU{y})*), A')- 
rational semiring morphism h defined by h(zj) = hi(b), zj E Z, h(y) = b and 

h( E a, .......... z~ . . .  zi,~yl) = E ail'""im'ihl(b)i . . . .  hm(b)i~b~. 
il ,...,im ,i~O il ,...,im,i~O 
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Then, by Theorem 7.7 of Kuich [5], the assumption 

CjZjl' '" Zjnjy mj-1 �9 Rat (A ' ( (Z  U {y})*)) 
j_>l 

implies ~j>a aj(b) �9 Rat(A' ) .  Hence, cr 6 Rat (A ' ) .  
We now show that  a is a solution of our infinite Rat(A')-Lindenmayerian algebraic 

(*)-system. Denote r(y) = ~ j > l  a(y). Then a = r(b)*b and we obtain 

j>l 

= ~ cjhjl(r(b)*)hjl(b).., hjn,(r(b)*)hj~j(b)(~(b)*)mJb~' + b 
j>l 

= ~ cjh~l(b).., h~.j(b)~(b)*b~ + b 
j_>l 

= ~(b)~(b)*b + b = ~(b)*~ = ~. 

Here the second equality follows by the equality (r(b)*) mj = (r(b)*)=J +1 (see Theo- 
rem 8.2(i) of Kuich [5]), by r(b)* �9 R a t ( d ' )  and by the assumption h(a*)a* = a* for 
all h �9 H and a �9 Rat (A ' ) .  

Finally, we show that  ~ is the least solution. Let (a j) be the approximation 
sequence associated to (*). We show by induction that,  for j > 0, 

O<_k<_j 

For j = 0 we have b ___ a 1 = b. For j > 0 we obtain 

r(b)~b = b + r(b) ~ r(b)~b E b + r(b)a ~ E b + r ( ~ J ) ~  = ~'+~. 
0<k<j 0_<k_<j-1 

Here the first inequality follows by the induction hypothesis and the second inequality 
by aJ ~_ al  = b, j > 1. 

Since A is an w-continuous semiring, the inequality 

~(b)% E_ ~J+~, j > 0, 
O<_k<j 

implies 

r(b)~b E sup{~J I J -- 0}. 
k>O 

Since a = r(b)*b is a solution we infer that ~r = sup{hi I J >-- 0}, i. e. a is the least 
solution. [] 

We now show that the assumption h(r*)r* = r* in Theorem 3.2 is satisfied by 
certain morphisms for r E B~t(({x}*)).  

L e m m a  a.a.  The following inequalities are valid in B(({x}*)) forp ,  t >_ 1: 

(i) (~'p)+ E_ (xp)+, 

(ii) (xtv) * E (xP) *. 
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Proof. (i) (xtP) + = x ~p + x 2tp + . . .  + x =t~ + . . .  E_ (xP) +. 
(ii) ( . ~ ) *  = 1 + ( . ~ ) +  _E 1 + (x~)+ = (.~)*. [] 

L e m m a  3.4. Let h(x) = x t for  some t >_ 0 and consider a rational power series 
r ~ B ~ t ( { { x } * ) ) .  Then h(r*)r* = r*. 

Proof. By Chapter V of Eilenberg [2], the rational power series r is of the form 

l <_i<_sa 1<_i<_s2 

for some sl, s2 k 0, p > 1. We now compute the rational power series r*: 

r* = ( Z  x"')*(( 
l<_i<sl 1<_i<s2 

l <i<_sl 1<_i<s2 

l <_i<_sa l <i<sl l <i<s~ 1<_i<_s2 

= (~)*. . .  (~-~)* + 
((.~)+...  ( .~)* +.. .  + (~)* . . .  (.~o~)+)(~-~).... (~-~)*(~)*. 

Here the first, second and fourth equality follow by Theorem 8.2 of Kuich [5]. We 
now compute the power series h(r*): 

h(r*) = (x t~)* . . .  ( , '~~ 

r* 

Here the inequality follows by Lemma 3.3. Hence, h(r*)r* E_ (r*) 2 = r*. Moreover, 
h(r*)r* = h(r+)r * + r* ~_ r*. These two inequalities imply h(r*)r* = r*. [] 

T h e o r e m  3.5. The L algebraic system (with one variable y) 

y = ~ ~%~(y). . .  hj,~(y)y~", + b(~), 
l<j<_s 

where b(x) C Bi{x}*}, s >_ O, 1 <_ j <_ s, i i , n  j >_ O, mj  >_ 1 and h./k : Bi({x}*)) --+ 
B(({x}*}) are morphisms defined by hjk(X) = X}k, tjk > O, 1 < k < nj,  has the least 
solution 

( E x iJh j l (b(x) )""  hJnj(b(x))b(x)mj-1)*b(x) e Brat(({x}*)). 
l<_j<_s 

The question now arises whether we can solve A{E~ algebraic 
systems over the commutative idempotent w-continuous semiring A{{E$)) with the 
methods of Theorem 3.2. Here E r is the free commutative monoid generated by an 
alphabet E. The next example shows that this is not possible in general. 
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E x a m p l e  3.2. Let E = {Xl, x2}. Our basic semiring is B((~,e)}. We consider 
the B(E$)-Lindenmayerian algebraic system 

y = h (y )y  + x lx2 ,  

where h :  B((Er -+ B((E$)) is the morphism defined by h ( x , )  = Xi,Q h(x2)  = x2,t2 
t l , t 2  > O. 

Then a of Theorem 3.2 is given by 

(T--~ h ( ( x i x 2 ) . ) X l g  2 (x ltlx2t2 . )  Xlg2 E t lm+i t2m+l ~___ ____. X 1 X 2 �9 
m>0 

We now substitute a into the right side of the above equation and obtain 

t inT1 t2n+l ~ t l k T l ~ t 2 k + l ~  
h(~)~ + XlX2 = h ( E x  I x 2 ) ( E X l  "2 ) § XlX2  

n>_o k>_o 

-~ ~ Z--~ 1 2 ) ~ Z-~ 1 2 ] -t- x l x 2 
n>_o k>_o 

E tl (tl n.t.k.{_1).l_ 1 t2 (t2n-l-k-t-1)*l-1 
~- ~C 1 2g 2 "~ X l X  2. 

n,k>O 

If we assume that a is a solution, i. e., h ( a ) a  § x lx2  -- a, then we obtain the following 
equations: For each choice of n, k t here exists an m such that 

t l ( t l n  + k + 1) + 1 = h m  + 1, 
t2(t2n + k + 1) + 1 = t2rn + 1. 

This implies tl = t2. Hence, in case tl -- t2 we can apply the methods of Theorem 3.2, 
while in case tl ~ t2 the method of Theorem 3.2 does not solve the equation. [] 

We now extend the method of Theorem 3.2 to systems with more than one vari- 
able. We consider infinite Rat(A*)-Lindenmayerian algebraic systems (with commut- 
ing variables in Y) of the form 

Yi = r i ( Y l , . . . , y n ,  h l l ( Y l ) , . . . , h n s ( Y n ) ) y l  ( * * )  

§  . . . , y i - 1 ,  h l l ( y l ) , . . . ,  h i - l s ( y i - 1 )  ),  

where r i ( y l , . . . , y ~ ,  z m . . . , z ~ ) y i  + b i ( y l , . . . , y i - l , z m . . . , Z i - l ~ )  e Rat (A ' ( (Z  U 
y )e ) ) ,  h~j : A --+ A are complete A'-rational morphisms, 1 < i < n, 1 < j < s, 
a n d Z = { z , j l l < i < n ,  l < j _ < s } .  

We call these systems together with all properties described above infinite 
R a t ( A ' ) - L i n d e n m a y e r i a n  algebraic (**) -sys tems  (with commuting variables in Y). 

In the sequel we will use the following notations for 1 < i < n: 

~ i ( y l , . . . ,  y , )  = r i ( y l , . . . ,  y~, hn(y~),. �9 �9 h ~ ( y ~ ) ) ,  

b i ( Y l , . . . ,  Y i - 1 )  ~-- h i ( y 1 , . . . ,  Y i - 1 ,  h l l ( y l ) , . . . ,  h i - l s ( y i - 1 ) ) .  

The definitions of solution, least solution and approximation sequence of these (**)- 
systems axe analogous to the respective definitions for A~-Lindenmayerian algebraic 
systems in Section 2 and so is the proof of the next theorem. 
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Theorem 3.6. The least solution of an infinite Rat(AI)-Lindenmayerian alge- 
braic (**)-system exists and is given by 

sup{ aj  I J e N},  

where a ~ al,  . . . , o-J,.., is the approximation sequence associated to it. 

T h e o r e m  3.7. Consider an infinite Rat(A' ) -Lindenmayerian algebraic (**)- 
system and assume hij(a*)a* = a* for 1 < i < n, 1 < j < s, and a E R a t ( A ' ) .  
Then its least solution is in Rat (A ' ) .  

Proof. Observe that,  by our assumptions, r~(ya,.. . ,  y, ,  Zla, . . . ,  z,s) C R a t ( W ( ( Z  
UY)e))  and bi(ya, . . . ,  yi-1, z11, . . . ,  Zi-ls) E R a t ( a ' ( ( Z O { y a , . . . ,  y i_ l ) )e)) ,  1 < i < n. 
This is easily seen by the construction of A' ( (Z  U Y)e)-rat ional  transducers (resp. 
(A ' ( (Z  U Y ) e ) , W ( ( Z  U {y l , . . . ,Y , - l ) )$ ) ) - ra t iona l  transducers, 1 < i < n) that  map 
riyi "{- bi into ri (resp. bl), 1 < i < n. 

The proof now proceeds by induction on n. For n = 1 the least solution c~ is given 
by Theorem 3.2: a = ~x(ba)*bl E Ra t (A ' ) .  Assume now n > 1 and consider the 
infinite R a t ( A ' ( { y l , . . . ,  y ,-1,  Z l l , . . . ,  z ,-1 s)e))-Lindenmayerian algebraic ( . ) - sys tem 
(with variable Yn) 

Yn = r n ( Y l , . . . , Y n - l , Y n ,  Z l l , . . . , g n - l s ,  h n l ( Y n ) , . . . , h n s ( Y n ) ) y n  
+ b , ~ ( y l , .  �9 � 9  Y n - 1 ,  Zl l ,  �9 �9 �9 , Zn-1 s).  

By Theorem 3.2, the least solution tn(Yl , . . . ,Yn- l ,Za1, . . . ,Zn-1s)  of this sys- 
tem is in R a t ( A ' ( { y l , . . . , Y n _ l , Z m . . . , Z n _ l s } $ ) ) .  Denote t , ( y l , . . . , y n - 1 )  = 
t~ (ya , . . . , yn -~ ,h l l ( y l ) , . . . , hn -~ , (yn-1) ) .  Consider now the infinite R a t ( X ) -  
Lindenmayerian algebraic (**)-system (with variables y~ , . . . ,  Yn-1) 

Yi = T i ( Y l , ' . . ,  Yn--1, t n ( Y l , . . - ,  Yn--1))Yi  -~ b i ( y l , . . . ,  Yi--1), 1 < i < n -- 1. 

By induction hypothesis, there exists a least solution ( sa , . . . , sn-1) ,  where si C 
R a t ( A ' ) ,  1 < i < n. This means 

S i = 721(81,.. .  , 8n_1 ,  ~ n ( S l , . . . ,  S n _ l ) ) $  i "~ b n ( S l , . . . ,  Si_ l )  , 1 < i < n -- 1. 

Moreover, t n ( s l , . . . ,  s , -1 )  is the least solution of 

Yn : r n ( S l ,  . . .  , S n - - l , y n ) Y n  "~ b n ( S l , . . . ,  Sn--1)" 

Hence, ( s l , . . . ,  Sn--1, t n ( s l , . . . ,  S,-1)) is a solution of 

Y~ = ~ ( Y l , . . . ,  Yn)Yi + hi(y1,. . . ,  Y~-I), 1 < i < n, 

and s l , . . . ,  sn-a, tn(Sa, . . . ,  sn-a) E Ra t (A ' ) .  
We now show that  this is the least solution. Let (o-1,...,o-n) be an arbi trary 

solution of our (**)-system. Since t n ( a l , . - . ,  an- l )  is the least solution of 

Yn = rn(O' l ,  . , .  , O-n-I,  Yn)Yn  "~- bn(~ . . . ,o-n--l) ,  

we obtain in (o-a , . . . , an - l )  E a , .  Define, for 1 < i < n - 1, 

0 = 0, oj+l = . . . . ,  �9 �9 . ,Sn_0)S~J ' + ~ '~(~ , . .  si_' 1)" Si "~i r i ( s s ,  ' ' '  8 ~ - l , t n (  s3 '  " '  
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Since ( s{ ,  J . . ,  S~_l) , j > 0, is the approximation sequence associated to 

Yi = 7"i(Yl , ' ' ' ,  Yn-1, ~n(Yl , . . . ,  Yn-1))yi "~- h i (y1 , . . . ,  Yn-1), 1 < i < n -- 1, 

J K  l < i < n  1, we obtain sup(s{ [ j > 0) = si, 1 < i < n - 1. We claim now s i _ ai, 
j >_ 0, and prove it by induction on j .  

o 0 r ~ri, 1 < i < n - 1. The inductive step is proved by F o r j = 0 ,  wehaves  i = _ 

s;+lE 

~___ 1~i(O'1, . . . , O'n--1, O'n)O'i "~- b i (O' l ,  . . . , o n _ l )  = o' i ,  l < i < n - 1 .  

Hence, si E ai, 1 < i < n - 1. Moreover, 

~ n ( 8 1 , . . . ,  8 n - - , )  ~___ { n ( O ' l , . . . ,  O'n--1) ~ (7" n .  

This proves that ( S l , . . . , S n _ l , ~ n ( S l , . . . , S n _ l ) )  is the least solution of our 
(**)-system. [~ 

Our last corollary is a generalization of Theorem 3.5 to more than one variable. 

Coro l la ry  a.8. The components of  the least solution of  an L algebraic sys tem 
with commuting variables Yl,- . . ,  Y~ of  the f o rm  

Yi = ri(Yl,. . . ,yn,hll(Yl),. . . ,h•s(yn))yi 

~-bi(Yl , . . . ,  Yi-1, h11(Yl) , . . . ,  hi-1 s(yi-1)),  

. . . . .  , Z * . . . ,  where i'i(yl, . . ,  Yn, Z l l , . ,  Zns) �9 ]~({X, Yl,.  Yn, Z l l , . - . ,  ns} ),, bi(yl, Yi-1, Z l l ,  

�9 . . ,  z,-1,) e B({x, y ~ , . . . ,  Yi-1, Zll , . . . ,  Zi-ls}*} and h l j :  B(({x}*}} -~ B<<{x}*)} are 
finite substitutions defined by hi j (x)  = xt'J for  some tij ~_ O, 1 < i < n, 1 ~ j ~_ s, 
are in B~"t(({x}*)>. 
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Abstract. In [1] we gave presentations as abstract data types for some 
classes of finite relations (functions, partial functions, injections, bijections 
and so on) and we proved that each relation may be written in a unique 
normal form. The Mgebraic structures introduced there include some el- 
ements which model the finite relations at the abstract level. These ele- 
ments are called abstract relations. Our paper proves that  each abstract 
relation may be written in a normal form. 

1. P r e l i m i n a r i e s  
In a category we use the diagramatic order for composition, i.e. f g  : a > c is 

the composite of f : a > b and g : b ----+ c. The first and the second axioms in 
table 1 are for categories. 

A category C is said to be strict monoidal if its set of objects 0b(C)  is a monoid 
and if it is endowed with a sum 

+ : C ( a , b )  • C ( c , d )  .~ C ( a + c , b + d )  

which satisfies axioms C3-C6 in table 1, where e is the neutral element of monoid 
Ob(a). 

A subcategory of C which has the same objects as C and is closed under sum 
is called a strict monoidal subcategory of C. If G is a set of morphisms of C, then 
the least strict monoidal subcategory of C which includes G consists of all the finite 
composites of morphisms of type 1~ + g + lb where g E G. 

A strict monoidal category B is said to be s y m m e t r i c  if it contains a morphism 
~x b : a -f b ----+ b -{- a for each a, b C 0b(B)  and satisfies axioms C7-C9 in table 1. For 
short, instead of symmetric strict monoidal category we shall write ssmc. 

Let B ~  be the least strict monoidal subcategory of C which includes { ~x b I a, b E 
0b(B)}.  A morphism in B ~  is called an a a -m or f i sm .  

Besides the symmetric strict monoidal categories(in the sequel they are called aa-  
ssmc, too) which models the intuitive concept of bijection we shall use 15 types of 
ssmc which models other types of finite relations as function, partial function, injective 
function, surjective function~ partial injective function and so on. These 16 concepts 
are called in the sequel xy-ssmc, where x E { a ,  b, c ,  d }  and y C {~, ~, 7, ~}. 

These concepts use some distinguished morphisms: T, _l_, V, A. The second column 
in table 3 shows the distinguished morphisms we use in each case. We mention that  
one uses such a distinguished morphism for each object which is written as a subscript 
or a superscript. The domains and the codomains of these morphisms are: 

Ta : g - - - - + a  .J.-a : a ~ g 

V ,~ : a -k- a . ~ a A a : a -----+ a -{- a 

1Research partially supported by the Academy of Finland, Project 11281 



423 

These distinguished morphisms must satisfy their axioms in table 2. The axiom 
list which must be satisfied in each case is given in the last column of table 3. In table 
2 the superscript ~ shows a categorial duality. Notice that T and _l_ are dual. The 
sazne for V and A. 

(C1) f(gh) = (/g)h 

(62) l ~ f = f = f l ~  

(c3) f + (g + h) = ( f  + g) + h 
(64) l ~ + f = f = f + l ~  

(65) l ~ + l b = l ~ + b  

(66) ( f  + g)(u + v) = fu  + gv 

(67) b ~ ( f W g ) ~ = g + f  

(C8) "~  = 1, 

(69) ~x ~+~ = ("x b + 1~)(lb + ~X ~) 

Table 1. Axioms for csms 

An xy-ssmc is a ssmc endowed with the distinguished morphisms mentioned in the 
second column of table 3 and which satisfies the axioms mentioned in the last column 
of table 3. 

Let B~y be the least strict monoidal subcategory of B which includes B ~  and all 
the distinguished morphisms coresponding to the case xy. 

(A) (V~ + 1,)V. = (1, + V,)V~ (A ~ A a (A" + 1~) = A(1, + A ") 
(B) ~  = vo (B ~ ^~ ~ = ^ ~  

(C) (T~ + l~)V~ = la (C ~ A ~ ( P  + 1~) = 1~ 
(D) V ~ / ~  = / ~ + / "  (D~ T,~A~ = T~ + T~ 

(E) i~J_ a = 1~ 
(F)  V~, A ~ = (A '~ + A~)(t~ + '~x ~ + I~)(V,~ + V~) 
(G)  A a vo = 1o 

(SV1) T~ = 1~ 
(SV2) T~+b = T~ + Tb 
( sv3 )  v~ = 1~ 
(SV4) V~+~ = (1~+ bx~+lb)(V~+Vb) 

( S v 1  o) J_~ = 1~ 
(Sv2o) _LO+b = j_a + _L b 

(SV3  o) n~ = 1~ 

(SV4 ~ A~+b= (A~+Ab)(I~+ aXb+lb) 

Table 2. Axioms for xy-csms 

2.  B a s i c  M o r p h i s m s  

We use the following notation: 

x , = {  a i f x = b  y, { c~ if y = / 2  
c i f x = d  and = 7 i f y = 5  

T h e o r e m  1. Let B be an xy-ssmc. 

1. If  x E {b,d} then each xy-morphism can be written as j(l~ + -l_b), where j is a 
x'y-morphism. 
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2. / f y  E {fl, 6} then each xy-morphism can be written as (To + lb)j, where j is a 
xy'-morphism. 

3. I f  x e {b,d} and y e {~,6} then each xy-morphism can be written as (To -F 
I~)j(L + j_d), where j is a x'y'-morphism. 

Case Existing 
xy basic morphisms 

a o l  - 

aft T 
a 7 V 
a6 T, 

bc~ 

b# 
b7 
b6 

i 

I, 
i, 
• 

V 

T 
V 
T, V 

ca A 
c# A, T 
c 7 A, V 
c6 A, T, V 

da _L, A 
dfl _L, A, T 
d 7 _L, A, V 
d6 _L, A, T, V 

Specific identities 
satisfied 

I - -  

8V1-2 
A, B, SV3-4 
A-C, SV1-4 

SVlO_2 o 
E, SV1-2, SV1~ ~ 
A, B, D, SV3-4, SVl~ ~ 
A-E, SV1-4, SV1~ ~ 

A 0, B ~ SV3~ ~ 
A ~ B 0, D ~ SV1-2, SV3~ ~ 
A, B, F, G, A ~ B ~ SV3-4, SV3~ ~ 
A-C, F, G, A ~ B ~ D ~ SV1-4, SV3~ ~ 

Ao-c ~ SVl~ ~ 
A~ ~ E, SVI~ ~ SV1-2 
A, B, D, F, G, A~ ~ SV3-4, SVI~ ~ 
A-G, A~ ~ SV1-4, SVI~ ~ 

Table 3. xy-csms 

Proof. In each case one shows the set of all the morphisms having the above form 
is a sub-xy-ssmc. 

In the third case, x C {b,d}, y E {fl,6}, we prove that this set is closed under 
composition and sum. For composition let j C B(c + a, b + d),  k C B(e + b, f + g) 
be two xly'-morphisms. In the composition 
(T~ + L ) j ( L  + J-e)(T~ + lb)k(lz + _L") = 
(T~ + I~)j(T~ + h + -Ld)k(lf + _L") = 
= (T~ + I~)j(T~ + ib+d)(L+b + ]_Z)k( l /+  kg) 
= [T~ + (Tr + 1,~)j] [k(1,f + / e )  + / '~] 
= (T~ + Tc + 1~)(1~ + j ) (k  + 1,/)(lf + -1- ~' + J.fl) 
= (Te+c + 1~)[(16 + j ) ( k  + ld)] (11 + • 
we remark that (16 + j ) (k  + ld) is an x'y'-morphism. 

For sum let j E B(c + a, b + d) ,  k E B(e + h, f + g) be two x'y'-morphisms. In 
the sum 
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(T~ + l.)j(ib + Jfl) + (T. + lh)k(If + 2') = 
= (T. + I. + T. + lh)(j + k)(Ib +-L a + if + i') 
= [:o + (:o + :o)o~ + :~1 (j + k) [1~ + 'xq:~ + • + I.] 

e d f  1 1 ( S c + S o + i o + l h ) [ ( i o +  ~ + l h ) ( j + k ) ( i b +  X + ~ ) ] ( b + i s + • 1 7 7  
= (So+o + io+~) [(i~ + ~ + l~)(j + k)(lb + dX~ + b)] (i~+s + • 

we remark that (lc + ex~ + lh)(j + k)(lb + 4xf + lg) is an z'y'-morphism. 
As 

io = ( s~  + io ) lo ( lo  + ~ ) ,  ~ = (S~ + lo+~)~ + •176 

l ~ = (V~ + lo) io( i~  + •176  and To = (To + io )1o0o  + • 

we deduce that all the morphisms of the above given form makes a sub-xy-ssmc, 
therefore we get the conclusion. [] 

Propos i t ion  2. Let B be an xy-ssmc.  

1. I f  x E {b,d}  and y E { f l ,5} ,  then 

�9 each a f l -morphism is a monic  which has a right converse, 

�9 each ba-morphism is an epic which has a left converse. 

2. I f  y = 5, then 

�9 each a~l-morphism is an epic which has a left converse. 

2 ~ I f  x = d, then 

�9 each ca-morph ism is a monic which has a right converse. 

3. I f  x E {b~d} and y = 5 ,  then 

�9 each bT-morphism is an epic which has a left converse. 

s o. g �9 = d and y ~ {Z, ~}, then 

�9 each ct3-morphism is a monic which has a right converse. 

Proof. One knows that each xy-morphism may be written as a finite composite of 
morphisms of one of the following type: 

a) 1~ + bx~ + ld, 

b) 1~ + 2 b + lc only i fx  E {b,d}, 

e) 1~ + A b + 1~ only if x E {e,d}, 

d) 1~ + Tb + 1~ only if y E {fl,5}, 

e) 1, + Vb +10 only if y E {% 5}. 
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The  morphisms  of type  a)  are isomorphisms.  
As 

Oo + % + 1o)0o + • + 1o) = 1o+o 

we deduce for y E {fl, a} tha t  the  morphisms  of type  b )  have a left converse and  for 
x E {b, d} the  morphisms  of type  d)  have a right converse. 

For x = d, as 
(1~ + A b + l~)(l~+b + • + 1~) = l=+b+~ 

we deduce t ha t  the  morphisms of type  c) have a right converse. 
For y = 5, as 

(l=+b + Tb + 1~)(1= + Vb + 1=) = 1=+~+~ 

we deduce the  morphisms  of type  e)  have a left converse. 
F ina l ly  remark  tha t  a composite of morphisms having a left converse is a m o r p h i s m  

having  a left converse. [] 

In  the  sequel we use for each nonnegat ive  integer n the  following conventions:  

1. n satisfies 

2. n satisfies 

3. n satisfies 

4. n satisfies 

F a c t  3. Let 
y. I f n > _ l a n d  

a or c~ means  n = 1, 

b or /5  means  n _< 1, 

c or 7 means  n _> 1, 

d or 5 means  no conditions.  

B be an ay-ssmc and let r be a na tu ra l  n u m b e r  sat isfying the  condi t ion  
bi E Oh(B) for i 6 [n] then  there exists an acr-morphism k such that  

r r r Vl,,+b~+...+b,, = k(V~,~ + V~ + . . .  + Vb,,). 

Proof. 

�9 For n = 1 take k = 1,bl. 

�9 For n = 2 we use an induc t ion  on r to prove V" = k ( V ~ + V ~ ) .  a + b  

v r + l  r o+~ = (vo+~ + to+4vo+~ = [k(v: + v~) + 1o+4(1o + ~•176 + t4(vo + v~) 

= (~ + 1o+b)(1,o + "bx ~ + lb)(v: + 1o + v~ + l~)(v~ + vb) 

= [(k + 1o+4(],o + ,b~ + l~)](v;+, + v~+,) 

�9 F ina l ly  we use an induc t ion  on n: 

V T f r r r r b,+~,~+...+b~+~ = k~(%l+b~+...+b,, + %,,+~) = &[k2(V~ + Vb~ + " "  + %, )  + %,+, ]  

= [ k l ( k2  + 1,b.+I)](V;~ V" + b= + "'" + Vb,,+~). [] 

Fact 4. Let B an ay-ssmc where y e {% 6} and n > 1. If  for each i e [,q we 
suppose ai C Oh(B) and  the  na tu ra l  numbers  ri ,  tl satisfy condi t ion  y then  there  exists 

an a a - m o r p h i s m  k such tha t  

rt  rt  rt  

E E' ,v  E ( v 2 +  vo,) o,+...+~o=k v2 +''. 
i = l  i=1 i=1 
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Proof. Induction on n. 
For n = 1 we have a known identity (V~ + Vt~I)V~ = v ~+t~ --a] �9 
We assume the equality is true for n - 1. Let t = ~,~=-11 t~a~, r = ~'~=-11 ria~ and 

a = E , L  -1  o,. 

V~, + 
i=1 

v:', + 
i=1 

~ Vt2.) Vo~+,~+...+,~ = 
i=l 

n-1 V~.n" ~ 1~,~) (V~ V~,~) v:: + ~ v:,, + (1o + ~ + + 
i=1 an] 

= [ ]  

1 Z Vral "~- V:nn JC ~ V tial an)~ ..~ V,n (V a _[_ Van) 
i=1 i=1 anJ 

v:',+ .... x ' ( V ' v ' ,  %: + j + ~z_., o, + v t~ ] (v~ v~)  
i=1 \ i=1 aaj 

n-1 n-1 taii) 
(1, + . . . .  ~ + 1,o~ vo, + ~ v vo +(v: :  + vPo)voo 

(1,+ . . . .  x~+lt,,a,,) k \ ,=,  ~, / +V~,~, +~" 

n 
[(1, + . . . .  x' + 1,~,~,,) (k + 1(,. +,,,),~,,)] ~ V "'+t' 

i=1 

L e m m a  5. Let B an ay-ssmc with Ob(B) equidivisible. Each ay-morphism can 
k n be written as ~-]4=~ V~,  where k is an aa-morphism, n > 1 and for each i E [n]: 

bi E Ob(B) and nl satisfies condition y. 

Proof. Notice that the morphisms 1~ + b~ + ld, la + Tb + 1~ if y E {fl,5} and 
la + Vb + 1~ if y E {7, 5} may be written as above. 

We prove that the right composite with 1~ + bx~ + ld, 1~ + Tb + 1~ if y E {f~, 5} 
and with 1~ + Vb + 1~ if y E {7, 5} of each morphism of the above type may be written 
as a morphism of the above type. 

When the right composite with 1~ + b~ + ld is defined we deduce bl + b2 + " "  + bn = 
a + b + c + d. Usind the equidivisibility and fact 3 we deduce 

k V TM~, (la + bx~ + ld) = 

k' V~,~' (lcl+c=+.-.+~, + ~,+1+-.-+c,~+,+...+r + 1~,+1+...+c~) 

where k' is an aa-morphism, m > 1, c~ E Ob(B) for each i G [m] and 1 < s < r < t < 
m. Notice that  the last composition is equal to the composite of 

k' + z:.+, + lz:,+, ) 
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t o  

i ' rni 
+ vo, . 

i = r + l  i = s + l  i=~+1 / 

When  the right composite with 1~ + Tb+  lc is defined we deduce bl + b2 + " - +  b,~ = 
a + c. Therefore 

'~ (1~ + Tb + lc) k' k Vb, = V~' (lm+~a+...+~, + Tb + lc,+,+...+c,.,,) 

where k' is an aa-morphism,  m _> 1, c4 E Oh(B) for each i E [m] and 1 _< s < m, 
hence 

lr163163163 " i = 1  i=1 i = s + l  

When the right composite with lo + Vb + lc is defined we deduce bl + b2 + - "  + b~ = 
a + b + b + c .  Usind the equidivisibility of the  monoid Oh(B) and fact 3 we deduce 

r  k V~' (1,~ + Vb + lc) = k' V~' (1~+...+~ + V~,+~+...+~,. + 1~,+,+...+~,,,) 
i=1 

where k' is an aa-morphism,  m _> 1, ci C Ob(B) for each i C [m], 1 < s < r < t < m 
and b = c~+1 + " "  + e, = c,+1 + " "  + c,. Usind again the equidivisibil i ty we deduce 
the existence of the objects  dl,  d 2 , . . . ,  dh E 0 b ( B )  such that :  

cs+v = dip_l+1 + "'" + dip for 1 <_ p _< r - 
cr+q = djq_ 1+1 + " "  -}- djq for 1 < q _< t - r 

where 0 = io < i l  < . . .  < i,_~ = h and 0 = jo < j l  < . --  < j r - ,  = h. 
Using fact 3, there exists an aa -morph ism k" such that  

k Vb,"' (1,~ + Vb + lc) = k" V~,"~' + V2:+~+ 
i=1 v = l  w=i~_ l  +1 

t-r Jv s I Z vm*  d~ + (1~,+~2+...+~, + Vd,+d2+...+dh + 1~,+,+...+~,,). 
v = l  w = j ~ - l + l  i = t + l  

To get the  conclusion we apply fact 4. 
Therefore all the  morphisms which may be writ ten as k ~i~=~ Vb~' form a sub-xy- 

ssmc, hence this set includes B~y. [] 

F a c t  6. In each xy-ssmc B if m satisfies condition x, n satisfies condition y and 
a E Oh(B) ,  then there exists an aa -morph i sm k such that  

m 

o ~ ( G ) k ( y ; v  ) V~A = A~ n 
i=1 i=1 
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T h e o r e m  7. Let B an xy-ssmc with Ob(B) equidivisible. Each xy-morphism can 
be written as 

m n 

(EAm ) (E ~ k ~-~ Vbi 
.,4=1 i=1 

where m , n  >__ 1, k is an aa-morphism, for j E[m] aj E Ob(B) and mj  satisfies 
condition x and for i e In] bi C Ob(B) and ni satisfies condition y. 

Proof. All the morphisms as above make a sub-xy-ssmc. We prove the most 
dificutt part only, i.e. the fact that  the composite of two morphisms as above is a 
morphism as above, therefore 

nl ' V t~  A~j k Vb, A;~ j d, 
k j=l / j=l 

where bl + b2 + ' "  + b~ = cl + c~ + . . .  + cp . Using the echidivisibility of Oh(B), fact 
3, its dual and then fact 6 we get 

j = l  / d l ]  

Applying in the two square brackets the dual of lemma 5 and lemma 5 we get the 
conclusion. [] 

In a is in a free monoid, I a I denotes its length and al, a2 , . . . ,  al~ I its letters. 

C o r o l l a r y  8. Let B be an xy-ssmc such that Ob(B) is a free monoid. Each 
xy-morphism f E B(a, b) can be written as 

lal tbl 
aj ni ), 

j = l  i = l  

where k is a~-morphism, mj satisfy condition x for j E [I a I] and ni satisfy condition 
y for i �9 [I b I]. 

Proof. We apply theorem 7. The terms as A ~ n~ -~i or V~ , where ~ is the empty word, 
may be get out from the sum. For the terms A~ or V~ where a is a word of length at 
least 2, we apply the dual of fact 3 and fact 3, respectively. [] 
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Abs t rac t .  We consider operations between languages, based on split- 
ting the underlying alphabet into two disjoint sets. Such operations are 
generalizations of the classical catenation or shuffle operation. With such 
operations rational and algebraic languages can be defined similar to the 
classical case. The basic properties of the corresponding language families 
are investigated. 

1. Introduct ion 

In [9] the partial shuffle has been introduced as a new operation on sets of words, 
based on the normal operations of catenation and shuffle. In [5], [6], [7] another 
operation on words, distributed catenation, similar to partial shuffle, but based only 
on normal catenation, was considered. In [2] a general extension is studied. In this 
paper we present another general extension of such operations. These are based on 
the division of the alphabet into two disjoint sets, and the composition of the new 
operation by using three (not necessarily different) associative operations on the two 
disjoint subsets and the entire alphabet. This new operation will be called (left) mix 
operation. 

Throughout this paper we will omit left and use only mix operation. 

2. Basic Propert ies  of  Mix Operation 

We start by introducing the basic definitions of mix operation and considering the 
basic properties of it. 

Let E be a finite and nonempty set, an alphabet. The empty word is denoted by 
~, the set of all nonempty words over E by E +, and the set of all words over E by 
s* = z+  u {.~}. 

For general results concerning the theory of formal languages the reader may 
consult the monograph [12]. 

If E is an alphabet, l e t A C E  and F C_ E such that E = F U A  a n d F N A = 0 .  
Note that F or A can be empty. 

N o t a t i o n s .  For A C_ E let 

M0 = r*, 
Mk+l = r*(A+r+)'A+r* u {a}, k > 0. 
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R e m a r k  1. Note that:  

( i)  Uk>o Mk = E*, 
(ii) if ~ #  j ,  then M~ N M~ = {A}, 
(iii) for any w ~ E +, there exists a unique k > 0, such that  w ~ M~. 

D e f i n i t i o n  2. Let w be in E +. The A-degree of w is: 

degA (w) = k, where w C Mk. 

By definition, degA ( A ) = O. 

C o m m e n t .  Note that  for any word w C E*, degA(w) has a unique value (see 
Remark  1). 

Any w C E* can be represented in the following canonical decomposition with 
respect to A, or shortly, canonical decomposition, if A is clear from the context: w = 
uOVlU 1 ...Vk~Z k with u~ C F*,i = 0 , . . .  ,k  and vj E A + , j  = 1 , . . .  ,k. 

D e f i n i t i o n  3. Let o, ~, and o be binary operations on 7v(E*), defined by 
{~} �9 { ~ }  = {~} {~} �9 { x }  = { x }  �9 { ~ }  = { x }  for �9 e {o, ~, o}, with  
{x} o {y} C_ V +, {x} ~. {y} _C A +, {x} o {y} C_ E + for x, y E F, A, E, respectively, 

and 
{ x }  �9 ( { y }  * { z } )  = ( { x } .  { y } ) .  {z } ,  A .  B = U~eA,ueB({X} �9 { y } )  

f o r e E { % ~ , o }  x , y , z E E .  

Then o, ~,, o are associative operations on P(E*).  

For arbi trary k >_ 0 a binary operation on Mk is defined by 

' ' ' ' ' with D e f i n i t i o n  4. If x E Mk, y E M~, x = UoVlUl...vkuk, y = UoVlUl...V~U k, 
! ! I 

uo, u o,u~,u k C F*,u~,u~ E F + , i  = 1 , . . - , k -  1,v~,v i C A +, i  = 1 , . . . , k ,  then: 

{.T}[O,I>, O, A ,  k ] { y }  = ({V,o} 0 {U~})  0 ( { V l }  I> {V~})  0 ({?J'l} 0 { t t l } )  " " " 
({v~}  ~ {v~})  o ({n~} o {~}). 

By definition, 

{x}[o,,~,  o, A ,  ~,]{,\} = {,\}[o,~,, o , a , k ] { ~ }  = {~} .  

[% ~, o, A, k] is called the k-A-mix operation of {x} with {y}. 

Trivially, 
L e m m a  5. For any E, A C E and k > O, the operation [% % o, A, k] is associative, 

and the triple A/l[ ...... a,al = (79(Mk), [% ~, o, A, k], {A}) is a monoid. 

Proof. Assume x, y, z C Mk with canonical decompositions 

I I I I l I I  I I  I I  I I  I I  
X ~ ~ O V l U l  " " �9 V k U k ,  y = U 0 V l U  1 �9 �9 �9 Vk?Ak, z ~ I / ,ovl~/ ,  1 �9 �9 �9 Vk~tk ,  

Then 
({~} [o, ~, o, ~,  k] {y})[o, ~, o, A ,  ~ ] { z }  

= ( { U 0 }  ~ {~ / ,~} )  <~ {~/ ,g}  O ( { V l }  D { V ~ } )  D { V ~ t } ( { ~ t l }  O { U ~ } )  O { U ~ ' }  �9 * �9 

( {v ,J  ~, {v~}) ~, {v~:} o ( {uk}  o { ' 4 } )  ~ { ~ }  
= {~o}  o ({u~,} ~ {~g} )  o { v , }  ~ ({v~} ~ {v~ ' } ) {~ l }  o ({u~}  o { ~ i ' } ) " "  

I I  l I t  {v~} ~ ({v~} ~ {v~}) o {~} o ({~} o {~}) 
= {~}[o, ~, o, A, k]({~}[o, ~, o, A, k]{z}) 

and {A} is the unit element. 
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The binary operation [% ~, o, A, k] is extended to arbitrary subsets A, B of Mk in 
a natural  way by 

A [ o , ~ , o , ~ , k ] B =  [_J ({x}[o,~,o,A,k]{y)). 
x E A , y E B  

Then M[o,~,o,~,k] = (7)(Mk), [o, ~, o, A, k], {A}) is a monoid. [] 

Moreover, 

L e m m a  6. The operation [% ~, o, A ,  k] is distributive with the operation U and the 
triple S[o,~,o,A k] = (P(Mk) ,  U, [% ~, o, A, k], O, {A}) is a (generally noncommutative) w- 
complete semiring. 

w-complete means that any sequence (Ai) with A~ C P(Mk)  and Ai C Ai+l for 
i >_ 0 has a limit (supremum) in 7:'(Mk). This limit is 

A = U A i .  
i > 0  

Furthermore, for  B ~ P(M~),  

B [ o , ~ , , o , A , k ] U A ,  = U ( B [ o , ~ , o , A , k l A , )  
i>_o ~>o 

and 
( U  Ai)[o, ~, o, A, k]B = U(Ai[o ,  ~, o, A, k]B). 
i__0 ~_>0 

For the theory of semirings one may consult the monographs [1] and [3]. 

D e f i n i t i o n  7. If A C_ Mk, k _> 0, then the A-k-mix  operation closure of A is: 

A[~ ..... ~,k] = U A[~176 where 
i_>0 

A[ ...... ~,k](o) = {~} and A [~176 = A[o, ~, o, A, k]A [ ...... a,k](0. 

C o m m e n t .  Note that  A [~176 is the submonoid generated by A, with respect 
to [% ~, o, A, k], in the monoid M[o,~,o,a,k] and in the semiring S[o,~,o,a,k]. 

If o and ~ are commutative,  then [o, ~, o, A, k] is commutat ive too. 

The k - A-mix operation will now he extended to arbitrary subsets from E*. The  
new operation will be denoted by [% ~, o, A]. 

D e f i n i t i o n  8. Let x , y  be in F,+ such that  degz~(x) = n and dega(y) = rn. Assume 
' ' ~ ' ~ with ~ I E F*,u~ E F+, i  = t h a t  x ---~ ? - t 0 V l ~ t l  �9 �9 �9 Vn ~tn , y = UoVl U 1 . �9 �9 V m  U m  , ~to, Zto~ Un , ~t m 

! ! 1 , . . . , n - l , v ~  C A + , i =  1 , ' " , n , u  i E F+,i  = 1 , . . . , m - l , v  i C A+ , i  = 1 , . - - , m .  
Then the A -- k mix operation of {x} with {y} is: 

Case n < m 
{~)[o,~, o, z~]{y} = ({~0) o { ~ ) )  o ({Vl} ~ {v~)) o ({~1) o { ~ I ) ) - - -  

~ o { ~ ' + 1 } . '  { v ' }  o { u ' )  
Case n > m 
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{~}[o,  ~, o, z~]{y} 

By definition: 

( { .0}  o {u~}) o ({vl}  ~ {v;})  o ( { u 0  o {u~} ) . - .  
( { ~ }  > { v ' } )  o ( { . ~ }  o { ~ ' } ) o  
O{Vm+l} o {am+l} . ."  {Vn} 0 {an} 

{4[0,  >, o, a]{~} = {~}[~, >, o, A]{x} = { 4 -  

[o, ~,, o, A] is extended to ~~ in the usual way by 

A [ o , ~ , o , A ] B =  U {x}[o,>,o,A]{y} 
:r~A,yEB 

for A, B e P(E*).  

R e m a r k  9. Note that  actually we have defined a left mix operation. A right one 
can be defined similarly. 

For the special cases A = 0 and A = E we get the operations o and ~, respectively. 

Again, if o and ~. are commutative then [% ~, o, A] is commutative. 

L e m m a  10. For any E and A C_ E the operation [o,~., o,A] is associative, and 
the triple M[~,~,o,a] = (P(E*), [o, ~, o, A], {A}) is a (noncommutat ive)  monoid.  

Proof. First, observe that  )~ is the unit element. It remains to show that [% ~, o, A] 
is an associative operation on T'(E*). Let x, y, z be in E + with degA(x)  = i, degA(y)  = 
j ,  and degz~(z) = k. Assume that x, y, z have canonical decompositions: 

! I I l I I1 II II I! l? 
X ~ U0VlU 1 " ' ' V i i i ,  y ~- U O ~ ) I ~ I ' ' ' V j U j ,  Z : U0VlU 1 " ' ' V k U  k. 

Observe that: 
( { 4 [ %  ~, o, z~]{y})[~, ~, o, A]{z}  = 

= ({~o} o {u~} ~ { .g} )  o ({vl}  ~ {v~} ~ {~'})  o ({~1} o { ~ }  o {~i'}) - - �9 

(.%(1) v 0) W. (1), (2) 
' [ (  s+l  s + l ] k ~ s + l ~ s + l ]  ' ' '  

({V! 1)} D {V!2)}) O ({~t! 1)} O {U!2)}) 0 {V!~I}  D {Zt !~X}. . .  

{v} 2)} o {u~ 2)} = 
= {x}[o,  ~, o, ~ ] ( {y} [o ,  ~, o, z~]{z}) 

where s = rain(i ,  j ,  k), r = m i n ( { i , j ,  lc} - {s}), t = max( i ,  j ,  k) and, moreover: 
- -  - -  t u(pl) t v~2) , , , o  (2) " else i f i < j < k ,  t h e n v  (1)=vp,  = u p ,  =~q,~q = u q ,  

if i < k < j ,  then v O) ott . (1) , .  �9 (2) o i'o (2) i else - -  ~ ~ p ,  ~ p  : ~ p ,  ~q  = ~ q ,  ~ q  ~ I t q ,  

if j < i < k, then Vp (1) u O) v~2) _ . , , .  (2) " else : U p ,  : U p ,  - -  ~q ,  ~q ----- ~ q ,  

i f j < k < i ,  t h e n v  O) , " ~  (') . , ,  o (2) = Vq,U~ 2) = uq, else 

if k < i < j ,  then v O) ?.t(p 1) v~ 2) ' u~ 2) ' else ~- Vp, ~ Up, -~ Vq, -: Uq~ 

- -  - -  = r u(pl) t '  V~2) U~2) i f  k < j < i, t h e n  Vp (1) Vp, = Up, = ~)q, = Uq, 

where p = a + 1 , . . . , r  and q = s + 1 , . . . , t .  

By the normal extension to arbitrary subsets A, B, C of E*, 

H A oaB- U x o a y ,  
xEA,yEB 
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it follows that [% ~, o, A] is an associative operation. D 

Then, trivially 

L e m m a  11. For any A C_ E, the triple M[o ..... A] = (T'(E*), [o, ~., o, A], {)~}) is a 
(noncommutative) monoid, and the quintuple S[o,~,o,~] = (~~ U, 0, [% % o, A], {~}) 
is an w-complete (noncommutative) semiring. 

Def in i t ion  12. If A C_ E* then the A-mix operation closure of A is: 

A[ ...... z~] = U A(0'E ...... AI where 
i>0 

A [~176176 = {A} and A [~176 = A[% ~, o, A]A [~176 

C o m m e n t .  Note that A [~176 is the submonoid generated by A, with respect to 
[% ~, o, A], in the monoid ~o,~,o,a] and in the semiring $[o,~,o,a]. 

No ta t ion .  For any k _> 0 let 

Hk=UM~. 
i<_k 

L e m m a  13. For any A C_ E and for any k >_ O, 

7~[o,~,oAk] = ('P(Hk), U, O, [% ~', o, A, k], {I}) 

is also a (noncommutative) semiring. 

Proof. This fact follows from Lemma 11. [] 

Def in i t ion  14. Let A E $[o,~,o,Zq, A ~ 0. The A-degree of A is: 

dega(A) = max({dega(x) Ix e A}), 

if the maximum exists and degz~(A) = oo otherwise. 
By definition, dega(O) -- O. 

Note that the following fact holds: 

dega(A U B) = max{dega(A), dega(B)} 

3. Equations and Systems of Equations 
Note that the semirings 8[o,~,oAk], ~[ ...... a,k] and S[o,~,o,a] are w-complete semir- 

ings, i.e. any increasing sequence (A~)~>0 of elements has the supremum in the corre- 
sponding semiring. The supremum of an increasing sequence (An)~>o will be denoted 
by V A~. Moreover, any of the above semirings has a first element (infimum), the 
empty set 0. 

L e m m a  15. Let A, B E 3[ ...... a] �9 The equation X = A[o, ~, o, A]X U B has the 
(minimal) solution Xo = A [~ ..... a][o, ~, o, A]B. 

Proof. Consider the function: 

r "P(E*) ~ P(E*) ~(C) = A[o,~.,o,A]C U B. 
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It is easy to verify that  ~ is an w-continuous function, i.e. ~ commutes with the 
supremum of increasing sequences of elements from S[o,~,o,a] . Therefore, by Kleene's 
fixed point theorem ~ has a least fixed point, X0 -- V ~ ( 0 ) ,  where T~ means identity 
if n = 0 and ~+1  = T o T~ if n > 0. In our case, we obtain X0 = A[~176 ~, o, A]B, 
which completes the proof. [] 

C o r o l l a r y  16. The result of the above lemma remains true if the semiring $[o,~,o,~] 
is replaced by any of the semirings S[o,~,o,a,k], 7-/[o,~,o,a,k], k >_ 0. 

Let X = {X1, . . .  ,X~} be a set of variables such that X N ~ = O. 

D e f in i t i on  17. A monomial over 8[o,~,o,Z~] with variables in X is a finite string of 
the form : 

AI[O, t>, o, A]A2[o, ~, o, A ] . . .  [0, ~, o, A]Ak 

where Ai E X or Ai C_ ~*, IAi[ < cxD, i = 1 , . . . ,  k (without loss of generality, Ai = {ai} 
with ai C ~* suffices instead of Ai C ~*). 

A polynomial p(X) over S[o,~,o,a] is a finite union of monomials. 
A system of equations over S[.,~,o,a] is a finite set of equations: 

E = {Xi =p~(X) li = 1 , . . . , n } ,  

where pi(X) are polynomials. 
The solution of E is a n-tuple (L1 , . . . ,L~)  of languages over Z, with the prop- 

erty that  L+ = pi(L1,...,L~) and the n-tuple is minimal with this property, i.e. 
if ( n~ , . . . ,  L~) is another n-tuple that  satisfies E,  then (L1 , . . . ,  L~) < (L~ , . . . ,  L ' )  
(where the order is defined componentwise with respect to inclusion). 

As in the case of Lemma 15, see also [8], it can be shown that: 

T h e o r e m  18. Any system of equations over $[o,~,o,al ($[o,~,~ T/[o,~,o,a,~], k > 0) 
has a unique solution. 

C o m m e n t .  This solution is also the least fixed point, and it is the limit of an 
iteration starting with (X1 , . . . ,  X=) = (~ , . . . ,  ~). 

4 .  R a t i o n a l  a n d  A l g e b r a i c  L a n g u a g e s  w i t h  M i x  
O p e r a t i o n  

In this section we will consider properties of languages defined in a way analogous 
to the classical rational and algebraic languages, but with the operation [% ~, o, A]. If 
necessary, we will also include the alphabet ~ into our notations. 

D e f in i t i on  19. A language L is (mix operation) algebraic over (2,  A) if and only 
if L is the component of the solution of a system of equations over S[o,~,o,a,2]. 

Notation.  

Alg([o, o, A, = {L t L is [o, o,/']-algebraic over (r,  A}, 

Alg([o,~,o,E]) = U Alg([o,~,o,A,E]), 
ACE 

Alg([<>,~,o]) = {L I 3 Z,L e Alg([o,~,o,E])}. 
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Def in i t i on  20. The family of (mix operenation) rational languages over the semir- 
ing 3'[o,~,o,a,~] is the smallest family of languages, denoted Rat([(>, ~, o, A, E]), such 
that: 

(i) if F C ~* finite, then F E Rat([(>, ~, o, A, Z]). 
(ii) if A, B E Rat([<), ~, o, A, 2]), then A U B e Rat([<), ~, o, A, E]). 
(iii) if A, B E Rat([o, ~, o, A, ~,]) then A[% ~, o, A]B C Rat([(>, ~, o, A, El). 

(iv) if A e Rat([(>, ~, o, A, ~]), then A [~176 E Rat([(>, ~, o, A, 2]). 

Notation.  

Rat([<>, ~, o, E]) = U Rat([o, ~, o, A, El), 
ACE 

Rat([% ~, o]) = {L[~ 2, L e Rat([%~,o,2])} .  

Def in i t i on  21. A monomial is rationaliff it is of the form a[(>, ~, o, A]Y or of the 
form a,  where Y is a variable and a E 2*. 

A polynomial is rational iff it is a finite union of rational monomials. 
A system E -- {Xi = pi(X) I i = 1 , . . .  ,n} is rational if each polynomial p~ is a 

rational polynomial, i = 1 , . . . ,  n. 

The following theorem recovers a fundamental result: 

T h e o r e m  22. The following assertions are equivalent: 

(i) L E Rat([o,~,,o,A,~]). 

(ii) L is a component of the solution of a rational system of equations over the 
semiring 8[o,~,o,~,~]. 

Proof. This follows in a straightforward way from the general theory of semirings, 
see [8] or [1]. [] 

C o m m e n t .  The Same holds if in Definition 21 rational is defined by using 
Y[o, >, o, A]a instead of a[(>, >, o, A]Y. 

C o m m e n t .  From the above theorem, it follows that 

Rat([<>, ~, o, A, 2]) C_ Alg([o, ~, o, A, E]), 

Rat([(>, ~, o, E]) C Alg([o, ~, o, El), 

Rat([<>, ~, o]) _c Alg([o, t>, o]). 

The next theorem states some closure properties. 

T h e o r e m  23. For any 2 and for any A, A C_ E, the class Alg([o, ~, o, A, ~]) is 
closed under union U, mix operation [% ~, o, A], and [% ~., o, A]-elosure [o ..... ~]. 

Proof. (1) Let Li,  L2 E Alg([o, ~, o, A, E]). There exist algebraic systems of equa- 
tions E1 and E2 such that Li corresponds to the Xi component of the solution. With- 
out loss of generality, we can assume that E1 and E2 have disjoint sets of variables. 

Let X3 be a new variable and define the following system of algebraic equations: 

E3 = E1 u E2 u {X~ = Xl u X2 }. 
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Obviously, the component of the solution of E3 corresponding to Xz, is L3 -- 

L1 U L2. 
(2) For proving closure under [% ~, o, A] define E3 as follows: 

E3 = E1 U E2 O {)(3 = Xl[O,[>, o, A]X2}. 

Obviously again, the component of the solution of E3 corresponding to X3, is the 
set L3 = Ll[<>,c-, o, A]L2. 

(3) Finally, for [o, ~, o, &]-closure define: 

E3 = E~ U {Xa = Xl[O,~ ,o ,A]g3v  {/~)}. 

The component of the solution of E3 corresponding to the variable X3, is the set 
_ _  r[O,~,o,AJ [] 

L3 --  ~1 

5. R a t i o n a l  a n d  A l g e b r a i c  L a n g u a g e s  w i t h  Special 
M i x  O p e r a t i o n  

In the remaining part of this paper we will assume the following additional condi- 
tions on the underlying operations o, ~, and o. The first one is on the lengths. 

Vz�9 {x).{y}:lzl=lxl+lyl. 

Then all sets {x}.{y) for �9 �9 {o, ~, o) are finite, as well as the set {x}[o, ~, o, A]{y}. 

The second one concerns the Parikh vectors. It implies the first condition. 

Vz e {x} .  {y}: ~(z) = ~(x) + ~(y) .  

The classical catenation �9 and shuffle Ill are fulfilling these conditions. 

Assuming the first condition the following pumping lemmata can be shown as in 
the classical case (see also [5]): 

L e m m a  24. Let L e Rat([o,~.,o]) with L C E*. Then there exist A C E and 
n(L) > 0 such that, for any w E L with [w] > n(L), there exist Xl, x2, x3 �9 Z* such 
that: 

(i) w �9 {xl}[<>, ~, o, A]{x2}[o, ~, o, A]{x3}. 
(ii) 0 < Ix2] < n(L). 
(iii) {Xl}[O, I>, O, A]{X2}[ ......  A][O, ~, O, A]{x3} C_ L. 

L e m m a  25. Let L �9 Alg([o,~.,o]) with L C E*. Then there exist A C E and 
n(L) > 0 such that, for any w �9 L with Iwl > n(L), there exist xl, x2, x3, x3, x5 �9 E* 
such that: 

(i) w �9 {x,}[o,  ~, o, A]{z2}[% ~, o, A]{x3}[o, ~, o, A]{x4}[o, ~,, o, ~] {~}. 
(ii) Ix~x3~41 _< ~(L). 
(iii) 0 < Ix2x41 
(iv) Vk > o : 
{x~}[o, ~, o, ~]{x~}[ ...... ~1(~)[o, ~, o, A]{x3}[o, ~, o, A]{~}[o,~,o,~1(~)[o, ~, o, ~]{x~}  c 

L. 
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As in the classical case, it is also possible to prove a result on the set of Parikh 
vectors of L E Alg([(>, ~, o]). 

L e m m a  26. Let L E Alg([(>, :,, o]). Then the set ~r(L) of Parikh vectors of L is a 
semilinear set. 

Proof. This can be shown as in the classical case. Note that  x[(>, ~,, o, A]y and xy 
yield the same Parikh vectors. [] 

F r o m  this follows immediately 

C o r o l l a r y  27. Let L E Alg([(>, ~, o]). Then the set of lengths u(L) = {[w I [ w E L} 
is a semilinear set. 

L e m m a  28. Alg([(>, ~, o]) C VS. 

Proof. For any L E Alg([(>, ~, o]), i.e. L component of the minimal solution of 
an algebraic system of equations, it is easy to construct a LBA, verifying for any 
input w if w E L. Here we must point out that  the system can be considered without 
coefficients A and thus, in Kleene's iterations the length of words is strictly increasing. 
Therefore, Alg([(>, ~, o]) C CS. 

Consider the language: 
L = {a=b '~2 I n > 0}. 

Obviously, L E CS, but note that  v(L) = {]w] I w E L} is not a semilinear set. Thus, 
by Corollary 27, L • AIg([(>, ~, o]), hence the inclusion is strict. [] 

Defining the language families Alg((>), Rat((>), Alg(~), Rat(~) in a similar way, 
and using Remark 9, the relations between these language families can be stated in 
the following diagram where all relations, except for that  stated in Lemma 28, are 
also valid in the general case. 

CS 

Alg([(>, ~, o]) 

Alg((>) Alg( ) 

Rat((>) Rat(~) 

Finally, we show a decidability properties of Rat([(>, ~, o]) which holds only for 
special mix operation with the first condition. 

T h e o r e m  29. The membership problem, the emptiness problem, and the infinity 
problem of Rat([(>, ~, o]) are decidable. 

Proof. This can be seen immediately from the finite representation of L E 
Rat([(>,~,.O]! by U, [% ~, o, A], and [  ...... z~]. [] 
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Conclusion.  In [91 the case [., ill, .1 of [% ~, o] was considered whereas in [5], [61, 
[7] the case of [.,., .]. In another paper we will investigate the remaining cases with �9 
and ill. 
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A b s t r a c t .  We investigate complexities of insertion operations on formal 
languages relatively to complexity classes. In this way, we introduce op- 
erations closely related to LOG(CFL) and NP. Our results relativize 
and give new characterizations of the ways to relativize nondeterministic 
space. 

1. Introduction 
There are many close connections between the theory of formal languages and 

structural complexity theory [14], [17]. While it is obvious to express the complexity 
of classes of formal languages in terms of completeness results, it is another question to 
classify the complexity of operations on formal languages [4], [11], [13]. Our approach 
is to determine relatively to a base complexity class A. In this way, we consider two 
constructions: on the one hand we analyze the complexity of a single application of 
an operator op to A. This leads to the class APPL(A, op) of all languages reducible 
to op(L) for some L 6 A. The drawback of this class is that it is not necessarily closed 
under op, even if op is idempotent. Therefore, we consider also the class HULL(A, op) 
which is the smallest class containing A and closed under op as well as downward under 
Iogspace many-one reducibility. 

In this notation, for example the relation between the Kleene star (STAR), non- 
erasing homomorphism (HOM) and the complexity classes NSpacc(log n), NP, and 
1DSpace(log n) (the class of languages recognizable by logarithmically space bounded 
deterministic Turing machines with one-way input tape) are: 

NSpace(logn) = APPL(1DSpace(logn),STAR) 
= HULL(1DSpace(logn),STAR), 

whereas for nonerasing homomorphisms we find 

NSpace(logn) = APPL(1DSpace(logn),HOM) and 

NP = HULL(1DSpace(logn),HOM). 

There are many more relations like this, nearly all pertaining to the classes 
NSpace(log n) and NP. We remark that LOG(CFL)~ the complexity class generated 
by the context-free languages, has not been characterized in this way. 

One of the main results of this paper will be the construction of an operation on 
formal languages filling this gap. The key observation to do this will be to consider 
operations which are iterations of simpler operations. As an example, Kleene's star 
operation may be regarded as the iterated application of the operation of concatena- 
tion. We will now replace concatenation by the more complex operation of (monadic) 
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insertion of languages. A similar approach was made in [6], [7], [10], [15] in terms 
of iterated substitution. The difference is that we here are interested in complexity 
theoretical aspects. 

Since insertion is not associative there are several possibilities to iterate the op- 
eration of insertion. One is to do it outside-in (0I), i.e., to insert atomic words into 
composed ones, while inside-out (IO) iteration of insertion inserts composed words 
into atomic ones. It will turn out that outside-in iterated insertion characterizes NP, 
while inside out iterated insertion characterizes NSpace(log n). The anticipated oper- 
ation characterizing LOG(CFL) is now obtained by iterating the operation of binary 
insertion. Again the outside-in iteration of binary insertion characterizes NP, while 
the inside-out iteration now characterizes LOG(CFL). In particular we obtain the 
following equations: 

1. NSpace(logn) = APPL(1DSpace(logn),IOMoN) 
= HULL(NSpace(logn),IOMoN), 

2. LOG(CFL) = APPL(1DSpace(log n), IO,xN) = 
HULL(LOG(CFL), IOBIN), 

3. LOG(CFL) = APPL(1DSpaee(log n), 0I),  

4. N P  = APPL(nSpace(log n), 0I) = HULL(NP, 0I) ,  and 

5. NP  = HULL(1nSpace(log n), 0I). 

In a second part we show that all these relations relativize. It is interesting to see 
how the different ways to iterate insertions characterize the different ways to equip 
space bounded complexity classes with oracles: the two most important possibilities 
to relativize nondeterministic space are that of Ladner and Lynch [12] and that of 
Ruzzo, Simon, and Tompa [18]. These two notions carry over in a natural way to 
time and space bounded auxiliary pushdown automata. It turns out that the outside- 
in iteration of insertion corresponds to LL-relativizations while inside-out iterations 
pertain to RST-relativizations. 

2. Pre l iminar i e s  

We assume the reader to be familiar with the basics of complexity theory as 
contained in [1], [9], [20]. In particular, we will deal with the well-known sequence of 
complexity classes: 

1DSpace(log n) C_ DSpace(log n) C NSpace(log n) C_ P C_ NP. 

Here 1D Space(log n), D Space(log n), U Space(log n), P, and UP, respectively, denote 
the set of all problems recognizable in one-way logarithmic space, logarithmic space, 
nondeterministic logarithmic spat% polynomial time, and nondeterministic polyno- 
mial time, respectively. 

Completeness and hardness results are always meant with respect to deterministic 
logspace many-one reducibilities, unless otherwise stated. L <_~s M is used to denote 
the fact that L is reducible to M. For a class A let LOG(A) := { L I 3MeA : L <log 
M }. In addition, we use $ to denote the empty word, Iwl for the length of a word w, 
and w R for the mirror image of w. 
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In the following, we will often make use of the concept of auxiliary pushdown au- 
tomaton [2], [9]. Let NAuzPDA-Timc@ace(t(n), s(n)) denote the set of all problems 
accepted by O(t(n)) time- and O(s(n)) space-bounded nondeterministic pushdown au- 
tomata. The importance of this automaton model is demonstrated by its ability to 
represent the classes 

P = NauxPDA-TiraeSpace(2 ~ log n) [2] and 

LOG(CFL) = NauxPDA-TimeSpace(n ~ [19]. 

Throughout this paper, we will consider complexities of operations on formal lan- 
guages. In this context, we introduce a "measure" for the complexity of an operation 
relative to a complexity class. 

Def in i t ion  1. Let op be an operation on formal languages and A some class, then 
op(A) := {op(L) lL  E A }. 

We define APPL(A, op) to be the logspace many-one closure of op(A), i.e., 
APPL(A, op) is the set LOG(op(A)). For iterating the hPPL-operation on a 
class A of languages we define APPL~ op) := A and APPL~+I(A, op) := 
APPL(APPL;(A, op), op). 

Finally, let HULL(A, op) be the smallest complexity class closed under op that 
contains A. In other words HULL(A, op):= (Ji>0 APPLI( A, op). 

Obviously APPL(A, op) C_ HULL(A, op) and sometimes we refer to A in 
APPL(A, op) or HULL(A, op) as the base class. 

3. I t e r a t e d  I n s e r t i o n s  

We show that several nondeterministic complexity classes can be characterized 
in terms of formal language theoretical operations. One of the main results of this 
section will be the characterization of LOG(CFL). The formal language operations 
which will be studied in this section are natural generalizations of the concatenation 
operation, the so called insertion operations. Thus we define: 

Def ini t ion 2. Let L1 and L2 be arbitrary languages. The monadic insertion of L1 
into L2 is defined a s  L1 ~ L2 :--= { WlVW2 I V E L1 and wlw: E L2 }. 

In contrast to operations like concatenation or shuffle, the above operation is not 
associative. Hence, there are several ways to iterate it. The first possibility is to 
insert composed words into "atomic words," i.e., to make the iteration in an inside- 
out manner. Thus, for monadic insertion we define 

Ins ide -Out  rnonadie  insert ion  

1. Let IOMoN(L, 0) := {A} and IOMoN(L, (i + 1)) : =  I O M o N ( L ,  i) ---+ L. 
2. Finally set IOMoN(L) := ~.Ji>0 IOMoN(L,i). 

The other possibility to iterate the insertion process is in a so called outside-in manner, 
i.e., to insert "atomic words" into composed ones. Thus, for the monadic insertion 
we define: 

Outs ide - in  m o n a d i c  insert ion  

1. Set OIMoN(L, 0) := {A} and OIMoN(L, (i + 1)) := L --+ OIMoN(L, i). 
2. Finally set OIMoN(L) := I.J~>00IMoN(L, i). 
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E x a m p l e  1. Let F be the finite set {(,)}. Then IOMoNF is a linear language 
generated by the g rammar  G = ({S}, {(,)}, P, S) with the productions P = {S --+ 
~, S -+ (S), S ~ $ 0 ,  S --+ 0 S, S ~ 0}" On the other hand one readily verifies that  
OIMoN(F) equals to the Dyck set D1. 

In next subsections~ we will see that  the complexity of these two iterated monadic 
insertions lead not to the class LOG(CFL), but again to NSpace(logn) and NP,  
only. Thus, in order to find a complete operation for LOG(CFL) we have to define a 
more "complicated" version of insertion. 

Definition 3. Let L1, L2, and L3 be arbitrary languages. The binary insertion 
of L1 and L2 into L3 is defined as 

(L1, L2) --4 L3 : :  { WlUW2VW3 ] U e L1, v e L2, and wlw2wa e L3 }. 

Again, we have two possibilities to iterate the insertion process: 

Inside-Out binary insertion 

1. Set IOBIN(L, 0) := {~}, IOBI]v(L, 1) := L, and 
IOBIN(L, (i + 1)) := U0<j<, (IOsIN(L, j ) ,  IOB,N(L, (i -- j))) ~ L. 

2. IOszN(L) : :  Ui>0 IOBIN(L,i). 

O u t s i d e - I n  binary insertion 

1. Let OIBIN(L, O) : =  { ~ } ,  IOBIN(L, 1) : :  L, and 
OIB,]v(L, (i + 1)) := 

Uo_<j_<l (OIsIN(L,j),  OIsIN(L, (1 -- j ) ) )  --+ OIB,N(L, i). 

2. OIBIN(L) :---- Ui_>00IBIN(L,i). 

For the outside-in binary insertion OIBIN(L) o n e  shows that  this insertion process 
coincides with the outside-in monadic one. Thus, we have: 

L e m m a  1. OIMoN(L) ---- OIBxN(L) for arbitrary language n. 

Because of this lemma, we deal only with one outside-in operation in the sequel, 
and define OI(L) :-- OIMoN(L) for an arbitrary language L. Let us give a further 
example. 

E x a m p l e  2. Let F be the set of the previous example. By Lemma 1 and the 
definition of the OI-operat ion we have OI(F) = D1 and an easy induction on the 
iteration process shows that  IOBIN(F) = D1, too. 

3.1. Closure under Iterated Insertion 

In this subsection, we show that  several complexity classes are closed under i terated 
insertion. First, we consider inside-out iterated monadic and binary insertion. In both 
cases, the main idea for an algorithm to check IOMoN(L) o r  IOBIN(L) is the same. 
The machine that  checks IOMoN(L) membership works as follows: on input w it 
guesses a decomposition w = wluw2, checks whether wlw2 C L, and recursively 
verifies that  v belongs to IOMoN(L). Then following proposition is easy to see: 
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Proposition 1. I f  s(n) >_ log n, then IOMoN(NSpace(s(n))) C NSpace(s(n)). 

In case of binary inside-out iterated insertion we do similarly, but now using an 
auxiliary pushdown automaton. On input w the machine guesses a decomposition 
wluwzvw3, checks whether waw2w3 E L, and recursively verifies whether both words u 
and v belong to IOBm(L).  To do so the machine stores the begin and end of the 
subwords u and v on its pushdown. If the nondeterministic auxiliary pushdown au- 
tomaton that accepts L is O(t(n))-time and O(s(n)) space bounded, then the machine 
that  checks IOslN(L) membership is O(n.  t(n))-time and O(s(n)) space bounded. 

Theorem 1. Let s(n) > log n and t(n) >_ n ~ I f  L is a member of 
the class NauxPDA-TimeSpace(t(n) ,s(n)) ,  then the language IOszN(L) belongs to 
Naux P D A-TimeSpace(n . t(n), s(n) ). 

Observe that with a little bit more advanced algorithm we can even check OI(L) 
membership in NauxPDA-TimeSpace(2 ~ s(n) ) if L e 1DSpace(s(n) ). The only 
modification in the construction is, that  the automaton which accepts OIMoN(L), 
guesses a decomposition UoWlUlW2U2 ... U~-lW~Ut+l while the input head scans the in- 
put from left to right, and checks by simulating the one-way nondeterministic O(s(n)) 
space bounded Turing machine whether WlW2... wt belongs to L. Then the machine 
recursively verifies--as described above--whether the words ui, for 0 < i < t + 1, 
belong to OIMoN(L). 

As an immediate consequence of the characterization of LOG(CFL)  and P in 
terms of nondeterministic auxiliary pushdown automata [2], [19] we get the closure of 
both classes under inside-out iterated binary insertion. 

C o r o l l a r y  1. IOBIN(LOG(CFL)) C LOG(CFL)  and IOBIN(P) C_ P. 

At this point we want to mention two things: (1) The construction presented 
to check IOBi2v-membership can be generalized to IO-membership for insertions 
where the possible insertion points into a word is constantly bounded. Hence, e.g., 
LOG(CFL)  is also closed under iterated inside-out ternary insertion. (2) Moreover, 
we want to point out that  DSpace(log 2 n) is closed under both types of inside-out 
iterated insertion. 

Finally, we mention the closure of N P  under OI-operation. This proof is straight- 
forward and is left to the reader. 

Proposition 2. OI(NP) C_ NP.  

3.2. Hardness of Iterated Insertion 

For technical reasons we introduce a notation, the so-called insertion tree, which 
is helpful in analyzing inside-out iterated monadic and binary insertion. 

Definition 4. An insertion tree over a terminal alphabet T is a construct 
I = (V, h, x0, label, T), where 

1. (V, h, x0) is a tree rooted in x0 E V, i.e., h : V ~ V points every node to its 
father, h(xo) = xo and for all x E V there exists an n >_ 0 such that  h~(x) = xo. 

2. label : V --~ T*(VT*)* is the labelling function. 

For an insertion tree I we define the functions 
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1. word:  V --~ T*, by word(x) := W O W l . . .  Wt, if label(x) = w o x l w l . . ,  wt_lxtwt,  

2. yield : V --* T* inductively by yield(x) = woyie ld(x l )wl . . ,  wt_lyield(xt)wt,  if 
label(x) = woxlw~ . . . Wt_lX~W~. 

An insertion tree I is called (1) monadic if the mapping label only takes images 
in T* U T*VT* and (2) binary if it only takes images in T* U T*VT*VT*.  

Obviously, for any language we have: 

L a m i n a  2. Let L C T* and w C T*. The word w belongs to IOMoN(L) 
(IOBIN(L), OI(L) ,  respectively) if and only if there exists a monadic (binary, ar- 
bitrary, respectively) insertion tree I = (V, h, x0,1abel) such that yield(xo) = w and 
for all x E Y we have word(x) C n U {~}. 

3.2.1. H a r d n e s s  of  the  IOMoN-Opera t ion  

The following theorem shows close relation of IOMoN and NSpace(log n). We 
state it without proof, since it is very similar to that on showing the analogous results 
of the Kleene star operation [4], [16]. 

T h e o r e m  2. There is a language LM in 1DSpace(logn) such that IOMoN(LM) 
is N Space(log n )-complete. 

Essentially the strings in LM a r e  of the form bn$(a*$b*$)*~=($a*$b*)*$a n. The 
Kleene closure of this language is NSpace(log n)-complete. But the power of the 
IOMog-operation makes it necessary to extend the construction in order to avoid 
"wrong" insertion. The details are similar to, although less extensive than, those 
provided in Theorem 3. Using Proposition 1 we get: 

Coro l l a ry  2. NSpace(logn)  = APPL(1DSpace( logn) , IOMoN)  
= HULL(NSpace( logn) , IOMoN) .  

This implies the following equalities: A P P L ( 1 D S p a c e ( l o g n ) , I O M o g )  = 
APPL(DSpace ( logn ) , IOMoN)  = HULL(1DSpace(log n) , IOMoN).  Later we will 
see that the OI-operation is much more sensitive with respect to this difference. 

3.2.2. H a r d n e s s  of  the  IOBiN-Opera t ion  

Before we come to one of the main results of this paper establishing a close link 
between iterated binary insertion and polynomially time bounded auxiliary pushdown 
automata we need the following lemma. 

L e m m a  3. There exists a LOG(CFL)-complete  context-free language which is 
generated by a context-free grammar G = (N ,T ,  P, S), with nonterminals N,  termi- 
nals T,  axiom S, and production set P C_ N • (T tA TN2).  

Observe, that context-free grammars which satisfy P C_ N • (T U T N  2) can only 
generate words of odd length. Hence such a normal-form for context-free grammars 
does not exist in general. 

Proof. Without loss of generality one can assume that the LOG(CFL)-comple te  
context-free language L is generated by a grammar G = (N, T, P, S) being in 2- 
standard Greibach normal-form, i.e., 

P C_ g • ( ( T U T ( N \  {S}) U T ( N \  {S})2). 
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We will use new symbols # ,  X with subscripts which are not contained in N 
and T. We first modify the production set P in the following way: 

Px := { A - * a a ] A ~ a E P } U { A - - + a a B I A - ~ a B E P } U  

{ A ~ aaBC I A--* aBC E P }. 

Observe that the language G~ = (N, T, P~, S) is LOG(CFL)-complete, too. Then 
let us construct a grammar G2 with L(G2) = L(G~){#}. Every word that belongs 
to L(G1){#} has odd length. Set 

P2 :~  

and let 

{ X ~ a I a E T } U  

{ XAb --+ aXaXs, XbA ~ bX~X~, XbDA ~ bXDaXa I A --~ aa e P1 } U 

{ XAb -~ aXaXBb, XbA --~ bXaXaB, XbDA -"* bXDaX~B t 

A --* aaB E P1} U 

{ XAb --* aX~BXcb, XbA --* bXoX~sc, XbDA --* bXD~X~sc I 

A ~ aaBC G P1 } 

G2 = (NO {Xs#}  U { Xa,X~B,X~sv [ a G T and B , C  ~ N } , T U  {#} ,P2 ,Xs#) .  

Then P2 has the expected normal-form, and obviously L(G2) is LOG(CFL)-com- 
plete. [] 

T h e o r e m  3. There is a set LB in 1DSpace(logn) such that both OIMoN(LB) 
and IOmN(LB) are LOG(CFL)-complete. 

Proof. We start with a LOG(CFL)-complete language L1 which is generated by a 
context-free grammar G = (N, T, P, S) satisfying the requirement of the above lemma. 

Observe that we do not require L1 to be a hardest language in the sense of Greibach 
[6], but only to be LOG(CFL)-complete. Our construction closely follows that one 
of Greibach although we have to be more careful due to the nonsequential nature of 
iterated insertion (compared to inverse homomorphism). 

In the following we will need new symbols $, # ,  0, 2, and F contained in neither N 
nor T. In addition, let N := { A I A G g U {F} } be a disjoint copy of g t2 {F}. 

For an arbitrary a C T consider all productions Pl , . . .  ,pk such that pi E N x (a U 
aN 2) for each 1 < i < k. For each i > 0 and each 1 _<_< j < k define 

{ .42CB$ ~ if pj equals A --* aBC 1 
f?(J) := A0$ ~ if pj equals A --* a 

and 

f~a(J) := f i2FF$' 

Further on we set 

g~' : -  $ ' f~(1)f~(2) . . .  f~(k) 

1Observe the inversion of B and C. 

if pj equals A --+ aBC 
if pj equals A --* a. 

and g~ := $if[a(1)f~(2). . .  f[~(k). 
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For a word w = al  . . .  as  C T* with a / C  T we define 

a l  a2 It an--1 ii l a n  II ~n..~-I Fl%~iq,31~l i i  ~n'~2~N h(al .. .  am) :=  S~fgl #g2 # . . .  :fl=gn-1 =ffgn =ft:r ue~ y1=r r v .  

Obviously, the  mapping is computable  in determinist ic  logari thmic space. 
Now we define the  language LB. Firs t  let 

R := {A0 I A E N U  { F } }  U { f t 2 B C I A  E g and B , C  �9 N U  { F } }  

and for i >_ 0 set R~ := $i(R$i) *. Finally, define 

LB :=  {Aa#137tc I 3i > 1:  a e Ri-l , f l  �9 Ri;A �9 N tO { F } ; c  �9 {0,2} }. 

Obviously, LB is a member  of 1DSpace(log n). 
The idea underlying this construction is to t ranslate  a derivation tree of G into an 

insert ion tree as follows: if A is a nonterminal  labelling the root of a subderivation 
tree :D and B and C are the root-labels of the left and right subtrees DL and DR, 
there will be three elements of LB, namely WA := Aa#/~A2,  ws  := Bal~f l 'Bd,  and 
wc :=  Ca"#fl"Cc". The corresponding par t  of the insertion tree will consist of WA 
on top,  Wc inserted at the very right end of WA, and wc inserted after the first symbol 
of wo, which is the symbol C. That  is left brothers become the left sons of the right 
brothers.  This is i l lustrated in Figure 1. 

/ \  A 

Figure 1. The conversion of a derivation tree into an insertion tree 

Now we have to prove w �9 L 1 if and only if h(w) �9 OI(LB) if and only if h(w) �9 
IOBIN(LB). It is easy to show tha t  w E L~ implies h(w) �9 IOB~N(LB) and hence 
h(w) �9 OI(LB). The converse makes use of the many addit ional  features which we 
added to Greibach 's  construction [6]. 

Let us assume h(w) �9 OI(LB). Then there exists an insertion tree I = 
(V,h, xo, label) with yield(x0) = h(w) and word(z) �9 LB for all x �9 V. We pro- 
ceed in several stages: 

S t e p  1 Let x �9 V and label(x) = woxlwl . . .x ,wt .  Due to the increasing length of 
the  $i-blocks it is easy to see that  for a typical  element Ao~#flfi, c �9 LB there 
are only three  places to perform insertion: before A, behind A, or after the c. 
Otherwise the resulting word could no longer be a subword of h(w). 
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S t e p  2 We can rearrange I in the following way: F i r s t , / n o  longer has nodes inserting 
the  empty  word, and second whenever two nodes in I are direct ly neighboured, 
i.e., the concatenation of the yields is a subword of h(w), the right one is inserted 
as a son at the  very right end of the left one. The way to rearrange I is indicated 
in the  Figures 2 and 3. 

Figure 2. First  rearrangement of the insertion tree I .  

S t e p  3 After the rearrangement,  each node x of I is either a leaf or has at most  two 
sons, one inserted at the right end of word(x) and one after the first symbol  
of word(x). Let x be in V and word(x) = Aa#~ f t c  E Lo. Then we set 
nonterminal(x) := A and index(x) := i if fl E R~ (and a E R~-I). It is not 
hard to work out that  nonterminal(xo) = S. 

Step 4 The structure of the mapping h enforces the following claim: 

C l a i m .  If x E V with word(x) = Aa#/~71c possesses a right son y, inserted 
after the  symbol  c, then (1) c -- 2 and (2) y possesses a left son z inserted a f t e r  

the first symbol of word(y). 

Proof. If word(y) = Ccz"#fl"Cc', then AcC must be a subword of h(w), since 
otherwise nothing is inserted left of C. Hence c cannot be 0, but  must  be 2. 
But then we need a second nonterminal following the symbol 2. This can be 
only provided by the insertion of a left son z after symbol c. [] 

S t e p  5 Inductively we define the mapping derive : V --* T* by derive(x) :=  hi, if 
x does not possess a r i g h t  son i n I .  H e r e i  :=index(x).  I f i  > n + l ,  we set 
a~ :=  A. If x possesses a right son y we know by the previous step tha t  y in turn 
possesses a left son z. In this case we define derive(x):= alderive(z)derive(y). 
The reader  may verify that  derive(xo) = w! 

S t e p  6 For each x E V with index(z) <_ n we have A ~ derive(x). In par t icular  
S = nonterminal(xo) ~ w, i.e., w E L1. 
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Proof. If x has no right son, then word(x) = A ~ 7 t O  for some a E R~-I, 
fl E Ri, and i := index(x). Hence, $~A0 is a subword of h(w) and g~.'. This 
implies that A --* ai is in P. Hence A ~1 a a l  = derive(x). 

If x possesses a right son y with nonterminal(y) = C, then by Step 4 the node y 
has a left son z with nonterminal(z) = B. Then we have that $ift2CB is a 
subword of h(w) and hence of g~. This implies A ~ a~BC is in P. Hence, by 
induction A ~1 a a~BC ~*  G a~derive(z)derive(y) = derive(x). [] 

Figure 3. Second rearrangement of the insertion tree I.  

Using Corollary 1 we get: 

Coro l l a ry  3. 

1. LOG(CFL)  = APPL(1DSpace(logn),IOBiN) 
= HULL(LOG(CFL) ,  IOB~N). 

2. LOG(CFL)  = APPL(1DSpace(log n), 0I) .  

3.2.3. H a r d n e s s  of t he  O I - O p e r a t i o n  

In this sub-subsection, we will exhibit some crucial differences in the structural 
behaviour of OI compared with IOMoN and IOBIN. 

T h e o r e m  4. N P  = APPL(DSpace( logn) ,OI)  
= HULL(1DSpace(log n), OI) = HULL(NP,  OI). 

Proof. We first show the inclusion N P  C_ APPL(DSpace(log n), OI). Let L1 and 
L2 bet the sets: 

L1 := {$al$$a2$$...$$ak$@b@ I a l , . . . , a k ,  b are binary numbers 
k with ~ i = l a i  = b} and 

L2 := { $a$1a is a binary number }. 

Now set Lot := L1 U L2. Obviously, LoI belongs to DSpace(logn) and language 
OI(LoI)N ((${0, 1}*$)*#{0, 1}*#) is the NP-complete subset-sum problem (see, e.g., 
[20]). Hence, OIMoN(LoI) is gP-complete ,  too. 
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The inclusion APPL(DSpacc(logn),OI) C_ HULL(1DSpace(logn),OI) fol- 
lows since the former class is included in APPL2(1DSpace(logn),OI). Finally, 
HULL(1DSpace(log n), OI) C HULL(NP, OI) is trivial and to close the circle we 
use Proposition 2 and the fact that NP is closed under deterministic logarithmic 
space bounded reducibilities, which gives us HULL(NP, 0I)  C NP. [] 

We want to mention that the above given construction even works with an 
"unbounded" variant of insertion, i.e., the number of insertion points are not 
bounded any more. Moreover, if one modifies set L2 to be { $al$$a2$$... $$ak$ I 
al, a2 , . . . ,  ak are binary numbers }, then one obtains subset-sum with the shuffle op- 
eration (SHU). Since NP is closed under shuffle it equals the complexity class 
APPL(DSpace(log n), SHU). This strengthens a result in [8]. 

In the light of construction following Theorem 1 we should not hope to find a 
language L in 1DSpace(logn) with an NP-complete set OI(L), since this would 
imply LOG(CFL) = P = NP. 

This sensitivity of the OI-operation with respect to the used base class leads to sur- 
prising phenomena: OI compared to [OMoN is idempotent, i.e., OI(OI(L)) = OI(L) 
while in general IOMoN(L) C IOMoN(IOMoN(L)) for a language L. But on the other 
hand, we have AP P L(1DSpace(log n), IOMoN) = APPL2(1DSpace(log n), IOMoN) 
while APPL(1DSpace(log n), 0I) = LOG(CFL) seems to be different from the class 
APPL2(1DSpace(log n), OI) = NP. 

3.3. Re la t iv i za t ions  

We show that all the relations found in the previous section relativize. For space 
bounded complexity classes, there are two main possibilities to relativize them, i.e., to 
equip space bounded machines with an oracle mechanism. In the approach of Ladner 
and Lynch [12], further called LL-relativization, the machine may use all of its power 
to generate oracle queries, while in the approach of Ruzzo, Simon, and Tompa [18], 
further called RST-relativization, the queries have to be generated deterministically. 
As usual, the use of parentheses is reserved for the LL-mechanism, while the use of the 
RST-relativization is indicated by using angles. Hence, for an arbitrary oracle set A 
one gets, e.g., in case of nondeterministic logspace bounded Turing machines the LL- 
relativized class NSpace(log n) (A} and the RST-relativized version NSpace(log n) (A), 
respectively. Observe that in case of deterministic logspace bounded machines both 
relativizations coincide. 

In [13] it was shown that the relations 

1. g P  = APPL(DSpace(log n), HOM) = HULn(DSpace(log n), HOM), 

2. NSpace(log n) = dPPL(1DSpace(log n), HOM), 

3. g P  = HVLL(1DSpace(log n), HOM), and 

4. NSpace(logn) = APPL(DSpace(logn),STAR) 
= HULL(DSpace(logn),STAR) 

relativize, i.e, for an arbitrary oracle set A we have: 

1. NP  (A) = APPL(DSpace(logn)(A),HOM) = HULL(DSpace(logn) (A), 
HOM),  
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2. NSpace(log n)(A) = APPL(1DSpace(log n)(A), HOM),  

3. N P  (A) = HULL(1DSpacc(log n) (A), HOM),  and 

4. gSpace(logn) (A) = APPL(DSpace(logn)(A),STAR) 
= HULL(DSpace(log n) (n), STAR) .  

Observe that in the fourth relation the RST- and and in the second relation the 
LL-relativization is used. 

We will see this pattern again, when replacing nonerasing homomorphism by 
outside-in iterated insertion and the Kleene closure by inside-out iterated insertion. 
Before we can state our theorem, we need the following definition: 

Def in i t ion  5. A doubly RST-restricted nondeterministic polynomially time 
bounded logspace auxiliary oracle pushdown automaton is a nondeterministic poly- 
nomially time and Iogspace bounded pushdown automaton equipped with an oracle 
mechanism (tape, query- and answer states), which is not allowed to use nondeter- 
minism or its pushdown store while writing on its oracle tape 2. 

The class of languages reducible to an oracle set A via a doubly RST-restricted 
nondeterministic polynomially time bounded logspace augmented oracle pushdown 
automaton is denoted by NauxPDA-TimeSpace(n ~ log n) {A) . 

T h e o r e m  5. For an arbitrary oracle set A we have: 

1. N P  (A) = HULL(1DSpace(log n) (A), OI). 

2. N P  (A) -=- APPL(DSpace(log n) (A), 0 I )  = gvLn(DSpace( log  n) (A), 0I ) .  

3. NSpace(log n) {AI = APPL(1DSpace(log n) (A), IOMoN) 
= HgLL(1DSpace(log n) (A), IOMoN). 

4. NauxPDA-TimeSpace(n~ log n) (AI 
-= APPL(1DSpace(log n) (A), IOBIN) 
= HULL(1DSpacc(log n) (A), IOBIN). 

In the cases 1 till 3 it is possible to put oracle queries in the sets constructed in 
the Theorem 2 and 4, very similar to the methods used in [13]. The idea to prove 4 
is a bit more complicated since one has to deal with pushdown automata instead of 
grammars. That is, one has to combine the triple-construction with the inside-out 
iterated binary operation. [] 

4. C o n c l u s i o n s  

We investigated the computational power of operations on formal languages with 
respect to simple complexity classes. We introduced two new operations which were 
closely related to LOG(CFL)  and NP.  We mention in passing that similar results 
can be obtained when iterating the operation of deletion, defined in correspondence 
to that of insertion. 

There are several questions left open. An interesting aspect is the treatment of 
abstract storage types. Most results concerning context-free languages and pushdown 

2This is equivalent to a logarithmic bound on the oracle queries, if the oracle has access to the 
input word. 
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automata have been shown to remain valid if we replace in the automaton the push- 
down store by another arbitrary storage device. For languages this led to the notions 
of abstract families of automata or of automata with abstract storage [3], [5]. Essen- 
tially this led to the construction of permissible sequences of basic instructions of a 
storage type. For instance, the Dyck sets are the languages of correct computations 
of a pushdown store. In our framework this leads to the task to construct to an ab- 
stract storage type X a characteristic operation opx, which would play for X that role 
which inside-out iterated binary insertion plays for the context-free languages. The 
advantage of this approach is that all results obtained in this way would relativize. 
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The Decidabil i ty  of the Generalized Confluence Problem 
for Context-Free Languages 
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Abstract. A language L C E* is confluent with respect to a given quasi 
order < on E* if, for any x,y E L, there is z E L such that x < z and 
y < z. L is confluent with respect to < in generalized sense if it is a finite 
union of languages confluent with respect to <. We investigate in this 
paper the decidability of the generalized confluence problem with respect 
to the prefix partial order and the factor partial order for context-free 
languages, thus generalizing previous results concerning the decidability 
of the ordinary confluence problem. 

1. Introduction 

Starting from the property of the language of all factors of an infinite word to con- 
tain, for any two words of it, one which has the former two as factors, one introduced 
in [2] the notion of confluence. Generally, for any quasi order on a free monoid, the 
confluence property is the property of a language to contain, for any two words of 
it, one which is bigger with respect to the given quasi order than each of the former 
two. As shown in [2], the decidability of the confluence problem is closely related to 
the effective regularity of down-sets, where the down-set of a language is the set of all 
words smaller than the words in the language. 

The confluence property was generalized in [6] by considering languages which 
are finite unions of confluent languages. It was shown there that the generalized 
confluence property is closely related to the property of a quasi order of being a welt 
quasi order. 

We study in this paper the decidability of the generalized confluence problem 
with respect to the prefix partial order and the factor partial order for context-free 
languages. Our results generalize the similar ones for the ordinary confluence problem 
in [2]. 

The paper is organized as follows. After giving the basic definitions in the next 
section, we prove in section 3 that the generalized confluence problem with respect to 
the prefix partial order is decidable for context-free languages. It turns out that this 
decidability is closely connected with the decidability of the slenderness problem for 
context-free languages. In section 4 we prove that the same problem is undecidable 
for the factor partial order. 

2. Definitions 

For an alphabet E, we denote by E* the free monoid generated by E and by /k, 
the empty word, its identity. For a word w C E*, Iwl denotes the length of w. 

1Research supported by the Academy of Finland, Project 11281 
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Given a quasi order ~ on E*, we say that a language L C E* is confluent w.r.t. < 
if, for any x, y E L, there is z C L such that x __ z and y < z. For a positive integer 
k > 1, L C_ E* is called k-confluent w.r.t. < if 

k 

L = U L i ,  
i=1 

for some Li _ E*, Li confluent w.r.t. _~, for any 1 < i < k. L is confluent w.r.t. ~_ in 
generalized sense if L is k-confluent w.r.t. <,  for some k > 1. 

Notice that  this is a generalization of the ordinary confluence since 1-confluent 
is the same as confluent. Also remark that the empty language is confluent w.r.t. 
any quasi order and, for any two quasi orders ~1 and _~2 on E*, if _~1C_~2, then any 
language confluent w.r.t. _<1 is confluent also w.r.t. _<2. 

The down-set of L w.r.t. <, denoted ~< L, is the set 

I < L  = {w �9 E* I w < u for some u �9 L}. 

For any quasi order < on E*, the down-operator ~< is monotone and idempotent. 
The two partial orders we deal with in this paper are as follows, where u, v are 

finite words over an alphabet E: 

prefix: 
factor: 

u _<p v iff there is w �9 E* such that v = uw, 
u < ]  v iff there is w, z �9 E* such that  v = wuz, 

Examples: 
1. The language 

L1 = {a bl > 0} 

is obviously confluent w.r.t. < I  but it is not confluent w.r.t. <p. In fact, L1 is not 
confluent w.r.t. <p even in generalized sense. Indeed, if R is a nonempty subset of 
L1 such that  R is confluent w.r.t. <p, then R has exactly one element, since any 
two elements of L1 are incomparable w.r.t. <p. Thus, as L1 is infinite, it cannot be 
written as a finite union of languages confluent w.r.t. <p. 

2. For any language L C E*, the catenation closure of L, L*, is confluent w.r.t. 
any quasi order < on E* which is an extension of the factor partial order <f .  

3. For any alphabet E such that card(E) >_ 2, the total language E* is not 
confluent w.r.t. <p, even in the generalized sense. To prove this, consider two different 
letters of E, say a and b. For any k >_ 1, consider the following k + 1 words in E*: 
ab~+l,a2bk,... ,ak+lb. Since, for any two words x,y  of the previous k + 1, there is no 
word z �9 E* such that  x <p z and y <p z, it follows that E* is not k-confluent w.r.t. 

For all formal language theory results we refer to [3] and [9] and for all combina- 
torics on words results we refer to [1] and [7]. 

In what concerns the decidability of the generalized confluence problem w.r.t, a 
given quasi order < ,  there are two problems. We formulate them for context-free 
languages but they can be considered for any family of languages. 

1. Given a fixed k > 1, is it decidable whether or not an arbitrary context-free 
language is k-confluent w.r.t. <?  
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2. Is it decidable whether or not an arbitrary context-free language is confluent 
w.r.t. _< in generalized sense, that is, is there some k > 1 such that the given language 
is k-confluent w.r.t. _<? 

We prove in the next sections that both problems are decidable for the prefix 
partial order _<p and undecidable for the factor partial order -<I" 

3. P r e f i x e s  o f  Words  

We prove in this section that both problems, the k-confluence problem w.r.t. -<p 
and the generalized confluence problem w.r.t. _<p are decidable for context-free lan- 
guages. 

For an infinite word ~, we denote by P re f (~ )  the set of all finite prefixes of o~. 
The family of languages which are prefixes of infinite words is denoted by ~vr~1, that 
is ,  

Yp~] = {L I L = Prcf(~)  for some infinite word ~}. 

Our first result is a connection between k-confluence and the family ~pr~]. It 
generalizes the following result in [2]. 

L e m m a  3.1. Any language L C E* is in the family .~p~f if and only if the 
following conditions are fulfilled: (i) L is infinite, (ii) L =~<p L, (iii) L is confluent 
w.r.t. <_p. 

We need also the next result from [6]. (It was proved first for k = 1 in [2].) 

L e m m a  3.2. For any quasi order <_ on E* and k >_ 1, a language L C_ E* is 
k-confluent w.r.t. -< fraud only fr ~< L is k-confluent w.r.t. -<. 

L e m m a  3.3. Let k >_ 1 and L C E* an infinite language such that L =J.<p L. 
Then L is k-confluent w.r.t. -<v if and only if 

k 

L =  U L /  
i=1 

such that, for any 1 < i < k, Li C_ E* and LI is either finite and confluent w.r.t. -<p 
or infinite and L~ E Fw~]. 

Proof. Take k _> 1 and L C_ E*, such that L is infinite and L =1% L. Suppose 
first that L is k-confluent w.r.t. <p and put 

k 

L =  U L / ,  
i=1 

for some L~ C_ E*, Li confluent w.r.t. <p, for any i < i < k. Since 

k k 

i=1 i= t  

we may suppose that Li =~__p L/, for any 1 < i < k. Notice that we may indeed make 
this assumption since Li is confluent w.r.t. -<v and so, by Lemma 3.2, J.___p L/ is also 
confluent w.r.t. -<v- 
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If, for some 1 < i < k, Li is infinite, as Li =$<p Li and L~ is confluent w.r.t. -<v, 
it follows by Lemma 3.1 that  L~ E ~cvr,s. One implication is proved. 

For the converse one, it is enough to observe that  any language in the family ~pr~1 
is confluent w.r.t. <p. The proof is concluded, o 

We need one more definition from [8]. For a language L C E*, denote 

I~(L) = card{w �9 L [[w I = n}, 

for any n > 0. For any k > 0, the language L is called k-slender if and only if 
l=(L) < k, for any n > 0. L is called slender if it is k-slender, for some k > 1. 

We remind the following two results from [4] and [5]. 

L e m m a  3.4. ([4]) A context-free language L C_ E* is slender if and only if it is a 
finite union of sets of the form 

{uv  x y 1 n > 0}, 

where u , v , w , x , y  E E*. 

L e m m a  3.5. ([5]) It is decidable whether or not an arbitrary context-free language 
L C_ E* is slender. In the affirmative case, the smallest constant k such that L is k- 
slender is computable. Also, there are finitely many possibilities of decomposing L 
into sets of the form in Lemma 3.4 and all of them can be effectively found. 

L e m m a  3.6. Let k > 1 and L C E* be an infinite context-free language. Then L 
is k-confluent w.r.t. <p if and only if the following two conditions are fulfilled: 

(i) ~ <p L is k-slender, 
(ii) ~ <p L is a finite union 

k 

~ <~ L = U L~, 
i=1 

for some Li C_ E*, such that for any 1 < i < k, Li is either finite and confluent w.r.t. 
<_p or infinite and of the form 

- -  Z n Li -~<p{  ~lz n In  > 0}, 

for some zil, zi2 �9 E*, zi2 # ~. 

Proof. Take k > 1 and L C E*, such that  L is k-confluent w.r.t. <p. By Lemma 
3.2, the down-set ~<p L is confluent w.r.t. <v and so~ by Lemma 3.3, we have 

k 

$<~ L = U Li, 
i=1 

for some Li C E*, Li either finite and confluent w.r.t. <p or else infinite and L; �9 ~'p~1. 
Clearly, if Li E ~p~] ,  then 1,~(L~) = 1, for any n > 0. On the other hand, if L; is 

finite, then l=(L~) < 1, for any n > 0. Indeed, if u,v �9 L~ such that  lu] = [vl, then, 
as L~ is k-confluent w.r.t. _<p, there is w �9 L~ such that  u _<p w and v -<v w. Thus, 
either u <v v or v <v u. In any cas% it follows that  u = v. 

Therefore, l=(~<~ L) < k, for any n > 0, and (i) is proved. 
The following claim will be useful for the proof of (ii). 



458 

C l a i m  1. ~<p L contains no infinite antichain of <p. 

Proof of Claim 1. Let A CJ.<p L be an antichain of ~p. We have 

k 

A=[J(L nA) 
i----1 

If u, v E Li N A, then, as Li is confluent w.r.t. <p, there is w C Li such that  u <p w 
and v <p w. Thus either u <p v or v <p u. In both cases, since A is an antichain of 
<p, it follows that  u = v, so card(L~ N A) < 1. Therefore, card(A) < k and so A is 
finite. The claim is proved. 

Since ~<p L is slender, it follows by Lemma 3.4 that it is a finite union of the form 

m 

~<~L = U{~v~xSy,  r~ > 0}, 
i ~ l  

for some m > 1 and ui, v~, wi, xi, y~ E E*, 1 < i < m. Thus 

~<~ L = U ~<_p {~vT~x~y~ ln > 0}, 
i=1  

where we suppose that no set in the union in the right-hand side is redundant, that  
is, for no i0,1 < io _< m, 

-- -~ U n xr~ ~<, L ~<p {uiv~ wi ~ Yl I n > 0}, 
i----1 
ir 

C l a i m  2. If, for some 1 < i < m, vixi r )~, then 

for some z~l,z~2 E Z*,z~2 ~ ),. 

Proof of Claim 2. Because vixi ~ ~, it follows that the set {uiv~wix~yi I n >_ 0} 
is infinite. As, by Claim 1~ there is no infinite antichain of _~p in ~_<pL, we can find a 
strictly increasing infinite sequence of positive integers (i~)~_>1 such that 

for any n _> 1. Thus, for any n,p  > 1, 

Suppose that  vi ~ ~ and x~ ~ ,~. Then, as the length of v~ "+~-~" tends to infinity 
with p, for a large enough i~, x~" and v~ "+p-i~ will overlap each other on a part 
longer than ]x~ I + Iv~l. By Fine and Will 's theorem, it follows that x~ and v~ are 
powers of conjugates of the same word. Thus, there are z ~, z" ~ E* such that  xi -- 
(z'z") ~,  vl -= (z"z') *~, for some ra ). 0, r~ > 0. Then wi = (z"z')r~z ", for some 
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r3 > 0 and y~ = (z'z")~4t ', for some r4 

z'z" = t't", t" ~ E*. Therefore 

{ ~ v ~ y ~  In >_ 0} = 

for 

Notice that  zi2 # ~. 

> 0 and t '  E E*,t '  <p z'z". Let us put 

{u,(z"z')=~=(z"z')~az"(z'z")=~(z'z")~4t' l n > O} 
{~,~"(z'z")~+~.+~(~+~)t' l ~ > o} 
{~iz"(t't")'~+T'+~(~+~=)t' l n > 0} 
{ z . z ~  In > o}, 

zil = uiz"t'(t"t') ~3+~, 
zi~ = (t"t') ~+~.  

The cases vi # ,k, xi = /k and v~ = )~, xi # )~ are treated similarly. The claim is 
proved. 

C l a i m  3. m _ k. 
Proof of Claim 3. By Lemma 3.3, ~<p L is a finite union of k sets of prefixes of 

some words, finite or infinite, say 

k 

L = U R n .  
i=l  

So far, we proved that  J.% L is finite union of m sets of prefixes of some words which 
are either finite or infinite and ultimately periodic. Since we have supposed that  none 
of the words in the second representation is redundant, it follows that 

card{i l R{ is infinite} > card{i l z{2 ~ A}. 

Indeed, if .1% {z~lz~ I n > 0} N Rj is infinite, then l<p {zi, z~ I n > 0} C_ Rj, since 
Rj E ~pT~I. It is also clear that  

card{i l R, is finite} > card{i I zi2 = ;k}. 

Therefore m < k and the claim is proved. 
By Claim 2 and Claim 3, one implication in the statement is proved. 
The converse implication is clear since L and ~<p L are k-confluent w.r.t. <p at 

the same time. The proof is concluded. [] 

R e m a r k .  It is clear that  condition (i) in Lemma 3.6 does not imply that  L is 
k-confluent w.r.t. <p. We notice that, even with the hypothesis that  L is confluent 
w.r.t. <p in generalized sense, it still does not follow that L is k-confluent w.r.t. <p. 
For instance, the language 

L = Pref(ab ~) U Pref(a2b ~) U {b}, 

where b ~ is the infinite word bbb..., is 2-slender but it is not 2-confiuent w.r.t. <p. L 
is 3-confluent w.r.t. <v" 

We can prove now the decidability of the k-confluence problem w.r.t. <p for 
context-free languages. 

T h e o r e m  3.7. For any k > 1, it is decidable whether or not an arbitrary context- 
free language L C_ F~* is k-confluent w.r.t. <_p. 

Proof. Take k > 1 and an arbitrary context-free language L C E*. We give the 
following algorithm to decide whether or not L is k-confluent w.r.t. <p. 
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A l g o r i t h m  3.8. 
1. Decide whether or not L is finite [possible for context-free languages]. If yes, then 

decide directly whether or not L is k-confluent w.r.t. _<p [obviously possible], 
else go to step 2. 

2. Construct ~<p L [this is effectively constructable for L context-free]. 

3. Decide whether or not ~<p L is slender [possible by Lemma 3.5]. If yes, then go 
to step 4, else answer no [correct by Lemma 3.6]. 

4. Compute  the minimal k ~ such that  ~<p L is k~-slender [possible by Lemma 3.5]. 

5. If k ~ < k, then go to step 6, else answer no [correct by Lemma 3.6]. 

6. Find all possibilities of decomposing l<p L as in Lemma 3.4 [possible by Lemma 
3.5]. 

7. Check whether any of these decompositions [there are finitely many] verifies the 
conditions in the statement of Lemma 3.6 [this is clearly possible]. If yes, then 
answer yes ,  else answer no [correct by Lemma 3.6]. 

We move now to the generalized confluence problem w.r.t. <p. We intend to prove 
that  also this problem is decidable for context-free languages. We need the following 
result which is a corollary of Lemma 3.6. 

C o r o l l a r y  3.9.  Let L C E* be a context-free language. Then L is confluent w.r.t. 
<p in generalized sense if and only if ~<p L is slender and there is a deconposition of 
L 

k 

~<_p L = U ~<<-~ {uiv~ In >_ 0}, 
i=1 

for some k ~ l and ui, vi E E*, l "( i < k. 

Proof. Take L C E* a context-free language which is confluent w.r.t. <p in 
generalized sense. Then, for some k ~ 1, L is k-confluent w.r.t. ~p and the claim 
follows by Lemma 3.6. 

The converse implication is clear since the set of prefixes of a finite or infinite word 
is confluent w.r.t. _<p. [] 

As a consequence of Corrolary 3.9, we have the next result. 

C o r o l l a r y  3.10. I f  L C E* is a context-free language which is confluent w.r.t. 
~ in generalized sense, then L is regular. 

We can give now the decidability result. 

T h e o r e m  3.11. It is decidable whether or not an arbitrary context-free language 
is confluent w.r.t. ~_p in generalized sense. 

Proof. Let L C E* be a an arbitrary context-free language. The  algorithm to 
decide whether or not L is confluent w.r.t. <p in generalized sense is clear now from 
Corollary 3.9. 

A l g o r i t h m  3.12. 
1. Decide whether or not L is finite [possible for context-free languages]. If yes, 

then answer yes  [obviously correct], else go to step 2. 
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2. Construct J.% L [this is effectively constructable for L context-free]. 

3. Decide whether or not ~<p L is slender [possible by Lemma 3.5]. If yes, then go 
to step 4, else answer no [correct by Corollary 3.9]. 

4. Find all possibilities of decomposing J.<p L as in Lemma 3.4 [possible by Lemma 
3.5]. 

5. Check whether any of these decompositions [there are finitely many] verifies the 
conditions in the statement of Corollary 3.9 [this is clearly possible]. If yes, then 
answer yes, else answer no [correct by Corollary 3.9]. 

The next corollary is a direct consequence of Theorem 3.7, Theorem 3.11, and 
Lemma 3.6. 

Coro l la ry  3.13. For a context-free language L which is confluent w.r.t. <p in 
generalized sense, the minimal k such that L is k-confluent w.r.t. <p is computable. 
Also 

min{k' I$<_pL is k'-slender} < min{k" [ L is k"-confluent w.r.t. <p}. 

4. Factors  o f  W o r d s  

We deal in this section with the factor partial order <S and prove that the k- 
confluence problem w.r.t. <]  and the generalized confluence problem w.r.t. <s are 
undecidable for context-free languages. 

We prove first a general undecidability result concerning the decidability of the 
k-confluence problem w.r.t. <S. 

L e m m a  4.1. Let k >_ 1 and s be a family of languages effectively closed under 
union, catenation with letters, and )~-free catenation closure such that the inclusion 
problem is undecidable in f_.. Then also the k-confluence problem is undecidable in f~. 

Proof. We argue by contradiction. Suppose that the k-confluence problem w.r.t. 
< f  is decidable in L:. 

Claim 1. The emptiness problem is decidable in g. 

Proof of Claim 1. Take an arbitrary language L C L:,L C E*, and construct the 
language 

k 

L1 : U #L#i, 
{=0 

where # ,  #0, # 1 , . . . ,  #} ~ E are new letters. It follows by hypothesis that L1 @ 

and we claim that L is empty if and only if L~ is k-confluent w.r.t. <I" 
If L = 0, then L1 = 0, so L1 is k-confluent w.r.t. <I. 
Conversely, suppose that L1 is k-confluent w.r.t. < f  but L # 0 and take w E L. 

We have by definition 
k 

L1 = U R / ,  
i=1 

for some R / C  Z*, Ri confluent w.r.t. -<f. Consider the words # w # i ,  0 < i < k. They 
belong all to L1. But no R~ can contain two of them. Indeed, if #w#11 ,#w# i  2 E Ri, 
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for some 0 < il, i2 <_ k, il # i2, then, as Ri is confluent w.r.t. <f ,  there is z E R~ such 
that #w#i~ _<.e z and # w # ~  -<I z. Then, from # w # h  -<I z, we get z = # w # ~  so 
#w#i2 ~.t z, a contradiction. Therefore L is empty. 

Consequently, to decide whether or not L is empty, we decide whether or not L1 
as constructed above is k-confluent w.r.t. -<t, which is possible by our assumption, 
since L1 is effectively in/~. The claim is proved. 

We show that also the inclusion problem is decidable in ~, thus obtaining a con- 
tradiction. For, take L1, L2 E ~,-//1 ~ ~'*, L2 _ E*, and construct the language 

k 

i - # L i # 0  U U(#L2#0#~)  +, 
i=1 

where # ,  #o, # 1 , . . . ,  #k ~ E are new letters. Then, by hypothesis, L C s 

Cla im 2. L is k-confluent w.r.t. <f  if and only if either L1 _ L2 or i _< card(L1) < 
k and L2 = 0. 

Proof of Claim 2. Suppose first that L1 C L2. Then 

k k 

~._<, L =~_<j (#L l#o)  U U 1_<I (#L~#0#~) + = U ~-<I (#L2#~ + 
i=1 i ~ l  

since 
~<~ (#Ll#0)  C_$<j (#L2#o#~) _C~< s (#L2#o#~) +, 

for any 1 < i < k. As, clearly, (#L2#0#i )  + is confluent w.r.t. <y, by Lemma 3.2, 
~-<s ( #L2#~  is confluent w.r.t. <1. Thus l<s L if k-confluent w.r.t. < f  and so, 
again by Lemma 3.2, L is k-confluent w.r.t. _<1. 

Suppose now that 1 < card(L~) < k and L2 = 0. Then, if L1 -- {Wl, w2,..,  wp}, 
1 < p < k, then 

p 

L = 

i=1 

As {#wi#0} is confluent w.r.t. -<i, it follows that L is p-confluent w.r.t. -<.t" hence 
also k-confluent w.r.t. <f .  

For the converse part, suppose that L is k-confluent w.r.t. ~f .  Suppose also that 
L~ ~ L2 and take Wl C Li\L2. If L2 # 0, then take w2 E L2. It follows that 

{#wl#0,  #w~#o#1, #w2#o#2, .  �9 #w2#o#k} C L 

and a contradiction with the k-confluence w.r.t. ~ i  of L is obtained as in the proof 
of Claim 1. Thus L2 = 0 and so 

L = #L l#0 .  

If card(Li) > k + 1, then take z~,z2,...,zk+~ C Li,zi ~ zj, for any i ~ j .  We have 
that 

{#z~#o, #z2#o , . . .  #z~+z#o} C L 

and again a contradiction with the k-confluence w.r.t. -<I of L is obtained. Thus 
card(L1) <_ k. As L1 ~ L2 = 0, we get also card(L1) > 1. The claim is proved. 
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Cla im 3. The inclusion problem is decidable in/ : .  

Proof of Claim 3. Take two arbitrary language L1, L2 E /: and construct the 
language L as above. We give the following algorithm to decide whether or not 
L1 C_ L2 and prove the claim. 

A lgo r i t hm 4.2. 
1. Decide whether or not L2 = $ [the emptiness problem is decidable in / :  by Claim 

1]. If yes, then go to step 2, else go to step 3. 

2. Decide whether or not L1 -- ~ [possible by Claim 1]. If yes, then answer yes 
[obviously correct], else answer no [again correct]. 

3. Decide whether or not L is k-confluent w.r.t. _<f [the k-confluence problem is 
decidable in / :  by our assumption and L is effectively in/:].  If yes, then answer 
yes [correct by Claim 2], else answer no [correct also by Claim 2]. 

Consequently, we have proved that the decidability of the k-confluence problem 
w.r.t. _<] for languages in / :  would entail the decidability of the inclusion problem for 
languages in s Since the latter is undecidable in/ : ,  it follows that also the former is 
undecidable in/2 and the result is proved. [] 

As a direct corollary of Lemma 4.1, we obtain the undecidability of the k-confluence 
problem w.r.t. <S for context-free languages. 

T h e o r e m  4.3. For any k > 1, it is undecidable whether or not an arbitrary 
context-free language is k-confluent w.r.t. <]. 

We consider now the generalized confluence problem w.r.t. <1 and give the fol- 
lowing general undecidability result. 

L e m m a  4.4. Let f_. be a family of languages effectively closed under union: care- 
nation, and X-free catenation closure such that all regular languages are in ~. If  it is 
undecidable for an arbitrary language L E f-., L C_ ~*, whether or not L = ~*, then 
the generalized confluence problem w.r.t. <] is undecidable for languages in 12. 

Proof. We argue by contradiction. Suppose that the generalized confluence prob- 
lem w.r.t. <1 is decidable in L:. Then we prove that it is decidable for an arbitrary 
language L E L:, L C ~*, whether or not L = E*. For, take an arbitrary such language 
L and construct the language 

L1 = #~*#1#~#1  U (#L#1#~#1) +, 

where # ,  #1, #2 ~ Z are new letters. Then, by hypothesis, L1 C L:. 

Claim. L1 is confluent w.r.t. < / i n  generalized sense if and only if L = ~*. 

Proof of Claim. Suppose first that L = E*. Then 

.L<,._ L1 =-1-<i_ (#S*#1:ff:,~#1)U ,L<: (#S*#1:ff:~:ff::t) + =.L<, (#S* #1:ff:2#1)* *. 

Then, as  (:#~"~'*#1::~,~#1) + is confluent w.r.t. < l ,  it follows, by Lemma 3.2, that 
$-<s (#E*#1#~#1)  + is confluent w.r.t. <I,  so J.% L1 is confluent w.r.t. <S and so, 
again by Lemma 3.2, L1 is confluent w.r.t. </ .  It follows also that L1 is confluent 
w.r.t. <1 in generalized sense. 
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Conversely, suppose that L1 is k-confluent w.r.t. <1, for some k > 1, but L C ~* 
and take w E 2*\L. Put also 

k 

L1 = U R~, 
i = l  

for some Ri C ~*, Ri confluent w.r.t. <!.  We have then 

k 
i _c 

{=0 

and we can find an i,1 < i < k, and il # i2,0 <_ il,i2 < k, such that 
~w#1#~1~1, ~ w # 1 ~ 2 # 1  E Ru As R~ is confluent w.r.t. <f ,  there is z E Ri 
such that ~ w ~ 1 ~ 1 ~ 1  <1 z and ~w~1#~2#1 _ /  z. Because w • L, it follows 

3 that z r ( # n # 1 # 1 # 1 )  +, a nd  so z = for some x S * , j  > 0. 
# w ~ 1 # ~ 1  _</ #x~1~2#1,~ we obtain w = x and il = j. But, since il ~ z2, 
# w ~ # ~ 2 ~  ~f  z, a contradiction. It follows that L = ~,*. As k above has been 
chosen arbitrarily, the claim is proved. 

Hence, to decide whether or not L = E*, we can decide whether or not L1 is 
confluent w.r.t. < f  in generalized sense, which is possible by our assumption, since 
L1 is effectively in ~:. But this contradicts the hypothesis. Therefore the generalized 
confluence problem w.r.t. -<i is undecidable in ~ and the result is proved. [] 

We get imediately the following result. 

T h e o r e m  4.5. It is undecidable whether or not an arbitrary context-free language 
is confluent w.r.t. <1 in generalized sense. 
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