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Preface
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Hendrik Jan Hoogeboom, Vincenzo Manca, Alexandru Mateescu, Victor Mi-
trana, Andrei Pdun, and Nikeé van Vugt. In particular, we are grateful to
our biologist friends Hans Kusters and Paul Savelkoul for many illuminating
discussions. Anu Heiniméaki drew the pictures in the Introduction. The ex-
pert assistance and timely cooperation of Springer-Verlag, notably Dr. Hans
Wossner, is gratefully acknowledged.

Gheorghe Paun, Grzegorz Rozenberg, Arto Salomaa
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Introduction: DNA
Computing in a Nutshell

From silicon to carbon. From microchips to DNA molecules. This is the
basic idea in DNA computing. Information-processing capabilities of organic
molecules can be used in computers to replace digital switching primitives.

There are obvious limits to miniaturization with current computer tech-
nologies. For a drastic innovation, it was suggested already a long time ago
that the basic components should go to the molecular level. The result would
be much smaller than anything we can make with present technology. Quan-
tum computing and DNA computing are two recent manifestations of this
suggestion. This work is about the latter.

Figure 1

Computers have a long history. Mechanical contrivances designed to facili-
tate computations have existed for ages. While the earliest-known instrument
of calculation of any importance is the abacus, the present-day electronic
computers depicted in Fig. 1 have gained such a dominant position in our

G. Piun et al., DNA Computing
© Springer-Verlag Berlin Heidelberg 1998



2 Introduction

society that most of our activities would have to be abandoned but for their
help. Yet present-day computers have many drawbacks. Because of numerous

Figure 2

intractable problems, it seems that the computer in Fig. 1 is not the end of
the long road of development.

Figure 3

When the road continues, we might see a DNA computer. In the one
shown in Fig. 2, all operations with the test tubes have to be carried out by
the user.
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A more advanced model is depicted in Fig. 3, where some robotics or
electronic computing is combined with DNA computing, and the majority of
the operations with the test tubes is carried out automatically, without the
intervention of the user.

A famous forerunner of present-day computers, Charles Babbage, set out
around 1810-1820 to build an automatic computer, a “Difference Engine,”
as well as a more ambitious computing machine, an “Analytical Engine.”
The failure to construct either of the machines was due mainly to the lack of
sufficiently accurate machine tools, and of mechanical and electrical devices
that became available only during the 20th century. Perhaps we face today a
similar situation with respect to DNA computers. Biochemical techniques are
not yet sufficiently sophisticated or accurate. In particular, the techniques
have not yet been adequately developed towards the specific needs of DNA
computing. It is most likely that the waiting period here will be much shorter
than in Babbage’s case.

A
ACG/A\/;)\T/ T|T|cC

AN VNN
N

A|JC|G]|A

Figure 4

The high hopes for the future of DNA computing are based on two fun-
damental features:

(i) The massive parallelism of DNA strands,
(ii) Watson—Crick complementarity.

We now describe the two features briefly.

(i) Most of the celebrated computationally intractable problems can be
solved by an exhaustive search through all possible solutions. However, the
insurmountable difficulty lies in the fact that such a search is too vast to
be carried out using present technology. On the other hand, the density of
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information stored in DNA strands and the ease of constructing many copies
of them might render such exhaustive searches possible. A typical example
would be the cryptanalysis of a ciphertext: all possible keys can be tried out
simultaneously.

(i) Watson—Crick complementarity is a feature provided “for free” by
the nature. When bonding takes place (under ideal conditions) between two
DNA strands, we know that the bases opposite each other are complementary.
When we know one member of a bond, we know also the other; there is no
need to check it in any way. This results in a powerful tool for computing
because, as we will see latter, complementarity brings the universal twin-
shuffle language to the computing scene. By encoding information in different
fashions on the DNA strands subjected to bonding, we are able to make far-
reaching conclusions based on the fact that bonding has taken place.

Figure 5

Let us elaborate further the paradigm of complementarity. DNA consists
of polymer chains, usually referred to as DNA strands. A chain is composed
of nucleotides, and nucleotides may differ only in their bases. There are four
bases: A (adenine), G (guanine), C (cytosine), and T (thymine). The familiar
double helix of DNA arises by the bonding of two separate strands. The
phenomenon known as Watson—-Crick complementarity comes into picture
in the formation of such double strands. Bonding happens by the pairwise
attraction of bases: A always bonds with T, and G with C. Complementarity
and the formation of double strands is presented schematically in Fig. 4.
(Important details such as the orientation of the strands are omitted in this
nutshell exposition.)

Figures 5 and 6 illustrate the importance of complementarity, in particu-
lar, how different things would be if complementarity were not provided for
us by nature. In Fig. 5, the users of a DNA computer face the hopeless task
of finding matches from huge piles of single strands. If the situation of Fig.
5 were the actual reality, the prospects for DNA computing would be very
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bleak, and perhaps also the theory presented below in Part II of this book
would seem rather uninviting. But the situation of Fig. 5 is not the actual
reality. The user can readily enjoy, as shown in Fig. 6, the result after the
matching strands have found each other.

The paradigm of complementarity, or some generalization or modification
thereof, will be present throughout the mathematical theory discussed in Part
IT of this book. Part I is a general introduction to DNA computing including
an introduction (Chap. 1} to basic concepts of molecular biology needed in
this book. It also discusses some prospects for laboratory realizations. For
instance, the error rate of operations with DNA strands can make a really
dramatic difference. Thus, the ultimate success of DNA computing depends
heavily on the development of proper laboratory techniques.

Figure 6

There are many reasons to investigate “DNA computing” other than the
solution of computationally hard problems by using DNA strands as a sup-
port for computation. On the one hand, it is important to try to under-
stand how nature “computes” (remember that just by manipulating DNA
the extraordinary sophistication and performance of life are obtained). On
the other hand, as we shall see in the following chapters, “computing by
DNA” leads to computing paradigms which are rather different from those
customary in present-day computer science: new data structures, new types
of operations on these new data structures or on classic ones (strings, lan-
guages), new computability models. Even if building DNA computers will
prove to be unrealistic (error prone, for instance), an alternative could be the
implementation of the new computing paradigms in silicon frameworks.

One can go further with these speculations: classic theoretical computer
science is grounded on rewriting operations; this is true for most automata
and language theory models. As we shall see, nature manipulates the DNA
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molecules in a computing manner by using operations of a quite different
type: cut and paste, adjoining, insertion, deletion, etc. We shall prove that
by using such operations we can build computing models which are equivalent
in power with Turing machines. Thus, the computability theories can be
reconstructed in this new framework. Whether or not this has practical
significance for computer science applications is a premature question.



Part 11
Mathematical Theory



Chapter 1

DNA: Its Structure and
Processing

The term “genetic engineering” is a very broad generic term used to cover all
kinds of manipulations of genetic material. For the purpose of this book this
term describes the in vitro (hence outside living cell) manipulation of DNA
and related molecules. These manipulations may be used to perform various
kinds of computations.

In this chapter we present the basic structure of the DNA molecule, and
then the “tool box” of available techniques for manipulating DNA that are
applicable in DNA computing,.

1.1 The Structure of DNA

DNA is the molecule that plays the central role in DNA computing, and
hence in this book. In the biochemical world of large and small molecules,
polymers and monomers, DNA is a polymer which is strung together from
monomers called deozyribonucleotides. DNA is a crucial molecule in living
cells (in vivo) and it has a fascinating structure which supports two most
important functions of DNA: coding for the production of proteins, and self-
replication so that an exact copy is passed to the offspring cells.

Let’s look into the structure of a DNA (DeozyriboNucleic Acid) molecule,
to the extent needed for this book. As said above, the monomers used for
the construction of DNA are deoxyribonucleotides, where each deoxyribonu-
cleotide consists of three components: a sugar, a phosphate group, and a
nitrogenous base. The name of the sugar used here is deozyribose which ex-
plains the prefix “deoxyribo” used above. To simplify our terminology, we
will use the simpler term “nucleotide” rather than “deoxyribonucleotide”.

This (deoxyribose) sugar has five carbon atoms — for the sake of reference
there is a fixed numbering of them. Since the base also has carbons, to avoid

G. Piun et al., DNA Computing
© Springer-Verlag Berlin Heidelberg 1998



10 1. DNA: Its Structure and Processing

confusion the carbons of the sugar are numbered from 1’ to 5’ (rather than
from 1 to 5). The phosphate group is attached to the 5’ carbon, and the base
is attached to the 1’ carbon. Within the sugar structure there is a hydroxyl
group (OH) attached to the 3’ carbon.

Different nucleotides differ only by their bases, which come in two sorts:
purines and pyrimidines. There are two purines: adenine and guanine, ab-
breviated A and G, and two pyrimidines: cytosine and thymine, abbreviated
C and T, that are present in nucleotides. Since nucleotides differ only by their
bases, they are simply referred to as A, G, C, or T nucleotides, depending on
the sort of base they have.

The structure of a nucleotide is depicted (in a very simplified way) in
Fig. 1.1, where B is one of the four possible bases (A, T, C, G), P is the
phosphate group, and the rest (the “stick”) is the sugar base (with its carbons
enumerated 1’ through 5').

2'e

1e

B

Figure 1.1: A schematic
representation of a nucleotide

For readers who have more affinity with chemistry, Fig. 1.2 gives the stan-
dard (but still simplified) picture of the chemical structure of a nucleotide.

RNA (RiboNucleic Acid) is another polymer that is of crucial importance
for living cells. Its structure is quite close to that of DNA. It is strung
together from monomers called ribonucleotides. A ribonucleotide differs from
a {deoxyribo)nucleotide in two ways.

(1) It contains the ribose sugar which differs from the deoxyribose sugar
in that it has the hydroxyl (OH) group, rather than the hydrogen (H),
attached to the 2’ carbon.

(2) The thymine base is replaced in a ribonucleotide by the uracil base,
denoted U. Hence the four possible bases are A, U, C, and G.
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Figure 1.2: The chemical structure of a nucleotide with thymine base

It may be interesting for the reader to know that the ribonucleotide with
the adenine base (and with a triple phosphate group — this is just another
technical detail that we omit in our description) is called the ATP molecule,
which is the main source of energy in living cells.

Nucleotides can link together in two different ways.

(1) The 5'-phosphate group of one nucleotide is joined with the 3’-hydroxyl
group of the other forming a phosphodiester bond, which is a strong
(covalent) bond — this is illustrated in Fig. 1.3.

Note that the resulting molecule has the 5’-phosphate group of one
nucleotide, and the 3’-OH group of the other nucleotide available for
bonding. This gives the molecule the directionality; we can talk about
the 5’ —3' direction, or the 3’ —5’ direction. This directionality is crucial
for understanding the functionality and the processing of DNA (it is
also crucial for the use of words in modeling such polymers as we do in
this book).
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(2) The base of one nucleotide interacts with the base of the other to form
a hydrogen bond, which is a weak bond. This bonding is the subject of
the following restriction on the base pairing: A and T can pair together,
and C and G can pair together — no other pairings are possible.

4
Vo

Figure 1.3: Phosphodiester bond

This pairing principle is called the Watson-Crick complementarity
(named after James D. Watson and Francis H. C. Crick who deduced
the famous double helix structure of DNA in 1953, and won the Nobel
Prize for this discovery). It is the cornerstone of understanding the
structure and functioning of DNA. The principle is illustrated in Fig.
1.4, where a thin wiggly line between the bases represents the fact that
the hydrogen bond is (much) weaker than the phosphodiester bond.

As a matter of fact, the A — T pairing involves the formation of two hy-
drogen bonds between the two nucleotides, while the C — G pairing involves
the formation of three hydrogen bonds between the two nucleotides. Con-
sequently, the C — G pairing is stronger than the A — T pairing; one needs
more energy (e.g., higher temperature) to separate the C — G pairing. To
reflect this difference, we could use two wiggly lines for the A — T pairing,
and three wiggly lines for the C — G pairing, but this is not necessary for the
considerations of this book.
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either By =Tand By = A
or B;=Cand By, =G

Figure 1.4: Hydrogen bond

Using phosphodiester bonds we can form single stranded DNA (Fig.
1.5). It is a standard convention that when we draw a single stranded

5/—,3/

5/

C Q

Figure 1.5: Single stranded DNA

molecule as in Fig. 1.5, the nucleotide with the free 5'-phosphate is the
leftmost and the nucleotide with the free 3’-hydroxyl end is the rightmost.
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Since in naming nucleotides (A, G, C, or T nucleotide) we identify them with
their bases, we can also represent a single strand as a sequence of letters (a
word), providing that we indicate the direction. Hence, 5-ACG represents
the single strand from Fig. 1.5.

Using Watson—Crick complementarity, we can form from the single
stranded DNA molecule shown in Fig. 1.5 the double stranded molecule
shown in Fig. 1.6.

5 — 3

P P P
3/
C G

o !

C

>

M\

5/

314___5/

Figure 1.6: Forming double strands

As a matter of fact, in practice the hydrogen bond between single nu-
cleotides as illustrated in Fig. 1.4 is too weak to keep the two nucleotides
together — one really needs longer stretches to keep them bonded together. It
is the cumulative effect (the sum) of hydrogen bonds between complementary
bases in a DNA molecule that makes it a stable bond.
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Figure 1.6 illustrates the general rule for joining two single stranded
molecules using hydrogen bonds (the Watson—Crick complementarity). In
the double stranded molecule the two single strands have opposite directions:
the nucleotide at the 5’ end of one strand is bonded to the nucleotide at the
3’ end of the other strand. It is a standard convention that when a double
stranded molecule (also referred to as a duplezr) is drawn, then the upper
strand runs from left to right in the 5" — 3 direction, and (consequently) the
lower strand runs from left to right in the 3’ — 5’ direction. Thus the upper
strand from Fig. 1.6 is 5'-ACG, and the lower strand is 3’-TGC.

Representing a (double stranded) DNA molecule as two linear strands
bound together by Watson—Crick complementarity is already a major sim-
plification of reality, because in a DNA molecule the two strands are wound
around each other to form the famous double helix — see Fig. 1.7.

In wvivo the situation is much more complicated, because a very large
DNA molecule has to fit in a very small cell (in a typical bacterium the
DNA molecule is 10* times longer than the host cell!). Such a packing is
quite intricate, and in more complex cells {eukaryotes) this packing is done
“hierarchically” in several stages. The actual shape of a DNA molecule is
of crucial importance in considering processes in living cells. However, for
the purpose of this book, we may assume that a DNA molecule has a double
string-like structure.

Figure 1.7: The double helix

Also, we have described above the structure of linear DNA molecules,
while, e.g., bacterial DNA is very often circular. One can construct circular
molecules simply by establishing a phospodiester bond between the “first”
and the “last” nucleotide.

The ability to process (to manipulate) DNA is central to genetic engi-
neering and in particular to DNA computing. We move now to describe
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methods for all kinds of manipulation of DNA — a basic tool box for the
processing of DNA. We begin by discussing how to measure DNA.

Measuring the length of DNA molecules

The length of a single stranded molecule is the number of nucleotides com-
prising the molecule. Thus if a molecule consists of 12 nucleotides, then we
say that it is a 12 mer (it is a polymer consisting of 12 monomers). The
length of a double stranded molecule (where each nucleotide is base paired
with a “partner”) is counted in the number of base pairs. Thus if we make a
double stranded DNA from a single stranded 12 mer, then the length of the
double stranded molecule is 12 base pairs, also written 12 bp. If the length
is, e.g., 12000 base pairs, then we write that the length is 12 kbp (where “k”
stands for “kilo”).

To measure the length of a DNA molecule one can use gel electrophoresis.
The electrophoresis technique is based on the fact that DNA molecules are
negatively charged. Thus if they are placed in an electric field, they will
move (migrate) towards the positive electrode. While the negative charge
of a DNA molecule is proportional to its length, the force needed to move
the molecule is also proportional to its length. Thus these two forces cancel
each other, and in an ideal solution all molecules travel with the same speed.
Hence, in order to cause molecules of different length to move with different
speed, we need gel.

The gel electrophoresis technique works as follows.

A gel powder is heated with a solution, forming a gel which is then poured
into a rectangular plastic or glass container, and allowed to cool down. It will
then form a slab filling in the container; during the cooling process a comb is
inserted along one side of the container, so when the gel cools down and the
comb is removed a row of small wells is formed at one end of the slab (Fig.
1.8).

Now a small (really minuscule) amount of a DNA solution, with DNA
molecules to be measured, is brought into the wells, and the electric field is
activated. DNA molecules will move through the gel toward positive elec-
trodes. Since the mesh of the gel acts as a molecular sieve, small molecules
move easier {faster) through the gel than big ones, and obviously groups of
the same length move with the same speed. When the first molecules reach
the (positive) end of the gel, the electric field is deactivated. Clearly, in a
given time span, the small molecules will travel a longer distance than the
long ones.

Since DNA molecules are colorless, and hence invisible in the resulting gel,
they must be marked in some way before they are put into the gel. There
are two main methods for marking DNA molecules:
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positive
electrodes

negative
electrodes

I S [ E— O —

Figure 1.8: Gel prepared for electrophoresis

(1) Staining with ethidium bromide which fluoresces under an ultraviolet
light when bound to DNA. When the gel is viewed under ultraviolet
light, one sees bright fluorescent bands of groups of DNA fragments of
the same length (Fig. 1.9). This method works best for double stranded
DNA, because ethidium bromide really uses the double strand structure
to stick to a molecule.

! T

large small
fragments fragments

Figure 1.9: Gel electrophoresis

(2) Attaching radioactive markers to the ends of DNA molecules, so that
when a film is exposed to the resulting gel the bands corresponding to
various groups of DNA molecules will show on the film.
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Now, knowing the distance travelled by a molecule, one can compute its
length. Rather than computing the length, one can also use one of the wells
for depositing there fragments of known length. Then the bands visualized
on the path from this well may be used as a calibration path: different
bands on this path mark different (known) lengths. The location of bands on
other paths may then be compared with the calibration path, yielding in this
way the lengths of those bands. In Fig. 1.8 and 1.9, we have several wells
(with the corresponding spectra of visualized lengths) because often, for the
sake of comparison, several sample solutions are run together (the calibration
solution is often one of them).

Two kinds of gels are mostly used in gel electrophoresis: agarose gel and
polyacrylamide gel. Agarose gel electrophoresis is the standard technique for
resolving large fragments (longer than 500 bp). The resolution power of the
gel clearly depends on its porosity and in this respect polyacrylamide gel is
much better: it can resolve DNA fragments differing in length by only one
base! This gel is the preferred method for determining the length of small
fragments of DNA.

The DNA molecules present in the gel after electrophoresis can be recov-
ered if needed. For example, a slice containing the DNA to be recovered is
cut from the gel and frozen (in liquid nitrogen). This freezing breaks up the
structure of the gel, and so if the solution (after it thaws out) is centrifuged
through a special filter, only the DNA will get through.

Fishing for known molecules

Annealing of complementary single strands can be used for fishing out known
molecules (called target molecules). Unless the target molecules are already
single stranded, the first step is to denature double stranded molecules.

Suppose that we want to take out single stranded molecules o from a
solution S containing them as well as many other single stranded molecules.
We then attach @ molecules (@ is the molecule complementary to « and is
called a probe) to a filter and pour the solution S through the filter. Then
« molecules will bind to @ molecules while the other molecules will just flow
through the filter. In this way we get a collection of double stranded molecules
(resulting from annealing of a and @) fixed to the filter, and the solution S’
resulting from S by removing o molecules.

Then the filter is transferred to a container where the double stranded
DNA is denatured. When the filter is removed, only the target molecules
remain.

The filter method as described above is conceptually very simple, but not
used much any more (since better methods exist).

One can also attach probes to tiny glass beads and have them placed
“tightly” in a glass column C. When a solution S containing target molecules
is poured through C, target molecules will stay in C annealed to probes.

Yet another way of catching target molecules is to attach probes to tiny
magnetic beads and throw them into a solution S containing target molecules.
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When this mixture is well shaken, target molecules attach to probes, and
hence to magnetic beads. By placing a magnet to a side of the glass container
where this takes place, one gets all the target molecules grouped in one place
where they are easy to extract.

1.2 Operations on DNA Molecules

Two extremes are possible in describing the tool box of techniques for manip-
ulating DNA: a dictionary-like listing of techniques with a short definitional
description of each of them, or a (very) detailed description of each technique.
We have chosen for a middle ground, where we give (mostly oversimplified)
descriptions which should provide the reader with a clear intuition about the
nature of the techniques involved. We feel that this style is best suited for
readers of this book.

Separating and fusing DNA strands

As we have mentioned already, the hydrogen bonding between complemen-
tary bases is (much) weaker than the phosphodiester bond between consecu-
tive nucleotides within one strand. This allows us to separate the two strands
of a DNA molecule without breaking the single strands. One way of doing
this is to heat a DNA solution until the DNA melts, meaning that the two
strands come apart — this is called denaturation. Melting temperatures are
from 85° C up to 95° C (just below boiling); the melting temperature of a
DNA molecule is the temperature at which half of the molecule separates.

Now if this heated solution is cooled down again, the separated strands
fuse again by the hydrogen bonds (this cooling down must be done slowly
so that the corresponding complementary bases have enough time to find
each other). This process is called renaturation. Fusing two single stranded
molecules by complementary base pairing is also called annealing, so renatu-
ration is also called reannealing.

Another term used for fusing is hybridization, although originally it was
used for describing the complementary base pairing of single strands of dif-
ferent origin (e.g., DNA with RNA, or DNA with radioactively tagged DNA,
or strands coming from different organisins). Imprecise use of terminology is
more common in biology than in mathematics.

Finally, we would like to mention that the denaturation of a double
stranded molecule can be also facilitated by exposing it to certain chemi-
cals. A commonly used chemical for this purpose is formamide — the melting
temperature in the presence of formamide is much lower.

‘We move now to consider various manipulations of DNA that are mediated
by enzymes.

Enzymes are proteins that catalyze chemical reactions taking place in liv-
ing cells. They are very specific — most of them catalyze just a single chemical
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reaction, and they do this extremely efficiently (speeding up chemical reac-
tions by as much as a trillion times). Without enzymes, chemical reactions
going on in living cells would be much too slow to support life.

Since enzymes are so crucial for the life of a cell, nature has created a
multitude of enzymes that are very useful in processing DNA. They are used
very extensively in genetic engineering.

Lengthening DNA

A class of enzymes called (DNAY) polymerases is able to add nucleotides to an
existing DNA molecule. To do so, they require (1) an existing single stranded
template which prescribes (by Watson—Crick complementarity) the chain of
nucleotides to be added, and (2) an already existing sequence (primer) which
is bonded (by Watson—Crick complementarity) to a part of the template,
with the 3’ end (the 3'-hydroxyl) available for extension.

As a matter of fact, polymerase can extend only in the 5’ — 3’ direction —
see Fig. 1.10.

OH
5 3

NNN +¢«« NN
NNN ++«+« NNNNNNNN

3 5

Figure 1.10: A DNA molecule with

an incomplete upper strand

We use here and in the following figures various graphic representations
different from the “stick representation” that we have used until now. By
now they should be self-explanatory. There is no need to fix one notation
for representing DNA, and we use the graphic representations that we feel
best fit the discussed situation. The letter N in Fig. 1.10 means that any
of the four possible nucleotides can be at the position labeled N (of course,
providing that base pair complementarity is preserved).

Polymerase will then extend repeatedly the 3’ end of the “shorter strand”
complementing the sequence on the template strand, providing that required
nucleotides are available in the solution where the reaction takes place — see
Fig. 1.11.

As usual in biology, the rules have exceptions. Thus, whereas indeed
all polymerases require the 3’ end for extension (a primer), there are some
polymerases that will extend a DNA molecule without a prescribed template.
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5/ 3/
CGGA
GCCTTTACCT

R

5’ 3’
CGGAA
GCCTTTACCT
3’ 5’
5’ 3
CGGAAA

GCCTTTACCT

N

L,

CGGAAATGGA
GCCTTTACCT

3 5’

Figure 1.11: A polymerase in action

Terminal transferase is such a polymerase. It is useful when we want to add
single stranded “tails” to both ends of a double stranded molecule - see Fig.
1.12.

If we want to make a specific double stranded molecule for which we have
one strand (a template) already, then we can do it by priming the given strand
and then using polymerase to extend the primer according to the template.
The direction of this synthesis is 5 — 3’: this is the direction favored by
nature, since also in vivo enzymatic synthesis of DNA follows this direction.

One can chemically synthesize single stranded molecules following a pre-
scribed sequence of nucleotides. For a number of technical reasons, the chem-
ical synthesis that adds nucleotide by nucleotide to the already synthesized
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chain, proceeds in the 3' — 5’ direction: the 3’ end of the first molecule is fixed
to a solid support, so that at each step of the synthesis only the 5’ end of the
already synthesized chain is available for a phospodiester bond with the 3’
end of the “incoming” new nucleotide. Well timed blocking and unblocking of
the free 5’ end of the already synthesized strand and of the 3’ and 5 ends of
the incoming nucleotide guarantee that only one specific nucleotide is added
at one step of synthesis. This procedure lends itself to automatation — many
“synthesizing robots” are now available.

5’ 3

3 5
terminal transferase

_|_

G nucleotides

5 3
o GGGGGG
GGGGGG

Figure 1.12: Transferase activity

Short chemically synthesized single stranded molecules are called oligonu-
cleotides or simply oligos. Oligonucleotides are very useful in genetic engi-
neering, e.g., they are used as primers.

Shortening DNA

DNA nucleases are enzymes that degrade DNA. They are divided into (DNA)
exonucleases and (DNA) endonucleases.

Ezonucleases shorten DNA by cleaving (removing) nucleotides one at a
time from the ends of the DNA molecule. They are more flexible (less uni-
form) than polymerases, because some exonucleases will remove nucleotides
from the 5 end while other will do this from the 3’ end. Also some exonucle-
ases may be specific for single stranded molecules while other will be specific
for double stranded ones (and some can degrade both).

For example, Exonuclease III is a 3'-nuclease (degrading strands in the
3’ — 5’ direction) — see Fig. 1.13. In this way a molecule is obtained with
overhanging 5 ends.
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5/ 3/
NNNN o NNNN
NNNN NNNN

3 5

FExonucleaselll

5 3
NNNN o NNN__
T NNN NNNN
3/ li 5/

5 3
NNNN o NN

NN NNNN
3/ ll 5/

5 3

NNNN a N
N NNNN
3 ll 5

5 3

N NNN o
NNNN
3[ 5/

Figure 1.13: Exonuclease III in action

Another exonuclease, Bal31 removes nucleotides from both strands of a
double stranded molecule — see Fig. 1.14.

As a matter of fact, many polymerases have also exonuclease activities.
This is quite crucial in the DNA replication process (“performed” by poly-
merases) as a mistake correcting activity. While polymerase extending ac-
tivity is always in 5" — 3’ direction, the associated exonuclease can be both
5 —~3 and 3 — 5.
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5 3
NNN o NNN
NNN NNN

3 5

Bal3l
5 3
NN o NN
NN NN
3 H 5
5 3
N o N
N N
3/ ll 5/
5/ 3/
o

3/ 5/

Figure 1.14: Exonuclease Bal31 in action

Cutting DNA

Endonucleases destroy internal phosphodiester bonds in the DNA molecule.
They can be quite specialized as to what they cut, where they cut, and how
they cut.

Thus, for example, S1 endonuclease will cut only single strands (Fig. 1.15)
or within single strand pieces of a mixed DNA molecule containing single
stranded and double stranded pieces (Fig. 1.16). Such cuts may happen at
any place (any phosphodiester bond); we say that S1 endonuclease is not site
specific.

On the other hand, endonuclease DNasel cuts both single stranded and
double stranded molecules; it is also not site specific.

Restriction endonucleases are much more specific: they cut only double
stranded molecules, and moreover only at a specific (for a given restriction
endonuclease) set of sites.
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A restriction enzyme will bind to DNA at a specific recognition site and
then cleave DNA mostly within, but sometimes outside of this recognition
site. It will cut the phosphodiester bond between adjacent nucleotides in
such a way that it generates the OH group on the 3’ end of one nucleotide
and the phosphate group on the 5 end of the other nucleotide.

5 3
NNNNNN

Figure 1.15: S1 endonuclease in action (i)

5’ 3 5 3
NNN NN
NNNNNNNN

3/ 5/
51
5’ 3 5 3
NNN NN
NNNNN NNN
3’ 5 3 5’

Figure 1.16: S1 endonuclease in action (ii)

The cut itself can be blunt (straight through both strands) or staggered.
Here are some examples.

Restriction enzyme EcoRI — see Fig. 1.17.

The recognition site is 5-GAATTC, so EcoRI will bind to it. The direc-
tionality is very important here: FEcoRI will not bind to 3-GAATTC. The
cut is staggered, leaving two overhanging 5’ ends.
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Note that the recognition site is a palindrome in the sense that reading
one of the strands in the 5’ — 3’ direction one gets the same result (GAATTC)
as reading the other strand in the 5’ — 3’ direction. This is often the case for
restriction enzymes.

5 | y
o |GAATTC| 4
CTTAAG
3/ T 5/
FecoRI
5 3 5 3
G AATTC
@ ICTTAA al B
3 5 3 5

Figure 1.17: EcoRI in action

Clearly, if a stretch of DNA contains several recognition sites, then the
restriction enzyme in principle will cut all of them — see Fig. 1.18.

5 3
GAATTC GAATTC
X |CTTAAG 7 |lcrTAaac| B
3 5
{ EcoRI

5 3 5 3 5 3’

G AATTC G AATTC

@ |CTTAA c|”? |cTTAA cl B

3/ 5/ 3/ 5/ 3/ 5/

Figure 1.18: Multiple cut by EcoRI

For the reader who finds the names of restriction enzymes (like EcoRI
above) strange, we would like to add that they follow precise rules of nomen-
clature. The name is always based on the organism from which the restriction
enzyme was originally isolated. The first three letters are: the first letter of
the genus name followed by the first two letters of the species name. Then,
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if necessary, the letter indicating the strain is given. The last character is
the number indicating the order in which this enzyme was discovered in the
given organism. Thus, EcoRI denotes the first (I) restriction enzyme isolated
from the bacterium Escherichia coli, strain serotype R.

Restriction endonuclease Xmal — see Fig. 1.19.
The recognition site is 5-CCCGGG. The cut is staggered, leaving two
overhanging 5 ends.

5 3
CCCGGG
GGGCCC
3 5
Xmal
5 3 5 3
C CCGGG
GGGCC C
3/ 5/ 3/ 5/

Figure 1.19: Xmal in action

Restriction endonuclease Smal — see Fig. 1.20.

5’ 3
CCCGGG
GGGCCC

Smal

5/ 3/ 5/ 3/
cccC GGG
GGG CCC

3 5 3 5

Figure 1.20: Smal in action

The recognition site is the same as for Xmal: 5-CCCGGG, but the cut
is different — this is a blunt cut.

There exist also different restriction endonucleases that have the same
recognition sites and the same cut (e.g., Hpall and Mspl).
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Restriction endonuclease Pstl — see Fig. 1.21.
The recognition site is 5-CTGCAG. The cut is staggered, leaving two
overhanging 3’ ends.

5[ 3/
CTGCAG
GACGTC
3 5
Pstl
5 3 5 3
CTGCA G
G ACGTC
3 5 3 5

Figure 1.21: Pstl in action

Restriction endonuclease Hgal — see Fig. 1.22.
The recognition site is 5'-GACGC. The cut is staggered, leaving two over-
hanging 5’ ends.

5/ 3/
GACGC/NNNNNNNNNNN
CTGCGINNNNNNNNNNN

3 5’
H Hgal
5 3 5 3
GACGCINNNNN NNNNNN
CTGCGINNNNNNNNNN N
3 5 3 5

Figure 1.22: Hgal in action

As a matter of fact, Hgal belongs to Type I restriction endonucleases,
while the restriction endonucleases discussed above belong to Type II re-
striction endonucleases (which cut within the recognition site). A discussion
of differences between Type I and Type II {and also Type III) restriction
endonucleases is beyond the scope of this chapter, but it is worthwhile to
point out the following. Type I restriction endonucleases are rather impre-
cise, e.g., their cutting sites may be quite unpredictable. For this reason
the use of Type I restriction endonucleases in genetic engineering is quite
limited.
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Linking (pasting) DNA

DNA molecules may be linked together through a process called ligation
which is mediated by enzymes called ligases. This can be done in several
ways.

Consider, e.g., the restriction enzyme Xmal and the situation shown in
Fig. 1.19. The two molecules produced by the Xmal cut have overhanging
ends. As a matter of fact, if they stay close enough they may reanneal (stick
together) by hydrogen bonding of complementary bases — this is why such
overhanging ends are also called sticky ends. In the situation of Fig. 1.19 the
complementary sticky ends are 5-CCGG and 3'-GGCC.

While the hydrogen bond keeps complementary sticky ends together,
there is a gap in each of the strands, called a nick. A nick is a lack of a
phosphodiester bond between consecutive nucleotides. Such a bond can be
established by a ligase providing that the 3’ end to be connected has the
hydroxyl (3'-hydroxyl) and the 5 end to be connected has the phosphate
group (5'-phosphate); see Fig. 1.23. Fortunately, when a restriction enzyme
cuts the phosphodiester bond between adjacent nucleotides it generates the
hydroxyl on the 3’ end and the phosphate on the 5’ end (as indicated in Fig.
1.23).

OH P
5' 3’
C CCGGG
G GG CC C
3’ 5’
P OH

Jhydrogen bonding

5' 3’
clilc ¢c ¢ ¢ ¢
G G G C c]lc

3 5’
P OH

Figure 1.23: Complementary base pairing

For the resulting molecule of Fig. 1.23, the effect of ligation is illustrated
in Fig. 1.24.

Note that here the work of a DNA ligase is made “easy” because the
hydrogen bond is keeping the nucleotides to be ligated close to each other.

In the situation illustrated in Figs. 1.19, 1.23, and 1.24, a molecule cut
by a restriction enzyme has restored itself using the sticky ends produced by
the restriction enzyme cut.
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But we could also have two different molecules M; and My cut by the
same restriction enzyme (or by different restriction enzymes that produce the

OH P
5 3
cllc ¢ ¢ ¢ ¢
G G G ¢ cf|lc
3 5
P OH
DNA ligase
5/ 3
CCCGGG
GGGCCC
3 5

Figure 1.24: Ligation

same sticky ends) and then find the pieces recombining in such a way that
we get hybrid molecules. This is illustrated in Fig. 1.25.

5/ 3 5/ 3
CCGG CCGG
a (87
tlgace| P 2 |gace| P2
3 5 3 5
l Hpall H Hpall
5/ 3 5 3 5 3 5 3
C CGGC C CGG
@1 |gGC c| B ‘“lGGC E;c 5
3 5 % 5 3 5 3 5
hydrogen bonding
DNA ligase
5 3 5/ 3
CCcaa CCGG
« (87
1 |gaca| P2 2 lgace| M
3 5 3 5

Figure 1.25: Hybridization
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Note also that one of the molecules resulting from a multiple cut, illus-
trated in Fig. 1.18, has two sticky ends, which can anneal and then be ligated,
thus forming a circular double stranded molecule.

In the blunt end ligation a DNA ligase will join together the 3’ end and
the 5 end of one molecule with the 5’ end and the 3’ end, respectively, of
another molecule. For example, pieces cut by Smal (see Fig. 1.20) can be
ligated together — as shown in Fig. 1.26.

OH P
5 3
ccc |caa
@ laad lccel P
3 5
P OH
DNA ligase
5 3
a |CcCcGGal g
GGGCCC
3 5

Figure 1.26: Blunt ligation

Blunt end ligation is much less efficient than sticky end ligation. The
reason is that DNA ligase cannot bring the ends needed for ligation close
together (in sticky end ligation the required ends were kept in proximity
by hydrogen bonds between sticky ends). The advantage of blunt end liga-
tion is that it joins DNA molecules independently of the specific nucleotide
sequences at their ends.

Here is another way of performing blunt end ligation. Consider the termi-
nal transferase enzyme which is 3’-end extending, see Fig. 1.12. The situation
illustrated in Fig. 1.12 is called, for obvious reasons, a “homopolymer tail-
ing.” This can be used for blunt end ligation in the way illustrated in Fig.
1.27.

Although the term “ligation” means technically just the sealing of a nick,
it is often used also to describe the combined process of the annealing of
sticky ends and then ligating the nicks.

Modifying nucleotides of DNA

Enzymes that modify DNA molecules by adding or deleting certain chemical
components are very useful in controlling various operations on DNA (these
enzymes are thus called modifying enzymes).
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Methylases are enzymes that are used in vivo as partners of restriction
enzymes. The main role of restriction enzymes in vivo is the defence of
the host organism (e.g., bacteria) against the invading organism (e.g., virus).
Restriction enzymes will digest (cut in pieces) the DNA of the invader — a big
variety of restriction sites allows the destruction of a big variety of invaders.
However, the DNA of the host itself may contain recognition sites of some of
the restriction enzymes — if these sites are not protected, the host organism
will destroy its own DNA while destroying the DNA of the invader.

5 3 5 3
a B
3/ 5/ 3/ 5/
terminal transferase terminal transferase
+ +
C nucleotides G nucleotides

5 3 5 3
’_l o Ccco r___I 3 GGGG
CCCCcC GGGG
3/ 5/ . 3/ 5/

DNA ligase
5 3
a CCCC 3 GGGG
cCccCccC GGGG
3 5

Figure 1.27: Joining blunt ended molecules using homopolymer tailing

The methylase, that is the partner of a restriction enzyme, has the same
recognition site as the restriction enzyme; when it binds to this recognition
site, it will modify one of the nucleotides within the restriction site (by adding
a methyl group to it). In this way this recognition site becomes inaccessi-
ble for the corresponding restriction enzyme, and so the DNA molecule is
protected against destruction (digestion) by it.

Alkaline phosphatase removes phosphate group from 5 ends of DNA,
leaving there the 5-OH groups — see Fig. 1.28. Clearly, the molecule so
obtained cannot ligate with itself (forming a circular molecule) — a phospho-
diester bond cannot be formed. This is very important if you want to make
sure that, given molecules & and molecules 3, you get ligations of o and 3,
but not of o with « or 3 with 3.
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P OH
5’ 3
04
3 5
OH P
OH OH
5' 3’
(87
3 5
OH OH

Figure 1.28: Alkaline phosphatase in action

Polynucleotide kinase has the opposite effect: it transfers phosphate
groups (from available ATP molecules) onto the 5-OH ends (of a molecule
treated by alkaline phosphatase) — this is illustrated in Fig. 1.29.

OH OH
5' 3
a
3 5
OH OH
P OH
5/ 3/
87
3/ 5/
OH P

Figure 1.29: Polynucleotide kinase in action
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If the transferred phosphate groups are radioactively labeled, then the so
obtained molecule may be detected by detection methods using radioactivity
(recall our discussion of gel electrophoresis). Moreover, restoring a (missing)
5’-phosphate end allows the ligation of such molecules.

Multiplying DNA

One of the central problems of genetic engineering is the amplification of the
available “small” amount of a specific fragment of DNA (e.g., the fragment
that encodes for a specific gene). The problem is especially acute if the small
amount of the known fragment is lost in a huge amount of other pieces (like
the proverbial needle in a haystack).

Fortunately there is a technique, called polymerase chain reaction (PCR),
that solves this problem. This technique was devised in 1985 by Kary Mullis,
and it has really revolutionized molecular biology (Mullis has been awarded
the Nobel Prize for this discovery). It is incredibly sensitive and efficient:
one can produce within a short period of time millions of copies of a desired
DNA molecule even if one begins with only one strand of the molecule. The
applications of PCR are really enormous; they include areas such as genetic
engineering, forensic analysis, genome analysis, archeology, paleontology, and
clinical diagnosis.

The beauty of PCR is that it is very simple and really elegant. Here is
how it works.

Assume that we want to amplify a DNA molecule a with known borders
(flanking sequences) 8 and «y — see Fig. 1.30.

i ]
- LI

S—— —
[}

Figure 1.30: DNA with borders

Amplifying a will be done by repeating the basic cycle consisting of three
steps: denaturation, priming, and extension.

To start with, one prepares a solution containing a (the target molecule),
synthetic oligonucleotides (primers) that are complementary to 3 (3-primers)
and to 7 (y-primers), polymerase that is heat resistant, and nucleotides.

Denaturation. In this phase the solution is heated to a really high tem-
perature (often close to the boiling temperature), so that the hydrogen bonds
between the two strands are destroyed, and « separates (denatures) into two
strands oy and a3 — see Fig. 1.31.
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Figure 1.31: Denaturation

Priming. Now the solution is cooled down (usually to about 55° C) so
that the primers will anneal to their complementary borders: S-primers to
3, and ~y-primers to v — see Fig. 1.32.

B

M 1m
T

N——

M
l' cooling
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(B-primer
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————
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Figure 1.32: Priming
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Eztension. The solution is heated again (to 72° C) and a polymerase will
extend the primers (using nucleotides available in the solution) to produce
two complete strands of DNA, both identical to « — see Fig. 1.33. Remem-
ber that polymerase extends a primer always in the 5 — 3’ direction. The
polymerase used here must be heat resistant, as during many repeated cycles
they have to survive very high temperatures. Fortunately, nature provides
such polymerases: they can be isolated from thermophilic bacteria that live
in thermal springs with a temperature close to the boiling point.

carffiper -+ 111 -
— Il ap: LWL -~ [

u polymerase

LT 1mm T
Lty --- Ly --- L
p— Rp— N e’ f——

2l E ¥ E

Figure 1.33: Extension

Obviously, repeating the basic cycle n times will yield 2" copies of «, at
least in theory. Thus PCR is a very efficient molecular Xerox machine!

For the ease of explanation we have assumed that our target sequence o
is a separate molecule. Obviously, PCR will also multiply «, even if o is a
part of a larger molecule (flanked within the larger molecule by borders 3
and y). The explanation then becomes more subtle (we encourage the reader
to analyze the working of the PCR procedure in such a situation).

Before the reader pronounces the PCR technique to be a real miracle, we
need to stress that in order to amplify a DNA molecule (&) we need to know
the borders (8 and ) in order to make the primers (3- and ~y-primers).

1.3 Reading out the Sequence

We know already how to determine the length of a DNA molecule, but the
ultimate goal in many genetic engineering procedures is to learn the exact
sequence of nucleotides comprising a DNA molecule. For example, the goal
of the Human Genome Project is to determine the entire nucleotide sequence
of the human genome, which is about 3 - 10° bp long!

The most popular method of sequencing (i-e., establishing the exact se-
quence of nucleotides comprising a given DNA molecule) is based on the
polymerase action of extending a primed single stranded template, and on
the use of nucleotide analogues. A nucleotide analogue is a nucleotide that
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has been chemically modified in vitro. One can chemically modify the sugar
and/or the phosphate group and/or the base of a nucleotide. The modi-
fication that is mostly used in sequencing is the modification of the sugar
that changes the 3'-hydroxyl group (3/-OH) into the 3’-hydrogen atom (3'-
H); such nucleotides are called dideozynucleotides and they are denoted by
ddA, ddT, ddC, and ddG. The sequencing method based on such nucleotides
is called accordingly the dideozy enzymatic method, or the Sanger method
(named after its inventor).

It works as follows. Assume that we want to sequence a single
stranded molecule . We extend it at the 3’ end by a short sequence
v (say of length 20) so that we get the molecule 3'-ya. For exam-
ple, if @ = 3-AGTACGTGACGC, then the resulting molecule is 8 =
3-vyAGTACGTGACGC.

The reason for adding v “in front of” « is that in this way we can add
the primer ¥ (complemented ) so that a polymerase enzyme can start to
extend such a molecule following (complementing) the template «, see Fig.
1.34. Let 8’ be the so primed 3 molecule. Usually, the primer 7 is labeled
(e.g., radioactively, or fluorescently marked) so that later in the procedure
we can easily identify single strands beginning with 7.

5’ 3’
I
AGTACGGGACGC|

3 5

=2 =2

Figure 1.34: 8’ molecule

We now prepare four tubes (called Tube A, Tube T, Tube C, and Tube
G) so that each of them will contain 8 molecules and primers (so that 3’
molecules will form), polymerase, and nucleotides A, T, C, and G. Moreover,
Tube A contains a limited amount of ddA, Tube T a limited amount of ddT,
Tube C a limited amount of ddC, and Tube G a limited amount of ddG.

Let us analyze the reaction going on in Tube A. The polymerase enzyme
will extend the primer % of 3’ using the nucleotides present in Tube A. Using
only A, T, C, G nucleotides, 3’ is extended to the full duplex (Fig. 1.35).

5' 3’
TCATGCACTGCG
AGTACGTGACGC

3 5'

=2 2|

Figure 1.35: Full duplex
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Sometimes the polymerase enzyme will use a ddA rather than an A nu-
cleotide. When this happens, then the complementing of the template will
end at this position because ddA does not have the 3'-OH end needed for the
phosphodiester bond. Hence, beside the full duplexes, we will also get the
molecules shown in Fig. 1.36.

5’ 3

¥ T CA|

Y AGTACGTGACGC]|
3 5
5 3

J TCATGCA

v AGTACGTGACGC]|
3 5’

Figure 1.36: Incomplete molecules in Tube A

Hence the 5’ — 3’ fragments made by polymerase in Tube A (according to
the template 3) are:

5 —5¥TCATGCACTGCG,
5 —FTCA,
5 — yTCATGCA.

We can easily get these single stranded sequences by denaturing the {par-
tially) double stranded sequences and selecting only those single strands that
begin with the primer 7 (remember that we have labeled ¥ for this purpose).

Reasoning in the same way, the 5’ — 3’ fragments made by polymerase in
Tube T are:

5 —FTCATGCACTGCG,
5 — 7T,
5 — FTCAT,
5 —3TCATGCACT.
In Tube C we get:
5 -~ FTCATGCACTGCG,
5 —FTC,
5 —FTCATGC,
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5 —3TCATGCAC,

5 — FTCATGCACTGC.
In Tube G we get:

5 —3TCATGCACTGCG,

5 —3TCATG,

5 — FTCATGCACTG.

Now we perform the polyacrylamide gel electrophoresis using four wells
(one for each tube), and we get the size separation (we ignore here the prefix
% which is the same for all fragments) shown in Fig. 1.37. Note that the
distribution of the (overlapping) fragments forms a sequencing ladder where
the rungs are the fragments, and a rung r directly precedes a rung =’ if 7/ is
longer than r by one nucleotide.

' l 1 |

G CGTCACGTATCT

Figure 1.37: Sequencing ladder

Clearly, we read the bands (the ladder) from right to left, climbing the
ladder, because the length of (molecules in the) bands increases from right
to left. In Fig. 1.37 we have indicated under each band the nucleotide that
is at the 3’ end of molecules in this band. The molecules themselves that are
in the bands (ordered by length, hence from right to left in Fig. 1.37) are:

T,

TC,
TCA,
TCAT,
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TCATG,
TCATGC,
TCATGCA,
TCATGCAC,
TCATGCACT,
TCATGCACTG,
TCATGCACTGC,
TCATGCACTGCG.

Hence the original molecule « is: 3'-AGTACGTGACGC.

We stress once again that our descriptions are very simplified. Thus,
e.g., there are many subtle points in the sequencing described above. The
polymerase used here cannot have the associated exonuclease activity since
it could then cleave out the dideoxynucleotide that ends the complementing
of the template. The “standard” enzyme used here was the Klenow fragment
of DNA polymerase I. Also, the amount of the dideoxynucleotides in Tubes
A, T, C, G must be carefully determined — if there are too many of them,
then the polymerase action may always end within the proper prefix of the
sequenced molecule — the chance of getting to the end of the template will
decrease with too high a density of dideoxynucleotides.

Finally, one can run only molecules of quite limited length through the
gel. But one can represent a long molecule by a sequence of its overlapping
shorter fragments. Knowing the nucleotide sequence of these fragments and
their overlappings, one can construct the nucleotide sequence of the whole
molecule.

1.4 Bibliographical Notes

There are very many good books on molecular biology and genetic engineer-
ing, written for readers with different backgrounds.

The book by K. Drlica [48] is a beautiful introduction to molecular biol-
ogy and genetic engineering that does not assume any background in either
biochemistry or biology (our “stick” representation for nucleotides is from
this book). Also [208] is a very nice and easy introduction to genetic engine-
ering, although somewhat outdated now. [43] is written for the uninitiated
reader — it is more sketchy than the other two books, but quite good as a
quick reference.

The book by B. Alberts et al. [5] is a standard textbook on molecular
biology and is very good also as a comprehensive reference book. The book
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by M. R. Walker and R. Rapley [214] represents a new concept in book writ-
ing. The reader may determine himself/herself a “route” through the topics
he/she likes. It is a wonderful reference book. It is especially recommended
for the reader who after reading some more popular books on molecular bi-
ology and genetic engineering would like to bring more order to the acquired
information.



Chapter 2

Beginnings of Molecular
Computing

2.1 Adleman’s Experiment

“We can see only a short distance ahead, but we can see plenty there that
needs to be done.” These words of Turing [213] can be taken as an underly-
ing principle of any program for scientific development. Such an underlying
principle is very characteristic for research programs in computer science.
Advances in computer science are often shown by and remembered from
some unexpected demonstration, rather than from a dramatic experiment
as in physical sciences. As pointed out by Hartmanis [83], it is the role of
such a demo to show the possibility or feasibility of doing what was previ-
ously thought to be impossible or not feasible. Often, the ideas and concepts
brought about and tested in such demos determine or at least influence the
research agenda in computer science. Adleman’s experiment [1] constituted
such a demo. This book is about the short distance we can see ahead, and
about the theoretical work already done concerning various aspects of molec-
ular computing. The ultimate impact of DNA computing cannot yet be seen;
this matter will be further discussed in Sect. 2.4.

Already when computers were generally referred to as “giant brains” and
when nothing short of room-size could be visualized as a powerful comput-
ing device, some visionary remarks were made about possible miniaturiza-
tions. Often quoted is the view of Feynman from 1959 [55], describing the
possibility of building “sub-microscopic” computers. Since then, remarkable
progress in computer miniaturization has been made but the goal of sub-
microscopic computers has not yet been achieved. Two major approaches,
quantum computing and DNA computing, have been proposed and already
widely discussed. Adleman’s experiment, which we now start to describe,
was a powerful demo in DNA computing. To keep our presentation on a
realistic level, we will discuss here the example given in [1].

G. Piun et al., DNA Computing
© Springer-Verlag Berlin Heidelberg 1998
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Adleman’s experiment solves the Hamiltonian Path Problem, HPP, for a
given directed graph. We consider the problem in the following formulation.
Let G be a directed graph with designated input and output vertices, v;,
and vey:. A path from v, t0 vey: is termed Hamiltonian if it involves every
vertex exactly once. (This implies that vy, # voyr because vy, = Vo would
be in the path twice.)

For example, the graph depicted in Fig. 2.1 has the designated input
vertex 0 and output vertex 6. The path consisting of the directed edges
0—1,1—2,2—3,3—4,4— 5,5 — 6 is Hamiltonian.

s

2

; ©
7 \@//

Figure 2.1: The graph in Adleman’s experiment

We have chosen the numbering of the vertices in such a way that the
Hamiltonian path comes out in the numerical order. Of course, the number-
ing can always be chosen in this fashion once a Hamiltonian path has been
found. In this particular example the path mentioned turns out to be the
only Hamiltonian path. Indeed, it is easy to exhaust all the possibilities. The
beginning 0 — 3 gives only the maximal paths 0 — 3,3 — 2,2 — 1;
0—33—44—1,1—2 and0 —3,3 —4,4—5,5—2,
2 — 1, before the only possibility for continuation is a repetition of a vertex,
and 0 — 3,3 — 4,4 — 5,5 — 6. The beginnings 0 — 1,1 — 3
and 0 — 6 are also immediately seen to be unsuccessful. This argument
also shows that if any edge from the path0 — 1,1 — 2,2 — 3,3 — 4,
4 — 5, 5 — 6 is removed, then the resulting graph has no Hamiltonian
path. Clearly, if some vertex other than 0 is the input vertex, or some vertex
other than 6 is the output vertex, then the resulting graph (with the same
edges) has no Hamiltonian path. This follows because there are no edges
entering 0 and no edges emanating from 6.
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In general, the Hamiltonian Path Problem, HPP, consists of deciding
whether or not an arbitrarily given graph has a Hamiltonian path. It is
obvious that HPP can be solved by an exhaustive search. Moreover, various
algorithms have been developed for solving HPP. Although the algorithms
are successful for some special classes of graphs, they all have an exponential
worst-case complexity for general directed graphs. This means that, in the
general case, all known algorithms essentially amount to exhaustive search.
Indeed, HPP has been shown to be an NP-complete problem, which means
that it is unlikely to possess an efficient (that is, working in polynomial time)
algorithm. HPP is intractable in the sense that the decision about graphs of
modest size may require an altogether impractical amount of computer time.
In his experiment Adleman solved the HPP of the example given above, a
small graph by all standards. However, the solution is, at least in principle,
applicable to bigger graphs as well. Massive parallelism and complementarity
are the key issues in the solution.

Adleman’s solution is based on the following nondeterministic algorithm
for solving HPP.

Input: A directed graph G with n vertices, among which are
designated vertices v, and voy:.

Step 1: Generate paths in G randomly in large quantities.
Step 2: Reject all paths that do not begin with v, and end in v,,;.
Step 3: Reject all paths that do not involve exactly n vertices.

Step 4: For each of the n vertices v, reject all paths that
do not involve v.

Output: “Yes” if any path remains, “No” otherwise.

Essentially, this algorithm carries out an exhaustive search. In Adleman’s
solution, the massive parallelism of the DNA strands takes care of the unde-
sirable nondeterminism. Watson—Crick complementarity is applied to assure
that the constructed sequences of edges are indeed paths in the graph G. We
will now look at the details of Adleman’s experiment.

Each vertex i of the graph is associated with a random 20-mer strand of
DNA denoted s;,0 < ¢ < 6. For instance, for i = 2,3,4, Adleman used the
following oligonucleotides of length 20:

sp = TATCGGATCGGTATATCCGA,
s3 = GCTATTCGAGCTTAAAGCTA,
s4 = GGCTAGGTACCAGCATGCTT.

As regards orientation, all of these oligonucleotides are written 5’ to 3.
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It will be convenient for us to use a function & mapping each of the DNA
bases to its Watson—Crick complement:

h(A)=T, h(T)=A, R(C) =G, h(G) =C.
For DNA strands, h is applied letter by letter:

h(CATTAG) = GTAATC.

Thus, h produces the Watson—Crick complement of a strand. (The orienta-
tion is changed by h in this way: if the original strand is written 5’ to 3/,
then the Watson—Crick complement will be written 3’ to 5’.) The mapping
h is a morphism according to the terminology of language theory (described
in detail in Chap. 3). It will be referred to as the Watson—Crick morphism.
For instance,

h(sz) = ATAGCCTAGCCATATAGGCT,
h(s3) = CGATAAGCTCGAATTTCGAT.

Decompose now each s;,0 < ¢ < 6, into two strands, each of length 10:
s; = s;s). Thus, s} (resp. s/) can be viewed as the first (resp. second) half
of s;. An edge from the vertex ¢ to the vertex j, provided one exists in the
graph G, is encoded as h(s;'s}). Thus, also an edge will be encoded as a
20-mer, obtainable as the Watson—Crick complement of the second and the
first halves of the oligonucleotides encoding the vertices touching the edge.

The encodings of three particular edges are given below:

e2-+3 = CATATAGGCTCGATAAGCTC,
es—2 = GAATTTCGATATAGCCTAGC,
e3—4 = GAATTTCGATCCGATCCATG.

An important observation is that this construction preserves edge orien-
tation; es_,3 and e3_,o are entirely different.

We are now ready to describe the main phase of Adleman’s experiment.
For each vertex 7 in the graph and for each edge i — j in the graph,
large quantities of oligonucleotides s; and e;_.; were mixed together in a sin-
gle ligation reaction. Here the oligonucleotides s; served as splints to bring
oligonucleotides associated with compatible edges together for ligation. Con-
sequently, the ligation reaction caused the formation of DNA molecules that
could be viewed as encodings of random paths through the graph. (Adle-
man used in his experiment also some ligase buffers, and the whole mixture
was incubated for 4 hours at room temperature. For readers familiar with
Adleman’s paper [1], we want to mention that our notation above is slightly
different. We put the oligos s; in the “soup,” whereas Adleman puts there
the oligos h(s;). The corresponding complementarity change concerns the
oligos e;_,;.)
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In Adleman’s experiment, the scale of the ligation reaction far exceeded
what was necessary for the graph of this size. Indeed, for each edge, a number
of magnitude 10'® copies of the encoding oligonucleotide were present in the
soup. This means that many DNA molecules encoding the Hamiltonian path
were probably created, although the existence of a single such molecule would
prove the existence of a Hamiltonian path.

In other words, quantities of oligonucleotides considerably smaller than
those used by Adleman would probably have been sufficient, or a much larger
graph could have been processed with the quantities he used.

As an illustration, we depict in Fig. 2.2 some of the DNA double strands
that might have been produced in the experiment. We use the notations s;
and e;_,; introduced above. Observe that the double strands are open-ended.

[ s foefo[o]onfos]oo]o]

|61_>3|€3_>4|€4—+1 |€1—+2|€2_>3I€3—>4[64—>5[€5—+2|62_>3|

80[83|32|81|

|€0—>3|€3—»2|€2—+1|€1—»3|

[0 o] [ofoofos]os]oo]

€0—6 Ieo—»3l€3_>4|€4—>5'€5_>6[

Figure 2.2: Examples of paths in Adleman’s graph

Let us go back to the nondeterministic algorithm consisting of 4 steps,
described above. We have already explained how Step 1 can be carried out.
The remaining steps, as well as the conclusion in the output, are filtering or
screening procedures that require biochemical techniques lying outside the
scope of this book. (The interested reader is referred to [1] for details. For
instance, Step 2 can be implemented by amplifying the product of Step 1
using the polymerase chain reaction (PCR) with primers h(sq) and sg. This
means that only molecules encoding paths that begin with the vertex 0 and
end with 6 are amplified.)

From our point of view, the following considerations are more important
than the filtering procedures based on biochemical techniques. Adleman’s
experiment took approximately 7 days of lab work. The screening proce-
dure required in Step 4 was the most time-consuming. However, one should
not draw negative conclusions too quickly from the seemingly slow handling
of this small example. The molecular algorithm used in the experiment was
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rather primitive and inefficient. As in connection with traditional computers,
improved algorithms will extend the applicability of the method. In partic-
ular, from a graph-theoretical point of view, the use of equal quantities of
each oligonucleotide is by far not optimal. For instance, it leads to the for-
mation of large amounts of molecules encoding paths that either do not start
at vertex 0 or do not end at vertex 6. One should first calculate a flow in the
graph and use the results to determine the quantities of each oligonucleotide
required.

In general, the optimal quantity of each nucleotide needed is quite hard to
determine or even approximate. Rather tricky graph-theoretic issues are in-
volved. Intuitively, the quantity should be sufficient to insure that a molecule
encoding a Hamiltonian path, provided one exists, will be formed with a high
probability. This implies that the quantity should grow exponentially with
the number of vertices.

Also, the length of the oligonucleotides used in the encoding is a matter
of choice and optimization. Adleman chose randomly some 20-mer oligonu-
cleotides, of which there exist altogether 42°. The random choice made it
unlikely that oligonucleotides associated with different vertices would share
long common subsequences that might cause “unintended” binding in the
course of the ligation. The choice of 20-mers assured that in the formation of
double strands 10 nucleotide pairs between oligos encoding vertices and edges
were involved and, consequently, the binding was stable at room temperature.
Longer oligonucleotides might have to be used for larger graphs.

As already pointed out, probably many DNA molecules encoding the cor-
rect Hamiltonian path were formed in Adleman’s experiment. The screening
procedure in Step 4 of the algorithm can be modified in such a way [1] that
actually an explicit description of the Hamiltonian path (or of one of the
Hamiltonian paths in case there are several of them) is produced. The exper-
iment has enormous potential for further development and modifications. For
instance, consider the well-known “traveling salesman” problem. It amounts
to finding the shortest Hamiltonian path in a directed graph, where the edges
are provided with lengths. This could perhaps be accomplished by encoding
path length information using oligonucleotides of different lengths. The short-
est product (representing the shortest Hamiltonian cycle) has to be screened
out.

We conclude this section with an abstract formulation of the key issues in
Adleman’s experiment. The abstract formulation will be also needed in the
next section. It allows the use of a “programming language.”

By definition, a (test) tube is a multiset of words (finite strings) over the
alphabet {A, C, G, T}. (Intuitively, a tube is a collection of DNA single
strands. Strands occur in the tube with a multiplicity, that is, several copies
of the same strand may be contained in the tube). The following basic
operations are initially defined for tubes, that is, multisets of DNA single
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strands [2]. However, appropriate modifications of them will be applied for
DNA double strands as well.

Merge. Given tubes Ny and Ny, form their union Ny U N (understood
as a multiset).

Amplify. Given a tube N, produce two copies of it. (Observe that this
operation makes sense for multisets only.)

Detect. Given a tube N, return true if N contains at least one DNA
strand, otherwise return false.

Separate (or Extract). Given a tube N and a word w over the alphabet
{A, C, G, T}, produce two tubes +(N,w) and —(N,w), where +(N, w)
consists of all strands in N which contain w as a (consecutive) substring
and, similarly, — (N, w) consists of all strands in N which do not contain
w as a substring.

The four operations of merge, amplify, detect, and separate allow us to
program simple questions concerning the occurrence and non-occurrence of
subwords. For instance, the following program

(1)  input(N)
(2) N« +(N,A)
(3) N «—+(N,G)
(4) detect(N)

finds out whether or not a given tube contains strands, where both of the
purines A and G occur. The following program extracts from a given test
tube all strands containing at least one of the purines A and G, preserving
at the same time the multiplicity of such strands:

(1) dnput(N)

(2) amplify(N) to produce N; and Ns
(3) Na«— +(N1,A)

(4) Ng < +(N,G)

(5) NG < —(Na,A)

(6) merge(Na, NG)

Iterations of the operation amplify produce an exponential (with respect
to the number of iterations) replication of the number of strands in the given
tube.

Besides the four operations listed above and in [2], Adleman’s experi-
ment makes use of Watson—Crick complementarity and modifications of the
operation separate that can be formulated as follows.
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Length-separate. Given a tube N and and integer n, produce the tube
(N, < n) consisting of all strands in N with length less than or equal
to n.

Position-separate. Given a tube N and a word w, produce the tube
B(N,w) (resp. E(N,w)) consisting of all strands in N which begin
(resp. end) with the word w.

We will not introduce at this stage any formalism for Watson—Crick com-
plementarity, since many such formalisms will be considered later on in this
book. Coming back to Adleman’s experiment, we now describe the filtering
procedure using the operations introduced above. Thus, we start with the
input tube IV, consisting of the result of the basic step, the ligation reaction.
Since double strands can again be dissolved into single strands by heating
(melting) the solution, we may assume that N consists of single strands, that
is, strings of oligonucleotides s;,0 < ¢ < 6. (We ignore here the fragility of
single strands, an issue of definite concern when dealing with larger graphs.)
The filtering or screening part of Adleman’s experiment can now be described
in terms of the following program. Recall that each of the oligonucleotides
$i,0 <1 <6, is of length 20.

(1) input(N)

(2) N < B(N,s0)

(3) N« E(N,se)

(4) N — (N, < 140)

(5) for i=1to 5 do begin N — +(N,s;) end
(6) detect(N).

We will go on in this chapter to discuss the feasibility of the operations.

2.2 Can We Solve the Satisfiability Problem
and Break the DES Code?

We now take a major step forward by presenting a solution, due originally to
Lipton [115], of a very general problem by means of DNA computing. The
problem we refer to is the satisfiability problem for propositional formulas. We
give here only a brief description of the problem. For its great importance
and versatility, we refer to [191] and [198].

We consider (well-formed) formulas a built from propositional variables
Ty,X9,..., by the use of connectives ~,V, A (negation, disjunction, conjuc-
tion). Thus,

a=(r1V ~xzaVx3)A(zaVI3)A(~z1VI3)A~a3

is such a formula.
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A truth-value assignment for such a formula « is a mapping f of the
set of variables occurring in « into the set {0,1}. Here 0 and 1 denote the
truth-values “false” and “true”, respectively. Thus, a truth-value assignment
means the association of a truth-value to each of the variables. For any given
truth-value assignment f, the truth-value assumed by the formula « can be
computed using the truth-tables of the connectives:

V|0 1 Ao 1
00 1 0/0 0 N”” (1](1)
101 1 110 1 r

The formula « is satisfiable if it assumes the truth-value 1 for at least one
truth-value assignment. Clearly, a is not satisfiable exactly in case its nega-
tion ~ « is a tautology, that is, assumes the truth-value 1 for all assignments.

The following simple argument shows that the formula o mentioned above
is not satisfiable. Assume the contrary: an assignment f gives a the value
1. Then f gives the value 1 to each of the four components (referred to as
clauses in the sequel) of the conjunction. In particular, f(~ z3) = 1, implying
f(z3) = 0. From the third clause we see that f(z;) = 0 and, from the second,
that f(z2) = 1. But for this assignment the first clause assumes the value
0, a contradiction. In special cases such as the one mentioned above, various
ad hoc methods can be used to settle the satisfiability problem of a given
propositional formula. However, in the general case no method essentially
better than the erhaustive search is known: one has to search through all
possible 2F truth-value assignments, given a formula with k variables. This
makes the task computationally intractable. It is already computationally
infeasible, say, in the case of 200 variables. The satisfiability problem is
known to be NP-complete. Indeed, it is intuitively very basic among NP-
complete problems in the sense that it constitutes perhaps the most suitable
reference point for NP-complete problems. The reduction of a given problem
to the satisfiability problem is in many cases very natural.

Lipton’s DNA-based solution of the satisfiability problem [115] uses some
of the basic operations described in Sect. 2.1. Indeed, it consists of the
exhaustive search made computationally feasible by the massive parallelism
of DNA strands. We begin with a graphical description of truth-value assign-
ments. Assume that we are dealing with a propositional formula containing
k variables. Consider the directed graph in Fig. 2.3.

There are 2% paths from v;,, t0 Voys (none of the paths is Hamiltonian). In-
deed, there are two choices in each of the vertices v;,,v1, ..., vs_1, the choices
being independent of each other. Moreover, the paths and the truth-value
assignments for the variables x;, 9, ...,z have a natural one-to-one corre-
spondence. For instance, the path vina?vlagvg .. .vk~1a2'vout corresponds to
the truth-value assignment, where each of the variables gets the value 0. In
general, the path vina’f N a? Vg ... vk_la}f Vout cOrresponds to the truth-value
assignment, where the variable x; gets the value i;, for j =1,... k.
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We now proceed with the graph exactly as in Adleman’s experiment. Each
vertex is encoded by a random oligonucleotide, say, of length 20. Consider
the encodings s; and s; of two vertices such that there is an edge e; ; from
the former to the latter. Write s; in the form s; = s}s/, where s, and s are
of equal length, and similarly, s; = s’s/. Then the edge e; ; is encoded by

the oligonucleotide h(s;'s’;), where h is the Watson-Crick morphism.

Figure 2.3: A graph associated with a truth-value assignment

The continuation of the procedure also happens in the same way as in
Adleman’s experiment. For each vertex and edge in the graph, large quanti-
ties of oligonucleotides encoding them are mixed together in a single ligation
reaction. Again the oligonucleotides s; serve as splints to bring oligonu-
cleotides associated with compatible edges together for ligation. The end of
the (oligonucleotide encoding the) vertex and the beginning of an edge can
anneal because they are Watson—Crick complements. Similarly, the end of
the edge and the beginning of the next vertex can also anneal. Since the
encoding oligonucleotides are chosen randomly and are of sufficient length
(with the number k of variables increasing, the length 20 might not be suf-
ficient), no inadvertent paths are likely to form. This means that, after the
annealing has been completed, the “soup” will contain a DNA double strand
encoding an arbitrary path through the graph. As previously explained, we
will also have encodings of arbitrary truth-value assignments for k variables.
As the graph is very symmetric, there is no reason to believe that some paths
will be more likely to appear than others.

We now come to an interesting and significant difference between Adle-
man’s experiment and Lipton’s solution of the satisfiability problem, con-
cerning the basic ligation reaction. In the latter case, the graph is always
the same and independent of the given propositional formula, provided the
number of variables is fixed. Thus, one may always start with the same test
tube that encodes all possible truth-value assignments. Taking several copies
of this test tube, one is able to handle several propositional formulas simul-
taneously. The setup is different in Adleman’s experiment. Since the graph
is the actual input of the problem, the initial test tube cannot stay the same
but varies with the input.

Thus, in the sequel when describing the solution of the satisfiability prob-
lem, we will speak of the initial test tube. The test tube is constructed in the
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way described above, and contains encodings of all possible truth-value as-
signments. Operations described in the preceding section will be performed.
Following Lipton (see [115], page 544), we assume that the strands of DNA
are actually single strands. (It is a matter of molecular biology whether
it is better to actually separate the double strands obtained in the process
above, or just understand the operations as being performed on one half of
the double strands.)

Operations separate, merge, and detect will be used. We will first consider
the example given in [115]. Consider the propositional formula

6 = (-’El \% -’Ez) N (N 1V ~ .TQ).

Thus, we have two variables, in which case the corresponding graph is as

shown in Fig. 2.4.

Vin © ® Uout

Figure 2.4: The graph associated to formula 3

Each of the 4 paths through this graph corresponds to one of the 4 truth-
value assignments for the variables x; and z5. The initial test tube, say Ny,
constructed as indicated above, contains strands for each of the paths and,
consequently, for each of the truth-value assignments. Given the length of the
oligonucleotides encoding the vertices aj, these oligonucleotides will be easily
distinguishable from each other, even in the case of a much larger number
of variables. This means that, for instance, the oligonucleotide encoding a1
does not appear in the paths elsewhere than in the intended position. If
we apply the operation separate, forming the test tube +(Ny,al), we get
those truth-value assignments where z; assumes the value 1 (true). (Recall
that +(No,al) consists of those strands in Ny, where the oligonucleotide a}
appears as a consecutive substring.) This simple observation is the basis of
the whole procedure.

We denote the truth-value assignments by two-bit sequences in the natural
way. Thus, 01 stands for the assignment x; = 0,5 = 1. Similar notation is
also used if there are more than two variables. This simple notation of bit
sequences is extended to the DNA strands resulting from our basic graphs.
Thus, the strand v;,av1a3v,y; is denoted simply by 01. Indeed, among the
strands resulting from paths through our basic graph, this notation gives an
exhaustive characterization. Finally, given a test tube N consisting of strands
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of the kind mentioned and denoted by bit sequences, we denote by S(N, 3, 7)
the test tube of such strands in N, where the ith bit equals 7,5 = 0,1.
According to the simple observation made above, S(N, 1, §) results from N
by the operation separate:

S(N,4,5) = +(N,al).

We consider also the tube of such strands in N, where the ith bit equals the
complement of j: .
S_(Nﬂ:,j) = _'(N7a"17)

The following program solves the satisfiability problem for the proposi-
tional formula 3:

—
~—

input(No)

Ny = S(Np, 1,1)

N{ = 8§ (No,1,1)
N, = S(N{,2,1)
merge(N1, No) = Nj
N4 = S(N3,1,0)

=W N
—

N TN N N N TN TN N N
(=213
Nat N2

7) Ny=S5"(Ns,1,0)

8) Ns=S(NJ,2,0)

9) merge(Ny, N5) = Ng
(10) detect(Ng)

Observe that the steps (2), (4), (6), (8) apply the operation separate in the
sense of +(N,w), whereas the steps (3), (7) apply it in the sense of —(N,w).
The following table summarizes the contents of the tubes at the different
steps of the program.

Step | 1 | 2 | 3 |4] 5 |6 7 |8] 9
Tube | 00,01,10,11 | 10,11 | 00,01 | 01 | 10,11,01 | O1 | 10,11 | 10 | 01,10

Thus, the return is true at the step (10).

The program is based on exhaustive search. The initial tube at step (1)
contains all possible truth-value assignments. The tube at step (5) contains
the assignments satisfying the first clause of the propositional formula S.
(Either z1 or z2 must assume the value 1. At step (2) we have those assign-
ments for which x4 is 1. Of the remaining ones we still take, at step (4), those
for which z5 is 1.) The assignments in this tube, N3, are filtered further to
yield at step (9) those assignments that also satisfy the second clause of the
propositional formula 3.
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The method of this simple example can be directly applied in the general
case. We consider propositional formulas in conjunctive normal form. This
means that the formulas look like o and 3 above; they are conjunctions

(.OAN(Cc A oo ACn ),

where each of the clauses in the parentheses is a disjunction of terms, each of
which is a variable or its negation. Fast algorithms are available to transform
an arbitrary propositional formula into conjunctive normal form.

Thus, consider a propositional formula

y=C1ACaA...A\NCp,

where each of the m clauses C; is a disjunction consisting of variables and
their negations. Assume that altogether k variables x1,2,...,Z; appear in
. This leads to the directed graph already depicted above in Fig. 2.3, as well
as to the initial test tube Ny containing all of the k-bit sequences, provided
the strands in Ny are denoted in the way described above. Starting with Ny,
we go through the clauses of v, extracting all the time strands from Ny, until
after getting through C,,, only those strands remain that encode assignments
satisfying ~.

Explicitly, we show inductively how this is done. Assume that each of the
assignments encoded by the strands in V;, 0 < ¢ < m, satisfies the subformula

’WZCl/\.../\Ci

and that
Ciri=wn1V...Vuy,

where each y; is one of the variables z or its negation. Initially, we have the
test tube Ny of all possible truth-value assignments and the empty formula~y,.

Using the operations separate and merge, we now transform N; into N;y;
by the same procedure as in the example. Consider y;. We form S(N;,n,1)
or S(N;,n,0), depending on whether y13 = z, or y1 = ~ z,,1 < n < k.
Thus, we extract from N; the subtube S(NV;,n,j) satisfying also y;. The
remainder from N;, that is, S™(N;,n,j) is now investigated with respect to
the satisfaction of y5 and the positive part (that is, the strands satisfying y2)
is merged with S(N;, n, 7). The negative part is still useful and is investigated
with respect to the satisfaction of y3, and so on, until we have exhausted the
clause by taking y; into account.

When we have constructed the tube N, in this fashion, a single applica-
tion of the operation detect suffices to settle the problem. As in connection
with Adleman’s experiment, this final step can be modified to actually read
the solution, provided one exists.

The complexity of the process described is feasible: m steps are needed,
each consisting of some applications of separate and merge. The number
of such applications does not exceed the number of variables in a clause.
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Quite a different matter is that the process assumes that the operations are
perfect, that is, they are performed without error. This is of course far from
being obvious, and the microbiological grounds need to be studied. One can
also take a different point of view, where perfection is not called for. If the
initial test tube contains many copies of each truth-value assignment, then
something may be lost in the extractions, and the correct answer is still
reached with a high probability.

We still consider another example, a propositional formula §. The for-
mula 3 considered above is unsatisfactory because of two reasons. First, all
variables appear in all clauses. Secondly, 8 has too few clauses even with
respect to the very small number of variables. (A formula having only few
clauses is satisfiable independently of the clauses themselves; numerical lower
bounds can be easily computed.) Although the formula § is still small and
its satisfiability can be detected without any difficulty, it does not have these
two defects.

The propositional formula 4, defined as follows, has 5 variables and 11
conjunctive clauses:

6 = (N 1V ~ IV N(L’g)/\(xl V xoV N(L’4)/\(N.’L‘1 V$2V$4)
/\(331 V xaV ~ (135) A (ZL'1V ~ oV ~ $5) A (331 VzzV :1,’4)
A~ 1 VgV ~x5) A2V ~ 24 V 25) A{x2V ~ 13V IT4)
/\($3 VzaV 1‘5) A (:133V ~ T4V $5).
The initial test tube Ny contains all the 32 possible truth-value assign-
ments: 00000, 00001, 00010,...,11111. The following table gives the contents
of the tubes Ny, Ny,..., Ny1, defined in the process described above. Each

N;,i = 1,2,...,11, is characterized by listing the strands extracted from
N,_;.

Test tube Strands extracted
Ny none
Ny 11100, 11101, 11110, 11111
Ny 00010, 00011, 00110, 00111
N3 10000, 10001, 10100, 10101

Na 00001, 00101
N 01001, 01011, 01101, 01111
N 00000, 01000

Ny 10011, 11001, 11011
Ng 01010, 01110

N 00100

Nio 11000

Nip 10010, 11010

This means that the strands encoding the truth-value assignments 01100,
10110, and 10111 still remain in the final test tube N1;. Thus, the final detect
operation returns true.
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The method described above can be easily modified to work for any propo-
sitional formula, not necessarily in the conjunctive normal form, [115]. Thus,
the formula results by applying to the variables the unary operation of nega-
tion and the binary operations of conjunction and disjunction. (Other propo-
sitional connectives could also be taken into account here but the matter is
rather irrelevant for our purposes.) Only the number m of binary operations
is significant for the complexity of the process. (The number of negations and
the number of variables are irrelevant.) After m+1 separations and m merges
two test tubes have been produced, the first of which contains molecules rep-
resenting (that is, encoding) satisfying truth-value assignments, whereas the
second contains molecules representing unsatisfying assignments. Thus, the
satisfiability problem is solved by a single application of the operation detect
to the first tube.

When facing the physical obstructions in creating a practical molecular
computer, attention has to be focused on the possible realizations of the
various operations. Programs are easy to write in terms of the operations
we have considered but the feasibility of the implementation is a matter of
microbiological technique. Any detailed discussion about such techniques lies
outside the scope of this book. However, some overall remarks can be made.

A natural way to realize the operation merge is to pour the contents of one
tube into another. At least intuitively, this is faster and less error prone than
the operation separate which certainly requires much more sophisticated tech-
niques. The same holds true with respect to the operation detect. However,
it appears that in standard programs detect is rarely done. Consequently,
the realization of detect does not affect much the complexity of the process,
yet its error rate is important. Realizations of the operation separate can
have errors of both inclusion and exclusion. By the former we mean that an
item that should go to +(N,w) actually ends up somewhere else, maybe in
—(N,w). Similarly, an error of exclusion means that an item which should
go to —(N,w) does not go there. It might be useful to consider different
probabilities for these two types of errors. We will still discuss in Sect. 2.4
some matters concerning error rates and the feasibility of operations.

In the remainder of this section we consider a model of molecular compu-
tation that was introduced and called the sticker model in [189]. A method
based on this model, [3], for breaking the most widely used cryptosystem
DES (Data Encryption Standard) will also be discussed. The sticker model
is based on the paradigm of Watson—Crick complementarity. It makes use of
DNA strands as the physical substrate in which information is represented.
Basically, the sticker model has a random access memory, where no strand
extension is required. The materials are reusable, at least in theory.

We first describe a way, based on complementarity, of representing infor-
mation in DNA. It will use two basic kinds of single-stranded DNA molecules,
referred to as memory strands and sticker strands or shortly stickers. A
memory strand is n bases in length and contains k non-overlapping sub-
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strands, each of which is m bases long. Thus, we must have n > mk. Al-
though this is not necessarily the case, we assume in the following illustrations
that each substrand follows another consecutively, without any bases lying
between them. During the course of a computation, each substrand is iden-
tified with exactly one boolean variable (or equivalently one bit position).
The substrands should be significantly different from one another: any two
of them should differ with respect to several base positions. (This is intended
to ensure a sufficient identification for each bit position.) Each sticker is
m bases long and complementary to exactly one of the k substrands in the
memory strand.

-~ |[GAGAG[TTTTC[]AAAAA|CCCCC]--"

memory strand

stickers

Figure 2.5: Example of a sticker memory

A specific substrand of a memory strand is either on or off. If a sticker
is annealed to its matching substrand on a memory strand, then the par-
ticular substrand is said to be on. Otherwise, if no sticker is annealed to a
substrand, then the substrand is said to be off. A memory complex is the
general term used for memory strands, where the substrands are on or off.
Memory complexes represent binary numbers, where a substring being on
(resp. off) represents the bit 1 (resp. 0). Thus, memory complexes are DNA
strands that are partially double.

In the illustration in Fig. 2.5, we consider a memory strand of length
n = 20, divided into k = 4 substrands, each of length m = 5.

Thus, in this case the necessary complexes are interpreted as containing
four bits of information. In particular, consider the memory complexes in
Fig. 2.6.

In the first memory complex, all substrands are off, whereas in the last
complex the last two substrands are on. The binary numbers represented by
these four memory complexes are 0000, 0100, 1001, and 0011, respectively.

In the memory strand used in Fig. 2.5, the substrands corresponding to
odd-numbered (resp. even-numbered) bit positions consist entirely of purines
(resp. pyrimidines). An advantage of such a choice is the natural creation of
borders between the substrands intended as encoding substrands. In other



2.2. Solving the SAT Problem 59

words, it is not possible that a sticker is bonded with a substrand overlapping
two of the intended substrands. (Such an annealing could cause confusion in
the outcome of the operations described below.) Indeed, for any extensive
applications of sticker systems, a careful study of ideal encodings is impor-
tant. Such a study would have to combine the microbiological feasibility
with theoretical advantages, trying to achieve an optimal trade-off between
the two.

--[GAGAG[TTTTCJ[AAAAA[CCCCC]| -~

TTTTC[AAAAA[CCCCC]---

AAAAG

-[GAGAG

- |[GAGAG

TTTTC

AAAAA

cCcCCC

CTCTC

GGGGG

«[GAGAG|TTTTC

AAAAA

CCcCCC

TTTTT

GGGGG

Figure 2.6: Examples of memory complexes

It is also instructive to compare the basic representation mechanisms of
Adleman’s experiment and sticker systems, and in particular, the idea of
constructing double strands. The paradigm of complementarity is present in
both cases. In sticker systems, one starts with a long single memory strand
to which short stickers are annealed, to yield a memory complex, a partially
double strand. In Adleman’s experiment (as well as in Lipton’s solution of
the satisfiability problem) there is no long strand to start with, but short
single strands are annealed in a step by step fashion, leaving a sticky end
after each step. The double strand created in this fashion is supposed to
have no single-stranded gaps.

The information density in both cases (sticker systems and Adleman’s

. 1. .
experiment) can be considered to be the same, — bits per base. While the

theoretical maximum in DNA representations is two bits per base, such a high
value would render any separation-based molecular computer dangerously
€1Tor prone.

We are now ready to introduce the operations used in sticker systems.
While they resemble the operations considered above, they are simple yet
flexible for implementing general algorithms. As before, a test tube or tube is
a multiset, its elements now being memory complexes. (The actual represen-
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tation of memory complexes as two-dimensional data structures is irrelevant
for our purposes.) The operations we consider are merge, separate, set, and
clear.

The operation merge is exactly as before: two test tubes are combined
into one. Thus the memory complexes from the two input tubes, with their
annealed stickers undisturbed, are combined to form the multiset union of
the two inputs.

The operation separate produces, given a test tube N and an integer
1,1 < i < k, two new test tubes +(N,¢) and —(N,¢). The test tube +(N, 1)
(resp. —(V,%)) consists of all of the memory complexes in the original N,
where the ith substrand is on (resp. off).

For a given test tube /N and an integer 7,1 < 7 < k, the operation set
produces a new test tube set(N, i), where the ith substrand of each memory
complex in N is turned on. (That is, an appropriate sticker is annealed to
it if the ith substrand is off in the memory complex but the ith substrand is
left unchanged if it is already annealed.)

Finally, for a given test tube N and integer i,1 < ¢ < k, the operation
clear produces a new test tube clear(N,3), where in each memory complex
of N the ith substrand is turned off, that is, an eventual sticker is removed
from it.

Computations in the sticker model consist of a sequence of the operations
merge, separate, set, and clear. Inputs and outputs will be test tubes. To
read the output, one memory complex must be isolated from the output test
tube and its annealed stickers determined, or else it must be reported that
the output test tube contains no memory complexes.

The input or initial test tube will be a library of memory complexes. In
particular, a (k,l) library, 1 <1 < k, consists of memory complexes with k
substrands, the last k—1 of which are off, whereas the first [ substrands are on
or off in all possible ways. Thus, viewed as a multiset, a (k, ) library contains
2! different kinds of memory complexes. The represented binary sequences
are of the form w0*~!, where w is an arbitrary binary sequence of length
. In the initial test tube, the first [ substrands of the memory complexes
represent the actual input, whereas the remaining k£ — [ substrands are used
for intermediate storage and output.

The computational paradigm associated with the sticker model is to settle
hard problems by exhaustive combinatorial searches over inputs of length [.
All possible 2! inputs are processed in parallel. One can also say that this
paradigm is the essence of DNA computing in general.

Following [189], we now illustrate the sticker model by presenting a so-
lution to the Minimal Set Cover problem. The problem can be formu-
lated as follows. Given a finite set S = {1,2,...,p} and a finite collection
{C4,...,C4} of subsets of S, find the smallest subset I of {1,2,...,¢} such

that
Jci=s.

i€l
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Of course, an exhaustive search through all the 27 subsets of I will solve the
problem.

We will now describe a solution using the sticker model. Memory strands
will have k = p + ¢ substrands. The initial test tube Ny will be a (p + ¢, q)
library. (It should be emphasized that any widespread applications of the
sticker model would assume that libraries of specific sizes are readily available.
With an increasing k, the construction of memory strands with & substrands
becomes more challenging,.)

We denote by card(X) the cardinality of a set X (that is, the number
of elements in X). The elements of the set C;,1 < i < g, are denoted by
c,1 < j < card(C;). Thus, each cf is an integer between 1 and p.

The memory complexes in the initial test tube Ny represent all possible
subsets I of the set {1,2,...,¢}. In particular, the first ¢ substrands in each
memory complex tell, by being on or off, which of the numbers 1,2,...,¢q
belong to the particular subset I represented by the memory complex. The
last p substrands are initially off in each memory complex M. Those of the
substrands ¢ + 7,1 < j < p, are eventually turned on, for which the number
j belongs to some set C;, where i is in the index set I represented by M.
Thus, given M, we proceed as follows: we look through the first ¢ substrands
of M; whenever we encounter a substrand that is turned on (let it be the ith
substrand, the operation separate is used to differentiate between on and off),
then we use the operation set to turn on those among the last p substrands
that come from the elements of C;. After having gone through all of the
first g substrands of M in this fashion, we look to see whether or not each
of the last p substrands has been turned on. This can again be done by the
operation separate. The last p substrands being on means that the index
set I represented by M indeed leads to a cover of the set S = {1,2,...,p}.
Thus, we may discard the memory complexes not satisfying this condition,
and must find the smallest index set among those satisfying it.

It is fairly obvious that the described procedure works. In standard se-
quential computation, however, the amount of work is enormous: for ¢ = 100,
we have to apply the procedure for each of the 2'%° memory complexes.
Things are different in DNA computing and the sticker model. All memory
complexes in Ny, where the first substrand is on (that is, C; is one of the sets
in the proposed cover of S), are now processed simultaneously. The result
is brought over to the next step, where the memory complexes having the
second substrand on are processed. In this fashion, the overall procedure will
have only g steps, instead of 2.

Recall the notations +(N,%),—(N,4), and set(N,7) used in connection
with the operations separate and set. The following simple program, where
the initial test tube Ny is a (p + ¢, ¢) library, formalizes the ideas described
above:

(1) fori=1tog
separate + (Np,i) and — (N, 1)
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for j =1 to card(C;)
set(+(No, ), +c})
No — merge(+(No, 1), —(No, 1))
(2) fori=g+1toqg+p
No < +(No, %)

The test tube Ny resulting as the output of this program contains only
memory complexes, where each of the p last substrands is on. To get a
solution to the problem of the Minimal Set Cover, we still have to detect
from Ny a memory complex which has the smallest number of the first ¢
substrands turned on. At the end of the outer loop in (3) in the following
program, the test tube N,,i > 1, contains all the memory complexes, where
exactly 4 among the first ¢ substrands are turned on. Thus, the output will
give a solution to the Minimal Set Cover problem.

(3) fori=0tog—1
for j =i down to 0
separate + (Nj,i+ 1) and — (N;,i+ 1)
Njt1 + merge(+(Nj,i+ 1), N;41)
Nj — —(Nj,i+1)
(4) read Ny;
else if it was empty read No;

else if it was empty read Ns;

The reader might want to consider the double loop in step (3) in terms of
a simple example. For instance, assume that ¢ = 4 and that Cs covers the
set S together with any of the other sets C;, whereas C1,Cs, C4 do not, even
together, cover S. This means that the initial test tube Ny contains the
memory complexes representing the covers (1, 3), (2, 3), (3, 4), as well as
all covers containing any of them. The table on the next page describes the
situation after each step in the outer loop.

Observe that the above procedure does not use the operation clear at
all. Another more far-reaching observation is that the entire algorithm can
eventually be executed by a robotic system. A robot would perform the
experiments needed in the operations automatically. In this case it should be
assumed that the operations are performed “blindly”, that is, without getting
any feedback from the DNA during the experiments. Such a feedback does
not seem possible using present techniques. The operations discussed above
(merge, separate, set, clear) can feasibly be executed by a robotic system
[189].

The most dramatic potential application of the sticker model was pre-
sented in [3], for attacking the Data Encryption Standard, DES. (See [201]
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for a detailed description of it.) The analysis presented in [3] suggests that
such an attack might be mounted on a table-top machine, based on DNA
computing but using also robotic parts. Approximately one gram of DNA
would be needed. Quite importantly, the attack is likely to succeed even in
the presence of a large number of errors. This is an aspect that might render
DNA computing especially suitable for cryptanalytic tasks. One can never
expect a 100% success rate. But even if some DNA operations are error
prone, the cryptanalytic attack might succeed with a reasonable probability.

No Ny Ny N3 Ny
(1,3),{2,3), empty empty empty empty
initial (3,4),(1,2,3),
(1,3,4),(2,3,4),
(1,2,3,4)
1=0, (2,3),(3,4), (1,3),(1,2,3), empty empty empty
separate (2,3,4) (1,3,4),
onl (1,2,3,4)
i=1, (3:4) (1,3),(1,34), | (1,2,3), empty | empty
separate (2,3),(2,3,4) (1,2,3,4)
on 2
i=2, empty (3a4) (1a3)7(273), (17273)a empty
separate (1,34), (1,2,3,4)
on 3 (2,3,4)
i=3, empty empty (1,3),(2,3), | (1,2,3), | (1,2,3,4)
separate (3,4) (1,3,4),
on 4 (2,3,4)

The cryptosystem DES translates plaintext blocks 64 bits in length into
64-bit cryptotext blocks. The encryption happens under the control of a 56-
bit key. The same key is used for both encryption and decryption. (DES is
a classical two-way cryptosystem, in contrast to one-way or public-key cryp-
tosystems.) We consider the “known plaintext” attack of cryptanalysis, [201].
It means that the cryptanalyst knows some of the pairs consisting of plain-
text and the corresponding cryptotext and, on the basis of this information,
is supposed to find the key. Of course, this must happen within a reasonable
amount of time. It has been suggested that special-purpose electronic hard-
ware or massively parallel supercomputers might do the job in case of DES.
However, there has been no breakthrough. While DNA computing based on
the sticker model might be the right approach, the real feasibility of such an
attack should ultimately be decided in the laboratory.

An immediate approach to the problem is an exhaustive search through
all the 2°¢ different keys. It is an indication of the strength of DES that no
significantly better approach is known. This brute force approach is the one
taken in DNA computing.

We now describe the cryptanalytic attack presented in [3]. Thus, the
sticker model is used. The initial test tube will be a (579, 56) library. The
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substrands in the memory complexes will be oligonucleotides of length 20.
Thus, the memory strands will be 11580 nucleotides long. This is still a safe
size but oligonucleotides longer that 15000 bases might be fragmented by
shear forces of pouring and mixing the test tubes.

In the memory complexes, a region of 56 substrands will store the 56-bit
key. Another region of 64 substrands will, after the computation, encode the
corresponding cryptotext. The remaining 459 substrands are needed to store
intermediate results during the computation. The known pair (plaintext,
cryptotext) is not represented in the memory complexes. It always remains
the same; each of the keys works on this particular plaintext, and the resulting
cryptotext is compared with the known fixed cryptotext. Thus, the whole
procedure consists of the following three steps.

256

1. Construct the initial (579, 56) library, representing all possible keys.

2. On each memory complex, compute the cryptotext obtained by en-
crypting the known plaintext by the key represented by the memory
complex.

3. Select the memory complex whose cryptotext matches the known cryp-
totext, and read its key.

The main part of the work is step (2). The “sticker machine” imple-
menting the algorithm can be envisioned as a parallel robotic workstation. It
consists of a rack of tubes (data tubes, sticker tubes, operator tubes), some
robotics (arms, pumps, heaters or coolers), as well as a microprocessor that
controls the robotics. The robotics are arranged to perform any of the four
operations discussed above in connection with the sticker model: merge, sep-
arate, set, and clear. Moreover, the robotics are capable of performing the
operations in the following extended parallel sense.

Robotics can merge the DNA from 64 data tubes into one data tube. They
can separate the DNA from each of 32 data tubes into two more data tubes
by using 32 specific “separation operator” tubes. The robotics can set the
ith substrand on, in all memory complexes of 64 data tubes. For this it uses
a sticker tube containing stickers for the ith substrand, as well as a sticker
operator tube. Similarly, the robotics can clear specific substrands. The
reader is referred to [3] concerning further details about the implementation
of the operations, as well as the algorithm for step (2). We conclude this
section by explaining the construction in step (1), the creation of the initial
library. How can one obtain all the possible 2% keys? The technique is also
of general interest in DNA computing.

We begin with approximately 2% identical memory strands (single
strands) of the correct length, and divide them equally into two tubes Ny
and Ny. Large amounts of each of the 56 stickers are added to Nj, so that
in the ligation reaction all of the 56 appropriate substrands in Nj are turned
on. The unused stickers are washed away from Ny, after which Ny and N,
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are merged into one tube N. Finally, N is heated and cooled, to randomly
reanneal the stickers. Roughly, 63% of the keys will be represented after this
process. If we begin with three times the necessary amount of DNA, the
percentage is increased to 95%.

2.3 Paradigm of Computing — Some Rethink-
ing

Will an eventual large-scale realization of DNA computers change or signif-
icantly alter the general paradigm of computing? This will be the topic of
our subsequent discussion. We apply here the word “paradigm,” widely in
use nowadays, to mean the “set of beliefs and opinions common to a scien-
tific community.” When speaking about the “paradigm of computing,” the
scientific community we mean apparently consists of computer scientists, un-
derstood in a very wide sense.

There can be no doubt about the fact that the Turing machine has already
been an incarnation of the paradigm of computing for roughly half a century.
So let us go back to Turing’s original paper, [212], and see how he argued
that his definition of “computable” numbers actually included all numbers
which would naturally be regarded as computable. In present terminology,
such an argument would defend the Church-Turing Thesis, that is, explain
why a Turing machine actually computes everything.

In [212], Turing used arguments of three kinds:

(i) A direct appeal to intuition.
(ii) A proof of the equivalence of two models.

(iii) Giving examples of large classes of computable numbers, as well as
showing the closure of computable numbers under various operations.

For our purposes the arguments (ii) and (iii) are irrelevant, whereas it is
important to recall what Turing says about (i). His idea of a computer as a
diligent clerk has to be contrasted with the idea of a computer as a multitude
of DNA strands. The latter are in no way smarter than the diligent clerk
— in fact it might be the other way round. But their massive, theoretically
unbounded, parallelism changes the paradigm at least on some level.

Turing opens the argument (i) as follows. “Computing is normally done
by writing certain symbols on paper. We may suppose that this paper is
divided into squares like a child’s arithmetic book. In elementary arithmetic
the two-dimensional character of the paper is sometimes used. But such a use
is always avoidable, and I think it will be agreed that the two-dimensional
character of paper is no essential of computation. I assume then that com-
putation is carried out on one-dimensional paper, i.e. on a tape divided
into squares. I shall also suppose that the number of symbols which may be
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printed is finite. If we were to allow an infinity of symbols, then there would
be symbols differing to an arbitrarily small extent. The effect of this restric-
tion of the number of symbols is not very serious. It is always possible to
use sequences of symbols in place of single symbols. ... The behaviour of the
computer at any moment is determined by the symbols which he is observ-
ing, and the ‘state of mind’ at that moment. We may suppose that there is a
bound to the number of symbols or squares which the computer can observe
at one moment. If he wishes to observe more, he must use successive observa-
tions. We will also suppose that the number of states of mind which need to
be taken into account is finite. The reason for this are of the same character
as those which restrict the number of symbols. If we admitted an infinity of
states of mind, some of them will be ‘arbitrarily close’ and will be confused.
Again, the restriction is not one which seriously affects computation, since
the use of more complicated states of mind can be avoided by writing more
symbols on the tape. Let us imagine the operations performed by the com-
puter to be split up into ‘simple operations’ which are so elementary that it
is not easy to imagine them further divided. Every such operation consists of
some change of the physical system consisting of the computer and his tape.
We know the state of the system if we know the sequence of symbols on the
tape, which of these are observed by the computer (possibly with a special
order), and the state of mind of the computer.”

The analysis continues along the same lines. It makes no difference if only
observed squares are changed and in a simple operation not more than one
symbol is altered. Because the new observed squares must be immediately
recognizable by the computer, their distance from the squares observed at the
preceding step should not exceed a certain fixed amount. By invoking the
simplicity of the individual operations and the resulting necessity to replace
more complicated operations by a sequence of simple ones, it can be concluded
that the most general single operation is either a possible change of the
observed symbol together with a possible change of the state of mind, or
else a possible change of the observed square also together with a possible
change of the state of mind. Thus, this intuitive analysis has brought forward
the standard notion of a Turing machine which will be discussed formally in
Chap. 3.

The operation of Turing’s computer, the diligent clerk, is fundamentally
sequential. He works step by step, always inspecting some part of his eventu-
ally huge piles of data. (We observe in passing that, in Turing’s days, no fuss
was made in mathematical writing about the “he-she” distinction. Turing
refered to the clerk as “he”.) Nothing happened in parallel. Turing could
have of course thought of several clerks working simultaneously but then ap-
parently the idea would have been to simulate their work by one clerk doing
all the individual workloads in succession. This would have increased the
time needed, maybe enormously, but all complexity considerations are irrel-
evant for Turing’s clerk. Notions such “tractable” or “feasible”, let alone
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“practical”, do not enter the discussion. What is said about the multitude of
clerks applies also to the multitude of DNA strands. We can always simulate,
in one way or another, the massive parallelism of DNA molecules by doing
all the parallel work in successive sequential steps. It seems clear that DNA
computers cannot violate the Church-Turing Thesis. If something has been
computed by a DNA computer, then we can call Turing’s clerk and ask him
to carry out the same computation. Computability, or the set of computable
numbers as in Turing’s terminology, is not affected by DNA computing. The
paradigm of computing, when associated with the a posteriori notion of com-
putability, seems to be highly invariant.

Things look different if the paradigm of computing is viewed in the a pri-
ori sense and, in particular, if complexity is taken into consideration. We are
facing a problem and speculate a priori our possibilities for solving it. Then
we might come to a different conclusion, depending on whether we have Tur-
ing’s clerk or a test tube of DNA strands at our disposal. In this sense DNA
computers, if successful, will surely change the paradigm of computing. This
is surely reflected also in theoretical studies concerning complexity classes.
Among the early examples are the genetic Turing machines introduced in
[181]. In this model, the class of problems which can be solved in polynomial
time (and which because of this consists of computationally tractable prob-
lems) coincides with the class PSPACE (which includes the class NP and,
thus, very many intractable problems). Further examples will be still quoted
below.

In the second part of this book we will investigate various mathematical
models, asking the question whether it is possible to construct a universal
computing machine out of biological macromolecular components and per-
form arbitrary computations by biological techniques. An overall, quite strik-
ing observation is that, at least theoretically, there seem to be many diverse
ways of constructing DNA based universal computers. We will now try to
explain the compelling mathematical reason behind this overall observation.

We claim that Watson—Crick complementarity guarantees universal com-
putations in any model of DNA computers having sufficient capabilities for
handling inputs and outputs. This view was first presented and discussed in
[192]. Watson—Crick complementarity is closely related to the twin-shuffle
language, [54], [200]. The basic variant of this language uses two letters 0
and 1, as well as their complementary letters 0 and 1. (The definition of the
twin-shuffle language and formal mathematical details guaranteeing the uni-
versality will be presented in Sect. 3.2. In particular, see Corollary 3.4 and
Theorem 3.18.) This is in complete analogy of DNA being made up of four
nucleotides that can be divided into two complementary pairs: (A, T) and (C,
G). The two letters 0 and 1 are used for the necessary encodings, whereas
their complementary versions 0 and 1 provide the structure needed to de-
scribe arbitrary computations in terms of words in the twin-shuffle language.
This state of affairs is the essence of computational universality and can be
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viewed also as a mathematical explanation to the number of nucleotides in
DNA being four. Three nucleotides would not be enough for the twin-shuffle
language, whereas five would perhaps make too many matters superfluous,
especially in view of the fact that the twin-shuffle language involves a con-
siderable amount of redundancy in itself.

As already mentioned, we will return to the formal details in Sect. 3.2
below. However, because of the central role of this matter in the theory
of DNA computing, we want to give at this stage some idea about the in-
terrelation between the Watson—Crick complementarity and the twin-shuffle
language. The latter will be given in its basic variant over the four letter
alphabet {0,1,0,1} and denoted by T'S.

Consider a word w over the alphabet {0,1}, that is, w is a string built
from 0’s and 1’s. Let @ be the complementary string, built from 0's and
the set of words obtained by shuffling w and @, quite arbitrarily but without
changing the order of letters in w or w. For instance, each of the words

is in the set shuffle(w,w), whereas 0000110101 is not. By definition, the
language T'S consists of all words in shuffle(w,w), where w runs over all
words over {0,1}. The following is a simple way of finding out whether or
not a given word z, built from four letters 0,1,0, 1, actually is in T'S. Erase
first from z all letters 0 and 1, leaving a word z’. Erase next from 2 all letters
0 and 1, as well as the bars from the remaining letters, leaving a word z”.
Then the original z is in T'S exactly in case ' = z””. The reader might want
to try out this method on the examples given above.

Consider now the following association between the “DNA alphabet” and
the four-letter alphabet discussed above:

A=0,G=1,T=0,C=1

If we view the letters in the pairs (0,0) and (1,1) as being complementary,
then this complementarity is the same as the Watson—Crick complementarity,
via the association indicated.

The interconnection of the twin-shuffle language T'S with the double
strands of DNA can now be seen as follows. Consider a double strand, say

TAGCATCAT
ATCGTAGTA

We first rewrite the letters according to the association indicated:
001100100
001100100

Taking letters from both strands by turns, we obtain the string
000011110000110000 which belongs to T'S. The result holds in general: this
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method always produces from an arbitrary DNA double strand, a string in
TS. That we do not get all strings of TS in this fashion is irrelevant because
it depends only on our convention of taking letters from the two strands by
turns.

The following is an interesting observation from the point of view of math-
ematics of computation. The universality of DNA computations would not
be affected if one of the DNA strands would consist, say, entirely of purines
and the other strand of pyrimidines. In our extended binary notation this
would mean that the barred and non-barred letters always occur on different
strands. That this does not actually happen in nature, surely provides more
computational leeway and efficiency.

Another way to “read” strings in T'S by scanning the nucleotides of DNA
molecules is based on the encoding suggested below:

upper strand | lower strand
AT 0
C,G 1

— Ol

In other words, both nucleotides A and T are identified with 0, without
a bar when appearing in the upper strand and barred when appearing in the
lower strand; the nucleotides C, G are identified with 1 in the upper strand
and with 1 in the lower strand. Given a DNA (double-stranded) molecule,
by reading the two strands from left to right, with non-deterministic non-
correlated speeds in the two strands, we get a string in T'S. The reader might
try with the molecule considered above. Conversely, we can obtain all strings
in T'S if we consider all molecules (complete double stranded sequences) and
all possibilities to read them as specified above. The same result is obtained
if we use molecules containing in the upper strand only nucleotides in any of
the pairs

(A, C), (A, G), (T, O), (T, G).

The universality of the language T'S can be briefly described as follows.
According to the commonly accepted Church—Turing Thesis, every compu-
tation can be performed by a Turing machine and, thus, all computations
are characterized by such Turing-machine-acceptable languages Lg. On the
other hand, every such Lg can be represented in the form Ly = f(T'S), where
f is a so-called gsm mapping. The mapping f depends on the language L.
(The abbreviation “gsm” comes from “generalized sequential machine”; the
acronym was used in computer science long before the era of mobile phones.)
Thus, T'S remains always the same, whereas f must be specified according to
the needs of each particular Ly. The mapping f can be viewed to represent
the input-output facilities. The situation is analogous in DNA based com-
puting. The Watson—Crick complementarity always remains the same and
guarantees universality in the same sense as T'S. The key problem in devel-
oping DNA based computers is to determine which types of computational
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techniques or, theoretically, which aspects of gsm-mappings are adaptable to
DNA computing.

We will return to the mathematical details in Chap. 3, especially in Sect.
3.2. The representation result Lo = f(T'S) is very fundamental, yet the
basic idea behind its proof is very conspicuous. Perhaps this also reflects the
simplicity of the basic DNA structure.

It should have already become apparent to the reader that theoretical
studies about DNA computing must make use of the following two advan-
tages stemming from DNA molecules: (i) Watson—Crick complementarity
which renders the power of the twin-shuffle language available, and (ii) the
multitude of DNA molecules which brings massive parallelism to the com-
puting scene. We already discussed the impact of (ii) to the paradigm of
computing. As regards (i), the general paradigm of complementarity can be
formulated in one of the following two ways.

(a) A string induces the complementary string, either randomly or guided
by a control device.

(b) The complementarity of two strings leads to some phenomenon such
as bonding. Conversely, the occurrence of this phenomenon guarantees
that the strings involved indeed are complementary.

We have given here a conspicuously abstract formulation of the paradigm
of complementarity. The alphabet of the strings can be bigger than the four-
letter DNA alphabet, we only assume that complementarity is present among
the letters. More general alphabets will be considered in the mathematical
theory presented in the second part of this book.

The version (b) is an abstraction of the idea present already in Adleman’s
experiment. The “free availability” of the twin-shuffle language, as well as
the resulting universality of many models of DNA computing, can also be
explained using (b): the bonding guarantees that the opposing nucleotides
are complementary, which again leads to a word in the twin-shuffle language,
as pointed out before.

On the other hand, the version (a) of the paradigm of complementarity
presents complementarity as an operation: from a string (strand), go to the
complementary one. This might become an important operation at least in
certain phases of DNA computing. The operation is certainly very interesting
from the theoretical point of view. Sometimes something surprisingly new
can be created when a classical structure is supplemented with the operation
of complementarity. For instance, this happens when a Lindenmayer system
is furnished with complementarity [137].
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2.4 DNA Computing: Hopes and Warnings

“For the long term, one can speculate about the prospect for molecular com-
putation. It seems likely that a single molecule of DNA can be used to encode
the instantaneous description of a Turing machine and that currently avail-
able protocols and enzymes could (at least under idealized conditions) be used
to induce successive sequence modifications, which would correspond to the
execution of the machine. In the future, research in molecular biology may
provide improved techniques for manipulating macromolecules. Research in
chemistry may allow for the development of synthetic designer enzymes. One
can imagine the eventual emergence of a general purpose computer consisting
of nothing more than a single macromolecule conjugated to a ribosomelike
collection of enzymes that act on it.”

These words of Adleman [1] are a compact formulation of the great expec-
tations concerning DNA computing. Even in these optimistic words the need
for further research in molecular biology, as well as in chemistry, is clearly
expressed. Indeed, it has not yet been finalized in any way whether DNA
computing will become an important reality or remain a footnote in history
books. In this section we will discuss the positive and negative prospects of
DNA computing. For instance, we will return to the possibility of some of the
simple operations essential in DNA computing, such as the ones discussed in
Sects. 2.1 and 2.2. It is important to mention already at this stage that some
areas of the mathematical theory presented in the second part of this book
go far beyond the reach of these simple observations. Some of the stronger
results in this theory presuppose new kinds of techniques in molecular biol-
ogy, before they can be properly applied. However, a lot can be accomplished
using only the simple operations discussed in Sects. 2.1 and 2.2.

Let us consider first a very specific task, namely, the breaking of the Data
Encryption Standard, DES. A technique due to [3] was outlined already in
Sect. 2.2; [3] gives also a detailed analysis of the feasibility of the procedure.
The analysis is of importance to the general evaluation of DNA computing.
It shows that “real problems” (certainly the breaking of the most widely
used cryptosystem is a real problem!) can be solved with small machines
which do not require huge amounts of DNA (and use few enzymes if any).
At present cryptographic tasks seem to be the most suitable ones for DNA
computing, since error rates much greater than those normally required of
electronic computers will suffice.

The computation to break DES is estimated to run five days. This is
under the assumption that each individual operation can be completed in one
minute, perhaps using an auxiliary robotic machine. If a graduate student
has to perform each operation, it might take a day, and then the whole
computation will take 18 years. An operation per hour gives a total duration
of 9 months.

How big will the machinery be and what are the expectations for success?
Some operations are more prone to errors than others. For each specific
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operation, its error rate is the fraction of molecules that commit an error
during that operation. To say that the overall error rate is £ means that E
is the error rate of the worst operation, that is, all operations occurring in a
computation have an error rate less than or equal to E. If E is the error rate,
1— E is customarily called the yield. Thus, an error rate of 10~ corresponds
to a yield of 99.99%.

In the cryptanalytic setup for breaking DES that was considered in Sect.
2.2, the cryptanalyst knows a pair consisting of a plaintext and the corre-
sponding cryptotext and has to determine the key. All keys mapping the
given plaintext to the given cryptotext are referred to as winning keys. It
is conceivable that there are several winning keys, although their number is
not likely to be large in connection with DES. Under ideal conditions, the
algorithm produces a “final tube” containing, for each winning key, at least
one molecule encoding it. Moreover, the final tube should contain no distrac-
tors, that is molecules which do not encode a winning key but have ended
up in the final tube because of errors. That a winning key is missing from
the final tube is either because it was not created during the initialization,
or else because it was created but met an error during the computation.

Very interesting numerical results have been presented in [3] about this
setup. The results concern the amount of DNA required and the number
of distractors in the final tube. Specifically, the amount of DNA required
is computed to ensure a “reasonable chance,” 63% or more, of getting at
least one winning key in the final tube. (The figure 63% comes from the
Poisson distribution associated to the method of creating the keys during the
initialization.)

If an error rate of 107 is attainable, only a little more than 1 gram of
DNA is needed; the calculation gives the value 1.4g. Moreover, for the error
rate of 1074, the probability of a distractor ending up in the final tube is
only 8%.

Things are dramatically different if only an error rate of 1072 is attain-
able. The figures tell us quite clearly where the borderline of the feasibility
of DNA computing lies, at least in the case where the task is particularly
suitable for DNA computing, as we already observed cryptanalytic tasks to
be. An error rate of 1072, let alone an even bigger error rate, would make
DNA computing definitely unfeasible. Then large amounts of DNA would be
needed, approximately 23 Earth masses, to have a 63% chance that a winning
key ends up in the final tube, and it would still have to be distinguished from
a colossal number of distractors. An error rate of 1072 would call for less
than a kilogram of DNA, something that could still be considered feasible.

The size of the machinery is dictated by the amount of DNA used. The
robotics must operate on a rack of test tubes, in fact, on 96 tubes in parallel.
The estimates given in [3] make it reasonable to conclude that, under an
achievable error rate of 10™4, the entire machinery would fit on a desktop.
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This very specific task of breaking the DES cryptosystem shows quite
explicitly the feasibility borderline in DNA computing. It is essential how
successfully, with low error rate, the operations can be performed. Assuming
that low error rates are achievable, one may study the complexity of various
tasks. Then the massive parallelism of DNA computing renders many of the
exponential time complexity estimates in sequential computing, such as those
dealing with some well-known NP-complete problems, to linear time. This
is true of two of the problems discussed in Sects. 2.1 and 2.2, HPP and
the satisfiability problem. At the same time, the number of DNA strands
that may appear in a test tube during the course of the algorithm tends
to be exponential; in fact it is of the order of n! in connection with HPP.
The reader is referred to [17] for complexity estimates of various problems in
terms of the two parameters: the number of (biological) steps taken by the
algorithm and the number of DNA strands used.

Complexity estimates of this kind have already been considered earlier
in the area of parallel algorithms. In these studies the trade-off between
the number of steps and the number of parallel processors is important. As
we have observed, in DNA computing the number of steps can be drastically
reduced, at the cost of the number of processors becoming exponential. Since
the processors are DNA strands, this state of affairs can still be acceptable.

The length of the DNA strands should also be taken into consideration.
In most cases the length will cause no problem since it is linear in the size of
the problem.

Let us now summarize the operations of DNA computing, discussed earlier
in this chapter. We have observed that the operations are basic in many of the
algorithms in DNA computing and, consequently, further laboratory studies
about their reliability, efficiency, and error rates are quite essential. (The
operation of splicing is not included here; it will be explained in connection
with the mathematical theory in the second part of the book.) We also
remind the reader of the basic currently used techniques, described in Chap.
1 of this book, for carrying out each operation.

Melting. Double-stranded DNA is dissolved into single strands by heat-
ing the solution to a specific temperature. In this way the hydrogen bonds
between complementary strands are broken.

Annealing. This is an operation reverse to melting. A solution of sin-
gle strands is cooled, whereby strands complementary according to Watson—
Crick can bind together.

Merge. This means pouring the contents of two test tubes into one tu-
be.

Separate (or Extract). Recall that this operation produces from a tube
N and a strand w a new tube +(N,w), consisting of all strands in N which
contain w as a substrand. Separation by hybridization uses a multitude of
strands complementary to w, anchored to a matrix in a certain way. To these
the strands in IV containing w will anneal.
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Amplify. This is an application of Polymerase Chain Reaction, PCR.
At each step, the number of strands is doubled, resulting in an exponential
growth.

Detect and Length-separate. Both operations apply the technique of gel
electrophoresis.

Finally, DNA polymerases perform various functions, including the repair
of DNA and forming complementary strands.

Specified oligonucleotides can be synthesized. However, it is still a largely
open research problem to determine optimal oligonucleotides for DNA com-
putation, both as regards their length and overall composition.

In conclusion, we feel it justified already to claim that at this stage
biomolecular techniques are advanced enough and sufficiently adaptable to
basic programming tasks occurring in DNA computing. This is the positive
side of the matter. Many caveats still remain; it is no wonder that strong
warnings have been expressed. (See, for instance, the correspondence sec-
tion in Science.) Since this book is mainly about the mathematical theory of
DNA computing, we do not discuss here all possible sources of troubles arising
in laboratory realizations. For instance, sticking of strands to approximate
matches, as opposed to exact matches, might lead the overall computation
astray. Such problems should definitely be addressed before DNA computing
can become a reality.

Perhaps the most constructive attitude at the moment is to think that
DNA computers will supplement current computers in important aspects,
not replace them. Certain classes of tasks and problems seem particularly
apt for DNA computing. Features characteristic of such problems are that
an exhaustive search is the best known method of solving the problem and
that a high probability of success is almost as good as certainty. Such is
the setup in typical cryptanalytic tasks. Advances in robotics might also
open new vistas for building computers with both molecular and electronic
components.
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Chapter 3

Introduction to Formal
Language Theory

The mathematical theory of DNA computing presented in Part II of this
book is developed in the framework of formal language theory. As we have
seen in Chap. 1, DNA molecules have a natural representation through “dou-
ble” strings satisfying certain assumptions (Watson—Crick complementarity
and opposite directionality). Also, various enzymatic operations on DNA
molecules can be naturally represented as operations on (double) strings.
Consequently, using DNA molecules and their manipulation for the purpose
of DNA computing can be conveniently and naturally expressed in the frame-
work of (double) strings and operations on them. This leads to formal lan-
guage theory as a natural framework for formalizing and investigating DNA
computing.

In this chapter we introduce formal language theory to the extent needed
for this book.

For additional information, the reader is referred to the many monographs
in this area, such as: [4], [29], [40], [42], [93], [195], [197], [198]. A comprehen-
sive source of information is [193]. We suggest that a reader already familiar
with language theory consult Chap. 3 only when need arises.

3.1 Basic Notions, Grammars, Automata,
Grammar Systems

Basic notations. The family of subsets of a set X is denoted by P(X); if
X is an infinite set, then we denote by P;(X) the family of finite subsets of
X. The cardinality of X is denoted by card(X). The set of natural numbers,
{0,1,2,...} is denoted by N. The empty set is denoted by 0.

An alphabet is a finite nonempty set of abstract symbols. For an alphabet
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V we denote by V* the set of all strings of symbols in V. The empty string is
denoted by A. Mathematically speaking, V* is the free monoid generated by
V under the operation of concatenation. (The unit element of this monoid is
A.) The set of nonempty strings over V, that is V* — {)A}, is denoted by V+.
Each subset of V* is called a language over V. A language which does not
contain the empty string (hence being a subset of V) is said to be A-free.

If z = z1 %9, for some z1,x2 € V*, then z; is called a prefiz of z and x5 is
called a suffir of z; if x = z1x9x3 for some x1,z2, 23 € V*, then x5 is called
a substring of x. The sets of all prefixes, suffixes, substrings of a string z are
denoted by Pref(z), Suf(x), Sub(z), respectively.

The length of a string x € V* (the number of symbol occurrences in x)
is denoted by |z|. The number of occurrences of a given symbol ¢ € V in
xz € V* is denoted by |z|,. If z € V*, U C V, then by |z|y we denote the
length of the string obtained by erasing from z all symbols not in U, that is,

el = D |zla-

aclU

For a language L C V*, the set length(L) = {|z| | x € L} is called the
length set of L.

The set of symbols occurring in a string z is denoted by alph(z). For a
language I C V™, we denote alph(L) = |J, ¢, alph(z). Observe that alph(L)
may be a proper subset of V.

The Parikh vector associated to a string x € V* with respect to the
alphabet V = {a1,...,an} is Uy (z) = (|Z|ay, [Zlag,- -5 |T|a, ). For L C V*
we define ¥y (L) = {¥y(z) |z € L}.

A set M of vectors in N™ is said to be linear if there are v; € N”,
0 < i < m, such that

M:{v0+Zaiv,~|a1,...,am GN}

i=1

A finite union of linear sets is said to be semilinear.
A language L C V™ is semilinear if ¥y (L) is a semilinear set.

Operations with strings and languages. The boolean operations (with
languages) are denoted as usual: U — union, N — intersection, C — comple-
mentation.

The concatenation of Ly, Ly is L1Ly = {zy |z € L1,y € La}.

We define further:

LO = {)‘}’
LY =LL i >0,

oo
L = U L' (the *-Kleene closure),
=0
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x
Lt = U L' (the + -Kleene closure).

i=1

A mapping s : V — P(U*), extended to s : V* — P(U*) by s(A) = {\}
and s(z1z2) = s{z1)s(x2), for z1,29 € V*, is called a substitution. For a
language L C V* we define s(L) = |, s(2).

If card(s(a)) is finite for each a € V, then s is called a finite substitution;
if card(s(a)) = 1 for each a € V, then s is called a morphism. If A ¢ s(a), for
each a € V, then s is a A-free substitution (A-free morphism, respectively).

A morphism k : V* — U* is called a coding if h(a) € U for eacha € V
and a weak coding if h(a) € UU{A} foreacha € V. If h: (ViUV,)* — V" is
the morphism defined by h(a) = a for a € Vi, and h(a) = A otherwise, then
we say that h is a projection (associated to V1) and we denote it by pry,. For
a morphism h : V* — U*, we define a mapping h=! : U* — P(V*) (and
we call it an inverse morphism) by h='(w) = {z € V* | h(z) = w}.

IfLCV*k>1 and h: V* — U* is a morphism such that h(zx) # A
for each z € Sub(L), |z| = k, then we say that h is k-restricted on L.

In general, when we have an alphabet V' and we consider some given
variants g{a) of symbols a € V (primed, barred, etc.), then we denote V9 =
{g(a) | a € V} and for w € V* we write w9 = g(w). (Thus, when considering
primed symbols, V' = {d¢’ | a« € V} and for w € V*, w = a;...ax, with
a; €V,1<i<k, wehave w' =d}...a}.)

For x,y € V* we define their shuffle by

sy ={T191.. . Zuln | T=2C1.. . T, Y =Y1-. - Yn,
T,y €V, 1<i<nn>1}

The mirror image of a string x = a1a2 ... an, for a; € V,1 <i < n, is the
string mi(z) = ay, ...aza1.

In general, if we have an n-ary operation for strings, g : V* x...xV* —
P(U*), we extend it to languages over V by

g(L1,...,Ly) = U g(x1,...,Zn).
z; € L
1<i<n
For instance, mi(L) = {mi(z) | x € L}.
The left quotient of a language L1 C V* with respect to Ly C V* is

Lo\Ly = {w € V* | there is ¢ € Ly such that 2w € L }.
The left derivative of a language L C V* with respect to a string z € V*

is

(L) ={weV*|zwe L}
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The right quotient and the right derivative are defined in a symmetric
manner:

Li/Ly = {w € V" | there is x € Ly such that wz € L1},
0L (L)y={weV*|wz e L}

A family FL of languages is closed under an n-ary operation g if, for all
languages Ly, ..., Ly, in FL, the language g(L1,...,L,) is also in FL.

A language that can be obtained from the letters of an alphabet V and
A by using finitely many times the operations of union, concatenation, and
Kleene # is called regular; also the empty language is said to be regular.

A family of languages is nontrivial if it contains at least one language
different from @ and {A}. (We use here the word “family” synonymously
with “set” or “collection”.) A nontrivial family of languages is called a trio if
it is closed under A-free morphisms, inverse morphisms, and intersection with
regular languages. A trio closed under union is called a semi-AFL (AFL =
abstract family of languages). A semi-AFL closed under concatenation and
Kleene + is called an AFL. A trio/semi-AFL/AFL is said to be full if it is
closed under arbitrary morphisms (and Kleene * in the case of AFL’s). A
family of languages closed under none of the six AFL operations is called an
anti-AFL.

Several facts about the operations defined above are useful when investi-
gating the closure properties of a given family of languages (for instance, in
order to prove that a family of languages is an AFL it is not necessary to
check the closure under all the six AFL operations):

1. The family of regular languages is the smallest full trio.
2. Each (full) semi-AFL closed under Kleene + is a (full) AFL.

3. If FL is a family of A-free languages which is closed under concate-
nation, A-free morphisms, and inverse morphisms, then F'L is closed
under intersection with regular languages and union, hence FL is a
semi-AFL. (If F'L is also closed under Kleene +, then it is an AFL.)

4. If FL is a family of languages closed under intersection with regular
languages, union with regular languages, and substitution with regular
languages, then F'L is closed under inverse morphisms.

5. Every semi-AFL is closed under substitution with A-free regular lan-
guages. Every full semi-AFL is closed under substitution with arbitrary
regular languages and under left and right quotients with regular lan-
guages.

6. A family of M-free languages is an AFL if it is closed under concatena-
tion, A-free morphisms, inverse morphisms, and Kleene +.



3.1. Basic Notions, Grammars, Automata 81

7. A family of languages that is closed under intersection with regular
languages, union with regular languages, substitution by A-free regu-
lar languages, and restricted morphisms is closed also under inverse
morphisms.

Chomsky grammars. Generally speaking, a grammar is a {finite) device
generating in a well specified sense the strings of a language (hence defining a
set of syntactically correct strings). Many types of grammars are particular
cases of rewriting systems.

A rewriting system is a pair v = (V, P), where V is an alphabet and P
is a finite subset of V* x V*; the elements (u,v) of P are written in the
form v — v and are called rewriting rules/productions (or simply rules or
productions). For x,y € V* we write x =, y if = xjuzs,y = z1vxs, for
some u — v € P and z1,x9 € V*. If the rewriting system + is understood,
then we write —> instead of =,. The reflexive and transitive closure of
= is denoted by =*.

If an axiom is added to a rewriting system and all rules u — v have
u # A, then we obtain the notion of a pure grammar. For a pure grammar
G = (V,w, P), where w € V* is the axiom, we define the language generated
by G by

LG)={z e V" |w="z}.

A Chomsky grammar is a quadruple G = (N, T, S, P), where N,T are
disjoint alphabets, S € N, and P is a finite subset of (N UT)*N(N UT)* x
(NUT)~.

The alphabet N is called the nonterminal alphabet, T is the terminal
alphabet, S is the axiom, and P is the set of production rules of G. The rules
(we also say productions) (u,v) of P are written in the form v — v. Note
that |uly > 1.

For z,y € (NUT)* we write

=gy ff =u1xure,y= 11029,
for some z1,22 € (NUT)* and u —» v € P.

One says that & directly derives y (with respect to ). Fach string w €
(N UT)* such that S =% w is called a sentential form.
The language generated by G, denoted by L(G), is defined by

LG)={zeT" |5 ="z}

Two grammars Gy, Gy are called equivalent if L(G1) — {\} = L(G3) — {\}
(the two languages coincide modulo the empty string).

In general, in this book we consider two generative mechanisms equivalent
if they generate the same language when we ignore the empty string.

If in x = y above we have 1 € T, then the derivation step is leftmost
and we write £ = y. The leftmost language generated by the grammar
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G is obtained by derivations where every step is leftmost and is denoted by
Licsi(G).

According to the form of their rules, the Chomsky grammars are classified
as follows. A grammar G = (N, T, S, P) is called:

— monotonous/length-increasing, if for all u — v € P we have |u| < |v].

~ contezt-sensitive, if each u — v € P has u = ujAug, v = ujzus, for
ug,ug € (NUT)*;A € N, and z € (NUT)*. (In monotonous and
context-sensitive grammars the production S — A is allowed, providing
that S does not appear in the right-hand members of rules in P.)

— contezt-free, if each production u — v € P has u € N.

— linear, if each ruleu v € Phasu € N andve T*UT*NT*.

— right-linear, if each rule u v € Phasu e Nandv e T*UT*N.
— left-linear, if each rule u > v € Phasu € N and v € T* U NT*.
— regular, if eachrule u v € Phasu € N andv e TUTN U {\}.

The arbitrary, monotonous, context-free, and regular grammars are also said
to be of type 0, type 1, type 2, and type 3, respectively.

The family of languages generated by monotonous grammars is equal to
the family of languages generated by context-sensitive grammars; the families
of languages generated by right- or by left-linear grammars coincide and they
are equal to the family of languages generated by regular grammars, as well
as with the family of regular languages.

We denote by RE, CS, CF, LIN, and REG the families of languages
generated by arbitrary, context-sensitive, context-free, linear, and regular
grammars, respectively (RE stands for recursively enumerable). By FIN we
denote the family of finite languages.

The following strict inclusions hold:

FINCREGCLINCCFcCCSCRE.

This is the Chomsky hierarchy, the constant reference in the investigations in
the following chapters.

The closure properties of the families listed above are indicated in Table
3.1 (Y stands for yes and N for no).

Therefore, RE, CF, REG are full AFL’s, CS is an AFL (not full), and
LIN is a full semi-AFL.

A context-free grammar G = (N,T, S, P) is called reduced if for each
A € N there is a derivation § —* Ay —* zwy, where z,w,y € T*
(each nonterminal is reachable from the axiom and it can be rewritten into
a terminal string). Given a context-free grammar, an equivalent reduced
context-free grammar can be found.
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A linear grammar G = (N, T, S, P) is said to be minimal if N = {S} (it
has only one nonterminal symbol).

Table 3.1. Closure properties of the families in the Chomsky hierarchy

RE| CS| CF| LIN| REG

Union Y Y Y Y Y
Intersection Y Y N N Y
Complement N Y N N Y
Concatenation Y Y Y N Y
Kleene x Y Y Y N Y
Intersection with _

regular languages Y Y Y Y Y
Substitution Y N Y N Y
A-free substitution Y Y Y N Y
Morphisms Y N Y Y Y
A-free morphisms Y Y Y Y Y
Inverse morphisms Y Y Y Y Y
Left /right quotient Y N N N Y
Left /right quotient

with regular languages | Y N Y Y Y
Left/right derivative Y Y Y Y Y
Shuffle Y Y N N Y
Mirror image Y Y Y Y Y

Normal forms. Reducing grammars to a specified form, without losing gen-
erative power, is in general useful. There are several results which guarantee
the existence of such normal forms. We mention here only four of them,
which will be useful below.

Theorem 3.1. (Chomsky normal form) For every context-free grammar G,
an equivalent grammar G' = (N, T, S, P) can be effectively constructed, with
the rules in P of the forms A — a and A — BC, for A, B,C € N anda c T.

Theorem 3.2. (Strong Chomsky normal form) For every context-free gram-
mar G, an equivalent grammar G' = (N,T,S, P) can be effectively con-
structed, with the rules in P of the forms A — a and A — BC, for
A,B,C € N and a € T, subject to the further restrictions:

1. if A— BC isin P, then B # C,

2. if A — BC 1isin P, then for each rule A — DE in P we have E # B
and D # C.
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If we also want to generate the empty string, then in the theorems above
we also allow a completion rule S — .

Theorem 3.3. (Kuroda normal form) For every type-0 grammar G, an
equivalent grammar G' = (N, T, S, P) can be effectively constructed, with the
rules in P of the forms A — BC,A — a,A - X\, AB — CD, for A,B,C,D ¢
NandaceT.

Theorem 3.4. (Penttonen normal form) For every type-0 grammar G, an
equivalent grammar G' = (N, T, S, P) can be effectively constructed, with the
rules in P of the forms A — x, x € (NUT)*, |z| £ 2, and AB — AC with
A B, CeN.

Similar results hold true for length-increasing grammars; then rules of the
form A — X are no longer allowed, but only a completion rule § — X if the
generated language should contain the empty string.

Theorem 3.5. (Geffert normal forms) (1) Each recursively enumerable lan-
guage can be generated by a grammar G = (N, T, S, P) with N = {S, A, B,C}
and the rules in P of the forms § — uSv,S — =z, with u,v,x € (T U
{4, B,C})*, and only one non-context-free rule, ABC — .

(2) Each recursively enumerable language can be generated by a grammar
G = (N,T,S,P) with N = {S, A, B,C, D} and the rules in P of the forms
S — uSv,8 — z, with u,v,z € (T U{A, B,C,D})*, and only two non-
context-free rules, AB — X\,CD — .

Otherwise stated, each recursively enumerable language can be obtained
from a minimal linear language by applying the reduction rule ABC — X, or
the reduction rules AB — \,CD — \.

Necessary conditions. For a language L C V*, we define the equivalence
relation ~j, over V* by z ~p, y iff (uzv € L <& uyv € L) for all u,v € V*,
Then V*/ ~, is called the syntactic monoid of L.

Theorem 3.6. (Myhill-Nerode theorem) A language L C V* is regular iff
V*/ ~p is finite.

Theorem 3.7. (Bar-Hillel/uvwzy/pumping lemma for context-free lan-
guages) If L € CF,L C V*, then there are p,q € N such that every z € L
with |z| > p can be written in the form z = vvwzy, with u,v,w,x,y € V>,
lvwz| < q,vz # A, and wiwzx'y € L for all i > 0.

Theorem 3.8. (Pumping lemma. for linear languages) If L € LIN, L C V*,
then there are p,q € N such that every z € L with |z| > p can be written
in the form z = wwway, with u,v,w,z,y € V*, lwzy| < qvz # A, and
wtwzly € L for all i > 0.

Theorem 3.9. (Pumping lemma for regular languages) If L € REG,L C
V'*, then there are p,q € N such that every z € L with |z| > p can be written
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in the form z = wvw, with w,v,w € V*, |uv| < q,v # A, and w'w € L for
alli> 0.

Theorem 3.10. (Parikh theorem) Every context-free language is semilinear.

Corollary 3.1. (i) Every context-free language over a one-letter alphabet is
reqular.

(i1) The length set of a context-free language is a finite union of arith-
metical progressions.

The conditions of Theorems 3.7 — 3.10 are only necessary, not sufficient
for a language to be in the corresponding family.
Using these necessary conditions the following relations can be proved:

L;={a"b" |n>1} € LIN — REG,

Ly=L,L, € CF — LIN,

Ly ={a"t"c" |n>1} € CS - CF,

Ly={zcz |z € {a,b}"} € CS - CF,

Ls={a®" |n>1} € CS — CF,

Lg = {a"v™c"d™ |n,m > 1} € CS — CF,
L;={a"b |n>1,1<m<2"} e CS -CF,

Ly ={a"0"? |1 <n<m<p}eCS—CF,
Lo={z € {ab}" | [z]o = |¢}s} € CF — LIN,

Lo = {z € {a,b,c}* | |z]|a = |2]p = |2|.} € CS — CF.

The Dyck language, D,, over T,, = {aj,a},...,an,a,}, n > 1, is the
context-free language generated by the grammar

G=({8},Tn,S,{S— A S— SS}uU{S —a;Sa;|1<i<n}S).
Intuitively, the pairs (a;,a}),1 < ¢ < n, can be viewed as parentheses, left and
right, of different kinds. Then D,, consists of all strings of correctly nested
parentheses.

Theorem 3.11. (Chomsky-Schiitzenberger) Every context-free language L
can be written in the form L = h(D,NR), where h is a morphism, D,,, n > 1,
is a Dyck language, and R is a regular language.

Lindenmayer systems. Because (like the generative mechanisms intro-
duced in the subsequent sections) Lindenmayer systems or L systems are
introduced with biological motivation and because we shall mention them
occasionally, we provide here the basic definitions.

Basically, a 0L (O-interactions Lindenmayer) system is a context-free pure
grammar with parallel derivations: G = (V,w, P), where V is an alphabet,
w € V* (axiom), and P is a finite set of rules of the form ¢ — v with
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a € V,u € V*, such that for each @ € V there is at least one rule a — v
in P (we say that P is complete). For wi,ws € V* we write w; = wy if
W] = A1 ...0p, Wy = V1...Uy, for a; —» v; € P,1 < i < n. The generated
language is L(G) = {z € V* | w =" z}.

If for each rule a — v € P we have v # A, then we say that G is propagating
(non-erasing); if for each a € V there is only one rule a — v in P, then G
is said to be deterministic. If we distinguish a subset T of V and we define
L(G) as L(G) = {z € T* | w =>* z}, then we say that G is extended. The
family of languages generated by OL systems is denoted by 0L; we add the
letters P, D, E in front of OL if propagating, deterministic, or extended OL
systems are used, respectively.

A tabled OL system, abbreviated TOL, is a system G = (V,w, Py,..., P,),
such that each triple (V,w, P;),1 < i < n, is a OL system; each P; is called a
table, 1 < ¢ < n. The generated language is defined by

L(G) = {x ev* | w :le w1 =>Pj2 e =>pjm Wm =T,
m>0,1<j5<n,1<i<m}.

(Each derivation step is performed by the rules of the same table.)

A TOL system is deterministic when each of its tables is deterministic.
The propagating and the extended features are defined in the usual way.

The family of languages generated by TOL systems is denoted by TOL; the
ETOL, EDTOL, etc. families are obtained in the same way as FOL, EDOL,
etc.

The DOL family is incomparable with FIN, REG, LIN, CF, whereas FOL
strictly includes the CF family; ETOL is the largest family of Lindenmayer
languages with O-interactions, it is strictly included in C'S, and it is a full
AFL. The idea of O-interactions corresponds to context-freeness: the letters
develop independently of their neighbours.

An interesting feature of a DOL system, G = (V, w, P), is that it generates
its language in a sequence, L(G) = {w = wy,wq,ws, ...}, such that wy =
w] = wo = .... Thus, we can define the growth function of G, denoted
by growthg : N — N, by

growthg(n) = lw,|, n> 0.

Descriptional complexity. A given language can be generated by many,
often infinitely many, different grammars. It is natural to look for grammars
which are as simple as possible and to this end we need measures of grammar
complexity.

Having a class X of grammars, a descriptional complexity measure (we
also say measure of syntactical complezity) is a mapping K : X — N which
is extended to languages generated by elements of X by K (L) = min{K(G) |
L = L(G),G € X}. If necessary, then we also write Kx (L), to specify the
class of grammars used.
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The following are three basic measures for context-free languages. For a
context-free grammar G = (N, T, S, P) we define

Var(G) = card(N},

Prod(G) = card(P),

Symb(G) = Z Symb(r), where Symb(r: A — z) = |z| + 2.
repP

A complexity measure K is called non-trivial if for each n there is a
grammar G, such that K(L(Gy)) > n; K is said to be connected if there is
ng such that for each n > ng there is G, with K(L(G,)) = n.

All the measures Var, Prod, Symb are connected (even with respect to the
family of regular languages). Two measures of syntactical complexity cannot
generally be simultaneously improved: if we find a grammar which is simpler
from the point of view of one measure, then most of the time this grammar
is more complex from the point of view of the other measure.

An important complexity measure is the indez. Let G = (N, T, S, P) be
a grammar of any type. For a derivation

D:S=wy=uw —= ... = w, =z T

we denote
Ind(D) = maz{|wi|n | 0 <i < n}.

For z € L(G), we define
Ind(z,G) = min{Ind(D) | D : S =" z € G}.

Further,
Ind(G) = sup{Ind(z,G) | x € L(G)}.

For a language L we denote
Ind(L) = min{Ind(G) | L = L(G)}.

Clearly, Ind(L) = 1 for each linear language L. It is known that Ind(D,,)
= 00, n > 1, and that Ind is a connected measure with respect to the family
of context-free languages. Moreover, the family

CFjin = {L € CF | Indcr(L) < o0}

is a full AFL.

Automata and transducers. Automata are language defining devices
which work in the direction opposite to grammars. They start from the
strings over a given alphabet and analyze them (we also say recognize), telling
us whether or not the input string belongs to a specified language.
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The five basic families of languages in the Chomsky hierarchy, REG, LIN,
CF, CS, RE, are also characterized by recognizing automata. These au-
tomata are: the finite automaton, the one-turn pushdown automaton, the
pushdown automaton, the linear-bounded automaton, and the Turing ma-
chine, respectively. We present here only the basic variants of these devices;
we refer to [93], [138], [195], [198] for the many existing variants.

A (nondeterministic) finite automaton is a construct
M= (KaKSOaFa(S%

where K and V are disjoint alphabets, sp € K,F C K,and § : K x V —
P(K); K is the set of states, V is the alphabet of the automaton, sy is the
initial state, F' is the set of final states, and § is the transition mapping.
If card(é6(s,a)) < 1 for all s € K,a € V, then we say that the automaton
is deterministic. A relation F is defined in the following way on the set
K x V*: for 5,s' € K,a € V,x € V*, we write (s,az) - (§',z) if ' € §(s,a);
by definition, (s,A) F (s,A). If b* is the reflexive and transitive closure of
the relation I, then the language of the strings recognized by automaton M
is defined by

L(M) ={z € V* | (s0,2) F* (5,\), 5 € F}.

It is known that both deterministic and nondeterministic finite automata
characterize the same family of languages, namely REG. The power of finite
automata is not increased if we also allow A-transitions, that is ¢ is defined on
K x (VU{A}) (the automaton can also change state when reading no symbol
on its tape) or when the input string is scanned in a two-way manner, going
along it to right or to left, without changing its symbols.

Figure 3.1: A finite automaton

An important related notion is that of a sequential transducer; we shall
use the abbreviation gsm, from “generalized sequential machine”. Such a
device is a system g = (K, V1, V3, 8o, F, ), where K, sq, F are the same as in
a finite automaton, V1, V;, are alphabets (the input and the output alphabet,
respectively), and § : K x Vi — Pp(Vy x K). If §(s,a) C V5" x K for
all s € K,a € V1, then g is said to be A-free. If card(6(s,a)) < 1 for each
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s € K,a € V4, then g is said to be deterministic. For 5,8’ € K,a € V1,y €
V¥, z,z € Vi, we write (z,s,ay) F (zz,5,y) if (z,s') € d(s,a). Then, for
w € Vi* , we define

gw)={z€ V5| (\ so,w)F* (z,5,A),s € F}.

The mapping g is extended in the natural way to languages over V.

A gsm can be seen as a finite automaton with outputs. It is also easy
to see that if a family of languages is closed under gsm mappings, then it is
also closed under finite substitutions (and therefore under morphisms, too),
as well as under the operations Sub, Pref, Suf.

We can imagine a finite automaton as in Fig. 3.1, where we distinguish
the input tape, on whose cells we write the symbols of the input alphabet, the
read head, which scans the tape from the left to the right, and the memory,
able to hold a state from a finite set of states. In the same way, a gsm is a
device as in Fig. 3.2, where we also have an output tape, where the write
head can write the string obtained by translating the input string.

{ |1

=

|
—
HEEREEEN

Figure 3.2: A sequential transducer

Sometimes it is useful to present the transition mapping of finite automata
and of gsm’s as a set of rewriting rules: we write sa — as’ instead of ' €
(s, a) in the case of finite automata and sa — zs’ instead of (z,s") € 4(s,a) in
the case of gsm’s. Then the relations I, * are exactly the same as =, ="
in the rewriting system obtained in this way and, for a gsm g and a language
L eV, we get

g(L)={z € V5 | sow ="25, we€ L,s € F}.
For finite automata we have a special case: L{M) = {z € V* | spx =* xs,
s € F}.

A pushdown automaton is a construct

M= (K,V:U,S(),Z(),F,(S),
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where K, V,U are alphabets (of states, input symbols, and pushdown list
symbols), K being disjoint from V and U, s; € K (initial state), Zg € U
(initial pushdown list symbol), F' C K (final states), and § : K x (VU{\}) x
U — P¢(K x U*) (the transition mapping).

A configuration of M is a triple (s,w, z), where s € K is the current state,
w € V* is the input string not yet scanned, and z € U™ is the contents of the
pushdown list. For two configurations (s, w, z), (s’,w’, 2') we define

(s,w,2) I (', w',2") if w=aw' ,aeVU{A}
z=0z1,2 =mz, fora €U, 2,20 € U*,
and (s, 22) € §(s,a,a).

We say that the leftmost symbol of the input, a, is scanned in state s,
and we pass to state s’ depending on the symbol in the top of the pushown
list, @, which is replaced by z2. Note that a can be A. When 25 = A, we say
that «a is popped from the list.

We define the reflexive and transitive closure +* of F in the natural way.
Then the language recognized by M is defined by

L(M)={z e V*|(s0,2,Z) F" (s, 2), for some s € F,z € U*}.

(We start with the pushdown list containing only the symbol Zg, in the initial
state, and we finish in a final state, after scanning the whole input string.
There are no restrictions on the final contents of the pushdown list.)

Figure 3.3: A pushdown automaton

A pushdown automaton can be represented as in Fig. 3.3, where we
distinguish the input tape, the pushdown store and the memory with its two
heads, a read-only head scanning the input tape and a read-write head always
pointing to the first cell of the pushdown memory.
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The (nondeterministic) pushdown automata recognize exactly the
context-free languages. A deterministic pushdown automaton has only one
possible behavior in each configuration. It is known that the family of lan-
guages recognized by deterministic pushdown automata is strictly included
in CF.

A Turing machine is a construct

M= (K7V7T7B7807F76)7

where K,V are disjoint alphabets (the set of states and the tape alphabet),
T C V (the input alphabet), B € V — T (the blank symbol), sp € K (the
initial state), F' C K (the set of final states), and § is a partial mapping from
K xV to P(K x V x {L, R}) (the move mapping; if (s',b,d) € 4(s,a), for
s,8' € K,a,b €V, and d € {L, R}, then the machine reads the symbol a in
state s and passes to state s', replaces a with b, and moves the read-write head
to the left when d = L and to the right when d = R). If card(4(s,a)) <1 for
all s € K,a € V, then M is said to be deterministic.

An instantaneous description of a Turing machine as above is a string
zsy, where z € V*,y € V*(V — {B})U{)\}, and s € K. In this way we
identify the contents of the tape, the state, and the position of the read-write
head: it scans the first symbol of y. Observe that the blank symbol may
appear in z,y, but not in the last position of y; both z and y may be empty.
We denote by IDjs the set of all instantaneous descriptions of M.

On the set IDj; one defines the direct transition relation t,, as follows:

zsay by wbs'y iff (§',b,R) € 6(s,a),
zs by vbs’ iff (s',b, R) € 6(s, B),
zesay by xzs'chy iff (s',b,L) € 6(s,a),
zes bar zs'ch it (s',b,L) € §(s, B),

where z,y € V*,a,b,c€ V,s,8 € K.
The language recognized by a Turing machine M is defined by

L(M) ={w e T* | sow F}; zsy for some s € F,z,y € V*}.

(This is the set of all strings such that the machine reaches a final state when
starting to work in the initial state, scanning the first symbol of the input
string.)

It is also customary to define the language accepted by a Turing machine
as consisting of the input strings w € T™ such that the machine, starting
from the configuration sgw, reaches a configuration where no further move
is possible {we say that the machine halts). The two modes of defining the
language L(M) are equivalent, the identified families of languages are the
same, namely RE.

Graphically, a Turing machine can be represented as a finite automaton
(Fig. 3.1). The difference between a finite automaton and a Turing machine
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is visible only in their functioning: the Turing machine can move its head
in both directions and it can rewrite the scanned symbol, possibly erasing it
(replacing it with the blank symbol).

Both the deterministic and the nondeterministic Turing machines char-
acterize the family of recursively enumerable languages.

A Turing machine can be also viewed as a mapping-defining device, not
only as a mechanism defining a language. Specifically, consider a Turing
machine M = (K, V,T, B, sq, F,0). If 3 € 1Dy, such that 3 = z1sazy and
0(s,a) = 0, then we write 3| (3 represents a halting configuration). We define
the mapping Fyy : IDy — P(IDy) by Fuy(a) = {8 € IDy | at}, B and
B1l}. If M is deterministic, then Fys is a mapping from I Dy to ID;y.

Given a mapping f : Uy — U;, where Uy, U, are arbitrary alphabets,
we say that f is computed by a Turing machine M if there are two (recursive)
mappings C and D (of coding and decoding),

C:U{ — IDpy, D:IDy — U3,

such that
D(Fu(C(z))) = f(=).

In the next section, when discussing and presenting universal Turing ma-
chines, we shall use this interpretation of Turing machines (as well as the
termination of a computation by halting configurations, not by using final
states).

When working on an input string a Turing machine is allowed to use as
much tape as it needs. Note that finite automata and pushdown automata use
(in the read only manner) only the cells where the input string is written. In
addition, a pushdown automaton has an unlimited pushdown tape. A Turing
machine allowed to use only a working space linearly bounded with respect to
the length of the input string is called a linearly bounded automaton. These
machines characterize the family CS.

Regulated rewriting. As the context-free grammars are not powerful
enough for covering most of the important syntactic constructions in nat-
ural and artificial languages, while the context-sensitive grammars are too
powerful (for instance, the family C'S has many negative decidability proper-
ties and the derivations in a non-context-free grammar cannot be described
by a derivation tree), it is of interest to increase the power of context-free
grammars by controlling the use of their rules. This leads to considering
regulated context-free grammars. We present here some variants, which will
be useful for our investigations.

A context-free maotriz grammar is a construct G = (N, T, S, M), where
N,T are disjoint alphabets (of nonterminals and terminals, respectively),
S € N (axiom), and M is a finite set of matrices, that is, sequences of the
form (A; — z1,...,An — 2,), n > 1, of context-free rules over N UT. For
a string x, an element m = (ry1,...,7,) is executed by applying productions
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T1,...,Ty one after the other, following the strict order they are listed in. The
resulting string y is said to be directly derived from the original z and we
write £ = y. Then, the generated language is defined in the usual way. The
family of languages generated by context-free matrix grammars is denoted
by MAT?* (the superscript indicates that A-rules are allowed); when using
only A-free rules, we denote the corresponding family by M AT.

A context-free programmed grammar is a construct G = (N, T, S, P),
where N, T, S are as above, the set of nonterminals, the set of terminals and
the start symbol, and P is a finite set of productions of the form (b: A — 2,
E,F), where b is a label, A — z is a context-free production over N U T,
and E,F are two sets of labels of productions of G. (F is said to be the
success field, and F is the failure field of the production.) A production of
G is applied as follows: if the context-free part can be successfully executed,
then it is applied and the next production to be executed is chosen from
those with the label in E, otherwise, we choose a production labeled by some
element of F, and try to apply it. This type of programmed grammars is
said to be with appearance checking; if no failure field is given for any of the
productions, then a programmed grammar without appearance checking is
obtained.

Sometimes it is useful to write a programmed grammar in the form G =
(N,T, S, P,o,p), where N, T, S are as above, P is a set of usual context-free
rules and o,y are mappings from P to the power set of P; o(p),p € P, is
the success field of the rule p (a rule in o(p) must be used after successfully
applying the rule p), ¢(p),p € P, is the failure field (a rule from ¢(p) must
be considered when p cannot be applied).

A context-free ordered grammar is a system G = (N, T, S, P, >), where
N,T,S are as above, P is a finite set of context-free productions, and > is a
partial ordering over P. A production p can be applied to a sentential form
z only if it can be applied as a context-free rule and there is no production
r € P such that r is applicable and r > p holds.

Regulated applications of productions can also be based on checking con-
text conditions.

A generalized semi-conditional grammar is a construct G = (N, T, S, P),
where N,T,S are as above and P is a finite set of triples of the form p =
(A — w; E,F), where A — w is a context-free production over N UT and
E,F are finite subsets of (N UT)*. Then, p can be applied to a string
x € (NUT)* only if A appears in z, each element of E and no element of F
is a subword of x. If E or F is the empty set, then no condition is imposed
by E, or respectively, F. E is said to be the set of permitting and F' is said
to be the set of forbidding context conditions of p.

If both card(E) < 1 and card(F) < 1 hold, then we speak of a semi-
conditional grammar. If E,F C N, then we speak of a random context
grammar.
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Two other well-known versions of grammars with context conditions are
the conditional and the weakly conditional grammars. A conditional grammar
is a construct G = (N, T, S, P), where P is a finite set of productions of the
form p = (A — w; Rp), where R, is a regular language over N UT. For a
string x we can apply p to z only if A appears in z and z € R,,.

If for every p € P we have R = R, for a fixed regular language R, then
we speak of a weakly conditional grammar.

Conditional (weakly conditional) and semi-conditional grammars are of
the same generative power; they generate all recursively enumerable or all
context-sensitive languages, depending on whether A-rules are used or not,
respectively.

Finally, let us consider the notion of a simple matriz grammar. Such
a grammar (of degree n > 1) is a system G = (Ny,...,N,,T, S, M), with
Ni,...,N,,T mutually disjoint alphabets, S ¢ Vg, for Vg = TUU_, N,
and M is a set of matrices of the following forms:

(1) (S —wiwy...wp),w; € (TUN)* 1<i<n,
such that |w;|n, = |wj|n;,1 < 46,5 <n,

(1) (A1 > wy,...,Ap = wy,), A € Njyw; € (TUN) 1 <4< n,
such that |w;|n, = |wj|n;,1 < 4,5 < n.

For each matrix in M, the derivation is leftmost for each rule (4; — w;
rewrites the leftmost occurrence of a symbol in N; in the current string).

It is known that the simple matrix grammars generate a family of semi-
linear languages which is strictly intermediate between C'F and CS.

Useful for our purposes in the sequel is the idea of controlling the ap-
plication of context-free rules to increase the power of context-free gram-
mars.

Grammar systems. Another very fruitful idea for increasing the power of
context-free grammars (in certain cases, also of regular grammars), is to con-
sider distributed generative devices: constructs composed of several gram-
mars working together according to a well-specified cooperation protocol.
This leads to the idea of a grammar system. Two main classes of grammar
systems have been investigated, the sequential ones (introduced in [28] under
the name of cooperating distributed grammar systems) and the parallel com-
municating grammar systems introduced in [172]. For our investigations the
second class is more useful, hence we present its definition only.

A parallel communicating (PC, for short) grammar system of degree n,
n > 1, is a construct

I'=(N,T,K,(S1,P1),...,(Sn, Pn)),

where N, T, K are pairwise disjoint alphabets, with K = {Q1,...,Qn}, S; €
N, and P; are finite sets of rewriting rules over NUT U K,1 < i < n;
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the elements of N are nonterminal symbols, those of T are terminals; the
elements of K are called query symbols; the pairs (S;, P;) are the components
of the system (often, the sets P; are called components). Note that the query
symbols are associated in a one-to-one manner with the components. When
discussing the type of the components in the Chomsky hierarchy, the query
symbols are interpreted as nonterminals.

For (z1,...,Zn), (1, ---,Yn), with z;,4: € (NUTUK)*,1 < i < n (we
call such an n-tuple a configuration), and x; ¢ T*, we write (z1,...,%n) =>r
(y1,--.,yn) if one of the following two cases holds:

(i) |zs|g =0foralll1 <i<mn;thenz; =>p yiorz;, =y; €T*,1 <i<n;
(ii) thereis i,1 < ¢ < n, such that |z;|x > 0; we write such a string z; as

T, = Zle'l Z2Qi2 .- 'ZtQitzt-H;

fort>1,z; e (NUT)* 1 <j<t+1if |z;]x =0forall 1 <j <t
then

Y = 21%4, 22T 44 - - - 2t Zt41,
[and y;; = S;;,1 < j < t]; otherwise y; = z;. For all unspecified ¢ we
have y; = z;.

3?7

Point (i) defines a rewriting step (componentwise, synchronously, using
one rule in all components whose current strings are not terminal); (ii) de-
fines a communication step: the query symbols @Q;; introduced in some z;
are replaced by the associated strings x;;, providing that these strings do
not contain further query symbols. The communication has priority over
rewriting (a rewriting step is allowed only when no query symbol appears in
the current configuration). The work of the system is blocked when circular
queries appear, as well as when no query symbol is present but point (i) is not
fulfilled because a component cannot rewrite its sentential form, although it
is a nonterminal string.

The relation =, considered above is said to be performed in the re-
turning mode: after communicating, a component resumes working from its
axiom. If the brackets, [and y;; = S;;,1 < i < ], are removed, then we
obtain the non-returning mode of derivation: after communicating, a com-
ponent continues the processing of the current string. We denote by =,
the obtained relation.

The language generated by I is the language generated by its first com-
ponent, when starting from (S1,...,5y), that is

LiT) = {weT"|(S1,---,5) =} (w,02,...,an),
fora; e (NUTUK)",2<i<n}, fe{rnr}
(No attention is paid to strings in the components 2,...,n in the last con-

figuration of a derivation; moreover, it is supposed that the work of I" stops
when a terminal string is obtained by the first component.)
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Such systems communicate on request. A class of parallel communicat-
ing grammar systems with communication by command has been considered
in [33]. In such a system, each component has an associated regular lan-
guage. In any moment, each component sends its current sentential form
to all other components, but the transmitted string is accepted only if it is
an element of the regular language associated with the receiving component.
Thus, these regular languages act as filters, controlling the communication
in a way similar to the control of derivations in conditional grammars.

We present formally here only a particular class of such systems. We
consider systems working with mazimal derivations as rewriting steps, com-
municating without splitting the strings, replacing the string of the target
component by a concatenation of the received messages, in the order of the
system components, and returning to axioms after communicating; the gen-
erated language will be the language of the first component (which is the
master of the system). The filters will be regular languages.

Formally, such a system is a construct

I'= (N)Ta (SlaplaRl)a"')(SnaPnaRn)))

where N, T are disjoint alphabets (the nonterminal and the terminal one),
S; € N, P; are finite sets of context-free rules over NUT, and R; are regular
languages over NUT, 1 <i<n.

With respect to I' above, we define a rewriting step by

(xlﬁ""mn):(yl7"'7yn) iﬁ‘
z; =" y; in P; and there is no z; € (NUT)*
such that y; = z; in P;

(thus, if z; € T*, then y; = x;, otherwise z; =" y;), whereas a communi-
cation step, denoted by,

(z1,-.,2n) F (Y15, Yn)

is defined as follows:
Let A itz ¢ R o
, .2y — ? ux; 7 ori=j,
61(1‘“]) a {.’Ei, if x; € Rj and ¢ # 7,
for1 <i,j<n,
A(f) = 6(z1,5)0(z2, 7) - - - 6(zn, J),

for 1 < j < n (this is the “total message” to be received by the j-th compo-
nent), and

8(i) = 8(x4,1)8(z3,2) . .. 6(zi,n),

for 1 < ¢ < n (this is the “total message” sent by the i-th component, a power
of z; indicating to how many targets the i-th component sends a message).
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Then, for 1 < i < n, we define

A(4), if A®E) # A,
yi =14 x;, if A(i) =X and 6() = X,
S;, if A(s) = X and 8(3) # .

In words, y; is either the concatenation of the received messages, if any
exist, or it is the previous string, when this component is not involved in
communications, or it is equal to S;, if this component sends messages but it
does not receive messages. Observe that a component cannot send messages
to itself.

The generated language is defined as follows:

1 1
L) ={w e T* | (S1,-..,8) = (1",....a) F @1, l))
2 2
= (xg ),...,x,(f))l— (yg ),...,y,(f)) = ...
o= (@, 2,

for some s > 1 such that w = 2{*}.

Here is an example.

Let

I' = (NaTy (SlaP17R1)7(523P23R2)a(s3yp37R3))7
N ={81,85,,55,53,5%, X},

T = {a,b,c},

P, ={S —aS1,5 — b51,58 — X},
Ry = {a,b}"c,

Py = {8 — S, X — ¢},

Ry = {a,b}" X,

P3 ={S3 — 83, X — c},

R3 = {a,b}*X.

We start from (57, 52,.53). A componentwise maximal derivation is of the

form
(Sla 523 S3) - (.'L'X, Sé’ S{‘})’

for some x € {a,b}*. The string X will be communicated to both the second
and the third component, hence we have

(xX,85,55) F (S1,zX,zX) = (yX,zc,zc) F
F (zeze,yX,yX) = (zcxe, ye, yo),

for some y € {a,b}*. The string xcxc is terminal, hence we have

L(T') = {zczc | z € {a,b}*}.
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Therefore, the very simple system I', with only three right-linear compo-
nents, is able to generate the non-context-free (replication) language above.
Observe that each derivation in I' contains exactly two communication steps
(and three rewriting steps, the last one being considered only for the sake of
consistency with the definition of L(I") as written above, where the last step
is supposed to be a rewriting one).

We do not discuss here the power of these grammar systems. As in the
case of regulated rewriting, the ideas these systems are based on (distribution,
cooperation, communication, parallelism) are more important for us.

3.2 Characterizations of Recursively Enumer-
able Languages

The unchanging landmarks in the investigations in the following chapters
will be the following two borders of computability. The power of finite au-
tomata constitutes the lowest interesting level of computability. The power
of Turing machines is the highest level of computability — according to the
Church—Turing Thesis. Finite automata stand for regular languages, Tur-
ing machines stand for recursively enumerable languages. In order to prove
that a given generative device is able to generate each regular language, it
is in general an easy task to start from a finite automaton or from a regular
grammar and to simulate it by a device of the desired type. Sometimes, we
can do the same when we have to characterize the recursively enumerable
languages. Very useful in this sense are the normal forms discussed in the
previous section. However, in many cases such a direct simulation is not so
straightforward. Then the representation results available for recursively enu-
merable languages can be of great help. Some of them are quite non-intuitive,
which makes their consequences rather interesting. As several results in the
subsequent chapters essentially rely on such representations, we present here
some results of this type, also giving proofs of them.
The first result is rather simple.

Theorem 3.12. For every language L C T* L € RE, there are L' ¢ CS
and c1,¢c2 ¢ T, such that L' C L{c1}{c2}*, and for each w € L there isi > 0
such that weich € L'. (Thus, L is equal to L' modulo a tail of the form
cics,i>0.)

Proof. For a type-0 grammar G = (N, T, S, P) we construct the grammar
G' = (N U {S/, X},T U {Cl, CQ}, Sl, Pl),
with

PIZ{SI—>501}
U{u—v|u—vePu <}
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U {u—vX"|u—vePu>,n=lul -}
U{Xa—aX|ae NUT}
U {Xec1 — crca}-

It is easy to see that G’ simulates the derivations in G, the only difference
being that instead of the length-decreasing rules of P one uses rules which
introduce the symbol X; this symbol is moved to the right and transformed
into the terminal co at the right hand of ¢;. Thus, taking L = L(G), the
properties of L' = L(G’) as specified in the theorem are satisfied. O

Corollary 3.2. (i) Fach recursively enumerable language is the projection
of a context-sensitive language.

(ii) For each L € RE there is a language Ly € CS and a regular language
L2 such that L = Ll/Lz.

Proof. The first assertion is obtained by taking the projection which erases
the symbols ¢, cs above, whereas the second assertion follows by using the
regular language Lo = ¢1c5. (In both cases the context-sensitive language is
L’ as in Theorem 3.12.) o

Of course, the assertions above are valid also in a “mirrored” version:
with L’ C {¢2}*{e1}L in Theorem 3.12, and with a left quotient by a regular
language in point (ii) of Corollary 3.2.

These results prove that the two families RE and C'S are “almost equal,”
the difference lies in a tail of arbitrary length to be added to the strings of a
language; being of the form c;cb,i > 1, this tail carries no information other
than its length, hence from a syntactical point of view the two languages L
and L’ in Theorem 3.12 can be considered indistinguishable.

The results below are of a rather different nature: we represent the recur-
sively enumerable languages starting from “small” subfamilies of RE, but,
instead, we use powerful operations (such as intersection, quotients, etc).

Theorem 3.13. Each recursively enumerable language is the quotient of two
linear languages.

Proof. Take a language L € RE,L C T*. Consider a type-0 grammar
G = (N,T, S, P) for the language mi(L) and add to P the rule § — S. (In
this way we may assume that each derivation in G has at least two steps.)
Take a symbol ¢ not in N UT and construct the languages

L1 = {@nUn¥nCn_1Un—1Yn—1C. . . c¥rury1cc mi(y; )mi{vy)mi(zy)ec
mi(ye)mi(ve)mi(xa)e...c mi(yn—1) mi(vn_1) mi(z,_1)cce
mi{yn)mi(vy,)mi(z,) | n > 2,2,y € (NUT)™,

u; = v; € P,1<i<nand z,v,y, € T*},

Ly = {wncwp_1c. .. cwicSce mi(wy )e mi{ws)c. . .c mi(wy,)cee |

n>1lw e (NUT)*,1<i<n}
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Both these languages are linear. Here is a grammar for Li:

G = ({Xo, X1, X2, X3}, NUT U{c}, Xo, P1),
P, ={Xo— aXpa|a €T}
U {Xo — uXi mi(v) |u > ve PveT*}
U{X1—aXia|aeT}
U {X1 — cXacec)
U{X2—aXsalae NUT}
U {X2 - uX3 mi(v) |u —> v € P}
U{X3s—>aX3alae NUT}
U {X3 — cXs¢, X3 — cc}.

We have the equality L = Lo\ L;.
Indeed, each string in L, is of the form

W = WpCWp—1C. . . CW1CCW CWHC . . . CW, _; cccwh,,

with n > 2, w; = mi(w}),1 < i < n, in grammar G, and w!, € T*. Each
string in Ls is of the form

Z = ZmCem—_1C...cz16Scc mi(z1)c. .. c mi(zy)cce,
with m > 1, z; € (NUT)* 1 < i < m. Therefore, w = 2z’ if and only if
n=m+1,8 = w1,z =wi4 for 1 <i<m, w, =mi(z),l <i<m, and
2’ = w),. This implies w] = mi(z;) = mi(w;4+1),1 <1 < n, that is
S =w; = wy = ... => wy, = mi(2’)

in the grammar G. Thus, mi(z') € L(G), that is Lo\L, = mi(L(G)) = L,
which completes the proof. O

Corollary 3.3. Each recursively enumerable language is the weak coding of
the intersection of two linear languages.

Proof. We repeat the construction above, taking the block z,v,y, in the
writing of language L as composed of primed versions of symbols in T'. Let T’
be the set of such symbols. Instead of Ly we take the language LoT'*. Denote
the obtained languages by L}, L), respectively. Obviously, they are linear,
and ¢ € LiNL} if and only if z = z1cccxhy, 21 € (NUTU{c})*, 4 € T'*, such
that zg € Lo\L;. For the weak coding h defined by h{a) = A,a € NUT U{c},
and h(a') = a,a € T, we obviously get h(L] N L}) = mi(L(G)) = L. O

For a gsm g = (K, V1, Vs, sg, F, P) with Vi = V3 we can define a mapping
g Vit — P(V1) by
9" (w) = {z € V7" | there are wy,...,w, in V*,n > 2,
such that w; € g(w;—1),2 <i<n, and

w=w,z=wp}U{w}



3.2. Characterizations of RE Languages 101

(We iterate the gsm g, repeatedly translating the current string.)

Theorem 3.14. FEach language L € RE, L C T*, can be written in the form
L =g*(ag) NT*, where g = (K,V,V,s0,F,P) is a gsm and ag € V.

Proof. Take a type-0 grammar G = (N, T, S, P). Without loss of the
generality we may suppose that S does not appear in the right hand member
of rules in P. We construct the gsm

(K,NUT,NUT,sqy, F, P),

0,81} U{[z] |z € Pref(u) — {\},u — v € P},

1}

spa — asp |la€e NUT}

U {spa1 — [a1] |[u > v € Pu=a1u',;a1 e NUT,u' € (NUT)*}

U {[z]a — [za] | za € Pref(u) — {u},u v € Pac NUT,
ze(NUT)'}

U {[zlea > vs1 |za=u,u 5 vePae NUT,x € (NUT)*}

U {soa = vs; |a—veEPac N}

U {s1a —»asy |ae NUT}.

S
S

9
K ={
F=A{
P ={

It is clear that at each translation step the gsm ¢ simulates the application
of a rule in P. Therefore, ¢*(S) N T* = L(G). O

We now move on to consider some quite powerful (and useful for some
of the next chapters) representations of recursively enumerable languages,
starting from equality sets of morphisms.

For two morphisms hi, hy : V* — U™, the set

EQ(h1,hs) = {w € V* | hy(w) = ha(w)}

is called the equality set of hy, hs.

Theorem 3.15. Every recursively enumerable language L C T* can be writ-
ten in the form L = prr(EQ(h1, ha) N R), where h1, hs are two morphisms,
R is a regular language, and prr is the projection associated to the alphabet
T.

Proof. Consider a type-0 grammar G = (N,T,S,P) and assume the
productions in P labeled in a one-to-one manner with elements of a set Lab.
Consider the alphabets

Vi=NuTuU{c},
Vo=NUTULabUT' U{B,F,c},

where T = {a’ | a € T'}.
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We define the morphisms hq, hy : V' — Vi* by

hl(B)=SC7 h2(B) =,

hl (C) =¢ hz(C) =¢,

hi(p)=v,  ho(p)=wu, forpiu—veP,
hy (A) =A, hz(A) =A, forAe N,
hi(d)=a, hg(a')=a, foraeT,
hi(a)=A,  he(a)=a, foraeT,
hl(F):A, hz(F)ZC

Moreover, we consider the regular language
R={B}(NUT')*Lab(N UT')*{c)*T*{F}.

The idea behind this construction is as follows. Every string in L(G)
appears as the last string in a derivation D according to G. For a string
w(D) codifying the derivation D, the morphisms hq, he satisfy h;(w(D)) =
ho(w(D)). However, h; “runs faster” than he on prefixes of w(D), and ho
“catches up” only at the end. The projection prp (defined by h(a) = a for
a € T and h(a) = A for a € Vi — T) erases everything else except the end
result. The language R is used to check that only strings of the proper form
are taken into account.

Using these explanations, the reader can verify that we obtain the equality
L(G) = pre(EQ(h1, he) N R). (Complete details can be found in [200].) O

A variant of this result, useful in Chap. 4, is the following one.

Theorem 3.16. For each recursively enumerable language L C T*, there
exist two A-free morphisms hy,hs, a regular language R, and a projection
prr such that L = prp(hi(EQ(h1, he)) N R).

Proof. Consider a type-0 grammar G = (N, T, S, P) with the rules in P
labeled in a one-to-one manner with elements in a set Lab. Without loss of
generality, we assume that for each production p: u — v in P we have v # A,
except for the production S — A if A € L(G).

Define TV = {d' |a € T}, T" = {a" | a € T}, and Lab' = {p’ | p € Lab}.
For notational purposes, we also define a morphism d : (NUT)* — (NUT")*
by d(A) = A for A € N and d(a) = &’ for a € T. Note that d is a bijection;
thus, the inverse of d, d~!, is well defined.

Let

Vi = NUTUT' U{B,F,c},
Vo = NUTUT”ULabU Lab’ U{B, F,c,c'},

where B, F,c, and ¢’ are new symbols. The morphisms hq, hy : Vof — V¥,
depending on G, are defined as follows:
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hl(B) = BSC7 hg(B) = B,

hi{c) =, ha(c) = ¢,

ha(p) = d(v), ha(p) = d(w), forp:u—veP,
hi(p') =, ha(p') = d(u), forp:u—veEP,
hi(A) = A, ha(A) = A, for Ae N,
hd)y=d, ha(d') =d’, for o' € T,
hi(a”) = a, ha(a”) =d, for o’ € T",
hi(a) = F, ha(a) = q, foraeT,

hi(d) = F, ho(d) = ¢,

h(F)=F,  hy(F)=FF.

Consider also the regular language
R={BS}({cHN UT')" ) {c}T*{F}".

Note that u,v # A for all u — v € P. So, both h; and hy are A-free
morphisms. If A € L, then we introduce an additional symbol d to Vo and
define

It is easy to see that in this fashion we will not introduce any new words
to h1(EQ(h1,h2)) N R. Therefore, we assume that A ¢ L in the following
arguments.
The proof of the fact that x € L(G) implies z € prr(hi(EQ{h1, ha)) N R)
is similar to the proof of the corresponding inclusion in Theorem 3.15.
Conversely, let w € prp(hi(EQ(h1,h2)) N R), ie., w = prr(y) for some
y € hi(EQ(h1,hg)) N R. Then by the definition of R, y is of the form

BSeyicysc. .. ey F',

where y1,...,y1—1 € (NUT)* y, € T*, and | > 0. Let y = hy(x) for some
x € EQ(hy, h2). Then

x = Bxycrac... e oy F™

such that ho(z1) = S, hi(x;) = ha(Zig1) = yi, for 1 < i < t, and [ = 2m and
hi(z¢+1) = F™~ 1. Note that if z; = ;4 for some j, 1 < j < t, then we can
construct a new word z’ by deleting z;c from z so that prr(hi(z’) N R) =
prr(hi(z)NR) = w. So, without loss of generality, we assume that z; # x4,
for all §,1 < j <t. (It is clear that x; # x¢41.)

The following assertions are clear:

Tzy=plorxy =p ift= orsomep:S —zin P,

1 ! if 1) f S in P
(2) z; € (NUT'U Lab)*Lab(N UT' U Lab)*, for 2 <1 < t,
(3) z; € (NUT' U Lab')*,
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(4) Tey1 € T7,
(5) hi(z;) = y; and ho(z;) = y;—1, for 1 < i < ¢ (letting yg = S).
By (2) and (5) above and the definition of h; and hg, it follows that
A7 (gi-1) =& 47 (wi),

2 < i <t-1. Note also that § =>¢ d™1(y1) and d~(y:—1) = w-
Therefore, we have S =3 y:, i-e., y: € L(G). Since w = prr(y) = y, we
have proved that w € L. O

Note the difference between the representations in Theorems 3.15, 3.16: in
the first theorem the language L is obtained as a projection of the intersection
of the equality set with a regular language, whereas in the second case the
language L is the projection of the intersection of a regular language of the
image of the equality set under one of the morphisms defining the equality
set.

A very useful consequence of Theorem 3.15 is the following one.

Consider an alphabet V and its barred variant, V = {a | a € V}. The
language

cEV*

is called the twin-shuffle language over V. (For a string « € V*, Z denotes

the string obtained by replacing each symbol in z with its barred variant.)
For the morphism A : (V U V)* — V* defined by

h(a)= A, fora eV,
h(@) =a, fora eV,

we clearly have the equality T'Sy = EQ(h,pry). This makes the following
result plausible.

Theorem 3.17. Each recursively enumerable language L C T* can be writ-
ten in the form L = prp(TSy N R'), where V is an alphabet and R’ is a
reqular language.

Proof. Counsider again the proof of Theorem 3.15. We may assume that
Vi and Vs, the range and the target alphabets of the morphisms ki, ho are
disjoint. (We simply rename the letters of Vi; this does not affect the proof
above.)

Consider now the alphabet V' = V3 UV, and let g be the morphism
satisfying

g{a) = ahy(a)hs(a), for every a € V5.
Let also R’ be the regular language

R =g(R) W V.
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The following equality follows directly from the definitions above
pT‘T(TSV n R,) = pT‘T(EQ(hl, hz) N R),

therefore the representation in Theorem 3.17 is a consequence of the repre-
sentation in Theorem 3.15. m|

Note the similarity of the representation above of recursively enumerable
languages with the Chomsky—Schiitzenberger representation of context-free
languages (Theorem 3.11); the role of the Dyck languages is now played by
the twin-shuffle languages.

In this representation, the language T'Sy depends on the language L.
This can be avoided in the following way. Take a coding, f : V — {0,1}*,
for instance, with f(a;) = 01°0, where a; is the ith symbol of V in a specified
ordering. The language f(R’) is regular. A gsm can simulate the intersec-
tion with a regular language, the projection prr, as well as the decoding of
elements in f(T'Sy). Thus we obtain

Corollary 3.4. For each recursively enumerable language L there is a gsm
gr such that L = g1,(T'S{0,1})-

Therefore, each recursively enumerable language can be obtained by a
sequential transducer starting from the unique language T'S(g,1}. One can
also see that this transducer can be a deterministic one.

Somewhat surprisingly, the result above is true also for a “mirror” variant
of the twin-shuffle language.

For an alphabet V', consider the language

RTSy = | (z W mi(z)).

TeV*
This is the reverse twin-shuffle language associated to V.

Theorem 3.18. For each recursively enumerable language L there is a de-
termanistic gsm gr, such that L = gL (RTS(g1}).

Proof. Since the deterministic gsm’s are closed under composition, it suf-
fices to find a deterministic gsm g such that g(RT'S(g,1}) = T'S{0,1}- The idea
of constructing such a gsm g is to let g to select twins x that are palindromes
of the form x = y00 mi(y), with y € {0,1}*, with 0 and 1 coded as 01, 10,
respectively.

Then g is the gsm which maps w = h(%)0000v into g(w) = u, for all strings
u,v € {0,1,0,1}*, where h is the morphism defined by h(0) = 01,h(1) =
10, h(0) = 01, A(1) = 10. Furthermore, the gsm g is defined for strings in

D = {01, 10,01, 10}*0000{0101, 1010}*.

It is easy to see that g is a deterministic gsm mapping. It remains to
show that g(RTS{O’l}) = TS{O,l}-
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Consider a string w = h(u)0000v in RT'S{,1} N D. Since prg 13(w)

[en]]

mi(pr{o,1)(w)), the specific form of strings in D (with the “marker” 000
in the middle) implies that prg 1} (h(u)) = mi(prio,13(v)) and prig 1y (v) =
mi(pro,1} (h(u))). Since prg 1)(v) = prio,1}(v) (because v € {0101, 1010}*),
this implies that pri;1j(h(u)) = prio1y(h(u)). Hence h(pripiy(u)) =
h(prio,13(u)) and so, since h is injective, prigiy(u) = prio1y(u), ie.,
g(w) = u € TSyg,1}. This shows that g(RT'S{0,13) € T'S{0,1}-

Conversely, if u € {0,1,0,1}* such that prigi3(u) = prio,1}(u), then

consider the string w = h(u)0000v, where v is the unique element of
{0101,1010}* such that pryg1j(v) = mi(pre,13(h(u))). Then w € D,
g(w) = u, and w € RT'Sg 1. This ends the proof. ]

Results similar to Corollary 3.4 and Theorem 3.18 hold also for a weaker
variant of the twin-shuffle language.

Consider the coding ¢ : {0,1}* — {0,1}* defined by ¢(0) = 0 and
¢(1) = 1. The semi-twin-shuffle language over {0, 1} is denoted by ST'S(o 1)
and defined by

STSpy = |J (@)

ze{0,1}*
Theorem 3.19. For each recursively enumerable language L there is a gsm
gL such that L = g,(STSo,13)-

Proof. In view of Corollary 3.4, it is enough to prove that T'Syg1} =
9(ST'Sq0,1}) for a gsm g. o
Consider the morphism A : {0,1,0,1}* — {0,1,0}* defined by

h(0)
h(0)

Il
o

0, h(1) =01,
0, h(I) =01,

Il
[em]]
I
em]]

as well as the regular language
R = {00,01,00,01}*.
The following equality holds:
TSi0,13 = h ' (STS{0,13 N R).

Consider a string y € T'Sg,1}. There is z € {0,1}* such that y € z lll Z.
We clearly have h(y) € h(z) W h(Z) = h(z) W c(h(x)). Consequently,
h(y) € STSio1). Obviously, h(y) € R, hence the inclusion T'Sjo1; C
h=1(8TSo,1} N R) follows.

Conversely, take a string z € ST'S{p,1} N R and look for h~!(z). Because
h is injective, h~!(z) is a singleton (it is non-empty for all z € R). By the
definition of ST'S(g 1} we have z € z Ul ¢(z) for some x € {0,1}*. Because z €
R, we must have x € {00,01}*, that is ¢(z) € {00,01}*. Consider the strings
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y=h"1(z) and §. We havey = h~1(z) = h~!(c(x)). Consequently, h=1(z) €
Rl (z W c(z)) = h~Y(z) W h™Yc(x)) = h™'(x) W h~1(z) C TS0} This
proves that also the inclusion h=1(ST'Syg 13 N R) C T'S(o,1y is true.

Now, the intersection with a regular language and the inverse morphism
can be computed at the same time by a gsm. O

Also a counterpart of Theorem 3.18 can be obtained. The reverse semi-
twin-shuffle language over {0, 1} is denoted by RST S} and is defined by

RSTSpony= |J (z 1l c(mi())).

z€{0,1}*
By a proof similar to that of Theorem 3.19 we obtain the following result.

Corollary 3.5. For each recursively enumerable language L there is a gsm
gr such that L = g (RSTS{o,1})-

3.3 Universal Turing Machines and Type-0
Grammars

A computer is a programmable machine, able to execute any program it re-
ceives. From a theoretical point of view, this corresponds to the notion of a
universal Turing machine, and in general, to the notion of a machine which
is universal for a given class, in the following sense.

Consider an alphabet T and a Turing machine M = (K, V,T, B, s¢, F, 9).
As we have seen above, M starts working with a string w written on its tape
and reaches or not a final state (and then halts), depending on whether or
not w € L(M). A Turing machine can be also codified as a string of symbols
over a suitable alphabet. Denote such a string by code(M). Imagine a Turing
machine M, which starts working from a string which contains both w € T*
and code(M) for a given Turing machine M, and stops in a final state if and
only if w € L(M).

In principle, the construction of M, is simple. M, only has to simulate
the way of working for Turing machines, and this is clearly possible: look for
a transition, as defined by the mapping §, depending on the current state and
the current position of the read-write head (this information is contained in
the instantaneous descriptions of the particular machine); whenever several
choices are possible, make copies of the current instantaneous description
and branch the machine evolution; if two copies of the same instantaneous
description appear, delete one of them; if at least one of the evolution vari-
ants leads to an accepting configuration, stop and accept the input string,
otherwise continue.

Such a machine M, is called universal. It can simulate any given Turing
machine, providing that a code of a particular one is written on the tape of
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the universal one, together with a string to be dealt with by the particular
machine.

The parallelism with a computer, as we know the computers in their
general form, is clear: the code of a Turing machine is its program, the
strings to be recognized are the input data, the universal Turing machine is
the computer itself.

Let us stress here an important distinction, that between computational
completeness and universality. Given a class C of computability models, we
say that C is computationally complete if the devices in C can characterize
the power of Turing machines (or of any other type of equivalent devices).
This means that given a Turing machine M we can find an element C in C
such that C is equivalent with M. Thus, completeness refers to the capacity
of covering the level of computability (in grammatical terms, this means to
generate all recursively enumerable languages). Universality is an internal
property of C and it means the existence of a fixed element of C which is able
to simulate any given element of C, in the way described above for Turing
machines.

Of course, we can define the completeness in a relative way, not refer-
ring to the whole class of Turing machines but to a subclass of them. For
instance, we can look for context-free completeness (the possibility of gen-
erating all context-free languages). Accordingly, we can look for universal
elements in classes of computing devices which are computationally complete
for smaller families of languages than the recursively enumerable languages.
However, important for any theory which attempts to provide general models
of computing are the completeness and universality with respect to Turing
machines, and this will be the level we shall consider in this book.

The idea of a universal Turing machine was introduced by Turing him-
self, who has also produced such a machine [212]. Many universal Turing
machines are now available in the literature, in general looking for simple
(if not minimal) examples from different points of view. We present below
some of them, for the case when Turing machines are considered as devices
which compute mappings (see again Sect. 3.1). In such a framework, we say
that a Turing machine is universal if it computes a universal partial recursive
function (modulo the coding-decoding “interface” mentioned in Sect. 3.1).
Similarly, a Turing machine M, simulates a Turing machine M, if there are
two coding-decoding mappings

C:1Dpy, — 1Dy, D:IDpy, — 1Dy,
such that for each o € I Dy, we have
D(FMl (C(Ol))) = Fu, (Ol)

The complexity of a Turing machine can be evaluated from various points
of view: the number of states, the number of tape symbols (the blank sym-
bol included), or the number of moves (quintuples (s, a,b,d,s’) such that

(s',b,d) € 4(s,a)).
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We denote by UT'M(m,n) the class of universal deterministic Turing
machines with m states and n symbols (because we must have halting con-
figurations, there can exist at most m - n — 1 moves).

Small universal Turing machines were produced already in [205] (with
two states) and [138] (with seven states and four symbols). The up-to-date
results in this area are summarized in [185]:

Theorem 3.20. (i) The classes UTM(2,3),UTM(3,2) are empty. (ii)
The following classes are non-empty: UTM(24,2), UTM(10,3), UTM(7,4),
UTM(5,5), UTM(4,6), UTM(3,10), UTM(2,18).

Therefore, the problem is open for 51 classes UTM(m,n).

We recall from [185] three examples of universal Turing machines, from
the classes UTM(7,4),UTM(5,5), UT M (4,6); the last one has the smallest
number of moves. Because the machines are deterministic, we present them
in a tabular way: for a quintuple (s,a,b,d,s’), an entry bds’ will appear at
the intersection of the row marked with s and the column marked with a.
The states will be always denoted with sg, s1,..., S, and the blank symbol
with B. (We do not present here the coding-decoding mappings C, D; the
reader is referred to [185] for details.)

One sees that these machines contain 26, 23, and 22 moves, respectively.
These are the best results known ([185]).

Table 3.2. A Turing machine in UTM(7,4)

B 1 a b

S0 BLsg BlLsy bRs1 alsg
S1 1R81 BLS() bRSl 1RS4
89 ].LS3 1R82 bRSz aR32
S3 1Lsg 1Lsg bLss alss
S4 bL83 1RS4 bRS4 aR54
Ss BRsy BRss aRss BRsg
Se BRsy - alss -

Table 3.3. A Turing machine in UTM(5,5)

B 0 1 a b

So bRSo 1R80 OLSO 0R51 BLS()
S1 0L53 0R81 0R81 aR51 bR51
82 BRsy alLss ORso aRss bRss
S3 bL52 1L83 0R81 (I,L83 bL83
S4 - - 1RS4 1R80 BRS4
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Table 3.4. A Turing machine in UTM (4, 6)

B 1 a b b b
So b“LSO b”LSO 0R83 b/RSO bLSo ORSO
81 1L81 BRSl bRSl b/L32 b”RSl blle
S92 aRsq 1Rss 1Rsq b"Rss | bRssy -
S3 alsq O0Rs3 bRss alsq b’ Rss —

In most of the constructions on which the proofs in the subsequent chap-
ters are based, we shall start from a Chomsky type-0 grammar.

Given a Turing machine M we can effectively construct a type-0 grammar
G such that L(M) = L(G). (Similarly, we can produce a type-0 grammar
G such that G computes, in a natural way and using appropriate coding-
decoding mappings, the same mapping Fjs as M. So, a grammar can be
considered a function computing device, not only a language generating mech-
anism.)

The idea is very simple. Take a Turing machine M = (K, V, T, B, sq, F, §)
and construct a non-restricted Chomsky grammar G working as follows:
starting from its axiom, G nondeterministically generates a string w over
V', then it makes a copy of w (of course, the two copies of w are separated
by a suitable marker; further markers, scanners and other auxiliary symbols
are allowed, because they can be erased when they are no longer necessary).
On one of the copies of w, G can simulate the work of M, choosing nonde-
terministically a computation as defined by ¢; if a final state is reached, then
the witness copy of w is preserved, everything else is erased.

For the sake of the completeness, we present the details of such a con-
struction.

Consider a deterministic Turing machine M = (K,V,T, B, sg, F, ) and
construct the grammar

G =(N,T,S, P),

where

N ={[a,b] |lae TU{A},beV}U{S, X, Y}UK,

and P contains the following rules:

1) S—spX,

2) X —Ja,a0)X, foraeT,

3) XY,

4) Y =B,

5 Y o

6) sla, 0] — [a,8]s, forac TU{A},s,5 € K,a,B€,

such that &(s,a) = (s', 8, R),
7) [b,7]s[a,a] — §'[b,7][a,[], for a, B,y € V,a,be TU{)\},s,8 € K,
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such that &(s,a) = (', 8, L),
8) [a,a]s — sas,
sla, o] — sas,
s— A foracTU{A},aeV,seF.

The reader can easily check that L(G) = L(M).

Applying this construction to a universal Turing machine M,, we ob-
tain a universal type-0 Chomsky grammar G, a grammar which is universal
in the following sense: the language generated by G, consists of strings of
the form, say, w#tcode(M), such that w € L(M). (We can call the language
{w#code(M) | w € L(M)} itself universal, and thus any grammar generating
this language is universal.) However, we are interested in a “more grammat-
ical” notion of universality, and this leads to the following definition.

A triple G = (N, T, P), where the components N,T, P are as in a usual
Chomsky grammar is called a grammar scheme. For a string w € (N UT)*
we define the language L(G,w) = {z € T* | w =>* z}, the derivation being
performed according to the productions in P.

A wuniversal type-0 grammar is a grammar scheme G, = (Ny,T,, P,),
where N,,T, are disjoint alphabets, and P, is a finite set of rewriting
rules over N, U T,, with the property that for any type-0 grammar G =
(N, Ty, S, P) there is a string w(G) such that L{G,,w(G)) = L(G).

Therefore, the universal grammar simulates any given grammar, provided
a code w(G) of the given grammar is taken as a starting string of the universal
one.

There are universal type-0 grammars in the sense specified above. Because
this assertion is fundamental for the investigations in the following chapters,
we prove it with full details.

Let G = (N, T, S, P) be a type-0 grammar. Without loss of the generality,
we may assume that N contains only three nonterminals, N = {S, A, B}.
(If we have more nonterminals, say S, X1, Xo,...,X,, for n > 3, then we
systematically replace each X; appearing in arule of P with AB*A,1 <i < n,
for some new symbols A, B. The obtained grammar is obviously equivalent
with the original grammar.)

We construct the grammar scheme
Gu = (Nu7 T: Pu)7
with

Nu = {A7B707D7E7F7H7R7Q7S7X’Y}
U {[a,i] |a € T,1 <i <9},
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and the set P, contains the following rules:

(1)

(1)

(I11)

(VII

C — BQ,
Qa — aQ,
QDo — [o,2]D[e, 1],

Bla,2] — [a,3]B,

o|B,3] — [B,3]a,

ala,3] — [a,4],

[a,1]8 — [8, 5], 1][5,1],
a[B,5] — [8,5]a,

) Bla,5] — [, 6]B,

) a[B,6] — [, 6]a,

) [0, 4]8(8,6] — [, 4],

) [ 1EB — [, T|E(B,9],
) [, 1]8,7] = [, 7]8,

)} Dla,7] — Da,

) o, 918 — (8, 8][,9][3,9],
) olB,8] — [Ble,

[a7 9][ﬂ7 8] - [ﬁ’ 8][a’ 9]7
a0 4)18,8] — Bla, 4),
[, 1]ED — o, TIRED,
[@,9]D — RaD,
[a,9]R — Ra,

aR — R,

BR — RC,

[a, 4R — A,

Aa — aA,

AC — H,

Ha — H,

HF — A

N N N N N N N N
D NN BN NN DN
O 00 ~J O O i W N
— DTN

fora e NUTU{D, E},
forae NUT,

fora e NUTU{D, E},
feNUT,

forae NUT,
fora,f e NUT,
forae NUT,

fora, e NUT,

fora e NUT U{D, E},
BeNUT,
fora e NUT,

for o, e NUT,

for o, € NUT,

for a, e NUT,
fora, e NUT,
forae NUT,

fora, e NUT,

fora e NUTU{B,D,E},
BeENUT,

for o, € NUT,
fora,e NUT,
fora € NUT,

forae NUT,

forae NUT,

forc« €e NUTU{D, E},

forae NUT
foraeT,

fora e NUTU{D, FE},

Assume that P = {u; — v; | 1 < ¢ < k} and consider the string

code(G) = ASCDuy FviDusEvyD ... DupEvi DF.

Let us first examine how the grammar scheme G, works on a string of
the form AwCDuiEv1D ... DugEvi,DF.
Group (I) of rules introduces the nonterminal ) which selects a rule u; —

v; occurring in the right hand of a nonterminal D (by rule (3)).

By the

second group of rules, the first symbol « in u; is transformed in [e, 1] and
the copy nonterminal [c, 2] is moved to the left hand of B, where it becomes



3.3. Universal Turing Machines 113

[, 3]. If in w there exists an occurrence of ¢, then by rule (7) we introduce
the nonterminal [, 4] in order to encode this information.

The rules of group (III) transform all symbols 8 from u; in [3,1] and
then any such symbol 3 is erased from the right hand of [, 4], if this can be
performed in the correct order. In this way, the occurrence of u; is identified
in w.

By rules of group (IV) each symbol 8 of v; # A is transformed into [3, 9]
and a copy [6,8] is introduced which is moved to the left of the symbol B.
When [3, 8] reaches the symbol [c, 4] one introduces the symbol 3. In this
way, the string u;, erased by the rules in group (III), is replaced by v;. If
v; = A, then rule (20) is used instead of rules in group (IV). In this way we
obtain a derivation step w = w’ using the rule u; — v;.

This procedure can be repeated, due to the rules in group (VI). If v’
contains no nonterminal occurrence, then by rules in group (VII) we erase all
auxiliary symbols, leaving only the terminal string w'.

Consequently, L(G) C L(Gy, code(G)).

In order to prove the reverse inclusion, let us observe that the nonterminal
A can be eliminated only when in between A and C there is a terminal string.
Every derivation must begin by the introduction of the nonterminal Q. The
erasing of this symbol implies the introduction of a nonterminal [, 1], which
can be eliminated only by replacing it with the nonterminal [@,9]. These
operations are possible if and only if a string u; was erased from w. The
removing of [, 9] is possible after writing v; instead of the erased w;. The
symbol R introduced in this way can be eliminated only when the string
reaches the form Aw'CDuiEv1D ... DugEvyDF. In this way we simulate a
derivation using the rule u; — v;. All derivations in G, which are not of this
form are blocked. Thus, the inclusion L(G,,code(G)) C L(G) is obtained,
completing the proof of the equality L(G., code(G)) = L(G). |

Note that the universal grammar G, constructed above codifies the way of
using a grammar in a derivation process: choose a rule, remove an occurrence
of its left hand member, introduce instead an occurrence of its right hand
member, check whether or not a terminal string is obtained.

A natural question here, also important for molecular computing, is
whether or not universality results hold also for other classes of automata
and grammars than Turing machines and type-0 grammars, in particular for
finite automata.

If the question is understood in the strict sense, then the answer is neg-
ative for finite automata: no finite automaton can be universal for the class
of all finite automata. There are two reasons for this. Firstly, one cannot
encode the way of using a finite automaton in terms of a finite automaton
(we have to remember symbols in the input string without marking them,
and this cannot be done with a finite set of states). Secondly, we cannot
codify the states of any given finite automaton in such a way that the finite
set, of states of the universal automaton can handle them (an arbitrarily large
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set of states will lead to arbitrarily long codes, hence again the information
carried by them cannot be handled by a finite set of states).

However, for our purposes it is sufficient to construct a universal automa-
ton in the following relaxed sense. Consider the class of finite automata
whose state set and input alphabet are subsets of fixed finite sets K and V,
respectively. A universal finite automaton for this class can be constructed.

We consider the following finite automaton

Mu = (Kua VUKU {01,02},QO,u,Fu,Pu),
where

u = {qo,ua qé),uy qg,ua qf}
U {ls], (5), (8), ()", )., () (8) " | s € K}
U {[sal, [sas’], [sas], [sas']", [sas']",[sas']"" | 5,5’ € K,a € V},

uw = {Qf}a

and P, contains the following transition rules:

1. gous— sq()’u, s €K,
Q(I),ua - aqg,w a€ev,
90 45 = S90,u,> 8 € K,
2. qouSo — So[sol,
[so]a — alsoa], a €V,
[soa]s — s[soas], s€ K,a €V,
3. [sas’]s” — s"[sas'], s,8',s" € K,a €V,
[sas’]’b — b[sas']”, s,s’ € K,a,beV,
N"s" — §"[sas], 3,5, € K,a€V,
, 8,8 €cK,aeV,
" s,8,8 €eK,a€eV,
ca — colsas’]”, 5,8’ € K,a €V,

[sas

[sas’]c1 — c1[sas’]"”

e 1

[sas’]"'s" — §"[sas’]

]
[sas’]"
[sas']"a — a(s'), 5,5’ € K,a €V,
(s)s' — §'(s), 5,8 € K,
(s)a—a(s)’, se K,a eV,
(s)"s" — §'(s), 5,8 € K,

(s)s — sls], s € K,

[sla — a[sal, s€ K,a €V,

[sa]s’ — §'[sas’], s, € K,a €V,
7. (s)s' — s'@l, s, € K,

(s)s' — s’@l, 5,8 €K,
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(s)a—>a(s)”, seK,aeV,
(s) s —5'(s), 5,8 € K,
®a - als) , sek,

Gj, s ——>s(s)m, s,8 € K,s# ¢,

—_—t
(s) s —sqf, s€F,
qss — sqg, s € K,

gfCa — Cagy.
For a finite automaton M = (K, V, sq, F, P) let us consider the string
code(M) = $1a18182a28) . .. Sp@nSnC1S£1872 - . - SfmC2,

where s;a; — a;8; € P,1 < i < n, each string s;a;s, appears only once,
$f1,8f2, - .- ,Sfm are the elements of F, and c;,cy are new symbols.

For two strings z,z € V* withz = a1a2...ap,a; € V,1 <4 < p, we define
the block shuffle operation of z,x by

bls(z,x) = za1zas . .. zapz.

The automaton M, is universal for the class of finite automata of the
form M = (K', V', sg, F, P) with K’ C K,V’ C V, in the following sense:

bls(code(M),x) € L(M,) iff x € L(M).

Indeed, M, works as follows: in the initial state go . and in each state (s),
one parses code(M) in such a way that some blocks s;a;s] are skipped, then
one block of this type is memorized (when starting, we must have s; = sg)
in the state [s;a;s;], then further blocks s; a]s are sklpped after passing also
over ¢Sy, ... sy, ¢2 (thus reaching the state [s;a;s}]"); the rule s;a; — a;s]
of M is simulated by a rule of type 4, returning to a state of the form (s);
the process can be iterated; using rules in group 7, we reach g5 only when
we have simulated in M, a parsing in M ending in a state of F.

We conclude with the following two observations concerning the universal
automaton M,,. Firstly, the above construction remains unaltered if K and V'
are infinite sets. Thus, M, can be considered universal for all finite automata.
However, this modified M, is not a finite automaton, although its schematic
definition is very simple. {Such modifications of finite automata were often
discussed in the early days of automata theory.)

Secondly, the description of the individual automata to be simulated,
code(M), appears numerous times in the input for M,,. This drawback can
be remedied by making M, a two-way automaton with two tapes. The details
of such a construction are omitted.
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3.4 Bibliographical Notes

Several monographs in formal language theory were mentioned in Sect. 3.1.
Others can be found in the bibliography.

We do not specify here the origin of the results mentioned in Sect. 3.1.

Theorem 3.12 is classic, it appears in most formal language theory mono-
graphs. Theorem 3.13 appears in [110]; Corollary 3.3 is first established in
[11], where a previous result is strenghtened (saying that each recursively enu-
merable language is the morphic image of the intersection of two context-free
languages). Results like Theorem 3.14 were given in [145], [188], [218].

Characterizations of recursively enumerable languages starting from
equality sets of morphisms were given in [199], [34]; the construction in the
proof of Theorem 3.15 is from [200], where complete details can be found.
The variant of Theorem 3.15 given in Theorem 3.16 is proved in [101]. Theo-
rem 3.17 and its Corollary 3.4 were proved in [54]. Theorem 3.18 is from [53].
Similar (sometimes slightly weaker) results appear also in [18]. Semi-twin-
shuffle languages were considered in [131], where Theorem 3.19 and Corollary
3.5 are given.

Universal Turing machines can be found in [138], [205], and, mainly, in
[185]. The construction of the universal type-0 grammar from Sect. 3.3 is
from [20]; it also appears in [19].



Chapter 4

Sticker Systems

Data structures basic in language theory are words, that is, strings of ele-
ments, letters. Here the idea of a “string” entails a linear order among the
elements. The double helix of DNA, when presented in two dimensions as
we have already done, constitutes a data structure of a new kind: a double
strand. While both strands still are linear strings of elements, the double
strand possesses an important additional property. The paired elements in
the strands are complementary with respect to a given symmetric relation.
We have already discussed the interconnection between this Watson—Crick
complementarity and the twin-shuffle language. The computational capacity
of the latter has also been pointed out. In the next two chapters intensive
use will be made of these two facts, the interconnection and computational
capacity, for DNA computing. Our previous characterizations of recursively
enumerable languages, based on equality sets and twin-shuffle languages, find
here very natural applications.

4.1 The Operation of Sticking

We start by a formalization of the basic operation we shall use, in which
we can build double stranded sequences starting from “DNA dominoes,”
sequences with sticky ends at one or at both their ends, or single stranded
sequences, which, by ligation and annealing, stick to each other.

Consider an alphabet V and a symmetric relation p CV x V over V (of
complementarity).

The property of symmetry is not used below, but we consider it because
Watson—Crick complementarity is symmetric (in general, the intuitive idea
of complementarity assumes the symmetry).

Besides the monoid V*, of strings over V, we associate with V also the
monoid V* x V*, of pairs of strings. In accordance with the way of repre-
senting DNA molecules, where one considers the two strands placed one over

G. Paun et al., DNA Computing
© Springer-Verlag Berlin Heidelberg 1998
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the other, we also write the elements (z1,%2) € V* x V* in the form (ml )
]

Therefore, the concatenation of two pairs (ml) , (y1> is (Ilyl ) We also
T2 Y2 T2Y2

write (“j*) instead of V* x V'*.

The identity element <i> of (K*) is often identified with A, and omit-

ted when it is not significant in a given context.
We also denote

[“;]p:{m | a,b €V, (a,b) € p},

WEK,(V) = [‘qp

The set WK,(V) is called the Watson-Crick domain associated to
the alphabet V and the complementarity relation p. The elements

aplez |9 ¢ WK,(V) are also written in the form Y for
b1 | | b2 br, w2

Wi = a1G3...0n,Ws = bibs...b,. We call such elements wl:l e WK,(V)
Wa

well-formed double stranded sequences, or simply double stranded sequences,
or molecules, in order to remind us of the reality they are modeling. The two
component strings, ws, wa, are also called strands; wy is the upper strand and
wy is the lower strand.

By the definition of WK,(V), is also a molecule (although it has

A
A
no biochemical representation). In this way, WK,(V) is a monoid. For any
two elements [Il] , [yl] in WK,(V'), the sequence [zlyl} is well formed,
T2 Y2 T2Yy2
hence it is in WK,(V).
x
Note the essential difference between <y) and [I] (Z) is just another
Y
notation for the pair (z,y), that is, no relation is assumed between the sym-
x
bols appearing in z and y, whereas represents a molecule, with a precise

bonding between the corresponding symbols in the two strands. This bond-
ing is defined by the complementarity relation p on the alphabet V', hence

in order to specify all these details we shall usually write [z] e WK,(V),
although the expression [z] tells us that we have a molecule.

w
We emphasize the two properties characterizing the elements [ 1] of
wa
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WK ,(V), because they are essential for the models considered in this and
the next chapter:

— the two strands w;,ws are of the same length,

— the corresponding symbols in the two strands are complementary in the
sense of the relation p.

These properties are rather strong. We shall see that using elements of
WK ,(V) one can easily obtain characterizations of RE. As a matter of fact,
an intersection is “incorporated” in the definition of a Watson—Crick domain.
However, this strength is provided to us “for free” by the DNA molecules:
they are well-formed double stranded sequences, with the correctness checked
in a natural way, where “natural” refers directly to the nature.

We shall also use below “incomplete molecules,” that is elements in the
set

Wo(V) = L,(V)UR,(V)ULR,(V),

L= )o (5[],
& H () (5
=)o (V)] ) ()

Here, when we write, for instance, (K) [x}, this is just an expression
Y

where

obtained by concatenating the two symbols (7;) and [z] This cannot
Y
be replaced, say, by (ux), because we lose the complementarity relations
between the symbols in z, y; ( ) is only a pair of strings, whereas [ ] is
Y Y

a molecule. If u # A, then uyx is simply undefined.

The possible shapes of elements in W,(V) are illustrated in Fig. 4.1. In
all cases, we have a well-formed double stranded sequence x and overhangs
¥,z in one or two sides of x. These overhangs (sticky ends) can be placed
in the upper strand or in the lower one. Note that in the case of L,(V') and
R,(V), the block x may be empty, but in the elements of LR,(V') we have

V1t
T € [V} , hence it contains at least one element {Z} with (a,b) € p. In
P
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turn, the overhangs can also be empty; what remains is then an element of
WK,(V), therefore WK,(V) is included in each set L,(V), R,(V), LR,(V).

Y x Y T
L,(V): I—‘_—] r_I_—l

T Yy T Y
RO: [ — [ V—
Yy x z y x z
[ J [
[ l_l:l
LR,(V
p( ) Yy x z Yy x z

Figure 4.1: Possible shapes of “dominoes”

Any element of W,(V') which contains at least a position [Z], a#M\b+#£
A, is called a well-started double stranded sequence; of course, when several
“columns” [Z], with (a,b) € p, appear, they appear consecutively. In gen-

eral, the elements of W,(V) are also called dominoes (polyominoes could be
more rigorous).

Among the elements of W,(V') we can define a partial operation, modeling
the ligation or annealing operation: a well-started molecule (hence a sequence
having at least a position filled in both of the two strands) can be prolonged
to the right or to the left with a domino, providing that the sticky ends
match, that is they are complementary in the corresponding positions. The
result should always be a well-started molecule, hence a sequence which does
not have empty places surrounded by symbols from V.

Specifically, consider a well-started molecule € W,(V'), and a domino
y € W, (V). Being well-started, = can be written (obviously, in a unique way)
in the form

T =T1X2x3,

A v* A
where z; € WK, (V) — {[)\}} and z1,23 € < ) ) U (V*) .
The sticking of z,y (in this order, non-commutatively) is defined and
denoted by u(x,y) in the following cases:

A
1) z3 = (1;) Y= (v) y', for u,v € V* such that
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[“] € WK, (V) and ¢’ € R,(V); then p(z,y) = 212 [“} 2
v p Y 0 ’ HZ,Y) = T1X2 v Y

2) 23 = (;\) Y= (1;\) y', for u,v € V* such that

m € WK, (V) and i/ € R,(V); then p(z,y) = 2125 m y';
3) 23 = (1;1) Y= (1;2) , for uy,us € V¥

then p(z,y) = z122 (uluQ) ;

A
4) xg3 = <u1/\uQ) Y= (2) , for uy,us,v € V* such that
rup T ) . fu1l /U2 .
N WK,(V); then u(z,y) = 2122 - ( N ) ;
U A "
5) x3 = (/\) Y = (U1U2) , for u,v1,v2 € V*such that
[ ] [u] /A
e WK,(V); then p(z,y) = 122 b ( ) ;
L V1 | LV1] \V2

A
6)x3:(>\>7y:( )1f0rvlyv2€V*;
1 U2

then u(z,y) = T129 ( A ) ;

U112

A
7) x5 = (U1U2) Y= (:L) , for u,v;,vy € V*such that

[ ] fu] /A
u € WK,(V); then u(z,y) = 2122 N < ) ;
| V1 | LV1] \?2
8) 3 = (2) Y = (UIAUQ) , for w1, ug,v € V*such that
U] U171 /U2
. € WK,(V); then p(z,y) = z122 - ( A\ ) .

These eight cases are illustrated in Fig. 4.2.

In the symmetric way we can define u(y,z), the prolongation of a well-
started molecule x, by a sequence y, to the left. Note that we do not need to
distinguish the “left prolongation” from the “right prolongation” by denoting
them in different ways: in any case at least one of the terms of the operation
must be a well-started molecule and the result — it is a well-started molecule,
too — entirely depends on the order of the two sequences and on their sticky
ends.

Note that in all cases we also allow the prolongation of “blunt” ends, with
empty overhangs. We always obtain a well-started double stranded molecule
(with the subsequence in WK,(V) not necessarily strictly longer than the
subsequence z, € WK,(V) in z).
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In cases 3 and 6 we do not use annealing (hence the complementarity
relation); when p(z,y) is defined without allowing such cases, to the right
or to the left, we denote it by u'(z,y) and we call this operation restricted
sticking.

The maximal length of an overhang in a sequence z € W,(V) is also called
the delay of z and it is denoted by d(z); it represents the delay in completing
the two strands with symbols in V. (Hence, in cases 1, 2 in Fig. 4.2, the
“right delay” of x and the “left delay” of y should coincide when y is also a
well-started double stranded sequence.)

T Y
ol —— 0l =" ol =5
O] e 0] =4  ®] ="

Figure 4.2: The sticking operation

In the same way that rewriting is the underlying operation for Chomsky
grammars, the sticking operation is the underlying one for sticker systems,
investigated in subsequent sections.

4.2 Sticker Systems; Classifications

We define here the sticker systems in their most general form: when building
molecules, we start from well-started sequences and prolong them in both
directions, using dominoes of arbitrary forms; the prolongation is done by
means of the operation p. We shall see below that systems of particular
forms are equally powerful to general ones — modulo squeezing mechanisms
such as weak codings or deterministic gsm mappings.

A sticker system is a construct
7= (V,p, A, D),

where V is an alphabet, p C V x V is a symmetric relation, A is a finite
subset of LR,(V'), and D is a finite subset of W,(V) x W, (V).

The relation p is the complementarity relation on V', the elements of A
are called azioms. Starting from these axioms and using the pairs (u,v) of
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dominoes in D, we can obtain a set of double stranded sequences in W K ,(V),
hence complete molecules, by using the operation p of sticking.

Formally, for a given sticker system v = (V, p, A, D) and two sequences
z,y € LR,(V), we write

z =y iff y = p(u, u(x,v)), for some (u,v) € D.

Obviously,
w(u, 1z, v)) = p(u(u, ), v),

because the prolongation to the left is independent of the prolongation to the
right.

A sequence £, = 19 = ... = Ty, with 27 € A, is called a computation
in 7. A computation o : 1 =* x) is complete when x, € WK,(V) (no
sticky end — hence blank symbol — is present in the last sequence).

The set of all molecules over V' produced at the end of complete compu-
tations in v is denoted by LM, () (LM stands for “language of molecules”
and the subscript n stands for “non-restricted”: there is no restriction on the
computations except that they are complete):

LMy(v) ={w e WK (V) |z =" w,z € A}.

In what follows we consider the sticker systems as generating languages
of strings. To this aim, we associate with LM,,(-y) the language

L,(v)={weV*| [::)/} € LM, (y) for some w' € V*}.

We say that L,(v) is the language generated by « (at the end of non-
restricted complete computations).

Several types of restricted computations in 7 are of interest.

A complete computation ;7 = 3 = ... = 1z (hence with z; € A
and z € WK,(V)) is said to be:

— primitive, if for no 4,1 <i < k, we have x; € WK,(V) (z is the first
molecule in this computation);

— of delay d, if d(x;) <d, foreach 1 <i<k.

We denote by L,(v) and Lg(7),d > 1, the language of strings generated
by ~v at the end of primitive computations and at the end of computations of
delay at most d, respectively.

As above in the case of Ly, (7y), the languages L,(+), Lq() consist of strings
in the upper strands of molecules generated by -y, but we do not elaborate
on the difference between languages L,{(7) and LM,(y), of molecules, a €
{n,p,d}, because we do not investigate the languages of molecules here. On
the other hand, the relation between L,(7v) and LM,(vy) depends on p: if
we work with an injective mapping p, then LM,(7) is precisely identified by
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Lo(7); if p is arbitrary, but symmetric, then Lo(7y) is a coding of LM,(7y)
and LM,(v) is the image of L,(y) through an inverse coding.
Clearly, we have the following relations:

i) Lp(v) € La(v),
11) Ldl (’Y) c Ld2(7)a if1<d; < dZa
iii) La(y) C Ln(y), for all d > 0.

A sticker system < is said to have a bounded delay if there is d > 1 such
that Lg(y) = La(7).

Several restricted variants of sticker systems are also of interest. A system
v=(V,p, A, D) is said to be:

— one-sided, if for each pair (u,v) € D we have either v = X or v =},

— regular, if for each pair (u,v) € D we have u = A,

%

— simple, if all pairs (u,v) € D have either u,v € (‘; ), oru,v € (5\* )

In one-sided systems, the prolongation to the left is independent of the
prolongation to the right; in regular systems we only prolong the sequences
to the right (hence the axioms must be of the form z;z9, with z; € WK ,(V)

v* A L . .
and x3 € ( A ) U (V*))' In a computation in a simple sticker system we
add symbols only to one of the two strands.

We denote by ASL(a) the family of languages of the form L,(¥),a €
{n,p}, for v a sticker system of an arbitrary form (SL stands for “sticker
language” and A indicates the use of sticker systems of “arbitrary forms”);
the family of languages generated by sticker systems of bounded delay is
denoted by ASL(b). When only sticker systems which are one-sided, regular,
simple, simple and one-sided, or simple and regular are used, we replace A in
front of SL(a) by O, R, S, SO, SR, respectively. We stress the fact that these
families contain string languages, not languages of molecules, hence we can
discuss their relationships with families in the Chomsky hierarchy without
further precautions. This might not be the case with families of languages of
the form LM, (7), because we must take care of the complementarity relation.
As we have mentioned above, for an injective p, the language LM,(y) is
isomorphic with L, (7), but if p is not injective then we have to pay attention
to the coding relating LM, () and Lq (7).

From the definitions, we obtain:

Lemma 4.1. For each a € {n,p,b} we have the relations in the diagram
in Fig. 4.3, where the arrows indicate inclusions which are not necessarily
proper.
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Lemma 4.2. For each X € {A,O,R,S,S0,SR} we have XSL(b) C

XSL(n).
ASL(a

SSL(a) OSL(a
SOSL(a RSL(a
SRSL(a

Figure 4.3: Relationships between families of languages
generated by sticker systems (preliminary results)

Because we do not have erasing operations, we obtain in a straightforward
way the following result.

Lemma 4.3. XSL(a) CCS, for all X and a as above.

Before starting to investigate the size of the families X SL(a), let us ex-
amine two examples; consider first the simple sticker system

"= (V,p,A,D),

V = {a,b,c},

p = {(a,a),(b,b),{c,0)},
(D

- 2)- () Q) ) (- ()- Q)

We have
win =) ][

but, because of the form of the pairs in D, the generated sequences can be

aj 6] . bl re1,.
only of the form z [a] [b} , with « € {[b] , [c]} ; moreover, z should
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. c
contain exactly m occurrences of and exactly m occurrences of [ ]
c

b
b
Consequently, L,(v1) is not context-free:

e M N H I R R TH R

L,(m)Nctbtabt = {™b™ab™ | m > 1}.

Working first in the upper strand, that is using the pairs ((i) ) (i))a

A
((i) , ()\)), and after that on the lower strand, we can produce every

sequence in LMy(v:) using only primitive computations, hence L,(v,) =

Ln{m)-
This is not the case with the bounded delay restriction. Specifically,

sequences of the form [Z] " [ﬂ [Z] [Z] cannot be produced with a delay

smaller than m, because we cannot use ((2) , <2)) before having used

(()\> , ()\)) m times, and this means that we have already produced a

b A
sequence of the form
A [b Tray (b9
() o) 1 (5):
for p + g = m; that is, the delay is at least 7.
We obtain Lg(y1) C Lp(71), for all d > 1. All these languages Lq(y1) are
linear. We do not prove this assertion for ; above, but give a general result

of this type in the next section.
Consider one more sticker system (this time not a simple one):

Y2 = (V:paA7D)a
V =UuUUU’, for some alphabet U,
o = {(a,a),(@,a),(d’,d') | a € U},

/

A= {[Z?}}, for some fixed ag € U,

0
a a A a
p=4((3). 12D ((3) [epracon
/
We start from [Z?] for the fixed ap € U and we build a molecule by
0

adding columns [a] , [;] to the right hand side of it and, simultaneously
_la

a a
with [ ] and [_], respectively, we add symbols @’ in the upper strand and
a a
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ag
!

o ] . This means that, modulo
0

symbols a’ in the lower strand to the left of [

! al
the primes and the bars, the sequence of columns [a ,] to the left of [ ?}
a Q,

0

. . a . a
is identical to the reversed sequence of columns [ ] to the right of ? ,
a a,

0
/

] to the left of [ZO] is identical to the reversed

/

/

a
and the same sequence | |
a 0

— !
sequence of columns [ﬂ to the right of [a?]. Consequently,
ate) = (| 5] [ 2] [“] 12 € U, miw) € 2w 2)
n(72) =], o | Lw x ,mi(w) € z Wl T},

L, () ={2'ajw | z € U*,mi(w) € z Wl 7},
where 2, Z are the primed and the barred versions of x € U*, respectively.
Therefore, the twin-shuffle language over U is obtained to the right of

/

!
[ao] , on both strands, together with the copy of the shuffled strings which
1]

o ag
is present in a primed version in both strands to the left of [ ?] . (Because
9
mi{U*) = U*, the mirror image operation can be ignored.)
Using Theorem 3.17, we get in this way a representation of recursively
enumerable languages as gsm images of languages in the family ASL(n). In

Sect. 4.4 we shall give a stronger variant of this result.

4.3 The Generative Capacity of Sticker Sys-
tems

In this section we are looking for the relationships between the families
XSL{a), X € {A,0,R,S,S0O, SR}, a € {n,p,b}, and for their relationships
with families in the Chomsky hierarchy.

We start with some estimations from above.

Theorem 4.1. OSL(n) C REG.

Proof. Consider a one-sided sticker system v = (V, p, A, D). Let us denote
by d the length of the longest sticky end or of the longest single stranded
sequence appearing in A or in the pairs of D.

We construct the context-free grammar

G=(N,T,S,P),

¥ =4 G (D (S tueviosiu<ay
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U {s},

r=ly),

and P contains the following rules:

o ]G () 2] () e

U2 T2 (] U2 i) Vg

Ul (%) A Vv It

(u2) ) (vz) € (V*) U ( A\ ) and [Iz] e WK,(V).
U u) wy Uy u) A v+

. h
) N (i ] e () G 2 (02) o (),

Zl € WK,(V), and there is a pair in D of the form
2

Co 1) G ()< (50 (02)

T w
and 1] € WK,(V), such that [Ilyﬂh =
| L2 ToYaU2 Wa
(We prolong the sequence to the left, using the pairs with an empty

right hand member, in accordance with the sticky end; we remember

which is the sticky end by means of the nonterminal (( ul))l; the
Uz

w1

subscript ! stands for “left”. Note that [
wa

)
() Ll G v (2)-G) () 0 (),

Y ¢ WK,(V), and there is a pair in D of the form

() GO G (2) ()0 ()

and [yl] € WK,(V), such that R
Y2

] above can be equal to

U2T2Y2 wa |
(The same idea as above, but prolonging the sequence to the right.)

(3=

A
(When no sticky end is present, we can finish the derivation.)
It is easy to see that L(G) = LM,,(v) = LMy(7y): because we only use one-
sided pairs in order to build sequences, the operation of prolonging sequences
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to the left is independent of the operation of prolonging sequences to the right

z
and conversely; consequently, we can always use that pair ( ! , ( )\)) or
22

A 2
means that the overhanging ends are not longer than those already existing
in A or in D. Thus, the nonterminals in N can control the process in the
same way as the sticky ends do this.

In the grammar G there is no derivation of the form X =* uXwv with
both » and v being non-empty strings. Consequently ([77], Exercise 9, page
55), the language L(G) is regular. Because L(G) = LM, () and L,(v) is a
coding of LM, (), we also have L,(v) € REG. a

Corollary 4.1. OSL(p) C REG.

Proof. If in the proof above we replace d in the definition of N by 2d
(hence the nonterminals remember sticky ends of length at most twice the
longest sticky end in A or in D) and in rules of types 2 and 3 we take

((/\> ) (zl )) from D which sticks to the existing overhanging ends, which

the left hand nonterminal ((Zl>)l, ((Zl>)T with ujus # A, then we get
2 2

a grammar G’ such that L(G') = LMp(y). Indeed, when a blunt end is
obtained, the grammar G’ cannot continue to prolong the sequence in that
direction, hence L(G’) € LMy (). Conversely, each primitive computation in
~ can be simulated by G’, including those derivations where the overhanging
strand is prolonged first in order to prevent a blunt end which could lead to
a complete computation. O

From the first example at the end of the previous section we obtain the
following result.
Theorem 4.2. The families SSL(n), SSL(p) contain non-context-free lan-
guages.

Corollary 4.2. The inclusions SOSL(e) C SSL(«), « € {n,p}, are proper.

In the case of two-sided sticker systems, even simple, the bounded delay
property cannot be forced, as in the proof of Theorem 4.1. More precisely,
the following result holds.

Theorem 4.3. ASL(b) C LIN.

Proof. Consider a sticker system v = (V,p, A, D) of unrestricted form
and let d be an integer such that Lg(v) = L,(v). We construct the linear

grammar
G =(N,T, S, P),

N = {<(Z;) , (’v’;)> | (Z;) , (Z;) € (VA) Ny (VA) ’

where
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lurl, uzl; v1, Joo| < d} U{S},

and P contains the following rules:

1.§— | { “ vt ) 1 for
’ Wao Uo ’ V2 29 ’
un 21 Uy U1

WK N

l:w2 ’ I:Z2:| € p(V)’ <(u2> ) (’02)> € I

w (] (1) () [ <2

w2 U2 U2 22
(The computations in «y are simulated in G in a reversed order, starting

from the last used pair in D and progressing towards the “center” of
the sequence, where an axiom in A will be used.)

2 () (o= [ (G G 2] o

w1y 21 U1 U1 ull vll
e WK,(V), , , , N,

_wz] ’ L’z] oY) <<U2) (vz)> <<u’2> (vé ) €

/ ! ! !
and ((‘”1> [‘”}] (“}) , (”}) [yl] (y})) € D such that
) T2/ LTo] \U2 Va/) LY2] \V2
u1m1$/1 — w ylyivl _ Z1 :
_szzwlg w2 ’ y2y’2v2 22 )

(We proceed towards to the “center” of the sequence, adjoining blocks
to the left and to the right, as provided by the pairs in D and controlled
by the nonterminals in N. The control provided by the nonterminals
suffices for correct simulations of the computations in ~ by derivations
in G, because of the bounded delay property.)

s () G = [ [ 2]

o [ o 2] )

wo ’ T2 z9 A
/ ’
U1 (%1 . w x1 z
( , ) € N, and thereis { ; 1lea
U9 v Wy xTg 29

! / )\ V*
such that (w}>’(z}>e( )U( >
w) Zy Vv A
i o] = ot ] = ]
Wy U2 Wy 29 29U2
(When an axiom in A has sticky ends which fit both the left and the

right sticky ends memorized by the element of N currently present in
the sentential form, the derivation can be terminated.)

15— [WI],for [“’] cA
Wy Wo
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From the previous explanations, it is easy to see that L(G) = LMy(7).
Since Lq(7) is a coding of LM,(y), we obtain Lq(y) € LIN. a

Corollary 4.3. For every sticker system vy and integer d we have Lq4(7y) €
LIN. ‘

Proof. This is a direct consequence of the previous proof. ]

Surprisingly enough, because the sticker systems use no auxiliary symbols,
the inclusions reverse to those in Theorems 4.1, 4.3 also hold true, even in
stronger forms. We give first the proof for the regular case, because it is
easier and it provides a good background for proving the result for the linear
case.

FL__! d

Figure 4.4: Dominoes used in the proof of Theorem 4.4

Theorem 4.4. REG C RSL(b)N RSL(p).

Proof. Consider a finite automaton M = (K, V, s, F,d) with K = {so, s1,
..., 8k}, k > 0. We construct the regular sticker system

v =(V,p,A,D),
with
p = {(a,a)|aeV},
A= {["] 12 c L) lal <h+2)
OA[E] () Houl = b+ 2,10l > 1Jul =, for

1 <4 < k41 such that spzu =" zus;_1},

A A 127 /u
v {((/\>’(U)[x](/\))|1—|”|—k+17|ml k42,2 > 1,
|u| =4, for 1 <i < k+ 1, such that s;zu =" zus,_1,

and j = |v| — 1}
u{((’\) (A> [x])|1<|v|<k+1 1< |z| <k, and
AN \v) Lz -7 o
sjx =>" zsg,sy € F, where j = |v| — 1}.

The idea is to start with a domino of the form shown in Fig. 4.4a, to
iteratively use dominoes of the form shown in Fig. 4.4b, and to end the
computation with a domino of the form shown in Fig. 4.4c.
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The overhangs codify the states of M by their lengths. The axioms in
A which are not already in WK,(V') and the dominoes of the form in Fig.
4.4b appearing in the right hand member of pairs in D have overhangs of
lengths 4,1 < i < k + 1, which identify the state s;—; by the length ¢. This
state is reached by M when receiving the string in the upper strand of the
well-started molecule which is obtained using the domino. All dominoes of
the forms in Fig. 4.4b and Fig. 4.4c have a non-empty left overhang, hence
a molecule in WK,(V) cannot be prolonged. Thus, after using a domino
of type ¢), the computation must stop. Since the system ~ has a delay at
most k+ 1, we have Ly, (7y) = Lp(7y) = Lg41(7y) = L(M), which completes the
proof. O

Corollary 4.4. RSL(a) = OSL(a) = REG, o € {n,p,b}.

Proof. From Theorem 4.1 we have OSL(n) C REG. Corollary 4.1 gives
the inclusion OSL(p) C REG. From Lemma 4.2 we also have OSL(b) C
0OSL(n) C REG. The inclusions RSL(a) C OSL(a),a € {n,p,b}, are
pointed out in Lemma 4.1. The previous theorem proves the inclusions
REG C RSL(b), REG C RSL(p). With RSL(b) C RSL(n) (Lemma 4.2),
we also get REG C RSL(n). O

Theorem 4.5. LIN C ASL(b) N ASL(p).

Proof. Consider a linear grammar G = (N, T, S, P). There is an equiva-
lent grammar G’ = (N’, T, S, P’) with P’ containing only rules of the forms
X—-aY, X —-Ya, X —a,for X, YeE N ,acT.

Assume that N = {X3,X5,..., Xk} k > 1. We construct the sticker
system

¥= (TapaA7D)a

where
p={(a,a)|acT},
A={[]] Iz e L(@)lal <3k +1}
u\ [x
< > — <i<
U{(A)[z]||uz|—3k+1’|x|_17|’u| i, for1 <i<k
such that X; =" uz}
x u
U{[x] (/\)Ilwu|_3k+ Szl > 1, ju) =4, for 1<i<k

such that X; =" zu},

and D contains the following groups of domino pairs:

A Lzl \v
0<|z| <k, and X)u| =* uz X |y 2,

1) ((“) [”] <A> , [i]) for 1< |u| < k,1< |v| <k, [uz| =k +1,
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2) (7] (A) PTG, for 1<l k1< lul <k 1<lal <k,

zl\v z
|zu| =k + 1, and X|,| =" £X, 2y,

3) ([i] (2) , [j]), for 1 < |v| < k,|z| > 1,|z2] < 2k + 1,

|z| >0, and § =" =Xy,

5) ([Z](A) (2] (4)), for 1< ol < k,1 < Jul < b Jaul = k41,

z v zl \AX
0 < |z| <k, and X, =" 2X}y|2U0,

5 () () ED orismiska<ilshi<ie <k

ALz v
uz| =k +1, and X, =" uzX,z,
|ul |v|

6) ([i](i) [i]) for 1< u] < k|| > 1,|z2| < 2k +1,

|z| >0, and § =" 2X 2.

The thought behind this construction is as follows. We intend to simulate
the derivations in G’, backwards, by computations in v which introduce first
a block in the center of the string and continue by adding blocks at the two
ends of the string. The nonterminals in N’ are again identified by the length
of overhanging ends, at the left hand or at the right hand of the currently
produced sequence; the other end of the sequence is blunt. Using domino
pairs from group 1 we continue to update the information about the current
nonterminal in the left hand of the sequence; group 2 changes the sticky end
in the right hand end of the sequence, completing a blunt end in the left hand.
With pairs of dominoes of type 3 we complete a molecule. Symmetrically,
groups 4, 5, 6 of domino pairs continue to encode the current nonterminal
in the length of the right hand sticky end, move this information to the left
hand end, and finish the computation, respectively. A sequence with both
ends being blunt (a molecule) cannot be continued, because all pairs in D
have a non-empty sticky end towards the “inside” of its domino pair.

Thus, it is clear that all complete computations in 7 correspond to deriva-
tions in G’. Conversely, every derivation in G can be simulated by a complete
computation in ~y.

Indeed, consider a derivation § : § =* w in G. If |w| < 3k + 1, then

[Z} € A. Assume that |w| > 3k+1. Because all rules in P’ introduce exactly

one terminal symbol each, we can decompose the derivation § as follows:

S =* ulXilvl = UlUQXi2v2U1 =" ... =" Uy ... urXirvr -

=% Uy ... UpYUp... V1,

with
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(1) |uj;| =k+1and 0 < |v;| <k, or
0 < |uj| <kand |vj|=k+1, for each j =1,2,...,r,

(2) k+1< |yl <3k +1,
3) r>1.

Then, for each (u;,v;) with |u;| = k + 1, we can find a pair of dominoes
of type 1 or 5, encoding X;;_, in a left sticky end of length 4;_;, and for
each (u;,v;) with |v;| = k + 1 we can find a pair of dominoes of type 2 or 4,
encoding X;,_, in a right sticky end of length i;_;. Clearly, for y we can find
an axiom encoding X, in one of its ends and similarly for {u;,v,) we can find
a pair of type 3 or 6, producing blunt ends in both directions. Consequently,
we also have L(G) C L,(%).

Obviously, L, () = L,(v) and the delay of v is at most k, hence L, (y) =

Ly(7), completing the proof. |
Corollary 4.5. LIN = ASL(b).
Proof. Combine Theorems 4.3 and 4.5. O

In the proof of Theorem 4.1 we have pointed out that if v = (V, p, A, D) is
a one-sided sticker system, then L, (v) = Lg(v) for some integer d depending
on A and D (the length of the longest sticky end in A or in the dominoes
of D). This is obviously true also for simple and for simple regular systems,
and so we obtain the following result.

Theorem 4.6. SOSL(n) = SOSL(b), SRSL(n) = SRSL(b).

Proof. The inclusions C were discussed above, the reverse inclusions are
mentioned in Lemma, 4.2. O

Summarizing the previous results for families XSL(b), XSL(n), we get
the diagram in Fig. 4.5; as usual, the arrows indicate inclusions, not neces-
sarily proper.

Theorem 4.7. REG — SOSL(a) # 0, o € {n,b}.
Proof. Consider the regular language

L =ba"*b,

and assume that L = L,(v) for some simple one-sided sticker system v =
(V,p, A, D). Because A is a finite set (of well-started molecules) and L is an
infinite language, there are two pairs in D of one of the following forms

(1) ((i) , <;2)) and (G) , (yj)) with v, € V¥, € a*,

2) ((i) (%)) and ((i) , (12)) with y; € a*,55 € V™,
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3) ((22) , (;)) and ((“;1) , (;)) with 25 € V*, 7} € a*,

(4) ((z;) , (i)) and ((2)), (i)) with 71 € a*,z) € V¥,

that are used arbitrarily many times in the generation of strings in L of
arbitrarily large length.

cs

|

SS /m S

ASL(b

L(n LIN
\ / OSL(b RSL( ) =
SSL(b OSL(n R.S’L

SOSL(b) = SOSL(n)

= REG

SRSL(b) = SRSL(n)

Figure 4.5: Relationships between families of
languages generated by sticker systems

All the four cases can be treated in the same way. Assume that we have

A A A y , )
the first case, hence ( 2 \y )€ D, ( IVAAGY ) € D. Clearly, y; = o’
2

for some i > 1 and y2 is composed of symbols ¢ such that (a,c) € p.
Assume that |yz2| = j,7 > 1. A complete computation

E] ) =)
o () ] G en () (2) < (5o ma 2] [22]
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€ WK,(V),w1 = ba™b, can be continued as follows:

@I~ []
T2 Y2 22 Ws w2lYs
This is a complete computation, producing the string w; y{j = ba"ba, which

is not in L, a contradiction. O

Corollary 4.6. The inclusion SOSL(n) C OSL(n) is proper.

4.4 Representations of Regular and Linear
Languages

We have the strict inclusion SOSL(n) C REG and we expect a similar
result in what concerns the inclusion SSL(b) C LIN, so it is of interest
to supplement the sticker systems with a squeezing mechanism and to try
to obtain representations of regular and of linear languages starting from
languages in families SOSL(n), SSL(b), respectively. This is possible, even
using weak squeezing mechanisms, like codings and weak codings.

Theorem 4.8. FEach regular language is the coding of a language in the
family SRSL(a), for each a € {n,b,p}.

Proof. Consider a regular grammar G = (N, T, S, P) and construct the
sticker system
= (V’ p7 A’ D)7

with

V={X,ai| X€N,aeT,i=12}
p={ Xah,[Xa]) (IX,al2,[X,a)2) | X € N,a € T},

| S — aX € P, and either
[[S a1 } ([X b]2)
X—>bYeP orX —bePabeT,X,Y €N}

[[Sa] ] |S—a€PacT}

( ) <[X aly [Yb]2> )| X — aY € P and either Y — bY' € P,
orY »beP, fora,beTand X,Y,Y’ € N}

( ) (Xah) )| X 2ac€P,XeNaeT}

U {(<,\> : ([X,a]::\Y,bh)) | X — aY € P and either Y — bY”,
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orY ->beP, fora,bcT and X,Y,Y' € N}

U {((:\\) , ([X’;]Z))|X—>aeP,XeN,aeT}.

Each derivation in G of the form
S = a1 X1 = @102 X3 = ... => 0102 ... X} => 0102 ... Qp0k+1,

k > 1, corresponds to a computation in -y of the form
[5,01]1] ( A ) [[5,01]1[)(1,&2]2] ([Xz,a:ah)
[[5’ ai]1| \[X1,a2]2 S, a1]1[X1, a2]2 A

iy 02 A
with alternating sticky ends <[X21,a21+1]1> and ( > When
A [X2i—1,a2i]2

k is even, we can finish by using the block ( and when k is
[Xk, ak+1]1
[ Xk, 1]z
A

in dominoes of D start with symbols of the form [X,a];, all upper blocks
start with symbols of the form [X,a]s. Therefore, a complete computation
cannot be continued (because of the relation p). It is now clear that L, (y) =
L,(7) = Li(7) and that by the coding h defined by

odd we can finish by using the block . All the lower blocks

h[X,a)i}=a, for X € NjacT,i=1,2,

we obtain L(G) = h(L.(7)). O

For a family of languages FL, let us denote by Cod(FL) the family of
languages of the form h(L), for L € FL and h a coding.

Corollary 4.7. Cod(SOSL(a)) = Cod(SRSL(a)) = REG, o € {n,b, p}.

Proof. All families SOSL{(a), SRSL(a),a € {n,b,p}, are included in
REG (Theorem 4.1, Corollary 4.1) and REG is closed under (arbitrary)
morphisms. Therefore, Cod(SOSL{a)) and Cod(SRSL(c)) are also included
in REG. The previous theorem proves the reverse inclusions. ]

Theorem 4.9. Each linear language is the weak coding of a language in the
family SSL(b).

Proof. Consider a linear grammar G = (N,T, S, P). Without loss of
generality, we may assume that all rules in P are of the forms X — aY,
X —>Ya,X »a,acT X, Y € N. Take a new symbol, ¢ ¢ T, and modify
the rules above to X — aY¢, X — ¢Ya, X — cac. Thus, we may assume that
for each linear language L C T* there is a symbol ¢ ¢ T and a linear grammar
G’ with rules of the forms mentioned above such that L = g(L(G")), for g the
weak coding erasing the symbol ¢ and leaving the symbols in 7" unchanged.
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Suppose that already G = (N, T U {c}, S, P) is such a grammar, for a
given language L € LIN.
We construct the simple sticker system

v=(V,p,A,D),
with

V={X,a; | X € Nae TU{c},i=1,2,3},

p={([X,a];,[X,al;) | X € Nyae TU{c},i=1,2, 3},

A=t () [ () 1 v e px e
al,ag,a3€TU{c}}

and D contains the following pairs of dominoes:

b (([K azh?X, al]l) ’ ([X, a3]1)\[Ya 04]2))’ forY = mXas € P

ai,az2,a3,a4 € TU{c}, X,Y € N, and there is a rule X — a;X'a3 or
X — ajasaz in P, X' € N,as € TU{c},

2) (<[Y7 a2]1)[\X,a1]2> 7 ([Xya:a]i\[ya%]l))’ for Y — apXay € P,

ai,a,a3,a4 € TU{c},X,Y € N, and there is a rule X — a; X'as or
X — ajasaz in P, X’ € N,as € T U{c},

A A
3 (([5701]1) ’ ([5702]1))’ for § — a1Xay € P,X € N,a1,a2 €T U{c},

4) (([S,;\Ll]?) R ([57;\12]2)), for S —» a1 Xaq € P, X € N,aj,as € TU{C}

We simulate the derivations in G from their end to the beginning, starting
to grow the string from the center. The pairs of dominoes in group 1 add
lower level blocks, all of them having symbols [X, a]; toward the sequence to
which these pairs are adjoined, the pairs of type 2 add upper level blocks, all
of them having symbols [X, a]s toward the sequence to which these pairs are
adjoined. Thus, the obtained molecule will consist of a column of the form
[ [X ) a]3

[X ’ a]3
right, columns of the form [[X’ a]l] and [[X’ ah} . This alternation ensures
[X,a] [X, a2
the fact that all computations in v correspond to correct derivations in G.
The computations can lead to complete molecules by using pairs of types 3
or 4, depending on the parity of the step at which we want to stop. This
corresponds to using an S-rule in P, hence to a correctly started derivation

} in the center, and then, alternating both to the left and to the
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in G. Conversely, due to the form of the rules in P, all derivations in G can
be simulated by complete computations in ~.

Clearly, the delay of v is 1 and no complete computation can be continued,
hence Ln(y) = L1(7) = Lp(7).

By the weak coding h defined by

h([X,a];) =a, for X e NyaeT,i=1,2,3,
h([X,c)) = A, for X € N,i=1,2,3,

we clearly obtain h(L, (7)) = L, which completes the proof. O

For a family of languages F'L, let us denote by CodW (F L) the family of
languages of the form A(L), for L € FL and h a weak coding.

Corollary 4.8. CodW(SSL(b)) = LIN.

Proof. The inclusion SSL(b) C LIN follows from Theorem 4.3; the family
LIN is closed under arbitrary morphisms, hence CodW (SSL(b)) C LIN.
The reverse inclusion is proved in the previous theorem. O

4.5 Characterizations of Recursively Enumer-
able Languages

From the point of view of DNA computing, of more interest is the possibility
of representing (hence characterizing) the recursively enumerable languages
by means of sticker languages. We have already presented such a possibility
at the end of Sect. 4.2, when we have discussed an example of a sticker
system (denoted there by 72) such that

h(Ln(v2)) = TSv,

for a weak coding h. Combining this with Theorem 3.17 (the weak coding
can be simulated by a gsm), we obtain the following representation result.

Theorem 4.10. FEvery language L € RE can be written in the form L =
g(L"), for L' € ASL(n) and g a deterministic gsm mapping.

In view of the results in Sect. 4.3, such a representation cannot be ob-
tained for L’ in any other family than ASL(n), ASL(p),SSL(n),SSL(p),
because all other families contain only linear languages (see again the di-
agram in Figure 4.5), and the family LIN is closed under arbitrary gsm
mappings. However, SSL(n) — and even SSL(p) — can be used to obtain a
representation of recursively enumerable languages, thus strengthening the
result in Theorem 4.10.

Theorem 4.11. FEvery language L € RE can be written in the form L =
h(L’), where h is a weak coding and L' € SSL(n) N SSL(p).
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Proof. Consider alanguage L C T*, L € RE. According to Theorem 3.16,
there exist two A-free morphisms ki, hy @ Vi* — Vi, a regular language
R C V3 and a projection prr : V5 — T™* for T C V5, such that L =
prr(hi(EQ(h1, he)) N R).

Consider a deterministic finite automaton M = (K, V4, so, F, d) recogniz-
ing the language R.

We construct the simple sticker system

v=(V,p,A,D),
with

V=VWUV,UKU{$,E E, C, Z},
p={(X,X)| X eV}

_ 8o $ Z
a= (s G
and D contains the following pairs of dominoes:

1. For every a € Vi such that hi(a) = b1...bg,k > 1, and hg(a) =

€1...Cpm,m > 1, with by,...,bg,¢1,...,cm € Vo, and for si; € K,0 <
j < m, such that 6(s;;,c;) = s4,,,,0 < j < m, we introduce in D the
pair

( Simémsim-l . sizégsilsilélsio) b10ZbQCZ RN CZbkCZ )
( ) ’ A -

(To the left of [2

a € V4, and at the same time we guess a valid path through M over
ha(a): si,c1ca...¢m =* 8;,,. To the right we produce the image of
a through h;, with the symbols of hy{a) separated by the auxiliary
symbols CZ.)

2. ((E:\Sf> , (f)) for s; € F.

(The recognition of the string in the upper strand of the left part of the
sequence by means of M is finished correctly.)

3. ((;\S> , (2)), for all s € Q.

(These rules check the correct continuation of the recognition path
through M: if s;x =* xs; is followed by s3y =—* ys4, then we
must have s; = s3, otherwise the complementarity is not observed

when using the block (;) J)

we produce the reversed image of some hs(a), for
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() () v

(The string of symbols b generated to the left of [g

is compared with the string of symbols b generated to the right of

] in the upper strand

$
in the upper strand. Note that the symbols Z are “consumed” together
with the pairs of states, by rules of type 3; now we also “consume” the

symbols C introduced in the upper strand, to the right of [$]

(o) (2))

(Only in this way we can get a complete molecule.)

From the explanations above, one can see that the complete molecules
produced by « are of the form

EISfoEtStSt...528181518080 $ Zh(CZby,CZ ...CZb,CZE
$| | Z0CZbCZ ... CZb,CZE |’

E'SfoétStSt ...C28181C1808¢

for
C1Cy...Ct = hl(w) = hg(’w) = b1b2 e bt,

for some w € Vi, and spcy...c; = ¢1...¢sp in M for sy € F, hence
h1 (U)) € R.

No complete computation can be continued, because the upper strands
of dominoes (in groups 1 and 2) have one state only in the left end of the
left domino, whereas the lower strands of dominoes (in groups 3, 4, 5) have
either two states or a symbol b, b € T, or the symbol E’ in that position.
Therefore, Ly, (y) = L,(7).

Consider now the weak coding (in fact, a projection) A defined by

hia) =a, fora e T,
h(@)= A, foraeT,
h(s) =\, for s € Q,
h(E) = KE') = h{8$) = h(C) = HZ) = A

Clearly, we get L = h(L,(7)), which completes the proof. O

The construction above has a rather interesting consequence for classic
formal language theory: a strenghtening of the representation of recursively
enumerable languages in Corollary 3.3:

Corollary 4.9. Every recursively enumerable language is the projection of
the intersection of two minimal linear languages.
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Proof. With the notations in the previous proof, we construct two minimal
linear grammars

Gi = ({S}aVaS,Pz), i = 1,2,
with

P, = {S — 8i,,CmSi,,Si,, - - - $iC25i; 51, €154, S01CZboC .. . Zb,, CZ |
for by ...bx = hi(a),c1 ...cm = ha(a) for some m > 1,
a € Vi, and 6(si;,¢;) = 84,,,,0 < j <m—1, with
bi,...,bg,C1y. .. Cm € Vo}
U {S — E's;SE | s; € F}
U {S — 587},
P, ={S—ss57|s€Q}
U {S — bSbC | b € Va}
U {S— E'SE, S— $}.

It is easy to see that G; generates the strings in the upper strand of
sequences which can be produced by v using only the pairs from groups 1
and 3, plus the central substring s0$Z, whereas G2 generates the strings
in the lower strand of sequences produced by « using only the pairs from
groups 3, 4, 5, plus the central substring $. By the intersection we check
the complementarity relation p (which is the identity). Therefore, L(G1) N
L(G3) = L, (), which completes the proof. a

4.6 More About Regular Sticker Systems

The regular sticker systems generate only regular languages, hence they can-
not characterize RE by using AFL operations as squeezing mechanisms. On
the other hand, mainly in the simple variant, such devices are attractive from
a mathematical and a biochemical point of view. For instance, the use of cou-
ples of dominoes, essentially involved in the proof of Theorem 4.11, is not
a very realistic assumption from a practical point of view. Using separated
dominoes is much closer to the annealing operation in a test tube; in many
places, “self-assembling” computations were reported or only proposed, which
makes important the question of modifying the definition of simple sticker
systems or of their language in such a way as to obtain characterizations of
recursively enumerable languages for these sticker systems.

We consider here two restrictions on the language generated by a simple
regular sticker system.

As we work here only with right-sided pairs of dominoes, we shall ignore
the left hand member, the empty one. Moreover, we write separately the
“upper dominoes” and the “lower dominoes”. Thus, we write a simple regular
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sticker system in the form

Y= (‘/apaAaDl7Du)7

A v*
where V,p, A are as above, and D; C (V*) , D, C ( \ ), with D; and

D, finite sets. The languages L,(7) are defined as in the previous sections,
a € {n,b,p}.

Consider two labelings of elements in D, D, with elements in a set Lab,
ex : Dn — Lab, 7 € {l,u}. For a complete computation ¢ : £1 => 2 =
... = I in v we define the control words e,(c),n € {l,u}, consisting of
the labels of elements of Dy, D,,, respectively, used in ¢. Formally, we denote

wq

mzx=y) = e"((w2
A, otherwise,

>), if £ = y uses the domino (Zl) € Dy,
2

for m € {l,u}. Then,

er(0) = 8(m,zy => x2)d(m, 22 = x3)...0(m, xk—1 => xk), 7 € {l,u}.
A complete computation ¢ : x; =>* xx, 1 € A, is said to be

— fair, if |e;(0)| = |eu{o)],

— coherent, if e;/(a) = ey (o).

In a fair computation we use equally many upper blocks (elements of D,,)
and lower blocks (elements of D;); in a coherent computation we require that
the sequence of labels associated to the upper blocks used in the computation
is equal to the sequence of labels associated to the lower blocks used in the
computation. Clearly, any coherent computation is also a fair one.

We denote by Ly(7), L:(7y) the languages (of strings in the upper strand
of molecules in LM, ()) generated by v using only fair computations or only
coherent computations, respectively. The obtained families are denoted by
SRSL{f),SRSL(c). When the computations are also primitive, we replace
f and ¢ above with pf, pc, respectively.

The coherence condition leads again to a representation of recursively
enumerable languages.

Theorem 4.12. FEach recursively enumerable language is the weak coding of
a language in the family SRSL(c) or SRSL(pc).

Proof. Consider a language L € RE, L C T*. According to Theorem 3.16,
there are two alphabets Vi, V, with T C Va3, two A-free morphisms hq, ho :
V¥ — V5, and a regular language R C V5 such that L = pro(hi{EQ(h;,
h2)) N R).

Assume that Vi = {bo,b1,...,bp—1},m > 1. Consider a deterministic
finite automaton M = (K, V3, sp, F, ) recognizing the language R; assume
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K = {s0,81,-.-,5m-1}, for some m > 1. We construct the simple sticker
system
v¥= (‘/’ Ps A, DlaDu)a

where
V=VWWUKU{5|seF}
U {[s,j]ls€ K,0<j<m-—1},
p={(X,X)| X € Va}
U {(s,s),([s,5],9), (s, [s, K]}, ([s, 5], [s, k]) | s € K,0 < j, k <m — 1}
U {(5,3)|seF},

A= 2]
A

Dy ={ . |
(8105 Flar 81, S1, 0281, 81, - - - Slp, 1L, 101,51,
ajag...ag =h2(bz),0§z§n—l,0§] S'm—l,
5(31k7ak+1) = Slk+1’0 <h<m-1,0<k< ti}

U {(S;l) |5 € FY,

Du _ {(al[sll,j]slla2812)\812 . atislti Slti ) |

aias...aq Zhl(bl),OSZSTL—l,OS]Sm—l,
5(slk,ak+1) Islk+1,0§ L<m-11<k <ti}

U {(il) | 51 € F}.

We denote by r,(%,7,k), for 0 <i<n—1,0<jk <m — 1, the elements
in D associated as above with ha(b;) and having the state s; paired with the

A
integer k; the sequence (s 5 ) in D; is denoted by 7;(n,0, 7). Similarly, we
J°J
denote by 7,(i,7,k), for 0 <i<n—1,0 < j,k <m — 1, the sequence in D,
associated vyith ha(b;) and having the state s; paired with the integer k; the
sequence (S)f) in D, is denoted by ry(n, j,0).
Clearly, card(D;) = card(D,) = n-m? + card(F). Define the labelings
e : Dy — {1,2,...,card(Dy)}, ey : Dy — {1,2,...,card(Dy)} by
el(ra(i, k) =i-m* +j5-m+k+1,
eu(ru(i, j, k) =i-m® + k-m+j+1.
By the construction above, it is clear that u =* z is a complete compu-

tation in v, u € A, if and only if there is a sequence

81,2181, 42 . . - S1,_ 1 GtS1,,
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such that (1) s;, = sg, s1, € F,ar € Vo, and (s, _,,ax) = s1,,1 < k < ¢, and
(2) there is x € V* such that hy(z) = ha(z) = a1az.. . as.
Define now the weak coding h : WK,(V) — T* by

(X))o [X ixeT,
X177 1A, otherwise,

[s, ] s [s,] :
=h =h =) forse K,0<j,k<m-—1.
w i h=w{ Sy =1 B = orsemo <k <m
We obtain the equality h(L.(7y)) = prr(h1(EQ(h1,h2)) N R).
(S). Consider a string w € h(L.(7)). There is z € WK,(V) such that
w = h(z) and there is a computation in vy of the form ¢ : x =>* 2, z € A,
c4(0) = ¢y (o). By the construction of v, there is a sequence

81,0181, Q2 ... S1,_,; A4Sy,

such that s;, = sg,s,, € F,d(s1,_,,ax) = s1,,1 < k < t. Consequently,
a0z ...a¢ € R. By the definition of D; and D, and the fact that ¢;(0) =
(), it follows that ajas...a; = hi(y) = ha(y) for some y € V;*. Then
a1az...a; € hi(EQ(h1,h2)) N R. Because w = h(z) = prr(aias...a¢), we
obtaln w € prr(h1(EQ(h1, he)) N R).

(2). Let w € prr(hi(EQ(h1, h2)) N R). There exist z = b; b;,...b;, €
EQ(hl,hz) and y = hy(z) = ha(z) such that y € R and w = prT(y). Let
Yy = a1Qz...a,0; € Vo,1 <4 t. There is a sequence 85198430+ Sheps
of states in K such that s;, S0, 8,4, € F, and 0(sj,,ax) = sj,,,
1 € k < t. Note that hy( hi(b;,) .. hl(bs) = ajaz...a;. Let
hi(bi,) = ag, ---ag;-1,1 < k < s, and hi(b;,) = ag,...a;. Similarly,
let ha(by,) = ap, ...ap,,,-1,1 < k < s, and hy(b;,) = ap, ...a;. Then there
is a computation ¢ using the following blocks from D;:

<
7) =

Tl(ilajp1an1+1)7 .. -1Tl(isajpuqu-l-l)”rl(naoa it),

and the following blocks from D,,:

Tu(ilajq1+17jp1)a . "Tu(isvqu+17jp5)7Tu(nyiho)'

Denote by z the result of this computation. By the definition of A we have
w = h(z). It is also easy to see that e;(0) = e,(c), hence w € h{L.(7)).

A complete computation in v cannot be continued: there is no pair of
blocks in Dy, D, starting with two symbols which are complementary in the
sense of the relation p. Therefore, L.(y) = Lpc(7), which completes the
proof. m]

In the case of fair computations we obtain non-regular languages, but not
a characterization of recursively enumerable languages.

By a slight modification of the construction in the proof of Theorem 4.8.
we get the following result.
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Corollary 4.10. Each regular language is the coding of a language in the
family SRSL(f).

Proof. For a regular grammar G = (N, T, S, P) we construct the simple

regular sticker system
V= (Vv’ P, Aa Dl7 Du);

with V and p as in the proof of Theorem 4.8, D; containing the domi-

A A A
noes (y) for (( /\) , (y)) € D and D, containing the dominoes (i)

for ((i) , (Z)/\)) € D, for D as in the proof of Theorem 4.8, and with

o '[S,a]l A —a -
A_{_[S,a]l}([X,bh)lS XePX—bYeP,

X, Y € N,a,beT}
U { [S7a]1[Xab]2:| ( A ) |S—>aX€P7X_’bY€P’

L[S’a]l[X’b]Q [Y,Ch
Y >¢ZePX,Y,Z < N,a,bceT}
-[Saa]l]
U S—a€PacT
{L[Sya]l I }
'[S,a]l[X,b]g}
U S —-aXeP,X—-beP,XeNabeT
s, ahxbla) | J

U { -[S7 a’]l[va]z[Yv c]l
L[S, a]1[X, b]2[Y; ¢l
Y —>ceP X, YEN,abceT}.

]IS—»aXGP,X—»bYGP,

It is easy to see that each string in L(G) has a fair computation in v: we
can choose that axiom in A which ensures the use of an element of D; in the
last step, hence the number of blocks added in the upper strand is equal to
the number of the blocks added in the lower strand. With the same coding
h as in the proof of Theorem 4.8, we obtain L(G) = h(Ls(7))- i

On the other hand, by imposing the fairness condition we can generate
non-regular languages.

Theorem 4.13. SRSL(f) — REG # 0.

Proof. Let us consider the sticker system
v = ({a,b},{(a,a), (b,b)}, A, Dy, D),
al /a
A=Al Q)

i) (3
oomi(3). (O
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A
There is only one axiom. If we use the domino ( ), then we obtain a
a

complete computation which is not fair. We can continue with any element
of D; and D,. Due to the complementarity restriction, if a symbol b is

A b
introduced, then we have to continue by using dominoes (bb)’ ( )\), until

obtaining again a complete computation.

Let us intersect the language Ly(v) with the regular language a™b*. We
obtain a language consisting of strings of the form a?"*2b™, with n > 0,
m > 1, produced by computations where:

— the first element of D; is used 2n + 1 times,

m
the second element of D; is used ) times,

the first element of D, is used n times,

the second element of D, is used m times.

!

Because % is an integer, we must have m = 2k, k > 1. Using the fairness,
we obtain
2n+ 1+ k =n+ 2k,

which implies
n==k—1.
The language
Li(y)natdt = {a®*0?* |k > 1}
is not regular, hence Ly(y) is not regular either. O

Theorem 4.14. SRSL(f) C MAT>.
Proof. Consider a sticker system v = (V, p, A4, Dy, D,,). Define

V' ={d |aeV},
L(A) = {[a1,b]]...[ak, b})aks1 - .- Qksr | B> 1,7 >0,
a...ag Ak+1 ++ - Qg4 .
A a;,b;
[bl---bk]( A\ )E ,ai,b; € V for all i}
U {la1,b] ... [ak, b5]bksy - - - Dryr | K> 1,7 >0,

aj ...ag A .
€ A,a;,b; € V for all i},
[bl...ka(bk+1...bk+r> }

A
L(Dl)z{b’l...b“kzl,(b b)eDl,biev,lgigk},
1...0k

a;...q

LDy = {ar . [ k21, (")

k)eDu,aieV,lgigk}.
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Consider the new symbols s, d,d’ and construct the languages

Ly ={zd' |z € L(D))}*,

Ly = {zd |z € L(D,)}",

Ly =1L i ct,

Ly =Ly Wi ct,

Ly = (LAY, W L) N {{a,¥] | a,b e VI*(VV' U {cd , dc})*.
Clearly, L1, Lo are regular languages, hence also Lj is regular: the family

REQG is closed under the shuffle operation and under intersection.
Consider the gsm g which:

— leaves unchanged the symbols [a,b'],a,b € V,
— replaces each pair ab’ by [a,b],a,b €V,
— replaces each pair ¢d’ by [c,d'] and each pair de by [d, c].
The language g(L3) is also regular, over the alphabet
U={[a,bt]|abeV}U{cd]dc}

Let G = (N, U, S, P) be aregular grammar for g(L3) and construct the matrix
grammar

G' = (N,V,8' M),

where

N = NuUU{S'},

M = {(8" = 8)u{(r)|reP}
U {([a,b'] — a) | a,be V}
U {([e,d] = A [d,c] = N}

It is easy to see that L(G') contains all the strings w € V* such that

(u1) [zl] (vl) — [“] (ul) [:cl] (vl) C A and this is a
U 1) V2 w Us T9 Vs

fair derivation: the matrix ([c,d'] — A, [d,¢] — A) checks whether or not the
number of symbols d and d’' is the same.
Therefore, L;(v) € MAT”. m]

Because the family M AT? is strictly included in RE and it is closed under
arbitrary gsm mappings, we cannot obtain characterizations of RE starting
from languages in the family SRSL(f) and using codings, morphisms, or gsm
mappings as squeezing mechanisms.

Open problem. Is the family SRSL(f) included in CF (or in LIN)?
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4.7 Bibliographical Notes

The sticker systems were introduced in [101] in the form of regular simple
sticker systems. The primitive, balanced, coherent, and fair computations
are also considered in [101]; the results in Sect. 4.6 are from this paper, as
well as weaker counterparts of Theorem 4.1, Corollary 4.1, and Theorems
4.4 and 4.8. The sticker systems prolonging the sequences in both directions
were introduced in [64], in the simple variant, under the name of bidirectional
sticker systems. The bounded delay is also introduced in this paper, where
the equalities ASL(b) = LIN,OSL(b) = REG appear, as well. Theorem
4.11 and Corollary 4.9 are from [64], too.

Sticker systems in the general form (using dominoes of arbitrary shapes)
are investigated in [165], where the results not mentioned above appear in
the general framework used also in this chapter.



Chapter 5

Watson—Crick Automata

In this chapter we investigate the automata counterpart of the sticker sys-
tems studied in the previous chapter. We consider a new type of automata,
working on tapes which are double stranded sequences of symbols related by
a complementarity relation, similar to a DNA molecule (such a data struc-
ture is called a Watson—Crick tape). The automata scan separately each of
the two strands, in a correlated manner. They can also have a finite number
of states controlling the moves and/or they can have an auxiliary memory
which is also a Watson—Crick tape, used in a FIFO-like manner. Combining
such possibilities we obtain several types of automata. In most cases, these
automata augmented with squeezing mechanisms, such as weak codings and
deterministic sequential transducers, characterize the recursively enumerable
languages.

We stress the essential difference between these automata and the cus-
tomary ones, a difference based on the data structures they handle. While
the customary automata operate on linear (one-dimensional) strings of sym-
bols, our automata take double strands as their objects. Moreover, the double
strands resemble DNA molecules in the following sense. The matching letters
{nucleotides) are complementary, the relation of complementarity being de-
fined for pairs of letters of the basic alphabet, similarly to the Watson—Crick
complementarity of the pairs (A, T) and (C, G) of the DNA alphabet. Most
importantly, we assume that such data structures, double strands satisfying
the complementarity requirement mentioned, are freely available in the sense
that we do not have to check in any way that the matching letters are indeed
complementary.

Because of the complementarity, these automata are called Watson—Crick
automata. Our main interest is in the basic variant, where the automaton
scans separately each of the two strands in a correlated manner. However, we
will also investigate other variants, such as transducers and automata with
an auxiliary tape.

These automata make use of only one of the two essential features of the

G. Piun et al., DNA Computing
© Springer-Verlag Berlin Heidelberg 1998
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DNA as a possible support for computations, the Watson—Crick complemen-
tarity (which renders the power of the twin-shuffle language available), but
not of the second one, the multitude of DNA molecules which brings the
massive parallelism to the computing scene. It remains an entirely open area
to model this second feature, as well as to combine the two features into one
model of DNA computing.

5.1 Watson—Crick Finite Automata

We are now going to define one of the classes of automata we have announced
above. They are a counterpart of finite automata (they use states which
control the transitions, as usual in automata theory), but work on Watson—
Crick tapes, that is, on elements of WK,(V), for some alphabet V' and its
complementarity relation p C V x V. (We use the notations established in
the previous chapter.)

A Watson—Crick finite automaton is a construct
M= (VapaKa SOaFa(S)a

where V and K are disjoint alphabets, p C V x V is a symmetric relation,

SOEK,FQK,and(S:Kx(“;*

é(s, (w>) # { only for finitely many triples (s,z,y) € K x V* x V*.
Y

— P(K) is a mapping such that

The elements of K are called states, V is the (input) alphabet, p is a
complementarity relation on V, s is the initial state, F' is the set of final

states, and ¢ is the transition mapping. The interpretation of s’ € §(s, ( ! ))
Z2

is: in state s, the automaton passes over z; in the upper level strand and
over x2 in the lower level strand of a double stranded sequence, and enters
the state s’.

As in the case of finite automata, we can also write the transitions of M

x z
as rewriting rules of the form s ( 1) — ( 1) s’; such a rule has the same
T2

X 22

meaning as s’ € (s, o1

T2
Remark 5.1. In contrast to the case of finite automata, in Watson—Crick
finite automata we have written first the alphabet V and the complementarity
relation p, and after that the set K of states, in order to stress the fact that
the pair (V,p) plays a fundamental role in our machines. Working with
double stranded sequences is the crucial difference between traditional finite
automata and Watson—Crick finite automata. a
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A transition in a Watson—Crick finite automaton can be defined as follows:

For (zl) , (“1) : (wl) € (V ) such that [‘”1“”’“} € WK,(V) and
o U9 wWo % TolUgWa

5,5 € K, we write
z U w T u w . U
Zo Uo Wo T2 Uo Wo U2
We denote by ==* the reflexive and transitive closure of the relation —.
As in the case of sticker systems, we investigate here the language of

strings appearing in the upper strands of Watson—Crick tapes recognized by
our automata, that is the language

L,(M)={w e V" | s¢ [wl] =" [wl] sy, for sy € F,
w2 w2

wy

and wy € V*, [ ] € WK,(V)}.

wa

Remark 5.2. Of course, we can also consider the language of strings ap-
pearing in the lower strand, as well as the language of molecules, but we do
not discuss such languages here (they are linked to L,(M) by the relation p;
when p is injective, the three languages are isomorphic). O

Another important language associated to a Watson—Crick automaton can
be defined taking into account the transitions, not the recognized sequence.

For a Watson—Crick finite automaton M = (V, p, K, so, F, P) (hence with
the transition rules written as rewriting rules) consider a labeling e : P —
Lab, of rules in P with elements in a set Lab. For a computation ¢ : sow =—*
wss, w € WK,(V), sy € F, denote by e(o) the control word of o, that is the
sequence of labels of transition rules used in . In this way we obtain the
language

Loy (M) = {e(0) | 0 : sow =" wsy,w € WK,(V),sy € F}.

Remark 5.3. The control word e(o) associated to a computation o in a
Watson—Crick finite automaton can be particularly useful in DNA computing,
where we work with words over a prescribed reduced alphabet, hence we need
codifications of symbols of larger alphabets arising from the problems we want
to solve. Consider, for instance, the very first experiment in DNA computing,
that was considered in Sect. 2.1. Associate a Watson—Crick automaton to
a graph by using the codes of nodes in the upper level and the codes of the
edges in the lower level when defining the transitions. Let each transition
parse either a node or an edge. Label each transition with the name of the
corresponding node or edge. Then the control word of a computation will be
a shuffle of the description of the path associated to our computation, written
as a sequence of nodes and simultaneously as a sequence of edges. By a weak



154 5. Watson—Crick Automata

coding, we can select from the control word the path description we want.
Thus, in this case, the control word of a computation is more explicit than
the recognized sequence. In particular, like in the Adleman’s experiment,
we can let the automaton work on nondeterministically chosen sequences,
selecting the control words of interest. O

We say that the languages Lo(M),a € {u,ctr}, are recognized by the
Watson—Crick finite automaton M.

We note again that the work of Watson—Crick automata is defined for
elements of WK ,(V') only, that is, for double stranded sequences of elements
in V paired according to the complementarity relation p. We can represent
such a machine as consisting of a double tape on which an element of WK (V')
is written, a finite memory, able to store a state from a finite set of states,
and two read only heads, one of them scanning the upper level and the other
one scanning the lower level of the tape. Start with the two heads placed
before the first symbol of each level, in state so. The two heads are moved to
the right, according to the current state of the machine, as indicated by the
transition mapping (the transition rules). Here a transition step means to
move the two heads across blocks defined by a specific transition rule. Stop
and accept the starting sequence when both heads reach the right hand end
of the sequence written on the tape, entering a final state. Fig. 5.1 illustrates
this representation.

Figure 5.1: A Watson—Crick finite automaton

We consider also several variants of Watson—Crick finite automata. We
say that M = (V, p, K, sp, F, P) is:

stateless, if K = F = {so};

— all-final, if F = K,

- simple, if for all s (zl) — (il) s’ € P we have either 1y = X or
Z2 2

$2:)\,

— 1-limited, if for all s (ml) — (m1> s’ € P we have |z122] = 1.
T2 T2
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In the stateless automata, the components K, sg, F' can be omitted, and
. . T
the transition rules can be written in the form ) Then, the automaton
T2
is written in the form M = (V, p, P).

We denote by AWK(a), NWK(a), FWK(a), SWK(a), 1IWK(a),
NSWK(a), NIWK(a), FSWK(a), FIWK (), the families of languages
of the form L,(M), a € {u,cir}, recognized by Watson—Crick finite au-
tomata which are arbitrary (A), stateless (N, from “no state”), all-final (F),
simple (S), 1-limited (1), stateless and simple (NS), stateless and 1-limited
(N1), all-final and simple (F'S), and all-final and 1-limited (F1), respectively.
(The basic abbreviation, WK, is obtained by selecting the beginning and the
end symbols of the single stranded sequence W A TS ON CRICK.) We
will use the generic term WK families to refer to all these language families.

5.2 Relationships Between the WK Families

In this section we investigate the relationships between the families of lan-
guages in the previous section, as well as the relationships of these families
to the families in the Chomsky hierarchy.

Directly from the definitions we obtain:

Lemma 5.1. XWK(a) C AWK (a), a € {u,ctr},X € {N,F,S,1,NS, N1,
FS, F1}.

Lemma 5.2. NWK(a) C FWK(a), NSWK(a) C FSWK(a), NIWK(a)
C FIWK(a), a € {u,ctr}.

Lemma 5.3. XSWK(a) C SWK(a), XIWK(a) C IWK(a), XIWK(a)
C XSWK(a) C XWK(a), IWK(a) C SWK(a), & € {u, ctr), X €
{N, F}.

Moreover, it is easy to see that we also have the following relations:
Lemma 5.4. REG C 1W K (u).
Lemma 5.5. AWK (a) C CS, a € {u,ctr}.

Lemma 5.6. Each language in a family XW K (u) is a coding of a language
in the family XWK(ctr), X € {A,N,F,S,1,NS,N1,FS, F1}.

The use of states is powerful, in the sense that arbitrary transition rules
can be replaced by simple transition rules without decreasing the power. The
following lemma can also be viewed as a “normal form” result, customary in
automata theory.

Lemma 5.7. AWK (u) C 1WK(u).
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Proof. Consider an unrestricted Watson—Crick finite automaton M =
(V,p, K, sq, F, P) and construct the 1-limited Watson—Crick automaton

MI = (Vv’paKlasOaFv‘Pl)a

as follows.
For each transition rule

tos ajag...0n - ajag...0an SI
' bi1by...bpy, biby ... by
in P,n>0,m>0,n+m > 2, we introduce in P’ the transitions

()~ (%)

a; a; R
St,i( 1;1) —>< Z/‘\H)St,i+1a 1<i<n-1,

S A — A sl
t,n b1 bl t,1>
A A
Siﬂ'(b. ) - (b- )s;,i-f-l’ 1<i<m-—2,
i+1 i+1

' A AN
st,m—l b - b 53

all states s ;, s; ; are introduced in K ', together with all states in K.
One can easily see that the obtained automaton is equivalent with M (the
new states control the work of M’ in a deterministic way) and 1-limited. O

Corollary 5.1. 1IWK(u) = SWK(u) = AW K(u).

The construction above modifies the language Ler(M); we do not
know whether or not the inclusion in Lemma 5.7 also holds for families
IW K (ctr), SW K (ctr), AW K(ctr).

For an easy reference, we summarize the relations from the previous lem-
mas for families XW K (ctr) in the diagram in Fig. 5.2; the arrows indicate
inclusions which are not necessarily proper. The case of families XW K (u)
is postponed until new relations are established between them.

Remark 5.4. A notion which is related to the devices defined above is that
of two-head finite automata.

A two-head finite automaton is a construct M = (K,V, so, F,§), where
K,V, s, F are as in a usual finite automaton and ¢ is the transition mapping,
§: K x (VU{A}) x (VU{A}) — P(K). For wi,wz,x1,22 € V*, ur,uz €
VU {A}, and s,s" € K we write

(w1, w2)s(u11, ugze) = (wiur, wauz)s (1, x2) iff s € (s, u1,ua).
The language recognized by M is defined by
L(M)={z € V*|so(z,z) =" (x,%)s5,s5 € F'}.
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We denote by TH the family of languages recognized by such automata.

Some variants of two-head (or, more generally, multihead) finite automata
were intensively investigated: deterministic, simple (one head reads the tape,
the others can only distinguish the end markers of the input string), sensing
(the heads can sense the case when two of them are placed in the same cell
of the tape). Precise definitions, results and further references can be found
in [49], [94], [97], [186].

cS
AW K (ctr)
/ \
SW K (ctr) FW K (ctr)
1W K (ctr) FSW K (ctr) NW K (ctr)
F1W K(ctr) NSW K (ctr)
\ /
NIWK(ctr)

Figure 5.2: The hierarchy of ctr families

It is obvious that a two-head finite automaton is a particular case of a
1-limited Watson—Crick finite automaton: the complementarity relation is
the identity, (a,b) € p if and only if a = b.

On the other hand, a 1-limited Watson—Crick finite automaton can be
simulated by a two-head finite automaton: one head parses the input string
acting as the upper head of the Watson—Crick automaton, the second one
parses this string but acts as the lower head of the Watson—Crick automaton:
it guesses a complement of the current symbol and it crosses a symbol a only
if the lower head of the Watson—Crick automaton can cross — in the same
state — a symbol b which is complementary to a.
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Consequently, we get the following equality:
Lemma 5.8. TH = 1IWK(u).

A Watson—Crick finite automaton can be also viewed as a two-tape, two-
head finite automaton, but of a very particular type: the two tapes are
interrelated through the complementarity relation; if this relation is one-to-
one, then one tape precisely identifies the other one — this is the case of the
DNA molecules. m|

In the simple stateless case, the parsing of a sequence in WK,(V) can
be controlled by examining a subsequence of length at most the length of

. . .- wy .
the longest string wi, w, in transition rules ( ): because one of wy, wy is
2

always empty, we can continue with the level whose reading head is behind,
thus bounding the distance (delay) between the two heads. Consequently, we
obtain:

Lemma 5.9. NSWK(u) C REG.
The following strenghtening of Lemma 5.4 holds.
Lemma 5.10. REG C FIW K(u).

Proof. Consider a finite automaton M = (K,V, sp, F,6) and construct
the all-final 1-limited Watson—Crick finite automaton

= (KpaKlysO7K/a(sl)a
with
p= {(a7a)) l a € V}7
K' =Ku {Sf}, (for Sf ¢ K),
8(s, (i)) = (s,a) UF(s,a), s€ K,a €V,

where F(s,a) = {{Sf} if 6(s,a) N F # 0,

#, otherwise,

Sor (2 )= ok acv,

8 (s, (u>) ={, in all other cases.
v

w
The recognition of a sequence [ } proceeds as follows: one first parses

the first strand, from left to right, exactly as in M, except for the last step,

when M reaches a final state; then M’ enters the state s;. Then one can also

parse the second strand, making possible the completion of recognition.
Therefore, L,(M') = L(M). O
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The relations between families XW K (u) can now be synthesized as in
the diagram in Fig. 5.3; as usual, the arrows indicate inclusions which are
not necessarily proper.

cS

AWK (u) = SWK (u) = 1W K (u)

|

FWK(u

/\

FSWK(u NWK(u

N

F1IWK (u)

REG

N

NSWK(u)

N1W K (u)

Figure 5.3: The hierarchy of u families

In some sense, the families above are “small”: the languages in these
families satisfy very strong conditions. The following lemmas provide two
such necessary conditions.

Lemma 5.11. (i) If L € NWK(«), for a € {u,ctr}, then L = L*. (ii) If
L € NIWK((u), then there is an alphabet V such that L=V7.

Proof. (i) Consider a stateless Watson—Crick finite automaton M =
(V,p, P). If wi,we € WK,(V) can be parsed by M, then wyws can be
parsed as well, using the same elements of P. Hence, Lo, (M)* C Lo(M),a €
{u, ctr}. The opposite inclusion, Lo (M) C Lo(M)™T, is obvious.

(ii) Obvious, because each string can be recognized by a stateless 1-limited
Watson—Crick automaton. O
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We shall see below (Lemma 5.14) that assertion (ii) is not true for the ctr
case.

Corollary 5.2. REG — XWK(a) #0, a € {u,ctr}, X € {N,NS}.
Corollary 5.3. FIWK(u) — NWK (u) # 0.

Proof. By Lemma 5.10, the language ab* is in F1W K (u). This language
does not have the property stated in Lemma 5.11, so ab* ¢ NW K (u). a

Corollary 5.4. The inclusions NWK(u) C FWK(u) and NSWK (u) C
F1W K (u) are proper.

Lemma 5.12. Every one-letter language in AW K (u) is regular.
Proof. Consider an unrestricted Watson—Crick finite automaton M = (V,
i
0, K, sg, F,8). If there is a transition s’ € d(s, (a )) such that w contains a
w

symbol b and (a, b) ¢ p, then this transition can never be used when producing
strings in L, (M). Thus, all such transitions can be ignored, that is we may
assume that for all b as above we have (a,b) € p. We construct the linear
grammar

G = (K, {a,b}, so, P},

with
P ={s—ads't|s €ds, (Z})),s,s’ €K,i>0,j=|w}
i
U {s — a'¥’ | (s, (Z}))ﬂF#@,sEK,i20,j= |wl}.

Consider also the linear language
L={a™"|n2>1}.

According to [77], Corollary 5.3.1, L{G) N L is a linear language. (We have
LG NL = {a"b™ | (n,m) € Uouy(LG) N {(p.p) | p € N}}; because
the intersection of two semilinear sets is a semilinear set, it follows that
Va1 (L(G) N L) is a semilinear set. Together with the above mentioned
result from [77], this implies that L(G) N L is a linear language.) For the
weak coding h defined by

we have

L.(M) = h(L(G) N L),
which implies that L, (M) is regular. a
Corollary 5.5. AWK (u) C CS is a strict inclusion.
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However, the families discussed above (with the exception of NSW K (u))
contain languages of a very high complexity. We shall see in the next sec-
tion that characterizations of recursively enumerable languages can be ob-
tained starting from them and using AFL operations (in fact, weak codings
and deterministic gsm’s). We close this section with a result proving di-
rectly that stateless Watson—Crick finite automata can recognize complex
languages. This is, of course, due to the free availability of double stranded
sequernces.

Lemma 5.13. NWK (u) — MAT* # 0.

Proof. Consider the stateless Watson—Crick finite automaton
M = ({a,b,c,d,e, f},p, P),
with
p ={(a,a),(b,c),(c,b), (a,d),(d, a), (e, f), (£, )},

P=().(D.. ().

Consider also the regular language described by the following regular expres-
sion
R = c(dd"b)(aatb)Tate™,

and the weak coding h defined by
h{a) = a, h(b) = h(c) = h(d) = h(e) = A
The molecules recognized by M and having a string in R in their upper strand

must be of the form

cd™ba™zb...ba"m-1bg"m e"m+1

bricxoc...CTy_1CTy frmtt

)

withm > 3,n; > 2,1 <i < m,nme1 > 1. Because of the complementarity,
we also have 1 = a™, z; € {a,d}*,|z:| = ny, for 2 <i < m.

Each b in the upper strand is paired with an occurrence of b or ¢ in the
lower strand, because of the form of the pairs in P, as suggested by the
subscripts of these symbols b, ¢ in the following writing:

cod™bi1a™by ... by_2a™ 1 by, 10" e et L
b1 T1CaT2C3 ... Cyu—l T 1 Cm Ty [ fom+171

We have also indicated that the last occurrence of ¢ in the lower strand is
paired with the first occurrence of e in the upper strand.
Now, because of this precise pairing and because (1) the symbol a apears

only in pairs (a) of P, and (2) the symbol d can be introduced in the lower
a
strand only by the pair (Z), it follows that:
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l.z;€cat,2<i<m—1,
2. Ty =drmt17l

From |z;| = n; and |z;| = nj41 we get n; = ngy1,1 <i<m—1.
Therefore, the recognized molecule has the form

cd™ba™b. .. ba"ba"e"t!
baca™c...ca™cd™ fn+1 |’

with at least two blocks ba™ and n > 2.
Consequently, we obtain

ML, (M)NR) = {a"™ | n,m > 2}
= {a® | p is a composite number}.
This language is not semilinear, hence is not regular; each one-letter
language in M AT is regular [85]; the family M AT” is closed under in-

tersection with regular languages and arbitrary morphisms. Consequently,
L,(M) ¢ MAT>. m|

Corollary 5.6. The inclusion NSW K (u) C NW K (u) is proper.

5.3 Characterizations of Recursively Enumer-
able Languages

We shall now give a series of representation results for recursively enumer-
able languages starting from languages recognized by Watson—Crick finite
automata of various types. In fact, we have characterizations of RF, because
RE is closed under the operations applied.

The proof of the following lemma, although technically simple, captures
the essence of Watson—Crick tapes and the interconnection to the twin-shuffle
language.

Lemma 5.14. For every alphabet V, we have TSy € N1W K (ctr).

Proof. Consider the 1-limited stateless Watson—Crick finite automaton
M = (V,p, P),
with
p={(a,0)|acV},

=i, (2) een
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with the labeling

e(($) =0 e((z))zé, aev.

If [ } € WK,(V) and o : s¢ [J =" [ ]so is a computation in M
x x
(the state so is written only in order to make clear that this is a non-trivial
computation), then e{c) € z Il Z, hence e(d) € T'Sy.
As z above can be any string in V* and each element of z Wl Z describes
a correct computation in M, we have the equality L., (M) =TSy. O

Theorem 5.1. Fach language in the family RE is the image of a determin-
istic gsm mapping of a language in any family XWK (cir}, X € {A,N, F, S,
1,NS,N1, FS,F1}.

Proof. This is a direct consequence of the previous lemma and Theorem
3.17. O

Lemma 5.15. SRSL{c) C FWK(u).

Proof. Consider a simple regular sticker system v = (V,p, A, Dy, D,),
with the elements of D;, D, labeled by a mapping e : D; U D, — Lab.
We construct the all-final Watson—Crick finite automaton

M= (‘/7:07{30581}5807{80781}7P)7

with the transition rules
S0 (uwl) — (u102> s1, for [ul] (vl) €A, [ul] e WK,(V)
U2V UV Uz V2 Uz
vy c v U A
Vo A V)’
s1 (m) - (a:) sy, for (A) € D; and (m) €D,
) Y Y A

such that e((;\)) = e((f\))

The coherent correct computations in v can be simulated by correct com-
putations in M and, conversely, the sequences recognized by M are also
reached by correct (coherent) computations in . Indeed, the fact that we
always have to start from an axiom is ensured by the initial state, sg, while
the coherence is ensured by the transition rules, which are defined only for

A
pairs (2) such that (f\) € D, and (y) € D; and these blocks have the
same label. Consequently, L.(v) = L,(M). O

Theorem 5.2. Each recursively enumerable language is the weak coding of
a language in any family XWK(u), X € {A, F,S,1}.
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Proof. The assertion follows from Lemma 5.15, the inclusions FW K {u)
XWK(u),X € {A, S,1} (see Fig. 5.3), and Theorem 4.12.

Lemma 5.16. If hy, hy : Vi* — V' are two morphisms, then hi(EQ(hq,
hs)) € NWK(u).

-
o

Proof. For hq,hy given, we construct the stateless Watson—Crick finite

automaton
M = (VYZ’p’ P)’

with
p={(a,a) | a e Vr},
P= (i) 1<

A sequence [Zl] € WK,(V;) is successfully parsed by M if and only
2

if w; = wy (due to the relation p) and wy = hi{x),ws = ha{x), for some
z € Vi* (due to the form of rules in P). Consequently, z € EQ(h1, hg) and
wy € hl(EQ(hl,hg)), which implies Lu(M) = hl(EQ(hl, hz)) O

Theorem 5.3. FEach language L € RE can be written in the form L =
h(L' N R), where L' € NWK(u),R € REG, and h is a projection.

Proof. This is a direct consequence of the previous lemma and of Theorem
3.16. O

Theorem 5.3 can be modified to the following, perhaps more interesting,
result: every recursively enumerable language is a projection of some language
L,(M), where M is a Watson—Crick finite automaton.

Theorem 5.4. Each language L € RE can be written in the form L = h(L'},
where L' € AW K(u) and h is a projection.

Proof. We use the representation of Theorem 3.16 and write L =
h(h1(EQ(h1, h2)}NRy), where h is a projection, hq, hy : Vi* — V5 are A-free
morphisms, and Ry C V5 is a regular language. Let My = (K, V2, so, F, §)
be a deterministic finite automaton such that Ry = L{M,). It suffices to
construct a Watson—Crick finite automaton M with the property

Ly(M) = hi(EQ(h1,h2)) N Ry.
Indeed, define a Watson—Crick finite automaton by
M = (Va,p, K, 50, F,0),
with

p={(a,a) | aeVa},
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(s, (Z;EZ%)) = {s'}, whenever s,s' € K,a € V,

and (s, hy(a)) F* (s',N),
&' (s, (Z)) = {), otherwise.

(Here * refers to the transition in the automaton My, as explained in Chap.
3)

Analogously as in Lemma 5.16, it is now seen that M possesses the re-
quired property. a

Although a result like that in Lemma 5.16 seems not to be true for the
family FSW K (u), a result like that in Theorem 5.3 also holds true for this
family.

Theorem 5.5. Fach language L € RE can be written in the form L =
h(L'’ N R), where L' € FSWK(u), R € REG, and h is a projection.

Proof. Using Theorem 3.16, we can write L as L = h(h1(EQ(h1,h2)) N
Ry), where hy, hy are A-free morphisms, h is a projection, and Ry is a regular
language. For hq, he : V¥ — V5, we construct the all-final simple Watson—

Crick automaton
M = (KP7K7 807K76)7

with
V =Vyu{e},

p={(a,a) | a € Va}U{(c,c)},
K ={sp,s1}U{sa | a €V},

stsor (1)) = fou).

56ous (1) )) = fo0h a€

2(a)

8(s0, (3 ) = {1},
A

sor, (1)) = ton)

a(s, <u>) = () in all other cases.
For the regular language
Ry = Vy{c}
we obviously have

Lu(M) N R1 = hl(EQ(hl, hQ)){C}
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(The alternation of states sg, s, and the fact that after introducing s; — from
sp — we have to remain in this state together ensure that the parsed molecule

is of the form [Z:Ez;j, for some z € V7*.)
Considering R = Ro{c} and extending the projection h by h(c) = A, we
obtain L = h(L,(M) N R). O

Of course, the projection h and the intersection with the regular language
R in Theorems 5.3, 5.5 can be done by a deterministic gsm, hence a result
like Theorem 5.1 also holds true for the families NW K (u) and FSW K (u).

Consequently, we may say that modulo a deterministic gsm — and in some
cases modulo a weak coding only — all families XW K (a), X € {A,N, §,1,
F,FS}, are equal to RE, and, in this sense, equal to each other. This also
leads to the following estimation of the size of these families.

Corollary 5.7. For each family of languages FL such that FL C RE and FL
is closed under intersection with regular languages and arbitrary morphisms,
we have XWK(u) - FL+£0, X € {A,S,F,1,N,FS}.

Among the important language families F'L satisfying the premise of the
statement of Corollary 5.7 are M AT* and ETOL.

Note that in the previous results the final states play no role, they do not
increase the power of Watson—Crick finite automata — modulo a deterministic
gsm or, in certain cases, modulo a weak coding — and that simple Watson—
Crick finite automata (with only three states) suffice to characterize RE

. . s . u
modulo a weak coding. Automata without states, using transition pairs ( )
v

with non-restricted strings u, v, are also very powerful. These observations
illustrate again the power of Watson—Crick complementarity, and they will
be also confirmed by the machines considered in the subsequent sections.

It is also worth mentioning that in most of the constructions above (this
is the case for the proofs of Theorem 5.5 and of Lemmas 5.14, 5.16) the com-
plementarity relation is the identity relation, (a,b) € p if and only if a = b.
This is not the case for the proof of Theorem 4.12, hence for Theorem 5.2. As
we have mentioned several times already, in the DNA case the complemen-
tarity relation is one-to-one. When trying to be closer to the “DNA reality”,
we have to take a symmetric one-to-one relation as a basic complementarity
relation for our models. This can raise some problems, because the above
proof of Theorem 4.12 uses a relation which is not even injective: (s,s) € p
and (s, [s, k]) € p, too.

5.4 Watson—Crick Finite Transducers

An output can be associated to a Watson—Crick finite automaton in the same
way as an output is associated to a finite automaton to form a gsm. This
output is written on a normal tape rather than on a Watson—Crick double



5.4. Watson—Crick Finite Transducers 167

stranded tape (the other possibility will be considered in Sect. 5.6). Fig. 5.4
illustrates this idea.

V)

Figure 5.4: A Watson—Crick transducer

A Watson—Crick gsm is a construct
g = (VI7pI7VO7K7SOaF55)7
where V7 is the input alphabet, py C Vi x V; is a symmetric relation (of
complementarity), Vo is the output alphabet, K is the set of states, so € K
V*
is the initial state, F' C K is the set of final states, and d : K x (VI*) —
I
Ps(V5 x K) is a mapping such that d(s, ( )) # () only for a finite number of
v
triples (s,u,v) € K x V' x V. The interpretation of (z,s’) € (s, <u>) is:
v
in state s, the transducer passes over u in the upper level and over v in the
lower level of a double stranded sequence, produces the output z, and enters

the state s’
Formally, for wy, we, w],wy € Vi, 2,2z € V3, and 5,5’ € K, we write

7
w1 w .

zs = zzs' [ 1) iff w1 =70}, we = zow), for
w9 Wy

(z,s') € 8(s, (i;)),zl,m,wi,wg e vy
For a sequence w = [wl] € WK, (Vi) we define
w2

A
glw)={z€ V3| so [wl] =" zs5 [ ] ,sf € F}.
Wy A

We extend this definition to languages in WK, (Vr) in the usual way.
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As for Watson—Crick finite automata, we consider stateless, simple, 1-
limited, all-final, stateless simple, stateless 1-limited, all-final simple, and
all-final 1-limited Watson—Crick gsm’s.

As the labeling of transitions in a stateless Watson—Crick finite automaton
can be expressed as the output function of a Watson—Crick gsm, from Lemma
5.14 we get the following result.

Corollary 5.8. For every alphabet V, there is a stateless 1-limited Watson-
Crick gsm gy such that we have TSy = gv(WK,(V)), for p = {(a,a) | a €
V}.

This implies a result like that in Theorem 5.1: each language L € RE
can be written in the form L = g(gv(WK,(V))), where g is a usual gsm
(deterministic) and gy is a stateless 1-limited Watson—Crick gsm.

Both the intersection with a regular language and a morphism can be
realized by a Watson—Crick gsm, hence from Theorem 5.5 we obtain:

Theorem 5.6. For each language L € RE, L C V*, there is a simple all-final
Watson-Crick gsm g, such that L = gr (W K,(V")), for some Watson-Crick
domain WK,(V').

Hence, Watson—Crick finite transducers not only do not preserve the fam-
ilies in the Chomsky hierarchy, but they map (very simple) regular languages
in such a way that they cover the whole family RE.

In the same way as each two-head finite automaton can be considered a
variant of a Watson—Crick finite automaton, a two-head finite transducer can
be considered to be a special case of a Watson—Crick gsm.

5.5 Further Variants of Watson—Crick Finite
Automata

Among the Watson—Crick finite automata considered in Sect. 5.1, the most
intimately related to the DNA structure are the stateless automata which
are using only Watson—Crick complementarity, and no additional automata
theory-like features. These automata deserve further investigation.

Because h(wyws) = h(w;)h(w2), where h is a morphism, it follows from
Lemma 5.11 that we cannot represent every regular language as the morphic
image of a language in NW K (), a € {u,ctr}. Therefore, on the one hand,
starting from NSW K(u) we cannot even obtain representations of REG
using weak codings (as in Theorem 5.2), while on the other hand, the results
in Theorems 5.1 and 5.5 cannot be improved by replacing the deterministic
gsm mapping by a morphism, or by not using an intersection with a regular
language.

The “weak point” of stateless Watson—Crick finite automata is that they
cannot control the first step of a computation. This suggests the following
definition.
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An initial stateless Watson—Crick finite automaton is a quadruple
M= (Val%POaP)a

where V is an alphabet, p C V x V is a symmetric relation, Py and P are

vV
finit b f .
nite subsets o (V*)

wlj' € WK,(V) is recognized by M if and

A double stranded sequence [w
2

only if

W1 =TT ... Tp,y W2 =YolY1 .. Yn, TLZO,

where (wo) € P, (%) e P1<i<n.
Yo Yi

w
Therefore, at the beginning of the parsing of [ 1] we have to use an element

wa

of Py and after that no element of Py is used again — unless P, N P # ().
As usual, we denote by Lo{M),a € {u,crt}, the languages associated
to correct computations in M. By INWK(«a), INSW K{«) we denote the
families of languages recognized by initial stateless and by initial stateless

simple Watson—Crick finite automata.

As expected, controlling the first step of a recognition process increases
the power of our machines. Still, one can easily see that a result like that in
Lemma 5.9 is true:

Lemma 5.17. INSWK(u) C REG.

On the other hand, we have the following result, which does not hold for
non-initial automata.

Theorem 5.7. Each regular language is a coding of a language in the family
INSWK (u).

Proof. Consider a deterministic finite automaton M = (K, V, so, F, ) and
construct the initial simple stateless Watson—Crick finite automaton

= (U7paP0aP)a
where

{[s,a,5)i | 5,8’ € K,a € V,1 <i <4},
= {([s,a s’]i,[s a,8;)|s,8 € K,aeV,1<i<4},
{

) | s’ =d(sp,a),a €V},

80,0, 8

‘ |

C

(
{([so,as

) | s’ = d(sp,a) € Fa €V},
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7 ! 1
P = {([370173]2£<\9 ,A2,8 ]1) | s = (5(5,0,1),8” ’—"5(8’,02),

s,8',8" € K,a1,a3 € V}
7 7 "
o (BTl 1 e, o =06 00),
s,s' € K,s" € Fya1,a2 € V}

U {([5’“;']4) |s' =8(s,a) € F,s e K,ae V}

A r "o /
U {([s’al’51]1[517(12’5//]2) ' § = 6(870'1)78 - 5(8 7a2)7
s,8',s" € K,a1,a2 € V}
A
U
{([5701175,]1[8,7(1278”]4
s, € K,s" € F,a1,a3 €V}
U{<[ A >|s'=6(s,a)€F,s€K,a€V}.

S, 4, 51]3

) | s' = 6(s,a1),8" =6(s',a3) € F,

[807 a, 81]1

Each recognition of a sequence must start with ( in Py, with

the exception of the recognition of sequences of length one, which starts with

[s0,a, 51]s in P. All
A [s0,a,s1]3 '

elements of P of the form (f\) have the strand x starting with a symbol

) in Py, and ends immediately by using (

[s,a, 82 or [s,a,s']s; all elements of P of the form ()\> have y starting with
Yy

a symbol [s,a,s']; or [s,a,s]s. Consequently, after completing the parsing
of an element of WK ,(U) no further steps can be taken, because the pairing
imposed by p cannot be observed.

This means that we can successfully parse only sequences w € WK,(U)
composed of two identical strands of the form

[80, ai, 81]1[81, az, 82]2[827 as, 53]1[537 Ay, 84]2 s [Sk—ly ak, Sk]i[sky Ak-+1, 5k+1]j7

with ¢ = 2,§ = 3 when k is even, and ¢ = 1,5 = 4 when k is odd; moreover,
8081 .- - Sp+1 IS a state sequence corresponding to the recognition of the string
01ay...a5+1 in M.

Let h be the coding that maps triples [s,a,s’]; to a. Then we obtain
L(M) = h(L,(M")). O

Because each usual stateless Watson—Crick finite automaton can be con-
sidered to be an initial one, by taking Py, = P, we obtain the inclusions
XWK(a) C IXWK(a),X € {N,NS} ,a € {u,ctr}. Consequently, the
characterizations of the family RE in Theorems 5.1 and 5.3 hold also true
for the corresponding families IXW K (a), a € {u,ctr}.
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As we know from Chap. 1, the two strands of a DNA molecule have
opposite 5 — 3’ orientations. This suggests considering a variant of Watson—
Crick finite automata that parse the two strands of a Watson—Crick tape in
opposite directions. Figure 5.5 illustrates the initial configuration of such an
automaton.

S0

Figure 5.5: A reverse Watson—Crick finite automaton

Formally, a reverse Watson—Crick finite automaton is a construct
M= (V:p7K7805F56)5

with the components defined exactly as for Watson—Crick finite automata,
but with the relation = defined as follows:

For wy,wq, wi,wh,z,y € V*, 5,8 € K, we write

(o)« () = () ()
way Wy w2 Yyw,

[“’1"”“’:1] eWK,(V), s € (s, (m))

WayWy Y

w1

Then [ :| € WK,(V) is recognized by M if and only if

(M) () = (5 (1) e

As in Sect. 5.1 we can associate two languages Lo(M), « € {u, ctr}, with
a reverse Watson-Crick finite automaton M. These families of languages as-
sociated with reverse Watson—Crick finite automata corresponding to families
XWK(a) are denoted by XRWK(a), X € {A,N,F,S,1, NS,N1,FS, F1}.

Clearly, a diagram like that in Fig. 5.2 also holds true for these families.

In the simple stateless automata the direction of head movement is not
crucial, but only the possibility of covering the double stranded input se-
quence with upper and lower level blocks. We therefore obtain:

w2
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Lemma 5.18. NSWK(u) = NSRW K (u).

In view of Lemma 5.9, we obtain
Corollary 5.9. NSRWK (u) C REG.

A counterpart of Theorem 5.1 is true in the new framework as well.
Lemma 5.19. For every alphabet V, we have RT'Sy € N1RW K (ctr).

Proof. For the 1-limited stateless Watson—Crick automaton M in the
proof of Lemma 5.14, interpreted as a reverse automaton, we have L. (M) =
RTSy. O

Theorem 5.8. Fach language in RE is the image by a deterministic gsm
mapping of a language in any family XRWK(ctr),X € {A,N,F, S,1,
NS,N1,FS, F1}.

We do not know which of the other results in Sects. 5.2 and 5.3 are valid
also for reverse Watson—Crick finite automata. Anyway, we have

Theorem 5.9. NRWK(u) — CF # (.
Proof. Consider the reverse stateless Watson—Crick finite automaton
M = ({a,b,c}, p, P),
with
o= {(a,a), (b,b), (c,0)},

P=(2).()-()-(0)r

and the regular language R = aTb*ct.
We are interested in the intersection L,(M) N R. Only sequences [w

with w = a™b™cP, n,m,p > 1, can be considered as inputs for M which can
lead to strings in L,{M) N R because of the form of p. The parsing of such

w .
a sequence [ } proceeds as follows: we first obtain
w

A a™b™cP o a” s b™cP
anbmcP 50 A arbmep—n ) SO\ en

. a™b™m cP )
= (a”bmcl’—" So (c") , if p>mn,

A a™b™cP [ @ a™ Ph P P
e i .
anbmep | %0 A anbm ) %0 cP ’ p

(We use the only state sg of the system — useless in controlling the work of
M - just to indicate the places of the two read heads in the two strands.)

or
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No further step is possible in the second case and no further step is possible
in the first case when p > n. If p = n, then we can continue with

a™b™ c" L [atbmc? A .
anbhm So cn = anrpm—n S0 bnen ’ if m Z n,
anb™ %o cn an O\ pmen

— A So anbmen , I n>m.

No further step can be done in the second case and no further step is possible
in the first case when m > n. If n = m, then we can continue with

ab"c" 5 A e a"b"c"\ A
an O\ bren A /SO anbrer )

Consequently,

or

L,(M)NR={a"b"c" | n>1},
which is not a context-free language. O
Theorem 5.10. FIRWK(u) — CF # 0.

Proof. Consider the all-final 1-limited reverse Watson—Crick finite au-

tomaton
M= ({a7b7 c}7p7 K7 S0, K75)7

with

p={(a,a),(b,b),(c,0)},

K= {505 51, 32753}3

4(s0, (i)) = {s1},

For the regular language R = a™b*c™ we obtain

L,M)NR={a"b"c" |n>1}
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(the states in K control the work of M when parsing a sequence [w] with
w

w = a™b™cP in the same way as the pairs (z) € P do in the proof of
Theorem 5.9). O

Corollary 5.10. The inclusions NSRW K (u) C FSRW K(u), NSRW K (u)
C NRW K (u) are proper.

A natural generalization of Watson—Crick finite automata, also suggested
by the idea of reverse automata, are the Watson-Crick two-way finite au-
tomata, where one or both of the two read heads can move on the corre-
sponding strand of a Watson—Crick tape in both directions.

We do not define here formally such machines (in Sect. 5.7 we shall
do it for the case when only one of the heads, the lower one, works in the
two-way manner). However, because two-way automata are generalizations
of usual one-way automata, all characterizations of recursively enumerable
languages in Sect. 5.3 also remain true for the corresponding variants of two-
way Watson—Crick automata. Moreover, Lemma 5.9 also remains true: the
work on the two strands is independent of each other in the case of simple
stateless automata; in Chap. 3 we mentioned that two-way finite automata
characterize regular languages; checking the correctness of the pairing of the
symbols on the two strands according to the complementarity relation can be
done by a literal shuffle followed by a gsm, hence this is an operation which
preserves the regularity.

If we also supplement the model with end markers of the input, then a
two-way Watson—Crick finite automaton (with states) can also simulate a
reverse Watson—Crick finite automaton.

We do not consider here further study of these variants of Watson—Crick
finite automata.

5.6 Watson—Crick Automata with a Watson—
Crick Memory

The Watson—Crick finite transducers discussed in Sect. 5.4 are somewhat

hybrid devices, as they use an input Watson—Crick tape and a usual output

tape (single stranded). This suggests considering output tapes to be also
Watson—Crick tapes, leading to the following device.

A Watson—Crick prefiz automaton is a construct
M= (Vlapla‘/%p%K? SO)F)5)7

where V1, V5 are alphabets, p; C Vi x V1, pa C Vo x Vs are symmetric relations
on Vi and Vs, respectively, K is a (finite) set of states, s € K, F' C K, and

Vi Vi
§: K x (Vi) —»P,((Vz*) x K),
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where §(s, (wl)) # { only for a finite number of triples (s, z1,z2) € K X
T2
Vi x Vi
The interpretations of these elements are as follows: V; is the alphabet of
the first Watson—Crick tape of M, V5 is the alphabet of the second Watson—

Crick tape, pi1,pe are complementarity relations on Vi, V,, K is the set of
states, sg 1s the initial state, F is the set of final states, and ¢ is the transition

x
mapping. The meaning of ( u ,8') € d(s, ( ! )) is: in state s, one parses
Y2 T2

the strings z1,z2 in the two strands of the first tape of the automaton, one
passes to state s’, and one writes/parses the strings y1, y» in the two strands
of the second tape of the automaton. The automaton starts in state sqg, with
the four heads placed at the left hand end of the four strands of the two
tapes, and stops in a final state, with all the four heads placed at the right
ends of the four strands. Fig. 5.6 illustrates this idea.

-

—_—

Figure 5.6: A Watson—Crick automaton with memory

We can interpret and use such a machinery in two ways: as a recognizing
device, and as a transducer.

In the first interpretation, as a recognizer, the second tape is used as a
control of the automaton, as a memory. This can be done in two modes:

(1) start with the second tape empty and at each transition ((y1> ') €
Y2

z .
8(s, ( 1)) the strings y1,y2 are written on the strands of the second tape,
T2
starting with the leftmost empty positions, or (2) start with the second tape
containing a sequence { 1} € WK,,(V2) and at each transition ( (y1> ,§') €
Wa Y2
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8(s, (21 )) move the heads reading the second tape over yi, y2, respectively.
2
In the first mode, the automaton stops correctly only if it reaches a sequence
w
[ 1] € WK,, (V) in the last configuration. Clearly, the two modes of using
w3y

the second tape when M is a recognizing machine are equivalent.
In either case, we can also define accepting configurations to be ones

with the second tape empty: in case (1) any column [a} with (a,b) € pa,
appearing in the second tape is deleted immediately after being produced; in
case (2) we delete any column [Z] with (a,b) € ps, immediately after moving

both the two heads to the right of it. Thus, in the first case we have a sort
of FIFO (first-in-first-out) memory, which “melts” from the left as soon as
completing the columns. This is why we call these automata Watson-Crick
prefix automata.

We define formally the transition only for the case where we start with
an element of WK, (Vi) written in the first tape and with the second tape
empty; while exploring the first tape, we write in the second tape, completing
an element of W K,,(V2), hence a Watson—Crick tape. In this way, we cover
both the recognizing and the transducing interpretations of a Watson-Crick
prefix automaton.

For wy,ws, T1, T2 € V¥, 21, 22,41, Y2 € V', s,8" € Q, we write

sy () == () () () o eoe (20

A sequence :1] € WK, (V1) is accepted by M if there is [;1] €
2 2
WK,,(V2) such that

o[l Bl ==Ll E)

Therefore, a computation (recognition or translation) is correctly termi-
nated if the contents of the first tape — which was a Watson—Crick tape —
is exhausted and on the second tape one produces another Watson—Crick
tape, a complete “molecule” observing the complementarity relation on the
alphabet V5.

Remark 5.5. The slash / in above notation indicates the fact that we
have here two different double stranded sequences, written on different tapes,
not two concatenated double stranded sequences. Note therefore the crucial

difference between [Il] [?ﬂ] and [ml] / [yl]; in the first case we can also
T2] Y2 T2 Y2

T1Y1

write , which makes no sense in the second case. o

Z2Y2
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When interpreting a Watson—Crick prefix automaton M as a transducer,

the result of translating a sequence w = [31] e WK, (V1) is
2

M) = ([ 2] ewrnm 15[ 2] [3] = 3]/ [2]

29 Wo 22
for some sy € F'}.

We emphasize the fact that here we only translate Watson—Crick tapes
(over V1) into Watson—Crick tapes (over V2); if the output is not an element
of WK,,(Vz), then the translation fails.

We shall not investigate the Watson—Crick prefix automata used as trans-
ducers. Anyway, it is easy to see that the Watson—Crick gsm’s in Sect. 5.4
can be simulated by Watson—Crick prefix transducers: take the identity re-
lation as a complementarity relation on V5 and y; = yo for each transition

((yl) ,8') € 8(s, (il ) ), etc. Thus, the assertion in Theorem 5.6 holds true
Y2 2

also for (simple all-final} Watson—Crick prefix transducers.
As for Watson—Crick finite automata, we can associate two languages also
to a Watson—Crick prefix automaton: L,(M),a € {u,ctr}. For instance,

L) = fwe L[]/ (3] =70 [3]/]22] torsome

w/
w' € V¥, 21,22 € Vi, 55 € F, such that

] ewratnn[

] € WEK,,(15)}.
zZ2

Just as for Watson—Crick finite automata, we can consider Watson—Crick
prefix automata which are simple, 1-limited, stateless, all-final, or both simple
and stateless, 1-limited and stateless, or both simple and all-final, or 1-limited

and all-final. In the simple case, for each transition (<zl> ,8') €4(s, (xl ))
2 z2

we have both one of z;,z2 and one of y;,y2 empty, but not necessarily on
the same strand, the upper or the lower one, in the two tapes; similarly, in
the 1-limited case we have at the same time one of x1, x5 and one of y;,ys
empty and the others equal to symbols. We can also consider initial stateless
Watson—Crick prefix automata, reverse, or two-way automata; we shall not
investigate these cases here.

The stateless Watson—Crick prefix automata are presented in the form

vy :
M = (V1, p1,Va, p2, P), where P C ( 1*)><<V2*>;therules(<ml> 7 <y1))
‘/1 ‘/2 X y2

$1/y1

in P are usually written in the form
T2 Y2

1\ . ..
), where ( indicates
T2

the strings to be parsed in the strands of the first tape, and u indicates
Y2
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the strings to be written (parsed) in the strands of the second tape (both
actions are done within one transition step of the automaton).

We denote by X PW K (a) the families obtained in this way, for X €
{A,N,F, 5,1, NS,N1,FS, F1} and « € {u,ctr}.

A Watson—Crick finite automaton can be simulated by a Watson—Crick
prefix automaton with the two tapes identical, and the transitions operating
in the same way on both of them (hence no further control is provided by
the second tape). Consequently, we get

Lemma 5.20. XWK(a) C XPWK(a), for all X and « as above.

In this way, all the representations of RE obtained for Watson—Crick finite
automata hold true also for Watson—Crick prefix automata.

Also the relations between families X PW K (ctr) corresponding to the
diagram from Fig. 5.2 are true.

The use of the second tape increases the power of Watson—Crick automata,
hence of prefix automata compared to finite automata.

Lemma 5.21. If hy,hy : V* — U* are two morphisms, then hi(EQ(h;,
hy)) € NSPWK (u).

Proof. For given morphisms hi, ke, we construct the simple stateless
Watson—Crick prefix automaton

M = (Vlyl)17V27P27P)7

where
i=U,
p1={(a a)|a €U},
Va =

p2—{(a,a)la€V}

P (M- () (e

It is easy to see that
w1 A * A 21
=B = BV

if and only fuw =w € U2y =20 € Vi5ju = hl(zl), and wy = hz(zl).
Therefore, L, (M) = h1(EQ(h1, hg)). 0
Corollary 5.11. If hy,hy : V* — U* are two morphisms, then EQ(h1, hs)
€ NSPWK (u).

Proof. In the proof of Lemma 5.21, the second tape contains EQ(h1, hs)
in each of its strands; interchanging the two tapes, we get a Watson—Crick
prefix automaton M’ such that L,(M’) = EQ(hy, ha). O
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Theorem 5.11. Each language L € RE can be written in the form L =
h(L' N R), where L' € NSPWK(u), R € REG, and h is a projection.

Proof. We use Lemma 5.21 in combination with Theorem 3.16, or Corol-
lary 5.11 in combination with Theorem 3.15. m]

Corollary 5.12. For every family of languages FL such that FL C RE and
FL is closed under intersection with regular languages and arbitrary mor-
phisms, we have NSPW K (u) — FL # .

It also follows from Theorem 5.11 that the inclusion NSWK(u) C
NSPW K (u) is proper: NSW K (u) contains only regular languages.

A characterization of RE related to the one from Theorem 5.11 can also
be obtained on the basis of the following result.

Lemma 5.22. For every alphabet V we have TSy € N1PW K (u).

Proof. Consider the simple stateless Watson—Crick prefix automaton

M= (‘/lapla‘/?ap27p)7

with
Vi = VUV,
P11 = {(aa a)a (a,(_l)) I a € V}a
Vo =V,

p2 = {(a,0) |a eV},

r () Q) e

(@) ()1 (2) twem

Therefore, the correct recognitions in M are of the form

L= 1

forwe (VUV)*,z2 € V* and w € z Ll Z: the second strand of the first tape
is parsed without any control from the second tape; when parsing a symbol
a € V in the first strand of the first tape one also parses an occurrence of a
in the first strand of the second tape, and when parsing a in the first strand
of the first tape one also parses an occurrence of a in the second strand of
the second tape.

Consequently, L, (M) =TSy. O

Corollary 5.13. Each language in RE is the image through a deterministic
gsm mapping of a language in N1PW K (u).
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5.7 Universality Results for Watson—Crick
Automata

In view of the characterizations of recursively enumerable languages by means
of Watson—Crick automata (Sect. 5.3), it is of interest to find universal
Watson—Crick (finite) automata. Using, for instance, Theorem 5.2, such an
automaton will be universal — modulo a weak coding — for the whole class of
Turing machines.

We will postpone the discussion of this subject and remark first that
a Watson—Crick finite automaton can be an elegant implementation of a
“partially universal” finite automaton as constructed at the end of Sect.
3.3.

Let us proceed as follows: Let M = (K, V, sq, F, P) be a finite automaton
and z be a string in V*. Consider the string w = code(M)™, where code(M)
is as specified in Sect. 3.3 and n = |z|. Consider also the string zc™, for
m = |w| — |z| (that is, |w| = |zc™|). Consider the relation p = (K UV U
{c,c1,¢2}) x (KUV U{c,c1,c2}) (the total relation). Write the string zc™
in the upper strand and the string w in the lower strand of a Watson—Crick
tape. The way of working of the universal finite automaton constructed at
the end of Sect. 3.3 suggests a way of defining the transitions of a Watson—
Crick automaton which works on the Watson—Crick tape mentioned above
and recognizes the strings zc™ if and only if x € L(M): the lower head scans
a copy of the code of M in the lower strand of the tape, nondeterministically
chooses a move sa — as’ of M, according to it the occurrence of the symbol
a read by the upper head is scanned, and the state of the Watson—Crick
automaton checks the correct linking of states of M, memorizing them. When
reaching the first occurrence of the symbol ¢ in the upper strand (there is at
least one such an occurrence), a final state of M must be reached, in order
to correctly finish the parsing. We leave the straightforward details of the
construction to the reader (see also the construction below).

This time, the “program” of M is rather simple, a sequence of |z| copies of
a single string, the code of M, separated from the “input data” (the string ).
However, there are two drawbacks: the length of this “program” is still rather
large, while the string in the first strand, that recognized by our universal
machine, ends with a tail of symbols ¢ which is also rather long. Both these
drawbacks can be eliminated if we allow the lower head of the Watson—Crick
automaton to move in both directions. Then one copy of code{M) is enough,

zc™ .
hence the tape can be of the form , where m and p are integers
code(M)cP
such that m > 1 and |zc™| = |code(M)cP| (at least one occurrence of c is

present in the upper strand, to mark the end of the tape, while the shorter
strand, whichever it is, is completed with additional occurrences of ¢). Again
the construction is similar in essence to that used at the end of Sect. 3.3,
but we present it in full details because it can be of interest to see a concrete
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Watson-Crick automaton which is universal in the sense considered above.

First, let us specify one further notation: one move in a Watson—Crick
automaton with a two-way lower head is given in the form of two rewriting
rules, one specifying the move of the upper head and one specifying the move
of the lower head; to be more suggestive, we write these rules one above the
other; the states involved in the two moves should always be identical (the
state belongs to the automaton, not to each of the heads).

Let K and V be the set of states and the alphabet which are maximal
for the finite automata we want to simulate. We construct the Watson—Crick
automaton

= (K, VUK U{c,c1,¢2}, Pus Qo,us {7} Pu),
where
= (VUK U{¢c1,c2}) x (VUK U{c,e1,2}),
w = {40,u> 90,00 90,00 45}

U {ls], (), (s)", (8)", ()", ()", [s] | s € K}
U {[sa] | s € K,a € V},

and the set P, consists of the following transition rules (rules of the form
sA — §'X in the upper positions mean that the upper strand head does not

move):
A b.u
1. qo,ur — qO,Iu , S € K,
qo,u$ — SqO u

9 (%u)‘—’q ),aeV,
qOua_)aqOu
3. (qOu)‘_)qOu ),SEK,
qOu3—>SQOu
4. <q0u/\_>30 )
qOuSO_’SOSO]
5. < aﬂa[sa),seK,aEV,
sla — a[sal
JA
6. (sa - ) s,s eK,aeV,
[sa]s’ — s'(
(s
7. K,
((s)s’ sse
I
8. (s)°A , 8s€Ka€eV,
(s)a—>a
9 (S)//)\—7
(s)'s' —
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(s)A — [s]A
(5)3—»33]) se kK,
(

s) ///)\ ,
yrst , 8,8 € K,

10.

(.,

(s)
S)///)\ — Z’U)\

12. ),SGK,aEV,

a( /// N wa

lUA
§(s)i - /),s,s'GK,
(sc—»c[s] ) s K.

(8)ey — cl[s]

(
(49
(
e
(&
15. <[_5]’\ - [S_> 5,8 €K, s+,
(
(
(
(

13.

14.

sls’ — &
[s]A A
6, (B (R
[s]s — sqf
17. qf’\_’qf’\) seK,
q5s — sqs
gsc — C(If>
18.
qf)\ — qf)\
19. (WAt )
grCa — Caqf
20. (qf’\ - qf’\) .
gsc — cqy

Assume now that we start with a finite automaton M = (K',V’, s¢, F, P),
with K’ € K,V’ C V, and we write a string x¢™ in the upper strand and
code(M)cP in the lower strand of the input tape of M,,, with m, p as specified
above.

While the upper head of M, remains in the same place of its strand,
the lower one looks for a transition of M which can parse the currently read
symbol of z. At the beginning, this must be a transition of the form spa — as.
By rules 5, 6 one then simulates one step of the work of M. The state (s')
can go to the right (rules 7, 8, 9) or to the left (rules 11, 12, 13), looking for
a valid continuation (rule 10). When the string z is finished and one reaches
¢ in the upper strand (we may assume that at the same moment we reach
¢; in the lower strand, because we can move freely the lower head), we pass
to checking whether or not the current state is final with respect to M. The
work of M,, stops correctly only in the affirmative case (rules 16). Therefore,

™ ¢ L(M,) if and only if z € L{M). (Rules 17-20 are used for scanning
the suffixes ¢™, coc? of the two strands.)
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The complete proof of Theorem 5.2 proceeds along the following phases:
(1) starting from a type-0 Chomsky grammar G, one constructs three mor-
phisms hl, h2, h3 such that L(G) = hg(hl(EQ(hl, hg))mR), where EQ(hl, h2)
is the equality set of hi,hy (that is, the set of words w such that hi(w) =
ho(w)), and R is a regular language (Theorem 3.16); (2) for k1, ko as above,
one constructs a sticker system (of a certain type: coherent) which generates
a set of double stranded sequences having the language hi(EQ(h1, hs)) in
their upper strands (Theorem 4.12); finally, (3) a Watson—Crick automaton
can be constructed starting from this sticker system, recognizing the language
h1(EQ(h1, h2))NR (Lemma 5.15); thus, a further morphism (hs above, which
is in fact a weak coding) suffices to characterize RE. All the three steps are
constructive. If we start from a universal type-0 grammar G, instead of
G, then we obtain a unique Watson—Crick automaton which should be uni-
versal in a natural sense. However, the above path from a universal type-0
grammar to a universal Watson—Crick automaton is too long and indirect,
the result will be too complex (we do not even see an easy way to write the
“program” to be run on such a universal machine). The task of finding sim-
ple Watson—Crick finite automata which are universal for the whole class of
such automata, hence for the class of Turing machines, remains as a research
topic. As in the case of finite automata, we consider here only the easier task
of finding Watson—Crick finite automata which are universal for the class of
automata with a bounded number of states and of input symbols.

For a Watson—Crick finite automaton in the 1-limited normal form (from
Corollary 5.1 we know that such automata are equivalent with arbitrary
Watson—Crick finite automata), M = (K,V,p, so, F, P), we can consider a
codification of it of the form

code(M) = [s, (2) ... [sn (Z:) s s [sm),

where each [s; (Zl) s;] is a symbol corresponding to a move s; (;i) —
) A

(&7} . . .
( 1) s; in P (hence one of a;, 3; is a symbol, the other one is empty), and
i
each [sf;] is a symbol associated to a final state in F.

a1az . . .Gy .

o, e V1<i<rr>1
b1b2...br:| e - - =7
we scan one symbol at a time, in either of the two strands, hence we do 2r
steps. The “speed” of the two heads is different, the distance between them
can be arbitrarily large. Thus, we have to merge the code of M with the

symbols in each strand of x, considering the molecule
= code(M)ay code(M)ag . ..code(M)a, code(M )c code(M)
0~ code{(M)by code(M )b, ... code(M)b, code(M)c code{ M)
bls(code(M),a1az .. .a.¢)
bls(code(M),b1bs ... b.c)

When parsing a molecule z = [
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(The complementarity relation contains all pairs in p plus all pairs (o, «),
with « appearing in code(M) or a = ¢.)

Now, a universal Watson—Crick finite automaton can be constructed fol-
lowing the same idea as in the case of usual finite automata (Sect. 3.3):
scan an occurrence of code(M) in either of the two strands, choose a move

AN
) '], simulate

of the form s (Z) - (Z) s’ encoded by some symbol [s ( 8

this move (clearly, when working in the upper strand, we must have 8 = A,
and when working in the lower strand we must have a = X); the states of
the universal automaton will ensure the correct linking of states of M, thus
controlling the parsing in the two strands exactly as the states of M do; we
advance with different speeds along the two strands; when reaching the col-

c . .
umn ( ) we continue by checking whether or not the current state is final
c

with respect to M (that is a state identified by a symbol [s] in code(M); we
end in a final state of the universal automaton only in the affirmative case.

Denoting by M, the Watson—Crick automaton whose construction is
sketched above, we obtain

wo € Ly(M,) iff z € Ly(M),

hence the universality property.

The “program” wy above (it also contains the data to be processed, the
molecule z, intercalated with copies of code(M)) is rather complex (of a non-
context-free type, because of the repeated copies of code(M) in each of the
two strands). A way to reduce the complexity of the starting molecule of
this universal Watson—Crick automaton is the same as in the case of normal
finite automata (where we have passed to Watson—Crick automata): consider
one more strand of the tape, that is, work with Watson—Crick automata with
triple-stranded tapes and three heads scanning them, controlled by a common
state.

Firstly, in such a case we can simplify the shape of the “program” wy:
write a1az . ..a, in the first strand, b1bs ...b, in the second strand, maybe
followed by a number of occurrences of the symbol ¢ such that these two
strands are of the same length as the third one, where we write 2r copies
of code(M). The head scanning the third strand can go from left to right
in the usual way, identifying in each occurrence of code(M) a move which is
simulated in one of the other two strands. Note that this time the “program”
(code(M)) is separated from data (molecule ).

Secondly, if we allow the head in the third strand to work in a two-way
manner (the other heads remain usual one-way heads), then only one copy
of code{M) suffices (see the above construction of a two-way two-strands
Watson—Crick finite automaton which is universal for the class of finite au-
tomata with a bounded number of states and of symbols).

We leave the technical details concerning universal Watson—Crick au-
tomata (with two or three strands in their tapes) to the interested reader.
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Remark 5.6. We have investigated here only some basic questions about
Watson—Crick automata, as recognizing devices essentially using the new
data structure, the Watson—Crick tape, based on the complementarity re-
lation specific to DNA sequences. We balance in this way the generative
approach in the previous chapter. After having defined these new classes of
machines, the usual program in automata theory can be followed in inves-
tigating them. We have considered here mostly only one class of problems,
important from the DNA computing point of view: representations (hence
characterizations) of recursively enumerable languages. The results are en-
couraging: most of our machines characterize RE modulo a simple squeezing
device, a weak coding in some cases and a deterministic gsm in other cases.
Such squeezing mechanisms are inherent to DNA computing because of the
necessity of encoding the information we deal with, using the alphabet of the
four DNA letters: A, C, G, T.

Many other (classes of) problems remain to be investigated. We mention
only some of them:

1. Investigate the “pure” families of languages associated with Watson—
Crick automata (where “pure” means: without using squeezing mech-
anisms). What are their mutual relationships and what are their rela-
tionships with the families in the Chomsky hierarchy or in any other
standard hierarchy of languages?

2. Improve, if possible, the characterizations of RE presented here, by
using simpler Watson—Crick automata and/or simpler squeezing mech-
anisms.

3. Find concrete Watson—Crick automata which are universal (modulo a
weak coding or another squeezing mechanism) for the whole classs of
Turing machines.

4. Consider deterministic Watson—Crick automata of various types. Are
they strictly weaker than the non-deterministic ones? The determinism
can be defined here also in a dynamic manner, as the possibility of
branching during a computation (remember that we use transition rules

of the form s’ € §(s, ( 1)) with x1, zo strings, possibly empty, but not
T2
necessarily symbols).

5. Define and investigate complexity classes based on Watson—Crick au-
tomata. Because an essential part of the information necessary during
a computation is embedded in the data structure we use, the Watson—
Crick tape, and this is considered as provided for free, by DNA strands
“automatically” checked for the Watson—Crick complementarity, it is
expected that the usual complexity classes, based on Turing machines
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and string-like data structures, will be different from the Watson—Crick
complexity classes. This research topic (based on answers to (2)) is of
a particular interest for the DNA computing area, because it can prove
(or disprove) the usefulness of using DNA molecules — or associated
theoretical models — for computing,.

Define and investigate descriptional complexity measures for Watson—
Crick automata and for their languages. The number of states is the
basic measure to consider, as well as the number of transition rules
(given as rewriting rules, as in Sect. 5.1). This latter measure is par-
ticularly interesting for stateless automata.

All of these classes of problems deal with the automata introduced
in this chapter and, thus, are concerned with the Watson—Crick data
structure. The problem area concerning the parallelism of possible
DNA computing remains entirely open. In our estimation, the full usage
of this important feature of DNA may render drastic changes to some
basic ideas of complexity such as deterministic and nondeterministic
polynomial time.

As a general “background” research topic there remains the question of

implementability — if not implementation — of a Watson—Crick automaton
of any of the variants considered here, or of other types which will be in-
troduced. However, this is a challenge which should be approached in an
interdisciplinary manner (team).

5.8 Bibliographical Notes

This chapter is mainly based on the paper [66], where the Watson—Crick
automata (in all variants considered above, except the 1-limited one) were
introduced. The Watson-Crick finite automata were also presented in [65].
The discussion about universal Watson—Crick automata follows [127], where
the 1-limited variant is introduced.



Chapter 6

Insertion-Deletion Systems

6.1 Inserting-Deleting in the DN A Framework

In this chapter we consider computing models based on two operations which
were already considered in formal language theory, mainly with motivation
from linguistics. These operations — insertion and deletion, with context
dependence — can also be encountered in the genetic area and they can be
performed, at least theoretically, in the following ways.

Let us imagine that in a test tube we have a single stranded DNA sequence
of the form 5 — zyuvzez — 3', where all z1,x2,u,v, 2 are strings. Add to this
test tube the single stranded DNA sequence 3’ — 4o — 5, where 4,7 are the
Watson—Crick complements of the strings u, v, and 7 is the complement of
some new string y.

The two strings will anneal, & will stick to v and ¥ to v, folding §. We
obtain the situation in Fig. 6.1(b). If we cut the double stranded sub-
sequence wv (by a restriction enzyme), then we pass on to a structure like
that in Fig. 6.1{(c); adding z, which acts as a primer (and also adding a
polymerase), we shall obtain a complete double stranded sequence as in Fig.
6.1(d). Melting the solution, the two strands will be separated, hence we
obtain two strings, one of them being x;uyvzaz. This means that the string
y has been inserted between u and v.

By a similar mismatching annealing we can — theoretically — perform a
deletion operation, also controlled by a context: take uyv in the starting
string and add @v, then follow a similar procedure. Fig. 6.2 illustrates the
operation (the passing from step (b) to step (c) is done by polymerisation
and the removing of the loop y by a restriction enzyme).

Therefore, in the DNA framework we can perform insertion and deletion
operations. Such operations are also present in the natural evolution pro-
cess, under the form of (random) point mutations, where single symbols are
inserted in or deleted from DNA sequences, in general without an explicit

G. Piun et al., DNA Computing
© Springer-Verlag Berlin Heidelberg 1998
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contextual control as in the case illustrated in Figs. 6.1 and 6.2. These oper-
ations are also present in the RNA editing, see e.g., [14], with an additional
feature: inserting or deleting U (uracyl) is easier and more frequent than
inserting or deleting A, C, G.

T u v T2 A
5 | | % | 3
@ ¥
U Y v
1 u v T z
(b) 5 | § i i { {3/
a Q 7
y
i) u v ) VA
(c) 5} | { % i — 3
1 - 1
u y v 3/ 5/
z
1 u ) v T2 z
| | | | | | |
@ — —+—
X1 U Yy v o z
1 u Y v T2 z
(e) 5} } | | } — 3

Figure 6.1: Inserting by mismatching annealing

As expected, insertion and deletion operations, working together, are
very powerful, leading to characterizations of recursively enumerable lan-
guages. (Roughly speaking, in order to have a generative mechanism equal
in power to type-0 Chomsky grammars it is necessary to have “enough”
context-sensitivity embedded in the model and erasing possibilities. Clearly,
insertion and deletion operations provide both these facilities.) We shall
prove such characterizations below, for various restricted cases, formulated
in terms of a computability model called an insertion-deletion system — in
short, an insdel system.



6.2. Characterizations of RE Languages 189

6.2 Characterizations of Recursively Enumer-
able Languages

An insdel system is a construct
P}/ = (‘/’ T7 A7 R)’

where V' is an alphabet, T C V', A is a finite language over V', and R is a finite
set of triples of the form (u,/3,v), where u,v € V*,(a,8) € (VT x {A}) U
({\} x V). The elements of T' are terminal symbols, those of A are azioms,
the triples in R are insertion-deletion rules. The meaning of (u,A/B,v) is
that § can be inserted in between u and v; the meaning of (u,a/A v) is
that a can be deleted from the context (u,v). Stated otherwise, (u,A/3,v)
corresponds to the rewriting rule uv — ufv, and (u, /A, v) corresponds to
the rewriting rule uav — uwv.

1 U Yy v T2 z
(a) 5} % i % I —3

Yy
Ty U Q v Z2 z
(b) 5 | | | | | g7

T1 u v T2 z
© | j I E i |
1 " I ~ T ~ 1
T1 ) v Z2 zZ
T U v T2 z

(d) | I i i —

Figure 6.2: Deleting by mismatching annealing

Consequently, for z,y € V* we can write x = y if y can be obtained
from z by using an insertion or a deletion rule as above. Explicitly, this
means that one of the following cases holds:

1) = = zjuvzy,y = r1ufvzs, for some x1,z2 € V* and
(u, A\/B,v) € R,

2) T = xiu0vTe,y = T1UVT9, for some x1,z9 € V* and
) ’ s 42
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(u, /A, v) € R.
The language generated by < is defined by
L(y) ={weT" |z =" w, for some z € A},

where =—* is the reflexive and transitive closure of the relation =.
We say that an insdel system v = (V,T, A, R) is of weight (n,m;p, q) if

n = max{|8] | (v, /B,v) € R},
m = max{|u| | (u,A\/B,v) € R or (v,\/B,u) € R},
p = max{|a| | (u,a/\,v) € R},
g = max{|u| | (u,a/\,v) € Ror (v,a/\u) € R}.

We denote by INSDEL], for n,m,p,q > 0, the family of languages
L{~) generated by insdel systems of weight (n’,m’;p’,q’) such that n’ < n,
m’ <m,p <p,q <q. When one of the parameters n, m, p, q is not bounded,
we replace it by *. Thus, the family of all insdel languages is INS;DEL?.
Because the insertion-deletion of the empty string changes nothing, when
n = 0 we also suppose that m = 0, and when p = 0 we also suppose that
g = 0. The meaning of INS) is that no insertion rule is used, and the
meaning of DELJ is that no deletion rule is used.

From the definitions, we obviously have the following inclusions.

Lemma 6.1. (i) INSPDELS C INSJ DELY,, for all0 <n <n/,0 <m <
m,0<p<p,0<¢g<q.
(i) INS:DEL* C RE, INS:DELS C CS.

By using insdel systems of arbitrary weights, we can easily characterize
the recursively enumerable languages.

Theorem 6.1. RE = INS?DELS.

Proof. Take a language L C T generated by a type-0 grammar G =
(N,T, S, P) with P containing rules of the form X — z with X € N, z €
(NUT)*, |z| €2, and rules of the form XY — UZ, for X,Y,U,Z € N (for
instance, take G in Kuroda normal form). We construct the insdel system

v = (NUTU{E, K, K.}, T,{SEE},R),
R ={(X,\/Kiz,a100) | X >z € Pwith X € Nz € (NUT)*,
|z| <2, and 1,00 € NUT U{FE}}
U {(XY,NKsUZ, araz) | XY — UZ € P with X,Y,U, Z € N,
and a1, € NUT U{E}}
U {(\, XK1 /\A) | X € N}
U {(\, XYK3/A M) | X,Y € N}
U {(\, EE/X A}
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The symbol E is only used when checking the context ajas at the end
of the strings. The symbols K;, Ky are “killers”: K; removes one symbol,
the one placed immediately to its left hand, and K5 removes two symbols,
those placed immediately to its left hand. Making use of these symbols, the
insertion rules in R simulate the rules in P. Symbols already marked by
the “killers” K7, Ko cannot be used as contexts of rules in R (o, @2 in the
above writing of rules in R cannot be equal to K, K3). Therefore, we get
L(G) = L{»). ]

Natural from a mathematical point of view and also motivated from re-
strictions appearing in the DNA/RNA area, the problem arises whether or
not the result in Theorem 6.1 can be strengthened, by considering shorter
inserted or deleted strings, and shorter contexts controlling these operations.
In particular, it is of interest to consider the case when only symbols are
inserted or deleted: as we have mentioned in the previous section, such op-
erations correspond to point mutations in genetic evolution.

Insdel systems of a very reduced weight characterize the recursively enu-
merable languages:

Theorem 6.2. RE = INS?DEL}.

Proof. Of course, we have to prove only the inclusion RE C INS?DEL}.

Consider a language L C T*,L € RE, generated by a type-0 grammar
G = (N,T, S, P} in the Penttonen normal form (Theorem 3.4}, that is con-
taining context-free rules X — x with |z| < 2, and non-context-free rules of
the form XY — XZ, for X,Y,Z € N.

Without loss of generality we may assume that in eachrule X — aja9 € P
we have X # a1, X # ag, a1 # as. (If necessary, we replace X — ajap with
X - X', X! > oq0h, ay — a2, where X', o, are new symbols.) Similarly,
we may assume that for each rule XY — XZ € Pwehave X £Y, X # Z,
Y # Z. Moreover, by replacing each rule X — a € P, a € NUT, by
X — aZ,Z — A, we obtain an equivalent grammar. Hence, we may assume
that the rules in P are of the following three forms:

1. X — ajag, for a;,as € NUT such that X # a1, X # as, 01 # as,
2. X =)
3. XY - XZ, for X,)Y,Ze Nsuchthat X £#Y, X £Z)Y # Z.

Moreover, we assume the rules of P are labeled in a one-to-one manner.
We construct the insdel system

7 = (V: T7 A’ R)’
where

V = NUT U{[r],(r) | r is the label of a rule in P} U{B, E},
A = {BSE},

and the set R is constructed as follows.
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1. For each rule r : X — oyas € P of type 1, with a3, a0 € NUT, we
consider the following insertion-deletion rules:

(r1) (B1,A\/[r], XB2), for By € NUT U{B}, and
B2 € NUT U{E},

(r2) ([r)X,A/(r),B), for e NUTU{E},
(r.3) ([}, X/A (7)),

(r4) ([r],A/on, (7)),

(r.5) (a1, M az,(r)),

(r6) (A [r]/A 01),

(r.7) (o, (r)/A ).

2. For each rule r : X — X € P of type 2, we introduce the deletion rule

(r1) (B1,X/X, B2), for pr € NUTU{B} and
B2 € NUTU{FE}.

3. For each rule r : XY — XZ € P of type 3, with XY, Z € N, we
consider the following insertion-deletion rules:

(r.1) (81X, A/[r],YB2), for 8y € NUT U{B} and
Goe NUTU {E},

(r2) ([r]Y,A/(r),B), for € NUT U{E},
(r3) (0, Y/7 (),

(rd4) (Ir),A/Z,(r)),

(r8) (X,[rl/A2),

(r8) (Z,(r)/\N).

4. We also consider the deletion rules

(A B/AA),
(N E/AN).

We obtain the equality L(G) = L(v).

(C) Each derivation step w = w’ in G is simulated in 7 by a derivation
BwE —>* Bw'E, using the rules (r.¢) associated as above with the rule from
P used in w = w’. For instance, assume that w = wi Xwq, w' = wyaycows,
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for r: X — aqnap € P. Then we successively obtain:

Bw XwyF = Bun [T]Xng by the rule (r.1)
= Bun [r] X (r)weE by the rule (r.2)
= Buws[r}{(r )wQE by the rule (r.3)
= Bw[r]oq (r)we F by the rule (r.4)
= Bwi[r]ayas(r)w2E by the rule (r.5)
= Buioag(r)wE by the rule (r.6)
= BwjajawyE by the rule (r.7)
= Buw'E.

We proceed in a similar way when w = v’ is done by using arule r : XY —
X Z. The details are left to the reader.

We start from BSF; at any moment, the markers B, E' can be removed.
Thus, any terminal string generated by G is in L{).

(2) Consider a string BwE; initially we have w = S. We can apply to
it a rule (r.1) from group 1, or a deletion rule (81, X/A, 32) associated with
X — A€ P, or arule (r.1) from group 3, or a rule from group 4. Assume
that we apply (81, \/[r], X 32) for some r : X — oy € P. We have

Bwy XwoE = Bw;[r]XwqE.

Since the rules in P are labeled in a one-to-one way, X # «q, and rules of the
form of (r.1) in groups 1 and 3 have a left context checking the symbol placed
immediately to the left of X (the same assertion holds for the deletion rules
in group 2), the only rule which can use the symbol X is (r.2). Eventually
this rule must be applied, otherwise the derivation cannot lead to a terminal
string. Thus, the substring [r] X of Bw[r]Xws leads to [r] X (r). Again there
is only one possible continuation, by the rule (r.3), which erases the symbol
X. Only after inserting ¢ between [r] and (r) we can remove the symbol
[r]. In the presence of a; and of (r) we can introduce az, too, by the rule
(r.5). As (r) is introduced after [r], and X # ay, the symbol o used by this
rule (r.5) as a left context should be introduced at a previous step, by the
corresponding rule (r.4). After introducing as, which is different from both
a1 and X, we can delete (r), by the rule (.7). Due to the contexts, no other
rule can use the mentioned symbols as contexts or can delete any of them.
Thus, after using (r.1), we have to use all rules (r.7),2 < ¢ < 7, associated
with r : X — ajas, simulating the use of X — ajas.

In the same way, after using a rule (6, X,)\/[r],Y32) associated with
r: XY — XZ € P, we have to continue with (r.i),2 < i < 6 (possibly
not immediately or at consecutive steps, but using the same symbols of the
current string), hence we have to simulate the rule XY — X Z.

The deletion rules {81, X/A, 32) directly correspond to erasing rules in P.
The markers B, E can be deleted at any step. Consequently, v can generate
only strings in L(G). a
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Theorem 6.3. RE = INS}DEL).

Proof. Consider a language L € RE,L C T*, and take a grammar G =
(N,T,S, P) in the Geffert normal form given in Theorem 3.5(2) such that
L = L(G). Therefore, P = P; U P,, where P; contains only context-free rules
of the forms

S — uSv, foru,v € (NUT — {S}HT,
S—z, forzre (NUT - {SHT,
and P, contains rules of the form XY — A for X, Y € N.
We construct the insdel system
~v=(V,T,A, R),
with
V=NUTU{c,K,K' F}
u{[S,r]|r:S—ze P}
U{X,ri|r:S—z2Xwe P,z,we (NUT)*i=|z|+1,
X eNUTY,
A = {Sc},
and R contains the following insertion-deletion rules:

A. Replace each rule S — uSv in P by the rule S — uScv. The rules
S — z with |z|s = 0 remain unchanged. Denote by Pj the set obtained
in this way. For each rule r : § - X;X,... Xy € P| with X; €
NUTuU{c},1 <i<k,k>1, we introduce the rules:

1. (S, A/[S,r],c),

2. (S,)K,[S,7)),

3. (ASK/A N,

4. ([S,r], /[ X1,7,1],¢),

5. ([Xi,r i), N[ Xigr,mi+1],6),1 <i<k—1,
6. ([S,r],\/K,[X1,71,1]),

7. (M[S,TIK/ A A),

8. ([Xir i), N/ X, [Xiz1,mi+1]),1<i <k —1,
9. ([Xiri, /K, X;),1<i<k-1,

10. (N [Xi, 3] K/AA), 1 < i<k,

11. ([Xg, 7 k], A/ F,c),

12. ([Xg,7, k], A/ Xk, F),

13. ([Xk,’l‘,k‘],)\/K,Xk),

14. (Xg,\/K',F),

15. (A K'F/\N).
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B. We also introduce in R the rules

(A, XY/X, A, for XY — A€ Py,
(A e/A ).

It is clear that if the insdel system v simulates correctly the context-free
rules in P, then it generates the language L(G).

Consider a string w € (N UT U {c})*. The only rules in R applicable
to such a string are those in group B, and a rule of type 1 in group A.
Namely, a substring Sc of w can be replaced by S[S,r]c, for some r € PJ.
Assume that w = w;Scws, (initially, w; = we = A) and use a rule as above for
r:S— X1Xo... Xk, k > 1. Weget wS[S,r]cws. From [S, 7] we will produce
X1 ... Xg. Because X; # ¢ and k > 1, the occurrence of S in w1 S[S, rjcws
will never be followed by ¢ again, hence it will not be used again by rules
of type 1. We have to remove it using rules 2 and 3 (K is a “killer” of the
symbol placed to its left hand):

w1 S[S, r]cwe = w1 SK[S,r]cws == w1 [S, r|cws.

The only way to continue is by using rules of types 4, 5, 8, because the “killer”
K able to remove the symbols [S, 7], [X;,7,4],1 < i < k—1, can be introduced
only when both to the left and to the right hand of it there appear symbols of
the type [, 7], [X;, 4], 1 <i < k— 1. Thus, eventually we have to perform
the derivation

w18, rlews = wn [S, ][ X1, 7, Yews = w1 [S, ][ X1, 7, 1][ X2, r, 2]cws
- ...— wl[S,r][Xl,r, 1] . [Xk_l,'l‘, k— 1][Xk,7‘, k]cwg.
After this derivation or intercalated with its steps, in between [S,r] and
[X1,7,1] we have to introduce the symbol K and in between each [X;,,1]

and [X;41,7,i+ 1], 1 <4 < k — 1, we have to introduce X;. We obtain the
string

wl[Sl,r]K[Xl,r, l]Xl[XQ,T, 2]X2 AN [Xk_l,T,k — l]Xk_l[Xk,T, k‘]C'LUg.

The block [S,7]K can be deleted (and this is the only way of removing
[S,7]). In between [X;,7,i] and X; we can introduce K, which will be re-
moved together with [X;,,]; this is the only way of removing the symbols
[Xi,7,4],1 <4 <k—1. Thus, we get the string

leng . .Xkﬁl[Xk,’I‘, k]cwg.

In order to remove [Xk, r, k| we have to introduce first the symbol F, in the
presence of which we can introduce Xj:

w1 X1 Xs. .. Xk_l[Xk,’I‘, k]ng = w1 X1.. .XkAl[Xk,T‘, k]FCU)2
— w1 X7 .. .Xk_l[Xk,T', k]XkFCU)Q.
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Now, [X&,r, k] can be removed just as each symbol [X;,r,4] by introducing
K in between [Xj,r, k] and X}, whereas F' can be removed by introducing
the symbol K’, which is then removed together with F.

Note that if there is no occurrence of S in Xj... Xy, then no further
derivation step using rules in group A can be done; if there is one occurrence
of Sin X, ... X, then it is followed by ¢, hence new applications of rules in
group A are possible. The occurrence of ¢ can be removed by the deletion
rule (X, ¢/A, A) in group B. If this is done while a symbol S is still present,
and it has not been used for simulating a rule in P, then this symbol cannot
be removed, and the string will not produce a terminal string. Consequently,
L(v) = L(G). |

It is not known how large the family INSIDEL} is, but it seems that
at least one of the parameters m (insertion contexts), p (deleted strings), ¢
(deletion contexts) must be at least two in order to generate non-context-
free languages. For instance, we have the following result, supporting this
conjecture.

Theorem 6.4. INSIDELJ C CF.

Proof. Take an insdel system v = (V,T, A, R) of weight (n,1;0,0), for
some n > 1. Because no deletion is possible, we can remove from A all
axioms not in 7™ and from R all rules containing a symbol not in T'. Thus,
we may assume that V =T.

We construct the context-free grammar G = (N, V, S, P), where

N = {S}uU{()a),(a,b),(a,\) | a,be V},
P ={S — (Aa1)lay,az)(as,a3) ... (ag—1,ax)(ak, A) | a1as...ar € A,
k>1la,€V,1<i<k}

U {(a,b) — (a,a1)(a1,a2) ... (ak,b) | (a,N/a1az...ax,b) € R,

or (a,A\/a1az...a5, ) € R, or (A, A\/ajaz...a,b) € R,
or (A\,Maiaz...ap,\) € Rk>1,a,€V,1<i<k,a,beV}

U {(Aa) = (A a1)(ar,a2) ... (ag—1,ar)(ak,a) | (A, N aias...ax,a) € R,

or (A, A aiaz...ap,N) € Rk>1,0,€V,1<i<k,acV}

U {(a, ) — (a,a1)(a1,a2) ... (ax—1,ar)(ax, A) | (a,A/a1az .. .ax, \) € R,

or (A, Maiaz...ax,A) ERk>1,0,€V,1<i<k,aeV}

U {(\,a) —a,{a,\) > A|acV}

U {(a,b) > b|a,beV}

The rules § — =z, together with the terminal rules in P, introduce the
strings of A; the rules in R are simulated by the corresponding rules in
P. The symbols (a,b) keep track of pairs of symbols in the current string,
whereas (A, a), (a, \) make it possible to use rules (u, \/x,v) with u = A or

v = A, respectively, at the ends of the current string. Consequently, we have
L() = L(G), and so L(y) € CF. O
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This is the best result of this type, because we have
Theorem 6.5. INS3DELY] contains non-semilinear languages.

Proof. We consider the following insdel system, the weight of which is
equal to (2,2;0,0):

’Y = ({a" b7 c’ d’ f?g}) {a" b7c’ d7 f?g}7 {fadef}7R)’

with set R containing the following rules:

1) (f, \ga,ab),
(aa, A/b, bc),
(bb, \/c,cd),
(ce, N/d, da),
(dd, A/a,ab),
(cc, A/d, df).

(Starting from the substring fab of the current string, these rules double each
occurrence of the symbols a, b, ¢, d, step-by-step, from left to right. Note that,
except for the first rule, each rule has the form (u, A/z,v) with u = aa,a €
{a,b,c,d}, and v belongs to the set {ab,bc,cd,da} — except the last rule
above, for which v = df. The pairs ab, bc, cd, da are called legal; they are the
only two-letter substrings of a string of the form (abed)™.

Clearly, starting from a string of the form wf(abed)™ f (initially we have
w =\ and n = 1), we can move on to a string

w fg(aabbcedd)™zy(abed)? £, (%)

withm > 0,p > 0,m +p+ 1 = n,y is a suffix of abed, abed = zy, and z
is obtained by doubling each symbol in z. When m = n —1 and y = A,
we obtain the string wfg(aabbeedd)™ f, so the length of the string obtained
between g and f is equal to 8n, twice the length of the initial string (abed)™.)

2) (g,/c,aa),
(ca, M/c,a),
(ca, A/d, bb),
(db,A/d,b),
(db, \/a,cc),
(ac, Ma,c),
(ac, A/b,dd),
(bd, A/b, d),
(bd, A/c, aa).

(Starting from the substring gaa, that is from the symbol ¢ introduced by
the rules of group 1, these rules replace each substring aa,a € {a,b,c,d},
by BaBa, 3 € {a,b,c,d}, in such a way that all pairs Sa, a8 are not legal.
In view of the fact that, except the first rule, all the rules in group 2 are of
the form (u, A/z,v) with u being a non-legal pair, it follows that these rules
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can be applied only in a step-by-step manner, from left to right. Since each
rule (u, A/z,v) as above contains a pair aa, a € {a,b,c,d}, in the string uw,
it follows that rules in group 2 can be applied only after the rules of group
1 have been applied. Consequently, from a string of the form (x), using the
rules of group 2, we can either move on to a string of the form

wf g{cacadbdbacacbdbd)” uv(aabbeedd)®xy(abed)? f, (*%)

where 0 <r <m,r+ s+ 1 =m, v is a suffix of aabbcedd, and u is obtained
by “translating” the string z for which we have zv = aabbccdd by means of
the rules in group 2, or we get a string of the form

w f g(cacadbdbacacbdbd)™ x'y(abcd)? f,

where z’ is obtained from a prefix of by “translating” it using the rules
above.

Let us note that the rules of group 2 also double the number of symbols in
the substring to which they are applied, so, when the string (*) is of the form
wfg(aabbeedd)™ f, we can obtain a string wfg(cacadbdbacacbdbd)™ f, that is
with the substring bounded by g and f of length 16n, twice the length of
(aabbeedd)™ and four times the length of the initial string (abed)™.)

b, A/c,df),
d, \/a,bc),
b, \/c, da)
¢, A/a,bc),

3) (
(
(
(
(¢, A/d, ab),
(
(
(
(

?

a, \/b, cd),
a, A/c,da),
b, \/d, ab),
d,\/b,cd),
(96 A/ 1 ab).

(All the rules above are of the form (u, A/z,v) with v being a legal pair, or
v = df in the first rule. Moreover, with the exception of the last rule, each
rule has v = af with a, 3 € {a,b,¢,d}, u € {a,b,c,d}, and ua is a non-legal
pair. Each rule introduces a symbol  between « and v in such a way that 3
is a legal pair. Consequently, the rules of group 3 can be applied only in the
step-by-step manner, from right to left, starting either from the rightmost
symbol f — by the first rule — or from the rightmost position where the rules
of group 2 have been applied; indeed, only in that position does a three-letter
substring ua8 appear as above, with ua being a non-legal pair and o a legal
pair. Using the above rules we obtain only legal pairs, therefore we move on
to a string containing substrings abcd.

As both groups of rules 1 and 2 need substrings vv,v € {a,b,¢,d}, in
order to be used, it follows that the rules of group 1 can be applied only after
“legalizing” all pairs of symbols. So, the first rule in group 1 can be applied
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only after using the last rule of group 3, which introduces a new occurrence
of the symbol f.

The application of rules in group 3 again doubles the length of the string.
Consequently, a string of the form {*%) is translated by rules in group 3 into

wfgcf(abed)® u'v(aabbecdd)® zy(abed)P £,

where v’ is obtained from w in the above manner. When the string
w fg(aabbeedd)™ f has been transformed into wfg(cacadbdbacachdbd)™f by
means of rules in group 2, then the above group of rules provides the string
wfgcf(abed)® f.

Clearly, after using the rules of group 3 as many times as possible, the
derivation can be reiterated, again using the rules of group 1.)

The above grammar generates a non-semilinear language. To this end,
we use the following auxiliary result.
Assertion. If E C (N — {0})" is a semilinear set, then for each pair (i,j),
1 <i,5 <n, one of the following two properties holds:

w
1. Thereis a constant k; ; such that =< k; ; for all vectors (u1, ... ,un) €
Uy

E;
2. There are vectors (uy, ..., un) € E with one of u;, u; fized and the other

one arbitrarily large.

This assertion can be proved as follows. If £ = Ule E,, where E;, C (N—
{0})™are linear sets, 1 < ¢t < k, and B} = {vyy + Y ooy Ve, Ts | T1y- -+, Tm, €
N}, for some vectors v,,0 < s < my, then vy, (r) > 0 for all 1 < r < n (we
have no zero component in the vectors of E). Then

Cif o, (2) > () v, (j) > 0, for all 1 < s < my, then for all (u1,...,u,) € Et
(t)
we have — < ;% for
UJ
® _ max{ve, (4) | 0 < s <y}
% minf,, () |0 < 5 < M}

2. if, say, v, (j) = 0,v4,(¢) > 0, for a given 5,1 < s < my, then the set
{vee +ve, @ | * € N} contains vectors with the ith component equal to
Vg, (1) + vy, (2), which is arbitrarily large, and the jth component equal

to vy, (J )
Now, if point 2 above holds for a linear set E;, then it holds for E,
otherwise property 1 holds for E, taking
kij = max{kg’? I1<t<k}

Returning to the proof of our theorem, consider the Parikh mapping,
Uy, associated to V = {g,a,b,¢c,d, f} (please note the order). The above
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Assertion is not true for the set ¥y (L(7)). Indeed, consider the positions 1
and 2 (corresponding to symbols ¢g and a) of 6-tuples in ¥y (L(vy)). From the
above explanations, one can see that the rules in groups 1, 2, and 3 can be
applied only in this order. One symbol g and some symbols g are introduced
into each cycle of this form such that from a string x one goes to a string
y with at most 8 times more occurrences of the symbol a. ConsequentLy,

1

each 6-tuple (u1,...,ug) € Yy (L(7)) has u; < ug < 8". As the ratio

U1
can be arbitrarily large, but for each given u; the component us cannot have
arbitrarily large values, it follows that the Assertion above is not fulfilled, so
Uy (L{7)) is not semilinear. O

On the other hand, we have the following result, proving that insertion
only is not “too strong”.

Theorem 6.6. LIN — INS:DELY + 0.

Proof. The language L = {a™ba™ | n > 1} is not in the family
INS:DELSY: clearly, if an infinite language Lo is in INS;DELY, then an
infinite number of strings z € Ly can be written in the form z = uzv such
that x # A and uv € Ly. Such a property does not hold for the language
L. O

6.3 One Symbol Insertion-Deletion Systems

Bounding the length of the insertion-deletion contexts at a low value (at most
two, as in Theorems 6.2 and 6.3) is mathematically challenging, but not very
important from a molecular computing point of view: the contexts (u,v) in
Figs. 6.1 and 6.2 should be “large enough” in order to ensure the stability
of the obtained structures. A restriction which is, however, asked for by
biochemical constraints is that of computing by insertion-deletion of strings
composed of one symbol only (such as U in the RNA case). Of course, we
cannot work with only one symbol in our alphabet: on the one hand, codifying
two-symbol strings over a one symbol alphabet leads to exponentially longer
strings as compared with the starting ones. On the other hand, the operation
cannot be controlled, since any context is present in any sufficiently long
string,. .

We need at least one further symbol, but this symbol cannot be introduced
or removed during the computation. Therefore, we have to provide enough
copies of all symbols different from the insertion-deletion one, as a sort of
workspace, and moreover, we have to accept an output modulo occurrences
of such symbols, because they cannot be removed.

Moreover, because we have to manipulate only occurrences of one symbol,
in order to generate a language over an arbitrary alphabet we have to codify
the symbols of this general alphabet using the elements of our restricted
alphabet and, after the computation, we have to decodify, returning to strings
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over the general alphabet. In this way, we are led to the following variant of
insdel systems.

A restricted insdel system is a construct
7 = (‘/7 {a? c}7 A’ R’ h)7

where V is an alphabet, a, ¢ are specified symbols (not necessarily from V'),
A is a finite subset of {a, c}*, R is a finite set of triples of the form (u, o/ 3, v},
with u,v € {a,c}* and o, 8 € c¢*, one of o, 3 being empty, and h : V* —
{a,c}* is a morphism. Therefore, only substrings of the form ¢*,i > 1, can
be inserted or deleted; the contexts can contain occurrences of both symbols
a and c. The relation = is defined in the usual way, over {a,c}*. Then, the
language generated by v is

L(y) = b '({w € {a,c}" | z(aca)” =" (aca)™w,
for some n,m > 0,z € A}).

In words, we start from an axiom z € A, prolonged with an arbitrary number
of “empty spaces” aca, we use an arbitrary number of insertion-deletion rules,
we discard the “spaces” aca placed to the left hand end of the obtained string,
and we map by h~! the remaining string into a string in V*. In this way,
strings w for which h=!(w) is not defined are removed, hence we can ensure
the termination of the derivation in the same way as when using a specified
terminal alphabet.

We denote by 1INSDEL the family of languages generated by restricted
insdel systems of arbitrary weight; because we work here with a coding of
strings over V' as strings over {a,c}, we cannot keep bounded (for instance,
independent of the cardinality of V') the weight of the used systems.

Expected from the point of view of Theorems 6.2, 6.3 and encouraging
from DNA/RNA computing point of view, we have the following result.

Theorem 6.7. RE = 1INSDEL.

Proof. Consider a language L C T*,L € RF, and consider a grammar
G = (N,T, S, P) in the Kuroda normal form generating L. Assume that

NUT:{al,...,an},

with o = S.
The rules in P can be of the following forms:

Q; — Oy,
; —>)\,

O — O,

-~ W e

Q5 — Qp Q.
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Consider one new special symbol, ay = #, denoting an empty space, and
assume that we start not from S but from S#?°, for some s > 0. Then we
may replace all rules of forms 1, 2, 3 in P with rules of the form 4, as follows:

1. aiap — ajoq, for a; — oy € P,
2. ;a9 — apag, for a; — A € P,

3. a9 — jag, for o — ajar € P,
providing that we also add the rules of the form
9. a0 — oy, 1 <1< n.

(They move the symbol oy = # to the left.)

Let us denote by G’ the grammar obtained in this way.

Then, for every derivation S ==* w in the grammar G we can find a
derivation S#° =* #'w in G’ for some t > 0.

Starting from G’, we construct a restricted insdel system v = (NUTU{#},
{a,c}, A, R, h) as follows.

Consider the morphism g defined by g(a;) = ac'™la, 0 < i < n. (Hence
the space # is encoded by aca.} Then

A = {aca},
h(a;) = ac'*ta, for a; a terminal symbol of G,

and the set R contains the following rules:
For the g-th rule of G, vy : a;0; — ooy, we consider the “codified” rule

actlaad*tla — ac*tlaac®la

and we introduce in R the rules

(rg1) (aclaa, \/cPa D) oitlgaestly) 0 < s <,
(rq-2) (ac™*, ,\/62(4—1)(n+1), aac(?q—l)(n-}-l)-{-]‘.{.la),

(rq-3) (ac2(4—l)("+l)+i+1aa7 c(2q—1)(’n+1)+j—p/A7cp+1a)’
(Tq.4) (ack-H’ cz(q—l)(n-‘rl)—}-i—k//\,aacp-g-la)'
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Note that:

— no rule in G is of the form #a; — oy, hence in the previous rules
we have i > 2;

— in contrast to this observation, we have j,k,p > 1 (and they can be
equal to 1).

We obtain L(G) = L{v). According to the previous discussion, it is
sufficient to prove that

{we T* | S#* =* #'w in G for some s,t > 0} = L(v).

(€) Consider a derivation step x => y in G, using a rule vy : ;o5 —
o 0y. Therefore,

T = T1040;T3 — T10E0pT2 = Y.
The “codified” string corresponding to z is g(z) such that
9(@) = gla1)ac aac ag(zy).

Because we start from S#° with large enough s, we may assume that g(zo) #
A. Thus, we can use the associated rules (r4.1.) — (r4.4.) and we successively
get

2) = g(a1)ac aac  ag(z,)
2q—1)(n+1)+j+1ag(x2)
(20-1)(n+1)+5+1

B

ac*tlaa!
2(q—1)(n+1)+it1

1
ac aac g(x2)
ac? @ DD+ g P g g (1)

ac* taacP ag(x,)

111

8
=

—_— =
-

I
a
N
p——a

Therefore, each derivation in G’ can be simulated as above by a derivation in
v. Using rules of the form a;a9 — apay, for each terminal derivation in G’
which produces a string w, we can find a derivation in v producing a string
#'g(w). Therefore, h=1(g(w)) = w, that is, L(G) C L(¥).

(D) Consider a string
z = actaac®a...ac*a,

where 1 <i; <n+1,1<j5<k.

A block acla, with 1 < i < n+1, is said to be low; in contrast, acia with
i > n-+ 1 is said to be high.

To a string z as above (with all blocks being low) we can only apply an
insertion rule in R of the form (ry.1.), hence corresponding to a rule r, in P.
Let the “codified” rule associated to 4 be of the form

ac'™aac’™ 1 qg — ac’ aacP?a.
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Using the rule (ry.1.) we get
z = aca...acd™ 'aact™ aacPa" Nt D imi1 g imizg  geikg =

Note that a high block has been introduced, ac(24=D(n++imi14 When using
a rule of type (r4.1.), a low block, surrounded by two low blocks, is replaced
by a high block. Specifically, (2¢ — 1)(n + 1) new occurrences of the symbol ¢
are introduced; because 2¢ — 1 is odd, we say that we have an odd high block.

No rule in R can use the high block in 2’ as a context, excepting the rule
(r4.2.) for the same g as above. The inverse morphism h~! is not defined on
high blocks, hence eventually the rule (r4.2.) should be applied. This means
that we replace the substring

acim aac@a- D@+ Fimi1

of 2’ by

ac @D+ Fim o0 (2¢=1) (04 D 4im1 (%)

Therefore, the low block ac»a has been replaced by the high block
ac @Dt timg - As 2(q — 1) is even, we say that we have an even high
block.

Thus, we have obtained a string containing a pair of high blocks, one even
and one odd, precisely identified by the index ¢ of the rule r; in G’.

None of the rules in R can use these high blocks, excepting (r4.3.), which
replaces the substring (*) by

ac2@— D+ tim o0 b2

Thus, the previous odd high block is replaced by a low block. The only
possible way to replace the remaining even high block by a low one is by
using the rule (r4.4.), which leads to

ac’aac’?a.

Thus, the rule ac™aaci=+a — acP'aacP?a has been simulated and this
is the only way to proceed towards a successful derivation (that is, a
derivation which produces a string in (aca)*g(T*)). Consequently, when
ac’a(aca)® =* (aca)tg(w), for some w € T* (only for such strings w we
have g~!(w) defined), we have S#° =>* #'w in G’, w € T*. This implies
w € L(G), completing the proof. O

From the proofs of Theorems 6.2, 6.3, and 6.7 we can obtain universality
results: there are insdel systems v, = (V,, T, —, R,) of weight (1, 2; 1, 1),
or (1, 1; 2, 0), as well as restricted insdel systems such that for any insdel
system v = (Vp, T, Ag, Rg), we can construct a set A(y) over V,, such that
L(v,) = L(v), for 4, = (V4, T, A(7), Ry). Therefore, the universal insdel
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system simulates the given insdel system -, the particular system ~ can be run
on v, as a program. This can be obtained as follows. Take a universal type-0
grammar G, = (N, T, P,) and construct the equivalent insdel system as in
the proof of Theorems 6.2, 6.3 (or 6.7). Since G, has no axiom, the obtained
system, 7,, will have no axiom set. However, v, is the universal system we
look for. If we consider an insdel system -y, with the same terminal alphabet,
then there is a type-0 grammar, G = (N, T, S, P), equivalent with . Consider
(as at the end of Sect. 3.3, when we have constructed a universal type-0
grammar) the code w(G) of this grammar. In the axiom strings BSFE, Sc used
in the proofs of Theorems 6.2, 6.3, respectively, we replace S by w(G)S. Then,
because L{G) = L(G), for G|, = (N, T,w(G)S, P,) and L(G) = L(v),
L(G,) = L(v,), for v, obtained from =, as above, we get L(v),) = L(v),
hence the universality property holds. One sees that, in fact, the “program”
of v to be run on 7, consists of one string only. The same result holds true for
restricted insdel systems, with the difference that the unique program-axiom
should be supplemented with arbitrarily many empty spaces (ace, in the
coding from the proof of Theorem 6.7). Thus, via the existence of universal
Turing machines and of universal Chomsky type-0 grammars, we find a proof
of the theoretical possibility of designing universal {programmable) molecular
computers based on the insertion-deletion operations.

The proof of Theorem 6.7 suggests another interesting speculation, con-
cerning the so-called “junk DNA.” It is known that a large part of the human
genome, about 97% of it, consists of short repeated sequences, thus unable
to encode much information, and having no known function. A “computer
science explanation” of this situation is given in [207]. We do not enter into
details, but we only mention the fact that the basic assumption is that the
higher life forms have to have complete computational power in order to pos-
sess an efficient immune system. But computational completeness is fragile,
hence dangerous for life itself. Hence it must be kept under control. Thus,
a “replicon police” (“replicon killers”) should exist. Conclusion: “junk DNA
may be in large part composed of the corpses of former replicons” [207].

The proof above provides a much more “peaceful” explanation: if we
need a high computational complexity, then we need an arbitrarily large
workspace, which at the beginning of the computation is given as a sequence
of the encoding of the empty space (aca, here); during the computation
the empty space is shuffled with the current meaningful string, the spaces
are consumed and reintroduced in the string, such that at the end of the
computation we again have a sequence of repeated strings, which can be
arbitrarily long. In short, the junk DNA might be the working space of the
cell “computation device”. This explains both its abundance and the fact
that it consists of repetitions of the same short string. In the terms of [207],
these speculations show that computer science approaches to DNA/RNA
might be at least as interesting to biology as for DNA/RNA computing.
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6.4 Using Only Insertion

When designing an insdel “computer” it is natural to try to keep the under-
lying model as simple as possible. One idea is to use either only insertion
operations or only deletion operations. As we have pointed out in Lemma
6.1(ii), using only insertion operations we generate only context-sensitive lan-
guages. Moreover, as we have seen in Sect. 6.2, the family IN.S} DELY has
serious limitations (Theorem 6.6). However, supplementing the model with
some squeezing mechanisms (direct and inverse morphisms, for instance), we
can again characterize the recursively enumerable languages. It is not clear
how to supplement a device based on deletion only with some additional
mechanisms (other than insertion rules) in such a way to get all languages
in RE. Therefore, we shall consider here only the families INST™DFELJ,
n,m > 0, including n = * or m = *.

In order to have an image about the size and the properties of these
families we mention a series of known results about them; for proofs we refer
to [69], [146], [147], [209] (some of these results are proved in Sect. 6.2; full
details can be found in [159]).

1. FIN CINS?°DELS C INSIDELY C ... CINS:DELJ c CS.
2. REG is incomparable with all families INST"DELJ, m > 0.

3. LIN and CF are incomparable with all families INSTDEL}, m > 2,
and INSDELY.

4. INS2DELS contains non-semilinear languages.
5. All families INST*DELS, m > 0, are anti-AFL’s.

Note a difference between points 2 and 3 above: REG is not incomparable
with INS!DELY, like LIN and CF. As we shall see below, using only
insertion we can generate each regular language, hence we can compute at
the level of finite automata. When arbitrary contexts can be used, this can be
done without any additional help, when a morphism is added, then contexts
of length 1 suffice.

Theorem 6.8. REG C INS!DELJ.

Proof. Let L be a regular language and let M = (K,V, qo, F, &) be the
minimal deterministic finite automaton recognizing L.
For each w € V*, we define the mapping p,, : K — K by

puw(g) =4¢ iff (qw)F* (d,N), ¢,.d € K.

Obviously, if 1,29 € V* are such that pg, = ps,, then for every u,v € V*,
uzqv is in L if and only if uzew is in L.
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The set of mappings from K to K is finite. Hence the set of mappings pu
as above is finite. Let ng be their number. We construct the insdel system
v=(V,V, A, R) with

A={weL]||w <ng—1},
R={(w,\/v,\) | |lw| <ng—1,1 < |v| < ng, lwv| < ng, and py, = Py }-

From the definition of mappings p,, and the definitions of A, R, it follows
immediately that L(vy) C L.

Assume that the converse inclusion is not true and let € L — L(7y) be
a string of minimal length with this property. Thus z ¢ A. Hence |z| > ny.
Let £ = 22’ with |z] = ng and 2’ € V*. If 2 = ai1a2...an,, then it has
ng + 1 prefixes, namely A, a1, a102,...,a1 ...an,. There are only ng different
mappings p,. Therefore there are two prefixes uj, ug of z such that u; # ug
and py, = pPu,.- With no loss in generality we may assume that |u;| < |ug|.
By substituting uz by u; we obtain a string 2’ which is also in L. As |z/| < |z|
and z was of minimal length in L — L(¥), we obtain 2’ € L(vy). However,
lug| — Ju| < |ug| < ng, so if uy = ujug, then (u;, A/ug,A) is an insertion
rule in R. This implies that 2’ =, z, that is ¢ € L(v), a contradiction. In
conclusion, L C L{).

The strictness of the inclusion is obvious (see, for instance, Theorem 6.5
in Sect. 6.2). o

Theorem 6.9. Fach regular language is the coding of a language in the
family INS!DELSY.

Proof. Let G = (N, T, S, P) be a regular grammar (hence with rules of
the forms X — aY, X — a, for X,Y € N,a € T'). We construct the regular
grammar G' = (N, N x T, S, P'}, where

P ={X—>(X,a)Y | X >aY €P, foraecT,X,Y € N}
U{X—>(X,a)| X —>a€P, for X e NacT}

Consider also the coding h : (N x T)* — T™ defined by h((X,a)) = a,
X € N,a € T. Clearly, L(G) = h(L(G")), so it is sufficient to prove that
L(G") € INS'DELY.

We consider the set

W ={ze(NxD)|if z =z1(X,a)z2(Y,b)zx3, for
21, 22,23 € (N X T)*, then X £Y}.
Clearly, for each y € W we have |y| < card(N), so W is a finite set. We
construct the insdel system v = (N x T, N x T, A, R), where
A = LGN (N x T)W,
R = {((X,a),M/(X1,01) ... (Xi, ax), (V) | (X1,01) .- . ( Xk, ax) €W,
beT, X waX,€ P Xy —aYy e PX;, — a,-XH_l € P,
forall 1 <i<k-—1}.



208 6. Insertion-Deletion Systems

The inclusion L(y) € L(G’) is obvious. Conversely, let x € L(G’) be an
arbitrary string. If x € (N x T)W, then z € L(y). If z ¢ W, then z =
z1(X, a)zo(X, b)xs, x1,22,23 € (N UT)*. Clearly, y = z1(X,b)z3 € L(G")
and |y| < |z|. Let us take z1,x2, 23 in such a way that (X,a)xs € W. Then
y = z is a correct derivation according to the rulesin R. If y € (N x T)W,
then = € L(7y). Otherwise, we repeat the procedure above until we obtain a
string z € (N x T)W such that 2 = ... = y = z, so ¢ € L(v), which
completes the proof. a

When both a direct and an inverse morphism are available and “not very
short” contexts are used, then we reach the power of Turing machines.

Theorem 6.10. FEach language L € RE can be written in the form L =
g(h=Y(L")), where g is a weak coding, h is a morphism, and L' € INS]DELS.

Proof. Consider a language L C T*,L € RFE, generated by a type-0
Chomsky grammar G = (N, T, S, P} in Kuroda normal form. Therefore, P
contains rules of the following two types:

1. X->YZ X—-a,X—-oMNfor XY, Ze€N,aeT,
2. XY -UZ, for X,Y,U,Z € N.

From the form of these rules, we may assume that each string in L(G) is
generated by a derivation consisting of two phases, one when only nonterminal
rules are used and one when only terminal rules are used. (If necessary,
when symbols @ should be erased in order to prepare substrings XY for
non-context-free rules in P, we replace @ by @’ and move @’ to an end of
the string, where it will eventually be erased by a rule Q" — X.) Moreover,
we may assume that during the second phase, the derivation is performed in
the leftmost mode.

Consider the new symbols #, $, ¢ and construct the insdel system

7=(NUTU{#8,c}, NUTU{#,8,c},{c'Sc"}, R),
with P’ containing the following insertion rules:
(1) for each context-free rule r : X — x € P we consider the rules:

(1.r) : (nogasayX, M/#8x, asasaragagayg), for
a; € NU{#,8,¢},1<i <10,
asay ¢ N{3$}, azasas ¢ N{$}N,
ayagasay € N{S}NN,a5 ¢ {#,$}, and
asasarasay ¢ N{#S$}N{#};
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(2) for each non-context-free rule r : XY — UZ € P we consider the rules:

(2.r.1) : (10003 X,A/SUZ,Y o), for

o; € NU{#,8,¢},1 <i<4, and

arazag & N{$}IN, asaz ¢ N{$}, as ¢ {#,$},
(27.2) : (XSUZY,\/#8,a), for o € N U{c},
(21.3) : (X, N/#,8UZY #3);

(3) for each X,Y € N we consider the rules:

(3.XY1) : (a1o0a3XY#8, M/ X#,ouas5046), for

a; € NU{#,8,¢},1 <14 <6,

ajasas ¢ N{$} N, and if agas = X#, then ag = $;
(3.XY.2) : (X,\/#8,Y#$X#a), for a € N U {c},
(3.XY.3) : (SY#3X#,M/8X, ), for o € N U {c}.

We say that all rules (1.r) are of type 1, all rules (2.r.7), for r a non-context-
free rule in P and 1 < 4 < 3, are of type 2, and that all rules (3.XY.q), for
X, Y € Nand 1 <i <3, are of type 3.

Denote by M the set of strings a#$, for « € N UT. For each string
w € M we consider a symbol b,,. Let W be the set of these symbols. We
define the morphism

h: (WUTU{c})* — (NUTU{#,8$,c})",

by
h(by) =w, we M,
hia)=a, a €T,
hic) =c.

Consider also the weak coding

g: (WUTU{c})" — T,

defined by
g(bw) =X weM,
g(c) = A
gla)=a, a€T
We obtain

L(G) = g(h ™ (L()))-
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The reasoning behind the construction above is the following.

The insertion rules of type 1 simulate the context-free rules of G, the rules
of type 2 simulate the non-context-free rules of G. The rules of type 3 are
used in order to prepare the current string for making possible the use of
rules of type 2. This is done as follows:

The symbols #,$ are called markers. A nonterminal followed by # and
then by a symbol different from $ is said to be #-marked. A nonterminal
followed by $ is said to be $-marked. A nonterminal followed by #$ is said
to be #$-marked. A nonterminal which is #-, $-, or #8$-marked is said to
be marked, otherwise it is called unmarked. A string consisting of unmarked
symbols in N UT U {c} and of blocks a#$, for « € NUT, is said to be legal.

For example, c*Scb (the axiom of 7) is legal, cX#$XaY #3c is also legal.
The first occurrence of X and the occurrence of Y in this latter string are
marked (#8$-marked), the second occurrence of X, as well as all occurrences
of ¢ and a are unmarked. However, cX$XaY #8$c is not legal, because the
first occurrence of X is $-marked but not #$-marked.

Now, the rules of type 3 are able to move an unmarked nonterminal X
across a block X#$ placed immediately to the right of X. In this way, pairs
XY can be created, which are needed for simulating the context-sensitive
rules of G.

The marked symbols, plus the markers and the symbol ¢ are considered
“invisible garbage”; at each moment, the string of the unmarked symbols
is intended to correspond to a sentential form of G. By the definitions of
h and g, this “invisible garbage” is erased, indeed, from each legal string
generated by . Because no unmarked nonterminal can be mapped by A1,
what remains will be a terminal string.

In order to prove the equality L(G) = g(h™!(L(y))) we shall first prove
that rules in groups 1, 2, 3 in G’ are doing what we have said that they are
supposed to do (in this way we obtain the inclusion C), then we shall prove
that they cannot do anything else (that is, also D is true).

Claim 1. When using a rule (cnonazan X, M/ #3zx, asasaragagaig) of type
1, the occurrence of X in the derived string is unmarked, but it is #3$-marked
in the resulting string, where also each symbol of x is unmarked.

The fact that X is unmarked in the string to which the rule is applied is
ensured by as, which is different from # and $. As we obtain the substring
X#S$xas, the other assertions are obvious.

Claim 2. When using a group of rules (2.r.i),1 < i < 3, associated with a
ruler : XY — UZ in P, then the symbols XY are unmarked in the derived
string, both of them will be #$-marked in the resulting string, where UZ are
unmarked.

The substring of the string to which the rule (2.r.1) is applied
is ajapasXYay, with a4 ¢ {#,8}, hence X and Y are unmarked.
We get the string ajasasX$UZY ay, to which the rule (2.r.2) is ap-
plied, leading to a1aeasXSUZY #3a4. Now, by the third rule, we get
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arasa3 X#SUZY #8a4. One sees how the third rule completes the #$-
marking of X, whereas Y has been #$-marked by the second rule. Clearly,
UZ are always unmarked. From a substring where the only unmarked block
(not involving the substrings aqazas and ay) is XY we have obtained a sub-
string where the only unmarked block (not involving the substrings ajasas
and ay) is UZ.

Claim 3. Starting from a legal string, the rules in a group (3.XY.3),1 <
i < 3, can replace a substring XY #%a (hence with an unmarked X) by a
substring consisting of blocks in N{#8} and ending with X« (hence with an
unmarked X ).

The rule (3.XY.1) can be applied to a string zoyasas XY #3asasasy
and it produces the string zayasaz3 XY #$X#asasagy. The second rule is
now applicable, leading to zaasaz X #3Y #8 X #asa506y. Finally, the third
rule produces royooas X #SY #SX#$X asasa6y. Therefore, the substring
XY #$ has been replaced by X #3Y #$X#$X, having an unmarked X in
the rightmost position.

Thus, starting from a legal string (initially, we have ¢*Sc%), the rules of G’
can simulate the rules of G, producing legal strings. Moreover, if we denote
by umk(z) the string of the unmarked symbols in a legal string = generated
by G’, then we have
Claim 4. (i) If ¢ ==* y by using a rule in group 1 or all three rules
(2.r4),1 < i < 3, associated with a non-contexi-free rule r of G, then
umk(z) => umk(y) by the coresponding rule in G.

(ii) If z =* y by using the three rules in group 3 associated to the same
X,Y in N, then umk(z) = umk(y).

Claim 5. If x = g(h~'(y)), for some y € L(G"), then y is a legal string
and x = umk(y),y € T*. Conversely, if y € L{y) and umk(y) € T*, then
umk(y) = g(h="(y))-

This follows immediately from the definitions of the morphisms g and h.

These claims prove the inclusion L(G) C g(h™*(L(7))).

We shall now show that only derivations as above lead to legal strings.
Claim 6. After using a rule (2.r.1), no other rule but (2.7.2) can be applied
to the involved nonterminals X,Y,U, Z. Then, after (2.r.2), only (2.r.3) can
be used.

Indeed, let us consider only the subword ajosazXYay used by a
rule (2.r1), for r : XY — UZ € P. After using (2.r.1) we obtain
10003 XSUZY oy Now:

— No rule (1.¢) can be used to any of X,Y,U,Z, due to the symbols

Bi,1 < i < 10, in rules (81828304X, A/#8z, 850657 0809610) of type
(1.9),q : X — z € P. (For instance, 8203384 ¢ N{$} N, hence Z above
cannot be used by a rule (1.¢) corresponding to ¢: Z — z € P.)

— No rule (2.¢.1) can be used for a pair UZ or ZY, due to symbols 313233
in rules (615283 X,A\/$Y Z,UB,) of type (2.q.1) for ¢: XU - Y Z € P.
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— No rule (2.4q.2),q # r, can be used: this is obvious, because we need
the subword X$U ZY, which identifies the rule 7 in P.

- No rule (2.4.3) can be used, because we need a substring X$UZY #8,
and a4 above is different from #.

— No rule (3.C'D.1) can be used, because our string does not contain the
substring C'D#8$; the same argument makes impossible the use of the
rules (3.C'D.2) and (3.CD.3), for all C, D € N.

Using the rule (2.r.2) we get the string a;asa3 X$UZY #%a4. Nothing
has been changed to the left of X$U ZY or inside this substring; moreover,
Y is now #$-marked. As above, one can see that no rule can be applied to
this string, excepting (2.r.3). For instance:

- Norule (3.ZY.1) can be used for the pair ZY (the only one which is fol-

lowed by #8), because 313203 in a rule (81828 2Y #8, \/ Z#, BafBs5s)
of this type cannot be X3$U.

— No rule (3.C'D.2) can be used, because there is no symbol C' which is
#-marked in our string; the same reason makes impossible the use of a
rule (3.CD.3),C,D € N.

Claim 7. After using a rule (3.XY.1), no other rule but (3.XY.2) can be
applied to the involved nonterminals X,Y. Then, after using (3.XY.2), no
other rule than (3.XY.3) can be used.

The rule (3.XY.1) replaces a substring ajoeas XY #8asa506 by w =
ajagas XY #$X#asa506. Now:

~ No rule of type (1.q) : (81828381, M/ #8z, B586578889510) can be
used (X is the only unmarked symbol in our string), because of

8586873389810 which cannot be equal to Y #$X#ay,.

— No rule of type (2.¢.1) can be used, because we do not have two un-
marked symbols in w.

— No rule of types (2.¢.2),(2.9.3) can be used, because we do not have a
$-marked symbol in w.

— No rule (3.CD.1) : (818283CD#8,A/c8, 848506) can be used; the only
possibility is to use again (3.XY.1) (no other symbols appear here), but

848553 prevents that.

— No rule (3.CD.2) with XY # CD can be used, just because we do not
have the necessary occurrences of C and D.

— No rule (3.C'D.3) can be used, because we need a substring of the form
$D#3C#, and such a substring does not appear in w.
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Therefore, we have to continue with (3.XY.2) and we get the string
a3 X #Y #$ X #asasae. There is no unmarked symbol here, hence rules
of the forms (1.r), (2.q.1), (2.q.2), (2.¢.3), (3.CD.1), (3.C'D.2) cannot be used.
A rule (3.CD.3) can be used only if XY = CD, which concludes the proof
of Claim 7.

Consequently, the rules in groups (1.7), for r a context-free rule of P, and
(2.r.i), 1 <4 < 3, for r a non-context-free rule of P, and (3.XY.4),1 <14 <3,
for X,Y € N, cannot be mixed; inside these groups, the rules have to be
used in the order imposed by ¢, from 1 to 3, therefore, the system ~ can
only simulate derivations in G on unmarked symbols. This means that if h~!
is defined for y € L(G’), then ¢*Sc® ==* umk(y) in the grammar G and
g(h~(y)) € L(G), proving the inclusion g(h~*(L(v))) C L(G).

Note that the weight of « is (4, 7; 0, 0) (4 is reached in rules of type (1.7)
and 7 is reached in rules of type (3.XY.1)). |

The proof of the previous theorem can be modified as follows:

— Write L = (J,r(95(L){a}) and take a grammar G, = (N,, T, S,, Pa)
for each language O,(L). Assume that alphabets N,,a € T, are mutually
disjoint.

~ Start from the axiom set {c¢*S,ca | a € T}.

— Together with all rules in the construction above associated with rules
in P,,a € T, consider also the rules with the “witness” suffixes of the type
aq . ..oy ending with the symbol ¢. For instance, together with

(1.r) : (a1azazasX, A/#8z, asasaragagarg),
consider also all rules with asagaragagaig replaced by:

asagaragage, for as € {#,$},
a8 C,

a5Qe07C,

a506C,

ase, for as,ag, a7, as, 09 € N U {8},

C.

Similarly for rules of all other types which involve suffixes of symbols «.

In this way, at the end of the current string we can use shortened rules
and we can still prevent the derivations which can produce strings outside
the languages 9% (L).

— Also allow the terminal symbols to migrate to the right, by the rules in
group 3, hence let X and Y in these rules be also terminals; moreover, let Y
be also equal to c.

— Add the following rules:

(4.a.1) : (ac, \/#8a#,b), a,be T,
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(4.0.2) : (a,\/#83, c#%a#b), a,be T,
(4.0.3) : (Sc#8a#, A/$ca,b), a,beT.

Note the fact that the symbol ¢ existing in the string is now #8$-marked
and that together with the unmarked occurrence of @ moved to the right we
introduce an unmarked occurrence of ¢. The derivation steps are

zrachr’ = zac#Sa#bsr = ra#ScHSa#br’ == ra#Sc#Sa#$caba’,

hence the symbol a has been moved near the terminal b, across c.
— Add also the rule

(4.0.4) : ($c#$a#,A/$da,b), a,be T,

where d is a new symbol, which is introduced in the alphabet of G’.

As rule (4.a.1) uses an unmarked occurrence of ¢, if we use rule (4.a.4)
instead of (4.a.3), then we introduce no new unmarked occurrence of ¢, hence
rules (4.a.7) can no longer be applied. Therefore, if we consider the regular
language

Lo ={o#$ | a e (NUTU{c})"Hd},

then we obtain the equality
L = Lo\L(7).

Indeed, the left quotient with respect to Lo selects from L{~y) those strings
which contain the symbol d and which have in front of this symbol only
#$-marked symbols. This means that all nonterminals were replaced by
terminals and that all terminals were moved to the right, hence a copy of
them is now present to the right of d. Consequently, we obtain

Corollary 6.1. FEach language L € RE can be written in the form L =
Lo\L', for Ly a regular language and L' € INS;DELY.

It is an open problem whether or not the parameters 4 and 7 appearing
here can be replaced by smaller numbers. Anyway, from INS!DELJ C
CF and the fact that CF is closed under inverse morphisms and arbitrary
morphisms, the superscript 7 above cannot be replaced by 0 or by 1.

A quite interesting consequence about the size of families INSTDEL9
can be inferred:

Corollary 6.2. FEach family INSTDELY,n > 4,m > 7, is incomparable
with each family of languages FL such that LIN C FL C RE and FL is
closed under weak codings and inverse morphisms, or under left quotients
with regular languages.

Proof. Because LIN — INS!DEL3 # 0, we get FL — INS:DELY # 0.
As the closure of F'L under weak codings and inverse morphisms is strictly
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included in RE, we cannot have INS]DELY C FL (then RE C FL C RE,
a contradiction). 0

As examples of families of languages having the properties of F'L above
we mention M AT> and ETOL.
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Chapter 7
Splicing Systems

Starting with this chapter we investigate computability models based on
the splicing operation, a formal model of the recombinant behavior of DNA
molecules under the influence of restriction enzymes and ligases. Informally
speaking, splicing two strings means to cut them at points specified by given
substrings (corresponding to the patterns recognized by restriction enzymes)
and to concatenate the obtained fragments crosswise (this corresponds to a
ligation reaction).

After briefly discussing the abstraction process leading from the recombi-
nation operation as it takes place in vivo to the language-theoretic operation
of splicing, we start the mathematical study of this latter operation, both in
the non-iterated and the iterated form of it. Then we define the fundamental
notion of the following chapters, that of an ertended H system, a language
generating device using as a basic ingredient the splicing operation. This
chapter discusses the splicing operation and the splicing systems, in the gen-
eral and in the simple form, from a mathematical point of view. Because H
systems with finite components generate only regular languages, additional
control mechanisms are considered in the subsequent chapters, controlling
the work of H systems. Various such mechanisms suggested by the regulated
rewriting area in formal language theory (Chap. 8) and architectures sug-
gested by grammar systems area (Chap. 10) are investigated. In most cases,
characterizations of recursively enumerable languages are obtained, that is to
say, computational completeness. From the corresponding proofs, universal
H systems of the considered types are also obtained.

7.1 From DNA Recombination to the Splicing
Operation

Let us start by an example, illustrating the cut and paste activity carried
out in vitro on double stranded DNA sequences with restriction enzymes and

G. Piun et al., DNA Computing
© Springer-Verlag Berlin Heidelberg 1998
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ligases, resembling the recombination of DNA as it takes place in vivo.
Consider the following three DNA molecules:

5 — CCCCCTCGACCCCC - 3
3’ — GGGGGAGCTGGGGG - &

5 — AAAAAGCGCAAAAA - 3
3 —TTTTTCGCGTTTTT - 5

5 — TTTTTGCGCTTTTT - 3’
3 — AAAAACGCGAAAAA - ¥

The restriction enzymes (endonucleases) are able to recognize specific
substrings of double stranded DNA molecules and to cut molecules at the
middle of such substrings, either producing “blunt” ends or “sticky” ends.
For instance, the sequences where the enzymes Tagl, SciNI, and Hhal cut
are, respectively:

TICGA GICGC G CGIC
AGCIT CGCIG ClIGCG

We have also indicated the way of cutting the DNA molecules. Specifi-
cally, when acting on the three molecules mentioned above, the three enzymes
Taql, SciNI, and Hhal will cut these molecules at the unique sites occurring
in them and the following six fragments are produced:

5 — CCCCCT CGACCcce -3
3’ — GGGGGAGC TGGGGG — &
5 — AAAAAG CGCAAAAA =¥
3 —TTTTTCGC GTTTTT - %
5 — TTTTTGCG CTTTTT - 3’
3 — AAAAAC GCGAAAAA-¥

Note that in all cases we have obtained fragments with identical over-
hangs, CG when reading in the 5’ to 3’ direction, but there is a crucial
difference between the case of Taql, SciNI, and that of Hhal: the free tips of
the overhangs created by the first two enzymes are at 5’ ends, but the free
tips of the two overhangs created by Hhal are at 3’ ends. This makes the
ends of the first four fragments compatible. If a ligase is added, then the four
fragments can be bound together, either restoring the initial molecules, or
producing new molecules by recombination. The recombination of the first
four fragments above gives the new molecules below:

5 — CCCCCTCGCAAAAA - %
3 — GGGGGAGCGTTTTT - %’
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5 — AAAAAGCGACCCCC - ¥
3’ - TTTTTCGCTGGGGG — 5’

The formation of these recombinant molecules is possible because the
overhangs match.

Thus the operation we have to model consists of two phases: (1) cut the
sequences at well-specified sites, and (2) paste the fragments with matching
ends.

Now, because of the precise Watson—Crick complementarity, we can con-
sider the operation above as acting on single stranded sequences (hence on
strings). As far as the DNA molecules are concerned, this abstraction step is
obvious; for instance, the three molecules we have started with are precisely
identified by the strings

CCCCCTCGACCCCC,
AAAAAGCGCAAAAA,

TTTTTGCGCTTTTT,

respectively, with the convention that they represent a strand of a DNA
molecule read in the 5 to 3’ direction.

In what concerns the patterns of restriction enzymes, we have to keep not
only the information about the involved nucleotides, but also about the type
of tips created when cutting the molecules. The pattern is described by a
triple (u,z,v), of strings over the alphabet {A, C, G, T}, with the meaning:
(u,v) is the context where the cutting takes place and z is the overhanging
sequence. In the case of the three enzymes above we have the triples:

(T,CG,A), (G,CG,C), (G,CG,CQC).

However, we know that the first two enzymes produce matching ends, whereas
the third one does not (although its associated triple is identical to the
triple describing the second enzyme). We simply distinguish the two pos-
sible classes, for instance, saying that the first two triples above are of Class
1 and the last one is of Class 2. When recombining fragments of strings, we
allow only the concatenation of fragments produced according to triples of
the same class.

Formally, having two strings wi,ws and two triples (u1,x1,v1), (u2, 79,
v2), such that

! 1
w; = W u1r1v1Wy,
’ "
Wo = WolUaT2VU2Wy,

we allow the recombination operation only when (u1,%1,v1) and (ug,z2,vs)
are patterns of the same class and z; = x2; the strings obtained by recombi-
nation are

/ "
21 = w1u1xv2w27
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29 = whugTviwy,

where z = 7 = xo.

Tacitly, we have made here one more generalizing step, by working with
strings over an unspecified, arbitrary alphabet.

In order to get the most general operation with strings, modeling the
previously described one, we have to advance three more steps.

Firstly, instead of the relation of patterns (u,z,v) “to be of the
same class”, we can consider an arbitrary relation, by starting directly
from pairs {((u1,2,v1), (u2,2,v2)). The meaning of such a pair is that
(u1,x,v1), (u2, x,v2) are triples of the same class, they can produce matching
ends, that is, the recombination of the fragments they produce is allowed.

Secondly, when having a pair ((u1,z,v1),(u2,z,v2)) and two strings
wy,wo as above, w1 = wiuyzviw] and we = wyusrvows, we can consider
only the string z; = w}ujzvw} as a result of the recombination, because the
string 2o = whusxviw! is the result of the one-output-recombination with
respect to the symmetric pair, ((u2,x,v2), (u1,z,v1)).

Thirdly, instead of pairs of triples ((u1,z,v1), (u2,x,v2)) as above, we can
consider pairs of pairs: the passing from w; = wjujzviw], we = WhszTvowy
to z1 = wiuizvewy with respect to ((u1,x,v1), (u2,,v2)) is equivalent with
the passing from w; = wjujviw], we = whusvawy to z1 = wiujvowy with
respect to ((uf,v1), (uh,v2)), where uf = uyz and vy = uoz. Similarly, we
can consider the quadruple ((u1,zv1), (u2,zv2)).

Altogether, we are led to the following operation with strings over an
alphabet V: a quadruple (ui, u2; us, u4), of strings over V, is called a splicing
rule; with respect to such a rule r, for x,y,z € V* we write

(z,y) Frz i z=z1U1u222,
Y = Yusuqy2,
2 = I1U1U4Y2,

for some 1, Z2,y1,y2 € V™.

We say that we splice =,y at the sites ujug, usuy, respectively, and the result
is z. This is the basic operation we shall deal with in this chapter. When
investigating it from a mathematical point of view, we shall consider it in this
form. When we build computability models (in the subsequent chapters), in
order to keep these models as close as possible to the reality, we shall consider
the operation of the form

(z,y) Er (z,w) iff = =z1u1u220,
Y = nusuqy2,
Z = T1U1U4Y2,
W = Y1uU3u2x2,

for some z1,22,y1,y2 € V™.
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We shall explicitly specify the variant in use when giving the relevant
definitions. We shall say that I is a 1-splicing and = is a 2-splicing operation.
When we say only “splicing”, it will be clear from the context which type of
splicing is meant. In this chapter we deal only with 1-splicing.

Of course, if we want to bring our models back to laboratory, we have to
renounce all the aforementioned abstraction steps, going back to considering
specified enzymes, with specified recognition patterns. For certain models we
shall discuss some of the problems raised by such an attempt. In general,
the power of our models will be essentially based on the control mechanisms
imposed on the splicing operation, as mentioned at the beginning of this
chapter. All these mechanisms look unrealistic for the present day laboratory
techniques. Hence, the “computers” we shall discuss need significant progress
in biochemical engineering, a task which is far beyond the scope of the present
book.

7.2 Non-Iterated Splicing as an Operation
with Languages

In all real circumstances, the sets of strings and the sets of splicing rules (of
enzymes behind them) are finite. Because the strings can be arbitrarily long
(there is no a priori bound on their length), it is just natural to also consider
languages of arbitrary cardinality. This is not the case with the splicing
rules: very few restriction enzymes have overhangs of length greater than six.
This means that in the writing (u,z,v) as a representation of the recognized
pattern, in most cases we have |z| < 6, that is, when considering splicing
rules (ug,usz;us,uq), each string wuj, uz, us, uq is of a rather limited length.
In a mathematical set-up, such a limitation is not necessary. Moreover, as
we shall see in Sect. 7.3, even in the iterated case, the splicing with respect
to a finite set of rules preserves the regularity. From a computational point
of view, this means that we can reach in this way at most the power of
finite automata or Chomsky regular grammars. These observations suggest
considering “arbitrarily long” splicing rules, i.e., infinite sets of splicing rules.
In order to keep some control on such infinite sets, we shall codify the rules
as strings; then their sets are languages and we can consider the type of these
languages with respect to a specified classification, for example, the Chomsky
hierarchy.
This is the style we shall adopt in this section.

Consider an alphabet V' and two special symbols, #,$, not in V. A
splicing rule (over V') is a string of the form

r = uiFusSusHuy,

where uy, ug, uz, uy € V*. (For a maximal generality, we place no restriction
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on the strings uy, uz, us, uq. The cases when ujuz = A or ugus = A could be
ruled out as unrealistic.)
For a splicing rule r = u; #uaSus#uy and strings z,y, z € V* we write

(.’E,y) '—7- z ff z= T1Ui1UgT2,

Y = Y1usuqy2,
Z = T1U1UqyY2,

for some 1, %2, y1,¥2 € V.

(Therefore, a rule uy#us$uz#us corresponds to a rule (ui, ug; us, us) as
at the end of the previous section.)

The strings z,y are sometimes called the terms of the splicing; when
understood from the context, we omit the specification of r and write
instead of .

The passing from z,y to z, via ., can be represented as shown in Fig.
7.1.

T u U z
e e N R Y
T T f i f |
|
| | \ | |
Y F | 1 I ]
| us o U4 Y2 |
| | |
! | " ! |
z f i T i
z1 Uy Ug Y2

Figure 7.1: The splicing operation

Often, when the splicing of specific strings is presented, for better read-
ability we shall indicate by a vertical bar the place where the terms of the
splicing are cut, in the style:

(z1u1|ugzs, Yius|uaye) Fr T1UIULY2,

for r = w1 HuoSuzHu,.

The way of building the result of the splicing by concatenating a prefix of
the first term of the splicing with a suffix of the second term is visible in this
writing. It could be also useful to represent the splicing rules in a graphic
way, as in Fig. 7.2(a), in order to make clearer the way of working of these
rules: the “window” in Fig. 7.2(a) should identify simultaneously the sites
ujuy and usuy in two DNA molecules, as in Fig. 7.2(b).

An H scheme is a pair
o= (V,R),
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where V is an alphabet and R C V*#V*§V*#V* is a set of splicing rules.

Note that R can be infinite, and that we can consider its place in the
Chomsky hierarchy, or in another classification of languages. In general, if
R € FL, for a given family of languages, F'L, then we say that the H scheme
o is of F'L type.

U1 U2 NN U1 U

(7}
us m 3 Uq

a) b)

Figure 7.2: A graphical representation of a splicing rule

For a given H scheme o = (V, R) and a language L C V*, we define
o1(L)={z€V*|(z,y)F, 2, for some z,y € L,r € R}.

Thus, o1 (L) is the result of one step 1-splicing of strings in L with respect
to the rules in R.

Sometimes, given an H scheme ¢ = (V, R) and an ordered pair (z,y),
z,y € V*, we also denote

o1(z,y) ={2 € V* | (z,y) & 2z, for some r € R}.

Note that o1(x,y) is different from oy ({z,y}), which is the union of the
four sets o1 (z, ), 01(x,y),01(y, ), 01(y,y). We can write

UI(L) = U Ul(xvy)'

z,yeL

Given two families F'L{, F Ly of languages, we denote
S1(FL1,FLy)={o1(L)| L € FL, and ¢ = (V, R) with R € FL,}.

(The subscript 1 in Si(...,...) reminds us that we are using here the 1-
splicing operation.)

Therefore, the family F'L; is closed under splicing of FLy type (we also
say “F Ly splicing”) if S1(FLy1,FLy) C FL;. In general, the power of F L,
splicing is measured by investigating the families S;{F Ly, F Ly), for various
FL,.

We shall examine the families Sy (F Ly, FLy) for FLy, F Ly in the set { FIN,
REG, LIN, CF, CS, RE} (therefore, F L, is always assumed to contain at
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least all finite languages). We shall first establish a series of lemmas, connect-
ing the splicing operation with other operations on languages, then collect
the results about families S;1(F L1, FLs) in a synthesis theorem.

Lemma 7.1. For all families FL,,FLy, FL|,FLY, if FL;1 C FL| and
FLy C FL), then S1(FLq,FLs) C S1(FL{, FLY}).

Proof. Obvious, from the definitions. a

Lemma 7.2. If FL; is a family of languages which is closed under concate-
nation with symbols, then F Ly C S1(FLy,FLs), for all FL,.

Proof. Take L C V*,L € FL;, and ¢ ¢ V. Then Ly = L{c} € FL;.
For the H scheme o = (V U {c}, {#c8c#}) we have L = o,(Ly), hence
L € S1(FLy, FLy), for all FLs. O

Lemma 7.3. If FL is a family of languages closed under concatenation and
arbitrary gsm mappings, then FL is closed under REG splicing.

Proof. Take L C V*,L € FL, and an H scheme ¢ = (V,R) with R C
V*#V*$V*#V*, R € REG. Consider a new symbol, ¢ ¢ V, and a finite
automaton M = (K,V U {#,8}, sq, F,§) recognizing the language R. By
a standard construction, we can obtain a gsm g, associated with M, which
transforms every string of the form

W = T1ULU2T2CY1 U3 U4Y2,
for z1,22,y1,y2 € V*, ui #HusSus#uy € R, to the string
g(w) = T1u1u4Ys.

Consequently, o1(L) = g(L{c}L). From the closure properties of F'L, we
obtain o1(L) € FL. O

Lemma 7.4. If FL is a family of languages closed under union, concatena-
tion with symbols, and FIN splicing, then FL is closed under concatenation.

Proof. Take two languages Li,Ls € FL Ly,Ls C V*, consider two new
symbols, ¢1,c2 ¢ V, and the H scheme

g = (V U {Cl, C2}7 {#Cl$62#}).
Obviously,
L1L2 = Ul(Ll{Cl} U {CQ}LQ)‘
Hence, if F'L has the mentioned properties, then LiLy € FL. a

Lemma 7.5. If FL is a family of languages closed under concatenation with
symbols and FIN splicing, then FL is closed under the operations Pref and
Suf.
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Proof. For L C V*,L € FL, consider a new symbol, ¢ ¢ V, and the H
schemes

o=V U{c},{#a8c# | a e VU{c}}),
o = (Vu{c}, {#S3a# | a € VU{c}}).

We have
Pref(L) = a1(L{c}), Suf(L)=oi({c}L).

It is easy to see that using the rule r = #c$c# we obtain (z|c, yc|) b = and
that for each z € Pref(z)—{z},x € L, there is a rule of the form r = #a$c#
in o such that (zc,yc) b, 2. Similarly for ¢’ and Suf. O

Lemma 7.6. If FL is a family of languages which is closed under sub-
stitution with A-free reqular languages and arbitrary gsm mappings, then
S1(REG,FL)C FL.

Proof. If FL has the above mentioned closure properties, then it is also
closed under concatenation with symbols and intersection with regular lan-
guages (this follows directly from the closure under gsm mappings). Now, the
closure under concatenation with symbols and under substitution with regu-
lar languages implies the closure under concatenation with regular languages.
We shall use these properties below.

Take L C V*,L € REG, and an H scheme ¢ = (V,R) with R € FL.
Consider the regular substitution s : (V U {#,$})* — P((V U {#,$})*)
defined by

s{a) ={a}, a €V,
s(#) = {#},
s(8) = V*{8}v~,
and construct the language
L, =V*s(R)V".
Consider also the language
Ly = (L WA{#})S(L W {#}).

As L, € FL and Ly € REG, we have L1 N Ly € FIL. The strings in Ly N Ly
are of the form
w = mlul#uQx2$y1U3#U4y2,

for z1urusTy € L, yyugusys € L, and uy#HusSus#uy € R.

If g is a gsm which erases the substring #20$23# from strings of the form
21#29823# 24 with z; € V*,1 <4 < 4, then we get a1 (L) = g{L; N L3), hence
o1(L) € FL. O
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Lemma 7.7. If FL is a family of languages which is closed under concate-
nation with symbols, then for all L1, Lo € FL we have L1/Ly € S1(FL,FL).

Proof. Take Ly, Ly CV*,Ly,Ls € FL, and ¢ ¢ V. For the H scheme
o= (VU{c},{#xcSc# | z € La}),

we obtain
Ly1/Lz = 01(L1{c}).
Indeed, the only possible splicing of strings in L;{c} is of the form
(ac1|acgc, yc|) |_'r z, for T1X9 € Ll,.’EQ c L2,y c L1,
where r = #xoc8c#. |

Lemma 7.8. If FL is a family of languages closed under concatenation
with symbols, then for each L € FL,L C V*, and ¢ ¢ V we have {c}L €
S1(REG, FL).

Proof. For L,c as above, consider the H scheme
o=V U{cd} {cx#d$/# |z € L}),

where ¢’ is one further new symbol. Clearly, this is an H scheme of FL type.

Then,
{c}L = o1({c}V{c'}),

because the only splicings are of the form (cz|c,cyc|) F, cz, for 7 =
cx#cd8c#,x e L, ye V*. a

Lemma 7.9. If FL is a family of languages closed under concatenation with
symbols and shuffle with symbols, then for each L € FL, LCV*, andc ¢V,
we have {c}Pref(L) € $;(REG, FL).

Proof. For L, c as above, consider the H scheme of F'L type
o= (VU{e,d}, {ead$c# |z € LU {#})),

where ¢’ is one further new symbol. We have

{c}Pref(L) = o1({c}V*{c'}),

because the only possible splicings are of the form (cx1|z2c’, cyc'|) by cxy, for
rules r = cxy# x2S #, Tyx0 € L,y € V™, a

We now synthesize the consequences of the previous lemmas for the fam-
ilies in the Chomsky hierarchy.

Theorem 7.1. The relations in Table 7.1 hold, where at the intersection
of the row marked with FL, with the column marked with F Ly there ap-
pear either the family S1(F Ly, FLy), or two families FLs, FLy such that
FLs C 81(FLy,FLsy) C FLy. These families F L3, FLy are the best possible
estimations among the six families considered here.
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Table 7.1. The size of families Sy (F L4, FL3)

FIN REG LIN CF cS RE
FIN FIN FIN FIN FIN FIN FIN
REG REG REG REG,LIN | REG,CF | REG,RE | REG,RE
LIN | LIN,CF | LIN,CF RE RE RE RE
CF CF CF RE RE RE RE
CS RE RE RE RE RE RE
RE RE RE RE RE RE RE

Proof. Clearly, o1(L) € FIN for all L € FIN, whatever ¢ is. Together
with Lemma 7.2, we have S1(FIN,FL) = FIN for all families F'L.

Lemma. 7.3 shows that S;(REG, REG) C REG. Together with Lemma
7.2 we have S1(REG, FIN) = S1(REG, REG) = REG.

From Lemma 7.4 we get S;(LIN,FIN) — LIN # (. From Lemma 7.3
we have S1(CF,REG) C CF. Therefore, LIN C S;(LIN,FL) C CF =
S51(CF,FL) for FL € {FIN,REG}.

Also the inclusions S1(LIN, FL) C CF,FL € {FIN, REG}, are proper.
In order to see this, let us examine again the proof of Lemma 7.3. If L C
V*,L € LIN, and ¢ = (V,R) is an H scheme of REG type, then o1(L) =
g(L{c}L), where ¢ ¢ V and g is a gsm. The language L{c}L has a context-
free index less than or equal to 2.

In Sect. 3.1 we have mentioned that the family of context-free languages
of finite index is a full AFL, hence it is closed under arbitrary gsm map-
pings. Consequently, for each L € S;{LIN, REG) we have indcp(L) < .
Since there are context-free languages of infinite index, it follows that
CF — S1(LIN,REG) # 0.

From Theorem 3.12 we know that for every language L € RE,L C V*,
there are ci,co ¢ V and a language L' C L{cy }{c2}* such that L’ € C'S and
for each w € L there is 1 > 0 such that wclcg € I’. Take one further new
symbol, c3. The language L'{c3} is still in CS. For the H scheme

o=V U{cy,ca,cs}, {#c18cs#}),
we have
o1(L'{c3}) = {w | weiches € L'{es} for some i > 0} = L.

Consequently, RE C §;(CS, FIN). As S1(RE,RE) C RE (we can prove
this in a straightforward way or we can invoke the Church-Turing Thesis),
we get S1(CS,FL) = S51(RE,FL) = RE for all FL.

According to Theorem 3.13, every language L € RE can be writtenas L =
L1/Lg, for Ly,Ls € LIN. By Lemma 7.7, each language L;/Ly with linear
Ly, Ly is in S;(LIN,LIN). Consequently, S1(LIN,FL) = S1(CF,FL) =
RE, too, for all FL € {LIN,CF,CS, RE}.
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From Lemma 7.6 we have S1(REG,FL) C FL for FL € {LIN,CF, RE}.
All these inclusions are proper. More exactly, there are linear languages not
in S;(REG, RE). Such an example is L = {a™b" | n > 1}.

Assume that L = 01(Lg) for some Ly € REG, Ly C V*, and 0 = (V, R).
Take a finite automaton for Lo, M = (K,V, sg, F,8), let m = card(K), and
consider the string w = a™*'6™*! in L. Let 2,9y € Ly and r € R be
such that (z,y) Fr w, £ = T1UUT2, Y = Y1UULY2, W = T1UIU4Y3, fOT
r = uiFusSus#Hus. We have either z1u; = a™Hz or ugyy = 2'b™H, for
some 2,z € {a,b}*. Assume that we have the first case; the second one
is similar. Consequently, z = a™*!zusz,. When parsing the prefix a™*1,
the automaton M uses twice a state in K; the corresponding cycle can be
iterated, hence Lo contains strings of the form z’ = a™* ¥ zuyx,, for t > 0
and arbitrary ¢ > 0. For such a string ' with ¢ > 1 we have

(x',y) |_r am+1—|—tizu4y2 — am+l+tibm+1‘

This string is not in L, a contradiction. The argument does not depend on
the type of R. (Compare this with Lemma 7.8: L ¢ S;(REG,RE), but
{c}L € $1(REG,LIN).)

According to Lemma 7.8, S1(REG, LIN)-REG # Q§ and S;(REG,CF)—
LIN # (. From Lemma 7.9 we have S;(REG,CS)—CS # §. (Consequently,
S1(REG,CF) is incomparable with LIN and S;{REG,CS), S;{REG, RE)
are incomparable with LIN,CF,CS.)

All the assertions represented in the table are proved. O

Some remarks about the results in Table 7.1 are worth mentioning:

— All families Sy(F'Ly, FLy) characterize families in the Chomsky
hierarchy, with the exceptions of S1(REG,FLs3), with FLs €
{LIN,CF,CS,RE}, and S1(LIN,FL,) with FL, € {FIN,REG},
which are strictly intermediate between families in the Chomsky hier-
archy. These six intermediate families need further investigation of their
properties (for instance, closure under operations and decidability).

— A series of new characterizations of the family RE are obtained, start-
ing, somewhat surprisingly, from “simple” pairs (F'L, F'Ly); especially
interesting is the case (LIN,LIN), in view of the fact that it seems
that the actual language of DNA sequences is not regular, or even
context-free [23], [204]. Then, according to the previous results, it can
be nothing else but recursively enumerable, of the highest complexity
(in the Chomsky hierarchy).

We close this section by examining a possible hierarchy between LIN and
CF, defined by subfamilies of Sy (LIN, FIN).
For an H scheme o = (V, R) with a finite R, we define the radius of o as

rad(o) = max{|z| | z = u;, 1 < i < 4, for some uyFuaSus#u, € R}.
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Then, for p > 1, we denote by S1(FL,[p]) the family of languages o1(L), for
L € FL and ¢ an H scheme of radius less than or equal to p.

Note that in the proof of Lemma 7.2 (and 7.4, 7.5), as well as in the proof
of the inclusion RE C S;(CS, FIN) in Theorem 7.1, the schemes used are
of radius 1. Hence for FL € {FIN,REG,CF,CS, RE} we have

S1(FL,[1]) = $1(FL,[p]), for all p > 1,

that is, these hierarchies collapse. The same is true for FL = LIN. This
follows from the next lemma.

Lemma 7.10. If FL is a family of languages closed under \-free gsm map-
pings, then S1(FL,FIN) C S1(FL,[1]).

Proof. Take an H scheme o = (V, R) with finite R. Assume that the
rules in R are labeled in a one-to-one manner, R = {ry,...,7rs}, 7, =
wi 17U o8u; s#u; 4,1 <4 < s. It is easy to construct a gsm g associated with
R which transforms each string w = x1u; 14; 22 in g(w) = 21u;,1¢u;, 222 and
each string w = y1u; 3u; 4y2 in g(w) = Y1u; 3¢jU; 4Y2, for z1, 20, 91,72 € V*
and r; as above, where ¢;, ¢; are new symbols, associated with r;. Consider
now the H scheme ¢/ = (VU {¢;,c} | 1 <i < s}, {#c:8c# |1 <i < s}). We
have g(L) € FL for each language L C V*, L € F L, and we obviously obtain
o1(L) = oi{g(L)). As rad(c’) = 1, the proof is complete. O

Theorem 7.2. LIN C $,(LIN,[p]) = $y(LIN,FIN),p > 1.

Proof. The inclusions S1(LIN, [p]) C S1(LIN,[p+1]) C S1(LIN, FIN),
p > 1, follow by the definitions. From Lemma 7.10 we also get S;(LIN,
FIN) C S(LIN,{1]). The relation LIN C Si(LIN,FIN) is known from
Theorem 7.1. a

7.3 Iterated Splicing as an Operation with
Languages

When some restriction enzymes and a ligase are present in a test tube, they
do not stop acting after one cut and paste operation, but they act iteratively.

For an H scheme o = (V, R) and a language L C V* we define

and
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Consequently, o7 (L) is the closure of L under the splicing with respect
to o, i.e., the smallest language L’ which contains L, and is closed under the
splicing with respect to o, that is to say, o1(L') C L’.

Note that (L) is not equal to oy (L), but to L U oy(L).

For two families of languages, F Ly, F Ly, we define

Hl(FLl,FLQ) = {O'I(L) | Le FLy and 0 = (‘/,R) with R € FL2}

Thus, the families Hy(F Ly, FLy) correspond to families S1(F L1, FLy) in
the previous section. In the same way as in the case of the uniterated splicing,
we can consider the hierarchies on the radius of finite H schemes, that is the
families Hy(FL,[p]), of languages o7(L) for L € FL and ¢ an H scheme of
radius less than or equal to p.

Lemma 7.11. (i) For all families FL1, FL},FLy, FL}, if FL1 C FL| and
FLy C FL,, then Hy(FL1,FLy) C Hi(FL,, FL}).
(ii) H1(FL,[p]) C H1(FL,|[q]), for all FL and p < q.

Proof. Obvious from the definitions. a
Lemma 7.12. FL C H{(FL,[1]), for all families FL.
Proof. Given L C V* L € FL, consider a symbol ¢ ¢ V and the H scheme

o = (VU {c}, {#cSc#}).

We clearly have o%(L) = L for all i > 0, hence o}(L) = 0¥(L) = L. O

Lemma 7.13. If FLy,FLsy,FL3 are families of languages such that both
FL, and FLy are closed under shuffle with symbols and both F Ly and FLj

are closed under intersection with reqular languages, then Hy(FL1,FLs) C
FL3 implies S1(FL1,FLs) C FL3.

Proof. Take a language L C V*, L € FL;, and an H scheme o = (V, R)
with R € FLs. For ¢ ¢ V, consider the language

L' =L {c}
and the H scheme ¢’ = (V U {c}, R’) with
R = (R W {cc}) N V*#cV*SV*cH V™.
From the properties of FL,, FL, we have L’ € FL1, R’ € FLy. Moreover,
o(L) =0} (L) nV*.
Indeed, o, "(L') = o, (L) UL’ for all i > 1 (any splicing removes the symbol ¢
from the strings of L', hence no further splicing is possible having as one of its

terms the obtained string). Therefore, if 0] (L') € FLs, then o1(L) € FL3,
too. a
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Corollary 7.1. In the conditions of Lemma 7.13, each language L €
S1(FLy, FL3) can be written as L= L' NV*, for L' € H;(FLy,FLy).

We are now going to present two basic results in this area, of crucial
importance for DNA computing based on splicing.

Lemma 7.14. (The Regularity Preserving Lemma) H1(REG,FIN) C
REG.

Proof. Let L C V* be a regular language recognized by a finite au-
tomaton M = (K,V,sg, F,8). Consider also an H scheme ¢ = (V,R)
with a finite set B C V*#V*$V*#V*. Assume that R = {ry,...,rn}
with r; = w;1#u;28u; 3#u; 4,1 < ¢ < n,n > 1. Moreover, assume that
Ui 1 Ui 4 = G51852 - - - Qi ¢, for a;j € V,1<j<t,t; 20,1 <i<n. For each
1,1 < ¢ < n, consider the new states ¢; 1,4;2,...,¢iz;,%it,+1- Denote their
set by K’ and consider the finite automaton

Mo = (KUK/7K307F750)’
where

8o(s,a) = 6(s,a), for se K,a €V,
00(@i,j,0i5) = {@ijm}, 1 <j<t,1<i<n.

We construct a sequence of finite automata (with A transitions) My =
(K UK',V,sg,F,0;), k > 1, starting from M,, by passing from M to
Mp.y1,k > 0, in the following way.

Consider each splicing rule r; = u; 1#u; 28u; s#uiq, 1 <i < n.

If s is a state in K U K’ such that
1. Qi,l ¢ 5k(3,)\),
2. thereis sy € KUK’ and z1,z2 € V* such that

S € 6k(307$1)7
81 € 5k(3,ui7lui,2)7
6k(31,$2) nF 7é 0,

(therefore, z1u; 1u; 222 € L{(My)), then we put

Ok+1(8,A) = {gi1 }-

We say that this is an initial transition of level k + 1.

Moreover, if s’ is a state in K U K’ such that:

1. " ¢ 0k(git;+1,N),
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2. there is s € K U K’ and 11,72 € V* such that

51 € 0k(50,91)s
s' € Op(s1,uizuiq),
Sk(s, y2) NF #0,

(therefore, y1u; su; ay2 € L(My)), then we put

Okt1(giei11,A) = {s'}.

We say that this is a final transition of level k + 1.
Then, 041 is the extension of §; with the initial and final transitions of
level k+ 1, with respect to all splicing rules in R and all states s, s’ in KUK".
As the set of states is fixed, the above procedure stops after at most
2-n-card( KUK') steps, that is, there is an integer m such that M, .1 = M,,.
We shall prove that L{My,) = o (L).
Since o7 (L) is the smallest language containing L and closed under the
1-splicing with respect to o, it is enough to prove that

i) L C L(My,),
i) L(M,,) is closed under the 1-splicing with respect to o,
iii) L(Mm) C o7 (L).

Point i) is obvious from the construction of the automaton M,y,.

In order to prove point ii), let us consider a splicing rule r; =
ui1#ui o8u; s#u; 4 in R and two strings z,y € L(M,,) such that z =
T1Ui,1U;2T2,Y = Y1U;3U; 4Y2. There are two states s1,s2 € K U K’ such
that

81 € Om(S0, 1), Om(S1,ui1Us2Z2) N F # 0,
S2 € 8 (50, Y1Ui 3U; a), Om(S2,y2) NF # 0.

From the construction of M,, we have
¢i,1 € 0m(s1,A) and s € O (i ;415 A)-

This implies that ziu; 1u; 4y2 € L(My,). The situation is illustrated in Fig.
7.3. Consequently, o1 (L{M,,)) C L(M,).

In order to prove that each string recognized by M, can be produced by
iterated splicing with respect to ¢ starting from strings in L, we proceed by
induction on the level transition complexity (abbreviated by lic) of accepting
paths (sequences of states) in M,,.

For a sequence 7 of states sg,s1,...,8p in K U K’ such that s, € F,
Sj+1 € Om(sj,a;), for a;j € VU{A}, 0 < j < p— 1, we denote by ltc(m)
the vector (ci,...,cm) € N™, where ¢ is the number of initial or final
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transitions of level k in 7, that is the number of subscripts I such that s;,; €
dk(s1,A). We order the vectors in N™ in the right-to-left lezicographic mode:
(c1,---50m) < (d1,...,dp) if there is j,1 < j < m, such that ¢; = d; for
i > j and ¢; < d;. Since this relation is a total order, we can use it as a basis
for the induction arguments.

Uq,1U5 4
i @,‘H
A A
x U, 1U;,2T2
So S1
'U Y1 ui,gui,4 @9
Y2
F

Figure 7.3: Simulating a splicing in M,

For an accepting path m as above, we denote by yield(r) the recognized
string ooy ... ap—1.

If 7 is an accepting path such that lte(n) = (0,0,...,0), then clearly
yield(r) € L, so yield(r) € o} (L).

Consider now that for some (ci,...,¢n) € N™, (c1,...,em) > (0,0, ...,
0), all accepting paths 7 such that lte(r) < (c1,...,cm) have yield(w) €
o7 (L). Consider an accepting path 7 in M, such that lte(n) = (c1, ..., cm).
(If no such a path exists, then the inductive step is fulfilled by default.) The
path 7 should be of the form

T = 80,81,-..,5p, Sp € F.

Since we start from so € K, we end with s, € F C K, and since ltc(n) >
(0,...,0), there are level transitions in the path; as from K to K’ we can
only go by initial level transitions and from K’ to K we can only go by final
level transitions, there are s;,, s;,,1 < j1 < j2 < p, such that Sj1 = Qi1, 84, =
Gi,t;+1, and all s; with j; < j < jy are elements of K’ (the parsing of Ui 1Ui 4
is uniquely determined: after reaching g; i, if the next level transition is
a final one, we have to reach ¢;;,41). Therefore, there is a splicing rule
T = u; 17Fu; 28u; 3#u, 4 corresponding to which the above mentioned pair of
level transitions have been introduced.

Assume that the transition corresponding to sj, is of level k and the
transition corresponding to s;, is of level k’. Therefore, there is an accepting
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path 71 = sg,..., 8, -1, sé-l,...,s;,, in Mg_1 such that s, € F and
yield(so, . ..,85,-1) = Z1,
. ! 7
yleld(sjl_l, Sjl, e ,Sp/) = Uj,1U4,2T2,

for some z1,z2 € V*. Similarly, there is an accepting path m =

50,87, .,59/,3j2+1, ..., 8p in M4 such that
2
. ! 2
yzeld(so, 81y SJé) = Y1U4,3U; 4,
yteld(sjy41,. .., 5p) = Y2,

for some y1,y2 € V*. The situation is illustrated in Fig. 7.4. Consequently,

(yield(m1), yield(mg)) b, yield(r).

Ui 1UG 4

| Sja = Qiti+1

x /\ Ug,1U; 222 A

Y1u; 3U; 4

@
)
%)

j2+1

Y2

Figure 7.4: Finding a splicing in M,,

Examine now the level transition complexity of 71; the case of 75 is sim-
ilar. The parsing of u;,1u; 2%z (passing from s;,_1 to s, € F) is done in
Mj_1, hence all the transitions here are of a level smaller than k. All the
level transitions in the passing from sy to sj,—; are common to 7 and 7.
Thus, for ite(m) = (di,...,dm) we have d; < ¢; for all j > k. Moreover, the
path 7 contains at least one transition of level k£ which is not in 7, that from
$j;—1 to sj,. This means that dy < cg; therefore, (di,...,dm) < (c1,...,¢m),
which concludes the inductive argument, hence the proof. O
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A stronger result has been presented in [176]; a detailed proof of it can
also be found in [90].

Lemma 7.15. If FL is a full AFL, then H{(FL,FIN) C FL.

In fact, the proof in [90] gives a stronger result, because the assertion in
Lemma 7.15 is shown to hold for any family F'L of languages which contains
the regular languages, is closed under right and left quotients by regular
languages, and under substitution into regular languages. (If s : V* — 2U”
is a substitution such that s(a) € FL for each a € V, and L C V* is a regular
language, then s(L) € FL; each full AFL has this property, see Theorem 11.5
in [93].)

Lemma 7.16. (The Basic Universality Lemma) Every language L €
RE,L C T*, can be written in the form L = L' NT* for some L' €
Hy(FIN, REG).

Proof. Consider a type-0 grammar G = (N, T, S, P), denote U = NUTU
{B}, where B is a new symbol, and construct the H scheme

o=(V,R),

where
V=NUTU{X,X',B,Y,Z} U{Yy |a € U},

and R contains the following groups of rules:

Simulate : 1. Xw#uYS$Z#vY, foru—ve PweU*,
Rotate: 2. Xw#aY$Z#Y,, foraecUweU*,
3. X a#Z$X#wY,, foracU,weU*,
4. X'w#Y, $Z#Y, for o € U,w € U*,
5 X#Z$X'#uwY, for w € U*,
Terminate : 6. #ZY$XB#wY, forw e T,
7. HYSXZH4.

Consider also the language

Ly = {XBSY, ZY,XZ}
U {ZvY |u—veP}
U {ZY,, X'aZ|acU}.

We obtain L = o} (L) N T*.

Indeed, let us examine the work of o, namely the possibilities to obtain a
string in T*.

No string in Ly is in 7*. All rules in R involve a string containing the
symbol Z, but this symbol will not appear in the string produced by splicing.
Therefore, at each step we have to use a string in Ly and, excepting the case
of using the string X BSY in Ly, a string produced at a previous step.
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The symbol B is a marker for the beginning of the sentential forms of G
simulated by o.

By rules in group 1 we can simulate the rules in P. Rules in groups 2 - 5
move symbols from the right hand end of the current string to the left hand
end, thus making possible the simulation of rules in P at the right hand end
of the string produced by o. However, because B is always present and marks
the place where the string of G begins, we know in each moment which is
that string. Namely, if the current string in o is of the form G, w;, BwsSs, for
some (1, f2 markers of types X, X', Y, Y, with & € U, and wy,ws € (NUT)*,
then wow, is a sentential form of G.

We start from X BSY, hence from the axiom of GG, marked to the left
hand with B and bracketed by X,Y.

Let us see how the rules 2-5 work. Take a string XwaY', for some o € U,
w € U*. By a rule of type 2 we get

(Xwl|aY, Z|Y,) b XwY,.

The symbol Y, memorizes the fact that « has been erased from the right
hand end of wa. No rule in R can be applied to XwY,,, excepting the rules
of type 3:

(X'a|Z, X |wYy) F X awY,.

Note that the same symbol « removed at the previous step is now added in
the front of w. Again we have only one way to continue, namely by using a
rule of type 4. We get

(X ow|Yy, ZIY) F X awY.

If we use now a rule of type 7, removing Y, then X’ (and B) can never be
removed, the string cannot be turned to a terminal one. We have to use a
rule of type 5:

(X1Z, X'|awY) F XawY.

We have started from XwaY and have obtained XoawY, a string with the
same end markers. We can iterate these steps as long as we want, so any
circular permutation of the string between X and Y can be produced. More-
over, what we obtain are exactly the circular permutations and nothing more
(for instance, at every step we still have one and only one occurrence of B).

To every string XwY we can also apply a rule of type 1, providing w ends
with the left hand member of a rule in P. Any rule of P can be simulated in
this way, at any place we want in the corresponding sentential form of G, by
preparing the string as above, using rules in groups 2-5.

Consequently, for every sentential form w of G there is a string X BwY,
produced by o, and, conversely, if Xw; BwsY is produced by o, then wow,
is a sentential form of G.

The only way to remove the symbols not in T from the strings produced
by ¢ is by using rules in groups 6, 7. More precisely, the symbols X B can
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only be removed in the following conditions: (1) Y is present (hence the work
is blocked if we use first rule 7, removing Y: the string cannot participate to
any further splicing, and it is not terminal), (2) the current string bracketed
by X,Y consists of terminal symbols only, and (3) the symbol B is in the left
hand position. After removing X and B we can remove Y, too, and what we
obtain is a string in T*. From the previous discussion, it is clear that such
a string is in L(G), hence o} (Lo) N T* C L{G). Conversely, each string in
L(G) can be produced in this way, hence L(G) C o} {(Lo) N T*. We have the
equality L(G) = o} (Lo) N T*, which completes the proof. a

Many variants of the rotate-and-simulate procedure used in the previous
proof will be presented in the following chapters.
The families Hy(F L1, F'La) have serious limitations.

Lemma 7.17. Let FL be a famaly of languages closed under intersection with
regular languages and restricted morphisms. For every LCV* L ¢ FL, and

c,d ¢V, we have L' ¢ Hi(FL,RF), for
L' = (de)*L(de)* U ¢(de)* L(dc)*d.

Proof. For L,c,d as above, denote
L, = (de)* L(dc)*,
Ly = c(de)* L{dc)*d.

AsL =LinV* =L NV*and L = h(La N cV*d), where h is the
morphism defined by h(a) = a,a € V, and h(c) = h(d) = A, it follows that
Li¢ FL,Ly¢ FL,and I’ = LU Ly ¢ FL.

Assume that L' = o{(Lo), for some Ly € FL,Ly C L', and 0 = (V,R)
with arbitrary R. As L’ ¢ FL, it follows that Ly # L’ and we need effective
splicing operations in order to produce L’ from Ly. That is, splicings {x,y) b
z with © # 2,y # z are necessary, =,y € Lg. Write x = ziujugzs, y =
Y1usuay2, for some x1, x2,y1,y2 € (VU {c,d})*, and r = uy #uzSus#uy € R.

If £ € Ly, then 2’ = cxd € Lo, 7’ = criujuszad, hence we can perform
(', y) Fr 2/ = cxruruaye = cz. If z € L', then cz ¢ I/, a contradiction.

Therefore, x must be from L. Then z' = dzxc € L1, ¥’ = driuuszac,
hence we can perform (z',y) b, 2’ = drjujusys = dz. Again we obtain a
string not in L’. Since no splicing is possible without producing strings not
in I/, we must have o} (Lg) = Lg, which contradicts the relation L’ # Lg.

As the type of the set R plays no role in the previous argument, we have
L' ¢ H(FL,RE). |

Theorem 7.3. The relations in Table 7.2 hold, where at the intersection
of the row marked with F Ly with the column marked with F'Ly there ap-
pear either the family Hi(F L1, FLs), or two families FLs, FLy such that
FLs c Hi(FL,,FLy) C FLy. These families FL3, FLy are the best possible
estimations among the six families considered here.
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Table 7.2. The size of families Hy (F Ly, FLs)

FIN REG LIN CF cS RE
FIN | FIN,REG | FIN,RE | FIN,RE | FIN,RE | FIN,RE | FIN,RE
REG REG REG,RE | REG,RE | REG,RE | REG,RE | REG,RE
LIN | LIN,CF | LIN,RE | LIN,RE | LIN,RE | LIN,RE | LIN,RE
CF CF CF,RE CF,RE CF,RE CF,RE CF,RE
CS CS,RE CS,RE CS,RE CS,RE CS,RE CS,RE
RE RE RE RE RE RE RE

Proof. From Lemma 7.12 we have the inclusions FL; C Hy(FLy, FLs),
for all values of F'Ly, FLy. On the other hand, H;(FL;, FLy) C RE for all
FL,, FLy. With the exception of the families H; (RE, F Ly), which are equal
to RE, all inclusions Hy(F L, FLy) C RE are proper: from Lemma 7.17, we
see that all the following differences are non-empty REG — H,(FIN, RE),
LIN-H,(REG, RE), CF—Hy(LIN, RE), CS—H,(CF, RE), RE— H,(CS,
RE).

Lemma 7.14 and Lemma 7.12 together imply that H,(REG,FIN) =
REG. Hence we have H,(FIN,FIN) C REG. This inclusion is strict by
Lemma 7.17.

From Lemma 7.13 (and the results in Sect. 7.2) we obtain the strictness
of the inclusions LIN C Hy(LIN,FIN), and CS C H,(CS,FIN). The
same result is obtained if FIN is replaced by any family F L.

Lemma 7.15, together with Lemma 7.12, implies H;(CF,FIN) = CF.
We also have H(LIN,FIN) C CF. The inclusion is proper by Lemma
7.17.

From Lemma 7.17 we see that RE is the best estimation for
Hi(FLy,FLy), FLy # FIN (we have Hi(FIN, REG) — FL # 0 for all fam-
ilies FL C RE which are closed under intersection with regular languages).

The only assertion which remains to be proved is the fact that
H,(FIN,FIN) contains infinite languages. This is true even for H;(FIN,
[1]): for 0 = ({a}, {a#8#a}) we have of({a}) = a*. Thus, the proof is
complete. O

Many of the relations in Table 7.2 are of interest:

— The iterated splicing with respect to regular sets of rules leads from the
regular languages (even from the finite ones) to non-regular (even non-
recursive) languages (this is not true for the “weaker” case of uniterated
splicing); therefore, the result in Lemma 7.14 cannot be improved, by
replacing FIN with a family of languages which is larger than REG.

— The iterated splicing with respect to {at least) regular sets of rules
already leads from the finite languages to non-context-sensitive lan-
guages. In fact, for all F'Ly containing the regular languages, the inter-
sections of the languages in Hy (F Ly, F Ly} with regular languages of the
form V* characterize the family of recursively enumerable languages.
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— However, all the families H;(FL;,FLy), FL; # RE, have surprising
limitations. When FL] is the smallest family among those considered
here which strictly includes F'Lq, there are languages in F L] which are
not in Hi(FL,, FLs), for all FLo, including FL;, = RE.

In view of the equalities H, (F L, FIN) = FL, for FL € {REG,CF, RE},
the hierarchies on the radius of H schemes collapse in these cases. The prob-
lem is still open for FL € {LIN,CS}, but for FIN we have

Theorem 7.4. FIN C Hy(FIN,[1]) c H\(FIN,[2]) C ... ¢ Hi(FIN,
FIN) C REG.

Proof. The inclusions follow from the definitions and from Lemmas 7.12
and 7.14; the strictness of the first and last inclusions is already known.
For k > 1, consider the language

Ly = {a®*b%*a™b*a?* | n > 2k + 1}.
It belongs to Hq(FIN, [k + 1]), because Ly = o5 (L}), for

L;c — {anb2k02k+2b2ka2k}’

o = ({a, b}, {a* T #a*$ak T #a*}).

Indeed, the splicing rule can only be used with the sites ujus = a2t and
uzug = a?*T! in the central substring, a?**%,5 > 1, of strings in L. Hence
we can obtain strings with a?**i*! as a central substring, for all i > 0 by
splicings of the forms

(a2kb2kak+1 |ak+1 b2 g2k o2k p2k g0kt Iakb2ka2k)
F aZkp?hgkt+lghp2g2k,
(anb2kajak+1 |akb2ka2k7 a2kp2k g+l [ak-i—l b2ka2k)
F a2k gl gk +L gk p2k g2k

for j > 1.

Assume that Ly = o’](L}), for some finite language L} and an H scheme
o’ = (V,R) with rad(o’) < k. Take a rule r = u;#us$us#us € R and two
strings z,y € L to which this rule can be applied, z = a?*b?*a"b%a2* n >
2k+1, y = y1usuays. As |urug| < 2k, if ujug € a*, then uyus is a substring of
both the prefix a%* and of the suffix a?*, as well as of the central subword a™ of
z. Similarly, if u1us € b*, then ujus is a substring of both substrings 52* of .
If ujug € a™b™, then uju, is a substring of both the prefix a2*4%* and of the
subword a™b?* of z; if uyus € b+at, then uyus is a substring of both the suffix
b?*a?* and of the subword b%*a™ of z. In all cases, splicing x,y according to
the rule r we find at least one string which is not in Ly, hence the equality
Ly = 01" (L}) is not possible. Therefore, Hi(FIN, [k+1])—H,(FIN,[k]) # 0,
for all k > 1.
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Although the families H1(FIN,[1]) and REG seem to be very different
(situated at the ends of an infinite hierarchy), they are still equal modulo a
coding.

Theorem 7.5. Every regular language is a coding of a language in the family
H\(FIN, 1]).

Proof. Let L € REG be generated by a regular grammar G = (N, T, S, P);
hence the rules in P have the forms X — aY, X — a, for X, Y € N,a € T.
Consider the alphabet

V=A[X,a,Y]|X -aY € P, with X,)Y € Nja e T}
U {[X,a,%] | X - a€ P, with X € N,a e T},

the H scheme

g = (V, {[X7a’ Y]#$#[Ya va] | [X7aa Y]7 [Ya b, Z] € V}
U{[X, a, Y|#S#[Y, b, 4] | [X,a,Y],[Y,b,%] € V}),

and the finite language

Ly = {[S,a,%] | S —a€ PacT}
U {[Xl, al,Xz][XQ, ag,Xg] .. [Xk,ak,Xk+1][Xk+1,ak+1, *] |
k>1, X1=65, X; »a,X;51€ P, 1 <1<k,
Xg+1 — ap+1 € P, and for no 1 <43 < i3 < i3 < k we have
(Xiy, @iy, Xig 1] = [Xiy, @iy, Xig 1] = [Xuy, 04y, Xig ]}

{we can have at most pairs of equal symbols of V in a string of Lo, but not
triples of equal symbols). Consider also the coding h : V — T defined by

h([X,a,Y]) = h([X3a7*]) =a, X, Y€N,aeT.

We have the relation
L = h(o7(Lo))-

Indeed, each string in L corresponds to a derivation in G and if z,y are
strings in o} (Lo) describing derivations in G, z = z1[X, a,Y][Y,d, Z'|z2 and
y = n[X,V,Y] [Y,b,Z]ys, then z = z1[X,a,Y][Y,b, Z]ya € o1(z,y) and
obviously z corresponds to a derivation in G, too. The coding h associates
to such a string w describing a derivation in G the string h{w) generated by
this derivation. Consequently, h(o7(Lo)) C L.

Conversely, consider the strings in V* describing derivations in G. Such
strings w of length less than or equal to two are in Ly hence in o(Lo).
Assume that all such strings of length less than or equal to some n > 2 are
in 03 (Lo) and consider a string w of the smallest length greater than n for
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which a derivation in G can be found. As |w| > n > 2, it follows that w ¢ Lo,
hence w contains a symbol [X, a,Y] in three different positions:

w=w[X,a,Ywe[X,a,Yws[X,a,Y]w,.
Then

w' =wi[X,a,Y]ws[X,a,Y]wy,
w” =un[X,a,Y]ws[X,a,Y]w,

describe correct derivations in G and |w'| < |w|, [w”| < |w|, hence w’,w” €
o1(Lp) by the induction hypothesis. From the form of w’,w” and of the
splicing rules of ¢ we have w € a1(w’,w"), hence w € o} (Lg), too.

For each derivation in G we find a string w € o7(Lo) such that h(w)
is exactly the string generated by this derivation. In conclusion, we have
L C h(o}(Ly)). O

7.4 Extended H Systems; Generative Power

We now introduce the basic computability model that we shall investigate in
this chapter and in the following ones. We consider here its general (unre-
stricted) form.

In the previous section we already have a generative mechanism based on
the splicing operation: a pair (o, L), where 0 = (V| R) is an H scheme and
L C V* is a given language, identifies the language o7 (L). We can write
the pair (o, L) in a more explicit way, as a triple v = (V, L, R), identifying
the language L(vy) = o}(L). Such a triple is called an H system. Note that
we allow the components L, R to be infinite, which contrasts with the usual
custom when defining a grammar: a finite mechanism generating a possibly
infinite language. In this section we shall continue in this manner, on the one
hand, for the sake of mathematical completeness, and on the other because of
results like those in Lemmas 7.14, 7.15: using a finite set of splicing rules we
cannot overpass the regularity barrier when starting from regular languages.
We look for computationally complete mechanisms; a way towards this goal
is suggested by Lemma 7.16: using regular sets of splicing rules. This lemma
also suggests a generalization in the definition of H systems: to consider a
terminal alphabet (as in Chomsky grammars and in extended Lindenmayer
systems) and to accept only the strings over this alphabet which are produced
by iterated splicing. We get in this way the concept of extended H systems,
the fundamental notion investigated in this chapter.

An extended H system is a quadruple
7= (V.T,A,R),

where V is an alphabet, T CV, A C V* and R C V*#V*$V*#V* where
#,$ are special symbols not in V.
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We call V the alphabet of «, T is the terminal alphabet, A is the set of
azioms, and R the set of splicing rules. Therefore, we have an underlying H
scheme, o = (V, R), augmented with a given subset of V" and a set of axioms.

When T = V we say that v is a non-extended H system; below we shall
only incidentally consider such systems.

The language generated by -y is defined by

L(v) = o1(A)NT7,

where o is the underlying H scheme of ~.

For two families of languages, F Ly, F Ly, we denote by EH1(FLy, FLy)
the family of languages L(7y) generated by extended H systems v =
(V,T,A,R), with A € FL;,R € FLy. A number of the results in Sect.
7.3 can be reformulated in terms of extended H systems. Moreover, we have
the following inclusion.

Lemma 7.18. REG C EH,(FIN,FIN).

Proof. Take a language L € REG,L C T*, generated by a regular gram-
mar G = (N, T, S, P).
We construct the H system

v = (NUTU{Z},T,Al UAs U A3z, Ry URQ),
with

Ay = {5},

Ay ={ZaY | X —aY € P,X,Y € N,a €T},
As={ZZa|X —ae P, X e N,acT}

Ry = {#X$Z#aY | X - aY € P,X,Y € N,a € T},
Ry = {#X$ZZ#a|X —-ac P,X € N,aecT}.

If we splice a string Zz X, possibly from A; (for = ¢ € T and U —
cX € P) using a rule in Ry, then we get a string of the form ZzaY. The
symbol Z cannot be eliminated, hence no terminal string can be obtained if
we continue to use the resulting string as the first term of a splicing. On the
other hand, a string Zz X with |z| > 2 cannot be used as the second term of
a splicing. Consequently, the only way to obtain a terminal string is to start
from S, to use splicings with respect to rules in R; an arbitrary number of
times, and to end with a rule in Ry. Always the first term of a splicing is
that obtained by a previous splicing and the second one is from Az or from
As (at the last step). This corresponds to a derivation in G, hence we have
L(v)=L(G)=L. |

Theorem 7.6. The relations in Table 7.3 hold, where at the intersection
of the row marked with FL; with the column marked with FLy there ap-
pear either the family EH1(FLy,FLy), or two families F L3, FLy such that
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FLs C EHy(FLy,FLs) C FLy. These families F L3, F Ly are the best possi-
ble estimations among the siz families considered here.

Table 7.3. The generative power of extended H systems

FIN REG | LIN | CF CS | RE
FIN REG RE RE RE | RE | RE
REG REG RE RE RE | RE | RE
LIN | LIN,CF RE RE RE | RE | RE

CF CF RE RE RE | RE | RE
cS RE RE RE RE | RE | RE
RE RE RE RE RE | RE | RE

Proof. Clearly, FL C EH(FL,FIN) for all FL. From Lemma 7.18
we also have REG C EH,(FIN,FL) for all FL. From Lemmas 7.14 and
7.15 and the closure of REG,CF under intersection with regular languages
we obtain EH(REG,FIN) C REG, EH,(CF,FIN)y C CF. If in the
proof of the relation RE C S1(CS, FIN) in Theorem 7.1 we take c1, ¢z, ¢3
as nonterminal symbols and V as a terminal alphabet, then we obtain RE C
EH,(CS,FIN). Thus, the first column of Table 7.3 is obtained.

From the proof of Lemma 7.16 we obtain RE C EH,(FIN,REG). As
EH,(FL,,FLsy) C RE for all families F L1, F L (this can be directly proved
in a straightforward way or we can invoke the Church-Turing Thesis), the
proof is complete. ]

The only family which is not equal to a family in the Chomsky hierarchy
is EH (LIN,FIN).

Two of the relations summarized in Table 7.3 are central for the DNA
computability based on splicing:

1. EH,(FIN,FIN) = REG,
2. EH,(FIN,REG) = RE.

When using a finite extended H system, that is a system with a finite set
of axioms and a finite set of splicing rules, we only obtain a characterization
of regular languages. The power of such devices stops at the level of finite
automata (Chomsky regular grammars). Increasing the set of axioms does
not help very much: we need a context-sensitive set of axioms in order to
characterize RE using a finite set of splicing rules. However, making the
smallest step (in our framework) in generalizing the set of splicing rules, that
is considering a regular set of splicing rules, leads to the jump to the full
power of Turing machines (Chomsky type-0 grammars). An infinite set of
splicing rules, even forming a regular language, is not of much practical in-
terest, it is not realistic to deal with “infinite computers”. Thus, we have to
choose: either we are satisfied with “DNA computers” based on splicing able
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to compute only at the level of finite automata, or we supplement the model
with further features, in the hope of still working with finite sets of splicing
rules but preserving the power of extended H systems with regular sets of
rules. Moreover, as we have mentioned in Chap. 3, there is no finite automa-
ton which is universal, in a natural way, for all finite automata, hence we
cannot hope to devise universal — hence programmable — DNA computers as
extended H systems with finite components (and no additional control on the
splicing operation or another feature able to increase the power). The choice
is somewhat forced: the only way to obtain Turing universal programmable
DNA computers as extended H systems with finite components is to regulate
the work of these systems, adding a supplementary control on the splicing
operation. This will be the goal of the subsequent chapters.

In Sect. 3.3 we have constructed a finite automaton M, which is uni-
versal for the class of finite automata with a bounded number of states and
symbols. From the proof of Lemma 7.18, starting from M, we can construct
an extended H system -, which has similar universality properties. How-
ever, in this way we obtain a splicing system producing strings of the form
bls(code(M),z) (remember the notation from Sect. 3.3). It is possible to
improve this result, in the sense that we can construct a “partially univer-
sal” extended H system with finite components and producing exactly the
strings x recognized by the automaton M, whose “program” is introduced
in the axiom set of the universal system. To this aim we do not start from
bls(code(M), z) as in Sect. 3.3, but from a string containing one more copy of
z. Using bls(code(M), x) we check whether or not € L(M) and only in the
affirmative case do we remove all auxiliary symbols, producing the terminal
string . Here is such a universal H system associated with M,:

Yu = (Wa ‘/7 AuvRu)a
with
W=VUKUK, U{Bo,B,E,Z,Cl,CQ},
Au = {BqZ l qc Ku}U{ZZ}a
Ru = {BqO,u#Z$BO#}
U {Bq'#Z$Bqo# | gqa — aq' € P, for q,¢ € K,,
ac VUK U{c,e}}
U {#ZZ$BqE# | q€ K}.
If we add to A, the axiom
wp = By bls(code(M), z)Ex,

then we get an extended H system +, = (W,V, A, R,) such that L(~)) =
L(M). Indeed, the only way to obtain a string in V*, that is without symbols
in KUK, U{By,B,E,Z,ci,cs}, is to simulate the rules in P, on the prefix
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By bls(code(M),xz)E of the axiom wy, step by step, from the left (this is
ensured by the fact that all splicing rules require the presence of By or of B),
until reducing this string to BgFE, for some ¢ € K (in fact, by the mode of
work of M, we have ¢ € F,); then the block BqFE can also be removed by
the splicing rule #Z Z$BqE#.

We formulate this important (for DNA computing) conclusion of the dis-
cussion above in the form of a theorem.

Theorem 7.7. There are extended H systems with finite sets of rules which
are universal for the class of finite automata with a bounded number of states
and a bounded number of input symbols.

Note that M is “run” on the “computer” -y, via the “program” wg, which
is a unique string (associated with both M and z, hence it contains both
the “algorithm” and the “input data”). This “program” is not very simple
(short), it even has a non-context-free character, because of the presence of
copies of the code of M. However, the string wy = By bls{code(M),z)Ex
can be generated from simpler strings by splicing: construct the string z =
code(M), produce copies of it (by amplification), then produce arbitrarily
many strings of the form X;2X/,i > 1 (in fact, we need exactly n + 2 of
these copies, where n = |z|). If £ = a1a2...a,,a; € V,1 < i < n, consider
also the strings Y;0;Y;/,1 < i < n. Finally, consider the strings ByZ;, Z2Ex.
It is now a simple task to devise splicing rules which can build the string
wgy = By bls(code(M), z)Ex starting from the blocks mentioned above; the
symbols X;, X, Y;, Y/, Z1, Z5 can control the operations in such a way that
when none of them is present in a string, then that string is equal to wy. We
leave this task to the reader.

Remark 7.1. In mathematical terms, REG in EH,(FIN,REG) =
RE can be substituted with EH(FIN,FIN) and we get EFH;(FIN,
EH|(FIN,FIN)) = RE. At first sight, we have an answer to the above
mentioned problem of characterizing RE by using extended H systems with
finite components. However, this equality makes no sense from a biochem-
ical point of view: REG from EH,(FIN,REG) = RE refers to languages
of splicing rules (associated with restriction enzymes), whereas REG from
EH,(FIN,FIN) = REG refers to languages of DNA molecules. From a
practical point of view, they are completely different objects. ]

Let us return to the equality RE = EH(FIN, REG), and to the proof
of the inclusion RE C EH;{FIN,REG), as given by Lemma 7.16. The
H system provided by the construction in the proof of this lemma is v =
(V,T, Ly, R), with

card(Lg) = card(P)+ 2 - card(NUT) + 5

(the notations are those from the proof of Lemma 7.16). A natural question
arises: can we decrease the number of axioms? The answer is somewhat
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unexpected: one axiom suffices. However, decreasing the number of axioms
can increase their length. Let us prove this trade-off result in a more general
framework.

We define the following two complexity measures for an extended H sys-
tem v = (V, T, A, R) with a finite set A of axioms:

nrez(y) = card(A),
Imaz(v) = max{|z| | z € A}

(the number of axioms, and the maximal length of an axiom, respectively).
For such a measure y € {nraz, Imar} and a language L € EH,(FIN, REG),
we define

u(L) = min{u(y) | L = L(v)}

and then we consider the families
u~\(k) = {L € EH,\(FIN, REG) | u(L) < k},

for k> 1.
The following relations are direct consequences of the definitions.

Lemma 7.19. For u € {nraz, lmaz} we have p='(1) C p71(2) C ... C
EH,(FIN, REG).

Both these hierarchies collapse. (In terms of descriptional complexity, the
measures nrar, lmaz are trivial, in the sense defined in Chap. 3.)

In fact, from the proof of Lemma 7.16, we can already obtain the inclusion
EH,(FIN,REG) C lmaz~'(4): if we start with a grammar G = (N, T, S, P)
in Kuroda normal form, hence with rules of the forms v — v, |u| < 2, |v]| < 2,
then the H system -y constructed in the mentioned proof has Imaz(y) = 4.

A stronger result is true:

Theorem 7.8. Imaz (1) C lmaz~'(2) = EH,(FIN, REG).

Proof. Take an H system v = (V,T, A, R) with a finite set A of ax-
ioms, namely A = {w;,ws,...,w,}. Assume lmaz(y) = k, s = max{|uv| |
u#vSu'#v' € R, or v'#v'$u#v € R}, and r = max(k, s). Consider the new
symbols, ¢;,¢},1 < i < n, associated to the axioms of v and construct

¥ =(VUle,cd|1<i<n}u{ce}, T, A, R),
where

A = {ga|1<i<naeV}iu{c, ce, ec;|1<i<n}
{Aif A € L(v)},

-

R = R”UORi,
i=1
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R" = {vju#uousSufusFHuauy | ui#uoSus#ug € R,
ul,uy € e*V* ub,uy € V*er, [ujuiuguh| = 2r, |ujusuquy| = 2r},
R, = {ciz#3$ci#a |z € Pref(w;),a € V,za € Pref(w;)}

{ciwi#8c#c}, #cci$ce"#, #e c;$cci#}
{cie#S$ci#ewic, cie"we!#ci$#ec; |[0<j<r—-1},1<i<n.

Cc C

We have L(v) = L(¥).

The inclusion C is rather obvious: Starting from c;a,a € V, we can add
symbol by symbol, reconstructing w; from the left to the right; when we
obtain ¢;w; we can also introduce the symbol c; in the presence of ¢; we can
add r occurrences of e in the left hand side of the string. After completing
this operation, we can also add r occurrences of e in the right hand end of
the string. Strings of the form ¢;e"we"¢} can be spliced by using the rules
of R”, and this corresponds to using the rules from R. At any moment, the
prefix ¢;e” and the suffix e"c] can be removed, hence every string of L{vy) can
be generated by +'.

Conversely, no unintended string can be produced in 4'. Indeed, all ax-
ioms of ' (except A, providing that the empty string is in L(v)) contain
non-terminal symbols. The non-terminals ¢;, ¢; can be removed only in the
presence of r occurrences of e, and such occurrences are introduced only after
completing the reconstruction of the axiom w; of v. No “incomplete” string
cix, cixc, with x € Pref(w;), or c;elz, c;elzc, with j < r,z € Pref(w;), or
j=rx € Pref(w;) — {w;}, can be spliced by the rules of R”, because the
length of such a string is smaller than the length of the sites necessary for
applying the rules from R” (note also that the rules of R” do not contain the
symbols ¢;,c}). If a string ¢;e"zc] is spliced, then x should be an axiom of vy
(of the length equal to k), hence the splicing corresponds to a splicing in 4.

Consequently, the work of 4 consists precisely of producing the axioms
of v, bounded by c;e” to the left and possibly also by "¢ to the right, then
applying the rules in R”, which corresponds to applying the rules from R to
the strings without the prefixes ¢;e” and the suffixes e"c}; at any moment,
cie” and €"c; can be removed. This means that L(y') C L{-y}, hence we have
the equality L(v) = L(v') and the inclusion EH,(FIN, REG) C lmaz~"(2).

This bound cannot be improved, the inclusion lmaz (1) C lmaz™1(2) is
proper: Take the language L = {aa} and assume that L = L(v), for some
v = (V,{a}, 4, R) with A C V. Since all axioms are of length 1, the symbol
a must appear in at least one axiom, hence a € A. This means a € L{y),
contradicting the equality L = L(7). |

Also the hierarchy on the number of axioms collapses (this time to one
level only).

Theorem 7.9. nraz~(1) = EH,(FIN, REG).

Proof. For a given system v = (V,T, A, R) with A = {w;,wa, ..., wyp},
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n > 2, construct
v =WV ule,d}, T, {w},R),

where c, ¢’ are new symbols, and

/
w = c'cwicws . . . cwped,

R =R U {# c8ci#tc, #c8c'#, #c'Sc#}.

We have L(v) = L(').

The inclusion C is easy to see: using the rule #c'c$c#c’ we can obtain
(w,w) F ¢; using the rule #c$c¢'#, from each string of the form xc (and
from w, too) we can remove the rightmost ¢ (the suffix cc’, respectively) by
a splicing with ¢’; using the rule #c¢'$c#, from each string of the form xiczs
we can separate the suffix x5. Therefore, all axioms of v can be separated
from w. Using the rules of R we then get every string of L(v).

Conversely, as long as occurrences of ¢,c’ are present, the string is not
terminal (this is the case with w). The use of rules in R’ — R cannot mix
symbols of V', but only cut down strings of the form c’cziczac. . . cz, (maybe
also ending with ¢ or with ¢¢’) near the symbols c. If we have two strings
z,y of the forms = x1cxacxs, y = y1cyscys, with z2,y2 € V*, and we use a
splicing rule in R on x3,¥y2, then we obtain a string z = z1c2;1cys such that
(z2,y2) F 21 for z; € V*. We start from w containing exactly the axioms of
v. If we use now rules in R’ — R and we separate 23 from z, this is a string
which can be also produced directly by . Therefore, mixing up the new rules
of R’ with the rules of R does not lead to unintended strings. This implies
L(v') € L(). o

Corollary 7.2. nraz~'(1) = RE.

In the proofs of the previous theorems, when decreasing the length of
axioms it was necessary to increase the number of axioms, and conversely.
As expected, in general the two measures cannot be simultaneously improved.

For a measure p : GM — N of complexity of generative mechanisms
in a given class GM, denote pgyp (L) = min{u(G) | L = L(G),G € GM}.
Then, for a language L, define

W (L) = {C € GM | L= L(G), u(G) = panr (L)}

(the set of optimal generative devices in GM producing L). Two measures
U1, po are said to be incompatible (on GM) if there is a language L in the
family generated by GM, such that

pr (L) Npz (L) = 0.

{The two measures cannot be simultaneously minimized for the elements in
GM generating the language L.)

Theorem 7.10. The measures nraz, Imazx are incompatible.
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Proof. Consider any language L C a* U b* such that alph(L) = {a,b}.
According to Theorem 7.9, nraz(L) = 1. Take v = (V,{a,b}, 4, R) such
that L = L(y) and A = {w},w € V*. We must have |w| > 3. Indeed, both
symbols a and b must be present in w, otherwise they cannot appear in the
strings of L{y). However, neither ab nor ba can be the axiom, at least one
symbol in V — {a, b} appears in w, hence |w| > 3.

On the other hand, from Theorem 7.8 we know that Imaz(L) = 2.

Consequently, for no language L, as above, can we find v with both
nraz(y) = 1 and Imaz(y) = 2. Languages L of the considered form appear in
EH,(FIN, REG), hence the proof is complete. O

7.5 Simple H Systems

In the previous sections of this chapter we have looked for variants of gener-
ative mechanisms based on the splicing operation which are as powerful as
possible. Here we follow the opposite approach, considering a rather partic-
ular type of splicing systems. As expected, in such a particular case many
questions can be solved in a nice way, which makes these devices attractive
from a mathematical point of view.

A simple H system is a triple
7=(V,4,Q),

where V is an alphabet, A is a finite language over V, and Q C V. The
elements of A are called azioms, those of @ are called markers.
For z,y,z € V* and a € Q we write

(z,y) Fa z it z=2z1a19,y = Yy10Y0, 2 = T10Y2,
for some x1,22,y1,y2 € V*.

Consequently, for each marker a € @ we can imagine that we have the
splicing rule r, = a#3$a# (or r;, = #a$#ta). Denote

RQZ{T’QIGEQ}

and consider the H scheme og = (V, Rg). Then the language generated by
7, denoted by L(), is defined as being equal to a(;(A). (In this section we
omit the subscript 1 in 0(L),07(L), avoiding heavy notations of the type

(9@)1(L).)
Here is an ezample: consider the simple H system

v = ({a, b, ¢}, {abaca, acaba}, {b, c}).
We obtain

L(7y) = (abac)ta U (abac)*aba U (acab) ™ a U (acab)*aca.
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Indeed,

((abac)™a, acaba) . (abac)™ ‘abacaba = (abac)™aba,

((abac)™aba, abaca) Fy (abac)™abaca = (abac)™*'a,

and similarly for strings (acab)™a, (acab)™aca, hence we have the inclusion 2.
Conversely, when splicing two strings of one of the forms (abac)™a, (acab)™a
(initially we have n = 1) or (abac)"aba, (acab)™aca, we identify either a
substring aba or a substring aca of them, hence the obtained strings are of
the same form.

Let us denote by SH the family of languages generated by simple H
systems.

The following necessary conditions for a language to be in the family SH
can be easily proved.

Lemma 7.20. (i) If L € SH is an infinite language, then there is Q C
alph(L),Q # 0, such that og(L) C L.
(ii) If L € SH,L C V*, and at C L for some a € V, then o(43(L) C L.
(iii) Take w € V. We have w* € SH if and only if there is a symbol
a €V such that |w|q = 1.

Using these conditions we can show that the following languages are not
in the family SH:
Ly =atbtath™,
Ly = athU b+,
L3 = (aabb)t,

and that a language L C a* is in the family SH if and only if it is either
finite or equal to one of a*,at. Moreover, we get

Corollary 7.3. The family SH is an anti-AFL.

Because each simple H system is a (non-extended) finite H system of a
particular type, from Lemma 7.14 we obtain SH C REG. We shall see
below that this result can be obtained in a much easier way as a consequence
of a representation theorem for languages in SH. In view of the previous
counterexamples, the inclusion SH C REG is proper. However, SH and
REG are “equal modulo a coding”:

Lemma 7.21. Every regular language is the projection of a language in the
family SH.
Proof. Let M = (K,V, so, F,6) be a deterministic finite automaton. We
construct the simple H system v = (K UV, A, K), with
A= {80a1810,282 e e Sr Qg 1Sr41 I r>0,5, ¢ K,0<i<r+1,
Sr41 € Fy8i41 = 0(84,0:41),0 <i <,
each state s;,0 < i < r+ 1, appears at most twice}.
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Clearly, A is a finite set. Consider also the projection h defined by h(a) = a,
fora € V, and h(s) = A, for s € K.

The inclusion h(L(v)) C L(M) follows from the construction of vy and the
definition of h. The reverse inclusion can be easily proved by induction on
the length of strings in L(M). a

Lemma 7.22. For every language L € SH there are five finite languages
L1, Ly, Ly, Ly, Ls and a projection h such that L = h(L1LyLs N L}) U Ls.

Proof. Let v = (V, A,Q) be a simple H system. For each a € V consider
a new symbol, a’; denote V' = {a' | a € V'}.
Define

Li={za|zay € A,z,y € V*,a € Q},

Ly ={d'zb | yazxbz € A,z,y,z € V¥, a,b € Q},

Ly ={d'z|yax € A,z,y € V*,a € Q},

Ly=VU{ad |aeV},

Ly ={z€ A|l|z|], =0for all a € Q},

h:(VUVY* —V* h(a) =a,a€V, and h(a') = A,a e V.

Then we claim that

Let us denote by B the right hand member of this equality.
(1) L(y) € B. Clearly, from the definitions, it is enough to prove that
(i) B includes the set A, and (ii) 0g(B) C B.

(i) Ifz € Aand |z|, =0 foralla € Q, thenx € Ls C B. If z € A and
T = r1ar2,a € @, then x1a € Li,a'zy € L3, hence z1aa’z9 € LiL3.
Clearly, z1ad’zy € L}, too. As h(riad’rs) = z1aze = z, we have
x € B. Consequently, A C B.

(ii) Take two strings x,y € B. If one of them is in Ls, then og(z,y) =
{z,y} < B.

Take z',y’ € L1L3Ls N L} such that z = h(z’),y = h(y'), and take
z € 0g(z,y), (z,y) Fq z for some a € Q. Write

T = 2102y, Y = 2}azq, for z = z1a20,
and

¥ =za1a2a ... TRORALT11, Kk > 1,

Y = yibibiye. . yYsbsblysi1, s> 1,
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for a;,b; € Q,x;,y; € V*,a;_lziai,b;_lyibi € Lo, for all ¢ and z1aq,
ylbl € Ll, a;cxk+1,b;y3+1 € L. Then

T=1T101T2... LORTr+1, Y = Y1012 - - - YsbsYst1-

Identify the marker a in x, respectively in y, as used in (z,y) k4 2.
/
Ifa= a;, then 21 =21Q1...L4-10;—1T4, 29 = Tj41Qi41 -+ - Ok Tk41-

If a; # a for all 1 < i < k, then there is z; = zjaz). For i =1
we have zia € L; and a'z{a; € Ly. For 1 < i < k+ 1 we have
a,_,xta € Lo, d'z)a;y1 € Ly. For i = k4 1 we have ajx},,0 € Lo
and a’z},, € Ls. In all cases we can find a string of the form z” =
wiaa’wy € L1L3Ls N L} such that x = h(z").

Similarly, we can find y” = wiaa'wy € L1L3L3NL} such that y = h(y").
For the string 2/ = wjaa’w) we clearly have 2’ € LiL;L3 N L} and
z = h(2'). Consequently, z € B, which completes the proof of the
property (ii), hence of the inclusion L(y) C B.

(2) BC L(y). Takez € B. If x € Ls, then z € A C L(~).

If z = h(z'),x' = z1010 T2a20) . .. T aka} Tei1,k > 1, with z1a1 € Ly,
ai_izia; € Ly,2 <1 <k, ajxky1 € L3, then from the definitions of Ly, Lo, L3
there are the strings z1a12], ¥;6i—1%:0:Y;,2 < 1 < k, 2k410xZk+1, all of them
in A. Then

! / ’
(10177, y201T202Y5) Fa, T1a1T202Y5 = Wy,
! 7
(w2, ysaswsasys) ke, T1a12202T303Yy3 = W3,

(wkyzk+lakxk+1) Fa, 1017203 ... TkOrTr+1 = T.

Consequently, z € L(7). O

This representation is not a characterization of languages in SH. In fact,
a similar result holds true for all regular languages: just combine Lemmas
7.21 and 7.22. However, this representation has a series of interesting con-
sequences, one of them referring exactly to the regularity of simple splicing
languages.

Corollary 7.4. SH C REG.

Moreover, from Lemma 7.22, we also obtain the following useful necessary
condition for a language to be in SH.

Corollary 7.5. If v = (V, A, Q) is a simple H system, then for every x €
Sub(L(v)) N (V — Q)* we have |z| < max{|w| | w € A}.

Making use of this property, we get

Theorem 7.11. It is decidable whether or not a regular language is a stmple
H language.



7.5. Simple H Systems 253

Proof. Let L C V* be a regular language, given, for instance, by a regular
grammar or a finite automaton. For any subset Q of V, denote

R =(V-Q)
U {z1a12202 .. . cpapzeyr |1 <k < 2-card(Q),
2, €(V-Q)1<i<k a;€Q,1<i<k, and
there are no 1 <i < j <1< k+ 1such that a; = a; = a;}.

(Therefore, Rg contains all strings « over V such that each symbol of Q
appears at most twice in z.)

(1) If LN Rg is an infinite set, then there is no H system G = (V, 4, Q)
such that L = L(G).

Indeed, L N Rg being infinite means that there is z € Sub(L) N(V — Q)*
of arbitrary length, contradicting the previous corollary.

(2) If LN R is a finite set, then we consider all H systems v = (V, 4, Q)
with A C L N Rg. Then there is an H system +' = (V, A’, Q) such that
L = L(v') if and only if L = L(v) for a system  constructed above.

(4f): trivial.
(only if): Take v = (V, A’,Q) such that L(y') = L and A’ is not a
subset of L N Rg. This means that A’ contains a string of the form

Z = T10r2ax30X4,
for 1,22, 23,24 € V*,a € Q. Consider the strings
Z1 = X1ax2ax4, 2z = T14T30T4.

Both of them are in oo ({z}), hence in L(+'). Moreover, (z1, z2) F4 2. There-
fore, replacing A’ by

A" = (A = {z}) U{a1, 22},

we get a system 7’ = (V,A”,Q) such that L(y') = L(y"). Continuing
this procedure (for a finite number of times, because A’ is finite and |2;| <
|z],|22] < |2|) we eventually find a system v = (V, A" Q) with A" C
Ln RQ.

Now, L € SH if and only if L = L(+y) for some v = (V, A, Q) with Q C V.
There are only finitely many such sets @Q. Proceed as above with each of
them. We have L € SH if and only if there is such a set Qg for which
LN Rg, is finite and there is Ay € LN Ry, (finitely many possibilities) such
that L = L(vo) for o = (V, Ao, Qo). The equality L = L(v) can be checked
algorithmically. In conclusion, the question whether or not L € SH can be
decided algorithmically. O

This result cannot be extended to context-free (not even to linear) lan-
guages.
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Theorem 7.12. The problem of whether or not a linear language is a simple
H language is not decidable.

Proof. Take an arbitrary linear language Ly C {a,b}*, as well as the
language Ly = ctdTctdt, which is not in the family SH. Construct the
language

L = Li{c,d}* U{a,b}*L,.

This is a linear language.

If Ly = {a,b}*, then L = {a,b}*{c,d}* and this is a simple H lan-
guage: for v = ({a,b,c,d}, {zy | = € {a,b}",y € {c,d}",|z[ € {0,2},]y| €
{0,2}},{a,b,c,d}) we have L(y) = {a,b}*{c, d}*.

If Ly # {a,b}*, then {a,b}* — Ly # (. Take w € {a,b}* — L, and consider
the string w’ = weded. It is in L, and (w',w") ke wededed for e € {c,d}.
This string is not in L, therefore none of ¢,d can be a marker in a simple H
system for the language L. But L contains all string in wctd*ctd™, hence
L € SH would contradict point (i} in Lemma 6.20.

Consequently, L € SH if and only if L; = {a,b}*, which is undecidable
for linear languages. a

Because SH C REG, it is of interest to investigate the relationships be-
tween SH and other subfamilies of REG. We consider only one (important)
such sub-regular family, that of strictly locally testable languages.

A language L C V* is p-strictly locally testable, for some p > 1, if we can
write it in the form

L={zel]|lz|<2p}
U (Pref(LYNVP)V*(Suf(L)NVP) - V*(VP — Sub(L))V*.

A language is strictly locally testable if it is p-strictly locally testable for
some p > 1. We denote by SLT the family of such languages.

Clearly, SLT C REG. In fact, SLT is contained in the family of extended
star-free languages, the smallest family of languages containing the finite
languages and closed under boolean operations and under concatenation.

Theorem 7.13. SH C SLT.

Proof. We shall use the characterization given in [45] for strictly locally
testable languages.

According to [203], a string € V* is called constant with respect to a
language L C V* if whenever uzv € L and v'2v’ € L, then also uzv’ € L
and v/zv € L. In [45] it is proved that a language L C V* is strictly locally
testable if and only if there is an integer k such that all strings in V* are
constants with respect to L.

Consider now a language L € SH,L = L(v), for some v = (V,A4,Q).
Take the integer

k=max{|z| |z € A} + 1.
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Every string in V¥ is a constant with respect to L. Indeed, take such a string
z and two strings uzv,u'zv’ in L. Because |z| = k, according to Corollary
7.5, we have |z|g > 0. Take a € Q such that z = x1az2. Therefore uzv =
uziazav, u’'zv’ = w'zyazrav’, hence (uzv,u'zv’) b, wuziazrsy’ = uzv and
(v'zv’,uzv) F, w'zraz9v = v'zv. In conclusion, L € SLT and SH C SLT.

The inclusion is proper: for w = aabb we have w* € SLT (obvious), but
w* ¢ SH (Lemma 7.20.(iii)). O

7.6 Bibliographical Notes
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applying the rule r to x,y is the string xyvsy,. This corresponds to writing
a splicing rule u;#uo$us#uy as used here in the form (ujug, usuq;uijug).
In this way, the proof in [177] implies Lemma 7.14. But note that starting
from a regular set of splicing rules written in the form u;#us$us#us and
passing to the corresponding set of rules of the form (ujusz, uzug; uiuyg) (with
a suitable encoding of “” and ;") we do not necessarily obtain a regular
language, because of the repetitions of u; and u4. However, if the number of
strings uy, u4 is finite, then the regularity is preserved, even using an infinite
regular language of splicing rules ui#us$uz#us. The general result in terms
of AFL’s (Lemma 7.15) has been reported in [176], it appears in [177] for the
case of rules of the form (vq,vqe;v3), and, with full details, in [90]. A recent
more general formulation appears in [178].

The Basic Universality Lemma is proved in [153], directly for extended
H systems. Extended H systems were introduced in {167]. Morphic charac-
terizations of regular languages (as Theorem 7.5) appear in [71], [73], [149].
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Lemma 7.18 appears in [167]. Theorem 7.8 — 7.10 are from [153]. Theorem
7.7 is from [127].

Simple H systems are introduced and investigated in [130], where several
results not mentioned in Sect. 7.5 can be found (about descriptional complex-
ity, algebraic characterizations, comparison with other sub-regular families,
etc).

A generalization of SH systems is considered in [88], namely with string
markers: a k-simple H system is a triple v = (V, A, Q), where V is an al-
phabet, A is a finite subset of V*, and @ is a finite set of strings over V,
with the length less than or equal to k, £ > 1. The strings in @ are used
in the same way as the markers of a simple H system: (uzv,uw'z'v") b, uzv/,
z € Q. Denote by Sy H the family of languages generated by k'-simple H
systems, where k' < k. In [88] one proves that SH = S$1H C SoH C ... C
Ug>1 SkH = SLT. Moreover, it is decidable whether or not a regular lan-
guage belongs to a family SyH,k > 1; in the affirmative case, the minimal
value of k can be effectively found.



Chapter 8

Universality by Finite H
Systems

As we have seen in the previous chapter, extended H systems with finite sets
of axioms and splicing rules are able to generate only regular languages. As
we are looking for generative {computability) models having the power of
Turing machines, we have to consider features that can increase the power
of H systems. This has been successfully done for Chomsky grammars and
other generative mechanisms in the regulated rewriting area and the grammar
systems area. Following suggestions from these areas, as well as suggestions
offered by the proof of the Basic Universality Lemma (Lemma 7.16), in this
chapter we shall consider a series of controlled H systems with finite com-
ponents which characterize the recursively enumerable languages, hence are
computationally complete. From the proofs, we shall also obtain wuniversal
computing devices, hence models of “programmable DNA computers based
on splicing”.

8.1 Using 2-Splicing Instead of 1-Splicing

The extended H systems we shall consider in this chapter (with regulated
splicing or involving other features able to ensure computational completeness
even when using finite sets of axioms and of splicing rules) are intended to be
theoretical models of DNA computers based on splicing. That is why from
now on we shall work with the more realistic 2-splicing operation defined by
taking into account both the two possible strings obtained by recombination:

(z,9) Er (z,w) iff z=z101u5,
Y = Y1usuqgye,
Z = T1U1U4Y2,

G. Piun et al., DNA Computing
© Springer-Verlag Berlin Heidelberg 1998
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W = Y1uU3zu2r2,
for some x1,%2,y1,Y%2 € V",

where r = u, #usSus#uy is a splicing rule.
For an H scheme o = (V, R) and a language L C V* we define

oo(L) ={z € V" | (z,9) = (2,w) or (z,y) ¢ (w, 2),
for some z,y € L and r € R}.

Then we can define o3(L),i > 0, and o}(L) in the same way as we
have done at the beginning of Sect. 7.3 of the previous chapter with
ot(L),i > 0, and o}(L), respectively. Thus, we can repeat all the consid-
erations in Sects. 7.2-7.5 for the operation |= instead of . We shall denote
by So(FLq,FLy),Hy(FLy,FLy), EHy)(FLy, FLy) the families of languages
corresponding to S;(FLy, FLy), Hi(FLy, FLs) and EH,(FLy, FLy), respec-
tively.

We say that a family FL of languages is closed under marked circular
permutation if for each language L C V*{c}V*, where c ¢ V, L € FL, the
language

perm.(L) = {veu | ucv € L,u,v € V*}

is also an element of FL.

Lemma 8.1. For every family F Ly and for F Ly closed under union and un-
der marked circular permutation, we have Xo(FLy, FL2) C X,(FLy, FLg),
X €{S,H,EH}.

Proof. Consider an H scheme o = (V,R) with R € FL,. For every
language L € FL; we have o2(L) = o}(L), where ¢/ = (V, R U permg(R)).
The equality is obvious and R U permg(R) € FLg by the closure properties
of FLy. This proves all the inclusions in the statement of the lemma. a

Most of the results in Chap. 7 about families X;(FLi,FL2), X €
{S,H,EH}, are true also for the families X2(F Ly, FLs). This does not
happen, however, with Lemmas 7.2, 7.4, 7.5, but, if the families F'L;, FLo
from the statement of these lemmas are also closed under intersection with
regular languages, then these statements also hold for families Xo(...,...).
The gsm’s in the statements and the proofs of Lemmas 7.3 and 7.6 can sim-
ulate such an intersection with a regular language, hence these lemmas also
remain true for the case of the 2-splicing. We shall not pause to check each of
the results in Chap. 7 from this point of view, because we are not interested
in the mathematical properties of the operation = but in its computational
properties. From this point of view, the following facts are important:

1. Lemma 7.14 combined with Lemma 8.1 implies that Ho(REG, FIN) C
REG. Similarly, from Lemma 7.15, we have Ho(CF,FIN) C CF.
Moreover, Lemma 7.18 remains valid for the 2-splicing operation,
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REG C EHy(FIN,FIN). This can be easily seen from the proof of
Lemma 7.18, by examining the second string produced by the 2-splicing
operations in the extended H system ~: all such strings contain nonter-
minal symbols in N as well as occurrences of the symbol Z, and even

by entering new splicings, these strings cannot produce terminal strings
not in L. Consequently, EHy(FIN,FIN) = REG.

2. Lemma 7.16 remains true when replacing H; by Hs, that is every lan-
guage L € RE,L C V* can be written in the form L = L' nV* for
some L' € Hy(FIN, REG). This can be checked in the proof of Lemma,
7.16 (the second string produced by 2-splicing operations cannot lead
to strings in V* which are not in L), but we do not emphasize this
here; in some of the following proofs we shall consider this aspect in
full detail.

3. In view of Lemma 8.1, the statement in Lemma, 7.17 also remains true
when replacing H; with Hs.

Therefore, the relations in Table 7.3 are valid for families FHy(F Ly, FLy).
In particular, we have

1. EHo(FIN,FIN) = REG,
2. EH,(FIN,REG) = RE.

Thus, the discussion after Table 7.3 is also valid for extended H systems
based on 2-splicing: in order to get computational completeness for systems
with finite components we have to add further features to our models.

8.2 Permitting and Forbidding Contexts

Examining the H system in the proof of Lemma 7.16, one can see that the set
of splicing rules is infinite because of the appearance of substrings w in rules
of types 1, 2, 3, 4, 5, 6. However, these substrings contain no information
(except the case of rules of type 6, where w € T*), they are arbitrary strings
over the alphabet N UT U {B}. The role of these substrings w is to allow
information to be obtained about the symbol appearing behind them, namely
X, X' in the left hand end of the first term of the splicing and Y,Y,,a €
N UT U {B}, in the right hand end of the second term of the splicing.
Otherwise stated, we have in fact finite splicing rules, applied only to strings
containing (at their ends) certain symbols, from well specified sets. This
suggests considering the following type of H systems with controlled splicing.

An extended H system with permitting contexts is a quadruple

v=(V,T,AR),
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where V is an alphabet, T C V, A is a finite language over V, and R is a
finite set of triples of the form p = (r; C1, C2), with r = u; #usSus#u, being
a splicing rule over V and C1, C being finite subsets of V*.

Note that here we only consider systems with finite components.

For z,y,z,w € V* and p € R,p = (r; C1,C2), we define (z,y) = (2, w) if
and only if (z,y) = (2,w), every element of C; appears as a substring in x
and every element of Cy appears as a substring in y; when C; = @ or C3 = 0,
then no condition on x, respectively y, is imposed.

The pair ¢ = (V, R) is called (the underlying) H scheme with permitting
context rules. The language generated by ~ is defined in the natural way:

Ly) = o3(A) N T".

We denote by EHz([n],p[m]),n,m > 1, the family of languages L(7)
generated by extended H systems with permitting contexts, v = (V, T, A, R),
with card(A) < n and rad(R) < m, where rad(R) is the maximal radius
of splicing rules r in triples (r;C;,C2) from R. When no restriction on the
number of axioms or on the maximal radius is considered (but, of course,
these numbers are still finite), we replace [n] or [m], respectively, by FIN.

The proof of the next lemma is given with full details, both because the
result is important for our purposes and because we want to exhibit the
method of working of an H system based on the operation |=.

Lemma 8.2. RE C EHs(FIN,pFIN).

Proof. Consider a type-0 Chomsky grammar G = (N, T, S, P). Let us
denote U = N UT U {B}, where B is a new symbol. We construct the
extended H system with permitting contexts

’y = (‘/; T7 A’ R)7
where
V=NUTU{B,X,X,Y,2,2',Z"}
UA{Y,|aelU},
A={XBSY,XZ7,7',Z2",Z2Y}
U {ZY,, X'aZ|ac U}
U {ZvY |u— v e P}
and R contains the following rules with permitting contexts:

Simulate : 1. (#uY$Z#vY;{X},0), foru—veEP,

Rotate : 2. (#aY$Z#Y,;{X},0), foracU,
3. (X#$8X'a#Z;{Y,},0), foracU,
4 (HY.$Z4Y;{X'},0), foracl,
5 (X'#$X#Z;{Y},0),
Terminate : 6. (XB#3$#Z';{Y},0),
7. (#YS$Z"#;0,0).
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This is precisely the construction from the proof of the Basic Universality
Lemma, that is, the rotate-and-simulate procedure, written for splicing rules
with permitting contexts.

The rules from group 1 allow us to simulate rules from P on a suffix of
the first term of the splicing.

We must be able to simulate the application of a rule from P in an arbi-
trary position of the underlying sentential form, not only in the right-hand
end of the word. To this aim, the rules in groups 2, 3, 4, and 5 allow us to
“rotate” the word. A rule in group 2 cuts a symbol « from the right-hand
end of the word, Y, memorizes this symbol, in its presence a rule from group
3 will introduce « in the left hand end (together with X’), then Y, is again
replaced by Y (by using the appropriate rule from group 4), and X’ is again
replaced by X (by using the rule from group 5). Any circular permutation
can be obtained in this way.

The rules from groups 6, 7 finally allow us to remove the markers X and
Y (the former one only when B is adjacent to it).

Let us look in some detail at how the ideas mentioned above work.

When simulating derivation steps in G, we start from XBSY, and at
every step the markers X and its variant X’ as well as Y and its variants
Y3, 8 € U, are present to indicate the ends of the word. Moreover, at any
moment the symbol B tells us where the beginning of the word is, whose
permutation we consider.

All the splicing rules with permitting contexts contained in R require an
occurrence of the symbols Z, Z’, Z” in the second term of the splicing; in fact,
these words are meant to be taken from A. If we start with rule 1 applied
to XBSY and ZvY, for some S — v € P, this starts the simulation of a
derivation in G. In general, having a word Xz BzouY and u — v € P, we
can obtain Xx; BxsvY by using the associated rules in group 1:

(Xw|uY, Z|vY) E, (XwvY, ZuY),

for p = (#uY$Z#vY;{X},0), where u > v € Pand w e (NUT)*{B}(N U
T)*.

This corresponds to a derivation step xour, = z9vz; in G.

As additional results (that are not used at a subsequent step of the sim-
ulation of a derivation in G) of the splicings of the form above we obtain the
words ZuY for u — v € P.

To each word XwaY, o € NUT, w € (NUT)*{B}( NUT)*, respectively
XwaY,a =B, we (NUT)*, we can also apply the appropriate rule from
group 2 and then proceed with applying the appropriate rules from groups 3
and 4; finally, by using the rule in group 5, we obtain the word XawY . The
symbol a has been moved from the right-hand end to the left-hand end of the
word, which is exactly what we need for rotating the underlying sentential
form:

- (Xwl|aY, Z|Y,) Fp (XwYy, ZaY), for p= (#aY$Z#Y,;{X},0),
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where wa € (NUT)*{B}(NUT)Y, ae NUTU{B};

- (X|wYo, X'a|Z) Ep (XZ, X awY,), forp=(X#$X'a#Z;{Ya},0),
where wa € (NUT)*{B}(NUT)*, a € NUT U{B};

— (Xaw|Ya, ZY) [y (XawY, ZYy), for p= (HY.$Z4Y; {X'}0),
where wa € (NUTY{B}NUT)*, a € NUTU{B};

- (X'lowY, X|2) |5 (X'Z, XowY), for p= (X'#8X#Z;{Y},0),
where wa € (NUT)*{BHNUT)*, a € NUT U{B}.

As additional results (that cannot already be found in the set of axioms
A) of the splicings listed above, we obtain the words ZaY, for a € U, and,
if v # X for all u — v € P, then X’'Z again, too.

Notice that every word obtained from X BSY so far, not containing the
symbol Z, is of the form ajzBzaas, with (aj, o) being one of the pairs
(X,Y), (X,Y,), (X',Y,), (X',Y), a € U. Hence these symbols appearing as
permitting contexts in the splicing rules of R precisely control the work of .

In order to obtain a terminal word we have to use rules from groups 6, 7;
Y must be present when using rule 6 and B must be adjacent to X:

- (XB|wY,|Z") |=p (XBZ',wY), for p=(XB#$#2Z';{Y},0),
- (wlyv, IZH) |:P (’LU,Z”Y), for p= (FI#$#Z”;{FI}7 w):

where w € (NUT)*.

As additional results of the splicings above we obtain the words
XBZ', Z"Y.

Altogether, in v we can produce every terminal word that can be produced
by G, i.e., L(v) 2 L(G).

Conversely, no unintended terminal words can be generated in v, i.e.,
L(y) € L(G).

Indeed, words of the form ZuY obtained after using a rule from group
1 associated with u© — v € P can be spliced by a rule of type 1 only when
ZuY € A, hence the operation is already discussed. Moreover, we can also
perform a splicing

(ZulY, 2")) |p (Zu, 2"Y), for p = (#Y$Z2"#:0,0).

The string Zu cannot enter new splicings, while Z”’Y can enter splicing by
the same rule, hence nothing new is produced:

(Xw|Y, Z2"|Y) | (XwY, Z"Y),
(Z”|Y7 ZHD t:P (Z”a Z”Y)'
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Consider now the strings ZaY, a € U, obtained during the rotating phase.
They cannot be used as the first term of a splicing using rules of types 1 — 6.
If used in a splicing

(ZalY, Z"|) Ep (Za, Z"Y), for p = (#Y$Z"#;0,0),

then the string Za cannot enter new splicings and Z”Y cannot lead to termi-
nal strings (see the previous paragraph). The string ZaY can be used as the
second term of a splicing only by a rule of type 1, providing that ZaY € A.
Finally, X'Z can enter no splicing; X BZ’ can be spliced by the rule of
type 6,
(XB|w,XB|Z') E(XBZ',XBw), we (NUT)",

which produces nothing new, while Z”Y can be spliced by using the rule of
type 7 but again no terminal string can be produced.
In conclusion, we obtain L{7y) = L(G). O

Remark 8.1. Note that in the rules (p; C1,C2) of the H system with permit-
ting contexts constructed in the proof of Lemma 8.2 (we can modify the rule
of type 7 to (#Y$Z"#;{Y},0)), the pairs (Cy,C2) of permitting contexts
are of the special form ({D},0) for some nonterminal D, i.e. we only check
the occurrence of one nonterminal in the first term of the splicing. This can
be viewed as a normal form result for our systems. a

Remark 8.2. A permitting context splicing rule as in the proof of Lemma
8.2, i.e., with only one checked symbol which should appear at an end of the
string, might be — theoretically — implemented in the following way.

As we have seen in Chap. 1, the restriction enzymes work only on double
stranded sequences. We melt the solution in order to obtain single stranded
sequences, and add a primer which contains the complement of the permit-
ting symbol. This primer will only be attached to single stranded sequences
containing the designated symbol {at an end of it). Only these single stranded
sequences will enter the polymerization reaction, leading to double stranded
sequences, hence the enzyme will only act on them. a

Theorem 8.1. EHy(FIN,pFIN) = RE.

Proof. By a direct proof or by the Church—-Turing Thesis, we have
EH>(FIN,pFIN) C RE; the converse inclusion is given in Lemma 8.2.
O

In the proof of Lemma 8.2 we have paid no attention to the radius of
the used splicing rules. Starting the proof of Lemma 8.2 from a grammar
G in Kuroda normal form, we obtain an extended H system with permit-
ting contexts of radius 3. This value is reached in splicing rules of type 1
(#uY$Z#vY, where |uY| and |[vY| can be equal to 3). This result can be
strengthened:

Lemma 8.3. RE C EH,(FIN,p[2]).
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Proof. Consider a type-0 grammar G = (N, T, S, P) in Kuroda normal
form. Denote by P; the set of context-free rules in P and by P» the set of
non-context-free rules in P.

We construct the extended H system with permitting contexts v =
(V,T, A, R), where

V = NUTU{B,X,X',2,Z',2",Y}
U {Y,|reP}u{Z |reP}
U A{Y, |ae NuTuU{B}},
A= {XBSY,z2Y,XZ,7',Z"}
U {ZYs,X'aZ |a € NUT U{B}}
U{ZzY |r:C—oze P}
U {ZY,,Z,EFY |r:CD — EF € Py},

and R contains the following productions:

Simulate : #CYS$Z, #x; {X},0), forr:C — z € Py,
C#DYS$Z#Y,;{X},0),

(#CY, $Z, #EF;{X},0), forr: CD — EF € P,
(#aY$Z#Y,;{X},0),

L (

2. (

3

4.

5. (X#8X'a#7;{Ya},0),
6

7

8

9

Rotate :
(#YL$Z#Y;{X'},0),
(X'#3X#Z;{Y},0), fora € NUT U{B},

(XB#$4Z';{Y},0),
(#YS$Z"#:0,0).

Terminate :

The rules of type 1 simulate the rules in Pj, the rules of types 2, 3 simulate
the rules in P,. (Initially we have X BSY, hence at the first step we have
to use a rule of type 1. Each splicing must involve an axiom and a string
produced at a previous step and it produces a string of the form XwY, with
w e (NUTU{B})* and X,Y possibly replaced by variants of them, primed
or having subscripts.) For instance, consider a string Xw; BwsCDY and a
rule r : CD — EF € P;. We get

(leB’lUQClDY, Z|Y7‘) '22 (lengCYr, ZDY),
(XwyBws|CY,, Z,|EFY) =3 (Xw1 Bw EFY, Z,CY,).
The rules of types 4, 5, 6, 7 are used for “rotating” the string and the
rules of types 8 — 9 finish the work of v in the same way as in the proof of

Lemma 8.2. Thus, we have L(G) = L(v).
Clearly, rad(y) = 2. O

Therefore, Theorem 8.1 can be written in the form
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Corollary 8.1. RE = EH,(FIN,p|2]).

Three open problems remain here: (1) Can the assertion in Lemma 8.3
be strengthened to RE C EHo(FIN,p[l])? We conjecture that EH>(FIN,
p[1]) C CF, i.e., that the answer is negative. (2) Can the number of axioms
be bounded in advance without loosing the computational completeness?
We conjecture that the answer is affirmative, more precisely, that RE =
EH([1],pFIN), that is, one axiom suffices. (3) Can we simultaneously
decrease both the number of axioms and the radius of splicing rules? As is
customary in the area of descriptional complexity (we saw this at the end of
Sect. 7.4, too), it is possible that this question has a negative answer, that
is, a trade-off between these two complexity criteria, card(A) and rad(R), is
highly probable. However, as we shall see below, in many cases of controlled
H systems the two parameters can simultaneously be bounded by rather low
thresholds.

In what concerns the above conjectured inclusion EHy(FIN,p[l]) C CF,
if this would be confirmed, then an entirely new characterization of context-
free languages is obtained, because we have the next result.

Lemma 8.4. CF C EH,(FIN,p[1]).

Proof. Consider a context-free grammar G = (N, T, S, P) in the strong
Chomsky normal form, that is, with the rules in P of the forms X — a,
X = YZ, for X,Y,Z € N,a € T, and with the additional restrictions
specified in Theorem 3.2:

1.if X -YZisin P, then Y # Z|

2. if X »YZ isin P, then for eachrule X - Y'Z' in Pwe have Z' £Y
and Y’ # Z.

We construct the permitting context H system v = (V, T, A, R), where

V=Tu{X,X,,X.|X e N}U{D,E},
A={XaX,|X »acP}u{X,D,DX,, DX’ | X € N}U{E},

and R consists of the following splicing rules:

1) (a#Y,$Zi#b; {Y1},{Z,}), for X = YZ € P,a,be T,
2) (a#Z.$D#X;{Y1},0), for X - YZ € Pa e T,

3) (Xi#D$Y#a;0,{X,}), for X,Y € N,a €T,

4) (a# X $D#X,;{X},0), for X e N,a e T,

5) (a#S.$E#;{5:},0), fora e T,

6) (#E$S#a;0,0)foraeT.

The basic idea of this construction is that a string X;wX,, with w €
T+,X € N, is generated in « if and only if X =* w in the grammar G (the
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subscripts {,r in X;, X, stand for “left” and “right”, respectively). When
X =S, then w is an element of L(G).

The rules X — a are directly simulated by the axioms, because the strings
XjaX, are introduced in A.

Consider two strings Y,w1Y,, ZjwsZ, produced by ~; the axioms in A
corresponding to terminal rules in P are of this form, all other axioms are of
a different form. If there is a rule X — Y Z in P, then a splicing rule of type
1 exists in R, hence we can perform

Yo |Yr, Zilwa Z,) 1 (YiwweZr, Z;Yr).

The second string cannot enter new splicings in v (either a terminal symbol
or the control symbol D must always be present in the terms of a splicing).
The first string can be processed as follows:

(Yiwrwe|Zy, D| X)) 2 (Yiwiwe X, DZ,),
(XD, Yi|lwiwe X,) =3 (Xjwi1wo X, YD),
(Xlw1w2|X;,D|X,.) '=4 (XlwlngT,DX;).

These steps are possible only if the rule X — Y Z is in P. Therefore, we
obtain the string X;w;wy X, which corresponds to a derivation X =* wyws
in G. The strings DZ,,Y;D, DX/ are axioms.

Thus, indeed, a string X;2X,. is produced in + if and only if X =—* z in
G. If we obtain a string S;zS,, that is with € L(G), then we can use rules
5,6 in R:

(Sl$|Sr7E|) '=5 (Sl.’E,ES,.),
(|E, Silz) =6 (z, SiE).

We obtain the string z, as well as strings which can only enter splicings
of the same forms but produce nothing (for instance, (S;z|S,, E|S,) ks
(S1zS,, ES,)). Rule 6 cannot be used before using rule 5, because the symbol
S; must be present in the string when rule 5 is applied. This concludes the
proof of the equality L(G) = L(7). O

Consider now again the proof of Lemma 8.2. The symbols whose presence
is checked are elements of the set of control symbols

Q={X,X,Y}U{Y,|ae NUTU{B}}.

The presence of a symbol is equivalent with the absence of all other sym-
bols, because the control symbols are always present at the ends of the strings
— except when finishing the generation of a terminal string. Thus, we can
consider a dual variant of extended H systems with permitting contexts, that
is, systems with forbidding contexts.

An extended H system with forbidding contexrts is a quadruple v =
(V,T,A,R), where V is an alphabet, T C V (the terminal alphabet), A
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is a finite language over V (axioms), and R is a finite set of triples (we
call them rules with forbidding contexts) of the form p = (r; D1, D2), where
r = uy HusSus#uy is a splicing rule over V and D, Dy are finite subsets of
V>

For z,y,z,w € V* and p € R,p = (r; D1, D), we define (z,y) =, (2, w)
if and only if (z,y) =, (z,w), no element of D; appears as a substring of x
and no element of D, appears as a substring of y; when Dy = @ or Dy = 0,
then no condition on x, respectively y, is imposed.

From a biochemical point of view, the permitting contexts can be in-
terpreted as catalysts or promoters, favoring the splicing by the associated
splicing rule, while the forbidding contexts can be interpreted as inhibitors,
suppressing the associated splicing rule.

The pair ¢ = (V, R) is called an (underlying) H scheme with forbidding
contexts rules. The language generated by + is defined in the usual way:

L(v) = o3(A)NT".

We denote by EHs([n], f[m]),n,m > 1, the family of languages L(y)
generated by extended H systems with forbidding contexts, v = (V, T, A, R),
with card(A) < n and rad(R) < m, where rad(R) is the maximal radius of
splicing rules r in triples (r; D1, D7) in R. When no restriction on the number
of axioms or on the maximal radius is imposed (except that these numbers
are still finite), we replace [n] or [m] by FIN.

As expected from the previous discussion, we have the equality
EHy(FIN, f[2]) = RE. Actually, a stronger result is true:

Theorem 8.2. EH,([1], f[2]) = RE.

The proof of this theorem is based on two lemmas corresponding to
Lemmas 8.2 (combined with Lemma 8.3) and to the conjectured inclusion
RE C EH([1],pFIN). For the sake of completeness and because of the
strong form of Theorem 8.2, we present the core construction of the proofs
of both these lemmas.

Lemma 8.5. RE C EH2(FIN, f[2]).

Proof. Consider a type-0 grammar G = (N, T, .S, P) in the Kuroda normal
form, denote by P; the set of context-free rules in P and by P; the set of non-
context-free rules in P. We construct an H system with forbidding contexts
v = (V,T, A, R), where V,T, A are the same as in the proof of Lemma 8.3,
U = NUTU{B}, and R contains the following rules with forbidding contexts:

Simulate : 1. (#CY$Z.#x;{X'},0), forr:C — x € Py,
2. (CH#DYSZ#Y,;{X'},0),
3. (#CY,$8Z #EF;{X'},0), forr:CD — EF € P,,
Rotate: 4. (#FaY$Z#Y,;{X'},0),
5. (X#$X'a#Z;{Y}U{Ys|BeU,



268 8. Universality by Finite H Systems

B #a}U{Y, |r e P}, 0),
(#Y.$Z#Y;{X},0), for a € U,

(X' #8X#Z;{Yg | Be UU{Y; |r € P2},0),
(XB#8#2';{Ys | B € UU{Y: |1 € P2},0),
(#Y$Z"#;{X, B},0).

Terminate :

© 0 N o

The equality L(y) = L(G) can be checked in an easy way (repeating
arguments like those in the proofs of Lemmas 8.2 and 8.3). |

Lemma 8.6. EH,(FIN, f[2]) € EHy([1], f[2])-

Proof. Consider the extended H system with forbidding contexts v =
(V,T, A, R) with A = {w1,ws,...,wy},n > 2, given by the construction in
the previous proof, that is, with rules of the form (r; D1,0). Moreover, at each
splicing step, the second term of the operation is an axiom. We construct
the extended H system with forbidding contexts

'YI = (V U {C}7T7 {w},R’),

where
W = CWLCWs . . . CWyC,

and

R = {(r; D1 U{c},{c}) | (r; D1,0) € R}
U {(#cSc#;0,0)}.

By applying the splicing rule #c$c# to two copies of w we can cut one w
at the symbol c in front of some axiom w;, obtaining w;c... wrc. Applying
the same rule #c$c# to this word and to another copy of w we can produce
the axiom w; as a separate string.

Because the rules in R now have the forbidding contexts Dy U{c}, {c}, the
two terms of the splicing cannot contain the symbol c¢. Removing ¢ amounts
to separating the axioms of 4 from w by the rule #c$c#. Consequently, we
have L(v) = L(v'). O

Note that in the case of forbidding contexts we do not obtain a normal
form as in the case of permitting contexts, that is with condition sets of the
form (C1,Cs), with C; containing one symbol only and C; empty. On the
other hand, in the forbidding case we obtain a result which is not known for
permitting contexts: low bounds are found both for the number of axioms
and for the radius.

The control through forbidding symbols as in the proof of Lemma 8.5,
that is, with the checked symbols always appearing at the ends of the first
term of the splicing, can be easily implemented by considering a priority
relation on the set of splicing rules.
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Specifically, an ordered extended H system is a construct v =
(V,T, A, R,>), where V is an alphabet, T C V (the terminal alphabet),
A is a finite language over V (axioms), R is a finite set of splicing rules over
V, and > is a partial order relation on R.

For z,y,z,w € V* and r € R we allow the relation (z,y) . (z,w)
only if we do not have (z,v) =~ (2/,w') or (¢, z) & (2,w'), for some
y',2',w' € V* and ' € R such that v’ > r. (A splicing is performed by a
rule which is maximal among all splicing rules which can be applied to the
first string and any other string.)

We denote by EHy(|n],ord[m]),n,m > 1, the family of languages gener-
ated by ordered extended H systems with at most n axioms and of radius at
most m.

Theorem 8.3. RE = EH([1], ord[2]).

Proof. Consider an H system with forbidding contexts as given by the
constructions in the proof of Lemmas 8.5 and 8.6, that is, of the form v =
(V,T,{w}, R), with rad(y) = 2 and with the rules in R of two types: a rule
#c$c#t which cuts w in parts not containing the symbol ¢, and rules which
always use these parts as the second term of the splicing. We modify v as
follows. Add the symbol Z; to the alphabet V' and replace the axiom w by
weZyZy. Replace each rule with forbidding contexts of the form

(ur F#ugSus#uy; Dy, Do)
with D; U Dy # 0 by the set of rules

T = u FuSus#ua,
’l"(Ol) = Oé#$Z0#Z0, for o € D,
r(a) = Z()#Z0$a#, for a € D,.

Consider the relation > defined by
r(a) >r, for all @ € Dy U Ds.

Consider also the rule
To = Zo#S$ Zo# 7y,

with 7¢ > r for all rules r = u;#usSus#uy corresponding to a starting rule
(u1#u28us#uy; Dy, Do)

Denote by +' the ordered H system obtained in this way.

By using the rule #c8c# as in the proof of Lemma 8.6, we can separate
from weZyZy the blocks not containing the symbol ¢, as well as the string
ZoZy. Now, if for some (r; D1,Ds) a symbol @ € Dy U D, appears in a
string x, then in order to splice {x,y) in ¥/, for some y € V*, we cannot
use the rule r, but one of the rules r(c),r’(«). However, the use of r(a)
and r’(«) introduces the symbol Z; in both strings produced by splicing and
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this symbol cannot be eliminated (the rule ro has to be used for the first
term of the splicing, the second one should be an axiom). Therefore, the
priority restriction forces the use of splicing rules r in a forbidding manner.
Consequently, L{y) = L(¥’). |

The order relation in systems above can be interpreted as modeling the
difference between the reactivity of the enzymes involved by the splicing rules:
when two different enzymes can cut the same string, the more reactive one
will actually work.

8.3 Target Languages

While extended H systems with permitting or forbidding contexts corre-
spond to the biochemical activity of catalysts (promoters) and inhibitors,
which control in wvivo or in wvitro reactions by their presence in or absence
from the molecules entering the reaction, regulating the splicing by target
languages corresponds to another biochemical aspect, encountered in vivo:
nature selects the offsprings of the evolutionary process in a rather dramatic
manner, not allowing the perpetuation of “unsuitable” forms of life. Formu-
lated in “Lamarckian terms”, we may say that evolution has a sense, that
the mutations and recombinations are made “toward improvement”. Such
speculations can be easily modeled in our framework by considering a sort of
hypothesis language: when splicing two strings, the resulting strings should
be members of a given language. This corresponds to conditional grammars
in the area of regulated rewriting and to grammar systems with hypothesis
languages in grammar systems theory. As in these areas, too, the power of
H systems is increased by considering such regulating mechanisms: we can
again characterize the family RE by systems with finite sets of splicing rules.

An extended H system with local targets is a construct v = (V, T, A, R),
where V is an alphabet, T C V (the terminal alphabet), A is a finite lan-
guage over V (axioms), and R is a finite set of pairs p = (r,Qp), where
7 = uy #us$us#uy is a splicing rule over V and Q) is a regular language over
V. For z,y,z,w € V* and p = (r,Qp) in R we write (z,y) = (2, w) if and
only if (z,y) Er (2,w) and 2z, w € Q) (the results of the splicing with respect
to r belong to Qp).

If, for such an extended H system with local targets, v = (V, T, A, R), we
have Qp, = Qp, for all p; = (r1,Qp,),p2 = (r2,Qp,) in R, then we say that
v is a system with a global target. If @) is the common target language of
rules in R, then we write the system in the form v = (V,T, A, R/, @), with
R’ consisting of the splicing rules in R.

In the customary style, we denote by EHy([n],lt[m]),n,m > 1, the family
of languages generated by extended H systems with local targets having at
most n axioms and splicing rules of radius at most m; in the case of global
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targets we replace It by gt; when no bound on the number of axioms or on
the radius is imposed, we replace [n], [m] by FIN.
From the definitions we have

Lemma 8.7. EHy([n], gt[m]) C EHs([n],t[m])}, for all n,m > 1.
Lemma 8.8. RE C EH,(FIN, gt[2]).

Proof. Consider a type-0 grammar in Kuroda normal form, G =
(N, T, S, P), denote by P; the set of context-free rules in P and by P, the set
of non-context-free rules in P. Assume the rules in P labeled in a one-to-one
manner. Denote U = N UT U {B}, where B is a new symbol. We construct
the extended H system with a global target

'Y = (V7T7 A7 R7 Q)7
where

V =NUTU{B X, X', X".Y,Y' 2,2}
U{Yy|lacU}lu{Z |repP}
U {Y.lr:CD — EF € P},
A={XBSY,ZY,XZ,2Y' X"Z,Z"}
U {ZYs, X'aZ | ac U}
U{ZzYlr:C—zxze P}
U {ZY,,Z,EFY |r:CD — EF € P},

and the following groups of splicing rules; we associate with them target
languages in a local manner in order to make more explicit the work of 7,
but @ is the union of all these local target languages:

Simulate : 1. #CY$Z,#zx, Q1= XU*Y U{Z.CY},
forr:C —xe€ P,
2. CH#DYSZ#Y., Q2r=XU*Y,U{ZDY},
3. #COY,.8Z,#E, Qs,=XU*'YU{Z.CY,},
forr: CD — EF € Py,

Rotate: 4. #aY$Z#Ys, Qua=XU'Y,U{ZaY},
5. X'o#Z8X#, Qs = X'U'Y.U{XZ],
6. H#Y.SZHY',  Qsa=X'U'Y' U{ZY.),
fora € U,
T XUHZSX'#,  Qr=X'UY'U{X'Z),
8. #Y'SZH#Y, Qs =X"U*Y u{zY'},
9. X#Z$SX"#, Qo= XU'Y U{X"Z},
Terminate : 10. #Z'$XB#, Qo =T*Y U{XBZ'},
11 #Y$Z'# Qu =T U{Z'Y).
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Then,

Q= U Q1,r U U (Q2,-UQs,r)

reP; repP;

11
U U (Q4,a U QS,a U Qﬁ,a) U U Qi'
=7

aclU

The work of v is based on the same rotate-and-simulate idea as in several
of the proofs of similar relations above, with some further precautions in the
rotation phase. As above, we start from the axiom X BSY and at every
splicing step we splice a string of the form XwY, maybe with X replaced
with X’ or X" and with Y replaced withY',Y,,a € U, or Y,,r € P,, with an
axiom (each splicing rule contains an occurrence of Z, Z’, or Z,, for r € P).
Together with the target language, these control symbols control the work of
~ in a way that makes possible the simulation in v of all correct derivations
in G and, conversely, prevents the generation of terminal strings not in L(G).

Let us examine, for instance, a rotation step. Starting from a string
XwaY, with w € U*, o € U, by using the rules in group 4 — 9 we successively
get:

Xw|aY, Z|Y,) E4,0 (XwYy, ZaY),
X'a|Z, X|wYs) Es,a (X awYy, XZ),
X' aw|Ya, Z|Y") 6,0 (X awY’, ZY,),
X7, X' |awY") o7 (X awY’, X' Z),
X"ow|Y', Z|Y) s (X" awY, ZY'),
X|Z, X" |awY) g (XawY, X" Z).

N N N N N

We have obtained the string X awY which is a circular permutation of the
starting string XwaY. The target language does not contain strings of the
form X" 2Y,, for r € P, hence X”awY cannot enter splicings with respect to
rules in group 2. Using a rule in group 1 does not lead to unintended strings.
None of the other strings on the first position of the resulting pairs above can
enter splicings with respect to simulating rules in R. Similarly, these strings
cannot be spliced according to terminating rules: the resulting strings cannot
be in T*Y UT*U{XBZ',Z'Y}. In what concerns the “by-product” strings
above, ZaY, XZ,72Y,, X'Z,ZY', X" Z, part of them are axioms, the others
either cannot enter splicings because of the target restriction, or they can
enter splicings which do not lead to illegal terminal strings. For instance,
X'Z, which is not an axiom, can be spliced with X" 7,

(X"Z,X'\Z) Er (X"Z,X'Z),

but the two strings are reproduced (note that both strings X" Z, X’ Z are in
Q).
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Thus, we can conclude that L(y) = L(G). O
Lemma 8.9. FHy(FIN, gt[m]) C EH>([1], gt[m]),m > 1.

Proof. Let v = (V,T, A, R,Q) be an extended H system with a global
target, with A = {wy,...,wp},n > 2. We construct the extended H system
with a global target

v = (VU{c}, T, {w}, R,Q),
where

W = CWiCWy . ..CWnC
R' = RU {#cSc#},
Q' = QU {w;, wic...cwpe, cwic...cwi_icw,

wew; 1. .. cw, | 1 < i< n}.

We obtain L(y) = L(v'): using the rule #c$c# we can separate each
axiom w; of v from w:

(lw,cwic. .. cwi—icjwic. .. cwne) = (wic. .. cwnpe, cwre. .. cwi—1cw),

(wilcwigic. .. cwne, w|) E (W, wewpic. .. cwpc).

If a splicing rule in R is applied to strings containing the symbol ¢, then
the resulting strings should be in @’ — @, hence they must be either axioms
in A or strings containing further occurrences of ¢, hence composed of blocks
w;, 1 < i < n, bounded by occurrences of ¢. This ensures the inclusion
L{(v") € L(7). The reverse inclusion is obvious.

Note that the radius of rules in R’ — R is one, hence we have rad(R’)
rad(R).

Theorem 8.4. RE = EH,([1], gt[2]) = BEH,([1],1t[2]).

Proof. The inclusion RE C EH»([1], gt[2]) follows from Lemmas 8.8, 8.9.
The inclusion EH:([1], gt[2]) C EH2([1],1¢[2]} is pointed out in Lemma 8.7,
whereas the inclusion EHy([1],1¢[2]) € RE can be proved by a straightfor-
ward construction of a type-0 grammar simulating an extended H system
with local targets (or can be obtained from the Church-Turing Thesis). O

ol

By using target languages, we have removed the infinity of the set of
splicing rules, but we have reintroduced the infinity in the target languages.
However, it is enough to use the information provided by the first and the
last symbols of the strings produced by splicing, returning again to the style
of permitting-forbidding context conditions in the previous section, but for-
mulated for the strings obtained by splicing and not for the strings entering
the splicing.

We can relate this also to the style of genetic algorithms area, formulating
these conditions by means of fitness mappings: consider a mapping assessing
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the quality (fitness, reactivity) of the strings and let us control the process
by asking that strings with a low degree of fitness are not used in further
splicings.

Here we consider a boolean fitness mapping (a predicate).

An extended H system with a fitness mapping is a construct v =
(V,T,A,R, f), where V is an alphabet, T'C V (the terminal alphabet), A is
a finite subset of V* (axioms), R is a finite set of splicing rules over V, and
f:V* — {0,1}. The splicing of two strings z,y € V* with respect to a rule
in R is defined only when f(z) = 1, f(y) = 1. The language generated by
v is defined in the usual way. By EHy([n], fit[m]),n,m > 1, we denote the
family of languages generated by such systems with at most n axioms and
the radius at most m.

By simply taking f: V* — {0, 1} as being the membership mapping of
AUQ in an extended H system with a global target, v = (V,T, A, R, Q), we
get an extended H system with a fitness mapping v = (V,T, 4, R, f) such
that L(y) = L(v'): the result of a splicing does not enter new splicings if it
is not in AU Q. Thus we can write

Corollary 8.2. RE = EH,([1], fit[2]).

If the fitness mapping is not restricted, it can introduce artificially com-
plex features in the generated language, just by starting from an H system
with a complex fitness mapping. Thus, it is important to define particular
classes of such mappings. A natural idea is to consider a local definition
of the fitness mapping: we say that f : V* — {0,1} is locally defined if
flazB) = f(az’B) for all o, 8 € V,z,2’ € V* (that is, the value of f(azf3)
does not depend on z, but only on the symbols «, 8 bounding it). We de-
note by EHs([n], fit;[m]),n,m > 1, the family of languages generated by
extended H systems with a locally defined fitness mapping, with at most
n axioms and of radius at most m; [n],[m] are replaced by FIN when no
bound on the number of axioms or on the radius is imposed. Now, from the
proof of Corollary 8.1, by a suitable definition of a mapping f capturing the
restrictions imposed by the permitting context conditions (checked only at
the ends of the spliced strings), we get

Corollary 8.3. RE = EHy([1], fityFIN) = EHy(FIN, fit;[2]).

Note that, in fact, we have a particular form of a locally defined fitness
mapping, that is depending only on the leftmost symbol of a string.

Although Corollaries 8.2 and 8.3 are obtained as reformulations of other
results (involving reformulations of other notions), we have mentioned them
because they look more appropriate from a “practical” point of view: in or-
der to implement H systems with a fitness mapping it is enough to devise a
mechanism able to remove or inhibit the non-fitting strings obtained by non-
deterministic, unrestricted splicing; moreover, this mechanism has to check
only the ends of the strings in order to evaluate their fitness.
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8.4 Programmed and Evolving Systems

The ways of controlling the splicing operation in previous sections were based
on contextual conditions restricting the use of the splicing rules: any rule
in the set of splicing rules can be used at any time, but only for splicing
strings fulfilling certain conditions. However, the splicing rules themselves
can change from one step to the next one, influenced by the very strings to
which they are applied or, more generally, by the currently available set of
strings. Both the strings (DNA molecules) and the splicing rules (restriction
enzymes and ligases) correspond to chemical complexes placed together in a
given space (a cell, a test tube), hence their interaction takes place in both
directions: not only do the splicing rules act on the strings, but the strings
also influence the splicing rules.

In a general set-up, for a language L C V* and a set R of splicing rules
over V, we can define:

1. Alanguage String(R, L), of all strings obtained by one-step splicing of
the strings in L with respect to the rules in R, perhaps applied in a
restricted mode;

2. A set Rule(R, L), of splicing rules over V, obtained from the rules in
R under the influence of the strings in L.

Then, starting from a language Ly C V* and a set Ry of splicing rules
over V, we can define the sequence

(Ri, Lz) = (Rule(Ri_l,Li_l), String(Ri_l, Li_l)),i Z 1.

For an extended H system (maybe with a control ctr on the application
of its rules), v = (V, T, A, R, ctr), we can define the sequence (R;, L;),i > 0,
starting from Ly = A, Ry = R and with the mapping String depending on
ctr. Then the language generated by v can be defined by

L) = (JLonTe.

i>0

Such a system -y is said to be an evolving one.

The mapping String can be defined as in the previous sections, using
free splicing or splicing restricted in various ways. Permitting or forbidding
contexts, target languages, or fitness mappings can be some variants. In this
section we discuss the possibilities offered by the Rule mapping.

One variant is to define the set Rule(R;_1, L;_1) not depending on the
whole language L;_; but only on the strings used when passing from L;_»
to L; 1 = String(R;_2, L;_»), starting from the assumption that the strings
which are “close” to the rules can modify them — and can be modified by
them. Then, in this framework, we can define Rule(R;_1,L; 1) in a per-
mitting or forbidding way, depending on the presence or absence of certain
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symbols in the spliced strings. We can cover in this way the permitting or
forbidding ways of controlling the splicing.

A general class of evolving H systems can be based on mappings
Rule(R, L) depending on R only, hence independent of the current set of
strings. This immediately suggests considering H systems corresponding to
time-varying grammars or to programmed grammars in the regulated rewrit-
ing area.

We postpone the study of time-varying H systems for a subsequent chap-
ter, because this type of generative mechanism has a distributed architecture
which deserves to be emphasized and compared with other distributed H
systems. In the programmed case we can once again characterize the family
RE.

A programmed extended H system is a construct v = (V,T, A, R, next),
where V is an alphabet, T C V (the terminal alphabet), A is a finite language
over V (axioms), R is a finite set of splicing rules over V, and next : R —
P(R).

The language generated by v is defined by

L(v) = (AU 02(A) U p(A)) NT*,
where o = (V, R) is the underlying H scheme of + and

p(A) = {w € V* | there is a sequence of splicings of the form

($17y1) l:h ($27y,2)7($27y2) }:Tz (x?ﬂyé)" .
(mkayk) ':’V‘k (xk-i-l’y;c-i-l)a such that k > 2,

ri €next(ri_1),2<i<k,y,eV*2<i<k+1,
z1,01 €Ay € A,2<i<k, and w=xp41}

In words, the language L(-y) contains all terminal strings in A, as well as
those strings which can be obtained by one splicing starting from strings in
A (the set 02(A)), or by several splicings with the following properties: one
starts from two axioms; at each subsequent step, one splices the first of the
two strings produced at the previous step with one axiom; the rules used at
consecutive steps are related by the next mapping.

The condition to use at each step — except the first one - a string produced
at the previous step and an axiom could seem artificial and restrictive, but
most of the H systems in the proofs considered in the previous sections work
in this way when following “correct” paths of splicing, i.e., paths towards
strings in the generated language. However, in these systems other splicings
are also possible. Here, in order to take advantage of the programmed type
of restriction, we have to impose this condition in an explicit manner on the
terms of the splicing operations.

In the usual style, we denote by EHs([n],pr[m]),n,m > 1, the family
of languages generated by programmed extended H systems with at most
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n axioms and with splicing rules of radius at most . When n,m are not
bounded, we replace [r], [m] by FIN.

Theorem 8.5. RE = EHy(FIN,pr[2]).

Proof. We only have to prove the inclusion RE C EHy(FIN,pr{2]).

Consider a type-0 grammar G = (N, T, S, P) in Kuroda normal form,
denote by P; the set of context-free rules in P and by P, the set of non-
context-free rules in P. Assume the rules in P are labeled in a one-to-one
manner. We construct the programmed H system

v=(V,T,A, R, next),
where

V =NUTU{X,X'Y,B}
U{Yylpe R}u{Z, |pe P},
A = {X'BSY, ZY,XZ}
U{ZpzY |p:C—ze P}
U {ZY,, Z,EFY |p: CD — EF € P;}
U{XaZ|ae NUTU{B}},

R contains the following splicing rules

Start . sg = X#Z$X'#B,
Simulate : s, = #CY$Z,#z, forp:C -z e Py,

51, = C#DYSZ#Y,,
Sop =H#CY,8Z,#E, forp:CD — EF € P,

Rotate : 11,4 = #aY$Z#Y,
ro.o = Xa#Z$ X #, fora e NUTU{B},

Terminate : t, = #ZY$X BF#,

t = #YSZY #,

and the mapping next is defined as follows:

next(sg) = {sp |p € P1},
next(sp) = {sy | p' € P1}
U {s1,p | P’ € P2}
U {r,a|a€e NUTU{B}}
U {t1}, forpe P,
next(s1p) = {s2},
next(sy,p) = {sp | p' € P1}
U {s1p | P’ € P2}
U{rielae NUTU{B}}
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U {t1}, forpe P,
next(ri,qo) = {r2,a},
next(ra.a) = {sp |p € P}
U {s1p | p € P2}
U {rig|B€NUTU{B}}
U {t1}, forae NUTU{B},
next(t1) = {t2},
next(tz) = 0.

The mapping next controls the work of v in such a way that, after starting
the simulation of a rule p € P, by using the splicing rule s; ,, we have to
continue with the splicing rule s; ;,, and after removing a symbol « from the
right hand end of w in a string XwY, we have to continue by introducing «
in the left hand end of w.

Because rules rp o, € NUTU{B}, and t; cannot be used in the presence
of X’ and X’ can be removed only by sp, which can be used only in the first
splicing step, we have to start with so. This prevents starting with rules r 4,
which would produce illegal strings.

In this way, each sequence of splicings in v precisely corresponds to a
derivation in G. Consequently, L(G) = L(7). O

Although elegant from a mathematical point of view, the notion of a
programmed H system contains the non-biochemical ingredient of the next
mapping, defined independently of the current strings, in a sort of a “total”
manner: from one step to another the whole set of available splicing rules is
changed, simply by replacing them with new rules. In the spirit of evolving
H systems with the activity defined by two mappings String and Rule, we
now look for a local manner of changing the rules from one step to the next.
One way of doing this is to consider point mutations, insertion and deletion
operations of single symbols, or substitutions of a symbol by another one. We
consider such operations with context-dependence: a symbol is inserted in or
deleted from a specified context. To this aim we consider insertion-deletion
rules as in Chap. 6, of the form (u, @/f3,v), with u, v strings and «, 8 symbols
or ), telling us that a can be replaced by 3 in the context (u,v); a/A means
deletion, A\/(3 means insertion, a/b means changing a for b. As we shall see
below (and as expected from the results in Chap. 6), insertion and deletion
rules suffice; still, we define our locally evolving H systems in the general way.

An extended H system with locally evolving splicing rules is a construct

Y= (VaTa AO)ACa Ea CO)P))
where

(i) V is the total alphabet of v,
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(ii) T C V is the terminal alphabet,
(ili) Ap C V* is the finite set of starting axioms,

(iv) A. C V* is the finite set of current axioms,
(v) E is an alphabet, ENV # 0,

(vi) Cp is an initial sequence of splicing rules, Co = (r1,...,7%), 7 €
E*#E*$E*#FE*,1 <i<k,

(vii) P is a finite set of editing rules of the form (u,a/B3,v), with u,v €

(EU{#,8})*, and o, B € EU{A},a # 0.

The rules in P are used for editing the splicing rules, starting from the
“template” rules in Cy. When « € E, [ € E, we have a substitution, when
a € E,8 = A\, we have a deletion, and when o« = A, € E, we have an
insertion. Note that the special symbols #,$ cannot be edited.

The idea is to use the components F, Cy, P in order to produce splicing
rules. We pass from one step to the next by using one rule in P for each
currently available splicing rule. If any of the splicing rules present at one
time can be applied to a string produced at a previous step (initially, a string
in Ag) and to a current axiom (a string in A.), then it has to be used;
otherwise, the strings present in the tube are not modified. When a splicing
rule can be applied to a couple of strings, we assume that all copies of those
strings are used and consumed, hence they are no longer present for the next
steps — with the exception of the current axioms, which are supposed to be
unexhaustible (new copies of them are added whenever they are necessary).

Formally, we are led to the following definition.

Denote by =>p the usual derivation relation with respect to rules in P,
written as rewriting rules uav — ufv, for (u,a/B,v) in P. For a splicing

rule r € E*#FE*$E*# E* we define
P(ry={r'"|r=>pr'}.
We extend the relation = p to k-tuples of splicing rules by
(r1,...,rk) =>p (r},...,rg) iff 7€ P(r;),1<j<k.

Starting from Cjy, at the time ¢ > 1 we can obtain in this manner a sequence
C; = (ri1,...,Tik); we associate to it the set of splicing rules

Ri={r|r=r;; forsome 1< j <k}

Note that the set R; contains exactly one descendant of every rule in
Cy; out of the possible variants which can be obtained due to the possible
nondeterminism of using the rules in P, only one is actually chosen.

Consider now the “genome evolution.” We define the sets A;,7 > 0, as
follows. The initial set Ag is given.
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For x € V* and a given set R of splicing rules and for 7 > 0, we define

1, if thereisy € A; U A, and r € R such that

51'(11:,R) = { (.’E,y) ’:'I‘ (’LU,Z) or (y,ac) }:T (wv Z), for some w,z € V*a
0, otherwise.

Moreover, we define

Ri(A)) ={w e V" | (z,y) Er (w,2) or (z,y) E=r (2,w), for
r€ Rz, y € AiUA {z,y} NA; #0}, 2 >0.

Then
A,‘ = {.’E (S Ai—l | 6i_1($,Ri_1) = 0} U Ri—l(Ai—l), 1> 1.

(As at the beginning of this section, we can say that R; = Rule(R;-1, A;_1)
and A, = Stm'ng(Ri_l, A,’,_l).)

In words, A; consists of all strings in A;_; which cannot enter a splicing
with another string in A;_; or in A, according to a rule in the current set
R,;_1, plus all the strings obtained by such splicing operations. Note that a
string already used in a splicing operation does not survive, it is no longer
present in the next set A4;. When no currently available splicing rule can be
applied to the strings in the current set A; (and to the axioms in A.), then
all strings in A; will pass unchanged to the next step, hence A4;11 = A;.

The language generated by < is defined by

L) = (JA)nT".

i>0

In Chap. 6 (Theorem 6.2) we have seen that we can characterize RE by
using insertion rules of the form (u, A/, v) with |ul,|v] < 2, and deletion
rules of the form (u, A\/a,v) with |u|,|v| < 1, o being a symbol. Combining
this result with that in Lemma 7.16 (carefully arranging the construction in
such a way to meet the conditions in the work of an extended H system with
locally evolving splicing rules as above), we get a characterization of RF in
the new framework. In this way we use splicing rules of an arbitrary length,
which is bad from a practical point of view.

Fortunately, a characterization of RE holds also true for a rather partic-
ular type of H systems with locally evolving rules.

An extended H system with locally evolving splicing rules v = (V, T, Ay,
A., E,Cy, P) is said to be restricted if card(Ap) = 1, card(Cy) = 1.

Thus, we have exactly one splicing rule at each time.

Let us denote by EH2(FIN,rle[m]),m > 1, the family of languages L(v),
generated by restricted locally evolving H systems as above with splicing rules
of radius at most m,m > 1.

Theorem 8.6. EHy(FIN,rle[4]) = RE.
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Proof. We have to prove only the inclusion RE C EHy(FIN,rle[4]).
Consider a type-0 grammar G = (N, T, S, Fy) in Kuroda normal form,

that is with rules of the forms

1. AB— CD, for A,B,C,D € N,
2. A— BC, for A,B,C € N,
3. A—a,for A€ NjaeT,

4. A— X for Ae N.

As usual, we assume all the rules in Py labeled in a one-to-one manner.
We construct the restricted extended H system with locally evolving splic-

ing rules

Y= (V; Ta AOaAmE;COvP)a

with

V = NUTU{X,Y, Z, By},

Ay = {XBySY},

A, = {ZY}YU{ZvY |u > v € Py}
U {XaZ|ae NUTU{By}},

E=NUT

U {Xa Y7 Z7 B07015023d13d27d37617627f15f27917927h’15h’2}

U {[Ta 1]’ [73 2] | Te P0}7

C() = (Cl #Y$Z#),

and the set P containing the following point mutation rules; in order to check
the correctness of the construction, we present these rules together with the
current configuration set R;, consisting of exactly one splicing rule (which
however is not always deterministically produced).

1. Producing splicing rules for simulating rewriting rules in Pj:

A. For each rule r : AB — CD € Fy we consider the following insertion-

deletion rules:

cl#a A/[T, l]aY)v
)‘acl/)‘a #[Ta 1])7
#, A4, [r,1]),

#A,\/B,[r,1]),

#,0/C,[r,2]),
#C, A/ D, [r,2)),
CD, /Y, [r,2]),
Y, [r,2]/A,2),

CORPXNROE WD O
FTUN TN TN TN TN TN TN TN TN TN

ey

AB[r,1]Y8Z#,)/[r,2], ),
A [r, 1]/ A, Y$Z#r, 2]),

#YSZ#,

a1 #[r, 1|Y$Z#,

#[r, 1]Y$Z#,

#A[r, 1]Y $Z#,
#AB[r, 1Y $Z#,
#AB[r, 1Y $Z#][r, 2],
H#ABY$Z+#[r, 2],
#ABY$Z#C|r, 2],
#ABY$Z#CDir, 2|,
#ABYS$Z#CDY|r, 2],
#ABY$ZH#CDY.
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The splicing rule obtained is the first one in the sequence above that
can be applied to strings of the form XwY and to axioms in A, (the sym-
bols ¢, [r,1],[r,2] do not appear in V', hence in strings produced by splicing
from Ag and A.). Note that the insertion rule 5 can be repeated, introduc-
ing several copies of the symbol [r, 2], hence producing strings of the form
#ABIr,1)Y$#[r,2]*, with k& > 2, but only the leftmost occurrence of the
symbol [r, 2] will introduce symbols C, D and Y’; then, in the presence of Y,
all symbols [r, 2] are removed (otherwise the currently produced splicing rule
cannot be applied).

B. For each rule r : A — BC € F, we consider the following mutation
rules:

0 ————=—=-- a1 #YSZ#,

L. (Cl#7 )\/[7‘, 1]7 Y)a Cl#[r7 1]Y$Z#7

2. (A e /A #r 1)), #[r, 1]Y $Z#,

3. (#,MA [r,1]), #A[r, 1Y $Z#,

4 (Al 1YSZ#,M (2], 0), #Al, YSZ#[r,2),
5. ([ /A YSZ#r,2]),  #AYSZ#[r,2)

6. (#,A/B,[r,2]), HAYSZ#BIr,2),
7. (#B,\/C,[r,2)), #AY$Z#BClr,2),
8. (BC,\Y,[r,2)), #AYSZ#BCY]r, 2],
9. (Y,[r2]/)N), #AYS$Z#BCY.

C. For any rule of the type r : A — a € Py we introduce the mutation
rules 1 — 5 in group B above, as well as the following three insertion-deletion
rules:

6. (#,Ma,[r,2]), #AYS$Z#a|r 2],
7. (a,\Y,[r,2]), #AY$Z#aY|r,2],
8. (Y,[n2/\N), #AYSZ#aY.

D. Finally, for any rule r : A — A € Py we again introduce mutation rules
1 -5 from group B above, and we continue with the following mutation rules:

6. (#,\Y,[r2), #AYSZ#Y[r 2,
7. (V[n2/0N), #AYSZ#Y.

In all cases, only in the last step (after using the rule B9, C8, and D7,
respectively) can we obtain a splicing rule containing no symbol ¢, [r, 1], [, 2],
hence applicable to strings obtained from Ag, A, by splicing.

Denote, in general, the corresponding rule in Fy by v — v. The obtained
splicing rule is #uY $Z#vY , hence we can splice

(XwluY, Z|vY) E (XwvY, ZuY).

The string XwvY (corresponding to the simulation of the rule u — v) will
be used at a subsequent splicing step, the first one when a splicing rule is
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applicable to it. If ZuY is also used, then it will never produce a terminal
string, because the symbol Z cannot be eliminated (we will see this below).

After using a rule #uY $Z#vY, we continue to edit it, returning to the
template rule c; #Y $Z#. This is done by using the following point mutation
rules:

A0 ——————— #ABYS$Z#CDY,
1. ($3Z#CD,\/e1,)Y, #ABYSZ#CDe Y,
2. (e, Y/\N), #ABY$Z#C De,,
3. (M a/\er), #ABY$Z#e, a c NUT,
4. (M A/ea,Y$Z4#e), #ABesY$Z#e;,
5. (eaY$Z#,e1/M,N), #ABeyY$Z4#,
6. (A a/)\er), #eY8ZH#, a € N,
T. ()\,)\/Cl,#GQ), 61#62Y$Z#7
8. (Cl#, 62/)\, )\), Cl#Y$Z#

We have returned to the splicing rule in Cy. The same happens in the
case B, without any modification (with C'D being the right hand member of
the corresponding rule in Pp; rule 6 is used only once). For the case C we
have to replace rule 1 above with

1. ($Z#a,)Ne1,Y), #AY$Z#ae Y,
whereas in the case D we replace rule 1 above with
1”. ($Z#, /\/61, Y), #AY$Z#61Y

In all cases, the subsequent mutation rules 2 — 8 work in the same way,
reproducing the splicing rule ¢ #Y $Z+#; no intermediate splicing rule can be
applied to the string produced at a previous step and to an axiom in A, due
to the control symbols ey, es.

2. Producing splicing rules for rotating the current string:

E. For each symbol & € NUT U{Bgy} we consider the following mutation
rules (for producing a splicing rule which cuts the symbol « from the right
end of the string):

0. ——————— a#YSZ#,

1. (01#, )\/dl, Y), 01#d1Y$Z#,
2. (\er/A #dy), #d,YSZ#,

3. (# M a,dy), #adY$Z#,
4, (ad1Y$Z#, )\/Cz, )\), #ad1Y$Z#02,
5. (/\,d1/>\,Y$Z#Cz), #QY$Z#CQ,
6. (#,A\/Y,c), #aY$ZH#Y ¢,
7. (Y,ca/M ), #aY $ZHY.

The obtained splicing rule contains no control symbol ¢1,dq, c2, hence it
can be used for cutting « from the right hand end of the current string:

(XwlaY, Z|Y) E (XwY, ZaY).
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The string XwY will be spliced at the first subsequent step when a splicing
rule can be applied, while ZaY will never lead to a terminal string.

F. For each symbol & € N UT U {Bg} we also consider the following
mutation rules (for producing a splicing rule which introduces the symbol «
in the left hand end of the string):

0 ————m—— #aYSZHY,
1. (Z,Mdo,#Y), #aY$Zdy#Y,
2. (do#, Y/N\N),  #aY$Zdo#,
3. ()‘7 Z/)‘a d2)’ #aY$d2#,

4. (\N/ds, Y$da), #adsYS$do#t,
5. (dsY$,\/X,do), #adsY$Xda#,
6. ($X,d2/)\N),  #adsYSX#,
7. (dsY,M/Z,8),  #adsYZ$X#,
8. (ds,Y/\Z8),  #adsZ8X#,
9. (\MX, #ads), X#adsZ8X#,
10. (X,Ma, #ads), Xa#adsZ$X#,
1. (Xa#, a/\ds), Xa#dsZSX#,
12. (Xa#,d3/\7Z), Xa#ZS$X+#.

The obtained splicing rule can be applied:
(Xa|Z, X\wY) E (XawY, X 7Z),

hence the string has been circularly permuted with one symbol. (Note that
because of the way - works, transforming the splicing rule from a step to the
next one, we no longer need control symbols like X", Y,, &« € NUT U {Bo},
as in the proof of Lemma 8.2.)

G. (Return to the template splicing rule ¢;#Y$Z#; here «a € NUT U

{Bo}):

0. - —————— Xa#Z$X #,

1. (a#Z8$,)\/f1,)) Xa#Z8f1 X#,
2. (flaX/)‘a#)a Xa#Z$f1#a

3. (fla)‘/Z7#)a Xa#Z$le#a
4. (Z, )‘/f27$f1Z)a Xa#Z 281 7#,
5. (f28, fi/AN), Xo#Z [28Z#,
6. (#aZ/)‘7f2)) Xa#f2$Z#a

7. (#f2a)‘/}/7 $)a Xa#f2Y$Z#,
8. (/\,)\/Cl,Xa#ng), cha#f2Y$Z#,
9. (ClX, a/)\,#fz), ClX#f2Y$Z#,
10. (e, X/, #f2), a#t fY$Z#,
11. (a#, fo/ M N), a#YS$Z4.

We have not only returned to c;#Y$Z#, but this is also the first time
when the rules A1, B1, Cl, D1, E1 (having the first hand member c;#Y")
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can be applied again. Thus, we can continue by any of these rules, either
simulating again a rule in Py or moving one more symbol o from the right
hand end of the string bounded by X, Y to its left hand end.
3. Finishing the work of the system:

H. (removing the prefix X By):

0. - —————— a1 #Y$Z#,

L (61#7)‘/917Y)7 61#91Y$Z#5

2. (e, M/ X, #g1), aX#aYSZ#,

3. (/\701/)‘5X#gl)5 X#gIY$Z#7

4. (X,\ Bo,#g1), XBo#aY$Z#,

5. (91,Y/)\,$), XBO#91$Z#7

6. (1182,)g2,#), XBo#n$Zgo#,

7. (Mar/AN8Zg2), X Bo#3Zgad,

8. (8,Z/X, g2%), X Bo#38g2#,

9. (8g2#, MY, N),  XBo#3ga#Y,
10. (g2#,M/2,Y),  XBo#8g:#2Y,
11. (A, g2/ N #2ZY), XBo#$#ZY.

Only the last splicing rule can be applied:
(X BolwY, |2Y) k= (XBoZY,wY).

J. (removing the end marker Y):

0. —— = —— XBo#$#2Y,
1. (8, M\/hy, #ZY), XBo#S$hi#2Y,
2. (hl#Z7 Y//\7)‘)7 XBO#$h1#Za
3. (#, Z/AN), X Bo#$hi #,
4 (b, \Y, ), X Bo#$h Y #,
5. (hi, M\ Z,Y#), XBo#$h1 ZY #,
6. (A A hy, #$h1ZY), XBohy#$h1 ZY #,
7. (ha#$,hi/AN), XBoho#$ZY #,
8. (X, Bo/A, ha), Xho#$ZY #,
9. (X, X/ h), ho#S$ZY 4,
10. (ha#t, \/Y,$), ho#tY$ZY #,
1. (A ha/) #Y8), H#YSZY #.

Thus we can splice
(wlY, ZY)) |= (w, ZYY).

If the string w is terminal, then it is in L(G); if not, then no further splicing
can be applied to it, because the end markers X,Y are no longer present
and no further splicing rules will be produced from now on. It is easy to see
that using the mutation rules in “wrong” ways (for instance, using rule 11
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in the previous group before using rules 8, 9, hence producing a splicing rule
o#Y$ZY #, with a € {X, By, X Bg}), will not produce a terminal string (in
the example above, the current string either contains no occurrence of X and
By, because rule X By#$# ZY has been applied, or, if such a symbol appears,
then no further splicing is done, hence the string is either X ByY', so we get
A, or X remains unchanged, so no terminal string is obtained). The reader
can easily check such variants. The rule #Y$ZY # cannot be modified, the
work of v stops here.

Comnsequently, we get L(y) = L(G).

The longest strings uy, uz2, Uz, 4y in splicing rules u; #us$uz#us produced
as above appear in rules obtained at steps A4, A5, A9, B8, A’4, A’5, and
this length is four. In conclusion, RE C EHo(FIN,rle[4]). a

Note in the previous construction that we have used only insertion and
deletion rules (always of one symbol only) and no rule of the form (u, a/8, v),
for a # A # 3, is involved. Using the latter rules in addition, the construction
can be slightly simplified.

It is also highly probable that the radius of the system can be decreased,
to at most two, as it happens in all previous cases. This, however, will make
the construction above still more complex, hence we do not continue here in
this direction.

No attention has been paid in this construction to the length of contexts
in insertion-deletion rules. For instance, the longest rules here are those
in group A5, of the form (u,A/a,v) with v = A and |u| = 7. Of course,
this parameter can be improved; it is highly probable that rules of the form
(u,a/B,v), with |u| < 2, |v|] < 2, are sufficient.

On the other hand, the fact that the strings in A, are always present can
be arranged in an “internal” way, at least in the case of the system in the
proof of the theorem above: Each string in A, is of one of the forms Zx,zZ.
Considering the splicing rules Z#xz8Z#x and z#Z3x#Z, these strings are
passed from one step to the next unmodified, reproduced by splicings. Now,
splicing rules as above can be permanently produced as follows. Consider the
case of Z#x$Z#x. If we have in Cy the rules

ZH#Hx8Z#x, ZH#Hx8c3Z# T,
and we also consider the mutation rules
($a )‘/637 Z)7 ($a 03/)‘3 Z)a

then at each step the two splicing rules above are reproduced, hence
ZH#x8$Z#x is always present. The same can be done for rules of the form
THZSxH#H 7.

Considering further variants of evolving H systems, with the rules modifi-
cation also depending on the currently available (or spliced) strings, remains
a research topic.
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8.5 H Systems Based on Double Splicing

We now consider a class of H systems which can be viewed as a counterpart
of the matrix grammars in the regulated rewriting area. However, we do not
have here sequences of splicing rules specified in advance, but we only ask
that the work of an H system proceeds in a couple of steps: the two strings
obtained after a splicing immediately enter a second splicing. The rules used
in the two steps are not prescribed or dependent in any way to each other;
also, the two output strings of a double splicing step are not related to the
two input strings of a later double splicing step.

Consider a usual extended H system v = (V,T, A, R) with finite sets A
and R. For z,y,w,z € V* and 1,72 € R we write

(@,y) Erir, (w,2) iff (2,9) Fry (w,v) and (u,0) =, (w,2), for u,o € V™.
For a language L C V* we define
Ud(L) = {w | (z,y) "_‘7‘1,7‘2 (w, z) or (a:,y) "_‘7‘1,7‘2 (Z7w>7
for z,y € L,r1,79 € R},
oLy = U oi(L), where

i>0
oa(L) = L, |
oitY (L) = o4(L) Uaa(oi(L)), i > 0.

Then, we associate with -y the language
La(y) = o3(A)NT™.

By EH,(FIN,d[k]) we denote the family of languages L4(v) generated
as above by extended H systems v = (V, T, A, R) of radius at most k, k > 1.

Let us examine an example: consider the extended H system
v = ({a,b,¢c,d,e},{a,b,c,d}, {cabd, caebd}, R),
with R containing the splicing rules
r1 = c#aSca#ebd, ro = ce#bdSb#d.

Take a string of the form ca™b"d,n > 1; one of the axioms is of this form,
with n = 1. The only possible splicing involving this string is

(cla™b"™d, calebd) |=,, (cebd,ca™ 1b"d).
In the sense of the double splicing operation, we have to continue; the only

possibility is
(celbd, ca™ 6" |d) =, (ced, ca™ bt 1d).
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Consequently, we have
(ca™b™d, caebd) =, r, (ced, Ca"+1b"+1d),

The operation can be iterated.
Another possibility is to start with two copies of the axiom caebd:

(claebd, calebd) =y, (ce|bd, caaeb|d) =,, (ced, caaebbd).

We can continue, but the symbol e will be present in all obtained strings;
these strings cannot enter splicings with strings of the form ca™b™d, hence
they do not lead to terminal strings.

In conclusion, we obtain

La(vy) = {ca™d | n > 1},

which is not a regular language. Consequently, the double splicing is strictly
more powerful than the simple one. This assertion will be stressed below
in the strongest possible way: extended H systems using the double splicing
operation are equal in power to type-0 grammars.

Theorem 8.7. RE = EH,(FIN,d[2)).

Proof. We prove only the inclusion C. The reverse inclusion can be
proved by a straightforward construction of a type-0 grammar simulating an
extended H system based on the double splicing operation (or we can invoke
the Church—Turing Thesis).

The proof consists of two phases.

(1) Consider a grammar G = ({S, By, B2, B3, B4}, T,S,PU{B1 By — A,
B3B4 — A}) in the Geffert normal form given in Theorem 3.5(2), that is,
with P containing rules of the forms S — uSv,S — z, with u,v,z € (TU
{Bi1, Bz, B3, B4})*. We construct the extended H system v = (V, T, 4, R)
with:

V =TuU{S,B1,Bs,Bs,B4,X,Y,Z, 7'},
A={SzS|S—>xe€Pze(TU{By,B,, B3, B4})*}
U {SuZvS | S — uSv € P}
u {7, XY},
R = {S#$Su#ZvS, SZ#vS$#S | S — uSv € P}
U {S#S#Z', SZ'#$#S}
U {B1#B2$SX#Y, #B1Y$X Bo#}
U {Bs#Bs$SX#Y, #B3Y$X By#}.
The idea of this construction is as follows. The splicing rules of the

forms S#8$Su#2ZvS, SZ#vS$#S simulate the context-free rules S — uSv
in P, while the splicing rules Bi#BoSX#Y, #B1Y$X Bo#, Ba#BySX#Y,
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#B3Y$X By# simulate the rules B1By — A, B3By — A, respectively; the
terminal rules of G are simulated by the axioms SzS in A. The context-free
derivations in G are simulated in v in the reverse order, starting from the
center of the produced string (from the substring introduced by a rule S — )
towards the ends.

For instance, assume that we have a string of the form SwS with w €
(T U {By, By, B3, B4})*; the axioms SzS are of this type. If we apply a
splicing rule r1 = S#$Su#ZvS, associated with some rule S — uSv € P,
then we get

(S|lwS, Su|ZvS) b=, (SZvS, SuwsS).

We have to continue; because no symbol X,Y, Z’ is present, the only pos-
sibility is to use the rule ro = SZ#vS$#S associated with the same rule
S —uSveP:

(SZvS, Suw|S) v, (SZS, SuwvS).

The double splicing
(SwS, SuzZvS) vy ry (525, SuwvS)

has simulated the use of the rule S — uSv in the reverse order.

(The reader might check that starting with (SwS|,Su|ZvS) =,
(SwSZ|vS, |Su) =, (SwSZSu,vS) does not lead to terminal strings.)

If to a string SwS we apply the rule r;y = S#$#Z’, then we have to
continue with the rule ro = SZ'#3$4S:

(Slw$,12") ter, (SZ7],w]8) f=r, (SZ'S,w).

The occurrences of S from the ends of the string are removed (this means
that from now on no further rule of the form S — uSv € P can be simulated
in -y starting from the string w).

If to a string w, bounded or not by occurrences of S, we apply the splicing
rule 1 = B1#B$8X#Y (providing that a substring By B appears in w, that
is, w = 2B Bay), then we have to continue with the rule ro = #B1Y$X Bo#
(no other rule is applicable to the intermediate strings), hence we get:

(zB1|Bay, X[Y) f=r, (z[B1Y, X Baly) =, (2y, X B2 B1Y).

The occurrence of By B, specified above is removed from the input string.

The same assertions are true if we first apply the rule B3# B4$X#Y; an
occurrence of the substring Bs By is removed.

The strings SZ.S,S5Z'S cannot enter splicings leading to terminal strings
and this can be easily seen. If a string X By B,Y, X B4B3Y enters new splic-
ings, they produce nothing new. For instance, for r = #B1Y$X Ba# we
get:

(XBa|B,Y, XBy|B,Y) =, (XBa|B1Y, XB|B1Y) |=, (XB:B,Y, X B B,Y).



290 8. Universality by Finite H Systems

No double splicing of a type different from those discussed above can
lead to terminal strings. Consequently, the double splicing operations in vy
correspond to using context-free rules in P, to removing the two occurrences
of S from the ends of a string, or to using the erasing rules B; By — A,
B3By — M. The order of using these rules is irrelevant. Consequently, L(G)

= La().

(2) In the previous construction we can modify the “linear” rules S —
uSv of P, replacing them by rules of the forms D — aFE(3, where o, €
T U{Bj, Bz, B3, B4} and |a3| = 1, in such a way that we obtain a grammar
which is equivalent with GG, but contains only rules with the right hand side of
length two; moreover, we may assume that all rules D — aE(8 have D # E;
the nonterminal alphabet is now bigger, new symbols are used.

A linear grammar with several nonterminal symbols can be simulated by
an extended H system using double splicing operations in a way similar to
the way we have simulated the context-free rules of the grammar G in the
previous construction.

Specifically, consider a linear grammar G = (N, T, S, P) and construct
the extended H system v = (V, T, A, R) with

V=NUTU{Z, 27"},
A={DzD|D—->xzePzeT"}
U {DaZBD | D — aEf € P, where D,E € N,a, 8 € TU {)\}}
u {2},
R = {E#$Da#Z83, EZ#BDS$#E | D — aEB € P,
D,EeN,a,f€TU{A}}
U {S#S#Z', SZ'#$#S}.

The reader can easily check that the derivations in G are simulated in
in the reverse order, starting from strings Dz D associated to terminal rules
D — z and going back to a string of the form SzS, when the symbols S can
be eliminated. Therefore, L(G) = Ly(). Clearly, rad(y) = 2.

Combining this idea with the manner of simulating erasing rules of the
form B;B; — A (note that the splicing rules associated with these rules are
of radius one), we get an extended H system of radius two. O

8.6 Multisets

In the definition of splicing operations (of both types - and |=) used in the
previous sections, after splicing two strings z,y and obtaining (in the case
of =) two possibly new strings z,w, we may use again T or y as a term
of a splicing, these strings are not consumed by splicing; moreover, we may
splice x or y with 2z or w, hence we may splice strings from one “generation”
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with strings from another “generation”. Also the new strings, z and w, are
supposed to appear in an arbitrary number of copies each.

This assumption, that if a string is available then arbitrarily many copies
of it are available, is realistic in the sense that, usually, a large number of
copies of each string are used whenever a string is used. Moreover, producing
a large number of copies of a DNA sequence is easily feasible by amplifica-
tion through polymerase chain reaction (PCR) techniques. This also reduces
complexity: the computation can run in parallel, on a large number of string-
Processors.

However, the existence of several copies of each string raises the difficult
problem of controlling the splicing so as to prevent “wrong” operations. For
instance, after cutting several copies of a string x into fragments z;,x2 and
modifying (part of the copies of} x1, 22 to some z/, 75, the test tube will con-
tain strings of all four forms, x1, 2, T}, 4; it might be possible to recombine
x1 with x4 or ) with x4 in such a way as to obtain illegal strings which “look
like” legal strings x1x2 or xjxh.

A possibility to avoid this difficulty is to use at least some of the strings
in a specified number of copies, and to keep track of these numbers during
the work of the system. This leads us to consider multisets, i.e., sets with
multiplicities associated with their elements.

Formally, a multiset over a set X of abstract elements is a mapping M :
X — N U {oo}; M(z) is the number of copies of £ € X in the multiset
M. When M(z) = oo, then z is present in arbitrarily many copies. The set
{z € X | M(x) > 0} is called the support of M and it is denoted by supp(M).
A usual set S C X is interpreted as the multiset defined by S(z) = 1 for
ze€ S,and S(z)=0forx ¢ S.

For two multisets M7, My over X we define their union by (M;UM:)(z) =
Mi(z) + My(x), and their difference by (M1 — Ms)(z) = My(z) — Ma(z) for
z € X such that M;(x) > My(z) and both M;(z), Ma(z) are finite, and
(Mi — Ma)(x) = oo for ¢ € X such that Mi(xz) = oo; for other strings
x € X the difference M; — M is not defined. Usually, a multiset with a finite
support, M, is presented as a set of pairs (x, M (x)), for x € supp(M).

For instance, My = {(ab,3), (abb, 1), (aa,00)} is a multiset over {a,b}*
with the support consisting of three words, ab,abb,aa; the first one ap-
pears in three copies, the second one appears in only one copy, whereas
aa appears in an arbitrary number of copies. If we also take My, =
{(ab,1}, (abb,1), (aa,17)}, then the difference M; — M, is defined and it is
equal to {(ab, 2), (aa, )}

An extended pH system is a quadruple
7=V, T, A R),

where V is an alphabet, T C V (the terminal alphabet), A is a multiset over
V+ with supp(A) finite (axioms), and R is a finite set of splicing rules over
V.
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For such a puH system and two multisets M, M3 over V* we define

M) =>, My iff there are z,y,z,w € V* such that
(i) M(z)>1, (M —{(z,)})(y) > 1,
(il) @ =zu1usTy, Y= y1uUsuays,
2 = T1U1U4Y2, W = Y1U3zU2T2,
for z1,z2,y1,y2 € V*, ur#usSus#uy € R,
(i) Mz = (M1 —{(z,D}) — {1}
U{(z, 1)}) U {(w, 1)}

At point (iii) we have operations with multisets. The writing above is meant
to also cover the case when z = y (then we must have M;(z) > 2 and we
must subtract 2 from Mi(z)), or z = w (then we must add 2 to Ms(z)).
When + is understood, we write = instead of =,.

In plain words, when passing from a multiset M; to a multiset M>, ac-
cording to ~, the multiplicity of two elements of My, x and y, is diminished
by one, and the multiplicity of the resulting words, z and w, is augmented
by one. The multiplicity of all other elements in supp(M7) is not changed.
The obtained multiset is M.

The language generated by an extended pH system -y consists of all words
containing only terminal symbols and whose multiplicity is at least once
greater than or equal to one during the work of +. Formally, we define this
language by

L(v) = {w € T* | w € supp(M) for some M such that A =) M}.

An extended H system v = (V,T, A, R), as defined in Sect. 7.4, can be
interpreted as an extended pH system with A(z) = oo for all z € A and
with M(z) = oo for all multisets M whose support is composed of strings
derived from A. Such multisets (with M(z) = oo, if and only if M(z) > 0)
are called w-multisets, hence the corresponding H systems can be called wH
systems.

The family of languages generated by extended pH systems v = (V,T,
A, R) with card(supp(A)) < n and raed(R) < m, n,m > 1, is denoted by
EHy(u[n], [m]); when n or m are not bounded, then we replace [n], [m] by
FIN.

Similarly, we may write the families EHo(F Ly, FLy) as EHy(wF Ly, FLs)
in order to stress the fact that we work with w-multisets.

It is important to point out here the fact that writing M(z) = oo for
a string in supp(M) does not necessarily mean that we actually dispose of
infinitely many copies of x. It only means that we do not count the number
of copies of z: at any moment when we need a copy of x we have it. In
the DNA framework, this means that when we need further copies of a given
sequence, we can produce them (for instance, by amplification).
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Using multisets, hence counting the number of occurrences (of some) of
the strings used, provides once again the tools for controlling the work of H
systems in such a way as to characterize the family RE.

We separate the proof of this assertion in several lemmas; the first one
establishes the most important part of this result, the simulation of a type-0
grammar by an extended pH system.

Lemma 8.10. RE C EHy(uFIN,[5]).

Proof. Consider a type-0 Chomsky grammar G = (N, T, S, P), with the
rules in P of the form v — v with 1 < |u] < 2,0 < |v| € 2, u # v (for
instance, we can take G in the Kuroda normal form). Also assume that the
rules in P are labeled in a one-to-one manner. By U we denote the set NUT
and we construct the extended pH system

v=(V,T, A, R),

where
V=NuTuU {Xl,XQ,Y, Zl,ZQ} U {(’I“), [7’] | T e P},

the multiset A contains the word
wo = XY SX2,

with the multiplicity A(wp) = 1, and the following words with infinite mul-
tiplicity:

wy = (r)v[r], forr:u—wvePr,
Wo = Z10Y Zoy, for a e U,

w!, = Z\YaZy, foraelU,

Wy = YY.

The set R contains the following splicing rules:

1. 6162Y u#51828(r)v#r], forr:u—veP,
B1, B2 € UU{X2}, 61,82 € U U {X1},
Y #u[r|$(r)#va, forr:u—-veP, aclUU{Xy},
3. 5152Ya#ﬂ1ﬂ2$Z1aY#Z2, fora e U, 61,8€UU {XQ},
51,(52 eUU {Xl},

o

4. H#Y aZ8Z1#aY S, foraelU, 6 eUU{X1},
gelUuU {XQ},

5. 0aQY#[1020:8Z Y a#Zy, foracU, B €U, B2,03 € UU{Xp},
e UU{X},

6. O0H#aY Z,87,#Y of, foraeU, 6 e UU{X;},
BeUuU {XQ},

7. #YYSXPY #w, for w € {X2} UT{X3} UT?{X;)} UT?,

8. #XISY3#.
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The idea behind this construction is as follows. The rules in groups 1 and
2 simulate rules in P, in the presence of the symbol Y. The rules in groups
3 and 4 move the symbol Y to the right, the rules in groups 5 and 6 move
the symbol Y to the left. The “main axiom” is wg. All rules in groups 1 — 6
involve a word derived from wy and containing such a symbol Y introduced
by this axiom, in the sense that they can use only one axiom different from
wg. In any one moment, we have two occurrences of X; at the beginning
of a word and two occurrences of X5 at the end of a word (maybe the same
word). The rules in groups 1, 3, and 5 separate words of the form X?2X2 into
two words X2z, 29 X2, each one with multiplicity one; the rules in groups 2
and 4, 6 bring together these words, leading to a word of the form X322’ X3.
The rules in groups 7 and 8 remove the auxiliary symbols X1, Xo,Y. If the
remaining word is terminal, then it is an element of L(G). The symbols
(r), [r] are associated with rules in P, while Z; and Z, are associated with
moving operations.

Using these explanations, the reader can easily verify that each deriva-
tion in G can be simulated in -y, hence we have L(G) C L(v). (An induc-
tion argument on the length of the derivation can be used, but the details
are straightforward and tedious, and we shall not adopt that strategy here.
Moreover, the discussion below implicitly shows how to simulate a terminal
derivation in G by splicing operations in ~.)

Let us consider in some detail the opposite inclusion. We claim that if
A =2 M and w € T*, M(w) > 0, then w € L(G).

As we have pointed out above, by a direct check we can see that we cannot
splice two of the axioms wy, Wy, WS, w; (for instance, the symbols 4, 5 in rules
in group 4 and 6 prevent the splicing of wg,w!,,a € U). In the first step,
we have to start with wg, wo = X?YSXZ2, A(wg) = 1. Now, assume that
we have a word X?w;YweX2 with multiplicity 1 (wp is of this form). If wo
starts with the left hand member of a rule in P, then we can apply to it a
rule of type 1. Assume that this is the case, the word is X?w;Yuws X3 for
some r : u — v € P. Using the axiom (r)v[r] from A we obtain

(XFw Yulws X3, (r)ollr]) B (XfwiYulr], (rvwsX3).

No rule from groups 1 and 3 — 8 can be applied to the obtained words. From
group 2, the rule Y #u[r]$(r)#va can be applied involving both these words,
which leads to

(XFwn Y |ulr], ()lowsX3) E (XFwiYvws X3, (r)ulr)).

The word (r)u[r] can never enter a new splicing, because in the rule r :
u — v from P we have assumed u # v. The multiplicity of X}w;Yulr]
and (r)vwz X? has been reduced to 0 again (hence these words are no longer
available), the multiplicity of X12u)1me)3X22 is one. In this way, we have
passed from X?w;Yuws X3 to X2w,Yvws X2, both having the multiplicity
one, which corresponds to using the rule r : ¥ — v in P. Moreover we see
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that at each moment there is only one word containing X? and only one word
(maybe the same) containing X7 in the current multiset.
If to a word X?w;Y aws X2 we apply a rule of type 3, then we get

(X?w\Yalws X2, Z,aY | Zy) = (X2wYaZs, ZiaYwsX3).

No rule from groups 1 — 3 and 5 — 8 can be applied to the obtained words.
By using a rule from group 4 we obtain

(X2w,|YaZy, Z)|aYws X3) | (XiwiaYws X3, Z1Y aZs).

The first of the obtained words has replaced X?w1Y aws X2, which now has
the multiplicity 0 (hence we have interchanged Y with «), the second one is
an axiom.

In the same way, one can see that the use of a rule from group 5 must
be followed by using the corresponding rule of type 6, which results in inter-
changing Y with its left hand neighbour.

Consequently, in each moment we have a multiset with either one word
X2w, Ywa X2 or two words X721, z2X2, each one with multiplicity 1. Only
in the first case, provided w; = A, we can remove X?Y by using a rule from
group 7; then we can also remove X2 by using the rule in group 8. This is the
only way to remove these nonterminal symbols. If the word obtained is not
terminal, then it cannot be further processed, because it does not contain the
symbol Y. In conclusion, we can only simulate derivations in G and move
Y freely in the word of multiplicity one, hence L(v) C L(G). One sees that
the radius of v is five, reached by rules in group 1, where [§;d2Yu| = 5 when
lu| = 2. O

Remark 8.3. Let us estimate the number of copies necessary for each axiom.
We have said that A(wp) =1 (and this is essential for the correctness of the
simulation of G by 7 above). For all w of type w;., wq, w),,w; we have said
that A(w) = co. Actually, one sees that for each » € P we need as many
copies of w, as many times the rule r is used in a derivation in G. Then, w,
and w!, are necessary for each operation of moving Y to the left or to the
right. The word w; is used only once, by a rule of type 7, at the end of the
work of . Thus, we might take A(w;) = 1, too.

Moreover, we have seen above that in each moment there are exactly one
or exactly two words whose multiplicity is controlled, namely equal to one.
Thus, we do not have to “count”, say, distinguishing between n and n + 1
copies of a given word, for large n. It is enough to distinguish between 0 and
1, and that for at most two words; this distinction is made automatically,
by the way the system above works, our only concern is to prevent making
copies of these distinguished words.

This fact, plus the possibility of obtaining new copies of certain words, via
PCR techniques, makes the construction above realistic — from these points
of view. O
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Lemma 8.11. FHy(uFIN,[m]) C EHy(u[2], [m]), for allm > 1.

Proof. Take an extended pH system v = (V,T, A, R), with finite
supp(A). Let w1, ws,...,w, be the words of supp(A) such that A(w;) < oo,
0 <i<mn,and let z1,...,2, be the words in supp(A) with A(z;) = oo,
0 < i < m. We construct the extended puH system

'7/ = (V U {C, d13d2}aTa A/a R/)a

where A’ contains the word

Alws) Alwn)

w = (w1)2®) (wye) .. (wno)

with multiplicity 1, and the word
z =diczicz0C. . . Czpeds,

with infinite multiplicity. If n = 0, then w does not appear, if m = 0, then
z = dycdy. Moreover

R' = RU {#c8do#, #d1Sc#, c#84d}.

The word z can be used for cutting each w; and each z; from w and z,
respectively. For instance, in order to obtain z; we splice z with z using
c#3#d; for the occurrence of ¢ to the left hand of z;, that is

(diczic...zj_1clzje. . . czmeda, |2) | (diczic.. . czj_1cz, zjc. .. czmeds),
then we splice the second word with z again using #c$d2#, and we get
(zjlc...czmeds, 2|) = (25, 2€2j41 ... czmeds).

Arbitrarily many words z; can be produced, because A'(z) = oo.

In order to produce the words w;,1 < i < n, we start from the left
hand end of the string w, by applying #c$do# to w and z; we get wy and
ze(w1 )AL awye)AW2) | (w,c)A®n) | both of them with multiplicity 1.
Using the rule #d;$c# for z and the second word above, we obtain zcz
and (w1e)2®) 1 (wye)A®2) | (w,e)A(Wn) | again both with multiplicity 1.
From the first word we can separate axioms z;,1 < j < m, but this is not
important, because these axioms appear with infinite multiplicity in A. From
the second word we can continue as above, cutting again a prefix wy. In this
way, exactly A(w;) copies of w; will be produced; in a similar way we can
proceed for the other axioms wy,...,w, in order to obtain exactly A(w;)
copies of w;, 1 =2,...,n.

The use of the nonterminals ¢, d;, and ds guarantees that only the axioms
of v with infinite multiplicity can be generated in an arbitrary number of
copies by the splicing rules in R’ — R, whereas for each axiom w; of v with
finite multiplicity A(w;) we can only obtain A(w;) copies of w;. If a rule of R
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is used for splicing words of the form z;czs, i.e. containing the nonterminal c,
then we finally will have to cut such a word by using the rules in R'—R in order
to obtain a terminal word. As we start from the axioms of v, separated by
occurrences of the symbol ¢, and with the correct multiplicities (guaranteed
by the mode of constructing the words w and z), this also corresponds to a
correct splicing in . Consequently, L(y") = L(7). O

Lemma 8.12. EHy(u[l], FIN) C REG.

Proof. Take an extended yH system v = (V, T, A, R) with supp(A) = {w}.
If A(w) < oo, then L(v) is obviously a finite language (every word in L(y)
has a length not greater than |w| - A(w)).

If A(w) = oo, then L(7) € EHy([1], FIN) C EHy(FIN,FIN) = REG.
Hence we conclude that FHy(u[l], FIN) C REG. O

Lemma 8.13. REG C EHy(w(1], [2]).

Proof. In Lemma 7.18 we have proved that REG C EH,(FIN,FIN). It
is easy to see that, in fact, we also get REG C EHy(FIN,[2]) (the system
in the proof of Lemma 7.18 has radius two). Let v = (V,T, A, R) be the
obtained H system.

Now, using the same construction as in the proof of Lemma 8.11 (the ra-
dius is not changed), we can combine all axioms in A with infinite multiplicity
into one axiom, w, hence we obtain REG C EHs(w([1], [2]). O

Theorem 8.8. REG = EH,(u[l],[2]) = EHa(u[l], FIN) C EH(p[2],
FIN) = EHy(u[2],[m]) = RE, for all m > 5.

Proof. For the reader’s convenience, let us recall the relations proved in
the four lemmas above:

Lemma 8.10: RE C EH(uFIN,[5]),
Lemma 8.11: EHo(uFIN,[m]) C EHy(u[2], [m]), for all m > 1,
Lemma 8.12: FH»(u[l], FIN) C REG,
Lemma 8.13: REG C EH(w[1], [2]).
Now, from the definitions we have
EHy(wn], [m]) € EHz(un], [m)),

for all n,m > 1, and also for [n], [m] replaced by FIN. Thus, from Lemmas
8.12 and 8.13 we obtain

REG = EHy(u[1], [2]) = EHy(u[1], FIN).
Lemma 8.10 and Lemma 8.11 imply

RE C EHy(uFIN,[m)]) C EHy(p[2], [m]), m > 5.
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By a direct proof or from the Church-Turing Thesis we also have
EHy(u[2], [m)) C RE,

for all m > 5, which completes the proof. m]

In Sects. 8.1 — 8.5 we have characterized the family RE by imposing
certain restrictions on the splicing operation in extended H systems, mainly
restrictions inspired from the regulated rewriting area. These restrictions are
of a non-biochemical nature, hence they raise serious difficulties for present
day laboratory techniques if we want to implement them. More precisely,
such restrictions can be (probably} implemented by manually controlling the
splicing (e.g., by changing the temperature, acidity or other reaction condi-
tions, in a way to favor or inhibit certain enzymes, by the primer technique
described in Remark 8.2, etc.). However, this approach removes some of the
central attractive features of DNA computing: the speed, the energy effi-
ciency, the non-determinism (of parallel reactions). In particular, the speed
of the process is dramatically decreased. The hope here is that control of
the process can be carried out by intrinsic biochemical means. This requires
significant progress in biochemical engineering.

Unfortunately, the multiset approach also has a serious drawback: having
two strings, each one with multiplicity one, and splicing them is an event
with a very low probability. In order to enter a ligation reaction, two strings
must be close enough to each other. How to ensure this in a realistic way
and in a short interval of time (not to speak about an efficient time) is an
open problem. For instance, we can bind the two strings to a solid support
(these techniques are well understood, see, e.g., [95], [114], [125]), in order to
keep them closer and to increase the probability of splicing, but the extent
to which this operation is feasible and efficient for strings of large length is a
matter of bioengineering out of the scope of this book.

8.7 Universality Results

In the previous five sections we have proved that the family of recursively
enumerable languages can be characterized by extended H systems with the
work controlled by:

1. permitting contexts,

2. forbidding contexts,

3. local or global target languages,
4. fitness mappings,

5. next-rule mappings,
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6. point mutations which edit the currently available splicing rules,
7. double splicing,
8. multisets.

This means that the extended H systems of these types are computation-
ally complete, in the sense that they are equal in power to Turing machines
(Chomsky type-0 grammars).

However, such results are not enough in order to provide programmable
computability models (“computers”) based on the splicing operation. To this
aim, universal H systems of the considered types should be found, systems
with all components fixed and able to simulate any particular H system in
the corresponding class when adding a code of the particular system to the
universal one. It is natural to add this code as a further axiom to the axiom
set of the universal system. Thus, we are led to the following general defini-
tion.

Consider an alphabet T and a class H of extended H systems (for instance,
the class of extended H systems with permitting contexts, or with multisets,
and so on). An element of H of the form

Yu = (VuaTa Aua Ru)a

where V, is an alphabet such that T' C V,,, A, C V¥, and R, is a set of
splicing rules over V,, is said to be universal for the class H if for every
v € H there is a string w, € V;} such that L(y) = L(v,), where v, =
(Vu, T, Ay U {w, }, Ry).

Thus, w,, the code of v, is a “program” which can be executed by 7, in
such a way that the work of -y is simulated by ~,. The axioms in A, can be
viewed as constituting the “operating system” of the “computer” =,.

The restriction to a given terminal alphabet can be avoided by accepting
a coding of T by elements of a fixed alphabet, for instance, consisting of only
two symbols, a,b. Denoting by h this coding, h : T* — {a,b}*, we can
then say that -, is universal if L(vy) = h(L(v,,)), for any given v. We do
not consider this case here, because we already have a restriction to the four
letters of the DNA alphabet (hence we already need a coding in order to deal
with arbitrary alphabets).

Starting the proofs of Lemmas 8.2, 8.3, 8.5, 8.8, Corollary 8.3, Theorems
8.5, 8.6, 8.7, and Lemma 8.10 from universal type-0 Chomsky grammars, we
obtain H systems of the types used in these results whose components depend
on the universal grammars, hence are fixed; moreover, these H systems have
the universality property as defined above. Since this result is the most im-
portant one from the DNA computing point of view, we shall prove it in some
detail. Moreover, the number of auxiliary symbols used when passing from a
(universal) type-0 grammar to an extended H system of the mentioned types
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can be significantly decreased: two such symbols are enough. Specifically,
the following general result is true.

Lemma 8.14. Given an extended H system v of one of the eight types
1-8 listed above, with the total alphabet V and the terminal alphabet T (and
finite sets of axioms and of splicing rules), we can construct an extended H
system ' of the same type with -y, with the total alphabet TU {cy,c2} and the
terminal alphabet T, such that L(y) = L(¥).

Proof. WV —T = {Z,,...,7Z,}, then we consider the morphism h :
V* — (T U{c1,co})* defined by

h(Z)) = cichey, for 1 <i < m,
h(a)=a, foraeT.

We construct the system +' with the total alphabet T'U {c1, ¢z} and the
other components obtained by applying the morphism %, in the usual way,
to the components of . (For instance, for each axiom z of v we introduce
h(z) as an axiom of 4/, and for each splicing rule u;#usSus#us of v we
introduce h{ui)#h(us)8h(us)#h(us) as a splicing rule of 4'. We proceed in
a similar way for the permitting or forbidding conditions, target languages,
point mutation rules in evolving H systems — in this latter case the old markers
ci,cp in the proof of Theorem 8.6 should not be confused with the new
symbols c1, ¢2.)

The equality L{-y) = L{v’) follows from the fact that in all components of
', whatever its type is, the blocks cicicy, 1 < i < n, are never broken by the
splicing operations (or editing operations, in the case of evolving systems),
they behave in the same way as the corresponding symbols Z;. m]

Note that in the proof of this lemma we pass from symbols Z; to strings
cicher, hence we obtain a system +' with a radius larger than that of v (but
with the same number of axioms). Moreover, in the case of permitting or
forbidding contexts, the contexts are no longer symbols, but strings (of a
bounded length). This was the reason for defining the extended H systems
with permitting or forbidding contexts in the general manner, dealing with
string conditions rather than symbols, as it is enough for the proofs of The-
orems 8.1, 8.2. This does not introduce a significant additional difficulty in
checking such conditions in the way described in Remark 8.2. This is true at
least for short strings. On the other hand, we can work not with two auxiliary
symbols but with several symbols; in this way the length of the encodings
of the nonterminals in +y is decreased. The balance of the number of nonter-
minals and of the length of the mentioned codings is a matter of practical
interest, hence it should be investigated under specific circumstances.

We are now ready to present one of the main results of this chapter, from
the point of view of DNA computability. For precise references and details we
formulate it explicitly for yH systems, but similar results hold true, mutatis
mutandis, for all types of H systems investigated above.
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Theorem 8.9. For every given alphabet T there exists an extended pH sys-
tem of type (u[1], FIN), with only two auziliary symbols, which is universal
for the class of extended pH systems of type (WFIN, FIN) with the terminal
alphabet T.

Proof. Consider an alphabet T and two different symbols ¢, co not in T

In Chap. 3 we have mentioned that for the class of type-0 Chomsky gram-
mars with a given terminal alphabet there are universal grammars, i.e. con-
structs Gy, = (N, T, P,) such that for any given grammar G = (N, T, S, P)
there is a word w(G) € (N,UT)™" (the “code” of G) such that L(G;,) = L(G)
for G|, = (N, T,w(G), P,). (The language L(G",) consists of all terminal
words z such that w(G) =>* z using the rules in P,.)

For a given universal type-0 grammar G, = (N,, T, P,), we follow the
construction in the proof of Lemma 8.10, obtaining an extended pH system
v = (Vi,T, A1, R1), where the axiom (with multiplicity 1) wo = X7YSX3
is not considered. Notice that all the other axioms in A; (all having infinite
multiplicity) and the rules in R; depend on N, T, and P, only, hence they
are fixed.

As in the proof of Lemma 8.11, we now pass from v to v =
(Va, T, Aa, R). As A; contains only axioms with infinite multiplicity, Ao
consists of only one word (that one denoted by z in the proof of Lemma
8.11), which has infinite multiplicity.

We now follow the proof of Lemma 8.14, codifying all symbols in Vo — T
by words over {c1, cz}; the obtained system,

Yu = ({cla 02} U T7 T7 AU,7RU)

is the universal pH system we are looking for.

Indeed, take an arbitrary extended pH system vo = (V,T, A, R). Since
L(v) € RE, there is a type-0 grammar Gy = (No, T, So, Fy) such that
L(vo) = L(Gyp). Construct the code of Go, w(Go), as imposed by the defini-
tion of universal type-0 grammars one uses, consider the word

wh = X2Yw(Go) X3,

corresponding to the axiom wg in the proof of Lemma 8.10, then codify wy,
over {c1,c2} UT as we have done above with the axioms of 73. Denote
the obtained word by w(yg). Then L(v,) = L(v), for v, = ({c1,c2} U
1,7, {(w(70)7 1)} U Ay, Ru)

This can be seen easily. In the proof of Lemma 8.10, the system ~ simu-
lates the work of G, starting from the axiom S of G, bracketed as in X7V SX3.
If instead of S we put an arbitrary word x over the alphabet of G, then in
~ we obtain exactly the language of terminal words y such that x =" y
in G. If we start from a universal grammar G, and S is replaced by the
code w(Gy) of a type-0 grammar Gy equivalent with g, then the system =,
associated as above with the universal grammar G,, will simulate the work
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of G, starting from w(Gy). Hence L(v.) = L(G)) = L(Gy) = L(vy), for
Gl = (N,,T,w(Gyp), P,).
Clearly, A,, contains only one string, hence -, is of the type (u[1], FIN). O

Notice that the universal 4H system =, furnished by the proof of Theorem
8.9 (the same assertion is true for systems with forbidding contexts, with local
or global targets, with fitness mappings, and for programmed systems; in the
case of evolving H systems, Ay will be empty and here will be added the
string X Bow(Gy)Y, containing the “program” of «g, instead of the string
X BySY in the proof of Theorem 8.6) has only one axiom. Moreover, the
“program” to be run on our “computer” also consists of one string-axiom
only.

The existence of universal H systems with permitting contexts provides
a partial answer to the third open problem formulated after Corollary 8.1:
there is n such that a result of the form RE = EH([n],p[2]) is true. This
can be proved as follows. Start the construction in the proofs of Lemmas 8.2
and 8.3 from a universal type-0 grammar. We get an H system with fixed
components — hence with a fixed number of axioms and a fixed set of splicing
rules. In order to generate a given language L € RE we have to introduce
one more axiom of the type X Bw(G)Y, for L = L(G),w(G) a code of G.
The radius of rules remains unchanged, the number of axioms is bounded.

Thus, the problem can be reformulated: which is the smallest n such that
RE = EH,([n], p[2])?

The proof of Theorem 8.9 is effective, it constructively provides an ex-
tended pH system which is universal for the class of uH systems or, directly,
for the class of type-0 Chomsky grammars or of Turing machines. Starting
from a universal Turing machine, we get in this way a universal extended uH
system.

Instead of presenting a universal system, let us estimate the number of
splicing rules obtained if we follow the constructions on which the proof of
Theorem 8.9 is based.

Consider a universal Turing machine M in a class UT M (m,n) as in Sect.
3.3 and having p moves. For each move of M (given as a rewriting rule,
as shown in Sect. 3.3, or in any other appropriate manner), in the proof of
Lemma 8.10 we construct about (n +m)* rules of type 1 and about (n 4 m)
rules of type 2. In total, we obtain

Ny =p((n+m)* +n+m)

rules (we consider only the tape symbols and the states of the Turing machine
as symbols of the alphabet, although further auxiliary symbols might be
necessary). Furthermore, we consider about

No=(n+mP+n+mP+n+m)+n+m)d
rules of types 3, 4, 5, 6. In total, we obtain about
N3 = p((n +m)* + n +m) 4+ 2(n +m)> + 2(n +m)>
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rules. For the three universal machines presented in Sect. 3.3 we get the
results below:

m n p N3

7 4 26 | 705716
5 5 29 | 492290
4 6 22 | 222220

These figures are definitely out of the reach of any practical attempt of
realizing such a universal yH system. Note, however, that when proving the
results mentioned above, we were not interested in keeping small the size of
the output, but rather in getting a simple proof for the correctness of the
construction. Thus, it remains as a research topic to find small universal H
systems of various types. To this aim, a direct construction will be necessary,
avoiding the passing through grammars and Turing machines.
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Chapter 9
Splicing Circular Strings

In certain circumstances — in several bacteria, for instance — the DNA
molecules are present in the form of a circular sequence. More generally,
we can consider situations where both linear and circular DNA sequences are
present. The restriction enzymes can cut both the linear and the circular
double stranded sequences, hence recombination by ligation can also appear
in such a case. Many variants are possible, because a recombination can have
as input two circular strings, or one circular and one linear string, and can
have as output one or two circular strings, one or two linear strings, or both
a circular and a linear string.

From a mathematical point of view, the study of such variants is not so
elegant as the study of linear splicing in the previous chapters, but it can
provide significant simplifications of some constructions above, because, for
instance, we no longer need the rotate activity in the proofs based on the
rotate-and-simulate idea.

9.1 Variants of the Splicing Operation for Cir-
cular Strings

Consider an alphabet V. A circular string over V is a sequence x = ajas ... a,
for a; € V,1 < i < n, with the assumption (convention) that a; follows a,,. In
other words, = can be represented by any circular permutation of aqas ... a,,
for instance, @;4+1...anay ...a;, for any 1 < ¢ < n—1. Thus, a circular string
over V is an equivalence class of all linear strings equal to each other modulo
a circular permutation. We denote by & the circular string associated to the
linear string x € V*. The set of all circular strings over V is denoted by V°.
Any subset of V° is called a circular language.

To a usual language L C V* we can associate the circular language
Cir(L) = {& | x € L}. (For singleton languages we also write Cir(z) = %.)
Conversely, to a circular language L C V° we can associate the full lineariza-
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tion Lin(L) = {x | & € L}. A language L; C V* is a linearization of a
circular language Ly C V° if Cir(Ly) = Lo.

Having a family F'L of languages, we can consider its circular counterpart,
FL® = {Cir(L) | L € FL}. Thus, we can speak about FIN®, REG®, RE®,
etc.

The operations of union, intersection, intersection with regular circular
languages, direct and inverse morphisms, can also be defined for circular
languages (but not the operations of concatenation and Kleene closure).

Lemma 9.1. If FL is a family of languages closed under circular permuta-
tion, then L € FL° if and only if Lin(L) € FL.

Proof. Let us denote by cp(L) the set of all circular permutations of
strings in L. Clearly, Lin{Cir(L)) = cp(L), for every language L. Now,
if Ly € FL°, from the definition of FL® we have Ly = Cir(L) for some
L € FL. Because Lin{Lg) = Lin(Cir(L)) = ¢p(L) and FL is closed under
circular permutation, we have Lin(Lg) € FL. Conversely, if L C V° such
that Lin{L) € FL, because L = Cir{Lin(L)), we have L € FL°. a

Corollary 9.1. Let FL be a family of languages which is closed under cir-
cular permutation. If FL is closed under union, direct morphisms, inverse
morphisms, intersection with regular languages, then also FL° is closed un-
der union, direct morphisms, inverse morphisms, intersection with regular
circular languages, respectively.

Let us note that all families FIN, REG, CF, CS, RE are closed under
circular permutation, but LIN is not closed: ¢p({a™b® | n > 1})Natbtat =
{a™b"*t™a™ | n,m > 1} is not a linear language.

Let us now define some natural splicing operations involving circular
strings.

Consider an alphabet V and a splicing rule r = u; #usSus#uy over V.
For Z,9,2 € V° and v,w € V*, we write:

(#,9) =Lz if x=z1ujus,

Y = Y1usuy,

2 = T1U1U4Y1U3 U2,

for some 1,y € V*,
T I'—‘f (9,2) iff z=muiuszousuy,

Y = T1U1uy,

Z = TaUuzUsy,

for some z1,z9 € V*,
(#,v) E2w if z=zujus,

U = V1U3U4v2,

W = V1U3UT1ULU4LY2,
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for some x1,v1,v9 € V¥,
v P=ﬁ (i,w) iff v= V1UIU2V2U3U4V3,

T = UaV2U3,

W = V1U1U4V3,

for some vy, v9,v3 € V*.

z
U U
1 1 4
1 = 1 Y1
- u us
U U 7 3
T 1 ! ] 2 | y z
I I | UL Ug
2
T T2 ;: T2
>
| ! | Ug U3
I uq [
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v | | I |
| I | I |
X s
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uy Uz
z w
I T
'U1 u1 Uyg U3

V1 Uy ! Ug Vg U31’U4 V3
v — —

Figure 9.1: Splicing circular strings (1)

In the case of ! two circular strings are cut at sites U1 U2, Ugly, and
then pasted together to form a new circular string. In the case of =2, a
single circular string gives rise to two circular strings, by cutting it at two
sites, ujug, usus, and pasting together the ends of the two fragments. The
operation }:3 cuts a circular string at a site uyuy and a linear string at a site
uguy, then the linear string obtained by cutting the circular one is linked to
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the two fragments obtained by cutting the linear string. In short, a specific
linearization of the circular string is inserted into the linear string, as specified
by the sites in the splicing rule. Finally, by =* we pass from a single linear
string, cut at two positions, at sites ujug,usug, to a circular string and a
linear one. Figure 9.1 illustrates these variants. One further variant will be
considered in the subsequent section.

Note that in all cases we use one splicing rule only, in the same way as
in the previous chapters: we cut at sites ujus, uguq and we recombine the
sticky ends in such a way as to obtain the substrings uu4, usus.

For an alphabet V, a subset L of V* U V*® is called a mized language.
For a usual H scheme o = (V, R), with R C V*#V*$V*#V™* and a mixed
language L C V*UV?, we define the mixed language o7, (L) as the smallest
mixed language containing L and closed under all the four splicing operations
i = 1,2,3,4, defined above. When only some of the operations ¢ are
used, then we write o},(L), where M C {1,2,3,4} is the set of indices ¢ such
that = is used.

Let us consider some examples:

o = ({a, b}, {a#bSb#a}),
L = {Cir(ab)}.

It is easy to see that we have

Uzl}(L) = {Cir(a"b") | n > 1},

ot gy(L) ={# |y =a", ory=1b", or y =a™b",n > 1},
oiy(L) = oy (L), forall M = {1} U M' M’ C {3,4},
ofl’z}(L) = oy (L), for all M = {1,2} UM', M’ C {3,4}.

For the same H scheme and
L' = {ba,Cir(ba)},

we obtain

a{sy(L") = {Cir(ba)} U {b"a™ | n > 1}.

Consequently, in all these cases, finite H schemes lead finite languages to
non-regular (usual or circular) languages. This contrasts the situation met
for linear strings (Lemma 7.14) and makes the splicing of circular strings
interesting from DNA computing point of view: non-restricted splicing with
respect to finite sets of splicing rules leads to non-regular languages even
when starting from finite languages.

A regularity preserving result can be obtained for the mixed splicing for
a particular class of H schemes. Specifically, an H scheme ¢ = (V| R) is said
to be reflexive if whenever u; #us$us#uys € R, then also uj#us$ui#us € R
and us#HusSus#Huqs € R.
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A proof of the following counterpart of Lemma 7.15 can be found in
[90]:

Theorem 9.1. Let FL be a full AFL closed under circular permutation.
If o = (V,R) is a reflerive H scheme with a finite set R and L is a mized
language over V such that LNV* € FL and LNV?® € FL°, then o}, (L) N
V*eFLand o}, (L)NV® e FL°,

mixr
Thus, in order to obtain computability models stronger than finite au-
tomata based on non-controlled mixed splicing we have to use H schemes
which are not reflexive.
Returning to the example above, if we add the rules a#b$a#b and
b#a$b#a to o, then we obtain an H scheme ¢’ such that

o'y (L) = {7 1y € {a,}", lyla = lylo},
ooy (L) = {71y € {a,0}*}.

When using only the relation !, a non-regular circular language is still
obtained, but, because o; 5, (L) = 0’,,,,(L) (no linear string is present),
Theorem 9.1 can be applied, and the circular language o’ {1,23 (L) is regular.

The precise characterization of the power of (extended) H systems based
on the splicing of circular strings of various types considered above, or on
mixed splicing is an important research topic.

9.2 One Further Variant and its Power

From two directions, we get the same suggestion on how one further splicing
operation involving circular strings can be defined.

One direction is the rotate-and-simulate idea in the proofs of several char-
acterizations of RE in the previous chapters. In the rotation steps, we start
from strings XwaY, with w € V*,a € V, for a given alphabet V, and two
special symbols X,Y, we remove a from the right hand end, getting XwY’
(usually, Y’ = Y, to remember the removed symbol), then we add « to
the left hand end, producing XowY’; finally, we return Y’ to Y, obtaining
XawY. Since Cir(wa) = Cir(aw) we can consider that the block Y X has
been interchanged with «, by a substitution of the form

aYX - YXa,

and not that o has been moved in Cir(XwaY). In this way we can treat in
a uniform way both the rules v — v in the grammar to be simulated and the
rotating steps: both of them are steps when a substring of the circular string
is replaced by another substring. If we want to preserve the control block
Y X, perhaps replaced by one symbol only, then we need interchanging rules
aYX — YXa. In fact, if we are able to substitute substrings of a circular
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string by other substrings, then the rotation is no longer necessary. What
we need in addition is a linearization step, or a convention of reading linear
strings from circular strings.

Another motivation for considering a splicing operation with circular
strings able to perform a substitution comes from the characterization of
RE languages by means of an iterated gsm. Iterating a gsm means to parse a
string and to pass from its last symbol to the first symbol again, continuing
in this way. If the two ends of the strings were connected, as in a circular
string, then we can imagine that the gsm simply continues the parsing, going
along the circular string.

The operation necessary in both these cases, that of a substring substi-
tution in a circular string, leads to the following way of using a splicing rule
r = uy #usSuz#uy over some alphabet V. For 2,4 € V° and z,w € V*, we
write

(#,2) B2 (§,w) iff z=ziuiuszousuy,
2 = Uz2k1Us,
Y = T1UU221U3Ug,
W = U2T2U3,
for some z1,x9,21 € V*.

The operation is illustrated in Fig. 9.2. One sees how the strings & and
z interchange the substrings z2 and z;. The circular string is cut in two
places, leaving free the subword usxoug; the linear string already has ends
which match the ends of the remaining part of the circular string, hence a
new circular string can be produced.

231 |
—T
xr

Based on this operation, we define a language generating device in the
following way.

Ug T2 U3 Uy

':5
|

U Uy 21 U U
| ! > P e T A
1 I T 1

Yy
z1 I

Figure 9.2: Splicing circular strings (II)

An extended circular H system is a construct

Y= (‘/a TaAlaA2aR1aR2)a
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where V is an alphabet, T C V (the terminal alphabet), 4; C V°, A, C V*
are finite sets (of axioms), and Ry, Ry are finite sets of splicing rules over V.
For such a system and for Ly C V°, Ly C V* we define

0{5}(L1a L2) = (L,17 LlZ)a

where

Lll = {:0 I (i‘7z) }:i (va)v
for some & € L,z € Lo, 7 € Ry},

Ly = {w]| (& 2) 2 (§,w),
for some & € L1,z € Lo,r € Ry }.

Then we define

{5y (L1, Lg) = (L1, La),
oty (L1, Ly) = 05y (L1, L2) U o5y (0453 (L1, L2)), i > 0,
075y (L1, La) = | J otsy(L1, La),
i>0
where the union is defined componentwise.
For r = ui #usSus#us in Ry and Z € V°,y, 2z € V*, we write
Y (y,2) iff @ =zuiuazousua,
Y = uqa1 Uy,
Z = UgTUs,
for some z1,z2 € V*.
(The circular string is cut at the sites wujug,usus, producing two linear

strings.)
Then for L C V° we define

o (L) = {y eV |2} (y,2) or & =7 (2,9),
for some & € L and r € Ry}.

The language generated by -y is defined by

L(y) = oy (L1) N T™,
where
0i53 (A1, A2) = (L1, Lo),

for some Ly C V*.
Therefore, we start from two sets of axioms, we splice the circular strings
with the linear ones according to the operation =%, with respect to the rules
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in Ry, iteratively; finally we cut the circular strings obtained in this way by
an operation =5 with respect to the rules in Rp; in the generated language
we keep only the strings composed of terminal symbols.

We do not know how powerful the extended circular H systems are, but
a simple restriction on the splicing operations |=°, =% will lead to a charac-
terization of RE, modulo a projection which erases certain markers used in
the process of string generation.

We say that v = (V, T, A1, Ag, Ry, Ry) is a restricted extended circular H
system if the rules r € Ry U R have associated strings v, € V* (we present the
rules as pairs (7, v,)) and the operations |=5, =6 are defined in the following
ways: for r = uj #FusSus#ug, (r,v.) € R1 U Ry, and £, € V°, z,w € V*, we
write

(&, 2) I=§' (§,w) iff = =ziuiuszausuy,
z = ug21u3,
Y = T1U1U221 U3 U4,
W = upTous,
for some z1,x2, 21 € V*, such that
vp € Sub(z2) and ujuszauguy cannot be written
in the form zjujuszhuguszy with
|23] < |z2|,vr € Sub(zs),
Z szl (y,2) ff z=z1u1u2T2usUy,
Y = UgTi1uy,
Z = UT2U3,
for some z1,z2 € V* such that
vy € Sub(x2) and ujuszouzuys cannot be written
in the form 2} ujuszhuzusxy with
|z5| < |z2|,vr € Sub(zy).

In words, the sites ujus, uguy should be placed around a substring x, of z
which contains at least an occurrence of the string v, and x5 is minimal with
this property, no proper substring of 2, containing v, can be bracketed by the
sites uiuo, usus. Thus, the strings v, act as “anchors” for the splicing rules,
as promoters whose influence is manifested locally, to the first occurrence of
uiug to the left of them and to the first occurrence of uzuy to the right of
them.

Having such information on the string xo, which is replaced by z; by an
operation |:5', is a very powerful feature: using this operation we can again
characterize the recursively enumerable languages.

Let EHo(cFIN,rFIN) denote the family of languages generated by re-
stricted extended circular H systems (“c” in front of the first occurrence of

FIN indicates the fact that we start with circular axioms, “r” in front of the
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second FIN indicates the fact that the splicings are vestricted in the sense
defined above).

Theorem 9.2. FEvery recursively enumerable language is a projection of a
language in the family EHs(cFIN,rFINY.

Proof. Consider a language L € RE,L C T*. As we know from Theorem
3.14, we can write this language in the form L = g*(ag) N T*, for a gsm
g = (K,‘/,‘/,S(),F,P), ag V.

We construct the restricted extended circular H system

Y= (V,)T,aAlaAQaRh R2)7

as follows.

Consider a new symbol, F, and add to P all the rules of the form s;F —
Esg, for sy € F. Denote by P’ the set obtained in this way. Assume that
P ={r,...,rn}, with

T . Qibi — Ci71 . thiqg,
for t; > O,qi,qg S K,bi c VU{E},Ci’l S VU{E},CZ'J' S ‘/,2 <3<,

1< <n.
Consider also the new symbols dy,dy, ..., d,. Then

V' = VUK U{E,do,du,...,dn},

T' = TU {do,di,...,dn},

A1 = {Cir(dids. .. dndosodoaedids . . . dpdoE)},

Ay = {diy1...dndoci,1d1dy . .. dndoc; pdids . . . dndo
coeCididy .. dpdodido | 1 < < nl,

Ry = {(dids... dittdirs ... dndoSdo#t, qidobs) | 1< < n},

Ry = {(#dydy ... dndoSdo#, qrdoE) | a5 € FY.

Let us see how this system works.
Assume that we have a circular string Z for some

r = Ilbdldg cee dndoqdoadldg Ce dndocmg,

for z1,20 € (VU{dp,d1,...,dn})*,a,b,c € VU{E},q € K; at the beginning
we have 1 = A, 20 = A, ¢ = sg9,a = ag, and b, ¢ are missing. If ga corre-
sponds to a rule r; in P’, that is ¢ = ¢;,a = b;, then there is a splicing rule
didy ... di#diy1 .. . dnde8de# in Ry. Due to the restricted mode of applying
these rules, we cut from z the substring z3 = d;11 ... dpdog;dgbids - . . d,dg
(the substring ¢;dob; appears in z3 and z3 is minimal with this property).
There is only one string in A, starting with d;14 ...d,dp and ending with
do, namely, dH—l N dndoci71d1d2 .o dndgcm e C,‘7tid1d2 . dndoquo. Substi-
tuting it in z instead of the string z3 cut above, we get a circular string ¢
for
Yy = Ilbdl Ce dndOCi,ldl - dndoci,g N Ci7t1d1 - dndoquocxg.
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Therefore, all circular strings & obtained by using the rules in R; have the
following properties:

— only one state ¢ € K appears in z in a substring of the form gdpa, for
ac€ VU{E},

— all two consecutive occurrences of symbols in V U{E} are separated by
a block d1d2 . dndo,

— ¢ is also separated from its left neighbour in VU{E} by a block dyds . ..
dndp.

The previous splicing operation has simulated the use of the rule 7; on the
circular string. The linear string x3 produced at the same time can be used
only for splicing an occurrence of itself, in a splicing performed by the same
rule (dy ...d;#dit1 ...d,do8do#, q:dob;), hence neither the circular string
nor the string x3 are changed.

Consequently, using the rules in R; we can simulate the work of g, starting
from qg, iteratively due to the existence of rules ¢gsF — Esg in P’. When a
circular string £ is obtained, with x of the form

r = wladldg NN dndoqfdoEdldz N dndobxz,

with 21,25 € (V U {do,d1,...,d})*,a,b € VU{A},qo € F, then the corre-
sponding rule in Ry can also be applied.
We obtain two linear strings

y = d1d2 . dndoqfdoEdldz . dndo,

z = bxoxia.

The first string above contains the nonterminal symbols g¢, F; the second
one is accepted in L(-y) when containing only symbols in TU{dy, d1,...,d,}.
Because we have cut the circular string & at the position indicated by F, which
marks the end of the string in ¢g*(ag) simulated by 7, we thus obtain a string
in g*(ap) in the correct circular permutation, with the symbols separated by
blocks dldz - dndo

Consider now the projection pro : (T U {do, d1,...,dn})* — T™ defined
by

prr{a) =a, fora e T,
prr(d;)) = A, for 0 < i < n.

We obtain L = prp(L(7y)), which completes the proof. O

A way to implement the restricted splicing operations of the type l=5/ in
the previous system « could be the following one.

Consider an encoding h : (VU K U{F})* — {A,C,G, T}* of elements
of VUK U {E} as strings over the DNA alphabet.
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For each rule r; € R; we consider a restriction enzyme enz;, characterized
Ui 20y
by the pattern [_ o

05T ] (We use again the notations established in Chap.
2§ U4

4.) This means that a sequence containing the subsequence [f_l f] will be
Ui2iV;

A Vi
respectively. Denote by «; the string u;z;v; appearing in the upper strand of
the pattern associated with enz;,1 <i < n.

Take one further restriction enzyme, enzg, characterized by the pattern

i A i i
cut in such a way that we obtain the sticky ends [1_12] (_ ) and <z ) |:1j ] ’
U; 23

UQ 20U

[ 0<070 ; denote ag = up2pvg. The sequences a; correspond to the symbols
U,QZOUO

d;,0<i<n.

Then, the elements of  are constructed as follows:

— the circular axiom:

(circ(h(so)aoh(ao)a1a2 .

OénOéoh(E)alaz e anao))
)\ ?

— for each rule r; : sa — x5’ € Porr;: sfF — Eso, 1 <1 < n, we
introduce

1. the auxiliary string

w0 () () () () - (2) B ()
() () (5) () C >($)(h—%l)
BERIGIRES

2. the axiom zs', for £ = byba...bg,b; € V,1 < i < k,k > 1, in the

»)

form
r_ AXY Q41 - Oénaoh(bl )Otl e anagh(bg)al
Wi = ( A ) ( A
(anao o aoh(bi)ay . .. anagh(s’) [uo A
' A o) \ 20/’
and

=] Q)

when 2 = A,
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)

— for each sy € F we also introduce the auxiliary string

- ()OO - OB
() (o) Grosee) () () Gmyn) G (
) 0 ) ()

— instead of the splicing rules in B; U Ry we add to the test tube the
enzymes enzi,...,enz,, enz.

()

Ui 24 Ivi ui+llzi+l|vi+1

e

—

up 20 Yo h(s) Uo 20 Vo h(a) w1 21 V1

[ — [ L1
l_' ! b ' 'J
J J —J

J

Un 2n Un Uo Zo Vo h(a’)

Figure 9.3: Partial (selective) annealing of the auxiliary string

Now, assume that we have a circular single stranded string, w, containing
the codes h(a) of several letters a € V, the code of the end marker F, and
the code of a state s € K; each two codes h{a),h(a’),h(E),a,d’ € V, are
separated by the block ajas...a,00, whereas h(s) is separated from the
code of the left neighboring symbol by the same block ajag...a,00 and
from the code of the right neighboring symbol by ag only. The enzymes
cannot cut single stranded sequences. If h(s)aph(s) corresponds to the rule
ri » sa — zs' in PU{syE — Esp | sy € F}, then the string w; is also
present in the test tube. It will anneal to the single stranded string w in such
a way that we obtain a circular word with double stranded portions on the
positions of «; to the left of h(s), of all strings u;, v; between this ¢; and the
string o to the right of h(a), of h(s), of h(a), and of ap to the right of h(a);
the portions z; do not anneal, because they are the same in w; as those in w
(they are not complementary).

The situation is illustrated in 