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Preface 
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trana, Andrei Paun, and Nike van Vugt. In particular, we are grateful to 
our biologist friends Hans Kusters and Paul Savelkoul for many illuminating 
discussions. Anu Heinimiiki drew the pictures in the Introduction. The ex
pert assistance and timely cooperation of Springer-Verlag, notably Dr. Hans 
Wossner, is gratefully acknowledged. 

Gheorghe Paun, Grzegorz Rozenberg, Arto Salomaa 
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Introduction: DNA 
Computing in a Nutshell 

From silicon to carbon. From microchips to DNA molecules. This is the 
basic idea in DNA computing. Information-processing capabilities of organic 
molecules can be used in computers to replace digital switching primitives. 

There are obvious limits to miniaturization with current computer tech
nologies. For a drastic innovation, it was suggested already a long time ago 
that the basic components should go to the molecular level. The result would 
be much smaller than anything we can make with present technology. Quan
tum computing and DNA computing are two recent manifestations of this 
suggestion. This work is about the latter. 

Figure 1 

Computers have a long history. Mechanical contrivances designed to facili
tate computations have existed for ages. While the earliest-known instrument 
of calculation of any importance is the abacus, the present-day electronic 
computers depicted in Fig. 1 have gained such a dominant position in our 

© Springer-Verlag Berlin Heidelberg 1998
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2 Introduction 

society that most of our activities would have to be abandoned but for their 
help. Yet present-day computers have many drawbacks. Because of numerous 

Figure 2 

intractable problems, it seems that the computer in Fig. 1 is not the end of 
the long road of development. 

Figure 3 

When the road continues, we might see a DNA computer. In the one 
shown in Fig. 2, all operations with the test tubes have to be carried out by 
the user. 
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A more advanced model is depicted in Fig. 3, where some robotics or 
electronic computing is combined with DNA computing, and the majority of 
the operations with the test tubes is carried out automatically, without the 
intervention of the user. 

A famous forerunner of present-day computers, Charles Babbage, set out 
around 1810-1820 to build an automatic computer, a "Difference Engine," 
as well as a more ambitious computing machine, an "Analytical Engine." 
The failure to construct either of the machines was due mainly to the lack of 
sufficiently accurate machine tools, and of mechanical and electrical devices 
that became available only during the 20th century. Perhaps we face today a 
similar situation with respect to DNA computers. Biochemical techniques are 
not yet sufficiently sophisticated or accurate. In particular, the techniques 
have not yet been adequately developed towards the specific needs of DNA 
computing. It is most likely that the waiting period here will be much shorter 
than in Babbage's case. 

~ A C G A 

Figure 4 

The high hopes for the future of DNA computing are based on two fun
damental features: 

(i) The massive parallelism of DNA strands, 

(ii) Watson-Crick complementarity. 

We now describe the two features briefly. 
(i) Most of the celebrated computationally intractable problems can be 

solved by an exhaustive search through all possible solutions. However, the 
insurmountable difficulty lies in the fact that such a search is too vast to 
be carried out using present technology. On the other hand, the density of 
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information stored in DNA strands and the ease of constructing many copies 
of them might render such exhaustive searches possible. A typical example 
would be the cryptanalysis of a ciphertext: all possible keys can be tried out 
simultaneously. 

(ii) Watson- Crick complementarity is a feature provided "for free" by 
the nature. When bonding takes place (under ideal conditions) between two 
DNA strands, we know that the bases opposite each other are complementary. 
When we know one member of a bond, we know also the other; there is no 
need to check it in any way. This results in a powerful tool for computing 
because, as we will see latter, complementarity brings the universal twin
shuffle language to the computing scene. By encoding information in different 
fashions on the DNA strands subjected to bonding, we are able to make far
reaching conclusions based on the fact that bonding has taken place. 

Figure 5 

Let us elaborate further the paradigm of complementarity. DNA consists 
of polymer chains, usually referred to as DNA strands. A chain is composed 
of nucleotides, and nucleotides may differ only in their bases. There are four 
bases: A (adenine), G (guanine), C (cytosine), and T (thymine). The familiar 
double helix of DNA arises by the bonding of two separate strands. The 
phenomenon known as Watson- Crick complementarity comes into picture 
in the formation of such double strands. Bonding happens by the pairwise 
attraction of bases: A always bonds with T, and G with C. Complementarity 
and the formation of double strands is presented schematically in Fig. 4. 
(Important details such as the orientation of the strands are omitted in this 
nutshell exposition.) 

Figures 5 and 6 illustrate the importance of complementarity, in particu
lar, how different things would be if complementarity were not provided for 
us by nature. In Fig. 5, the users of a DNA computer face the hopeless task 
of finding matches from huge piles of single strands. If the situation of Fig. 
5 were the actual reality, the prospects for DNA computing would be very 
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bleak, and perhaps also the theory presented below in Part II of this book 
would seem rather uninviting. But the situation of Fig. 5 is not the actual 
reality. The user can readily enjoy, as shown in Fig. 6, the result after the 
matching strands have found each other. 

The paradigm of complementarity, or some generalization or modification 
thereof, will be present throughout the mathematical theory discussed in Part 
II of this book. Part I is a general introduction to DNA computing including 
an introduction (Chap. 1) to basic concepts of molecular biology needed in 
this book. It also discusses some prospects for laboratory realizations. For 
instance, the error rate of operations with DNA strands can make a really 
dramatic difference. Thus, the ultimate success of DNA computing depends 
heavily on the development of proper laboratory techniques. 

Figure 6 

There are many reasons to investigate "DNA computing" other than the 
solution of computationally hard problems by using DNA strands as a sup
port for computation. On the one hand, it is important to try to under
stand how nature "computes" (remember that just by manipulating DNA 
the extraordinary sophistication and performance of life are obtained). On 
the other hand, as we shall see in the following chapters, "computing by 
DNA" leads to computing paradigms which are rather different from those 
customary in present-day computer science: new data structures, new types 
of operations on these new data structures or on classic ones (strings, lan
guages), new computability models. Even if building DNA computers will 
prove to be unrealistic (error prone, for instance), an alternative could be the 
implementation of the new computing paradigms in silicon frameworks. 

One can go further with these speculations: classic theoretical computer 
science is grounded on rewriting operations; this is true for most automata 
and language theory models. As we shall see, nature manipulates the DNA 
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molecules in a computing manner by using operations of a quite different 
type: cut and paste, adjoining, insertion, deletion, etc. We shall prove that 
by using such operations we can build computing models which are equivalent 
in power with Thring machines. Thus, the computability theories can be 
reconstructed in this new framework. Whether or not this has practical 
significance for computer science applications is a premature question. 



Part II 

Mathematical Theory 



Chapter 1 

DNA: Its Structure and 
Processing 

The term "genetic engineering" is a very broad generic term used to cover all 
kinds of manipulations of genetic material. For the purpose of this book this 
term describes the in vitro (hence outside living cell) manipulation of DNA 
and related molecules. These manipulations may be used to perform various 
kinds of computations. 

In this chapter we present the basic structure of the DNA molecule, and 
then the "tool box" of available techniques for manipulating DNA that are 
applicable in DNA computing. 

1.1 The Structure of DNA 

DNA is the molecule that plays the central role in DNA computing, and 
hence in this book. In the biochemical world of large and small molecules, 
polymers and monomers, DNA is a polymer which is strung together from 
monomers called deoxyribonucleotides. DNA is a crucial molecule in living 
cells (in vivo) and it has a fascinating structure which supports two most 
important functions of DNA: coding for the production of proteins, and self
replication so that an exact copy is passed to the offspring cells. 

Let's look into the structure of a DNA (DeoxyriboNucleic Acid) molecule, 
to the extent needed for this book. As said above, the monomers used for 
the construction of DNA are deoxyribonucleotides, where each deoxyribonu
cleotide consists of three components: a sugar, a phosphate group, and a 
nitrogenous base. The name of the sugar used here is deoxyribose which ex
plains the prefix "deoxyribo" used above. To simplify our terminology, we 
will use the simpler term "nucleotide" rather than "deoxyribonucleotide". 

This (deoxyribose) sugar has five carbon atoms - for the sake of reference 
there is a fixed numbering of them. Since the base also has carbons, to avoid 

© Springer-Verlag Berlin Heidelberg 1998
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10 1. DNA: Its Structure and Processing 

confusion the carbons of the sugar are numbered from I' to 5' (rather than 
from 1 to 5). The phosphate group is attached to the 5' carbon, and the base 
is attached to the I' carbon. Within the sugar structure there is a hydroxyl 
group (OH) attached to the 3' carbon. 

Different nucleotides differ only by their bases, which come in two sorts: 
purines and pyrimidines. There are two purines: adenine and guanine, ab
breviated A and G, and two pyrimidines: cytosine and thymine, abbreviated 
C and T, that are present in nucleotides. Since nucleotides differ only by their 
bases, they are simply referred to as A, G, C, or T nucleotides, depending on 
the sort of base they have. 

The structure of a nucleotide is depicted (in a very simplified way) in 
Fig. 1.1, where B is one of the four possible bases (A, T, C, G), P is the 
phosphate group, and the rest (the "stick") is the sugar base (with its carbons 
enumerated I' through 5'). 

5' 

p 

Figure 1.1: A schematic 
representation of a nucleotide 

For readers who have more affinity with chemistry, Fig. 1.2 gives the stan
dard (but still simplified) picture of the chemical structure of a nucleotide. 

RNA (RiboNucleic Acid) is another polymer that is of crucial importance 
for living cells. Its structure is quite close to that of DNA. It is strung 
together from monomers called ribonucleotides. A ribonucleotide differs from 
a (deoxyribo )nucleotide in two ways. 

(1) It contains the ribose sugar which differs from the deoxyribose sugar 
in that it has the hydroxyl (OH) group, rather than the hydrogen (H), 
attached to the 2' carbon. 

(2) The thymine base is replaced in a ribonucleotide by the uracil base, 
denoted U. Hence the four possible bases are A, U, C, and G. 
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Figure 1.2: The chemical structure of a nucleotide with thymine base 

It may be interesting for the reader to know that the ribonucleotide with 
the adenine base (and with a triple phosphate group - this is just another 
technical detail that we omit in our description) is called the ATP molecule, 
which is the main source of energy in living cells. 

N ucleotides can link together in two different ways. 

(1) The 5' -phosphate group of one nucleotide is joined with the 3' -hydroxyl 
group of the other forming a phosphodiester bond, which is a strong 
(covalent) bond - this is illustrated in Fig. 1.3. 

Note that the resulting molecule has the 5'-phosphate group of one 
nucleotide, and the 3' -OH group of the other nucleotide available for 
bonding. This gives the molecule the directionality; we can talk about 
the 5' -3' direction, or the 3' -5' direction. This directionality is crucial 
for understanding the functionality and the processing of DNA (it is 
also crucial for the use of words in modeling such polymers as we do in 
this book). 
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(2) The base of one nucleotide interacts with the base of the other to form 
a hydrogen bond, which is a weak bond. This bonding is the subject of 
the following restriction on the base pairing: A and T can pair together, 
and C and G can pair together - no other pairings are possible. 

5' 5' 

p p 

B B 

Figure 1.3: Phosphodiester bond 

This pamng principle is called the Watson-Orick complementarity 
(named after James D. Watson and Francis H. C. Crick who deduced 
the famous double helix structure of DNA in 1953, and won the Nobel 
Prize for this discovery). It is the cornerstone of understanding the 
structure and functioning of DNA. The principle is illustrated in Fig. 
1.4, where a thin wiggly line between the bases represents the fact that 
the hydrogen bond is (much) weaker than the phosphodiester bond. 

As a matter of fact, the A - T pairing involves the formation of two hy
drogen bonds between the two nucleotides, while the C - G pairing involves 
the formation of three hydrogen bonds between the two nucleotides. Con
sequently, the C - G pairing is stronger than the A - T pairing; one needs 
more energy (e.g., higher temperature) to separate the C - G pairing. To 
reflect this difference, we could use two wiggly lines for the A - T pairing, 
and three wiggly lines for the C - G pairing, but this is not necessary for the 
considerations of this book. 
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5' 

p 

5' 

3' 

either Bl = T and B2 = A 
or Bl = C and B2 = G 

p 

Figure 1.4: Hydrogen bond 
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Using phospho diester bonds we can form single stranded DNA (Fig. 
1.5). It is a standard convention that when we draw a single stranded 

5' • 3' 

5' 

p p p 

3' 

A C G 

Figure 1.5: Single stranded DNA 

molecule as in Fig. 1.5, the nucleotide with the free 5'-phosphate is the 
leftmost and the nucleotide with the free 3' -hydroxyl end is the rightmost. 
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Since in naming nucleotides (A, G, C, or T nucleotide) we identify them with 
their bases, we can also represent a single strand as a sequence of letters (a 
word), providing that we indicate the direction. Hence, 5'-ACG represents 
the single strand from Fig. 1.5. 

Using Watson-Crick complementarity, we can form from the single 
stranded DNA molecule shown in Fig. 1.5 the double stranded molecule 
shown in Fig. 1.6. 

5'---3' 

5' 

p p p 

3' 

3' 

p p p 

5' 

3'-5' 

Figure 1.6: Forming double strands 

As a matter of fact, in practice the hydrogen bond between single nu
cleotides as illustrated in Fig. 1.4 is too weak to keep the two nucleotides 
together - one really needs longer stretches to keep them bonded together. It 
is the cumulative effect (the sum) of hydrogen bonds between complementary 
bases in a DNA molecule that makes it a stable bond. 
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Figure 1.6 illustrates the general rule for joining two single stranded 
molecules using hydrogen bonds (the Watson-Crick complementarity). In 
the double stranded molecule the two single strands have opposite directions: 
the nucleotide at the 5' end of one strand is bonded to the nucleotide at the 
3' end of the other strand. It is a standard convention that when a double 
stranded molecule (also referred to as a duplex) is drawn, then the upper 
strand runs from left to right in the 5' - 3' direction, and (consequently) the 
lower strand runs from left to right in the 3' - 5' direction. Thus the upper 
strand from Fig. 1.6 is 5'-ACG, and the lower strand is 3'-TGC. 

Representing a (double stranded) DNA molecule as two linear strands 
bound together by Watson-Crick complementarity is already a major sim
plification of reality, because in a DNA molecule the two strands are wound 
around each other to form the famous double helix - see Fig. 1.7. 

In vivo the situation is much more complicated, because a very large 
DNA molecule has to fit in a very small cell (in a typical bacterium the 
DNA molecule is 104 times longer than the host cell!). Such a packing is 
quite intricate, and in more complex cells (eukaryotes) this packing is done 
"hierarchically" in several stages. The actual shape of a DNA molecule is 
of crucial importance in considering processes in living cells. However, for 
the purpose of this book, we may assume that a DNA molecule has a double 
string-like structure. 

Figure 1.7: The double helix 

Also, we have described above the structure of linear DNA molecules, 
while, e.g., bacterial DNA is very often circular. One can construct circular 
molecules simply by establishing a phospodiester bond between the "first" 
and the "last" nucleotide. 

The ability to process (to manipulate) DNA is central to genetic engi
neering and in particular to DNA computing. We move now to describe 
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methods for all kinds of manipulation of DNA - a basic tool box for the 
processing of DNA. We begin by discussing how to measure DNA. 

Measuring the length of DNA molecules 

The length of a single stranded molecule is the number of nucleotides com
prising the molecule. Thus if a molecule consists of 12 nucleotides, then we 
say that it is a 12 mer (it is a polymer consisting of 12 monomers). The 
length of a double stranded molecule (where each nucleotide is base paired 
with a "partner") is counted in the number of base pairs. Thus if we make a 
double stranded DNA from a single stranded 12 mer, then the length of the 
double stranded molecule is 12 base pairs, also written 12 bp. If the length 
is, e.g., 12 000 base pairs, then we write that the length is 12 kbp (where "k" 
stands for "kilo"). 

To measure the length of a DNA molecule one can use gel electrophoresis. 
The electrophoresis technique is based on the fact that DNA molecules are 
negatively charged. Thus if they are placed in an electric field, they will 
move (migrate) towards the positive electrode. While the negative charge 
of a DNA molecule is proportional to its length, the force needed to move 
the molecule is also proportional to its length. Thus these two forces cancel 
each other, and in an ideal solution all molecules travel with the same speed. 
Hence, in order to cause molecules of different length to move with different 
speed, we need gel. 

The gel electrophoresis technique works as follows. 

A gel powder is heated with a solution, forming a gel which is then poured 
into a rectangular plastic or glass container, and allowed to cool down. It will 
then form a slab filling in the container; during the cooling process a comb is 
inserted along one side of the container, so when the gel cools down and the 
comb is removed a row of small wells is formed at one end of the slab (Fig. 
1.8). 

Now a small (really minuscule) amount of a DNA solution, with DNA 
molecules to be measured, is brought into the wells, and the electric field is 
activated. DNA molecules will move through the gel toward positive elec
trodes. Since the mesh of the gel acts as a molecular sieve, small molecules 
move easier (faster) through the gel than big ones, and obviously groups of 
the same length move with the same speed. When the first molecules reach 
the (positive) end of the gel, the electric field is deactivated. Clearly, in a 
given time span, the small molecules will travel a longer distance than the 
long ones. 

Since DNA molecules are colorless, and hence invisible in the resulting gel, 
they must be marked in some way before they are put into the gel. There 
are two main methods for marking DNA molecules: 
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negative 
electrodes 

o 
o 
o 
o 

+ 

positive 
electrodes 

Figure 1.8: Gel prepared for electrophoresis 
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(1) Staining with ethidium bromide which fluoresces under an ultraviolet 
light when bound to DNA. When the gel is viewed under ultraviolet 
light, one sees bright fluorescent bands of groups of DNA fragments of 
the same length (Fig. 1.9). This method works best for double stranded 
DNA, because ethidium bromide really uses the double strand structure 
to stick to a molecule. 

+ 

~ I I I I I 
0 I I 
0 I I I 
0 I I I 

r r 
large small 

fragments fragments 

Figure 1.9: Gel electrophoresis 

(2) Attaching radioactive markers to the ends of DNA molecules, so that 
when a film is exposed to the resulting gel the bands corresponding to 
various groups of DNA molecules will show on the film. 
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Now, knowing the distance travelled by a molecule, one can compute its 
length. Rather than computing the length, one can also use one of the wells 
for depositing there fragments of known length. Then the bands visualized 
on the path from this well may be used as a calibration path: different 
bands on this path mark different (known) lengths. The location of bands on 
other paths may then be compared with the calibration path, yielding in this 
way the lengths of those bands. In Fig. 1.8 and 1.9, we have several wells 
(with the corresponding spectra of visualized lengths) because often, for the 
sake of comparison, several sample solutions are run together (the calibration 
solution is often one of them). 

Two kinds of gels are mostly used in gel electrophoresis: agarose gel and 
polyacrylamide gel. Agarose gel electrophoresis is the standard technique for 
resolving large fragments (longer than 500 bp). The resolution power of the 
gel dearly depends on its porosity and in this respect polyacrylamide gel is 
much better: it can resolve DNA fragments differing in length by only one 
base! This gel is the preferred method for determining the length of small 
fragments of DNA. 

The DNA molecules present in the gel after electrophoresis can be recov
ered if needed. For example, a slice containing the DNA to be recovered is 
cut from the gel and frozen (in liquid nitrogen). This freezing breaks up the 
structure of the gel, and so if the solution (after it thaws out) is centrifuged 
through a special filter, only the DNA will get through. 

Fishing for known molecules 

Annealing of complementary single strands can be used for fishing out known 
molecules (called target molecules). Unless the target molecules are already 
single stranded, the first step is to denature double stranded molecules. 

Suppose that we want to take out single stranded molecules Q from a 
solution 8 containing them as well as many other single stranded molecules. 
We then attach a molecules (a is the molecule complementary to Q and is 
called a probe) to a filter and pour the solution 8 through the filter. Then 
Q molecules will bind to a molecules while the other molecules will just flow 
through the filter. In this way we get a collection of double stranded molecules 
(resulting from annealing of Q and a) fixed to the filter, and the solution 8' 
resulting from 8 by removing Q molecules. 

Then the filter is transferred to a container where the double stranded 
DNA is denatured. When the filter is removed, only the target molecules 
remain. 

The filter method as described above is conceptually very simple, but not 
used much any more (since better methods exist). 

One can also attach probes to tiny glass beads and have them placed 
"tightly" in a glass column C. When a solution 8 containing target molecules 
is poured through C, target molecules will stay in C annealed to probes. 

Yet another way of catching target molecules is to attach probes to tiny 
magnetic beads and throw them into a solution 8 containing target molecules. 
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When this mixture is well shaken, target molecules attach to probes, and 
hence to magnetic beads. By placing a magnet to a side of the glass container 
where this takes place, one gets all the target molecules grouped in one place 
where they are easy to extract. 

1.2 Operations on DNA Molecules 

Two extremes are possible in describing the tool box of techniques for manip
ulating DNA: a dictionary-like listing of techniques with a short definitional 
description of each of them, or a (very) detailed description of each technique. 
We have chosen for a middle ground, where we give (mostly oversimplified) 
descriptions which should provide the reader with a clear intuition about the 
nature of the techniques involved. We feel that this style is best suited for 
readers of this book. 

Separating and fusing DNA strands 

As we have mentioned already, the hydrogen bonding between complemen
tary bases is (much) weaker than the phosphodiester bond between consecu
tive nucleotides within one strand. This allows us to separate the two strands 
of a DNA molecule without breaking the single strands. One way of doing 
this is to heat a DNA solution until the DNA melts, meaning that the two 
strands come apart - this is called denaturation. Melting temperatures are 
from 85° C up to 95° C (just below boiling); the melting temperature of a 
DNA molecule is the temperature at which half of the molecule separates. 

Now if this heated solution is cooled down again, the separated strands 
fuse again by the hydrogen bonds (this cooling down must be done slowly 
so that the corresponding complementary bases have enough time to find 
each other). This process is called renaturation. Fusing two single stranded 
molecules by complementary base pairing is also called annealing, so renatu
ration is also called reannealing. 

Another term used for fusing is hybridization, although originally it was 
used for describing the complementary base pairing of single strands of dif
ferent origin (e.g., DNA with RNA, or DNA with radioactively tagged DNA, 
or strands coming from different organisms). Imprecise use of terminology is 
more common in biology than in mathematics. 

Finally, we would like to mention that the denaturation of a double 
stranded molecule can be also facilitated by exposing it to certain chemi
cals. A commonly used chemical for this purpose is formamide - the melting 
temperature in the presence of formamide is much lower. 

We move now to consider various manipulations of DNA that are mediated 
by enzymes. 

Enzymes are proteins that catalyze chemical reactions taking place in liv
ing cells. They are very specific - most of them catalyze just a single chemical 
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reaction, and they do this extremely efficiently (speeding up chemical reac
tions by as much as a trillion times). Without enzymes, chemical reactions 
going on in living cells would be much too slow to support life. 

Since enzymes are so crucial for the life of a cell, nature has created a 
multitude of enzymes that are very useful in processing DNA. They are used 
very extensively in genetic engineering. 

Lengthening DNA 

A class of enzymes called (DNA) polymerases is able to add nucleotides to an 
existing DNA molecule. To do so, they require (1) an existing single stranded 
template which prescribes (by Watson-Crick complementarity) the chain of 
nucleotides to be added, and (2) an already existing sequence (primer) which 
is bonded (by Watson-Crick complementarity) to a part of the template, 
with the 3' end (the 3'-hydroxyl) available for extension. 

As a matter of fact, polymerase can extend only in the 5' - 3' direction -
see Fig. 1.10. 

5' 

3' 

NNN 

NNN 

OR 
3' / 

NN 

NNNNNNNN 

Figure 1.10: A DNA molecule with 

an incomplete upper strand 

5' 

We use here and in the following figures various graphic representations 
different from the "stick representation" that we have used until now. By 
now they should be self-explanatory. There is no need to fix one notation 
for representing DNA, and we use the graphic representations that we feel 
best fit the discussed situation. The letter N in Fig. 1.10 means that any 
of the four possible nucleotides can be at the position labeled N (of course, 
providing that base pair complementarity is preserved). 

Polymerase will then extend repeatedly the 3' end of the "shorter strand" 
complementing the sequence on the template strand, providing that required 
nucleotides are available in the solution where the reaction takes place - see 
Fig. 1.11. 

As usual in biology, the rules have exceptions. Thus, whereas indeed 
all polymerases require the 3' end for extension (a primer), there are some 
polymerases that will extend a DNA molecule without a prescribed template. 
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Figure 1.11: A polymerase in action 

Terminal transferase is such a polymerase. It is useful when we want to add 
single stranded "tails" to both ends of a double stranded molecule - see Fig. 
1.12. 

If we want to make a specific double stranded molecule for which we have 
one strand (a template) already, then we can do it by priming the given strand 
and then using polymerase to extend the primer according to the template. 
The direction of this synthesis is 5' - 3': this is the direction favored by 
nature, since also in vivo enzymatic synthesis of DNA follows this direction. 

One can chemically synthesize single stranded molecules following a pre
scribed sequence of nucleotides. For a number of technical reasons, the chem
ical synthesis that adds nucleotide by nucleotide to the already synthesized 
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chain, proceeds in the 3' - 5' direction: the 3' end of the first molecule is fixed 
to a solid support, so that at each step of the synthesis only the 5' end of the 
already synthesized chain is available for a phospodiester bond with the 3' 
end of the "incoming" new nucleotide. Well timed blocking and unblocking of 
the free 5' end of the already synthesized strand and of the 3' and 5' ends of 
the incoming nucleotide guarantee that only one specific nucleotide is added 
at one step of synthesis. This procedure lends itself to automatation ~ many 
"synthesizing robots" are now available. 

5' 

3' 

5' 

IGGGGGG 

3' 

5' 

terminal transferase 

+ 
G nucleotides 

3' 

GGGGGGI 

I 

Figure 1.12: Transferase activity 

Short chemically synthesized single stranded molecules are called oligonu
cleotides or simply oligos. Oligonucleotides are very useful in genetic engi
neering, e.g., they are used as primers. 

Shortening DNA 

DNA nucleases are enzymes that degrade DNA. They are divided into (DNA) 
exonucleases and (DNA) endonucleases. 

Exonucleases shorten DNA by cleaving (removing) nucleotides one at a 
time from the ends of the DNA molecule. They are more flexible (less uni
form) than polymerases, because some exonucleases will remove nucleotides 
from the 5' end while other will do this from the 3' end. Also some exonucle
ases may be specific for single stranded molecules while other will be specific 
for double stranded ones (and some can degrade both). 

For example, Exonuclease III is a 3'-nuclease (degrading strands in the 
3' - 5' direction) ~ see Fig. 1.13. In this way a molecule is obtained with 
overhanging 5' ends. 
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Figure 1.13: Exonuclease III in action 

Another exonuclease, Bal31 removes nucleotides from both strands of a 
double stranded molecule - see Fig. 1.14. 

As a matter of fact, many polymerases have also exonuclease activities. 
This is quite crucial in the DNA replication process ("performed" by poly
merases) as a mistake correcting activity. While polymerase extending ac
tivity is always in 5' - 3' direction, the associated exonuclease can be both 
5' - 3' and 3' - 5'. 
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Cutting DNA 
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Figure 1.14: Exonuclease Ba131 in action 

Endonucleases destroy internal phosphodiester bonds in the DNA molecule. 
They can be quite specialized as to what they cut, where they cut, and how 
they cut. 

Thus, for example, S1 endonuclease will cut only single strands (Fig. 1.15) 
or within single strand pieces of a mixed DNA molecule containing single 
stranded and double stranded pieces (Fig. 1.16). Such cuts may happen at 
any place (any phosphodiester bond); we say that S1 endonuclease is not site 
specific. 

On the other hand, endonuclease DNase! cuts both single stranded and 
double stranded molecules; it is also not site specific. 

Restriction endonucleases are much more specific: they cut only double 
stranded molecules, and moreover only at a specific (for a given restriction 
endonuclease) set of sites. 
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A restriction enzyme will bind to DNA at a specific recognition site and 
then cleave DNA mostly within, but sometimes outside of this recognition 
site. It will cut the phospho diester bond between adjacent nucleotides in 
such a way that it generates the OH group on the 3' end of one nucleotide 
and the phosphate group on the 5' end of the other nucleotide. 

5' 3' 

NNNNNN 

5' 3' 5' 3' 
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Figure 1.15: 81 endonuclease in action (i) 
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Figure 1.16: 81 endonuclease in action (ii) 

The cut itself can be blunt (straight through both strands) or staggered. 
Here are some examples. 

Restriction enzyme EcoRI - see Fig. 1.17. 
The recognition site is 5'-GAATTC, so EcoRI will bind to it. The direc

tionality is very important here: EcoRI will not bind to 3'-GAATTC. The 
cut is staggered, leaving two overhanging 5' ends. 
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Note that the recognition site is a palindrome in the sense that reading 
one of the strands in the 5' -3' direction one gets the same result (GAATTC) 
as reading the other strand in the 5' - 3' direction. This is often the case for 
restriction enzymes. 

5' 1 3' 

ex GAATTC f3 
CTTAAG 

3' i 5' 

[[Ecom 
5' 3' 5' 3' 

ex IGI 
: CTTAAI 

IAATTCI 
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f3 

3' 5' 3' 5' 

Figure 1.17: Eco RI in action 

Clearly, if a stretch of DNA contains several recognition sites, then the 
restriction enzyme in principle will cut all of them - see Fig. 1.18. 
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Figure 1.18: Multiple cut by EcoRI 

For the reader who finds the names of restriction enzymes (like EcoRI 
above) strange, we would like to add that they follow precise rules of nomen
clature. The name is always based on the organism from which the restriction 
enzyme was originally isolated. The first three letters are: the first letter of 
the genus name followed by the first two letters of the species name. Then, 
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if necessary, the letter indicating the strain is given. The last character is 
the number indicating the order in which this enzyme was discovered in the 
given organism. Thus, EcoR1 denotes the first (I) restriction enzyme isolated 
from the bacterium Escherichia coli, strain serotype R. 

Restriction endonuclease Xma1 - see Fig. 1.19. 
The recognition site is 5'-CCCGGG. The cut is staggered, leaving two 

overhanging 5' ends. 

5' 3' 

ICCCGGGI 
GGGCCC 
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Figure 1.19: Xma1 in action 

Restriction endonuclease Sma1 - see Fig. 1.20. 

5' 3' 

ICC CGGG
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3' 5' 

jj SmaI 
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Figure 1.20: SmaI in action 

The recognition site is the same as for Xma1: 5'-CCCGGG, but the cut 
is different - this is a blunt cut. 

There exist also different restriction endonucleases that have the same 
recognition sites and the same cut (e.g., Hpall and MspI). 



28 1. DNA: Its Structure and Processing 

Restriction endonuclease PstI - see Fig. 1.21. 
The recognition site is 5'-CTGCAG. The cut is staggered, leaving two 

overhanging 3' ends. 
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Figure 1.21: Pst! in action 

Restriction endonuclease HgaI - see Fig. 1.22. 
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The recognition site is 5'-GACGC. The cut is staggered, leaving two over
hanging 5' ends. 
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Figure 1.22: HgaI in action 
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As a matter of fact, HgaI belongs to Type I restriction endonucleases, 
while the restriction endonucleases discussed above belong to Type II re
striction endonucleases (which cut within the recognition site). A discussion 
of differences between Type I and Type II (and also Type III) restriction 
endonucleases is beyond the scope of this chapter, but it is worthwhile to 
point out the following. Type I restriction endonucleases are rather impre
cise, e.g., their cutting sites may be quite unpredictable. For this reason 
the use of Type I restriction endonucleases in genetic engineering is quite 
limited. 
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Linking (pasting) DNA 

DNA molecules may be linked together through a process called ligation 
which is mediated by enzymes called ligases. This can be done in several 
ways. 

Consider, e.g., the restriction enzyme XmaI and the situation shown in 
Fig. 1.19. The two molecules produced by the XmaI cut have overhanging 
ends. As a matter of fact, if they stay close enough they may reanneal (stick 
together) by hydrogen bonding of complementary bases - this is why such 
overhanging ends are also called sticky ends. In the situation of Fig. 1.19 the 
complementary sticky ends are 5'-CCGG and 3'-GGCC. 

While the hydrogen bond keeps complementary sticky ends together, 
there is a gap in each of the strands, called a nick. A nick is a lack of a 
phosphodiester bond between consecutive nucleotides. Such a bond can be 
established by a ligase providing that the 3' end to be connected has the 
hydroxyl (3'-hydroxyl) and the 5' end to be connected has the phosphate 
group (5'-phosphate); see Fig. 1.23. Fortunately, when a restriction enzyme 
cuts the phosphodiester bond between adjacent nucleotides it generates the 
hydroxyl on the 3' end and the phosphate on the 5' end (as indicated in Fig. 
1.23). 

OH p 
5' 3' 

3' 5' 
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II hydrogen honding 

OH p 
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Figure 1.23: Complementary base pairing 

For the resulting molecule of Fig. 1.23, the effect of ligation is illustrated 
in Fig. 1.24. 

Note that here the work of a DNA ligase is made "easy" because the 
hydrogen bond is keeping the nucleotides to be ligated close to each other. 

In the situation illustrated in Figs. 1.19, 1.23, and 1.24, a molecule cut 
by a restriction enzyme has restored itself using the sticky ends produced by 
the restriction enzyme cut. 
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But we could also have two different molecules Ml and M2 cut by the 
same restriction enzyme (or by different restriction enzymes that produce the 
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Figure 1.24: Ligation 
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same sticky ends) and then find the pieces recombining in such a way that 
we get hybrid molecules. This is illustrated in Fig. 1.25. 
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Figure 1.25: Hybridization 
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Note also that one of the molecules resulting from a multiple cut, illus
trated in Fig. 1.18, has two sticky ends, which can anneal and then be ligated, 
thus forming a circular double stranded molecule. 

In the blunt end ligation a DNA ligase will join together the 3' end and 
the 5' end of one molecule with the 5' end and the 3' end, respectively, of 
another molecule. For example, pieces cut by SmaI (see Fig. 1.20) can be 
ligated together - as shown in Fig. 1.26. 
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Figure 1.26: Blunt ligation 

Blunt end ligation is much less efficient than sticky end ligation. The 
reason is that DNA ligase cannot bring the ends needed for ligation close 
together (in sticky end ligation the required ends were kept in proximity 
by hydrogen bonds between sticky ends). The advantage of blunt end liga
tion is that it joins DNA molecules independently of the specific nucleotide 
sequences at their ends. 

Here is another way of performing blunt end ligation. Consider the termi
nal transferase enzyme which is 3'-end extending, see Fig. 1.12. The situation 
illustrated in Fig. 1.12 is called, for obvious reasons, a "homopolymer tail
ing." This can be used for blunt end ligation in the way illustrated in Fig. 
1.27. 

Although the term "ligation" means technically just the sealing of a nick, 
it is often used also to describe the combined process of the annealing of 
sticky ends and then ligating the nicks. 

Modifying nucleotides of DNA 

Enzymes that modify DNA molecules by adding or deleting certain chemical 
components are very useful in controlling various operations on DNA (these 
enzymes are thus called modifying enzymes). 
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Methylases are enzymes that are used in vivo as partners of restriction 
enzymes. The main role of restriction enzymes in vivo is the defence of 
the host organism (e.g., bacteria) against the invading organism (e.g., virus). 
Restriction enzymes will digest (cut in pieces) the DNA of the invader - a big 
variety of restriction sites allows the destruction of a big variety of invaders. 
However, the DNA of the host itself may contain recognition sites of some of 
the restriction enzymes - if these sites are not protected, the host organism 
will destroy its own DNA while destroying the DNA ofthe invader. 
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Figure 1.27: Joining blunt ended molecules using homopolymer tailing 

The methylase, that is the partner of a restriction enzyme, has the same 
recognition site as the restriction enzyme; when it binds to this recognition 
site, it will modify one of the nucleotides within the restriction site (by adding 
a methyl group to it). In this way this recognition site becomes inaccessi
ble for the corresponding restriction enzyme, and so the DNA molecule is 
protected against destruction (digestion) by it. 

Alkaline phosphatase removes phosphate group from 5' ends of DNA, 
leaving there the 5'-OH groups - see Fig. 1.28. Clearly, the molecule so 
obtained cannot ligate with itself (forming a circular molecule) - a phospho
diester bond cannot be formed. This is very important if you want to make 
sure that, given molecules a and molecules {3, you get ligations of a and {3, 
but not of a with a or {3 with {3. 
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Figure 1.28: Alkaline phosphatase in action 
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Polynucleotide kinase has the opposite effect: it transfers phosphate 
groups (from available ATP molecules) onto the 5'-OR ends (of a molecule 
treated by alkaline phosphatase) - this is illustrated in Fig. 1.29. 
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Figure 1.29: Polynucleotide kinase in action 
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If the transferred phosphate groups are radioactively labeled, then the so 
obtained molecule may be detected by detection methods using radioactivity 
(recall our discussion of gel electrophoresis). Moreover, restoring a (missing) 
5'-phosphate end allows the ligation of such molecules. 

Multiplying DNA 

One of the central problems of genetic engineering is the amplification of the 
available "small" amount of a specific fragment of DNA (e.g., the fragment 
that encodes for a specific gene). The problem is especially acute if the small 
amount of the known fragment is lost in a huge amount of other pieces (like 
the proverbial needle in a haystack). 

Fortunately there is a technique, called polymerase chain reaction (peR), 
that solves this problem. This technique was devised in 1985 by Kary Mullis, 
and it has really revolutionized molecular biology (Mullis has been awarded 
the Nobel Prize for this discovery). It is incredibly sensitive and efficient: 
one can produce within a short period of time millions of copies of a desired 
DNA molecule even if one begins with only one strand of the molecule. The 
applications of PCR are really enormous; they include areas such as genetic 
engineering, forensic analysis, genome analysis, archeology, paleontology, and 
clinical diagnosis. 

The beauty of PCR is that it is very simple and really elegant. Here is 
how it works. 

Assume that we want to amplify a DNA molecule a with known borders 
(flanking sequences) f3 and 'Y - see Fig. 1.30. 

ex: 111111 
111111 

IIIII 
I II I I 

Figure 1.30: DNA with borders 

Amplifying a will be done by repeating the basic cycle consisting of three 
steps: denaturation, priming, and extension. 

To start with, one prepares a solution containing a (the target molecule), 
synthetic oligonucleotides (primers) that are complementary to f3 (f3-primers) 
and to 'Y (,,(-primers), polymerase that is heat resistant, and nucleotides. 

Denaturation. In this phase the solution is heated to a really high tem
perature (often close to the boiling temperature), so that the hydrogen bonds 
between the two strands are destroyed, and a separates (denatures) into two 
strands a1 and a2 - see Fig. 1.31. 
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Figure 1.31: Denaturation 

Priming. Now the solution is cooled down (usually to about 55° C) so 
that the primers will anneal to their complementary borders: ,8-primers to 
,8, and 'Y-primers to 'Y - see Fig. 1.32. 
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Figure 1.32: Priming 
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Extension. The solution is heated again (to 72° e) and a polymerase will 
extend the primers (using nucleotides available in the solution) to produce 
two complete strands of DNA, both identical to a - see Fig. 1.33. Remem
ber that polymerase extends a primer always in the 5' - 3' direction. The 
polymerase used here must be heat resistant, as during many repeated cycles 
they have to survive very high temperatures. Fortunately, nature provides 
such polymerases: they can be isolated from thermophilic bacteria that live 
in thermal springs with a temperature close to the boiling point. 

al: 111111 11111 --- .. a2: 111111 11111 
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'Y 11 
polymerase 

(3 
~ ~ ~ ~ 

a: IIIIII 
" " I 

a: - " " I 111111 .. 111111 IIIII 
"--v-' ~ "--v-' ~ 

'Y 73 'Y 73 
Figure 1.33: Extension 

Obviously, repeating the basic cycle n times will yield 2n copies of a, at 
least in theory. Thus peR is a very efficient molecular Xerox machine! 

For the ease of explanation we have assumed that our target sequence a 
is a separate molecule. Obviously, peR will also multiply a, even if a is a 
part of a larger molecule (flanked within the larger molecule by borders (3 
and "(). The explanation then becomes more subtle (we encourage the reader 
to analyze the working of the peR procedure in such a situation). 

Before the reader pronounces the peR technique to be a real miracle, we 
need to stress that in order to amplify a DNA molecule (a) we need to know 
the borders ((3 and "() in order to make the primers ((3- and ,,(-primers). 

1.3 Reading out the Sequence 

We know already how to determine the length of a DNA molecule, but the 
ultimate goal in many genetic engineering procedures is to learn the exact 
sequence of nucleotides comprising a DNA molecule. For example, the goal 
of the Human Genome Project is to determine the entire nucleotide sequence 
of the human genome, which is about 3 . 109 bp long! 

The most popular method of sequencing (i.e., establishing the exact se
quence of nucleotides comprising a given DNA molecule) is based on the 
polymerase action of extending a primed single stranded template, and on 
the use of nucleotide analogues. A nucleotide analogue is a nucleotide that 
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has been chemically modified in vitro. One can chemically modify the sugar 
and/or the phosphate group and/or the base of a nucleotide. The modi
fication that is mostly used in sequencing is the modification of the sugar 
that changes the 3'-hydroxyl group (3'-OH) into the 3'-hydrogen atom (3'
H); such nucleotides are called dideoxynucleotides and they are denoted by 
ddA, ddT, ddC, and ddG. The sequencing method based on such nucleotides 
is called accordingly the dideoxy enzymatic method, or the Sanger method 
(named after its inventor). 

It works as follows. Assume that we want to sequence a single 
stranded molecule a. We extend it at the 3' end by a short sequence 
, (say of length 20) so that we get the molecule 3'-,a. For exam
ple, if a = 3'-AGTACGTGACGC, then the resulting molecule is (3 = 
3'-,AGTACGTGACGC. 

The reason for adding, "in front of" a is that in this way we can add 
the primer 'Y (complemented ,) so that a polymerase enzyme can start to 
extend such a molecule following (complementing) the template a, see Fig. 
1.34. Let (3' be the so primed (3 molecule. Usually, the primer 'Y is labeled 
(e.g., radioactively, or fluorescently marked) so that later in the procedure 
we can easily identify single strands beginning with "I. 

5' 

3' 

3' , , AGT ACGGGACGC I 
5' 

Figure 1.34: (3' molecule 

We now prepare four tubes (called Tube A, Tube T, Tube C, and Tube 
G) so that each of them will contain (3 molecules and primers (so that (3' 
molecules will form), polymerase, and nUcleotides A, T, C, and G. Moreover, 
Tube A contains a limited amount of ddA, Tube T a limited amount of ddT, 
Tube C a limited amount of ddC, and Tube G a limited amount of ddG. 

Let us analyze the reaction going on in Tube A. The polymerase enzyme 
will extend the primer "I of (3' using the nucleotides present in Tube A. Using 
only A, T, C, G nucleotides, (3' is extended to the full duplex (Fig. 1.35). 

5' 

3' 

"f 
"f 

3' 

TCATGCACTGCGI 
AGTACGTGACGC 

5' 

Figure 1.35: Full duplex 
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Sometimes the polymerase enzyme will use a ddA rather than an A nu
cleotide. When this happens, then the complementing of the template will 
end at this position because ddA does not have the 3' -OH end needed for the 
phospho diester bond. Hence, beside the full duplexes, we will also get the 
molecules shown in Fig. 1.36. 

5' 3' , TCAI , AGT ACGTGACGC I 
3' 5' 

5' 3' , TCA TGCAI , AGT ACGTGACGC I 
3' 5' 

Figure 1.36: Incomplete molecules in Tube A 

Hence the 5' - 3' fragments made by polymerase in Tube A (according to 
the template (3) are: 

5' -'}7TCATGCACTGCG, 

5' -'}7TCA, 

5' - '}7TCATGCA. 

We can easily get these single stranded sequences by denaturing the (par
tially) double stranded sequences and selecting only those single strands that 
begin with the primer '}7 (remember that we have labeled '}7 for this purpose). 

Reasoning in the same way, the 5' - 3' fragments made by polymerase in 
Tube Tare: 

5' -'}7TCATGCACTGCG, 

5' -'}7T, 

5' -'}7TCAT, 

5' -'}7TCATGCACT. 

In Tube C we get: 

5' -'}'TCATGCACTGCG, 

5' -'}'TC, 

5' -'}7TCATGC, 



1.3. Reading out the Sequence 

5' - ;yTCATGCAC, 

5' - ;yTCATGCACTGC. 

In Tube G we get: 

5' - ;:YTCATGCACTGCG, 

5' - ;:YTCATG, 

5' - ;yTCATGCACTG. 
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Now we perform the polyacrylamide gel electrophoresis using four wells 
(one for each tube), and we get the size separation (we ignore here the prefix 
;:y which is the same for all fragments) shown in Fig. 1.37. Note that the 
distribution of the (overlapping) fragments forms a sequencing ladder where 
the rungs are the fragments, and a rung r directly precedes a rung r' if r' is 
longer than r by one nucleotide. 

A 

C 

G 

T 

+ 

I I 
I I I I 

I I I 
I I I 

G C G T C A C G T ACT 

Figure 1.37: Sequencing ladder 

Clearly, we read the bands (the ladder) from right to left, climbing the 
ladder, because the length of (molecules in the) bands increases from right 
to left. In Fig. 1.37 we have indicated under each band the nucleotide that 
is at the 3' end of molecules in this band. The molecules themselves that are 
in the bands (ordered by length, hence from right to left in Fig. 1.37) are: 

T, 

TC, 

TCA, 

TCAT. 
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TCATG, 

TCATGC, 

TCATGCA, 

TCATGCAC, 

TCATGCACT, 

TCATGCACTG, 

TCATGCACTGC, 

TCATGCACTGCG. 

1. DNA: Its Structure and Processing 

Hence the original molecule a is: 3'-AGTACGTGACGC. 
We stress once again that our descriptions are very simplified. Thus, 

e.g., there are many subtle points in the sequencing described above. The 
polymerase used here cannot have the associated exonuclease activity since 
it could then cleave out the dideoxynucleotide that ends the complementing 
of the template. The "standard" enzyme used here was the Klenow fragment 
of DNA polymerase I. Also, the amount of the dideoxynucleotides in Tubes 
A, T, C, G must be carefully determined - if there are too many of them, 
then the polymerase action may always end within the proper prefix of the 
sequenced molecule - the chance of getting to the end of the template will 
decrease with too high a density of dideoxynucleotides. 

Finally, one can run only molecules of quite limited length through the 
gel. But one can represent a long molecule by a sequence of its overlapping 
shorter fragments. Knowing the nucleotide sequence of these fragments and 
their overlappings, one can construct the nucleotide sequence of the whole 
molecule. 

1.4 Bibliographical Notes 

There are very many good books on molecular biology and genetic engineer
ing, written for readers with different backgrounds. 

The book by K. Drlica [48] is a beautiful introduction to molecular biol
ogy and genetic engineering that does not assume any background in either 
biochemistry or biology (our "stick" representation for nucleotides is from 
this book). Also [208] is a very nice and easy introduction to genetic engine
ering, although somewhat outdated now. [43] is written for the uninitiated 
reader - it is more sketchy than the other two books, but quite good as a 
quick reference. 

The book by B. Alberts et al. [5] is a standard textbook on molecular 
biology and is very good also as a comprehensive reference book. The book 
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by M. R. Walker and R. Rapley [214] represents a new concept in book writ
ing. The reader may determine himself/herself a "route" through the topics 
he/she likes. It is a wonderful reference book. It is especially recommended 
for the reader who after reading some more popular books on molecular bi
ology and genetic engineering would like to bring more order to the acquired 
information. 



Chapter 2 

Beginnings of Molecular 
Computing 

2.1 Adleman's Experiment 

"We can see only a short distance ahead, but we can see plenty there that 
needs to be done." These words of Tnring [213] can be taken as an underly
ing principle of any program for scientific development. Such an underlying 
principle is very characteristic for research programs in computer science. 
Advances in computer science are often shown by and remembered from 
some unexpected demonstration, rather than from a dramatic experiment 
as in physical sciences. As pointed out by Hartmanis [83], it is the role of 
such a demo to show the possibility or feasibility of doing what was previ
ously thought to be impossible or not feasible. Often, the ideas and concepts 
brought about and tested in such demos determine or at least influence the 
research agenda in computer science. Adleman's experiment [1] constituted 
such a demo. This book is about the short distance we can see ahead, and 
about the theoretical work already done concerning various aspects of molec
ular computing. The ultimate impact of DNA computing cannot yet be seen; 
this matter will be further discussed in Sect. 2.4. 

Already when computers were generally referred to as "giant brains" and 
when nothing short of room-size could be visualized as a powerful comput
ing device, some visionary remarks were made abolit possible miniaturiza
tions. Often quoted is the view of Feynman from 1959 [55], describing the 
possibility of building "sub-microscopic" computers. Since then, remarkable 
progress in computer miniaturization has been made but the goal of sub
microscopic computers has not yet been achieved. Two major approaches, 
quantum computing and DNA computing, have been proposed and already 
widely discussed. Adleman's experiment, which we now start to describe, 
was a powerful demo in DNA computing. To keep our presentation on a 
realistic level, we will discuss here the example given in [1]. 

© Springer-Verlag Berlin Heidelberg 1998
G. Păun et al., DNA Computing
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Adleman's experiment solves the Hamiltonian Path Problem, HPP, for a 
given directed graph. We consider the problem in the following formulation. 
Let G be a directed graph with designated input and output vertices, Vin 

and Vout. A path from Vin to Vout is termed Hamiltonian if it involves every 
vertex exactly once. (This implies that Vin i=- Vout because Vin = Vout would 
be in the path twice.) 

For example, the graph depicted in Fig. 2.1 has the designated input 
vertex 0 and output vertex 6. The path consisting of the directed edges 
o ---+ 1, 1 ---+ 2, 2 ---+ 3, 3 ---+ 4, 4 ---+ 5, 5 ---+ 6 is Hamiltonian. 

Figure 2.1: The graph in Adleman's experiment 

We have chosen the numbering of the vertices in such a way that the 
Hamiltonian path comes out in the numerical order. Of course, the number
ing can always be chosen in this fashion once a Hamiltonian path has been 
found. In this particular example the path mentioned turns out to be the 
only Hamiltonian path. Indeed, it is easy to exhaust all the possibilities. The 
beginning 0 ---+ 3 gives only the maximal paths 0 ---+ 3, 3 ---+ 2, 2 ---+ 1; 
o ---+ 3, 3 ---+ 4, 4 ---+ 1, 1 ---+ 2, and 0 ---+ 3, 3 ---+ 4, 4 ---+ 5, 5 ---+ 2, 
2 ---+ 1, before the only possibility for continuation is a repetition of a vertex, 
and 0 ---+ 3, 3 ---+ 4, 4 ---+ 5, 5 ---+ 6. The beginnings 0 ---+ 1, 1 ---+ 3 
and 0 ---+ 6 are also immediately seen to be unsuccessful. This argument 
also shows that if any edge from the path 0 ---+ 1, 1 ---+ 2, 2 ---+ 3, 3 ---+ 4, 
4 ---+ 5, 5 ---+ 6 is removed, then the resulting graph has no Hamiltonian 
path. Clearly, if some vertex other than 0 is the input vertex, or some vertex 
other than 6 is the output vertex, then the resulting graph (with the same 
edges) has no Hamiltonian path. This follows because there are no edges 
entering 0 and no edges emanating from 6. 
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In general, the Hamiltonian Path Problem, HPP, consists of deciding 
whether or not an arbitrarily given graph has a Hamiltonian path. It is 
obvious that HPP can be solved by an exhaustive search. Moreover, various 
algorithms have been developed for solving HPP. Although the algorithms 
are successful for some special classes of graphs, they all have an exponential 
worst-case complexity for general directed graphs. This means that, in the 
general case, all known algorithms essentially amount to exhaustive search. 
Indeed, HPP has been shown to be an NP-complete problem, which means 
that it is unlikely to possess an efficient (that is, working in polynomial time) 
algorithm. HPP is intmctable in the sense that the decision about graphs of 
modest size may require an altogether impractical amount of computer time. 
In his experiment Adleman solved the HPP of the example given above, a 
small graph by all standards. However, the solution is, at least in principle, 
applicable to bigger graphs as well. Massive pamllelism and complementarity 
are the key issues in the solution. 

Adleman's solution is based on the following nondeterministic algorithm 
for solving HPP. 

Input: A directed graph G with n vertices, among which are 
designated vertices Vin and Vout. 

Step 1: Generate paths in G randomly in large quantities. 

Step 2: Reject all paths that do not begin with Vin and end in Vout. 

Step 3: Reject all paths that do not involve exactly n vertices. 

Step 4: For each of the n vertices v, reject all paths that 
do not involve v. 

Output: "Yes" if any path remains, "No" otherwise. 

Essentially, this algorithm carries out an exhaustive search. In Adleman's 
solution, the massive pamllelism of the DNA strands takes care of the unde
sirable nondeterminism. Watson-Crick complementarity is applied to assure 
that the constructed sequences of edges are indeed paths in the graph G. We 
will now look at the details of Adleman's experiment. 

Each vertex i of the graph is associated with a random 20-mer strand of 
DNA denoted Si,O ::; i ::; 6. For instance, for i = 2,3,4, Adleman used the 
following oligonucleotides of length 20: 

S2 = TATCGGATCGGTATATCCGA, 

S3 = GCTATTCGAGCTTAAAGCTA, 

S4 = GGCTAGGTACCAGCATGCTT. 

As regards orientation, all of these oligonucleotides are written 5' to 3'. 
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It will be convenient for us to use a function h mapping each ofthe DNA 
bases to its Watson-Crick complement: 

h(A) = T, h(T) = A, h(C) = G, h(G) = C. 

For DNA strands, h is applied letter by letter: 

h(CATTAG) = GTAATC. 

Thus, h produces the Watson-Crick complement of a strand. (The orienta
tion is changed by h in this way: if the original strand is written 5' to 3', 
then the Watson-Crick complement will be written 3' to 5'.) The mapping 
h is a morphism according to the terminology of language theory (described 
in detail in Chap. 3). It will be referred to as the Watson-Crick morphism. 
For instance, 

h(S2) = ATAGCCTAGCCATATAGGCT, 

h(S3) = CGATAAGCTCGAATTTCGAT. 

Decompose now each Si, 0 ~ i ~ 6, into two strands, each of length 10: 
Si = s~s~'. Thus, s~ (resp. s~') can be viewed as the first (resp. second) half 
of Si. An edge from the vertex i to the vertex j, provided one exists in the 
graph G, is encoded as h( s~' sj). Thus, also an edge will be encoded as a 
20-mer, obtainable as the Watson-Criek complement of the second and the 
first halves of the oligonucleotides encoding the vertices touching the edge. 
The encodings of three particular edges are given below: 

e2--+3 = CATATAGGCTCGATAAGCTC, 

e3--+2 = GAATTTCGATATAGCCTAGC, 

e3--+4 = GAATTTCGATCCGATCCATG. 

An important observation is that this construction preserves edge orien
tation; e2--+3 and e3--+2 are entirely different. 

We are now ready to describe the main phase of Adleman's experiment. 
For each vertex i in the graph and for each edge i --t j in the graph, 
large quantities of oligonucleotides Si and ei--+j were mixed together in a sin
gle ligation reaction. Here the oligonucleotides Si served as splints to bring 
oligonucleotides associated with compatible edges together for ligation. Con
sequently, the ligation reaction caused the formation of DNA molecules that 
could be viewed as encodings of random paths through the graph. (Adle
man used in his experiment also some ligase buffers, and the whole mixture 
was incubated for 4 hours at room temperature. For readers familiar with 
Adleman's paper [1], we want to mention that our notation above is slightly 
different. We put the oligos Si in the "soup," whereas Adleman puts there 
the oligos h(Si). The corresponding complementarity change concerns the 
oligos ei--+j.) 
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In Adleman's experiment, the scale of the ligation reaction far exceeded 
what was necessary for the graph of this size. Indeed, for each edge, a number 
of magnitude 1013 copies of the encoding oligonucleotide were present in the 
soup. This means that many DNA molecules encoding the Hamiltonian path 
were probably created, although the existence of a single such molecule would 
prove the existence of a Hamiltonian path. 

In other words, quantities of oligonucleotides considerably smaller than 
those used by Adleman would probably have been sufficient, or a much larger 
graph could have been processed with the quantities he used. 

As an illustration, we depict in Fig. 2.2 some of the DNA double strands 
that might have been produced in the experiment. We use the notations Si 

and ei-.j introduced above. Observe that the double strands are open-ended. 

Figure 2.2: Examples of paths in Adleman's graph 

Let us go back to the nondeterministic algorithm consisting of 4 steps, 
described above. We have already explained how Step 1 can be carried out. 
The remaining steps, as well as the conclusion in the output, are filtering or 
screening procedures that require biochemical techniques lying outside the 
scope of this book. (The interested reader is referred to [1] for details. For 
instance, Step 2 can be implemented by amplifying the product of Step 1 
using the polymerase chain reaction (peR) with primers h(80) and 86. This 
means that only molecules encoding paths that begin with the vertex 0 and 
end with 6 are amplified.) 

From our point of view, the following considerations are more important 
than the filtering procedures based on biochemical techniques. Adleman's 
experiment took approximately 7 days of lab work. The screening proce
dure required in Step 4 was the most time-consuming. However, one should 
not draw negative conclusions too quickly from the seemingly slow handling 
of this small example. The molecular algorithm used in the experiment was 
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rather primitive and inefficient. As in connection with traditional computers, 
improved algorithms will extend the applicability of the method. In partic
ular, from a graph-theoretical point of view, the use of equal quantities of 
each oligonucleotide is by far not optimal. For instance, it leads to the for
mation of large amounts of molecules encoding paths that either do not start 
at vertex 0 or do not end at vertex 6. One should first calculate a flow in the 
graph and use the results to determine the quantities of each oligonucleotide 
required. 

In general, the optimal quantity of each nucleotide needed is quite hard to 
determine or even approximate. Rather tricky graph-theoretic issues are in
volved. Intuitively, the quantity should be sufficient to insure that a molecule 
encoding a Hamiltonian path, provided one exists, will be formed with a high 
probability. This implies that the quantity should grow exponentially with 
the number of vertices. 

Also, the length of the oligonucleotides used in the encoding is a matter 
of choice and optimization. Adleman chose randomly some 20-mer oligonu
cleotides, of which there exist altogether 420. The random choice made it 
unlikely that oligonucleotides associated with different vertices would share 
long common subsequences that might cause "unintended" binding in the 
course of the ligation. The choice of 20-mers assured that in the formation of 
double strands 10 nucleotide pairs between oligos encoding vertices and edges 
were involved and, consequently, the binding was stable at room temperature. 
Longer oligonucleotides might have to be used for larger graphs. 

As already pointed out, probably many DNA molecules encoding the cor
rect Hamiltonian path were formed in Adleman's experiment. The screening 
procedure in Step 4 of the algorithm can be modified in such a way [1] that 
actually an explicit description of the Hamiltonian path (or of one of the 
Hamiltonian paths in case there are several of them) is produced. The exper
iment has enormous potential for further development and modifications. For 
instance, consider the well-known "traveling salesman" problem. It amounts 
to finding the shortest Hamiltonian path in a directed graph, where the edges 
are provided with lengths. This could perhaps be accomplished by encoding 
path length information using oligonucleotides of different lengths. The short
est product (representing the shortest Hamiltonian cycle) has to be screened 
out. 

We conclude this section with an abstract formulation of the key issues in 
Adleman's experiment. The abstract formulation will be also needed in the 
next section. It allows the use of a "programming language." 

By definition, a (test) tube is a multiset of words (finite strings) over the 
alphabet {A, C, G, T}. (Intuitively, a tube is a collection of DNA single 
strands. Strands occur in the tube with a IDultiplicity, that is, several copies 
of the same strand may be contained in the tube). The following basic 
operations are initially defined for tubes, that is, multisets of DNA single 
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strands [2]. However, appropriate modifications of them will be applied for 
DNA double strands as well. 

Merge. Given tubes Nl and N 2, form their union Nl U N2 (understood 
as a mUltiset). 

Amplify. Given a tube N, produce two copies of it. (Observe that this 
operation makes sense for multisets only.) 

Detect. Given a tube N, return true if N contains at least one DNA 
strand, otherwise return false. 

Separate (or Extract). Given a tube N and a word w over the alphabet 
{A, C, G, T}, produce two tubes +(N, w) and -(N, w), where +(N, w) 
consists of all strands in N which contain w as a (consecutive) substring 
and, similarly, - (N, w) consists of all strands in N which do not contain 
was a substring. 

The four operations of merge, amplify, detect, and separate allow us to 
program simple questions concerning the occurrence and non-occurrence of 
subwords. For instance, the following program 

(1) input(N) 

(2) N +- +(N, A) 
(3) N +- +(N, G) 
(4) detect(N) 

finds out whether or not a given tube contains strands, where both of the 
purines A and G occur. The following program extracts from a given test 
tube all strands containing at least one of the purines A and G, preserving 
at the same time the multiplicity of such strands: 

(1) input(N) 

(2) amplify(N) to produce Nl and N2 

(3) NA +- +(N1,A) 

(4) NG +- +(N2, G) 

(5) Nb +- -(NG, A) 

(6) merge (NA, Nb) 

Iterations of the operation amplify produce an exponential (with respect 
to the number of iterations) replication of the number of strands in the given 
tube. 

Besides the four operations listed above and in [2], Adleman's experi
ment makes use of Watson-Crick complementarity and modifications of the 
operation separate that can be formulated as follows. 
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Length-separate. Given a tube N and and integer n, produce the tube 
(N, :; n) consisting of all strands in N with length less than or equal 
to n. 

Position-separate. Given a tube N and a word w, produce the tube 
B(N, w) (resp. E(N, w)) consisting of all strands in N which begin 
(resp. end) with the word w. 

We will not introduce at this stage any formalism for Watson-Crick com
plementarity, since many such formalisms will be considered later on in this 
book. Coming back to Adleman's experiment, we now describe the filtering 
procedure using the operations introduced above. Thus, we start with the 
input tube N, consisting of the result of the basic step, the ligation reaction. 
Since double strands can again be dissolved into single strands by heating 
(melting) the solution, we may assume that N consists of single strands, that 
is, strings of oligonucleotides Si, 0 :; i :; 6. (We ignore here the fragility of 
single strands, an issue of definite concern when dealing with larger graphs.) 
The filtering or screening part of Adleman's experiment can now be described 
in terms of the following program. Recall that each of the oligonucleotides 
Si,O :; i :; 6, is of length 20. 

(1) input(N) 

(2) N <- B(N, so) 

(3) N <- E(N, S6) 

(4) N <- (N, :; 140) 

(5) for i = 1 to 5 do begin N <- +(N, Si) end 

(6) detect(N). 

We will go on in this chapter to discuss the feasibility of the operations. 

2.2 Can We Solve the Satisfiability Problem 
and Break the DES Code? 

We now take a major step forward by presenting a solution, due originally to 
Lipton [115], of a very general problem by means of DNA computing. The 
problem we refer to is the satisfiability problem for propositional formulas. We 
give here only a brief description of the problem. For its great importance 
and versatility, we refer to [191] and [198]. 

We consider (well-formed) formulas a built from propositional variables 
Xl, X2, •.. , by the use of connectives rv, V, /\ (negation, disjunction, conjuc
tion). Thus, 

a = (Xl V rv X2 V X3) /\ (X2 V X3) /\ (rv Xl V X3)/\ rv X3 

is such a formula. 
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A truth-value assignment for such a formula a is a mapping f of the 
set of variables occurring in a into the set {O, 1}. Here 0 and 1 denote the 
truth-values "false" and "true", respectively. Thus, a truth-value assignment 
means the association of a truth-value to each of the variables. For any given 
truth-value assignment f, the truth-value assumed by the formula a can be 
computed using the truth-tables of the connectives: 

v 
o 
1 

o 
o 
1 

1 
1 
1 

o 
1 

o 
o 
o 

1 
o 
1 

x 
rvX I~ 1 

o 

The formula a is satisfiable if it assumes the truth-value 1 for at least one 
truth-value assignment. Clearly, a is not satisfiable exactly in case its nega
tion rv a is a tautology, that is, assumes the truth-value 1 for all assignments. 

The following simple argument shows that the formula a mentioned above 
is not satisfiable. Assume the contrary: an assignment f gives a the value 
1. Then f gives the value 1 to each of the four components (referred to as 
clauses in the sequel) of the conjunction. In particular, f( rv X3) = 1, implying 
f(X3) = O. From the third clause we see that f(xd = 0 and, from the second, 
that f(X2) = 1. But for this assignment the first clause assumes the value 
0, a contradiction. In special cases such as the one mentioned above, various 
ad hoc methods can be used to settle the satisfiability problem of a given 
propositional formula. However, in the general case no method essentially 
better than the exhaustive search is known: one has to search through all 
possible 2k truth-value assignments, given a formula with k variables. This 
makes the task computationally intractable. It is already computationally 
infeasible, say, in the case of 200 variables. The satisfiability problem is 
known to be NP-complete. Indeed, it is intuitively very basic among NP
complete problems in the sense that it constitutes perhaps the most suitable 
reference point for NP-complete problems. The reduction of a given problem 
to the satisfiability problem is in many cases very natural. 

Lipton's DNA-based solution of the satisfiability problem [115] uses some 
of the basic operations described in Sect. 2.1. Indeed, it consists of the 
exhaustive search made computationally feasible by the massive parallelism 
of DNA strands. We begin with a graphical description of truth-value assign
ments. Assume that we are dealing with a propositional formula containing 
k variables. Consider the directed graph in Fig. 2.3. 

There are 2k paths from Vin to Vout (none of the paths is Hamiltonian). In
deed, there are two choices in each ofthe vertices Vin, VI, . .. , Vk-l, the choices 
being independent of each other. Moreover, the paths and the truth-value 
assignments for the variables xI, X2, • .. , Xk have a natural one-to-one corre
spondence. For instance, the path Vina~vlagv2 ... Vk-laZVout corresponds to 
the truth-value assignment, where each of the variables gets the value o. In 
general, the path vinailvla~2v2 ... vk-la~kvout corresponds to the truth-value 
assignment, where the variable Xj gets the value i j , for j = 1, ... , k. 
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We now proceed with the graph exactly as in Adleman's experiment. Each 
vertex is encoded by a random oligonucleotide, say, of length 20. Consider 
the encodings Si and Sj of two vertices such that there is an edge ei,j from 
the former to the latter. Write Si in the form Si = S~S~/, where s~ and S~' are 
of equal length, and similarly, S j = sj s'j. Then the edge ei,j is encoded by 
the oligonucleotide h( S~' sj), where h is the Watson-Crick morphism. 

Figure 2.3: A graph associated with a truth-value assignment 

The continuation of the procedure also happens in the same way as in 
Adleman's experiment. For each vertex and edge in the graph, large quanti
ties of oligonucleotides encoding them are mixed together in a single ligation 
reaction. Again the oligonucleotides Si serve as splints to bring oligonu
cleotides associated with compatible edges together for ligation. The end of 
the (oligonucleotide encoding the) vertex and the beginning of an edge can 
anneal because they are Watson-Crick complements. Similarly, the end of 
the edge and the beginning of the next vertex can also anneal. Since the 
encoding oligonucleotides are chosen randomly and are of sufficient length 
(with the number k of variables increasing, the length 20 might not be suf
ficient), no inadvertent paths are likely to form. This means that, after the 
annealing has been completed, the "soup" will contain a DNA double strand 
encoding an arbitrary path through the graph. As previously explained, we 
will also have encodings of arbitrary truth-value assignments for k variables. 
As the graph is very symmetric, there is no reason to believe that some paths 
will be more likely to appear than others. 

We now come to an interesting and significant difference between Adle
man's experiment and Lipton's solution of the satisfiability problem, con
cerning the basic ligation reaction. In the latter case, the graph is always 
the same and independent of the given propositional formula, provided the 
number of variables is fixed. Thus, one may always start with the same test 
tube that encodes all possible truth-value assignments. Taking several copies 
of this test tube, one is able to handle several propositional formulas simul
taneously. The setup is different in Adleman's experiment. Since the graph 
is the actual input of the problem, the initial test tube cannot stay the same 
but varies with the input. 

Thus, in the sequel when describing the solution of the satisfiability prob
lem, we will speak of the initial test tube. The test tube is constructed in the 
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way described above, and contains encodings of all possible truth-value as
signments. Operations described in the preceding section will be performed. 
Following Lipton (see [115], page 544), we assume that the strands of DNA 
are actually single strands. (It is a matter of molecular biology whether 
it is better to actually separate the double strands obtained in the process 
above, or just understand the operations as being performed on one half of 
the double strands.) 

Operations separate, merge, and detect will be used. We will first consider 
the example given in [115]. Consider the propositional formula 

Thus, we have two variables, in which case the corresponding graph is as 
shown in Fig. 2.4. 

Figure 2.4: The graph associated to formula f3 

Each of the 4 paths through this graph corresponds to one of the 4 truth
value assignments for the variables Xl and X2. The initial test tube, say No, 
constructed as indicated above, contains strands for each of the paths and, 
consequently, for each of the truth-value assignments. Given the length of the 
oligonucleotides encoding the vertices a;, these oligonucleotides will be easily 
distinguishable from each other, even in the case of a much larger number 
of variables. This means that, for instance, the oligonucleotide encoding at 
does not appear in the paths elsewhere than in the intended position. If 
we apply the operation separate, forming the test tube +(No, aD, we get 
those truth-value assignments where Xl assumes the value 1 (true). (Recall 
that +(No, aD consists of those strands in No, where the oligonucleotide at 
appears as a consecutive substring.) This simple observation is the basis of 
the whole procedure. 

We denote the truth-value assignments by two-bit sequences in the natural 
way. Thus, 01 stands for the assignment Xl = 0, X2 = 1. Similar notation is 
also used if there are more than two variables. This simple notation of bit 
sequences is extended to the DNA strands resulting from our basic graphs. 
Thus, the strand vina~vla~Vout is denoted simply by 01. Indeed, among the 
strands resulting from paths through our basic graph, this notation gives an 
exhaustive characterization. Finally, given a test tube N consisting of strands 
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of the kind mentioned and denoted by bit sequences, we denote by S(N,i,j) 
the test tube of such strands in N, where the ith bit equals j,j = 0,1. 
According to the simple observation made above, S(N, i, j) results from N 
by the operation separate: 

S(N, i,j) = +(N, a{). 

We consider also the tube of such strands in N, where the ith bit equals the 
complement of j: 

S-(N,i,j) = -(N,a{). 

The following program solves the satisfiability problem for the proposi
tional formula (3: 

(1) input (No) 

(2) Nl = S(No, 1, 1) 
(3) N{ = S-(No, 1, 1) 

(4) N 2 =S(N{,2,1) 

(5) merge(Nl , N 2 ) = N3 

(6) N4 = S(N3, 1,0) 

(7) N~=S-(N3,1,0) 

(8) N5 = S(N~, 2,0) 

(9) merge(N4, N 5 ) = N6 

(10) detect(N6 ) 

Observe that the steps (2), (4), (6), (8) apply the operation separate in the 
sense of +(N,w), whereas the steps (3), (7) apply it in the sense of -(N,w). 
The following table summarizes the contents of the tubes at the different 
steps of the program. 

Step 1 9 
TUbe 00,01,10,11 01,10 

Thus, the return is true at the step (10). 
The program is based on exhaustive search. The initial tube at step (1) 

contains all possible truth-value assignments. The tube at step (5) contains 
the assignments satisfying the first clause of the propositional formula (3. 
(Either Xl or X2 must assume the value 1. At step (2) we have those assign
ments for which Xl is 1. Of the remaining ones we still take, at step (4), those 
for which X2 is 1.) The assignments in this tube, N 3 , are filtered further to 
yield at step (9) those assignments that also satisfy the second clause of the 
propositional formula (3. 
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The method of this simple example can be directly applied in the general 
case. We consider propositional formulas in conjunctive normal form. This 
means that the formulas look like a and f3 above; they are conjunctions 

( ... ) 1\ ( ... ) 1\ ... 1\ ( ... ), 

where each of the clauses in the parentheses is a disjunction of terms, each of 
which is a variable or its negation. Fast algorithms are available to transform 
an arbitrary propositional formula into conjunctive normal form. 

Thus, consider a propositional formula 

where each of the m clauses Ci is a disjunction consisting of variables and 
their negations. Assume that altogether k variables Xl, X2, ... ,Xk appear in 
'Y. This leads to the directed graph already depicted above in Fig. 2.3, as well 
as to the initial test tube No containing all of the k-bit sequences, provided 
the strands in No are denoted in the way described above. Starting with No, 
we go through the clauses of 'Y, extracting all the time strands from No, until 
after getting through Cm , only those strands remain that encode assignments 
satisfying 'Y. 

Explicitly, we show inductively how this is done. Assume that each of the 
assignments encoded by the strands in N i , 0 :::; i < m, satisfies the subformula 

and that 
CHI = YI V ... VYI, 

where each Yj is one of the variables X or its negation. Initially, we have the 
test tube No of all possible truth-value assignments and the empty formula'Yo. 

Using the operations separate and merge, we now transform Ni into NiH 
by the same procedure as in the example. Consider YI. We form S(Ni' n, 1) 
or S(Ni' n, 0), depending on whether YI = Xn or YI = rv x n ,l :::; n :::; k. 
Thus, we extract from Ni the subtube S(Ni,n,j) satisfying also YI. The 
remainder from N i , that is, S- (Ni' n, j) is now investigated with respect to 
the satisfaction of Y2 and the positive part (that is, the strands satisfying Y2) 
is merged with S(Ni' n, j). The negative part is still useful and is investigated 
with respect to the satisfaction of Y3, and so on, until we have exhausted the 
clause by taking Yl into account. 

When we have constructed the tube N m in this fashion, a single applica
tion of the operation detect suffices to settle the problem. As in connection 
with Adleman's experiment, this final step can be modified to actually read 
the solution, provided one exists. 

The complexity of the process described is feasible: m steps are needed, 
each consisting of some applications of separate and merge. The number 
of such applications does not exceed the number of variables in a clause. 
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Quite a different matter is that the process assumes that the operations are 
perfect, that is, they are performed without error. This is of course far from 
being obvious, and the microbiological grounds need to be studied. One can 
also take a different point of view, where perfection is not called for. If the 
initial test tube contains many copies of each truth-value assignment, then 
something may be lost in the extractions, and the correct answer is still 
reached with a high probability. 

We still consider another example, a propositional formula 8. The for
mula (3 considered above is unsatisfactory because of two reasons. First, all 
variables appear in all clauses. Secondly, (3 has too few clauses even with 
respect to the very small number of variables. (A formula having only few 
clauses is satisfiable independently of the clauses themselves; numerical lower 
bounds can be easily computed.) Although the formula 8 is still small and 
its satisfiability can be detected without any difficulty, it does not have these 
two defects. 

The propositional formula 8, defined as follows, has 5 variables and 11 
conjunctive clauses: 

8 = ('" Xl V '" X2 V '" X3) A (Xl V X2 V '" X4) A ('" Xl V X2 V X4) 

A(Xl V X2V '" X5) A (Xl V", X2V '" X5) A (Xl V X3 V X4) 

A(", Xl V X3V '" X5) A (Xl V", X4 V X5) A (X2V '" x3 V X4) 

A(X3 V X4 V X5) A (X3V '" X4 V X5). 

The initial test tube No contains all the 32 possible truth-value assign
ments: 00000,00001,00010, ... , 11111. The following table gives the contents 
of the tubes No, Nl' ... ' Nu , defined in the process described above. Each 
N i , i = 1,2, ... ,11, is characterized by listing the strands extracted from 
N i - l · 

Test tube 
No 
Nl 
N2 
N3 
N4 
N5 
N6 
N7 
Ns 
Ng 

NlO 
Nu 

Strands extracted 
none 
11100, 11101, 11110, 11111 
00010, 00011, 00110, 00111 
10000, 10001, 10100, 10101 
00001, 00101 
01001, 01011, 01101, 01111 
00000, 01000 
10011,11001,11011 
01010,01110 
00100 
11000 
10010, 11010 

This means that the strands encoding the truth-value assignments 01100, 
10110, and 10111 still remain in the final test tube Nu . Thus, the final detect 
operation returns true. 
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The method described above can be easily modified to work for any propo
sitional formula, not necessarily in the conjunctive normal form, [115J. Thus, 
the formula results by applying to the variables the unary operation of nega
tion and the binary operations of conjunction and disjunction. (Other propo
sitional connectives could also be taken into account here but the matter is 
rather irrelevant for our purposes.) Only the number m of binary operations 
is significant for the complexity of the process. (The number of negations and 
the number of variables are irrelevant.) After m+ 1 separations and m merges 
two test tubes have been produced, the first of which contains molecules rep
resenting (that is, encoding) satisfying truth-value assignments, whereas the 
second contains molecules representing unsatisfying assignments. Thus, the 
satisfiability problem is solved by a single application of the operation detect 
to the first tube. 

When facing the physical obstructions in creating a practical molecular 
computer, attention has to be focused on the possible realizations of the 
various operations. Programs are easy to write in terms of the operations 
we have considered but the feasibility of the implementation is a matter of 
microbiological technique. Any detailed discussion about such techniques lies 
outside the scope of this book. However, some overall remarks can be made. 

A natural way to realize the operation merge is to pour the contents of one 
tube into another. At least intuitively, this is faster and less error prone than 
the operation separate which certainly requires much more sophisticated tech
niques. The same holds true with respect to the operation detect. However, 
it appears that in standard programs detect is rarely done. Consequently, 
the realization of detect does not affect much the complexity of the process, 
yet its error rate is important. Realizations of the operation separate can 
have errors of both inclusion and exclusion. By the former we mean that an 
item that should go to +(N,w) actually ends up somewhere else, maybe in 
-(N,w). Similarly, an error of exclusion means that an item which should 
go to - (N, w) does not go there. It might be useful to consider different 
probabilities for these two types of errors. We will still discuss in Sect. 2.4 
some matters concerning error rates and the feasibility of operations. 

In the remainder of this section we consider a model of molecular compu
tation that was introduced and called the sticker model in [189J. A method 
based on this model, [3J, for breaking the most widely used cryptosystem 
DES (Data Encryption Standard) will also be discussed. The sticker model 
is based on the paradigm of Watson-Crick complementarity. It makes use of 
DNA strands as the physical substrate in which information is represented. 
Basically, the sticker model has a random access memory, where no strand 
extension is required. The materials are reusable, at least in theory. 

We first describe a way, based on complementarity, of representing infor
mation in DNA. It will use two basic kinds of single-stranded DNA molecules, 
referred to as memory strands and sticker strands or shortly stickers. A 
memory strand is n bases in length and contains k non-overlapping sub-
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strands, each of which is m bases long. Thus, we must have n ~ mk. Al
though this is not necessarily the case, we assume in the following illustrations 
that each substrand follows another consecutively, without any bases lying 
between them. During the course of a computation, each substrand is iden
tified with exactly one boolean variable (or equivalently one bit position). 
The substrands should be significantly different from one another: any two 
of them should differ with respect to several base positions. (This is intended 
to ensure a sufficient identification for each bit position.) Each sticker is 
m bases long and complementary to exactly one of the k substrands in the 
memory strand. 

I GAG A GI T T T T CiA A A A A Ic c c c c I· .. 

memory strand 

ITTTTTI 

IG G G G GI 

ICTCTCI 

IAAAAGI 

stickers 

Figure 2.5: Example of a sticker memory 

A specific substrand of a memory strand is either on or off. If a sticker 
is annealed to its matching substrand on a memory strand, then the par
ticular substrand is said to be on. Otherwise, if no sticker is annealed to a 
substrand, then the substrand is said to be off. A memory complex is the 
general term used for memory strands, where the substrands are on or off. 
Memory complexes represent binary numbers, where a substring being on 
(resp. off) represents the bit 1 (resp~ 0). Thus, memory complexes are DNA 
strands that are partially double. 

In the illustration in Fig. 2.5, we consider a memory strand of length 
n = 20, divided into k = 4 substrands, each of length m = 5. 

Thus, in this case the necessary complexes are interpreted as containing 
four bits of information. In particular, consider the memory complexes in 
Fig. 2.6. 

In the first memory complex, all substrands are off, whereas in the last 
complex the last two substrands are on. The binary numbers represented by 
these four memory complexes are 0000,0100, 1001, and 0011, respectively. 

In the memory strand used in Fig. 2.5, the substrands corresponding to 
odd-numbered (resp. even-numbered) bit positions consist entirely of purines 
(resp. pyrimidines). An advantage of such a choice is the natural creation of 
borders between the substrands intended as encoding substrands. In other 
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words, it is not possible that a sticker is bonded with a substrand overlapping 
two of the intended substrands. (Such an annealing could cause confusion in 
the outcome of the operations described below.) Indeed, for any extensive 
applications of sticker systems, a careful study of ideal encodings is impor
tant. Such a study would have to combine the microbiological feasibility 
with theoretical advantages, trying to achieve an optimal trade-off between 
the two. 

IG A GAG IT T T TelA A A A A Ie e e eel .. · 

IG A GAG IT T T TelA A A A A Ie e e eel .. · 
AAAAG 

IG A GAG ITT T TelA A A A A lee e eel' .• 
eTeTe GGGGG 

IG A GAG IT T T TelA A A A A Ie e e eel'" 
TTTTT GGGGG 

Figure 2.6: Examples of memory complexes 

It is also instructive to compare the basic representation mechanisms of 
Adleman's experiment and sticker systems, and in particular, the idea of 
constructing double strands. The paradigm of complementarity is present in 
both cases. In sticker systems, one starts with a long single memory strand 
to which short stickers are annealed, to yield a memory complex, a partially 
double strand. In Adleman's experiment (as well as in Lipton's solution of 
the satisfiability problem) there is no long strand to start with, but short 
single strands are annealed in a step by step fashion, leaving a sticky end 
after each step. The double strand created in this fashion is supposed to 
have no single-stranded gaps. 

The information density in both cases (sticker systems and Adleman's 

experiment) can be considered to be the same, ~ bits per base. While the 
m 

theoretical maximum in DNA representations is two bits per base, such a high 
value would render any separation-based molecular computer dangerously 
error prone. 

We are now ready to introduce the operations used in sticker systems. 
While they resemble the operations considered above, they are simple yet 
flexible for implementing general algorithms. As before, a test tube or tube is 
a multiset, its elements now being memory complexes. (The actual represen-
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tation of memory complexes as two-dimensional data structures is irrelevant 
for our purposes.) The operations we consider are merge, separate, set, and 
clear. 

The operation merge is exactly as before: two test tubes are combined 
into one. Thus the memory complexes from the two input tubes, with their 
annealed stickers undisturbed, are combined to form the multiset union of 
the two inputs. 

The operation separate produces, given a test tube N and an integer 
i,1 ::; i ::; k, two new test tubes +(N, i) and -(N, i). The test tube +(N, i) 
(resp. -(N, i)) consists of all of the memory complexes in the original N, 
where the ith substrand is on (resp. off). 

For a given test tube N and an integer i, 1 ::; i ::; k, the operation set 
produces a new test tube set(N, i), where the ith substrand of each memory 
complex in N is turned on. (That is, an appropriate sticker is annealed to 
it if the ith substrand is off in the memory complex but the ith substrand is 
left unchanged if it is already annealed.) 

Finally, for a given test tube N and integer i, 1 ::; i ::; k, the operation 
clear produces a new test tube clear(N, i), where in each memory complex 
of N the ith substrand is turned off, that is, an eventual sticker is removed 
from it. 

Computations in the sticker model consist of a sequence of the operations 
merge, separate, set, and clear. Inputs and outputs will be test tubes. To 
read the output, one memory complex must be isolated from the output test 
tube and its annealed stickers determined, or else it must be reported that 
the output test tube contains no memory complexes. 

The input or initial test tube will be a library of memory complexes. In 
particular, a (k, I) library, 1 ::; I ::; k, consists of memory complexes with k 
substrands, the last k -I of which are off, whereas the first I substrands are on 
or off in all possible ways. Thus, viewed as a multiset, a (k, I) library contains 
21 different kinds of memory complexes. The represented binary sequences 
are of the form wOk-I, where w is an arbitrary binary sequence of length 
l. In the initial test tube, the first I substrands of the memory complexes 
represent the actual input, whereas the remaining k -I substrands are used 
for intermediate storage and output. 

The computational paradigm associated with the sticker model is to settle 
hard problems by exhaustive combinatorial searches over inputs of length I. 
All possible 21 inputs are processed in parallel. One can also say that this 
paradigm is the essence of DNA computing in general. 

Following [189], we now illustrate the sticker model by presenting a so
lution to the Minimal Bet Cover problem. The problem can be formu
lated as follows. Given a finite set B = {I, 2, ... ,p} and a finite collection 
{CI, ... ,Cq } of subsets of B, find the smallest subset I of {1,2, ... ,q} such 
that 
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Of course, an exhaustive search through all the 2q subsets of I will solve the 
problem. 

We will now describe a solution using the sticker model. Memory strands 
will have k = p + q substrands. The initial test tube No will be a (p + q, q) 
library. (It should be emphasized that any widespread applications of the 
sticker model would assume that libraries of specific sizes are readily available. 
With an increasing k, the construction of memory strands with k substrands 
becomes more challenging.) 

We denote by card(X) the cardinality of a set X (that is, the number 
of elements in X). The elements of the set Gi ,1 :::; i :::; q, are denoted by 
c{ , 1 :::; j :::; card( Gi ). Thus, each c{ is an integer between 1 and p. 

The memory complexes in the initial test tube No represent all possible 
subsets I of the set {I, 2, ... ,q}. In particular, the first q substrands in each 
memory complex tell, by being on or off, which of the numbers 1,2, ... , q 
belong to the particular subset I represented by the memory complex. The 
last p substrands are initially off in each memory complex M. Those of the 
substrands q + j, 1 :::; j :::; p, are eventually turned on, for which the number 
j belongs to some set Gi , where i is in the index set I represented by M. 
Thus, given M, we proceed as follows: we look through the first q substrands 
of M; whenever we encounter a substrand that is turned on (let it be the ith 
substrand, the operation separate is used to differentiate between on and off), 
then we use the operation set to turn on those among the last p substrands 
that come from the elements of Gi . After having gone through all of the 
first q substrands of M in this fashion, we look to see whether or not each 
of the last p substrands has been turned on. This can again be done by the 
operation separate. The last p substrands being on means that the index 
set I represented by M indeed leads to a cover of the set S = {I, 2, ... ,pl. 
Thus, we may discard the memory complexes not satisfying this condition, 
and must find the smallest index set among those satisfying it. 

It is fairly obvious that the described procedure works. In standard se
quential computation, however, the amount of work is enormous: for q = 100, 
we have to apply the procedure for each of the 2100 memory complexes. 
Things are different in DNA computing and the sticker model. All memory 
complexes in No, where the first substrand is on (that is, G1 is one of the sets 
in the proposed cover of S), are now processed simultaneously. The result 
is brought over to the next step, where the memory complexes having the 
second substrand on are processed. In this fashion, the overall procedure will 
have only q steps, instead of 2q • 

Recall the notations +(N, i), -(N, i), and set(N, i) used in connection 
with the operations separate and set. The following simple program, where 
the initial test tube No is a (p + q, q) library, formalizes the ideas described 
above: 

(1 ) for i = 1 to q 

separate + (No, i) and - (No, i) 
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for j = 1 to card( C i ) 

set( +(No, i), q + c1) 
No ~ merge ( +(No, i), -(No, i» 

(2) for i = q + 1 to q + p 

No ~ +(No, i) 

The test tube No resulting as the output of this program contains only 
memory complexes, where each of the p last substrands is on. To get a 
solution to the problem of the Minimal Set Cover, we still have to detect 
from No a memory complex which has the smallest number of the first q 
substrands turned on. At the end of the outer loop in (3) in the following 
program, the test tube N i , i :::: 1, contains all the memory complexes, where 
exactly i among the first q substrands are turned on. Thus, the output will 
give a solution to the Minimal Set Cover problem. 

(3) for i = 0 to q - 1 

for j = i down to 0 

(4) read N l ; 

separate + (Nj, i + 1) and - (Nj, i + 1) 

NjH ~ merge( +(Nj, i + 1), Nj+d 

N j ~ - (Nj , i + 1) 

else if it was empty read N 2 ; 

else if it was empty read N3; 

The reader might want to consider the double loop in step (3) in terms of 
a simple example. For instance, assume that q = 4 and that C3 covers the 
set S together with any of the other sets Ci, whereas Cl , C2 , C4 do not, even 
together, cover S. This means that the initial test tube No contains the 
memory complexes representing the covers (1, 3), (2, 3), (3, 4), as well as 
all covers containing any of them. The table on the next page describes the 
situation after each step in the outer loop. 

Observe that the above procedure does not use the operation clear at 
all. Another more far-reaching observation is that the entire algorithm can 
eventually be executed by a robotic system. A robot would perform the 
experiments needed in the operations automatically. In this case it should be 
assumed that the operations are performed "blindly", that is, without getting 
any feedback from the DNA during the experiments. Such a feedback does 
not seem possible using present techniques. The operations discussed above 
(merge, separate, set, clear) can feasibly be executed by a robotic system 
[189]. 

The most dramatic potential application of the sticker model was pre
sented in [3], for attacking the Data Encryption Standard, DES. (See [201] 
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for a detailed description of it.) The analysis presented in [3] suggests that 
such an attack might be mounted on a table-top machine, based on DNA 
computing but using also robotic parts. Approximately one gram of DNA 
would be needed. Quite importantly, the attack is likely to succeed even in 
the presence of a large number of errors. This is an aspect that might render 
DNA computing especially suitable for cryptanalytic tasks. One can never 
expect a 100% success rate. But even if some DNA operations are error 
prone, the cryptanalytic attack might succeed with a reasonable probability. 

No Nl N2 N3 N4 
(1,3),(2,3), empty empty empty empty 

initial (3,4),(1,2,3), 
(1,3,4),(2,3,4) , 

(1,2,3,4) 
i = 0, (2,3),(3,4), (1,3),(1,2,3), empty empty empty 

separate (2,3,4) (1,3,4), 
on 1 (1,2,3,4) 

i = 1, (3,4) (1,3),(1,3,4), (1,2,3), empty empty 
separate (2,3),(2,3,4) (1,2,3,4) 

on 2 
i = 2, empty (3,4) (1,3),(2,3), (1,2,3), empty 

separate (1,3,4), (1,2,3,4) 
on 3 (2,3,4) 

i = 3, empty empty (1,3),(2,3), (1,2,3), (1,2,3,4) 
separate (3,4) (1,3,4), 

on 4 (2,3,4) 

The cryptosystem DES translates plaintext blocks 64 bits in length into 
64-bit cryptotext blocks. The encryption happens under the control of a 56-
bit key. The same key is used for both encryption and decryption. (DES is 
a classical two-way cryptosystem, in contrast to one-way or public-key cryp
tosystems.) We consider the "known plaintext" attack of cryptanalysis, [201]. 
It means that the cryptanalyst knows some of the pairs consisting of plain
text and the corresponding cryptotext and, on the basis of this information, 
is supposed to find the key. Of course, this must happen within a reasonable 
amount of time. It has been suggested that special-purpose electronic hard
ware or massively parallel supercomputers might do the job in case of DES. 
However, there has been no breakthrough. While DNA computing based on 
the sticker model might be the right approach, the real feasibility of such an 
attack should ultimately be decided in the laboratory. 

An immediate approach to the problem is an exhaustive search through 
all the 256 different keys. It is an indication of the strength of DES that no 
significantly better approach is known. This brute force approach is the one 
taken in DNA computing. 

We now describe the cryptanalytic attack presented in [3]. Thus, the 
sticker model is used. The initial test tube will be a (579, 56) library. The 
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substrands in the memory complexes will be oligonucleotides of length 20. 
Thus, the memory strands will be 11580 nucleotides long. This is still a safe 
size but oligonucleotides longer that 15000 bases might be fragmented by 
shear forces of pouring and mixing the test tubes. 

In the memory complexes, a region of 56 substrands will store the 56-bit 
key. Another region of 64 substrands will, after the computation, encode the 
corresponding cryptotext. The remaining 459 substrands are needed to store 
intermediate results during the computation. The known pair (plaintext, 
cryptotext) is not represented in the memory complexes. It always remains 
the same; each of the keys works on this particular plaintext, and the resulting 
cryptotext is compared with the known fixed cryptotext. Thus, the whole 
procedure consists of the following three steps. 

1. Construct the initial (579, 56) library, representing all possible 256 keys. 

2. On each memory complex, compute the cryptotext obtained by en
crypting the known plaintext by the key represented by the memory 
complex. 

3. Select the memory complex whose cryptotext matches the known cryp
totext, and read its key. 

The main part of the work is step (2). The "sticker machine" imple
menting the algorithm can be envisioned as a parallel robotic workstation. It 
consists of a rack of tubes (data tubes, sticker tubes, operator tubes), some 
robotics (arms, pumps, heaters or coolers), as well as a microprocessor that 
controls the robotics. The robotics are arranged to perform any of the four 
operations discussed above in connection with the sticker model: merge, sep
arate, set, and clear. Moreover, the robotics are capable of performing the 
operations in the following extended parallel sense. 

Robotics can merge the DNA from 64 data tubes into one data tube. They 
can separate the DNA from each of 32 data tubes into two more data tubes 
by using 32 specific "separation operator" tubes. The robotics can set the 
ith substrand on, in all memory complexes of 64 data tubes. For this it uses 
a sticker tube containing stickers for the ith substrand, as well as a sticker 
operator tube. Similarly, the robotics can clear specific substrands. The 
reader is referred to [3] concerning further details about the implementation 
of the operations, as well as the algorithm for step (2). We conclude this 
section by explaining the construction in step (1), the creation of the initial 
library. How can one obtain all the possible 256 keys? The technique is also 
of general interest in DNA computing. 

We begin with approximately 256 identical memory strands (single 
strands) of the correct length, and divide them equally into two tubes Nl 
and N2 • Large amounts of each of the 56 stickers are added to Nl, so that 
in the ligation reaction all of the 56 appropriate substrands in Nl are turned 
on. The unused stickers are washed away from N1 , after which Nl and N2 
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are merged into one tube N. Finally, N is heated and cooled, to randomly 
reanneal the stickers. Roughly, 63% of the keys will be represented after this 
process. If we begin with three times the necessary amount of DNA, the 
percentage is increased to 95%. 

2.3 Paradigm of Computing - Some Rethink-. lng 

Will an eventual large-scale realization of DNA computers change or signif
icantly alter the general paradigm of computing? This will be the topic of 
our subsequent discussion. We apply here the word "paradigm," widely in 
use nowadays, to mean the "set of beliefs and opinions common to a scien
tific community." When speaking about the "paradigm of computing," the 
scientific community we mean apparently consists of computer scientists, un
derstood in a very wide sense. 

There can be no doubt about the fact that the 'lUring machine has already 
been an incarnation of the paradigm of computing for roughly half a century. 
So let us go back to 'lUring's original paper, [212], and see how he argued 
that his definition of "computable" numbers actually included all numbers 
which would naturally be regarded as computable. In present terminology, 
such an argument would defend the Church-'lUring Thesis, that is, explain 
why a Turing machine actually computes everything. 

In [212], 'lUring used arguments of three kinds: 

(i) A direct appeal to intuition. 

(ii) A proof of the equivalence of two models. 

(iii) Giving examples of large classes of computable numbers, as well as 
showing the closure of computable numbers under various operations. 

For our purposes the arguments (ii) and (iii) are irrelevant, whereas it is 
important to recall what 'lUring says about (i). His idea of a computer as a 
diligent clerk has to be contrasted with the idea of a computer as a multitude 
of DNA strands. The latter are in no way smarter than the diligent clerk 
- in fact it might be the other way round. But their massive, theoretically 
unbounded, parallelism changes the paradigm at least on some level. 

'lUring opens the argument (i) as follows. "Computing is normally done 
by writing certain symbols on paper. We may suppose that this paper is 
divided into squares like a child's arithmetic book. In elementary arithmetic 
the two-dimensional character of the paper is sometimes used. But such a use 
is always avoidable, and I think it will be agreed that the two-dimensional 
character of paper is no essential of computation. I assume then that com
putation is carried out on one-dimensional paper, i.e. on a tape divided 
into squares. I shall also suppose that the number of symbols which may be 
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printed is finite. If we were to allow an infinity of symbols, then there would 
be symbols differing to an arbitrarily small extent. The effect of this restric
tion of the number of symbols is not very serious. It is always possible to 
use sequences of symbols in place of single symbols .... The behaviour of the 
computer at any moment is determined by the symbols which he is observ
ing, and the 'state of mind' at that moment. We may suppose that there is a 
bound to the number of symbols or squares which the computer can observe 
at one moment. If he wishes to observe more, he must use successive observa
tions. We will also suppose that the number of states of mind which need to 
be taken into account is finite. The reason for this are of the same character 
as those which restrict the number of symbols. If we admitted an infinity of 
states of mind, some of them will be 'arbitrarily close' and will be confused. 
Again, the restriction is not one which seriously affects computation, since 
the use of more complicated states of mind can be avoided by writing more 
symbols on the tape. Let us imagine the operations performed by the com
puter to be split up into 'simple operations' which are so elementary that it 
is not easy to imagine them further divided. Every such operation consists of 
some change of the physical system consisting of the computer and his tape. 
We know the state of the system if we know the sequence of symbols on the 
tape, which of these are observed by the computer (possibly with a special 
order), and the state of mind of the computer." 

The analysis continues along the same lines. It makes no difference if only 
observed squares are changed and in a simple operation not more than one 
symbol is altered. Because the new observed squares must be immediately 
recognizable by the computer, their distance from the squares observed at the 
preceding step should not exceed a certain fixed amount. By invoking the 
simplicity of the individual operations and the resulting necessity to replace 
more complicated operations by a sequence of simple ones, it can be concluded 
that the most general single operation is either a possible change of the 
observed symbol together with a possible change of the state of mind, or 
else a possible change of the observed square also together with a possible 
change of the state of mind. Thus, this intuitive analysis has brought forward 
the standard notion of a Turing machine which will be discussed formally in 
Chap. 3. 

The operation of Turing's computer, the diligent clerk, is fundamentally 
sequential. He works step by step, always inspecting some part of his eventu
ally huge piles of data. (We observe in passing that, in Turing's days, no fuss 
was made in mathematical writing about the "he-she" distinction. Turing 
refered to the clerk as "he".) Nothing happened in parallel. Turing could 
have of course thought of several clerks working simultaneously but then ap
parently the idea would have been to simulate their work by one clerk doing 
all the individual workloads in succession. This would have increased the 
time needed, maybe enormously, but all complexity considerations are irrel
evant for Turing's clerk. Notions such "tractable" or "feasible", let alone 
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"practical" , do not enter the discussion. What is said about the multitude of 
clerks applies also to the multitude of DNA strands. We can always simulate, 
in one way or another, the massive parallelism of DNA molecules by doing 
all the parallel work in successive sequential steps. It seems clear that DNA 
computers cannot violate the Church-'lUring Thesis. If something has been 
computed by a DNA computer, then we can call Turing's clerk and ask him 
to carry out the same computation. Computability, or the set of computable 
numbers as in Turing's terminology, is not affected by DNA computing. The 
paradigm of computing, when associated with the a posteriori notion of com
putability, seems to be highly invariant. 

Things look different if the paradigm of computing is viewed in the a pri
ori sense and, in particular, if complexity is taken into consideration. We are 
facing a problem and speculate a priori our possibilities for solving it. Then 
we might come to a different conclusion, depending on whether we have Tur
ing's clerk or a test tube of DNA strands at our disposal. In this sense DNA 
computers, if successful, will surely change the paradigm of computing. This 
is surely reflected also in theoretical studies concerning complexity classes. 
Among the early examples are the genetic Thring machines introduced in 
[181]. In this model, the class of problems which can be solved in polynomial 
time (and which because of this consists of computationally tractable prob
lems) coincides with the class PSPACE (which includes the class NP and, 
thus, very many intractable problems). Further examples will be still quoted 
below. 

In the second part of this book we will investigate various mathematical 
models, asking the question whether it is possible to construct a universal 
computing machine out of biological macromolecular components and per
form arbitrary computations by biological techniques. An overall, quite strik
ing observation is that, at least theoretically, there seem to be many diverse 
ways of constructing DNA based universal computers. We will now try to 
explain the compelling mathematical reason behind this overall observation. 

We claim that Watson-Crick complementarity guarantees universal com
putations in any model of DNA computers having sufficient capabilities for 
handling inputs and outputs. This view was first presented and discussed in 
[192]. Watson-Crick complementarity is closely related to the twin-shuffie 
language, [54], [200]. The basic variant of this language uses two letters 0 
and 1, as well as their complementary letters 0 and 1. (The definition of the 
twin-shuffie language and formal mathematical details guaranteeing the uni
versality will be presented in Sect. 3.2. In particular, see Corollary 3.4 and 
Theorem 3.18.) This is in complete analogy of DNA being made up of four 
nucleotides that can be divided into two complementary pairs: (A, T) and (C, 
G). The two letters 0 and 1 are used for the necessary encodings, whereas 
their complementary versions 0 and I provide the structure needed to de
scribe arbitrary computations in terms of words in the twin-shuffie language. 
This state of affairs is the essence of computational universality and can be 
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viewed also as a mathematical explanation to the number of nucleotides in 
DNA being four. Three nucleotides would not be enough for the twin-shuffle 
language, whereas five would perhaps make too many matters superfluous, 
especially in view of the fact that the twin-shuffle language involves a con
siderable amount of redundancy in itself. 

As already mentioned, we will return to the formal details in Sect. 3.2 
below. However, because of the central role of this matter in the theory 
of DNA computing, we want to give at this stage some idea about the in
terrelation between the Watson-Crick complementarity and the twin-shuffle 
language. The latter will be given in its basic variant over the four letter 
alphabet {O, 1,0, I} and denoted by TS. 

Consider a word w over the alphabet {O, I}, that is, w is a string built 
from O's and 1 'so Let w be the complementary string, built from O's and 
1's. For instance, w = 00101 and w = 00101. We denote by shujfie( w, w) 
the set of words obtained by shuffling wand w, quite arbitrarily but without 
changing the order of letters in w or w. For instance, each of the words 

0000110011, 0010100101, 0001001011 

is in the set shujfie(w,w), whereas 0000110101 is not. By definition, the 
language T S consists of all words in shujfie( w, w), where w runs over all 
words over {O, I}. The following is a simple way of finding out whether or 
not a given word x, built from four letters 0,1,0, I, actually is in TS. Erase 
first from x all letters 0 and I, leaving a word x'. Erase next from x all letters 
o and 1, as well as the bars from the remaining letters, leaving a word x". 
Then the original x is in T S exactly in case x' = x". The reader might want 
to tryout this method on the examples given above. 

Consider now the following association between the "DNA alphabet" and 
the four-letter alphabet discussed above: 

A = 0, G = 1, T = 0, C = I. 

If we view the letters in the pairs (0,0) and (1, I) as being complementary, 
then this complementarity is the same as the Watson-Crick complementarity, 
via the association indicated. 

The interconnection of the twin-shuffle language T S with the double 
strands of DNA can now be seen as follows. Consider a double strand, say 

TAGCATCAT 
ATCGTAGTA 

We first rewrite the letters according to the association indicated: 

001100100 
001100100 

Taking letters from both strands by turns, we obtain the string 
oooolIIlOOOoIlOOOO which belongs to TS. The result holds in general: this 
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method always produces from an arbitrary DNA double strand, a string in 
TS. That we do not get all strings of TS in this fashion is irrelevant because 
it depends only on our convention of taking letters from the two strands by 
turns. 

The following is an interesting observation from the point of view of math
ematics of computation. The universality of DNA computations would not 
be affected if one of the DNA strands would consist, say, entirely of purines 
and the other strand of pyrimidines. In our extended binary notation this 
would mean that the barred and non-barred letters always occur on different 
strands. That this does not actually happen in nature, surely provides more 
computational leeway and efficiency. 

Another way to "read" strings in TS by scanning the nucleotides of DNA 
molecules is based on the encoding suggested below: 

upper strand lower strand 

A,T o 
C,G 1 I 

In other words, both nucleotides A and T are identified with 0, without 
a bar when appearing in the upper strand and barred when appearing in the 
lower strand; the nucleotides C, G are identified with 1 in the upper strand 
and with I in the lower strand. Given a DNA (double-stranded) molecule, 
by reading the two strands from left to right, with non-deterministic non
correlated speeds in the two strands, we get a string in T S. The reader might 
try with the molecule considered above. Conversely, we can obtain all strings 
in T S if we consider all molecules (complete double stranded sequences) and 
all possibilities to read them as specified above. The same result is obtained 
if we use molecules containing in the upper strand only nucleotides in any of 
the pairs 

(A, C), (A, G), (T, C), (T, G). 

The universality of the language T S can be briefly described as follows. 
According to the commonly accepted Church-Turing Thesis, every compu
tation can be performed by a Thring machine and, thus, all computations 
are characterized by such Thring-machine-acceptable languages Lo. On the 
other hand, every such Lo can be represented in the form Lo = f(TS), where 
f is a so-called gsm mapping. The mapping f depends on the language Lo. 
(The abbreviation "gsm" comes from "generalized sequential machine"; the 
acronym was used in computer science long before the era of mobile phones.) 
Thus, TS remains always the same, whereas f must be specified according to 
the needs of each particular Lo. The mapping f can be viewed to represent 
the input-output facilities. The situation is analogous in DNA based com
puting. The Watson-Crick complementarity always remains the same and 
guarantees universality in the same sense as TS. The key problem in devel
oping DNA based computers is to determine which types of computational 
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techniques or, theoretically, which aspects of gsm-mappings are adaptable to 
DNA computing. 

We will return to the mathematical details in Chap. 3, especially in Sect. 
3.2. The representation result Lo = f(TS) is very fundamental, yet the 
basic idea behind its proof is very conspicuous. Perhaps this also reflects the 
simplicity of the basic DNA structure. 

It should have already become apparent to the reader that theoretical 
studies about DNA computing must make use of the following two advan
tages stemming from DNA molecules: (i) Watson-Crick complementarity 
which renders the power of the twin-shuffle language available, and (ii) the 
multitude of DNA molecules which brings massive parallelism to the com
puting scene. We already discussed the impact of (ii) to the paradigm of 
computing. As regards (i), the general paradigm of complementarity can be 
formulated in one of the following two ways. 

(a) A string induces the complementary string, either randomly or guided 
by a control device. 

(b) The complementarity of two strings leads to some phenomenon such 
as bonding. Conversely, the occurrence of this phenomenon guarantees 
that the strings involved indeed are complementary. 

We have given here a conspicuously abstract formulation of the paradigm 
of complementarity. The alphabet of the strings can be bigger than the four
letter DNA alphabet, we only assume that complementarity is present among 
the letters. More general alphabets will be considered in the mathematical 
theory presented in the second part of this book. 

The version (b) is an abstraction of the idea present already in Adleman's 
experiment. The "free availability" of the twin-shuffle language, as well as 
the resulting universality of many models of DNA computing, can also be 
explained using (b): the bonding guarantees that the opposing nucleotides 
are complementary, which again leads to a word in the twin-shuffle language, 
as pointed out before. 

On the other hand, the version (a) of the paradigm of complementarity 
presents complementarity as an operation: from a string (strand), go to the 
complementary one. This might become an important operation at least in 
certain phases of DNA computing. The operation is certainly very interesting 
from the theoretical point of view. Sometimes something surprisingly new 
can be created when a classical structure is supplemented with the operation 
of complementarity. For instance, this happens when a Lindenmayer system 
is furnished with complementarity [137]. 
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2.4 DNA Computing: Hopes and Warnings 

"For the long term, one can speculate about the prospect for molecular com
putation. It seems likely that a single molecule of DNA can be used to encode 
the instantaneous description of a Turing machine and that currently avail
able protocols and enzymes could (at least under idealized conditions) be used 
to induce successive sequence modifications, which would correspond to the 
execution of the machine. In the future, research in molecular biology may 
provide improved techniques for manipulating macromolecules. Research in 
chemistry may allow for the development of synthetic designer enzymes. One 
can imagine the eventual emergence of a general purpose computer consisting 
of nothing more than a single macromolecule conjugated to a ribosomelike 
collection of enzymes that act on it." 

These words of Adleman [1] are a compact formulation of the great expec
tations concerning DNA computing. Even in these optimistic words the need 
for further research in molecular biology, as well as in chemistry, is clearly 
expressed. Indeed, it has not yet been finalized in any way whether DNA 
computing will become an important reality or remain a footnote in history 
books. In this section we will discuss the positive and negative prospects of 
DNA computing. For instance, we will return to the possibility of some of the 
simple operations essential in DNA computing, such as the ones discussed in 
Sects. 2.1 and 2.2. It is important to mention already at this stage that some 
areas of the mathematical theory presented in the second part of this book 
go far beyond the reach of these simple observations. Some of the stronger 
results in this theory presuppose new kinds of techniques in molecular biol
ogy, before they can be properly applied. However, a lot can be accomplished 
using only the simple operations discussed in Sects. 2.1 and 2.2. 

Let us consider first a very specific task, namely, the breaking of the Data 
Encryption Standard, DES. A technique due to [3] was outlined already in 
Sect. 2.2; [3] gives also a detailed analysis of the feasibility of the procedure. 
The analysis is of importance to the general evaluation of DNA computing. 
It shows that "real problems" (certainly the breaking of the most widely 
used cryptosystem is a real problem!) can be solved with small machines 
which do not require huge amounts of DNA (and use few enzymes if any). 
At present cryptographic tasks seem to be the most suitable ones for DNA 
computing, since error rates much greater than those normally required of 
electronic computers will suffice. 

The computation to break DES is estimated to run five days. This is 
under the assumption that each individual operation can be completed in one 
minute, perhaps using an auxiliary robotic machine. If a graduate student 
has to perform each operation, it might take a day, and then the whole 
computation will take 18 years. An operation per hour gives a total duration 
of 9 months. 

How big will the machinery be and what are the expectations for success? 
Some operations are more prone to errors than others. For each specific 
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operation, its error rate is the fraction of molecules that commit an error 
during that operation. To say that the overall error rate is E means that E 
is the error rate of the worst operation, that is, all operations occurring in a 
computation have an error rate less than or equal to E. If E is the error rate, 
1 - E is customarily called the yield. Thus, an error rate of 10-4 corresponds 
to a yield of 99.99%. 

In the cryptanalytic setup for breaking DES that was considered in Sect. 
2.2, the cryptanalyst knows a pair consisting of a plaintext and the corre
sponding cryptotext and has to determine the key. All keys mapping the 
given plaintext to the given cryptotext are referred to as winning keys. It 
is conceivable that there are several winning keys, although their number is 
not likely to be large in connection with DES. Under ideal conditions, the 
algorithm produces a "final tube" containing, for each winning key, at least 
one molecule encoding it. Moreover, the final tube should contain no distrac
tors, that is molecules which do not encode a winning key but have ended 
up in the final tube because of errors. That a winning key is missing from 
the final tube is either because it was not created during the initialization, 
or else because it was created but met an error during the computation. 

Very interesting numerical results have been presented in [3] about this 
setup. The results concern the amount of DNA required and the number 
of distractors in the final tube. Specifically, the amount of DNA required 
is computed to ensure a "reasonable chance," 63% or more, of getting at 
least one winning key in the final tube. (The figure 63% comes from the 
Poisson distribution associated to the method of creating the keys during the 
initialization. ) 

If an error rate of 10-4 is attainable, only a little more than 1 gram of 
DNA is needed; the calculation gives the value l.4g. Moreover, for the error 
rate of 10-4 , the probability of a distractor ending up in the final tube is 
only 8%. 

Things are dramatically different if only an error rate of 10-2 is attain
able. The figures tell us quite clearly where the borderline of the feasibility 
of DNA computing lies, at least in the case where the task is particularly 
suitable for DNA computing, as we already observed cryptanalytic tasks to 
be. An error rate of 10-2 , let alone an even bigger error rate, would make 
DNA computing definitely unfeasible. Then large amounts of DNA would be 
needed, approximately 23 Earth masses, to have a 63% chance that a winning 
key ends up in the final tube, and it would still have to be distinguished from 
a colossal number of distractors. An error rate of 10-3 would call for less 
than a kilogram of DNA, something that could still be considered feasible. 

The size of the machinery is dictated by the amount of DNA used. The 
robotics must operate on a rack of test tubes, in fact, on 96 tubes in parallel. 
The estimates given in [3] make it reasonable to conclude that, under an 
achievable error rate of 10-4 , the entire machinery would fit on a desktop. 
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This very specific task of breaking the DES cryptosystem shows quite 
explicitly the feasibility borderline in DNA computing. It is essential how 
successfully, with low error rate, the operations can be performed. Assuming 
that low error rates are achievable, one may study the complexity of various 
tasks. Then the massive parallelism of DNA computing renders many of the 
exponential time complexity estimates in sequential computing, such as those 
dealing with some well-known NP-complete problems, to linear time. This 
is true of two of the problems discussed in Sects. 2.1 and 2.2, HPP and 
the satisfiability problem. At the same time, the number of DNA strands 
that may appear in a test tube during the course of the algorithm tends 
to be exponential; in fact it is of the order of n! in connection with HPP. 
The reader is referred to [17] for complexity estimates of various problems in 
terms of the two parameters: the number of (biological) steps taken by the 
algorithm and the number of DNA strands used. 

Complexity estimates of this kind have already been considered earlier 
in the area of parallel algorithms. In these studies the trade-off between 
the number of steps and the number of parallel processors is important. As 
we have observed, in DNA computing the number of steps can be drastically 
reduced, at the cost of the number of processors becoming exponential. Since 
the processors are DNA strands, this state of affairs can still be acceptable. 

The length of the DNA strands should also be taken into consideration. 
In most cases the length will cause no problem since it is linear in the size of 
the problem. 

Let us now summarize the operations of DNA computing, discussed earlier 
in this chapter. We have observed that the operations are basic in many of the 
algorithms in DNA computing and, consequently, further laboratory studies 
about their reliability, efficiency, and error rates are quite essential. (The 
operation of splicing is not included here; it will be explained in connection 
with the mathematical theory in the second part of the book.) We also 
remind the reader of the basic currently used techniques, described in Chap. 
1 of this book, for carrying out each operation. 

Melting. Double-stranded DNA is dissolved into single strands by heat
ing the solution to a specific temperature. In this way the hydrogen bonds 
between complementary strands are broken. 

Annealing. This is an operation reverse to melting. A solution of sin
gle strands is cooled, whereby strands complementary according to Watson
Crick can bind together. 

Merge. This means pouring the contents of two test tubes into one tu
be. 

Separate (or Extract). Recall that this operation produces from a tube 
N and a strand w a new tube +(N, w), consisting of all strands in N which 
contain w as a substrand. Separation by hybridization uses a multitude of 
strands complementary to w, anchored to a matrix in a certain way. To these 
the strands in N containing w will anneal. 
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Amplify. This is an application of Polymerase Chain Reaction, PCR. 
At each step, the number of strands is doubled, resulting in an exponential 
growth. 

Detect and Length-separate. Both operations apply the technique of gel 
electrophoresis. 

Finally, DNA polymerases perform various functions, including the repair 
of DNA and forming complementary strands. 

Specified oligonucleotides can be synthesized. However, it is still a largely 
open research problem to determine optimal oligonucleotides for DNA com
putation, both as regards their length and overall composition. 

In conclusion, we feel it justified already to claim that at this stage 
biomolecular techniques are advanced enough and sufficiently adaptable to 
basic programming tasks occurring in DNA computing. This is the positive 
side of the matter. Many caveats still remain; it is no wonder that strong 
warnings have been expressed. (See, for instance, the correspondence sec
tion in Science.) Since this book is mainly about the mathematical theory of 
DNA computing, we do not discuss here all possible sources of troubles arising 
in laboratory realizations. For instance, sticking of strands to approximate 
matches, as opposed to exact matches, might lead the overall computation 
astray. Such problems should definitely be addressed before DNA computing 
can become a reality. 

Perhaps the most constructive attitude at the moment is to think that 
DNA computers will supplement current computers in important aspects, 
not replace them. Certain classes of tasks and problems seem particularly 
apt for DNA computing. Features characteristic of such problems are that 
an exhaustive search is the best known method of solving the problem and 
that a high probability of success is almost as good as certainty. Such is 
the setup in typical cryptanalytic tasks. Advances in robotics might also 
open new vistas for building computers with both molecular and electronic 
components. 
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Chapter 3 

Introduction to Formal 
Language Theory 

The mathematical theory of DNA computing presented in Part II of this 
book is developed in the framework of formal language theory. As we have 
seen in Chap. 1, DNA molecules have a natural representation through "dou
ble" strings satisfying certain assumptions (Watson-Crick complementarity 
and opposite directionality). Also, various enzymatic operations on DNA 
molecules can be naturally represented as operations on (double) strings. 
Consequently, using DNA molecules and their manipulation for the purpose 
of DNA computing can be conveniently and naturally expressed in the frame
work of (double) strings and operations on them. This leads to formal lan
guage theory as a natural framework for formalizing and investigating DNA 
computing. 

In this chapter we introduce formal language theory to the extent needed 
for this book. 

For additional information, the reader is referred to the many monographs 
in this area, such as: [4], [29], [40], [42], [93], [195], [197], [198]. A comprehen
sive source of information is [193]. We suggest that a reader already familiar 
with language theory consult Chap. 3 only when need arises. 

3.1 Basic Notions, Grammars, 
Grammar Systems 

Automata, 

Basic notations. The family of subsets of a set X is denoted by P(X); if 
X is an infinite set, then we denote by Pf(X) the family of finite subsets of 
X. The cardinality of X is denoted by card(X). The set of natural numbers, 
{O, 1, 2, ... } is denoted by N. The empty set is denoted by 0. 

An alphabet is a finite nonempty set of abstract symbols. For an alphabet 
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V we denote by V* the set of all strings of symbols in V. The empty string is 
denoted by A. Mathematically speaking, V* is the free monoid generated by 
V under the operation of concatenation. (The unit element of this monoid is 
A.) The set of nonempty strings over V, that is V* - {A}, is denoted by V+. 
Each subset of V* is called a language over V. A language which does not 
contain the empty string (hence being a subset of V+) is said to be A-free. 

If x = Xl X2, for some Xl, x2 E V*, then Xl is called a prefix of X and X2 is 
called a suffix of X; if X = Xl X2X3 for some Xl, X2, x3 E V*, then X2 is called 
a substring of x. The sets of all prefixes, suffixes, substrings of a string X are 
denoted by Pref(x), Suf(x), Sub(x), respectively. 

The length of a string X E V* (the number of symbol occurrences in x) 
is denoted by Ixl. The number of occurrences of a given symbol a E V in 
X E V* is denoted by Ixla. If X E V*, U ~ V, then by Ixlu we denote the 
length of the string obtained by erasing from X all symbols not in U, that is, 

Ixlu = L Ixl a . 

aEU 

For a language L ~ V*, the set length(L) = {Ixl I X E L} is called the 
length set of L. 

The set of symbols occurring in a string x is denoted by alph(x). For a 
language L ~ V*, we denote alph(L) = UXELalph(x). Observe that alph(L) 
may be a proper subset of V. 

The Parikh vector associated to a string x E V* with respect to the 
alphabet V = {al, ... , an} is wv(x) = (lxlalllxla2l· .. ' Ixlan). For L ~ V* 
we define wv(L) = {\lIv(x) I x E L}. 

A set M of vectors in N n is said to be linear if there are Vi E Nn, 
° ::; i ::; m, such that 

m 

M = {vo + Laivi I a!, ... ,am EN}. 
i=l 

A finite union of linear sets is said to be semilinear. 
A language L ~ V* is semilinear if \lI v (L) is a semilinear set. 

Operations with strings and languages. The boolean operations (with 
languages) are denoted as usual: U - union, n - intersection, C - comple
mentation. 

The concatenation of Ll , L2 is Ll L2 = {xy I x E L1, y E L2}. 
We define further: 

L O = {A}, 
LiH = LLi , i 2': 0, 

00 

L* = U Li (the * -Kleene closure), 
i=O 
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00 

L+ = U Li (the + -Kleene closure). 
i=l 

A mapping s : V -----* P(U*), extended to s : V* -----* P(U*) by S(A) = {A} 
and S(XlX2) = s(XdS(X2)' for Xl, X2 E V*, is called a substitution. For a 
language L ~ V* we define s(L) = UXEL s(x). 

If card( s( a)) is finite for each a E V, then s is called a finite substitution; 
if card(s(a)) = 1 for each a E V, then s is called a morphism. If A tJ- s(a), for 
each a E V, then s is a A-free substitution (A-free morphism, respectively). 

A morphism h : V* -----* U* is called a coding if h( a) E U for each a E V 
and a weak coding if h(a) E UUP} for each a E V. If h : (VI UV2)* -----* Vt is 
the morphism defined by h( a) = a for a E VI, and h( a) = A otherwise, then 
we say that h is a projection (associated to VI) and we denote it by prVl' For 
a morphism h : V* -----* U*, we define a mapping h -1 : U* -----* P (V*) (and 
we call it an inverse morphism) by h-l(w) = {x E V* I h(x) = w}. 

If L ~ V*, k 2: 1, and h : V* -----* U* is a morphism such that h(x) i:- A 
for each x E Sub(L), Ixl = k, then we say that h is k-restricted on L. 

In general, when we have an alphabet V and we consider some given 
variants g(a) of symbols a E V (primed, barred, etc.), then we denote V9 = 
{g(a) I a E V} and for w E V* we write w 9 = g(w). (Thus, when considering 
primed symbols, V' = {a' I a E V} and for w E V*, w = al ... ak, with 
ai E V, 1:::; i :::; k, we have w' = a~ ... a~.) 

For x, Y E V* we define their shuffle by 

x ill y = {XlYl ... XnYn I x = Xl·· .Xn,Y = Yl·· 'Yn, 

Xi, Yi E V*, 1 :::; i :::; n, n 2: I}. 

The mirror image of a string x = ala2 ... an, for ai E V,l :::; i :::; n, is the 
string mi(x) = an ... a2al. 

In general, if we have an n-ary operation for strings, 9 : V* X ... x V* -----* 

P(U*), we extend it to languages over V by 

U 

For instance, mi(L) = {mi(x) I x E L}. 
The left quotient of a language Ll ~ V* with respect to L2 ~ V* is 

L 2\Ll = {w E V* I there is x E L2 such that xw ELI}. 

The left derivative of a language L ~ V* with respect to a string x E V* 
is 

8; (L) = {w E V* I xw E L}. 
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The right. quotient and the right derivative are defined in a symmetric 
manner: 

L1/L2 = {w E V* I there is x E L2 such that wx E Ld, 

a;(L) = {w E V* I wx E L}. 

A family F L of languages is closed under an n-ary operation g if, for all 
languages L1 , .•. , Ln in FL, the language g(Ll, ... ,Ln) is also in FL. 

A language that can be obtained from the letters of an alphabet V and 
A by using finitely many times the operations of union, concatenation, and 
Kleene * is called regular; also the empty language is said to be regular. 

A family of languages is nontrivial if it contains at least one language 
different from 0 and {A}. (We use here the word "family" synonymously 
with "set" or "collection".) A nontrivial family of languages is called a trio if 
it is closed under A-free morphisms, inverse morphisms, and intersection with 
regular languages. A trio closed under union is called a semi-AFL (AFL = 
abstract family of languages). A semi-AFL closed under concatenation and 
Kleene + is called an AFL. A trio/semi-AFL/ AFL is said to be full if it is 
closed under arbitrary morphisms (and Kleene * in the case of AFL's). A 
family of languages closed under none of the six AFL operations is called an 
anti-AFL. 

Several facts about the operations defined above are useful when investi
gating the closure properties of a given family of languages (for instance, in 
order to prove that a family of languages is an AFL it is not necessary to 
check the closure under all the six AFL operations): 

1. The family of regular languages is the smallest full trio. 

2. Each (full) semi-AFL closed under Kleene + is a (full) AFL. 

3. If F L is a family of A-free languages which is closed under concate
nation, A-free morphisms, and inverse morphisms, then F L is closed 
under intersection with regular languages and union, hence F L is a 
semi-AFL. (If FL is also closed under Kleene +, then it is an AFL.) 

4. If F L is a family of languages closed under intersection with regular 
languages, union with regular languages, and substitution with regular 
languages, then F L is closed under inverse morphisms. 

5. Every semi-AFL is closed under substitution with A-free regular lan
guages. Every full semi-AFL is closed under substitution with arbitrary 
regular languages and under left and right quotients with regular lan
guages. 

6. A family of A-free languages is an AFL if it is closed under concatena
tion, A-free morphisms, inverse morphisms, and Kleene +. 
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7. A family of languages that is closed under intersection with regular 
languages, union with regular languages, substitution by A-free regu
lar languages, and restricted morphisms is closed also under inverse 
morphisms. 

Chomsky grammars. Generally speaking, a grammar is a (finite) device 
generating in a well specified sense the strings of a language (hence defining a 
set of syntactically correct strings). Many types of grammars are particular 
cases of rewriting systems. 

A rewriting system is a pair r = (V, P), where V is an alphabet and P 
is a finite subset of V* x V*; the elements (u, v) of P are written in the 
form u -+ v and are called rewriting rules/productions (or simply rules or 
productions). For x, y E V* we write x ==?, y if x = Xl UX2, Y = Xl VX2, for 
some u -+ v E P and Xl, X2 E V*. If the rewriting system r is understood, 
then we write ==? instead of ==?,. The reflexive and transitive closure of 
==? is denoted by ==? * . 

If an axiom is added to a rewriting system and all rules u -+ v have 
u -I- A, then we obtain the notion of a pure grammar. For a pure grammar 
G = (V, w, P), where w E V* is the axiom, we define the language generated 
by Gby 

L(G) = {x E V* I w ==?* x}. 

A Chomsky grammar is a quadruple G = (N, T, S, P), where N, Tare 
disjoint alphabets, SEN, and P is a finite subset of (N U T)* N(N U T)* x 
(N U T)*. 

The alphabet N is called the nonterminal alphabet, T is the terminal 
alphabet, S is the axiom, and P is the set of production rules of G. The rules 
(we also say productions) (u, v) of P are written in the form u -+ v. Note 
that lulN 2': l. 

For x, Y E (N U T)* we write 

X==?cY iff X=XIUX2,Y=XIVX2, 

for some Xl, X2 E (N U T) * and u -+ v E P. 

One says that x directly derives y (with respect to G). Each string w E 

(N U T)* such that S ==?c w is called a sentential form. 
The language generated by G, denoted by L(G), is defined by 

L(G) = {x E T* IS==?* x}. 

Two grammars G I , G 2 are called equivalent if L(GI ) - {.x} = L(G2 ) - {.x} 
(the two languages coincide modulo the empty string). 

In general, in this book we consider two generative mechanisms equivalent 
if they generate the same language when we ignore the empty string. 

If in x ==? y above we have Xl E T*, then the derivation step is leftmost 
and we write x ==?lejt y. The leftmost language generated by the grammar 
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G is obtained by derivations where every step is leftmost and is denoted by 
L1eft(G). 

According to the form of their rules, the Chomsky gr~mmars are classified 
as follows. A grammar G = (N, T, S, P) is called: 

- monotonous/length-increasing, if for all u --+ v E P we have lui ~ Ivl. 

- context-sensitive, if each u --+ v E P has u = UIAu2, V = UIXU2, for 
Ul, U2 E (N U T)*, A E N, and x E (N U T)+. (In monotonous and 
context-sensitive grammars the production S --+ >. is allowed, providing 
that S does not appear in the right-hand members of rules in P.) 

- context-free, if each production u --+ v E P has u E N. 

- linear, if each rule u --+ v E P has u E N and v E T* U T* NT* . 

- right-linear, if each rule u --+ v E P has u E N and v E T* U T* N. 

- left-linear, if each rule u --+ v E P has u E N and v E T* u NT* . 

- regular, if each rule u --+ v E P has u E N and vET u TN u {>'}. 

The arbitrary, monotonous, context-free, and regular grammars are also said 
to be of type 0, type 1, type 2, and type 3, respectively. 

The family of languages generated by monotonous grammars is equal to 
the family of languages generated by context-sensitive grammars; the families 
of languages generated by right- or by left-linear grammars coincide and they 
are equal to the family of languages generated by regular grammars, as well 
as with the family of regular languages. 

We denote by RE, CS, CF, LIN, and REG the families of languages 
generated by arbitrary, context-sensitive, context-free, linear, and regular 
grammars, respectively (RE stands for recursively enumemble). By FIN we 
denote the family of finite languages. 

The following strict inclusions hold: 

FIN c REG c LIN c CF c CS eRE. 

This is the Chomsky hiemrchy, the constant reference in the investigations in 
the following chapters. 

The closure properties of the families listed above are indicated in Table 
3.1 (Y stands for yes and N for no). 

Therefore, RE, CF, REG are full AFL's, CS is an AFL (not full), and 
LIN is a full semi-AFL. 

A context-free grammar G = (N, T, S, P) is called reduced if for each 
A E N there is a derivation S ==}* xAy ==}* xwy, where x, w, y E T* 
(each nonterminal is reachable from the axiom and it can be rewritten into 
a terminal string). Given a context-free grammar, an equivalent reduced 
context-free grammar can be found. 
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A linear grammar G = (N, T, S, P) is said to be minimal if N = {S} (it 
has only one nonterminal symbol). 

Table 3.1. Closure properties of the families in the Chomsky hierarchy 

RE CS CF LIN REG 
Union Y Y Y Y Y 
Intersection Y Y N N Y 
Complement N Y N N Y 
Concatenation Y Y Y N Y 
Kleene * Y Y Y N Y 
Intersection with 

regular languages Y Y Y Y Y 
Substitution Y N Y N Y 
A-free substitution Y Y Y N Y 
Morphisms Y N Y Y Y 
A-free morphisms Y Y Y Y Y 
Inverse morphisms Y Y Y Y Y 
Left/right quotient Y N N N Y 
Left/right quotient 

with regular languages Y N Y Y Y 
Left/right derivative Y Y Y Y Y 
Shuffle Y Y N N Y 
Mirror image Y Y Y Y Y 

Normal forms. Reducing grammars to a specified form, without losing gen
erative power, is in general useful. There are several results which guarantee 
the existence of such normal forms. We mention here only four of them, 
which will be useful below. 

Theorem 3.1. (Chomsky normal form) For every context-free grammar G, 
an equivalent grammar G' = (N, T, S, P) can be effectively constructed, with 
the rules in P of the forms A ----> a and A ----> BC, for A, B, C E N and a E T. 

Theorem 3.2. (Strong Chomsky normal form) For every context-free gram
mar G, an equivalent grammar G' = (N, T, S, P) can be effectively con
structed, with the rules in P of the forms A ----> a and A ----> BC, for 
A, B, C E N and a E T, subject to the further restrictions: 

1. if A ----> BC is in P, then B =I- C, 

2. if A ----> BC is in P, then for each rule A ----> DE in P we have E =I- B 
and D =I- C. 
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If we also want to generate the empty string, then in the theorems above 
we also allow a completion rule S ----+ A. 

Theorem 3.3. (Kuroda normal form) For every type-O grammar G, an 
equivalent grammar G' = (N, T, S, P) can be effectively constructed, with the 
rules in P of the forms A ----+ BC, A ----+ a, A ----+ A, AB ----+ CD, for A, B, C, D E 
N and a E T. 

Theorem 3.4. (Penttonen normal form) For every type-O grammar G, an 
equivalent grammar G' = (N, T, S, P) can be effectively constructed, with the 
rules in P of the forms A ----+ x, x E (N U T)*, Ixl :=:; 2, and AB ----+ AC with 
A,B,CEN. 

Similar results hold true for length-increasing grammars; then rules of the 
form A ----+ A are no longer allowed, but only a completion rule S ----+ A if the 
generated language should contain the empty string. 

Theorem 3.5. (Geffert normal forms) (1) Each recursively enumerable lan
guage can be generated by a grammar G = (N, T, S, P) with N = {S, A, B, C} 
and the rules in P of the forms S ----+ uSv, S ----+ x, with u, v, x E (T U 
{A, B, C})*, and only one non-context-free rule, ABC ----+ A. 

(2) Each recursively enumerable language can be generated by a grammar 
G = (N, T, S, P) with N = {S, A, B, C, D} and the rules in P of the forms 
S ----+ uSv,S ----+ x, with u,V,X E (T U {A,B,C,D})*, and only two non
context-free rules, AB ----+ A, CD ----+ A. 

Otherwise stated, each recursively enumerable language can be obtained 
from a minimal linear language by applying the reduction rule ABC ----+ A, or 
the reduction rules AB ----+ A, CD ----+ A. 

Necessary conditions. For a language L ~ V*, we define the equivalence 
relation "'Lover V* by x '" L Y iff (uxv E L <=} uyv E L) for all u, v E V*. 
Then V* / "'Lis called the syntactic monoid of L. 

Theorem 3.6. (Myhill-Nerode theorem) A language L ~ V* is regular iff 
V* / "'Lis finite. 

Theorem 3.7. (Bar-Hillel/uvwxy/pumping lemma for context-free lan
guages) If L E C F, L ~ V*, then there are p, q E N such that every z E L 
with Izl > p can be written in the form z = uvwxy, with u, v, w, x, Y E V*, 
Ivwxl :=:; q, vx =1= A, and uviwxiy E L for all i ?: o. 
Theorem 3.8. (Pumping lemma for linear languages) If L E LIN, L ~ V*, 
then there are p, q E N such that every z E L with Izl > p can be written 
in the form z = uvwxy, with u, v, w, x, Y E V*, luvxyl :=:; q, vx =1= A, and 
uviwxiy E L for all i ?: o. 
Theorem 3.9. (Pumping lemma for regular languages) If L E REG, L ~ 
V*, then there are p, q E N such that every z E L with Izl > p can be written 
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in the form z = uvw, with u, v, W E V*, luvl :::; q, v =I- .x, and uviw E L for 
all i ~ o. 
Theorem 3.10. (Parikh theorem) Every context-free language is semilinear. 

Corollary 3.1. (i) Every context-free language over a one-letter alphabet is 
regular. 

(ii) The length set of a context-free language is a finite union of arith
metical progressions. 

The conditions of Theorems 3.7 - 3.10 are only necessary, not sufficient 
for a language to be in the corresponding family. 

Using these necessary conditions the following relations can be proved: 

L1 = {anbn I n ~ I} E LIN - REG, 

L2 = L1L1 E CF - LIN, 

L3 = {anbncn I n ~ I} E CS - CF, 

L4 = {xcx I x E {a,b}*} E CS - CF, 

L5 = {a2n I n ~ I} E CS - CF, 

L6 = {anbmcndm I n,m ~ I} E CS - CF, 

L7 = {anbm I n ~ 1,1:::; m:::; 2n} E CS - CF, 

L8 = {anbmcP 11 :::; n:::; m:::; p} E CS - CF, 

L9 = {x E {a, b}* Ilxla = Ixlb} E CF - LIN, 

L10 = {x E {a,b,c}* Ilxla = Ixlb = Ixlc} E CS - CF. 

The Dyck language, Dn , over Tn = {a1,a~, ... ,an,a~}, n > 1, is the 
context-free language generated by the grammar 

G = ({S}, Tn, S, {S -+ .x, S -+ SS} u {S -+ aiSa~ 11 :::; i :::; n}, S). 

Intuitively, the pairs (ai, aD, 1 :::; i :::; n, can be viewed as parentheses, left and 
right, of different kinds. Then Dn consists of all strings of correctly nested 
parentheses. 

Theorem 3.11. (Chomsky-Schiitzenberger) Every context-free language L 
can be written in the form L = h( Dn n R), where h is a morphism, Dn , n ~ 1, 
is a Dyck language, and R is a regular language. 

Lindenmayer systems. Because (like the generative mechanisms intro
duced in the subsequent sections) Lindenmayer systems or L systems are 
introduced with biological motivation and because we shall mention them 
occasionally, we provide here the basic definitions. 

Basically, a OL (O-interactions Lindenmayer) system is a context-free pure 
grammar with parallel derivations: G = (V, w, P), where V is an alphabet, 
w E V* (axiom), and P is a finite set of rules of the form a -+ v with 
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a E V, v E V*, such that for each a E V there is at least one rule a ---t v 
in P (we say that P is complete). For WI, W2 E V* we write Wl ===} W2 if 
Wl = al ... an, W2 = Vl .•. Vn , for ai ---t Vi E P,l :::; i :::; n. The generated 
language is L(G) = {x E V* I W ===}* x}. 

If for each rule a ---t v E P we have v t- .x, then we say that G is propagating 
(non-erasing); if for each a E V there is only one rule a ---t v in P, then G 
is said to be deterministic. If we distinguish a subset T of V and we define 
L(G) as L(G) = {x E T* I W ===}* x}, then we say that G is extended. The 
family of languages generated by OL systems is denoted by OL; we add the 
letters P, D, E in front of OL if propagating, deterministic, or extended OL 
systems are used, respectively. 

A tabled OL system, abbreviated TOL, is a system G = (V, W, Pl , ... , Pn ), 
such that each triple (V, w, Pi), 1 :::; i :::; n, is a OL system; each Pi is called a 
table, 1 :::; i :::; n. The generated language is defined by 

L(G) = {x E V* I W ===}Pil Wl ===}Ph ... ===}Pj", Wm = x, 

m ~ 0,1:::; ji :::; n, 1:::; i :::; m}. 

(Each derivation step is performed by the rules of the same table.) 
A TOL system is deterministic when each of its tables is deterministic. 

The propagating and the extended features are defined in the usual way. 
The family of languages generated by TOL systems is denoted by TOL; the 

ETOL, EDTOL, etc. families are obtained in the same way as EOL, EDOL, 
etc. 

The DOL family is incomparable with FIN, REG, LIN, CF, whereas EOL 
strictly includes the C F family; ETOL is the largest family of Lindenmayer 
languages with O-interactions, it is strictly included in CS, and it is a full 
AFL. The idea of O-interactions corresponds to context-freeness: the letters 
develop independently of their neighbours. 

An interesting feature of a DOL system, G = (V, W, P), is that it generates 
its language in a sequence, L(G) = {w = WO,Wl,W2, ... }, such that Wo ===} 

Wl ===} W2 ===} .... Thus, we can define the growth function of G, denoted 
by growtha : N --t N, by 

growtha(n) = Iwnl, n ~ O. 

Descriptional complexity. A given language can be generated by many, 
often infinitely many, different grammars. It is natural to look for grammars 
which are as simple as possible and to this end we need measures of grammar 
complexity. 

Having a class X of grammars, a descriptional complexity measure (we 
also say measure of syntactical complexity) is a mapping K : X --t N which 
is extended to languages generated by elements of X by K(L) = min{K(G) I 
L = L(G), G E X}. If necessary, then we also write Kx(L), to specify the 
class of grammars used. 
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The following are three basic measures for context-free languages. For a 
context-free grammar G = (N, T, S, P) we define 

Var(G) = card(N), 

Prod(G) = card(P), 

Symb(G) = L Symb(r), where Symb(r : A --+ x) = Ixl + 2. 
rEP 

A complexity measure K is called non-trivial if for each n there is a 
grammar Gn such that K(L(Gn)) > n; K is said to be connected if there is 
no such that for each n 2: no there is Gn with K(L(Gn)) = n. 

All the measures Var, Prod, Symb are connected (even with respect to the 
family of regular languages). Two measures of syntactical complexity cannot 
generally be simultaneously improved: if we find a grammar which is simpler 
from the point of view of one measure, then most of the time this grammar 
is more complex from the point of view of the other measure. 

An important complexity measure is the index. Let G = (N, T, S, P) be 
a grammar of any type. For a derivation 

D : S = Wo ===} WI ===} ••. ===} Wn = x E T* , 

we denote 
Ind(D) = max{IWilN 10 :S i :S n}. 

For x E L( G), we define 

Ind(x, G) = min{Ind(D) I D : S ===}* x E G}. 

Further, 
Ind(G) = sup{Ind(x, G) I x E L(G)}. 

For a language L we denote 

Ind(L) = min{Ind(G) I L = L(G)}. 

Clearly, Ind(L) = 1 for each linear language L. It is known that Ind(Dn) 
= 00, n 2: 1, and that Ind is a connected measure with respect to the family 
of context-free languages. Moreover, the family 

CFfin = {L E CF I IndcF(L) < oo} 

is a full AFL. 

Automata and transducers. Automata are language defining devices 
which work in the direction opposite to grammars. They start from the 
strings over a given alphabet and analyze them (we also say recognize), telling 
us whether or not the input string belongs to a specified language. 
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The five basic families of languages in the Chomsky hierarchy, REG, LIN, 
CF, CS, RE, are also characterized by recognizing automata. These au
tomata are: the finite automaton, the one-turn pushdown automaton, the 
pushdown automaton, the linear-bounded automaton, and the Turing ma
chine, respectively. We present here only the basic variants of these devices; 
we refer to [93], [138], [195], [198] for the many existing variants. 

A (nondeterministic) finite automaton is a construct 

M = (K, V, so, F, 6), 

where K and V are disjoint alphabets, So E K, F ~ K, and 6 : K x V --+ 

P(K); K is the set of states, V is the alphabet of the automaton, So is the 
initial state, F is the set of final states, and 6 is the transition mapping. 
If card(6(s, a)) ~ 1 for all s E K, a E V, then we say that the automaton 
is deterministic. A relation f- is defined in the following way on the set 
K x V*: for s,s' E K,a E V,x E V*, we write (s,ax) f- (s',x) if s' E 6(s,a); 
by definition, (s, A) f- (s, A). If f-* is the reflexive and transitive closure of 
the relation f-, then the language of the strings recognized by automaton M 
is defined by 

L(M) = {x E V* I (so,x) f-* (S,A),S E F}. 

It is known that both deterministic and nondeterministic finite automata 
characterize the same family of languages, namely REG. The power of finite 
automata is not increased if we also allow A- transitions, that is 6 is defined on 
K x (V U {A}) (the automaton can also change state when reading no symbol 
on its tape) or when the input string is scanned in a two-way manner, going 
along it to right or to left, without changing its symbols. 

Figure 3.1: A finite automaton 

An important related notion is that of a sequential transducer; we shall 
use the abbreviation gsm, from "generalized sequential machine". Such a 
device is a system 9 = (K, VI, V2 , so, F, 6), where K, so, F are the same as in 
a finite automaton, VI, V2 are alphabets (the input and the output alphabet, 
respectively), and 6 : K x VI --+ Pf(V2* X K). If 6(s, a) ~ V2+ x K for 
all s E K, a E VI, then 9 is said to be A-free. If card(6(s, a)) ~ 1 for each 
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5 E K, a E VI, then g is said to be deterministic. For 5,5' E K, a E VI, Y E 

Vt,x,z E V2*' we write (x,s,ay) f--- (xz,s',y) if (z,s') E 6(s,a). Then, for 
W E vt , we define 

g(w) = {z E V2* I (>.,so,w) f---* (z,s,>.),s E F}. 

The mapping g is extended in the natural way to languages over VI. 
A gsm can be seen as a finite automaton with outputs. It is also easy 

to see that if a family of languages is closed under gsm mappings, then it is 
also closed under finite substitutions (and therefore under morphisms, too), 
as well as under the operations Sub, Prej, Suf 

We can imagine a finite automaton as in Fig. 3.1, where we distinguish 
the input tape, on whose cells we write the symbols of the input alphabet, the 
read head, which scans the tape from the left to the right, and the memory, 
able to hold a state from a finite set of states. In the same way, a gsm is a 
device as in Fig. 3.2, where we also have an output tape, where the write 
head can write the string obtained by translating the input string. 

Figure 3.2: A sequential transducer 

Sometimes it is useful to present the transition mapping of finite automata 
and of gsm's as a set of rewriting rules: we write sa --+ as' instead of 5' E 
6(s, a) in the case of finite automata and sa --+ ZS' instead of (z, s') E 6(S, a) in 
the case of gsm's. Then the relations f---, f---* are exactly the same as ===}, ===}* 
in the rewriting system obtained in this way and, for a gsm g and a language 
L E Vt, we get 

g(L) = {z E V2* I SOW ===}* zs, wE L, s E F}. 

For finite automata we have a special case: L(M) = {x E V* I SOx ===}* xs, 
S E F}. 

A pushdown automaton is a construct 

M = (K, V, U, SO, Zo, F, 6), 
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where K, V, U are alphabets (of states, input symbols, and pushdown list 
symbols), K being disjoint from V and U, So E K (initial state), Zo E U 
(initial pushdown list symbol), F ~ K (final states), and 8 : K x (VU {.X}) x 
U ---t Pf(K x U*) (the transition mapping). 

A configuration of M is a triple (s, w, z), where s E K is the current state, 
w E V* is the input string not yet scanned, and z E U* is the contents of the 
pushdown list. For two configurations (s, w, z), (s', w', z') we define 

(s, w, z) f-- (s', w', z') iff w = aw', a E V U {A}, 

z = aZl, z' = Z2Zl, for a E U, Zl, Z2 E U*, 

and (s', Z2) E 8(s, a, a). 

We say that the leftmost symbol of the input, a, is scanned in state s, 
and we pass to state s' depending on the symbol in the top of the pushown 
list, a, which is replaced by Z2. Note that a can be A. When Z2 = A, we say 
that a is popped from the list. 

We define the reflexive and transitive closure f--* of f-- in the natural way. 
Then the language recognized by M is defined by 

L(M) = {x E V* I (so,x,Zo) f--* (S,A,Z), for some s E F,z E U*}. 

(We start with the pushdown list containing only the symbol Zo, in the initial 
state, and we finish in a final state, after scanning the whole input string. 
There are no restrictions on the final contents of the pushdown list.) 

Figure 3.3: A pushdown automaton 

A pushdown automaton can be represented as in Fig. 3.3, where we 
distinguish the input tape, the pushdown store and the memory with its two 
heads, a read-only head scanning the input tape and a read-write head always 
pointing to the first cell of the pushdown memory. 
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The (nondeterministic) pushdown automata recognize exactly the 
context-free languages. A deterministic pushdown automaton has only one 
possible behavior in each configuration. It is known that the family of lan
guages recognized by deterministic pushdown automata is strictly included 
inCF. 

A Turing machine is a construct 

M = (K, V,T,B,so,F,8), 

where K, V are disjoint alphabets (the set of states and the tape alphabet), 
T ~ V (the input alphabet), B E V - T (the blank symbol), So E K (the 
initial state), F ~ K (the set of final states), and 8 is a partial mapping from 
K x V to P(K x V x {L,R}) (the move mapping; if (s',b,d) E 8(s,a), for 
s, s' E K, a, bE V, and d E {L, R}, then the machine reads the symbol a in 
state s and passes to state s', replaces a with b, and moves the read-write head 
to the left when d = L and to the right when d = R). If card(8(s, a)) ::; 1 for 
all s E K, a E V, then M is said to be deterministic. 

An instantaneous description of a Turing machine as above is a string 
xsy, where x E V*,y E V*(V - {B}) U {A}, and s E K. In this way we 
identify the contents of the tape, the state, and the position of the read-write 
head: it scans the first symbol of y. Observe that the blank symbol may 
appear in x, y, but not in the last position of y; both x and y may be empty. 
We denote by I D M the set of all instantaneous descriptions of M. 

On the set I D M one defines the direct tmnsition relation f- M as follows: 

xsay f-M xbs'y iff (s',b,R) E 8(s,a), 

xs f-M xbs' iff (s', b, R) E 8(s, B), 

xcsay f-M xs'eby iff (s',b,L) E 8(s,a), 

xes f-M xs'eb iff (s',b,L) E 8(s,B), 

where x,y E V*,a,b,e E V,S,S' E K. 
The language recognized by a Turing machine M is defined by 

L(M) = {w E T* I soW f-M xsy for some s E F,x,y E V*}. 

(This is the set of all strings such that the machine reaches a final state when 
starting to work in the initial state, scanning the first symbol of the input 
string.) 

It is also customary to define the language accepted by a Turing machine 
as consisting of the input strings w E T* such that the machine, starting 
from the configuration sow, reaches a configuration where no further move 
is possible (we say that the machine halts). The two modes of defining the 
language L(M) are equivalent, the identified families of languages are the 
same, namely RE. 

Graphically, a Turing machine can be represented as a finite automaton 
(Fig. 3.1). The difference between a finite automaton and a Turing machine 
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is visible only in their functioning: the Turing machine can move its head 
in both directions and it can rewrite the scanned symbol, possibly erasing it 
(replacing it with the blank symbol). 

Both the deterministic and the nondeterministic Turing machines char
acterize the family of recursively enumerable languages. 

A Turing machine can be also viewed as a mapping-defining device, not 
only as a mechanism defining a language. Specifically, consider a Turing 
machine M = (K, V,T,B,sQ,F,t5). If f3 E IDM such that f3 = XlsaX2 and 
t5(s, a) = 0, then we write f31 (f3 represents a halting configuration). We define 
the mapping FM : IDM ---+ P(IDM) by FM(a) = {f3 E IDM I a f-M f3 and 
f3l}. If M is deterministic, then F M is a mapping from I D M to I D M . 

Given a mapping f : Ui ---+ U2, where U1 , U2 are arbitrary alphabets, 
we say that f is computed by a Turing machine M if there are two (recursive) 
mappings C and D (of coding and decoding), 

such that 
D(FM(C(X))) = f(x). 

In the next section, when discussing and presenting universal Turing ma
chines, we shall use this interpretation of Turing machines (as well as the 
termination of a computation by halting configurations, not by using final 
states). 

When working on an input string a Turing machine is allowed to use as 
much tape as it needs. Note that finite automata and pushdown automata use 
(in the read only manner) only the cells where the input string is written. In 
addition, a pushdown automaton has an unlimited pushdown tape. A Turing 
machine allowed to use only a working space linearly bounded with respect to 
the length of the input string is called a linearly bounded automaton. These 
machines characterize the family CS. 

Regulated rewriting. As the context-free grammars are not powerful 
enough for covering most of the important syntactic constructions in nat
ural and artificial languages, while the context-sensitive grammars are too 
powerful (for instance, the family CS has many negative decidability proper
ties and the derivations in a non-context-free grammar cannot be described 
by a derivation tree), it is of interest to increase the power of context-free 
grammars by controlling the use of their rules. This leads to considering 
regulated context-free grammars. We present here some variants, which will 
be useful for our investigations. 

A context-free matrix grammar is a construct G = (N, T, s, M), where 
N, T are disjoint alphabets (of nonterminals and terminals, respectively), 
SEN (axiom), and M is a finite set of matrices, that is, sequences of the 
form (AI --+ ZI, ... , An --+ Zn), n ~ 1, of context-free rules over NUT. For 
a string x, an element m = (Tl,"" Tn) is executed by applying productions 
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rl, ... , r n one after the other, following the strict order they are listed in. The 
resulting string y is said to be directly derived from the original x and we 
write x ===} y. Then, the generated language is defined in the usual way. The 
family of languages generated by context-free matrix grammars is denoted 
by MAT).. (the superscript indicates that A-rules are allowed); when using 
only A-free rules, we denote the corresponding family by MAT. 

A context-free programmed grammar is a construct G = (N, T, S, P), 
where N, T, S are as above, the set of nonterminals, the set of terminals and 
the start symbol, and P is a finite set of productions of the form (b : A --+ z, 
E, F), where b is a label, A --+ Z is a context-free production over NUT, 
and E, F are two sets of labels of productions of G. (E is said to be the 
success field, and F is the failure field of the production.) A production of 
G is applied as follows: if the context-free part can be successfully executed, 
then it is applied and the next production to be executed is chosen from 
those with the label in E, otherwise, we choose a production labeled by some 
element of F, and try to apply it. This type of programmed grammars is 
said to be with appearance checking; if no failure field is given for any of the 
productions, then a programmed grammar without appearance checking is 
obtained. 

Sometimes it is useful to write a programmed grammar in the form G = 
(N, T, S, P, a, <p), where N, T, S are as above, P is a set of usual context-free 
rules and a, <p are mappings from P to the power set of P; a(p),p E P, is 
the success field of the rule p (a rule in a(p) must be used after successfully 
applying the rule p), <p(p),p E P, is the failure field (a rule from <p(p) must 
be considered when p cannot be applied). 

A context-free ordered grammar is a system G = (N, T, S, P, », where 
N, T, S are as above, P is a finite set of context-free productions, and> is a 
partial ordering over P. A production p can be applied to a sentential form 
x only if it can be applied as a context-free rule and there is no production 
rEP such that r is applicable and r > p holds. 

Regulated applications of productions can also be based on checking con
text conditions. 

A generalized semi-conditional grammar is a construct G = (N, T, S, P), 
where N, T, S are as above and P is a finite set of triples of the form p = 
(A --+ W; E, F), where A --+ w is a context-free production over NuT and 
E, F are finite subsets of (N U T)+. Then, p can be applied to a string 
x E (N U T) * only if A appears in x, each element of E and no element of F 
is a subword of x. If E or F is the empty set, then no condition is imposed 
by E, or respectively, F. E is said to be the set of permitting and F is said 
to be the set of forbidding context conditions of p. 

If both card(E) :s:; 1 and card(F) :s:; 1 hold, then we speak of a semi
conditional grammar. If E, F <;;: N, then we speak of a random context 
grammar. 
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Two other well-known versions of grammars with context conditions are 
the conditional and the weakly conditional grammars. A conditional grammar 
is a construct G = (N, T, B, P), where P is a finite set of productions of the 
form p = (A --t W; Rp), where Rp is a regular language over NUT. For a 
string x we can apply p to x only if A appears in x and x E Rp. 

If for every pEP we have R = Rp, for a fixed regular language R, then 
we speak of a weakly conditional grammar. 

Conditional (weakly conditional) and semi-conditional grammars are of 
the same generative power; they generate all recursively enumerable or all 
context-sensitive languages, depending on whether A-rules are used or not, 
respectively. 

Finally, let us consider the notion of a simple matrix grammar. Such 
a grammar (of degree n 2: 1) is a system G = (NI, ... , N n , T, B, M), with 
N 1,.··, N n , T mutually disjoint alphabets, B f/. Va, for Va = T U U~=l N i , 

and M is a set of matrices of the following forms: 

(i) (B --t W1W2 ... Wn),Wi E (TU Ni)*' 1::; i::; n, 

such that IWi IN; = IWj IN;, 1 ::; i, j ::; n, 
(ii) (Ai --t WI, ... , An --t wn ), Ai E N i , Wi E (T U Ni)*' 1 ::; i ::; n, 

such that IWiIN; = IWjIN;, 1::; i,j::; n. 

For each matrix in M, the derivation is leftmost for each rule (Ai --t Wi 
rewrites the leftmost occurrence of a symbol in Ni in the current string). 

It is known that the simple matrix grammars generate a family of semi
linear languages which is strictly intermediate between CF and CB. 

Useful for our purposes in the sequel is the idea of controlling the ap
plication of context-free rules to increase the power of context-free gram
mars. 

Grammar systems. Another very fruitful idea for increasing the power of 
context-free grammars (in certain cases, also of regular grammars), is to con
sider distributed generative devices: constructs composed of several gram
mars working together according to a well-specified cooperation protocol. 
This leads to the idea of a grammar system. Two main classes of grammar 
systems have been investigated, the sequential ones (introduced in [28] under 
the name of cooperating distributed grammar systems) and the parallel com
municating grammar systems introduced in [172]. For our investigations the 
second class is more useful, hence we present its definition only. 

A parallel communicating (PC, for short) grammar system of degree n, 
n 2: 1, is a construct 

where N, T, K are pairwise disjoint alphabets, with K = {Ql, ... ,Qn}, Bi E 
N, and Pi are finite sets of rewriting rules over NuT U K,l ::; i ::; n; 
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the elements of N are nonterminal symbols, those of T are terminals; the 
elements of K are called query symbols; the pairs (8i , Pi) are the components 
of the system (often, the sets Pi are called components). Note that the query 
symbols are associated in a one-to-one manner with the components. When 
discussing the type of the components in the Chomsky hierarchy, the query 
symbols are interpreted as nonterminals. 

For (Xl, ... ,Xn),(Yl, ... ,Yn), with Xi,Yi E (NUTUK)*,l::::; i::::; n (we 
call such an n-tuple a configuration), and Xl tf- T*, we write (Xl"'" Xn) ===}r 

(Yl, ... , Yn) if one of the following two cases holds: 

(i) IXilK = 0 for alII::::; i::::; n; then Xi ===}Pi Yi or Xi = Yi E T*, 1::::; i::::; n; 

(ii) there is i, 1 ::::; i ::::; n, such that IXilK > 0; we write such a string Xi as 

for t :::: 1, Zj E (N U T)*, 1 ::::; j ::::; t + 1; if IXij IK = 0 for all 1 ::::; j ::::; t, 
then 

Yi = ZlXil Z2Xi2 ... ZtXi t Zt+l, 

[and Yij = 8 ij , 1 ::::; j ::::; tl; otherwise Yi = Xi. For all unspecified i we 
have Yi = Xi' 

Point (i) defines a rewriting step (componentwise, synchronously, using 
one rule in all components whose current strings are not terminal); (ii) de
fines a communication step: the query symbols Qij introduced in some Xi 

are replaced by the associated strings Xi j , providing that these strings do 
not contain further query symbols. The communication has priority over 
rewriting (a rewriting step is allowed only when no query symbol appears in 
the current configuration). The work of the system is blocked when circular 
queries appear, as well as when no query symbol is present but point (i) is not 
fulfilled because a component cannot rewrite its sentential form, although it 
is a nonterminal string. 

The relation ===}r considered above is said to be performed in the re
turning mode: after communicating, a component resumes working from its 
axiom. If the brackets, [and Yij = 8 ij , 1 ::::; i ::::; t], are removed, then we 
obtain the non-returning mode of derivation: after communicating, a com
ponent continues the processing of the current string. We denote by ===}nr 

the obtained relation. 
The language generated by r is the language generated by its first com

ponent, when starting from (81 , ... , 8n ), that is 

L f (r) = {w E T* I (81 , ... , 8n ) ===} j (w, 0:2, ... , O:n), 

for O:i E (NUTUK)*,2::::; i::::; n}, f E {r,nr}. 

(No attention is paid to strings in the components 2, ... , n in the last con
figuration of a derivation; moreover, it is supposed that the work of r stops 
when a terminal string is obtained by the first component.) 
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Such systems communicate on request. A class of parallel communicat
ing grammar systems with communication by command has been considered 
in [33]. In such a system, each component has an associated regular lan
guage. In any moment, each component sends its current sentential form 
to all other components, but the transmitted string is accepted only if it is 
an element of the regular language associated with the receiving component. 
Thus, these regular languages act as filters, controlling the communication 
in a way similar to the control of derivations in conditional grammars. 

We present formally here only a particular class of such systems. We 
consider systems working with maximal derivations as rewriting steps, com
municating without splitting the strings, replacing the string of the target 
component by a concatenation of the received messages, in the order of the 
system components, and returning to axioms after communicating; the gen
erated language will be the language of the first component (which is the 
master of the system). The filters will be regular languages. 

Formally, such a system is a construct 

where N, T are disjoint alphabets (the nonterminal and the terminal one), 
Si E N, Pi are finite sets of context-free rules over NUT, and R; are regular 
languages over NUT, 1 :::; i :::; n. 

With respect to r above, we define a rewriting step by 

(Xl, ... ,xn ) ~ (Yl, ... ,Yn) iff 

Xi ~* Yi in Pi and there is no Zi E (N U T)* 

such that Yi ~ Zi in Pi 

(thus, if Xi E T*, then Yi = Xi, otherwise Xi ~+ Yi), whereas a communi
cation step, denoted by, 

is defined as follows: 
Let 

for 1 :::; i, j :::; n, 

if Xi rt R j or i = j, 
if Xi E R j and i =I- j, 

for 1 :::; j :::; n (this is the "total message" to be received by the j-th compo
nent), and 

8(i) = 8(Xi' 1)8(Xi' 2) ... 8(Xi' n), 

for 1 :::; i :::; n (this is the "total message" sent by the i-th component, a power 
of Xi indicating to how many targets the i-th component sends a message). 
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Then, for 1 ::; i ::; n, we define 

if ~(i) =J >.., 
if ~(i) = >.. and 8(i) = >.., 
if ~(i) = >.. and 8(i) =J >... 
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In words, Yi is either the concatenation of the received messages, if any 
exist, or it is the previous string, when this component is not involved in 
communications, or it is equal to 8 i , if this component sends messages but it 
does not receive messages. Observe that a component cannot send messages 
to itself. 

The generated language is defined as follows: 

L(r) = {w E T* I (81, ... ,8n ) ===> (xi1), ... ,x~1») I- (Yi1), ... ,y~I») 

===> (xi2), ••. ,X~2») I- (yi2), . .. ,y~2») ===> .. . 
. . . ===> (xis), .. . ,x~»), 

for some s ;::: 1 such that w = xis)}. 

Here is an example. 

Let 

r = (N, T, (8t, Pt, Rd, (82 , P2 , R2 ), (83 , P3 , R3 )), 

N = {81,82,8~,83,8~,X}, 
T = {a,b,c}, 

PI = {81 ---t a8t, 81 ---t b8t, 81 ---t X}, 

Rl = {a, b}*c, 

P2 = {S2 ---t S~,X ---t c}, 

R2 = {a, b}* X, 
P3 = {83 ---t 8~, X ---t c}, 

R3 = {a,b}*X. 

We start from (81 ,82 ,83 ). A componentwise maximal derivation is of the 
form 

(8t, 82, 83) ===> (xX, 8~, 8~), 

for some x E {a, b} *. The string xX will be communicated to both the second 
and the third component, hence we have 

(xX,8~,8~) I- (81 ,xX,xX) ===> (yX, xc, xc) l

I- (xcxc, yX, yX) ===> (xcxc, yc, yc), 

for some y E {a, b} *. The string xcxc is terminal, hence we have 

L(r) = {xcxc I x E {a, b} *}. 
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Therefore, the very simple system r, with only three right-linear compo
nents, is able to generate the non-context-free (replication) language above. 
Observe that each derivation in r contains exactly two communication steps 
(and three rewriting steps, the last one being considered only for the sake of 
consistency with the definition of L(r) as written above, where the last step 
is supposed to be a rewriting one). 

We do not discuss here the power of these grammar systems. As in the 
case of regulated rewriting, the ideas these systems are based on (distribution, 
cooperation, communication, parallelism) are more important for us. 

3.2 Characterizations of Recursively Enumer
able Languages 

The unchanging landmarks in the investigations in the following chapters 
will be the following two borders of computability. The power of finite au
tomata constitutes the lowest interesting level of computability. The power 
of Turing machines is the highest level of computability - according to the 
Church-Turing Thesis. Finite automata stand for regular languages, Tur
ing machines stand for recursively enumerable languages. In order to prove 
that a given generative device is able to generate each regular language, it 
is in general an easy task to start from a finite automaton or from a regular 
grammar and to simulate it by a device of the desired type. Sometimes, we 
can do the same when we have to characterize the recursively enumerable 
languages. Very useful in this sense are the normal forms discussed in the 
previous section. However, in many cases such a direct simulation is not so 
straightforward. Then the representation results available for recursively enu
merable languages can be of great help. Some of them are quite non-intuitive, 
which makes their consequences rather interesting. As several results in the 
subsequent chapters essentially rely on such representations, we present here 
some results of this type, also giving proofs of them. 

The first result is rather simple. 

Theorem 3.12. For every language L S;; T*, L ERE, there are L' E CS 
and CI, C2 ~ T, such that L' S;; L{CI}{C2}*' and for each wE L there is i 2:: 0 
such that WCI c~ E L'. (Thus, L is equal to L' modulo a tail of the form 
CIC~, i 2:: 0.) 

Proof. For a type-O grammar a = (N, T, S, P) we construct the grammar 

a' = (N U is', X}, T U {CI' C2}, S', P'), 

with 

P' = {S' -+ SCI} 

U {u -+ v I u -+ v E P, lui::; Ivl} 
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u {u --> vxn I u --> v E P, lui> Ivl,n = lul-Ivl} 
U {X a --> aX I a E NUT} 

U {XCI --> clcd. 
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It is easy to see that G' simulates the derivations in G, the only difference 
being that instead of the length-decreasing rules of P one uses rules which 
introduce the symbol X; this symbol is moved to the right and transformed 
into the terminal C2 at the right hand of Cl. Thus, taking L = L(G), the 
properties of L' = L( G') as specified in the theorem are satisfied. 0 

Corollary 3.2. (i) Each recursively enumerable language is the projection 
of a context-sensitive language. 

(ii) For each L E RE there is a language Ll E CS and a regular language 
L2 such that L = L1/ L2. 

Proof. The first assertion is obtained by taking the projection which erases 
the symbols Cl, C2 above, whereas the second assertion follows by using the 
regular language L2 = Cl c2' (In both cases the context-sensitive language is 
L' as in Theorem 3.12.) 0 

Of course, the assertions above are valid also in a "mirrored" version: 
with L' ~ {c2}*{cdL in Theorem 3.12, and with a left quotient by a regular 
language in point (ii) of Corollary 3.2. 

These results prove that the two families RE and CS are "almost equal," 
the difference lies in a tail of arbitrary length to be added to the strings of a 
language; being of the form CIC~, i ~ 1, this tail carries no information other 
than its length, hence from a syntactical point of view the two languages L 
and L' in Theorem 3.12 can be considered indistinguishable. 

The results below are of a rather different nature: we represent the recur
sively enumerable languages starting from "small" subfamilies of RE, but, 
instead, we use powerful operations (such as intersection, quotients, etc). 

Theorem 3.13. Each recursively enumerable language is the quotient of two 
linear languages. 

Proof. Take a language L ERE, L ~ T*. Consider a type-O grammar 
G = (N, T, S, P) for the language mi(L) and add to P the rule S --> S. (In 
this way we may assume that each derivation in G has at least two steps.) 
Take a symbol c not in NUT and construct the languages 

Ll = {xnunYnCXn-l Un-lYn-lC . .. CXl UIYICC mi(Ydmi(vl)mi(xl)c 

mi(Y2)mi(v2)mi(x2)c ... C mi(Yn-l) mi(vn_l) mi(xn-dccc 

mi(Yn)mi( vn)mi(xn) I n ~ 2, Xi, Yi E (N U T)*, 

Ui --> Vi E P,l ::; i ::; nand XnVnYn E T*}, 

L2 = {WnCWn-lC ... CWICSCC mi(wl)c mi(w2)c ... C mi(wn)ccc I 
n ~ 1, Wi E (N U T)*, 1 ::; i ::; n}. 
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Both these languages are linear. Here is a grammar for L l : 

G = ({XO,Xl,X2,X3},NUTU{c},Xo,PI), 

PI = {Xo --+ aXoa I a E T} 

U {Xo --+ uXl mi(v) I u --+ v E P,v E T*} 

U {Xl --+ aXla I a E T} 

U {Xl --+ cX2CCC} 

U {X2 --+ aX2a I a E NUT} 

U {X2 --+ uX3 mi(v) I u --+ v E P} 

U {X3 --+ aX3a I a E NUT} 

U {X3 --+ cX2c, X3 --+ cc}. 

We have the equality L = L2 \Ll . 

Indeed, each string in Ll is of the form 

with n ~ 2,Wi ===} mi(wD,l ~ i ~ n, in grammar G, and w~ E T*. Each 
string in L2 is of the form 

Z = ZmCZm-lC. "CZlCSCC mi(zl)c",C mi(zm)ccc, 

with m ~ 1, Zi E (N U T)*, 1 ~ i ~ m. Therefore, W = ZZ' if and only if 
n = m + 1, S = WI, Zi = WiH for 1 ~ i ~ m, w~ = mi(zi), 1 ~ i ~ m, and 
z' = w~. This implies w~ = mi(zi) = mi(wiH), 1 ~ i ~ n, that is 

S = WI ===} W2 ===} ••• ===} Wn ===} mi(z') 

in the grammar G. Thus, mi(z') E L(G), that is L2\Ll = mi(L(G)) = L, 
which completes the proof. D 

Corollary 3.3. Each recursively enumerable language is the weak coding of 
the intersection of two linear languages. 

Proof. We repeat the construction above, taking the block XnVnYn in the 
writing of language Ll as composed of primed versions of symbols in T. Let T' 
be the set of such symbols. Instead of L2 we take the language L2T'*. Denote 
the obtained languages by L~, L~, respectively. Obviously, they are linear, 
and x E L~ nL~ if and only if x = XlCCCX~, Xl E (NUTU{c})*, x~ E T'*, such 
that X2 E L2 \L l . For the weak coding h defined by h(a) = A, a E NUTu {c}, 
and h(a') = a, a E T, we obviously get h(L~ n L~) = mi(L(G)) = L. D 

For a gsm 9 = (K, VI, V2 , So, F, P) with VI = V2 we can define a mapping 
g* : Vt ---+ P(Vt) by 

g*(w) = {z E vt I there are WI, ... ,wn in Vt,n ~ 2, 

such that Wi E g( Wi-I), 2 ~ i ~ n, and 

W = Wl,Z = wn } U {w}. 
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(We iterate the gsm g, repeatedly translating the current string.) 

Theorem 3.14. Each language L ERE, L ~ T*, can be written in the form 
L = g*(ao) n T*, where 9 = (K, V, V, so, F, P) is a gsm and ao E V. 

Proof. Take a type-O grammar G = (N, T, 8, P). Without loss of the 
generality we may suppose that 8 does not appear in the right hand member 
of rules in P. We construct the gsm 

9 = (K, NUT, NUT, so, F, P), 

K = {so,sdu{[xllxEPref(u)-{A},u-vEP}, 

F = {sd, 

P = {soa - aso I a E NUT} 

U {soal - [all I u - v E P,u = alu',al E NUT,u' E (NUT)*} 

U {[xla - [xall xa E Pref(u) - {u},u - v E P,a E NUT, 

x E (NUT)*} 

U {[xla - VSl I xa = u, u - v E P, a E NUT, x E (N U T)*} 

U {soa - VSl I a - v E P, a E N} 

U {Sl a - aSl I a E NUT}. 

It is clear that at each translation step the gsm 9 simulates the application 
of a rule in P. Therefore, g*(8) n T* = L(G). 0 

We now move on to consider some quite powerful (and useful for some 
of the next chapters) representations of recursively enumerable languages, 
starting from equality sets of morphisms. 

For two morphisms hI, h2 : V* ----+ U*, the set 

is called the equality set of hI, h2. 

Theorem 3.15. Every recursively enumerable language L ~ T* can be writ
ten in the form L = prT(EQ(hI, h2) n R), where hI, h2 are two morphisms, 
R is a regular language, and prT is the projection associated to the alphabet 
T. 

Proof. Consider a type-O grammar G = (N, T, 8, P) and assume the 
productions in P labeled in a one-to-one manner with elements of a set Lab. 

Consider the alphabets 

VI =NUTU{c}, 

V2 = NUTU LabUT' U {B,F,c}, 

where T' = {at I a E T}. 
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We define the morphisms hI, h2 : V2* ---+ Vt by 

hl(B) = Bc, 
hl(c)=c, 
hl(p) = v, 
hl(A) = A, 
hI (a') = a, 
hl(a)=A, 
hl(F) = A, 

h2(B) = A, 
h2(C) = C, 

h2(p) = u, 
h2 (A) = A, 
h2 (a') = a, 
h2(a) = a, 
h2(F) = c. 

for p : u --. v E P, 
for A E N, 
for a E T, 
for a E T, 

Moreover, we consider the regular language 

R = {B}((N U T')* Lab(N U T')* {c} )+T* {F}. 

The idea behind this construction is as follows. Every string in L( G) 
appears as the last string in a derivation D according to G. For a string 
w(D) codifying the derivation D, the morphisms hI, h2 satisfy hl(w(D)) = 
h2 ( W ( D) ). However, h I "runs faster" than h2 on prefixes of w ( D), and h2 
"catches up" only at the end. The projection prT (defined by h(a) = a for 
a E T and h(a) = A for a E VI - T) erases everything else except the end 
result. The language R is used to check that only strings of the proper form 
are taken into account. 

Using these explanations, the reader can verify that we obtain the equality 
L(G) = prT(EQ(hl' h2) n R). (Complete details can be found in [200].) 0 

A variant of this result, useful in Chap. 4, is the following one. 

Theorem 3.16. For each recursively enumerable language L ~ T*, there 
exist two A-free morphisms hI, h2' a regular language R, and a projection 
prT such that L = prT(hl(EQ(hl , h2)) n R). 

Proof Consider a type-O grammar G = (N, T, B, P) with the rules in P 
labeled in a one-to-one manner with elements in a set Lab. Without loss of 
generality, we assume that for each production p : u --. v in P we have v -I- A, 
except for the production B --. A if A E L(G). 

Define T' = {a' I a E T}, T" = {a" I a E T}, and Lab' = {p' I p E Lab}. 
For notational purposes, we also define a morphism d: (NUT)* ---+ (NUT')* 
by d(A) = A for A E Nand d(a) = a' for a E T. Note that d is a bijection; 
thus, the inverse of d, d- I , is well defined. 

Let 

VI = NUTUT'U{B,F,c}, 

V2 = NUT U T" U Lab U Lab' U {B, F, c, c'}, 

where B, F, c, and c' are new symbols. The morphisms hI, h2 : V2* ---+ Vt, 
depending on G, are defined as follows: 
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hl(B) = BSc, 
hl(c) = c, 
hl(P) = d(v), 
hl(p') = v, 
hl(A) = A, 
hl(a') = a', 
hI (a") = a, 
hl(a) = F, 
hl(c') = F, 
hl(F) = F, 

h2(B) = B, 
h2(C) = C, 

h2(p) = d(u), 
h2 (p') = d(u), 
h2(A) = A, 
h2 (a') = a', 
h2(a") = a', 
h2(a) = a, 
h2(c') = c, 
h2(F) = FF. 

Consider also the regular language 

for p : u -+ v E P, 
forp:u-+vEP, 
for A E N, 
for a' E T', 
for a" E Til, 
for a E T, 

R = {BS}( {c}(N U T')*)*{c}T* {F} +. 
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Note that u, v f=. A for all u -+ v E P. So, both hI and h2 are A-free 
morphisms. If A E L, then we introduce an additional symbol d to V2 and 
define 

It is easy to see that in this fashion we will not introduce any new words 
to hl (EQ(h l ,h2)) n R. Therefore, we assume that A ¢. L in the following 
arguments. 

The proof of the fact that x E L(G) implies x E prT(hl(EQ(hl , h2)) n R) 
is similar to the proof of the corresponding inclusion in Theorem 3.15. 

Conversely, let W E prT(hl(EQ(hI, h2)) n R), i.e., W = prT(Y) for some 
Y E hl(EQ(hl , h2)) n R. Then by the definition of R, Y is of the form 

where YI, ... , Yt-l E (N U T')*, Yt E T*, and l > O. Let Y = hl(x) for some 
x E EQ(hI, h2)' Then 

such that h2(XI) = S, hl(Xi) = h2(XHd = Yi, for 1 ~ i ~ t, and l = 2m and 
hl(xt+l) = Fm-l. Note that if Xj = Xj+! for some j, 1 ~ j < t, then we can 
construct a new word x' by deleting XjC from x so that prT(hl (x') n R) = 
prT(hl(x)nR) = w. So, without loss of generality, we assume that Xj f=. Xj+! 
for all j, 1 ~ j < t. (It is clear that Xt f=. Xt+!.) 

The following assertions are clear: 

(1) Xl = P (or Xl = p' if t = 1) for some p : S -+ z in P, 

(2) Xi E (N U T' U Lab)* Lab(N U T' U Lab)*, for 2 ~ i < t, 

(3) Xt E (N U T' U Lab') * , 
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(4) Xt+! E T*, 

(5) hl(xi) = Yi and h2(xi) = Yi-l, for 1 ~ i ~ t (letting Yo = S). 

By (2) and (5) above and the definition of hI and h2' it follows that 

2 ~ i ~ t - 1. Note also that S ==?G d-l(Yl) and d-l(Yt_d ==?~ Yt. 
Therefore, we have S ==?~ Yt, i.e., Yt E L(G). Since w = prT(Y) = Yt, we 
have proved that w E L. D 

Note the difference between the representations in Theorems 3.15,3.16: in 
the first theorem the language L is obtained as a projection ofthe intersection 
of the equality set with a regular language, whereas in the second case the 
language L is the projection of the intersection of a regular language of the 
image of the equality set under one of the morphisms defining the equality 
set. 

A very useful consequence of Theorem 3.15 is the following one. 
Consider an alphabet V and its barred variant, V = {a I a E V}. The 

language 

TSv = U (x ill x) 
xEV' 

is called the twin-shuffle language over V. (For a string x E V*, x denotes 
the string obtained by replacing each symbol in x with its barred variant.) 

For the morphism h : (V U V)* ------> V* defined by 

h(a) = A, for a E V, 

h(a) = a, for a E V, 

we clearly have the equality TSv = EQ(h,prv). This makes the following 
result plausible. 

Theorem 3.17. Each recursively enumerable language L ~ T* can be writ
ten in the form L = prT(TSv n R'), where V is an alphabet and R' is a 
regular language. 

Proof. Consider again the proof of Theorem 3.15. We may assume that 
Vl and V2, the range and the target alphabets of the morphisms hl, h2 are 
disjoint. (We simply rename the letters of Vl ; this does not affect the proof 
above.) 

Consider now the alphabet V = Vl U V2 and let g be the morphism 
satisfying 

g(a) = ahl (a)h2(a), for every a E V2. 

Let also R' be the regular language 

R' = g(R) ill V;. 
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The following equality follows directly from the definitions above 

therefore the representation in Theorem 3.17 is a consequence of the repre
sentation in Theorem 3.15. 0 

Note the similarity of the representation above of recursively enumerable 
languages with the Chomsky-Schiitzenberger representation of context-free 
languages (Theorem 3.11); the role of the Dyck languages is now played by 
the twin-shuffle languages. 

In this representation, the language T Sv depends on the language L. 
This can be avoided in the following way. Take a coding, f : V ---+ {O, 1} * , 
for instance, with f(ai) = OliO, where ai is the ith symbol of V in a specified 
ordering. The language f(R') is regular. A gsm can simulate the intersec
tion with a regular language, the projection prT, as well as the decoding of 
elements in f(TSv). Thus we obtain 

Corollary 3.4. For each recursively enumerable language L there is a gsm 
gL such that L = gL(TS{O,l}). 

Therefore, each recursively enumerable language can be obtained by a 
sequential transducer starting from the unique language TS{O,l}. One can 
also see that this transducer can be a deterministic one. 

Somewhat surprisingly, the result above is true also for a "mirror" variant 
of the twin-shuffle language. 

For an alphabet V, consider the language 

RTSv = U (x ill mi(x)). 
xEV' 

This is the reverse twin-shuffte language associated to V. 

Theorem 3.1B. For each recursively enumerable language L there is a de
terministic gsm gL such that L = gL(RTS{o,l}). 

Proof. Since the deterministic gsm's are closed under composition, it suf
fices to find a deterministic gsm 9 such that g(RTS{o,l}) = TS{O,l}. The idea 
of constructing such a gsm 9 is to let 9 to select twins x that are palindromes 
of the form x = yOO mi(y), with y E {O, 1}*, with 0 and 1 coded as 01,10, 
respectively. 

Then 9 is the gsm which maps w = h(u)OOOOv into g(w) = u, for all strings 
u, v E {O, 1,0, I} *, where h is the morphism defined by h(O) = 01, h(l) = 
10, h(O) = 01, h(I) = 10. Furthermore, the gsm 9 is defined for strings in 

1)= {01,10,OI,IO}*0000{010I,10IO}*. 

It is easy to see that 9 is a deterministic gsm mapping. It remains to 
show that g(RTS{o,l}) = TS{O,l}. 
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Consider a string w = h(u)OOoov in RTS{O,l} n D. Since pr{O,I}(W) = 

mi(pr{o,l} (w)), the specific form of strings in D (with the "marker" 0000 
in the middle) implies that pr{o,I} (h(u)) = mi(pr{O,l}(V)) and pr{O,I} (v) = 
mi(pr{o,l}(h(u))). Since pr{O,I} (v) = pr{O,l}(V) (because v E {mOl, lOIO}*), 
this implies that pr{o,I}(h(u)) = pr{o,l}(h(u)). Hence h(pr{O,I}(U)) = 
h(pr{o,l} (u)) and so, since h is injective, pr{O,I}(U) = pr{O,l}(U), i.e., 
g(w) = u E TS{O,l}' This shows that g(RTS{o,l}) S;; TS{O,l}' 

---,---,-

Conversely, if u E {O, 1,0, I}* such that pr{o,I}(u) = pr{O,l} (u), then 
consider the string w = h(u)OOoov, where v is the unique element of 
{OloI,lOIO}* such that pr{O,l}(v) = mi(pr{O,l}(h(u))). Then WED, 
g(w) = u, and W E RTS{O,l}' This ends the proof. 0 

Results similar to Corollary 3.4 and Theorem 3.18 hold also for a weaker 
variant of the twin-shuffie language. 

Consider the coding c : {0,1}* ---+ {0,1}* defined by c(O) = ° and 
c(l) = 1. The semi-twin-shuffie language over {O, I} is denoted by STS{O,l} 
and defined by 

STS{O,l} = U (x ill c(x)). 
xE{O,l}* 

Theorem 3.19. For each recursively enumerable language L there is a gsm 
gL such that L = gdSTS{O,l})' 

Proof. In view of Corollary 3.4, it is enough to prove that TS{O,l} 
g(STS{o,l}) for a gsm g. 

Consider the morphism h : {O, 1,0, I}* ---+ {O, 1, O}* defined by 

h(O) = 00, h(l) = 01, 
h(O) = 00, h(I) = 01, 

as well as the regular language 

R = {00,0l,00,01}*. 

The following equality holds: 

Consider a string y E TS{O,l}' There is x E {0,1}* such that y E x ill x. 
We clearly have h(y) E h(x) ill h(x) = h(x) ill c(h(x)). Consequently, 
h(y) E STS{O,l}' Obviously, h(y) E R, hence the inclusion TS{O,l} S;; 
h-1(STS{O,1} n R) follows. 

Conversely, take a string z E STS{O,l} n R and look for h-1(z). Because 
h is injective, h-1(z) is a singleton (it is non-empty for all z E R). By the 
definition of ST S{O,l} we have z E x ill c( x) for some x E {O, I} *. Because z E 

R, we must have x E {00, 01} *, that is c( x) E {oo, 01} *. Consider the strings 
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y = h-1(x) and y. We have y = h-1(x) = h-1(c(x)). Consequently, h-1(z) E 

h-1(x ill c(x)) = h-1(x) ill h-1(c(x)) = h-1(x) ill h-1(x) <;:; TS{O,l}' This 
proves that also the inclusion h-1(STS{0,1} n R) <;:; TS{O,l} is true. 

Now, the intersection with a regular language and the inverse morphism 
can be computed at the same time by a gsm. D 

Also a counterpart of Theorem 3.18 can be obtained. The reverse semi
twin-shuffle language over {a, 1} is denoted by RSTS{O,l} and is defined by 

RSTS{O,l} = U (x ill c(mi(x))). 
xE{O,l}* 

By a proof similar to that of Theorem 3.19 we obtain the following result. 

Corollary 3.5. For each recursively enumerable language L there is a gsm 
gL such that L = gdRSTS{o,l})' 

3.3 Universal Turing Machines and Type-O 
Grammars 

A computer is a programmable machine, able to execute any program it re
ceives. From a theoretical point of view, this corresponds to the notion of a 
universal Turing machine, and in general, to the notion of a machine which 
is universal for a given class, in the following sense. 

Consider an alphabet T and a Turing machine M = (K, V, T, B, so, F, J). 
As we have seen above, M starts working with a string w written on its tape 
and reaches or not a final state (and then halts), depending on whether or 
not W E L(M). A Turing machine can be also codified as a string of symbols 
over a suitable alphabet. Denote such a string by code(M). Imagine a Turing 
machine Mu which starts working from a string which contains both wE T* 
and code(M) for a given Turing machine M, and stops in a final state if and 
only if w E L(M). 

In principle, the construction of Mu is simple. Mu only has to simulate 
the way of working for Turing machines, and this is clearly possible: look for 
a transition, as defined by the mapping J, depending on the current state and 
the current position of the read-write head (this information is contained in 
the instantaneous descriptions of the particular machine); whenever several 
choices are possible, make copies of the current instantaneous description 
and branch the machine evolution; if two copies of the same instantaneous 
description appear, delete one of them; if at least one of the evolution vari
ants leads to an accepting configuration, stop and accept the input string, 
otherwise continue. 

Such a machine Mu is called universal. It can simulate any given Turing 
machine, providing that a code of a particular one is written on the tape of 
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the universal one, together with a string to be dealt with by the particular 
machine. 

The parallelism with a computer, as we know the computers in their 
general form, is clear: the code of a Turing machine is its program, the 
strings to be recognized are the input data, the universal Turing machine is 
the computer itself. 

Let us stress here an important distinction, that between computational 
completeness and universality. Given a class C of computability models, we 
say that C is computationally complete if the devices in C can characterize 
the power of Turing machines (or of any other type of equivalent devices). 
This means that given a Turing machine M we can find an element C in C 
such that C is equivalent with M. Thus, completeness refers to the capacity 
of covering the level of computability (in grammatical terms, this means to 
generate all recursively enumerable languages). Universality is an internal 
property of C and it means the existence of a fixed element of C which is able 
to simulate any given element of C, in the way described above for Turing 
machines. 

Of course, we can define the completeness in a relative way, not refer
ring to the whole class of Turing machines but to a subclass of them. For 
instance, we can look for context-free completeness (the possibility of gen
erating all context-free languages). Accordingly, we can look for universal 
elements in classes of computing devices which are computationally complete 
for smaller families of languages than the recursively enumerable languages. 
However, important for any theory which attempts to provide general models 
of computing are the completeness and universality with respect to 'lUring 
machines, and this will be the level we shall consider in this book. 

The idea of a universal Turing machine was introduced by Turing him
self, who has also produced such a machine [212]. Many universal Turing 
machines are now available in the literature, in general looking for simple 
(if not minimal) examples from different points of view. We present below 
some of them, for the case when Turing machines are considered as devices 
which compute mappings (see again Sect. 3.1). In such a framework, we say 
that a Turing machine is universal if it computes a universal partial recursive 
function (modulo the coding-decoding "interface" mentioned in Sect. 3.1). 
Similarly, a Turing machine Ml simulates a Turing machine M2 if there are 
two coding-decoding mappings 

C : IDM2 --+ IDMll D: IDMl --+ IDM2 , 

such that for each a E I D M2 we have 

The complexity of a Turing machine can be evaluated from various points 
of view: the number of states, the number of tape symbols (the blank sym
bol included), or the number of moves (quintuples (s,a,b,d,s') such that 
(s', b, d) E 6(8, a)). 
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We denote by UT M (m, n) the class of universal deterministic TUring 
machines with m states and n symbols (because we must have halting con
figurations, there can exist at most m . n - 1 moves). 

Small universal TUring machines were produced already in [205] (with 
two states) and [138] (with seven states and four symbols). The up-to-date 
results in this area are summarized in [185]: 

Theorem 3.20. (i) The classes UTM(2, 3), UTM(3, 2) are empty. (ii) 
The following classes are non-empty: UTM(24,2), UTM(1O,3), UTM(7,4), 
UTM(5,5), UTM(4,6), UTM(3, 10), UTM(2,18). 

Therefore, the problem is open for 51 classes UTM(m, n). 
We recall from [185] three examples of universal TUring machines, from 

the classes UT M(7, 4), UT M(5, 5), UT M( 4,6); the last one has the smallest 
number of moves. Because the machines are deterministic, we present them 
in a tabular way: for a quintuple (s, a, b, d, s'), an entry bds' will appear at 
the intersection of the row marked with s and the column marked with a. 
The states will be always denoted with so, Sl, ... ,Sm and the blank symbol 
with B. (We do not present here the coding-decoding mappings C, D; the 
reader is referred to [185] for details.) 

One sees that these machines contain 26, 23, and 22 moves, respectively. 
These are the best results known ([185]). 

Table 3.2. A TUring machine in UTM(7,4) 

B 1 a b 
So BLso BLso bRs1 aLso 
Sl lRs1 BLso bRs1 lRs4 

S2 lLs3 lRs2 bRs2 aRs2 

S3 lLs6 lLs3 bLs3 aLs3 

S4 bLs3 lRs4 bRs4 aRs4 

Ss BRs4 BRss aRss BRso 
s6 BRs2 - aLss -

Table 3.3. A TUring machine in UTM(5, 5) 

B 0 1 a b 
So bRso lRso OLso ORs1 BLso 
Sl OLs3 ORs1 ORs1 aRs1 bRs1 

S2 BRs4 aLs3 ORs2 aRs2 bRs2 

S3 bLs2 lLs3 ORs1 aLs3 bLs3 

S4 - - lRs4 lRso BRs4 
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Table 3.4. A 'lUring machine in UTM(4,6) 

B 1 a b b' b" 
So b" Lso b" Lso ORs3 b'Rso bLso ORso 
SI lLs1 BRs1 bRs l b'Ls2 b" RS1 b'Ls1 

S2 aRso lRs2 lRso b" RS3 bRs2 -

S3 aLs1 ORs3 bRs3 aLs1 b" RS3 -

In most of the constructions on which the proofs in the subsequent chap
ters are based, we shall start from a Chomsky type-O grammar. 

Given a 'lUring machine M we can effectively construct a type-O grammar 
G such that L(M) = L(G). (Similarly, we can produce a type-O grammar 
G such that G computes, in a natural way and using appropriate coding
decoding mappings, the same mapping FM as M. So, a grammar can be 
considered a function computing device, not only a language generating mech
anism.) 

The idea is very simple. Take a 'lUring machine M = (K, V, T, B, So, F, 8) 
and construct a non-restricted Chomsky grammar G working as follows: 
starting from its axiom, G nondeterministically generates a string w over 
V, then it makes a copy of w (of course, the two copies of w are separated 
by a suitable marker; further markers, scanners and other auxiliary symbols 
are allowed, because they can be erased when they are no longer necessary). 
On one of the copies of w, G can simulate the work of M, choosing nonde
terministically a computation as defined by 8; if a final state is reached, then 
the witness copy of w is preserved, everything else is erased. 

For the sake of the completeness, we present the details of such a con
struction. 

Consider a deterministic 'lUring machine M = (K, V, T, B, So, F,8) and 
construct the grammar 

G = (N,T,S,P), 

where 
N = {[a,b] I a E Tu {A},b E V} U {S,X, Y} UK, 

and P contains the following rules: 

1) S -+ soX, 

2) X -+ [a, a]X, for a E T, 

3) X -+ Y, 

4) Y -+ [A, B]Y, 

5) Y -+ A, 

6) s[a, a] -+ [a, ,B]s', for a E T U {.A}, s, s' E K, a,,B E V, 

such that 8(s,a) = (s',,B,R), 

7) [b,)']s[a,a]-+ s'[b,),][a,,B], for a,,B,), E V,a,b E TU {.A},s,s' E K, 
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such that 8(s,a) = (s',/3,L), 

8) [a, a]s -t sas, 

s[a, a] -t sas, 

s -t,x, for a E T U {>.}, a E V, s E F. 

The reader can easily check that L(G) = L(M). 
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Applying this construction to a universal Turing machine M u , we ob
tain a universal type-O Chomsky grammar Gu , a grammar which is universal 
in the following sense: the language generated by Gu consists of strings of 
the form, say, w#code(M), such that w E L(M). (We can call the language 
{ w#code( M) I w E L( M)} itself universal, and thus any grammar generating 
this language is universal.) However, we are interested in a "more grammat
ical" notion of universality, and this leads to the following definition. 

A triple G = (N, T, P), where the components N, T, P are as in a usual 
Chomsky grammar is called a grammar scheme. For a string w E (N U T)* 
we define the language L( G, w) = {x E T* I w ===} * x}, the derivation being 
performed according to the productions in P. 

A universal type-O grammar is a grammar scheme Gu = (Nu, Tu, Pu), 
where N u, Tu are disjoint alphabets, and Pu is a finite set of rewriting 
rules over Nu U Tu, with the property that for any type-O grammar G = 
(N,Tu,S,P) there is a string w(G) such that L(Gu,w(G)) = L(G). 

Therefore, the universal grammar simulates any given grammar, provided 
a code w( G) of the given grammar is taken as a starting string of the universal 
one. 

There are universal type-O grammars in the sense specified above. Because 
this assertion is fundamental for the investigations in the following chapters, 
we prove it with full details. 

Let G = (N, T, S, P) be a type-O grammar. Without loss ofthe generality, 
we may assume that N contains only three nonterminals, N = {S, A, B}. 
(If we have more nonterminals, say S, Xl, X 2 , ••• , X n , for n 2: 3, then we 
systematically replace each Xi appearing in a rule of P with ABi A, 1 ::; i ::; n, 
for some new symbols A, B. The obtained grammar is obviously equivalent 
with the original grammar.) 

We construct the grammar scheme 

with 

Nu = {A,B,C,D,E,F,H,R,Q,S,X,Y} 

U {[a, i]1 a E T,1 ::; i ::; 9}, 
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and the set Pu contains the following rules: 

(1) (1) C -+ BQ, 
(2) Qa -+ aQ, for a E NUT U {D, E}, 

(II) (3) QDa -+ [a, 2]D[a, 1], for a E NUT, 
(4) a[j3, 2] -+ [j3,2]a, for a E NUT U {D, E}, 

j3 E NUT, 
(5) B[a, 2] -+ [a,3]B, for a E NUT, 
(6) a[j3, 3] -+ [j3,3]a, for a, j3 E NUT, 
(7) a[a,3] -+ [a, 4], for a E NUT, 

(III) (8) [a, 1]j3 -+ [j3, 5][a, 1 ][j3, 1], for a, j3 E NUT, 
(9) a[j3, 5] -+ [j3,5]a, for a E NUT U {D, E}, 

j3 E NUT, 
(10) B[a, 5] -+ [a,6]B, for a E NUT, 
(11) a[j3, 6] -+ [j3,6]a, for a, j3 E NUT, 
(12) [a, 4]j3[j3, 6] -+ [a, 4], for a,j3 E NUT, 

(IV) (13) [a, l]Ej3 -+ [a, 7]E[j3, 9], for a, j3 E NUT, 
(14) [a, 1 ][j3, 7] -+ [a,7]j3, for a, j3 E NUT, 
(15) D[a, 7] -+ Da, for a E NUT, 
(16) [a, 9]j3 -+ [j3, 8] [a, 9] [j3, 9], for a, j3 E NUT, 
(17) a[j3, 8] -+ [j3]a, for a E NUT U { B, D, E}, 

j3 E NUT, 
(18) [a, 9][j3, 8] -+ [j3, 8][a, 9], for a, j3 E NUT, 
(19) [a, 4][j3, 8] -+ j3[a, 4], for a, j3 E NUT, 

(V) (20) [a, IJED -+ [a,7JRED, for a E NUT, 
(VI) (21) [a, 9JD -+ RaD, for a E NUT, 

(22) [a, 9JR -+ Ra, for a E NUT, 
(23) aR -+ Ra, for a E NUT U {D, E}, 
(24) BR-+ RC, 
(25) [a, 4]R -+ A, for a E NUT 

(VII) (26) Aa -+ aA, for a E T, 
(27) AC -+ H, 
(28) Ha -+ H, for a E NUTU {D,E}, 
(29) HF -+ A. 

Assume that P = {Ui -+ Vi I 1 ::; i ::; k} and consider the string 

code(G) = ASCDulEvIDu2Ev2D ... DUkEvkDF. 

Let us first examine how the grammar scheme Gu works on a string of 
the form AwCDu1Ev1D ... DUkEvkDF. 

Group (I) of rules introduces the nonterminal Q which selects a rule Ui -+ 

Vi occurring in the right hand of a nonterminal D (by rule (3)). By the 
second group of rules, the first symbol a in Ui is transformed in [a, 1] and 
the copy nonterminal [a, 2] is moved to the left hand of B, where it becomes 



3.3. Universal Turing Machines 113 

[a, 3]. If in w there exists an occurrence of a, then by rule (7) we introduce 
the nonterminal [a, 4] in order to encode this information. 

The rules of group (III) transform all symbols {3 from Ui in [{3,1] and 
then any such symbol {3 is erased from the right hand of [a, 4], if this can be 
performed in the correct order. In this way, the occurrence of Ui is identified 
inw. 

By rules of group (IV) each symbol {3 of Vi #- A is transformed into [{3,9] 
and a copy [{3,8] is introduced which is moved to the left of the symbol B. 
When [{3,8] reaches the symbol [a,4] one introduces the symbol {3. In this 
way, the string Ui, erased by the rules in group (III), is replaced by Vi. If 
Vi = A, then rule (20) is used instead of rules in group (IV). In this way we 
obtain a derivation step w ==} w' using the rule Ui -+ Vi. 

This procedure can be repeated, due to the rules in group (VI). If w' 
contains no nonterminal occurrence, then by rules in group (VII) we erase all 
auxiliary symbols, leaving only the terminal string w'. 

Consequently, L(G) ~ L(Gu, code(G)). 
In order to prove the reverse inclusion, let us observe that the nonterminal 

A can be eliminated only when in between A and C there is a terminal string. 
Every derivation must begin by the introduction of the nonterminal Q. The 
erasing of this symbol implies the introduction of a nonterminal [a, 1], which 
can be eliminated only by replacing it with the nonterminal [a, 9]. These 
operations are possible if and only if a string Ui was erased from w. The 
removing of [a,9] is possible after writing Vi instead of the erased Ui. The 
symbol R introduced in this way can be eliminated only when the string 
reaches the form Aw'CDu1Ev1D . .. DUkEvkDF. In this way we simulate a 
derivation using the rule Ui -+ Vi. All derivations in Gu which are not of this 
form are blocked. Thus, the inclusion L(Gu,code(G)) ~ L(G) is obtained, 
completing the proof ofthe equality L(Gu, code(G)) = L(G). D 

Note that the universal grammar Gu constructed above codifies the way of 
using a grammar in a derivation process: choose a rule, remove an occurrence 
of its left hand member, introduce instead an occurrence of its right hand 
member, check whether or not a terminal string is obtained. 

A natural question here, also important for molecular computing, is 
whether or not universality results hold also for other classes of automata 
and grammars than Turing machines and type-O grammars, in particular for 
finite automata. 

If the question is understood in the strict sense, then the answer is neg
ative for finite automata: no finite automaton can be universal for the class 
of all finite automata. There are two reasons for this. Firstly, one cannot 
encode the way of using a finite automaton in terms of a finite automaton 
(we have to remember symbols in the input string without marking them, 
and this cannot be done with a finite set of states). Secondly, we cannot 
codify the states of any given finite automaton in such a way that the finite 
set of states of the universal automaton can handle them (an arbitrarily large 
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set of states will lead to arbitrarily long codes, hence again the information 
carried by them cannot be handled by a finite set of states). 

However, for our purposes it is sufficient to construct a universal automa
ton in the following relaxed sense. Consider the class of finite automata 
whose state set and input alphabet are subsets of fixed finite sets K and V, 
respectively. A universal finite automaton for this class can be constructed. 

We consider the following finite automaton 

Mu = (Ku, V U K U {Cl, C2}, qo,u, Fu, Pu), 

where 

Ku = {qo,u,qb,u,q~,u,q/} 
- -, -"-,,, 

U {[s], (s), (s)', (s)", (s), (s) ,(s) ,(s) Is E K} 

U {[sa], [sas'], [sas']', [sas']", [sas']"', [sas']iV I s, s' E K, a E V}, 

Fu = {q/}, 

and Pu contains the following transition rules: 

1. qo,us - sqb,u, s E K, 
, " v: qO,ua - aqo,u' a E , 

" K qo,us - sqo,u, s E , 

2. qo,uso - so[so], 

[sola - a[soa] , a E V, 
[soa]s - s[soas], s E K, a E V, 

3. [sas']s" - s"[sas']', s,s',s" E K,a E V, 

[sas'l'b - b[sas']", s, s' E K, a, b E V, 

[sas']"s" - s"[sas'], s,s',s" E K,a E V, 

[sas']cI - cI[sas']"', s, s' E K, a E V, 
[sas']'" s" - s"[sas']"', s, s', s" E K, a E V, 

[sas']"'C2 - C2[sas,]iv, s,s' E K,a E V, 

4. [sas']iVa_a(s'), s,s'EK,aEV, 

5. (s)s' - s'(s)', s, s' E K, 

(s)'a - a(s)", s E K, a E V, 

(s)"s' - s'(s), s,s' E K, 

6. (s)s - s[s], s E K, 

[s]a - a[sa], s E K, a E V, 

[sa]s' - s'[sas'], s, s' E K, a E V, 
-, 

7. (s)s' - s'(s) , s, s' E K, 
- -, 
(s)s' - s'(s) , s, s' E K, 
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-, -II 

(s) a -t a(s) , s E K, a E V, 
-II -
(s) S' -t s'(s), s, s' E K, 
- -III 
(S)C1 -t C1(S) , S E K, 
-III -III 

(s) S' -t s'(s) ,s, s' E K, s =I- s', 
-III 

(s) S -t sqf, s E F, 

qfs -t sqf, s E K, 

qfC2 -t c2qf. 

For a finite automaton M = (K, V, so, F, P) let us consider the string 
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where Siai -t ais~ E P,l ::; i ::; n, each string siais~ appears only once, 
s f1, S f2, ... ,s fm are the elements of F, and C1, C2 are new symbols. 

For two strings z, x E V* with x = a1a2 ... ap, ai E V,l ::; i ::; p, we define 
the block shuffie operation of z, x by 

bls(z, x) = za1za2 ... zapz. 

The automaton Mu is universal for the class of finite automata of the 
form M = (K', V', so, F, P) with K' ~ K, V' ~ V, in the following sense: 

bls(code(M),x) E L(Mu) iff x E L(M). 

Indeed, Mu works as follows: in the initial state qo,u and in each state (s), 
one parses code(M) in such a way that some blocks siais~ are skipped, then 
one block of this type is memorized (when starting, we must have Si = so) 
in the state [siais~], then further blocks sjajsj are skipped after passing also 
over C1S/! ... sfmC2 (thus reaching the state [siais~liv); the rule Siai -t ais~ 
of M is simulated by a rule of type 4, returning to a state of the form (s); 
the process can be iterated; using rules in group 7, we reach qf only when 
we have simulated in Mu a parsing in M ending in a state of F. 

We conclude with the following two observations concerning the universal 
automaton Mu. Firstly, the above construction remains unaltered if K and V 
are infinite sets. Thus, Mu can be considered universal for all finite automata. 
However, this modified Mu is not a finite automaton, although its schematic 
definition is very simple. (Such modifications of finite automata were often 
discussed in the early days of automata theory.) 

Secondly, the description of the individual automata to be simulated, 
code(M), appears numerous times in the input for Mu. This drawback can 
be remedied by making Mu a two-way automaton with two tapes. The details 
of such a construction are omitted. 
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3.4 Bibliographical Notes 

Several monographs in formal language theory were mentioned in Sect. 3.l. 
Others can be found in the bibliography. 

We do not specify here the origin of the results mentioned in Sect. 3.l. 
Theorem 3.12 is classic, it appears in most formal language theory mono

graphs. Theorem 3.13 appears in [110J; Corollary 3.3 is first established in 
[11], where a previous result is strenghtened (saying that each recursively enu
merable language is the morphic image of the intersection of two context-free 
languages). Results like Theorem 3.14 were given in [145], [188], [218J. 

Characterizations of recursively enumerable languages starting from 
equality sets of morphisms were given in [199], [34J; the construction in the 
proof of Theorem 3.15 is from [200J, where complete details can be found. 
The variant of Theorem 3.15 given in Theorem 3.16 is proved in [101J. Theo
rem 3.17 and its Corollary 3.4 were proved in [54J. Theorem 3.18 is from [53J. 
Similar (sometimes slightly weaker) results appear also in [18J. Semi-twin
shuffle languages were considered in [131]' where Theorem 3.19 and Corollary 
3.5 are given. 

Universal Turing machines can be found in [138], [205], and, mainly, in 
[185J. The construction of the universal type-O grammar from Sect. 3.3 is 
from [20J; it also appears in [19J. 



Chapter 4 

Sticker Systems 

Data structures basic in language theory are words, that is, strings of ele
ments, letters. Here the idea of a "string" entails a linear order among the 
elements. The double helix of DNA, when presented in two dimensions as 
we have already done, constitutes a data structure of a new kind: a double 
strand. While both strands still are linear strings of elements, the double 
strand possesses an important additional property. The paired elements in 
the strands are complementary with respect to a given symmetric relation. 
We have already discussed the interconnection between this Watson-Crick 
complementarity and the twin-shuffie language. The computational capacity 
of the latter has also been pointed out. In the next two chapters intensive 
use will be made of these two facts, the interconnection and computational 
capacity, for DNA computing. Our previous characterizations of recursively 
enumerable languages, based on equality sets and twin-shufRe languages, find 
here very natural applications. 

4.1 The Operation of Sticking 

We start by a formalization of the basic operation we shall use, in which 
we can build double stranded sequences starting from "DNA dominoes," 
sequences with sticky ends at one or at both their ends, or single stranded 
sequences, which, by ligation and annealing, stick to each other. 

Consider an alphabet V and a symmetric relation p s;:; V x V over V (of 
complementarity) . 

The property of symmetry is not used below, but we consider it because 
Watson-Crick complementarity is symmetric (in general, the intuitive idea 
of complementarity assumes the symmetry). 

Besides the monoid V*, of strings over V, we associate with V also the 
monoid V* x V*, of pairs of strings. In accordance with the way of repre
senting DNA molecules, where one considers the two strands placed one over 

© Springer-Verlag Berlin Heidelberg 1998
G. Păun et al., DNA Computing
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the other, we also write the elements (Xl, X2) E V* x V* in the form (:~). 

Therefore, the concatenation of two pairs (Xl) , (YI) is (XIYI). We also 
X2 Y2 X2Y2 

write (~:) instead of V* x V*. 

The identity element (~) of (~:) is often identified with .x, and omit

ted when it is not significant in a given context. 
We also denote 

[V V] p = {[abJ I a,b E V, (a, b) E p}, 

WKp(V) = [~[. 
The set W Kp(V) is called the Watson~Crick domain associated to 

the alphabet V and the complementarity relation p. The elements 

[~~] [~:] ... [~:] E W Kp(V) are also written in the form [:~], for 

WI = ala2··· an, W2 = hb2 ··. bno We call such elements [:~] E W Kp(V) 

well-formed double stranded sequences, or simply double stranded sequences, 
or molecules, in order to remind us of the reality they are modeling. The two 
component strings, WI, W2, are also called strands; WI is the upper strand and 
W2 is the lower strand. 

By the definition of W K p (V), [~] is also a molecule (although it has 

no biochemical representation). In this way, W Kp(V) is a monoid. For any 

two elements [Xl] , [YI] in W Kp(V), the sequence [XIYI] is well formed, 
~ ~ ~~ 

hence it is in W Kp(V). 

Note the essential difference between (~) and [~]: (~) is just another 

notation for the pair (x,y), that is, no relation is assumed between the sym

bols appearing in X and y, whereas [~] represents a molecule, with a precise 

bonding between the corresponding symbols in the two strands. This bond
ing is defined by the complementarity relation p on the alphabet V, hence 

in order to specify all these details we shall usually write [~] E W K p (V), 

although the expression [~] tells us that we have a molecule. 

We emphasize the two properties characterizing the elements [WW21] of 
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WKp(V), because they are essential for the models considered in this and 
the next chapter: 

- the two strands WI, W2 are of the same length, 

- the corresponding symbols in the two strands are complementary in the 
sense of the relation p. 

These properties are rather strong. We shall see that using elements of 
WKp(V) one can easily obtain characterizations of RE. As a matter offact, 
an intersection is "incorporated" in the definition of a Watson-Crick domain. 
However, this strength is provided to us "for free" by the DNA molecules: 
they are well-formed double stranded sequences, with the correctness checked 
in a natural way, where "natural" refers directly to the nature. 

We shall also use below "incomplete molecules," that is elements in the 
set 

where 

Lp(V) = ((:*) u (~*)) [~]:. 

Rp(V) = [~[ ((:*) u (~*)), 

LRp(V) = ((:*) u (~*)) [~r ((:*) u (~*)). 

Here, when we write, for instance, (~) [:], this is just an expression 

obtained by concatenating the two symbols (~) and [:]. This cannot 

be replaced, say, by (7:), because we lose the complementarity relations 

between the symbols in x, Yi (7:) is only a pair of strings, whereas [:] is 

a molecule. If u =f A, then [u;] is simply undefined. 

The possible shapes of elements in Wp(V) are illustrated in Fig. 4.1. In 
all cases, we have a well-formed double stranded sequence x and overhangs 
y, z in one or two sides of x. These overhangs (sticky ends) can be placed 
in the upper strand or in the lower one. Note that in the case of Lp(V) and 
Rp(V), the block x may be empty, but in the elements of LRp(V) we have 

x E [~]:, hence it contains at least one element [:] with (a, b) E p. In 
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turn, the overhangs can also be empty; what remains is then an element of 
W Kp(V) , therefore W Kp(V) is included in each set Lp(V), Rp(V), LRp(V). 

y x y x 
Lp(V): 

x y x y 

Rp(V): 

y x z y x z 

~ ~ 
LRp(V): 

y x z y x z 

I I I I 

Figure 4.1: Possible shapes of "dominoes" 

Any element of Wp(V) which contains at least a position [~], a =f- .x, b =f
.x, is called a well-started double stranded sequence; of course, when several 

"columns" [~], with (a, b) E p, appear, they appear consecutively. In gen

eral, the elements of Wp(V) are also called dominoes (polyominoes could be 
more rigorous). 

Among the elements of Wp(V) we can define a partial operation, modeling 
the ligation or annealing operation: a well-started molecule (hence a sequence 
having at least a position filled in both of the two strands) can be prolonged 
to the right or to the left with a domino, providing that the sticky ends 
match, that is they are complementary in the corresponding positions. The 
result should always be a well-started molecule, hence a sequence which does 
not have empty places surrounded by symbols from V. 

Specifically, consider a well-started molecule x E Wp(V), and a domino 
y E Wp(V). Being well-started, x can be written (obviously, in a unique way) 
in the form 

x = XIX2X3, 

where X2 E WKp(V) - {[~]} and Xl,X3 E (~*) U (:*) . 
The sticking of x, y (in this order, non-commutatively) is defined and 

denoted by /-l(x, y) in the following cases: 

1) X3 = (~) ,y = (~) y', for u, v E V* such that 
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[~] E WKp(V) and y' E Rp(V); then /-L(x,y) = XIX2 [~] y'; 

2) X3 = (~) ,y = (~) y', for u, v E V* such that 

[~] E WKp(V) and y' E Rp(V); then /-L(x, y) = XIX2 [~] y'; 

3) X3 = (:1) ,y = (~), for Ul,U2 E V*; 

( U1U2 ) then /-L(x, y) = XIX2 ). ; 

4) X3 = (U\U2) ,y = (~) , for U1,U2,V E V* such that 

[:1] E W Kp(V); then /-L(x, y) = XI X 2 [:1] (~) ; 
5) X3 = (U) ,y = ( ). ), for u, V1, V2 E V*such that 

). V1V2 

[~] EWKp(V); then/-L(X'Y)=X1X2[~] (~); 

6) X3 = (~) ,y = (~) , for V1, V2 E V*; 

then /-L(x, y) = X1X2 ( ). ), 
VI V 2 

7) X3 = (V1~2) ,y = (~) , for u, VI, V2 E V*such that 

[~] E WKp(V); then /-L(x,y) = X1X2 [~] (~); 

These eight cases are illustrated in Fig. 4.2. 
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In the symmetric way we can define /-L(y, x), the prolongation of a well
started molecule x, by a sequence y, to the left. Note that we do not need to 
distinguish the "left prolongation" from the "right prolongation" by denoting 
them in different ways: in any case at least one of the terms of the operation 
must be a well-started molecule and the result - it is a well-started molecule, 
too - entirely depends on the order of the two sequences and on their sticky 
ends. 

Note that in all cases we also allow the prolongation of "blunt" ends, with 
empty overhangs. We always obtain a well-started double stranded molecule 
(with the subsequence in W Kp(V) not necessarily strictly longer than the 
subsequence X2 E WKp(V) in x). 
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In cases 3 and 6 we do not use annealing (hence the complementarity 
relation); when J-L(x, y) is defined without allowing such cases, to the right 
or to the left, we denote it by J-L'(x, y) and we call this operation restricted 
sticking. 

The maximal length of an overhang in a sequence Z E Wp(V) is also called 
the delay of z and it is denoted by d(z); it represents the delay in completing 
the two strands with symbols in V. (Hence, in cases 1, 2 in Fig. 4.2, the 
"right delay" of x and the "left delay" of y should coincide when y is also a 
well-started double stranded sequence.) 

x Y x Y 
(1) -,------,2r---r- (2)r§L----'--

x y x x 

(3) L:J==J c:::J (4) II I 
(5)L I I 

x x y y 
x y Y 

(6)~~ (7) II (8) I II 

Figure 4.2: The sticking operation 

In the same way that rewriting is the underlying operation for Chomsky 
grammars, the sticking operation is the underlying one for sticker systems, 
investigated in subsequent sections. 

4.2 Sticker Systems; Classifications 

We define here the sticker systems in their most general form: when building 
molecules, we start from well-started sequences and prolong them in both 
directions, using dominoes of arbitrary forms; the prolongation is done by 
means of the operation J-L. We shall see below that systems of particular 
forms are equally powerful to general ones - modulo squeezing mechanisms 
such as weak codings or deterministic gsm mappings. 

A sticker system is a construct 

'Y = (V, p, A, D), 

where V is an alphabet, p ~ V x V is a symmetric relation, A is a finite 
subset of LRp(V), and D is a finite subset of Wp(V) x Wp(V). 

The relation p is the complementarity relation on V, the elements of A 
are called axioms. Starting from these axioms and using the pairs (u, v) of 
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dominoes in D, we can obtain a set of double stranded sequences in W Kp(V), 
hence complete molecules, by using the operation /-l of sticking. 

Formally, for a given sticker system 'Y = (V, p, A, D) and two sequences 
x, y E LRp(V), we write 

X==> y iff y = /-leU, /-leX, v)), for some (u, v) ED. 

Obviously, 
/-l(u,/-l(X,v)) = /-l(/-l(u,x),v), 

because the prolongation to the left is independent of the prolongation to the 
right. 

A sequence Xl ==> X2 ==> ... ==> Xk, with Xl E A, is called a computation 
in 'Y. A computation a : Xl ==>* Xk is complete when Xk E WKp(V) (no 
sticky end - hence blank symbol - is present in the last sequence). 

The set of all molecules over V produced at the end of complete compu
tations in 'Y is denoted by LMn("() (LM stands for "language of molecules" 
and the subscript n stands for "non-restricted": there is no restriction on the 
computations except that they are complete): 

LMn("() = {w E WKp(V) I x==>* W,X E A}. 

In what follows we consider the sticker systems as generating languages 
of strings. To this aim, we associate with LMn('Y) the language 

Ln("() = {w E V* I [:,] E LMn("() for some w' E V*}. 

We say that Ln("() is the language generated by 'Y (at the end of non
restricted complete computations). 

Several types of restricted computations in 'Yare of interest. 
A complete computation Xl ==> X2 ==> ... ==> Xk (hence with Xl E A 

and Xk E WKp(V)) is said to be: 

- primitive, if for no i, 1 :S i < k, we have Xi E W Kp(V) (Xk is the first 
molecule in this computation); 

- of delay d, if d(Xi) :S d, for each 1 :S i :S k. 

We denote by Lp("() and Ld ("() , d 2: 1, the language of strings generated 
by 'Y at the end of primitive computations and at the end of computations of 
delay at most d, respectively. 

As above in the case of Ln("() , the languages Lp("() , Ld ("() consist of strings 
in the upper strands of molecules generated by 'Y, but we do not elaborate 
on the difference between languages La("() and LMa("(), of molecules, Q E 

{n,p, d}, because we do not investigate the languages of molecules here. On 
the other hand, the relation between La("() and LMa("() depends on p: if 
we work with an injective mapping p, then LMa("() is precisely identified by 
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Lab); if p is arbitrary, but symmetric, then Lab) is a coding of LMab) 
and LMab) is the image of Lab) through an inverse coding. 

Clearly, we have the following relations: 

i) Lpb) <;:;; Lnb), 

ii) Ld,b) <;:;; Ld2 b), if 1 ~ d l ~ d2 , 

iii) Ldb) <;:;; Lnb), for all d::::: O. 

A sticker system I is said to have a bounded delay if there is d ::::: 1 such 
that Ldb) = Lnb)· 

Several restricted variants of sticker systems are also of interest. A system 
I = (V, p, A, D) is said to be: 

- one-sided, if for each pair (u, v) E D we have either u = .x or v = .x, 

- regular, if for each pair (u, v) E D we have u = .x, 

- simple, if all pairs (u, v) E D have either u, v E (~*), or u, v E (:* ). 
In one-sided systems, the prolongation to the left is independent of the 

prolongation to the right; in regular systems we only prolong the sequences 
to the right (hence the axioms must be of the form XIX2, with Xl E W Kp(V) 

and X2 E (~*) U ( :* )). In a computation in a simple sticker system we 

add symbols only to one of the two strands. 
We denote by ASL(a) the family of languages of the form Lab), a E 

{n, p}, for I a sticker system of an arbitrary form (SL stands for "sticker 
language" and A indicates the use of sticker systems of "arbitrary forms"); 
the family of languages generated by sticker systems of bounded delay is 
denoted by ASL(b). When only sticker systems which are one-sided, regular, 
simple, simple and one-sided, or simple and regular are used, we replace A in 
front of SL(a) by 0, R, S, SO, SR, respectively. We stress the fact that these 
families contain string languages, not languages of molecules, hence we can 
discuss their relationships with families in the Chomsky hierarchy without 
further precautions. This might not be the case with families of languages of 
the form LMa (,), because we must take care of the complementarity relation. 
As we have mentioned above, for an injective p, the language LMab) is 
isomorphic with Lab), but if p is not injective then we have to pay attention 
to the coding relating LMab) and Lab)· 

From the definitions, we obtain: 

Lemma 4.1. For each a E {n, p, b} we have the relations in the diagram 
in Fig. 4.3, where the arrows indicate inclusions which are not necessarily 
proper. 
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Lemma 4.2. For each X E {A,0,R,8,80,8R} we have X8L(b) ~ 
X8L(n). 

A8L(0:) 

88L(0:) 08L(0:) 

808L(0:) R8L(0:) 

8R8L(0:) 

Figure 4.3: Relationships between families of languages 

generated by sticker systems (preliminary results) 

Because we do not have erasing operations, we obtain in a straightforward 
way the following result. 

Lemma 4.3. X8L(0:) ~ C8, for all X and 0: as above. 

Before starting to investigate the size of the families X 8 L( 0:), let us ex
amine two examples; consider first the simple sticker system 

')'1 = (V, p, A, D), 

V = {a,b,c}, 

p= {(a,a),(b,b),(c,c)}, 

A={[:J}, 
D={((~),(~)), (G),(~)), ((~),(~)), ((~),(~))}. 

We have 

but, because of the form of the pairs in D, the generated sequences can be 

only of the form x [:J [!]ffi, with x E {[:], [~J}*; moreover, x should 
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[b] [CcJ. contain exactly m occurrences of b and exactly m occurrences of 

Consequently, Ln ('Y1) is not context-free: 

LMnb1) n [~r [:]+ [:J [:]+ = {[~Jm [:]m [:J [:]m I m ~ I}, 

Lnb1) n c+b+ab+ = {cmbmabm I m ~ I}. 

Working first in the upper strand, that is using the pairs (( ~) , (~)), 

( (~) , (~)), and after that on the lower strand, we can produce every 

sequence in LMnb1) using only primitive computations, hence Lpb1) = 

Ln( 'Y1). 
This is not the case with the bounded delay restriction. Specifically, 

m [b]m [b]m sequences of the form [~J b [:J b cannot be produced with a delay 

smaller than m, because we cannot use (( ~) , ( ~ )) before having used 

( ( ~ ) , (~)) m times, and this means that we have already produced a 

sequence of the form 

(~) [:r [:J (~) , 
for p + q = m; that is, the delay is at least ~. 

We obtain Ld ('Y1) C Ln('Y1), for all d ~ 1. All these languages Ld ('Y1) are 
linear. We do not prove this assertion for 'Y1 above, but give a general result 
of this type in the next section. 

Consider one more sticker system (this time not a simple one): 

'Y2 = (V, p, A, D), 
V = U u U u U', for some alphabet U, 

p = {(a, a), (a, a), (a', a') I a E U}, 

A = {[:t]}, for some fixed ao E U, 

D = {((:) , [:J), ((:,) , [:J) I a E U}. 

We start from [:t] for the fixed ao E U and we build a molecule by 

adding columns [:J ' [:J to the right hand side of it and, simultaneously 

with [:J and [:J, respectively, we add symbols a' in the upper strand and 
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symbols a' in the lower strand to the left of [:t]. This means that, modulo 

the primes and the bars, the sequence of columns [::] to the left of [:t] 
is identical to the reversed sequence of columns [:] to the right of [:t], 
and the same sequence [::] to the left of [:t] is identical to the reversed 

sequence of columns [:] to the right of [:t]. Consequently, 

LMn(2) = {[::] [:t] [:] I x E U*,mi(w) E x ill x}, 

Ln(2) = {x'a~w I x E U*,mi(w) E x ill x}, 

where x', x are the primed and the barred versions of x E U*, respectively. 
Therefore, the twin-shuffle language over U is obtained to the right of [ :t ] , on both strands, together with the copy of the shuffled strings which 

is present in a primed version in both strands to the left of [:t]. (Because 

mi(U*) = U*, the mirror image operation can be ignored.) 
Using Theorem 3.17, we get in this way a representation of recursively 

enumerable languages as gsm images of languages in the family ASL(n). In 
Sect. 4.4 we shall give a stronger variant of this result. 

4.3 The Generative Capacity of Sticker Sys
tems 

In this section we are looking for the relationships between the families 
XSL(a), X E {A,O,R,S,SO,SR}, a E {n,p,b}, and for their relationships 
with families in the Chomsky hierarchy. 

We start with some estimations from above. 

Theorem 4.1. OSL(n) ~ REG. 

Proof. Consider a one-sided sticker system 'Y = (V, p, A, D). Let us denote 
by d the length of the longest sticky end or of the longest single stranded 
sequence appearing in A or in the pairs of D. 

We construct the context-free grammar 

G = (N,T,S,P), 

where 
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and P contains the following rules: 

1. S ~ ((~~}l [:~] ((~~))n for (~~) [:~] (~~) E A, with 

(~~), (~~) E (:*) u (~*) and [:~] E WKp(V). 

2. ((~~))l ~ ((~D)l [:~], where (~~), (~D E (:*) u (~*), 
[ :~] E W K p (V), and there is a pair in D ofthe form 

( (~D [:~] (~~) , (~)) with (~~) E (~*) U ( :* ), 
and [Xl] E WKp(V), such that [XIYIUI] = [WI] . 

~ ~~~ ~ 
(We prolong the sequence to the left, using the pairs with an empty 
right hand member, in accordance with the sticky end; we remember 

which is the sticky end by means of the nonterminal (( ~~ ) ) I; the 

subscript 1 stands for "left". Note that [::] above can be equal to 

[~] .) 

3. ((~~))r ~ [:~] ((~~}n where (~~), (~D E (:*) u (~*), 
[:~] E W Kp(V), and there is a pair in D of the form 

((~), (:~) [~~] (~D)' with (:~) E (~*) U (:*), 
and [YI] E W Kp(V), such that [UIXIYI] = [WI]. 

Y2 U2 X2Y2 W2 
(The same idea as above, but prolonging the sequence to the right.) 

4. ((~}l ~ A, 

((~}r ~ A. 

(When no sticky end is present, we can finish the derivation.) 

It is easy to see that L(G) = LMnb) = LMdb): because we only use one
sided pairs in order to build sequences, the operation of prolonging sequences 
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to the left is independent of the operation of prolonging sequences to the right 

and conversely; consequently, we can always use that pair ((;~) , (~)) or 

( (~) , (;~)) from D which sticks to the existing overhanging ends, which 

means that the overhanging ends are not longer than those already existing 
in A or in D. Thus, the nonterminals in N can control the process in the 
same way as the sticky ends do this. 

In the grammar G there is no derivation of the form X===}* uX v with 
both u and v being non-empty strings. Consequently ([77], Exercise 9, page 
55), the language L(G) is regular. Because L(G) = LMn('y) and Ln('y) is a 
coding of LMn('y), we also have Ln('y) E REG. D 

Corollary 4.1. OSL(P) <; REG. 

Proof. If in the proof above we replace d in the definition of N by 2d 
(hence the nonterminals remember sticky ends of length at most twice the 
longest sticky end in A or in D) and in rules of types 2 and 3 we take 

the left hand nonterminal ((:~ >1, ((:~))r with Ul U2 =/:. A, then we get 

a grammar G' such that L(G') = LMp('y). Indeed, when a blunt end is 
obtained, the grammar G' cannot continue to prolong the sequence in that 
direction, hence L(G') <; LMp('Y). Conversely, each primitive computation in 
'Y can be simulated by G', including those derivations where the overhanging 
strand is prolonged first in order to prevent a blunt end which could lead to 
a complete computation. D 

From the first example at the end of the previous section we obtain the 
following result. 

Theorem 4.2. The families SSL(n), SSL(P) contain non-context-free lan
guages. 

Corollary 4.2. The inclusions SOSL(a) c SSL(a),a E {n,p}, are proper. 

In the case of two-sided sticker systems, even simple, the bounded delay 
property cannot be forced, as in the proof of Theorem 4.1. More precisely, 
the following result holds. 

Theorem 4.3. ASL(b) <; LIN. 

Proof. Consider a sticker system 'Y = (V, p, A, D) of unrestricted form 
and let d be an integer such that Ld('y) = Ln('y). We construct the linear 
grammar 

G = (N,T,S,P), 

where 
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lUll, IU21, lVII, IV21 ::; d} U {S}, 

T = [~]/ 
and P contains the following rules: 

1. S -+ [:~] ((:~) , (~~)) [;~] , for 

[:~] , [;~] E WKp(V), ((:~), (~~} EN, 

and ([:~] (:~) , (~~) [;~]) ED. 

(The computations in 'Yare simulated in G in a reversed order, starting 
from the last used pair in D and progressing towards the "center" of 
the sequence, where an axiom in A will be used.) 

2. ((:~), (~~)) -+ [:~] ((:t), (~D) [;~] ,for 

[:~] , [;~] E WKp(V), ((:~), (~~)), ((:t), (~t)) EN, 

and ((:~) [:U (:D, (~t) [~~] (~D) ED such that 

[ UIXIX~] = [WI] , [YIY~VI] = [ZI] . 
U2 X2X2 W2 Y2Y2v2 Z2 

(We proceed towards to the "center" of the sequence, adjoining blocks 
to the left and to the right, as provided by the pairs in D and controlled 
by the nonterminals in N. The control provided by the nonterminals 
suffices for correct simulations of the computations in 'Y by derivations 
in G, because of the bounded delay property.) 

3. ((:~), (~~)) -+ [:~] [:~] [;~] , for 

[:~], [:~], [;~] E WKp(V), [:~] # [~], 
((:~), (~~} EN, and there is (:D [:~] (;D E A 

such that (:t) , (;t) E (:* ) U (~*) 
and [WI] = [UIW~] , [Zl] = [Z~VI] . 

W2 U2W2 Z2 Z2V2 
(When an axiom in A has sticky ends which fit both the left and the 
right sticky ends memorized by the element of N currently present in 
the sentential form, the derivation can be terminated.) 

4. S -+ [:~] , for [:~] E A. 
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From the previous explanations, it is easy to see that L(G) = LMd(r). 
Since Ld(r) is a coding of LMd(r) , we obtain Ld(r) E LIN. D 

Corollary 4.3. For every sticker system I and integer d we have Ld(r) E 
LIN. 

Proof. This is a direct consequence of the previous proof. D 

Surprisingly enough, because the sticker systems use no auxiliary symbols, 
the inclusions reverse to those in Theorems 4.1, 4.3 also hold true, even in 
stronger forms. We give first the proof for the regular case, because it is 
easier and it provides a good background for proving the result for the linear 
case. 

LJr--------.l 
a b c 

Figure 4.4: Dominoes used in the proof of Theorem 4.4 

Theorem 4.4. REG ~ RSL(b) n RSL(p). 

Proof. Consider a finite automaton M = (K, V, So, F, (5) with K = {so, Sl, 
... , sd, k 2: O. We construct the regular sticker system 

I = (V, p, A, D), 

with 

p = {(a, a) I a E V}, 

A = {[:J I x E L(M), Ixi :S k + 2} 

U {[:J G) Ilxul = k + 2, Ixl 2: 1, lui = i, for 

1 :S i :S k + 1 such that Soxu ==}* xusi-d, 

D = {( (~) , ( ~) [:J G)) 11 :S Ivl :S k + 1, Ixul = k + 2, Ixl 2: 1, 

lui = i, for 1 :S i :S k + 1, such that SjXU ==}* XUSi-1, 

and j = Ivl - I} 

U {( (~) , ( ~) [:J) 11 :S Ivl :S k + 1,1 :S Ixl :S k, and 

SjX ==}* xs!,s! E F, where j = lvi-I}. 

The idea is to start with a domino of the form shown in Fig. 4.4a, to 
iteratively use dominoes of the form shown in Fig. 4.4b, and to end the 
computation with a domino of the form shown in Fig. 4.4c. 
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The overhangs codify the states of M by their lengths. The axioms in 
A which are not already in W Kp(V) and the dominoes of the form in Fig. 
4.4b appearing in the right hand member of pairs in D have overhangs of 
lengths i, 1 ~ i ~ k + 1, which identify the state Si-l by the length i. This 
state is reached by M when receiving the string in the upper strand of the 
well-started molecule which is obtained using the domino. All dominoes of 
the forms in Fig. 4.4b and Fig. 4.4c have a non-empty left overhang, hence 
a molecule in W Kp(V) cannot be prolonged. Thus, after using a domino 
of type c), the computation must stop. Since the system 'Y has a delay at 
most k+ 1, we have Ln("f) = Lp("f) = Lk+l("f) = L(M), which completes the 
proof. 0 

Corollary 4.4. RSL(a) = OSL(a) = REG, a E {n,p, b}. 

Proof. From Theorem 4.1 we have OSL(n) ~ REG. Corollary 4.1 gives 
the inclusion OSL(P) ~ REG. From Lemma 4.2 we also have OSL(b) ~ 
OSL(n) ~ REG. The inclusions RSL(a) ~ OSL(a), a E {n,p, b}, are 
pointed out in Lemma 4.1. The previous theorem proves the inclusions 
REG ~ RSL(b), REG ~ RSL(P). With RSL(b) ~ RSL(n) (Lemma 4.2), 
we also get REG ~ RSL(n). 0 

Theorem 4.5. LIN ~ ASL(b) n ASL(P). 

Proof. Consider a linear grammar G = (N, T, S, P). There is an equiva
lent grammar G' = (N', T, S, P') with P' containing only rules of the forms 
X ~ aY, X ~ Ya, X ~ a, for X, YEN', a E T. 

Assume that N' = {X1 ,X2 , .•• ,Xd,k ~ 1. We construct the sticker 
system 

where 

'Y = (T, p, A, D), 

p = {(a, a) I a E T}, 

A = {[:] I x E L(G), Ixl ~ 3k+ I} 

U {(~) [:] Iluxl ~ 3k + 1, Ixl ~ 1, lui = i, for 1 ~ i ~ k 

such that Xi ===? * ux} 

U {[:] (~) Ilxul ~ 3k + 1, Ixl ~ 1, lui = i, for 1 ~ i ~ k 

such that Xi ===? * xu}, 

and D contains the following groups of domino pairs: 

1) ((~) [:] (~) , [:]), for 1 ~ lui ~ k, 1 ~ Ivl ~ k, luxl = k + 1, 

o ~ Izl ~ k, and Xlul ===? * uxXlvl z , 
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2) ([:J (~),[;J G)), forl~lvl~k,I~lul~k,I~lxl~k, 
Izul = k + 1, and Xlul ==}* xXlvlzu, 

3) ([:J (~) , [:J), for 1 ~ Ivi ~ k, Ixl ~ 1, Ixzl ~ 2k + 1, 

Izl ~ 0, and S ==}* xX1v1z, 

4) ([;J,(~) [:J G)), forl~lvl~k,I~lul~k,lxul=k+l, 
° ~ Izl ~ k, and Xlul ==}* zXlvl xu , 

5) ((~) [;], (~) [:]), for 1 ~ lui ~ k,1 ~ Ivi ~ k,1 ~ Ixl ~ k, 

Iuzl = k + 1, and X 1ul ==}* uzX1v1x, 

6) ([;], ( ~) [:]), for 1 ~ Ivl ~ k, Ixl ~ 1, Ixzl ~ 2k + 1, 

Izl ~ 0, and S ==}* zX1v1x. 

The thought behind this construction is as follows. We intend to simulate 
the derivations in G', backwards, by computations in 'Y which introduce first 
a block in the center of the string and continue by adding blocks at the two 
ends of the string. The nonterminals in N' are again identified by the length 
of overhanging ends, at the left hand or at the right hand of the currently 
produced sequence; the other end of the sequence is blunt. Using domino 
pairs from group 1 we continue to update the information about the current 
nonterminal in the left hand of the sequence; group 2 changes the sticky end 
in the right hand end of the sequence, completing a blunt end in the left hand. 
With pairs of dominoes of type 3 we complete a molecule. Symmetrically, 
groups 4, 5, 6 of domino pairs continue to encode the current nonterminal 
in the length of the right hand sticky end, move this information to the left 
hand end, and finish the computation, respectively. A sequence with both 
ends being blunt (a molecule) cannot be continued, because all pairs in D 
have a non-empty sticky end towards the "inside" of its domino pair. 

Thus, it is clear that all complete computations in 'Y correspond to deriva
tions in G'. Conversely, every derivation in G can be simulated by a complete 
computation in 'Y. 

Indeed, consider a derivation r5 : S ==}* w in G. If Iwl ~ 3k + 1, then 

[:] EA. Assume that Iwl > 3k+1. Because all rules in P' introduce exactly 

one terminal symbol each, we can decompose the derivation r5 as follows: 

S ==}* UIXi1 VI ==} * UI U2Xi2 v2vI ==} * ... ==} * UI ... urXir vr ... VI 

==}* UI··· uryvr ··· VI, 

with 
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(1) IUjl = k + 1 and 0 :::; IVjl :::; k, or 
0:::; IUjl :::; k and IVjl = k + 1, for each j = 1,2, ... ,r, 

(2) k + 1 :::; Iyl :::; 3k + 1, 

(3) r ~ 1. 

Then, for each (Uj, Vj) with IUj I = k + 1, we can find a pair of dominoes 
of type 1 or 5, encoding X ij _ 1 in a left sticky end of length ij-I, and for 
each (Uj, Vj) with IVj I = k + 1 we can find a pair of dominoes of type 2 or 4, 
encoding X ij _ 1 in a right sticky end of length ij-I. Clearly, for y we can find 
an axiom encoding Xir in one of its ends and similarly for (Ul, VI) we can find 
a pair of type 3 or 6, producing blunt ends in both directions. Consequently, 
we also have L(G) ~ Lnb). 

Obviously, Lnb) = Lpb) and the delay of"( is at most k, hence Lnb) = 
Lkb), completing the proof. D 

Corollary 4.5. LIN = ASL(b). 

Proof. Combine Theorems 4.3 and 4.5. D 

In the proof of Theorem 4.1 we have pointed out that if"( = (V, p, A, D) is 
a one-sided sticker system, then Lnb) = Ldb) for some integer d depending 
on A and D (the length of the longest sticky end in A or in the dominoes 
of D). This is obviously true also for simple and for simple regular systems, 
and so we obtain the following result. 

Theorem 4.6. SOSL(n) = SOSL(b), SRSL(n) = SRSL(b). 

Proof. The inclusions ~ were discussed above, the reverse inclusions are 
mentioned in Lemma 4.2. D 

Summarizing the previous results for families XSL(b),XSL(n), we get 
the diagram in Fig. 4.5; as usual, the arrows indicate inclusions, not neces
sarily proper. 

Theorem 4.7. REG - SOSL(a) =1= 0, a E {n,b}. 

Proof. Consider the regular language 

L = ba+b, 

and assume that L = Lnb) for some simple one-sided sticker system "( = 
(V, p, A, D). Because A is a finite set (of well-started molecules) and L is an 
infinite language, there are two pairs in D of one of the following forms 

(1) ((~), (~)) and ((~), (~)), with Y2 E V+,y~ E a+, 

(2) ((~), (~)) and ((~), (~)), with YI E a+,y~ E V+, 
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(3) ((:J, (~)) and (( ~) ,(~)), with X2 E V+,x~ E a+, 

(4) ((~), (~)) and ((:J), (~)), with Xl E a+,x; E V+, 

135 

that are used arbitrarily many times in the generation of strings in L of 
arbitrarily large length. 

CS 

r 
ASL(n) 

/~ 
SSL(n) ASL(b) = LIN 

~ / o~ RSL(b) ~ 
SSL(b) OSL(n) = RSL(n) = REG 

~/ 
SOSL(b) = SOSL(n) 

r 
SRSL(b) = SRSL(n) 

Figure 4.5: Relationships between families of 
languages generated by sticker systems 

All the four cases can be treated in the same way. Assume that we have 

the first case, hence ( ( ~) , (~)) ED, ( ( ~) , (~ )) ED. Clearly, Y~ = a i 

for some i ~ 1 and Y2 is composed of symbols c such that (a, c) E p. 
Assume that iY2i = j,j ~ 1. A complete computation 

( ~~) [~~] (:~) ==? * [:~] , 
for (~~) [~~] (:~) E A, (~~) , (:~) E (~*) U ( :* ) and [~:] , [:~] 
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E W Kp(V), WI = banb, can be continued as follows: 

This is a complete computation, producing the string wly~j = banbaij , which 
is not in L, a contradiction. 0 

Corollary 4.6. The inclusion SOSL(n) <:;; OSL(n) is proper. 

4.4 Representations of Regular and Linear 
Languages 

We have the strict inclusion SOSL(n) c REG and we expect a similar 
result in what concerns the inclusion SSL(b) <:;; LIN, so it is of interest 
to supplement the sticker systems with a squeezing mechanism and to try 
to obtain representations of regular and of linear languages starting from 
languages in families SOSL(n), SSL(b), respectively. This is possible, even 
using weak squeezing mechanisms, like co dings and weak codings. 

Theorem 4.8. Each regular language is the coding of a language in the 
family SRSL(o:), for each 0: E {n,b,p}. 

Proof. Consider a regular grammar G = (N, T, S, P) and construct the 
sticker system 

'T = (V, p, A, D), 

with 

v = {[X,a]i I X E N,a E T,i = 1,2}, 

p = {([X,ah, [X,ah), ([X,ah, [X,ah) I X E N,a E T}, 

{[ [s,ah ] ( A ) I . A = [S, ah [X, bh S ----4 aX E P, and eIther 

X ----4 bY E P, or X ----4 b E P, a, bET, X, YEN} 

U {U~: :l~] I S ----4 a E P, a E T}, 

D = (((~), Cx,a]~[Y,b]J) I X ----4 aY E P and either Y ----4 bY' E P, 

or Y ----4 b E P, for a, bET and X, Y, y' E N} 

U {((~) '([x~a]J) I X ----4 a E P,X E N,a E T} 

U (((~), Cx,a]~[y,bh)) I X ----4 aY E P and either Y ----4 bY', 
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or Y -----> b E F, for a, bET and X, Y, Y' E N} 

U (((~), Cx~alz)) I X -----> a E F,X E N,a E T}. 

Each derivation in G of the form 

k ?: I, corresponds to a computation in 'Y of the form 

[ [S,a1h] ( .A ) [[S,alh[Xl,a2lz] ([X2,a3h ) 
[S,alh [X1,a2h ==> [S,alh[X1,a2h .A ==> ... 

. hI· . k d ([X2i,a2H1h ) d ( .A ) Wh WIt a ternatmg stlC y en s \ an [X . .J. en 
A 2.-1, a2. 2 

k is even, we can finish by using the block ([X .A J) and when k is 
k, ak+l 1 

odd we can finish by using the block ([Xk ' ~k+llz ). All the lower blocks 

in dominoes of D start with symbols of the form [X, ah, all upper blocks 
start with symbols of the form [X, ah- Therefore, a complete computation 
cannot be continued (because of the relation p). It is now clear that Ln ( 'Y) = 
Lp ( 'Y) = Ll ( 'Y) and that by the coding h defined by 

h([X,aJi) = a, for X E N,a E T,i = 1,2, 

we obtain L(G) = h(Ln("()). o 

For a family of languages FL, let us denote by Cod(FL) the family of 
languages of the form h(L), for L E FL and h a coding. 

Corollary 4.7. Cod(SOSL(a)) = Cod(SRSL(a)) = REG, a E {n,b, pl. 

Proof. All families SOSL(a), SRSL(a), a E {n, b,p}, are included in 
REG (Theorem 4.1, Corollary 4.1) and REG is closed under (arbitrary) 
morphisms. Therefore, Cod(SOSL(a)) and Cod(SRSL(a)) are also included 
in REG. The previous theorem proves the reverse inclusions. 0 

Theorem 4.9. Each linear language is the weak coding of a language in the 
family SSL(b). 

Proof. Consider a linear grammar G = (N, T, S, F). Without loss of 
generality, we may assume that all rules in F are of the forms X -----> aY, 
X -----> Ya, X -----> a, a E T, X, YEN. Take a new symbol, c tj. T, and modify 
the rules above to X -----> aY c, X -----> cYa, X -----> cac. Thus, we may assume that 
for each linear language L s:;; T* there is a symbol c tj. T and a linear grammar 
G' with rules of the forms mentioned above such that L = g(L(G')), for g the 
weak coding erasing the symbol c and leaving the symbols in T unchanged. 



138 4. Sticker Systems 

Suppose that already G = (N,T U {c},S,P) is such a grammar, for a 
given language L E LIN. 

We construct the simple sticker system 

'Y = (V, p, A, D), 

with 

v = {[X,aji I X E N,a E T U {c},i = 1,2,3}, 

p = {([X,aji,[X,aji) I X E N,a E Tu {e},i = 1,2,3}, 

A = {CX,;lh) U~::~l:] CX';3h) I X ~ ala2a3 E P,X E N, 

al, a2, a3 E T U {e}} 

and D contains the following pairs of dominoes: 

1) (Cy,a2b~x,alh)' CX,a3j~Y,a4b))' for Y ~ a2Xa4 E P, 

al,a2,a3,a4 E TU {e},X, YEN, and there is a rule X ~ a1X'a3 or 

X ~ ala5a3 in P,X' E N,a5 E TU {e}, 

2) (Cy,a2hlx,alb), CX,a3j~[y,a4h )), for Y ~ a2Xa4 E P, 

al,a2,a3,a4 E T U {e}, X, YEN, and there is a rule X ~ alX'a3 or 

X ~ ala5a3 in P,X' E N,a5 E TU {e}, 

3) (CS'~lh)' CS'~2h))' for S ~ al Xa2 E P,X E N,al,a2 E TU {e}, 

4) (CS'~lb), CS'~2b )), for S ~ alXa2 E P,X E N,al,a2 E TU {e}. 

We simulate the derivations in G from their end to the beginning, starting 
to grow the string from the center. The pairs of dominoes in group 1 add 
lower level blocks, all of them having symbols [X, ah toward the sequence to 
which these pairs are adjoined, the pairs of type 2 add upper level blocks, all 
of them having symbols [X, ab toward the sequence to which these pairs are 
adjoined. Thus, the obtained molecule will consist of a column of the form 

U~: :l:] in the center, and then, alternating both to the left and to the 

[[x,ah ] [[x,ab ]. . right, columns of the form [X, ah and [X, ab . ThIs alternatIOn ensures 

the fact that all computations in 'Y correspond to correct derivations in G. 
The computations can lead to complete molecules by using pairs of types 3 
or 4, depending on the parity of the step at which we want to stop. This 
corresponds to using an S-rule in P, hence to a correctly started derivation 
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in G. Conversely, due to the form of the rules in P, all derivations in G can 
be simulated by complete computations in "(. 

Clearly, the delay of"( is 1 and no complete computation can be continued, 
hence Lnb) = LIb) = Lpb)· 

By the weak coding h defined by 

h([X,a)i) = a, for X E N,a E T,i = 1,2,3, 

h([X, eli) =,x, for X E N, i = 1,2,3, 

we clearly obtain h(Lnb)) = L, which completes the proof. o 

For a family of languages F L, let us denote by C odW (F L) the family of 
languages of the form h(L), for L E FL and h a weak coding. 

Corollary 4.8. CodW(SSL(b)) = LIN. 

Proof. The inclusion SSL(b) ~ LIN follows from Theorem 4.3; the family 
LIN is closed under arbitrary morphisms, hence CodW(SSL(b)) ~ LIN. 
The reverse inclusion is proved in the previous theorem. 0 

4.5 Characterizations of Recursively Enumer
able Languages 

From the point of view of DNA computing, of more interest is the possibility 
of representing (hence characterizing) the recursively enumerable languages 
by means of sticker languages. We have already presented such a possibility 
at the end of Sect. 4.2, when we have discussed an example of a sticker 
system (denoted there by "(2) such that 

for a weak coding h. Combining this with Theorem 3.17 (the weak coding 
can be simulated by a gsm), we obtain the following representation result. 

Theorem 4.10. Every language L E RE can be written in the form L = 
g(L'), for L' E ASL(n) and g a deterministic gsm mapping. 

In view of the results in Sect. 4.3, such a representation cannot be ob
tained for L' in any other family than ASL(n), ASL(p) , SSL(n), SSL(p) , 
because all other families contain only linear languages (see again the di
agram in Figure 4.5), and the family LIN is closed under arbitrary gsm 
mappings. However, SSL(n) - and even SSL(p) - can be used to obtain a 
representation of recursively enumerable languages, thus strengthening the 
result in Theorem 4.10. 

Theorem 4.11. Every language L E RE can be written in the form L = 
h(L'), where h is a weak coding and L' E SSL(n) n SSL(p). 
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Proof. Consider a language L ~ T*, L ERE. According to Theorem 3.16, 
there exist two >.-free morphisms hl' h2 : Vt ~ V2*' a regular language 
R ~ V2* and a projection prT : V2* ~ T* for T ~ V2, such that L = 
prT(hl(EQ(hl, h2)) n R). 

Consider a deterministic finite automaton M = (K, V2, so, F, 8) recogniz
ing the language R. 

We construct the simple sticker system 

with 

'Y = (V, p, A, D), 

v = V2 U V 2 UKu {$,E,E',C,Z}, 

p = {(X, X) I X E V}, 

A={(~) [!] (~)}, 
and D contains the following pairs of dominoes: 

1. For every a E Vl such that hl (a) = bl ... bk, k ~ 1, and h2(a) = 
Cl···Cm,m ~ 1, with bl, ... ,bk,Cl, ... ,Cm E V2 , and for Sij E K,O:::; 
j :::; m, such that 8(Sij , Ci) = Sij+p 0 :::; j :::; m, we introduce in D the 
pair 

(CimCmSim-l ... ;i2 C2Si1 Si1 C1SiO), (blCZb2CZ~ .. CZbkCZ)). 

(To the left of [:] we produce the reversed image of some h2(a), for 

a E Vl , and at the same time we guess a valid path through Mover 
h2 (a): Sio Cl C2 ... em ===> * Sim • To the right we produce the image of 
a through hl' with the symbols of hl (a) separated by the auxiliary 
symbols C Z.) 

(E'Sf) (E) 2. ( >. '>. ),forsfEF. 

(The recognition of the string in the upper strand of the left part of the 
sequence by means of M is finished correctly.) 

3. (( ~) , (~ ) ), for all SEQ. 

(These rules check the correct continuation of the recognition path 
through M: if SlX ===>* XS2 is followed by S3Y ===>* YS4, then we 
must have S2 = S3, otherwise the complementarity is not observed 

when using the block (~).) 
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4. (( ~) , (b~ )), for b E V2 · 

(The string of symbols b generated to the left of [:] in the upper strand 

is compared with the string of symbols b generated to the right of [:] 

in the upper strand. Note that the symbols Z are "consumed" together 
with the pairs of states, by rules of type 3; now we also "consume" the 

symbols C introduced in the upper strand, to the right of [:].) 

5. ((~,), (~)). 
(Only in this way we can get a complete molecule.) 

From the explanations above, one can see that the complete molecules 
produced by '"Yare of the form 

[E;SfSf:tStSt ... :2S1S1:1S0S0] [$] [Zb1CZb2CZ ... CZbtCZE] 
E sfSfCtStSt ... C2S1S1C1S0S0 $ Zb1CZb2CZ ... CZbtCZE ' 

for 

for some w E Vt, and SOC1 ... Ct ==? * C1··· CtS f in M for sf E F, hence 
h1(W) E R. 

No complete computation can be continued, because the upper strands 
of dominoes (in groups 1 and 2) have one state only in the left end of the 
left domino, whereas the lower strands of dominoes (in groups 3, 4, 5) have 
either two states or a symbol b, bET, or the symbol E' in that position. 
Therefore, Ln(-y) = Lp(-y). 

Consider now the weak coding (in fact, a projection) h defined by 

h(a) = a, for a E T, 

h(a) =,x, for a E T, 

h(s) =,x, for SEQ, 

h(E) = h(E') = h($) = h(C) = h(Z) =,x. 

Clearly, we get L = h( Ln (-Y)), which completes the proof. D 

The construction above has a rather interesting consequence for classic 
formal language theory: a strenghtening of the representation of recursively 
enumerable languages in Corollary 3.3: 

Corollary 4.9. Every recursively enumerable language is the projection of 
the intersection of two minimal linear languages. 
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Proof. With the notations in the previous proof, we construct two minimal 
linear grammars 

with 

Gi = ({S}, V,S,Pi ), i = 1,2, 

PI = {S --+ Sim CmSim Sim •.• Si2C2Sil Sil CISil Sbl CZb2C ... ZbkCZ I 
for bl ... bk = hl(a), CI ... Cm = h2(a) for some m ;::: 1, 

a E VI, and c5(Sij,Cj) = SiHUO:::; j :::; m -1, with 

bl, ... ,bk,CI, ... ,Cm E V2 } 

u {S --+ E'sfSE I sf E F} 

u {S --+ so$Z}, 

P2 = {S --+ ssSZ I SEQ} 

U {S --+ bSbC I bE V2 } 

U {S--+E'SE, S--+$}. 

It is easy to see that G I generates the strings in the upper strand of 
sequences which can be produced by 'Y using only the pairs from groups 1 
and 3, plus the central substring so$Z, whereas G2 generates the strings 
in the lower strand of sequences produced by 'Y using only the pairs from 
groups 3, 4, 5, plus the central substring $. By the intersection we check 
the complementarity relation p (which is the identity). Therefore, L(Gd n 
L(G2 ) = Ln(-y), which completes the proof. 0 

4.6 More About Regular Sticker Systems 

The regular sticker systems generate only regular languages, hence they can
not characterize RE by using AFL operations as squeezing mechanisms. On 
the other hand, mainly in the simple variant, such devices are attractive from 
a mathematical and a biochemical point of view. For instance, the use of cou
ples of dominoes, essentially involved in the proof of Theorem 4.11, is not 
a very realistic assumption from a practical point of view. Using separated 
dominoes is much closer to the annealing operation in a test tube; in many 
places, "self-assembling" computations were reported or only proposed, which 
makes important the question of modifying the definition of simple sticker 
systems or of their language in such a way as to obtain characterizations of 
recursively enumerable languages for these sticker systems. 

We consider here two restrictions on the language generated by a simple 
regular sticker system. 

As we work here only with right-sided pairs of dominoes, we shall ignore 
the left hand member, the empty one. Moreover, we write separately the 
"upper dominoes" and the "lower dominoes". Thus, we write a simple regular 
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sticker system in the form 

'Y = (V, p, A, D I , Du), 

where V, p, A are as above, and DI ~ (:*), Du ~ (:*), with DI and 

Du finite sets. The languages Lab) are defined as in the previous sections, 
0: E {n,b,p}. 

Consider two labelings of elements in DI, Du with elements in a set Lab, 
err : Drr ---t Lab, 7r E {l, u}. For a complete computation a : Xl ==} X2 ==} 

. .. ==} X k in 'Y we define the control words err ( a ), 7r E {l, u}, consisting of 
the labels of elements of DI, Du, respectively, used in a. Formally, we denote 

8 (7r, X ==} y) = { err ( ( :~ ) ), if X ==} Y uses the domino (:~) E Drr , 

A, otherwise, 

for 7r E {l,u}. Then, 

err(a) = 8(7r,XI ==} x2)8(7r,x2 ==} X3) ... 8(7r,Xk-1 ==} Xk), 7r E {l,u}. 

A complete computation a : Xl ==}* Xk, Xl E A, is said to be 

- fair, if lel(a)1 = leu(a)l, 

- coherent, if el(a) = eu(a). 

In a fair computation we use equally many upper blocks (elements of Du) 
and lower blocks (elements of Dl); in a coherent computation we require that 
the sequence of labels associated to the upper blocks used in the computation 
is equal to the sequence of labels associated to the lower blocks used in the 
computation. Clearly, any coherent computation is also a fair one. 

We denote by LIb), Lcb) the languages (of strings in the upper strand 
of molecules in LMn b)) generated by 'Y using only fair computations or only 
coherent computations, respectively. The obtained families are denoted by 
SRSL(f), SRSL(c). When the computations are also primitive, we replace 
f and c above with pf,pc, respectively. 

The coherence condition leads again to a representation of recursively 
enumerable languages. 

Theorem 4.12. Each recursively enumerable language is the weak coding of 
a language in the family SRSL(c) or SRSL(pc). 

Proof. Consider a language L ERE, L ~ T*. According to Theorem 3.16, 
there are two alphabets Vi, V2 with T ~ V2, two A-free morphisms hI, h2 : 
Vt ---t V2*' and a regular language R ~ V2* such that L = prT(hl(EQ(hl , 
h2 )) n R). 

Assume that Vi = {bo, bI, ... , bn-I}, n ~ 1. Consider a deterministic 
finite automaton M = (K, V2 , So, F, 8) recognizing the language R; assume 
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K = {so, Sl1 ... , sm-d, for some m ~ 1. We construct the simple sticker 
system 

'Y = (V, p, A, D l , D u ), 

where 

V = V2 UK U {s I S E F} 

U {[s,j] Is E K, ° ~ j ~ m - 1}, 

p= {(X,X)IXEV2 } 

U {(S,s),([S,j],S),(S, [s,kJ),([s,j],[s,kJ) Is E K,O ~j,k ~ m-1} 

U {(s,s) Is E F}, 

A = {[::] c;)}, 
Dl = {( A ) 

[Slo' j]alslI slI a2s12s12 ... SIt. -1 SIt. -1 ati SIt. " , 
ala2 ... at, = h2(bi ), ° ~ i ~ n - 1, ° ~ j ~ m - 1, 

8(slk,ak+d = SIHPO ~ lk ~ m -1,0 ~ k < td 

U {( A_) lSI E F}, 
SISI 

Du = {( al [SII' j]SII a2S\S12 ... ati Slti Slti ) 

ala2··· at, = h1 (bi ), ° :s: i :s: n - 1,0 :s: j :s: m - 1, 

8(Slk' ak+d = SIHl' ° ~ lk ~ m - 1, 1 ~ k < til 

U {(;) I Sl E F}. 

We denote by rl(i,j, k), for ° ~ i ~ n - 1, ° ~ j, k ~ m - 1, the elements 
in Dl associated as above with h2(bi ) and having the state Sj paired with the 

integer k; the sequence ( A_ ) in Dl is denoted by rl(n,O,j). Similarly, we 
SjSj 

denote by ru(i,j,k), for ° ~ i ~ n -1,0 ~ j,k ~ m -1, the sequence in Du 
associated with h2 (bi ) and having the state Sj paired with the integer k; the 

sequence (~) in Du is denoted by ru(n,j,O). 

Clearly, card(Dl) = card(Du) = n· m 2 + card(F). Define the labelings 
el : Dl ----t {1, 2, ... ,card(Dl)}, eu : Du ----t {1, 2, ... ,card(Du)} by 

el(rd(i,j,k)) = i· m 2 + j. m + k + 1, 

eu (r u (i, j, k)) = i . m 2 + k . m + j + 1. 

By the construction above, it is clear that u ==}* z is a complete compu
tation in 'Y, U E A, if and only if there is a sequence 
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such that (1) SZo = So,SZt E F,ak E V2, and t5(szk_l'ak) = SZk' 1::; k::; t, and 
(2) there is x E V* such that h1(x) = h2(X) = ala2 ... at. 

Define now the weak coding h : W Kp(V) ----t T* by 

h([X]) = {X, if X E T, 
X .x, otherwise, 

h([[s,jl]) = h([ S ]) = h([[S,jl]) =.x, for S E K,O::; j,k::; m-l. 
~,~ ~,~ S 

We obtain the equality h(Lc(-r)) = prT(h1(EQ(h1, h2)) n R). 

(<,;;;). Consider a string W E h(Lc(-r)). There is Z E WKp(V) such that 
W = h(z) and there is a computation in I of the form a : x ==}* z, x E A, 
Cd (a) = Cu (a). By the construction of I, there is a sequence 

such that sZo = So, SZt E F, t5(SZk_l' ak) = SZk' 1 ::; k ::; t. Consequently, 
ala2 ... at E R. By the definition of Dz and Du and the fact that ez(a) = 
eu(a), it follows that ala2 ... at = h1(y) = h2(Y) for some y E Vt. Then 
ala2 ... at E h1(EQ(h1, h2)) n R. Because w = h(z) = prT(ala2 ... at), we 
obtain W E prT(h1(EQ(h1, h2)) n R). 

(:2). Let W E prT(h1(EQ(h 1,h2)) n R). There exist x = bi1 bi2 ... bis E 

EQ(h1,h2) and y = h1(x) = h2(X) such that y E Rand w = prT(Y). Let 
Y = ala2··· at,ai E V2,1::; i::; t. There is a sequence Sjl,sh, ... ,Sjt+l 
of states in K such that Sjl = So, Sjt+l E F, and t5(Sjk' ak) = Sjk+l' 
1 ::; k ::; t. Note that h1(x) = h1(biJ ... hl(b;J = ala2 ... at. Let 
h1(bik ) = aqk ·· .aqk+l-1, 1 ::; k < s, and h1(biJ = aqs ... at. Similarly, 
let h2(bik ) = apk ... apk+l- 1,1::; k < s, and h2(b;J = aps ... at. Then there 
is a computation a using the following blocks from Dz: 

and the following blocks from Du: 

Denote by z the result of this computation. By the definition of h we have 
w = h(z). It is also easy to see that ez(a) = eu(a), hence w E h(Lc(-r)). 

A complete computation in I cannot be continued: there is no pair of 
blocks in D z, Du starting with two symbols which are complementary in the 
sense of the relation p. Therefore, Lc(-r) = Lpc(-r), which completes the 
proof. 0 

In the case of fair computations we obtain non-regular languages, but not 
a characterization of recursively enumerable languages. 

By a slight modification of the construction in the proof of Theorem 4.8. 
we get the following result. 
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Corollary 4.10. Each regular language is the coding of a language in the 
family SRSL(J). 

Proof. For a regular grammar G = (N, T, S, F) we construct the simple 
regular sticker system 

'Y = (V, p, A, Dl, D u ), 

with V and p as in the proof of Theorem 4.8, Dl containing the domi-

noes (~) for (( ~) , (~)) E D and Du containing the dominoes (D 
for (( ~) , (~)) ED, for D as in the proof of Theorem 4.8, and with 

A = {U~::l~] CX\lJ IS -+ aX E F,X -+ bY E F, 

X, YEN, a, bET} 

[[S,a1dX,bh ] ( A ) 
U {[S,ah[X,bh [Y,ch IS -+ aX E F,X -+ bY E F, 

Y -+ cZ E F,X, Y,Z E N,a,b,c E T} 

U {U~::t] I S -+ a E F, a E T} 

[[s,a11[X,bh ] 
U { [S,ah[X,bh IS -+ aX E F,X -+ b E F,X E N,a,b E T} 

U {[[s,all[X,bh[Y,Cll] IS-+aXEF,X-+bYEF, 
[S,aldX,bh[Y,ch 

Y -+ C E F,X, Y E N,a,b,c E T}. 

It is easy to see that each string in L( G) has a fair computation in T we 
can choose that axiom in A which ensures the use of an element of Dl in the 
last step, hence the number of blocks added in the upper strand is equal to 
the number of the blocks added in the lower strand. With the same coding 
h as in the proof of Theorem 4.8, we obtain L(G) = h(Lfb)). 0 

On the other hand, by imposing the fairness condition we can generate 
non-regular languages. 

Theorem 4.13. SRSL(J) - REG -I- 0. 
Froof. Let us consider the sticker system 

'Y = ({a, b}, {(a, a), (b, b)}, A, D1, Du ), 

A = {[:J (~)}, 
Dl = {(~), (~)}, 

Du={(:a), (~)}. 
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There is only one axiom. If we use the domino (~), then we obtain a 

complete computation which is not fair. We can continue with any element 
of Dl and Du. Due to the complementarity restriction, if a symbol b is 

introduced, then we have to continue by using dominoes (~), (~), until 

obtaining again a complete computation. 
Let us intersect the language Lf(') with the regular language a+b+. We 

obtain a language consisting of strings of the form a2n+2bm , with n 2: 0, 
m 2: 1, produced by computations where: 

- the first element of Dl is used 2n + 1 times, 

- the second element of Dl is used ; times, 

- the first element of Du is used n times, 

- the second element of Du is used m times. 

Because ; is an integer, we must have m = 2k, k 2: 1. Using the fairness, 

we obtain 

2n + 1 + k = n + 2k, 

which implies 
n=k-1. 

The language 

is not regular, hence Lf(') is not regular either. 

Theorem 4.14. SRSL(f) ~ MAT>'. 

Proof. Consider a sticker system 'Y = (V, p, A, Dl, Du). Define 

V' = {a' I a E V}, 

L(A) = Hal, b~l· .. [ak, b~lak+l ... ak+r I k 2: 1, l' 2: 0, 

[al ... ak] (ak+l ... ak+r) . 
bl ... bk A E A, ai, bi E V for all z} 

U {[aI, b~l· .. [ak, b~lb~+l ... b~+r , k 2: 1, l' 2: 0, 

[al ... ak] ( A ) A '} 
b b b b E, ai, bi E V for all z , 
I··· k k+l ... k+r 

L(Dz) = {b~ ... b~' k 2: 1, (b A b ) E Dl,bi E V,l S: i S: k}, 
I .. · k 

LCD) { , k (al •.. ak ) . } u = al··· ak 2: 1, A E Du, ai E V,l S: z S: k . 

o 
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Consider the new symbols s, d, d' and construct the languages 

L1 = {xd' I x E L(D1n+, 

L2 = {xd I x E L(Dun+, 

L~ = L1 ill c+, 

L~ = L2 ill c+, 

L3 = (L(A)L~ ill L~) n ([a,b'] I a,b E V}*(VV' U {cd',dc})*. 

Clearly, L1, L2 are regular languages, hence also L3 is regular: the family 
REG is closed under the shuffle operation and under intersection. 

Consider the gsm 9 which: 

- leaves unchanged the symbols [a, b'], a, b E V, 

- replaces each pair ab' by [a, b'], a, bE V, 

- replaces each pair cd' by [c, d'] and each pair de by [d, c]. 

The language g(L3) is also regular, over the alphabet 

U = {[a, b']1 a, bE V} U {[c, d'], [d, en. 
Let G = (N, U, S, P) be a regular grammar for g(L3) and construct the matrix 
grammar 

where 

G' = (N', V,S',M), 

N' = NUUU{S'}, 

M = {(S' ~ Sn U {(r) IrE P} 
U {([a,b'] ~ a) I a,b E V} 

U {([c, d'] ~ A, [d, c] ~ An. 
It is easy to see that L( G') contains all the strings w E V* such that 

( :~) [:~] (~~) =} * [ :,] in 7, (:~) [:~] (~~) E A, and this is a 

fair derivation: the matrix ([c, d'] ~ A, [d, c] ~ A) checks whether or not the 
number of symbols d and d' is the same. 

Therefore, Lib) E MAT>". 0 

Because the family MAT>" is strictly included in RE and it is closed under 
arbitrary gsm mappings, we cannot obtain characterizations of RE starting 
from languages in the family SRSL(f) and using codings, morphisms, or gsm 
mappings as squeezing mechanisms. 

Open problem. Is the family SRSL(f) included in CF (or in LIN)? 
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4.7 Bibliographical Notes 

The sticker systems were introduced in [101] in the form of regular simple 
sticker systems. The primitive, balanced, coherent, and fair computations 
are also considered in [101]; the results in Sect. 4.6 are from this paper, as 
well as weaker counterparts of Theorem 4.1, Corollary 4.1, and Theorems 
4.4 and 4.8. The sticker systems prolonging the sequences in both directions 
were introduced in [64], in the simple variant, under the name of bidirectional 
sticker systems. The bounded delay is also introduced in this paper, where 
the equalities ASL(b) = L1 N, OSL(b) = REG appear, as well. Theorem 
4.11 and Corollary 4.9 are from [64], too. 

Sticker systems in the general form (using dominoes of arbitrary shapes) 
are investigated in [165], where the results not mentioned above appear in 
the general framework used also in this chapter. 



Chapter 5 

Watson-Crick Automata 

In this chapter we investigate the automata counterpart of the sticker sys
tems studied in the previous chapter. We consider a new type of automata, 
working on tapes which are double stranded sequences of symbols related by 
a complementarity relation, similar to a DNA molecule (such a data struc
ture is called a Watson-Crick tape). The automata scan separately each of 
the two strands, in a correlated manner. They can also have a finite number 
of states controlling the moves and/or they can have an auxiliary memory 
which is also a Watson-Crick tape, used in a FIFO-like manner. Combining 
such possibilities we obtain several types of automata. In most cases, these 
automata augmented with squeezing mechanisms, such as weak codings and 
deterministic sequential transducers, characterize the recursively enumerable 
languages. 

We stress the essential difference between these automata and the cus
tomary ones, a difference based on the data structures they handle. While 
the customary automata operate on linear (one-dimensional) strings of sym
bols, our automata take double strands as their objects. Moreover, the double 
strands resemble DNA molecules in the following sense. The matching letters 
(nucleotides) are complementary, the relation of complementarity being de
fined for pairs of letters of the basic alphabet, similarly to the Watson-Crick 
complementarity of the pairs (A, T) and (C, G) of the DNA alphabet. Most 
importantly, we assume that such data structures, double strands satisfying 
the complementarity requirement mentioned, are freely available in the sense 
that we do not have to check in any way that the matching letters are indeed 
complementary. 

Because of the complementarity, these automata are called Watson-Crick 
automata. Our main interest is in the basic variant, where the automaton 
scans separately each of the two strands in a correlated manner. However, we 
will also investigate other variants, such as transducers and automata with 
an auxiliary tape. 

These automata make use of only one of the two essential features of the 

© Springer-Verlag Berlin Heidelberg 1998
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DNA as a possible support for computations, the Watson-Crick complemen
tarity (which renders the power of the twin-shuffle language available), but 
not of the second one, the multitude of DNA molecules which brings the 
massive parallelism to the computing scene. It remains an entirely open area 
to model this second feature, as well as to combine the two features into one 
model of DNA computing. 

5.1 Watson-Crick Finite Automata 

We are now going to define one of the classes of automata we have announced 
above. They are a counterpart of finite automata (they use states which 
control the transitions, as usual in automata theory), but work on Watson
Crick tapes, that is, on elements of W Kp(V), for some alphabet V and its 
complementarity relation p <;;; V x V. (We use the notations established in 
the previous chapter.) 

A Watson-Crick finite automaton is a construct 

M = (V, p, K, so, F, <5), 

where V and K are disjoint alphabets, p <;;; V x V is a symmetric relation, 

So E K, F <;;; K, and 0 : K x (~:) ----; P(K) is a mapping such that 

o(s, (:)) i- 0 only for finitely many triples (s,x,y) E K x V* x V*. 

The elements of K are called states, V is the (input) alphabet, p is a 
complementarity relation on V, So is the initial state, F is the set of final 

states, and 0 is the transition mapping. The interpretation of S' E o( s, (:~)) 
is: in state s, the automaton passes over Xl in the upper level strand and 
over X2 in the lower level strand of a double stranded sequence, and enters 
the state S'. 

As in the case of finite automata, we can also write the transitions of M 

as rewriting rules of the form s (:~) --+ (:~) S'; such a rule has the same 

meaning as S' E o(s, (:~)). 

Remark 5.1. In contrast to the case of finite automata, in Watson-Crick 
finite automata we have written first the alphabet V and the complementarity 
relation p, and after that the set K of states, in order to stress the fact that 
the pair (V, p) plays a fundamental role in our machines. Working with 
double stranded sequences is the crucial difference between traditional finite 
automata and Watson-Crick finite automata. D 
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A transition in a Watson-Crick finite automaton can be defined as follows: 

For (Xl) ,(UI), (WI) E (VV*) such that [XIUIWI] E WKp(V) and 
X2 U2 W2 * X2 U 2W 2 

S, S' E K, we write 

We denote by ==} * the reflexive and transitive closure of the relation ==}. 

As in the case of sticker systems, we investigate here the language of 
strings appearing in the upper strands of Watson-Crick tapes recognized by 
our automata, that is the language 

So [ WW21] [WI] Lu(M) = {WI E V* I ==}* W2 Sf, for sf E F, 

and W2 E V*, [:~] E WKp(V)}. 

Remark 5.2. Of course, we can also consider the language of strings ap
pearing in the lower strand, as well as the language of molecules, but we do 
not discuss such languages here (they are linked to Lu (M) by the relation p; 
when p is injective, the three languages are isomorphic). 0 

Another important language associated to a Watson-Crick automaton can 
be defined taking into account the transitions, not the recognized sequence. 

For a Watson-Crick finite automaton M = (V, p, K, So, F, P) (hence with 
the transition rules written as rewriting rules) consider a labeling e : P --+ 

Lab, of rules in P with elements in a set Lab. For a computation 0" : SOW ==} * 

wSf, W E WKp(V), sf E F, denote by e(O") the control word of 0", that is the 
sequence of labels of transition rules used in 0". In this way we obtain the 
language 

Remark 5.3. The control word e(O") associated to a computation 0" in a 
Watson-Crick finite automaton can be particularly useful in DNA computing, 
where we work with words over a prescribed reduced alphabet, hence we need 
codifications of symbols of larger alphabets arising from the problems we want 
to solve. Consider, for instance, the very first experiment in DNA computing, 
that was considered in Sect. 2.1. Associate a Watson-Crick automaton to 
a graph by using the codes of nodes in the upper level and the codes of the 
edges in the lower level when defining the transitions. Let each transition 
parse either a node or an edge. Label each transition with the name of the 
corresponding node or edge. Then the control word of a computation will be 
a shuffle of the description of the path associated to our computation, written 
as a sequence of nodes and simultaneously as a sequence of edges. By a weak 
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coding, we can select from the control word the path description we want. 
Thus, in this case, the control word of a computation is more explicit than 
the recognized sequence. In particular, like in the Adleman's experiment, 
we can let the automaton work on nondeterministically chosen sequences, 
selecting the control words of interest. 0 

We say that the languages La(M),o: E {u,ctr}, are recognized by the 
Watson-Crick finite automaton M. 

We note again that the work of Watson-Crick automata is defined for 
elements of W Kp(V) only, that is, for double stranded sequences of elements 
in V paired according to the complementarity relation p. We can represent 
such a machine as consisting of a double tape on which an element of W Kp(V) 
is written, a finite memory, able to store a state from a finite set of states, 
and two read only heads, one of them scanning the upper level and the other 
one scanning the lower level of the tape. Start with the two heads placed 
before the first symbol of each level, in state so. The two heads are moved to 
the right, according to the current state of the machine, as indicated by the 
transition mapping (the transition rules). Here a transition step means to 
move the two heads across blocks defined by a specific transition rule. Stop 
and accept the starting sequence when both heads reach the right hand end 
of the sequence written on the tape, entering a final state. Fig. 5.1 illustrates 
this representation. 

s 

--+-

Figure 5.1: A Watson-Crick finite automaton 

We consider also several variants of Watson-Crick finite automata. We 
say that M = (V, p, K, So, F, P) is: 

- stateless, if K = F = {so}; 

- all-final, if F = K, 

- simple, if for all s (~~) ---+ (~~) s' E P we have either Xl = A or 

X2 = A, 

- I-limited, if for all s (~~) ---+ (~~) s' E P we have !XIX2! = 1. 
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In the stateless automata, the components K, So, F can be omitted, and 

the transition rules can be written in the form (:~). Then, the automaton 

is written in the form M = (V, p, P). 

We denote by AWK(a), NWK(a), FWK(a), SWK(a), lWK(a), 
NSWK(a), NIWK(a), FSWK(a), FIWK(a), the families of languages 
of the form La (M), a E {u, ctr}, recognized by Watson-Crick finite au
tomata which are arbitrary (A), stateless (N, from "no state"), all-final (F), 
simple (8), I-limited (1), stateless and simple (N8), stateless and I-limited 
(Nl), all-final and simple (F8), and all-final and I-limited (Fl), respectively. 
(The basic abbreviation, WK, is obtained by selecting the beginning and the 
end symbols of the single stranded sequence W A T 8 0 NCR I C K.) We 
will use the generic term WK families to refer to all these language families. 

5.2 Relationships Between the WK Families 

In this section we investigate the relationships between the families of lan
guages in the previous section, as well as the relationships of these families 
to the families in the Chomsky hierarchy. 

Directly from the definitions we obtain: 

Lemma 5.1. XWK(a) ~ AWK(a), a E {u,ctr},X E {N,F,S, I,NS, Nl, 
FS,Fl}. 

Lemma 5.2. NWK(a) ~ FWK(a), NSWK(a) ~ FSWK(a), NIWK(a) 
~ FIWK(a), a E {u,ctr}. 

Lemma 5.3. XSWK(a) ~ SWK(a), XIWK(a) ~ lWK(a), XIWK(a) 
~ XSWK(a) ~ XWK(a), lWK(a) ~ SWK(a), a E {u, ctr}, X E 

{N,F}. 

Moreover, it is easy to see that we also have the following relations: 

Lemma 5.4. REG ~ lWK(u). 

Lemma 5.5. AWK(a) ~ CS, a E {u,ctr}. 

Lemma 5.6. Each language in a family XW K( u) is a coding of a language 
in thefamilyXWK(ctr),X E {A,N,F,S,I,NS,Nl,FS,Fl}. 

The use of states is powerful, in the sense that arbitrary transition rules 
can be replaced by simple transition rules without decreasing the power. The 
following lemma can also be viewed as a "normal form" result, customary in 
automata theory. 

Lemma 5.7. AWK(u) ~ lWK(u). 
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Proof. Consider an unrestricted Watson-Crick finite automaton M 
(V, p, K, so, F, P) and construct the I-limited Watson-Crick automaton 

M' = (V,p,K',so,F,P'), 

as follows. 
For each transition rule 

in P, n ~ 0, m ~ 0, n + m ~ 2, we introduce in P' the transitions 

s (~) -4 (~) St,l, 

1 ::; i ::; n - 1, 

1 ::; i ::; m - 2, 

all states St,i, S~,i are introduced in K', together with all states in K. 
One can easily see that the obtained automaton is equivalent with M (the 

new states control the work of M' in a deterministic way) and I-limited. 0 

Corollary 5.1. IWK(u) = SWK(u) = AWK(u). 

The construction above modifies the language Lctr(M); we do not 
know whether or not the inclusion in Lemma 5.7 also holds for families 
1 W K (ctr), SW K (ctr ), A W K (ctr). 

For an easy reference, we summarize the relations from the previous lem
mas for families XW K (ctr) in the diagram in Fig. 5.2; the arrows indicate 
inclusions which are not necessarily proper. The case of families XW K( u) 
is postponed until new relations are established between them. 

Remark 5.4. A notion which is related to the devices defined above is that 
of two-head finite automata. 

A two-head finite automaton is a construct M = (K, V, so, F, 8), where 
K, V, So, F are as in a usual finite automaton and 8 is the transition mapping, 
8: K X (V U {A}) x (V U {A}) -----* P(K). For WI,W2,XI,X2 E V*, UI,U2 E 

V U {A}, and s, s' E K we write 

(WI, W2)S( UIXl, U2X2) ===;. (WI Ul, W2U2)S' (Xl, X2) iff s' E 8( S, UI, U2). 

The language recognized by M is defined by 

L(M) = {x E V* I so(x,x) ===;.* (x,x)Sj,Sj E F}. 
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We denote by T H the family of languages recognized by such automata. 
Some variants oftwo-head (or, more generally, multihead) finite automata 

were intensively investigated: deterministic, simple (one head reads the tape, 
the others can only distinguish the end markers of the input string), sensing 
(the heads can sense the case when two of them are placed in the same cell 
of the tape). Precise definitions, results and further references can be found 
in [49], [94], [97], [186J. 

os 

1 
AWK(ctr) 

/~ 
SWK(ctr) FWK(ctr) 

/~/~ 
lWK(ctr) FSWK(ctr) NWK(ctr) 

~/~/ 
FIWK(ctr) NSWK(ctr) 

~/ 
NIWK(ctr) 

Figure 5.2: The hierarchy of ctr families 

It is obvious that a two-head finite automaton is a particular case of a 
I-limited Watson-Crick finite automaton: the complementarity relation is 
the identity, (a, b) E P if and only if a = b. 

On the other hand, a I-limited Watson-Crick finite automaton can be 
simulated by a two-head finite automaton: one head parses the input string 
acting as the upper head of the Watson-Crick automaton, the second one 
parses this string but acts as the lower head of the Watson-Crick automaton: 
it guesses a complement of the current symbol and it crosses a symbol a only 
if the lower head of the Watson-Crick automaton can cross - in the same 
state - a symbol b which is complementary to a. 
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Consequently, we get the following equality: 

Lemma 5.8. TH = lWK(u). 

A Watson-Crick finite automaton can be also viewed as a two-tape, two
head finite automaton, but of a very particular type: the two tapes are 
interrelated through the complementarity relation; if this relation is one-to
one, then one tape precisely identifies the other one - this is the case of the 
DNA molecules. 0 

In the simple stateless case, the parsing of a sequence in W Kp(V) can 
be controlled by examining a subsequence of length at most the length of 

the longest string WI, W2 in transition rules (::): because one of WI, w2 is 

always empty, we can continue with the level whose reading head is behind, 
thus bounding the distance (delay) between the two heads. Consequently, we 
obtain: 

Lemma 5.9. NSWK(u) S;; REG. 

The following strenghtening of Lemma 5.4 holds. 

Lemma 5.lD. REG S;; FIWK(u). 

Proof. Consider a finite automaton M = (K, V, so, F, 8) and construct 
the all-final I-limited Watson-Crick finite automaton 

M' = (V,p,K',so,K',8'), 

with 

p = {(a,a)) I a E V}, 

K' = K U {sf}, (for sf 1. K), 

8'(s, (~)) = 8(s,a) U F(s,a), s E K,a E V, 

h F( ) _{{Sf}' if8(s,a)nF#0, 
were s, a - (/I, h 

'IJ ot erwise, 

8' (s f' (~)) = {sf}, a E V, 

8'(s, (~)) = 0, in all other cases. 

The recognition of a sequence [:] proceeds as follows: one first parses 

the first strand, from left to right, exactly as in M, except for the last step, 
when M reaches a final state; then M' enters the state sf. Then one can also 
parse the second strand, making possible the completion of recognition. 

Therefore, Lu(M') = L(M). 0 
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The relations between families XWK(u) can now be synthesized as in 
the diagram in Fig. 5.3; as usual, the arrows indicate inclusions which are 
not necessarily proper. 

os 

1 
AWK(u) = SWK(u) = lWK(u) 

1 
FWK(u) 

/~ 
FSWK(u) NWK(u) 

~ 
FIWK(u) 

~ 
REG 

~ 
NSWK(u) 

I 
NIWK(u) 

Figure 5.3: The hierarchy of u families 

In some sense, the families above are "small": the languages in these 
families satisfy very strong conditions. The following lemmas provide two 
such necessary conditions. 

Lemma 5.11. (i) If L E NWK(a), for a E {u,dr}, then L = L+. (ii) If 
L E Nl W K (u), then there is an alphabet V such that L = V+. 

Proof. (i) Consider a stateless Watson-Crick finite automaton M = 
(V, p, P). If WI, W2 E W Kp(V) can be parsed by M, then WI W2 can be 
parsed as well, using the same elements of P. Hence, Lo;(M)+ ~ Lo;(M), a E 
{ u, dr}. The opposite inclusion, Lo; (M) ~ Lo; (M) +, is obvious. 

(ii) Obvious, because each string can be recognized by a stateless I-limited 
Watson-Crick automaton. 0 
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We shall see below (Lemma 5.14) that assertion (ii) is not true for the ctr 
case. 

Corollary 5.2. REG - XWK(o:) f=- 0, 0: E {u,ctr},X E {N,NS}. 

Corollary 5.3. F1WK(u) - NWK(u) f=- 0. 

Proof. By Lemma 5.10, the language ab* is in F1WK(u). This language 
does not have the property stated in Lemma 5.11, so ab* tt NWK(u). 0 

Corollary 5.4. The inclusions NWK(u) c FWK(u) and NSWK(u) c 
F1WK(u) are proper. I 

Lemma 5.12. Every one-letter language in AWK(u) is regular. 

Proof. Consider an unrestricted Watson-Crick finite automaton M = (V, 

p, K, so, F,6). If there is a transition s' E 6(s, ( ~)) such that w contains a 

symbol band (a, b) tt p, then this transition can never be used when producing 
strings in Lu(M). Thus, all such transitions can be ignored, that is we may 
assume that for all b as above we have (a, b) E p. We construct the linear 
grammar 

with 

G = (K,{a,b},so,P), 

P = {s -. ais'lJ Is' E 6(s, (~)),s,s' E K,i 2: O,j = Iwl} 

U {s -. ailJ I 6(S, (~)) n F f=- 0,s E K,i 2: O,j = Iwl}. 

Consider also the linear language 

According to [77], Corollary 5.3.1, L( G) n L is a linear language. (We have 
L(G) n L = {anbm I (n,m) E W{a,b}(L(G)) n {(p,p) I pEN}}; because 
the intersection of two semilinear sets is a semilinear set, it follows that 
W {a,b} (L( G) n L) is a semilinear set. Together with the above mentioned 
result from [77], this implies that L( G) n L is a linear language.) For the 
weak coding h defined by 

h(a) = a, h(b) = A, 

we have 
Lu(M) = h(L(G) n L), 

which implies that Lu (M) is regular. o 

Corollary 5.5. AWK(u) c CS is a strict inclusion. 
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However, the families discussed above (with the exception of N SW K ( u)) 
contain languages of a very high complexity. We shall see in the next sec
tion that characterizations of recursively enumerable languages can be ob
tained starting from them and using AFL operations (in fact, weak codings 
and deterministic gsm's). We close this section with a result proving di
rectly that stateless Watson-Crick finite automata can recognize complex 
languages. This is, of course, due to the free availability of double stranded 
sequences. 

Lemma 5.13. NWK(u) - MAT).. -=I- 0. 

Proof. Consider the stateless Watson-Crick finite automaton 

M = ({a,b,c,d,e,j},p,P), 

with 

p = {(a, a), (b, c), ( c, b), (a, d), (d, a), (e, j), (I, e)}, 

P= {G), (~), G), (!), (~), G), G), (~)}. 
Consider also the regular language described by the following regular expres-
sion 

R = c(dd+b)(aa+b)+a+e+, 

and the weak coding h defined by 

h(a) = a, h(b) = h(c) = h(d) = h(e) = A. 

The molecules recognized by M and having a string in R in their upper strand 
must be of the form 

[
cdn1 ban2 b ... ban"'-l ban", en",+l ] 
bXICX2C ... CXm_ICXmfn",+1 ' 

with m ~ 3, ni ~ 2,1 :s; i :s; m, nm+l ~ 1. Because of the complementarity, 
we also have Xl = an1 , Xi E {a,d}*, IXil = ni, for 2:S; i:S; m. 

Each b in the upper strand is paired with an occurrence of b or c in the 
lower strand, because of the form of the pairs in P, as suggested by the 
subscripts of these symbols b, c in the following writing: 

[
cOdnlblan2b2 ... bm_2an"'-lbm_Ian",emen"'+1-I] 

bl Xl C2 X2 C3 ... Cm-l Xm-l Cm Xm f fn",+l-l . 

We have also indicated that the last occurrence of c in the lower strand is 
paired with the first occurrence of e in the upper strand. 

Now, because of this precise pairing and because (1) the symbol a apears 

only in pairs (:) of P, and (2) the symbol d can be introduced in the lower 

strand only by the pair (~), it follows that: 
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1. Xi E a+, 2 ~ i ~ m - 1, 

3. IXil=nHl,l~i~m-1. 

From IXil = ni and IXil = nHl we get ni = nHb 1 ~ i ~ m-1. 
Therefore, the recognized molecule has the form 

[ 
cdnbanb . .. banbanen+1 ] 

bancanc . .. cancdn fn+l ' 

with at least two blocks ban and n 2: 2. 
Consequently, we obtain 

h(Lu(M) n R) = {anm In, m 2: 2} 

= {aP I p is a composite number}. 

This language is not semilinear, hence is not regular; each one-letter 
language in M ATA is regular [85]; the family M ATA is closed under in
tersection with regular languages and arbitrary morphisms. Consequently, 
Lu(M) ~ MATA. 0 

Corollary 5.6. The inclusion NSWK(u) C NWK(u) is proper. 

5.3 Characterizations of Recursively Enumer
able Languages 

We shall now give a series of representation results for recursively enumer
able languages starting from languages recognized by Watson-Crick finite 
automata of various types. In fact, we have characterizations of RE, because 
RE is closed under the operations applied. 

The proof of the following lemma, although technically simple, captures 
the essence of Watson-Crick tapes and the interconnection to the twin-shuffle 
language. 

Lemma 5.14. For every alphabet V, we have TSv E NIWK(ctr). 

Proof. Consider the I-limited stateless Watson-Crick finite automaton 

M = (V,p,P), 

with 

p = {(a, a) I a E V}, 

P = {( ~) , (~) I a E V}, 
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with the labeling 

If [~] E WKp(V) and a : So [~] ==}* [~] So is a computation in M 

(the state So is written only in order to make clear that this is a non-trivial 
computation), then e(a) E x ill X, hence e(a) E TSv . 

As x above can be any string in V* and each element of x ill x describes 
a correct computation in M, we have the equality Lctr(M) = TSv . D 

Theorem 5.1. Each language in the family RE is the image of a determin
istic gsm mapping of a language in any family XW K (ctr), X E {A, N, F, S, 
1,NS,N1, FS,F1}. 

Proof. This is a direct consequence of the previous lemma and Theorem 
3.17. D 

Lemma 5.15. SRSL(c) S;; FWK(u). 

Proof. Consider a simple regular sticker system "y = (V, p, A, D z, D u ), 

with the elements of Dz, Du labeled by a mapping e : Dz U Du -----+ Lab. 
We construct the all-final Watson-Crick finite automaton 

M = (V, p, {so, sd, so, {so, sd, P), 

with the transition rules 

So (~~~~) ~ (~~~~) SI, for [~~] (~~) E A, [~~] E WKp(V) 

(~~) E (~*) U ( :* ) , 
SI (~) ~ (~) SI, for (~) E Dz and G) E Du 

such that e((~)) = e(G)). 
The coherent correct computations in "y can be simulated by correct com

putations in M and, conversely, the sequences recognized by M are also 
reached by correct (coherent) computations in "y. Indeed, the fact that we 
always have to start from an axiom is ensured by the initial state, so, while 
the coherence is ensured by the transition rules, which are defined only for 

pairs (~) such that (~) E Du and (~) E Dz and these blocks have the 

same label. Consequently, Lc("'() = Lu(M). D 

Theorem 5.2. Each recursively enumerable language is the weak coding of 
a language in any family XWK(u), X E {A, F, S, I}. 
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Proof. The assertion follows from Lemma 5.15, the inclusions FW K(u) ~ 
XWK(u), X E {A,S, 1} (see Fig. 5.3), and Theorem 4.12. 0 

Lemma 5.16. If hl,h2 : Vt ----t V2* are two morphisms, then hl(EQ(hl, 
h2)) E NWK(u). 

Proof. For hI, h2 given, we construct the stateless Watson-Crick finite 
automaton 

with 

A sequence [:~] E W K p (V2 ) is successfully parsed by M if and only 

if WI = W2 (due to the relation p) and WI = hl (x),W2 = h2(X), for some 
x E Vt (due to the form of rules in P). Consequently, x E EQ(hl, h2) and 
WI E hl (EQ(hl,h2)), which implies Lu(M) = hl(EQ(hl,h2)). 0 

Theorem 5.3. Each language L E RE can be written in the form L = 
h( L' n R), where L' E NW K (u), R E REG, and h is a projection. 

Proof. This is a direct consequence of the previous lemma and of Theorem 
3.16. 0 

Theorem 5.3 can be modified to the following, perhaps more interesting, 
result: every recursively enumerable language is a projection of some language 
Lu(M), where M is a Watson-Crick finite automaton. 

Theorem 5.4. Each language L E RE can be written in the form L = h(L'), 
where L' E AWK(u) and h is a projection. 

Proof. We use the representation of Theorem 3.16 and write L = 
h(hl(EQ(hl, h2))nRO), where h is a projection, hI, h2 : Vt ----t V2* are A-free 
morphisms, and Ro ~ V2* is a regular language. Let Mo = (K, V2 , So, F, b") 
be a deterministic finite automaton such that Ro = L(Mo). It suffices to 
construct a Watson-Crick finite automaton M with the property 

Indeed, define a Watson-Crick finite automaton by 

M = (V2' p, K, So, F, b"'), 

with 

p = {(a, a) I a E V2}, 
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'( (h1(a))) {'} , b s, h2(a) = s ,whenever s,s E K,a E V1 , 

and (s,h1(a)) f-* (s',A), 

b'(s, (~)) = 0, otherwise. 

(Here f-* refers to the transition in the automaton Mo, as explained in Chap. 
3.) 

Analogously as in Lemma 5.16, it is now seen that M possesses the re-
quired property. D 

Although a result like that in Lemma 5.16 seems not to be true for the 
family F SW K (u), a result like that in Theorem 5.3 also holds true for this 
family. 

Theorem 5.5. Each language L E RE can be written in the form L = 

h(L' n R), where L' E FSWK(u), R E REG, and h is a projection. 

Proof. Using Theorem 3.16, we can write L as L = h(h1(EQ(h 1,h2)) n 
R o), where h1' h2 are A-free morphisms, h is a projection, and Ro is a regular 
language. For h1' h2 : Vt ----+ V2*' we construct the all-final simple Watson
Crick automaton 

with 

M = (V, p, K, so, K, b), 

V=V2 U{c}, 

p = {(a,a) I a E V2} u {(c,c)}, 

K = {SO,Sl} U {sa I a E Vd, 

b(so, (h1~a))) = {sa}, 

b(sa, (h2~a))) = {so}, a E V1 , 

b(so, G)) = {sd, 

b(Sl' (~)) = {sd, 

b(s, (~)) = 0 in all other cases. 

For the regular language 

we obviously have 
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(The alternation of states So, Sa and the fact that after introducing S1 - from 
So - we have to remain in this state together ensure that the parsed molecule 

. [h1(X)C] 
IS of the form h2(X)C ,for some x E Vt·) 

Considering R = .Ro{c} and extending the projection h by h(c) = oX, we 
obtain L = h(Lu(M) n R). 0 

Of course, the projection h and the intersection with the regular language 
R in Theorems 5.3, 5.5 can be done by a deterministic gsm, hence a result 
like Theorem 5.1 also holds true for the families NWK(u) and FSWK(u). 

Consequently, we may say that modulo a deterministic gsm - and in some 
cases modulo a weak coding only - all-families XWK(a), X E {A,N, S,l, 
F, F S}, are equal to RE, and, in this sense, equal to each other. This also 
leads to the following estimation of the size of these families. 

Corollary 5.7. For each family of languages FL such that F L c RE and FL 
is closed under intersection with regular languages and arbitrary morphisms, 
we have XWK(u) - FL =I- 0, X E {A,S,F, 1,N,FS}. 

Among the important language families F L satisfying the premise of the 
statement of Corollary 5.7 are MAT>' and ETOL. 

Note that in the previous results the final states play no role, they do not 
increase the power of Watson-Crick finite automata - modulo a deterministic 
gsm or, in certain cases, modulo a weak coding - and that simple Watson
Crick finite automata (with only three states) suffice to characterize RE 

modulo a weak coding. Automata without states, using transition pairs (~) 
with non-restricted strings u, v, are also very powerful. These observations 
illustrate again the power of Watson-Crick complementarity, and they will 
be also confirmed by the machines considered in the subsequent sections. 

It is also worth mentioning that in most of the constructions above (this 
is the case for the proofs of Theorem 5.5 and of Lemmas 5.14,5.16) the com
plementarity relation is the identity relation, (a, b) E P if and only if a = b. 
This is not the case for the proof of Theorem 4.12, hence for Theorem 5.2. As 
we have mentioned several times already, in the DNA case the complemen
tarity relation is one-to-one. When trying to be closer to the "DNA reality", 
we have to take a symmetric one-to-one relation as a basic complementarity 
relation for our models. This can raise some problems, because the above 
proof of Theorem 4.12 uses a relation which is not even injective: (s, s) E p 
and (s, [s, k)) E p, too. 

5.4 Watson-Crick Finite Transducers 

An output can be associated to a Watson-Crick finite automaton in the same 
way as an output is associated to a finite automaton to form a gsm. This 
output is written on a normal tape rather than on a Watson-Crick double 
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stranded tape (the other possibility will be considered in Sect. 5.6). Fig. 5.4 
illustrates this idea. 

-
s I I I I I I I 

t 

Figure 5.4: A Watson-Crick transducer 

A Watson-Crick gsm is a construct 

g = (V], PI, Va,K,so,F,8), 

where VI is the input alphabet, PI ~ VI X VI is a symmetric relation (of 
complementarity), Va is the output alphabet, K is the set of states, So E K 

is the initial state, F ~ K is the set of final states, and 8 : K x (~:) ---t 

P f (Va x K) is a mapping such that 8 (s, (:)) i= 0 only for a finite number of 

triples (s,u,v) E K x V/ x V/. The interpretation of (x,s') E 8(s, (:)) is: 

in state s, the transducer passes over u in the upper level and over v in the 
lower level of a double stranded sequence, produces the output x, and enters 
the state s'. 

Formally, for wI,w2,wi,w~ E V/,x,z E Va, and s,s' E K, we write 

zs (:~) ===* zxs' (:D iff WI = Xl w~, W2 = X2W~, for 

(x,s') E 8(s, (:~))'XI'X2'W~'W~ E V/. 

For a sequence W = [:~] E WKpI(VI) we define 

g( w) = {z E Va I So [:~] ===* * zs f [~] , sf E F}. 

We extend this definition to languages in W KpI (VI) in the usual way. 



168 5. Watson-Crick Automata 

As for Watson-Crick finite automata, we consider stateless, simple, 1-
limited, all-final, stateless simple, stateless I-limited, all-final simple, and 
all-final I-limited Watson-Crick gsm's. 

As the labeling of transitions in a stateless Watson-Crick finite automaton 
can be expressed as the output function of a Watson-Crick gsm, from Lemma 
5.14 we get the following result. 

Corollary 5.8. For every alphabet V, there is a stateless i-limited Watson
Crick gsm gv such that we have TSv = gv(WKp(V)), for p = {(a,a) I a E 

V}. 

This implies a result like that in Theorem 5.1: each language L E RE 
can be written in the form L = g(gV (WKp(V))) , where g is a usual gsm 
(deterministic) and gv is a stateless I-limited Watson-Crick gsm. 

Both the intersection with a regular language and a morphism can be 
realized by a Watson-Crick gsm, hence from Theorem 5.5 we obtain: 

Theorem 5.6. For each language L ERE, L <:;;; V*, there is a simple all-final 
Watson-Crick gsm gL such that L = gdWKp(V')), for some Watson-Crick 
domain WKp(V'). 

Hence, Watson-Crick finite transducers not only do not preserve the fam
ilies in the Chomsky hierarchy, but they map (very simple) regular languages 
in such a way that they cover the whole family RE. 

In the same way as each two-head finite automaton can be considered a 
variant of a Watson-Crick finite automaton, a two-head finite transducer can 
be considered to be a special case of a Watson-Crick gsm. 

5.5 Further Variants of Watson-Crick Finite 
Automata 

Among the Watson-Crick finite automata considered in Sect. 5.1, the most 
intimately related to the DNA structure are the stateless automata which 
are using only Watson-Crick complementarity, and no additional automata 
theory-like features. These automata deserve further investigation. 

Because h(W1W2) = h(wdh(w2)' where h is a morphism, it follows from 
Lemma 5.ll that we cannot represent every regular language as the morphic 
image of a language in NW K (a), a E {u, ctr}. Therefore, on the one hand, 
starting from N SW K (u) we cannot even obtain representations of REG 
using weak codings (as in Theorem 5.2), while on the other hand, the results 
in Theorems 5.1 and 5.5 cannot be improved by replacing the deterministic 
gsm mapping by a morphism, or by not using an intersection with a regular 
language. 

The "weak point" of stateless Watson-Crick finite automata is that they 
cannot control the first step of a computation. This suggests the following 
definition. 
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An initial stateless Watson-Crick finite automaton is a quadruple 

M = (V,p,Po,P), 

where V is an alphabet, p ~ V x V is a symmetric relation, Po and Pare 

finite subsets of (~:). 

A double stranded sequence [:~] E WKp(V) is recognized by M if and 

only if 

WI = XOXI ... X n , W2 = YOYI ... Yn, n 2: 0, 

where (::) EPa, (::) E P, 1 ~ i ~ n. 

Therefore, at the beginning of the parsing of [:~] we have to use an element 

of Po and after that no element of Po is used again - unless Po n P =f. 0. 
As usual, we denote by L,A M), 0: E {u, crt}, the languages associated 

to correct computations in M. By INWK(o:),INSWK(o:) we denote the 
families of languages recognized by initial stateless and by initial stateless 
simple Watson-Crick finite automata. 

As expected, controlling the first step of a recognition process increases 
the power of our machines. Still, one can easily see that a result like that in 
Lemma 5.9 is true: 

Lemma 5.17. INSWK(u) ~ REG. 

On the other hand, we have the following result, which does not hold for 
non-initial automata. 

Theorem 5.7. Each regular language is a coding of a language in the family 
INSWK(u). 

Proof. Consider a deterministic finite automaton M = (K, V, so, F, 0) and 
construct the initial simple stateless Watson-Crick finite automaton 

M' = (U,p,Po,P), 

where 

U = {[s,a,s']i Is,s' E K,a E V, 1 ~ i ~ 4}, 

p = {([s, a, S']i, [s, a, S']i) I s, s' E K, a E V, 1 ~ i ~ 4}, 

{( [so,a,s'h) I' () } Po = A s = 0 So, a ,a E V , 

{( [so,a,s'h) I' 5;() } U A s = u So, a E F, a E V , 



170 5. Watson-Crick Automata 

s,s' E K,s" E F,a1,a2 E V} 

u {Cs,a~s'l4) Is' = 8(s,a) E F,s E K,a E V} 

U {([ 'l A[ , "l) Is' = 8(s,a1),s" = 8(s',a2), s,ab s 1 s ,a2,s 2 

s, s', s" E K, al, a2 E V} 

U {([ 'l A[, "l) Is' = 8(s,ad,s" = 8(s',a2) E F, s,a1,s 1 s ,a2,s 4 
s,s' E K,s" E F,a1,a2 E V} 

U {( [ A 'l ) I s' = 8(s, a) E F, s E K, a E V}. 
s,a, s 3 

E h . . f t t' h ([so, a, slh). R . h ac recogmtIOn 0 a sequence mus star WIt A III 0, WIt 

the exception of the recognition of sequences of length one, which starts with 

( [so,~, slh) in Po, and ends immediately by using ([ A l) in P. All 
1\ sO,a,S13 

elements of P of the form (~) have the strand x starting with a symbol 

[s, a, s'h or [s, a, S'l4; all elements of P of the form (~) have y starting with 

a symbol [s, a, s'h or [s, a, s'h. Consequently, after completing the parsing 
of an element of W Kp(U) no further steps can be taken, because the pairing 
imposed by p cannot be observed. 

This means that we can successfully parse only sequences w E W K p (U) 
composed of two identical strands of the form 

[so, aI, slh [Sl, a2, s2h[S2, a3, s3h [S3' a4, s4h ... [Sk-b ak, skldsk, ak+1, Sk+1lj, 
with i = 2,j = 3 when k is even, and i = 1,j = 4 when k is odd; moreover, 
SOSl ... Sk+1 is a state sequence corresponding to the recognition of the string 
a1a2 ... ak+1 in M. 

Let h be the coding that maps triples [s, a, S'li to a. Then we obtain 
L(M) = h(Lu(M')). D 

Because each usual stateless Watson-Crick finite automaton can be con
sidered to be an initial one, by taking Po = P, we obtain the inclusions 
XWK(a) ~ IXWK(a),X E {N,NS},a E {u,ctr}. Consequently, the 
characterizations of the family RE in Theorems 5.1 and 5.3 hold also true 
for the corresponding families I XW K (a), a E {u, ctr}. 
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As we know from Chap. 1, the two strands of a DNA molecule have 
opposite 5' - 3' orientations. This suggests considering a variant of Watson
Crick finite automata that parse the two strands of a Watson-Crick tape in 
opposite directions. Figure 5.5 illustrates the initial configuration of such an 
automaton. 

--+ 

+ 

So 

i 
+--

Figure 5.5: A reverse Watson-Crick finite automaton 

Formally, a reverse Watson-Crick finite automaton is a construct 

M = (V, p, K, So, F, 6), 

with the components defined exactly as for Watson-Crick finite automata, 
but with the relation ===} defined as follows: 

For Wl,W2'W~,w~,x,y E V*,s,s' E K, we write 

Then [WW21] E W Kp(V) is recognized by M if and only if 

As in Sect. 5.1 we can associate two languages La(M), 0: E {u, ctr}, with 
a reverse Watson-Crick finite automaton M. These families of languages as
sociated with reverse Watson-Crick finite automata corresponding to families 
XWK(o:) are denoted by XRWK(o:),X E {A,N,F,S, 1, NS,N1,FS,F1}. 

Clearly, a diagram like that in Fig. 5.2 also holds true for these families. 
In the simple stateless automata the direction of head movement is not 

crucial, but only the possibility of covering the double stranded input se
quence with upper and lower level blocks. We therefore obtain: 
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Lemma 5.18. NSWK(u) = NSRWK(u). 

In view of Lemma 5.9, we obtain 

Corollary 5.9. NSRWK(u) ~ REG. 

A counterpart of Theorem 5.1 is true in the new framework as well. 

Lemma 5.19. For every alphabet V, we have RTSv E NIRWK(ctr). 

Proof. For the I-limited stateless Watson-Crick automaton M in the 
proof of Lemma 5.14, interpreted as a reverse automaton, we have Lctr(M) = 
RTSv. 0 

Theorem 5.8. Each language in RE is the image by a deterministic gsm 
mapping of a language in any family XRWK(ctr) , X E {A, N, F, S,I, 
NS,Nl,FS,Fl}. 

We do not know which of the other results in Sects. 5.2 and 5.3 are valid 
also for reverse Watson-Crick finite automata. Anyway, we have 

Theorem 5.9. NRWK(u) - CF f:. 0. 

Proof. Consider the reverse stateless Watson-Crick finite automaton 

M = ({a,b,c},p,P), 

with 

p = {(a, a), (b, b), (c, en, 
P = {C), (~), G), (~)}, 

and the regular language R = a+b+c+. 

We are interested in the intersection Lu(M) n R. Only sequences [:J 
with w = an bm cP , n, m, p ::::: 1, can be considered as inputs for M which can 
lead to strings in Lu (M) n R because of the form of p. The parsing of such 

a sequence [:] proceeds as follows: we first obtain 

or 

(We use the only state So of the system - useless in controlling the work of 
M - just to indicate the places of the two read heads in the two strands.) 
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No further step is possible in the second case and no further step is possible 
in the first case when p > n. If p = n, then we can continue with 

or 

==** (anb~cm) So (a~:~:n ) , if n > m. 

No further step can be done in the second case and no further step is possible 
in the first case when m > n. If n = m, then we can continue with 

Consequently, 

which is not a context-free language. 

Theorem 5.10. FIRWK(u) - CF =f. 0. 

o 

Proof. Consider the all-final I-limited reverse Watson-Crick finite au-
tomaton 

with 

M = ({a,b,c},p,K,so,K,8), 

p = {(a, a), (b, b), (c, cn, 
K= {SO,SI,S2,S3}, 

8(so, G)) = {SI}, 

8(SI, (~)) = 8(so, (~)) = 8(s2, (~)) = {so}, 

8(so, (~)) = {S2}' 

8(so, (~)) = 8(s3, (~)) = {S3}, 

8(s, (:)) = 0, otherwise. 

For the regular language R = a+b+c+ we obtain 
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(the states in K control the work of M when parsing a sequence [:J with 

w = anbmcP in the same way as the pairs (:) E P do in the proof of 

Theorem 5.9). D 

Corollary 5.10. The inclusions NSRWK(u) c FSRWK(u), NSRWK(u) 
c NRWK(u) are proper. 

A natural generalization of Watson~Crick finite automata, also suggested 
by the idea of reverse automata, are the Watson~Crick two-way finite au
tomata, where one or both of the two read heads can move on the corre
sponding strand of a Watson~Crick tape in both directions. 

We do not define here formally such machines (in Sect. 5.7 we shall 
do it for the case when only one of the heads, the lower one, works in the 
two-way manner). However, because two-way automata are generalizations 
of usual one-way automata, all characterizations of recursively enumerable 
languages in Sect. 5.3 also remain true for the corresponding variants of two
way Watson~Crick automata. Moreover, Lemma 5.9 also remains true: the 
work on the two strands is independent of each other in the case of simple 
stateless automata; in Chap. 3 we mentioned that two-way finite automata 
characterize regular languages; checking the correctness of the pairing of the 
symbols on the two strands according to the complementarity relation can be 
done by a literal shuffle followed by a gsm, hence this is an operation which 
preserves the regularity. 

If we also supplement the model with end markers of the input, then a 
two-way Watson~Crick finite automaton (with states) can also simulate a 
reverse Watson~Crick finite automaton. 

We do not consider here further study of these variants of Watson~Crick 
finite automata. 

5.6 Watson-Crick Automata with a Watson
Crick Memory 

The Watson~Crick finite transducers discussed in Sect. 5.4 are somewhat 
hybrid devices, as they use an input Watson~Crick tape and a usual output 
tape (single stranded). This suggests considering output tapes to be also 
Watson~Crick tapes, leading to the following device. 

A W atson~Crick prefix automaton is a construct 

M = (VI,PI, ~,p2,K,so,F,8), 

where VI, V2 are alphabets, PI ~ VI X VI, P2 ~ V2 X V2 are symmetric relations 
on VI and V2, respectively, K is a (finite) set of states, So E K, F ~ K, and 



5.6. Watson~Crick Automata with Memory 175 

where o(s, (~~)) =1= 0 only for a finite number of triples (S,XI,X2) E K x 

vt x Vt· 
The interpretations of these elements are as follows: VI is the alphabet of 

the first Watson~Crick tape of M, V2 is the alphabet of the second Watson~ 
Crick tape, PI, P2 are complementarity relations on VI, V2 , K is the set of 
states, So is the initial state, F is the set of final states, and 0 is the transition 

mapping. The meaning of ((~~) ,s') E o(s, (~~)) is: in state s, one parses 

the strings Xl, X2 in the two strands of the first tape of the automaton, one 
passes to state s', and one writes/parses the strings YI, Y2 in the two strands 
of the second tape of the automaton. The automaton starts in state So, with 
the four heads placed at the left hand end of the four strands of the two 
tapes, and stops in a final state, with all the four heads placed at the right 
ends of the four strands. Fig. 5.6 illustrates this idea. 

-
~ 

t 
s - --+ 

t -
Figure 5.6: A Watson~Crick automaton with memory 

We can interpret and use such a machinery in two ways: as a recognizing 
device, and as a transducer. 

In the first interpretation, as a recognizer, the second tape is used as a 
control of the automaton, as a memory. This can be done in two modes: 

(1) start with the second tape empty and at each transition (( ~~) ,s') E 

o(s, (~~)) the strings YI,Y2 are written on the strands of the second tape, 

starting with the leftmost empty positions, or (2) start with the second tape 

containing a sequence [:~] E W K P2 (V2 ) and at each transition ( (~~) ,s') E 
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/j (s, (:~)) move the heads reading the second tape over YI, Y2, respectively. 

In the first mode, the automaton stops correctly only if it reaches a sequence 

[ :~] E W K P2 (V2 ) in the last configuration. Clearly, the two modes of using 

the second tape when M is a recognizing machine are equivalent. 
In either case, we can also define accepting configurations to be ones 

with the second tape empty: in case (1) any column [~] with (a, b) E P2, 

appearing in the second tape is deleted immediately after being produced; in 

case (2) we delete any column [~] with (a, b) E P2, immediately after moving 

both the two heads to the right of it. Thus, in the first case we have a sort 
of FIFO (first-in-first-out) memory, which "melts" from the left as soon as 
completing the columns. This is why we call these automata Watson-Crick 
prefix automata. 

We define formally the transition only for the case where we start with 
an element of W Kpl (Vd written in the first tape and with the second tape 
empty; while exploring the first tape, we write in the second tape, completing 
an element of WKp2 (V2 ), hence a Watson-Crick tape. In this way, we cover 
both the recognizing and the transducing interpretations of a Watson-Crick 
prefix automaton. 

For WI, W2, Xl, X2 E vt, Zl, Z2, YI, Y2 E V2*' S, S' E Q, we write 

A sequence [:~] E W Kpl (Vd is accepted by M if there is [;~] E 

WKp2 (V2 ) such that 

Therefore, a computation (recognition or translation) is correctly termi
nated if the contents of the first tape - which was a Watson-Crick tape -
is exhausted and on the second tape one produces another Watson-Crick 
tape, a complete "molecule" observing the complementarity relation on the 
alphabet V2 . 

Remark 5.5. The slash / in above notation indicates the fact that we 
have here two different double stranded sequences, written on different tapes, 
not two concatenated double stranded sequences. Note therefore the crucial 

difference between [:~] [~~] and [:~] / [~~] ; in the first case we can also 

write [XIYI], which makes no sense in the second case. 0 
x2Y2 
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When interpreting a Watson-Crick prefix automaton M as a transducer, 

the result of translating a sequence w = [:~] E W K PI (VI) is 

M ( w) = { [ ;~] E W K P2 (V2) I So [:~] / [~] ~ * Sf [~] / [;~] , 

for some Sf E F}. 

We emphasize the fact that here we only translate Watson-Crick tapes 
(over Vd into Watson-Crick tapes (over V2 ); if the output is not an element 
of W Kp2 (V2 ), then the translation fails. 

We shall not investigate the Watson-Crick prefix automata used as trans
ducers. Anyway, it is easy to see that the Watson-Crick gsm's in Sect. 5.4 
can be simulated by Watson-Crick prefix transducers: take the identity re
lation as a complementarity relation on V2 and YI = Y2 for each transition 

((~~) ,s') E £5(s, (~~)), etc. Thus, the assertion in Theorem 5.6 holds true 

also for (simple all-final) Watson-Crick prefix transducers. 
As for Watson-Crick finite automata, we can associate two languages also 

to a Watson-Crick prefix automaton: La(M), 0; E {u, ctr}. For instance, 

Lu (M) = {w E vt I So [:,] / [~] ~ * sf [~] / [;~] , for some 

w' E vt, Zl, Z2 E Y;*, Sf E F, such that 

[:,] E WKp,(Vd, [;~] E WKp2 (V2)}. 

Just as for Watson-Crick finite automata, we can consider Watson-Crick 
prefix automata which are simple, I-limited, stateless, all-final, or both simple 
and stateless, I-limited and stateless, or both simple and all-final, or I-limited 

and all-final. In the simple case, for each transition (( ~~) ,s') E £5( s, (~~)) 
we have both one of Xl, x2 and one of YI, Y2 empty, but not necessarily on 
the same strand, the upper or the lower one, in the two tapes; similarly, in 
the I-limited case we have at the same time one of XI,X2 and one of YI,Y2 
empty and the others equal to symbols. We can also consider initial stateless 
Watson-Crick prefix automata, reverse, or two-way automata; we shall not 
investigate these cases here. 

The stateless Watson-Crick prefix automata are presented in the form 

M = (VI, PI, V2,P2,P), whereP ~ (~~) x (~:} the rules ((~~), (~~)) 
in P are usually written in the form (~~) / (~~), where (~~) indicates 

the strings to be parsed in the strands of the first tape, and (~~) indicates 
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the strings to be written (parsed) in the strands of the second tape (both 
actions are done within one transition step of the automaton). 

We denote by XPWK(a) the families obtained in this way, for X E 

{A,N,F, S, 1,NS,N1,FS,F1} and a E {u,ctr}. 
A Watson-Crick finite automaton can be simulated by a Watson-Crick 

prefix automaton with the two tapes identical, and the transitions operating 
in the same way on both of them (hence no further control is provided by 
the second tape). Consequently, we get 

Lemma 5.20. XWK(a) ~ XPWK(a), for all X and a as above. 

In this way, all the representations of RE obtained for Watson-Crick finite 
automata hold true also for Watson-Crick prefix automata. 

Also the relations between families X PW K (ctr) corresponding to the 
diagram from Fig. 5.2 are true. 

The use of the second tape increases the power of Watson-Crick automata, 
hence of prefix automata compared to finite automata. 

Lemma 5.21. If hI,h2 : V* ~ U* are two morphisms, then hI(EQ(hI , 
h2)) E NSPWK(u). 

Proof. For given morphisms hI, h2' we construct the simple stateless 
Watson-Crick prefix automaton 

where 

VI =U, 

PI = {(a,a) I a E U}, 

V2 =V, 

P2 = {(a,a) I a E V}, 

P = {(hI~a)) / (~), (h2~a)) / (~) I a E V}. 

It is easy to see that 

[ :~] / [~] =? * [~] / [:~] 
if and only if WI = W2 E U*,ZI = Z2 E V*,WI = hI(Zl), and W2 = h2(zt}. 
Therefore, Lu(M) = hI(EQ(hI,h2))' 0 

Corollary 5.11. If hI, h2 : V* ~ U* are two morphisms, then EQ(hI' h2) 
E NSPWK(u). 

Proof. In the proof of Lemma 5.21, the second tape contains EQ(hI' h2) 
in each of its strands; interchanging the two tapes, we get a Watson-Crick 
prefix automaton M' such that Lu(M') = EQ(hI' h2)' . 0 
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Theorem 5.11. Each language L E RE can be written in the form L = 
h(L' n R), where L' E NSPWK(u), R E REG, and h is a projection. 

Proof. We use Lemma 5.21 in combination with Theorem 3.16, or Corol
lary 5.11 in combination with Theorem 3.15. 0 

Corollary 5.12. For every family of languages FL such that FL c RE and 
FL is closed under intersection with regular languages and arbitrary mor
phisms, we have NSPWK(u) - FL i= 0. 

It also follows from Theorem 5.11 that the inclusion NSWK(u) c 
NSPWK(u) is proper: NSWK(u) contains only regular languages. 

A characterization of RE related to the one from Theorem 5.11 can also 
be obtained on the basis of the following result. 

Lemma 5.22. For every alphabet V we have TSv E N1PWK(u). 

Proof. Consider the simple stateless Watson-Crick prefix automaton 

with 

VI = VUV, 

PI = {(a,a), (a,a)) I a E V}, 

V2 = V, 

P2 = {(a,a) I a E V}, 

P = {( ~) I (~), (~) I (~) I a E V} 

u {G)/G), G)/(~) laEV}. 

Therefore, the correct recognitions in M are of the form 

for w E (V U V)*, Z E V*, and w E z ill z: the second strand of the first tape 
is parsed without any control from the second tape; when parsing a symbol 
a E V in the first strand of the first tape one also parses an occurrence of a 
in the first strand of the second tape, and when parsing a in the first strand 
of the first tape one also parses an occurrence of a in the second strand of 
the second tape. 

Consequently, Lu(M) = TSv. 0 

Corollary 5.13. Each language in RE is the image through a deterministic 
gsm mapping of a language in NIPWK(u). 
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5.7 Universality Results for Watson-Crick 
Automata 

In view of the characterizations of recursively enumerable languages by means 
of Watson-Crick automata (Sect. 5.3), it is of interest to find universal 
Watson-Crick (finite) automata. Using, for instance, Theorem 5.2, such an 
automaton will be universal- modulo a weak coding - for the whole class of 
Thring machines. 

We will postpone the discussion of this subject and remark first that 
a Watson-Crick finite automaton can be an elegant implementation of a 
"partially universal" finite automaton as constructed at the end of Sect. 
3.3. 

Let us proceed as follows: Let M = (K, V, so, F, P) be a finite automaton 
and x be a string in V*. Consider the string w = code(M)n, where code(M) 
is as specified in Sect. 3.3 and n = Ixl. Consider also the string xcm , for 
m = Iwl - Ixl (that is, Iwl = Ixcml)· Consider the relation p = (K U V U 

{ C, Cl, C2}) X (K U V U {c, Cl, C2}) (the total relation). Write the string xcm 

in the upper strand and the string w in the lower strand of a Watson-Crick 
tape. The way of working of the universal finite automaton constructed at 
the end of Sect. 3.3 suggests a way of defining the transitions of a Watson
Crick automaton which works on the Watson-Crick tape mentioned above 
and recognizes the strings xcm if and only if x E L(M): the lower head scans 
a copy of the code of M in the lower strand of the tape, nondeterministically 
chooses a move sa --+ as' of M, according to it the occurrence of the symbol 
a read by the upper head is scanned, and the state of the Watson-Crick 
automaton checks the correct linking of states of M, memorizing them. When 
reaching the first occurrence of the symbol c in the upper strand (there is at 
least one such an occurrence), a final state of M must be reached, in order 
to correctly finish the parsing. We leave the straightforward details of the 
construction to the reader (see also the construction below). 

This time, the "program" of M is rather simple, a sequence of Ixl copies of 
a single string, the code of M, separated from the "input data" (the string x). 
However, there are two drawbacks: the length of this "program" is still rather 
large, while the string in the first strand, that recognized by our universal 
machine, ends with a tail of symbols c which is also rather long. Both these 
drawbacks can be eliminated if we allow the lower head of the Watson-Crick 
automaton to move in both directions. Then one copy of code(M) is enough, 

hence the tape can be of the form [COd:~:)CP ] , where m and p are integers 

such that m ::::: 1 and Ixcml = Icode(M)cPI (at least one occurrence of c is 
present in the upper strand, to mark the end of the tape, while the shorter 
strand, whichever it is, is completed with additional occurrences of c). Again 
the construction is similar in essence to that used at the end of Sect. 3.3, 
but we present it in full details because it can be of interest to see a concrete 
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Watson-Crick automaton which is universal in the sense considered above. 
First, let us specify one further notation: one move in a Watson-Crick 

automaton with a two-way lower head is given in the form of two rewriting 
rules, one specifying the move of the upper head and one specifying the move 
of the lower head; to be more suggestive, we write these rules one above the 
other; the states involved in the two moves should always be identical (the 
state belongs to the automaton, not to each of the heads). 

Let K and V be the set of states and the alphabet which are maximal 
for the finite automata we want to simulate. We construct the Watson-Crick 
automaton 

where 

Pu = (V U K U { C, Cl , C2}) X (V U K U { C, Cl , C2} ), 
K { / " } u = qo,u, qo,u, qO,Ul qf 

U {is], (s), (s)/, (s)", (s)"', (s)iv, [s]1 s E K} 

U {[sa] I s E K, a E V}, 

and the set Pu consists of the following transition rules (rules of the form 
S>' --t s/ >. in the upper positions mean that the upper strand head does not 
move): 

1. ( qO,u>' --t qb"u>' ) , s EK, 
qo,us --t sqo,u 

(q/ >. --t q" >.) 2. o,u O,U a E V, q/ a --t aq" , o,u o,u 

3. ( q~,u>' --t qo,u>' ) SEK, 
" ' qo,us --t sqo,u 

4. ( qo,u>' --t [so]>' ) 
qo,uso --t So [so] , 

5. ([s]a --t a[sa]) 
isla --t a[sa] ,s E K, a E V, 

6. 
( [sa]>. --t (s/)>. ) / 

[sa]s/ --t s/(s/) ,s, s E K, a E V, 

7. ( (s)>. --t (s)/>. ) / 
(s)s/ --t s/(s)/ ,s, s E K, 

8. Cs)'>' --t (s)">') 
(s)/a --t a(s)" ' 

s E K,a E V, 

9. ((s)">' --t (s)>' ) 
( s )" s/ --t s/ ( S ) , 

s,s/ E K, 



182 5. Watson-Crick Automata 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

Assume now that we start with a finite automaton M = (K', V', so, F, P), 
with K' ~ K, V' ~ V, and we write a string xcm in the upper strand and 
code ( M)cP in the lower strand of the input tape of Mu , with m, p as specified 
above. 

While the upper head of Mu remains in the same place of its strand, 
the lower one looks for a transition of M which can parse the currently read 
symbol of x. At the beginning, this must be a transition of the form soa -+ as. 
By rules 5, 6 one then simulates one step of the work of M. The state (s') 
can go to the right (rules 7, 8, 9) or to the left (rules 11, 12, 13), looking for 
a valid continuation (rule 10). When the string x is finished and one reaches 
c in the upper strand (we may assume that at the same moment we reach 
Cl in the lower strand, because we can move freely the lower head), we pass 
to checking whether or not the current state is final with respect to M. The 
work of Mu stops correctly only in the affirmative case (rules 16). Therefore, 
xcm E L(Mu) if and only if x E L(M). (Rules 17-20 are used for scanning 
the suffixes cm , C2CP of the two strands.) 
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The complete proof of Theorem 5.2 proceeds along the following phases: 
(1) starting from a type-O Chomsky grammar G, one constructs three mor
phisms hI, h2' h3 such that L(G) = h3(hl(EQ(hl' h2))nR), where EQ(hI, h2) 
is the equality set of hI, h2 (that is, the set of words w such that hI (w) = 
h2(W)), and R is a regular language (Theorem 3.16); (2) for hI, h2 as above, 
one constructs a sticker system (of a certain type: coherent) which generates 
a set of double stranded sequences having the language hI (EQ(hI, h2)) in 
their upper strands (Theorem 4.12); finally, (3) a Watson-Crick automaton 
can be constructed starting from this sticker system, recognizing the language 
hI (EQ(hI, h2))nR (Lemma 5.15); thus, a further morphism (h3 above, which 
is in fact a weak coding) suffices to characterize RE. All the three steps are 
constructive. If we start from a universal type-O grammar Gu instead of 
G, then we obtain a unique Watson-Crick automaton which should be uni
versal in a natural sense. However, the above path from a universal type-O 
grammar to a universal Watson-Crick automaton is too long and indirect, 
the result will be too complex (we do not even see an easy way to write the 
"program" to be run on such a universal machine). The task of finding sim
ple Watson-Crick finite automata which are universal for the whole class of 
such automata, hence for the class of Turing machines, remains as a research 
topic. As in the case of finite automata, we consider here only the easier task 
of finding Watson-Crick finite automata which are universal for the class of 
automata with a bounded number of states and of input symbols. 

For a Watson-Crick finite automaton in the I-limited normal form (from 
Corollary 5.1 we know that such automata are equivalent with arbitrary 
Watson-Crick finite automata), M = (K, V, p, so, F, P), we can consider a 
codification of it of the form 

code(M) = lst (;~) sil··· [Sn (;:) s~][sf1l··· [Sfm], 

where each lSi (;;) s~l is a symbol corresponding to a move Si (;;) -+ 

(;;) s~ in P (hence one of ai, f3i is a symbol, the other one is empty), and 

each [Sfil is a symbol associated to a final state in F. 

When parsing a molecule x = [ab
Iab

2 .. ·bar ] , ai, bi E V, 1 ~ i ~ r, r ::::: 1, 
I 2··· r 

we scan one symbol at a time, in either of the two strands, hence we do 2r 
steps. The "speed" of the two heads is different, the distance between them 
can be arbitrarily large. Thus, we have to merge the code of M with the 
symbols in each strand of x, considering the molecule 

Wo = [ code(M)al code(M)a2 ... code(M)ar code(M)c COde(M)] 
code(M)bl code(M)b2 ... code(M)br code(M)c code(M) 

[bls(code(M), aIa2 ... arc)] 
bls(code(M) , bIb2 ... brc) . 
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(The complementarity relation contains all pairs in p plus all pairs (a, a), 
with a appearing in code(M) or a = c.) 

Now, a universal Watson-Crick finite automaton can be constructed fol
lowing the same idea as in the case of usual finite automata (Sect. 3.3): 
scan an occurrence of code(M) in either of the two strands, choose a move 

of the form s (;) ----t (;) s' encoded by some symbol [s (;) s'], simulate 

this move (clearly, when working in the upper strand, we must have (3 = ,x, 
and when working in the lower strand we must have a = ,x); the states of 
the universal automaton will ensure the correct linking of states of M, thus 
controlling the parsing in the two strands exactly as the states of M do; we 
advance with different speeds along the two strands; when reaching the col-

umn (~) we continue by checking whether or not the current state is final 

with respect to M (that is a state identified by a symbol [s] in code(M); we 
end in a final state of the universal automaton only in the affirmative case. 

Denoting by Mu the Watson-Crick automaton whose construction is 
sketched above, we obtain 

hence the universality property. 
The "program" Wo above (it also contains the data to be processed, the 

molecule x, intercalated with copies of code(M)) is rather complex (of a non
context-free type, because of the repeated copies of code(M) in each of the 
two strands). A way to reduce the complexity of the starting molecule of 
this universal Watson-Crick automaton is the same as in the case of normal 
finite automata (where we have passed to Watson-Crick automata): consider 
one more strand of the tape, that is, work with Watson-Crick automata with 
triple-stranded tapes and three heads scanning them, controlled by a common 
state. 

Firstly, in such a case we can simplify the shape of the "program" Wo: 

write ala2 ... a r in the first strand, b1b2 ... br in the second strand, maybe 
followed by a number of occurrences of the symbol c such that these two 
strands are of the same length as the third one, where we write 2r copies 
of code(M). The head scanning the third strand can go from left to right 
in the usual way, identifying in each occurrence of code(M) a move which is 
simulated in one of the other two strands. Note that this time the "program" 
(code(M)) is separated from data (molecule x). 

Secondly, if we allow the head in the third strand to work in a two-way 
manner (the other heads remain usual one-way heads), then only one copy 
of code(M) suffices (see the above construction of a two-way two-strands 
Watson-Crick finite automaton which is universal for the class of finite au
tomata with a bounded number of states and of symbols). 

We leave the technical details concerning universal Watson-Crick au
tomata (with two or three strands in their tapes) to the interested reader. 
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Remark 5.6. We have investigated here only some basic questions about 
Watson-Crick automata, as recognizing devices essentially using the new 
data structure, the Watson-Crick tape, based on the complementarity re
lation specific to DNA sequences. We balance in this way the generative 
approach in the previous chapter. After having defined these new classes of 
machines, the usual program in automata theory can be followed in inves
tigating them. We have considered here mostly only one class of problems, 
important from the DNA computing point of view: representations (hence 
characterizations) of recursively enumerable languages. The results are en
couraging: most of our machines characterize RE modulo a simple squeezing 
device, a weak coding in some cases and a deterministic gsm in other cases. 
Such squeezing mechanisms are inherent to DNA computing because of the 
necessity of encoding the information we deal with, using the alphabet of the 
four DNA letters: A, C, G, T. 

Many other (classes of) problems remain to be investigated. We mention 
only some of them: 

1. Investigate the "pure" families of languages associated with Watson
Crick automata (where "pure" means: without using squeezing mech
anisms). What are their mutual relationships and what are their rela
tionships with the families in the Chomsky hierarchy or in any other 
standard hierarchy of languages? 

2. Improve, if possible, the characterizations of RE presented here, by 
using simpler Watson-Crick automata and/or simpler squeezing mech
anisms. 

3. Find concrete Watson-Crick automata which are universal (modulo a 
weak coding or another squeezing mechanism) for the whole classs of 
Turing machines. 

4. Consider deterministic Watson-Crick automata of various types. Are 
they strictly weaker than the non-deterministic ones? The determinism 
can be defined here also in a dynamic manner, as the possibility of 
branching during a computation (remember that we use transition rules 

of the form s' E <5 (s, (:~)) with Xl, X2 strings, possibly empty, but not 

necessarily symbols). 

5. Define and investigate complexity classes based on Watson-Crick au
tomata. Because an essential part of the information necessary during 
a computation is embedded in the data structure we use, the Watson
Crick tape, and this is considered as provided for free, by DNA strands 
"automatically" checked for the Watson-Crick complementarity, it is 
expected that the usual complexity classes, based on Turing machines 
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and string-like data structures, will be different from the Watson-Crick 
complexity classes. This research topic (based on answers to (2)) is of 
a particular interest for the DNA computing area, because it can prove 
(or disprove) the usefulness of using DNA molecules - or associated 
theoretical models - for computing. 

6. Define and investigate descriptional complexity measures for Watson
Crick automata and for their languages. The number of states is the 
basic measure to consider, as well as the number of transition rules 
(given as rewriting rules, as in Sect. 5.1). This latter measure is par
ticularly interesting for stateless automata. 

7. All of these classes of problems deal with the automata introduced 
in this chapter and, thus, are concerned with the Watson-Crick data 
structure. The problem area concerning the parallelism of possible 
DNA computing remains entirely open. In our estimation, the full usage 
of this important feature of DNA may render drastic changes to some 
basic ideas of complexity such as deterministic and nondeterministic 
polynomial time. 

As a general "background" research topic there remains the question of 
implement ability - if not implementation - of a Watson-Crick automaton 
of any of the variants considered here, or of other types which will be in
troduced. However, this is a challenge which should be approached in an 
interdisciplinary manner (team). 

5.8 Bibliographical Notes 

This chapter is mainly based on the paper [66], where the Watson-Crick 
automata (in all variants considered above, except the I-limited one) were 
introduced. The Watson-Crick finite automata were also presented in [65]. 
The discussion about universal Watson-Crick automata follows [127], where 
the I-limited variant is introduced. 



Chapter 6 

Insertion-Deletion Systems 

6.1 Inserting-Deleting in the DNA Framework 

In this chapter we consider computing models based on two operations which 
were already considered in formal language theory, mainly with motivation 
from linguistics. These operations - insertion and deletion, with context 
dependence - can also be encountered in the genetic area and they can be 
performed, at least theoretically, in the following ways. 

Let us imagine that in a test tube we have a single stranded DNA sequence 
of the form 5'-XIUVX2Z-3', where all XI,X2,U,V,Z are strings. Add to this 
test tube the single stranded DNA sequence 3' - uyv - 5', where u, v are the 
Watson-Crick complements of the strings u, v, and y is the complement of 
some new string y. 

The two strings will anneal, U will stick to U and v to v, folding y. We 
obtain the situation in Fig. 6.1(b). If we cut the double stranded sub
sequence uv (by a restriction enzyme), then we pass on to a structure like 
that in Fig. 6.1(c)j adding z, which acts as a primer (and also adding a 
polymerase), we shall obtain a complete double stranded sequence as in Fig. 
6.1(d). Melting the solution, the two strands will be separated, hence we 
obtain two strings, one of them being Xl UyVX2Z. This means that the string 
y has been inserted between U and v. 

By a similar mismatching annealing we can - theoretically - perform a 
deletion operation, also controlled by a context: take uyv in the starting 
string and add uv, then follow a similar procedure. Fig. 6.2 illustrates the 
operation (the passing from step (b) to step (c) is done by polymerisation 
and the removing of the loop y by a restriction enzyme). 

Therefore, in the DNA framework we can perform insertion and deletion 
operations. Such operations are also present in the natural evolution pro
cess, under the form of (random) point mutations, where single symbols are 
inserted in or deleted from DNA sequences, in general without an explicit 
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contextual control as in the case illustrated in Figs. 6.1 and 6.2. These oper
ations are also present in the RNA editing, see e.g., [14], with an additional 
feature: inserting or deleting U (uracyl) is easier and more frequent than 
inserting or deleting A, C, G. 

u v z 
5'~1 ----~--~~----~----~~13' 

(a) 
3' f------+-------+------II 5' 

Xl U V X2 Z 

(b) 5' I I _ C5y 

13' 
u v 

Xl U V X2 Z 

(c) 5' 1 13' 
U fi v 

3'H5' 
Z 

Xl U Y V X2 Z 

(d) 
Xl U fi V X2 Z 

Xl U Y V X2 Z 

(e) 5' 1 13' 

Figure 6.1: Inserting by mismatching annealing 

As expected, insertion and deletion operations, working together, are 
very powerful, leading to characterizations of recursively enumerable lan
guages. (Roughly speaking, in order to have a generative mechanism equal 
in power to type-O Chomsky grammars it is necessary to have "enough" 
context-sensitivity embedded in the model and erasing possibilities. Clearly, 
insertion and deletion operations provide both these facilities.) We shall 
prove such characterizations below, for various restricted cases, formulated 
in terms of a computability model called an insertion-deletion system - in 
short, an insdel system. 
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6.2 Characterizations of Recursively Enumer
able Languages 

An ins del system is a construct 

'Y = (V, T, A, R), 

where V is an alphabet, T ~ V, A is a finite language over V, and R is a finite 
set of triples of the form (u, al (3, v), where u, v E V*, (a, (3) E (V+ x {.A}) U 

( { A} x V+). The elements of T are terminal symbols, those of A are axioms, 
the triples in R are insertion-deletion rules. The meaning of (u, AI (3, v) is 
that {3 can be inserted in between u and v; the meaning of (u, al A, v) is 
that a can be deleted from the context (u,v). Stated otherwise, (u,AI{3,v) 
corresponds to the rewriting rule uv -t u{3v, and (u, a I A, v) corresponds to 
the rewriting rule uav -t uv. 

Xl U Y V X2 Z 

(a) 5' 1 13' 
3' 1 1 5' 

U V 

Xl U 9" V X2 Z 

(b) 5' 1 3' 
u V 3' H 5' 

I 
Xl U V X2 Z 

(c) 
Xl U V X2 Z 

(d) 1 
Xl U V X2 Z 

Figure 6.2: Deleting by mismatching annealing 

Consequently, for X, y E V* we can write X ===> y if y can be obtained 
from X by using an insertion or a deletion rule as above. Explicitly, this 
means that one of the following cases holds: 

1) X = XlUVX2,y = xlu{3vx2, for some Xl,X2 E V* and 

(u, >.f{3, v) E R, 

2) X = XluaVX2,y = XlUVX2, for some Xl,X2 E V* and 
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(u,a/>.,v) E R. 

The language generated by 'Y is defined by 

L("() = {w E T* I x ===}* w, for some x E A}, 

where ===}* is the reflexive and transitive closure of the relation ===}. 

We say that an insdel system 'Y = (V, T, A, R) is of weight (n, m;p, q) if 

n = max{I,B11 (u,>.j,B,v) E R}, 

m = max{lull (u,>.j,B,v) E R or (v,>.j,B,u) E R}, 

p = max{lall (u,a/>.,v) E R}, 

q = max{lull (u,a/>.,v) E R or (v,a/>.,u) E R}. 

We denote by INS::':DEL~, for n,m,p,q :::: 0, the family of languages 
L( 'Y) generated by insdel systems of weight (n', m'; p', q') such that n' :::; n, 
m' :::; m, p' :::; p, q' :::; q. When one of the parameters n, m, p, q is not bounded, 
we replace it by *. Thus, the family of all insdellanguages is INS:DEL:. 
Because the insertion-deletion of the empty string changes nothing, when 
n = 0 we also suppose that m = 0, and when p = 0 we also suppose that 
q = o. The meaning of IN s8 is that no insertion rule is used, and the 
meaning of DELg is that no deletion rule is used. 

From the definitions, we obviously have the following inclusions. 

Lemma 6.1. (i) INS::':DEL~ <;;; INS;::;' DEL::, faT all 0:::; n :::; n', 0 :::; m :::; 
m', 0 :S p :S p', 0 :S q :S q'. 

(ii) INS:DEL: <;;; RE, INS:DELg <;;; CS. 

By using insdel systems of arbitrary weights, we can easily characterize 
the recursively enumerable languages. 

Theorem 6.1. RE = INS~DELg. 

Proof. Take a language L <;;; T* generated by a type-O grammar G = 
(N, T, S, P) with P containing rules of the form X -t x with X E N, x E 
(N U T)*, Ixl :::; 2, and rules of the form XY -t UZ, for X, Y, U, ZEN (for 
instance, take G in Kuroda normal form). We construct the insdel system 

'Y = (NUTU{E,K1,K2},T,{SEE},R), 

R = {(X,>.jK1x,ala2) I X -t X E P with X E N,x E (NUT)*, 

Ixl :::; 2, and at, a2 E NuT U {En 

U {(XY,>'/K2UZ,ala2) I XY -t UZ E P with X, Y,U,Z E N, 

and al, a2 E NuT U {En 

U {(>.,XKd>',>') I X E N} 

U {(>.,XYK2/>">') I X,Y E N} 

U {(>.,EE/>',>.)}. 
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The symbol E is only used when checking the context al a2 at the end 
of the strings. The symbols K I ,K2 are "killers": KI removes one symbol, 
the one placed immediately to its left hand, and K2 removes two symbols, 
those placed immediately to its left hand. Making use of these symbols, the 
insertion rules in R simulate the rules in P. Symbols already marked by 
the "killers" K 1, K 2 cannot be used as contexts of rules in R (a1, a2 in the 
above writing of rules in R cannot be equal to K1, K 2 ). Therefore, we get 
L(G) = Lb). 0 

Natural from a mathematical point of view and also motivated from re
strictions appearing in the DNA/RNA area, the problem arises whether or 
not the result in Theorem 6.1 can be strengthened, by considering shorter 
inserted or deleted strings, and shorter contexts controlling these operations. 
In particular, it is of interest to consider the case when only symbols are 
inserted or deleted: as we have mentioned in the previous section, such op
erations correspond to point mutations in genetic evolution. 

Insdel systems of a very reduced weight characterize the recursively enu
merable languages: 

Theorem 6.2. RE = INS?DEL~. 
Proof. Of course, we have to prove only the inclusion RE ~ INS?DEL~. 
Consider a language L ~ T*, L ERE, generated by a type-O grammar 

G = (N, T, S, P) in the Penttonen normal form (Theorem 3.4), that is con
taining context-free rules X --+ x with Ixl ~ 2, and non-context-free rules of 
the form XY --+ X Z, for X, Y, ZEN. 

Without loss of generality we may assume that in each rule X --+ ala2 E P 
we have X -# aI, X -# a2, al -# a2. (If necessary, we replace X --+ al a2 with 
X --+ X', X, --+ ala~, a~ --+ a2, where X', a~ are new symbols.) Similarly, 
we may assume that for each rule XY --+ X Z E P we have X -# Y, X -# z, 
Y -# Z. Moreover, by replacing each rule X --+ a E P, a E NUT, by 
X --+ aZ, Z --+ >., we obtain an equivalent grammar. Hence, we may assume 
that the rules in P are of the following three forms: 

1. X --+ ala2, for aI, a2 EN U T such that X -# aI, X -# a2, al -# a2, 

2. X --+ >., 
3. XY --+ XZ, for X, Y,Z E N such that X -# Y,X -# z, Y -# Z. 

Moreover, we assume the rules of P are labeled in a one-to-one manner. 
We construct the insdel system 

where 

'Y = (V, T, A, R), 

V = NuT U {[rJ, (r) I r is the label of a rule in P} U {B, E}, 

A = {BSE}, 

and the set R is constructed as follows. 
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1. For each rule r : X ----> ala2 E P of type 1, with aI, a2 E NUT, we 
consider the following insertion-deletion rules: 

(r.1) (,8l,A/[r],X,82), for,8l E NUTU{B}, and 

,82 E NUT U {E}, 

(r.2) ([rlX,A/(r),,8), for,8 E NUTU {E}, 

(r.3) ([r]'X/A, (r)), 

(r.4) ([r], A/aI, (r)), 

(r.5) (aI, Aja2, (r)), 

(r.6) (A, [rl/ A, ad, 
(r.7) (a2' (r)/A, A). 

2. For each rule r : X ----> A E P of type 2, we introduce the deletion rule 

(r.1) (,8l,X/A,,82), for,8l E NUTU {B} and 

,82 E NUT U {E}. 

3. For each rule r : XY ----> XZ E P of type 3, with X, Y, ZEN, we 
consider the following insertion-deletion rules: 

(r.1) (,81X, A/[r], Y,82) , for ,81 EN U T U {B} and 

,82 EN U T U {E}, 

(r.2) ([rlY,A/(r),,8), for,8ENUTU{E}, 

(r.3) ([r], Y/A, (r)), 

(r.4) ([r], A/Z, (r)), 

(r.5) (X, [rJ/A, Z), 

(r.6) (Z, (r)/A, A). 

4. We also consider the deletion rules 

(A, B/A, A), 

(A,E/A,A). 

We obtain the equality L(G) = Lb). 

(S;;) Each derivation step w ==} w' in G is simulated in 'Y by a derivation 
BwE ==}* Bw' E, using the rules (r.i) associated as above with the rule from 
P used in w ==} w'. For instance, assume that w = WlXW2, w' = Wlala2W2, 
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for r : X --+ 0:10:2 E P. Then we successively obtain: 

BW1X W2E ==> BW1 [r]X W2E 
==> Bwdr]X(r)w2E 
==> BW1[r](r)w2E 
==> BW1 [r]O:l (r)w2E 
==> BW1[r]0:10:2(r)w2E 
==> BW10:10:2(r)w2E 
==> BW10:10:2W2E 
= Bw'E. 

by the rule (r.1) 
by the rule (r.2) 
by the rule (r.3) 
by the rule (r.4) 
by the rule (r.5) 
by the rule (r.6) 
by the rule (r. 7) 
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We proceed in a similar way when w ==> w' is done by using a rule r : XY --+ 

X Z. The details are left to the reader. 
We start from BSE; at any moment, the markers B, E can be removed. 

Thus, any terminal string generated by G is in L( I). 

G~) Consider a string BwE; initially we have w = S. We can apply to 
it a rule (r.1) from group 1, or a deletion rule (/31,Xj)..,/32) associated with 
X --+ ).. E P, or a rule (r.1) from group 3, or a rule from group 4. Assume 
that we apply (/31, A/[r], X/32) for some r : X --+ 0:10:2 E P. We have 

Since the rules in P are labeled in a one-to-one way, X =I- 0:1, and rules of the 
form of (r.1) in groups 1 and 3 have a left context checking the symbol placed 
immediately to the left of X (the same assertion holds for the deletion rules 
in group 2), the only rule which can use the symbol X is (r.2). Eventually 
this rule must be applied, otherwise the derivation cannot lead to a terminal 
string. Thus, the substring [r]X of BW1[r]Xw2 leads to [r]X(r). Again there 
is only one possible continuation, by the rule (r.3), which erases the symbol 
X. Only after inserting 0:1 between [r] and (r) we can remove the symbol 
[r]. In the presence of 0:1 and of (r) we can introduce 0:2, too, by the rule 
(r.5). As (r) is introduced after [r], and X =I- 0:1, the symbol 0:1 used by this 
rule (r.5) as a left context should be introduced at a previous step, by the 
corresponding rule (r.4). After introducing 0:2, which is different from both 
0:1 and X, we can delete (r), by the rule (r. 7). Due to the contexts, no other 
rule can use the mentioned symbols as contexts or can delete any of them. 
Thus, after using (r.1), we have to use all rules (r.i),2 :s; i :s; 7, associated 
with r : X --+ 0:10:2, simulating the use of X --+ 0:10:2. 

In the same way, after using a rule (/31X, )..j[r], Y/32) associated with 
r : XY --+ X Z E P, we have to continue with (r.i),2 :s; i :s; 6 (possibly 
not immediately or at consecutive steps, but using the same symbols of the 
current string), hence we have to simulate the rule XY --+ X Z. 

The deletion rules (/31, Xj).., /32) directly correspond to erasing rules in P. 
The markers B, E can be deleted at any step. Consequently, I can generate 
only strings in L(G). 0 
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Theorem 6.3. RE = INSiDELg. 

Proof. Consider a language L ERE, L ~ T*, and take a grammar G = 
(N, T, B, P) in the Geffert normal form given in Theorem 3.5(2) such that 
L = L(G). Therefore, P = PI UP2 , where PI contains only context-free rules 
of the forms 

B --+ uBv, for u,v E (NU T - {B})+, 

B --+ x, for x E (N U T - {B}) + , 

and P2 contains rules of the form XY --+ A for X, YEN. 
We construct the insdel system 

with 

'Y = (V, T, A, R), 

v = NuTu {c,K,K',F} 

U {[B,r] I r: B --+ x E PI} 

U {[X, r, i]1 r : B --+ zX WEPt, z, W E (N U T)*, i = Izl + 1, 

X E NUT}, 

A = {Be}, 

and R contains the following insertion-deletion rules: 

A. Replace each rule B --+ uBv in P by the rule B --+ uBcv. The rules 
B --+ x with Ixls = 0 remain unchanged. Denote by P{ the set obtained 
in this way. For each rule r : B --+ X 1 X 2 ... X k E Pi with Xi E 

NuT U {e}, 1 ::; i ::; k, k ~ 1, we introduce the rules: 

l. (B, A/[B, r], e), 
2. (B, A/ K, [B, rD, 

3. (A,BK/A,A), 
4. ([B, r], A/[XI, r, 1], e), 
5. ([Xi, r, i], A/[XHI , r, i + 1], e), 1::; i ::; k - 1, 

6. ([B, r], A/ K, [Xl, rl, 1]), 

7. (A, [B,r]KIA,A), 
8. ([Xi,r,i],AIXi, [XHI,r,i + 1]),1::; i::; k -1, 
9. ([Xi, r, i], AI K, Xi), 1 ::; i ::; k - 1, 

10. (A,[Xi,r,i]KIA,A),I::; i::; k, 

11. ([Xk' r, k], AI F, e), 
12. ([Xk' r, k], AI Xk, F), 
13. ([Xk' r, kj, AI K, X k), 
14. (Xk' AI K', F), 
15. (A, K' FIA, A). 
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B. We also introduce in R the rules 

(A,XY/A,A), for XY ----+ A E P2 , 

(A,C/A,A). 
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It is clear that if the insdel system 'Y simulates correctly the context-free 
rules in PI, then it generates the language L( G). 

Consider a string W E (N U T U {c}) * . The only rules in R applicable 
to such a string are those in group B, and a rule of type 1 in group A. 
Namely, a substring Bc of W can be replaced by B[B, r]c, for some r E P{. 
Assume that W = WlBcw2 (initially, Wl = W2 = A) and use a rule as above for 
r : B ----+ X l X 2 .•. Xk, k :2:: 1. We get wlB[B, r]cw2. From [B, r] we will produce 
Xl ... X k· Because Xl f=. c and k :2:: 1, the occurrence of B in wlB[B, r]cw2 
will never be followed by c again, hence it will not be used again by rules 
of type 1. We have to remove it using rules 2 and 3 (K is a "killer" of the 
symbol placed to its left hand): 

wlB[B, r]cw2 ====} wlBK[B, r]cw2 ====} Wl [B, r]cw2. 

The only way to continue is by using rules of types 4, 5, 8, because the "killer" 
K able to remove the symbols [B, r], [Xi, r, i], 1:::; i :::; k-1, can be introduced 
only when both to the left and to the right hand of it there appear symbols of 
the type [B, r], [Xi, r, i], 1 :::; i :::; k - 1. Thus, eventually we have to perform 
the derivation 

Wl [B, r]cw2 ====} wt[B, r][Xl' r, 1]cw2 ====} Wl [B, r][Xl' r, 1][X2' r, 2]CW2 

====} ••• ====} wt[B, r][Xl' r, 1] ... [Xk-I, r, k - l][Xk' r, k]CW2. 

After this derivation or intercalated with its steps, in between [B, r] and 
[Xt, r, 1] we have to introduce the symbol K and in between each [Xi, r, i] 
and [XHl,r,i + 1], 1 :::; i :::; k - 1, we have to introduce Xi. We obtain the 
string 

wl[Bl,r]K[XI,r, 1]Xl [X2,r, 2]X2 ... [Xk-l,r, k - l]Xk-l[Xk, r, k]CW2. 

The block [B, r]K can be deleted (and this is the only way of removing 
[B, r]). In between [Xi, r, i] and Xi we can introduce K, which will be re
moved together with [Xi, r, i]; this is the only way of removing the symbols 
[Xi, r, i], 1 :::; i :::; k - 1. Thus, we get the string 

Wl Xl X2 •.. Xk-t[Xk, r, k]CW2. 

In order to remove [Xk' r, k] we have to introduce first the symbol F, in the 
presence of which we can introduce X k : 

Wl X l X 2 · .. X k- l [Xk,r,k] cw2 ====} WlXl ·· . Xk-l[Xk,r,k]Fcw2 

====} WlXl ··· Xk-l[Xk, r, k]XkFcw2. 
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Now, [Xk' r, k] can be removed just as each symbol [Xi, r, i] by introducing 
K in between [Xk' r, k] and Xk, whereas F can be removed by introducing 
the symbol K', which is then removed together with F. 

Note that if there is no occurrence of S in Xl ... X k, then no further 
derivation step using rules in group A can be done; if there is one occurrence 
of S in Xl ... Xk, then it is followed by c, hence new applications of rules in 
group A are possible. The occurrence of c can be removed by the deletion 
rule (A, c/ A, A) in group B. If this is done while a symbol S is still present, 
and it has not been used for simulating a rule in PI, then this symbol cannot 
be removed, and the string will not produce a terminal string. Consequently, 
L('y) = L(G). 0 

It is not known how large the family INS}DEL} is, but it seems that 
at least one of the parameters m (insertion contexts), p (deleted strings), q 
(deletion contexts) must be at least two in order to generate non-context
free languages. For instance, we have the following result, supporting this 
conjecture. 

Theorem 6.4. INS;DELg S;;; CF. 

Proof. Take an insdel system I = (V, T, A, R) of weight (n, 1; 0, 0), for 
some n 2 1. Because no deletion is possible, we can remove from A all 
axioms not in T* and from R all rules containing a symbol not in T. Thus, 
we may assume that V = T. 

We construct the context-free grammar G = (N, V, S, P), where 

N = {S} U {(A, a), (a, b), (a, A) I a, bE V}, 
P = {S ~ (A, aI)(al, a2)(a2, a3) ... (ak-I, ak)(ak, A) I ala2 ... ak E A, 

k 2 1, ai E V,l :::; i :::; k} 

U {(a, b) ~ (a, ad(al' a2) ... (ak' b) I (a, A/ala2 ... ak, b) E R, 

or (a,A/ala2 ... ak,A) E R, or (A,A/ala2 ... ak,b) E R, 

or (A,A/ala2 ... ak,A) E R,k 2 1,ai E V,l:::; i:::; k,a,b E V} 

U {(A, a) ~ (A, ad(al' a2) ... (ak-l, ak)(ak, a) I (A, A/ala2 ... ak, a) E R, 

or (A, Ajala2 .. . ak,A) E R,k 2 1,ai E V,l:::; i:::; k,a E V} 

U {(a, A) ~ (a, ad(aI, a2)··· (ak-l, ak)(ak, A) I (a, A/ala2 ... ak, A) E R, 

or (A,A/ala2 ... ak,A) E R,k 21,ai E V,l:::; i:::; k,a E V} 

U {(A,a) ~ a, (a,A) ~ A I a E V} 

U {(a,b)~bla,bEV}. 

The rules S ~ x, together with the terminal rules in P, introduce the 
strings of A; the rules in R are simulated by the corresponding rules in 
P. The symbols (a, b) keep track of pairs of symbols in the current string, 
whereas (A,a),(a,A) make it possible to use rules (U,A/X,V) with u = A or 
v = A, respectively, at the ends of the current string. Consequently, we have 
L('y) = L(G), and so L('y) E CF. 0 
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This is the best result of this type, because we have 

Theorem 6.5. INS§DELg contains non-semilinear languages. 
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Proof. We consider the following insdel system, the weight of which is 
equal to (2,2; 0, 0): 

1= ({a, b, c, d, f, g}, {a, b, c, d, f,g}, {fabcdf} , R), 

with set R containing the following rules: 

1) (j, A/ga, ab), 
(aa, A/b, bc), 
(bb, A/C, cd), 
(cc, AId, da), 
(dd, A/a, ab), 
(cc, A/d, df). 

(Starting from the substring fab of the current string, these rules double each 
occurrence of the symbols a, b, c, d, step-by-step, from left to right. Note that, 
except for the first rule, each rule has the form (U,A/X,V) with u = 0000,00 E 

{a, b, e, d}, and v belongs to the set {ab, bc, cd, da} - except the last rule 
above, for which v = df. The pairs ab, bc, cd, da are called legal; they are the 
only two-letter substrings of a string of the form (abcd) n . 

Clearly, starting from a string of the form wf(abcd)n f (initially we have 
w = A and n = 1), we can move on to a string 

w f g( aabbccdd)mxy( abcd)P f, (*) 

with m 2: O,p 2: 0, m + p + 1 = n, y is a suffix of abcd, abcd = zy, and x 
is obtained by doubling each symbol in z. When m = n - 1 and y = A, 
we obtain the string wfg(aabbeedd)n j, so the length of the string obtained 
between g and f is equal to 8n, twice the length of the initial string (abcd)n.) 

2) (g, Ale, aa), 
(ca, Alc, a), 
(ca, AId, bb), 
(db, AId, b), 
(db,Ala,cc), 
(ac, A/a, c), 
(ac, A/b, dd), 
(bd, Alb, d), 
(bd, Alc, aa). 

(Starting from the substring gaa, that is from the symbol g introduced by 
the rules of group 1, these rules replace each substring 0000, a E {a, b, c, d}, 
by (300(300, (3 E {a, b, c, d}, in such a way that all pairs (300,00(3 are not legal. 
In view of the fact that, except the first rule, all the rules in group 2 are of 
the form (u, AI x, v) with u being a non-legal pair, it follows that these rules 
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can be applied only in a step-by-step manner, from left to right. Since each 
rule (U,A/X,V) as above contains a pair aa,a E {a,b,c,d}, in the string uv, 
it follows that rules in group 2 can be applied only after the rules of group 
1 have been applied. Consequently, from a string of the form (*), using the 
rules of group 2, we can either move on to a string of the form 

w j g( cacadbdbacacbdbdt uv( aabbccdd)S xy( abcd)P j, ( ** ) 

where 0 ~ r ~ m, r + s + 1 = m, v is a suffix of aabbccdd, and u is obtained 
by "translating" the string z for which we have zv = aabbcedd by means of 
the rules in group 2, or we get a string of the form 

w j g( eaeadbdbaeaebdbd) m x' y( abcd)P j, 

where x' is obtained from a prefix of x by "translating" it using the rules 
above. 

Let us note that the rules of group 2 also double the number of symbols in 
the substring to which they are applied, so, when the string (*) is of the form 
wjg(aabbccdd)nj, we can obtain a string wjg(cacadbdbacacbdbd)nj, that is 
with the substring bounded by 9 and j of length 16n, twice the length of 
(aabbeedd)n and four times the length of the initial string (abed)n.) 

3) (b, A/C, dj), 
(d, A/a, be), 
(b, A/e, da), 
(c, A/a, be), 
(c, A/d, ab), 
(a, A/b, cd), 
(a, A/e, da), 
(b,A/d,ab), 
(d,A/b,cd), 
(ge, A/ j, ab). 

(All the rules above are of the form (u, A/X, v) with v being a legal pair, or 
v = dj in the first rule. Moreover, with the exception of the last rule, each 
rule has v = a{3 with a, {3 E {a, b, c, d}, u E {a, b, c, d}, and ua is a non-legal 
pair. Each rule introduces a symbol X between u and v in such a way that x{3 
is a legal pair. Consequently, the rules of group 3 can be applied only in the 
step-by-step manner, from right to left, starting either from the rightmost 
symbol j - by the first rule - or from the rightmost position where the rules 
of group 2 have been applied; indeed, only in that position does a three-letter 
substring ua{3 appear as above, with ua being a non-legal pair and a{3 a legal 
pair. Using the above rules we obtain only legal pairs, therefore we move on 
to a string containing substrings abed. 

As both groups of rules 1 and 2 need substrings "(Y, "f E {a, b, e, d}, in 
order to be used, it follows that the rules of group 1 can be applied only after 
"legalizing" all pairs of symbols. So, the first rule in group 1 can be applied 
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only after using the last rule of group 3, which introduces a new occurrence 
of the symbol f. 

The application of rules in group 3 again doubles the length of the string. 
Consequently, a string of the form (**) is translated by rules in group 3 into 

w f gc f ( abed) 8r U' V ( aabbccdd) S xy ( abcd)P f, 

where u' is obtained from U in the above manner. When the string 
wfg(aabbccdd)n f has been transformed into wfg(cacadbdbacacbdbd)n f by 
means of rules in group 2, then the above group of rules provides the string 
wfgcf(abcd)8n f. 

Clearly, after using the rules of group 3 as many times as possible, the 
derivation can be reiterated, again using the rules of group 1.) 

The above grammar generates a non-semilinear language. To this end, 
we use the following auxiliary result. 

Assertion. If E ~ (N - {o})n is a semilinear set, then for each pair (i,j), 
1 ::; i, j ::; n, one of the following two properties holds: 

1. There is a constant ki,j such that Ui ::; ki,j for all vectors (UI' ... ,un) E 
Uj 

E; 

2. There are vectors (UI, ... , un) E E with one OfUi, Uj fixed and the other 
one arbitrarily large. 

This assertion can be proved as follows. If E = U;=l Et , where Et ~ (N
{O})nare linear sets, 1::; t::; k, and Et = {Vto + L::==l Vt.xs I Xl, .. · 'Xmt E 
N}, for some vectors Vt., 0 ::; s ::; mt, then Vto (r) > 0 for all 1 ::; r ::; n (we 
have no zero component in the vectors of E). Then 

1. if Vt. (i) > 0, Vt. (j) > 0, for alII :S 8 :S mt, then for all (UI," . ,un) E E t 
U· (t) 

we have --.:: < k· . for 
Uj - ',J 

k~t) = max{vt.(i) 10::; 8::; mtl. 
',J min{ Vt. (j) I 0 :S 8 ::; mtl ' 

2. if, say, Vt.(j) = O,vt.(i) > 0, for a given 8,1::; 8::; mt, then the set 
{Vto + Vt8 X I X E N} contains vectors with the ith component equal to 
Vto (i) + XVt. (i), which is arbitrarily large, and the jth component equal 
to Vto (j). 

Now, if point 2 above holds for a linear set Et , then it holds for E, 
otherwise property 1 holds for E, taking 

ki,j = max{kiJ 11::; t::; k}. 

Returning to the proof of our theorem, consider the Parikh mapping, 
1]! v, associated to V = {g, a, b, c, d, J} (please note the order). The above 
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Assertion is not true for the set Wv(L(-y)). Indeed, consider the positions 1 
and 2 (corresponding to symbols 9 and a) of 6-tuples in wv(L(-y)). From the 
above explanations, one can see that the rules in groups 1, 2, and 3 can be 
applied only in this order. One symbol 9 and some symbols a are introduced 
into each cycle of this form such that from a string x one goes to a string 
y with at most 8 times more occurrences of the symbol a. Consequently, 

8Ul 

each 6-tuple (Ul, ... ,U6) E wv(L(-y)) has Ul ::; U2 ::; 8Ul • As the ratio -
Ul 

can be arbitrarily large, but for each given Ul the component U2 cannot have 
arbitrarily large values, it follows that the Assertion above is not fulfilled, so 
Wv(L(-y)) is not sernilinear. 0 

On the other hand, we have the following result, proving that insertion 
only is not "too strong" . 

Theorem 6.6. LIN - INS:DELg =1= 0. 

Proof. The language L = {an ban In?: 1} is not in the family 
INS:DELg: clearly, if an infinite language Lo is in INS:DELg, then an 
infinite number of strings Z E Lo can be written in the form Z = uxv such 
that x =1= A and uv E Lo. Such a property does not hold for the language 
L. 0 

6.3 One Symbol Insertion-Deletion Systems 

Bounding the length of the insertion-deletion contexts at a low value (at most 
two, as in Theorems 6.2 and 6.3) is mathematically challenging, but not very 
important from a molecular computing point of view: the contexts (u, v) in 
Figs. 6.1 and 6.2 should be "large enough" in order to ensure the stability 
of the obtained structures. A restriction which is, however, asked for by 
biochemical constraints is that of computing by insertion-deletion of strings 
composed of one symbol only (such as U in the RNA case). Of course, we 
cannot work with only one symbol in our alphabet: on the one hand, codifying 
two-symbol strings over a one symbol alphabet leads to exponentially longer 
strings as compared with the starting ones. On the other hand, the operation 
cannot ~e controlled, since any context is present in any sufficiently long 
string. 

We need at least one further symbol, but this symbol cannot be introduced 
or removed during the computation. Therefore, we have to provide enough 
copies of all symbols different from the insertion-deletion one, as a sort of 
workspace, and moreover, we have to accept an output modulo occurrences 
of such symbols, because they cannot be removed. 

Moreover, because we have to manipulate only occurrences of one symbol, 
in order to generate a language over an arbitrary alphabet we have to codify 
the symbols of this general alphabet using the elements of our restricted 
alphabet and, after the computation, we have to decodify, returning to strings 
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over the general alphabet. In this way, we are led to the following variant of 
insdel systems. 

A restricted ins del system is a construct 

'Y = (V, {a, c}, A, R, h), 

where V is an alphabet, a, c are specified symbols (not necessarily from V), 
A is a finite subset of {a, c} *, R is a finite set oftriples of the form (u, 0./(3, v), 
with u, v E {a, c} * and a, (3 E c*, one of a, (3 being empty, and h : V* ----+ 

{ a, c} * is a morphism. Therefore, only substrings of the form ci , i ~ 1, can 
be inserted or deleted; the contexts can contain occurrences of both symbols 
a and c. The relation ==> is defined in the usual way, over {a, c} *. Then, the 
language generated by 'Y is 

L("() = h-l({w E {a,c}* I z(acat ==>* (aca)mw, 

for some n,m ~ O,Z E A}). 

In words, we start from an axiom z E A, prolonged with an arbitrary number 
of "empty spaces" aca, we use an arbitrary number of insertion-deletion rules, 
we discard the "spaces" aca placed to the left hand end of the obtained string, 
and we map by h- l the remaining string into a string in V*. In this way, 
strings w for which h-l(w) is not defined are removed, hence we can ensure 
the termination of the derivation in the same way as when using a specified 
terminal alphabet. 

We denote by II N S DEL the family of languages generated by restricted 
insdel systems of arbitrary weight; because we work here with a coding of 
strings over V as strings over {a, c}, we cannot keep bounded (for instance, 
independent of the cardinality of V) the weight of the used systems. 

Expected from the point of view of Theorems 6.2, 6.3 and encouraging 
from DNA/RNA computing point of view, we have the following result. 

Theorem 6.7. RE = IINSDEL. 

Proof. Consider a language L ~ T*, L ERE, and consider a grammar 
G = (N, T, S, P) in the Kuroda normal form generating L. Assume that 

with 0.1 = S. 
The rules in P can be of the following forms: 

1. o.i-+o.j, 

2. o.i -+ A, 

3. o.i -+ o.jo.k, 

4. o.io.j -+ o.ko.p-
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Consider one new special symbol, 0::0 = #, denoting an empty space, and 
assume that we start not from S but from S#s, for some s ~ O. Then we 
may replace all rules offorms 1, 2, 3 in P with rules of the form 4, as follows: 

l. O::iO::O ---t O::jO::o, for O::i ---t O::j E P, 

2. O::iO::O ---t 0::00::0, for O::i ---t .x E P, 

3. O::iO::O ---t O::jO::k, for O::i ---t O::jO::k E P, 

providing that we also add the rules of the form 

(They move the symbol 0::0 = # to the left.) 
Let us denote by G' the grammar obtained in this way. 
Then, for every derivation S ===} * w in the grammar G we can find a 

derivation S#s ===}* #tw in G' for some t ~ O. 
Starting from G', we construct a restricted insdel system 'Y = (NUTU{ #}, 

{ a, c}, A, R, h) as follows. 
Consider the morphism g defined by g(O::i) = aci+1a, 0::; i ::; n. (Hence 

the space # is encoded by aca.) Then 

A = {ac2a}, 

h(O'.i) = aci+1a, for O'.i a terminal symbol of G, 

and the set R contains the following rules: 
For the q-th rule of G' , rq : O'.iO'.j ---t O'.kO'.p, we consider the "codified" rule 

and we introduce in R the rules 

(rq .l) 
(rq .2) 

(rq .3) 
(rq.4) 

(aci+1aa, .xjc(2q-l)(n+l) , d+1aacs+1a), 0::; s ::; n, 

(aci+l, .x/c2(q-l)(n+l), aac(2q-l)(n+l)+Hla) , 

(ac2(q-l)(n+1)+i+1 aa, c(2q-l)(n+l)+j-p j.x, cP+1a), 

(ack+l, c2(q-l)(n+1)+i-k /.x, aacP+1a). 
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Note that: 

- no rule in G is of the form #O!j --* O!kO!p, hence in the previous rules 
we have i 2: 2; 

- in contrast to this observation, we have j, k,p 2: 1 (and they can be 
equal to 1). 

We obtain L( G) = L(r). According to the previous discussion, it is 
sufficient to prove that 

{w E T* I S#s ~* #tw in G for some s,t 2: O} = L(r). 

(<;::;) Consider a derivation step x ~ y in G, using a rule rq : O!iO!j --* 

O!kO!p. Therefore, 

The "codified" string corresponding to x is g(x) such that 

g(x) = g(xdaci+1aad+1ag(x2). 

Because we start from S#s with large enough s, we may assume that g(X2) -1= 
,\. Thus, we can use the associated rules (rq.l.) - (rq.4.) and we successively 
get 

g(x) = g(xl)aci+1aad+1ag(x2) 

~ g(xdaci+1aa(2q-l)(n+l)+j+1ag(x2) 

~ g(xl)ac2(q-l)(n+l)+i+laac(2q-l)(n+l)+j+1ag(x2) 

~ g(xdac2(q-l)(n+1)+i+1aacP+1ag(x2) 

~ g(xl)ack+1aacP+1ag(x2) 

= g(y). 

Therefore, each derivation in G' can be simulated as above by a derivation in 
T Using rules of the form O!iO!O --* O!OO!i, for each terminal derivation in G' 
which produces a string w, we can find a derivation in '"Y producing a string 
#tg(w). Therefore, h-1(g(w)) = w, that is, L(G) <;::; L(r). 

(:2 ) Consider a string 

where 1 ~ i j ~ n + 1, 1 ~ j ~ k. 
A block acia, with 1 ~ i ~ n + 1, is said to be low; in contrast, acia with 

i > n + 1 is said to be high. 
To a string z as above (with all blocks being low) we can only apply an 

insertion rule in R of the form (rq.l.), hence corresponding to a rule rq in P. 
Let the "codified" rule associated to r q be of the form 
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Using the rule (rq .1.) we get 

Note that a high block has been introduced, ac(2q-l)(n+1)+im+l a. When using 
a rule of type (rq.1.), a low block, surrounded by two low blocks, is replaced 
by a high block. Specifically, (2q - l)(n + 1) new occurrences of the symbol c 
are introduced; because 2q - 1 is odd, we say that we have an odd high block. 

No rule in R can use the high block in z' as a context, excepting the rule 
(rq .2.) for the same q as above. The inverse morphism h-1 is not defined on 
high blocks, hence eventually the rule (rq.2.) should be applied. This means 
that we replace the substring 

of z' by 

ac2(q-l)(n+l)+imaac(2q-l)(n+l)+i",+la. 

Therefore, the low block aci"'a has been replaced by the high block 
ac2(q-l)(n+1)+ima. As 2(q - 1) is even, we say that we have an even high 
block. 

Thus, we have obtained a string containing a pair of high blocks, one even 
and one odd, precisely identified by the index q of the rule r q in G'. 

None of the rules in R can use these high blocks, excepting (rq .3.), which 
replaces the substring (*) by 

ac2(q-l)(n+l)+imaaCI'2a. 

Thus, the previous odd high block is replaced by a low block. The only 
possible way to replace the remaining even high block by a low one is by 
using the rule (rqA.), which leads to 

aCI'l aaCI'2 a. 

Thus, the rule aci"'aacim+1a ---t acP1 aacP2 a has been simulated and this 
is the only way to proceed towards a successful derivation (that is, a 
derivation which produces a string in (aca)*g(T*)). Consequently, when 
ac2a(aca)S ===}* (aca)tg(w), for some w E T* (only for such strings w we 
have g-l(w) defined), we have S#s ===}* #tw in G', w E T*. This implies 
w E L( G), completing the proof. 0 

From the proofs of Theorems 6.2, 6.3, and 6.7 we can obtain universality 
results: there are insdel systems 'Yu = (Vu, T, -, Ru) of weight (1, 2; 1, 1), 
or (1, 1; 2, 0), as well as restricted insdel systems such that for any insdel 
system 'Y = (Vo, T, Ao, .Ro), we can construct a set A("() over Vu such that 
L("(~) = L(,,(), for 'Y~ = (vu, T, A('Y), Ru). Therefore, the universal insdel 
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system simulates the given insdel system ,,(, the particular system "( can be run 
on "(U as a program. This can be obtained as follows. Take a universal type-O 
grammar Gu = (Nu, T, Pu) and construct the equivalent insdel system as in 
the proof of Theorems 6.2, 6.3 (or 6.7). Since Gu has no axiom, the obtained 
system, "(u, will have no axiom set. However, "(U is the universal system we 
look for. If we consider an insdel system ,,(, with the same terminal alphabet, 
then there is a type-O grammar, G = (N, T, B, P), equivalent with "(. Consider 
(as at the end of Sect. 3.3, when we have constructed a universal type-O 
grammar) the code w(G) of this grammar. In the axiom strings ESE, Be used 
in the proofs of Theorems 6.2,6.3, respectively, we replace S by w(G)B. Then, 
because L(G~) = L(G), for G~ = (Nu, T, w(G)S, Pu) and L(G) = Lh), 
L(G~) = Lh~), for "(~ obtained from "(U as above, we get Lh~) = Lh), 
hence the universality property holds. One sees that, in fact, the "program" 
of"( to be run on "(U consists of one string only. The same result holds true for 
restricted insdel systems, with the difference that the unique program-axiom 
should be supplemented with arbitrarily many empty spaces (aca, in the 
coding from the proof of Theorem 6.7). Thus, via the existence of universal 
Turing machines and of universal Chomsky type-O grammars, we find a proof 
of the theoretical possibility of designing universal (programmable) molecular 
computers based on the insertion-deletion operations. 

The proof of Theorem 6.7 suggests another interesting speculation, con
cerning the so-called "junk DNA." It is known that a large part of the human 
genome, about 97% of it, consists of short repeated sequences, thus unable 
to encode much information, and having no known function. A "computer 
science explanation" of this situation is given in [207]. We do not enter into 
details, but we only mention the fact that the basic assumption is that the 
higher life forms have to have complete computational power in order to pos
sess an efficient immune system. But computational completeness is fragile, 
hence dangerous for life itself. Hence it must be kept under control. Thus, 
a "replicon police" ("replicon killers") should exist. Conclusion: "junk DNA 
may be in large part composed of the corpses of former replicons" [207]. 

The proof above provides a much more "peaceful" explanation: if we 
need a high computational complexity, then we need an arbitrarily large 
workspace, which at the beginning of the computation is given as a sequence 
of the encoding of the empty space (aca, here); during the computation 
the empty space is shuffled with the current meaningful string, the spaces 
are consumed and reintroduced in the string, such that at the end of the 
computation we again have a sequence of repeated strings, which can be 
arbitrarily long. In short, the junk DNA might be the working space of the 
cell "computation device". This explains both its abundance and the fact 
that it consists of repetitions of the same short string. In the terms of [207], 
these speculations show that computer science approaches to DNA/RNA 
might be at least as interesting to biology as for DNA/RNA computing. 
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6.4 U sing Only Insertion 

When designing an insdel "computer" it is natural to try to keep the under
lying model as simple as possible. One idea is to use either only insertion 
operations or only deletion operations. As we have pointed out in Lemma 
6.1(ii), using only insertion operations we generate only context-sensitive lan
guages. Moreover, as we have seen in Sect. 6.2, the family INS:DELg has 
serious limitations (Theorem 6.6). However, supplementing the model with 
some squeezing mechanisms (direct and inverse morphisms, for instance), we 
can again characterize the recursively enumerable languages. It is not clear 
how to supplement a device based on deletion only with some additional 
mechanisms (other than insertion rules) in such a way to get all languages 
in RE. Therefore, we shall consider here only the families INS:;: DELg, 
n, m 2: 0, including n = * or m = *. 

In order to have an image about the size and the properties of these 
families we mention a series of known results about them; for proofs we refer 
to [69], [146], [147], [209] (some of these results are proved in Sect. 6.2; full 
details can be found in [159]). 

1. FIN c INS~DELg c INS!DELg c ... c INS:DELg c CS. 

2. REG is incomparable with all families INS;:'DELg,m 2: o. 

3. LIN and C F are incomparable with all families INS;:' DE Lg, m 2: 2, 
and INS:DELg. 

4. INSiDELg contains non-semilinear languages. 

5. All families INS;:'DELg,m 2: 0, are anti-AFL's. 

Note a difference between points 2 and 3 above: REG is not incomparable 
with INS:DELg, like LIN and CF. As we shall see below, using only 
insertion we can generate each regular language, hence we can compute at 
the level of finite automata. When arbitrary contexts can be used, this can be 
done without any additional help, when a morphism is added, then contexts 
of length 1 suffice. 

Theorem 6.S. REG c INS;DELg. 

Proof. Let L be a regular language and let M = (K, V, qQ, F,8) be the 
minimal deterministic finite automaton recognizing L. 

For each w E V*, we define the mapping Pw : K ~ K by 

Pw(q) = q' iff (q, w) f-* (q', oX), q, q' E K. 

Obviously, if Xl. X2 E V* are such that PXl = PX2' then for every u, v E V*, 
UXl V is in L if and only if UX2V is in L. 



6.4. Using Only Insertion 207 

The set of mappings from K to K is finite. Hence the set of mappings Pw 
as above is finite. Let no be their number. We construct the insdel system 
I = (V, V, A, R) with 

A = {w E L Ilwl :::; no -I}, 

R = {(w, A/V, A) Ilwl :::; no - 1,1:::; Ivi :::; no, Iwvl :::; no, and Pw = Pwv}. 

From the definition of mappings Pw and the definitions of A, R, it follows 
immediately that L( ,) ~ L. 

Assume that the converse inclusion is not true and let x E L - L( I) be 
a string of minimal length with this property. Thus x tf. A. Hence Ixl ~ no. 
Let x = zz' with Izl = no and z' E V*. If z = ala2 ... ano' then it has 
no + 1 prefixes, namely A, aI, al a2, ... , al ... ano . There are only no different 
mappings Pw. Therefore there are two prefixes UI, U2 of z such that UI =f. U2 
and PUI = PU 2. With no loss in generality we may assume that lUll < IU21. 
By substituting U2 by UI we obtain a string x' which is also in L. As Ix'i < Ixl 
and x was of minimal length in L - L(J), we obtain x' E L(J). However, 
IU21-luII :::; IU21 :::; no, so if U2 = UIU3, then (UI,A/U3,A) is an insertion 
rule in R. This implies that x' ===?in x, that is x E L(J), a contradiction. In 
conclusion, L ~ L(J). 

The strictness of the inclusion is obvious (see, for instance, Theorem 6.5 
in Sect. 6.2). 0 

Theorem 6.9. Each regular language is the coding of a language in the 
family INS;DEL8. 

Proof. Let G = (N, T, S, P) be a regular grammar (hence with rules of 
the forms X ---> aY, X ---> a, for X, YEN, a E T). We construct the regular 
grammar G' = (N, N x T, S, P'), where 

P' = {X ---> (X,a)Y I X ---> aY E P, for a E T,X, YEN} 

U {X ---> (X,a) I X ---> a E P, for X E N,a E T}. 

Consider also the coding h : (N x T)* --+ T* defined by h((X, a)) = a, 
X E N,a E T. Clearly, L(G) = h(L(G')), so it is sufficient to prove that 
L(G') E INS;DEL8. 

We consider the set 

W = {x E (N x T)* I if x = xI(X,a)x2(Y,b)X3, for 

Xl, X2, x3 E (N x T)*, then X =f. Y}. 

Clearly, for each yEW we have Iyl :::; card(N) , so W is a finite set. We 
construct the ins del system I = (N x T, N x T, A, R), where 

A = L(G') n (N x T)W, 

R = {((X,a),A/(XI,ad··· (Xk,ak), (Y,b)) I (XI,ad··.(Xk,ak) E W, 

bET, X ---> aXI E P, Xk ---> akY E P, Xi ---> aiXi+1 E P, 

for all 1 :::; i :::; k - I}. 
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The inclusion L(-y) ~ L(G') is obvious. Conversely, let x E L(G') be an 
arbitrary string. If x E (N x T)W, then x E L(-y). If x fj. W, then x = 
xl(X,a)x2(X,b)X3, XI,X2,X3 E (NUT)*. Clearly, y = xl(X,b)X3 E L(G') 
and Iyl < Ixl. Let us take xl, X2, X3 in such a way that (X, a)x2 E W. Then 
y ===> x is a correct derivation according to the rules in R. If y E (N x T)W, 
then x E L(-y). Otherwise, we repeat the procedure above until we obtain a 
string z E (N X T)W such that z ===> ... ===> y ===> x, so x E L(-y), which 
completes the proof. 0 

When both a direct and an inverse morphism are available and "not very 
short" contexts are used, then we reach the power of Turing machines. 

Theorem 6.10. Each language L E RE can be written in the form L = 
g(h-1(L')), where g is a weak coding, h is a morphism, and L' E INSIDELg. 

Proof. Consider a language L ~ T*, L E RE, generated by a type-O 
Chomsky grammar G = (N, T, S, P) in Kuroda normal form. Therefore, P 
contains rules of the following two types: 

1. X-+YZ,X-+a,X-+>', forX,Y,ZEN,aET, 

2. XY -+ UZ, for X, Y,U,Z E N. 

From the form of these rules, we may assume that each string in L( G) is 
generated by a derivation consisting of two phases, one when only nonterminal 
rules are used and one when only terminal rules are used. (If necessary, 
when symbols Q should be erased in order to prepare substrings XY for 
non-context-free rules in P, we replace Q by Q' and move Q' to an end of 
the string, where it will eventually be erased by a rule Q' -+ >..) Moreover, 
we may assume that during the second phase, the derivation is performed in 
the leftmost mode. 

Consider the new symbols #, $, c and construct the insdel system 

'Y = (N U T U {#, $,c},N U T U {#, $,c}, {c4SC6}, R), 

with P' containing the following insertion rules: 

(1) for each context-free rule r : X -+ x E P we consider the rules: 

(1.r) : (ala2a3a4X, >./#$x, a5a6a7aSagalO), for 

ai E N U { #, $, c}, 1 ::; i ::; 10, 

a3a4 fj. N{$}, a2a3a4 fj. N{$}N, 

ala2a3a4 fj. N{$}NN,a5 fj. {#,$}, and 

a5a6a7aSa9 fj. N{#$}N{#}; 
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(2) for each non-context-free rule r : XY --+ UZ E P we consider the rules: 

(2.r.1) : 

(2.r.2) 

(2.r.3) 

(ala2a3X, >.j$UZ, Ya4), for 

aiENU{#,$,c},1~i~4, and 

ala2a3 ~ N{$}N, a2a3 ~ N{$}, a4 ~ {#,$}, 

(X$UZY,>.J#$,a), foraENU{c}, 

(X, >.J#, $UZY #$); 

(3) for each X, YEN we consider the rules: 

(3.XY.1) : (ala2a3XY#$,>.jX#,a4a5a6), for 

ai EN U {#, $, c}, 1 ~ i ~ 6, 

(3.XY.2) 

(3.xY.3) 

ala2a3 ~ N{$}N, and if a4a5 = X#, then a6 = $; 

(X, >.j#$, Y#$X#a), foraENU{c}, 

($Y#$X#,>.j$X,a), for a E NU{c}. 

We say that all rules (l.r) are of type 1, all rules (2.r.i), for r a non-context
free rule in P and 1 ~ i ~ 3, are of type 2, and that all rules (3.XY.i), for 
X, YEN and 1 ~ i ~ 3, are of type 3. 

Denote by M the set of strings a#$, for a E NUT. For each string 
w E M we consider a symbol bw . Let W be the set of these symbols. We 
define the morphism 

by 

h: (WUTU {c})* ---+ (NUTU {#,$,c})*, 

h(bw ) = w, w E M, 

h( a) = a, a E T, 

h(c) = c. 

Consider also the weak coding 

defined by 

We obtain 

g: (WUTU {c})* ---+ T*, 

g(bw ) = >., WE M, 

g(c) = A, 
g(a) = a, a E T. 
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The reasoning behind the construction above is the following. 
The insertion rules of type 1 simulate the context-free rules of G, the rules 

of type 2 simulate the non-context-free rules of G. The rules of type 3 are 
used in order to prepare the current string for making possible the use of 
rules of type 2. This is done as follows: 

The symbols #, $ are called markers. A nonterminal followed by # and 
then by a symbol different from $ is said to be #-marked. A nonterminal 
followed by $ is said to be $-marked. A nonterminal followed by #$ is said 
to be #$-marked. A nonterminal which is #-, $-, or #$-marked is said to 
be marked, otherwise it is called unmarked. A string consisting of unmarked 
symbols in NUT U {c} and of blocks a#$, for a E NUT, is said to be legal. 

For example, c4 Sc6 (the axiom of 'Y) is legal, cX #$X aY #$c is also legal. 
The first occurrence of X and the occurrence of Y in this latter string are 
marked (#$-marked), the second occurrence of X, as well as all occurrences 
of c and a are unmarked. However, cX$X aY #$c is not legal, because the 
first occurrence of X is $-marked but not #$-marked. 

Now, the rules of type 3 are able to move an unmarked nonterminal X 
across a block X #$ placed immediately to the right of X. In this way, pairs 
XY can be created, which are needed for simulating the context-sensitive 
rules of G. 

The marked symbols, plus the markers and the symbol c are considered 
"invisible garbage"; at each moment, the string of the unmarked symbols 
is intended to correspond to a sentential form of G. By the definitions of 
h and g, this "invisible garbage" is erased, indeed, from each legal string 
generated by 'Y. Because no unmarked nonterminal can be mapped by h-l, 
what remains will be a terminal string. 

In order to prove the equality L(G) = g(h-l(Lb))) we shall first prove 
that rules in groups 1, 2, 3 in G' are doing what we have said that they are 
supposed to do (in this way we obtain the inclusion ~), then we shall prove 
that they cannot do anything else (that is, also ;2 is true). 

Claim 1. When using a rule (ala2a3a4X, A/#$x, a5a6a7agagalO) of type 
1, the occurrence of X in the derived string is unmarked, but it is #$-marked 
in the resulting string, where also each symbol of x is unmarked. 

The fact that X is unmarked in the string to which the rule is applied is 
ensured by a5, which is different from # and $. As we obtain the substring 
X #$xa5, the other assertions are obvious. 

Claim 2. When using a group of rules (2.r.i), 1 ::; i ::; 3, associated with a 
rule r : XY ---+ U Z in P, then the symbols XY are unmarked in the derived 
string, both of them will be #$-marked in the resulting string, where U Z are 
unmarked. 

The substring of the string to which the rule (2.r.1) is applied 
is ala2a3XYa4, with a4 ~ {#,$}, hence X and Yare unmarked. 
We get the string ala2a3X$UZYa4, to which the rule (2.r.2) is ap
plied, leading to ala2a3X$UZY#$a4. Now, by the third rule, we get 
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(Xl (X2(X3X #$U ZY #$(X4. One sees how the third rule completes the #$
marking of X, whereas Y has been #$-marked by the second rule. Clearly, 
U Z are always unmarked. From a substring where the only unmarked block 
(not involving the substrings (X1(X2(X3 and (X4) is XY we have obtained a sub
string where the only unmarked block (not involving the substrings (X1(X2(X3 
and (X4) is UZ. 

Claim 3. Starting from a legal string, the rules in a group (3.XY.i), 1 ~ 
i ~ 3, can replace a substring XY#$(X (hence with an unmarked X) by a 
substring consisting of blocks in N{#$} and ending with X(X (hence with an 
unmarked X). 

The rule (3.XY.l) can be applied to a string X(X1(X2(X3XY#$(X4(X5(X6Y 
and it produces the string X(X1(X2(X3XY#$X#(X4(X5(X6Y. The second rule is 
now applicable, leading to X(X1(X2(X3X #$Y #$X #(X4(X5(X6Y. Finally, the third 
rule produces X(X1 (X2(X3X #$Y #$X #$X (X4(X5(X6Y. Therefore, the substring 
XY #$ has been replaced by X #$Y #$X #$X, having an unmarked X in 
the rightmost position. 

Thus, starting from a legal string (initially, we have c4 SC6 ), the rules of G' 
can simulate the rules of G, producing legal strings. Moreover, if we denote 
by umk(x) the string of the unmarked symbols in a legal string x generated 
by G', then we have 

Claim 4. (i) If x =}* y by using a rule in group 1 or all three rules 
(2.r.i), 1 ~ i ~ 3, associated with a non-context-free rule r of G, then 
umk(x) =} umk(y) by the coresponding rule in G. 

(ii) If x=}* Y by using the three rules in group 3 associated to the same 
X, Y in N, then umk(x) = umk(y). 

Claim 5. If x = g(h-1(y)), for some y E L(G'), then y is a legal string 
and x = umk(y), y E T*. Conversely, if y E L("() and umk(y) E T*, then 
umk(y) = g(h- 1(y)). 

This follows immediately from the definitions of the morphisms g and h. 
These claims prove the inclusion L(G) ~ g(h- 1 (L('Y)))' 
We shall now show that only derivations as above lead to legal strings. 

Claim 6. After using a rule (2.r.l), no other rule but (2.r.2) can be applied 
to the involved nonterminals X, Y, U, Z. Then, after (2.r.2), only (2.r.3) can 
be used. 

Indeed, let us consider only the subword (Xl (X2(X3XY (X4 used by a 
rule (2.r.l), for r : XY -+ UZ E P. After using (2.r.l) we obtain 
(Xl (X2(X3X$UZY(X4. Now: 

- No rule (l.q) can be used to any of X, Y, U, Z, due to the symbols 
(3i, 1 ~ i ~ 10, in rules ((31(32(33(34X, >../#$x, (35(36(37(38(39(3lO) of type 
(l.q),q: X -+ x E P. (For instance, (32(33(34 ~ N{$}N, hence Z above 
cannot be used by a rule (l.q) corresponding to q : Z -+ x E P.) 

- No rule (2.q.l) can be used for a pair U Z or ZY, due to symbols (31(32(33 
in rules ((31(32(33X, >"/$YZ, U(34) of type (2.q.l) for q: XU -+ YZ E P. 
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- No rule (2.q.2), q f= r, can be used: this is obvious, because we need 
the subword X$U ZY, which identifies the rule r in P. 

- No rule (2.q.3) can be used, because we need a substring X$U ZY #$, 
and (}:4 above is different from #. 

- No rule (3.CD.1) can be used, because our string does not contain the 
substring CD#$; the same argument makes impossible the use of the 
rules (3.CD.2) and (3.CD.3), for all C, DEN. 

Using the rule (2.r.2) we get the string (}:1(}:2(}:3X$UZY#$(}:4. Nothing 
has been changed to the left of X$U ZY or inside this substring; moreover, 
Y is now #$-marked. As above, one can see that no rule can be applied to 
this string, excepting (2.r.3). For instance: 

- No rule (3.ZY.1) can be used for the pair ZY (the only one which is fol
lowed by #$), because f31f32f33 in a rule (f31f32f33ZY#$,>./Z#,f34f35f36) 
of this type cannot be X$U. 

- No rule (3.CD.2) can be used, because there is no symbol C which is 
i-marked in our string; the same reason makes impossible the use of a 
rule (3.CD.3), C, DEN. 

Claim 7. After using a rule (3.XY.1), no other rule but (3.xY.2) can be 
applied to the involved nonterminals X, Y. Then, after using (3.XY.2), no 
other rule than (3.XY.3) can be used. 

The rule (3.XY.1) replaces a substring (}:1 (}:2(}:3XY #$(}:4(}:5(}:6 by w = 
(}:1(}:2(}:3 XY #$X #(}:4(}:5(}:6. Now: 

- No rule of type (l.q) : (f31f32f33f34X, >'/#$x, f35f36f37f38f39f31O) can be 
used (X is the only unmarked symbol in our string), because of 
f35f36f37f38f39f31O which cannot be equal to Y #$X #(}:4. 

- No rule of type (2.q.1) can be used, because we do not have two un
marked symbols in w. 

- No rule of types (2.q.2), (2.q.3) can be used, because we do not have a 
$-marked symbol in w. 

- No rule (3.CD.1): (f31f32f33CD#$,>'/C$,f34f35f36) can be used; the only 
possibility is to use again (3.XY.1) (no other symbols appear here), but 
f34f35f36 prevents that. 

- No rule (3.CD.2) with XY f= CD can be used, just because we do not 
have the necessary occurrences of C and D. 

- No rule (3.CD.3) can be used, because we need a substring of the form 
$D#$C#, and such a substring does not appear in w. 
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Therefore, we have to continue with (3.XY.2) and we get the string 
0!10!20!3X #$Y #$X #0!40!50!6. There is no unmarked symbol here, hence rules 
of the forms (lor), (2.q.1), (2.q.2), (2.q.3), (3.CD.1), (3.CD.2) cannot be used. 
A rule (3.CD.3) can be used only if XY = CD, which concludes the proof 
of Claim 7. 

Consequently, the rules in groups (lor), for r a context-free rule of P, and 
(2.r.i), 1 :::; i :::; 3, for r a non-context-free rule of P, and (3.XY.i), 1 :::; i :::; 3, 
for X, YEN, cannot be mixed; inside these groups, the rules have to be 
used in the order imposed by i, from 1 to 3, therefore, the system I can 
only simulate derivations in G on unmarked symbols. This means that if h-1 

is defined for y E L(G'), then C4Sc6 ==>* umk(y) in the grammar G and 
g(h-1(y)) E L(G), proving the inclusion g(h-1(L(!))) ~ L(G). 

Note that the weight of I is (4, 7; 0, 0) (4 is reached in rules of type (lor) 
and 7 is reached in rules of type (3.XY.1)). 0 

The proof of the previous theorem can be modified as follows: 
- Write L = UaET(8~(L){a}) and take a grammar Ga = (Na,T,Sa,Pa ) 

for each language 8~(L). Assume that alphabets Na,a E T, are mutually 
disjoint. 

- Start from the axiom set {c4Sa ca I a E T}. 
- Together with all rules in the construction above associated with rules 

in Pa , a E T, consider also the rules with the "witness" suffixes of the type 
O!l •.. O!k ending with the symbol c. For instance, together with 

consider also all rules with 0!50!60!70!80!90!1O replaced by: 

0!50!60!7C, 

0!50!6C, 

0!5C, for 0!5, 0!6, 0!7, 0!8, O!g E N U {$}, 
c. 

Similarly for rules of all other types which involve suffixes of symbols O!. 

In this way, at the end of the current string we can use shortened rules 
and we can still prevent the derivations which can produce strings outside 
the languages 8~ (L). 

- Also allow the terminal symbols to migrate to the right, by the rules in 
group 3, hence let X and Y in these rules be also terminals; moreover, let Y 
be also equal to c. 

- Add the following rules: 

(4.a.1) : (ac,>'/#$a#, b), a,bET, 
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(4.a.2) 

(4.a.3) 
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(a, )'/#$, c#$a#b) , a, bET, 

($c#$a#, )./$ca, b), a, bET. 

Note the fact that the symbol c existing in the string is now #$-marked 
and that together with the unmarked occurrence of a moved to the right we 
introduce an unmarked occurrence of c. The derivation steps are 

xacbx' ====> xac#$a#bx' ====> xa#$c#$a#bx' ====> xa#$c#$a#$cabx', 

hence the symbol a has been moved near the terminal b, across c. 
- Add also the rule 

(4.a.4) : ($c#$a#, >.j$da, b), a,b E T, 

where d is a new symbol, which is introduced in the alphabet of C'. 
As rule (4.a.1) uses an unmarked occurrence of c, if we use rule (4.a.4) 

instead of (4.a.3), then we introduce no new unmarked occurrence of c, hence 
rules (4.a.i) can no longer be applied. Therefore, if we consider the regular 
language 

Lo = {a#$ I a E (N U T U {c} ) *}{ d}, 

then we obtain the equality 

L = Lo\L(-y). 

Indeed, the left quotient with respect to Lo selects from L( '"Y) those strings 
which contain the symbol d and which have in front of this symbol only 
#$-marked symbols. This means that all nonterminals were replaced by 
terminals and that all terminals were moved to the right, hence a copy of 
them is now present to the right of d. Consequently, we obtain 

Corollary 6.1. Each language L E RE can be written in the form L = 
Lo\L', for Lo a regular language and L' E INSIDELg. 

It is an open problem whether or not the parameters 4 and 7 appearing 
here can be replaced by smaller numbers. Anyway, from INS!DELg ~ 
CF and the fact that CF is closed under inverse morphisms and arbitrary 
morphisms, the superscript 7 above cannot be replaced by 0 or by 1. 

A quite interesting consequence about the size of families INS;';' DELg 
can be inferred: 

Corollary 6.2. Each family INS;;: DELg, n ?: 4, m ?: 7, is incomparable 
with each family of languages FL such that LI N ~ F L c RE and FL is 
closed under weak codings and inverse morphisms, or under left quotients 
with regular languages. 

Proof. Because LIN - INS:DELg i= 0, we get FL - INS:DELg i= 0. 
As the closure of F L under weak codings and inverse morphisms is strictly 
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included in RE, we cannot have INSJVELg S;;; FL (then RE S;;; FL eRE, 
a contradiction). 0 

As examples of families of languages having the properties of F Labove 
we mention MAT>' and ETOL. 
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Chapter 7 

Splicing Systems 

Starting with this chapter we investigate computability models based on 
the splicing operation, a formal model of the recombinant behavior of DNA 
molecules under the influence of restriction enzymes and ligases. Informally 
speaking, splicing two strings means to cut them at points specified by given 
substrings (corresponding to the patterns recognized by restriction enzymes) 
and to concatenate the obtained fragments crosswise (this corresponds to a 
ligation reaction). 

After briefly discussing the abstraction process leading from the recombi
nation operation as it takes place in vivo to the language-theoretic operation 
of splicing, we start the mathematical study of this latter operation, both in 
the non-iterated and the iterated form of it. Then we define the fundamental 
notion of the following chapters, that of an extended H system, a language 
generating device using as a basic ingredient the splicing operation. This 
chapter discusses the splicing operation and the splicing systems, in the gen
eral and in the simple form, from a mathematical point of view. Because H 
systems with finite components generate only regular languages, additional 
control mechanisms are considered in the subsequent chapters, controlling 
the work of H systems. Various such mechanisms suggested by the regulated 
rewriting area in formal language theory (Chap. 8) and architectures sug
gested by grammar systems area (Chap. 10) are investigated. In most cases, 
characterizations of recursively enumerable languages are obtained, that is to 
say, computational completeness. From the corresponding proofs, universal 
H systems of the considered types are also obtained. 

7.1 From DNA Recombination to the Splicing 
Operation 

Let us start by an example, illustrating the cut and paste activity carried 
out in vitro on double stranded DNA sequences with restriction enzymes and 

© Springer-Verlag Berlin Heidelberg 1998
G. Păun et al., DNA Computing



218 7. Splicing Systems 

ligases, resembling the recombination of DNA as it takes place in vivo. 
Consider the following three DNA molecules: 

5' - CCCCCTCGACCCCC - 3' 
3' - GGGGGAGCTGGGGG - 5' 

5' - AAAAAGCGCAAAAA - 3' 
3' - TTTTTCGCGTTTTT - 5' 

5' - TTTTTGCGCTTTTT - 3' 
3' - AAAAACGCGAAAAA - 5' 

The restriction enzymes (endonucleases) are able to recognize specific 
substrings of double stranded DNA molecules and to cut molecules at the 
middle of such substrings, either producing "blunt" ends or "sticky" ends. 
For instance, the sequences where the enzymes Taql, SciNI, and Hhal cut 
are, respectively: 

TIC GIA 
AGCT 

GIC GIC 
CGCG 

GIC Glc 
CGCG 

We have also indicated the way of cutting the DNA molecules. Specifi
cally, when acting on the three molecules mentioned above, the three enzymes 
Taql, SciNI, and Hhal will cut these molecules at the unique sites occurring 
in them and the following six fragments are produced: 

5'-CCCCCT 
3' - GGGGGAGC 

5'-AAAAAG 
3' - TTTTTCGC 

5' - TTTTTGCG 
3'-AAAAAC 

CGACCCCC - 3' 
TGGGGG-5' 

CGCAAAAA - 3' 
GTTTTT-5' 

CTTTTT-3' 
GCGAAAAA - 5' 

Note that in all cases we have obtained fragments with identical over
hangs, CG when reading in the 5' to 3' direction, but there is a crucial 
difference between the case of Taql, SciNI, and that of Hhal: the free tips of 
the overhangs created by the first two enzymes are at 5' ends, but the free 
tips of the two overhangs created by Hhal are at 3' ends. This makes the 
ends of the first four fragments compatible. If a ligase is added, then the four 
fragments can be bound together, either restoring the initial molecules, or 
producing new molecules by recombination. The recombination of the first 
four fragments above gives the new molecules below: 

5' - CCCCCTCGCAAAAA - 3' 
3' - GGGGGAGCGTTTTT - 5' 
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5' - AAAAAGCGACCCCC - 3' 
3' - TTTTTCGCTGGGGG - 5' 
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The formation of these recombinant molecules is possible because the 
overhangs match. 

Thus the operation we have to model consists of two phases: (1) cut the 
sequences at well-specified sites, and (2) paste the fragments with matching 
ends. 

Now, because of the precise Watson-Crick complementarity, we can con
sider the operation above as acting on single stranded sequences (hence on 
strings). As far as the DNA molecules are concerned, this abstraction step is 
obvious; for instance, the three molecules we have started with are precisely 
identified by the strings 

CCCCCTCGACCCCC, 

AAAAAGCGCAAAAA, 

TTTTTGCGCTTTTT, 

respectively, with the convention that they represent a strand of a DNA 
molecule read in the 5' to 3' direction. 

In what concerns the patterns of restriction enzymes, we have to keep not 
only the information about the involved nucleotides, but also about the type 
of tips created when cutting the molecules. The pattern is described by a 
triple (u,x,v), of strings over the alphabet {A, C, G, T}, with the meaning: 
(u, v) is the context where the cutting takes place and x is the overhanging 
sequence. In the case of the three enzymes above we have the triples: 

(T, CG, A), (G, CG, C), (G, CG, C). 

However, we know that the first two enzymes produce matching ends, whereas 
the third one does not (although its associated triple is identical to the 
triple describing the second enzyme). We simply distinguish the two pos
sible classes, for instance, saying that the first two triples above are of Class 
1 and the last one is of Class 2. When recombining fragments of strings, we 
allow only the concatenation of fragments produced according to triples of 
the same class. 

Formally, having two strings WI,W2 and two triples (UI,XI,VI), (U2, X2, 

V2), such that 
, /I 

WI = WIUIXIVIWI, 

W2 = W~U2X2V2W~, 

we allow the recombination operation only when (UI,XI,vd and (U2,X2,V2) 

are patterns of the same class and Xl = X2; the strings obtained by recombi
nation are 
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where x = Xl = X2. 

Tacitly, we have made here one more generalizing step, by working with 
strings over an unspecified, arbitrary alphabet. 

In order to get the most general operation with strings, modeling the 
previously described one, we have to advance three more steps. 

Firstly, instead of the relation of patterns ( u, x, v) "to be of the 
same class", we can consider an arbitrary relation, by starting directly 
from pairs ((UI,X,VI),(U2,X,V2)). The meaning of such a pair is that 
(UI' x, vd, (U2' x, V2) are triples of the same class, they can produce matching 
ends, that is, the recombination of the fragments they produce is allowed. 

Secondly, when having a pair (( UI, x, VI), (U2' x, V2)) and two strings 
WI,W2 as above, WI = W~UIXVIW~ and W2 = W~U2XV2W~, we can consider 
only the string Zl = w~ UIXV2W~ as a result of the recombination, because the 
string Z2 = W~U2XVI w~ is the result of the one-output-recombination with 
respect to the symmetric pair, (( U2, x, V2), (UI' x, vI)). 

Thirdly, instead of pairs of triples (( UI, x, VI), (U2' x, V2)) as above, we can 
consider pairs of pairs: the passing from WI = W~UIXVIW~, W2 = W~U2XV2W~ 
to Zl = W~ UIXV2W~ with respect to (( UI, x, vd, (U2' x, V2)) is equivalent with 
the passing from WI = W~U~VIW~, W2 = W~U~V2W~ to Zl = W~U~V2W~ with 
respect to (( u~ , vd, (u~, V2)), where u~ = UI x and u~ = U2X. Similarly, we 
can consider the quadruple ((uI,xvd, (U2,XV2)). 

Altogether, we are led to the following operation with strings over an 
alphabet V: a quadruple (UI, U2; U3, U4), of strings over V, is called a splicing 
rule; with respect to such a rule r, for x, y, Z E V* we write 

(x,y) f-r Z iff x = XIUIU2X2, 

Y = YIU3 U4Y2, 

Z = XIUIU4Y2, 

for some XI,X2,Yl,Y2 E V*. 

We say that we splice x, Y at the sites UI U2, U3U4, respectively, and the result 
is z. This is the basic operation we shall deal with in this chapter. When 
investigating it from a mathematical point of view, we shall consider it in this 
form. When we build computability models (in the subsequent chapters), in 
order to keep these models as close as possible to the reality, we shall consider 
the operation of the form 

(x,Y)Pr(Z,W) iff X=XIUIU2X2, 

Y = YIU3 U4Y2, 

Z = XIUIU4Y2, 

W = YIU3U2X2, 

for some Xl, X2, YI, Y2 E V*. 
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We shall explicitly specify the variant in use when giving the relevant 
definitions. We shall say that f- is a I-splicing and F is a 2-splicing operation. 
When we say only "splicing", it will be clear from the context which type of 
splicing is meant. In this chapter we deal only with I-splicing. 

Of course, if we want to bring our models back to laboratory, we have to 
renounce all the aforementioned abstraction steps, going back to considering 
specified enzymes, with specified recognition patterns. For certain models we 
shall discuss some of the problems raised by such an attempt. In general, 
the power of our models will be essentially based on the control mechanisms 
imposed on the splicing operation, as mentioned at the beginning of this 
chapter. All these mechanisms look unrealistic for the present day laboratory 
techniques. Hence, the "computers" we shall discuss need significant progress 
in biochemical engineering, a task which is far beyond the scope of the present 
book. 

7.2 Non-Iterated Splicing as an Operation 
with Languages 

In all real circumstances, the sets of strings and the sets of splicing rules (of 
enzymes behind them) are finite. Because the strings can be arbitrarily long 
(there is no a priori bound on their length), it is just natural to also consider 
languages of arbitrary cardinality. This is not the case with the splicing 
rules: very few restriction enzymes have overhangs of length greater than six. 
This means that in the writing (u, x, v) as a representation of the recognized 
pattern, in most cases we have Ixl ::; 6, that is, when considering splicing 
rules (UI,U2;U3,U4), each string Ul,U2,U3,U4 is of a rather limited length. 
In a mathematical set-up, such a limitation is not necessary. Moreover, as 
we shall see in Sect. 7.3, even in the iterated case, the splicing with respect 
to a finite set of rules preserves the regularity. From a computational point 
of view, this means that we can reach in this way at most the power of 
finite automata or Chomsky regular grammars. These observations suggest 
considering "arbitrarily long" splicing rules, i.e., infinite sets of splicing rules. 
In order to keep some control on such infinite sets, we shall codify the rules 
as strings; then their sets are languages and we can consider the type of these 
languages with respect to a specified classification, for example, the Chomsky 
hierarchy. 

This is the style we shall adopt in this section. 

Consider an alphabet V and two special symbols, #, $, not in V. A 
splicing rule (over V) is a string of the form 

where UI,U2,U3,U4 E V*. (For a maximal generality, we place no restriction 
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on the strings UI,U2,U3,U4. The cases when UIU2 = A or U3U4 = A could be 
ruled out as unrealistic.) 

For a splicing rule r = UI #U2$U3#U4 and strings x, y, z E V* we write 

(x,y) I-r z iff x = XIUIU2X2, 

Y = YIU3 U4Y2, 

Z = XIUIU4Y2, 

for some XI,X2,YI,Y2 E V*. 

(Therefore, a rule UI#U2$U3#U4 corresponds to a rule (UI,U2;U3,U4) as 
at the end of the previous section.) 

The strings x, yare sometimes called the terms of the splicing; when 
understood from the context, we omit the specification of r and write I
instead of I-r . 

The passing from x, Y to z, via I-n can be represented as shown in Fig. 
7.1. 

I 
Xl UI 

I 
U2 

I 
X2 

x 

'j 
• 

Y I I I 
I YI U3 U4 Y2 

I 
z I 

Xl UI U4 Y2 

Figure 7.1: The splicing operation 

Often, when the splicing of specific strings is presented, for better read
ability we shall indicate by a vertical bar the place where the terms of the 
splicing are cut, in the style: 

for r = UI #U2$U3#U4. 

The way of building the result of the splicing by concatenating a prefix of 
the first term of the splicing with a suffix of the second term is visible in this 
writing. It could be also useful to represent the splicing rules in a graphic 
way, as in Fig. 7.2(a), in order to make clearer the way of working of these 
rules: the "window" in Fig. 7.2(a) should identify simultaneously the sites 
UIU2 and U3U4 in two DNA molecules, as in Fig. 7.2(b). 

An H scheme is a pair 
a=(V,R), 
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where V is an alphabet and R ~ V*#V*$V*#V* is a set of splicing rules. 
Note that R can be infinite, and that we can consider its place in the 

Chomsky hierarchy, or in another classification of languages. In general, if 
REF L, for a given family of languages, F L, then we say that the H scheme 
a is of FL type. 

I :: I :: I 
a) b) 

Figure 7.2: A graphical representation of a splicing rule 

For a given H scheme a = (V, R) and a language L ~ V*, we define 

al(L) = {z E V* I (x,y) f-r z, for some x,y E L,r E R}. 

Thus, al (L) is the result of one step I-splicing of strings in L with respect 
to the rules in R. 

Sometimes, given an H scheme a = (V, R) and an ordered pair (x, y), 
x, Y E V*, we also denote 

al(x,y) = {z E V* I (x,y) f-r z, for some r E R}. 

Note that al(x,y) is different from al({x,y}), which is the union of the 
four sets al(x,x),al(x,y),al(y,x),al(Y,Y). We can write 

al(L) = U al(x,y). 
x,yEL 

Given two families F L 1 , F L2 of languages, we denote 

(The subscript 1 in SI(. .. ' ... ) reminds us that we are using here the 1-
splicing operation.) 

Therefore, the family F Ll is closed under splicing of F L2 type (we also 
say "FL2 splicing") if SI(FLl,FL2) ~ FL1• In general, the power of FL2 
splicing is measured by investigating the families SI(FLl,FL2), for various 
FL1 · 

We shall examine the families SI(FL1 , FL2) for FLl , FL2 in the set {FIN, 
REG, LIN, CF, CS, RE} (therefore, FL2 is always assumed to contain at 
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least all finite languages). We shall first establish a series of lemmas, connect
ing the splicing operation with other operations on languages, then collect 
the results about families S1(FL1, FL2) in a synthesis theorem. 

Lemma 7.1. For all families FL1,FL2,FL~,FL~, if FL1 ~ FL~ and 
FL2 ~ FL~, then S1(FL1,FL2) ~ S1(FL~,FL~). 

Proof. Obvious, from the definitions. o 

Lemma 7.2. If F L1 is a family of languages which is closed under concate
nation with symbols, then F L1 ~ S1 (F L 1, F L2), for all F L2. 

Proof. Take L ~ V*,L E FL1, and c 1- V. Then La = L{c} E FL1. 
For the H scheme (J' = (V u {c}, {#c$c#}) we have L = (J'1(Lo), hence 
L E S1(FL1,FL2), for all FL2. D 

Lemma 7.3. If FL is a family of languages closed under concatenation and 
arbitrary gsm mappings, then FL is closed under REG splicing. 

Proof. Take L ~ V*, L E FL, and an H scheme (J' = (V, R) with R ~ 
V*#V*$V*#V*, R E REG. Consider a new symbol, c 1- V, and a finite 
automaton M = (K, V u {#, $}, so, F, 6) recognizing the language R. By 
a standard construction, we can obtain a gsm g, associated with M, which 
transforms every string of the form 

Consequently, (J'1(L) = g(L{c}L). From the closure properties of FL, we 
obtain (J'1(L) E FL. D 

Lemma 7.4. If FL is a family of languages closed under union, concatena
tion with symbols, and FIN splicing, then FL is closed under concatenation. 

Proof. Take two languages L 1, L2 E F L, L 1, L2 ~ V*, consider two new 
symbols, C1, C2 1- V, and the H scheme 

Obviously, 
L1L2 = (J'1(LdcI} U {c2}L2). 

Hence, if FL has the mentioned properties, then L1L2 E FL. o 

Lemma 7.5. If FL is a family of languages closed under concatenation with 
symbols and FIN splicing, then FL is closed under the operations Pref and 
Suf. 
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Proof. For L ~ V*,L E FL, consider a new symbol, c 1:. V, and the H 
schemes 

We have 

a = (V U { c}, {#a$c# I a E V U { c}} ), 

a' = (V U { c}, {#c$a# I a E V U {c}} ). 

Pref(L) = a1(L{c}), Suf(L) = a~({c}L). 

It is easy to see that using the rule r = #c$c# we obtain (xlc, ycl) f-r x and 
that for each Z E Pref(x) - {x}, x E L, there is a rule of the form r = #a$c# 
in a such that (xc, yc) f-r z. Similarly for a' and Suf. 0 

Lemma 7.6. If FL is a family of languages which is closed under sub
stitution with A-free regular languages and arbitrary gsm mappings, then 
Sl(REG,FL) ~ FL. 

Proof. If F L has the above mentioned closure properties, then it is also 
closed under concatenation with symbols and intersection with regular lan
guages (this follows directly from the closure under gsm mappings). Now, the 
closure under concatenation with symbols and under substitution with regu
lar languages implies the closure under concatenation with regular languages. 
We shall use these properties below. 

Take L ~ V*, L E REG, and an H scheme a = (V, R) with REF L. 
Consider the regular substitution s : (V U {#, $})* ---? P((V U {#, $} )*) 
defined by 

and construct the language 

s(a) = {a}, a E V, 

s(#)={#}, 

s($) = V* {$} V*, 

L1 = V*s(R)V*. 

Consider also the language 

L2 = (L ill {#}) $ (L ill {#}). 

As L1 E FL and L2 E REG, we have L1 n L2 E FL. The strings in L1 n L2 
are of the form 

w = X1U1#U2X2$Y1U3#U4Y2, 

for Xl U1 U2X2 E L, Y1 u3U4Y2 E L, and U1 #U2$U3#U4 E R. 
If 9 is a gsm which erases the substring #Z2$Z3# from strings of the form 

Zl#Z2$Z3#Z4 with Zi E V*, 1 :S i:S 4, then we get a1(L) = g(L1 nL2), hence 
a1(L) E FL. 0 
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Lemma 7.7. If FL is a family of languages which is closed under concate
nation with symbols, then for all L!, L2 E F L we have Ld L2 E 8 1 (F L, F L). 

Proof. Take Ll,L2 ~ V*,Ll,L2 E FL, and c cf. V. For the H scheme 

CF = (V U { c}, {#xc$c# ! x E L2})' 

we obtain 
LdL2 = CF1(Ldc}). 

Indeed, the only possible splicing of strings in L1 { c} is of the form 

(X1!X2C,yC!) f-r Xl, for XlX2 E L 1,X2 E L2,y E L!, 

where r = #X2C$C#. o 

Lemma 7.8. If FL is a family of languages closed under concatenation 
with symbols, then for each L E F L, L ~ V*, and c cf. V we have {c} L E 

8 1 (REG, FL). 

Proof. For L, c as above, consider the H scheme 

CF = (V U {c,c'}, {cx#c'$c'#! X E L}), 

where c' is one further new symbol. Clearly, this is an H scheme of F L type. 
Then, 

{c}L = CFl({C}V*{c'}), 

because the only splicings are of the form (cx!c', eyc'!) f-r cx, for r = 
cx#c'$c'#,x E L, y E V*. 0 

Lemma 7.9. If FL is a family of languages closed under concatenation with 
symbols and shuffie with symbols, then for each L E F L, L ~ V*, and c cf. V, 
we have {c}Pref(L) E 8 1(REG,FL). 

Proof. For L, c as above, consider the H scheme of F L type 

CF = (V U {c,c'}, {cxc'$c'# ! X E L ill {#}}), 

where c' is one further new symbol. We have 

{c}Pref(L) = CF1({C}V*{c'}), 

because the only possible splicings are of the form (CX1!X2C', cyc'!) f-r cx!, for 
rules r = CX1 #x2c'$c' #, XlX2 E L, Y E V*. 0 

We now synthesize the consequences of the previous lemmas for the fam
ilies in the Chomsky hierarchy. 

Theorem 7.1. The relations in Table 7.1 hold, where at the intersection 
of the row marked with F L1 with the column marked with F L2 there ap
pear either the family 8 1(FL1,FL2), or two families FL3,FL4 such that 
FL3 C 81(FL1, FL2) C FL4. These families FL3, FL4 are the best possible 
estimations among the six families considered here. 
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FIN REG LIN CF CS RE 
FIN FIN FIN FIN FIN FIN FIN 
REG REG REG REG, LIN REG,CF REG,RE REG,RE 
LIN LIN,CF LIN,CF RE RE RE RE 
CF CF CF RE RE RE RE 
CS RE RE RE RE RE RE 
RE RE RE RE RE RE RE 

Proof. Clearly, al (L) E FIN for all L E FIN, whatever a is. Together 
with Lemma 7.2, we have SI(FIN,FL) = FIN for all families FL. 

Lemma 7.3 shows that SI (REG, REG) ~ REG. Together with Lemma 
7.2 we have SI(REG,FIN) = SI(REG,REG) = REG. 

From Lemma 7.4 we get SI(LIN,FIN) - LIN =I- 0. From Lemma 7.3 
we have SdCF,REG) ~ CF. Therefore, LIN C SI(LIN,FL) ~ CF = 
SI(CF,FL) for FL E {FIN,REG}. 

Also the inclusions SI(LIN,FL) C CF,FL E {FIN,REG}, are proper. 
In order to see this, let us examine again the proof of Lemma 7.3. If L ~ 
V*,L E LIN, and a = (V,R) is an H scheme of REG type, then al(L) = 

g(L{c}L), where c tt V and 9 is a gsm. The language L{c}L has a context
free index less than or equal to 2. 

In Sect. 3.1 we have mentioned that the family of context-free languages 
of finite index is a full AFL, hence it is closed under arbitrary gsm map
pings. Consequently, for each L E SI(LIN, REG) we have indcF(L) < 00. 

Since there are context-free languages of infinite index, it follows that 
CF - SI(LIN,REG) =I- 0. 

From Theorem 3.12 we know that for every language L ERE, L c::: V*, 
there are Cl, C2 tt V and a language L' ~ L{ Cl}{ C2} * such that L' E C Sand 
for each w E L there is i 2': 0 such that WCl c~ E L'. Take one further new 
symbol, C3. The language L'{C3} is still in CS. For the H scheme 

we have 

Consequently, RE ~ SI (C S, FIN). As SI (RE, RE) ~ RE (we can prove 
this in a straightforward way or we can invoke the Church-Turing Thesis), 
we get SI(CS,FL) = SI(RE,FL) = RE for all FL. 

According to Theorem 3.13, every language L E RE can be written as L = 
L1/L2, for L l ,L2 E LIN. By Lemma 7.7, each language L1/L2 with linear 
L l ,L2 is in SI(LIN,LIN). Consequently, SI(LIN,FL) = SI(CF,FL) = 
RE, too, for all FL E {LIN,CF,CS,RE}. 
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From Lemma 7.6 we have Sl(REG,FL) ~ FLfor FL E {LIN, CF, RE}. 
All these inclusions are proper. More exactly, there are linear languages not 
in Sl(REG,RE). Such an example is L = {anbn I n ~ I}. 

Assume that L = 0"1 (Lo) for some Lo E REG, Lo ~ V*, and 0" = (V, R). 
Take a finite automaton for Lo, M = (K, V, so, F,8), let m = eard(K), and 
consider the string w = am+1bm+1 in L. Let x, y E Lo and r E R be 
such that (x,y) rr w, x = XlUlU2X2, Y = YlU3U4Y2, W = XlUlU4Y2, for 
r = Ul #U2$U3#U4. We have either Xl Ul = am+1 z or U4Y2 = z'bm+l , for 
some z, Zl E {a, b} * . Assume that we have the first case; the second one 
is similar. Consequently, X = am+lzU2X2. When parsing the prefix am+l, 
the automaton M uses twice a state in K; the corresponding cycle can be 
iterated, hence Lo contains strings of the form x' = am+1+ti ZU2X2, for t > 0 
and arbitrary i ~ o. For such a string x' with i ~ 1 we have 

This string is not in L, a contradiction. The argument does not depend on 
the type of R. (Compare this with Lemma 7.8: L tJ. Sl(REG,RE), but 
{elL E Sl(REG, LIN).) 

According to Lemma 7.8, Sl(REG, LIN)-REG f:. 0 and Sl(REG, CF)
LIN f:. 0. From Lemma 7.9 we have Sl(REG, CS) -CS f:. 0. (Consequently, 
Sl(REG,CF) is incomparable with LIN and Sl(REG,CS),Sl(REG,RE) 
are incomparable with LIN, CF, CS.) 

All the assertions represented in the table are proved. 0 

Some remarks about the results in Table 7.1 are worth mentioning: 

- All families Sl (F L10 F L2 ) characterize families in the Chomsky 
hierarchy, with the exceptions of Sl (REG, F L 2), with F L2 E 
{LIN,CF,CS,RE}, and Sl(LIN,FL2) with FL2 E {FIN, REG}, 
which are strictly intermediate between families in the Chomsky hier
archy. These six intermediate families need further investigation of their 
properties (for instance, closure under operations and decidability). 

- A series of new characterizations of the family RE are obtained, start
ing, somewhat surprisingly, from "simple" pairs (F L10 F L 2 ); especially 
interesting is the case (LIN, LIN), in view of the fact that it seems 
that the actual language of DNA sequences is not regular, or even 
context-free [23), [204]. Then, according to the previous results, it can 
be nothing else but recursively enumerable, of the highest complexity 
(in the Chomsky hierarchy). 

We close this section by examining a possible hierarchy between LIN and 
CF, defined by subfamilies of Sl(LIN,FIN). 

For an H scheme 0" = (V, R) with a finite R, we define the radius of 0" as 
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Then, for p ~ 1, we denote by Sl(FL, [P]) the family of languages O'l(L), for 
L E F L and a an H scheme of radius less than or equal to p. 

Note that in the proof of Lemma 7.2 (and 7.4,7.5), as well as in the proof 
of the inclusion RE ~ Sl(CS,FIN) in Theorem 7.1, the schemes used are 
ofradius 1. Hence for FL E {FIN,REG,CF,CS,RE} we have 

that is, these hierarchies collapse. The same is true for F L = LIN. This 
follows from the next lemma. 

Lemma 7.10. If FL is a family of languages closed under A-free gsm map
pings, then Sl(FL, FIN) ~ Sl(FL, [1]). 

Proof. Take an H scheme a = (V, R) with finite R. Assume that the 
rules in R are labeled in a one-to-one manner, R = {rt, ... , r s}, r i = 
Ui,l #Ui,2$Ui,3#Ui,4, 1 ~ i ~ s. It is easy to construct a gsm g associated with 
R which transforms each string w = Xl Ui,l Ui,2X2 in g( w) = Xl Ui,l CiUi,2X2 and 
each string w = YIUi,3Ui,4Y2 in g(w) = YlUi,3c;Ui,4Y2, for Xt,X2,Yl,Y2 E V* 
and ri as above, where Ci, c~ are new symbols, associated with rio Consider 
now the H scheme a' = (V U {Ci, c~ I 1 ~ i ~ s}, { #Ci $c; # I 1 ~ i ~ s}). We 
have g( L) E F L for each language L ~ V*, L E F L, and we obviously obtain 
O'1(L) = a;' (g(L)). As rad(O") = 1, the proof is complete. D 

Theorem 7.2. LIN C S1(LIN, [P]) = S1(LIN,FIN),p ~ 1. 

Proof. The inclusions Sl(LIN, [P]) ~ Sl(LIN, [p+ 1]) ~ S1(LIN, FIN), 
p ~ 1, follow by the definitions. From Lemma 7.10 we also get S1(LIN, 
FIN) ~ S(LIN, [1]). The relation LIN c Sl(LIN,FIN) is known from 
Theorem 7.1. D 

7.3 Iterated Splicing as an Operation with 
Languages 

When some restriction enzymes and a ligase are present in a test tube, they 
do not stop acting after one cut and paste operation, but they act iteratively. 

For an H scheme a = (V, R) and a language L ~ V* we define 

and 

O'r(L) = U O'1{L). 
i>O 
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Consequently, ai(L) is the closure of L under the splicing with respect 
to a, i.e., the smallest language L' which contains L, and is closed under the 
splicing with respect to a, that is to say, al(L') ~ L'. 

Note that ai{L) is not equal to al(L), but to L U al(L). 
For two families of languages, F Ll , F L2 , we define 

Thus, the families HI (F L l , F L2) correspond to families 8 1 (F LI, F L 2) in 
the previous section. In the same way as in the case of the uniterated splicing, 
we can consider the hierarchies on the radius of finite H schemes, that is the 
families HI (FL, [PD, of languages ai(L) for L E FL and a an H scheme of 
radius less than or equal to p. 

Lemma 7.11. (i) For all families FLI,FLi,FL2,FL~, if FLI ~ FLi and 
FL2 ~ FL~, then H l (FLl ,FL2) ~ Hl(FLi,FL~). 

(ii) HI (FL, [PD ~ HI (FL, [qD, for all FL and p::; q. 

Proof. Obvious from the definitions. D 

Lemma 7.12. FL ~ HI (FL, [lD, for all families FL. 

Proof. Given L ~ V*, L E F L, consider a symbol e fj. V and the H scheme 

a = (V U {e}, {#e$e#}). 

We clearly have ai{L) = L for all i ~ 0, hence ai(L) = a~(L) = L. D 

Lemma 7.13. If FLl , FL2, FL3 are families of languages such that both 
F Ll and F L2 are closed under shuffie with symbols and both F L2 and F L3 
are closed under intersection with regular languages, then H l (FLl ,FL2) ~ 
FL3 implies 8 1(FLI,FL2) ~ FL3. 

Proof. Take a language L ~ V*, L E FLl , and an H scheme a = (V, R) 
with REF L2 . For c fj. V, consider the language 

L' = L ill {c} 

and the H scheme a' = (V U {e}, R') with 

R' = (R ill {eel) n V*#eV*$V*e#V*. 

From the properties of F LI, F L2 we have L' E F LI, R' E F L 2. Moreover, 

Indeed, ai i(L') = ai (L') U L' for all i ~ 1 (any splicing removes the symbol e 
from the strings of L', hence no further splicing is possible having as one of its 
terms the obtained string). Therefore, if ai*(L') E FL3, then al(L) E FL3, 
~. D 
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Corollary 7.1. In the conditions of Lemma 7.13, each language L E 
SI(FL1 , FL2) can be written as L = L' n V*, for L' E HI (FLI, FL2). 

We are now going to present two basic results in this area, of crucial 
importance for DNA computing based on splicing. 

Lemma 7.14. (The Regularity Preserving Lemma) H1(REG,FIN) ~ 
REG. 

Proof. Let L ~ V* be a regular language recognized by a finite au
tomaton M = (K, V, so, F, 8). Consider also an H scheme (Y = (V, R) 
with a finite set R ~ V*#V*$V*#V*. Assume that R = {rl, ... ,rn} 
with ri = Ui,1 #Ui,2$Ui,3#Ui,4, 1 ::; i ::; n, n 2: 1. Moreover, assume that 
Ui,1 Ui,4 = ai,lai,2 ... ai,ti' for ai,j E V,1 ::; j ::; ti, ti 2: 0, 1 ::; i ::; n. For each 
i, 1 ::; i ::; n, consider the new states qi,l, qi,2, ... , qi,tp qi,ti +1. Denote their 
set by K' and consider the finite automaton 

where 

M o = (K UK', V, so, F, 80), 

80(s,a) = 8(s,a), for s E K,a E V, 

80(qi,j,ai,j) = {qi,j+1}, 1::; j::; ti, 1::; i::; n. 

We construct a sequence of finite automata (with>' transitions) Mk = 
(K UK', V, so, F, 8k ), k 2: 1, starting from Mo, by passing from Mk to 
Mk+1, k 2: 0, in the following way. 

Consider each splicing rule ri = Ui,1 #Ui,2$Ui,3#Ui,4, 1 ::; i ::; n. 

If s is a state in K U K' such that 

2. there is SI E K U K' and Xl, X2 E V* such that 

s E 8k(so,Xl), 

SI E 8k (s, Ui,IUi,2), 

8k (SI, X2) n F =J 0, 

We say that this is an initial transition of level k + 1. 

Moreover, if s' is a state in K U K' such that: 
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2. there is S1 E K U K' and Y1, Y2 E V* such that 

S1 E bk(SO, Y1), 

s' E bk(S1, Ui,3Ui,4), 

bk(S',Y2) n F =1= 0, 

(therefore, YIUi,3Ui,4Y2 E L(Mk)), then we put 

bk+1(qi,ti+1,>') = is'}. 

We say that this is a final transition of level k + 1. 

7. Splicing Systems 

Then, bk+1 is the extension of bk with the initial and final transitions of 
level k+ 1, with respect to all splicing rules in R and all states s, s' in KUK'. 

As the set of states is fixed, the above procedure stops after at most 
2·n·card(KUK') steps, that is, there is an integer m such that Mm+1 = Mm. 

We shall prove that L(Mm) = ai(L). 
Since ai (L) is the smallest language containing L and closed under the 

I-splicing with respect to a, it is enough to prove that 

ii) L(Mm) is closed under the I-splicing with respect to a, 

Point i) is obvious from the construction of the automaton Mm. 
In order to prove point ii), let us consider a splicing rule ri = 

Ui,l #Ui,2$Ui,3#Ui,4 in R and two strings x, Y E L(Mm) such that x = 
XIUi,lUi,2X2,y = YIUi,3Ui,4Y2. There are two states S1,S2 E K u K' such 
that 

S1 E bm(SO,Xl), bm(S1,Ui,1Ui,2X2) n F =1= 0, 
S2 E bm(so, Y1Ui,3Ui,4), bm(S2' Y2) n F =1= 0. 

From the construction of Mm we have 

This implies that X1Ui,1Ui,4Y2 E L(Mm). The situation is illustrated in Fig. 
7.3. Consequently, al(L(Mm)) ~ L(Mm). 

In order to prove that each string recognized by Mm can be produced by 
iterated splicing with respect to a starting from strings in L, we proceed by 
induction on the level transition complexity (abbreviated by Ltc) of accepting 
paths (sequences of states) in Mm. 

For a sequence n of states So, Sl, .. . , sp in K U K' such that sp E F, 
Sj+1 E bm(sj,O'-j), for O'.j E V u {>'}, 0 ::; j ::; p - 1, we denote by ltc(n) 
the vector (C1, ••• , cm ) E Nm, where Ck is the number of initial or final 
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transitions of level k in 7r, that is the number of subscripts l such that 3l+1 E 
Ok(3l, A). We order the vectors in Nm in the right-to-left lexicographic mode: 
(Cl, ... , cm) < (d l , ... , dm ) if there is ],1 :=:; ] :=:; m, such that Ci = di for 
i > ] and Cj < d j . Since this relation is a total order, we can use it as a basis 
for the induction arguments. 

Ui,lUi,4 8 1-----------_. qi,ti+l 

Figure 7.3: Simulating a splicing in Mm 

For an accepting path 7r as above, we denote by yield( 7r) the recognized 
string aOal ... ap-l. 

If 7r is an accepting path such that ltc(7r) = (0,0, ... ,0), then clearly 
yield(7r) E L, so yield(7r) E ai(L). 

Consider now that for some (Cl, ... , cm) E Nm, (Cl, ... , cm) > (0,0, ... , 
0), all accepting paths 7r such that ltc(7r) < (Cl, ... ,Cm ) have yield(7r) E 

ai(L). Consider an accepting path 7r in Mm such that ltc(7r) = (Cl' ... , cm). 
(If no such a path exists, then the inductive step is fulfilled by default.) The 
path 7r should be of the form 

7r = 30,31, ... , 3 p , 3 p E F. 

Since we start from 30 E K, we end with 3 p E F ~ K, and since ltc( 7r) > 
(0, ... ,0), there are level transitions in the path; as from K to K' we can 
only go by initial level transitions and from K' to K we can only go by final 
level transitions, there are 3jl' 312 ,1 :=:; ]1 < ]2 < p, such that 3jl = qi,l, 312 = 
qi,ti+1, and all 3j with]l :=:;] :=:;]2 are elements of K' (the parsing of Ui,lUi,4 

is uniquely determined: after reaching qi,l, if the next level transition is 
a final one, we have to reach qi,ti+1). Therefore, there is a splicing rule 
r = Ui,l #Ui,2$Ui,3#Ui,4 corresponding to which the above mentioned pair of 
level transitions have been introduced. 

Assume that the transition corresponding to 3jl is of level k and the 
transition corresponding to 3h is of level k'. Therefore, there is an accepting 
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path 7fl = So, ... ,Sjl-l, SJ1' ... ,s~, in M k - l such that s~, E F and 

yield(so, . .. ,Sjl-t} = XI, 

yield(sil-l, SJ1'··.' s~,) = Ui,lUi,2 X2, 

for some Xl, X2 E V* . Similarly, there is an accepting path 7f2 

so,s~, ... ,sJ~,Si2+I, ... ,sp in Mk'-l such that 

yield( So, s~, ... , sJ~) = Yl Ui,3Ui,4, 

yield(si2+l, ... , sp) = Y2, 

for some Yl, Y2 E V*. The situation is illustrated in Fig. 7.4. Consequently, 

(yield(7ft} , yield( 7f2)) f-r yield( 7f). 

Y2 

Figure 7.4: Finding a splicing in Mm 

Examine now the level transition complexity of 71"1; the case of 71"2 is sim
ilar. The parsing of Ui,l Ui,2X2 (passing from Sjl-l to s~, E F) is done in 
Mk-l, hence all the transitions here are of a level smaller than k. All the 
level transitions in the passing from So to Sil-l are common to 7f and 7fl. 

Thus, for ltc(7ft} = (db ... , dm ) we have dj ~ Cj for all j ;::: k. Moreover, the 
path 7f contains at least one transition of level k which is not in 7fI, that from 
Sil-l to Sjl. This means that dk < Ck; therefore, (db ... , dm) < (Cl, ... , cm), 
which concludes the inductive argument, hence the proof. 0 
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A stronger result has been presented in (176); a detailed proof of it can 
also be found in (90). 

Lemma 7.15. If FL is a full AFL, then HI (FL, FIN) ~ FL. 

In fact, the proof in (90) gives a stronger result, because the assertion in 
Lemma 7.15 is shown to hold for any family F L of languages which contains 
the regular languages, is closed under right and left quotients by regular 
languages, and under substitution into regular languages. (If s : V* ---+ 2u' 
is a substitution such that s(a) E FL for each a E V, and L ~ V* is a regular 
language, then s(L) E FL; each full AFL has this property, see Theorem 11.5 
in (93).) 

Lemma 7.16. (The Basic Universality Lemma) Every language L E 

RE, L ~ T*, can be written in the form L = L' n T* for some L' E 

HI (FIN, REG). 

Proof. Consider a type-O grammar G = (N, T, S, P), denote U = NUT U 
{B}, where B is a new symbol, and construct the H scheme 

a=(V,R), 

where 
V = NUTU {X,X',B, Y,Z} U {Ya I a E U}, 

and R contains the following groups of rules: 

Simulate: 1. Xw#uY$Z#vY, for u ---* v E P, w E U*, 
Rotate: 2. Xw#aY$Z#Ya, for a E U, w E U*, 

3. X'a#Z$X#wYa, for a E U, w E U*, 
4. X'w#Ya$Z#Y, for a E U, w E U*, 
5. X#Z$X'#wY, for w E U*, 

Terminate: 6. #ZY$XB#wY, for w E T*, 
7. #Y$XZ#. 

Consider also the language 

La = {X BSY, ZY, X Z} 

U {ZvY I u ---* v E P} 
U {ZYa, X'aZ I a E U}. 

We obtain L = ai(Lo) n T*. 
Indeed, let us examine the work of a, namely the possibilities to obtain a 

string in T*. 
No string in La is in T*. All rules in R involve a string containing the 

symbol Z, but this symbol will not appear in the string produced by splicing. 
Therefore, at each step we have to use a string in La and, excepting the case 
of using the string X BSY in La, a string produced at a previous step. 



236 7. Splicing Systems 

The symbol B is a marker for the beginning of the sentential forms of G 
simulated by (j. 

By rules in group 1 we can simulate the rules in P. Rules in groups 2 - 5 
move symbols from the right hand end of the current string to the left hand 
end, thus making possible the simulation of rules in P at the right hand end 
of the string produced by (j. However, because B is always present and marks 
the place where the string of G begins, we know in each moment which is 
that string. Namely, if the current string in (j is of the form {3I WI BW2{32, for 
some {31, {32 markers of types X, X', Y, Ya with a E U, and WI, W2 E (NUT)*, 
then W2WI is a sentential form of G. 

We start from XBSY, hence from the axiom of G, marked to the left 
hand with B and bracketed by X, Y. 

Let us see how the rules 2-5 work. Take a string X waY, for some a E U, 
w E U*. By a rule of type 2 we get 

(XwlaY,ZIYa ) f- XwYa . 

The symbol Ya memorizes the fact that a has been erased from the right 
hand end of wa. No rule in R can be applied to XwYa , excepting the rules 
of type 3: 

(X'aIZ,XlwYa ) f- X'awYa . 

Note that the same symbol a removed at the previous step is now added in 
the front of w. Again we have only one way to continue, namely by using a 
rule of type 4. We get 

(X'awIYa , ZIY) f- X'awY. 

If we use now a rule of type 7, removing Y, then X' (and B) can never be 
removed, the string cannot be turned to a terminal one. We have to use a 
rule of type 5: 

(XIZ,X'lawY) f- XawY. 

We have started from XwaY and have obtained XawY, a string with the 
same end markers. We can iterate these steps as long as we want, so any 
circular permutation of the string between X and Y can be produced. More
over, what we obtain are exactly the circular permutations and nothing more 
(for instance, at every step we still have one and only one occurrence of B). 

To every string X w Y we can also apply a rule of type 1, providing wends 
with the left hand member of a rule in P. Any rule of P can be simulated in 
this way, at any place we want in the corresponding sentential form of G, by 
preparing the string as above, using rules in groups 2-5. 

Consequently, for every sentential form w of G there is a string X Bw Y, 
produced by (j, and, conversely, if XWIBw2Y is produced by (j, then W2Wl 
is a sentential form of G. 

The only way to remove the symbols not in T from the strings produced 
by (j is by using rules in groups 6, 7. More precisely, the symbols X B can 
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only be removed in the following conditions: (1) Y is present (hence the work 
is blocked if we use first rule 7, removing Y: the string cannot participate to 
any further splicing, and it is not terminal), (2) the current string bracketed 
by X, Y consists of terminal symbols only, and (3) the symbol B is in the left 
hand position. After removing X and B we can remove Y, too, and what we 
obtain is a string in T*. From the previous discussion, it is clear that such 
a string is in L(G), hence ui(Lo) n T* ~ L(G). Conversely, each string in 
L(G) can be produced in this way, hence L(G) ~ ui(Lo) n T*. We have the 
equality L( G) = ui (Lo) n T*, which completes the proof. D 

Many variants of the rotate-and-simulate procedure used in the previous 
proof will be presented in the following chapters. 

The families HI (F LI, F L 2 ) have serious limitations. 

Lemma 7.17. Let F L be a family of languages closed under intersection with 
regular languages and restricted morphisms. For every L ~ V*, L rj. FL, and 
c,d rj. V, we have L' rj. H 1(FL,RE), for 

L' = (dc)* L(dc)* U c(dc)* L(dc)*d. 

Proof. For L, c, d as above, denote 

Ll = (dc)*L(dc)*, 

L2 = c(dc)* L(dc)*d. 

As L = Ll n V* = L' n V* and L = h(L2 n cV*d), where h is the 
morphism defined by h(a) = a, a E V, and h(c) = h(d) = A, it follows that 
Ll rj. FL,L2 rj. FL, and L' = Ll U L2 rj. FL. 

Assume that L' = ui(Lo), for some Lo E FL,Lo ~ L', and u = (V,R) 
with arbitrary R. As L' rj. F L, it follows that Lo f- L' and we need effective 
splicing operations in order to produce L' from Lo. That is, splicings (x, y) f-r 
z with x f- z,y f- z are necessary, x,y E Lo. Write x = XIUIU2X2, Y = 
Yl U3U4Y2, for some xI, X2, yI, Y2 E (V U {c, d})*, and r = Ul #U2$U3#U4 E R. 

If x E LI, then x' = cxd E L 2, x' = CXl Ul U2x2d, hence we can perform 
(x',y) f-r z' = CXIUIU4Y2 = cz. If z E L', then cz rj. L', a contradiction. 

Therefore, x must be from L 2. Then x' = dxc E LI, x' = dXl Ul U2X2C, 
hence we can perform (x',y) f-r z' = dXIUIU4Y2 = dz. Again we obtain a 
string not in L'. Since no splicing is possible without producing strings not 
in L', we must have ui(Lo) = Lo, which contradicts the relation L' f- Lo. 

As the type of the set R plays no role in the previous argument, we have 
L' rj. HI (FL, RE). D 

Theorem 7.3. The relations in Table 7.2 hold, where at the intersection 
of the row marked with F Ll with the column marked with F L2 there ap
pear either the family H 1 (FLI,FL2), or two families FL3,FL4 such that 
F L3 C HI (F L 1 , F L 2) c F L4. These families F L3, F L4 are the best possible 
estimations among the six families considered here. 
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Table 7.2. The size offamilies H1(FL1 ,FL2) 

FIN REG LIN CF CS RE 
FIN FIN,REG FIN,RE FIN,RE FIN,RE FIN,RE FIN,RE 
REG REG REG,RE REG,RE REG,RE REG,RE REG,RE 
LIN LIN,CF LIN,RE LIN,RE LIN,RE LIN,RE LIN,RE 
CF CF CF,RE CF,RE CF,RE CF,RE CF,RE 
CS CS,RE CS,RE CS,RE CS,RE CS,RE CS,RE 
RE RE RE RE RE RE RE 

Proof. From Lemma 7.12 we have the inclusions F Ll ~ HI (F L1, F L2), 
for all values of FL1,FL2. On the other hand, H1(FL1 ,FL2) ~ RE for all 
F L 1 , F L2. With the exception of the families HI (RE, F L2), which are equal 
to RE, all inclusions H1(FL1 ,FL2) ~ RE are proper: from Lemma 7.17, we 
see that all the following differences are non-empty REG - H1(FIN,RE), 
LIN -HI (REG, RE), CF-H1 (LIN, RE), CS-H1(CF, RE), RE-H1(CS, 
RE). 

Lemma 7.14 and Lemma 7.12 together imply that HI (REG, FIN) = 
REG. Hence we have HI (FIN, FIN) ~ REG. This inclusion is strict by 
Lemma 7.17. 

From Lemma 7.13 (and the results in Sect. 7.2) we obtain the strictness 
of the inclusions LIN c H1(LIN,FIN), and CS c Hl(CS,FIN). The 
same result is obtained if FIN is replaced by any family F L2. 

Lemma 7.15, together with Lemma 7.12, implies HI (CF, FIN) = CF. 
We also have H1(LIN,FIN) ~ CF. The inclusion is proper by Lemma 
7.17. 

From Lemma 7.17 we see that RE is the best estimation for 
HI (FL1, FL2), FL2 =1= FIN (we have HI (FIN, REG) - FL =1= 0 for all fam
ilies FL C RE which are closed under intersection with regular languages). 

The only assertion which remains to be proved is the fact that 
HI (FIN, FIN) contains infinite languages. This is true even for H1(FIN, 
[1)): for a = ({a}, {a#$#a}) we have ai({a}) = a+. Thus, the proof is 
complete. 0 

Many of the relations in Table 7.2 are of interest: 

- The iterated splicing with respect to regular sets of rules leads from the 
regular languages (even from the finite ones) to non-regular (even non
recursive) languages (this is not true for the "weaker" case of uniterated 
splicing); therefore, the result in Lemma 7.14 cannot be improved, by 
replacing FIN with a family of languages which is larger than REG. 

- The iterated splicing with respect to (at least) regular sets of rules 
already leads from the finite languages to non-context-sensitive lan
guages. In fact, for all F L2 containing the regular languages, the inter
sections of the languages in HI (F L1 , F L2 ) with regular languages of the 
form V* characterize the family of recursively enumerable languages. 
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- However, all the families HI (F Ll, F L2), F LI =I- RE, have surprising 
limitations. When F L~ is the smallest family among those considered 
here which strictly includes F L I , there are languages in F L~ which are 
not in H I(FL I ,FL2), for all FL2, including FL2 = RE. 

In view of the equalities HI (FL, FIN) = FL, for FL E {REG, OF, RE}, 
the hierarchies on the radius of H schemes collapse in these cases. The prob
lem is still open for FL E {LIN, OS}, but for FIN we have 

Theorem 7.4. FIN c HI (FIN, [1]) c HI (FIN, [2]) c ... c HI (FIN, 
FIN) c REG. 

Proof. The inclusions follow from the definitions and from Lemmas 7.12 
and 7.14; the strictness of the first and last inclusions is already known. 

For k :::: 1, consider the language 

Lk = {a2kb2kanb2ka2k In:::: 2k + I}. 

It belongs to HI (FIN, [k + 1]), because Lk = (Ji(LU, for 

L~ = {a2kb2ka2k+2b2ka2k}, 

(J = ({a, b}, {ak+l#ak$ak+l#ak}). 

Indeed, the splicing rule can only be used with the sites UI U2 = a2k+l and 
U3U4 = a2k+l in the central substring, a2k+i , i :::: 1, of strings in Lk. Hence 
we can obtain strings with a2k+i+1 as a central substring, for all i :::: 0 by 
splicings of the forms 

(a2kb2kak+Ilak+lb2ka2k, a2kb2kaak+Ilakb2ka2k) 

f-- a2kb2kak+Iakb2ka2k, 

(a2k b2k aj ak+Ilak b2k a2k , a2k b2k ak+Ilak+lb2k a2k ) 

f-- a2kb2kajak+lak+Ib2ka2k, 

for j :::: 1. 
Assume that Lk = (J'~(L%), for some finite language L% and an H scheme 

(J' = (V, R) with rad(J') :::; k. Take a rule r = UI #U2$U3#U4 E R and two 
strings x, y E Lk to which this rule can be applied, x = a2kb2kanb2ka2k, n :::: 
2k+l, y = YIU3U4Y2. As IUIU21 :::; 2k, ifuIU2 E a*, then UIU2 is a substring of 
both the prefix a2k and of the suffix a2k , as well as of the central subword an of 
x. Similarly, if UI U2 E b*, then UI U2 is a substring of both substrings b2k of x. 
If UI U2 E a+ b+, then UI U2 is a substring of both the prefix a2k b2k and of the 
subword anb2k of x; if UI U2 E b+a+, then UI U2 is a substring of both the suffix 
b2ka2k and of the subword b2kan of x. In all cases, splicing x, Y according to 
the rule r we find at least one string which is not in L k , hence the equality 
Lk = (J~ * (L%) is not possible. Therefore, HI(F I N, [k+ 1])-HI (FIN, [k]) =I- 0, 
for all k :::: 1. D 
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Although the families H 1(FIN, [1)) and REG seem to be very different 
(situated at the ends of an infinite hierarchy), they are still equal modulo a 
coding. 

Theorem 7.5. Every regular language is a coding of a language in the family 
H 1 (FIN, [1)). 

Proof. Let L E REG be generated by a regular grammar G = (N, T, S, P); 
hence the rules in P have the forms X -+ aY, X -+ a, for X, YEN, a E T. 
Consider the alphabet 

v = {[X, a, Y]I X -+ aY E P, with X, YEN, a E T} 

U {[X,a,*] 1 X -+ a E P, with X E N,a E T}, 

the H scheme 

a = (V, {[X, a, Y]#$#[Y, b, Z]I [X, a, Y], [Y, b, Z] E V} 

U{[X, a, Y]#$#[Y, b, *]1 [X, a, Y], [Y, b, *] E V}), 

and the finite language 

Lo = {[S,a,*] 1 S -+ a E P,a E T} 

U {[Xl, al, X 2][X2, a2, X3] ... [Xk' ak, Xk+ 1][Xk+ 1 , ak+1, *]1 

k ~ 1, Xl = S, Xi -+ aiXi+1 E P, 1:S i :s k, 
Xk+l -+ ak+1 E P, and for no 1 ::; i1 < h < i3 ::; k we have 

[Xiu aiu Xi! +1] = [Xi2' ai2' X i2+1] = [Xi3' ai3' X i3+l]} 

(we can have at most pairs of equal symbols of V in a string of Lo, but not 
triples of equal symbols). Consider also the coding h : V ---+ T defined by 

h([X,a, Y)) = h([X,a, *)) = a, X, Y E N,a E T. 

We have the relation 

Indeed, each string in Lo corresponds to a derivation in G and if x, y are 
strings in ai(Lo) describing derivations in G, x = xI[X,a, Y][Y,a',Z']x2 and 
y = ydX',b', Y] [Y, b, Z]Y2' then Z = xI[X,a, Y][Y, b, Z]Y2 E al(x, y) and 
obviously z corresponds to a derivation in G, too. The coding h associates 
to such a string w describing a derivation in G the string h( w) generated by 
this derivation. Consequently, h(ai(Lo)) ~ L. 

Conversely, consider the strings in V* describing derivations in G. Such 
strings w of length less than or equal to two are in Lo hence in ai(Lo). 
Assume that all such strings of length less than or equal to some n ~ 2 are 
in ai(Lo) and consider a string w of the smallest length greater than n for 
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which a derivation in G can be found. As Iwl > n ;::-: 2, it follows that w tf. La, 
hence w contains a symbol [X, a, Yl in three different positions: 

Then 

w' = WI [X, a, YlwdX, a, Ylw4, 

w" = WI [X, a, Y]W3 [X, a, Ylw4 

describe correct derivations in G and Iw'l < Iwl, Iw"l < Iwl, hence w', w" E 
ai(Lo) by the induction hypothesis. From the form of w', w" and of the 
splicing rules of a we have wEal (w', w"), hence w E ai( La), too. 

For each derivation in G we find a string w E ai (La) such that h( w) 
is exactly the string generated by this derivation. In conclusion, we have 
L <;;: h(ai(Lo)). D 

7.4 Extended H Systems; Generative Power 

We now introduce the basic computability model that we shall investigate in 
this chapter and in the following ones. We consider here its general (unre
stricted) form. 

In the previous section we already have a generative mechanism based on 
the splicing operation: a pair (a, L), where a = (V, R) is an H scheme and 
L <;;: V* is a given language, identifies the language ai( L). We can write 
the pair (a,L) in a more explicit way, as a triple 'Y = (V,L,R), identifying 
the language Lb) = ai(L). Such a triple is called an H system. Note that 
we allow the components L, R to be infinite, which contrasts with the usual 
custom when defining a grammar: a finite mechanism generating a possibly 
infinite language. In this section we shall continue in this manner, on the one 
hand, for the sake of mathematical completeness, and on the other because of 
results like those in Lemmas 7.14, 7.15: using a finite set of splicing rules we 
cannot overpass the regularity barrier when starting from regular languages. 
We look for computationally complete mechanisms; a way towards this goal 
is suggested by Lemma 7.16: using regular sets of splicing rules. This lemma 
also suggests a generalization in the definition of H systems: to consider a 
terminal alphabet (as in Chomsky grammars and in extended Lindenmayer 
systems) and to accept only the strings over this alphabet which are produced 
by iterated splicing. We get in this way the concept of extended H systems, 
the fundamental notion investigated in this chapter. 

An extended H system is a quadruple 

'Y = (V, T, A, R), 

where V is an alphabet, T <;;: V, A <;;: V*, and R <;;: V*#V*$V*#V*, where 
#, $ are special symbols not in V. 
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We call V the alphabet of 'Y, T is the terminal alphabet, A is the set of 
axioms, and R the set of splicing rules. Therefore, we have an underlying H 
scheme, a = (V, R), augmented with a given subset of V and a set of axioms. 

When T = V we say that 'Y is a non-extended H system; below we shall 
only incidentally consider such systems. 

The language generated by 'Y is defined by 

L("() = a~(A) nT*, 

where a is the underlying H scheme of 'Y. 
For two families of languages, FL1,FL2 , we denote by EH1(FL 1,FL2 ) 

the family of languages L("() generated by extended H systems 'Y = 
(V, T, A, R), with A E F L 1 , REF L 2 . A number of the results in Sect. 
7.3 can be reformulated in terms of extended H systems. Moreover, we have 
the following inclusion. 

Lemma 7.18. REG ~ EH1(FIN, FIN). 

Proof. Take a language L E REG, L ~ T*, generated by a regular gram
mar G = (N, T, S, P). 

We construct the H system 

with 

Al = {S}, 

A2 = {ZaY I X ---. aY E P,X, Y E N,a E T}, 

A3 = {ZZa I X ---. a E P, X E N, a E T}, 

R1 = {#X$Z#aY I X ---. aY E P,X, Y E N,a E T}, 

R2 = {#X$ZZ#a I X ---. a E P,X E N,a E T}. 

If we splice a string ZxX, possibly from A2 (for x = c E T and U ---. 
cX E P) using a rule in R 1 , then we get a string of the form ZxaY. The 
symbol Z cannot be eliminated, hence no terminal string can be obtained if 
we continue to use the resulting string as the first term of a splicing. On the 
other hand, a string ZxX with Ixl 2: 2 cannot be used as the second term of 
a splicing. Consequently, the only way to obtain a terminal string is to start 
from S, to use splicings with respect to rules in R1 an arbitrary number of 
times, and to end with a rule in R2 . Always the first term of a splicing is 
that obtained by a previous splicing and the second one is from A2 or from 
A3 (at the last step). This corresponds to a derivation in G, hence we have 
L("()=L(G)=L. D 

Theorem 7.6. The relations in Table 7.3 hold, where at the intersection 
of the row marked with F Ll with the column marked with F L2 there ap
pear either the family E HI (F L1 , F L2 ), or two families F L3 , F L4 such that 
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F L3 C EHl (F L1, F L2) ~ F L4. These families F L3, F L4 are the best possi
ble estimations among the six families considered here. 

Table 7.3. The generative power of extended H systems 

FIN REG LIN CF CS RE 
FIN REG RE RE RE RE RE 
REG REG RE RE RE RE RE 
LIN LIN,CF RE RE RE RE RE 
CF CF RE RE RE RE RE 
CS RE RE RE RE RE RE 
RE RE RE RE RE RE RE 

Proof. Clearly, FL ~ EH1(FL,FIN) for all FL. From Lemma 7.18 
we also have REG ~ EH1(FIN,FL) for all FL. From Lemmas 7.14 and 
7.15 and the closure of REG, CF under intersection with regular languages 
we obtain EH1(REG,FIN) ~ REG, EH1(CF,FIN) ~ CF. If in the 
proof of the relation RE ~ Sl(CS,FIN) in Theorem 7.1 we take c1,c2,c3 
as nonterminal symbols and V as a terminal alphabet, then we obtain RE ~ 
EH1(CS,FIN). Thus, the first column of Table 7.3 is obtained. 

From the proof of Lemma 7.16 we obtain RE ~ EH1(FIN,REG). As 
EH1(FL1,FL2) ~ RE for all families FL1,FL2 (this can be directly proved 
in a straightforward way or we can invoke the Church-Turing Thesis), the 
proof is complete. D 

The only family which is not equal to a family in the Chomsky hierarchy 
is EH1(LIN,FIN). 

Two of the relations summarized in Table 7.3 are central for the DNA 
computability based on splicing: 

1. EH1(FIN,FIN) = REG, 

2. EH1(FIN,REG) = RE. 

When using a finite extended H system, that is a system with a finite set 
of axioms and a finite set of splicing rules, we only obtain a characterization 
of regular languages. The power of such devices stops at the level of finite 
automata (Chomsky regular grammars). Increasing the set of axioms does 
not help very much: we need a context-sensitive set of axioms in order to 
characterize RE using a finite set of splicing rules. However, making the 
smallest step (in our framework) in generalizing the set of splicing rules, that 
is considering a regular set of splicing rules, leads to the jump to the full 
power of Turing machines (Chomsky type-O grammars). An infinite set of 
splicing rules, even forming a regular language, is not of much practical in
terest, it is not realistic to deal with "infinite computers". Thus, we have to 
choose: either we are satisfied with "DNA computers" based on splicing able 
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to compute only at the level of finite automata, or we supplement the model 
with further features, in the hope of still working with finite sets of splicing 
rules but preserving the power of extended H systems with regular sets of 
rules. Moreover, as we have mentioned in Chap. 3, there is no finite automa
ton which is universal, in a natural way, for all finite automata, hence we 
cannot hope to devise universal- hence programmable - DNA computers as 
extended H systems with finite components (and no additional control on the 
splicing operation or another feature able to increase the power). The choice 
is somewhat forced: the only way to obtain Turing universal programmable 
DNA computers as extended H systems with finite components is to regulate 
the work of these systems, adding a supplementary control on the splicing 
operation. This will be the goal of the subsequent chapters. 

In Sect. 3.3 we have constructed a finite automaton Mu which is uni
versal for the class of finite automata with a bounded number of states and 
symbols. From the proof of Lemma 7.18, starting from Mu we can construct 
an extended H system ru which has similar universality properties. How
ever, in this way we obtain a splicing system producing strings of the form 
bls(code(M),x) (remember the notation from Sect. 3.3). It is possible to 
improve this result, in the sense that we can construct a "partially univer
sal" extended H system with finite components and producing exactly the 
strings x recognized by the automaton M, whose "program" is introduced 
in the axiom set of the universal system. To this aim we do not start from 
bls( code ( M), x) as in Sect. 3.3, but from a string containing one more copy of 
x. Using bls(code(M) , x) we check whether or not x E L(M) and only in the 
affirmative case do we remove all auxiliary symbols, producing the terminal 
string x. Here is such a universal H system associated with Mu: 

with 

W = VUKUKuU{Bo,B,E,Z,CllC2}, 

Au = {BqZ I q E Ku} U {ZZ}, 

Ru = {Bqo,u#Z$Bo#} 

U {Bq'#Z$Bqa# I qa ---* aq' E Pu, for q,q' E K u, 

a E V U K U {Cll C2}} 

U {#ZZ$BqE# I q E K}. 

If we add to Au the axiom 

Wo = Bo bls(code(M),x)Ex, 

then we get an extended H system r~ = (W, V, A~, Ru) such that L(r~) = 
L(M). Indeed, the only way to obtain a string in V*, that is without symbols 
in K U Ku U {Bo, B, E, Z, Cll C2}, is to simulate the rules in Pu on the prefix 
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Bo bls(code(M), x)E of the axiom wo, step by step, from the left (this is 
ensured by the fact that all splicing rules require the presence of Bo or of B), 
until reducing this string to BqE, for some q E K (in fact, by the mode of 
work of Mu we have q E Fu); then the block BqE can also be removed by 
the splicing rule #ZZ$BqE#. 

We formulate this important (for DNA computing) conclusion of the dis
cussion above in the form of a theorem. 

Theorem 7.7. There are extended H systems with finite sets of rules which 
are universal for the class of finite automata with a bounded number of states 
and a bounded number of input symbols. 

Note that M is "run" on the "computer" 'Yu via the "program" wo, which 
is a unique string (associated with both M and x, hence it contains both 
the "algorithm" and the "input data"). This "program" is not very simple 
(short), it even has a non-context-free character, because of the presence of 
copies of the code of M. However, the string Wo = Bo bls( code( M), x )Ex 
can be generated from simpler strings by splicing: construct the string z = 
code(M) , produce copies of it (by amplification), then produce arbitrarily 
many strings of the form XizX:, i 2 1 (in fact, we need exactly n + 2 of 
these copies, where n = Ixl). If x = a1a2 ... an, ai E V,l :s; i :s; n, consider 
also the strings YiaiY/, 1 :s; i :s; n. Finally, consider the strings BOZ1' Z2Ex. 
It is now a simple task to devise splicing rules which can build the string 
Wo = Bo bls(code(M), x)Ex starting from the blocks mentioned above; the 
symbols Xi,Xf,Y;, Y",;/,Z1, Z2 can control the operations in such a way that 
when none of them is present in a string, then that string is equal to wo0 We 
leave this task to the reader. 

Remark 7.1. In mathematical terms, REG in EH1(FIN, REG) = 
RE can be substituted with EH1(FIN,FIN) and we get EH1(FIN, 
EH1(FIN,FIN)) = RE. At first sight, we have an answer to the above 
mentioned problem of characterizing RE by using extended H systems with 
finite components. However, this equality makes no sense from a biochem
ical point of view: REG from EH1(FIN,REG) = RE refers to languages 
of splicing rules (associated with restriction enzymes), whereas REG from 
EH1(FIN,FIN) = REG refers to languages of DNA molecules. From a 
practical point of view, they are completely different objects. D 

Let us return to the equality RE = EH1(FIN,REG), and to the proof 
of the inclusion RE S;;; EH1(FIN, REG), as given by Lemma 7.16. The 
H system provided by the construction in the proof of this lemma is "I 
(V, T, Lo, R), with 

card(Lo) = card(P) + 2 . card(N U T) + 5 

(the notations are those from the proof of Lemma 7.16). A natural question 
arises: can we decrease the number of axioms? The answer is somewhat 
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unexpected: one axiom suffices. However, decreasing the number of axioms 
can increase their length. Let us prove this trade-off result in a more general 
framework. 

We define the following two complexity measures for an extended H sys
tem 'Y = (V, T, A, R) with a finite set A of axioms: 

nrax("() = card(A), 

lmax("() = max{lxll x E A} 

(the number of axioms, and the maximal length of an axiom, respectively). 
For such a measure J.L E {nrax, lmax} and a language L E EH1(FIN,REG), 
we define 

J.L(L) = min{J.L("() I L = L("()} 

and then we consider the families 

for k ~ 1. 
The following relations are direct consequences of the definitions. 

Lemma 7.19. For J.L E {nrax, lmax} we have J.L-l(l) ~ J.L-l(2) ~ ... ~ 
EHI (FIN, REG). 

Both these hierarchies collapse. (In terms of descriptional complexity, the 
measures nrax, lmax are trivial, in the sense defined in Chap. 3.) 

In fact, from the proof of Lemma 7.16, we can already obtain the inclusion 
EH1(FIN, REG) ~ lmax- 1 (4): if we start with a grammar G = (N, T, S, P) 
in Kuroda normal form, hence with rules of the forms u ---t v, lui::; 2, Ivl ::; 2, 
then the H system 'Y constructed in the mentioned proof has lmax("() = 4. 

A stronger result is true: 

Theorem 7.S. lmax-1(1) C lmax-1(2) = EH1(FIN, REG). 

Proof. Take an H system 'Y = (V, T, A, R) with a finite set A of ax
ioms, namely A = {Wl,W2, ... ,Wn }. Assume lmax("() = k, s = max{luvll 
u#v$u'#v' E R, or u'#v'$u#v E R}, and r = max(k, s). Consider the new 
symbols, Ci, c~, 1 ::; i ::; n, associated to the axioms of'Y and construct 

'Y' = (V U {Ci' c~ 11 ::; i ::; n} U {c, e}, T, A', R'), 

where 

A' {Cia 11::; i::; n,a E V} U {cc~, Cie, ec~ 11::; i::; n} 

U {A I if A E L(,,()}, 
n 

R' R"U U~, 
i=l 
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R" {U~Ul#U2U~$U~U3#U4U~ I Ul#U2$U3#U4 E R, 
" *V*" V* * I ' , I 2 I ' , I 2} ul,u3 E e ,u2,u4 E e, uIUIU2U2 = r, u3u3u4u4 = r , 

Ri {Cix#$ci#a I x E Pref(wi),a E V,xa E Pref(wi)} 

U {CiWi#$C#C~, #cc~$ceT"#, #eT"c~$c<#} 

U {cie#$ci#ejwic~, cieT"wiej#c~$#ec~ I 0 ~ j ~ r -I}, 1 ~ i ~ n. 

We have L(--y) = L(--y'). 
The inclusion ~ is rather obvious: Starting from Cia, a E V, we can add 

symbol by symbol, reconstructing Wi from the left to the right; when we 
obtain CiWi we can also introduce the symbol c~; in the presence of < we can 
add r occurrences of e in the left hand side of the string. After completing 
this operation, we can also add r occurrences of e in the right hand end of 
the string. Strings of the form cieT" weT" c~ can be spliced by using the rules 
of R", and this corresponds to using the rules from R. At any moment, the 
prefix cieT" and the suffix eT" < can be removed, hence every string of L( '"'() can 
be generated by '"'('. 

Conversely, no unintended string can be produced in '"'('. Indeed, all ax
ioms of '"'(' (except A, providing that the empty string is in L(--y)) contain 
non-terminal symbols. The non-terminals Ci, < can be removed only in the 
presence of r occurrences of e, and such occurrences are introduced only after 
completing the reconstruction of the axiom Wi of '"'(. No "incomplete" string 
CiX, CiX< with x E Pref( Wi), or Ciej x, Ciej xc~ with j < r, x E Pref( Wi), or 
j = r, x E Pre f ( Wi) - {wd, can be spliced by the rules of R", because the 
length of such a string is smaller than the length of the sites necessary for 
applying the rules from R" (note also that the rules of R" do not contain the 
symbols Ci, cD. If a string cieT" xc~ is spliced, then x should be an axiom of '"'( 
(of the length equal to k), hence the splicing corresponds to a splicing in '"'(. 

Consequently, the work of '"'(' consists precisely of producing the axioms 
of ,",(, bounded by cieT" to the left and possibly also by eT" c~ to the right, then 
applying the rules in R", which corresponds to applying the rules from R to 
the strings without the prefixes cieT" and the suffixes eT" <; at any moment, 
cieT" and eT"c: can be removed. This means that L(--y') ~ L(--y), hence we have 
the equality L(--y) = L(--y') and the inclusion EH1(FIN,REG) ~ lmax-1(2). 

This bound cannot be improved, the inclusion lmax-1(1) C lmax- 1(2) is 
proper: Take the language L = {aa} and assume that L = L( '"'(), for some 
'"'( = (V, {a}, A, R) with A ~ V. Since all axioms are of length 1, the symbol 
a must appear in at least one axiom, hence a E A. This means a E L(--y), 
contradicting the equality L = L(--y). 0 

Also the hierarchy on the number of axioms collapses (this time to one 
level only). 

Theorem 7.9. nrax-1(I) = EHl(FIN,REG). 

Proof. For a given system '"'( = (V,T,A,R) with A = {Wl,W2, ... , wn }, 
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n ;::: 2, construct 
'Y' = (V u {c, c'}, T, {w}, R'), 

where c, c' are new symbols, and 

w = C' CWI CW2 ••• cwncc', 

R' = R U {#c'c$c#c', #c$c'#, #c'$c#}. 

We have L("() = L(,,('). 
The inclusion ~ is easy to see: using the rule #c' c$c#d we can obtain 

(w,w) f- C'i using the rule #c$c'#, from each string of the form xc (and 
from w, too) we can remove the rightmost c (the suffix cc', respectively) by 
a splicing with C'i using the rule #c'$c#, from each string of the form XICX2 

we can separate the suffix X2. Therefore, all axioms of'Y can be separated 
from w. Using the rules of R we then get every string of L("(). 

Conversely, as long as occurrences of c, c' are present, the string is not 
terminal (this is the case with w). The use of rules in R' - R cannot mix 
symbols of V, but only cut down strings of the form c' CXl CX2C ... CXT (maybe 
also ending with C or with cc') near the symbols c. If we have two strings 
x, Y of the forms x = XICX2CX3, Y = YICY2CY3, with X2, Y2 E V*, and we use a 
splicing rule in Ron X2, Y2, then we obtain a string Z = XICZICY3 such that 
(X2' Y2) f- Zl for Zl E V*. We start from w containing exactly the axioms of 
'Y. If we use now rules in R' - R and we separate Zl from z, this is a string 
which can be also produced directly by 'Y. Therefore, mixing up the new rules 
of R' with the rules of R does not lead to unintended strings. This implies 
L("(') ~ L("(). D 

Corollary 7.2. nmx-1(1) = RE. 

In the proofs of the previous theorems, when decreasing the length of 
axioms it was necessary to increase the number of axioms, and conversely. 
As expected, in general the two measures cannot be simultaneously improved. 

For a measure J-l : G M -----+ N of complexity of generative mechanisms 
in a given class GM, denote J-lGM(L) = min{J-l(G) I L = L(G),G E GM}. 
Then, for a language L, define 

J-l-l(L) = {G E GM I L = L(G),J-l(G) = J-lGM(L)} 

(the set of optimal generative devices in GM producing L). Two measures 
J-ll, J-l2 are said to be incompatible (on G M) if there is a language L in the 
family generated by G M, such that 

(The two measures cannot be simultaneously minimized for the elements in 
GM generating the language L.) 

Theorem 7.10. The measures nmx, lmax are incompatible. 
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Proof. Consider any language L <;;; a+ Ub+ such that alph(L) = {a,b}. 
According to Theorem 7.9, nrax(L) = 1. Take'Y = (V,{a,b},A,R) such 
that L = Lb) and A = {w},w E V*. We must have Iwl 2: 3. Indeed, both 
symbols a and b must be present in w, otherwise they cannot appear in the 
strings of Lb). However, neither ab nor ba can be the axiom, at least one 
symbol in V - {a,b} appears in w, hence Iwl2: 3. 

On the other hand, from Theorem 7.8 we know that lmax(L) = 2. 
Consequently, for no language L, as above, can we find 'Y with both 

nraxb) = 1 and lmaxb) = 2. Languages L of the considered form appear in 
EH1(FIN, REG), hence the proof is complete. D 

7.5 Simple H Systems 

In the previous sections of this chapter we have looked for variants of gener
ative mechanisms based on the splicing operation which are as powerful as 
possible. Here we follow the opposite approach, considering a rather partic
ular type of splicing systems. As expected, in such a particular case many 
questions can be solved in a nice way, which makes these devices attractive 
from a mathematical point of view. 

A simple H system is a triple 

'Y = (V, A, Q), 

where V is an alphabet, A is a finite language over V, and Q <;;; V. The 
elements of A are called axioms, those of Q are called markers. 

For X,y,Z E V* and a E Q we write 

(x, y) f-a Z iff x = XlaX2, Y = YlaY2, Z = XlaY2, 

for some Xl,X2,Yl,Y2 E V*. 

Consequently, for each marker a E Q we can imagine that we have the 
splicing rule r a = a#$a# (or r~ = #a$#a). Denote 

RQ = {ra I a E Q} 

and consider the H scheme aQ = (V, RQ). Then the language generated by 
'Y, denoted by Lb), is defined as being equal to aQ(A). (In this section we 
omit the subscript 1 in al(L),ai(L), avoiding heavy notations of the type 
(aQ)i(L).) 

Here is an example: consider the simple H system 

'Y = ({a, b, c}, {abaca, acaba}, {b, c}). 

We obtain 

L('Y) = (abac) + aU (abac)*aba U (acab)+ aU (acab)*aca. 
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((abac)na,acaba) f-c (abac)n- 1abacaba = (abac)naba, 

((abac)naba, abaca) h (abac)nabaca = (abac)n+1a, 

and similarly for strings (acab)na, (acab)naca, hence we have the inclusion ;2. 
Conversely, when splicing two strings of one of the forms (abac)na, (acab)na 
(initially we have n = 1) or (abac)naba, (acab)naca, we identify either a 
substring aba or a substring aca of them, hence the obtained strings are of 
the same form. 

Let us denote by S H the family of languages generated by simple H 
systems. 

The following necessary conditions for a language to be in the family S H 
can be easily proved. 

Lemma 7.20. (i) If L E SH is an infinite language, then there is Q <:;;; 

alph(L), Q i- 0, such that aQ(L) <:;;; L. 
(ii) If L E SH, L <:;;; V*, and a+ <:;;; L for some a E V, then a{a}(L) <:;;; L. 
(iii) Take w E V+. We have w* E SH if and only if there is a symbol 

a E V such that Iwla = l. 
Using these conditions we can show that the following languages are not 

in the family SH: 

L1 = a+b+a+b+, 

L2 = a+bUb+, 

L3 = (aabb)+, 

and that a language L <:;;; a* is in the family SH if and only if it is either 
finite or equal to one of a * , a +. Moreover, we get 

Corollary 7.3. The family SH is an anti-AFL. 

Because each simple H system is a (non-extended) finite H system of a 
particular type, from Lemma 7.14 we obtain SH <:;;; REG. We shall see 
below that this result can be obtained in a much easier way as a consequence 
of a representation theorem for languages in SH. In view of the previous 
counterexamples, the inclusion SH c REG is proper. However, SH and 
REG are "equal modulo a coding": 

Lemma 7.21. Every regular language is the projection of a language in the 
family SH. 

Proof. Let M = (K, V, so, F, J) be a deterministic finite automaton. We 
construct the simple H system I = (K U V, A, K), with 

A = {sOa1s1a2s2 ... Srar+1Sr+1 I r 2: 0, Si E K,O ::::: i ::::: r + 1, 

Sr+1 E F, Si+1 = J(Si' ai+t}, 0::::: i ::::: r, 

each state Si, 0 ::::: i ::::: r + 1, appears at most twice}. 
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Clearly, A is a finite set. Consider also the projection h defined by h(a) = a, 
for a E V, and h(s) = >., for s E K. 

The inclusion h(L(-y)) ~ L(M) follows from the construction of'Y and the 
definition of h. The reverse inclusion can be easily proved by induction on 
the length of strings in L(M). 0 

Lemma 7.22. For every language L E SH there are five finite languages 
L 1, L 2, L3, L4, L5 and a projection h such that L = h(L1DiL3 n L4) u L5. 

Proof. Let 'Y = (V, A, Q) be a simple H system. For each a E V consider 
a new symbol, a'; denote V' = {a' I a E V}. 

Define 

L1 = {xa I xay E A,x,y E V*,a E Q}, 
L2 = {a'xb I yaxbz E A,x,y,z E V*,a,b E Q}, 

L3 = {a'x I yax E A,x,y E V*,a E Q}, 
L4 = VU{aa' I a E V}, 

L5 = {x E A Ilxl a = 0 for all a E Q}, 

h: (V U V')* ~ V*, h(a) = a, a E V, and h(a') = >., a E V. 

Then we claim that 

Let us denote by B the right hand member of this equality. 

(1) L(-y) ~ B. Clearly, from the definitions, it is enough to prove that 
(i) B includes the set A, and (ii) O'Q(B) ~ B. 

(i) If x E A and Ixl a = 0 for all a E Q, then x E L5 ~ B. If x E A and 
x = X1aX2, a E Q, then X1a E L1, a'x2 E L3, hence x1aa'x2 E L 1L3. 
Clearly, x1aa'x2 E L4, too. As h(x1aa'x2) = X1aX2 = x, we have 
x E B. Consequently, A ~ B. 

(ii) Take two strings x, y E B. If one of them is in L5, then O'Q(x, y) = 
{x,y} ~ B. 

Take x',y' E L1L2L3 n L4 such that x = h(x'),y = h(y'), and take 
z E O'Q(x, y), (x, y) r-a z for some a E Q. Write 

and 

x' = x1a1a~x2 ... xkaka~xk+1' k:::: 1, 

y' = Y1b1b~Y2 ... ysbsb~ys+1, s:::: 1, 
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for ai, bi E Q, Xi, Yi E V*, a~_l Xiai, b~_lYibi E L 2, for all i and Xlal, 
y1b1 E L 1 , a~Xk+l' b~Ys+1 E L 2. Then 

Identify the marker a in x, respectively in y, as used in (x, y) f-a z. 

If a = ai, then Zl = Xlal ... Xi-lai-lXi, z~ = Xi+lai+l ... akXk+l. 

If ai -I=- a for all 1 ::; i ::; k, then there is Xi = x~ax~'. For i = 1 
we have x~a E Ll and a'x7al E L2. For 1 < i < k + 1 we have 
a~_l x~a E L 2, a' x~' ai+l E L 2. For i = k + 1 we have a~x~+l a E L2 
and a' x%+ 1 E L3. In all cases we can find a string of the form x" = 
wlaa'w2 E LIL2L3 n L4 such that x = h(x"). 

Similarly, we can find y" = w~ aa'w~ E LIL;'L3nL4 such that y = h(y"). 
For the string z' = wlaa'w~ we clearly have z' E LIL;'L3 n L4 and 
Z = h(z'). Consequently, Z E B, which completes the proof of the 
property (ii), hence of the inclusion L(-y) ~ B. 

(2) B ~ L(-y). Take x E B. If x E L 5 , then x E A ~ L(-y). 
If x = h(x'),x' = xlala~x2a2a~ ... x~aka~Xk+l,k 2: 1, with Xlal ELI, 

a~_l Xiai E L 2, 2::; i ::; k, a~xk+l E L3, then from the definitions of L 1 , L 2, L3 
there are the strings xlalx~, Yiai-lxiaiY~' 2::; i ::; k, Zk+lakxk+1, all of them 
in A. Then 

(xlalx~, Y2alx2a2Y~) f-al xlalx2a2Y~ = W2, 

(w2'Y3a2x3a3Y~) f-a2 xlalx2a2x3a3Y~ = W3, 

Consequently, x E L(-y). o 

This representation is not a characterization of languages in SH. In fact, 
a similar result holds true for all regular languages: just combine Lemmas 
7.21 and 7.22. However, this representation has a series of interesting con
sequences, one of them referring exactly to the regularity of simple splicing 
languages. 

Corollary 7.4. SH ~ REG. 

Moreover, from Lemma 7.22, we also obtain the following useful necessary 
condition for a language to be in S H. 

Corollary 7.5. If"Y = (V, A, Q) is a simple H system, then for every x E 

Sub(L(-y)) n (V - Q)* we have Ixl ::; max{lwll w E A}. 

Making use of this property, we get 

Theorem 7.11. It is decidable whether or not a regular language is a simple 
H language. 
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Proof. Let L ~ V* be a regular language, given, for instance, by a regular 
grammar or a finite automaton. For any subset Q of V, denote 

RQ = (V - Q)* 

U {xlalx2a2 ... xkakxk+l 11::::; k::::; 2· card(Q), 

Xi E (V - Q)*, 1 ::::; i ::::; k, ai E Q, 1 ::::; i ::::; k, and 

there are no 1 ::::; i < j < I ::::; k + 1 such that ai = aj = az}. 

(Therefore, RQ contains all strings x over V such that each symbol of Q 
appears at most twice in x.) 

(1) If L n RQ is an infinite set, then there is no H system G = (V, A, Q) 
such that L = L( G). 

Indeed, L n RQ being infinite means that there is x E Sub(L) n (V - Q)* 
of arbitrary length, contradicting the previous corollary. 

(2) If L n RQ is a finite set, then we consider all H systems "( = (V, A, Q) 
with A ~ L n RQ. Then there is an H system "(' = (V, A' , Q) such that 
L = L( "(') if and only if L = L( "() for a system "( constructed above. 

( if) : trivial. 
(only if): Take "(' = (V,A',Q) such that L("(') = L and A' is not a 

subset of L n RQ. This means that A' contains a string of the form 

for Xl, X2, X3, X4 E V*, a E Q. Consider the strings 

Both of them are in (j Q ( {z } ), hence in L("('). Moreover, (Zl' Z2) f-a z. There
fore, replacing A' by 

we get a system "(" = (V, A", Q) such that L("(') = L("("). Continuing 
this procedure (for a finite number of times, because A' is finite and IZII < 
Izl,lz21 < Izl) we eventually find a system "(III = (V,AIII,Q) with Alii ~ 
LnRQ. 

Now, L E SH if and only if L = L("() for some "( = (V, A, Q) with Q ~ V. 
There are only finitely many such sets Q. Proceed as above with each of 
them. We have L E SH if and only if there is such a set Qo for which 
L n RQo is finite and there is Ao ~ L n RQo (finitely many possibilities) such 
that L = L("(o) for "(0 = (V, Ao, Qo). The equality L = L("(o) can be checked 
algorithmically. In conclusion, the question whether or not L E SH can be 
decided algorithmically. 0 

This result cannot be extended to context-free (not even to linear) lan
guages. 
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Theorem 7.12. The problem of whether or not a linear language is a simple 
H language is not decidable. 

Proof. Take an arbitrary linear language L1 ~ {a, b} *, as well as the 
language L2 = c+d+c+d+, which is not in the family SH. Construct the 
language 

L = Ld c, d} * U {a, b} * L 2 . 

This is a linear language. 
If L1 = {a, b} *, then L = {a, b} * { c, d} * and this is a simple H lan

guage: for "I = ({a,b,c,d},{xy I x E {a,b}*,y E {c,d}*,lxl E {0,2},lyl E 
{0,2}},{a,b,c,d}) we have Lb) = {a,b}*{c,d}*. 

If L1 #- {a, b}*, then {a, b}* -L1 #- 0. Take wE {a, b}* - L1 and consider 
the string w' = wcdcd. It is in L, and (w',w') re wcdcdcd for e E {c,d}. 
This string is not in L, therefore none of c, d can be a marker in a simple H 
system for the language L. But L contains all string in wc+ d+ c+ d+, hence 
L E SH would contradict point (i) in Lemma 6.20. 

Consequently, L E S H if and only if L1 = {a, b} *, which is undecidable 
for linear languages. 0 

Because SH c REG, it is of interest to investigate the relationships be
tween SH and other subfamilies of REG. We consider only one (important) 
such sub-regular family, that of strictly locally testable languages. 

A language L ~ V* is '{rstrictly locally testable, for some p 2:: 1, if we can 
write it in the form 

L = {x E L Ilxl < 2p} 

U (Pref(L) n VP)V*(Suf(L) n VP) - V*(VP - Sub(L))V*. 

A language is strictly locally testable if it is '{rstrictly locally testable for 
some p 2:: 1. We denote by SLT the family of such languages. 

Clearly, SLT c REG. In fact, SLT is contained in the family of extended 
star-free languages, the smallest family of languages containing the finite 
languages and closed under boolean operations and under concatenation. 

Theorem 7.13. SH c SLT. 

Proof. We shall use the characterization given in [45] for strictly locally 
testable languages. 

According to [203], a string x E V* is called constant with respect to a 
language L ~ V* if whenever uxv ELand u' xv' E L, then also uxv' E L 
and u' xv E L. In [45] it is proved that a language L ~ V* is strictly locally 
testable if and only if there is an integer k such that all strings in V k are 
constants with respect to L. 

Consider now a language L E SH, L = Lb), for some "I = (V, A, Q). 
Take the integer 

k = max{lxll x E A} + 1. 
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Every string in Vk is a constant with respect to L. Indeed, take such a string 
x and two strings uxv,u'xv' in L. Because Ixl = k, according to Corollary 
7.5, we have IxlQ > o. Take a E Q such that x = XlaX2. Therefore uxv = 
UXI aX2V, u' xv' = U' Xl aX2v', hence (uxv, u' xv') f-a UXI aX2v' = uxv' and 
(u'xv',uxv) f-a U'Xlax2v = u'xv. In conclusion, L E SLT and SH ~ SLT. 

The inclusion is proper: for w = aabb we have w* E SLT (obvious), but 
w* ~ SH (Lemma 7.20.(iii)). 0 

7.6 Bibliographical Notes 

The splicing operation was introduced by T. Head in [86] in the form con
sidered at the beginning of Sect. 7.1: one gives triples (u, x, v) describing 
the patterns recognized by the restriction enzymes and one builds splicing 
rules ((UI' x, VI), (U2' x, V2)) using triples which produce matching ends. The 
association of x to U I ,U2 (or to VI, V2) leading to contexts (u~, vt), (u~, V2) de
scribing the cutting places is introduced in [46]. The coding of splicing rules 
as strings, UI #U2$U3#U4, is introduced in [149], where splicing schemes with 
infinite sets of rules are also considered. 

Sect. 7.1 above is based on [86] and on the Introduction and the Appendix 
of [90]. Sect. 7.2 is based on [149], with some modifications as in [90]. 

One of the main problems raised in [86] concerns the power of H schemes 
with finite sets of rules, when these rules are iterated on finite sets of starting 
strings. The question is answered in [35], where it is proved that such an 
operation preserves regular languages. The proof uses complex arguments 
formulated in terms of the semigroup of dominoes. The proof presented here 
for the Regularity Preserving Lemma (Lemma 7.14) is based on [175]. The 
same idea is used in [177] for proving that the following generalization of the 
definition of the splicing operation preserves the regularity: consider splicing 
rules as triples r : (Vb V2 i V3) i if x = Xl VI X2 and Y = YI V2Y2, then the effect of 
applying the rule r to X,Y is the string XIV3Y2. This corresponds to writing 
a splicing rule UI#U2$U3#U4 as used here in the form (UIU2,U3U4iUIU4). 
In this way, the proof in [177] implies Lemma 7.14. But note that starting 
from a regular set of splicing rules written in the form UI #U2$U3#U4 and 
passing to the corresponding set ofrules of the form (UIU2,U3U4iUIU4) (with 
a suitable encoding of "," and "i") we do not necessarily obtain a regular 
language, because of the repetitions of UI and U4. However, if the number of 
strings UI, U4 is finite, then the regularity is preserved, even using an infinite 
regular language of splicing rules UI #U2$U3#U4. The general result in terms 
of AFL's (Lemma 7.15) has been reported in [176], it appears in [177] for the 
case of rules of the form (VbV2;V3), and, with full details, in [90]. A recent 
more general formulation appears in [178]. 

The Basic Universality Lemma is proved in [153], directly for extended 
H systems. Extended H systems were introduced in [167]. Morphic charac
terizations of regular languages (as Theorem 7.5) appear in [71], [73], [149]. 
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Lemma 7.18 appears in [167]. Theorem 7.8 - 7.10 are from [153]. Theorem 
7.7 is from [127]. 

Simple H systems are introduced and investigated in [130], where several 
results not mentioned in Sect. 7.5 can be found (about descriptional complex
ity, algebraic characterizations, comparison with other sub-regular families, 
etc). 

A generalization of SH systems is considered in [88], namely with string 
markers: a k-simple H system is a triple 'Y = (V, A, Q), where V is an al
phabet, A is a finite subset of V*, and Q is a finite set of strings over V, 
with the length less than or equal to k, k ;:::: 1. The strings in Q are used 
in the same way as the markers of a simple H system: (uxv,u'x'v') I-x uxv', 
x E Q. Denote by SkH the family of languages generated by k'-simple H 
systems, where k' ~ k. In [88] one proves that SH = SlH c S2H c ... C 
Uk>l Sk H = SLT. Moreover, it is decidable whether or not a regular lan
guage belongs to a family SkH, k ;:::: 1; in the affirmative case, the minimal 
value of k can be effectively found. 



Chapter 8 

Universality by Finite H 
Systems 

As we have seen in the previous chapter, extended H systems with finite sets 
of axioms and splicing rules are able to generate only regular languages. As 
we are looking for generative (computability) models having the power of 
Turing machines, we have to consider features that can increase the power 
of H systems. This has been successfully done for Chomsky grammars and 
other generative mechanisms in the regulated rewriting area and the grammar 
systems area. Following suggestions from these areas, as well as suggestions 
offered by the proof of the Basic Universality Lemma (Lemma 7.16), in this 
chapter we shall consider a series of controlled H systems with finite com
ponents which characterize the recursively enumerable languages, hence are 
computationally complete. From the proofs, we shall also obtain universal 
computing devices, hence models of "programmable DNA computers based 
on splicing" . 

8.1 Using 2-Splicing Instead of I-Splicing 

The extended H systems we shall consider in this chapter (with regulated 
splicing or involving other features able to ensure computational completeness 
even when using finite sets of axioms and of splicing rules) are intended to be 
theoretical models of DNA computers based on splicing. That is why from 
now on we shall work with the more realistic 2-splicing operation defined by 
taking into account both the two possible strings obtained by recombination: 

(X,Y)Pr(Z,w) iff X=XIUIU2X2, 

Y = YI U3U4Y2, 

Z = Xl UI U4Y2, 

© Springer-Verlag Berlin Heidelberg 1998
G. Păun et al., DNA Computing
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w = YlU3U2X2, 

for some Xl, X2, Yl, Y2 E V*, 

where r = Ul #U2$U3#U4 is a splicing rule. 
For an H scheme a = (V, R) and a language L ~ V* we define 

a2(L) = {z E V* I (x, y) ~r (z, w) or (x, y) ~r (w, z), 
for some X,Y ELand r E R}. 

Then we can define a~ (L), i ~ 0, and a2( L) in the same way as we 
have done at the beginning of Sect. 7.3 of the previous chapter with 
ai( L), i ~ 0, and ai( L), respectively. Thus, we can repeat all the consid
erations in Sects. 7.2-7.5 for the operation ~ instead of f---. We shall denote 
by S2(FLl,FL2),H2(FLl,FL2),EH2(FLl,FL2) the families of languages 
corresponding to Sl(FLl , F L2), HI (FLl' FL2) and EHI (FLl' FL2), respec
tively. 

We say that a family F L of languages is closed under marked circular 
permutation if for each language L ~ V* {c} V*, where c 1- V, L E F L, the 
language 

permc(L) = {vcu I ucv E L, u, v E V*} 

is also an element of FL. 

Lemma 8.1. For every family F Ll and for F L2 closed under union and un
der marked circular permutation, we have X 2(FLI,FL2) ~ Xl(FL l , FL2), 
X E {S,H,EH}. 

Proof. Consider an H scheme a = (V, R) with R E FL2 . For every 
language L E F Ll we have a2(L) = a~ (L), where a' = (V, R U perm$(R)). 
The equality is obvious and R U perm$(R) E FL2 by the closure properties 
of F L 2 . This proves all the inclusions in the statement of the lemma. 0 

Most of the results in Chap. 7 about families Xl (F L l , F L 2 ), X E 
{S,H,EH}, are true also for the families X 2(FLl ,FL2). This does not 
happen, however, with Lemmas 7.2, 7.4, 7.5, but, if the families F L l , F L2 
from the statement of these lemmas are also closed under intersection with 
regular languages, then these statements also hold for families X 2 ( ... , .. . ). 

The gsm's in the statements and the proofs of Lemmas 7.3 and 7.6 can sim
ulate such an intersection with a regular language, hence these lemmas also 
remain true for the case of the 2-splicing. We shall not pause to check each of 
the results in Chap. 7 from this point of view, because we are not interested 
in the mathematical properties of the operation ~ but in its computational 
properties. From this point of view, the following facts are important: 

1. Lemma 7.14 combined with Lemma 8.1 implies that H 2(REG, FIN) ~ 
REG. Similarly, from Lemma 7.15, we have H 2(CF, FIN) ~ CF. 
Moreover, Lemma 7.18 remains valid for the 2-splicing operation, 
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REG <;;;; EH2(FIN,FIN). This can be easily seen from the proof of 
Lemma 7.18, by examining the second string produced by the 2-splicing 
operations in the extended H system "(: all such strings contain nonter
minal symbols in N as well as occurrences of the symbol Z, and even 
by entering new splicings, these strings cannot produce terminal strings 
not in L. Consequently, EH2(FIN, FIN) = REG. 

2. Lemma 7.16 remains true when replacing HI by H 2, that is every lan
guage L E RE, L <;;;; V*, can be written in the form L = L' n V* for 
some L' E H2 (FIN, REG). This can be checked in the proof of Lemma 
7.16 (the second string produced by 2-splicing operations cannot lead 
to strings in V* which are not in L), but we do not emphasize this 
here; in some of the following proofs we shall consider this aspect in 
full detail. 

3. In view of Lemma 8.1, the statement in Lemma 7.17 also remains true 
when replacing HI with H2. 

Therefore, the relations in Table 7.3 are valid for families EH2(F L 1 , F L2). 
In particular, we have 

1. EH2(FIN,FIN) = REG, 

2. EH2(FIN,REG) = RE. 

Thus, the discussion after Table 7.3 is also valid for extended H systems 
based on 2-splicing: in order to get computational completeness for systems 
with finite components we have to add further features to our models. 

8.2 Permitting and Forbidding Contexts 

Examining the H system in the proof of Lemma 7.16, one can see that the set 
of splicing rules is infinite because of the appearance of substrings w in rules 
of types 1, 2, 3, 4, 5, 6. However, these substrings contain no information 
(except the case of rules of type 6, where wE T*), they are arbitrary strings 
over the alphabet NUT U {B}. The role of these substrings w is to allow 
information to be obtained about the symbol appearing behind them, namely 
X, X' in the left hand end of the first term of the splicing and Y, Ya , a E 

NuT U {B}, in the right hand end of the second term of the splicing. 
Otherwise stated, we have in fact finite splicing rules, applied only to strings 
containing (at their ends) certain symbols, from well specified sets. This 
suggests considering the following type of H systems with controlled splicing. 

An extended H system with permitting contexts is a quadruple 

"( = (V, T, A, R), 
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where V is an alphabet, T <;;; V, A is a finite language over V, and R is a 
finite set of triples of the form p = (r; GI , G2), with r = UI #U2$U3#U4 being 
a splicing rule over V and G I, G2 being finite subsets of V* . 

Note that here we only consider systems with finite components. 
For x, y, Z, WE V* and p E R,p = (r; GI , G2 ), we define (x, y) Pp (z, w) if 

and only if (x, y) Pr (z, w), every element of GI appears as a substring in x 
and every element of G2 appears as a substring in y; when GI = 0 or G2 = 0, 
then no condition on x, respectively y, is imposed. 

The pair 0" = (V, R) is called (the underlying) H scheme with permitting 
context rules. The language generated by "/ is defined in the natural way: 

L("!) = O":i(A) nT*. 

We denote by EH2 ([n]'p[m]), n, m 2: 1, the family of languages L("!) 
generated by extended H systems with permitting contexts, "/ = (V, T, A, R), 
with card(A) ::::; nand rad(R) ::::; m, where rad(R) is the maximal radius 
of splicing rules r in triples (r; GI , G2 ) from R. When no restriction on the 
number of axioms or on the maximal radius is considered (but, of course, 
these numbers are still finite), we replace [n] or [m], respectively, by FIN. 

The proof of the next lemma is given with full details, both because the 
result is important for our purposes and because we want to exhibit the 
method of working of an H system based on the operation p. 
Lemma 8.2. RE <;;; EH2(FIN,pFIN). 

Proof. Consider a type-O Chomsky grammar G = (N, T, S, P). Let us 
denote U = NUT U {B}, where B is a new symbol. We construct the 
extended H system with permitting contexts 

where 

"/= (V,T,A,R), 

V = NUTU{B,X,X',Y,Z,Z',Z"} 

U {Ya I a E U}, 

A = {XBSY,XZ,Z',Z",ZY} 

U {ZYa,X'aZ I a E U} 
U {ZvY I U -+ v E P} 

and R contains the following rules with permitting contexts: 

Simulate: l. 
Rotate: 2. 

3. 
4. 
5. 

Terminate: 6. 
7. 

(#uY$Z#vY; {X}, 0), 
(#aY$Z#Ya; {X}, 0), 
(X#$X'a#Z; {Ya }, 0), 
(#Ya$Z#Y; {X'}, 0), 
(X'#$X#Z; {Y},0), 
(XB#$#Z'; {Y}, 0), 
(#Y$Z"#; 0, 0). 

for u -+ v E P, 
for a E U, 
for a E U, 
for a E U, 
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This is precisely the construction from the proof of the Basic Universality 
Le~ma, that is, the rotate-and-simulate procedure, written for splicing rules 
with permitting contexts. 

The rules from group 1 allow us to simulate rules from P on a suffix of 
the first term of the splicing. 

We must be able to simulate the application of a rule from P in an arbi
trary position of the underlying sentential form, not only in the right-hand 
end of the word. To this aim, the rules in groups 2, 3, 4, and 5 allow us to 
"rotate" the word. A rule in group 2 cuts a symbol a from the right-hand 
end of the word, Yo< memorizes this symbol, in its presence a rule from group 
3 will introduce a in the left hand end (together with X'), then Yo< is again 
replaced by Y (by using the appropriate rule from group 4), and X' is again 
replaced by X (by using the rule from group 5). Any circular permutation 
can be obtained in this way. 

The rules from groups 6, 7 finally allow us to remove the markers X and 
Y (the former one only when B is adjacent to it). 

Let us look in some detail at how the ideas mentioned above work. 
When simulating derivation steps in G, we start from XBSY, and at 

every step the markers X and its variant X' as well as Y and its variants 
Y,s, j3 E U, are present to indicate the ends of the word. Moreover, at any 
moment the symbol B tells us where the beginning of the word is, whose 
permutation we consider. 

All the splicing rules with permitting contexts contained in R require an 
occurrence of the symbols Z, ZI, Z" in the second term of the splicing; in fact, 
these words are meant to be taken from A. If we start with rule 1 applied 
to XBSY and ZvY, for some S ----* v E P, this starts the simulation of a 
derivation in G. In general, having a word XXIBx2UY and u ----* v E P, we 
can obtain XXIBx2VY by using the associated rules in group 1: 

(XwluY, ZlvY) Fp (XwvY, ZuY) , 

for p = (#uY$Z#vY; {X}, 0), where u ----* v E P and w E (N U T)*{B}(N U 

T)*. 
This corresponds to a derivation step X2UXI ==? X2VXl in G. 
As additional results (that are not used at a subsequent step of the sim

ulation of a derivation in G) of the splicings of the form above we obtain the 
words ZuY for u ----* v E P. 

To each word XwaY, a E NUT, wE (NUT)*{B}(NUT)*, respectively 
XwaY, a = B, w E (NUT)*, we can also apply the appropriate rule from 
group 2 and then proceed with applying the appropriate rules from groups 3 
and 4; finally, by using the rule in group 5, we obtain the word XawY. The 
symbol a has been moved from the right-hand end to the left-hand end of the 
word, which is exactly what we need for rotating the underlying sentential 
form: 
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where wa E (N U T)*{B}(N U T)*, a E NuT U {B}; 

- (XlwYa,X'aIZ) Fp (XZ,X'awYa), for p = (X#$X'a#Z; {Ya},0), 

where wa E (N U T)*{B}(N U T)*, a E NUT U {B}; 

- (X'awIYa, ZIY) Fp (X'awY, ZYa), for p = (#Ya$Z#Y; {X'}, 0), 

where wa E (N U T)*{B}(N U T)*, a E NUT U {B}; 

- (X'lawY,XIZ) Fp (X'Z,XawY), for p= (X'#$X#Z;{Y},0), 

where wa E (NUT)*{B}(NUT)*, a E NUTu {B}. 

As additional results (that cannot already be found in the set of axioms 
A) of the splicings listed above, we obtain the words ZaY, for a E U, and, 
if vi=->' for all u --t v E P, then X' Z again, too. 

Notice that every word obtained from XBSY so far, not containing the 
symbol Z, is of the form alxlBx2a2, with (al,a2) being one of the pairs 
(X, Y), (X, Ya), (X', Ya), (X', Y), a E U. Hence these symbols appearing as 
permitting contexts in the splicing rules of R precisely control the work of 'Y. 

In order to obtain a terminal word we have to use rules from groups 6, 7; 
Y must be present when using rule 6 and B must be adjacent to X: 

- (XBlwY,IZ') Fp (XBZ',wY), for p= (XB#$#Z';{Y},0), 

- (wIY, IZ") Fp (w, Z"Y), for p = (F'#$#Z"; {F'}, 0), 

where w E (NUT)*. 
As additional results of the splicings above we obtain the words 

XBZ', Z"Y. 
Altogether, in 'Y we can produce every terminal word that can be produced 

by G, i.e., Lb) ;2 L(G). 
Conversely, no unintended terminal words can be generated in 'Y, i.e., 

Lb) ~ L(G). 
Indeed, words of the form ZuY obtained after using a rule from group 

1 associated with u --t v E P can be spliced by a rule of type 1 only when 
ZuY E A, hence the operation is already discussed. Moreover, we can also 
perform a splicing 

(ZuIY, Z"I) Fp (Zu, Z"Y), for p = (#Y$Z" #; 0, 0). 

The string Zu cannot enter new splicings, while Z"Y can enter splicing by 
the same rule, hence nothing new is produced: 

(XwIY, Z"IY) Fp (XwY, Z"Y), 

(Z" I Y, Z" I) Fp (Z", Z"Y). 
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Consider now the strings Zo:Y, 0: E U, obtained during the rotating phase. 
They cannot be used as the first term of a splicing using rules of types 1 - 6. 
If used in a splicing 

(Zo:lY,Z"1) Fp (Zo:,Z"Y), for p = (#Y$Z"#;0,0), 

then the string Zo: cannot enter new splicings and Z"Y cannot lead to termi
nal strings (see the previous paragraph). The string Zo:Y can be used as the 
second term of a splicing only by a rule of type I, providing that Zo:Y E A. 

Finally, X' Z can enter no splicing; X B Z' can be spliced by the rule of 
type 6, 

(XBlw,XBIZ') F (XBZ',XBw), wE (NUT)*, 

which produces nothing new, while Z"Y can be spliced by using the rule of 
type 7 but again no terminal string can be produced. 

In conclusion, we obtain L(r) = L(G). D 

Remark 8.1. Note that in the rules (p; C1 , C2 ) of the H system with permit
ting contexts constructed in the proof of Lemma 8.2 (we can modify the rule 
of type 7 to (#Y$Z"#;{Y},0)), the pairs (C1 ,C2 ) of permitting contexts 
are of the special form ({D}, 0) for some nonterminal D, i.e. we only check 
the occurrence of one nonterminal in the first term of the splicing. This can 
be viewed as a normal form result for our systems. D 

Remark 8.2. A permitting context splicing rule as in the proof of Lemma 
8.2, i.e., with only one checked symbol which should appear at an end of the 
string, might be - theoretically - implemented in the following way. 

As we have seen in Chap. I, the restriction enzymes work only on double 
stranded sequences. We melt the solution in order to obtain single stranded 
sequences, and add a primer which contains the complement of the permit
ting symbol. This primer will only be attached to single stranded sequences 
containing the designated symbol (at an end of it). Only these single stranded 
sequences will enter the polymerization reaction, leading to double stranded 
sequences, hence the enzyme will only act on them. D 

Theorem 8.1. EH2(FIN,pFIN) = RE. 

Proof. By a direct proof or by the Church-Turing Thesis, we have 
EH2(FIN,pFIN) ~ RE; the converse inclusion is given in Lemma 8.2. 

D 

In the proof of Lemma 8.2 we have paid no attention to the radius of 
the used splicing rules. Starting the proof of Lemma 8.2 from a grammar 
G in Kuroda normal form, we obtain an extended H system with permit
ting contexts of radius 3. This value is reached in splicing rules of type 1 
(#uY$Z#vY, where luYI and IvYI can be equal to 3). This result can be 
strengthened: 

Lemma 8.3. RE ~ EH2(FIN,p[2]). 
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Proof. Consider a type-O grammar G = (N, T, S, P) in Kuroda normal 
form. Denote by PI the set of context-free rules in P and by P2 the set of 
non-context-free rules in P. 

We construct the extended H system with permitting contexts 'Y = 
(V, T, A, R), where 

V = NUTU{B,X,X',Z,Z',Z",Y} 

U {Yr IrE P2} U {Zr IrE P} 

U {Yo I a E NUT U {Bn, 

A = {XBSY,ZY,XZ,Z',Z"} 

U {ZYo,X'aZ I a E NUTU{Bn 

U {ZrxY I r : C --+ x E PI} 

U {ZYr,ZrEFY I r: CD --+ EF E P2}, 

and R contains the following productions: 

Simulate: 1. (#CY$Zr#x; {X},0), for r: C --+ x E PI, 

2. (C#DY$Z#Yr; {X}, 0), 

3. (#CYr$Zr#EF; {X}, 0), for r : CD --+ EF E P2, 

Rotate: 4. (#aY$Z#Yo; {X}, 0), 

5. (X#$X'a#Z; {Yo}, 0), 

6. (#Yo$Z#Y; {X'}, 0), 
7. (X'#$X#Z; {Y}, 0), for a E NuT U {B}, 

Terminate: 8. (XB#$#Z'; {Y}, 0), 

9. (#Y$Z"#; 0, 0). 

The rules of type 1 simulate the rules in PI, the rules of types 2, 3 simulate 
the rules in P2 . (Initially we have X B SY, hence at the first step we have 
to use a rule of type 1. Each splicing must involve an axiom and a string 
produced at a previous step and it produces a string of the form X W Y, with 
W E (N U T U {B})* and X, Y possibly replaced by variants of them, primed 
or having subscripts.) For instance, consider a string XWIBw2CDY and a 
rule r : CD --+ EF E P2 • We get 

(XwIBw2CIDY, Z!Yr) F2 (XwIBw2CYr, ZDY), 

(XwIBw2ICYr, ZrI EFY) F3 (XwIBw2EFY, ZrCYr)' 

The rules of types 4, 5, 6, 7 are used for "rotating" the string and the 
rules of types 8 - 9 finish the work of 'Y in the same way as in the proof of 
Lemma 8.2. Thus, we have L(G) = L("(). 

Clearly, rad("() = 2. 0 

Therefore. Theorem 8.1 can be written in the form 
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Corollary 8.1. RE = EH2(FIN,p[2]). 

Three open problems remain here: (1) Can the assertion in Lemma 8.3 
be strengthened to RE ~ EH2(FIN,p[1])? We conjecture that EH2(FIN, 
p[l]) ~ CF, i.e., that the answer is negative. (2) Can the number of axioms 
be bounded in advance without loosing the computational completeness? 
We conjecture that the answer is affirmative, more precisely, that RE = 
EH2([1],pFIN), that is, one axiom suffices. (3) Can we simultaneously 
decrease both the number of axioms and the radius of splicing rules? As is 
customary in the area of descriptional complexity (we saw this at the end of 
Sect. 7.4, too), it is possible that this question has a negative answer, that 
is, a trade-off between these two complexity criteria, card(A) and rad(R), is 
highly probable. However, as we shall see below, in many cases of controlled 
H systems the two parameters can simultaneously be bounded by rather low 
thresholds. 

In what concerns the above conjectured inclusion EH2(FIN,p[1]) ~ CF, 
if this would be confirmed, then an entirely new characterization of context
free languages is obtained, because we have the next result. 

Lemma 8.4. CF ~ EH2(FIN,p[1]). 

Proof. Consider a context-free grammar G = (N, T, S, P) in the strong 
Chomsky normal form, that is, with the rules in P of the forms X -+ a, 
X -+ Y Z, for X, Y, ZEN, a E T, and with the additional restrictions 
specified in Theorem 3.2: 

1. if X -+ YZ is in P, then Y =I- z, 

2. if X -+ Y Z is in P, then for each rule X -+ Y' Z' in P we have Z' =I- Y 
and Y' =I- Z. 

We construct the permitting context H system '"Y = (V, T, A, R), where 

V = Tu {X!,Xr,X; I X E N} U {D,E}, 

A = {X1aXr I X -+ a E P} U {X1D,DXr,DX; I X EN} U {E}, 

and R consists of the following splicing rules: 

1) (a#Yr$ZI#bi {¥i}, {Zr}), for X -+ YZ E P, a, bET, 

2) (a#Zr$D#X;i {¥i}, 0), for X -+ YZ E P, a E T, 

3) (X1#D$¥i#ai 0, {X;}), for X, YEN, a E T, 

4) (a#X;$D#Xri {Xd, 0), for X E N, a E T, 

5) (a#Sr$E#i {SI},0), for a E T, 

6) (#E$SI#ai 0, 0) for a E T. 

The basic idea of this construction is that a string X1wXr , with w E 

T+ , X EN, is generated in '"Y if and only if X==}* w in the grammar G (the 
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subscripts l, r in X!, Xr stand for "left" and "right", respectively). When 
X = S, then W is an element of L(G). 

The rules X --t a are directly simulated by the axioms, because the strings 
XlaXr are introduced in A. 

Consider two strings Yiw1Yr, ZlW2Zr produced by 'Yj the axioms in A 
corresponding to terminal rules in P are of this form, all other axioms are of 
a different form. If there is a rule X --t Y Z in P, then a splicing rule of type 
1 exists in R, hence we can perform 

The second string cannot enter new splicings in 'Y (either a terminal symbol 
or the control symbol D must always be present in the terms of a splicing). 
The first string can be processed as follows: 

(Yiwlw2IZr, DIX;) F2 (Yiwlw2X ;, DZr ), 

(XdD, YiIWIW2 X ;) F3 (XIWIW2X ;, YiD), 

(XIWIW2IX;,DIXr ) F4 (XIWIW2Xr, DX;). 

These steps are possible only if the rule X --t YZ is in P. Therefore, we 
obtain the string XlWIW2Xr which corresponds to a derivation X===}* WIW2 
in G. The strings DZr, YiD, DX; are axioms. 

Thus, indeed, a string X1zXr is produced in 'Y if and only if X===}* z in 
G. If we obtain a string SIXSr , that is with x E L(G), then we can use rules 
5,6 in R: 

(SlxISr , ED F5 (SIX, ESr ), 

(IE, Sdx) F6 (x, SIE). 

We obtain the string x, as well as strings which can only enter splicings 
of the same forms but produce nothing (for instance, (SlxISr , EISr) F5 
(SIXSr , ESr ». Rule 6 cannot be used before using rule 5, because the symbol 
Sl must be present in the string when rule 5 is applied. This concludes the 
proof of the equality L(G) = L('")'). 0 

Consider now again the proof of Lemma 8.2. The symbols whose presence 
is checked are elements of the set of control symbols 

Q = {X,X', Y} U {Yo I a E NUTU {B}}. 

The presence of a symbol is equivalent with the absence of all other sym
bols, because the control symbols are always present at the ends of the strings 
- except when finishing the generation of a terminal string. Thus, we can 
consider a dual variant of extended H systems with permitting contexts, that 
is, systems with forbidding contexts. 

An extended H system with forbidding contexts is a quadruple 'Y 
(V, T, A, R), where V is an alphabet, T ~ V (the terminal alphabet), A 
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is a finite language over V (axioms), and R is a finite set of triples (we 
call them rules with forbidding contexts) of the form p = (rj D 1 , D 2 ), where 
r = Ul #U2$U3#U4 is a splicing rule over V and Db D2 are finite subsets of 
V*. 

For x, Y, z, w E V* and p E R,p = (rj D 1 , D2), we define (x, y) Fp (z, w) 
if and only if (x, y) Fr (z, w), no element of Dl appears as a substring of x 
and no element of D2 appears as a substring of Yj when Dl = 0 or D2 = 0, 
then no condition on x, respectively Y, is imposed. 

From a biochemical point of view, the permitting contexts can be in
terpreted as catalysts or promoters, favoring the splicing by the associated 
splicing rule, while the forbidding contexts can be interpreted as inhibitors, 
suppressing the associated splicing rule. 

The pair a = (V, R) is called an (underlying) H scheme with forbidding 
contexts rules. The language generated by 'Y is defined in the usual way: 

L(r) = a2(A) n T*. 

We denote by EH2 ([n], f[m]), n, m 2 1, the family of languages L(r) 
generated by extended H systems with forbidding contexts, 'Y = (V, T, A, R), 
with card(A) ~ nand rad(R) ~ m, where rad(R) is the maximal radius of 
splicing rules r in triples (rj D 1 , D 2 ) in R. When no restriction on the number 
of axioms or on the maximal radius is imposed (except that these numbers 
are still finite), we replace [n] or [m] by FIN. 

As expected from the previous discussion, we have the equality 
EH2(F I N, f[2]) = RE. Actually, a stronger result is true: 

Theorem 8.2. EH2([1], f[2]) = RE. 

The proof of this theorem is based on two lemmas corresponding to 
Lemmas 8.2 (combined with Lemma 8.3) and to the conjectured inclusion 
RE ~ EH2([1],pFIN). For the sake of completeness and because of the 
strong form of Theorem 8.2, we present the core construction of the proofs 
of both these lemmas. 

Lemma 8.5. RE ~ EH2(FIN,f[2]). 

Proof. Consider a type-O grammar G = (N, T, S, P) in the Kuroda normal 
form, denote by P1 the set of context-free rules in P and by P2 the set of non
context-free rules in P. We construct an H system with forbidding contexts 
'Y = (V, T, A, R), where V, T, A are the same as in the proof of Lemma 8.3, 
U = NUTU{B}, and R contains the following rules with forbidding contexts: 

Simulate: 1. (#CY$Zr#Xj {X'}, 0), for r : C --t x E Pb 
2. (C#DY$Z#Yrj {X'}, 0), 

3. (#CY,.$Zr#EFj{X'},0), for r: CD --t EF E P2, 

Rotate: 4. (#aY$Z#Yo.j {X'},0), 

5. (X #$X' a#Zj {Y} U {Y{3 I {3 E U, 
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(3 i= a} U {Yr IrE P2 },0), 

6. (#Y,,$Z#Y; {X}, 0), for a E U, 

7. (X' #$X #Z; {Y{3 I (3 E U} U {Yr IrE Pd, 0), 
Terminate: 8. (XB#$#Z'; {Y{3 1(3 E U} U {Yr IrE P2 }, 0), 

9. (#Y$Z"#; {X, B}, 0). 

The equality L(1) = L(G) can be checked in an easy way (repeating 
arguments like those in the proofs of Lemmas 8.2 and 8.3). D 

Lemma 8.6. EH2(FIN,J[2]) ~ EH2([1],J[2]). 

Proof. Consider the extended H system with forbidding contexts "( = 
(V, T, A, R) with A = {WI, W2, ... , wn }, n 2': 2, given by the construction in 
the previous proof, that is, with rules ofthe form (r; D 1 , 0). Moreover, at each 
splicing step, the second term of the operation is an axiom. We construct 
the extended H system with forbidding contexts 

where 

and 

"(' = (VU{c},T,{w},R'), 

R' = {(r; Dl U {c}, {c}) I (r; D 1 , 0) E R} 
U {(#c$c#; 0, 0)}. 

By applying the splicing rule #c$c# to two copies of W we can cut one W 

at the symbol c in front of some axiom Wi, obtaining WiC . .. wnc. Applying 
the same rule #c$c# to this word and to another copy of W we can produce 
the axiom Wi as a separate string. 

Because the rules in R now have the forbidding contexts Dl u{c}, {c}, the 
two terms of the splicing cannot contain the symbol c. Removing c amounts 
to separating the axioms of "( from W by the rule #c$c#. Consequently, we 
have L(1) = L(1/). D 

Note that in the case of forbidding contexts we do not obtain a normal 
form as in the case of permitting contexts, that is with condition sets of the 
form (C1 ,C2 ), with C1 containing one symbol only and C2 empty. On the 
other hand, in the forbidding case we obtain a result which is not known for 
permitting contexts: low bounds are found both for the number of axioms 
and for the radius. 

The control through forbidding symbols as in the proof of Lemma 8.5, 
that is, with the checked symbols always appearing at the ends of the first 
term of the splicing, can be easily implemented by considering a priority 
relation on the set of splicing rules. 
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Specifically, an ordered extended H system is a construct , 
(V, T, A, R, », where V is an alphabet, T ~ V (the terminal alphabet), 
A is a finite language over V (axioms), R is a finite set of splicing rules over 
V, and > is a partial order relation on R. 

For x, y, Z, W E V* and r E R we allow the relation (x, y) Fr (z, w) 
only if we do not have (x, y') Fr l (z', w') or (y', x) Fr l (z', w'), for some 
y', z' ,w' E V* and r' E R such that r' > r. (A splicing is performed by a 
rule which is maximal among all splicing rules which can be applied to the 
first string and any other string.) 

We denote by EH2 ([n], ord[m]) , n, m 2: 1, the family of languages gener
ated by ordered extended H systems with at most n axioms and of radius at 
most m. 

Theorem 8.3. RE = EH2 ([1], ord[2]). 

Proof. Consider an H system with forbidding contexts as given by the 
constructions in the proof of Lemmas 8.5 and 8.6, that is, of the form, = 
(V, T, { w }, R), with rad(,) = 2 and with the rules in R of two types: a rule 
#c$c# which cuts w in parts not containing the symbol c, and rules which 
always use these parts as the second term of the splicing. We modify, as 
follows. Add the symbol Zo to the alphabet V and replace the axiom w by 
wcZoZo. Replace each rule with forbidding contexts of the form 

(Ul #U2$U3#U4; D 1 , D2) 

with Dl U D2 =1= 0 by the set of rules 

r = Ul #U2$U3#U4, 

r(a) = a#$Zo#Zo, for a E D 1, 

r(a) = Zo#Zo$a#, for a E D 2. 

Consider the relation > defined by 

r(a) > r, for all a E Dl U D 2 . 

Consider also the rule 
ro = Zo#$Zo#Zo, 

with ro > r for all rules r = Ul #U2$U3#U4 corresponding to a starting rule 
(Ul #U2$U3#U4; D 1 , D2). 

Denote by,' the ordered H system obtained in this way. 
By using the rule #c$c# as in the proof of Lemma 8.6, we can separate 

from wcZoZo the blocks not containing the symbol c, as well as the string 
ZoZo. Now, if for some (r; D1 , D2) a symbol a E Dl U D2 appears in a 
string x, then in order to splice (x,y) in ,', for some y E V*, we cannot 
use the rule r, but one of the rules r(a), r'(a). However, the use of r(a) 
and r'(a) introduces the symbol Zo in both strings produced by splicing and 
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this symbol cannot be eliminated (the rule ro has to be used for the first 
term of the splicing, the second one should be an axiom). Therefore, the 
priority restriction forces the use of splicing rules r in a forbidding manner. 
Consequently, L(-y) = L(-y'). 0 

The order relation in systems above can be interpreted as modeling the 
difference between the reactivity of the enzymes involved by the splicing rules: 
when two different enzymes can cut the same string, the more reactive one 
will actually work. 

8.3 Target Languages 

While extended H systems with permitting or forbidding contexts corre
spond to the biochemical activity of catalysts (promoters) and inhibitors, 
which control in vivo or in vitro reactions by their presence in or absence 
from the molecules entering the reaction, regulating the splicing by target 
languages corresponds to another biochemical aspect, encountered in vivo: 
nature selects the offsprings .of the evolutionary process in a rather dramatic 
manner, not allowing the perpetuation of "unsuitable" forms of life. Formu
lated in "Lamarckian terms", we may say that evolution has a sense, that 
the mutations and recombinations are made "toward improvement". Such 
speculations can be easily modeled in our framework by considering a sort of 
hypothesis language: when splicing two strings, the resulting strings should 
be members of a given language. This corresponds to conditional grammars 
in the area of regulated rewriting and to grammar systems with hypothesis 
languages in grammar systems theory. As in these areas, too, the power of 
H systems is increased by considering such regulating mechanisms: we can 
again characterize the family RE by systems with finite sets of splicing rules. 

An extended H system with local targets is a construct 'Y = (V, T, A, R), 
where V is an alphabet, T ~ V (the terminal alphabet), A is a finite lan
guage over V (axioms), and R is a finite set of pairs p = (r, Qp), where 
r = Ul #U2$U3#U4 is a splicing rule over V and Qp is a regular language over 
V. For x, y, Z, w E V* and p = (r, Qp) in R we write (x, y) Fp (z, w) if and 
only if (x, y) Fr (z, w) and z, wE Qp (the results of the splicing with respect 
to r belong to Qp). 

If, for such an extended H system with local targets, 'Y = (V, T, A, R), we 
have QPl = Qp2 for all Pl = (rl,QpJ,P2 = (r2' Qp2) in R, then we say that 
'Y is a system with a global target. If Q is the common target language of 
rules in R, then we write the system in the form 'Y = (V,T,A,R',Q), with 
R' consisting of the splicing rules in R. 

In the customary style, we denote by EH2([n], It[m]) , n, m 2': 1, the family 
of languages generated by extended H systems with local targets having at 
most n axioms and splicing rules of radius at most mj in the case of global 
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targets we replace it by gt; when no bound on the number of axioms or on 
the radius is imposed, we replace [n], [m] by FIN. 

From the definitions we have 

Lemma 8.7. EH2([n], gt[m]) ~ EH2([n], It[m]) , for all n, m ;:::: l. 

Lemma 8.8. RE ~ EH2(FIN,gt[2]). 

Proof Consider a type-O grammar in Kuroda normal form, G = 
(N, T, S, P), denote by PI the set of context-free rules in P and by P2 the set 
of non-context-free rules in P. Assume the rules in P labeled in a one-to-one 
manner. Denote U = NUT U {B}, where B is a new symbol. We construct 
the extended H system with a global target 

where 

'Y = (V, T, A, R, Q), 

v = NUTU{B,X,X',X",Y,Y',Z,Z'} 

U {Yr. I 0: E U} U {Zr IrE P} 

U {Yr I r: CD ----7 EF E Pz}, 

A = {XBSY,ZY,XZ,ZY',X"Z,Z'} 

U {ZYa,X'o:Z I 0: E U} 

U {ZrxY I r : C ----7 x E PI} 

U {ZYr, ZrEFY I r: CD ----7 EF E P2}, 

and the following groups of splicing rules; we associate with them target 
languages in a local manner in order to make more explicit the work of 'Y, 
but Q is the union of all these local target languages: 

Simulate: l. #CY$Zr#x, QI,r = XU*y U {ZrCY}, 
for r : C ----7 x E PI, 

2. C#DY$Z#Yr, Q2,r = XU*Yr U {ZDY}, 
3. #CYr$Zr#E, Q3,r = XU*y U {ZrCYr}, 

for r : CD ----7 EF E P2, 
Rotate: 4. #o:Y$Z#Ya, Q4,a = XU*Ya U {ZaY}, 

5. X'o:#Z$X#, Q5,a = X'U*Ya U {XZ}, 
6. #Ya$Z#Y', Q6,a = X'U*y' U {ZYa }, 

for 0: E U, 
7. X"#Z$X'#, Q7 = X"U*y' U {X'Z}, 
8. #Y'$Z#Y, Q8 = X"U*y U {ZY'}, 
9. X#Z$X"#, Q9 = XU*Y U {X"Z}, 

Terminate: 10. #Z'$XB#, QlO = T*Y U {XBZ'}, 
11. #Y$Z'#, Ql1 = T* U {Z'Y}. 
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Then, 

Q = U Ql,r U U (Q2,r U Q3,r) 
rEPl rEP2 

11 

U U (Q4,a U Q5,a U Q6,a) U U Qi· 
i=7 

The work of 'Y is based on the same rotate-and-simulate idea as in several 
of the proofs of similar relations above, with some further precautions in the 
rotation phase. As above, we start from the axiom XBSY and at every 
splicing step we splice a string of the form X w Y, maybe with X replaced 
with X' or X" and with Y replaced with Y', Ya, a E U, or Yr , r E P2, with an 
axiom (each splicing rule contains an occurrence of Z, Z', or ZT) for rEP). 
Together with the target language, these control symbols control the work of 
'Y in a way that makes possible the simulation in 'Y of all correct derivations 
in G and, conversely, prevents the generation of terminal strings not in L( G). 

Let us examine, for instance, a rotation step. Starting from a string 
X waY, with w E U*, a E U, by using the rules in group 4 - 9 we successively 
get: 

(XwlaY,ZIYa ) F4,a (XwYa,ZaY), 

(X'aIZ,XlwYa ) F5,a (X'awYa,XZ), 

(X'awiYa, ZIY') F6,a (X'awY', ZYa), 

(X"IZ,X'lawY') F7 (X"awY',X'Z), 

(X"awIY', ZIY) F8 (X"awY, ZY'), 

(XIZ,X"lawY) F9 (XawY,X"Z). 

We have obtained the string X aw Y which is a circular permutation of the 
starting string XwaY. The target language does not contain strings of the 
form X"zYr , for r E P2, hence X"awY cannot enter splicings with respect to 
rules in group 2. Using a rule in group 1 does not lead to unintended strings. 
None of the other strings on the first position of the resulting pairs above can 
enter splicings with respect to simulating rules in R. Similarly, these strings 
cannot be spliced according to terminating rules: the resulting strings cannot 
be in T*Y U T* U {XBZ', Z'Y}. In what concerns the "by-product" strings 
above, ZaY,XZ,ZYa,X'Z,ZY',X"Z, part of them are axioms, the others 
either cannot enter splicings because of the target restriction, or they can 
enter splicings which do not lead to illegal terminal strings. For instance, 
X' Z, which is not an axiom, can be spliced with X" Z, 

(X"IZ, X'IZ) F7 (X" Z, X' Z), 

but the two strings are reproduced (note that both strings X" Z, X' Z are in 
Q). 



8.3. Target Languages 273 

Thus, we can conclude that L("() = L(G). D 

Lemma 8.9. EH2(FIN,gt[m]) ~ EH2([I],gt[m]),m ~ 1. 

Proof. Let "I = (V, T, A, R, Q) be an extended H system with a global 
target, with A = {Wl, ... ,wn},n ~ 2. We construct the extended H system 
with a global target 

where 

"I' = (VU{c},T,{w},R',Q'), 

R' = R U {#c$c#}, 

Q' = QU{Wi, WiC ... CWnC, CWIC ... CWi-lCW, 

WCWi+l c ... CWn 11 ::; i ::; n}. 

We obtain L("() = L("('): using the rule #c$c# we can separate each 
axiom Wi of "I from w: 

(Iw, CWIC ... cWi-lclwic ... cwnc) 1= (WiC . .. CWnC, CWIC ... CWi-l CW), 

(wilcwi+lc ... CWnC, wI) 1= (Wi, WCWi+l C ... cwnc). 

If a splicing rule in R is applied to strings containing the symbol c, then 
the resulting strings should be in Q' - Q, hence they must be either axioms 
in A or strings containing further occurrences of c, hence composed of blocks 
Wi, 1 ::; i ::; n, bounded by occurrences of c. This ensures the inclusion 
L(,,(') ~ L("(). The reverse inclusion is obvious. 

Note that the radius of rules in R' - R is one, hence we have rad(R') = 
rad(R). D 

Theorem 8.4. RE = EH2([I],gt[2]) = EH2([I], It[2]). 

Proof. The inclusion RE ~ EH2([I],gt[2]) follows from Lemmas 8.8,8.9. 
The inclusion EH2([I],gt[2]) ~ EH2([I],lt[2]) is pointed out in Lemma 8.7, 
whereas the inclusion EH2([I], It[2]) ~ RE can be proved by a straightfor
ward construction of a type-O grammar simulating an extended H system 
with local targets (or can be obtained from the Church-Turing Thesis). D 

By using target languages, we have removed the infinity of the set of 
splicing rules, but we have reintroduced the infinity in the target languages. 
However, it is enough to use the information provided by the first and the 
last symbols of the strings produced by splicing, returning again to the style 
of permitting-forbidding context conditions in the previous section, but for
mulated for the strings obtained by splicing and not for the strings entering 
the splicing. 

We can relate this also to the style of genetic algorithms area, formulating 
these conditions by means of fitness mappings: consider a mapping assessing 
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the quality (fitness, reactivity) of the strings and let us control the process 
by asking that strings with a low degree of fitness are not used in further 
splicings. 

Here we consider a boolean fitness mapping (a predicate). 

An extended H system with a fitness mapping is a construct , = 

(V, T, A, R, I), where V is an alphabet, T s;;: V (the terminal alphabet), A is 
a finite subset of V* (axioms), R is a finite set of splicing rules over V, and 
f : V* -----+ {O, I}. The splicing of two strings x, y E V* with respect to a rule 
in R is defined only when f(x) = 1, f(y) = 1. The language generated by 
, is defined in the usual way. By EH2([n], fit[m]) , n, m ~ 1, we denote the 
family of languages generated by such systems with at most n axioms and 
the radius at most m. 

By simply taking f : V* -----+ {O, I} as being the membership mapping of 
Au Q in an extended H system with a global target, , = (V, T, A, R, Q), we 
get an extended H system with a fitness mapping " = (V, T, A, R, I) such 
that L(r) = L(r'): the result of a splicing does not enter new splicings if it 
is not in A U Q. Thus we can write 

Corollary 8.2. RE = EH2 ([I], fit[2]). 

If the fitness mapping is not restricted, it can introduce artificially com
plex features in the generated language, just by starting from an H system 
with a complex fitness mapping. Thus, it is important to define particular 
classes of such mappings. A natural idea is to consider a local definition 
of the fitness mapping: we say that f : V* -----+ {O, I} is locally defined if 
f(axf3) = f(ax' (3) for all a, f3 E V, X, x' E V* (that is, the value of f(axf3) 
does not depend on x, but only on the symbols a, f3 bounding it). We de
note by EH2([n], fitdm]) , n, m ~ 1, the family of languages generated by 
extended H systems with a locally defined fitness mapping, with at most 
n axioms and of radius at most m; [n], [m] are replaced by FIN when no 
bound on the number of axioms or on the radius is imposed. Now, from the 
proof of Corollary 8.1, by a suitable definition of a mapping f capturing the 
restrictions imposed by the permitting context conditions (checked only at 
the ends of the spliced strings), we get 

Corollary 8.3. RE = EH2([1],fit I FIN) = EH2(FIN,fitd2]). 

Note that, in fact, we have a particular form of a locally defined fitness 
mapping, that is depending only on the leftmost symbol of a string. 

Although Corollaries 8.2 and 8.3 are obtained as reformulations of other 
results (involving reformulations of other notions), we have mentioned them 
because they look more appropriate from a "practical" point of view: in or
der to implement H systems with a fitness mapping it is enough to devise a 
mechanism able to remove or inhibit the non-fitting strings obtained by non
deterministic, unrestricted splicing; moreover, this mechanism has to check 
only the ends of the strings in order to evaluate their fitness. 
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8.4 Programmed and Evolving Systems 

The ways of controlling the splicing operation in previous sections were based 
on contextual conditions restricting the use of the splicing rules: any rule 
in the set of splicing rules can be used at any time, but only for splicing 
strings fulfilling certain conditions. However, the splicing rules themselves 
can change from one step to the next one, influenced by the very strings to 
which they are applied or, more generally, by the currently available set of 
strings. Both the strings (DNA molecules) and the splicing rules (restriction 
enzymes and ligases) correspond to chemical complexes placed together in a 
given space (a cell, a test tube), hence their interaction takes place in both 
directions: not only do the splicing rules act on the strings, but the strings 
also influence the splicing rules. 

In a general set-up, for a language L ~ V* and a set R of splicing rules 
over V, we can define: 

1. A language String(R, L), of all strings obtained by one-step splicing of 
the strings in L with respect to the rules in R, perhaps applied in a 
restricted mode; 

2. A set Rule(R, L), of splicing rules over V, obtained from the rules in 
R under the influence of the strings in L. 

Then, starting from a language Lo ~ V* and a set Ro of splicing rules 
over V, we can define the sequence 

For an extended H system (maybe with a control ctr on the application 
of its rules), "y = (V, T, A, R, ctr), we can define the sequence (Ri' L i ), i :2: 0, 
starting from Lo = A, Ro = R and with the mapping String depending on 
ctr. Then the language generated by "y can be defined by 

Lb) = (U L i ) nT*. 
i~O 

Such a system "y is said to be an evolving one. 
The mapping String can be defined as in the previous sections, using 

free splicing or splicing restricted in various ways. Permitting or forbidding 
contexts, target languages, or fitness mappings can be some variants. In this 
section we discuss the possibilities offered by the Rule mapping. 

One variant is to define the set Rule(Ri- 1 , Li-d not depending on the 
whole language L i - 1 but only on the strings used when passing from L i - 2 

to Li - 1 = String(Ri - 2 , Li - 2 ), starting from the assumption that the strings 
which are "close" to the rules can modify them - and can be modified by 
them. Then, in this framework, we can define Rule( R i - 1 , Li- d in a per
mitting or forbidding way, depending on the presence or absence of certain 
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symbols in the spliced strings. We can cover in this way the permitting or 
forbidding ways of controlling the splicing. 

A general class of evolving H systems can be based on mappings 
Rule(R, L) depending on R only, hence independent of the current set of 
strings. This immediately suggests considering H systems corresponding to 
time-varying grammars or to programmed grammars in the regulated rewrit
ing area. 

We postpone the study of time-varying H systems for a subsequent chap
ter, because this type of generative mechanism has a distributed architecture 
which deserves to be emphasized and compared with other distributed H 
systems. In the programmed case we can once again characterize the family 
RE. 

A programmed extended H system is a construct 'Y = (V, T, A, R, next), 
where V is an alphabet, T ~ V (the terminal alphabet), A is a finite language 
over V (axioms), R is a finite set of splicing rules over V, and next : R ----> 

P(R). 
The language generated by 'Y is defined by 

L(-y) = (A U 0"2 (A) U p(A)) n T*, 

where 0" = (V, R) is the underlying H scheme of'Y and 

p(A) = {w E V* I there is a sequence of splicings of the form 

(Xl, Yl) Frl (X2, Y~), (X2, Y2) Fr2 (X3, Y~), ... 
(Xk, Yk) Frk (Xk+b y~+d, such that k ~ 2, 
ri E next(ri_t), 2 :::; i :::; k, y~ E V*, 2 :::; i :::; k + 1, 

Xl,Yl E A,Yi E A,2:::; i:::; k, and w = Xk+l}. 

In words, the language L(-y) contains all terminal strings in A, as well as 
those strings which can be obtained by one splicing starting from strings in 
A (the set 0"2(A)), or by several splicings with the following properties: one 
starts from two axioms; at each subsequent step, one splices the first of the 
two strings produced at the previous step with one axiom; the rules used at 
consecutive steps are related by the next mapping. 

The condition to use at each step - except the first one - a string produced 
at the previous step and an axiom could seem artificial and restrictive, but 
most of the H systems in the proofs considered in the previous sections work 
in this way when following "correct" paths of splicing, i.e., paths towards 
strings in the generated language. However, in these systems other splicings 
are also possible. Here, in order to take advantage of the programmed type 
of restriction, we have to impose this condition in an explicit manner on the 
terms of the splicing operations. 

In the usual style, we denote by EH2 ([n]'pr[m]),n,m ~ 1, the family 
of languages generated by programmed extended H systems with at most 
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n axioms and with splicing rules of radius at most m. When n, m are not 
bounded, we replace [n], [m] by FIN. 

Theorem 8.5. RE = EH2(FIN,pr[2]). 

Proof. We only have to prove the inclusion RE ~ EH2(FIN,pr[2]). 
Consider a type-O grammar G = (N, T, S, P) in Kuroda normal form, 

denote by PI the set of context-free rules in P and by P2 the set of non
context-free rules in P. Assume the rules in P are labeled in a one-to-one 
manner. We construct the programmed H system 

where 

'Y = (V, T, A, R, next), 

V = NUTU{X,X',Y,B} 

U {Yp I p E P2} U {Zp I pEP}, 

A = {X'BSY,ZY,XZ} 

U {ZpxY I p: C -+ x E H} 
U {ZYp, ZpEFY I p: CD -+ EF E P2} 

U {Xo:Z I 0: E NUTU {B}}, 

R contains the following splicing rules 

Start: So = X #Z$X' #B, 
Simulate: sp = #CY$Zp#x, for p: C -+ x E PI, 

Sl,p = C#DY$Z#Yp, 
S2,p = #CYp$Zp#E, for p: CD -+ EF E P2, 

Rotate: rl,a = #o:Y$Z#Y, 
r2,a = Xo:#Z$X#, for 0: E NUT U {B}, 

Terminate: tl = #ZY$X B#, 
t2 = #Y$ZY#, 

and the mapping next is defined as follows: 

next(so) = {sp I p E Pd, 

next(sp) = {sp' I p' E PI} 

U {Sl,p' I p' E P2} 

U {rl,a IO:ENUTU{B}} 

U {tl}' for p E PI, 

next(sl,p) = {S2,p}, 

next(s2,p) = {Sp' I p' E PI} 

U {Sl,p' I p' E P2} 

U {rl,a 10: E NUT U {B}} 
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U {ttl, for p E P2 , 

next(rl,o) = {r2,o}, 

next(r2,o) = {sp I p E PI} 

U {Sl,p I p E P2 } 

U {rl,i3I,BENUTU{B}} 

U {ttl, foraENUTU{B}, 

next(tl) = {t2}, 

next(t2) = 0. 

The mapping next controls the work of'Y in such a way that, after starting 
the simulation of a rule p E P2 by using the splicing rule Sl,p, we have to 
continue with the splicing rule S2,p, and after removing a symbol a from the 
right hand end of w in a string X w Y, we have to continue by introducing a 
in the left hand end of w. 

Because rules r2,o, a E NUTU{B}, and h cannot be used in the presence 
of X, and X' can be removed only by So, which can be used only in the first 
splicing step, we have to start with So. This prevents starting with rules r2,o, 
which would produce illegal strings. 

In this way, each sequence of splicings in 'Y precisely corresponds to a 
derivation in G. Consequently, L(G) = Lb). 0 

Although elegant from a mathematical point of view, the notion of a 
programmed H system contains the non-biochemical ingredient of the next 
mapping, defined independently of the current strings, in a sort of a "total" 
manner: from one step to another the whole set of available splicing rules is 
changed, simply by replacing them with new rules. In the spirit of evolving 
H systems with the activity defined by two mappings String and Rule, we 
now look for a local manner of changing the rules from one step to the next. 
One way of doing this is to consider point mutations, insertion and deletion 
operations of single symbols, or substitutions of a symbol by another one. We 
consider such operations with context-dependence: a symbol is inserted in or 
deleted from a specified context. To this aim we consider insertion-deletion 
rules as in Chap. 6, of the form (u, al,B, v), with u, v strings and a,,B symbols 
or >., telling us that a can be replaced by ,B in the context (u, v); a I >. means 
deletion, >.I,B means insertion, alb means changing a for b. As we shall see 
below (and as expected from the results in Chap. 6), insertion and deletion 
rules suffice; still, we define our locally evolving H systems in the general way. 

An extended H system with locally evolving splicing rules is a construct 

'Y = (V, T, Ao, Ae , E, Co, P), 

where 

(i) V is the total alphabet of 'Y, 
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(ii) T <:;;; V is the terminal alphabet, 

(iii) Ao <:;;; V* is the finite set of starting axioms, 

(iv) Ac <:;;; V* is the finite set of current axioms, 

(v) E is an alphabet, En V -=I- 0, 

(vi) Co is an initial sequence of splicing rules, Co 
E*#E*$E*#E*, 1 :::; i :::; k, 
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(vii) P is a finite set of editing rules of the form (u,a//3,v), with u,v E 

(EU {#,$})*, and a,/3 E Eu {A}, a -=I- /3. 

The rules in P are used for editing the splicing rules, starting from the 
"template" rules in Co. When a E E, /3 E E, we have a substitution, when 
a E E, /3 = ,x, we have a deletion, and when a = ,x, /3 E E, we have an 
insertion. Note that the special symbols #, $ cannot be edited. 

The idea is to use the components E, Co, P in order to produce splicing 
rules. We pass from one step to the next by using one rule in P for each 
currently available splicing rule. If any of the splicing rules present at one 
time can be applied to a string produced at a previous step (initially, a string 
in Ao) and to a current axiom (a string in Ac), then it has to be used; 
otherwise, the strings present in the tube are not modified. When a splicing 
rule can be applied to a couple of strings, we assume that all copies of those 
strings are used and consumed, hence they are no longer present for the next 
steps ~ with the exception of the current axioms, which are supposed to be 
unexhaustible (new copies of them are added whenever they are necessary). 

Formally, we are led to the following definition. 
Denote by ===} p the usual derivation relation with respect to rules in P, 

written as rewriting rules uav ---> u(3v, for (u,a/(3,v) in P. For a splicing 
rule r E E*#E*$E*#E* we define 

P(r) = {r' I r ===}p r'}. 

We extend the relation ===} p to k-tuples of splicing rules by 

(rl, ... ,rk)===}p(r~, ... ,rU iff rjEP(rj),l:::;j:::;k. 

Starting from Co, at the time i 2': 1 we can obtain in this manner a sequence 
Ci = (ri,l,"" ri,k); we associate to it the set of splicing rules 

Ri = {r I r = ri,j for some 1 :::; j :::; k}. 

Note that the set Ri contains exactly one descendant of every rule in 
Co; out of the possible variants which can be obtained due to the possible 
non determinism of using the rules in P, only one is actually chosen. 

Consider now the "genome evolution." We define the sets Ai, i 2': 0, as 
follows. The initial set Ao is given. 
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For x E V* and a given set R of splicing rules and for i ?: 0, we define 

{
I, if there is y E Ai U Ac and r E R such that 

Oi(X, R) = (x, y) Fr (w, z) or (y, x) Fr (w, z), for some w, z E V*, 
0, otherwise. 

Moreover, we define 

Ri(Ai) = {w E V* I (x,y) Fr (w,z) or (x,y) Fr (z,w), for 

r E Ri,x,y E A UAc,{x,y} nAi i= 0}, i?: o. 

Then 

(As at the beginning of this section, we can say that ~ = Rule(~-l,Ai-l) 
and Ai = String(~_l' Ai- 1).) 

In words, Ai consists of all strings in Ai- 1 which cannot enter a splicing 
with another string in Ai-lor in Ac according to a rule in the current set 
R i - 1 , plus all the strings obtained by such splicing operations. Note that a 
string already used in a splicing operation does not survive, it is no longer 
present in the next set Ai. When no currently available splicing rule can be 
applied to the strings in the current set Ai (and to the axioms in Ac), then 
all strings in Ai will pass unchanged to the next step, hence Ai+! = Ai. 

The language generated by 'Y is defined by 

L(-y) = (U Ai) n T*. 
i~O 

In Chap. 6 (Theorem 6.2) we have seen that we can characterize RE by 
using insertion rules of the form (u, >./ a, v) with lui, Ivl ~ 2, and deletion 
rules of the form (u, >./a, v) with lui, Ivl ~ 1, a being a symbol. Combining 
this result with that in Lemma 7.16 (carefully arranging the construction in 
such a way to meet the conditions in the work of an extended H system with 
locally evolving splicing rules as above), we get a characterization of RE in 
the new framework. In this way we use splicing rules of an arbitrary length, 
which is bad from a practical point of view. 

Fortunately, a characterization of RE holds also true for a rather partic
ular type of H systems with locally evolving rules. 

An extended H system with locally evolving splicing rules 'Y = (V, T, Ao, 
Ac, E, Co, P) is said to be restricted if card(Ao) = 1, card( Co) = 1. 

Thus, we have exactly one splicing rule at each time. 
Let us denote by EH2(FIN, rle[m]), m ?: 1, the family oflanguages L(-y), 

generated by restricted locally evolving H systems as above with splicing rules 
of radius at most m, m ?: 1. 

Theorem 8.6. EH2(FIN,rle[4]) = RE. 
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Proof. We have to prove only the inclusion RE s:;; EH2(FIN,rle[4]). 
Consider a type-O grammar G = (N, T, S, Po) in Kuroda normal form, 

that is with rules of the forms 

1. AB ---t CD, for A, B, C, DEN, 

2. A ---t BC, for A, B, C E N, 

3. A ---t a, for A E N, a E T, 

4. A ---t A, for A E N. 

As usual, we assume all the rules in Po labeled in a one-to-one manner. 
We construct the restricted extended H system with locally evolving splic-

ing rules 

with 

'Y = (V, T, Ao, A c , E, Co, P), 

V = NUTU{X,Y,Z,Bo}, 

Ao = {XBoSY}, 

Ac = {ZY} U {ZvY 1 U ---t V EPa} 

U {XaZ 1 a E NUTU {Bo}}, 

E = NUT 

U {X, Y, Z, Bo, Cl, C2, dl , d2, d3 , el, e2, iI, 12, gl, g2, hI, h2} 

U {[r, 1], [r, 2]1 r EPa}, 

Co = (Cl #Y$Z#), 

and the set P containing the following point mutation rules; in order to check 
the correctness of the construction, we present these rules together with the 
current configuration set R i , consisting of exactly one splicing rule (which 
however is not always deterministically produced). 

1. Producing splicing rules for simulating rewriting rules in Po: 

A. For each rule r : AB ---t CD E Po we consider the following insertion
deletion rules: 

O. ------- Cl#Y$Z#, 
l. (Cl #, A/[r, 1], Y), Cl #[r, l]Y$Z#, 
2. (A, cdA, #[r, 1]), #[r,l]Y$Z#, 
3. (#, A/A, [r, 1]), #A[r,l]Y$Z#, 
4. (#A,A/B,[r,l]), #AB[r,l]Y$Z#, 
5. (AB[r, l]Y$Z#, A/[r, 2], A), #AB[r, l]Y$Z#[r, 2], 
6. (A, [r, 1]/ A, Y$Z#[r, 2]), #ABY$Z#[r, 2], 
7. (#, AlC, [r,2]), #ABY$Z#C[r, 2], 
8. (#C, A/ D, [r, 2]), #ABY$Z#CD[r, 2], 
9. (CD, A/Y, [r, 2]), #ABY$Z#CDY[r, 2], 

10. (Y, [r, 2]/ A, A), #ABY$Z#CDY. 
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The splicing rule obtained is the first one in the sequence above that 
can be applied to strings of the form X wYand to axioms in Ac (the sym
bols CI, [r, 1], [r,2] do not appear in V, hence in strings produced by splicing 
from Ao and Ac). Note that the insertion rule 5 can be repeated, introduc
ing several copies of the symbol [r,2], hence producing strings of the form 
#AB[r, l]Y$#[r, 2]k, with k 2: 2, but only the leftmost occurrence of the 
symbol [r,2] will introduce symbols C, D and Yj then, in the presence of Y, 
all symbols [r,2] are removed (otherwise the currently produced splicing rule 
cannot be applied). 

B. For each rule r : A ~ BC E Po we consider the following mutation 
rules: 

o. ------- CI#Y$Z#, 
1. (CI #, A/[r, 1], Y), CI #[r, l]Y$Z#, 
2. (A, cd A, #[r, 1]), #[r,l]Y$Z#, 
3. (#,AIA, [r, 1]), #A[r,l]Y$Z#, 
4. (A[r, l]Y$Z#, A/[r, 2], A), #A[r, l]Y$Z#[r, 2], 
5. (A, [r, l]jA, Y$Z#[r, 2]), #AY$Z#[r, 2], 
6. (#, AlB, [r, 2]), #AY$Z#B[r, 2], 
7. (#B,A/C, [r,2]), #AY$Z#BC[r, 2], 
8. (BC, AIY, [r,2]), #AY$Z#BCY[r, 2], 
9. (Y, [r, 2]jA, A), #AY$Z#BCY. 

C. For any rule of the type r : A ~ a E Po we introduce the mutation 
rules 1 - 5 in group B above, as well as the following three insertion-deletion 
rules: 

6. (#, AI a, [r, 2]), #AY$Z #a[r, 2], 
7. (a, AIY, [r,2]), #AY$Z#aY[r, 2], 
8. (Y, [r, 2]/A, A), #AY$Z#aY. 

D. Finally, for any rule r : A ~ A E Po we again introduce mutation rules 
1 - 5 from group B above, and we continue with the following mutation rules: 

6. (#, AIY, [r,2]), #AY$Z#Y[r, 2], 
7. (Y, [r, 2]jA, A), #AY$Z#Y. 

In all cases, only in the last step (after using the rule B9, C8, and D7, 
respectively) can we obtain a splicing rule containing no symbol CI, [r, 1], [r,2], 
hence applicable to strings obtained from Ao, Ac by splicing. 

Denote, in general, the corresponding rule in Po by u ~ v. The obtained 
splicing rule is #uY$Z#vY, hence we can splice 

(XwluY,ZlvY) ~ (XwvY,ZuY). 

The string X wv Y (corresponding to the simulation of the rule u ~ v) will 
be used at a subsequent splicing step, the first one when a splicing rule is 
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applicable to it. If ZuY is also used, then it will never produce a terminal 
string, because the symbol Z cannot be eliminated (we will see this below). 

After using a rule #uY$Z#vY, we continue to edit it, returning to the 
template rule Cl #Y$Z#. This is done by using the following point mutation 
rules: 

A'. o. ------- #ABY$Z#CDY, 
1. ($Z#CD, >'Iel, )Y, #ABY$Z#CDel Y, 
2. (el, YI>', >'), #ABY$Z#CDel, 
3. (>', oJ >., el), #ABY$Z#el, a E NUT, 
4. (>', >'le2, Y$Z#el), # ABe2Y $Z#el, 
5. (e2Y $Z#, ed>', >'), # ABe2Y $Z#, 
6. (>', al >., e2), #e2Y$Z#, a E N, 
7. (>', >'1 Cl, #e2), cl#e2Y $Z#, 
8. (Cl #, ed >., >'), Cl#Y$Z#. 

We have returned to the splicing rule in Co. The same happens in the 
case B, without any modification (with CD being the right hand member of 
the corresponding rule in Po; rule 6 is used only once). For the case C we 
have to replace rule 1 above with 

I'. ($Z#a, >'Iel, Y), #AY$Z#aelY, 

whereas in the case D we replace rule 1 above with 

I". ($Z#, >'Iel, Y), #AY$Z#elY. 

In all cases, the subsequent mutation rules 2 - 8 work in the same way, 
reproducing the splicing rule Cl #Y$Z#; no intermediate splicing rule can be 
applied to the string produced at a previous step and to an axiom in Ae , due 
to the control symbols e 1 , e2 . 

2. Producing splicing rules for rotating the current string: 

E. For each symbol a E NuT U {Bo} we consider the following mutation 
rules (for producing a splicing rule which cuts the symbol a from the right 
end of the string): 

o. ------- cl#Y$Z#, 
1. (Cl #, >'1 dl, Y), cl#dlY$Z#, 
2. (>', cd >., #dl ), #dlY$Z#, 
3. (#,>'Ia,dl ), #adlY$Z#, 
4. (adlY$Z#, >'IC2, >'), #adlY$Z#C2, 
5. (>.,dd>', Y$Z#C2), #aY$Z#c2, 
6. (#,>'IY,C2), #aY$Z#Yc2, 
7. (Y, c21>', >'), #aY$Z#Y. 

The obtained splicing rule contains no control symbol Cl, dl , C2, hence it 
can be used for cutting a from the right hand end of the current string: 

(XwlaY,ZIY) F (XwY,ZaY). 
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The string X w Y will be spliced at the first subsequent step when a splicing 
rule can be applied, while ZaY will never lead to a terminal string. 

F. For each symbol a E NUT U {Bo} we also consider the following 
mutation rules (for producing a splicing rule which introduces the symbol a 
in the left hand end of the string): 

o. ------- #aY$Z#Y, 
I. (Z, A/d2 , #Y), #aY$Zd2#Y, 
2. (d2 #,Y/A,A), #aY$Zd2 #, 
3. (A,Z/A,d2 ), #aY$d2#, 
4. (A, A/d3 , Y$d2 ), #ad3Y$d2 #, 
5. (d3Y$, A/X, d2 ), #ad3Y$Xd2 #, 
6. ($X,d2/A,A), #ad3Y$X#, 
7. (d3Y, A/Z, $), #ad3YZ$X#, 
8. (d3 , Y/A, Z$), #ad3 Z$X#, 
9. (A, A/ X, #ad3 ), X#ad3 Z$X#, 

10. (X, A/a, #ad3 ), Xa#ad3 Z$X#, 
II. (Xa#,a/A,d3 ), Xa#d3 Z$X#, 
12. (Xa#,d3 /A,Z), Xa#Z$X#. 

The obtained splicing rule can be applied: 

(XaIZ,XlwY) F (XawY,XZ), 

hence the string has been circularly permuted with one symbol. (Note that 
because of the way "( works, transforming the splicing rule from a step to the 
next one, we no longer need control symbols like X', Yo., a E NUT U {Bo}, 
as in the proof of Lemma 8.2.) 

G. (Return to the template splicing rule Cl #Y$Z#; here a E NuT U 
{Bo} ): 

o. ------- Xa#Z$X#, 
I. (a#Z$, A/ h, A), Xa#Z$hX#, 
2. (h,X/A,#), Xa#Z$h#, 
3. (h,A/Z,#), Xa#Z$hZ#, 
4. (Z,)..j 12, $hZ), Xa#Zh$hZ#, 
5. (12$, h/ A, A), Xa#Zh$Z#, 
6. (#,Z/A,h), Xa#h$Z#, 
7. (#h,A/Y,$), Xa#hY$Z#, 
8. (A, A/Cl, Xa#hY), clXa#hY$Z#, 
9. (clX,a/A,#h), clX#hY$Z#, 

10. (Cl, X / ).., # h), cl#hY$Z#, 
II. (cl#,h/A,A), Cl#Y$Z#. 

We have not only returned to Cl #Y$Z#, but this is also the first time 
when the rules AI, B1, G1, D1, E1 (having the first hand member Cl #Y) 
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can be applied again. Thus, we can continue by any of these rules, either 
simulating again a rule in Po or moving one more symbol a from the right 
hand end of the string bounded by X, Y to its left hand end. 

3. Finishing the work of the system: 

H. (removing the prefix XBo): 

o. ------- Cl#Y$Z#, 
I. (Cl#,A/gl,Y), Cl#glY$Z#, 
2. (Cl' A/X, #gd, ClX#glY$Z#, 
3. (A, cd A, X #gd, X#glY$Z#, 
4. (X, A/ Bo, #gd, XBO#glY$Z#, 
5. (gl, Y/A, $), XBO#gl$Z#, 
6. (gl$Z, A/g2, i), XBO#gl$Zg2#, 
7. (A,gdA,$Zg2), XBO#$Zg2#, 
8. ($,Z/A,g2#), XBO#$g2#, 
9. ($g2#, A/Y, A), XBO#$g2#Y, 

10. (g2#, A/Z, Y), X BO#$g2#ZY, 
II. (A,g2/A,#ZY), XBo#$#ZY. 

Only the last splicing rule can be applied: 

(XBolwY, IZY) F (XBoZY,wY). 

J. (removing the end marker Y): 

o. ------- XBo#$#ZY, 
I. ($, A/hI, #ZY), X Bo#$hl #ZY, 
2. (hl#Z,Y/)..,A), XBo#$hl#Z, 
3. (hl#,Z/)",)..), XBo#$hl#, 
4. (hI, A/Y, i), XBo#$hlY#, 
5. (hl,)..jZ,Y#), XBo#$hlZY#, 
6. (A, )..jh2, #$hlZY), XBoh2#$hl ZY#, 
7. (h2#$, hI/A, A), X Boh2#$ZY #, 
8. (A,Bo/A,h2), Xh2#$ZY#, 
9. (A, X/ A, h2), h2#$ZY#, 

10. (h2#, )..jY, $), h2#Y$ZY#, 
II. (A, h2/ A, #Y$), #Y$ZY#. 

Thus we can splice 

(wIY, ZYI) F (w, ZYY). 

If the string w is terminal, then it is in L( G); if not, then no further splicing 
can be applied to it, because the end markers X, Yare no longer present 
and no further splicing rules will be produced from now on. It is easy to see 
that using the mutation rules in "wrong" ways (for instance, using rule 11 
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in the previous group before using rules 8, 9, hence producing a splicing rule 
a#Y$ZY#, with a E {X,Bo,XBo}), will not produce a terminal string (in 
the example above, the current string either contains no occurrence of X and 
Bo, because rule X Bo#$#ZY has been applied, or, if such a symbol appears, 
then no further splicing is done, hence the string is either X Bo Y, so we get 
A, or X remains unchanged, so no terminal string is obtained). The reader 
can easily check such variants. The rule #Y$ZY # cannot be modified, the 
work of '"Y stops here. 

Consequently, we get L('"'() = L(G). 
The longest strings Ul, U2, U3, U4 in splicing rules Ul #U2$U3#U4 produced 

as above appear in rules obtained at steps A4, A5, A9, B8, A'4, A'5, and 
this length is four. In conclusion, RE ~ EH2(F I N, rle[4]). D 

Note in the previous construction that we have used only insertion and 
deletion rules (always of one symbol only) and no rule of the form (u, a/ /3, v), 
for a t- A t- /3, is involved. Using the latter rules in addition, the construction 
can be slightly simplified. 

It is also highly probable that the radius of the system can be decreased, 
to at most two, as it happens in all previous cases. This, however, will make 
the construction above still more complex, hence we do not continue here in 
this direction. 

No attention has been paid in this construction to the length of contexts 
in insertion-deletion rules. For instance, the longest rules here are those 
in group A5, of the form (u, A/a, v) with v = A and lui = 7. Of course, 
this parameter can be improved; it is highly probable that rules of the form 
(u, a//3, v), with lui :S 2, Ivl :S 2, are sufficient. 

On the other hand, the fact that the strings in Ac are always present can 
be arranged in an "internal" way, at least in the case of the system in the 
proof of the theorem above: Each string in Ac is of one of the forms Zx, xZ. 
Considering the splicing rules Z #x$Z #x and x#Z$x#Z, these strings are 
passed from one step to the next unmodified, reproduced by splicings. Now, 
splicing rules as above can be permanently produced as follows. Consider the 
case of Z#x$Z#x. If we have in Co the rules 

and we also consider the mutation rules 

then at each step the two splicing rules above are reproduced, hence 
Z #x$Z #x is always present. The same can be done for rules of the form 
x#Z$x#Z. 

Considering further variants of evolving H systems, with the rules modifi
cation also depending on the currently available (or spliced) strings, remains 
a research topic. 



8.5. H Systems Based on Double Splicing 287 

8.5 H Systems Based on Double Splicing 

We now consider a class of H systems which can be viewed as a counterpart 
of the matrix grammars in the regulated rewriting area. However, we do not 
have here sequences of splicing rules specified in advance, but we only ask 
that the work of an H system proceeds in a couple of steps: the two strings 
obtained after a splicing immediately enter a second splicing. The rules used 
in the two steps are not prescribed or dependent in any way to each other; 
also, the two output strings of a double splicing step are not related to the 
two input strings of a later double splicing step. 

Consider a usual extended H system 'Y = (V, T, A, R) with finite sets A 
and R. For x, y, W, z E V* and TI, T2 E R we write 

(x,y) F r l,r2 (w,z) iff (x,y) Frl (u,v) and (u,v) Fr2 (w,z), for u,v E V*. 

For a language L ~ V* we define 

O"d(L) = {w I (x, y) F r l,r2 (w, z) or (x, y) F r l,r2 (z, w), 
for X,Y E L,TI,T2 E R}, 

O"d(L) = U O"~(L), where 

O"~(L) = L, 

O"~+l(L) = O"d(L) u O"d(O"~(L)), i :::: O. 

Then, we associate with 'Y the language 

By EH2(FIN,d[k]) we denote the family of languages Ldb) generated 
as above by extended H systems 'Y = (V, T, A, R) of radius at most k, k :::: 1. 

Let us examine an example: consider the extended H system 

'Y = ({a, b, c, d, e}, {a, b, c, d}, {cabd, caebd} , R), 

with R containing the splicing rules 

TI = c#a$ca#ebd, T2 = ce#bd$b#d. 

Take a string of the form canbnd, n :::: 1; one of the axioms is of this form, 
with n = 1. The only possible splicing involving this string is 

In the sense of the double splicing operation, we have to continue; the only 
possibility is 
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Consequently, we have 

The operation can be iterated. 
Another possibility is to start with two copies of the axiom caebd: 

(claebd, calebd) Frl (celbd, caaebld) Fr2 (ced, caaebbd). 

We can continue, but the symbol e will be present in all obtained strings; 
these strings cannot enter splicings with strings of the form canbnd, hence 
they do not lead to terminal strings. 

In conclusion, we obtain 

which is not a regular language. Consequently, the double splicing is strictly 
more powerful than the simple one. This assertion will be stressed below 
in the strongest possible way: extended H systems using the double splicing 
operation are equal in power to type-O grammars. 

Theorem 8.7. RE = EH2(FIN,d[2]). 

Proof. We prove only the inclusion~. The reverse inclusion can be 
proved by a straightforward construction of a type-O grammar simulating an 
extended H system based on the double splicing operation (or we can invoke 
the Church-Turing Thesis). 

The proof consists of two phases. 
(1) Consider a grammar G = ({S, BI, B2, B3, B4}, T, S, P U {BIB2 ---+ >., 

B3B4 ---+ >.}) in the Geffert normal form given in Theorem 3.5(2), that is, 
with P containing rules of the forms S ---+ uSv, S ---+ x, with u, v, x E (TU 
{B1 ,B2,B3,B4})+. We construct the extended H system 'Y = (V,T,A,R) 
with: 

v = TU{S,B1 ,B2,B3,B4,X,Y,Z,Z'}, 

A = {SxS I S ---+ x E P,x E (TU {BI,B2,B3,B4})*} 
U {SuZvS I S ---+ uSv E P} 

U {Z',XY}, 

R = {S#$Su#ZvS, SZ#vS$#S I S ---+ uSv E P} 

U {S#$#Z', SZ'#$#S} 

U {Bl#B2$X#Y, #B1Y$XB2#} 

U {B3#B4$X#Y, #B3Y$XB4#}. 

The idea of this construction is as follows. The splicing rules of the 
forms S#$Su#ZvS, SZ#vS$#S simulate the context-free rules S ---+ uSv 
in P, while the splicing rules Bl#B2$X#Y, #B1Y$XB2#, B3#B4$X#Y, 
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#B3Y$XB4# simulate the rules BIB2 ----7 A,B3B4 ----7 A, respectively; the 
terminal rules of G are simulated by the axioms SxS in A. The context-free 
derivations in G are simulated in "( in the reverse order, starting from the 
center of the produced string (from the substring introduced by a rule S ----7 x) 
towards the ends. 

For instance, assume that we have a string of the form SwS with w E 

(T U {Bl,B2,B3,B4})*; the axioms SxS are of this type. If we apply a 
splicing rule Tl = S#$Su#ZvS, associated with some rule S ----7 uSv E P, 
then we get 

(SlwS, SuIZvS) Frl (SZvS, SuwS). 

We have to continue; because no symbol X, Y, Z' is present, the only pos
sibility is to use the rule T2 = SZ#vS$#S associated with the same rule 
S ----7 uSv E P: 

(SZlvS, SuwlS) Fr2 (SZS, SuwvS). 

The double splicing 

(SwS, SuZvS) Frl,r2 (SZS, SuwvS) 

has simulated the use of the rule S ----7 uSv in the reverse order. 
(The reader might check that starting with (SwSI, SuIZvS) Frl 

(SwSZlvS, ISu) Fr2 (SwSZSu, vS) does not lead to terminal strings.) 
If to a string SwS we apply the rule Tl = S#$#Z', then we have to 

continue with the rule T2 = SZ'#$#S: 

(SlwS, IZ') Frl (SZ'I,wIS) Fr2 (SZ'S,w). 

The occurrences of S from the ends of the string are removed (this means 
that from now on no further rule of the form S ----7 uSv E P can be simulated 
in "( starting from the string w). 

If to a string w, bounded or not by occurrences of S, we apply the splicing 
rule Tl = Bl #B2$X #Y (providing that a substring BIB2 appears in w, that 
is, w = xB1B 2y), then we have to continue with the rule T2 = #B1Y$XB2# 
(no other rule is applicable to the intermediate strings), hence we get: 

The occurrence of BIB2 specified above is removed from the input string. 
The same assertions are true if we first apply the rule B3#B4$X#Y; an 

occurrence of the substring B3B4 is removed. 
The strings S Z S, S Z' S cannot enter splicings leading to terminal strings 

and this can be easily seen. If a string X B2Bl Y, X B4B3 Y enters new splic
ings, they produce nothing new. For instance, for T = #Bl Y$X B 2# we 
get: 
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No double splicing of a type different from those discussed above can 
lead to terminal strings. Consequently, the double splicing operations in "( 
correspond to using context-free rules in P, to removing the two occurrences 
of S from the ends of a string, or to using the erasing rules BIB2 -; .x, 
B3B4 -; .x. The order of using these rules is irrelevant. Consequently, L( G) 
= L d ("(). 

(2) In the previous construction we can modify the "linear" rules S -; 
uSv of P, replacing them by rules of the forms D -; O'.E{J, where 0'., {J E 

T U {Bl, B 2 , B3 , B4 } and IO'.{JI = 1, in such a way that we obtain a grammar 
which is equivalent with G, but contains only rules with the right hand side of 
length two; moreover, we may assume that all rules D -; O'.E{J have D =I- E; 
the nonterminal alphabet is now bigger, new symbols are used. 

A linear grammar with several nonterminal symbols can be simulated by 
an extended H system using double splicing operations in a way similar to 
the way we have simulated the context-free rules of the grammar G in the 
previous construction. 

Specifically, consider a linear grammar G = (N, T, S, P) and construct 
the extended H system "( = (V, T, A, R) with 

V = NUTU{Z,Z'}, 

A = {DxD I D -; x E P,x E T*} 

U {DO'.Z{JD I D -; O'.E{J E P, where D, E E N, 0'., {J E T U {.x}} 

U {Z'}, 

R = {E#$DO'.#Z{J, EZ#{JD$#E I D -; O'.E{J E P, 

D, E E N, 0'., {J E T U {.x}} 
U {S#$#Z', SZ'#$#S}. 

The reader can easily check that the derivations in G are simulated in "( 
in the reverse order, starting from strings DxD associated to terminal rules 
D -; x and going back to a string of the form SzS, when the symbols Scan 
be eliminated. Therefore, L(G) = Ld("(). Clearly, rad("() = 2. 

Combining this idea with the manner of simulating erasing rules of the 
form BiBj -; .x (note that the splicing rules associated with these rules are 
of radius one), we get an extended H system of radius two. 0 

8.6 Multisets 

In the definition of splicing operations (of both types f-- and F) used in the 
previous sections, after splicing two strings x, y and obtaining (in the case 
of F) two possibly new strings z, w, we may use again x or y as a term 
of a splicing, these strings are not consumed by splicing; moreover, we may 
splice x or y with z or w, hence we may splice strings from one "generation" 
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with strings from another "generation". Also the new strings, z and w, are 
supposed to appear in an arbitrary number of copies each. 

This assumption, that if a string is available then arbitrarily many copies 
of it are available, is realistic in the sense that, usually, a large number of 
copies of each string are used whenever a string is used. Moreover, producing 
a large number of copies of a DNA sequence is easily feasible by amplifica
tion through polymerase chain reaction (peR) techniques. This also reduces 
complexity: the computation can run in parallel, on a large number of string
processors. 

However, the existence of several copies of each string raises the difficult 
problem of controlling the splicing so as to prevent "wrong" operations. For 
instance, after cutting several copies of a string x into fragments Xl, x2 and 
modifying (part of the copies of) Xl, X2 to some X~ , x~, the test tube will con
tain strings of all four forms, x!, X2, x~ , x~; it might be possible to recombine 
Xl with x~ or x~ with X2 in such a way as to obtain illegal strings which "look 
like" legal strings XIX2 or x~ x~. 

A possibility to avoid this difficulty is to use at least some of the strings 
in a specified number of copies, and to keep track of these numbers during 
the work of the system. This leads us to consider multisets, i.e., sets with 
multiplicities associated with their elements. 

Formally, a multiset over a set X of abstract elements is a mapping M : 
X ----+ N U {oo}; M(x) is the number of copies of X E X in the multiset 
M. When M(x) = 00, then X is present in arbitrarily many copies. The set 
{x E X I M(x) > O} is called the support of M and it is denoted by supp(M). 
A usual set S ~ X is interpreted as the multiset defined by S(x) = 1 for 
XES, and S(x) = 0 for X tt S. 

For two multisets M I , M2 over X we define their union by (MI UM2)(x) = 
MI(X) + M2(x), and their difference by (MI - M2)(X) = MI(X) - M2(x) for 
X E X such that MI(X) ~ M2(x) and both M I(x),M2(x) are finite, and 
(MI - M2)(X) = 00 for X E X such that Ml(X) = 00; for other strings 
x E X the difference MI - M2 is not defined. Usually, a multiset with a finite 
support, M, is presented as a set of pairs (x, M(x)), for x E supp(M). 

For instance, MI = {(ab, 3), (abb, 1), (aa,oo)} is a multiset over {a,b}* 
with the support consisting of three words, ab, abb, aa; the first one ap
pears in three copies, the second one appears in only one copy, whereas 
aa appears in an arbitrary number of copies. If we also take M2 = 
{( ab, 1), (abb, 1), (aa, 17)}, then the difference MI - M2 is defined and it is 
equal to {(ab,2),(aa,00)}. 

An extended J-LH system is a quadruple 

'Y = (V, T, A, R), 

where V is an alphabet, T ~ V (the terminal alphabet), A is a multiset over 
V+ with supp(A) finite (axioms), and R is a finite set of splicing rules over 
V. 
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For such a /LH system and two multisets M1, M2 over V* we define 

Ml =*'Y M2 iff there are x, y, z, w E V* such that 

(i) MI(X) ~ 1, (MI - {(x, l)})(y) ~ 1, 

(ii) x = Xl UI U2 X2, Y = YI U3U4Y2, 

Z = Xl UI U4Y2, W = YI U3U2X2, 

for XI, X2, YI, Y2 E V*, UI #U2$U3#U4 E R, 

(iii) M2 = «(MI - {(x, I)}) - {(y, I)}) 
U{(z, I)}) U {(w, I)}. 

At point (iii) we have operations with multisets. The writing above is meant 
to also cover the case when X = Y (then we must have MI(X) ~ 2 and we 
must subtract 2 from MI(x)), or z = w (then we must add 2 to M2(z)). 
When'Y is understood, we write =* instead of =*'Y. 

In plain words, when passing from a multiset MI to a multiset M 2 , ac
cording to 'Y, the multiplicity of two elements of MI, X and Y, is diminished 
by one, and the multiplicity of the resulting words, z and w, is augmented 
by one. The multiplicity of all other elements in supp(Md is not changed. 
The obtained multiset is M 2 • 

The language generated by an extended /LH system 'Y consists of all words 
containing only terminal symbols and whose multiplicity is at least once 
greater than or equal to one during the work of 'Y. Formally, we define this 
language by 

L('"'t) = {w E T* I w E supp(M) for some M such that A =*; M}. 

An extended H system 'Y = (V, T, A, R), as defined in Sect. 7.4, can be 
interpreted as an extended /LH system with A(x) = 00 for all X E A and 
with M(x) = 00 for all multisets M whose support is composed of strings X 
derived from A. Such multisets (with M(x) = 00, if and only if M(x) > 0) 
are called w-multisets, hence the corresponding H systems can be called wH 
systems. 

The family of languages generated by extended /LH systems 'Y = (V, T, 
A, R) with card( supp( A)) :::; n and rad( R) :::; m, n, m ~ 1, is denoted by 
EH2 (/L[n], [m]); when n or m are not bounded, then we replace [n], [m] by 
FIN. 

Similarly, we may write the families EH2(FLI, FL2) as EH2(wFLI, FL2) 
in order to stress the fact that we work with w-multisets. 

It is important to point out here the fact that writing M(x) = 00 for 
a string in supp( M) does not necessarily mean that we actually dispose of 
infinitely many copies of x. It only means that we do not count the number 
of copies of x: at any moment when we need a copy of X we have it. In 
the DNA framework, this means that when we need further copies of a given 
sequence, we can produce them (for instance, by amplification). 
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Using multisets, hence counting the number of occurrences (of some) of 
the strings used, provides once again the tools for controlling the work of H 
systems in such a way as to characterize the family RE. 

We separate the proof of this assertion in several lemmas; the first one 
establishes the most important part of this result, the simulation of a type-O 
grammar by an extended J.lH system. 

Lemma 8.lD. RE ~ EH2 (J.lFIN, [5]). 

Proof. Consider a type-O Chomsky grammar G = (N, T, S, P), with the 
rules in P of the form u ---- v with 1 ::; lui ::; 2, 0 ::; Ivl ::; 2, u =j:. v (for 
instance, we can take G in the Kuroda normal form). Also assume that the 
rules in P are labeled in a one-to-one manner. By U we denote the set NUT 
and we construct the extended J.lH system 

'Y = (V, T, A, R), 

where 

the multiset A contains the word 

with the multiplicity A(wo) = 1, and the following words with infinite mul
tiplicity: 

Wr = (r)v[r], 
We> = Z1aYZ2, 
w~ = Z1YaZ2, 
Wt =YY. 

for r : u ---- v E P, 
for a E U, 
for a E U, 

The set R contains the following splicing rules: 

l. 8182Yu#f3d32$(r)v#[r], for r : u ---- v E P, 
f31,f32 E UU{X2}' 81,82 E UU{Xt}, 

2. Y#u[r]$(r)#va, for r : u ---- v E P, a E U U {X2}, 
3. 8182Ya#f31132$Z1aY #Z2, for a E U, f31, f32 E U U {X2}' 

81 ,82 E U U {Xt}, 
4. 8#Y aZ2$Z1 #aY f3, for a E U, 8 E U U {X t}, 

f3EUU{X2}, 
5. 8aY #f31132 f33 $Z1 Ya#Z2, for a E U, f31 E U, f32, f33 E U U {X2}, 

8EUU{X1}, 

6. 8#aY Z2$Z1 #Yaf3, for a E U, 8 E U U {X t}, 

f3EUU{X2}' 
7. #YY$XrY#w, for W E {Xn U T{Xi} U T2{X2} U T3, 
8. #Xi$y3#. 
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The idea behind this construction is as follows. The rules in groups 1 and 
2 simulate rules in P, in the presence of the symbol Y. The rules in groups 
3 and 4 move the symbol Y to the right, the rules in groups 5 and 6 move 
the symbol Y to the left. The "main axiom" is Woo All rules in groups 1 - 6 
involve a word derived from Wo and containing such a symbol Y introduced 
by this axiom, in the sense that they can use only one axiom different from 
Woo In anyone moment, we have two occurrences of Xl at the beginning 
of a word and two occurrences of X 2 at the end of a word (maybe the same 
word). The rules in groups 1, 3, and 5 separate words of the form Xr zX:l into 
two words Xr Zl, Z2X?, each one with multiplicity one; the rules in groups 2 
and 4, 6 bring together these words, leading to a word of the form Xr z' X? 
The rules in groups 7 and 8 remove the auxiliary symbols X I ,X2 , Y. If the 
remaining word is terminal, then it is an element of L( G). The symbols 
(r), [r] are associated with rules in P, while Zl and Z2 are associated with 
moving operations. 

Using these explanations, the reader can easily verify that each deriva
tion in G can be simulated in " hence we have L(G) S;;; L(I). (An induc
tion argument on the length of the derivation can be used, but the details 
are straightforward and tedious, and we shall not adopt that strategy here. 
Moreover, the discussion below implicitly shows how to simulate a terminal 
derivation in G by splicing operations in ,.) 

Let us consider in some detail the opposite inclusion. We claim that if 
A:=::::;.~ M and W E T*,M(w) > 0, then W E L(G). 

As we have pointed out above, by a direct check we can see that we cannot 
splice two of the axioms Wn Wa , w~, Wt (for instance, the symbols <5, (3 in rules 
in group 4 and 6 prevent the splicing of W a , w~, a E U). In the first step, 
we have to start with wo, Wo = XrYSX?, A(wo) = 1. Now, assume that 
we have a word XrwIYw2X? with multiplicity 1 (wo is of this form). If W2 
starts with the left hand member of a rule in P, then we can apply to it a 
rule of type 1. Assume that this is the case, the word is XrWl Y UW3X? for 
some r : U -+ v E P. Using the axiom (r)v[r] from A we obtain 

No rule from groups 1 and 3 - 8 can be applied to the obtained words. From 
group 2, the rule Y#u[r]$(r)#va can be applied involving both these words, 
which leads to 

The word (r)u[r] can never enter a new splicing, because in the rule r 
u -+ v from P we have assumed u #- v. The multiplicity of XrWl Yu[r] 
and (r)vW3Xr has been reduced to 0 again (hence these words are no longer 
available), the multiplicity of XrwIYvw3X? is one. In this way, we have 
passed from XrWI Y UW3X? to XrWI Y VW3X?, both having the multiplicity 
one, which corresponds to using the rule r : u -+ v in P. Moreover we see 
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that at each moment there is only one word containing xl and only one word 
(maybe the same) containing xi in the current multiset. 

If to a word XlWI Yaw3Xi we apply a rule of type 3, then we get 

No rule from groups 1 - 3 and 5 - 8 can be applied to the obtained words. 
By using a rule from group 4 we obtain 

The first of the obtained words has replaced XlWI Y aW3Xi, which now has 
the multiplicity 0 (hence we have interchanged Y with a), the second one is 
an axiom. 

In the same way, one can see that the use of a rule from group 5 must 
be followed by using the corresponding rule of type 6, which results in inter
changing Y with its left hand neighbour. 

Consequently, in each moment we have a multiset with either one word 
XlWIYw2Xi or two words xlz l , z2xi, each one with multiplicity 1. Only 
in the first case, provided WI = A, we can remove XlY by using a rule from 
group 7; then we can also remove xi by using the rule in group 8. This is the 
only way to remove these nonterminal symbols. If the word obtained is not 
terminal, then it cannot be further processed, because it does not contain the 
symbol Y. In conclusion, we can only simulate derivations in G and move 
Y freely in the word of multiplicity one, hence L(-y) <;;; L( G). One sees that 
the radius of 1 is five, reached by rules in group 1, where l(h62Yul = 5 when 
lui =2. 0 

Remark 8.3. Let us estimate the number of copies necessary for each axiom. 
We have said that A( wo) = 1 (and this is essential for the correctness of the 
simulation of G by 1 above). For all W of type Wr , wo" w~, Wt we have said 
that A(w) = 00. Actually, one sees that for each rEP we need as many 
copies of Wr as many times the rule r is used in a derivation in G. Then, Wa 

and w~ are necessary for each operation of moving Y to the left or to the 
right. The word Wt is used only once, by a rule of type 7, at the end of the 
work of 1. Thus, we might take A(wd = 1, too. 

Moreover, we have seen above that in each moment there are exactly one 
or exactly two words whose multiplicity is controlled, namely equal to one. 
Thus, we do not have to "count", say, distinguishing between nand n + 1 
copies of a given word, for large n. It is enough to distinguish between 0 and 
1, and that for at most two words; this distinction is made automatically, 
by the way the system above works, our only concern is to prevent making 
copies of these distinguished words. 

This fact, plus the possibility of obtaining new copies of certain words, via 
PCR techniques, makes the construction above realistic - from these points 
of view. 0 



296 8. Universality by Finite H Systems 

Lemma 8.11. EH2(p,PIN, [m]) ~ EH2(p,[2], [m]), for all m ~ 1. 

Proof. Take an extended p,H system "y = (V, T, A, R), with finite 
supp(A). Let WI, W2, ... , Wn be the words of supp(A) such that A(Wi) < 00, 

o ~ i ~ n, and let ZI, ... , Zm be the words in supp(A) with A(Zi) = 00, 

o ~ i ~ m. We construct the extended p,H system 

where A' contains the word 

with multiplicity 1, and the word 

with infinite multiplicity. If n = 0, then W does not appear, if m = 0, then 
Z = dIcd2. Moreover 

The word Z can be used for cutting each Wi and each Zj from wand z, 
respectively. For instance, in order to obtain Zj we splice Z with Z using 
c#$#dI for the occurrence of c to the left hand of Zj, that is 

then we splice the second word with Z again using #c$d2#, and we get 

(Zjlc ... czmcd2, zl) F (Zj, ZCZj+l ... czmcd2). 

Arbitrarily many words Zj can be produced, because A'(z) = 00. 

In order to produce the words Wi, 1 ~ i ~ n, we start from the left 
hand end of the string w, by applying #c$d2# to wand Z; we get WI and 
ZC(WIC)A(wt}-I(W2C)A(w2) ... (Wnc)A(w n ) , both of them with multiplicity 1. 
Using the rule #dI$c# for Z and the second word above, we obtain zcz 
and (WIC)A(wt}-I(W2C)A(w2) ... (Wnc)A(wn ) , again both with multiplicity 1. 
From the first word we can separate axioms Zj, 1 ~ j ~ m, but this is not 
important, because these axioms appear with infinite multiplicity in A. From 
the second word we can continue as above, cutting again a prefix WI. In this 
way, exactly A(WI) copies of WI will be produced; in a similar way we can 
proceed for the other axioms W2, ... , Wn in order to obtain exactly A( Wi) 
copies of Wi, i = 2, ... , n. 

The use of the nonterminals c, dI , and d2 guarantees that only the axioms 
of "y with infinite multiplicity can be generated in an arbitrary number of 
copies by the splicing rules in R' - R, whereas for each axiom Wi of "y with 
finite multiplicity A(Wi) we can only obtain A(Wi) copies of Wi. If a rule of R 
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is used for splicing words of the form Xl CX2, i.e. containing the nonterminal c, 
then we finally will have to cut such a word by using the rules in R' - R in order 
to obtain a terminal word. As we start from the axioms of" separated by 
occurrences of the symbol c, and with the correct multiplicities (guaranteed 
by the mode of constructing the words wand z), this also corresponds to a 
correct splicing in ,. Consequently, L(r') = L(r). D 

Lemma 8.12. EH2(p,[1], FIN) <:;;; REG. 

Proof. Take an extended p,H system, = (V, T, A, R) with supp(A) = {w}. 
If A( w) < 00, then L(r) is obviously a finite language (every word in L(r) 
has a length not greater than Iwl' A(w)). 

If A(w) = 00, then L(r) E EH2([1],FIN) <:;;; EH2(FIN,FIN) = REG. 
Hence we conclude that EH2(p,[1],FIN) <:;;; REG. D 

Lemma 8.13. REG <:;;; EH2(w[1], [2]). 

Proof. In Lemma 7.18 we have proved that REG <:;;; EHI(FIN, FIN). It 
is easy to see that, in fact, we also get REG <:;;; EH2(FIN, [2]) (the system 
in the proof of Lemma 7.18 has radius two). Let, = (V, T, A, R) be the 
obtained H system. 

Now, using the same construction as in the proof of Lemma 8.11 (the ra
dius is not changed), we can combine all axioms in A with infinite multiplicity 
into one axiom, w, hence we obtain REG <:;;; EH2(w[1], [2]). D 

Theorem 8.8. REG = EH2(p,[1],[2]) = EH2(p,[1],FIN) c EH2(p,[2], 
FIN) = EH2(p,[2], [m]) = RE, for all m 2': 5. 

Proof. For the reader's convenience, let us recall the relations proved in 
the four lemmas above: 

Lemma 8.10: RE <;;: EH2(p,FIN, [5]), 

Lemma 8.11: EH2(p,FIN, [m]) <:;;; EH2(P,[2], [m]), for all m 2': 1, 

Lemma 8.12: EH2(p,[1], FIN) <:;;; REG, 

Lemma 8.13: REG <:;;; EH2(w[1], [2]). 

Now, from the definitions we have 

for all n, m 2': 1, and also for [n], [m] replaced by FIN. Thus, from Lemmas 
8.12 and 8.13 we obtain 

Lemma 8.10 and Lemma 8.11 imply 
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By a direct proof or from the Church-Turing Thesis we also have 

for all m 2': 5, which completes the proof. o 

In Sects. 8.1 - 8.5 we have characterized the family RE by imposing 
certain restrictions on the splicing operation in extended H systems, mainly 
restrictions inspired from the regulated rewriting area. These restrictions are 
of a non-biochemical nature, hence they raise serious difficulties for present 
day laboratory techniques if we want to implement them. More precisely, 
such restrictions can be (probably) implemented by manually controlling the 
splicing (e.g., by changing the temperature, acidity or other reaction condi
tions, in a way to favor or inhibit certain enzymes, by the primer technique 
described in Remark 8.2, etc.). However, this approach removes some of the 
central attractive features of DNA computing: the speed, the energy effi
ciency, the non-determinism (of parallel reactions). In particular, the speed 
of the process is dramatically decreased. The hope here is that control of 
the process can be carried out by intrinsic biochemical means. This requires 
significant progress in biochemical engineering. 

Unfortunately, the multiset approach also has a serious drawback: having 
two strings, each one with multiplicity one, and splicing them is an event 
with a very low probability. In order to enter a ligation reaction, two strings 
must be close enough to each other. How to ensure this in a realistic way 
and in a short interval of time (not to speak about an efficient time) is an 
open problem. For instance, we can bind the two strings to a solid support 
(these techniques are well understood, see, e.g., [95], [114], [125]), in order to 
keep them closer and to increase the probability of splicing, but the extent 
to which this operation is feasible and efficient for strings of large length is a 
matter of bioengineering out of the scope of this book. 

8.7 Universality Results 

In the previous five sections we have proved that the family of recursively 
enumerable languages can be characterized by extended H systems with the 
work controlled by: 

1. permitting contexts, 

2. forbidding contexts, 

3. local or global target languages, 

4. fitness mappings, 

5. next-rule mappings, 
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6. point mutations which edit the currently available splicing rules, 

7. double splicing, 

8. multisets. 

This means that the extended H systems of these types are computation
ally complete, in the sense that they are equal in power to Turing machines 
(Chomsky type-O grammars). 

However, such results are not enough in order to provide programmable 
computability models ("computers") based on the splicing operation. To this 
aim, universal H systems of the considered types should be found, systems 
with all components fixed and able to simulate any particular H system in 
the corresponding class when adding a code of the particular system to the 
universal one. It is natural to add this code as a further axiom to the axiom 
set of the universal system. Thus, we are led to the following general defini
tion. 

Consider an alphabet T and a class 1i of extended H systems (for instance, 
the class of extended H systems with permitting contexts, or with multisets, 
and so on). An element of 1i of the form 

where Vu is an alphabet such that T <;;;: Vu, Au <;;;: V;, and Ru is a set of 
splicing rules over Vu , is said to be universal for the class 1i if for every 
'Y E 1i there is a string w"( E V; such that L("() = L("(~), where 'Y~ = 
(vu, T, Au U {w"(}, Ru). 

Thus, w"(' the code of 'Y, is a "program" which can be executed by 'Yu in 
such a way that the work of'Y is simulated by'Yu. The axioms in Au can be 
viewed as constituting the "operating system" of the "computer" 'Yu. 

The restriction to a given terminal alphabet can be avoided by accepting 
a coding of T by elements of a fixed alphabet, for instance, consisting of only 
two symbols, a, b. Denoting by h this coding, h : T* --+ {a, b} *, we can 
then say that 'Yu is universal if L("() = h(L("(~)), for any given 'Y. We do 
not consider this case here, because we already have a restriction to the four 
letters ofthe DNA alphabet (hence we already need a coding in order to deal 
with arbitrary alphabets). 

Starting the proofs of Lemmas 8.2, 8.3, 8.5, 8.8, Corollary 8.3, Theorems 
8.5,8.6,8.7, and Lemma 8.10 from universal type-O Chomsky grammars, we 
obtain H systems of the types used in these results whose components depend 
on the universal grammars, hence are fixed; moreover, these H systems have 
the universality property as defined above. Since this result is the most im
portant one from the DNA computing point of view, we shall prove it in some 
detail. Moreover, the number of auxiliary symbols used when passing from a 
(universal) type-O grammar to an extended H system of the mentioned types 
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can be significantly decreased: two such symbols are enough. Specifically, 
the following general result is true. 

Lemma 8.14. Given an extended H system "( of one of the eight types 
1-8 listed above, with the total alphabet V and the terminal alphabet T (and 
finite sets of axioms and of splicing rules), we can construct an extended H 
system "(' of the same type with ,,(, with the total alphabet T U { Cl, C2} and the 
terminal alphabet T, such that L("() = L("('). 

Proof. If V - T = {Zl,"" Zn}, then we consider the morphism h : 
V* ---+ (T U {Cl, C2})* defined by 

h(Zi) = CIC~Cl' for 1 ::; i ::; n, 

h( a) = a, for a E T. 

We construct the system "(' with the total alphabet T U {Cl' C2} and the 
other components obtained by applying the morphism h, in the usual way, 
to the components of "(. (For instance, for each axiom x of"( we introduce 
h(x) as an axiom of ,,(', and for each splicing rule Ul#U2$U3#U4 of"( we 
introduce h(ul)#h(u2)$h(u3)#h(u4) as a splicing rule of "('. We proceed in 
a similar way for the permitting or forbidding conditions, target languages, 
point mutation rules in evolving H systems - in this latter case the old markers 
Cl, C2 in the proof of Theorem 8.6 should not be confused with the new 
symbols Cl, C2.) 

The equality L("() = L("(') follows from the fact that in all components of 
"(', whatever its type is, the blocks Cl C~Cl' 1 ::; i ::; n, are never broken by the 
splicing operations (or editing operations, in the case of evolving systems), 
they behave in the same way as the corresponding symbols Zi. D 

Note that in the proof of this lemma we pass from symbols Zi to strings 
Cl C~Cl' hence we obtain a system "(' with a radius larger than that of "( (but 
with the same number of axioms ). Moreover, in the case of permitting or 
forbidding contexts, the contexts are no longer symbols, but strings (of a 
bounded length). This was the reason for defining the extended H systems 
with permitting or forbidding contexts in the general manner, dealing with 
string conditions rather than symbols, as it is enough for the proofs of The
orems 8.1, 8.2. This does not introduce a significant additional difficulty in 
checking such conditions in the way described in Remark 8.2. This is true at 
least for short strings. On the other hand, we can work not with two auxiliary 
symbols but with several symbols; in this way the length of the encodings 
of the nonterminals in "( is decreased. The balance of the number of nonter
minals and of the length of the mentioned codings is a matter of practical 
interest, hence it should be investigated under specific circumstances. 

We are now ready to present one of the main results of this chapter, from 
the point of view of DNA computability. For precise references and details we 
formulate it explicitly for p,H systems, but similar results hold true, mutatis 
mutandis, for all types of H systems investigated above. 
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Theorem 8.9. For every given alphabet T there exists an extended fJH sys
tem of type (fJ[l], FIN), with only two auxiliary symbols, which is universal 
for the class of extended fJH systems of type (fJF I N, FIN) with the terminal 
alphabet T. 

Proof. Consider an alphabet T and two different symbols Cl, C2 not in T. 
In Chap. 3 we have mentioned that for the class of type-O Chomsky gram

mars with a given terminal alphabet there are universal grammars, i.e. con
structs Gu = (Nu, T, Pu) such that for any given grammar G = (N, T, S, P) 
there is a word w( G) E (Nu UT)+ (the "code" of G) such that L( G~) = L( G) 
for G~ = (Nu,T,w(G),Pu)' (The language L(G~) consists of all terminal 
words z such that w(G) ===;.* z using the rules in Pu.) 

For a given universal type-O grammar Gu = (Nu, T, Pu), we follow the 
construction in the proof of Lemma 8.10, obtaining an extended fJH system 
1'1 = (VI, T, AI, Rd, where the axiom (with multiplicity 1) Wo = xrYSXi 
is not considered. Notice that all the other axioms in Al (all having infinite 
mUltiplicity) and the rules in Rl depend on Nu , T, and Pu only, hence they 
are fixed. 

As in the proof of Lemma 8.11, we now pass from 1'1 to 1'2 = 
(V2' T, A2, R2)' As Al contains only axioms with infinite multiplicity, A2 
consists of only one word (that one denoted by z in the proof of Lemma 
8.11), which has infinite multiplicity. 

We now follow the proof of Lemma 8.14, codifying all symbols in V2 - T 
by words over {Cl' C2}; the obtained system, 

is the universal fJH system we are looking for. 
Indeed, take an arbitrary extended p,H system 1'0 = (V, T, A, R). Since 

Lho) ERE, there is a type-O grammar Go = (No, T, So, Po) such that 
Lho) = L(Go). Construct the code of Go, w(Go), as imposed by the defini
tion of universal type-O grammars one uses, consider the word 

corresponding to the axiom Wo in the proof of Lemma 8.10, then codify wb 
over {Cl' C2} U T as we have done above with the axioms of 1'2. Denote 
the obtained word by who). Then Lh~) = Lho), for 'I'~ = ({Cl,C2} u 
T, T, {(who), I)} U Au, Ru). 

This can be seen easily. In the proof of Lemma 8.10, the system 'I' simu
lates the work of G, starting from the axiom S of G, bracketed as in XrY sxi. 
If instead of S we put an arbitrary word x over the alphabet of G, then in 
'I' we obtain exactly the language of terminal words y such that x ===;.* y 
in G. If we start from a universal grammar Gu and S is replaced by the 
code w(Go) of a type-O grammar Go equivalent with 1'0, then the system 'I'u, 
associated as above with the universal grammar Gu , will simulate the work 
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of Gu, starting from w(Go). Hence L(')'~) = L(G~) = L(Go) = L(')'o) , for 
G~ = (Nu,T,w(Go),Pu). 

Clearly, Au contains only one string, hence 'Yu is of the type (J.l[1]' FIN). D 

Notice that the universal J.lH system 'Yu furnished by the proof of Theorem 
8.9 (the same assertion is true for systems with forbidding contexts, with local 
or global targets, with fitness mappings, and for programmed systems; in the 
case of evolving H systems, Ao will be empty and here will be added the 
string XBow(Go)Y, containing the "program" of 'Yo, instead of the string 
XBoSY in the proof of Theorem 8.6) has only one axiom. Moreover, the 
"program" to be run on our "computer" also consists of one string-axiom 
only. 

The existence of universal H systems with permitting contexts provides 
a partial answer to the third open problem formulated after Corollary 8.1: 
there is n such that a result of the form RE = EH2([n]'p[2]) is true. This 
can be proved as follows. Start the construction in the proofs of Lemmas 8.2 
and 8.3 from a universal type-O grammar. We get an H system with fixed 
components - hence with a fixed number of axioms and a fixed set of splicing 
rules. In order to generate a given language L E RE we have to introduce 
one more axiom of the type XBw(G)Y, for L = L(G),w(G) a code of G. 
The radius of rules remains unchanged, the number of axioms is bounded. 

Thus, the problem can be reformulated: which is the smallest n such that 
RE = EH2([n],p[2])? 

The proof of Theorem 8.9 is effective, it constructively provides an ex
tended J.lH system which is universal for the class of J.lH systems or, directly, 
for the class of type-O Chomsky grammars or of Turing machines. Starting 
from a universal Turing machine, we get in this way a universal extended J.lH 
system. 

Instead of presenting a universal system, let us estimate the number of 
splicing rules obtained if we follow the constructions on which the proof of 
Theorem 8.9 is based. 

Consider a universal Turing machine M in a class UTM(m, n) as in Sect. 
3.3 and having p moves. For each move of M (given as a rewriting rule, 
as shown in Sect. 3.3, or in any other appropriate manner), in the proof of 
Lemma 8.10 we construct about (n + m)4 rules of type 1 and about (n + m) 
rules of type 2. In total, we obtain 

Nl =p((n+m)4+n+m) 

rules (we consider only the tape symbols and the states of the Turing machine 
as symbols of the alphabet, although further auxiliary symbols might be 
necessary). Furthermore, we consider about 

N2 = (n + m)5 + (n + m)3 + (n + m)5 + (n + m)3 

rules of types 3, 4, 5, 6. In total, we obtain about 

N3 = p((n + m)4 + n + m) + 2(n + m)5 + 2(n + m)3 
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rules. For the three universal machines presented in Sect. 3.3 we get the 
results below: 

m n p N3 
7 4 26 705716 
5 5 29 492290 
4 6 22 222220 

These figures are definitely out of the reach of any practical attempt of 
realizing such a universal pH system. Note, however, that when proving the 
results mentioned above, we were not interested in keeping small the size of 
the output, but rather in getting a simple proof for the correctness of the 
construction. Thus, it remains as a research topic to find small universal H 
systems of various types. To this aim, a direct construction will be necessary, 
avoiding the passing through grammars and Turing machines. 
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and in [61] (of J-tH type; starting from Minsky's Turing machine in UTM(7, 4) 
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splicing rules, each of them involving one, two, or three variables running on 
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unpractical) . 
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rules bounded by 29n2+405n+1414, where n is the cardinality ofthe terminal 
alphabet. These bounds are comparable with those in [61]. 



Chapter 9 

Splicing Circular Strings 

In certain circumstances - in several bacteria, for instance - the DNA 
molecules are present in the form of a circular sequence. More generally, 
we can consider situations where both linear and circular DNA sequences are 
present. The restriction enzymes can cut both the linear and the circular 
double stranded sequences, hence recombination by ligation can also appear 
in such a case. Many variants are possible, because a recombination can have 
as input two circular strings, or one circular and one linear string, and can 
have as output one or two circular strings, one or two linear strings, or both 
a circular and a linear string. 

From a mathematical point of view, the study of such variants is not so 
elegant as the study of linear splicing in the previous chapters, but it can 
provide significant simplifications of some constructions above, because, for 
instance, we no longer need the rotate activity in the proofs based on the 
rotate-and-simulate idea. 

9.1 Variants of the Splicing Operation for Cir
cular Strings 

Consider an alphabet V. A circular string over V is a sequence x = ala2 ... an 
for ai E V,l ::; i ::; n, with the assumption (convention) that al follows an. In 
other words, x can be represented by any circular permutation of ala2 ... an, 
for instance, ai+l ... anal .. . ai, for any 1 ::; i ::; n -1. Thus, a circular string 
over V is an equivalence class of all linear strings equal to each other modulo 
a circular permutation. We denote by x the circular string associated to the 
linear string x E V*. The set of all circular strings over V is denoted by V¢. 
Any subset of V¢ is called a circular language. 

To a usual language L ~ V* we can associate the circular language 
Cir(L) = {x I x E L}. (For singleton languages we also write Cir(x) = x.) 
Conversely, to a circular language L ~ V¢ we can associate the full lineariza-
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tion Lin(L) = {x I x E L}. A language L1 ~ V* is a linearization of a 
circular language L2 ~ VO if Cir(Ld = L2. 

Having a family F L oflanguages, we can consider its circular counterpart, 
FLo = {Cir(L) I L E FL}. Thus, we can speak about FIN°, REGo, REo, 
etc. 

The operations of union, intersection, intersection with regular circular 
languages, direct and inverse morphisms, can also be defined for circular 
languages (but not the operations of concatenation and Kleene closure). 

Lemma 9.1. If FL is a family of languages closed under circular permuta
tion, then L E FLo if and only if Lin(L) E FL. 

Proof. Let us denote by cp(L) the set of all circular permutations of 
strings in L. Clearly, Lin(Cir(L)) = cp(L), for every language L. Now, 
if Lo E FLO, from the definition of FU we have Lo = Cir(L) for some 
L E FL. Because Lin(Lo) = Lin(Cir(L)) = cp(L) and FL is closed under 
circular permutation, we have Lin(Lo) E FL. Conversely, if L ~ VO such 
that Lin(L) E FL, because L = Cir(Lin(L)), we have L E FLO. 0 

Corollary 9.1. Let FL be a family of languages which is closed under cir
cular permutation. If FL is closed under union, direct morphisms, inverse 
morphisms, intersection with regular languages, then also FLo is closed un
der union, direct morphisms, inverse morphisms, intersection with regular 
circular languages, respectively. 

Let us note that all families FIN, REG, CF, CS, RE are closed under 
circular permutation, but LIN is not closed: cp( {anbn I n ~ I}) n a+b+ a+ = 
{anbn+mam I n, m ~ I} is not a linear language. 

Let us now define some natural splicing operations involving circular 
strings. 

Consider an alphabet V and a splicing rule r = U1 #U2$U3#U4 over V. 
For x, fj, Z E VO and v, w E V*, we write: 

(X,fj)F~Z iff X=X1U1U2, 

y = Y1 U3U4, 

, L2 (' ') X IT y,z 

Z = Xl U1 U4Y1 U3U2, 

for some Xl, Y1 E V*, 

iff X = Xl U1 U2X2U3U4, 

y = X1 U 1U4, 

Z = X2U3U2, 

for some Xl, X2 E V*, 

(x,v) F~ w iff X = X1U1U2, 

V = V1 U3U4V2, 

W = V1U3U2X1U1U4V2, 
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for some Xl, VI, V2 E V*, 

vp;(x,w) iff V=VIUIU2V2U3U4V3, 

X = U2V2U3, 

W = VIUIU4V3, 

for some VI, V2, V3 E V*. 

YI 

Oy UI uOZ 

Xl X2 

U4 U3 

w 

VI UI U4 V3 

I Iw 
p4 

C) ==} 

U2 U3 

Figure 9.1: Splicing circular strings (I) 
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In the case of pI two circular strings are cut at sites UI U2, U3U4, and 
then pasted together to form a new circular string. In the case of p2, a 
single circular string gives rise to two circular strings, by cutting it at two 
sites, UI U2, U3U4, and pasting together the ends of the two fragments. The 
operation p3 cuts a circular string at a site UI U2 and a linear string at a site 
U3U4, then the linear string obtained by cutting the circular one is linked to 
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the two fragments obtained by cutting the linear string. In short, a specific 
linearization of the circular string is inserted into the linear string, as specified 
by the sites in the splicing rule. Finally, by F4 we pass from a single linear 
string, cut at two positions, at sites Ul U2, U3U4, to a circular string and a 
linear one. Figure 9.1 illustrates these variants. One further variant will be 
considered in the subsequent section. 

Note that in all cases we use one splicing rule only, in the same way as 
in the previous chapters: we cut at sites UIU2,U3U4 and we recombine the 
sticky ends in such a way as to obtain the substrings Ul U4, U3U2. 

For an alphabet V, a subset L of V* u V<> is called a mixed language. 
For a usual H scheme rJ = (V, R), with R ~ V*#V*$V*#V*, and a mixed 
language L ~ V* U V<>, we define the mixed language rJ:nix (L) as the smallest 
mixed language containing L and closed under all the four splicing operations 
Fi, i = 1,2,3,4, defined above. When only some of the operations Fi are 
used, then we write rJ"M(L), where M ~ {1, 2, 3, 4} is the set of indices i such 
that Fi is used. 

Let us consider some examples: 

rJ = ({a, b}, { a#b$b#a } ), 

L = {Cir(ab)}. 

It is easy to see that we have 

rJ{l}(L) = {Cir(anbn) In::::: 1}, 

rJ{1,2}(L) = {y I y = an, or y = bn, or y = anbn,n 2: I}, 

rJ{l}(L) = rJ"M(L), for all M = {1} U M', M' ~ {3,4}, 

rJ{1,2}(L) = rJ"M(L), for all M = {1, 2} U M', M' ~ {3,4}. 

For the same H scheme and 

L' = {ba, Cir(ba)}, 

we obtain 
rJ{3} (L') = {Cir(ba)} U {bnan In::::: 1}. 

Consequently, in all these cases, finite H schemes lead finite languages to 
non-regular (usual or circular) languages. This contrasts the situation met 
for linear strings (Lemma 7.14) and makes the splicing of circular strings 
interesting from DNA computing point of view: non-restricted splicing with 
respect to finite sets of splicing rules leads to non-regular languages even 
when starting from finite languages. 

A regularity preserving result can be obtained for the mixed splicing for 
a particular class of H schemes. Specifically, an H scheme rJ = (V, R) is said 
to be reflexive if whenever Ul #U2$U3#U4 E R, then also Ul #U2$Ul #U2 E R 
and U3#U4$U3#U4 E R. 
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A proof of the following counterpart of Lemma 7.15 can be found in 
[90]: 

Theorem 9.1. Let FL be a full AFL closed under circular permutation. 
If u = (V, R) is a reflexive H scheme with a finite set Rand L is a mixed 
language over V such that L n V* E F Land L n Vo E FLo, then U:nix (L) n 
V* E FL and u:nix(L) n Vo E FLo. 

Thus, in order to obtain computability models stronger than finite au
tomata based on non-controlled mixed splicing we have to use H schemes 
which are not reflexive. 

Returning to the example above, if we add the rules a#b$a#b and 
b#a$b#a to u, then we obtain an H scheme u' such that 

u'{l}(L) = {y lyE {a,b}+, Iyla = Iylb}, 
U'{1,2}(L) = {y lyE {a, b} +}. 

When using only the relation pI, a non-regular circular language is still 
obtained, but, because U'{1,2}(L) = u':nix(L) (no linear string is present), 
Theorem 9.1 can be applied, and the circular language U'{1,2}(L) is regular. 

The precise characterization of the power of (extended) H systems based 
on the splicing of circular strings of various types considered above, or on 
mixed splicing is an important research topic. 

9.2 One Further Variant and its Power 

From two directions, we get the same suggestion on how one further splicing 
operation involving circular strings can be defined. 

One direction is the rotate-and-simulate idea in the proofs of several char
acterizations of RE in the previous chapters. In the rotation steps, we start 
from strings XwaY, with wE V*,a E V, for a given alphabet V, and two 
special symbols X, Y, we remove a from the right hand end, getting XwY' 
(usually, Y' = Ya , to remember the removed symbol), then we add a to 
the left hand end, producing XawY'; finally, we return Y' to Y, obtaining 
XawY. Since Cir(wa) = Cir(aw) we can consider that the block YX has 
been interchanged with a, by a substitution of the form 

aYX -+ YXa, 

and not that a has been moved in Cir(XwaY). In this way we can treat in 
a uniform way both the rules u -+ v in the grammar to be simulated and the 
rotating steps: both of them are steps when a substring of the circular string 
is replaced by another substring. If we want to preserve the control block 
Y X, perhaps replaced by one symbol only, then we need interchanging rules 
aY X -+ Y X a. In fact, if we are able to substitute substrings of a circular 
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string by other substrings, then the rotation is no longer necessary. What 
we need in addition is a linearization step, or a convention of reading linear 
strings from circular strings. 

Another motivation for considering a splicing operation with circular 
strings able to perform a substitution comes from the characterization of 
RE languages by means of an iterated gsm. Iterating a gsm means to parse a 
string and to pass from its last symbol to the first symbol again, continuing 
in this way. If the two ends of the strings were connected, as in a circular 
string, then we can imagine that the gsm simply continues the parsing, going 
along the circular string. 

The operation necessary in both these cases, that of a substring substi
tution in a circular string, leads to the following way of using a splicing rule 
r = Ul #U2$U3#U4 over some alphabet V. For X, fj E VO and z, W E V*, we 
write 

Z = U2Z1U3, 

Y = X1U1U2 Z 1U3U4, 

W = U2X2U3, 

for some Xl, X2, Zl E V*. 

The operation is illustrated in Fig. 9.2. One sees how the strings x and 
Z interchange the substrings X2 and Zl. The circular string is cut in two 
places, leaving free the subword U2X2U3; the linear string already has ends 
which match the ends of the remaining part of the circular string, hence a 
new circular string can be produced. 

Z I 
U2 

I 
Zl 

I 
U3 I U2 I X2 I U3 

Iw 

Ul I U2
1 

X2 I U3 I U4 
p5 

Ul U2 Zl U3 I). ==} I I I 

( ) ( X 

Xl Xl 

Figure 9.2: Splicing circular strings (II) 

Based on this operation, we define a language generating device in the 
following way. 

An extended circular H system is a construct 
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where Y is an alphabet, T ~ Y (the terminal alphabet), Al ~ yo, A2 ~ Y* 
are finite sets (of axioms), and R 1 , R2 are finite sets of splicing rules over Y. 
For such a system and for L1 ~ yo, L2 ~ y* we define 

where 

L~ = {y I (x,z) F~ (y,w), 
for some x E L1,z E L 2 ,r E Rd, 

L~ = {w I (x,z) F~ (y,w), 
for some x E L1, Z E L 2 , r E R 1 }. 

Then we define 

a~5} (L1, L 2 ) = (L1, L 2 ), 

i+1 i i a{5} (L 1 ,L2 ) = a{5}(L1 ,L2 ) U a{5}(a{5}(L1 ,L2 )), i ~ 0, 

a{5}(L1 ,L2 ) = U ah}(L1,L2 ), 

i~O 

where the union is defined componentwise. 
For r = U1#U2$U3#U4 in R2 and x E YO,y,z E Y*, we write 

x F~ (y, z) iff x = Xl U1 U2X2U3U4, 

Y = U4X 1U 1, 

Z = U2X2U3, 

for some XI, X2 E Y*. 

(The circular string is cut at the sites U1 U2, U3U4, producing two linear 
strings.) 

Then for L ~ yo we define 

a{6}(L) = {y E Y* I x F~ (y, z) or x F~ (z, y), 

for some x ELand r E R2 }. 

The language generated by 'Y is defined by 

where 

for some L2 ~ Y*. 
Therefore, we start from two sets of axioms, we splice the circular strings 

with the linear ones according to the operation F5 , with respect to the rules 



312 9. Splicing Circular Strings 

in R I , iteratively; finally we cut the circular strings obtained in this way by 
an operation f=6 with respect to the rules in R 2 ; in the generated language 
we keep only the strings composed of terminal symbols. 

We do not know how powerful the extended circular H systems are, but 
a simple restriction on the splicing operations f=5, f=6 will lead to a charac
terization of RE, modulo a projection which erases certain markers used in 
the process of string generation. 

We say that 'Y = (V, T, AI, A 2 , RIo R2 ) is a restricted extended circular H 
system if the rules r E RI UR2 have associated strings Vr E V* (we present the 
rules as pairs (r, vr )) and the operations f=5, f=6 are defined in the following 
ways: for r = UI#U2$U3#U4, (r,vr ) E RI U R2, and x,y E VO,z,w E V*, we 
write 

z = U2ZIU3, 

Y=XIUIU2 ZI U3U4, 

W = U2X2U3, 

for some Xl, X2, Zl E V*, such that 

Vr E SUb(X2) and UIU2X2U3U4 cannot be written 

in the form x~ UI U2X~U3U4X; with 

Ix~1 < IX 21,vr E Sub(x~), 

y = U4X I U l, 

Z = U2X2U3, 

for some Xl, X2 E V* such that 

Vr E SUb(X2) and UIU2X2U3U4 cannot be written 

in the form x~ Ul U2X~U3U4X; with 

Ix~1 < IX 21,vr E Sub(x~). 

In words, the sites Ul U2, U3U4 should be placed around a substring X2 of X 

which contains at least an occurrence of the string Vr and X2 is minimal with 
this property, no proper substring of X2 containing Vr can be bracketed by the 
sites Ul U2, U3U4. Thus, the strings Vr act as "anchors" for the splicing rules, 
as promoters whose influence is manifested locally, to the first occurrence of 
UI U2 to the left of them and to the first occurrence of U3U4 to the right of 
them. 

Having such information on the string X2, which is replaced by Zl by an 
operation f=5 /, is a very powerful feature: using this operation we can again 
characterize the recursively enumerable languages. 

Let EH2 (cFIN,rFIN) denote the family of languages generated by re
stricted extended circular H systems ("c" in front of the first occurrence of 
FIN indicates the fact that we start with circular axioms, "r" in front of the 
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second FIN indicates the fact that the splicings are restricted in the sense 
defined above). 

Theorem 9.2. Every recursively enumerable language is a projection of a 
language in the family EH2 (cF I N, r FIN). 

Proof. Consider a language L E RE, L ~ T*. As we know from Theorem 
3.14, we can write this language in the form L = g*(ao) n T*, for a gsm 
9 = (K, V, V,so,F,P), ao E V. 

We construct the restricted extended circular H system 

'Y = (V', T', AI, A 2, RI, R2), 

as follows. 
Consider a new symbol, E, and add to P all the rules of the form sf E -+ 

Eso, for sf E F. Denote by pI the set obtained in this way. Assume that 
pI = {rl,"" rn }, with 

for ti 2: O,qi,q~ E K,bi E VU{E},Ci,1 E VU{E},Ci,j E V,2 ~ j ~ ti, 
1 ~ i ~ n. 

Consider also the new symbols do, dI, ... , dn. Then 

V' = VUKU{E,do,dI, ... ,dn}, 

T' = TU{do,dl, ... ,dn}, 

Al = {Cir(dl d2 ... dndosodoaodld2" . dndoE)} , 

A2 = {dHI ... dndoCi,ldld2 ... dndoCi,2dld2 ... dndo 

... Ci,tidld2 ... dndoq~do 11 ~ i ~ n}, 
Rl = {(d1 d2 .•. di#dH1 ••• dndo$do#, qidobi) 11 ~ i ~ n}, 
R2 = {( #dl d2 .•• dndo$do#, qfdoE) I qf E F}. 

Let us see how this system works. 
Assume that we have a circular string x for some 

x = x l bdl d2 ... dndoqdoadld2 ... dndo CX2 , 

for Xl, X2 E (V U {do, dI, ... , dn })*, a, b, C E V U {E}, qE K; at the beginning 
we have Xl = A, X2 = A, q = so, a = ao, and b, C are missing. If qa corre
sponds to a rule r i in pI, that is q = qi, a = bi , then there is a splicing rule 
dl d2 ··· di#dHI ... dndo$do# in R I . Due to the restricted mode of applying 
these rules, we cut from X the substring X3 = di+1 ... dndoqidobidl ... dndo 
(the substring qidObi appears in X3 and X3 is minimal with this property). 
There is only one string in A2 starting with di+1 ... dndo and ending with 
do, namely, dHI ... dndoCi,ldld2 ... dndoCi,2 ... Ci,tidld2 ... dndOq~do. Substi
tuting it in X instead of the string X3 cut above, we get a circular string i) 
for 

Y = xlbdl ... dndoCi,ldl ... dndoCi,2 ... Ci,tidl ... dndoq~doCX2' 
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Therefore, all circular strings x obtained by using the rules in Rl have the 
following properties: 

- only one state q E K appears in x in a substring of the form qdoa, for 
a E V U {E}, 

- all two consecutive occurrences of symbols in V U {E} are separated by 
a block d1d2 ••• dndo, 

- q is also separated from its left neighbour in V U {E} by a block d1 d2 ••• 

dndo· 

The previous splicing operation has simulated the use of the rule ri on the 
circular string. The linear string X3 produced at the same time can be used 
only for splicing an occurrence of itself, in a splicing performed by the same 
rule (d1 ... d i #di+1 ... dndo$do#, qidObi), hence neither the circular string 
nor the string X3 are changed. 

Consequently, using the rules in Rl we can simulate the work of g, starting 
from ao, iteratively due to the existence of rules qfE -t Eso in P'. When a 
circular string x is obtained, with x of the form 

x = xlad1d2 ·•· dndOqfdOEdld2 ... dndobx2' 

with xl, X2 E (V U {do, dl, ... ,dn })*, a, b E V U {A}, qo E F, then the corre
sponding rule in R2 can also be applied. 

We obtain two linear strings 

y = d1d2 ••• dndoqfdoEdld2 ... dndo, 

z = bX2xla. 

The first string above contains the nonterminal symbols qf, E; the second 
one is accepted in L(,) when containing only symbols in Tu {do, dl, ... , dn }. 
Because we have cut the circular string x at the position indicated by E, which 
marks the end of the string in g* (ao) simulated by " we thus obtain a string 
in g*(ao) in the correct circular permutation, with the symbols separated by 
blocks d1d2 ... dndo. 

Consider now the projection prT : (T U {do, dl, . .. ,dn })* ---+ T* defined 
by 

prT(a) = a, for a E T, 

prT(di ) = -X, for 0 :::; i :::; n. 

We obtain L = prT(L(r)) , which completes the proof. D 

A way to implement the restricted splicing operations of the type p5' in 
the previous system, could be the following one. 

Consider an encoding h : (V U K U {E})* ---+ {A, C, G, T}* of elements 
of V U K U {E} as strings over the DNA alphabet. 
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For each rule ri E Rl we consider a restriction enzyme enZi, characterized 

by the pattern [~i=i~i]. (We use again the notations established in Chap. 
UiZiVi 

4.) This means that a sequence containing the subsequence [~i=i~i] will be 
UiZiVi 

cut in such a way that we obtain the sticky ends [~:] (~) and (~) [~:], 
respectively. Denote by ai the string UiZiVi appearing in the upper strand of 
the pattern associated with enZi, 1 ::; i ::; n. 

Take one further restriction enzyme, enzo, characterized by the pattern 

[uozovo] _ _ _ ; denote ao = UOZOVo. The sequences ai correspond to the symbols 
UOZOVo 

di,O ::; i ::; n. 
Then, the elements of 'Yare constructed as follows: 

- the circular axiom: 

- for each rule ri : sa ---t xs' E P or ri : sfE ---t Eso, 1 ::; i ::; n, we 
introduce 

1. the auxiliary string 

2. the axiom xs', for x = b1b2 ... bk, bi E V, 1 ::; i ::; k, k ~ 1, in the 
form 

w~ = (Z~i) (aiH'" anaoh(bl)~l ... anaoh(b2)al ) 

... ( anao ... aoh(bk~al ... anaoh( s')) [~~] (~) , 
and 

when x = A, 
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- for each sf E F we also introduce the auxiliary string 

- instead of the splicing rules in Rl U R2 we add to the test tube the 
enzymes enzl, ... , enzn , enzo. 

Uo Zo Vo h(s) Uo Zo Vo h(a) Ul ZI VI 

L I I t; I 
h(a') 

LJ 

Figure 9.3: Partial (selective) annealing of the auxiliary string 

Now, assume that we have a circular single stranded string, w, containing 
the codes h(a) of several letters a E V, the code of the end marker E, and 
the code of a state s E K; each two codes h(a), h(a'), h(E), a, a' E V, are 
separated by the block 0:10:2." O:nO:O, whereas h(s) is separated from the 
code of the left neighboring symbol by the same block 0:10:2 •.. O:nO:O and 
from the code of the right neighboring symbol by 0:0 only. The enzymes 
cannot cut single stranded sequences. If h( s )o:oh( s) corresponds to the rule 
Ti : sa -+ xs' in P U {sfE -+ Eso I Sf E F}, then the string Wi is also 
present in the test tube. It will anneal to the single stranded string W in such 
a way that we obtain a circular word with double stranded portions on the 
positions of O:i to the left of h(s), of all strings Uj, Vj between this O:i and the 
string 0:0 to the right of h( a), of h( s), of h( a), and of 0:0 to the right of h( a); 
the portions Zi do not anneal, because they are the same in Wi as those in W 

(they are not complementary). 
The situation is illustrated in Fig. 9.3. 



9.2. One Further Variant 317 

Consequently, there are only two places where the restriction enzymes can 
recognize some patterns and cut: in the left hand portion shown in Fig. 9.3, 
where enzi can cut, and in the right hand, where enZa can cut. 

Figure 9.4: The result of the cutting operation 

After cutting, we get the situation in Fig. 9.4: one end is [~:] (~) 
. (za) [va] . / and the other IS A va· These are exactly the ends correspondmg to Wi 

or w? By ligation, we get again a circular word, of the type illustrated in 
Fig. 9.5 (we have not specified the parts of x, h(bi ), and blocks Cfl ... CfnCfa 

between them). 

Figure 9.5: The result of the ligation 

We have two double stranded portions, one corresponding to UiZi (hence 
not to the whole Cfi) and one corresponding to Cfa. The enzyme enZa can cut 
again, but then the string is lost, because no terminal string can be derived 
from it, h(s') will never be removed. 

We have returned to a circular word similar to that we started with -
modulo the existence of the two mentioned double stranded portions. We 
remove them (we do not know how this can be done without also denaturing 
double stranded sequences in Al U A2 ) and we repeat the procedure. When 
encountering the marker E we either continue or we anneal the string w( sf). 
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It will produce a circular sequence similar to that in Fig. 9.3, making possible 
the cutting of U1Z1 V1 by enz1 at the left of the block h( S f )aoh(E) and of 
UnZnVn by enzn at the right of h(sf )aoh(E). No ligation is possible, we 
get two linear strings which cannot enter further annealings with auxiliary 
symbols, hence the work of the system stops here. The strings containing 
only blocks h(a), a E T, and ao, a1, ... , an are selected (filtered) and the 
result of the computation consists of the strings obtained by ignoring the 
blocks ao, a1 , ... , an. 

Of course, the previous procedure is just a theoretical proposal, assuming 
error-free annealings and ligation, and, a crucial assumption, that two strings 
which anneal are linearly arranged, no folding is accepted, hence the comple
mentary fragments are placed at the same distances in the two strands. How 
to get rid of this strong assumption (replacing it with unstable annealings 
when the matching fragments are not long enough, or by other techniques) 
is not an easy question. 

9.3 Bibliographical Notes 

The problem of splicing circular strings is formulated in [87]. Sect. 9.1 is 
based on [176], [177]. Circular strings are also considered in [206], [223]. 
Sect. 9.2 is based on [142], where a similar operation is investigated. 



Chapter 10 

Distributed H Systems 

One of the important drawbacks of the models considered in the previous 
chapters is the fact that we need several splicing rules. Each rule corre
sponds to two restriction enzymes. However, each enzyme needs specific 
temperature, acidity, salinity, and other reaction conditions. This means 
that, in general, from using a splicing rule to using another one we have to 
change these reaction conditions. This operation dramatically decreases the 
efficiency of the computation (in terms of duration), hence should be avoided 
as much as possible. 

One suggestion to accomplish this comes from the grammar systems area: 
using distributed architectures, separating parts of the model which are able 
to work independently, preferably in parallel, arranging a way of cooperating 
between these parts, and synthesizing the result of the computation from the 
partial results produced by the mentioned parts. We are led in this way to 
structures similar to parallel communicating grammar systems. 

10.1 Splicing Grammar Systems 

The first model we consider here is rather similar to a parallel communicating 
grammar system: the components are usual context-free grammars, working 
separately, synchronously, on their own sentential forms, and splicing their 
sentential forms according to a given set of splicing rules. Thus, we have a 
hybrid model, involving both rewriting operations and splicing operations. 
This, of course, is not completely implement able in biochemical terms, but 
this could be a more realistic approach to molecular computing than confining 
systems to only biochemical tools: devise hybrid systems, containing both 
DNA modules and operations and classic, electronic modules. 

From a generative point of view, our systems, called splicing grammar 
systems, turn out to be computationally complete, even when having com
ponents of a rather simple type. 

© Springer-Verlag Berlin Heidelberg 1998
G. Păun et al., DNA Computing
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A splicing grammar system (of degree n, n ::::: 1) is a construct 

where 

(i) N, T are disjoint alphabets, Si E N, and Pi, 1 SiS n, are finite 

sets of rewriting rules over NUT, 

(ii) R is a finite subset of (N U T)*#(N U T)*$(N U T)*#(N U T)*, 

with #, $ two distinct symbols not in NUT. 

The sets Pi are called the components of f. 
For two n-tuples (we call them configurations) x = (Xl, X2, ... , xn), and 

Y = (YbY2, ... ,Yn), Xi,Yi E (N U T)*, 1 SiS n, we write X ==} Y if and 
only if one of the following two conditions holds: 

(i) for each 1 S i ::; n, either Xi ==} Pi Yi, or Xi = Yi E T*, 

(ii) there exist 1 S i,j S n such that Xi = X~UIU2X~/, Xj = xjU3U4X'j, 

and Yi = X~UI U4X'j, Yj = Xju3u2X~', for UI #U2$U3#U4 E R; 

for all k -I- i,j, we have Yk = Xk. 

In the above definition, point (i) defines a rewriting step, whereas point 
(ii) defines a splicing step, corresponding to a communication step in parallel 
communicating grammar systems. Note that no priority of any of these 
operations over the other one is assumed. In case (ii) we denote the passing 
from (Xi,Xj) to (Yi,Yj) by (Xi,Xj) P (Yi,Yj), as usual. 

The language generated by the system f is the language generated by its 
first component, that is, 

We denote by SGSn(X) the families of languages L(f), generated by 
splicing grammar systems of degree at most n, n 2: 1, with components of 
type X. We consider here X E {REG, RL, CF}, where for REG we use 
regular rules in the restricted sense, RL indicates the use of right-linear rules, 
and for CF we use A-free context-free rules. When no restriction is imposed 
on the number of components, then we replace the subscript n with *. 

Note that in view of the definition of the relation ==} between config
urations of a splicing grammar system, we implicitly use multiplicities of 
strings, because each component of the system has in every moment - both 
after a rewriting and a splicing step - exactly one current string; no string of 
arbitrary multiplicity is used. 

Surprisingly enough (similar results are not known for parallel communi
cating grammar systems), we can characterize RE by such systems with only 
two A-free context-free components. 
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Theorem 10.1. RE = SGSn(CF) = SGS*(CF), for all n 2': 2. 

Proof. The inclusions SGSn(CF) S;;; SGSn+I(CF) S;;; SGS*(CF) S;;; RE, 
n 2': 1, are obvious. We have only to prove the inclusion RE S;;; SGS2(CF). 

Consider a language L S;;; T*, L E RE, and take a grammar G = 
(N, T, S, P) in the Geffert normal form as specified in Theorem 3.5(1): 
N = {S,A,B,C} and P contains context-free rules of the form S -7 X,X E 
({S, A, B, C} U T)+, as well as the rule ABC -7 A. Denote by pi the set of 
context-free rules in P. We construct the splicing grammar system 

with 

PI = pi U {A -7 A}, 

P2 = {S2 -7 YXXABCZ, X -7 XX,X -7 X}, 

R = {#ABC$YX#XABC, #XABC$YXABC#}. 

We claim that L(G) = L(f). 
Let us examine the work of f. Since pi S;;; PI, each terminal string w such 

that S ==}* w using rules in pi is in L(f). (As P2 contains the rule X -7 X, 
no restriction on the length of the derivations is imposed.) Moreover, each 
string w E (N U T)* such that S ==}PI w can be reproduced in component 
PI of f. The problem remains of simulating in f the erasing rule ABC -7 A 
in P. 

Consider the first step of a derivation when a splicing operation is per
formed. This means that the current configuration is of the form 

(uABCv, YXiABCZ), 

for some i 2': 2. Since X does not appear in uABCv, only the first splicing 
rule can be used. This is possible only when i = 2 (hence the rule X -7 X X 
has not been used in the second component). We get 

(uIABCv, YXIXABCZ) F= (uXABCZ, YXABCv). 

Case 1: We continue by applying the second splicing rule. 
Then we get: 

(uIXABCZ, YXABClv) F= (uv, YXABCXABCZ). 

The substring ABC has been removed from uABCv. Observe that in the 
second component we have obtained a string with the prefix Y X ABC, hence 
by using the rule X -7 X X in P2 we can obtain Y X X ABC (at the same time, 
A -7 A can be used in PI, providing that the first component has not reached 
a terminal string), that is the same string we have started with (continued 
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with a suffix ended with the symbol Z). Let us consider, in general, that we 
have a configuration 

(uABCv, YXXABCwZ), 

with w E (X+ ABC)*; initially we have w = A, after removing one subword 
ABC we have w = xj ABC, for some j ::::: 1. By two splicings as above, we 
obtain 

(uIABCv, YXIXABCwZ) F (uIXABCwZ, YXABC!v) 

F (uv, YXABCXABCwZ). 

U sing the rule X ----; X X in P2 and A ----; A in PI, we get the configura
tion (uv, YXXABCXABCwZ). The form of the configuration is preserved, 
hence the operation can be iterated until removing all occurrences of ABC 
from the string of the first component. If some rewriting steps are mixed with 
the splicing steps, then the rewritings in PI either correspond to rewritings 
in G using rules in pIon the prefix u above, or they use the rule A ----; A, 
hence change nothing in the first component; if the second component uses 
the rule X ----; X, then nothing is changed. Using the rule X ----; X X is the 
subject of the second case and this is discussed below. Consequently, in this 
way we can generate each string in L( G), that is L( G) S;; L(r). 

The second splicing above can also be performed for a substring X ABC 
in w: 

(uX ABCWIIX ABCW2Z, Y X ABClv) 

F (uXABCWIV, YXABCXABCW2Z ). 

In order to remove the symbol X from the first string (or from a string 
obtained after rewriting the first string by rules in PI) we have to eventually 
use the second splicing rule, cutting the string in front of X. Assume that 
we perform this operation for the previous configuration (the result is similar 
for a configuration derived from it). We have 

(uIXABCWIV, YXABC!XABCW2Z) 

F (uXABCW2Z, YXABCXABCWIV). 

An occurrence of X (as well as of Z) is again present in the first component. 
Consequently, the nonterminal X cannot be eliminated, the derivation will 
never produce a terminal string. 

Case 2: After using the first splicing rule, we perform a derivation step when 
X ----; XX is used in P2 • 

We consider the general form of a configuration when this operation can 
occur: 

(uIABCv, YXIXABCwZ) F (uXABCwZ, YXABCv) 

==>- (u'XABCwZ, YXXABCv). 
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We can have u' = u when the rule A ----; A has been used in PI, or u ===}- u' 
by a rule in P'. If X ----; XX is used again in P2, then a splicing can never 
be performed, hence no terminal string can be ever obtained. 

Assume that we have performed several rewriting steps and we want now 
to splice again using the first rule. We have two possibilities: 

(2.1.) Splicing for some occurrence of ABC in u': 

(uIIABCU2XABCwZ, YXIXABCv) 

F= (uIXABCv, YXABCU2XABCwZ). 

As we have seen at the end of the discussion about Case 1, the symbol X 
can never be eliminated from the string in the first component. 

(2.2.) Splicing for some occurrence of ABC in w: 

(u'XABCWIXIABCW2Z, YXIXABCv) 

F= (u'XABCwIXXABCv, YXABCW2Z). 

If W2 =1= A, this implies that W2 contains at least one occurrence of X and then 
the symbol X will never be eliminated from the string in the first component. 
When W2 = A, and we splice as 

(u'XABCwIXIXABCv, YXABCjZ) 

F= (u'XABCwIXZ, YXABCXABCv), 

from now on X will be always present in the first component. The same 
conclusion is obtained if we splice using a site X ABC in WI. 

If W2 = A and we remove the first occurrence of X in the first component, 
then we get: 

(u'IXABCwIXXABCv, Y XABCjZ) 

F= (u'Z, YXABCXABCwIXXABCv). 

The nonterminal Z can now be removed only using the first splicing rule. 
Assume that we perform 

(u~IABCu;Z, YXIXABCw'v) F= (u~XABCw'v, YXABCu;Z). 

In order to remove the symbol X from the string in the first component, we 
will introduce again Z. The derivation will never produce a terminal string 
in any of the two components. 

This concludes the discussion about Case 2, proving that no string outside 
L(G) can be produced, hence L(f) ~ L(G), too. Therefore, we obtain L(f) = 
L(G). 0 

Remark 10.1. We can define a language associated to a splicing grammar 
system f as above also in a "more democratic" manner, as the union of all 
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terminal strings generated by each component ofr. More specifically, if Li(r) 
is the language generated by the ith component of r, then we can consider 
the language Lt(r) = U~=1 Li(r). In the proof above we have L1 (r) = Lt(r), 
because L2 (r) = 0 (the nonterminal Y is always present in the left hand end 
of the strings in the second component of the system). Therefore, also for the 
language Lt(r), too, we get a characterization of RE as in Theorem 10.1. D 

The previous result is optimal as far as it concerns the number of com
ponents. Is it also optimal as regards the type of rewriting rules used in its 
components? What about systems with regular or with right-linear rules? 
These systems are also rather powerful. Proofs of the following two inclusions 
can be found in [75]: 

LIN ~ SGS2 (REG), 

CF ~ SGS3 (REG). 

Both these inclusions are proper. 

Indeed, let us consider the splicing grammar system 

with 

P1={S1---->aS1, S1---->aA, B---->cB, C---->c}, 

P2 = {S2 ----> dB, B ----> bB, A ----> cA, A ----> cC}, 

R = {a#A$b#B, c#B$d#b}. 

The derivations in r proceed as follows. After an initial rewriting phase, 

n ~ 0, or consisting of only one step, 

we have to perform a splicing, according to the first rule, and this is the only 
way to reach a terminal string, because A cannot be rewritten to a terminal 
string in the first component and B cannot be rewritten to a terminal string 
in the second component. No splicing can be performed in the second case. 
In the first one, we get 

At least one rewriting step must be performed (no splicing rule can be used 
now): 
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If we splice again, using the second rule, then we bring the symbol A to the 
first component and the work of the system is blocked: 

(an+2cmIB, dlbn+lcm A) F (an+2cmbn+1cm A, dB). 

Therefore, we have to rewrite A by cC in the second component; C cannot be 
rewritten in P2 , hence a splicing must be immediately performed and after 
that C is replaced with c in the first component: 

(an+2cm B, dbn+lcm A) ===> (an+2cm+lIB, dlbn+1cm+lc) 

F (an+2cm+1bn+lcm+1c, dB) ===> (an+2cm+1bn+1cm+2, dbB). 

Consequently, 

Clearly, this language is not context-free. 

In fact, splicing grammar systems with three regular components "almost 
characterize" the recursively enumerable languages. 

Theorem 10.2. Each language L ~ T*, L ERE, can be written in the form 
L = L' n T*, for some L' E SGS3 (REG). 

Proof. Take L as in the proof of Theorem 10.1, generated by a grammar 
G = (N, T, S, P) in the Geffert normal form, with N = {S, A, B, C}. We 
construct a splicing grammar system for which the symbols of N will be 
considered terminals. 

Consider the system 

where 

N' = {Sl, S2, S3, X, X', Y, Z, Z', Z"}, 

T' = {S,A,B,C}UTU{do,dl,d2,d3}, 

P1 = {S1 ----+ SY, Y ----+ doY, X ----+ doX', Z ----+ doZ'}, 

P2 = {S2 ----+ d1X, X ----+ d3Z, Y ----+ doY, Z' ----+ d3Z, Z' ----+ d3Z"} 

U {X ----+ aX I a E {S,A,B,C} UT}, 

P3 = {S3 ----+ d2X, X' ----+ d2X, X ----+ d2X}, 

R = {#S$d1 #xX I S ----+ x E P} 

U {#doX'$d1S#, d1#Sdo$d2#X, #ABC$d3#Z, 

#doZ'$d3ABC#, #dodo$Z" #}. 

The idea behind this construction is the following. 
Each derivation in r has two phases, in the first one simulates the use of 

rules S ----+ x in P, and in the second one simulates the rule ABC ----+ A. The 
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passing from the first phase to the second one is marked by replacing X with 
Z in the second component. 

In the first phase, in a nondeterministic way, P2 generates a string dIxX, 
for some x E ({ S, A, B, C} U T) *. Such a string can be used in a splicing only 
when S ----t x is a rule in P. Thus, P2 has the role of producing the right-hand 
members of rules in P. By the splicing rules in R which do not contain the 
symbol Z and its prime variants, we can then simulate the use of the rule 
S ----t x for rewriting the only occurrence of S in the first component. Between 
the splicing operations, rewriting steps are necessary, just for changing the 
nonterminals. During such rewritings, the dummy terminal do is introduced 
in PI and P2 , and d2 in P3 • In order to iterate the process without producing 
parasitic strings (here, this means strings in (L(r)nT*)-L), we need the third 
component. Its role is to "clean" the second component (see explanations 
below). 

After introducing the symbol Z, we start the simulation of the rule 
ABC ----t .x, and this is performed in a similar way as in the proof of Theorem 
10.1. No rule S ----t x in P can be simulated during this phase; this is not 
losing generality because the derivation in a grammar in the Geffert normal 
form can be arranged in such a way to use first the context-free rules and 
then the erasing rule, without modifying the generated string. 

Let us examine in some detail the work of r. We start with 

No splicing can be performed (1) before producing a string x in the second 
component such that S ----t x E P, or (2) before introducing the symbol Z. 
For a splicing in case (2) we need at least a substring ABC of the string in 
the first component. Hence, we have to continue with case (1): 

The process is blocked when x cannot be continued in such a way as to obtain 
a string xx' with S ----t xx' E P; x' can be the empty string. Assume that 
S ----t x E P. Then we can perform a splicing: 

If we continue by 

then the system is blocked, no rewriting and no splicing is possible. We have, 
instead, to rewrite and then splice: 

(xX, dlSdoY, d~H X) ===? (xldoX', dlSldoHy, d~+2 X) 

F (xdoHy, dISdoX', ~+2 X). 
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The only possible continuation is a splicing again: 

We have returned to a configuration with the nonterminals Y, X in the 
first components and with the string in the second component "cleaned", 
equal again to dlX. We can iterate the process. 

Let us display an arbitrary step of this type. For the dummy symbols 
do, d2 we will write do, d2 in order to indicate that they appear in a number 
of copies which is not of interest for our argument. A similar writing concerns 
the blocks d2Sdo in the third component. Hence, we have: 

(uISvd~Y, d1lxX, (d;Sdo)*X) 

F= (uxX, dlSvd~Y, (d;Sdo)* X) 

=} (uxldoX', dlSlvd~Y, (d;Sdo)*d2X) 

F= (uxvd~Y, dlISdoX', (d;Sdo)*d2 IX) 

F= (uxvd~Y, d1X, (d;Sdo)*d2SdoX') 

=}* (uxvd~Y, d1yX, (d;Sdo)(d2Sdo)d;X). 

The process also runs as described above in the general case. 
Note that from the configuration (*) we can also splice the strings of 

the second and the third components, providing v = A, but after such an 
operation the system will be blocked, no rewriting (because of Y in the third 
component) and no splicing is possible. 

When X is present in the second component, we can also use the rule X -+ 

d3Z, which determines the passing to the second phase of the derivation, that 
where substrings ABC can be removed from the string in the first component: 

(from now on, the third component plays no role, hence we ignore its string; 
we only point out the nonterminal X in order to see that no splicing can 
involve this string, and that rewriting operations can be done for ever, no 
limit on the length of the derivation is imposed in this way). We have to 
splice 

No further splicing is possible, we have to rewrite, 

Now, we have to splice: 

(uldoZ', d1 wd3ABClvd~Y, -X) 

F= (uvd~Y, d1wd3ABCdoZ', -X). 
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After a rewriting, 

we have again the substring d3 Z present in the second component. If uv 
contains further occurrences of ABC, then we can splice again, removing 
them. Note that two rewritings are performed at each such iteration, hence 
the string in the first component is of the form uvdiy for some i ;::: 2. 

All substrings ABC can be removed in this way. However, at any step 
when reaching a configuration of the form (**), the rule Z' -+ d3 Z" can be 
used in P2. This determines the elimination of the nonterminal in the first 
component: 

(uvdbY, zZ', -X) ===} (uvdbld~Y, zd3Z"I, -X) 

F= (uvd6, Zd3Z"d~Y, -X). 

A terminal string (from the point of view of r) is obtained. 
Note that the splicing rule #dodo$Z"# cannot be used for splicing the 

strings in the third and the second components, because the string in the 
third component does not contain substrings dodo (this can be easily seen by 
examining the derivations discussed above). 

It is now clear that if all substrings ABC were removed and if the last 
splicing has been done in the front of the suffix db Y (hence j = 0 in the 
previous writing), then we get a string in L(G). Consequently, L(G) = 
L(r) n T*. 0 

Corollary 10.1. For every family FL such that F L C RE and FL is closed 
under intersection with regular sets, we have SGS3 (REG) - FL -=10. 

Many important families in the basic Chomsky hierarchy, in the regulated 
rewriting area, and in the Lindenmayer area have these properties: languages 
generated by matrix grammars with and without appearance checking but 
without using A-rules, languages generated by matrix grammars with A-rules 
and without appearance checking, ETOL, CS, recursive, etc. SGS3 (REG) 
contains languages outside each of them, which proves once again the power of 
cooperation in the parallel communicating grammar systems style, combined 
with the power of the splicing operation. 

We do not know whether or not RE = SGSn(REG), for some n. How
ever, if we allow chain rules, X -+ Y, and rules of the form X -+ xY, 
for X, Y nonterminal symbols and x a terminal string, then we can get a 
characterization of RE. The proof of the following result can be found in 
[75]. 

Theorem 10.3. RE = SGS4 (RL). 

We have considered splicing grammar systems of a hybrid character. Dis
tributed H systems using only splicing operations (and not also rewriting 
operations) will be proposed in the following three sections. 
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10.2 Communicating Distributed H Systems 

The model we consider in this section is the splicing counterpart of the par
allel communicating grammar systems with communication by command: 
the components work by splicing and communicate by sending to each other 
strings which pass certain filters specified in advance. 

A communicating distributed H system (of degree n, n 2: 1) is a construct 

where V is an alphabet, T ~ V, Ai are finite languages over V, Ri are finite 
sets of splicing rules over V, and Vi ~ V, 1 :::; i :::; n. 

Each triple (Ai, Ri , Vi), 1 :::; i :::; n, is called a component of f; Ai, Ri , Vi 
are the set of axioms, the set of splicing rules, and the selector (or filter) of 
the component i, respectively; T is the terminal alphabet of the system. 

We denote 
n 

B = V* - U vt· 
i=1 

The pair (J(i) = (V, Ri ) is the underlying H scheme associated to the 
component i of the system. 

An n-tuple (L 1 , ... ,Ln),Li ~ V*, 1 :::; i :::; n, is called a configuration of 
the system; Li is also called the contents of the ith component, understanding 
the components as test tubes where the splicing operations are carried out. 

For two configurations (L 1 , ... , L n ), (L~, ... , L~), we define 

n 

L~ = U ((J~j)*(Lj) n Vi*) U ((J~i)*(Li) n B), 
j=1 

for each i, 1 :::; i :::; n. 

In words, the contents of each component are spliced according to the 
associated set of rules (we pass from Li to (J~i)*(Li)' 1 :::; i :::; n), and the 
result is redistributed among the n components according to the selectors 
VI' ... ' Vn ; the part which cannot be redistributed (which does not belong 
to some ~*, 1 :::; i :::; n) remains in the component. As we have imposed no 
restriction over the alphabets Vi, for example, we did not suppose that they 
are pairwise disjoint, when a string in (J~j)*(Lj) belongs to several languages 
~*, then copies of this string will be distributed to all components i with this 
property. 

The language generated by f is defined by 

L(f) = {w E T* I W E Ll for some L 1 , ... ,Ln ~ V* such 

that (A 1 , ... ,An ) ===}* (L 1 , ... ,Ln )}. 
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That is, the first component of the system is designated as its master and 
the language of r is the set of all terminal strings generated (or collected by 
communications) by the master. 

We denote by CDHn the family oflanguages generated by communicating 
distributed H systems of degree at most n, n ~ 1. When n is not specified, 
we replace the subscript n with *. 

Another possibility is to consider as the language generated by r, the 
union of all languages generated by its components, in a similar way as dis
cussed in Remark 10.1, but we do not follow up this suggestion here. 

Communicating distributed H systems characterize RE. Before proving 
this result, let us examine an example: 

Consider the system 

r = ({a, b, c, d, e}, {a, b, c}, (Al' Rl, Vl)' (A2' R 2, V2)), 

Al = {cabc, ebd, dae}, 

Rl = {b#c$e#bd, da#e$c#a} , 

Vl = {a, b, c}, 
A2 = {ec,ce}, 

R2 = {b#d$e#c, c#e$d#a}, 

V2 = {a,b,d}. 

The only possible splicings in the first component are: 

(xlblc, elbd) 1= (xlbbd, ec), for Xl E {a, b, c, d, e} *, 
(dale,clax2) 1= (daax2,ce), for X2 E {a,b,c,d,e}*. 

One further occurrence of a and one further occurrence of b can be added 
in this way to the strings x1bc, caX2, respectively (at the same time, c is 
replaced by d, in both cases). We start from cabc; from the second component 
we communicate strings over {a, b, c}. From the first component we can 
communicate to the second one only strings over {a, b, d}. This means that, 
starting from a string canbmc, n, m ~ 1 (initially, n = m = 1), in the first 
component we produce dan+1bm+l d, no further splicing can be done here, and 
the string is communicated to the second component; moreover, both rules 
in Rl must be applied, otherwise a symbol c is still present in the string. In 
the second component we can perform: 

(aailJi Id, elc) 1= (aailJi c, ed), 

(cle, dlailJia) 1= (cailJia, de), 

a E {c, d}, 
a E {c,d}. 

Only the string caibic can be communicated to the first component, hence 
the process can be iterated. 

Consequently, we obtain 
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which is not a regular language. 
Thus, CDH2 - REG -=I- 0. 

Theorem 10.4. RE = CDHn = CDH*, for all n:::: 3. 

Proof. The inclusions CDHn ~ CDHn+1 ~ CDH* ~ RE, n :::: 1, are 
obvious. We have only to prove the inclusion RE ~ CDH3 . 

Consider a type-O grammar G = (N, T, S, P), take a new symbol, B, and 
denote, for an easy reference, 

Since N -=I- 0, T -=I- 0, we have n :::: 3. We construct the communicating 
distributed H system 

with 

v = NUTU{X,Y,X',Y',Z,B} 

U {Xi'Yi 10:S i:S 2n}, 

Al = {XBSY}u{ZvYlu----+vEP} 

U {X2iDiZ 11 :S i:S n} 

U {X 2i Z I ° :S i :S n - I} 

U {ZY2i I ° :S i :S n}, 

RI = {#uY$Z#vY I U ----+ v E P} 

U {#DiY$Z#Y2i , X#$X2i Di#Z 11 :S i::; n} 

U {#Y2i+l$Z#Y2i , X 2i+1#$X2i#Z I O:S i:S n -I}, 

VI = NUTU{B,X,Y}U{X2i+I,Y2i+110:Si:Sn-l}, 

A2 = {ZY2i-I,X2i-IZ 11 :S i:S n} U {ZZ}, 

R2 = {#Y2i$Z#Y2i-l, X2i#$X2i-I#Z 11:S i:S n} 

U {X'B#$#ZZ, #Y/$ZZ#}, 

V2 = NUT U {B, X', Y/} U {X2i' Y2i 11 :S i :S n}, 

A3 = {ZY,XZ,ZY/,ZX/}, 

R3 = {#Yo$Z#Y, Xo#$X#Z, #Yo$Z#Y/, Xo#$X/#Z}, 

V, = NUTU{B,Xo,Yo}. 

Let us examine the work of r. The underlying idea is again rotate-and
simulate. Starting from strings of the form XwY (the axiom XBSY is of 
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this form), the first component can simulate the rules of P in a suffix of w, 
by using splicing rules #uY$Z#vY, for u -+ v E P, or can start rotating the 
string. In the first case, the string obtained is again bounded by the markers 
X, Y, hence the process can be iterated. When removing a symbol Di from 
the right hand end of w one replaces Y with Y2i : 

providing that W = wIDi, 1::; i ::; n (observe that B can be removed like any 
symbol in NUT). 

No string containing an occurrence of Z can be moved from a component 
to another one. If such strings obtained by splicing enter new splicing oper
ations, then no terminal string can be obtained using the resulting strings: 
both of them contain the symbol Z and by splicing them no new string is 
obtained. Consider, for instance, the string ZDiY. Using again the rule 
#Di$Z#Y2i we obtain the strings ZY2i , ZDiY. A similar result will be ob
tained in all cases below. 

The string X WI Y2i cannot be communicated, but a further splicing is 
possible in the first component: 

for some 1 ::; j ::; n. The two operations can be performed in the reverse 
order and the result is the same. 

Strings bounded by markers X r , Ys with even T, s cannot enter new splic
ings in the first component and can be communicated to the second com
ponent. Two splicings are possible here, decreasing by one the subscripts 
of X and Y. If only one splicing is performed, then the string cannot be 
communicated. Thus, we get: 

(X2j IDjWI Y2i , X 2j - I IZ) ~ (X2j Z, X2j-IDjWI Y2i ), 

(X2j-IDjWIIY2i, ZIY2i- l ) ~ (X2j-IDjWI Y2i- l , ZY2i ). 

Again, the order of the two operations is not important. 
A string with odd subscripts of the end markers can be communicated 

to the first component. These operations can be iterated and they must be 
continued, otherwise there is no way to remove the nonterminal symbols. 
When in the first component we obtain Xo or Yo, the string can no longer 
be communicated to the second component. If one of the end markers X, Y 
has the subscript 0 and the other subscript is strictly larger, then the string 
is "lost", it cannot be communicated and it cannot enter new splicings. If 
both markers have the subscript 0, then the string can be communicated to 
the third component. 

In the third component, a string of the form XowYo can be transformed to 
XwY (and this string is passed to the first component, thus making possible 
the iteration of the whole process, of simulation of rules in P or of rotation), 
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or to X'wY', or to a string with mixed forms of the markers X, Y, with and 
without a prime. In the last case, the string is once again "lost", because it 
cannot be further processed. 

A string of the form X'wY' can be communicated only to the second 
component, where only two splicings are possible: 

(X'BlwIY', IZZ) F (X'BZZ,wIY'), 

(WIlY', ZZI) F (WI, ZZY'), 

providing that W = BWI (which ensures that the string has the same per
mutation as the corresponding string produced by G). A string without end 
markers cannot enter new splicings. If it is a terminal one, then it can be com
municated to the first component, hence it is an element of L(r); otherwise 
it is "lost". 

Therefore, the subscripts of the two markers X, Y must reach at the same 
time the value O. This is possible only when they have started from the same 
value. In the case above, we must have i = j. This means that the symbol 
Di which has been erased from the right end of W has been simultaneously 
introduced in the left end of w. In this way, the rotation phase is correctly 
implemented, hence all circular permutations of the string can be obtained. 
Consequently, all derivations in G can be simulated in r and, conversely, only 
strings in L( G) can be sent as terminal strings to the first component of r. 
Thus, L(G) = L(r). 0 

Communicating distributed H systems of degree 1 do not use communi
cation, hence they are extended finite H systems. In view of the results in 
Chap. 7 we can write 

CDHI = REG C CDH2 

(the properness of the second inclusion is proved by the example considered 
before Theorem 10.4). 

It is an open problem whether or not the inclusion CDH2 ~ CDH3 is 
proper, hence whether or not the result in Theorem 10.4 can be strengthened, 
to n = 2. We expect a negative answer. (We conjecture that CDH2 c CF.) 

This problem is most interesting from a mathematical point of view, 
though rather less so for DNA computing: the motivation of considering 
distributed H systems is to decrease the number of splicing rules used in each 
component; a small number of components intuitively means components of 
large size, which conflicts with our goal. 

Consider now the very problem which has motivated the defini
tion of distributed H systems - limiting the number of splicing rules 
working together. For a communicating distributed H system r = 
(V, T, (AI, R I , Vd, ... , (An' Rn, Vn)) we denote by tubes(r) the degree of r 
(the number n, of components), by rad(r) the maximum radius of rules in 
r, and 

size(r) = maxi card(Ri ) 11 ::; i ::; n}. 
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By a modification of the construction from the proof of Theorem lOA, we 
can characterize the family RE by communicating distributed H systems of 
minimal size, namely one (of course, this is obtained at the expense of leaving 
the number of components unbounded). 

Theorem 10.5. For each type-O grammar G = (N, T, S, P) we can construct 
a communicating distributed H system r such that L( G) = L(r) and 

tubes(r) = 2(card(N U T) + 1) + card(P) + 9, 

size(r) = 1, 

rad(r) = card(N U T) + 2. 

Proof. For a type-O grammar G = (N, T, S, P), consider a new symbol, 
B, and denote, for an easy reference, NUT U {B} = {Dl' D2 , •.• , Dn}. 
Since N =f. 0, T =f. 0, we have n ~ 3. Assume the rules in P are labeled in 
a one-to-one manner with rl, ... , rm , for m = card(P). We construct the 
communicating distributed H system r with the alphabet 

v = NuTu {X,X', X", Y, Y',Y",Z,B,C,E}, 

the terminal alphabet T, and with the components described below. We 
identify these components with elements 0: in the set 

M = {1,2,3,4,5,6, 7,8,9} U {Di,D~ 11 ~ i ~ n} U {ri 11 ~ i ~ m}. 

0: = ri: A", = {XBSY, ZViY}, 

R", = {#UiY$#ViY}, for ri : Ui ---+ Vi E P, 

V", = NUTu {X, Y,B}, where i = 1,2, ... ,m; 

0: = Di : A", = {ZCiy}, 

R", = {#DiY$Z#Ciy'}, 

V", = NuTu {X, Y,B}, where i = 1,2, ... ,n; 

0: = 1: A", = {ZY"}, 

R", = {#CY'$Z#Y"}, 

V", = NUTu {X,Y',B,C}; 

0: = 2: A", = {X'CZ}, 

R", = {X#$X'C#Z}, 

V", = NUTU{X,Y",B,C}; 

0: = 3 : A", = {ZY'}, 

R", = {#Y"$Z#Y'}, 

V", = N U TU {X', Y",B,C}; 

0: = 4 : A", = {X Z}, 

R", = {X'#$X#Z}, 
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Va = NuTU {X',Y',B,C}; 

a = D~: Aa = {X"DiZ}, 

Ra = {XCi#$X"Di#Z}, 

Va = N UTU {X, Y',B,C}, where i = 1,2, ... ,n; 

a=5: Aa={ZY}, 

Ra = {#Y'$Z#Y}, 

Va = N UTU {X", Y',B}; 

a = 6 : Aa = {X Z}, 

Ra = {X#Z$X"#}, 

Va = NuTu {X", Y,B}; 

a = 7 : Aa = {Z E}, 

Ra = {#Y$Z#E}, 

Va =TU{X,Y,B}; 

a = 8: Aa = {ZZ}, 

Ra = {#ZZ$XB#}, 

Va = Tu {X,E,B}; 

a = 9 : Aa = {Z Z}, 

Ra = {#E$ZZ#}, 

Va=TU{E}. 

The work of r proceeds as follows. 

335 

No terminal string can enter a splicing, because all splicing rules in 
Ra,a E M, contain control symbols X,X', X", Y, Y', Y", Z. 

The components identified by a = Ti, 1 :::; i :::; m, are used for simulating 
the rules of P. This is done in the right hand end of a current string of the 
form X W Y, for W E (N U T U {B}) * (only such strings are accepted by the 
filters of these components). Such an operation is of the form 

(XwlluX, ZlviY ) F (XW1ViY , ZUiY ). 

The string X Wl Vi Y is of the same type (contains similar symbols) as the 
input string XW1UiY, the byproduct string ZUiY can enter a new splicing 
as above only if Ui = Vi (hence nothing new is produced), or splicings of the 
form 

(ZluX, ZlvX) F (ZvX, ZUiY ), 

hence the strings are reproduced. 
A string of the form XwY, with W containing only symbols in NUTU{B}, 

can also be communicated to a component identified by a = Di , 1 :::; i :::; 
n. Such a component replaces the symbol Di appearing on the rightmost 
position of W by C i : 

(XwlIDiY, ZICiy') F (XW1Ciy', ZDiY). 
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The string ZDiY can enter only a splicing of the form 

hence nothing new is produced. The first string can be passed both to the 
component identified by a = 1 and to any component identified by a = 
Dj,l :::: j :::: n. No splicing is possible in the second case. 

The components corresponding to a = 1,2,3,4 move symbols C from the 
right hand end of a string to its left hand end, as follows: 

(XcswCtICY', ZIY") F (XcswCty", ZCY'), 

(XlcswCtY",X'CIZ) F (XZ,X'CcswCty"), 

(X,cs+1 wCt IY", ZIY') F (X,cs+1wCty', ZY") , 

(X'lcs+1wCty', XIZ) F (X' Z, Xcs+1wCty'). 

One occurrence of C has been moved from the right hand end of the string 
XcswCt+1Y',s,t 2: 0, to the left hand end of this string. The operation 
can be iterated (the obtained string again contains symbols from NUT U 

{X,Y',B,C}). All the strings obtained during these steps and containing 
the symbol Z cannot enter splicings which produce new strings, the "main 
string", that marked with X, Y and primed versions of these symbols, has to 
circulate on the path 1, 2, 3, 4 and back to l. 

In any moment, the string XcswCtY',s,t 2: 0, produced by the compo
nent associated with a = 4 can be passed to any component identified by 
a = D~, 1 :::: i :::: n. When i :::: s we obtain 

If s > i or t 2: 1, then the string X" Dics-iwCty' cannot be passed to 
another component, because none of them accepts strings containing at the 
same time occurrences of X" and C. A further splicing in the component as
sociated with a = D~ is not possible for strings starting with X". Therefore, 
we must have s = i and t = 0, which means that the symbol Di replaced by 
C i above has to be reintroduced in the left hand end of the string. 

In this way, the string is circularly permuted, making possible the simula
tion of rules in G on any position of the string generated by G and simulated 
in f. 

Now, the components identified by a = 5,6 replace Y' by Y and X" by 
X, thus both the simulation of rules in G and the rotation of the string can 
be iterated. We leave the details to the reader. 

In any moment, any string containing only symbols in T U {B} can be 
communicated to the component identified by a = 7, which introduces the 
symbol E. The only continuation is the removing of the auxiliary symbols. It 
is important to note that we can remove B only together with X, hence only 



10.2. Communicating Distributed H Systems 337 

when the obtained string is in the same permutation as in G. The operations 
performed by the last three components of our system are: 

(XBxIY, ZIE) F (XBxE, ZY), 

(IZZ,XBlxE) F (xE,XBZZ), 

(xIE, ZZI) F (x, ZZE). 

Note that in all these operations we have x E T*. 

r 

f= 

L 

I 
B 

_ ...J 

Figure 10.1: The flow of strings in r 

The path followed by the string of the form XwY, maybe with X, Y 
replaced by primed versions of them, is indicated in Fig. 10.1. Block A 
contains the components performing the simulation of rules in P, block B 
contains the components performing the circular permutation of the string, 
whereas block C contains the components ending the process. 
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According to the previous discussion, one can see that each derivation in 
G can be simulated in r and, conversely, all terminal strings reaching the 
first component of r are strings in L( G). Consequently, L( G) = L(r). 

It is easy to see that r contains m + 2n + 9 components (remember that 
n = card(N U T U {B})) and that rad(r) = n + 1 (this value is reached by 
R~ for a = Di). Each component contains only one splicing rule, that is 
size(r) = 1. 0 

Remark 10.2. If we also consider the parameter ax(r), defined as the 
maximum number of axioms in the components of r, from the previous con
struction we also obtain ax(r) = 1. 0 

At the price of increasing the number of components, we can also bound 
the radius of the obtained system. 

Theorem 10.6. For each type-O grammar G = (N, T, S, P) we can construct 
a communicating distributed H system r such that L( G) = L(r) and 

tubes(r) :::; 3(card(N U T) + 1) + 2· card(P) + 4, 

size(r) = 1, 

rad(r) = 2. 

Proof. We modify the construction of the system r in the proof of Theo
rem 10.5 in the following way. 

Firstly, we remove the components in block B in Fig. 10.1, those which 
rotate the string, and we consider the following components, for all i = 

1,2, ... ,n: 

a = Di : Aa = {ZYi}, 

Ra = {#DiY$Z#Yi}, 

Va = NU TU {X, Y,B}, 

a = D~: Aa = {X/DiZ}, 

Ra = {X#$X'Di#Z}, 

Va = NUTu {X, Yi,B}; 

a=D~/: Aa={ZY}, 

Ra = {#Yi$Z#Y}, 

Va =NUTU{X',Yi,B}; 

a = 1 : Aa = {X Z}, 

Ra = {X/#$X#Z}, 

Va = NUTU {X', Y,B}. 

The rotation is now performed in the following way: 

(XwIDX, ZIYi) F= (XwYi, ZDX), 
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(XlwYi, X'DiIZ) 1= (X Z, X'DiwYi), 

(X'DiWIYi, ZIY) 1= (X'DiwY, ZYi), 

(X'IDiwY, XIZ) 1= (X' Z, X DiWY). 
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Secondly, we also modify the simulating components, those in block A 
in Fig. 10.1. Specifically, we start from a grammar G in Kuroda normal 
form (with the rules of the forms C ----> x, C E N, x E (N U T)*, Ixl :::; 2, and 
CD ----> EF, with C, D, E, FEN); moreover, we assume the rules of G are 
labeled in a one-to-one manner. 

For each rule r : C ----> x we introduce in r the component 

0: = r: Aa = {Z x }, 

Ra = {#CY$Z#x}, 

Va = NUTU {X, Y,B}, 

whereas for each rule r : CD ----> EF we introduce the components 

o:=r: Aa={ZYr}, 

Ra = {C#DY$Z#Yr }, 

Va = NUTU {X, Y,B}, 

0: = r': Aa = {ZEFY}, 

Ra = {#CYr$Z#E}, 

Va = N UTU {X, Yr,B}. 

The use of symbols Yr ensures the correct simulation of the non-context
free rules in P. 

The terminating components (identified by 0: = 7,8,9 in the proof of 
Theorem 10.5) remain unchanged. 

As in the proof of Theorem 10.5 one can see that the obtained system is 
equivalent with G. Moreover, it is of radius two, of size one, but it contains 
at most 3n + 2m + 4 components (where n = card(N U T U {B}) and m = 
card(P)). 0 

The proofs of Theorems 10.4, 10.5, and 10.6 are constructive and provide 
universal communicating distributed H systems when starting from a uni
versal type-O grammar, in the usual sense of universality. The "program" of 
the particular distributed H system to be simulated by the universal one is 
introduced in the axiom set of the second component, instead of the axiom 
XBSY: as in Sect. 8.7, the symbol S should be replaced by the code of the 
simulated system. 

10.3 Two-Level Distributed H Systems 

The distributed H systems in the previous section make essential use of a fea
ture which makes them inefficient from a biochemical point of view, namely 
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communication. This means the transport of many strings from a component 
to another one and the checking of the filter conditions. Moving (long) DNA 
sequences from one place to another takes time and can break the molecules, 
while checking the filter conditions can be done, in present laboratory condi
tions, only manually, which is bad from the efficiency point of view. 

The model we shall define below will no longer involve communication be
tween components in the sense considered in the communicating distributed 
H systems. 

A two-level distributed H system (of degree n, n ~ 1), is a construct 

r = (V,T, (wl,Al,h,E1), ... , (Wn , An,In, En)), 

where V is an alphabet, T ~ V, Wi E V*, Ai ~ V*, and Ii, Ei ~ 
V*#V*$V*#V*, for #, $ symbols not in V. All sets A, h Ei , 1 :::; i :::; n, are 
finite; T is the terminal alphabet, (Wi, Ai, h Ei ) is the ith component of the 
system; Wi is the active axiom, Ai is the set of not-so-active (we say passive) 
axioms, Ii is the set of internal splicing rules, and Ei is the set of external 
splicing rules of component i, 1 :::; i :::; n. 

One can imagine a two-level H system as consisting of n (active) DNA 
sequences, Zl, ... ,Zn (initially they are Wl, ... ,wn ), with their left hand end 
fixed on a solid support, surrounded each by arbitrarily many copies of passive 
strings (initially, those in sets A!, . .. ,An' respectively), and having around 
both "strong" restriction enzymes which can "see" only the active strings and 
"weak" restriction enzimes, acting only locally, on Zi and on an associated 
string in the passive set. As a result of a local splicing, a string with a prefix 
which is also a prefix of Zi will be obtained, hence again fixed on the support, 
and one more string which will be added to the surrounding set of passive 
strings. The external splicing has priority over the internal splicing. When 
an external splicing is performed, according to a rule in some set Ei , then the 
associated string Zi is the first term of the splicing, hence a new string fixed 
on the solid support is obtained, having a common prefix with Zi; the second 
term of the splicing, some Zj, j f:. i, remains unchanged after this operation -
one can assume that a copy of Zj has been produced and sent to component 
i just for participating in the splicing. 

Formally, these operations are defined as follows. 
The contents of a component i, 1:::; i :::; n, is described by a pair (Xi, Mi ), 

where Xi E V* is the active string and Mi ~ V* is the set of passive strings. 
An n-tuple 7f = [(Xl, Md, ... , (xn, Mn)] is called a configuration of the sys
tem. For 1 :::; i :::; n and a given configuration 7f as above, we define 

{
external, if there are r E Ei and X j, j f:. i, 

/.L(Xi,7f) = such that (Xi,Xj) Fr (u,v), for some u,v E V*, 
internal, otherwise. 

Then, for two configurations 7f = [(Xl, Md, ... ,(xn , Mn)] and 7f' = [(x~, MD, 
... , (x~, M~)], we write 7f ==?ext 7f' if the following conditions hold: 
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1. there is i, 1 ::; i ::; n, such that f-1( Xi, 7f) = external, 

2. for each i,l ::; i::; n, with f-1(Xi,7f) = external, we have (Xi,Xj) Fr 
(x~, Zi), for some j, 1 ::; j ::; n,j -I i, r E Ei , and Zi E V*; moreover, 
M:=MiU{zd, 

3. for each i,l < < n, with f-1(Xi,7f) 
(Xi, Mi). 

internal, we have (X~, MD 

For two configurations 7f and 7f' as above, we write 7f =?int 7f' if the 
following conditions hold: 

1. for all i, 1 ::; i ::; n, we have f-1(Xi, 7f) = internal, 

2. for each i, 1 ::; i ::; n, either (Xi, Z) Fr (X~, z'), for some Z E Mi, Z' E 

V*,r E Ii, and M: = Mi U {z'}, or 

3. no rule r E Ii can be applied to (Xi, z), for any z E Mi, and then 
(x~, M;) = (Xi, Mi). 

The relation =?ext defines an external splicing, =?int defines an internal 
splicing. Note that in both cases all the splicing operations are performed in 
parallel and the components not able to use a splicing rule do not change their 
contents. We stress the fact that the external splicing has priority over the 
internal one and that all operations have as the first term an active string; 
the first string obtained by splicing becomes the new active string of the 
corresponding component, the second string becomes an element of the set 
of passive strings of that component. 

We write =? for both =?ext and =?int. The language generated by a 
two-level distributed H system r is defined by 

L(r) = {w E T* I [(WI, Ad,···, (Wn, An)] =?* [(Xl, MJ), ... , (Xn' Mn)], 

for W = XI,Xi E V*,2::; i::; n, and Mi <:: V*, 1::; i::; n}. 

We denote by LDHn the family of languages generated by two-level dis
tributed H systems with at most n components, n 2': 1. When no restriction 
is imposed on the number of components, we write LDH*. 

Here is an example: Consider the system 

with 

WI = aD, 

Al = {aD,Da}, 

h = {b#C$#aD, b#C$D#a}, 

EI = {a#D$D#b}, 
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W2 = DbC, 

A2 = {bC}, 

h = {b#C$#bC}, 

E2 = 0. 

A computation in r runs as follows: 

[(aiD, {aD, Da}), (DlbC, {bC})] 

10. Distributed H Systems 

=*ext [(abIC, {laD, Da, DD}), (DbIC, {lbC})] 

=*int [(abaID, {aD, Da, DD, C}), (Dlb2C, {bC, C})] 

=*ext [(abab2 IC, {laD, Da, DD, C}), (Db2 IC, {lbC, C})] 

=*int [(abab2aD, {aD, Da, DD, C}), (Db3C, {bC, C})] =** ... 

=*ext [(abab2 ... abklC, {aD, Dla, DD, C}), (DbkIC, {bIC, C})] 

=*int [(abab2 ... abka, {aD, Da, DD, C, DC}), (Dbk+1C, {bC, C})], 

for some k 2: l. 
After an alternate sequence of external and internal splicings, the active 

string of component 1 becomes abab2 ... abkC, which can be turned out to a 
terminal string by replacing C with a. Therefore, 

L(r) = {abab2 ... abka I k 2: I}. 

This language is not semilinear, hence it is not context-free. 

A variant of the model above, with the two levels better distinguished, is 
the following one: 

A separated two-level distributed H system is a construct 

where V is an alphabet, T ~ V (the terminal alphabet), Wi E V* (active 
axiom), A ~ V* (passive axioms), hI::::; i ::::; n, and E are sets of splicing 
rules over V; all the sets Ai, h E are finite. The elements of Ii are called 
internal splicing rules, 1 ::::; i ::::; n, and those of E are called external splicing 
rules; (Wi, Ai, Ii) is the ith component of r, 1 ::::; i ::::; n. 

The language generated by r, denoted by L(r), is equal to the lan
guage generated by the two-level H system r' = (V,T, (WI, AI, h,E), ... , 
(Wn, An,In, E)). We denote by SLDHn,n 2: 1, the family of languages gen
erated by separated two-level H systems of degree at most n; when n is not 
specified, we write SLDH*. 

Theorem 10.7. RE = SLDHn = LDHn = SLDH* = LDH*, for all 
n 2: 3. 
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Proof. The inclusions SLDHn ~ LDHn,n ::::: 1, SLDH* ~ LDH*, 
LDHn ~ LDHn+l' SLDHn ~ SLDHn+l , n ::::: 1, follow from the definitions, 
LDH* ~ RE is obvious. Therefore, we have only to prove the inclusion 
RE ~ SLDH3 . 

Consider a type-O grammar G = (N, T, S, P). We construct the separated 
two-level distributed H system 

with 

v = NUT U {X, Z, Zs, Zl, ZTl Y, C l , C2 , C3 }, 

WI = SXXCl , 

Al = {ZvX Zs I u ----t V E P} 

U {ZXXaZl,ZaXXZr I a E NUT}, 

h = {#uXZ$Z#vXZs I u ----t V E P} 

U {#aXZ$Z#XXaZl, #XZ$Z#aXXZr I a E NUT}, 

W2 = C2Z, 

A2 = {C2Y}, 

12 = {C2#Y$C2#Z}, 

W3 = C3 Z, 

A3 = {C3Y}, 

h = {C3 #Z$C3#Y, C3#Y$C3#Z}, 

E = {C2#Z$X #X, X #X$C3 #Z, X #Zs$C2#X, 

C2#X$C3 #Y, #XXCl $C2Z#} 

U {XXa#ZI$C2 X#, aXX#Zr$C2 Xa# I a E NUT}. 

The idea behind this construction is as follows. We simulate the work of 
G in the first two components, on their active strings. Namely, the substring 
X X of the active string of the first component shows the place where the 
simulation is done - immediately to the left of X X. To this aim, the active 
string of the first component is cut between the two occurrences of X, the 
prefix remains in the first component and the suffix is saved in the second 
component. This is done by external splicings performed simultaneously in 
the first and the second components. The simulation is performed by an in
ternal splicing in the first component. Then the two strings are concatenated 
again by an external splicing, in the presence of the symbol Zs (the subscript 
s stands for "simulation"). The substring X X can be moved to the left or 
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to the right, over one symbol, in a similar way for both directions; the sym
bols XI,Xr control the operation (l = left, r = right). After removing the 
substring XX, together with the symbol C l , no further splicing is possible. 

Let us examine in some details the work of r. 
Consider a configuration 

[(WlXXW2Cl, Md, (C2Z, M2), (C3Z, M3)] 

Initially we have WI = S,W2 = A,Ml = A l ,M2 = A2,M3 = A3. We have to 
splice the active strings according to the rules C2#Z$X #X, X #X$C3#Z 
in E and we obtain the configuration: 

[(wlXZ,M{ = Ml U {C3XW2Cd), (C2XW2Cl,M~ = M2 U {wlXZ}), 

(C3Z,M3 )]. 

No external splicing is possible, we perform internal splicings in the first and 
the third components. There are three possibilities: 

1) If WI = w~ u, for some u --+ v E P, then we can use the rule 
#uXZ$Z#vXZs in component 1 and C3#Z$C3#Y in component 3 and 
we get: 

[(W~vXZ8,Mf' = M{ U {ZuXZ}), (C2XW2Cl,M~), 

(C3Y,M~ = M3 U {C3Z})]. 

External splicings are possible, using the rules X #Zs$C2#X, C2#X$C3#Y, 
and leading to the configuration 

[(W~VXXW2Cl,Mf" = Mf' U {C2Zs}), (C2Y,M~' = M~ U {C3XW2Cd), 

(C3Y,M~)]. 

No external splicing is possible and no internal splicing in the first component, 
but we can perform internal splicings in components 2 and 3, leading to: 

[(W~VXXW2Cl, Mf"), (C2Z, M~" = M~ U {C2Y}), 

(C3Z,M~' = M~ U {C3Y})]. 

We have returned to a configuration of the form we started with, (*). 
The new passive strings, produced during these operations, will enter no 

new splicing in components 1 and 2, and they are always C3Y, C3 Z in the 
third component. 

2) If WI = w~a, for some a E NUT, then we can use the rule 
#aXZ$Z#XXaZI in component 1 and the rule C3#Z$C3#Y in compo
nent 3, and we get: 

[(w~XXaZ/,Mf' = M{ U {ZaXZ}), (C2XW2Cl,M~), 

(C3Y,M~ = M3 U {C3Z})]. 
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External splicings must be done, using the rules XXa#ZI$C2X# and 
C2#X$C3#Y, leading to: 

[(w~XXaw2Cl,Mt = M{' U {C2XZI}), 

(C2Y,M~' = M~ U {C3Xw2Cd), (C3Y,M~)]. 

No external splicing and no internal splicing is possible in the first component, 
but we can perform internal splicings in the other components; we obtain the 
configuration 

[(w~XXaw2Cl,Mt), (C2Z,M~" = M~ U {C2Y}), 

(C3Z,M~' = M~ U {C3Y})]. 

We have also returned to a configuration of type (*). 

3) If in configuration (*) we have W2 = aw~, for some a E NUT, then 
we can proceed as follows; by using the rule #XZ$Z#aXXZr in the first 
component and C3#Z$C3#Y in the third one, we first produce 

[(wlaXXZr, M{' = M{ U {ZXZ}), (C2XW2Cl, M~), 

(C3Y,M~ = M3 U {C3Z})], 

then we have to perform external splicings, according to the rules 
aXX#Zr$C2Xa#, C2#X$C3#Y, leading to 

[(wlaXXw~Cl' Mt = M{' U {C2XaZr }), 

(C2Y,M~' = M~ U {C3XW2Cd), (C3Y,M~)]. 

No external splicing is possible and no internal splicing in the first component; 
splicing internally in the other components, we get 

[(wlaXXw~Cl,Mt), (C2Z,M~" = M~' U {C2Y}), 

(C3Z,M~' = M~ U {C3Y})]. 

We have again returned to a configuration of type (*). 

In case 1 we have simulated the rule u -+ v in the presence of X X, in case 
2 we have moved X X across a symbol to the left, in case 3 we have moved 
X X across a symbol to the right. The operations above can be repeated an 
arbitrary number of times. Changing in this way the place of X X, we can 
simulate the rules of G in any place of the word. 

When we have a configuration of the form 

then the external splicing is possible using the rules #XXC1$C2Z#, 
C2#Z$X #X, leading to 

[(w,M{ = Ml U {C2ZXXC1}), (C2XC1,M~ = M2 U {wXZ}), 

(C3Z,M3)]. 
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No further splicings, internal or external, are possible in the first component. 
If W is a terminal string, then it is accepted in the language generated by r, 
if not, then it will never lead to a terminal string. 

Consequently, we have L( G) = L(r). 0 

We do not know whether the threshold 3 in the previous theorem is op
timal or not. 

Starting the construction in the proof of Theorem 10.7 from a universal 
type-O grammar, we obtain a universal separated two-level distributed H sys
tem, in the usual sense. The "program" to be executed on such a "computer" 
is introduced as the active axiom WI, instead of SXXC1 . 

10.4 Time-Varying Distributed H Systems 

The distributed architecture we introduce in this section is also related to 
programmed and evolving H systems investigated in Sect. 8.4: at different 
moments we use different sets of splicing rules. The passing from a set of rules 
to another one is now specified in a cycle. Thus, the new model corresponds 
both to periodically time-varying grammars in the regulated rewriting area 
and to controlled tabled Lindenmayer systems. We can also interpret these 
systems as counterparts of cooperating distributed grammar systems with 
the order of enabling components controlled by a graph having the shape of 
a ring. 

As a biochemical motivation, these models start from the assumption that 
the splicing rules are based on enzymes whose work essentially depends on 
the environment conditions. Hence, in any moment, only a subset of the set 
of all available rules are active. If the environment changes periodically, then 
the active enzymes also change periodically. 

A time-varying distributed H system (of degree n, n ;:::: 1) is a construct 

where V is an alphabet, T ~ V (terminal alphabet), A is a finite subset of 
V* (axioms), and Ri are finite sets of splicing rules over V,l :::; i :::; n. The 
sets Ri , 1 :::; i :::; n, are called the components of the system. 

At each moment k = n . j + i, for j ;:::: 0, 1 :::; i :::; n, the component Ri is 
used for splicing the currently available strings. Specifically, we define 

Ll =A, 

Lk+l = a~i)(Lk)' for i == k(mod n), k ;:::: 1, 

where a(i) = (V, Ri ), 1 :::; i :::; n. 

Therefore, from a step k to the next step, k + 1, one passes only the result 
of splicing the strings in Lk according to the rules in Ri for i == k(mod n); 
the strings in Lk which cannot enter a splicing are removed. 
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The language generated by r is defined by 

L(r) = (U Lk) n T*. 
k~l 

We denote by V DHn , n 2: 1, the family of languages generated by time
varying distributed H systems of degree at most n, and by VDH* the family 
of all languages of this type. 

The way of working of time-varying H systems is surprisingly powerful. 
(The explanation lies in the fact that from a step to another step one passes 
only the result of splicing operations done at the previous step; strings pro
duced at different "generations" cannot be spliced together.) 

For example, let us consider the system (of degree 1) 

We obtain 

Therefore, 

r = ({a, b, c}, {a, b, c}, {cab}, {a#b$c#a}). 

L1 = {cab}, 

L2 = {caab,cb}, by (caJb,cJab) F (caab,cb), 

L3 = {ca4b,cb}, by (caaJb,cJaab) F (ca4b,cb), 

2k - 1 
Lk = {ca b,cb}, k 2: 1. 

L(r) = {ca2n b J n 2: O} U {cb}, 

which is a non-context-free language (not even in the family MATA). 
Because each regular language can be generated by a time-varying H 

system of degree 1 (follow the same construction as in the proof of Lemma 
7.18, adding splicing rules which pass the axioms from one step to the next; 
because the axioms are of a well specified form, this can be easily achieved), 
we have 

Lemma 10.1. REG = EH2 (FIN,FIN) c VDH1 ~ VDH2 ~ •.• ~ 

VDH* ~ RE. 

This hierarchy collapses (at most) at level 7: 

Theorem 10.8. RE = VDHn = VDH*,n 2: 7. 

Proof. Consider a type-O grammar G = (N, T, S, P) with NUT 
{a1, ... ,an-1},n 2: 3, and P = {Ui --t Vi J 1 ~ i ~ m}. Let an = B 
be a new symbol. We construct the time-varying distributed H system 

r = (V, T,A,R1 , .•• ,R7), 
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with 

v = NUTU{X,Y,Y',Z,B} 

U {ti, Yi',X i I 0 ~ i ~ n}, 
A = {XBSY, ZY, ZY', ZZ,XZ} 

U {ZViY 11 ~ i ~ m} 

U {Zlj, ZYj,XjZ I 0 ~ j ~ n} 

U {XjCtjZ 11 ~ j ~ n}, 

and the following sets of splicing rules: 

Rl = {#UiY$Z#VX 11 ~ i ~ m} 
U {#Y$Z#Y, Z#$Z#} 

U {#lj$Z#lj 11::; j ::; n}, 

R2 = {#CtjY$Z#lj 11 ~ j ~ n} 

U {#Y$Z#Y', Z#$Z#} 

U {#lj$Z#Yj 11 ~ j ~ n}, 

R3 = {X#$XjCtj#Z 11 ~ j ~ n} 

U {#Y'$Z#Y, Z#$Z#} 

U {#Yj$Z#lj 11 ~ j ~ n}, 

R4 = {#lj$Z#lj-l 11 ~ j ~ n} 

U {#Y$Z#Y, Z#$Z#}, 
R5 = {Xj#$Xj-1#Z 11 ~ j ~ n} 

U {#Y$Z#Y, Z#$Z#}, 

R6 = {#Yo$Z#Y, #Yo$ZZ#, #Y$Z#Y', Z#$Z#} 

U {#lj$Z#Yj 11 ~ j ~ n}, 

R7 = {Xo#$X#Z, XoB#$#ZZ, #Y'$Z#Y, Z#$Z#} 

U {#Yj$Z#lj 11 ~ j ~ n}. 

This system works as follows. 
Consider a string of the form X w Y, w E (N U T U {B} ) *; for the axiom 

X BSY we have w = BS. 
If w = W'Ui, 1 ~ i ~ m, then the first component can simulate the 

rule Ui ----t Vi E P for a suffix of w. A string XwY can also be passed 
to R2 unmodified, by using the rule #Y$Z#Y. Similarly, by using the rule 
Z#$Z#, any axiom (in general, any string containing an occurrence of Z) can 
be passed from Rl to R2 - and the same assertion is true for all consecutive 
components) . 

A string XwY can enter in R2 two splicings: 

(Xw'ICtjY, Zllj) ~ (Xw'lj, ZCtjY), for w = W'Ctj, 1 ~ j ~ n, 

(XwIY, ZIY') ~ (XwY', ZY). 
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The string X w'Yj can enter only one splicing in R3: 

for some i, 1 ~ i ~ n. 
A string of the form XiXYj, 1 ~ i,j ~ n, will enter splicings in R4, R5 

which will decrease by one each of i and j, thus producing Xi-1XYj-l. 
A string XiXYj, 1 ~ i,j ~ n, will be transformed in R6 into XixYj and 

this one will be transformed in R7 into XiXYj. Rl will pass this string 
unmodified to R2 which will again replace Yj by Yj; R3 will return to XiXYj. 
The components R4, R5 will again decrease by one the subscripts of X and Y. 
Eventually, one of X, Y will get the subscript o. We have three possibilities: 

1) ~ receives a string XoxYj with j 2: 1. The only applicable rule 
is #Yj$Z#Yj; the string XoxYj is passed to R7 which returns to XoxYj; 
again Yj is replaced by Yj, then R3 returns to XoxYj which reaches R4. R4 
produces XOXYj-l. No splicing can be done in R5 on this string, hence no 
terminal string is obtained in this way. 

2) ~ receives a string XiXYo with j 2: i. If Yo is replaced by Y, then 
the string XixY cannot be spliced in R7. The same assertion is true if Yo is 
deleted. No terminal string can be produced in this way. 

3) ~ receives a string XoxYo. (This means that the string XiQiW'Yj 
obtained after the splicing (*) has i = j, hence the same symbol Qj which 
was deleted from the right hand end of the string has been introduced in the 
left hand end.) If R6 replaces Yo by Y, then the only continuation in R7 is 
to replace Xo by X, hence the whole process can be iterated. If R6 removes 
Yo and R7 replaces Xo by X, then the obtained string cannot pass over Rl, 
hence it is lost. If R6 removes Yo and R7 removes XoB, then we get a string 
without markers, which cannot enter further splicings. If it is terminal, then 
it belongs to L(r), otherwise it is lost. 

Consequently, every derivation in G can be simulated in r by a standard 
simulate-and-rotate procedure, that is, L(G) ~ L(r). 

Assume now that R2 has produced the string X w Y'. If R3 replaces Y' by 
Y, then the string X w Y will pass unchanged through R4, R 5, then R6 will 
produce XwY' and R7 will return to XwY, and we arrive back to Rl with 
XwY. 

If XwY' is spliced in R3 by a rule X#$XjQj#Z, 1 ~ j ~ n, then we get 
the string XjQjwY'. This string is blocked by R4, where it cannot be spliced 
any more. 

The strings obtained by the splicings mentioned above and containing 
occurrences of Z can pass from a component to another one due to the 
rules Z#$Z# (and also to rules using symbols Y, Y', etc). If strings of this 
form enter further splicings, this will happen only together with other strings 
containing occurrences of Z, either axioms or by-products of other splicings. 
Thus, both the resulting strings will contain occurrences of Z, hence no 
terminal string can be produced in this way. 
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For instance, after a splicing in R2 using a rule #ajY$Z#"Yj, 1 ::::: j ::::: n, 
we get the string ZajY. It can pass unmodified through R3 - R7 , but in Rl 
we can perform 

(ZlajY, ZlvX) F (ZviY, ZajY), 

if aj -- Vi is the ith rule of P. The input strings are reproduced. 
The reader can trace the development of other strings of the type of Zaj Y 

above, and the result will be similar: no terminal string which is not in L( G) 
can be produced. In conclusion, L(G) = L(r). D 

The constant 7 in the equality RE = V D H 7 can probably be replaced by a 
smaller integer. We do not persist in this direction, because of the motivation 
we have started with: diminishing the size of the components. As we have 
also done for communicating distributed H systems, this objective can be 
reached: time-varying distributed H systems with components consisting of 
only three splicing rules are enough. 

Theorem 10.9. Each recursively enumerable language can be generated by 
a time-varying distributed H system whose components contain at most three 
splicing rules. 

Proof. Consider a type-O grammar G = (N, T, S, P) with NUT 
{al, ... ,an-l},n 2: 3, and P = {Ui -- Vi 11::::: i::::: m}. Let an = B 
be a new symbol. We construct the time-varying distributed H system 

with 

V = NUTU{X,Y,Y',Z,B}, 

A = {XBSY,ZY, ZY', ZZ} 

U {ZvY I U -- v E P} 

U {X ai Z I 1 ::::: i ::::: n}, 

and the following sets of splicing rules 

Ri = {#UiY$Z#VX, #Y$Z#Y, Z#$Z#}, 1::::: i::::: m, 

Rm +2j - 1 = {#ajY$Z#Y, #Y$Z#Y', Z#$Z#}, 1::::: j ::::: n, 

Rm +2j = {Xaj#Z$X#, #Y'$Z#Y, Z#$Z#}, 1::::: j ::::: n, 

Rm +2n+l = {XB#$#ZZ, #Y$Z#Y', Z#$Z#}, 

Rm +2n+2 = {#Y$ZZ#, #Y'$Z#Y, Z#$Z#}. 

The idea behind this construction is again rotate-and-simulate. The com
ponents Ri ,1 ::::: i ::::: m, simulate the rules in P, in the right hand end of 
the strings of the form XwY produced by r (starting with XBSY). The 
components Rm +2j _1, 1 ::::: j ::::: n, remove one occurrence of the correspond
ing symbol aj from the right hand end of the strings, whereas the pair of 



10.4. Time-Varying Distributed H Systems 351 

components Rm +2j , 1 :s: j :s: n, reintroduce an occurrence of aj in the left 
hand end of the strings. Thus, these components R i , m + 1 :s: i :s: m + 2n, 
circularly permute the strings, making possible the simulation of rules in 
P in any desired position. The components Rm+2n+l, Rm+2n+2 remove the 
end markers X (only in the presence of B, hence in the right permutation) 
and Y. All components contain rules used just for passing the strings un
modified to the next step. These rules are #Y$Z#Y in Ri,l :s: i :s: m, 
#Y$Z#Y' and #Y'$Z#Y alternating in Rm+2j - 1 , Rm+2j , 1 :s: j :s: n, and 
in Rm+2n+l, Rm+2n+2, as well as the rules Z#$Z# present in all compo
nents, and used for passing the axioms from one step to the next. The role 
of Y' is to prevent wrong splicings, by introducing a symbol aj in a string 
from which a symbol aj has not been removed. This is the essential point of 
this construction, hence we shall examine its implementation in some detail. 

Consider a string XwY and assume that the component Rl works on 
it. The rule #Y$Z#Y changes nothing, it only passes the string to the next 
component. If we reach a component Ri , 1 :s: i :s: n, and a rule #UiY$Z#ViY 
can be used, then again a string bounded by X, Y is obtained. 

When reaching Rm+l, a string of the form X w Y can enter the splicing 

(XwIY, ZIY') ~ (XwY', ZY) 

or, when w = w'al, the splicing 

In the first case, X w Y' can also enter two different splicings in the next 
component, Rm +2 : 

(XwlY', ZIY) ~ (XwY, ZY'), 

(XalIZ,XlwY') ~ (XalWY',XZ). 

By the first splicing, we have returned to X w Y, which is passed to the next 
component. Also, the string X al wY' obtained in the second case is passed 
to the next component, but there is no splicing rule here which can be applied 
to this string. Thus X al w Y' is no longer present at the next step, and this 
prevents the production of "wrong" strings: al is introduced to the left of w 
without first removing an occurrence of al from the right hand of w. 

In the second case, that when al has been removed from w' aI, the string 
X w'Y reaches Rm+2 where only one splicing is possible: 

The string X al w'Y is a correct one-step circular permutation of X w' al Y, 
and it is again bounded by X, Y. 

Therefore, we pass to Rm+3 a string of the form X z Y. The case of 
j = 1 is similar to the case of arbitrary j, 1 :s: j :s: n, hence the components 
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R m +2j -1, R m +2j , perform the desired rotations, or they pass the strings un
modified to Rm +2n+1 . 

A string of the form XwY can enter two splicings in Rm+2n+l: 

(XwIY, ZIY') 1= (XwY', ZY), 

(XBlw'Y, IZZ) 1= (XBZZ,w'Y), if w = Bw'. 

In the first case, there is only one possible splicing in Rm +2n+2: 

(XwIY',ZIY) 1= (XwY,ZY'), 

hence we pass the string XwY unchanged to R1 , resuming the cycle. In the 
second case, we also have only one possibility of splicing in Rm + 2n+ 2 : 

(w'IY, ZZI) 1= (w', ZZY). 

The string tii is not marked by X, Y, hence it cannot enter new splicings 
if it is passed to R1 . If it is not terminal, then it is lost. Consequently, 
any derivation in G can be simulated in r, following the usual simulate-and
rotate procedure. As in the proofs in the previous sections, the "byproducts" 
of the splicings, strings which are not of the forms X w Y, X w Y', are never 
producing terminal strings outside L(G). Thus, L(G) = L(r), completing 
the proof. 0 

Note that each component of the system r above contains exactly three 
splicing rules. 

10.5 Summary of Computationally Complete 
H Systems 

We list now the classes of H systems which were proved in Chaps. 8, 9, 10 to 
characterize the recursively enumerable languages when using finite sets of 
axioms and finite sets of splicing rules. We cluster them in four categories: 

Regulated rewriting-like control: 

- extended H systems with permitting contexts, 

- extended H systems with forbidding contexts, 

- extended H systems with local targets, 

- extended H systems with a global target, 

- programmed extended H systems, 

- extended H systems with double splicing, 

- ordered H systems; 
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Other control mechanisms: 

- extended H systems using multisets, 

- evolving extended H systems, 

- extended H systems with a fitness mapping; 

Distributed architectures: 

- splicing grammar systems, 

- communicating distributed H systems, 

- two-level distributed H systems, 

- time-varying distributed H systems; 

Using circular strings: 

- extended circular H systems. 

10.6 Bibliographical Notes 

Splicing grammar systems as in Sect. 10.1 were introduced in [36], where 
one characterizes the family RE using systems with three context-free com
ponents. Theorems 10.1 and 10.2 are from [154]. Theorem 10.3 is from 
[75], where related results can also be found (LIN ~ SGS2 (REG), CF ~ 
SGS3 (REG)). 

Distributed H systems as in Sect. 10.2 were introduced in [32], in the 
non-extended case, with the first component used only for selecting by its 
filter the terminal strings produced by other components. (In this way, one 
further component is necessary, for instance, in Theorem 10.4.) In [32] one 
proves that CDH* = RE. In [224] one improves this result to CDHg = RE, 
then in [158] one proves that CDH6 = RE. The strengthening to three 
components (Theorem 10.4) is obtained in [180]; the proof of Theorem 10.4 
is from [162] (it is slightly simpler than that in [180]). Theorems 10.5 and 
10.6 are from [163]. 

Two-level distributed H systems in the non-separated form are introduced 
in [161]' where a result like Theorem 10.7 is proved for them; the case of 
separated systems (hence the proof of Theorem 10.7) is considered in [158]. 

The time-varying distributed H systems are also introduced in [158], where 
one can find the proof of Theorem 10.9. Theorem 10.8 is from [162]. Recently, 
in [124] it was reported that time-varying H systems of degree two charac
terize the family of recursively enumerable languages, thus significantly im
proving the result in Theorem 10.8. 
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A variant of distributed H systems was introduced in [126]. They corre
spond to the cooperating distributed grammar systems in [28], [29] and use 
the 1-splicing relation f-- instead of p. At each step one splices the string 
obtained at the previous step with an axiom. The components are enabled 
in a nondeterministic manner and they work in the maximal mode: when 
active, a component works as much as it can (this is the t mode of derivation 
in grammar systems, [28], [29]). Extended distributed H systems of this type 
with three components characterize the recursively enumerable languages, 
but it not known whether or not a similar result holds true for systems with 
two components. 



Chapter 11 

Splicing Revisited 

Besides the variants of the splicing operation discussed in the previous chap
ters (especially in Chap. 8) and of the generative mechanisms based on 
them, several others were already investigated in the literature, mainly from 
a mathematical point of view, without directing the research toward (univer
sal) computability models. In this chapter we present some of these variants, 
as a challenge to the reader for building further computability models. 

11.1 Restricted Splicing; The Non-Iterated 
Case 

In Chap. 8 we have considered certain regulated variants of the splicing 
operation, using permitting or forbidding contexts, target languages, fitness 
mappings, and order restrictions. Several other variants are possible. They 
are important in view ofthe fact that the unrestricted splicing operation (with 
respect to a finite set of splicing rules) cannot produce languages which are 
not regular. 

We introduce here some further regulations on the splicing operation, 
namely for the operation 1-. The reason to consider I-splicing are, on the 
one hand, the fact that some of these variants do not look adequate for the 
2-splicing, 1=, on the other hand, the fact that we remain at the mathematical 
level, investigating only the non-iterated operations, as in Sect. 7.2, hence 
we prefer to work in the most general mathematical framework. The extent 
to which these restrictions are able to lead to controlled H systems which 
characterize the family of recursively enumerable languages remains to be 
investigated. 

Consider an alphabet V and a splicing rule r = Ul #U2$U3#U4 over V. 
For x, y E V*, we define: 

(x, y) I-r z iff (x, y) I-r z and x E Prej(z), x =1= z, 
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(x, y) ~~n Z iff 

(x,y) ~~i z iff 

11. Splicing Revisited 

(x, y) ~r Z and Izl > max{lxl, Iyl}, 

(x, y) ~r Z and Izl ;::: Iz'l for all 

z' E V* such that (x, y) ~r z'. 

In the first case the result of the splicing should be a proper continuation 
of the first term of the splicing, in the second one we must obtain a string 
which is strictly longer than each of the two terms of the splicing, in the third 
case we must splice so as to obtain one of the longest possible outputs. The 
indications pr, in, mi stand for "prefix", "increasing", "most increasing". 

These restrictions are defined at the level of the splicing operation. We can 
also define restricted splicing schemes, with the operation being the subject 
of conditions formulated with respect to the whole set of splicing rules or 
with respect to the terms of the splicing. Of the first type is the ordered 
restriction discussed at the end of Sect. 8.2. We introduce here a class of 
restrictions of the second type, allowing splicing only among similar strings; 
various degrees of similarity can be considered. 

In all cases below, we work with H schemes with a finite set of rules. 
An H scheme with clusters is a triple a = (V, R, C), where (V, R) is a 

splicing scheme and C is a partition of V*. For r E R and x, y, z E V*, we 
write 

(x,y) ~~l z iff (x,y) ~r z and x,y belong to the same class of C. 

When C is a finite set of regular languages we write ~~c (rc for "regular 
clusters") instead of ~~l. When C consists of singleton classes, {x}, x E V*, 
then we write ~:f (from "self-splicing"), and when C consists of classes Ci = 
{x E V* Ilxl = i}, i ;::: 0, then we write ~:l (from "same-length" splicing). 

We denote by D the set {pr, in, mi, rc, sf, sl}, identifying the variants 
of the splicing operation defined above. For a splicing scheme a with the 
alphabet V and the set of rules R, and for L ~ V*, g ED, we define 

O'g(L) = {z E V* I (x,y) ~~ z, for X,y E L,r E R}. 

As we have proceeded in Sect. 7.2 with ~ (the free splicing), we investigate 
now the relations between the operations ~g, g ED, and usual operations 
with languages. The aim is to settle the closure properties of families in the 
Chomsky hierarchy under the new operations of restricted splicing. 

Lemma 11.1. If a family FL of languages is closed under union with single
ton languages, concatenation with symbols, left derivative, shuffle with sym
bols, and any splicing operation belonging to D - {in}, then FL is closed 
under the operation Suf of taking the suffixes. 

Proof. Take L E F L, L ~ V*, and consider the symbols a, b not in V. For 
the splicing scheme 

a = (V U {a, b}, { a#$b# } ), 
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we have 
Suf(L) = a~(ag(Lo)), 

where 
Lo = {a} U (L ill {b}), 

for both 9 E {pr, mil· 
Indeed, the only possible splicing must involve the string a and a string 

xby for xy E L, x, Y E V*. There is only one place to apply the rule of a, 
hence the result is unique, ay. 

If we consider a as having the total cluster (V U {a, b} )*, then 9 above 
can also be equal to rc. 

For the sf, sl cases, we replace Lo above with 

L~ = {alL ill {b}. 

Splicing axby with itself, in the only possible way, we get ay; in general, 
for axby and ax' by' we have only one possibility of splicing, obtaining ay'. 
Therefore, we can obtain all elements of Suf(L) and only strings in this 
~. 0 

Lemma 11.2. If a family FL of languages is closed under union, concatena
tion with symbols, weak codings, and any splicing operation f-g, 9 E D - {sf}, 
then FL is closed under concatenation. 

Proof. Take two languages L1, L2 E F L, L1, L2 ~ V*, consider the sym
bols a, b not in V and the splicing scheme 

a = (V U {a, b}, {a#$#b}). 

We have 
L1L2 = h(ag(Lo)), 

where h is the weak coding defined by h(a) = h(b) = oX and h(c) = c for all 
cE V, 

Lo = L 1{a} U {b}L2, 

and 9 E {pr, in, mil. As in the proof of Lemma 11.1, it is easy to cover also 
the case 9 = rc. 

For 9 = sl we replace Lo above with 

Starting from strings xan,bmy with n = Iyl and m = lxi, we obtain Ixanl = 
Ibmyl and (xailan-i, bm-jlb-iy) f-sl xaib-iy, for all i,j ~ 1. Thus, L1L2 = 
h(asl(L~)). 0 

Lemma 11.3. If a family FL of languages is closed under concatenation with 
symbols, weak codings, and self-splicing, then FL is closed under doubling (the 
operation leading from L to d( L) = {xx I x E L}). 
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Proof. For L E F L, L ~ V*, and a, b 1. V, consider the splicing scheme 

a = (V U {a}, {b#$#a}). 

We obtain 
d(L) = h(asJ({a}L{b})), 

for h being defined by h(a) = h(b) = >. and h(c) = c for all c E V. 
The only possible splicing is (axbl, laxb) f-:J axbaxb, hence the equality 

holds. 0 

Lemma 11.4. If a family FL of languages is closed under union, concate
nation with symbols, right and left derivatives, and prefix splicing, then FL 
is closed under intersection. 

Proof. Take L 1, L2 E F L, L 1, L2 ~ V*, and consider the symbols a, b, c 
not in V. For the splicing scheme 

a = (V U {a, b, c}, {a#$b#}) 

we have 

where 

Indeed, from the form of the splicing rule in a, we can only splice a string 
axc with a string bycc, hence with x E L 1, Y E L2. Because the result must 
be a prolongation to the right ofaxc, we must have x = y. Consequently, 
apr(Lo) = {a}(L1 n L2){CC}. 0 

Lemma 11.5. If a family FL of languages is closed under shuffle, con
catenation with regular languages, non-erasing gsm mappings, and restricted 
morphisms, then FL is closed under length-increasing splicing. 

Proof. Take a language L E FL,L ~ V*, and a symbol c 1. V. For every 
a E V consider also the new symbols a', a", as well as the coding h1 defined 
by h1(a) = a',a E V. Take also a splicing scheme a = (V,R). For each rule 
r E R, take two associated symbols, dr, d~. Consider the regular languages 

Take also 

L1 = {xu1drU2Y I X,Y E V*,r = U1#U2$U3#U4 E R}, 

L2 = {xu3d~U4Y I X,Y E V*,r = U1#U2$U3#U4 E R}. 

rER 

L~ = h1(L2 n (U (L ill {d~}))), 
rER 
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where hI is extended by hl(d~) = d~. Both these languages are in FL, 
because the coding hI as well as the intersection with regular languages can 
be obtained by using non-erasing gsm mappings. Consider now the language 

where 

L4 = {ac I a E V} + {ab' I a, b E V} * {drd~ IrE R}{ ab' I a, b E V} * 

{ca' I a E V}+. 

Also L3 is in FL. The intersection with L4 selects from L~ c* ill c* L~ the 
strings of the form 

alc . .. akcak+lb~ ... ak+jbjdrd~ak+j+lb'HI .. . 

.. . ak+j+ibj+icbj+HI ... cbj+Hl' 

for k 2: 1, j 2: 0, i 2: 0, l 2: 1, corresponding to the strings 

We have 
(x, y) I--~n al ... ak+jbHI ... bHHl = z. 

The obtained string has the length k + j + i + l, which is strictly greater than 
both Ixl and IYI· 

We can easily construct a gsm 9 which can parse a string w of the form 
( * ), performing the following operations: 

- leave unchanged the prefix al c ... akC, 

- from the last occurrence of the symbol c in the prefix, until dr, leave un
changed the symbols ak+l, ... , ak+j, and replace each symbol b~, ... , bj 
with an occurrence of c, 

- replace drd~ with cc, 

- from d~ to the next occurrence of c, replace each ak+HI, . .. , ak+j+i 
with an occurrence of c and each bj+l, ... ,bj+i with bj+l, ... ,bj+i , 
respectively, 

- in the suffix cbj+HI ... cbj+Hl' replace the primed symbols with their 
non-primed variants. 

In this way, we obtain the above string z, shuffled with Izl + 2 occurrences 
of the symbol c. By a restricted morphism h2 we can erase c, leaving un
changed the other symbols. Therefore, CYin(L) = h2(g(L3)), which means 
that CYin(L) E FL. 0 
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Lemma 11.6. If a family FL of languages is closed under concatenation and 
arbitrary gsm mappings, then FL is closed under most-increasing splicing. 

Proof. We have 0" mi (L) = g( L{ c} L) for a gsm g which checks the presence 
in strings of L{ c} L of substrings Ul U2, U3U4 from the rules of 0", removes the 
parts to be removed, and checks at the same time the fact that Ul U2 is 
considered on the rightmost possible position before c and U3U4 is considered 
on the leftmost possible position after c, thus producing the largest result. 
The reader can construct such a gsm with full details. D 

Lemma 11.7. If a family of languages is closed under doubling and arbitrary 
gsm mappings, then it is closed under self-splicing. 

Proof. For L <:;;; V*,c rf- V, and 0" = (V,R), we have 

O"sj(L) = g(d(L{c})), 

where g is a gsm which simulates the application of rules in R as in the 
previous proof. D 

Lemma 11.8. If a family FL of languages is closed under shuffle and arbi
trary gsm mappings, then FL is closed under prefix-splicing. 

Proof. Take 0" = (V,R),L <:;;; V*, L E FL, and the coding h: V ------* {a' I 
a E V} defined by h( a) = a', a E V. Take the language 

L'=LWh(L) 

and construct a gsm g performing the following operations: 

- scan a prefix Xl E V* and leave it unchanged, 

- choose a rule r = Ul #U2$U3#U4 in R, Ul, U2, U3, U4 E V*; parse the 
string Ul and leave it unchanged, 

- parse the substring h(Yl U3), for Yl E V*, and remove it, 

- check that a string follows of the form ala~ a2a~ ... aka~, for ai E V, 
1 ::; i ::; k, such that ala2 ... ak = U2X2 for some X2 E V*; at the same 
time check whether or not al a~ a2a~ ... aka~ is followed by a~+ 1 ... a~+s' 
s 2: 1, such that a~ a~ ... a~a~+1 ... a~+s = h( U3Y2) for some Y2 E V*; 
during this phase, all symbols ai are erased and all symbols a~ are 
replaced by the associated symbols ai. 

The construction of g is straightforward. 
The equality O"pr(L) = g(L') is obvious. 

realized by a gsm, the proof is complete. 
Because the coding h can be 

D 

Lemma 11.9. If a family FL of languages is closed under union, intersec
tion with regular sets, and free splicing, then it is also closed under regular 
clustered splicing with finitely many regular sets in the partition. 
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Proof. Consider a splicing scheme (Y = (V, R, C), with a partition C = 
{CI, ... ,Cn } of V* with Ci E REG, 1 ~ i ~ n. Then, for each L S;; V*, 
L E F L, we obtain 

n 

(Yrc(L) = U (YI(L n C i ). 

i=l 

As L n Ci E F L, we have (YI (L n Ci ) E F L for all i, hence (Yrc(L) E FL. D 

We are now ready to settle the closure properties of families in Chomsky 
hierarchy under the operations f- g , g ED. 

Theorem 11.1. The closure properties in Table 11.1 hold, where for each 
pair (g, F L), g ED, at the intersection of the row of g and the column of F L 
we have written the smallest family F L' (among the five families considered 
here) such that (Yg(L) E FL' for all L E FL. (When FL' = FL, this means 
that the family F L is closed under the type g of splicing, and, conversely, 
F L -=1= F L' indicates the nonclosure.) 

Table 11.1. Closure properties of families in the Chomsky hierarchy 

Splicing variant REG LIN CF CS RE 
pr REG RE RE RE RE 
in REG CS CS CS RE 
mi REG CF CF RE RE 
rc REG CF CF RE RE 
sf CS RE RE RE RE 
sl LIN RE RE RE RE 

Proof. The positive closure properties of REG are obtained from: pr = 
Lemma 11.8, in = Lemma 11.5, mi = Lemma 11.6, rc = Lemma 11.9. 

The positive closure properties of CF follow from: mi = Lemma 11.6, rc 
= Lemma 11.9. 

The unique positive closure property of CS, namely the closure under 
length-increasing splicing, follows from Lemma 11.5. 

The closure of RE under all operations above follows either from Church
Turing Thesis, or from lemmas above. 

The fact that there are L E REG such that (Ysj(L) rf. CF is proved by 
Lemma 11.3 (for instance, d({anbm I n,m::::: I}) = {anbmanbm I n,m::::: I} rf. 
CF). On the other hand, if (Y = (V, R) and L E REG, then (Ysj(L) E CS. 
This can be seen as follows. If L E REG, then d(L{ c}) is a right-linear 
simple matrix language (see [40]). This family is closed under arbitrary gsm 
mappings and is strictly included in CS, hence (Ysj(L) E CS. 

If a language L S;; V* has the property that card(Vn n L) ~ 1 for all n ::::: 0 
(such a language is called thin, see [169]) and (Y is a splicing scheme, then 
(Ysj(L) = (Ysl(L), hence from Lemma 11.3 we find that the closure of REG 
under sl splicing would imply the fact that d( L) E REG for each thin regular 
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language L. However, this does not hold: d({anb In::::: I}) = {anbanb In::::: 
I} rf- REG; note that {anb In::::: I} is thin. However, if L E REG, L <:::; V*, 
and (J = (V, R) is a splicing scheme, then (J sl (L) E LIN. Indeed, take a, c rf- V 
and consider the language 

Because {ancan In::::: I} is linear, L{c}L is regular and LIN is closed under 
shuffle with regular sets (as well as under intersection with regular sets), it 
follows that L1 E LIN. All its strings are of the form 

b1ab2a . .. bnaccd1ad2a . .. dna, 

for x = b1b2 .•. bn E L, y = d1d2 ... dn E L. By a gsm g we can now simulate 
the splicing of strings x, y E L as selected by L 1, that is g(L1) = (JsI(L). 
Consequently, (J sl (L) E LIN. 

The fact that there are linear languages L such that (J 9 (L) rf- C F for 
g E {pr, in, sf, sl} is proved as follows: pr = Lemma 11.4 (there are L 1 , L2 E 
LIN such that L1 nL2 rf- CF), sf = Lemma 11.3, sl = Lemma 11.3, used for 
thin linear languages (in the same way as above for thin regular languages: 
L = {anbn In::::: I} is thin and linear, but deL) rf- CF). For in we consider a 
new example: 

For (J = ({a,b,c}, {b#c$a#c}) and 

L = {anbnc In::::: I} U {ancn In::::: I}, 

we get 
(Jin(L) = {anbncm I 2:::::: m < 2n}. 

Indeed, the only possible splicing is of the type 

(anbnlc, amlcm ) f-r anbncm . 

For the length-increasing mode we must have 2n+m > 2n+ 1 (hence m ::::: 2) 
as well as 2n + m > 2m (hence m < 2n). This language is not context-free. 

All the non-closure properties of CS follow from Lemma 11.1. 
Thus, all the assertions presented in Table 11.1 are proved. 0 

Several remarks about the results in Table 11.1 are worth mentioning: 

- two variants of splicing "break" the regularity barrier and five of them 
break the context-freeness barrier, 

- no splicing operation (as considered above) preserves linear languages; 
this is due mainly to the fact that by splicing (aided by the semi-AFL 
operations, under which LIN is closed) we can simulate concatenation, 

- none of the previous operations - except the length-increasing splicing
preserves the context-sensitive languages; this is due mainly to the fact 
that by splicing we can perform the erasing of arbitrarily long prefixes 
and suffixes. 
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It is an open problem whether or not the assertions corresponding to 
families LIN,CF on the rows of pr,sf, and sl can be improved. More 
exactly, given a splicing scheme a and a language L E LIN (or L E CF), the 
question remains whether or not the relations ag(L) E C8,g E {pr,sf,sl}, 
are true, or the strongest assertion here is ag(L) ERE, as in Table 11.1. 
Anyway, the families 8 g(LIN, FIN) = {ag(L) I L E LIN},g E {pr, sf, sl}, 
seem to be very large. 

Theorem 11.2. Every language L E RE is the morphic image of a language 
in 8pr (LIN,FIN). 

Proof. From Corollary 3.3 we know that each recursively enumerable 
language L ~ V* can be written in the form L = hl(Ll n L 2), where hI is a 
morphism and L l , L2 E LIN. Consider the symbols a, b, c not in V. As in 
the proof of Lemma 11.4, take 

a = (V U {a, b, c}, { a#$b# } ), 

Lo = {a}Lt{c} U {b}L2{cc}. 

For L' = apr(Lo) and h : (V U {a,c})* ----t V* defined by h(a) = h(c) = A 
and h(d) = hl(d) for dE V, we obtain L = h(L'). 0 

Corollary 11.1. For every family FL of languages which is strictly included 
in RE and is closed under arbitrary morphisms we have 8pr (LIN, FIN) -
FL =f. 0. 

It is a research topic to consider extended H systems based on the oper
ations f-g , g ED, defined above. Of particular interest is the case g = rc, 
which can have some "realistic" interpretations. For instance, the clusters 
can be defined by a specific similarity relation favoring certain enzymes to 
work on the strings in the same class. 

11.2 Replication Systems 

In Sect. 9.1 we have considered the following operation, leading a circular 
string x and a linear one v to a linear string w: 

v = Vlu3U4V2, 

W = VlU3U2XlUlU4V2, 

for some Xl, VI, V2 E V*, 

for r = Ul #U2$U3#U4 a splicing rule over V. Thus, we have inserted the 
string obtained by cutting x between Ul and U2 in v, namely between U3, U4. 
This was possible, because we know that Ul U2, U3U4 describe matching sticky 
ends. This operation can also be considered starting from two linear strings, 
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hence with the string to be inserted being a substring of a linear string; thus, 
we need two cutting places in order to produce it. In this way we are led to 
the following general definition. 

A replication system of degree n, n :::: 1, is a construct 

where V is an alphabet, A is a finite language over V, and Gi , 1 ::; i ::; n, 
are finite subsets of V*#V*. The elements of A are called axioms, those of 
Gi ,1 ::; i ::; n, are cutting rules. 

For x, y, Z E V* and 1 ::; i ::; n, we write 

(X,Y)C>iZ iff X=XIUIVIX2, 

Y =YIU2V2Y2U3V3Y3, 

Z=XIUIV2Y2 U3V I X 2, 

for UI#VI, U2#V2, U3#V3 E Gi , 

and Xl, X2, YI, Y2, Y3 E V*. 

Thus, we insert the substring V2Y2U3 of Y between UI, VI in X, knowing that 
the patterns UI V!, U2V2, U3V3 correspond to (restriction enzymes producing) 
matching sticky ends (this is encoded in the fact that the three cutting rules 
belong to the same set Gi ). 

Now, we can proceed as in the case of the splicing operation. For a 
replication system 'Y = (V, A, G I, G2 , ... , Gn ) and a language L ~ V* we 
define 

O'(L) = {z E V* I (x,y) C>i Z, for X,Y E L, 1::; i::; n}, 

O'°(L) = L, 
O'HI(L) = O'i(L) U O'(O'i(L)), i :::: 0, 

O'*(L) = U O'i(L). 
i~O 

Then, the language generated by 'Y is defined by 

L("() = 0'* (A) 

(we start from the axioms in A and we iteratively grow strings by replication 
according to the cutting rules in GI, . .. ,Gn ). 

A cutting rule u#v is said to be of radius p if p = max{lul,lvl}. A 
replication system is said to be of radius p if p is the maximum radius of its 
cutting rules. 

We denote by REPn([m]) the family of languages generated by replication 
systems with at most n components, n :::: 1, and of radius at most m, m :::: 1; 
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when the number of components is not bounded, the subscript n is replaced 
by *; when the radius is not bounded, we replace [m] with FIN. Thus, 

REP*(FIN) = U U REPn([m]) 
n::O:l m::O:l 

= U REPn(F IN). 
n::O:l 

Because we always increase the length of the strings, we have 

Lemma 11.10. REP*(FIN) <;;: GS. 

The replication systems 'Y = (V, A, Gl , ... , Gn ) such that card(Gi ) = 1, 
1 :s; i :s; n, are said to be uniform. (When defining (x, y) I>i z, we use the 
same unique cutting rule both in x and y: x = Xl UVX2, Y = Yl UVY2UVY3 and 
z = XlUVY2UVX2.) 

In the definition of the relation I> we have two important choices: (1) of 
the string to be inserted, and (2) of the place where the insertion is performed. 
Several variants can be considered in each case. We leave as a research topic 
the study of these variants for the replication systems in the general form 
defined above and we investigate here only some possibilities occurring when 
answering the first question above, for a particular type of replication system. 
Namely, we consider simple replication systems, that is systems which are 
uniform, of radius one, of degree one, and with one axiom only. 

Therefore, a simple replication system is a construct 

'Y = (V, w, alb), 

where V is an alphabet, w E V+ (axiom), and a, bE V. Moreover, we define 
the replication only for identical strings (self-replication; anyway, in the first 
step of the system's working, because only w is available, we have to perform 
an operation of the type (w, w) I> z). 

Specifically, for a simple replication system 'Y = (V, w, a#b) and x, Y E V* 
we write 

x"--"' Y iff (1) x = Xlabx2, Xl,X2 E V*, 

(2) Y = Xlazbx2, for z = bz' = z"a,z',z" E V*, 

(3) z E Sub(x). 

No restriction is imposed about the position of the substring ab in x 
(condition (1)) or on the way z was selected from Sub(x) (condition (3)). We 
discuss here ten possibilities arising from considering restrictions on condition 
(3). 

Condition (3) can be replaced by more restrictive ones as follows (in all 
cases, z = bz' = z"a): 

1. z = x (total; t), 
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2. Z E Pref(x) (arbitrary prefix; ap), 

3. Z E Pref(x) and Z is maximal (if x = ZlUl,Zl = bz~ = zra, then 
Izi ;::: IZll) (maximal prefix; Mp), 

4. Z E Pref(x) and Z is minimal (if x = ZlUl,Zl = bz~ = zra, then 
Izi ::; IZll) (minimal prefix; mp), 

5. Z E Sub(x) and Z is leftmost (if x = UlZU2, X = u~ Zl u;, Zl = bz~ = zr a, 
then lUll ::; Iu~ I) (arbitrary leftmost; al), 

6. Z E Sub(x), Z is leftmost and maximal (x = UlZU2 and if x 
U~ZlU;,Zl = bz~ = zra, then lUll ::; lu~l; moreover, if x = UlZU2 

Ul Zl U;, Zl = bz~ = zr a, then I Z I ;::: I Zll) (maximal leftmost; Ml), 

7. Z E Sub(x), Z is leftmost and minimal (x = UlZU2 and if x 
U~ZlU~,Zl = bz~ = zra, then lUll ::; lu~l; moreover, if x = UlZU2 = 
UlZlU~, Zl = bz~ = zra, then Izl ::; IZll) (minimal leftmost; ml), 

8. Z E Sub(x) and Z is maximal (if x = UlZU2 and x = U~ZlU~, Zl = bz~ = 
zra, lu~1 ::; lUll, lu~1 ::; IU21, then Z = Zl) (arbitrary maximal; aM), 

9. Z E Sub(x) and Z is minimal (if x = UlZU2 and x = U~ZlU~, Zl = bz~ = 
zra, lu~1 ;::: lUll, lu~1 ;::: IU21, then Z = Zl) (arbitrary minimal; am). 

The case in the definition of "-+ corresponds to 

10. Z E Sub(x) (any subword, free; af). 

We denote by D the set {t, ap, Mp, mp, al, Ml, ml, af, aM, am}, of 
previously defined modes of choosing the inserted string. We stress the fact 
that in all cases 1 - 10, Z is a string of the form Z = bz' = z" a. (When a = b, 
we can have Z = a, but for a i- b we have Izi ;::: 2.) 

For a replication choosing the inserted string in the mode 9 ED, we write 
x "-+g y. 

We denote by,,-+; the reflexive and transitive closure of the relation "-+g, 
9 ED. (We call it a replication chain.) Then the language generated by the 
replication system 'Y = (V, w, a#b) in the mode 9 E D is defined by 

Lg("() = {z E V* I w"-+; z}. 

We denote by SREP(g) the family oflanguages of the form Lg("(), where 
9 E D and 'Y is a simple replication system. 

Ten families of languages are obtained. We briefly investigate their inter
relationships and relationships with Chomsky families. We start by consid
ering two examples. 

Example 11.1. Consider the replication system 

'Yl = ({a, b}, baba, a#b). 
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In all cases, the obtained strings are in (ba)+: we start from (ba)2; when 
(ba)n "'-">g y, we insert a string b(ab)ia, i 2: 0, between two symbols ab, hence 
the string y is of the form (ba)m,m > n. 

We have 

Lg{-yl) = (ba)+ba, for 9 E {ap, mp, aI, ml, af, am}. 

Indeed, in any minimal mode (prefix, leftmost, arbitrary), we have to insert 
the string ba. In all free modes we can insert ba. Therefore (ba)+ba ~ Lg{-yI). 
The reverse inclusion has been pointed out above. Moreover, 

2n 
Lg(-Yl) = {(ba) In 2: I}, for 9 E {Mp, MI, aM, t}. 

The maximal prefix (leftmost string, substring) of the form z = bz' a of a 
string (ba)n is (ba)n itself, hence x "'-">g y for 9 as above means y = x 2, which 
proves the equality. 

Example 11.2. Consider also the system 

We obtain 

12 = ({a, b}, abb, b#b). 

for 9 E {aI, ml, af, am}, 
for 9 E {ap,mp,Mp,t}, 
for 9 E {aM, MI}. 

In order to obtain counterexamples, we consider a series of necessary 
conditions. 

Lemma 11.11. (i) Any replication language is either a singleton or it is infi
nite. (ii) For any replication language L ~ V* we have card(Pref(L) n V) = 
1, card(Suf(L) n V) = 1. 

Proof (i) Consider a replication system 1 = (V, w, a#b). If w cannot be 
replicated (either no substring ab is present in w, or w contains no suitable 
substring z = bz' = z"a), then Lg{-y) = {w}. 

If we have w"'-">g w', then w = wIabw2, there is z = bz' = z"a in SUb(w) 
fulfilling the condition associated with g, and w' = wIazbw2. 

Clearly, w' contains again the substring ab, as well as substrings starting 
with b and ending with a (z is such an example), therefore we can replicate 
again. This is obvious for all modes 9 E {aI, ml, MI, af, am, aM}. 

If z E Pref(w) , hence w = ZW3, then w' = wIazbw2, and there is x E 
Pref(w') such that x = bx' = x"a. Indeed, because z = bz' E Pref(w) and 
Wia E Pref(w), we have b E Pref(wIa) ~ Pref(w'); because z = z"a and 
w' = WI az" abw2, the prefix WI az" a ends with a. Consequently, we can also 
replicate again in any of the modes 9 E {ap, mp, Mp}. 

For the t case, we have w = z and w' = wIawbw2. As above, we obtain 
w' = bw" a, hence we can replicate again in this case, too. 
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The process can be iterated in all modes, hence we obtain an infinite lan
guage. 

(ii) Directly from the definitions of replication operations '"'-'>g we see that 
the first and the last symbol of the string is never modified, they remain the 
same as those of the axiom. 0 

Lemma 11.12. If L E SREP(g), for g E {ap, mp, Mp, t}, is an infinite 
language with b = Pref(L) n V, then for each n ~ 1, there is x E L such 
that Ixlb ~ n. 

Proof. Take 'Y = (V, w, a#b) with Lg("() = L infinite, for g as specified 
above. Because L is infinite, there is w' such that W '"'-'> 9 w'. It follows 
that W starts with b, hence b = Pref(L) n V. Moreover, the replication can 
continue an arbitrarily large number of times, at each step using a prefix of 
the current string (the whole string in the case of g = t). At each replication, 
a further copy of the symbol b is introduced: if x '"'-'>g y, x = Xlabx2, then 
Y = Xl azbx2 for Z E Pref(x), z = bz' . Therefore, an arbitrarily large number 
of occurrences of b can be produced. 0 

Lemma 11.13. If L E SREP(t) is an infinite language, then for both 
a = Suf(L) n V and b = Pref(L) n V and for each n ~ 1, there is x E L 
such that Ixl a ~ n, Ixlb ~ n. 

Proof. We proceed exactly as in the previous proof, taking into consider
ation both the first symbol of wand the last symbol of w (they are preserved 
on these positions by replication, and the number of their occurrences in the 
current string increases unboundedly). 0 

Lemma 11.14. Any infinite language L E SREP(t), with V = alph(L), has 
IJIv(L) = {7r. 2n I n ~ O}, for some 7r E N k , k = card(V). 

Proof. If L = L t ("() for some 'Y = (V, w, a#b) and L is infinite, then there 
are arbitrarily long replication chains 

Clearly, IJIV(Wi+l) = 2 .lJIv(wi),i ~ 1, hence IJIV(Wi) = 2i - 1 ·lJIv(wl),i ~ 1, 
and this is true for all chains p. Consequently, IJI v (L) = {IJI v (w) . 2n I n ~ O}, 
that is, 7r in the lemma is IJIv(w). 0 

Of course, Lemma 11.14 implies Lemma 11.13. 

Lemma 11.15. For any infinite language L E SREP(g) , g E {Mp, MI, 
aM}, with V = alph(L), there are 7r1,7r2 E Nk,k = card(V) , such that 
IJIv(L) = {7rl + 7r2 ·2n I n ~ O}. 

Proof. Take 'Y = (V, w, a#b) such that L = Lg("(), and examine an 
arbitrarily long replication chain 
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Assume that WI = XIabx2, W2 = XIazIbx2, for ZI maximal in WI of the form 
ZI = bz~ = z~ a. This means that when writing WI = YI ZI Y2, ZI starts with 
the leftmost occurrence of b in WI and ends with the rightmost occurrence of 
a in WI. 

If WI = YI by~ and this is the leftmost occurrence of b in WI, then W2 = 
YI by~ again: if the insertion place is to the right hand of this occurrence of b, 
then the prefix YI b of WI appears unmodified in W2; if the insertion place is 
to the left hand of this occurrence of b, then it must imply this b (being the 
leftmost), hence YI ends with a and we get W2 = YI ZI bX2 = YI bz~ bX2, that 
is, again the prefix YI b is preserved. 

Similarly, if a in WI = y~aY2 is the rightmost occurrence of a in WI, then 
the suffix aY2 appears in W2, too. 

Therefore, WI = YIZIY2, W2 = YIZ2Y2, where Z2 starts with b, ends with a, 
and it is maximal in W2 with these properties. Moreover, 

IZ21 IW21-IYIY21 = IWIZII-IYIY21 

IYIZIY21 + IZII-IYIY21 = 21zll· 

Consequently, at every step of p we get a string of the form YIZiY2 with 
WV(ZHI) = 2· WV(Zi), i 2: 1. For 7r1 = Wv(YIY2) and 7r2 = WV(ZI), we 
have the assertion in the lemma (clearly, if Zi E Pre f ( Wi), then Zi+ I E 

Pref(WHI)). 0 

In contrast to the preceding two lemmas, we have 

Lemma 11.16. For all 9 E {af, am, ap, mp, al, ml}, if L E SREP(g) is an 
infinite language, then there is a constant k such that whenever x E L, there 
exists Y E L, with X'VTg y, such that Ixl < lyl :::; Ixl + k. 

Proof. Take'"Y = (V, w, a#b) and Z E Sub(w) such that W'VTg w', with 
W = WI abw2, W' = WI azbw2. For 9 = af we can insert Z again. For 9 = am 
we can insert Z again if Z is minimum, or a shorter string otherwise. 

If Z E Pref(w), then Z E Pref(wIaz) S;; Pref(w' ), hence for 9 = ap we 
can use Z again, whereas for 9 = mp we can use Z or a shorter prefix. 

The same assertions hold for the leftmost cases of choosing the string to 
be inserted. 

The argument can be iterated, hence at every step X'VTg Y with W'VT; x, 
we have Ixl < lyl :::; Ixl + Iwl· Taking k = Iwl, we have the lemma. 0 

The reader can easily find languages not satisfying these necessary con
ditions. 

From Example 11.1 (each family SREP(g) contains infinite languages) 
and Lemma 11.11 (there are finite languages not in SREP(g) , for any 9 ED), 
we get 

Theorem 11.3. 
SREP(g),g ED. 

The family FIN is incomparable with each family 
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From Example 11.1 we also know that all families SREP(g),g E {Mp, 
Ml, aM, t}, contain non-context-free languages. In fact, a stronger result is 
true. 

Theorem 11.4. Each family SREP(g),g E {Mp, Ml, aM, t}, is incompa
rable with each subfamily of MAT'>' containing at least a non-singleton finite 
language. 

Proof. For the system '"Y = ({a}, aa, a#a) we obtain 

for each 9 E {Mp, Ml, aM, t}. According to [85], this language is not in the 
family MAT'>'. 

On the other hand, there are finite languages not in SREP(g), for all 
gED. 0 

Some other replication families contain only regular languages: 

Theorem 11.5. SREP(g) ~ REG, 9 E {am, mp}. 

Proof. Take a replication system '"Y = (V, w, a#b). If w = a1a2 ... an, with 
ai E V, 1 ::; i ::; n, n ~ 1, then we consider the string 

where So, S1, •.• , Sn are new symbols. 
Identify in w all the positions of the substring abo Let 1 ::; i1 < i2 < ... < 

ir < n be these positions: 

All these positions are insertion places. 
Identify now by pairs (j1, kt}, ... , (jt, kt ) all minimal substrings of w of 

the form Zl = bzf = zf' a. More specifically, 

For each such a string Zl and for each insertion position iq specified above, 
consider the string 

where s~,q) are new symbols, associated with h, Zl and iq. 

Denote by K the set of all symbols Si,O ::; i ::; n, and s~,q), 1 ::; 1 ::; 
t, jl-1 ::; h ::; kl , 1 ::; q ::; r. Construct the finite nondeterministic automaton 
(with A-moves) 

M = (K, V, So, {sn}, 8), 



11.2. Replication Systems 371 

where 15 is defined as suggested in Fig. 11.1, such that it covers all links in 
w', in strings Zl, as well as the links called for by insertions of strings Zl in 
w' in the corresponding positions: 

8i = t5(8i-l,ai), for 1:::; i:::; n, 

8~,q) E t5(8~~i,ah)' for jl :::; h:::; kl , 1:::; l:::; t, 1:::; q:::; T, 

(l,q) '( ') 8j1 - 1 E u 8i q ,/\ , 

8i q E t5(8~I/q), A), for 1 :::; l :::; t, 1 :::; q :::; T. 

w 

ZI,q 

Figure 11.1: The work of the finite automaton 
M from the proof of Theorem 11.5 

We obtain Lamb) = L(M). 
The inclusion L(M) ~ Lamb) is obvious: we start from W E Lamb) and 

insert, in correct places, correct substrings. 
Conversely, consider a string x E Lamb). If X = w, then x E L(M). If 

W'"'-+am x, then W = Wlabw2,X = wlaybw2, for some minimal y E Sub(w), 
Y = by' = y"a. From the definition of 15, we have x E L(M). Being mini
mal, y does not contain a substring ab, hence the insertion places in x are 
either insertion places in WI, W2, or the two new ones obtained by inserting 
y, because ayb = aby'b = ay"ab. But each of these two subwords ab in ayb 
involves one symbol already existing in w. If a string Z = bz' = z" a is to be 
inserted in x in one of these places, this is possible also in the automaton A 
(see again Fig. 11.1). Consequently, by induction on the length of the repli
cation chain we find that in each string x such that w '"'-+~m x, the insertion 
places correspond to the insertion places in w, hence when x '"'-+am x', we 
have x' E L(M) if x E L(M). In conclusion, Lamb) ~ L(M). 

The above discussion covers also the case 9 = mp: in this case we have t = 

1 (only one string to be inserted), but the rest of the argument is identical. D 

Observe that "minimal loops" can be used in the construction of the 
automaton M, because of the minimality of the insertions. However, as will 
be seen in the next theorem, a modification of the construction works also in 
the free mode. 
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Theorem 11.6. SREP(g) S;; REG, g E {ml, af}. 

Proof. We use the same construction as in the proof of the previous 
theorem, with the following differences. 

For the case g = ml we have to consider the (unique) minimal leftmost 
substring Z of w of the form Z = bz' = Zll a, instead of the strings Zl, ... , Zt 

considered above. As the replication mode is minimal leftmost, this string 
is the only one which can be inserted in any word of LZmb). (Note that 
this string Z may not be minimal in the am sense: for example, consider 
w = cbcbab, for the insertion context (a, b); in the leftmost minimal mode we 
have to take Z = bcba, whereas in the am mode this string is not minimal, 
because it contains the substring ba. This is the reason why the above proof 
does not automatically cover the case g = ml.) 

For the case g = af, let Zl, Z2, ... , Zt in the proof of the previous theorem be 
all the substrings of w of the form Zz = bz{ = Z{' a, not containing the substring 
ab, but with zf possibly containing occurrences of b, and also z{' possibly 
containing occurrences of a. (These z's and t may be different from the ones 
of the previous theorem.) Let y be any substring of w that is insertable at 
some stage of the derivation. Then we can write y = Zil Zi2 ... Zim-' where Zij 

are strings as above. If we want to insert the string y in a position i q , then 
from the definition of (j we see that from Siq we can go to the state in front 
of each Zi j , 1 :::; j :::; m, and back to Siq , hence we have a path through the 
states of M covering the string Zil Zi2 ... Zim- = y. We obtain the inclusion 
Lafb) S;; L(M), for this case as well. 0 

In contrast to the previous theorems, we have 

Theorem 11.7. The families SREP(ap) and SREP(a0 contain non
context-free languages. 

Proof. Let us consider the replication system 

'Y = ({a, b, c, d}, bcabda, a#b). 

In both modes ap and al, all the generated strings start with the symbol b, 
hence the two modes coincide, Lapb) = Latb). 

Consider the regular language 

Denote V = {a, b, c, d} (with this ordering of symbols). If Lapb) is a context
free language, then the language 

is context-free, too, hence wv(L) is a semilinear set. Take the semilinear set 

T = {(n,m,p,p) I n,m,p;:::: I}. 
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The family of semilinear sets of vectors is closed under intersection. There
fore, Lap("() E CF implies the fact that wv(L) nTis a semilinear set. 

However, we claim that 

which, clearly, is not a semilinear set. 
Let us prove the equality (*). 
If we have generated a string x = (bca)i(bda)i (initially we have i = 1) 

and we use exactly x as the string to be inserted between a and b in the 
middle of x, then we obtain y = (bca)2i(bda?i. The process can be iterated, 
hence each string of the form z = (bca)2i (bda?i ,j 2: 0, is in Lap("(). Such 
strings are also in R, hence they are in L. As wv(z) = (2 j+1, 21+1, 2j , 2j ), 
we have the inclusion ~. 

Conversely, let us examine the strings y E L for which wv(y) E T. Being 
in L, y is of the form y = (bca)i(bda)j,i,j 2: 1. Because wv(y) E T, we must 
have i = j. Therefore we have to consider the strings in Lap("() of the form 
y = (bca)i(bda)i, i 2: 1. 

Because we work in the ap mode, when replicating a string 
(bca)k(bda)k, k 2: 1, we have to choose a string of the form Zl = (bca)T, r ::; k, 
or of the form Z2 = (bca)k(bda)S, s ::; k. Therefore, in every moment, what we 
obtain is a string y' with Iy'lc 2: Iy'ld' If we get a string y' with Iy'lc > ly'ld, 
then no string y" such that y' "-+ ~p y" will have I y"l c = I y"l d· 

If we have a string y' which is not an element of (bca)+(bda)+, that is a 
string of the form U1du2CU3, then no string y" such that y' "-+~p y" will be 
in (bca)+ (bda)+. 

Consequently, in order to generate strings ofthe form y = (bca)i(bda)i we 
have to use only strings of the same form, and at every replication step the 
inserted string is the whole current string. This implies that each replication 
doubles the whole string, hence i above is of the form i = 2n , n 2: O. This 
proves the inclusion <:;; in relation (*). D 

Corollary 11.2. The families SREP(ap) and SREP(al) are incompara
ble with each subfamily of CF containing at least one non-singleton finite 
language. 

Because MAT contains non-semilinear languages, we cannot infer from 
the previous theorem that SREP(ap) and SREP(al) contain languages not 
in the family MAT or MAT>., as in Theorem 11.4. 

The difference between the modes ap, al and the modes af, am, ml, mp 
is quite unexpected (af and am behave in the same way, but ap and mp, or 
al and ml do not). 

From Lemmas 11.14 and 11.15 we find that for the system /'1 in Example 
11.1, the languages Lg ("(r) , for g E {ap, mp, al, ml, aj, am}, are not in 
SREP(g'), for g' E {Mp, Ml, aM, t}, hence 
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Lemma 11.17. SREP(g) - SREP(g') =I- 0, for all 9 E {ap, mp, al, ml, af, 
am}, g' E {Mp, Ml, aM, t}. 

From Lemma 11.16 we find that Lg(-Yd tj. SREP(g'), for 9 E {Mp, Ml, 
aM,t}, g' E {af, am, al, ml, ap, mp}, hence 

Lemma 11.18. SREP(g) - SREP(g') =I- 0, for all 9 E {Mp, Ml, aM, t}, 
g' E {aJ, am, al, ml, ap, mp}. 

From Example 11.2 and Lemma 11.12, we obtain 

Lemma 11.19. SREP(g) - SREP(g') =I- 0, for all 9 E {al, ml, aJ, am, aM, 
Ml}, g' E {ap, mp, Mp, t}. 

Lemma 11.20. SREP(Ml) = SREP(aM). 

Proof. Take "I = (V, w, a#b) and a replication step z ~ aM z'. We have 
z = zlabz2 and z' = zlaxbz2 , for x E Sub(z),z = XIXX2, x = bx' = x"a, and 
x is maximal in z, no superstring y of x can be written as y = by' = y" a. 
If x is not leftmost in z, then z = x~bx~ such that Ix~1 < IXII. Then x is 
not maximal: z = X~YX2 for y = by' = y"a, Iyl > lxi, hence x E Sub(y) , a 
contradiction. Therefore z ~Ml z', too, that is LaM(-Y) ~ LMI(-y). 

Conversely, it is easy to see that z ~Ml z' implies z ~aM z', hence 
LMI(-y) ~ LaM(-y). In conclusion, LMI(-Y) = LaM(-y), hence SREP(aM) ~ 
SREP(Ml). 

The reverse inclusion can be obtained in the same way. o 

Lemma 11.21. SREP(t) c SREP(g), 9 E {Ml, Mp, aM}. 

Proof. Take a replication system "I = (V,w,a#b). If Lt(-y) = {w}, then 
Lt(-y) = Lg(-y'), for "I' = (V U {c}, w, c#c), with c tj. V, for all 9 as above. 

If L t ("I) =I- {w}, then w = bw' a and all z such that w ~; z are of the form 
z = bz' a for all g. Consequently, at every moment of a replication chain the 
obtained string is at the same time the maximal prefix, maximal leftmost, 
and arbitrary maximal of the form bya. Therefore, Lt(-y) = Lg(-y) for all 
9 E {Ml, Mp, aM}. We obtain SREP(t) ~ SREP(g), for 9 as in the lemma. 

From Lemma 11.17 we know that these inclusions are proper for 9 E {aM, 
Ml}. For 9 = Mp we consider the system 

"I = ({a, b}, aab, a#a). 

We obtain 
2n 

LMp(-y) = {a bin 2: I}. 

According to Lemmas 11.13 and 11.14, this language is not in the family 
SREP(t). 0 

Lemma 11.22. SREP(g) - SREP(g') =I- 0, 9 E {am, ml, mp}, g' E {aM, 
t, Mp, ap, al, Ml, af}. 
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Proof. Consider the replication system 

"( = ({a, b}, aabaa, a#a). 

For 9 as above, the string to be inserted is always a, hence 

Lg("() = a+aba+a. 

Take a system "(' = (V,aabaa,c#d) such that Lg("() = Lgl("('), for any 
g' as above. (The shortest string in a language is always the axiom of the 
replication system generating it.) Clearly, c, d E {a, b}. If one of c, d is equal 
with b, then in each z ~g' z' one introduces one new occurrence of b, which 
leads to parasitic strings. Therefore, (c, d) = (a, a). For all modes g', we can 
choose for insertion the whole current string (this is mandatory for g' E {aM, 
t, Mp, Ml}) and this again doubles the number of occurrences of the symbol 
b. The equality Lg("() = Lgl("(') is not possible. 0 

Lemma 11.23. SREP(g) - SREP(g') =1= 0, Jor all 9 E {aJ, ap, all, g' E 

{am, mp, ml}. 

Proof. Consider again the system 

"( = ({a, b}, aabaa, a#a). 

For all modes 9 as above, we can replicate 

aabaa ~g a(aabaa)abaa = z 

(we insert the whole string, between the first two occurrences of a). 
Assume that Lg ("() = Lgl ("(') for some "(' = (V, aabaa, c#d). If (c, d) = 

(a, a), then we have to insert a (this is the minimal substring of the form 
x = ax' = x" a), hence the number of occurrences of b is not increased, and 
the string z above cannot be obtained. If (c, d) = (a, b), then the string to 
be inserted is ba, hence we obtain 

If (c, d) = (b, a), then the string to be inserted is ab, and we obtain 

In none of the possible cases can we obtain the string z above, hence the 
equality Lg ("() = Lgl ("(') is not possible. 0 

Lemma 11.24. SREP(Mp) C SREP(Ml). 

Proof. If "( = (V, w, a#b) is a replication system and L Mp ("() = {w}, then 
we obviously have L Mp ("() E SREP(Ml). 

If L M p ( "() is infinite, then w is of the form w = ZWl, Z = bz' = Zll a, and all 
strings in LMp("() start with the symbol b. Consequently, the leftmost string 
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to be inserted is always a prefix ofthe current string, hence LMp(-y) = LMl(-y)' 
that is SREP(Mp) ~ SREP(Ml). 

This inclusion is proper, because L = {ba2n I n ~ I} is not in the family 
SREP(Mp) (Lemma 11.12), but L = LMl(-y)' for "/ = ({a, b}, baa, a#a). 0 

Lemma 11.25. SREP(mp) c SREP(ml), SREP(ap) C SREP(al). 

Proof. The inclusions follow as in the previous proof: if,,/ = (V, w, a#b), 
then Lmp(-y) = Lml(-y) and Lap ("/) = Lal(-y)' 

The strictness follows from Lemma 11.19. 0 

Lemma 11.26. SREP(g) - SREP(am) t- 0, 9 E {mp, ml}. 

Proof. Consider the system 

"/ = ({a, b, c}, bcabacbca, a#b). 

For both 9 =mp and 9 =ml, the string to be inserted is always bca. This is 
obvious for the axiom of ,,/, bcabacbca. We get 

bcabacbca ~g (bca)2bacbca, 

hence after n insertions we generate the string (bca)nbacbca. Therefore, for 
each string x in Lg(-y) we have Ixla = Ixlb = Ixlc. 

Assume now that Lg(,,/) = Lam (,,/') for some ,,/' = (V,w,d#e). Being the 
shortest string of Lg (-y) , bcabacbca = w is the axiom of ,,/'. 

Assume that d t- e. Whichever d, e are among a, b, c, because all sub
strings ed appear in w, we can choose such a minimal substring to be in
serted, and we can obtain a string w' such that Iw'ld = Iw'le = Iw'l! + 1, for 
{a, b, c} = {d, e, f}. Such a string is not in Lg (-Y), a contradiction. If d = e, 
then the string to be inserted is d = e, which only increases the number of 
occurrences of d = e, again leading to parasitic strings. 0 

Lemma 11.27. SREP(g) - SREP(af) t- 0, 9 E {ap, all· 

Proof. Take again the system 

"/ = ({a,b,c},bcabacbca,a#b), 

in the previous proof. For both 9 =ap and 9 =al, the string to be inserted 
starts with bca, the prefix of the axiom. Moreover, in any moment of a 
replication chain, the prefix bca is preserved, hence it must be considered 
for insertion. Consequently, there are no constant k and no symbols d, e E 

{a, b, c} such that Lg(-y) contains strings WI, W2, ... , such that IWild is strictly 
increasing with i whereas IWile ::::; k. 

Assume now that Lg(-y) = La!(-y'), for some ,,/' = (V, w, d#e). Clearly, 
w = bcabacbca. Irrespective of which the symbols d, e are, the substring ed 
appears in w (and in all strings produced by replication). Therefore, La!(-y') 
contains strings with an arbitrarily large number of occurrences of d, e and 
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a bounded number of occurrences of f = {a, b, c} - {d, e}. Such strings are 
not in Lgh), a contradiction. D 

Lemma 11.28. SREP(af) - SREP(al) -1= 0, SREP(am) - SREP(ml) 
-1= 0. 

Proof. Consider the system 'Y = ({a,b,c},w,a#b) with w = bcacbab. In 
both modes af and am of choosing the string to be inserted, we can choose the 
substring ba of w, hence we can obtain strings containing arbitrarily many 
occurrences of a and b, but only a bounded number of occurrences of c. In 
order to generate such strings by a system 'Yf = (V, w, d#e) in one of the 
modes al, ml, we must have {d, e} = {a, b}. If (d, e) = (a, b), then the string 
to be inserted will start with the prefix bca. If (d, e) = (b, a), then the string 
to be inserted starts at the leftmost occurrence of a (on the third position 
of each generated string) and contains the neighbouring occurrence of c. In 
both cases, the number of a, b, c occurrences increases simultaneously, hence 
we cannot generate the above mentioned strings of Lafh), Lamh). D 

Summarizing these lemmas, we get 

Theorem 11.8. All of the families SREP(g), 9 E D, are pairwise incompa
rable, except for the following strict inclusions and equality: 

SREP(mp) c SREP(ml), SREP(ap) C SREP(al), 

SREP(t) C SREP(Mp) c SREP(Ml) = SREP(aM). 

Corollary 11.3. All families SREP(g), 9 E D, are strictly included in CS. 

Lemmas 11.14 - 11.16 above provide necessary conditions for a language 
L <:;;; V* to be in a family SREP(g) in terms of the properties of the Parikh 
set associated with L, Wv(L). This suggests considering more systematically 
this set for replication languages, as well as the length set, length(L) = {Ixll 
x E L}. When L is generated in a deterministic way, along a sequence 

for some 'Y = (V, Wo, a#b) (hence L = Lh) = {WO,Wl,W2, ... }), we can also 
consider the growth function of L, growthdn) = Iwnl, n ~ O. 

In the case of deterministic replication systems, the growth function study 
is also interesting from a non-mathematical point of view, because it can 
characterize the power of the systems. 

We list here, without proofs, some results about growth functions or 
length sets of replication languages of various types; proofs and further details 
can be found in [136]. 

1. A sequence u( n) of nonnegative integers is the growth function for a 
replication system 'Y with respect to the t mode of replication if and 
only if u( n) is a geometric progression with ratio 2 and with the initial 
element not equal to 1. 
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2. A sequence u(n) of nonnegative integers is the growth function for a 
replication system 'Y with respect to the 9 mode of replication, where 
9 E {Mp, Ml, aM}, if and only if u(n) is of the form u(n) = l + 2nk, 
where k ~ 2, l ~ o. 

3. A sequence u( n) of nonnegative integers is the growth function for a 
replication system 'Y with respect to the 9 mode of replication, where 
9 E imp, ml}, if and only if u(n) is an arithmetical progression u(n) = 
l + nk, with 1 :::; k < l. 

4. A set of nonnegative integers N ~ N is the length set for a replication 
system 'Y with respect to the am mode of replication, if and only if 
either 

(1) there exist nonnegative integers l, r, and kl' k2, ... kr ~ 2, with 
l ~ L~=l ki' such that N = {l+c1k1 +C2k2+· . . +crkr I Cl, ... ,Cr E 
N}, or 

(2) there exists lEN, l ~ 2, such that N = {n I n ~ l}. 

5. A linear set H = {vo + C1Vl + ... + CrVr I Ci EN}, where Vi E NP, for 
any i,O :::; i :::; r, and p ~ 1, is the Parikh set of a replication system 
with respect to the arbitrary minimal mode of replication if and only 
if Vo ~ L~=l Vi, and there exist an S E {1,2} and jl,·.· ,js, 1 :::; jl < 
... < js :::; p, such that for any i,1 :::; i :::; r, Vi(jl) = ... = Vi(js) = 1 
and, in addition, if s = 1, then VO(jl) ~ 2. 

6. Let 'Y = (V, w, a#b) be a replication system. Then the Parikh set of the 
language L generated by 'Y with respect to the af mode of replication 
is linear, that is, wv(L) = {vo + C1Vl + ... + CrVr I Ci EN, 1:::; i:::; r}, 
for an r ~ 1, and Vo, ... , Vr E NP, where p = card(V). 

Consequently, the growth functions (respectively, length sets, Parikh sets) 
of the simple replication systems studied above are either exponential or 
linear. Nothing lies in between. It would be of interest to point out models 
with a polynomial nonlinear growth. 

11.3 Bibliographical Notes 

Restricted variants of the splicing operation (including permitting and forbid
ding contexts, target languages, priority conditions) are considered in [166] 
(for finite sets of splicing rules, as in Sect. 11.1 above) and then are investi
gated in [102] (where regular sets of rules are also considered); in both these 
papers only the non-iterated splicing is examined. 

Self-splicing H systems of the form 'Y = (V, { w }, R), with one axiom only 
and a finite set of splicing rules, are also investigated in [38], where one 
proves, for instance, that such systems generate a family of languages which 
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is an anti-AFL incomparable with REG, CF, and with several families of L 
languages; moreover, it is shown that it is not decidable whether or not a 
context-free language can be generated by a self-splicing H system as above. 

Replication systems in the simple form are introduced and investigated 
in [134J. Section 11.2 is mainly based on this paper. Further results can 
be found in [135J (uniform replication systems with finitely many axioms, 
of degree one, of radius one; one also investigates the replication operation 
as an operation with formal languages) and [136J (generative power, growth 
functions) . 

There are several other papers dealing with the splicing operation, H 
systems, or related notions. For instance, [56J gives characterizations of 
REG, CF, RE starting from Post Tag systems and using certain related 
classes of extended H systems. 

Splicing on graphs is considered in [58J. 
A variant of H systems, closer to the initial form of the operation intro

duced by T. Head and using cutting rules as in replication systems, is con
sidered in [59J, [67J: one gives cutting rules associated with markers, which 
identify pairs of cutting patterns producing matching ends; two strings are 
first cut, then the fragments are recombined, if this is possible, as indicated 
by markers. 

The problem of learning H systems is investigated in [105], [21OJ. In 
[106J one gives a proof of the Regularity Preserving Lemma, carrying out an 
excessively detailed construction in terms of finite automata. 

An operation with DNA sequences, related to the splicing, is the 
cross overing: given two strings x, y, we pass from x to y and back to x, 
and so on, a number of times (which is prescribed or not), combining sub
words of x and y as specified by the positions of jumping from one string to 
the other. The I-splicing is a particular case, with only one jump, from x 
to y. When the number of jumps is not specified, a crossovering operation 
can be simulated by an iterated splicing. An interesting case appears when 
the number of jumps is fixed in advance (and the places where they are done 
are ordered in the used strings, hence we combine substrings appearing in 
a sequence, from the left to the right, in x and y). Results about such an 
operation appear in [10], [96], [139J. 

The recombination of strings also appears as a basic operation in the 
"evolutionary grammars" from [37J. 

Surveys of results and bibliographical information about the splicing op
eration, H systems, and computing by splicing can be found in [90], [152]' 
[155], [170], [171 J. 
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