


Lecture Notes in Computer Science 6844
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany





Frank Dehne John Iacono
Jörg-Rüdiger Sack (Eds.)

Algorithms
and Data Structures
12th International Symposium, WADS 2011
New York, NY, USA, August 15-17, 2011
Proceedings

13



Volume Editors

Frank Dehne
Carleton University, School of Computer Science
Parallel Computing and Bioinformatics Laboratory
VISM Building, Room 6210, 1125 Colonel By Drive
Ottawa, ON K1S 5B6, Canada
E-mail: frank@dehne.net

John Iacono
Polytechnic Institute of New York University
Department of Computer Science and Engineering
5 MetroTech Center, New York, NY 11201, USA
E-mail: jiacono@poly.edu

Jörg-Rüdiger Sack
Carleton University, School of Computer Science
Herzberg Laboratories
Herzberg Building, Room 5350, 1125 Colonel By Drive
Ottawa, ON K1S 5B6, Canada
E-mail: sack@scs.carleton.ca

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-22299-3 e-ISBN 978-3-642-22300-6
DOI 10.1007/978-3-642-22300-6
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011930928

CR Subject Classification (1998): F.2, E.1, G.2, I.3.5, G.1, C.2

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2011
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at the 2011 Algorithms and Data
Structures Symposium (WADS 2011), formerly Workshop on Algorithms and
Data Structures, held during August 15-17, 2011 at the Polytechnic Institute
of New York University in Brooklyn, New York. WADS alternates with the
Scandinavian Workshop on Algorithms Theory (SWAT), continuing the tradition
of SWAT and WADS starting with SWAT 1988 and WADS 1989.

In response to the call for papers, 141 papers were submitted. From these sub-
missions, the Program Committee selected 59 papers for presentation at WADS
2011. In addition, invited lectures were given by the following distinguished re-
searchers: Janos Pach, Mihai Pǎtraşcu, and Robert E. Tarjan. The proceedings
do not contain an abstract of Mihai Pǎtraşcu’s invited lecture “Modern Data
Structures”, because it was unavailable at the time of printing for health reasons.

We would like to express our appreciation to the Program Committee mem-
bers, invited speakers, reviewers, and all authors who submitted papers.

May 2011 Frank Dehne
John Iacono

Jörg-Rüdiger Sack





Organization

Program Committee

Oswin Aichholzer Graz University of Technology, Austria
David Bader Georgia Institute of Technology, USA
Piotr Berman Penn State University, USA
Prosenjit Bose Carleton University, Canada
Timothy Chan University of Waterloo, Canada
Otfried Cheong KAIST, Korea
Frank Dehne Carleton University, Canada
Marina Gavrilova University of Calgary, Canada
Roberto Grossi University of Pisa, Italy
John Iacono Polytechnic Institute of New York

University, USA
Giuseppe Italiano University of Rome “Tor Vergata”, Italy
Naoki Katoh Kyoto University, Japan
Rolf Klein University of Bonn, Germany
Eduardo Sany Laber PUC Rio, Brazil
Mike Langston University of Tennessee, USA
Moshe Lewenstein Bar-Ilan University, Israel
M. Müller-Hannemann University of Halle-Wittenberg, Germany
Joerg-Ruediger Sack Carleton University, Canada
Peter Sanders University of Karlsruhe, Germany
Paul Spirakis University of Patras, Greece
Subhash Suri University of California, Santa Barbara,

USA
Monique Teillaud INRIA Sophia Antipolis, France
Jan Arne Telle University of Bergen, Norway
Marc Van Kreveld Utrecht University, The Netherlands

Additional Reviewers

Aloupis, Greg
Alt, Helmut
Alves Pessoa, Artur
Amir, Amihood
Aumüller, Martin
Bae, Sang Won
Battaglia, Giovanni
Batz, G. Veit

Bauer, Reinhard
Bereg, Sergey
Berger, Florian
Bodlaender, Hans L.
Bornstein, Claudson
Cabello, Sergio
Calka, Pierre
Caprara, Alberto



VIII Organization

Castelli Aleardi, Luca
Cesati, Marco
Chen, Danny Z.
Cicalese, Ferdinando
Cohen-Steiner, David
Collette, Sebastien
Cozzens, Midge
Damaschke, Peter
Deberg, Mark
Devillers, Olivier
Didimo, Walter
Disser, Yann
Driemel, Anne
Durocher, Stephane
Dyer, Ramsay
Eppstein, David
Erdos, Peter L.
Erickson, Jeff
Erlebach, Thomas
Eyraud-Dubois, Lionel
Fagerberg, Rolf
Fekete, Sandor
Ferreira, Rui
Foschini, Luca
Foschni, Luca
Fotakis, Dimitris
Fournier, Hervé
Fukunaga, Takuro
Georgiadis, Loukas
Ghosh, Arijit
Giannopoulos, Panos
Gibson, Matt
Gilbers, Alexander
Goaoc, Xavier
Goldstein, Isaac
Golin, Mordecai
Grandoni, Fabrizio
Gudmundsson, Joachim
Görke, Robert
Ha, Jae-Soon
Halldorsson, Magnus M.
Har-Peled, Sariel
Haverkort, Herman
Henriques Carvalho, Marcelo
Hermelin, Danny

Hershberger, John
Hoffmann, Michael
Hong, Seok-Hee
Howat, John
Hüffner, Falk
Jacobs, Tobias
Jørgensen, Allan
Kaminski, Marcin
Kamiyama, Naoyuki
Kaporis, Alexis
Kawahara, Jun
Keil, Mark
Klein, Philip
Kobayashi, Yusuke
Kobourov, Stephen
Kopelowitz, Tsvi
Korman, Matias
Koutsoupias, Elias
Kraschewski, Daniel
Kratochvil, Jan
Kása, Zoltán
Kärkkäinen, Juha
Laber, Eduardo
Lancichinetti, Andrea
Landau, Gad
Langerman, Stefan
Langetepe, Elmar
Laura, Luigi
Lazard, Sylvain
Lecroq, Thierry
Lee, Mira
Lenchner, Jonathan
Leveque, Benjamin
Liotta, Giuseppe
Lopez-Ortiz, Alejandro
Luccio, Fabrizio
Löffler, Maarten
M.M. De Castro, Pedro
Manthey, Bodo
Manzini, Giovanni
Meyerhenke, Henning
Michail, Othon
Molinaro, Marco
Morin, Pat
Moruz, Gabriel



Organization IX

Mulzer, Wolfgang
Mumford, Elena
Mäkinen, Veli
Naswa, Sudhir
Navarro, Gonzalo
Nekrich, Yakov
Nikoletseas, Sotiris
Nöllenburg, Martin
Okamoto, Yoshio
Orlandi, Alessio
Osipov, Vitaly
Otachi, Yota
Ottaviano, Giuseppe
Pal, Sudebkumar
Panagopoulou, Panagiota
Papadopoulos, Fragkiskos
Park, Jeong-Hyeon
Park, Kunsoo
Penninger, Rainer
Phillips, Charles
Porat, Ely
Rabinovich, Yuri
Reinbacher, Iris
Riedy, Jason
Roditty, Liam
Romani, Francesco
Röglin, Heiko
Saitoh, Toshiki
Sauerwald, Thomas
Schlipf, Lena
Schulz, André
Schuman, Catherine
Serna, Maria

Silveira, Rodrigo
Slingsby, Adrian
Smorodinsky, Shakhar
Sotelo, David
Speckmann, Bettina
Stamatiou, Ioannis
Stehn, Fabian
Sviridenko, Maxim
Takaoka, Tadao
Takazawa, Kenjiro
Tanigawa, Shin-Ichi
Tazari, Siamak
Thilikos, Dimitrios
Tischler, German
Toma, Laura
Täubig, Hanjo
Uno, Takeaki
Uno, Yushi
Vigneron, Antoine
Villanger, Yngve
Wang, Kai
Weihe, Karsten
Wiese, Andreas
Wilkinson, Bryan
Wismath, Steve
Wolff, Alexander
Wood, David R.
Wulff-Nilsen, Christian
Xin, Qin
Yang, Jungwoo
Yildiz, Hakan
Yvinec, Mariette
Zarrabi-Zadeh, Hamid





Table of Contents

Piecewise-Linear Approximations of Uncertain Functions . . . . . . . . . . . . . . 1
Mohammad Ali Abam, Mark de Berg, and Amirali Khosravi

A Constant Factor Approximation Algorithm for Boxicity of Circular
Arc Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Abhijin Adiga, Jasine Babu, and L. Sunil Chandran

On the Area Requirements of Euclidean Minimum Spanning Trees . . . . . 25
Patrizio Angelini, Till Bruckdorfer, Marco Chiesa, Fabrizio Frati,
Michael Kaufmann, and Claudio Squarcella

Multi-target Ray Searching Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Spyros Angelopoulos, Alejandro López-Ortiz, and
Konstantinos Panagiotou

Convex Transversals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Esther M. Arkin, Claudia Dieckmann, Christian Knauer,
Joseph S.B. Mitchell, Valentin Polishchuk, Lena Schlipf, and
Shang Yang

How to Cover a Point Set with a V-Shape of Minimum Width . . . . . . . . . 61
Boris Aronov and Muriel Dulieu

Witness Rectangle Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Boris Aronov, Muriel Dulieu, and Ferran Hurtado

Faster Optimal Algorithms for Segment Minimization with Small
Maximal Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Therese Biedl, Stephane Durocher, Céline Engelbeen,
Samuel Fiorini, and Maxwell Young

Orthogonal Cartograms with Few Corners Per Face . . . . . . . . . . . . . . . . . . 98
Therese Biedl and Lesvia Elena Ruiz Velázquez

Smoothed Analysis of Partitioning Algorithms for Euclidean
Functionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Markus Bläser, Bodo Manthey, and B.V. Raghavendra Rao

Feedback Vertex Set in Mixed Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Paul Bonsma and Daniel Lokshtanov



XII Table of Contents

Switching to Directional Antennas with Constant Increase in Radius
and Hop Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Prosenjit Bose, Paz Carmi, Mirela Damian, Robin Flatland,
Matthew J. Katz, and Anil Maheshwari

Frequency Capping in Online Advertising (Extended Abstract) . . . . . . . . 147
Niv Buchbinder, Moran Feldman, Arpita Ghosh, and
Joseph (Seffi) Naor

Adjacency-Preserving Spatial Treemaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Kevin Buchin, David Eppstein, Maarten Löffler,
Martin Nöllenburg, and Rodrigo I. Silveira

Register Loading via Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Gruia Calinescu and Minming Li

Connecting a Set of Circles with Minimum Sum of Radii . . . . . . . . . . . . . . 183
Erin Wolf Chambers, Sándor P. Fekete, Hella-Franziska Hoffmann,
Dimitri Marinakis, Joseph S.B. Mitchell, Venkatesh Srinivasan,
Ulrike Stege, and Sue Whitesides

Streaming and Dynamic Algorithms for Minimum Enclosing Balls in
High Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Timothy M. Chan and Vinayak Pathak

New Algorithms for 1-D Facility Location and Path Equipartition
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Danny Z. Chen and Haitao Wang

Multicut in Trees Viewed through the Eyes of Vertex Cover . . . . . . . . . . . 219
Jianer Chen, Jia-Hao Fan, Iyad A. Kanj, Yang Liu, and
Fenghui Zhang

Beyond Triangulation: Covering Polygons with Triangles . . . . . . . . . . . . . . 231
Tobias Christ

Lossless Fault-Tolerant Data Structures with Additive Overhead . . . . . . . 243
Paul Christiano, Erik D. Demaine, and Shaunak Kishore

Binary Identification Problems for Weighted Trees . . . . . . . . . . . . . . . . . . . 255
Ferdinando Cicalese, Tobias Jacobs, Eduardo Laber, and
Caio Valentim

Computing the Fréchet Distance between Folded Polygons . . . . . . . . . . . . 267
Atlas F. Cook IV, Anne Driemel, Sariel Har-Peled,
Jessica Sherette, and Carola Wenk

Parameterized Reductions and Algorithms for Another Vertex Cover
Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Peter Damaschke and Leonid Molokov



Table of Contents XIII

Path Minima Queries in Dynamic Weighted Trees . . . . . . . . . . . . . . . . . . . . 290
Gerth Stølting Brodal, Pooya Davoodi, and S. Srinivasa Rao

On Rectilinear Partitions with Minimum Stabbing Number . . . . . . . . . . . . 302
Mark de Berg, Amirali Khosravi, Sander Verdonschot, and
Vincent van der Weele

Flattening Fixed-Angle Chains Is Strongly NP-Hard . . . . . . . . . . . . . . . . . . 314
Erik D. Demaine and Sarah Eisenstat

An O(n log n) Algorithm for a Load Balancing Problem on Paths . . . . . . 326
Nikhil R. Devanur and Uriel Feige

Fully-Dynamic Hierarchical Graph Clustering Using Cut Trees . . . . . . . . . 338
Christof Doll, Tanja Hartmann, and Dorothea Wagner

Flow Computations on Imprecise Terrains . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Anne Driemel, Herman Haverkort, Maarten Löffler, and
Rodrigo I. Silveira

Tracking Moving Objects with Few Handovers . . . . . . . . . . . . . . . . . . . . . . . 362
David Eppstein, Michael T. Goodrich, and Maarten Löffler

Inducing the LCP-Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
Johannes Fischer

Horoball Hulls and Extents in Positive Definite Space . . . . . . . . . . . . . . . . 386
P. Thomas Fletcher, John Moeller, Jeff M. Phillips, and
Suresh Venkatasubramanian

Enumerating Minimal Subset Feedback Vertex Sets . . . . . . . . . . . . . . . . . . 399
Fedor V. Fomin, Pinar Heggernes, Dieter Kratsch,
Charis Papadopoulos, and Yngve Villanger

Upper Bounds for Maximally Greedy Binary Search Trees . . . . . . . . . . . . . 411
Kyle Fox

On the Matter of Dynamic Optimality in an Extended Model for Tree
Access Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Michael L. Fredman

Resilient and Low Stretch Routing through Embedding into Tree
Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Jie Gao and Dengpan Zhou

Consistent Labeling of Rotating Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter

Finding Longest Approximate Periodic Patterns . . . . . . . . . . . . . . . . . . . . . 463
Beat Gfeller



XIV Table of Contents

A (5/3 + ε)-Approximation for Strip Packing . . . . . . . . . . . . . . . . . . . . . . . . 475
Rolf Harren, Klaus Jansen, Lars Prädel, and Rob van Stee

Reversing Longest Previous Factor Tables Is Hard . . . . . . . . . . . . . . . . . . . . 488
Jing He, Hongyu Liang, and Guang Yang

Space Efficient Data Structures for Dynamic Orthogonal Range
Counting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500

Meng He and J. Ian Munro

Searching in Dynamic Tree-Like Partial Orders . . . . . . . . . . . . . . . . . . . . . . 512
Brent Heeringa, Marius Cătălin Iordan, and Louis Theran

Counting Plane Graphs: Flippability and Its Applications . . . . . . . . . . . . . 524
Michael Hoffmann, Micha Sharir, Adam Sheffer,
Csaba D. Tóth, and Emo Welzl

Geometric Computations on Indecisive Points . . . . . . . . . . . . . . . . . . . . . . . 536
Allan Jørgensen, Maarten Löffler, and Jeff M. Phillips

Closest Pair and the Post Office Problem for Stochastic Points . . . . . . . . . 548
Pegah Kamousi, Timothy M. Chan, and Subhash Suri

Competitive Search in Symmetric Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 560
David Kirkpatrick and Sandra Zilles

Multiple-Source Single-Sink Maximum Flow in Directed Planar Graphs
in O(diameter · n log n) Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

Philip N. Klein and Shay Mozes

Planar Subgraphs without Low-Degree Nodes . . . . . . . . . . . . . . . . . . . . . . . 583
Evangelos Kranakis, Oscar Morales Ponce, and Jukka Suomela

Constructing Orthogonal de Bruijn Sequences . . . . . . . . . . . . . . . . . . . . . . . 595
Yaw-Ling Lin, Charles Ward, Bharat Jain, and Steven Skiena

A Fast Algorithm for Three-Dimensional Layers of Maxima Problem . . . 607
Yakov Nekrich

Succinct 2D Dictionary Matching with No Slowdown . . . . . . . . . . . . . . . . . 619
Shoshana Neuburger and Dina Sokol

PTAS for Densest k -Subgraph in Interval Graphs . . . . . . . . . . . . . . . . . . . . 631
Tim Nonner

Improved Distance Queries in Planar Graphs . . . . . . . . . . . . . . . . . . . . . . . . 642
Yahav Nussbaum

Piercing Quasi-Rectangles: On a Problem of Danzer and Rogers . . . . . . . 654
János Pach and Gábor Tardos



Table of Contents XV

Faster Algorithms for Minimum-Link Paths with Restricted
Orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

Valentin Polishchuk and Mikko Sysikaski

Streaming Algorithms for 2-Coloring Uniform Hypergraphs . . . . . . . . . . . . 667
Jaikumar Radhakrishnan and Saswata Shannigrahi

Density-Constrained Graph Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 679
Robert Görke, Andrea Schumm, and Dorothea Wagner

The MST of Symmetric Disk Graphs (in Arbitrary Metric Spaces) Is
Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 691

Shay Solomon

Theory vs. Practice in the Design and Analysis of Algorithms . . . . . . . . . 703
Robert E. Tarjan

A Fully Polynomial Approximation Scheme for a Knapsack Problem
with a Minimum Filling Constraint (Extended Abstract) . . . . . . . . . . . . . . 704

Zhou Xu and Xiaofan Lai

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 717





Piecewise-Linear Approximations of Uncertain

Functions

Mohammad Ali Abam1,�, Mark de Berg2, and Amirali Khosravi2,��

1 Department of Computer Engineering, Sharif University of Technology,
Tehran, Iran

abam@sharif.ir
2 Department of Mathematics and Computing Science, TU Eindhoven,

Eindhoven, The Netherlands
{mdberg,akhosrav}@win.tue.nl

Abstract. We study the problem of approximating a function F : R→
R by a piecewise-linear function F when the values of F at {x1, . . . , xn}
are given by a discrete probability distribution. Thus, for each xi we are
given a discrete set yi,1, . . . , yi,mi of possible function values with asso-
ciated probabilities pi,j such that Pr[F(xi) = yi,j ] = pi,j . We define the
error of F as error(F,F) = maxn

i=1 E[|F(xi)− F(xi)|]. Let m =
∑n

i=1mi

be the total number of potential values over all F(xi). We obtain the fol-
lowing two results: (i) an O(m) algorithm that, given F and a maximum
error ε, computes a function F with the minimum number of links such
that error(F,F) � ε; (ii) an O(n4/3+δ +m log n) algorithm that, given F,
an integer value 1 � k � n and any δ > 0, computes a function F of at
most k links that minimizes error(F,F).

1 Introduction

Motivation and problem statement. Fitting a function to a given finite set of
points sampled from an unknown function F : R → R is a basic problem in
mathematics. Typically one is given a class of “simple” functions—linear func-
tions, piecewise linear functions, quadratic functions, etcetera—and the goal is
to find a function F from that class that fits the sample points best. One way
to measure how well F fits the sample points is the uniform metric, defined as
follows. Suppose that F is sampled at x1, . . . , xn, with x1 < · · · < xn. Then the
error of F according to the uniform metric is

∑n
i=1 |F(xi)−F(xi)|. This measure

is also known as the l∞ or the Chebychev error measure.
The problem of finding the best approximation F under the uniform metric

has been studied from an algorithmic point of view, in particular for the case
where the allowed functions are piecewise linear. There are then two optimization
problems that can be considered: the min-k and the min-ε problem. In the min-k
� Work by Mohammad Ali Abam was done when he was employed by Technische

Universität Dortmund.
�� Work by Amirali Khosravi has been supported by the Netherlands’ Organisation for

Scientific Research (NWO) under project no. 612.000.631.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 1–12, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



2 M. Ali Abam, M. de Berg, and A. Khosravi

problem one is given a maximum error ε � 0 and the goal is to find piecewise-
linear function F with error at most ε that minimizes the number of links. In the
min-ε problem one is given a number k � 1 and the goal is to find a piecewise-
linear function with at most k links that minimizes the error.

The min-k problem was solved in O(n) time by Hakimi and Schmeichel [10].
They also gave an O(n2 log n) algorithm for solving the min-ε problem. This
was later improved to O(n2) by Wang et al. [17]. Goodrich [8] then managed to
obtain an O(n log n) algorithm.

In this paper we also study the problem of approximating a sampled function
by a piecewise-linear function, but we do this in the setting where the func-
tion values F(xi) at the sample points are not known exactly. Instead we have
a discrete probability distribution for each F(xi), that is, we have a discrete
set yi,1, . . . , yi,mi of possible values with associated probabilities pi,j such that
Pr[F(xi) = yi,j ] = pi,j . We call such a function an uncertain function. The goal
is now to find a piecewise-linear function F with at most k links that minimizes
the expected error (the min-ε problem) or a piecewise-linear function F with
error at most ε that minimizes the number of links (the min-k problem).

There are several possibilities to define the expected error. We use the uniform
metric and define our error measure in the following natural way.

error(F,F) = max
{

E[|F(xi)− F(xi)|] : 1 � i � n
}

.

This error is not equal to error2(F,F) = max{|E[F(xi)] − F(xi)| : 1 � i � n}.
Indeed, to minimize |E[F(xi)]−F(xi)| one should take F(xi) = E[F(xi)] leading
to an error of zero at xi. Hence, we feel that error(F, F) is more appropriate than
error2(F,F). (Note that approximating F under error measure error2 boils down
to approximating the function G : R→ R with G(xi) = E[F(xi)].)

Related work. The problem of approximating a sampled function can be seen as
a special case of line simplification. The line-simplification problem is to approx-
imate a given polygonal curve P = p1, p2, . . . , pn by a simpler polygonal curve
Q = q1, q2, . . . , qk. The problem comes in many flavors, depending on the restric-
tions that are put on the approximation Q, and on the error measure error(P, Q)
that defines the quality of the approximation. A typical restriction is that the
sequence of vertices of Q be a subsequence of the vertices of P , with q1 = p1

and qk = pn; the unrestricted version, where the vertices q1, q2, . . . , qk can be
chosen arbitrarily, has been studied as well. (In this paper we do not restrict
the locations of the breakpoints of our piecewise-linear function.) Typical error
measures are the Hausdorff distance and the Fréchet distance [4].

The line-simplification has been studied extensively. The oldest and probably
best-known algorithm for line simplification is the so-called Douglas-Peucker al-
gorithm [7], dating back to 1973. This algorithm achieves good results in practice,
but it is not guaranteed to give optimal results. Over the past 20 years or so, al-
gorithms giving optimal results have been developed for many line-simplification
variants [1,2,3,6,8,10,11,?,16]. Although both function approximation and line-
simplification are well-studied problems, and there has been ample research on
uncertain data in other contexts, the problem we study has, to the best of our
knowledge, not been studied so far.



Piecewise-Linear Approximations of Uncertain Functions 3

y
yi,1 yi,2

E[F (xi)]

Ei

ui giε

yi,mi

Fig. 1. The function Ei(y)

Our results. We start by studying the min-k problem. As it turns out, this
problem is fairly easily reduced to the problem of computing a minimum-link
path that stabs a set of vertical segments. The latter problem can be solved
in linear time [10], leading to an algorithm for the min-k problem running in
O(m) time, where m =

∑n
i=1 mi. We then turn our attention to the much more

challenging min-ε problem, where we present an algorithm that, for any fixed
δ > 0, runs in O(n4/3+δ +m log n) time. Our algorithm uses similar ideas as the
algorithm from Goodrich [8], but it requires several new ingredients to adapt it
to the case of uncertain functions. For the important special case k = 1—here
we wish to find the best linear function to approximate F—we obtain a faster
algorithm for the min-ε problem, running in O(m log m) time.

2 The min-k Problem

We start by studying the properties of error(F,F). First we define an error func-
tion Ei(y) for every value xi:

Ei(y) = E[|F(xi)− y|].
Observe that Ei(F(xi)) is the expected error of F at xi, and error(F, F) =
maxni=1 Ei(F(xi)). The following lemma shows what Ei(y) looks like. For sim-
plicity we assume yi,1 � · · · � yi,mi for 1 � i � n.

Lemma 1. For any i, the function Ei(y) is a convex piecewise-linear function
with mi + 1 links.

Proof. To simplify the presentation, define yi,0 = −∞ and yi,mi+1 = +∞, and
we set pi,0 = pi,mi+1 = 0. Now fix some j with 0 � j � mi, and consider the
y-interval [yi,j , yi,j+1]. Within this interval we have

Ei(y) = E[|F(xi)− y|]

=
∑j

�=1 pi,�(y − yi,�) +
∑mi

�=j+1 pi,�(yi,� − y)

=
(∑j

�=1 pi,� −
∑mi

�=j+1 pi,�

)
· y −

(∑j
�=1 pi,�yi,� −

∑mi

�=j+1 pi,�yi,�

)

= ajy + bj ,



4 M. Ali Abam, M. de Berg, and A. Khosravi

where

aj =
j∑

�=1

pi,� −
mi∑

�=j+1

pi,� and bj = −

⎛

⎝
j∑

�=1

pi,�yi,� −
mi∑

�=j+1

pi,�yi,�

⎞

⎠ .

Hence, Ei(y) is a piecewise-linear function with mi + 1 links. Moreover, since
a0 = −1 � a1 � · · · � ami = 1, it indeed is convex. It is not difficult to see
that the first and last links of Ei, when extended, meet exactly in the point
(E[F(xi)], 0); see Fig. 1. (Actually these two links, when extended, form the
graph of the function g(y) = |E[F(xi)] − y|, so they correspond to the error at
xi as given by error2.) �

Now consider the min-k problem, and let ε be the given bound on the maximum
error. Because Ei(y) is a convex function, there exists an interval [ui, gi] such
that Ei(y) � ε if and only if y ∈ [ui, gi]; see Fig. 1. The interval [ui, gi] can
be computed in O(mi) time. When there exists an i such that [ui, gi] is empty,
we report that there is no F approximating F within error ε. Otherwise, the
problem is reduced to finding a function F with a minimum number of links
stabbing every vertical segment xi× [ui, gi]. This problem can be solved in linear
time [10], leading to the following theorem.

Theorem 1. Let F : R→ R be an uncertain function whose values are given at
n points {x1, . . . , xn} and let m be the total number of possible values at these
points. For a given ε, a piecewise-linear function F with a minimum number of
links such that error(F, F) � ε can be computed in O(m) time.

Remark 1. Above we computed the intervals [ui, gi] in O(mi) time in a brute-
force manner. However, we can also compute the values ui and gi in O(log mi)
time using binary search. Then, after computing the functions Ei in O(m) time
in total, we can construct the segments xi× [ui, gi] in O(

∑
i log mi) = O(n log m)

time. Thus, after O(m) preprocessing, the min-k problem can be solved in
O(n log m) time. This can be used to speed up the algorithm from the next
section when n = o(m/ log m). For simplicity we do not consider this improve-
ment in the next section.

3 The min-ε Problem

We now turn our attention to the min-ε problem. Let k be the maximum number
of links we are allowed to use in our approximation. For any ε > 0, define
K(ε) to be the minimum number of links of any approximation F such that
error(F,F) � ε. Note that K(ε) can be computed with the algorithm from the
previous section. Clearly, if ε1 < ε2 then K(ε1) � K(ε2). Hence, K(ε) is a non-
increasing function of ε and K(ε) � n. Our goal is now to find the smallest ε
such that K(ε) � k. Let’s call this value ε∗. Because K(ε) is non-increasing, the
idea is to use a binary search to find ε∗, with the algorithm from the previous
section as decision procedure. Doing this in an efficient manner is not so easy,



Piecewise-Linear Approximations of Uncertain Functions 5

however. We will proceed in several phases, zooming in further and further to
the value ε∗, as explained next.

Our algorithm maintains an active interval I containing ε∗. Initially I =
[0,∞). A basic subroutine is to refine I on the basis of a set S of ε-values, whose
output is the smallest interval containing ε∗ whose endpoints come from the set
S ∪{endpoint of I}. The subroutine ShrinkActiveInterval runs in O(|S| log |S|+
m log |S|) time.

ShrinkActiveInterval(S, I)
Sort S to get a sorted list ε1 < ε2 < · · · < εh. Add values ε0 = −∞
and εh+1 = ∞. Do a binary search over ε0, . . . , εh+1 to find an interval
[εj , εj+1] containing ε∗; here the basic test during the binary search—
namely whether ε∗ � εl, for some εl—is equivalent to testing whether
K(εl) � k; this can be done in O(m) time with the algorithm from the
previous section. Finally, return I ∩ [εj , εj+1].

The first phase. In the previous section we have seen that each error function
Ei is a convex piecewise-linear function with mi breakpoints. Let Ei = {Ei(yi,j) :
1 � j � mi} denote the set of error-values of the breakpoints of Ei, and let E =
E1 ∪ · · · ∪En. The first phase of our algorithm is to call ShrinkActiveInterval(E,
[0,∞)) to find two consecutive values εj , εj+1 ∈ E such that εj � ε∗ � εj+1.
Since |E| = m, this takes O(m log m) time.

Recall that for a given ε, the approximation F has to intersect the segment
xi × [ui, gi] in order for the error to be at most ε at xi. Now imagine increasing
ε from εj to εj+1. Then the values ui and gi change continuously. In fact, since
Ei is a convex piecewise-linear function and εj and εj+1 are consecutive values
from E, the values ui and gi change linearly, that is, we have

ui(ε) = aiε + bi and gi(ε) = ciε + di

for constants ai, bi, ci, di that can be computed from Ei. As ε increases, ui de-
creases and gi increases—thus ai < 0 and ci > 0—and so the vertical segment
xi × [ui, gi] is growing. After the first phase we have I = [εj , εj+1] and the task
is to find the smallest ε ∈ [εj , εj+1] such that there exists a k-link path stabbing
all the segments.

Intermezzo: the case k = 1. We first consider the second phase for the special
but important case where k = 1. This case can be considered as the problem
of finding a regression line for uncertain points except that our error is not the
squared distance. Thus we want to approximate the uncertain function F by a
single line � : y = ax + b that minimizes the error. The line � stabs a segment
xi × [ui, gi] if � is above (xi, ui) and below (xi, gi). In other words, we need
axi + b � aiε + bi and axi + b � ciε + di. Hence, the case k = 1 can be handled
by solving the following linear program with variables a, b, ε:

Minimize ε
Subject to xia + b− aiε � bi for all 1 � i � n

xia + b− ciε � di for all 1 � i � n



6 M. Ali Abam, M. de Berg, and A. Khosravi

U(ε)

G(ε)

πu(ε)

πg(ε)

(x2, g2(ε))

(x4, g4(ε))

(x6, g6(ε))

�

p

G(ε)

U(ε)

(a) (b)

Fig. 2. (a) The paths πu(ε) and πg(ε). (b) The visibility cone of p.

Since a 3-dimensional linear program can be solved in linear expected time [5],
we get the following theorem.

Theorem 2. The line � minimizing error(F, �) can be computed in O(m log m)
expected time.

The second phase. As mentioned earlier, our algorithm uses ideas from the al-
gorithm that Goodrich [8] developed for the case of certain1 functions. Next we
sketch his algorithm and explain the difficulties in applying it to our problem.

For a certain function F, the error functions Ei(y) are cones whose bounding
lines have slope −1 and +1, respectively. This implies that, using the notation
from above, we have ui(0) = gi(0), and ai = −1, and ci = 1 for all i. For a
given ε, we define U (ε) to be the polygonal chain (x1, u1(ε)), . . . , (xn, un(ε)) and
G(ε) to be the polygonal chain (x1, g1(ε)), . . . , (xn, gn(ε)). (NB: The minimum-
link path of error at most ε stabbing all segments xi × [ui, gi] does not have to
stay within the region bounded by U(ε) and G(ε).) Let πu(ε) be the Euclidean
shortest path from (x1, u1(ε)) to (xn, un(ε)) that is below G(ε) and above U (ε)—
see Fig. 2(a) for an illustration. Similarly, let πg(ε) be the Euclidean shortest
path from (x1, g1(ε)) to (xn, gn(ε)) that is below G(ε) and above U(ε). The paths
πu(ε) and πg(ε) together form a so-called hourglass, which we denote by H(ε).
An edge e ∈ H(ε) is called an inflection edge if one of its endpoints lies on U(ε)
and the other one lies on G(ε). Goodrich [8] showed that there is a minimum-link
function F with error ε such that each inflection edge is contained in a link of
F and in between two links containing inflection edges the function is convex
or concave. (In other words, the “zig-zags” of F occur exactly at the inflection
edges.)

Goodrich then proceeds by computing all values of ε at which the set of
inflection edges changes; these are called geodesic-critical values of ε. Note that
1 We use the term certain function for a function with exactly one possible value per

sample point, that is, when no uncertainty is involved.



Piecewise-Linear Approximations of Uncertain Functions 7

the moments at which an inflection edge changes are exactly the moments at
which the hourglass H(ε) changes. The number of geodesic-critical values is O(n)
and they can be found in O(n log n) time [8]. After finding these geodesic-critical
values, a binary search is applied to find two consecutive critical values εj , εj+1

such that εj � ε∗ � εj+1. Then the inflection edges that F must contain are
known, and from this F can be computed using parametric search.

The main difference between our setting and the setting of Goodrich is that
the points (xi, ui(ε))—and, similarly, the points (xi, gi(ε))—do not move at the
same speed. As a result the basic lemma underlying the efficiency of the approach,
namely that there are only O(n) geodesic-critical values of ε, no longer holds.
The following lemma shows that the number of such values can actually be
quadratic. The proof of the lemma can be found in the full version of the paper.

Lemma 2. There is an instance of n vertical segments xi × [ui(ε), gi(ε)] where
the (xi, ui(ε))’s and (xi, gi(ε))’s are moving at constant (but different) velocities
such that the number of geodesic-critical events is Ω(n2).

The fact that the number of geodesic-critical values of ε is Ω(n2) is not the
only problem we face. The other problem is that detecting these events becomes
more difficult in our setting. When all points on U(ε) and on G(ε) move with
the same speed, then these events occur only when two consecutive edges of
πu(ε) become collinear or when two consecutive edges of πg(ε) become collinear.
When the points have different speeds, however, this is no longer the case. In
Fig. 2, for example, the hourglass H(ε) can change when (x2, g2(ε)), (x4, g4(ε))
and (x6, g6(ε)) become collinear (which could happen when (x4, g4(ε)) moves up
relatively slowly).

Below we show how to overcome these two hurdles and obtain an algorithm
with subquadratic running time.

We start with a useful observation. Let Ψ(ε) be the simple polygon whose
boundary consists of the chains G(ε) and U(ε), and the vertical segments x1 ×
[u1(ε), g1(ε)] and xn× [un(ε), gn(ε]). Let G(ε) be the visibility graph of Ψ(ε), that
is, G(ε) is the graph whose nodes are the vertices of Ψ(ε) and where two nodes are
connected by an edge if the corresponding vertices can see each other inside Ψ(ε).
As ε increases and the vertices of Ψ(ε) move, G(ε) can change combinatorially,
that is, edges may appear or disappear.

Lemma 3. The visibility graph G(ε) changes O(n2) times as ε increases from
0 to ∞. Moreover, if G(ε) does not change when ε is restricted to some interval
[ε1, ε2] then H(ε) does not change either when ε is in this interval.

Proof. First we observe that any three vertices of Ψ(ε) become collinear at most
once, because each vertex moves with constant velocity and has constant x-
coordinate. Indeed, three points p, q, r are collinear when (py − qy)/(px − qx) =
(py − ry)/(px − rx), and when px, qx, rx are constant and py, qy, ry are linear
functions of ε, then this equation has one solution (or possibly infinitely many
solutions, which means the points are always collinear).

Next we show that every edge e of G, once it disappears, cannot re-appear.
Define ũi = (xi, ui) and g̃i = (xi, gi). Assume that e = (ũi, ũj) for some i, j;



8 M. Ali Abam, M. de Berg, and A. Khosravi

the case where one or both of the endpoints of e are on G(ε) is similar. None
of the vertices of G(ε) can stop ũi and ũj from seeing each other, since all ũi’s
move down and all g̃i’s move up. Hence, the only reason for ũi and ũj to become
invisible to each other is that some vertex ũl, with i < l < j, crosses e. For ũi and
ũj to become visible again, ũl would have to cross e again, but this is impossible
since ũi, ũj, ũj can become collinear at most once. It follows that each edge can
appear and disappear at most once, and since there are O(n2) edges in total, G
changes O(n2) times.

The second part of the lemma immediately follows from the fact that the
shortest paths πu(ε) and πg(ε) cannot “jump” as ε changes continuously, because
shortest paths in a simple polygon are unique. Hence, these shortest paths—and,
consequently, H(ε)—can only change when G(ε) changes. �

Computing all combinatorial changes of G still results in an algorithm with
running time Ω(n2). Next we show that it suffices to compute O(n4/3+δ) combi-
natorial changes of G in order to find an interval [ε1, ε2] such that ε∗ ∈ [ε1, ε2]
and G does not change in this interval. (Recall that ε∗ denotes the minimum
error that can be achieved with k links, and that we thus wish to find).

Obtaining stable visibility cones. Let I be the active interval resulting from the
first phase of our algorithm. We now describe an approach to quickly find a
subset of the events where G changes, which we can use to further shrink I.

Let � be a vertical line splitting the set of vertices of Ψ into two (roughly)
equal-sized subsets. We will concentrate on the visibility edges whose endpoints
lie on the different sides of �; the approach will be applied recursively to deal
with the visibility edges lying completely to the right or completely to the left
of �. For a vertex p of Ψ(ε) we define σ(p, ε), the visibility cone of p in Ψ(ε),
as the cone with apex p that contains all rays emanating from p that cross a
point on � that is visible from p (within Ψ(ε)). A crucial observation is that for
a vertex p to the left of � and a vertex q to the right of �, we have that (p, q) is
an edge of G(ε) if and only if p ∈ σ(q, ε) and q ∈ σ(p, ε).

As the vertices of Ψ move, σ(p, ε) changes continuously but its combinatorial
description (the vertices defining its sides) changes at discrete times. Notice that
the bottom side of σ(p, ε) passes through a vertex of the lower boundary of
Ψ(ε) lying to the same side of � as p. More precisely, if U(p, �) denotes the set
of vertices on the lower boundary of Ψ(ε) that lie between � and the vertical
line through p, then the lower side of σ(p, ε) is tangent to the upper hull of
U(p, �)—see Fig. 2(b). Similarly, if G(p, �) denotes the set of vertices on the
upper boundary of Ψ(ε) that lie between � and the vertical line through p, then
the upper side of σ(p, ε) is tangent to the lower hull of G(p, �). The following
lemma shows how many times the lower hull changes of a set of points that all
move vertically upwards; by symmetry, the lemma also applies to the number of
changes to the upper hull of points moving downwards.
Lemma 4. Suppose n points in the plane move vertically upward, each with its
own constant velocity. Then the number of combinatorial changes to the lower
hull is O(n). Furthermore, all event times at which the lower hull changes can
be computed in O(n log3 n) time.



Piecewise-Linear Approximations of Uncertain Functions 9

Proof. Let {p1, . . . , pn} be the set of points vertically moving upwards with con-
stant velocities, ordered from left to right. Since the points move with constant
velocities, any three points become collinear at most once. As in the proof of
Lemma 3, this implies that once a point disappears from the lower hull, it can-
not re-appear. Hence, the number of changes to the lower hull is O(n).

To compute all event times, we construct a balanced binary tree T storing
the points {p1, . . . , pn} in its leaves in an ordered manner based on their x-
coordinates. At each node ν of T , we maintain a kinetic data structure to track
lh(ν), the lower hull of the points stored in the subtree rooted at ν. Let νr and
νl be the right and left child of node ν in T . Then lh(ν) is formed by portions of
lh(νr) and lh(νl) and the common tangent of lh(νr) and lh(νl). This implies
that in order to track all changes to the lower hull of the whole point set, it
suffices to track for each node ν the changes to common tangents of lh(νr) and
lh(νl). We thus maintain for each node ν a certificate that can be used to find
out when the tangent changes. This certificate involves at most six points: the
two points determining the current tangent and the at most four points (two on
lh(νr) and two on lh(νl)) adjacent to these points. The failure times of the O(n)
certificates are put into an event queue. When a certificate fails we update the
corresponding tangent, and we update the failure time of the certificate (which
means updating the event queue). A change at ν may propagate upwards in the
tree—that is, it may trigger at most O(log n) changes in ascendants of ν. Hence,
handling a certificate failure takes O(log2 n) time. Since the number of changes
at each node ν is the number of points stored at the subtree rooted at ν, we
handle at most O(n log n) events in total. Each event takes O(log2 n) time, and
so we can compute all events in O(n log3 n) time. �

Our goal is to shrink the active interval I to a smaller interval such that the
visibility cones of the points are stable, that is, do not change combinatorially.
Doing this for each p individually will still be too slow, however. We therefore
proceed as follows.

Recall that we split Ψ into two with a vertical line �. Let R be the set of
vertices to the right of �. We show how to shrink I so that the cones of the
points p ∈ R are stable. Below we only consider the top sides of the cones,
which pass through a vertex of G(ε); the bottom sides can be handled similarly.

We construct a binary tree TG,R on the points in G(ε) ∩ R, based on their x-
coordinates. For a node ν, let P (ν) denote its canonical subset, that is, P (ν) de-
notes the set of points in the subtree of ν. Using Lemma 4 we compute all event
times—that is, values of ε—at which the lower hull lh(P (ν)) changes, for each
node ν. This takes O(n log4 n) time in total and gives us a set S of O(n log n) event
times. We then call procedure ShrinkActiveInterval(S, I) to further shrink I, tak-
ing O(n log2 n + m log n) time. In the new active interval, none of the maintained
lower hulls changes combinatorially. This does not mean, however, that the top
sides of the cones are stable. For that we need some more work.

Recall that the top side of σ(p, ε) is given by the tangent of p to lh(G(p, �)),
where G(p, �) is the set of points on the G(ε) in between p and � (with respect
to their x-coordinates). The set G(p, �) can be formed from O(log n) canonical



10 M. Ali Abam, M. de Berg, and A. Khosravi

subsets in TG,R. Each canonical subset P (ν) gives a candidate tangent for p,
namely the tangent from p to lh(P (ν)). Even though the lower hulls, lh(P (ν)),
are stable, the tangents from p to the lower hulls are not. Next we describe how
to shrink the active interval, so that these tangents become stable, and we have
O(log n) stable candidates.

Consider a canonical subset P (ν) and let p1, . . . , ph be the vertices of lh(P (ν)),
ordered from left to right. An important observation is that, as ε increases and
the points move, the tangent from p to lh(P (ν)) steps from vertex to vertex along
p1, . . . , ph, either always going forward or always going backwards. (This is true
because p can become collinear with any lower-hull edge at most once.) We can
therefore proceed as follows. For each point p and each of its canonical subsets,
we compute in constant time at what time p and the middle edge of the lower
hull of the canonical subset become collinear. Finding the middle edge can be
done using binary search, if we store the lower hulls lh(P (ν)) as a balanced tree.
Since we have n points and each of them is associated with O(log n) canonical
subsets, in total we have O(n log n) event times. We put these into a set S and
call ShrinkActiveInterval(S, I). In the new active interval the number of vertices
of each lower hull to which p can be tangent has halved. We keep on shrinking
I recursively, until we are left with an interval I such that, for each p and any
canonical subset relevant for p, the tangent from p to the lower hull is stable. In
total this takes O(n log2 n + m log n) time.

Note that within I we now have O(log n) stable candidate tangent lines for
each p. We then compute all O(log2 n) times at which the candidate tangent
lines swap (in their circular order around p), collect all O(n log2 n) event times,
and call ShrinkActiveInterval once more, taking O(n log3 n + m log n) time.

After this, we are left with an interval I such that the top side of the cone of
each p ∈ R is stable. In a similar way we can make sure that the bottom sides
are stable, and that the top and bottom sides of the points to the left of � are
stable. We get the following lemma.

Lemma 5. In O(n log3 n + m logn) time we can shrink the active interval I so
that in the new active interval all the cones defined with respect to � are stable.

We denote the set of edges of G crossing � by E(�). Next we describe a ran-
domization algorithm to shrink the active interval I such that in the new active
interval, the edges of E(�) are stable. After this, we recurse on the part of Ψ
to the left of � and on the part to the right, so that the whole visibility graph
becomes stable.

As already mentioned, (p, q) is an edge of E(�) if and only if p ∈ σ(q, ε) and
q ∈ σ(p, ε). Thus E(�) changes when a point p becomes collinear with a side
of σ(q, ε) for some q. Without loss of generality we assume p ∈ R and q ∈ L.
Thus we have a set H of at most n half-lines originating from points in L, where
each half-line is specified by two points of L, and a set of n/2 points from R,
and we want to compute the event times at which a point of R and a half-line
of H become collinear. Again, explicitly enumerating all these event times takes
Ω(n2) time, so we have to proceed more carefully. To this end we use a variant



Piecewise-Linear Approximations of Uncertain Functions 11

of random halving [13], which can be made deterministic using the expander
approach [12]. We start with a primitive tool which is used in our algorithm.

Lemma 6. For any ε1 and ε2, and any δ > 0, we can preprocess H and R
in O(n4/3+δ) time into a data structure that allows the following: count in
O(n4/3+δ) time all events (that is, all the times at which a half-line in H and a
point in R become collinear) lying in [ε1, ε2], and select in O(log n) time one of
these events uniformly at random.

Proof. (Sketch) Consider a half-line l ∈ H and a point p ∈ R. They become
collinear at a time in [ε1, ε2] if and only if either p(ε1) is below l(ε1) and p(ε2) is
above l(ε2), or p(ε1) is above l(ε1) and p(ε2) is below l(ε2). Therefore we need
a data structure to report for all l ∈ H the points of R lying to a given side of
l(ε1) or l(ε2) . We construct a multilevel partition tree over points of R at times
ε1 and ε2 (one level dealing with ε1, the other dealing with ε2), each of whose
nodes is associated with a canonical subset of R. The total size of all canonical
subsets is O(n4/3+δ). For a query line l, the query procedure selects O(n1/3+δ)
pairwise disjoint canonical subsets whose union consists of exactly those points
of R at different sides of l at times ε1 and ε2. Based on this we create a set
of pairs {(Ai, Bi)} with

∑
(|Ai| + |Bi|) = O(n4/3+δ) where Ai is a subset of R

and Bi is the subset of H and each p ∈ Ai and l ∈ Bi become collinear at some
time in [ε1, ε2]. First we select a pair (Ai, Bi) at random, where the probability
of selecting (Ai, Bi) is proportional to |Ai| ∗ |Bi|. Then we select an element
uniformly at random from Ai and an element uniformly at random from Bi. �

Based on Lemma 6 we proceed as follows. Let I = [ε1, ε2] be the current active
interval. Let N be the number of event times in I; we can determine N using
Lemma 6. Then select an event time ε3 uniformly at random from the event
times in I, again using Lemma 6, and we either shrink I to [ε1, ε3] or to [ε3, ε2]
in O(m) time. We recursively continue shrinking I until the set of events inside
I is O(n4/3); the expected number of rounds is O(log n). Once N = O(n4/3) we
list all event times, and do a regular binary search.

After this we are left with an active interval I such that the set A(�) of
visibility edges crossing � is stable. We recurse on both halves of Ψ to get the
whole visibility graph stable. Putting everything together we get the following
result.

Lemma 7. For any δ > 0 in O(n4/3+δ+m log m) expected time we can compute
an active interval I containing ε∗ where the visibility graph G(ε) is stable.

As observed before, the fact that the visibility graph is stable during the active
interval I = [ε1, ε2] implies that the set of inflection edges is stable. This means
we can compute all inflection edges during this interval by computing in O(n)
time the shortest paths πu(ε1) and πg(ε1). Once this has been done, we can
proceed in exactly the same way as Goodrich [8] to find ε∗. Given ε∗ we can find
a k-link path of error ε∗ by solving the min-k problem for ε∗. This leads to our
main result.



12 M. Ali Abam, M. de Berg, and A. Khosravi

Theorem 3. Let F : R→ R be an uncertain function whose values are given at
n points {x1, . . . , xn} and let m be the total number of possible values at these
points. For a given k, and any δ > 0, we can compute in O(n4/3+δ+m log n) time
a piecewise-linear function F with at most k links that minimizes error(F, F) � ε.

References

1. Abam, M.A., de Berg, M., Hachenberger, P., Zarei, A.: Streaming Algorithms for
Line Simplification. Discrete & Computational Geometry 43, 497–515 (2010)

2. Agarwal, P.K., Varadarajan, K.R.: Efficient Algorithms for Approximating Polyg-
onal Chains. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Discrete & Compu-
tational Geometry, vol. 23, pp. 273–291 (2000)

3. Agarwal, P.K., Har-Peled, S., Mustafa, N.H., Wang, Y.: Near-linear Time Approx-
imation Algorithms for Curve Simplification. Algorithmica 42, 203–219 (2005)

4. Alt, H., Godau, M.: Computing the Freéchet Distance between Two Polygonal
Curves. International Journal on Computational Geometry and Applications 5,
75–91 (1995)

5. De Berg, M., Cheong, O., Van Kreveld, M., Overmars, M.: Computational Geom-
etry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

6. Chan, W.S., Chin, F.: Approximation of Polygonal Curves with Minimum Number
of Line Segments. In: Chazelle, B., Goodman, J., Pollack, R. (eds.) Proc. 3rd
Annual Symp. on Alg. and Comp., vol. 650, pp. 378–387 (1992)

7. Douglas, D.H., Peucker, T.K.: Algorithms for the Reduction of the Number of
Points Required to Represent a Digitized Line or its Caricature. Canadian Cartog-
rapher 10, 112–122 (1973)

8. Goodrich, M.T.: Efficient Piecewise-linear Function Approximation Using the Uni-
form Metric. Discrete & Computational Geometry 14, 445–462 (1995)

9. Guibas, L.J., Hershberger, J.E., Mitchell, J.S.B., Snoeyink, J.S.: Approximating
Polygons and Subdivisions with Minimum Link Paths. International Journal of
Computational Geometry and Applications 3, 383–415 (1993)

10. Hakimi, S.L., Schmeichel, E.F.: Fitting Polygonal Functions to a Set of Points in
the Plane. Graph. Models Image Process. 52, 132–136 (1991)

11. Imai, H., Iri, M.: Polygonal Approximations of a Curve-formulations and Algo-
rithms. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 71–86 (1988)

12. Katz, M.J., Sharir, M.: An Expander-based Approach to Geometric Optimization.
SIAM J. Comput. 26, 1384–1408 (1997)

13. Matousek, J.: Randomized Optimal Algorithm for Slope Selection. Inform. Process.
Lett. 36, 183–187 (1991)

14. Melkman, A., O’Rourke, J.: On Polygonal Chain Approximation. In: Toussaint,
G.T. (ed.) Computational Morphology, pp. 87–95 (1998)

15. Suri, S.: A Linear Time Algorithm for Minimum Link Paths inside a Simple Poly-
gon. Comput. Vision Graph. Image Process. 35, 99–110 (1986)

16. Toussaint, G.T.: On the Complexity of Approximating Polygonal Curves in the
Plane. In: Proc. Int. Symp. on Robotics and Automation (1985)

17. Wang, D.P., Huang, D.P., Chao, H.S., Lee, R.C.T.: Plane Sweep Algorithms for
Polygonal Approximation Problems with Applications. In: Ng, K.W., Balasubra-
manian, N.V., Raghavan, P., Chin, F.Y.L. (eds.) ISAAC 1993. LNCS, vol. 762,
pp. 515–522. Springer, Heidelberg (1993)



A Constant Factor Approximation Algorithm for

Boxicity of Circular Arc Graphs

Abhijin Adiga, Jasine Babu�, and L. Sunil Chandran

Department of Computer Science and Automation,
Indian Institute of Science, Bangalore 560012, India
{abhijin,jasine,sunil}@csa.iisc.ernet.in

Abstract. Boxicity of a graph G(V, E) is the minimum integer k such
that G can be represented as the intersection graph of k-dimensional axis
parallel boxes in Rk. Equivalently, it is the minimum number of interval
graphs on the vertex set V such that the intersection of their edge sets
is E. It is known that boxicity cannot be approximated even for graph
classes like bipartite, co-bipartite and split graphs below O(n0.5−ε)-factor,
for any ε > 0 in polynomial time unless NP = ZPP . Till date, there is no
well known graph class of unbounded boxicity for which even an nε-factor
approximation algorithm for computing boxicity is known, for any ε < 1.
In this paper, we study the boxicity problem on Circular Arc graphs -
intersection graphs of arcs of a circle. We give a (2+ 1

k
)-factor polynomial

time approximation algorithm for computing the boxicity of any circular
arc graph along with a corresponding box representation, where k ≥ 1 is
its boxicity. For Normal Circular Arc(NCA) graphs, with an NCA model
given, this can be improved to an additive 2-factor approximation algo-
rithm. The time complexity of the algorithms to approximately compute
the boxicity is O(mn+n2) in both these cases and in O(mn+kn2) which
is at most O(n3) time we also get their corresponding box representa-
tions, where n is the number of vertices of the graph and m is its number
of edges. The additive 2-factor algorithm directly works for any Proper
Circular Arc graph, since computing an NCA model for it can be done
in polynomial time.

Keywords: Boxicity, Circular Arc Graphs, Approximation Algorithm.

1 Introduction

Boxicity: Let G(V, E) be a graph. If I1, I2, · · ·, Ik are interval graphs on the
vertex set V with E(G) = E(I1) ∩ E(I2) ∩ · · · ∩ E(Ik), then {I1, I2, · · ·, Ik}
is called a box representation of G of dimension k. Boxicity of G is defined as
the minimum number k such that G has a box representation of dimension k.
Equivalently, boxicity is the minimum integer k such that G can be represented
as the intersection graph of k-dimensional axis parallel boxes in Rk. For dense
graphs, a box representation of low dimension requires lesser memory compared
� Partially supported by Microsoft Research India Travel Grant.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 13–24, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



14 A. Adiga, J. Babu, and L. Sunil Chandran

to an adjacency list or matrix representation. Availability of a low dimensional
box representation makes some well known NP-hard problems like the max-
clique problem polynomial time solvable [17].

Introduced by Roberts [16] in 1968, boxicity is combinatorially well stud-
ied and many bounds are known in terms of parameters like maximum degree,
minimum vertex cover size and tree-width [5]. Boxicity of any graph is upper
bounded by �n

2
� where n is the number of vertices of the graph. It was shown by

Scheinerman [18] in 1984 that the boxicity of outer planar graphs is at most two.
In 1986, Thomassen [21] proved that the boxicity of planar graphs is at most 3.
This parameter is also studied in relation with other dimensional parameters of
graphs like partial order dimension and threshold dimension [3,24].

However, computing boxicity is a notoriously hard algorithmic problem. In
1981, Cozzens[6] showed that computing Boxicity is NP-Hard. Later Yannakakis
[24] proved that determining whether boxicity of a graph is at most three is
NP-Complete and Kratochvil[12] strengthened this by showing that determining
whether boxicity of a graph is at most two itself is NP-Complete. Recently, Adiga
et.al [3] proved that no polynomial time algorithm for approximating boxicity
of bipartite graphs with approximation factor less than O(n0.5−ε) is possible
unless NP = ZPP . Same non-approximability holds in the case of split graphs
and co-bipartite graphs too. Even an nε-factor approximation algorithm, with
ε < 1 for boxicity is not known till now, for any well known graph class of
unbounded boxicity. In this paper, we present a polynomial time (2 + 1

k )-factor
approximation algorithm for finding the boxicity of circular arc graphs along
with the corresponding box representation, where k ≥ 1 is the boxicity of the
graph. There exist circular arc graphs of arbitrarily high boxicity including the
well known Robert’s graph (the complement of a perfect matching on n vertices,
with n even) which achieves boxicity n

2 . For normal circular arc graphs, with an
NCA model given, we give an additive 2-factor polynomial time approximation
algorithm for the same problem. Note that, proper circular arc graphs form a
subclass of NCA graphs and computing an NCA model for them can be done in
polynomial time. We also give efficient ways of implementing all these algorithms.

Circular Arc Graphs: Circular Arc (CA) graphs are intersection graphs of
arcs on a circle. That is, an arc of the circle is associated with each vertex
and two vertices are adjacent if and only if their corresponding arcs overlap. It is
sometimes thought of as a generalization of interval graphs which are intersection
graphs of intervals on the real line. CA graphs became popular in 1970’s with a
series of papers from Tucker, wherein he proved matrix characterizations for CA
graphs [22] and structure theorems for some of its important subclasses[22]. For
a detailed description, refer to the survey paper by Lin et.al [13]. Like in the case
of interval graphs, linear time recognition algorithms exist for circular arc graphs
too [15]. Some of the well known NP-complete problems like tree-width, path-
width are known to be polynomial time solvable in the case of CA graphs[19,20].
However, unlike interval graphs, problems like minimum vertex coloring [9] and
branchwidth [14] remain NP-Complete for CA graphs. We believe that boxicity
belong to the second category.



Algorithms for Boxicity 15

A family F of subsets of a set X has the Helly property if for every subfamily
F ′ of F , with every two sets in F ′ pairwise intersecting, we also have

⋂

A∈F ′
A �= ∅.

Similarly, a family A of arcs satisfy Helly property if every subfamily A′ ⊆ A of
pairwise intersecting arcs have a common intersection point. The fundamental
difficulty while dealing with CA graphs in comparison with interval graphs is
the absence of Helly property for a family of circular arcs arising out of their
circular adjacencies.

A Proper Circular Arc (PCA) graph is a graph which has some CA repre-
sentation in which no arc is properly contained in another. A Unit Circular Arc
(UCA) graph is one which has a CA representation in which all arcs are of the
same length. A Helly Circular Arc (HCA) graph is one which has a representa-
tion satisfying the Helly property. In a CA representation M , a pair of arcs are
said to be circle cover arcs if they together cover the circumference of the circle.
A Normal Circular Arc (NCA) graph is one which has a CA representation in
which there are no pairs of circle cover arcs. It is known that UCA � PCA �

NCA and UCA � HCA � NCA.

Our main results in this paper are:

(a) Boxicity of any circular arc graph can be approximated within a (2 + 1
k )-

factor in polynomial time where k ≥ 1 is the boxicity of the graph.
(b) The boxicity of any normal circular arc graph can be approximated within

an additive 2-factor in polynomial time, given a normal circular arc model
of the graph.

(c) The time complexity of the algorithms to approximately compute the boxi-
city is O(mn + n2) in both the above cases and in O(mn + kn2) which is at
most O(n3) time we also get their corresponding box representations, where
n is the number of vertices of the graph, m its number of edges and k its
boxicity.

A structural result we obtained in this paper may be of independent interest.
The following way of constructing an auxiliary graph H∗ of a given graph H is
from [1].

Definition 1. Given a graph H = (V, E), consider the graph H∗ constructed
as follows: V (H∗) = E(H), and edges wx and yz of H are adjacent in H∗ if
and only if {w, x, y, z} induces a 2K2 in H . Notice that H∗ is the complement
of [L(H)]2, the square of the line graph of H.

The structural properties of H∗ and its complement [L(H)]2 had been exten-
sively investigated for various graph classes in the context of important problems
like largest induced matching and minimum chain cover. The initial results were
obtained by Golumbic et.al [10]. Cameron et.al [4] came up with some further
results. A consolidation of the related results can be found in [4].

The following intermediate structural result in our paper becomes interesting
in this context:



16 A. Adiga, J. Babu, and L. Sunil Chandran

(d) In Lemma 4, we observe that if H is a bipartite graph whose complement is
a CA graph, then H∗ is a comparability graph.

This is a generalization of similar results for convex bipartite graphs and interval
bigraphs already known in literature [1,25]. This observation helps us in reducing
the complexity of our polynomial time algorithms.

The proofs and detailed description of the algorithms omitted from this paper
are included in the full version [2].

2 Preliminaries

2.1 Notations

We denote the vertex set of a given graph G by V (G) and edge set by E(G), with
|V (G)| = n and |E(G)| = m. We use e to denote min(m, nC2−m). We denote the
complement of G by G. We call a graph G the union of graphs G1, G2, · · ·, Gk if
they are graphs on the same vertex set and E(G) = E(G1)∪E(G2)∪· · ·∪E(Gk).
Similarly, a graph G is the intersection of graphs G1, G2, · · ·, Gk if they are
graphs on the same vertex set and E(G) = E(G1) ∩ E(G2) ∩ · · · ∩ E(Gk). We
use box(G) to denote boxicity of G and χ(G) to denote chromatic number of G.

A circular-arc (CA) model M = (C, A) consists of a circle C, together with a
family A of arcs of C. It is assumed that C is always traversed in the clockwise
direction, unless stated otherwise. The arc Av corresponding to a vertex v is
denoted by [s(v), t(v)], where s(v) and t(v) are the extreme points of Av on
C with s(v) its start point and t(v) its end point respectively, in the clockwise
direction. Without loss of generality, we assume that no single arc of A covers
C and no arc is empty or a single point.

An interval model I consists of a family of intervals on real line. An interval
Iv corresponding to a vertex v is denoted by a pair

[
lv(I), rv(I)

]
, where lv(I)

and rv(I) are the left and right end points of the interval Iv. Without loss of
generality, we assume that an interval is always non-empty and is not a single
point. We may use I to represent both an interval graph and its interval model,
when the meaning is clear from the context.

Definition 2 (Bi-Consecutive Adjacency Property). Let the vertex set
V (G) of a graph G be partitioned into two sets A and B with |A| = n1 and
|B| = n2. A numbering scheme where vertices of A are numbered as 1, 2, · · ·,
n1 and vertices of B are numbered as 1′, 2′, · · ·, n′

2 satisfy Bi-Consecutive Ad-
jacency Property if the following condition holds:
For any i ∈ A and j′ ∈ B, if i is adjacent to j′, then either
(a) j′ is adjacent to all k such that 1 ≤ k ≤ i or
(b) i is adjacent to all k′ such that 1 ≤ k′ ≤ j′.

2.2 A Vertex Numbering Scheme for Circular Arc Graphs

Let G be a CA graph. Assume a CA model M = (C, A) of G is given. Let p be
any point on the circle C. We define a numbering scheme for the vertices of G
denoted by NS(M, p) which will be helpful for us in explaining further results.



Algorithms for Boxicity 17

p

2

1

3

1’

2’

3’

Fig. 1. Example for Numbering of vertices of a CA graph

Let A be the clique corresponding to the arcs passing through p and let
B = V \ A. Let |A| = n1 and |B| = n2. Number the vertices in A as 1, 2,
· · ·, n1 such that the vertex v with its t(v) farthest (in the clockwise direction)
from p gets number 1 and so on. Similarly, number the vertices in B as 1′, 2′,
· · ·, n′

2 such that the vertex v′ with its t(v′) farthest (in the clockwise direction)
from p gets number 1′ and so on. In both cases, break ties (if any) between
vertices arbitrarily, while assigning numbers. See Figure 1 for an illustration of
the numbering scheme. Now, observe that in G, if a vertex i ∈ A is adjacent to
a vertex j′ ∈ B, then at least one of the following is true: (a) the point t(i) is
contained in the arc [s(j′), t(j′)] or (b) the point t(j′) is contained in the arc
[s(i), t(i)]. This implies that if i ∈ A is adjacent to j′ ∈ B, then either (a) j′

is adjacent to all k such that 1 ≤ k ≤ i or (b) i is adjacent to all k′ such that
1 ≤ k′ ≤ j′. Thus we have the following lemma.

Lemma 1. Given a circular arc graph G and a CA model M(C, A) of G, to-
gether with a point p on the circle C, let A and B be as described above.

1. The numbering scheme NS(M, p) of G defined above satisfy the Bi-
Consecutive Adjacency Property.

2. NS(M, p) can be computed in O(n2) time.

Using Lemma 1, we can prove the following in the case of co-bipartite CA graphs.

Lemma 2. If G(V, E) is a co-bipartite CA graph, then we can find a partition
A ∪ B of V where A and B induce cliques, having a numbering scheme of the
vertices of A and B with A = {1, 2, · · ·, n1} and B = {1′, 2′, · · ·, n′

2} such that
it satisfies Bi-Consecutive Adjacency Property. Moreover, the numbering scheme
can be found in O(n2) time.

The following lemma is applicable in the case of co-bipartite graphs:



18 A. Adiga, J. Babu, and L. Sunil Chandran

Lemma 3. Let G be a co-bipartite graph with a partitioning of vertex set into
cliques A and B with |A| = n1 and |B| = n2. Suppose there exist a numbering
scheme of vertices of G which satisfies the Bi-Consecutive Adjacency Property.
Then G is a CA graph.

This can be proved by constructing a CA model for G.

3 Computing the Boxicity of Co-bipartite CA Graphs in
Polynomial Time

Using some theorems in the literature, in this section we infer that computing
boxicity of co-bipartite CA graphs can be done in polynomial time. A bipartite
graph is chordal bipartite if it does not contain any induced cycle of length ≥ 6.

Theorem 1 (Feder, Hell and Huang 1999 [7]). A graph G is a co-bipartite
CA graph if and only if its complement is chordal bipartite and contains no
edge-asteroids.

A bipartite graph is called a chain graph if it does not contain any induced 2K2.
The minimum chain cover number of G, denoted by ch(G), is the minimum
number of chain subgraphs of G such that the union of their edge sets is E(G).

Recall Definition 1 of H∗ from Section 1.

Theorem 2 (Abueida, Busch and Sritharan 2010 [1]). If H is a bipartite
graph with no induced cycles on exactly 6 vertices, then

1. ch(H) = χ(H∗).
2. Every maximal independent set of H∗ corresponds to the edge-set of a chain

subgraph of H. Moreover, the family of maximal independent sets obtained
by extending the the color classes of the optimum coloring of H∗ corresponds
to a minimum chain cover of H.

3. In the more restricted case where H is chordal bipartite, H∗ is a perfect
graph and therefore, ch(H) and a chain cover of H of minimum cardinality
can be computed in polynomial time, in view of 1 and 2 above.

Theorem 3 (Yannakakis 1982 [24]). Let G be the complement of a bipartite
graph H. Then, box(G) = ch(H). Further, if H1, H2, · · ·, Hk are chain subgraphs
whose union is H, their respective complements G1, G2, · · ·, Gk are interval
supergraphs of G whose intersection is G.

By Theorem 1, if G = H is a co-bipartite CA graph, then H is chordal bipartite.
Hence by Theorem 2, a chain cover of H of minimum cardinality can be computed
in polynomial time and ch(H) = χ(H∗). Combining with Theorem 3, we get :

Theorem 4. If G is a co-bipartite CA graph, then box(G) = χ(H∗) and the
family of maximal independent sets obtained by extending the color classes of an
optimum coloring of H∗ corresponds to the complements of interval supergraphs
in an optimal box representation of G. Moreover, box(G) and an optimal box
representation of G are computable in polynomial time.



Algorithms for Boxicity 19

4 Reducing the Time Complexity of Computing the
Boxicity of Co-bipartite CA Graphs

Let t be the number edges of H or equivalently, the number of vertices in H∗. By
Theorem 2, when H is a chordal bipartite graph, H∗ is a perfect graph. Using
the standard perfect graph coloring methods, an O(t3) algorithm is given in [1]
to compute χ(H∗). In O(t3) time, they also compute a chain cover of minimum
cardinality. However, O(t3) can be as bad as O(n6) in the worst case, where n is
the number of vertices of G. In [1], for the restricted case when H is an interval
bigraph, they succeeded in reducing the complexity to O(tn), using the zero par-
titioning property of the adjacency matrix of interval bigraphs. Unfortunately,
zero partitioning property being the defining property of interval bigraphs, we
cannot use the method used in [1] in our case because of the following result
by Hell and Huang [11]: A graph H is an interval bigraph if and only if its
complement is a co-bipartite CA graph admitting a normal CA model. Since
there are co-bipartite CA graphs which do not permit a normal CA model, the
complements of CA co-bipartite graphs form a strict super class of interval bi-
graphs. Hence to bring down the complexity of the algorithm from O(t3), we
have to go for a new method. The key ingredient of our method is the following
generalization of the results in [1,25].

Lemma 4. If the complement of graph H is a co-bipartite CA graph, then H∗

is a comparability graph.

Proof. Let H = G(V, E). Let A ∪ B be a partitioning of the vertex set V as
described in Lemma 2, where A and B are cliques. Let A = {1, 2, · · ·, n1} and
B = {1′, 2′, · · ·, n′

2} be the associated numbering scheme.
Consider two adjacent vertices of H∗ corresponding to the edges wx′ and yz′

of H . Since they are adjacent, {w, x′, y, z′} induces a 2K2 in H. Equivalently,
these vertices induce a 4-cycle in G with edges wy, yx′, x′z′ and z′w. We claim
that w < y if and only if x′ < z′. To see this, assume that w < y. Since
yx′ ∈ E(G), by the Bi-Consecutive property of the numbering scheme (Lemma
1), if z′ < x′, yz′ ∈ E(G) or wx′ ∈ E(G), a contradiction. Hence, x′ < z′.

Now, to show that H∗ is a comparability graph, we define a relation ≺ as
ab′ ≺ cd′ if and only if a, c ∈ A, b′, d′ ∈ B with a < c and b′ < d′ and {a, b′, c,
d′} induces a 2K2 in H. In view of the claim proved in the paragraph above, if
ab′ and cd′ are adjacent vertices of H∗, they are comparable with respect to the
relation ≺.

Let ab′ ≺ cd′ and cd′ ≺ ef ′. We have {a, b′, c, d′} inducing a 4-cycle in G
with edges ac, cb′, b′d′ and d′a. Similarly, {c, d′, e, f ′} induces a 4-cycle in G
with edges ce, ed′, d′f ′ and f ′c. We also have a < c < e and b′ < d′ < f ′, by the
definition of the relation ≺. By the Bi-Consecutive property of the numbering
scheme (Lemma 1), cf ′ ∈ E(G) and cd′ /∈ E(G) implies that af ′ ∈ E(G).
Similarly, ed′ ∈ E(G) and cd′ /∈ E(G) implies that eb′ ∈ E(G). Edges ae and
b′f ′ are parts of cliques A and B. Hence, we have an induced 4-cycle in G with
edges ae, eb′, b′f ′ and f ′a. We can conclude that ab′ ≺ ef ′. Thus the relation ≺
is transitive and hence, H∗ is a comparability graph. �



20 A. Adiga, J. Babu, and L. Sunil Chandran

Improved Complexities

Lemma 4 serves as the key ingredient in improving the time complexities of our
algorithms. By the definition of H∗, a proper coloring of the vertices of H∗ is
same as coloring the edges of H such that no two edges get the same color if
their end points induce a 2K2 in H or equivalently a 4 cycle in G. Since the
number of edges in H∗ may be of O(t2), where t = |E(H)|, time for computing
χ(H∗) might go up to O(t2) = O(n4), if we use the standard algorithm for
the vertex coloring of comparability graphs. Let m

AB
= n1n2 − t, the number

of edges between A and B in G. We show that by utilizing the structure of
G along with the underlying comparability relation on the set of non-edges of
G defined in the proof of Lemma 4, computing the boxicity of G can be done
in O(en + n2), where e is min(m

AB
, t). Each color class can be extended to a

maximal independent set and thus get an optimum box representation of G in
O(en + kn2), where k = box(G). The complexities claimed here are obtained
by a suitable implementation of the greedy algorithm for the vertex coloring of
comparability graphs, fine tuned for this special case and its careful amortized
analysis. Due to the structural differences with interval bigraphs as explained
before, this turned out to be much different from the method used in [1]. For a
detailed description of the algorithm and its analysis, refer to the full version of
our paper [2].

5 Constant Factor Approximation for the Boxicity of CA
Graphs

First we give a lemma which is an adaptation of a similar one given in [3].

Lemma 5. Let G(V, E) be a graph with a partition (A, B) of its vertex set V
with A = {1, 2, · · ·, n1} and B = {1′, 2′, · · ·, n′

2}. Let G1(V, E1) be its supergraph
such that E1 = E ∪ {(a′, b′) : a′, b′ ∈ B}. Then, box(G1) ≤ 2 · box(G).

Definition 3. Let G(V, E) be an interval graph and I be an interval represen-
tation of G. Let l = min

u∈V
lu(I) and r = max

u∈V
ru(I). Consider a graph G′(V ′, E′)

such that V ′ ⊇ V and E′ = E ∪ {(a, b): a ∈ V ′ \ V and b ∈ V ′}. An interval
representation I ′ of G′ obtained by assigning interval [l, r], ∀u ∈ V ′ \ V and
intervals [lu(I), ru(I)], ∀u ∈ V is called an extension of I on V ′.

Approximation Algorithm

A method for computing a box representation of a given CA graph G within a
(2 + 1

k
)-factor where k ≥ 1 is the boxicity of G is given in Algorithm 1. We use

the O(en) algorithm for computing boxicity of co-bipartite CA graphs given in
Section 3 as a subroutine here. Let n = |V (G)| and m = |E(G)|. We can show
that a near optimal box representation of G can be obtained in O(mn+ kn2). If
we just want to compute the approximate boxicity of G, it is enough to output
box(G′) + 1, as proved below. This can be done in O(mn + n2).

Proof of correctness: Let us analyze the non-trivial case when G is not an
interval graph. Otherwise, the correctness is obvious.



Algorithms for Boxicity 21

Algorithm 1. Find a near optimal box representation of given CA graph
Input: A circular arc graph G(V, E)
Output: A box representation of G of dimension at most 2k + 1 where

k = box(G)
1 if G is an interval graph then Output an interval representation IG of G, Exit
2 Compute a CA model M(C,A) of G
3 Choose any point p on the circle C
4 Let A be the clique corresponding to p; B = V \A
5 Construct G′(V, E′) with E′ = E ∪ {(u′, v′) : u′, v′ ∈ B}

/* G′ is a co-bipartite CA graph by Lemma 6 */

6 Find an optimum box representation B′ = {I ′1, I ′2, · · ·, I ′b} of G′

/* Using the method described in Section 3 */

7 Construct an interval representation I for the subgraph induced on B
/* Induced subgraph on B is clearly an interval graph */

8 Construct I ′, the extension of I on V
9 Output B = {I ′1, I ′2, · · ·, I ′b, I ′} as the box representation of G

Lemma 6. G′ constructed in Line 5 of Algorithm 1 is a co-bipartite CA graph.

Proof. It can be easily seen that G′ is a co-bipartite graph on the same vertex
set as that of G with cliques A and B and V = A ∪ B. Consider a numbering
scheme NS(M, p) of G as described in Section 2.2 such that A = {1, 2, · · · , n1}
and B = {1′, 2′, · · · , n′

2}, based on the CA model M(C,A) and the point p as
chosen in Algorithm 1. Notice that by construction of G′, for any pair of vertices
i ∈ A and j′ ∈ B, (u, v′) ∈ E if and only if (u, v′) ∈ E′. Recall that the
numbering scheme NS(M, p) satisfies Bi-Consecutive Adjacency Property for
G by Lemma 1. Clearly, the same will apply to G′ also. Hence by Lemma 3, we
can infer that G′ is a co-bipartite CA graph. �

Lemma 7. The box representation B = {I ′
1, I ′2, · · ·, I ′

b, I ′}, obtained in Line 9
of Algorithm 1 is a valid box representation of G with |B| ≤ 2 · box(G) + 1.

Proof. It is easy to see that I ′ constructed in Line 8 of Algorithm 1 is a super-
graph of G, since I is an interval representation of the induced subgraph of G on
B and I ′ is an extension of I on V . Since B′ is a box representation of G′, each
I ′
i ∈ B′, for 1 ≤ i ≤ b is a supergraph of G′ and in turn of G too. A is a clique

in G by definition. Consider any (u, v′) /∈ E with u ∈ A and v′ ∈ B. Clearly,
(u, v′) /∈ E′ as well and since B′ is a box representation of G′, ∃i such that (u,
v) /∈ E(I ′

i) for some 1 ≤ i ≤ b. For any (u′, v′) /∈ E with u′, v′ ∈ B, we have (u′,
v′) /∈ E(I ′). Thus, G = I ′ ∩

⋂

1≤i≤b
I ′
i.

Thus, B = {I ′
1, I ′

2, · · ·, I ′
b′ , I ′} is a valid box representation for G of size

box(G′) + 1. By Lemma 5, box(G′) ≤ 2 · box(G), implying that B is of size at
most 2 · box(G) + 1. �

Lemma 7 implies that B is a (2+ 1
k )-factor approximate box representation where

k ≥ 1 is the boxicity of G.



22 A. Adiga, J. Babu, and L. Sunil Chandran

6 Additive 2-Factor Approximation for the Boxicity of
Normal CA Graphs

We assume that a normal CA model M(C, A) of G is given. An additive two
factor approximation algorithm for computing a box representation of normal
CA graphs is given in Algorithm 2. We can show that in O(mn +kn2) time, the
algorithm outputs a near optimal box representation of G where n = |V (G)|,
m = |E(G)| and k = box(G). If we just want to compute the approximate
boxicity of G, it is enough to output box(H) + 2, as proved below. This can be
done in O(mn + n2).

Algorithm 2. Find a additive 2-optimal box representation of given nor-
mal CA graph

Input: A normal CA graph G(V, E), with an NCA model M(C, A) of G
Output: A box representation of G of dimension at most k + 2 where

k = box(G)
1 if G is an interval graph then Output an interval representation IG of G, Exit
2 Choose any point p on the circle C; Let A be the clique corresponding to p
3 Let p1 be the farthest clockwise end point of any arc passing through p
4 Let p2 be the farthest anticlockwise end point of any arc passing through p
5 Let q be a point on the arc [p1, p2] with q �= p1, p2
6 Let B be the clique corresponding to q
7 Let H be the induced subgraph on A ∪ B

/* Clearly, H is a co-bipartite CA graph */

8 Find an optimum box representation B′ = {I1, I2, · · ·, Ih} of H
/* Using the method described in Section 3 */

9 for i = 1 to h do Construct I ′i, the extension of Ii on V
10 Construct an interval representation IA for the induced subgraph on V \A

/* Induced subgraph on V \ A is an interval graph */

11 Construct I ′A, the extension of IA on V
12 Construct an interval representation IB for the induced subgraph on V \ B

/* Induced subgraph on V \B is an interval graph */

13 Construct I ′B, the extension of IB on V
14 Output B = {I ′1, I ′2, · · ·, I ′h, I ′A, I ′B} as the box representation of G

Proof of correctness: Since G is a normal CA graph, the set of arcs passing
through p does not contain any circle cover pair of arcs. Therefore, [p, p1] ∪
[p2, p] does not cover the entire circle C. So, any point in the arc (p1, p2), in
particular the point q defined in Line 5 of Algorithm 2, is not contained in any
arc passing through p. It follows that A ∩ B = ∅. Since A and B are cliques,
H, the induced subgraph on A ∪B is a co-bipartite CA subgraph of G. We can
compute an optimum box representation B′ of H in polynomial time using the
method described in Section 3.

IA and IB are interval graphs because they are obtained by removing vertices
corresponding to arcs in A passing through points p and q respectively. Since
IA is a supergraph of G on V \ A and I ′A is the extension of IA on V , we can
conclude that I ′A is a super graph of G. Similarly, I ′B is also a super graph of G.



Algorithms for Boxicity 23

Since B′ is a box representation of H , each Ii ∈ B′ is a supergraph of induced
subgraph H . Since I ′i is the extension of Ii on V , I ′i is a super graph of G.

Consider (u, v) /∈ E. Case (i) If u, v ∈ V \ A, by construction of I ′A,
(u, v) /∈ E(I ′A). Case (ii) If u, v ∈ V \B, by construction of I′B , (u, v) /∈ E(I ′B).
Remember that A and B are cliques. If both (i) and (ii) are false, then one of
{u, v} is in A and the other is in B. Since B′ is a box representation of H ,
(u, v) /∈ E(Ii) for some 1 ≤ i ≤ h = |B′|. By construction of I ′i , (u, v) /∈ E(I ′i)
too. Hence, G = I ′

A ∩ I ′B ∩
⋂

1≤i≤h
I ′i. Thus we get B = {I ′A, I ′B, I ′1, I ′2, · · ·, I ′h} is

a valid box representation of G of size box(H) + 2 which is at most box(G) + 2,
since H is an induced subgraph of G.

In Algorithm 2, we assumed that an NCA model of the graph is given. This
was required because recognizing NCA graphs in polynomial time is still an open
problem. We can observe that though the algorithm of this section is given for
normal CA graphs, it can be used for a wider class as stated below.

Theorem 5. If we are given a circular arc model M(C, A) of G with a point
p′ on the circle C such that the set of arcs passing through p′ does not contain a
circle cover pair, then we can approximate the boxicity of G within an additive
2-factor in polynomial time using Algorithm 2.

Proof. In Line 2 of Algorithm 2, select p′ (guaranteed by the assumption of the
theorem) as the point p. Such a point can be found in O(n2) time, if it exists.
The rest of the algorithm is similar. �

Though such a representation need not exist in general, it does exist for many
important subclasses of of CA graphs and can be constructed in polynomial
time; for example, for proper CA graphs or normal helly CA graphs. In fact,
for these classes, construction of a normal CA (NCA) model itself from their
adjacency matrices can be done in polynomial time.

Corollary 1. Boxicity of any proper circular arc graph can be approximated
within an additive 2-factor in polynomial time.

References

1. Abueida, A.A., Busch, A.H., Sritharan, R.: A min-max property of chordal bipar-
tite graphs with applications. Graphs and Combinatorics 26(3), 301–313 (2010)

2. Adiga, A., Babu, J., Chandran, L.S.: A constant factor approximation algorithm
for boxicity of circular arc graphs. In: CoRR, abs/1102.1544 (February 2011),
http://arxiv.org/abs/1102.1544

3. Adiga, A., Bhowmick, D., Sunil Chandran, L.: The hardness of approximating the
boxicity, cubicity and threshold dimension of a graph. Discrete Appl. Math. 158,
1719–1726 (2010)

4. Cameron, K., Sritharan, R., Tang, Y.: Finding a maximum induced matching in
weakly chordal graphs. Discrete Math. 266, 133–142 (2003)

5. Chandran, L.S., Das, A., Shah, C.D.: Cubicity, boxicity, and vertex cover. Discrete
Mathematics 309(8), 2488–2496 (2009)



24 A. Adiga, J. Babu, and L. Sunil Chandran

6. Cozzens, M.B.: Higher and multi-dimensional analogues of interval graphs. Ph.D.
thesis, Department of Mathematics. Rutgers University, New Brunswick, NJ (1981)

7. Feder, T., Hell, P., Huang, J.: List homomorphisms and circular arc graphs. Com-
binatorica 19, 487–505 (1999)

8. Gallai, T.: On directed paths and circuits. In: Erdös, P., Katona, G. (eds.) Theory
of Graphs, pp. 115–118. Academic Press, New York (1968)

9. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of
coloring circular arcs and chords. SIAM J. Alg. Disc. Meth. 1(2), 216–227 (1980)

10. Golumbic, M.C., Lewenstein, M.: New results on induced matchings. Discrete Appl.
Math. 101, 157–165 (2000)

11. Hell, P., Huang, J.: Interval bigraphs and circular arc graphs. J. Graph Theory 46,
313–327 (2004)

12. Kratochv́ıl, J.: A special planar satisfiability problem and a consequence of its
NP-completeness. Discrete Appl. Math. 52(3), 233–252 (1994)

13. Lin, M.C., Szwarcfiter, J.L.: Characterizations and recognition of circular-arc
graphs and subclasses: A survey. Discrete Mathematics 309(18), 5618–5635 (2009)

14. Mazoit, F.: The branch-width of circular-arc graphs. In: Correa, J.R., Hevia, A.,
Kiwi, M. (eds.) LATIN 2006. LNCS, vol. 3887, pp. 727–736. Springer, Heidelberg
(2006)

15. McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorith-
mica 37(2), 93–147 (2003)

16. Roberts, F.S.: On the boxicity and cubicity of a graph. In: Recent Progresses in
Combinatorics, pp. 301–310. Academic Press, New York (1969)

17. Rosgen, B., Stewart, L.: Complexity results on graphs with few cliques. Discrete
Mathematics and Theoretical Computer Science 9, 127–136 (2007)

18. Scheinerman, E.R.: Intersection classes and multiple intersection parameters of
graphs. Ph.D. thesis. Princeton University (1984)

19. Suchan, K., Todinca, I.: Pathwidth of circular-arc graphs. In: Brandstädt, A.,
Kratsch, D., Müller, H. (eds.) WG 2007. LNCS, vol. 4769, pp. 258–269. Springer,
Heidelberg (2007)

20. Sundaram, R., Singh, K.S., Rangan, C.P.: Treewidth of circular-arc graphs. SIAM
J. Discret. Math. 7, 647–655 (1994)

21. Thomassen, C.: Interval representations of planar graphs. J. Comb. Theory Ser.
B 40, 9–20 (1986)

22. Tucker, A.C.: Matrix characterizations of circular-arc graphs. Pacific J. of Mathe-
matics 19, 535–545 (1971)

23. Tucker, A.C.: Structure theorems for some circular-arc graphs. Discrete Mathe-
matics 7(1,2), 167–195 (1974)

24. Yannakakis, M.: The complexity of the partial order dimension problem. SIAM J.
Alg. Disc. Meth. 3(3), 351–358 (1982)

25. Yu, C.W., Chen, G.H., Ma, T.H.: On the complexity of the -chain subgraph cover
problem. Theor. Comput. Sci. 205(1-2), 85–98 (1998)



On the Area Requirements of
Euclidean Minimum Spanning Trees�

Patrizio Angelini1, Till Bruckdorfer2, Marco Chiesa1,
Fabrizio Frati1,3, Michael Kaufmann2, and Claudio Squarcella1

1 Dipartimento di Informatica e Automazione, Università Roma Tre
{angelini,chiesa,frati,squarcel}@dia.uniroma3.it

2 Wilhelm-Schickard-Institut für Informatik - Universität Tübingen, Germany
{bruckdor,mk}@informatik.uni-tuebingen.de

3 School of Basic Sciences - École Polytechnique Fédérale de Lausanne, Switzerland

Abstract. In their seminal paper on Euclidean minimum spanning trees
[Discrete & Computational Geometry, 1992], Monma and Suri proved
that any tree of maximum degree 5 admits a planar embedding as a Eu-
clidean minimum spanning tree. Their algorithm constructs embeddings
with exponential area; however, the authors conjectured that cn× cn area
is sometimes required to embed an n-vertex tree of maximum degree 5 as
a Euclidean minimum spanning tree, for some constant c > 1. In this pa-
per, we prove the first exponential lower bound on the area requirements
for embedding trees as Euclidean minimum spanning trees.

1 Introduction

A Euclidean minimum spanning tree (MST) of a set P of points in the plane is a tree
with a vertex in each point of P and with minimum total edge length. Euclidean mini-
mum spanning trees have several applications in computer science and hence they have
been deeply investigated from a theoretical point of view. To cite a few major results,
optimal Θ(n log n)-time algorithms are known to compute an MST of a set of points
and it is NP-hard to compute an MST with maximum degree bounded by 2, 3, or
4 [7,9,17], while polynomial-time algorithms exist [2,4,11,15] to compute spanning
trees with maximum degree bounded by 2, 3, or 4 and total edge length within a con-
stant factor from the optimal one.

An MST embedding of a tree T is a plane embedding of T such that the MST of the
points where the vertices of T are drawn coincides with T . In this paper we consider the
problem of constructing MST embeddings of trees. Several results are known related to
such a problem. No tree having a vertex of degree at least 7 admits an MST embedding.
Further, deciding whether a tree with degree 6 admits an MST embedding is NP-
hard [6]. However, restricting the attention to trees of degree 5 is not a limitation since:

� Work partially supported by the Italian Ministry of Research, grant RBIP06BZW8, FIRB
project “Advanced tracking system in intermodal freight transportation”, by the Swiss National
Science Foundation 200021-125287/1, by the ESF project 10-EuroGIGA-OP-003 “Graph
Drawings and Representations”, and by the MIUR of Italy, project AlgoDEEP 2008TFBWL4.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 25–36, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



26 P. Angelini et al.

(i) every planar point set has an MST with maximum degree 5 [16], and (ii) every tree
of maximum degree 5 admits an MST embedding in the plane [16].

MST embeddings have also been considered as a subtopic of proximity drawings
(see, e.g., [3,13]), where adjacent vertices have to be placed “close” to each other. From
the various applications, different measures for closeness have been introduced and
evaluated, different graph classes that can be realized under the specific closeness mea-
sure have been studied together with the area/volume that is needed for their realization.
Prominent examples are Delaunay triangulations, Gabriel drawings, nearest-neighbor
drawings, β-drawings, and many more. The MST constraints can be formulated as
closeness conditions with respect to pairs of vertices, either adjacent or non-adjacent.

Monma and Suri’s proof [16] that every tree of maximum degree 5 admits an MST
embedding in the plane is a strong combinatorial result; on the other hand, their al-
gorithm for constructing MST embeddings seems to be useless in practice, since the
constructed embeddings have 2Θ(k2) area for trees of height k (hence, in the worst case
the area requirement of such drawings is 2Θ(n2)). However, Monma and Suri conjec-
tured that there exist trees of maximum degree 5 that require cn × cn area in any MST
embedding, for some constant c > 1. The problem of determining whether or not the
area upper bound for MST embeddings of trees can be improved to polynomial is re-
ported also in [5,6,10,14]. Recently, MST embeddings in polynomial area have been
proven to exist for trees with maximum degree 4 [8,12].

In this paper, we prove that there exist n-vertex trees of maximum degree 5 requiring
2Ω(n) area in any MST embedding. Our lower bound is achieved by considering an
n-vertex tree T ∗, shown in Fig. 1, composed of a degree-5 complete tree Tc with a
constant number of vertices and of a set of degree-5 caterpillars, each one attached to
a distinct leaf of Tc. The argument goes in two steps: For the first step, we walk down
the tree T ∗, starting from the root. The route is chosen so that the angles adjacent to
the edges are narrowing at each step. The key observation here is a lemma relating the
size of two consecutive angles adjacent to an edge. At the leaves of the complete tree
Tc, where the caterpillars start, the angles incident to an end-vertex of the backbone of
at least one of the caterpillars must be very small, that is, between 60

◦
and 61

◦
. Using

this as a starting point, we prove that each angle incident to a vertex of the caterpillar is
either very small, that is, between 60

◦
and 61

◦
, or is very large, that is, between 89.5

◦

and 90.5
◦
. As a consequence, we show that when walking down along the backbone

of the caterpillar, the lengths of the edges decrease exponentially along the caterpillar.
Since the backbone has a linear number of edges, we obtain the claimed area bound.

The paper is organized as follows. In Sect. 2 we give definitions and preliminaries;
in Sect. 3 we give some geometric lemmata; in Sect. 4 we argue about angles and
edge lengths of the MST embeddings of T ∗; in Sect. 5 we prove the area lower bound;
in Sect. 6, we conclude with some remarks and a conjecture. Some proofs have been
omitted for space limitations and can be found in the extended version of this paper [1].

2 Preliminaries

A rooted tree is a tree with one distinguished vertex, called root. The depth of a vertex
in a rooted tree is its distance from the root, that is, the number of edges in the path



On the Area Requirements of Euclidean Minimum Spanning Trees 27

Fig. 1. A tree T ∗ requiring 2Ω(n) area in any MST embedding

from the root to the vertex. The height of a rooted tree is the maximum depth of one of
its vertices. A complete tree is such that every path from the root to a leaf has the same
number of vertices and every vertex has the same degree. A caterpillar is a tree such
that removing the leaves yields a path, called the backbone of the caterpillar.

A minimum spanning tree MST of a planar point set P is a tree spanning P with
minimum total edge length. Given a tree T , an MST embedding of T is a straight-line
drawing of T such that the MST of the points where the vertices of T are drawn is
isomorphic to T . The area of an MST embedding is the area of a rectangle enclosing
such an embedding. The concept of area of an MST embedding only makes sense once
a resolution rule is fixed, i.e., a rule that does not allow vertices to be arbitrarily close
(vertex resolution rule), or edges to be arbitrarily short (edge resolution rule). Without
any of such rules, one could just construct MST embeddings with arbitrarily small area.
In the following we will hence suppose that any two vertices have distance at least one
unit. Then, in order to prove that an n-vertex tree T requires Ω(f(n)) area in any MST
embedding, it suffices to prove that the ratio between the longest and the shortest edge
of any MST embedding is Ω(f(n)), and that both dimensions have at least Ω(1) size.

Consider any MST embedding of a tree T rooted at a vertex r. The clockwise path
Cl(u) of a vertex u �= r of T is the path v0, . . . , vk such that v0 = u, (vi, vi+1) is
the edge following the edge from vi to its parent in the clockwise order of the edges
incident to vi, for i = 0, . . . , k−1, and vk is a leaf. The counterclockwise path Ccl(u)
of a vertex u �= r of T is defined analogously. Denote by d(a, b) the Euclidean distance
between two vertices a and b (or between two points a and b) and by |e| the Euclidean
length of an edge e. Further, k(c, r) denotes the circle centered at a point c with radius r.

Next, we define an n-vertex tree T ∗ that requires Ω(2n) area in any MST embedding.
Let Tc be a complete tree of height six and degree five. Let r be the root of Tc. Augment
Tc by inserting a degree-five caterpillar at each leaf of Tc. That is, for each leaf l of Tc,
insert a caterpillar Cl whose every non-leaf vertex has degree five, such that l is an end-
vertex of the backbone of Cl, the parent of l in Tc is a leaf of Cl, and Cl and Tc do not
share any other vertex. The resulting tree, shown in Fig. 1, is denoted by T ∗.

3 Geometric Lemmata

We give some properties for MST embeddings. The first lemma is easy to prove.



28 P. Angelini et al.

Lemma 1. Consider an MST embedding Γ of a tree T . Then, the following statements
hold: (i) for each pair of vertices u and v of T , d(u, v) ≥ |e|, for each edge e in the
path connecting u and v in T ; (ii) any angle between two adjacent segments in Γ is at
least 60◦; (iii) for any subtree T ′ of T , Γ restricted to the vertices and edges of T ′ is an
MST embedding of T ′; and (iv) Γ is planar.

The next lemma bounds the length of an edge in an MST embedding in terms of the
length of an adjacent edge and of the size of the angle between them.

Lemma 2. Let e1 and e2 be two edges consecutively incident to the same vertex and
let α ≤ 90◦ be the angle they form. Then, 2|e1| cos(α) ≤ |e2| ≤ |e1|

2 cos(α)
.

Consider an edge e = (u, v) in an MST embedding of a tree T . Let e1 = (u, p)
be the edge following e in the counterclockwise order of the edges incident to u and
e′1 = (v, q) be the edge following e in the clockwise order of the edges incident to v. Let
α (β) be the angle defined by a counterclockwise (resp. clockwise) rotation of e around
u (resp. around v) bringing e to coincide with e1 (resp. with e′1). Let φ = |e|

|e1| . The next
lemma, that establishes a strong lower bound on β provided that α is sufficiently small,
is one of our main tools for the remainder of the paper.

Lemma 3. Suppose that α ≤ 80◦. Then, β ≥ 120◦ − α/2.

Proof: First, we determine restrictions on the region where q lies, once the drawings
of e and e1 are fixed. Refer to Fig. 2(a). Suppose, w.l.o.g., that e is horizontal, that
u is at point (0, 0), that v is to the right of u, and that both p and q are above the
horizontal line through u and v. We can suppose that q is to the left of the vertical line
lv through v, since otherwise β ≥ 90◦ ≥ 120◦ − α/2, where the last inequality holds
by Lemma 1(ii), and there is nothing to prove. By Lemma 1(i), d(q, u) ≥ d(u, v) holds.
Then, q is outside k(u, |e|). Still by Lemma 1(i), d(p, q) ≥ d(p, u) and d(p, q) ≥ d(u, v)
hold. Then, q is outside k(p, m), where m = max{|e|, |e1|}. Again by Lemma 1(i),
d(p, q) ≥ d(v, q) holds. Denote by l

|
pv the line orthogonal to pv passing through the

midpoint of pv; then, q is in the half-plane delimited by l
|
pv and not containing p. Denote

by t and n the intersections of l
|
pv with k(p, m) and lv, respectively. Denote by lβ the

line passing through v and creating with uv the angle 120
◦ − α

2
.

Second, we discuss about the intersections of k(p, m) with lv. The distance from
p to lv is less than |e|, because p is to the right of the vertical line through u, given
that α ≤ 80◦. It follows that k(p, m) has exactly two intersections with lv, given that
m ≥ |e|. Moreover both of such intersections lie not below v as the distance between p
and v is at least m, by Lemma 1(i), and hence the distance between p and any point of
lv below v is strictly greater than m, while k(p, m) has radius exactly m. Denote by h
and b the highest and the lowest of such two intersection points, respectively.

Third, we prove that for any α ≤ 80
◦

the region R2, bounded (when existing) by lv
from the right, by k(p, m) from the left and by l

|
pv from above, either does not exist or

falls on the right of the line lβ . We distinguish two cases, based on whether φ ≤ 1, that
is, |e1| ≥ |e|, or not.

In the former case, consider a segment vw parallel to e1 such that |e1| = |vw|. See
Fig. 2(b). Observe that |pw| = |e|. Consider triangle Δ(puv). As |e1| ≥ |e|, we have



On the Area Requirements of Euclidean Minimum Spanning Trees 29

α

eu

e1

v

k(p,m)

p

k(u, |e|)

lv

l|pv

w

t

lβ
z

s

h

n

b

α

eu

e1

v

k(p, |e1|)

p

k(u, |e|)

lv

l|pv

h

w

n

α
u v

k(p, |e|)

pk(u, |e|)

lv

l|pv

w

t

lβ
z

u′ v′

m

m′

t′
l
|
pv′

(a) (b) (c)

Fig. 2. (a) Illustration for the proof of Lemma 3. The lower and upper shaded regions are respec-
tively R1 and R2 where q can lie. (b) When φ ≤ 1, region R2 does not exist. (c) When φ > 1,
region R2 is always avoided.

that p̂vu ≥ v̂pu. Hence, the line l
|
pv orthogonal to pv passing through its midpoint

crosses segment up. Analogously, in triangle Δ(pwv), line l
|
pv crosses segment vw.

Hence, l
|
pv cuts polygon (u, v, w, p) by crossing segments up and vw, which implies

that point n lies inside (u, v, w, p). As segment pw cuts lv below h, we have that |vn| ≤
|vh|, therefore region R2 does not exist.

In the latter case, that is, when φ > 1, we first prove the statement when φ assumes
its maximum possible value, that is, by Lemma 2, φ = 1

2 cosα
; then, we extend the same

statement to all the other values of φ greater than 1. Observe that, if any point of R2 is
to the left of lβ , then t is to the left of lβ . Hence, in order to prove that R2 is entirely to
the right of lβ , it suffices to prove that ûvt ≥ 120◦ − α/2.

Suppose that φ = 1
2 cosα . Then, by Lemma 2, triangle�(uvp) is isosceles, with the

two equal-length sides being uv and pv. Hence, triangle�(pvt) is equilateral, as pt is

a radius of k(p, |e|) and t is a point of l
|
pv. Therefore, ûvp = 180

◦ − 2α and p̂vt = 60
◦
.

Since ûvt = ûvp + p̂vt, we have that ûvt = 180
◦ − 2α + 60

◦
= 240

◦ − 2α. Since
240

◦ − 2α ≥ 120
◦ − α

2
holds for any α ≤ 80

◦
, region R2 is entirely to the right of lβ ,

provided that φ = 1
2 cosα

.
Now we extend the proof to the general case, in which 1 < φ < 1

2 cosα . See Fig. 2(c).
Let w be the right-most point of K(p, |e|). Note that points p,w,v,and u form a parallel-

ogram. Note also that line l
|
pv crosses segment pw, since |e| > |e1|; moreover the slope

of l
|
pv is positive, which guarantees that 0

◦ ≤ t̂pw ≤ 90
◦
.

Let z be the intersection point between lβ and k(p, |e|). Observe that, since t lies in

the first quadrant of k(p, |e|), since line lβ has a negative slope, and since line l
|
pv has

a positive slope, we have that t is to the right of lβ , that is, ûvt ≥ 120
◦ − α

2
, if and

only if ẑpw ≥ t̂pw. Note that for the already studied case φ = 1
2 cosα , indeed we have

ẑpw ≥ t̂pw. Hence, it suffices to show that, for any α, given two values φ and φ′ such
that φ′ < φ (or equivalently |pu′| > |pu|), we have t̂pw > t̂′p′w′.

Suppose, w.l.o.g., that |u′v′| = |uv|, that point p and p′ coincide, and that segments
pu′ and pu lie on the same line. Note that m and m′, respectively midpoints of segments
pv and p′v′ lie on a line which is parallel to up by construction. Moreover, m′ lies below



30 P. Angelini et al.

m and the slope of l
|
pv′ is smaller than the one of l

|
pv. This implies that t′ lies to the right

of t and therefore t̂pw > t̂′p′w′. Thus, R2 lies entirely to the right of lβ .
Finally, we prove the claimed lower bound for β by defining the remaining region

R1 in which q can lie, and showing that it always falls on the right of lβ . Region R1 is

bounded by lv from the right, by k(u, |e|) from the left, and either by k(p, m) or by l
|
pv

from above (depending on whether n is higher or lower than b). Hence, such a region
is a subset of the region bounded by lv from the right, by k(u, |e|) from the left, and by
k(p, m) from above. Then, denoting by s the intersection point between k(p, m) and
k(u, |e|), we have β ≥ ûvs. Then, it suffices to show that ûvs ≥ 120◦−α/2. Denote by
γ the angle v̂us. Then, we have s ≡ (|e| cos γ, |e| sinγ) and ûvs = 180◦−γ

2 , where the
last equality uses the fact that |us| = |uv|. Observe also that p ≡ (|e1| cosα, |e1| sinα).
We further distinguish two cases, namely the one in which |e| ≥ |e1| (Case 1) and the
one in which |e1| ≥ |e| (Case 2).

Suppose that we are in Case 1. Then, there are two isosceles triangles, Δ(suv) and
Δ(sup). Consider the triangle Δ(sup): its two equal-length sides, us and ps, have
length |e|which is larger than the third side, which has length |e1|. Thus we have ŝup ≥
60

◦
. Since ŝup = α − γ we have γ ≤ α − 60

◦
. At the same time ûvs, ûsv = ûvs,

and γ are the angles in Δ(suv) and therefore sum up to 180
◦
. This shows that ûvs ≥

120◦ − α/2.
Case 2 is analogous to Case 1. The side lengths on the triangle Δ(sup) change: it

remains an isosceles triangle, but now the two equal sized segments are pu and ps, both
with length |e1|. The third side is shorter (|e|) and hence the angle ŝup is again larger
than 60

◦
. So we can argue as in Case 1. Hence, Lemma 3 holds. �

4 Angles and Edge Lengths in MST Embeddings

In this section we argue about the angles and the edge lengths in each MST embedding
of T ∗. We start by providing a lemma about the complete tree Tc .

Lemma 4. A vertex u of Tc with depth five exists such that there are two angles α0 and
α′

0 consecutively incident to u and not adjacent to the edge from u to its parent with
α0 + α′

0 ≤ 121◦.

Consider any MST embedding of T ∗; by Lemma 4, there exists a caterpillar C∗ such
that one of the end-vertices u0 of the backbone of C∗ is incident to an edge of Tc that is
adjacent to two angles α0 and α′

0 summing up to at most 121
◦
. Denote by u0, u1, . . . , uk

the vertices of the backbone of C∗ and by ei the backbone edge (ui, ui+1), for i =
0, . . . , k−1. We call outgoing angles αi and α′

i the angles adjacent to ei and incident
to ui; we call incoming angles βi+1 and β′

i+1 the angles adjacent to ei and incident to
ui+1. An edge e incident to ui and different from ei−1 is in position j ∈ {1, 2, 3, 4}
if e is the j-th edge in the clockwise order of the edges incident to ui starting at ei−1.
Note that, if ei is in position 1 (resp. 4), the incoming angle βi and the outgoing angle
αi (resp. the incoming angle β′

i and the outgoing angle α′
i) coincide. See Fig. 3. We

prove that the outgoing and the incoming angles incident to a vertex of the backbone
of C∗ are either small angles, that is, between 60

◦
and 61

◦
, or large angles, that is



On the Area Requirements of Euclidean Minimum Spanning Trees 31

u0
α0

α′
0 β ′

1

β1
α′
1

α1

u3

u2u1
β′
2

β2

β3

β ′
3=α′

3α2

α′
2

α3

β′
4

β4 α4

u4

e0 e1

e2
e3

α′
4

β5
β′
5

α5

α′
5

u5

e4

Fig. 3. An embedding of C∗

between 89.5
◦

and 90.5
◦
. More precisely, the incoming angles are always large, while

the outgoing angles are either both small or one large and one small. Indeed, observe
that the outgoing angles of u0 are both small by Lemma 4.

Suppose that a backbone edge ei is in position 2 or 3 and that the incoming angles
of ui are at least 89.5

◦
. By Lemma 1(ii), each of the outgoing angles of ui is at most

61
◦
. Then, by Lemma 3, the incoming angles of ui+1 are at least 89.5

◦
. Hence, if ei is

in position 2 or 3 and the incoming angles of ui are at least 89.5
◦
, the incoming angles

of ui+1 are also at least 89.5
◦
.

If ei is in position 1 or 4, then one outgoing angle of ui, say αi, coincides with one
incoming angle of ui, say βi. Hence, αi=βi is large and no lower bound for βi+1 can
obtained by Lemma 3. However, we can prove that, even if αi is large, angle βi+1 is
large, provided that the following condition is satisfied: The clockwise path Cl(ui) of
ui lies in a bounded region Ri that is a subset of a wedge Wi with angle 1

◦
centered at

ui. We will later prove (in Lemma 10) that, if such a condition is satisfied by a node ui
incident to a large outgoing angle αi, then βi+1 is large and Cl(ui+1) lies in a bounded
region Ri+1 that is a subset of a wedge Wi+1 with angle 1

◦
centered at ui+1. However,

before that, we prove that such a condition is satisfied by a node ui if αi−1 is small.
Suppose, w.l.o.g., that ei−1 is horizontal, with ui to the right of ui−1, and that ei is in

position 1. Denote by e = (ui−1, v) (by e∗ = (ui+1, w)) the edge following ei−1 (resp.
ei) in the counterclockwise (resp. clockwise) order of the edges incident to ui−1 (resp
to ui+1). Denote by l(αi) (by l(αi)) the half-line with slope 90.5

◦
(resp. with slope

89.5
◦
) starting at ui. Denote by Wi the closed wedge with angle 1

◦
delimited by l(αi)

and l(αi). See Fig. 4.
We will bound the region in which Cl(ui) lies from the right, from the left, and from

above. Let m=max{|e|, |ei−1|}. Concerning the bound from the left, we can prove that
the intersection point s of the circles k(v, m) and k(ui−1, |ei−1|) is not to the left of
l(αi), as stated in the following.

Lemma 5. Suppose that αi−1 ≤ 61
◦
. Then, s is not to the left of l(αi).

We continue with the bound from the right.

Lemma 6. Suppose that β′
i ≥ 89.5

◦
. Then vertex ui+1 is not to the right of l(αi).

To derive the bound from above, we prove that k(v, m) intersects l(αi) twice and we
argue about the distance between ui and the highest intersection point hαi

of k(v, m)
with l(αi).

Lemma 7. Suppose that αi−1 ≤ 61
◦
. Then, k(v, m) intersects l(αi) twice.



32 P. Angelini et al.

ei−1

e

k(v,m) v

k(ui−1, |ei−1|)

s

ui−1 ui

Wi

l(αi) l(αi)

ui+1

αi=βi

ei

Fi

αi−1

Si
w

α′
i−1 β′

i

α′
i

β′
i+1βi+1

hαi

Fig. 4. The setting for Lemmata 5–9. The dark-shaded region is Ri. To improve the readability,
angles and edge lengths in the illustration do not correspond to actual angles and edge lengths.

Lemma 8. The distance between ui and hαi is at least 1.604|ei−1|.

We are now ready to state the following:

Lemma 9. Suppose that αi−1 ≤ 61
◦
, that β′

i, β
′
i+1 ≥ 89.5

◦
, and that |ei| ≤ |ei−1|

10
.

Then, Cl(ui) is inside a bounded region Ri that is a subset of Wi.

Proof: Let Ri be the bounded region delimited by l(αi) from the left, by l(αi) from the
right, and by k(v, m) from above. We prove that Cl(ui) is inside Ri.

First, we prove that ui+1 is in Ri. By the assumption that αi−1 ≤ 61
◦

and by
Lemma 3, ui+1 is not to the left of l(αi). By the assumption that β′

i ≥ 89.5
◦

and
by Lemma 6, ui+1 is not to the right of l(αi). Hence, ui+1 is in Wi. By the as-
sumption that αi−1 ≤ 61

◦
and by Lemma 7, k(v, m) intersects l(αi). We now show

that v is to the left of l(αi). Namely, v ≡ (|e| cosαi−1, |e| sinαi−1). Further, if y =
|e| sinαi−1, then the x-coordinate of l(αi) is x = |ei−1| − (|e| sinαi−1)/ tan 89.5

◦
.

Since |ei−1| ≥ 2|e| cosαi−1 (by Lemma 2) and 60
◦ ≤ αi−1 ≤ 61

◦
(by assump-

tion and by Lemma 1(ii)), we have |ei−1| − |e| sinαi−1/ tan 89.5
◦ ≥ 2 cos 61

◦ |e| −
|e| sin 61

◦
/ tan 89.5

◦ ≥ 0.96|e| > |e| cos 60
◦ ≥ |e| cosαi−1. Since v is to the left of

l(αi) and since k(v, m) intersects l(αi), there exists a bounded region Fi of Wi, de-
limited by k(v, m) from above and from below, by l(αi) from the left, and by l(αi)
from the right, in which ui+1 can not lie, as otherwise Lemma 1(i) would be vio-
lated. By Lemma 8, the distance between ui and every point above Fi is at least
1.604|ei−1| cos 0.5

◦
> 1.4|ei−1|. Hence, by the assumption that |ei| ≤ |ei−1|/10, ui+1

is not above Fi. It follows that ui+1 is in Ri.
Next, we prove that w is in Ri. Observe that βi+1 ≤ 90.5

◦
, by the assumption

that β′
i+1 ≥ 89.5

◦
and since the three angles incident to ui+1 and different from βi+1

and β′
i+1 sum up to at least 180

◦
(by Lemma 1(ii)). Hence, e∗ can not cross l(αi).

Since βi, βi+1 ≤ 90.5
◦
, the angle defined by a clockwise rotation bringing a horizon-

tal line to coincide with e∗ is at most 1
◦
. Since the x-coordinate of ui+1 is at most

|ei−1| + |ei−1| sin 0.5
10 , the y-coordinate of the line through e∗ if x = |e| cosαi−1 is at



On the Area Requirements of Euclidean Minimum Spanning Trees 33

ei
ui ui+1

l(αi)

l(αi)

αi

k(ui, |ei|)

α′
i β′

i+1

βi+1

l(βi+1)
l(βi+1)

ei

e

k(p,m) p

k(ui, |ei|)

s

ui

ui+1

βi+1αi

α′
i β′

i+1

l(ui+1)

b

h

l|pui+1

ltan 89.5◦

t

(a) (b)

Fig. 5. (a) Illustration for Lemma 10. The dark-shaded region isRi+1. (b) Illustration for Lemma
11. The dark-shaded region is R1. To improve the readability, angles and edge lengths in the
illustrations do not correspond to actual angles and edge lengths.

most |ei−1|
10

+tan1
◦
(|ei−1|+ |ei−1| sin 0.5

10
−|e| cosαi−1) ≤ |e|

20 cos 61
◦ +tan1

◦
( |e|
2 cos 61

◦ +
|e| sin 0.5

20 cos 61
◦ − |e| cos 61

◦
) < 0.112|e| < |e| sinαi−1, since αi−1 ≤ 61

◦
, by assumption,

and 2|ei−1| cosαi−1 ≤ |e|, by Lemma 2. Then, the line through e∗ crosses the verti-
cal line through v below v. Since the y-coordinate of every point above Fi is at least
1.4|ei−1|, by Lemma 8, e∗ can not cross k(v, m). Further, the region Si bounded by e
from the left, by ei−1 from below, by l(αi) from the right, and by the horizontal line
through v from above entirely belongs to k(v, m)∪k(ui−1, |ei−1|), by Lemma 5; since
the y-coordinate of w is at most 0.112|e| < |e| sinαi−1, if e∗ crosses l(αi), then ei-
ther w is in Si, thus violating Lemma 1(i), or e∗ crosses an edge of T ∗, thus violating
Lemma 1(iv). Hence, w is in Ri.

Finally, consider the rest of Cl(ui). The angle defined by a clockwise rotation bring-
ing an edge g1 of Cl(ui) to overlap with the next edge g2 of Cl(ui) is at most 120

◦
,

since the four other angles incident to the vertex shared by g1 and g2 sum up to at least
240

◦
(by Lemma 1(ii)). Hence, no edge gx of Cl(ui) crosses l(αi) or k(v, m), as oth-

erwise gx crosses an edge of T ∗, thus violating Lemma 1(iv). Moreover, no edge gx of
Cl(ui) crosses l(αi), as otherwise either one end-vertex of gx is in Si, thus violating
Lemma 1(i), or gx crosses an edge of T ∗, thus violating Lemma 1(iv). �

Lemma 9 assumes that |ei| ≤ |ei−1|
10

. The reason why such a ratio can be assumed will
be made clear at the end of the section.

We now prove that the condition that the clockwise path of each vertex is inside a
bounded region propagates along the vertices of the backbone. Refer to Fig. 5(a).

Lemma 10. Suppose that αi ≥ 89.5
◦
, that β′

i+1 ≥ 89.5
◦
, and that Cl(ui) is in a

bounded region Ri that is a subset of a wedge Wi centered at ui with angle 1
◦
. Then,

βi+1 ≥ 89.5
◦
. Moreover, Cl(ui+1) is in a bounded region Ri+1 that is a subset of a

wedge Wi+1 centered at ui+1 with angle 1
◦
.

Proof: Since Cl(ui) is in Ri, it follows that ui+1 is in Ri. Then, w is not inside
k(ui, |ei|), as otherwise Lemma 1(i) would be violated. Hence, the minimum value
of ̂uiui+1w = βi+1 is achieved if w is on k(ui, |ei|), inside Ri, and hence inside Wi.



34 P. Angelini et al.

If w is on k(ui, |ei|), then triangle Δ(uiui+1w) is isosceles. Since ̂ui+1uiw ≤ 1
◦
, then

βi+1 ≥ 89.5, thus proving the first part of the lemma.
Next, let l(βi+1) (l(βi+1)) be the half-line starting at ui+1 such that a 89.5

◦
(resp.

90.5
◦
) clockwise rotation around ui+1 brings ei to overlap with l(βi+1) (resp. with

l(βi+1)). Define Ri+1 as the intersection of Ri and the wedge delimited by l(βi+1)
and l(βi+1). Then Ri+1 is bounded as Ri is; further, Ri+1 is a subset of a wedge
Wi+1 centered at ui+1 with angle 1

◦
. We prove that Cl(ui+1) lies inside Ri+1. Since

β′
i+1≥89.5

◦
and the three angles incident to ui+1 and different from βi+1 and β′

i+1 sum
up to at least 180

◦
, it holds βi+1≤90.5

◦
. Since Cl(ui) is in Ri and the angle defined

by a clockwise rotation bringing an edge g1 of Cl(ui) to overlap with the next edge g2

of Cl(ui) is at most 120
◦
, as the four other angles incident to the vertex shared by g1

and g2 sum up to at least 240
◦

(by Lemma 1(ii)), then every vertex of Cl(ui+1) is not
to the right of l(βi+1), as otherwise an edge of such a path crosses ei or (ui+1, w), thus
contradicting Lemma 1(iv). The region delimited by ei from below, by l(βi+1) from
the right, and by l(αi) from above is a subset of k(ui, |ei|) since the line through ui+1

and through the intersection point of k(ui, |ei|) and l(αi) forms with ei an angle which
is at least 89.5

◦
. Hence, if an edge of Cl(ui+1) crosses l(βi+1), then either a vertex of

Cl(ui+1) is in k(ui, |ei|), thus violating Lemma 1(i), or an edge of Cl(ui+1) crosses ei
or (ui+1, w), thus violating Lemma 1(iv). It follows that Cl(ui+1) is in Ri+1. �
We now deal with the edge lengths in any MST embedding of T ∗. Consider a backbone
edge ei=(ui, ui+1) such that the outgoing angle αi is small. Let e∗ = (ui+1, q) (e =
(ui, p)) be the edge following ei in the clockwise (resp. counterclockwise) order of the
edges incident to ui+1 (resp. to ui). Let αi and βi+1 be the angles delimited by ei and
e and by ei and e∗, respectively. See Fig. 5(b). The following lemma asserts that is αi
is small and βi+1 is not too large then e∗ is much shorter than ei.

Lemma 11. If αi ≤ 61
◦

and βi+1 ≤ 90.5
◦
, then |e∗|

|ei| ≤ 0.073.

The next lemma asserts that if βi+1 and β′
i+1 are large, then all the edges incident to

ui+1 have about the same length. Denote by ei, e1
i+1, e2

i+1, e3
i+1, and e4

i+1 the clockwise
order of the edges incident to ui+1, where βi+1 and β′

i+1 are both incident to ei.

Lemma 12. If βi+1, β
′
i+1 ≥ 89.5◦, then max{e2

i+1, e
3
i+1, e

4
i+1} ≤ 1.032|e1

i+1|.

The previous two lemmata, together with Lemma 3, imply the following.

Corollary 1. If αi ≤ 61
◦

and β′
i+1 ≥ 89.5

◦
, then all the edges incident to ui+1 and

different from ei have length at most 0.1|ei|.

5 The Proof of the Area Bound

We prove that any MST embedding of T ∗ is such that, for each backbone vertex ui
of C∗, the outgoing angles of ui are either both small or one small and one large. We
derive a 2Ω(n) lower bound on the area requirements of any MST embedding of T ∗.
Refer to the notation of Sect. 4. Let k be the number of backbone vertices of C∗.



On the Area Requirements of Euclidean Minimum Spanning Trees 35

Lemma 13. For each 0 ≤ i ≤ k − 2, one of the following holds: (Condition 1):
αi, α

′
i ≤ 61

◦
; (Condition 2): αi ≥ 89.5

◦
, α′

i ≤ 61
◦
, and Cl(ui) is in a bounded

region Ri that is a subset of a wedge Wi with angle 1
◦

centered at ui; (Condition 3):
α′
i ≥ 89.5

◦
, αi ≤ 61

◦
, and Ccl(ui) is in a bounded region Ri that is a subset of a

wedge Wi with angle 1
◦

centered at ui.

Proof: The proof is by induction on i. In the base case i = 0 and, by Lemma 4, α0, α
′
0 ≤

61
◦
, thus Condition 1 holds. Next we discuss the inductive case.

Suppose that Condition 1 holds for i. By Lemma 3, we have βi+1, β
′
i+1 ≥ 89.5

◦
.

By Corollary 1, all the edges incident to ui+1 and different from ei have length at most
|ei|/10. By Lemma 1(ii), each of the angles incident to ui+1 and different from βi+1

and β′
i+1 is at most 61

◦
. Hence, if ei+1 is in position 2 or 3, then Condition 1 holds

for i + 1. If ei+1 is in position 1 (that is αi+1 = βi+1), then α′
i+1 ≤ 61

◦
. Moreover,

by Lemma 3, β′
i+2 ≥ 89.5

◦
. Then, all the conditions of Lemma 9 are satisfied, namely

αi ≤ 61
◦
, β′

i+1, β
′
i+2 ≥ 89.5

◦
, and |ei+1| ≤ |ei|/10. Hence, Cl(ui+1) is in a bounded

region Ri+1 that is a subset of Wi+1 and thus Condition 2 holds for i + 1. If ei+1 is in
position 4, then an analogous proof shows that Condition 3 holds for i + 1.

Suppose that Condition 2 holds for i (the case in which Condition 3 holds for i can
be discussed symmetrically). By Lemma 3, β′

i+1 ≥ 89.5
◦
. Hence, all the conditions

of Lemma 10 are satisfied, namely αi ≥ 89.5
◦
, β′

i+1 ≥ 89.5
◦
, and Cl(ui) is in a

bounded region Ri that is a subset of a wedge Wi with angle 1
◦

centered at ui. It
follows that βi+1 ≥ 89.5

◦
and Cl(ui+1) is in a bounded region Ri+1 that is a subset

of a wedge Wi+1 with angle 1
◦

centered at ui+1. By Lemma 1(ii), each angle incident
to ui+1 and different from βi+1 and β′

i+1 is at most 61
◦
. Thus, if ei+1 is in position

2 or 3, then Condition 1 holds for i + 1, and if ei+1 is in position 1, then Condition 2
holds for i+1. Suppose that ei+1 is in position 4. Since each angle incident to ui+1 and
different from βi+1 and β′

i+1 is at most 61
◦
, it holds αi+1 ≤ 61

◦
and then, by Lemma 3,

βi+2 ≥ 89.5
◦
. Since βi+1, β

′
i+1 ≥ 89.5

◦
, by Corollary 1 all the edges incident to

ui+1 and different from ei have length at most |ei|/10. Then, all the conditions of
the symmetric of Lemma 9 are satisfied, namely α′

i ≤ 61
◦
, βi+1, βi+2 ≥ 89.5

◦
, and

|ei+1| ≤ |ei|/10. Hence, Ccl(ui+1) is in a bounded region Ri+1 that is a subset of
Wi+1 and thus Condition 3 holds for i + 1. �

Theorem 1. Any MST embedding of T ∗ has 2Ω(n) area.

Proof: Since the complete tree Tc has constant degree and constant height, then each
caterpillar, and in particular C∗, has k = Ω(n) backbone vertices. By Lemmata 3, 10,
and 13, the incoming angles βi and β′

i are both larger than 89.5
◦
, for each 1 ≤ i ≤ k−1.

By Corollary 1, |ei+1| ≤ |ei|
10

, for each 0 ≤ i ≤ k − 1. Hence |e1|
|ek| ≥ 10k−1 = 2Ω(n).

The theorem follows by observing that, in any MST embedding of the root of Tc and of
its children, both dimensions have size at least sin 30

◦
= 0.5. �

6 Conclusions

In this paper we have shown trees requiring exponential area in any MST embedding,
thus settling a 20-years-old problem proposed by Monma and Suri [16]. Observe that



36 P. Angelini et al.

the area requirements of the MST embeddings constructed by the algorithm presented
by Monma and Suri is 2Ω(n2), while no 2O(n)-area MST embeddings are known to
exist for all n-vertex degree-5 trees. We believe that such a gap can be closed by further
improving our exponential lower bound, as in the following.

Conjecture 1. Every MST embedding of T ∗ has 2Ω(n2) area.

References

1. Angelini, P., Bruckdorfer, T., Chiesa, M., Frati, F., Kaufmann, M., Squarcella, C.: On the area
requirements of Euclidean minimum spanning trees. Technical Report RT-DIA-183-2011,
Dept. Comp. Sci. Autom., Roma Tre University (2011)

2. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. J. ACM 45(5), 753–782 (1998)

3. Bose, P., Lenhart, W., Liotta, G.: Characterizing proximity trees. Algorithmica 16(1), 83–110
(1996)

4. Chan, T.M.: Euclidean bounded-degree spanning tree ratios. Discr. Comp. Geom. 32(2),
177–194 (2004)

5. Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Drawing a tree as a minimum spanning
tree approximation. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS,
vol. 6507, pp. 61–72. Springer, Heidelberg (2010)

6. Eades, P., Whitesides, S.: The realization problem for Euclidean minimum spanning trees is
NP-hard. Algorithmica 16(1), 60–82 (1996)

7. Francke, A., Hoffmann, M.: The Euclidean degree-4 minimum spanning tree problem is NP-
hard. In: SoCG 2009, pp. 179–188 (2009)

8. Frati, F., Kaufmann, M.: Polynomial area bounds for MST embeddings of trees. Tech. Report
RT-DIA-122-2008, Dept. of Comp. Sci. Autom., Roma Tre University (2008)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman, New York (1979)

10. Hurtado, F., Liotta, G., Wood, D.R.: Proximity drawings of high-degree trees. In: CoRR,
abs/1008.3193 (2010)

11. Jothi, R., Raghavachari, B.: Degree-bounded minimum spanning trees. Discr. Appl.
Math. 157(5), 960–970 (2009)

12. Kaufmann, M.: Polynomial area bounds for MST embeddings of trees. In: Hong, S.-H.,
Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 88–100. Springer, Heidelberg
(2008)

13. Liotta, G.: Handbook of Graph Drawing, ch.4. In: Tamassia, R. (ed.). CRC Press, Boca Raton
(2011)

14. Liotta, G., Tamassia, R., Tollis, I.G., Vocca, P.: Area requirement of Gabriel drawings. In:
Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS, vol. 1203, pp. 135–
146. Springer, Heidelberg (1997)

15. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput. 28(4), 1298–1309 (1999)

16. Monma, C.L., Suri, S.: Transitions in geometric minimum spanning trees. Discr. Comput.
Geom. 8, 265–293 (1992)

17. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the traveling
salesman problem. J. Algorithms 5, 231–246 (1984)



Multi-target Ray Searching Problems

Spyros Angelopoulos1, Alejandro López-Ortiz2, and Konstantinos Panagiotou3

1 CNRS-LIP6, Pierre and Marie Curie University, Paris, France
2 David R. Cheriton School of Computer Science, University of Waterloo, Canada

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. We consider the problem of exploring m concurrent rays us-
ing a single searcher. The rays are disjoint with the exception of a single
common point, and in each ray a potential target may be located. The
objective is to design efficient search strategies for locating t targets
(with t ≤ m). This setting generalizes the extensively studied ray search
(or star search) problem, in which the searcher seeks a single target. In
addition, it is motivated by applications such as the interleaved execu-
tion of heuristic algorithms, when it is required that a certain number of
heuristics have to successfully terminate.

We apply two different measures for evaluating the efficiency of the
search strategy. The first measure is the standard metric in the context
of ray-search problems, and compares the total search cost to the cost
of an optimal algorithm that has full information on the targets. We
present a strategy that achieves optimal competitive ratio under this
metric. The second measure is based on a weakening of the optimal cost
as proposed by Kirkpatrick [ESA 2009] and McGregor et al. [ESA 2009].
For this model, we present an asymptotically optimal strategy which is
within a multiplicative factor of Θ(log(m − t)) from the optimal search
cost. Interestingly, our strategy incorporates three fundamental search
paradigms, namely uniform search, doubling and hyperbolic dovetailing.
Moreover, for both measures, our results demonstrate that the problem
of locating t targets in m rays is essentially as difficult as the problem of
locating a single target in m− (t− 1) rays.

1 Introduction

Searching for a target is a common task in everyday life, and, unsurprisingly, an
important computational problem with numerous applications in various con-
texts. This class of problems involves a searcher that must locate a target which
lies at some unknown point in the environment. The natural objective is to de-
vise efficient strategies that allow the searcher to locate the target as quickly
as possible. One of the earliest examples of such problems is the linear search
problem, proposed by Bellman [4] and independently by Beck [2]. Here, the en-
vironment consists of an infinite line, with the searcher initially at some point
designated as the origin, and the target located at an unknown point on the line,
at distance d from the origin. The objective is to minimize the worst-case ratio
of the distance traveled by the searcher over d.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 37–48, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



38 S. Angelopoulos, A. López-Ortiz, and K. Panagiotou

A natural generalization of the linear-search problem is the star search or
ray search problem, which is also known, informally, as the m-lane cow-path
problem. In this setting, we are given a set of m semi-infinite rays (lanes), all
with a common origin O, and a searcher (cow) initially placed at the origin O.
The target (pasture) is located at distance d from O, however the searcher is
oblivious of the ray on which the target lies. A strategy is an algorithm that
specifies how the searcher traverses the rays, and the objective is to minimize
the worst-case distance traveled, again normalized by the optimal distance d.

This deceivably simple problem has important applications to robot naviga-
tion, artificial intelligence, and operations research (see e.g. [5,12,16,19,1,10,6,11]
for some illustrative examples). This is due to the fact that it can be applied
in settings in which we seek efficient allocation of resources to multiple tasks.
For instance, consider the setting in which m different randomized heuristics (of
the Las Vegas type) can be employed to solve a problem. However, we do not
know in advance which of the heuristics will terminate successfully on a given
input. How should we distribute the processing time to the different heuristics
(assuming that we can interleave the execution of the heuristics)? This is an ex-
ample of a setting that is often encountered in the construction of (deterministic
or randomized) hybrid algorithms [12]. A different application is the design of
efficient interruptible algorithms, namely algorithms that can return meaning-
ful solutions even if interrupted during their execution. This is a fundamental
problem in artificial intelligence, with surprising connections to the ray-search
problem [5].

To our knowledge, with the exception of [18], all previous work on ray-search
(and related) problems has focused on the case in which the searcher must lo-
cate a single target. However, a natural generalization of the problem involves
the setting in which multiple targets may exist, and the searcher’s objective is
to locate t different targets. For instance, consider the setting in which a hy-
brid algorithm can execute m different heuristics, as described earlier. It may
be the case that we require that not just a single, but rather several heuristic
algorithms successfully terminate and return a solution. This is often desired in
situations in which we do not have strong guarantees on the quality of the so-
lution that each heuristic returns. A typical example is SAT-solvers that invoke
such hybrid algorithms (also known as algorithm portfolios [9]): here, we do not
know in advance which heuristic is the most appropriate for any given input.
The objective of this paper is thus to initiate the study of ray-search problems
in the setting where the strategy must guarantee that a certain number of tar-
gets are located as efficiently as possible. We also expect that the generalization
to multiple targets will prove an interesting topic of study in other contexts of
search and exploration problems, which so far have focused almost exclusively
on the case of a single target.

Models and performance measures. Throughout the paper we consider the set-
ting in which up to m potential targets are placed in the m rays, with at most one
target per ray. More specifically, we will denote by λ1 ≥ . . . ≥ λm the distances
of the targets, in non-increasing order. We allow the possibility that λi =∞ for



Multi-target Ray Searching Problems 39

some values i ∈ [1, m]. In other words, there may be rays with no target located
on them. We will denote by Λ = {λ1, . . . , λm} the multiset of all target distances,
and we make the standard assumption λm ≥ 1. Note that without this assump-
tion, i.e., if the distances can become arbitrarily small, no search algorithm can
be competitive (see, e.g., [6]). We seek efficient strategies for locating t ≤ m
targets, where we assume that t is provided as input to the algorithm, and is
thus known. We emphasize that the searcher can move from ray to ray only by
passing over the origin, and that the search terminates when the t-th target is
reached.

In order to evaluate the performance of a strategy, one needs to compare the
search cost incurred by the algorithm (that has no information on the set Λ)
to the cost of an ideal algorithm that has a certain amount of information con-
cerning the targets. The worst-case ratio of these costs gives rise to the so-called
competitive ratio, since search problems are often considered online problems in
the literature of search and exploration.

We distinguish between two concrete models. First, we consider the classical
model in which the ideal algorithm has complete information on the placement
of targets, that is, the algorithm knows not only Λ, but also the specific ray
on which the target at distance λi can be found. In this model, the cost of the
optimal algorithm is easy to evaluate, and equals 2

∑m
i=m−t+2 λi + λm−t+1. In

other words, the optimal strategy locates the t targets closest to the origin (the
factor of 2 is due to the searcher returning back to the origin). On the other hand,
more recently, a different approach in defining a less powerful (and in a sense,
more realistic) ideal algorithm was proposed independently by Kirkpatrick [14]
and McGregor, Onak and Panigrahy [18]. In their setting, the ideal algorithm has
only partial information about the locations of the targets. More specifically, we
allow the ideal algorithm knowledge of the set Λ, but not of the exact mapping
of distances λi to the rays. The implication is that the ideal algorithm itself will
be associated with an intrinsic search cost, which is the worst-case cost of a
search strategy that has knowledge of Λ. Following the notation of Kirkpatrick,
we will denote by ξt(Λ) the intrinsic (i.e., “optimal”) cost for locating t targets.
We shall omit the subscript “t”, whenever it is clear from the context.

Contribution of this paper. In this work we provide optimal strategies for locat-
ing t ≤ m targets in the m-ray setting. In Section 2 we focus on the complete
information model for the ideal algorithm. We show that the worst-case compet-
itive ratio for locating t targets is the same as the worst-case competitive ratio
for locating a single target in m− (t− 1) rays, and we obtain a tight analytical
expression for the optimal competitive ratio (c.f. Theorem 1).

Section 3 addresses the problem under the partial information model, and
contains the main results of this work. First, we provide an analytic expres-
sion of the intrinsic cost, given the set of target distances Λ (c.f. Theorem 2).
Next, we present a strategy based on combination of doubling and hyperbolic
search that yields a Θ(log m)-competitive algorithm (c.f. Theorem 3). Last, we
use the previous strategy as a subroutine so as to obtain an optimal algorithm
of competitive ratio Θ(log(m − t)) (Theorem 4 and Theorem 5). Interestingly,



40 S. Angelopoulos, A. López-Ortiz, and K. Panagiotou

this optimal strategy incorporates three fundamental search paradigms, namely
uniform search, doubling and hyperbolic dovetailing. Similar to our results con-
cerning the full-information model, we can interpret this result as a reduction
between the problems of locating a single and multiple targets. Namely, the
optimal competitive ratio for finding t targets in m rays is determined by the
optimal strategy for locating one target in m − (t − 1) rays. Observe that, as
discussed above, while the competitive ratio is the same the strategy itself is
quite different from the m− (t− 1) ray case.

Related work. Ray-search problems have a long and exciting history of research.
We review some representative results, with the observation that the vast ma-
jority apply to the complete information model for the ideal algorithm. For the
linear search problem, Beck and Newman [3] first showed an optimal compet-
itive ratio of 9. The generalization to the m-ray ray-search problem was first
studied by Gal [8] and later by Baeza-Yates et al. [1]. Both works proposed a
round-robin strategy of exponentially increasing lengths that achieves optimal
competitive ratio (see also the discussion of Jaillet and Stafford [10]). The above
results are obtained by means of deterministic strategies; however, it is known
that randomization can help improve the competitive ratio. In particular, Kao
et al. [13] gave an optimal randomized algorithm for linear search, a result that
was extended by Kao et al. [12] to the m-ray problem (under the restrictive as-
sumption of round robin strategies). Other variants include the setting in which
the searchers incur some turn cost when they switch direction (studied by De-
maine et al. [6]), the case of multiple searchers (López-Ortiz and Schuierer [17])
and the average-case analysis of linear search (due to Kao and Littman [11]).
Typically, round-robin strategies based on iterative deepening yield optimal or
near-optimal algorithms, and similar ideas lead to efficient search algorithms in
more general settings and environments (see the results of Koutsoupias et al. [15]
and Fleischer et al. [7]).

In contrast, the study of the partial information model is much more recent.
Kirkpatrick [14] addressed both deterministic and randomized algorithms under
this framework. For both cases he presented optimal strategies based on a search-
ing technique named hyperbolic dovetailing, since in each round a ray is searched
to distance inversely proportional to its rank. The (optimal) competitive ratio
of both deterministic and randomized strategies based on hyperbolic search is
shown to be Θ(log m). Independently, McGregor et al. [18] studied the setting
in which there is a target in each ray, and the objective is to locate as many as
possible at a cost close to the intrinsic cost. Their results provide randomized
algorithms for locating k − Õ(k5/6) targets at a cost no more than (1 + o(1))
times the intrinsic cost for locating k of them.

2 Ray Search in the Full-Information Model

For the case of a single target and m concurrent rays, it is known that optimal
strategies can be found in the class of the so-called geometric or exponential



Multi-target Ray Searching Problems 41

strategies (see, e.g., [8]). In this class of strategies, the searcher performs a round-
robin exploration of rays with distances forming a geometric sequence (i.e., of
the form b0, b1, b2, . . ., for some appropriate choice of the base b > 1). We show
that similar geometric strategies lead to optimal multi-target search algorithms.
Proofs are omitted for space reasons.

Lemma 1. There is a geometric strategy for searching t targets in m rays with
competitive ratio at most 1 + 2 b

m−(t−1)

b−1 , where b is the base of the strategy.

Theorem 1. The competitive ratio of the geometric strategy of Lemma 1 is min-
imized for b = m−(t−1)

m−t , for which it is equal to 1+2 (m−(t−1))m−(t−1)

(m−t)m−t . Moreover,
this is optimal, i.e., there is no algorithm with a smaller competitive ratio.

We emphasize that the competitive ratio of Theorem 1 is the same as the com-
petitive ratio of searching a single target in m− t + 1 rays [8].

3 Ray-Search in the Partial-Information Model

In this section we study deterministic algorithms for ray-search in the partial-
information model for the ideal algorithm (as discussed in the introduction).
Recall that the m rays are associated with a (multi)set Λ of target distances
Λ = {λ1, . . . λm} (with λ1 ≥ λ2 ≥ . . . λm), and the objective is to locate t
targets. In order to facilitate the exposition of our results, we focus on a slightly
different cost formulation; namely, we assume that the searcher incurs cost only
the first time it traverses a previously unexplored segment of a certain ray (for
instance, we do not charge the searcher for returning to the origin). In other
words, the total search cost is the sum of the maximum distances traversed on
each ray. For the sake of completeness, we note that, our results can be extended
to the m-ray search problem under the “standard” cost formulation.

As mentioned in Section 1, we assume that the multiset Λ is not known to
the (online) search strategy, but is known, in contrast, to the ideal algorithm. A
presentation of Λ is a specific assignment of distances in Λ to target locations in
the rays, which is unknown both to the online strategy and to the ideal algorithm.
Given Λ, we denote by ξt(Λ) the intrinsic cost of the ideal algorithm for locating
at least t targets, namely the minimum worst-case search cost of a strategy that
knows Λ. The special case of t = 1 was treated in [14,18].

3.1 Intrinsic Cost of Multi-target Search

We begin by evaluating the intrinsic cost in the case where we search for t ≥ 1
targets.

Theorem 2. The intrinsic cost for locating t targets in a presentation with as-
sociated distance set Λ is

ξt(Λ) = min
1≤i1<...<it≤m

t∑

j=1

ij · μij , (1)

where μij = λij − λij+1 , for j < t, and μit = λit .



42 S. Angelopoulos, A. López-Ortiz, and K. Panagiotou

Proof. First, we will lower-bound the intrinsic cost of any search strategy A
which succeeds for all possible presentations of Λ. At each point in time, the
strategy has explored each ray to some distance: in particular, suppose without
loss of generality, that A has searched rays 1, . . . , m to distances d1, . . . dm, in
non-increasing order, i.e., d1 ≥ d2 . . . ≥ dm. We then can claim the following
property concerning A and the set of distances {di : i ∈ [1, m]}: there must exist
indices 1 ≤ i1 < . . . < it ≤ m, such that dij ≥ λij (1 ≤ j ≤ t), otherwise
strategy A will have not located t targets for at least one presentation of Λ.
It follows then that the overall search cost of strategy A has to be at least
i1λi1 + (i2 − i1)λi2 + . . . + (it − it−1)λit . Note that this is equal to

∑t
j=1 ij · μij ,

where the μi’s are as in the statement of the lemma.
On the other hand, we can upper-bound the intrinsic cost by considering the

following strategy that works in t phases. Fix indices 1 ≤ i1 < i2 . . . < it ≤ m. In
phase t, the strategy searches rays 1, . . . it up to depth λit = μit . Let Nt denote
the set of rays on which no target was located in phase t. In phase t − 1, the
strategy will search all rays in Nt up to an additional length of λit−1−λit = μit−1 .
More general, if Nj denotes the set of rays for which no target was located
during phase j, then in phase j − 1 the strategy will search all rays in Nj up
to an additional distance of λij−1 − λij = μij−1 . We terminate when t targets
have been located (which may happen before we reach the end of phase 1). Note
that this strategy will always locate at least one target per phase, since in phase
j it searches ij rays up to distances λij , hence its cost is upper bounded by
∑t

j=1 ij · μij . �

Given two sets of target distances Λ and Λ′, we say that Λ dominates Λ′ (denoted
by Λ � Λ′) if λi ≥ λ′

i. The following is an immediate corollary of Theorem 2.

Corollary 1. If Λ � Λ′, then ξt(Λ) ≥ ξt(Λ′), for any t.

3.2 A O(log m)-Competitive Algorithm

In this section we present a search strategy for locating t targets that achieves
competitive ratio O(log m). This strategy, which we call Adaptive Hyperbolic
Search is based on a combination of hyperbolic search and doubling, and will be
used as subroutine in the construction of an optimal algorithm in Section 3.3.

Before we present our algorithm, let us describe briefly the hyperbolic dove-
tailing algorithm in [14,18] for locating a single target. The algorithm begins
with assigning unique ranks to the rays, which are integers in [1, m], and by
initializing a counter c to the value 1. It then proceeds in iterations, where the
ray with rank i is searched up to distance c/i. If no target was found this way,
then c is increased by 1 at the beginning of the next iteration.

There are (at least) two natural ways one could attempt to extend this algo-
rithm to the case where we are interested in finding t > 1 targets. On the one
hand, we could simply choose to never change the rank of rays, even after a tar-
get is located on some ray. On the other hand, we could behave “aggressively”,
and update the ranks immediately after a target was located (according to some



Multi-target Ray Searching Problems 43

chosen rule). However, it turns out that both ways lead to extremely ineffective
algorithms of competitive ratio Ω(t).

Our algorithm (see the pseudocode below) strikes a balance between the above
two extremes. Initially, as in the classical hyperbolic search, it begins by assigning
unique ranks to the rays, and by initializing a counter c to 1. However, the exe-
cution of our algorithm is divided into epochs, where each epoch in turn consists
of two phases (the boolean variable firstphase in the statement of the algorithm
determines whether we are in the first phase or not). During the first phase of each
given epoch, the algorithm searches, for all i, the ray of rank i (denoted by ri in the
pseudocode) to a distance of c/i, i.e., it performs a hyperbolic search according to
rank. The phase terminates when a target is discovered, at which point the second
phase begins; this phase proceeds until iteration c← 2c, and again consists of hy-
perbolic search according to rank (in what follows we call iteration j the execution
of lines 3–33 when c has value j). Targets found during this phase do not affect the
rank. However, at iteration c the ranks of the rays are updated (lines 27–33), by
removing rays on which targets are found.

Algorithm 1: Adaptive hyperbolic search
1 T ← 0 , c← 1, c← 0 , firstphase ← true
2 for i = 1 to m do
3 ri ← i
4 foundi ← false

5 end
6 repeat
7 while firstphase=true or (firstphase=false and c < c) do
8 for i = 1 to m do
9 if foundi = false then

10 search ray ri up to distance c
i

11 if target found at ray ri then
12 foundi ← true
13 T ← T + 1
14 if T = t then break
15 if firstphase=true then
16 firstphase ← false
17 c← 2c

18

19

20

21 end
22 c← c + 1

23 end
24 firstphase ← true , count ← 1
25 for i = 1 to m do
26 if foundi= false then
27 ri ← count
28 count ← count+1

29

30 end

31 until T = t

Analysis. Denote by Ri the set of rays that acquire rank equal to i during the
execution of the algorithm. Note that if a ray is assigned rank i during some epoch,
and rank j �= i in some subsequent epoch, it cannot be assigned rank i again in
the future. This observation allows us to define the search cost on a ray l for the



44 S. Angelopoulos, A. López-Ortiz, and K. Panagiotou

interval in which the rank of l is i, which we denote by Ci(l). We also denote by
C(Ri) =

∑
l∈Ri

Ci(l) the overall search cost for rays of rank i. With this notation,
the cost of our algorithm can be written as

ALG =
m∑

i=1

C(Ri). (2)

Moreover, we will use the notation c∗ to denote the value of c when the algorithm
terminates, i.e., the last iteration. The next lemma bounds the value of C(Ri).

Lemma 2. For any 1 ≤ i ≤ m, C(Ri) ≤ 3c∗
i .

Proof. Note that every time the algorithm performs a search on a ray l ∈ Ri, it
contributes to the cost C(Ri) in two possible ways: i) By searching the ray the first
time after it is assigned rank i (in other words, when line 12 is executed immedi-
ately after l acquires rank equal to i), and ii) in all remaining cases, i.e., subsequent
iterations in the same epoch in which line 12 is executed for l. Let Ci

1(l) and Ci
2(l)

denote the above two contributions to Ci(l). Clearly,

C(Ri) =
∑

l∈Ri

(Ci
1(l) + Ci

2(l)). (3)

We first bound the cost incurred by Ci
2(l). Let e denote the total number of epochs

in the execution of the algorithm, and let c1, . . . , ce denote the value of c at the end
of the corresponding epoch. (In particular, we have ce = c∗). Let 1 ≤ j < e be
any epoch, and let us denote by l the ray of rank i the jth epoch, and by l′ the
ray of rank i in the (j + 1)th epoch. At the end of the jth epoch, l is searched to
distance cj/i. Moreover, note that the second time l′ is searched in the (j + 1)st
epoch, it had been already searched down to distance cj

i . Therefore, the accu-
mulated cost for searching the rays of rank i over all epochs is bounded by c∗

i ,
i.e.,

∑
l∈Ri

Ci
2(l) ≤ c∗

i .
It remains to bound the cost Ci

1 =
∑
l∈Ri

Ci
1(l). To this end, let l1, l2, . . . , le

denote the rays in Ri, where lk had rank i in epoch k. Note that there is a unique
ray that had rank i in a particular epoch. Moreover, ray lk contributes a cost of at
most ck−1

i to Ci
1 (where we use the convention c0 = 0). Note also that the definition

of the algorithm implies that ck+1 ≥ 2ck, as the first phase in the epoch ends when c
attains the value 2ck, due to line 19 in the statement of the algorithm. We conclude
that ck ≤ c∗

2k−1 , and thus, Ci
1 =

∑j
k=1 Ci

1(lk) ≤
∑j

k=1
1

2k−1
c∗
i
≤ 2c∗

i
. �

The next lemma relates the intrinsic complexity with the cost of the algorithm.

Lemma 3. For any t ≥ 2, ξt(Λ) ≥ c∗
5
.

Proof. Set c′ = 	c∗/3
. We can assume, without loss of generality, that c∗ ≥ 5.
In order to prove the statement, let us first assume that the iterations c′ and c∗

occurred in the same epoch of the execution of the algorithm. Then no target is
found during iterations up to c′ which also belong in the epoch of c′, as otherwise
it would be that c∗ ≤ 2c′ < c∗, a contradiction.



Multi-target Ray Searching Problems 45

Observe that at the end of an epoch, i.e., at lines 28–33, each possible rank be-
tween 1 and m − T is assigned to a unique ray (recall that T is the number of
targets that were discovered up to the current iteration). Consequently, if in the
first iteration of the succeeding epoch no additional target is found, then for each
1 ≤ i ≤ m−T there is a ray that has been searched up to distance c/i. In our case
in particular, since at most t − 1 targets were found at the beginning of the last
epoch (i.e., the epoch of c∗), for every j with 1 ≤ j ≤ m − (t − 1), there exists a
ray that has been searched unsuccessfully up to distance c′/j. This implies that if
we set

Λ′ = {λ′
1, . . . , λ

′
m} =

{

c′,
c′

2
,
c′

3
, . . . ,

c′

m− (t− 1)
, 0, . . . , 0

}

,

then Λ � Λ′. Corollary 1 implies that ξt(Λ) ≥ ξt(Λ′) = ξ1

(
{λ′

1, . . . , λ
′
m−(t−1)}

)
,

where the equality follows easily from Theorem 2. We conclude the proof in this
case by observing that ξ1

(
{λ′

1, . . . , λ
′
m−(t−1)}

)
= min1≤i≤m−(t−1) iλ′

i = c′.
It remains to consider the case where iterations c′ and c∗ occurred in different

epochs. We may further assume that in the epoch of iteration c′, at least one target
was discovered at some iteration smaller than or equal to c′ which also belongs in
the epoch of c′, as otherwise the same argument as in the previous case would
apply. Let c′′ ≥ c′ be the first iteration of the epoch that succeeds the epoch of
iteration c′. We shall denote, in the remainder, this epoch as the current epoch.
Note that c′′ ≤ 2c′ < c∗. Suppose that � ≥ 0 targets are discoveredduring iteration
c′′, and let us denote by i1 < i2 < · · · < i� the ranks of the rays on which they
were discovered, and by d1, . . . , d� their corresponding distances. We claim that

dj ≥
c′′

ij + (t− �− 1)
for all 1 ≤ j ≤ �. (4)

To show this, note that the number of targets thatwere found in all previous epochs
(i.e., before the current epoch) is at most t− �− 1. Therefore, the ray with rank ij
in the current epoch had rank at most ij + (t− �− 1) in the previous epoch; this
follows immediately from the rank update in lines 28–33 of the algorithm.

The definition of the ij ’s implies that no target is found on all other rays that
are searched in iteration c′′. Thus, for all i ∈ [1, m− (t− �− 1)] \ {i1, . . . , i�} there
is a ray that is searched to distance c′′/i (this occurs on the ray of rank i in the
current epoch). By putting this together with (4), we infer that for all i as above,
there is a distinct target at distance at least c′′/i, and that there are � targets at
distances at least c′′/(ij + (t − � − 1)). In what follows we shall exploit this to
construct a lower bound on the intrinsic cost of Λ. Define

aj =

{
j + (t− �− 1), if j ∈ {i1, . . . , i�}
j, otherwise

.

The previous discussion implies that for all 1 ≤ j ≤ m − (t − � − 1), there is a
distinct ray with a target at distance at least c′′/aj. Let bj denote the value of the
jth element in the increasingly sorted sequence of {ai}1≤i≤m−(t−�−1). Note that



46 S. Angelopoulos, A. López-Ortiz, and K. Panagiotou

b1 ≤ � + 1, since the pigeonhole principle implies that one of the values [1, � + 1]
is not contained in {i1, . . . , i�}. Similarly we can argue that bj ≤ � + j. We now
define

Λ′′ = {λ′′
1 , . . . , λ′′

m} =
{

c′′

� + 1
,

c′′

� + 2
, . . . ,

c′′

m− t + 1 + 2�
, 0, . . . , 0

}

,

where the number of 0’s is t − � − 1. Then, Λ � Λ′′, and thus
ξt(Λ) ≥ ξ�+1

({λ′′
1 , . . . , λ

′′
m−(t−�−1)}

)
. By applying Theorem 2 we infer that

ξt(Λ) ≥ min
i1<···<i�+1

⎧
⎨

⎩

�∑

j=1

ij(λ′′
ij − λ′′

ij+1
) + i�+1λ

′′
i�+1

⎫
⎬

⎭
. (5)

Let (i∗j )1≤j≤�+1 denote any choice of the ij’s that minimizes the above expression.
Suppose that for all 1 ≤ j ≤ � + 1 we have that i∗j ≤ � + 1. Then (5) simplifies to
∑�+1

i=1 c′′/(� + i) ≥ c′′/2. On the other hand, suppose that there is a 1 ≤ k ≤ � + 1
such that i∗k ≥ � + 1. Then, the bound in (5) is due to the monotonicity of the i∗j ’s
at least

i∗�+1λ
′′
i∗�+1

= i∗�+1

c′′

� + i∗�+1

(i∗�+1≥�)
≥ c′′

2
.

Since c′′ = 	c/3
, the proof is completed. �

Lemma 2, Lemma 3 and (3) imply the main result of this section.

Theorem 3. The adaptive hyperbolic-search algorithm locates t targets in m rays
with associated distance set Λ at a search cost of at most 15 logm · ξt(Λ).

3.3 An Asymptotically Optimal Multi-target Search Algorithm

We now describe an optimal algorithm for locating t targets. We begin with a lower
bound which demonstrates that the problem is at least as hard as searching a single
target in m− t + 1 rays. The proof is omitted for space reasons.

Theorem 4. For the m ray problem in the partial information model, there
exists a distance set Λ such that every deterministic algorithm that successfully lo-
cates t targets incurs a cost at least Ω(log(m−t))·ξt(Λ), for at least one presentation
of Λ.

Let s be such that t = m − s. Note that if s ≥ m/2, then t ≤ m/2, which in
turn implies that the adaptive hyperbolic search of Section 3.2 is asymptotically
optimal, as follows from Theorem 3 and Theorem 4. Therefore, we shall focus only
on the case s ≤ m/2.

The optimal algorithm, which we call Hybrid, consists of two phases. In the first
phase we perform a uniform search, i.e., we search all rays in the same fixed order,
increasing by a unit the distance up to which we search rays in each iteration.
Once a target is located in one of the rays, we effectively discard that ray, without



Multi-target Ray Searching Problems 47

affecting the ordering of the remaining rays. This phase continues until m − 2s
targets have been located, at which point the algorithm switches to the adaptive
hyperbolic search algorithm (Algorithm 1). In this second phase, we search for s
more targets in the remaining 2s rays on which the uniform search did not locate
any targets.

Theorem 5. Let s ≤ m/2. Algorithm Hybrid locates t = m − s targets at a total
cost O(log s) · ξt(Λ), for any presentation with associated distance set Λ.

Proof. Let C1, C2 denote the search costs incurred by the first and second phase,
respectively. We will show that C1 ≤ 2 · ξt(Λ), and C2 = O(log s) · ξt(Λ), which
will be sufficient to prove the theorem.

Consider first the uniform-search phase. From construction, the first target will
be located after the uniform search incurs a cost of at most mλm; the second target
will be located at an overall cost of at most mλm+(m−1)(λm−1−λm); and more
generally, by the time the l-th target is discovered, the uniform-search phase has
not incurred cost more than mλm+

∑l−1
i=1(m− i)(λm−i−λm−i+1). Therefore, the

overall cost of Phase 1 is at most

C1 ≤ mλm +
m−2s−1∑

j=1

(m− j)(λm−j − λm−j+1). (6)

On the other hand, from Theorem 2, we know that there exist 1 ≤ i1 < . . . < it ≤
m such that ξt(Λ) ≥ itλit +

∑t−1
j=1 ij(λij − λij+1). Since it > it−1, and λit ≥ λm

we deduce that ξt(Λ) ≥ itλm + it−1(λit−1 − λm) +
∑t−1
j=2 it−j(λit−j − λit−j+1),

from which it follows that

ξt(Λ) ≥ itλm +
t−1∑

j=1

it−j(λm−j − λm−j+1). (7)

Since the indices ij assume different values, we know that it ≥ t = m − s. More
generally, we have that it−j ≥ t− j = m− s− j, for all j ∈ [0, m− 2s− 1]. Thus,

m− j

it−j
≤ m− j

m− s − j
≤ 2 for all j ≤ m− 2s. (8)

Combining (6), (7) and (8) we conclude that C1 ≤ 2 · ξt(Λ).
It remains to argue that C2 = O(log s) · ξt(Λ). Let M denote the subset of rays

that are searched in phase 2, and let ΛM denote the subset of Λ induced by the
set M . By applying Theorem 3, we infer that C2 = O(log(2s)) · ξs(ΛM ). However,
ξs(ΛM) ≤ ξt(Λ). This is because even if the distances of the targets for the m− 2s
rays involved in Phase 1 are revealed to the optimal (i.e., ideal) algorithm, such
an algorithm would still have to locate s more targets among the rays in M . Thus,
it follows that C2 = O(log s) · ξt(Λ), which is also the overall complexity of the
search algorithm. �



48 S. Angelopoulos, A. López-Ortiz, and K. Panagiotou

4 Conclusions

Several problems remain to be studied in this setting, among them the optimal
expected search cost of t targets as well as the case where only an arbitrary subset
of size s ≤ t of the targets is being sought.

References

1. Baeza-Yates, R., Culberson, J., Rawlins, G.: Searching in the plane. Information and
Computation 106, 234–244 (1993)

2. Beck, A.: On the linear search problem. Naval Research Logistics 2, 221–228 (1964)
3. Beck, A., Newman, D.J.: Yet more on the linear search problem. Israel J. of Math. 8,

419–429 (1970)
4. Bellman, R.: An optimal search problem. SIAM Review 5, 274 (1963)
5. Bernstein, D.S., Finkelstein, L., Zilberstein, S.: Contract algorithms and robots on

rays: unifying two scheduling problems. In: Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI), pp. 1211–1217 (2003)

6. Demaine, E.D., Fekete, S.P., Gal, S.: Online searching with turn cost. Theoretical
Computer Science 361, 342–355 (2006)

7. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.: Competitive on-
line approximation of the optimal search ratio. SIAM Journal on Computing 38(3),
881–898 (2008)

8. Gal, S.: Minimax solutions for linear search problems. SIAM J. on Applied Math. 27,
17–30 (1974)

9. Gomes, C.P., Selman, B.: Algorithm portfolios. Artificial Intelligence 126(1-2), 43–
62 (2001)

10. Jaillet, P., Stafford, M.: Online searching. Opes. Res. 49, 234–244 (1993)
11. Kao, M.-Y., Littman, M.L.: Algorithms for informed cows. In: Proceedings of the

AAAI 1997 Workshop on Online Search (1997)
12. Kao, M.-Y., Ma, Y., Sipser, M., Yin, Y.L.: Optimal constructions of hybrid algo-

rithms. Journal of Algorithms 29(1), 142–164 (1998)
13. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment:an opti-

mal randomized algorithm for the cow-path problem. Information and Computa-
tion 131(1), 63–80 (1996)

14. Kirkpatrick, D.: Hyperbolic dovetailing. In: Fiat, A., Sanders, P. (eds.) ESA 2009.
LNCS, vol. 5757, pp. 516–527. Springer, Heidelberg (2009)

15. Koutsoupias, E., Papadimitriou, C.H., Yannakakis, M.: Searching a fixed graph. In:
Proc. of the 23rd Int. Colloq. on Automata, Languages and Programming (ICALP),
pp. 280–289 (1996)

16. López-Ortiz, A., Schuierer, S.: The ultimate strategy to search on m rays. Theoret-
ical Computer Science 261(2), 267–295 (2001)

17. López-Ortiz, A., Schuierer, S.: On-line parallel heuristics, processor scheduling
and robot searching under the competitive framework. Theoretical Computer Sci-
ence 310(1-3), 527–537 (2004)

18. McGregor, A., Onak, K., Panigrahy, R.: The oil searching problem. In: Fiat, A.,
Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 504–515. Springer, Heidelberg
(2009)

19. Schuierer, S.: Lower bounds in online geometric searching. Computational Geome-
try: Theory and Applications 18(1), 37–53 (2001)



Convex Transversals

Esther M. Arkin1, Claudia Dieckmann2, Christian Knauer3,
Joseph S.B. Mitchell1, Valentin Polishchuk4, Lena Schlipf2, and Shang Yang5

1 Department of Applied Mathematics and Statistics, Stony Brook University, USA
{estie,jsbm}@ams.stonybrook.edu

2 Institute of Computer Science, Freie Universität Berlin, Germany
{dieck,schlipf}@mi.fu-berlin.de

3 Institute of Computer Science, Universität Bayreuth, Germany
christian.knauer@uni-bayreuth.de

4 Helsinki Institute for Information Technology, CS Dept,
University of Helsinki, Finland

polishch@helsinki.fi
5 Department of Computer Science, Stony Brook University, USA

syang@cs.stonybrook.edu

Abstract. We answer the question initially posed by Arik Tamir at
the Fourth NYU Computational Geometry Day (March, 1987): “Given
a collection of compact sets, can one decide in polynomial time whether
there exists a convex body whose boundary intersects every set in the
collection?”

We prove that when the sets are segments in the plane, deciding exis-
tence of the convex stabber is NP-hard. The problem remains NP-hard
if the sets are regular polygons. We also show that in 3D the stabbing
problem is hard when the sets are balls. On the positive side, we give a
polynomial-time algorithm to find a convex transversal of a maximum
number of pairwise-disjoint segments in 2D if the vertices of the transver-
sal are restricted to a given set of points. Our algorithm also finds a
convex stabber of the maximum number of a set of convex pseudodisks
in the plane.

The stabbing problem is related to “convexity” of point sets measured
as the minimum distance by which the points must be shifted in order
to arrive in convex position; we give a PTAS to find the minimum shift
in 2D, and a 2-approximation in any dimension. We also consider stab-
bing with vertices of a regular polygon – a problem closely related to
approximate symmetry detection.

1 Introduction

Let S be a finite set of line segments in the plane. We say that S is stabbable if
there exists a convex polygon whose boundary C intersects every segment in S;
the closed convex chain C is then called a (convex) transversal or stabber of S.

Research on transversals is an old and rich area. Most of the work, however,
focused on line transversals, i.e., on determining properties of families of lines

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 49–60, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



50 E.M. Arkin et al.

that stab sets of various types of geometric objects. Stabbing has attracted in-
terest from various perspectives: purely combinatorial (complexity of the set
of transversals, orders induced by stabbers), algorithmic (computing the stab-
bers), and applied (using transversal in curve reconstruction, line simplification,
graphics, motion planning) – see [6] and references thereof. In some of these
applications it could be of interest to use convex transversals instead of lines.

The problem of computing a convex transversal was posed in 1987 [8]. For the
case of stabbing vertical line segments, an optimal algorithm for the problem
was presented by Goodrich and Snoeyink in [4].

Contributions

We prove that finding a convex transversal for a set of segments in the plane is
NP-hard; the problem remains NP-hard for a set of regular polygons. We also
show that in 3D, it is NP-hard to decide stabbability of a set of balls.

We then turn to positive results: Section 3 presents a dynamic program (DP)
to decide if a set of pairwise-disjoint segments is stabbable by a stabber whose
vertices are a subset of a given candidate set of points; if the segments are not
stabbable, we can output a convex stabber that intersects the maximum number
of segments. The DP can be modified to decide stabbability (or to maximize
the number of stabbed objects) also for a set of (possibly overlapping) convex
pseudodisks. In particular, the DP can be used to give a PTAS for the following
problem (related to convex hull of “imprecise” points [7]): Given a set of points
in the plane, find the minimum δ∗ such that shifting each point by at most δ∗

brings the points into convex position. (In an earlier version of the paper (see,
e.g., [1]) we erroneously claimed that there always exists a stabber with edges
supported by bitangents between elements of S, leading us to claim that, even
without a given candidate set of stabber vertices, we can decide existence of
convex stabbers and that we can compute δ∗ exactly.)

We also consider the approximate symmetry detection problem: Given a set
of disks in the plane and an integer k, is it possible to find a point per disk such
that the points form a set invariant under rotations by 2π/k? For general k, the
problem is NP-hard [5]; in Section 4 we give a polynomial-time algorithm for
the case k = n. That is we answer the question: is it possible to find a point per
disk such that the points are vertices of a regular polygon? We also consider an
optimization variant of the problem: Given a set of points in the plane, find the
minimum δ∗ such that shifting each point by at most δ∗ brings the points in a
symmetric position.

Closed stabbers vs. Terrains. The stabbing problem formulation is isotropic
in the sense that it does not single out any specific direction in the space. In
function approximation and statistics applications (unlike in surface reconstruc-
tion), it is often the case that the transversal represents the graph of a function.
That is, the stabber is a terrain – a surface that intersects every vertical line
in at most one point. A convex terrain is a part of the boundary of a convex
polygon (polytope in 3D).



Convex Transversals 51

Finding a convex terrain stabber is a special case of finding a convex stabber
– to see this, just place one point far below the input. Our results, both positive
and negative are as strong as possible w.r.t. the distinction between convex
terrain and convex stabbers: Our DP allows one to find even a convex stabber
(and hence also to find a convex terrain); our negative results show that it is
hard already to find a convex terrain (and hence it is also hard to find a closed
convex stabber).

2 Hardness Results

2.1 Stabbing Segments in the Plane is NP-Hard

We reduce from 3SAT. Our reduction is very similar to the one used to show
hardness of finding the largest area convex hull of a set of points that are re-
stricted to lie on line segments [7]. The reduction is shown in Fig. 1. We use n, m
to denote the number of the 3SAT variables and clauses, respectively.

Variable gadget. For each variable we have a gadget that consists of three
points (segments of 0 length) and one segment. There are two ways to traverse
the gadget corresponding to setting the variable True or False.

“Squashing”. We make the variable gadget “thin” by moving all three points
close to the supporting line of the segment, and in addition by moving the non-
middle points far apart.

Variable chain. Variable gadgets are placed along a convex chain, called the
variable chain. The chain is almost vertical, bending to the right only slightly.
The variable gadgets are “clenched” onto the chain, and the distance between
consecutive gadgets is large. Thus the only way to traverse the gadgets with a
convex terrain is to visit them one by one, in the order as they appear along the
chain, assigning truth values to the variables in turn in each gadget.

Clause gadgets. The clause gadgets are similarly arranged, one after one, on
another almost vertical convex chain, slightly bending to the left; this clause
chain is placed to the right of the variable chain. Each clause gadget consists of
2 points and a segment.

Connectors. We now place 3m more segments, connecting a variable gadget
to a clause gadget whenever the variable appears in the clause. The placement
of the segments’ endpoints within variable gadgets is as follows: if the variable
appears unnegated, the segment touches the True path through the gadget and
does not intersect the False subpath; on the contrary, if the variable appears
negated, the segment touches only the False subpath. In every clause gadget,
segments’ endpoints look the same – see Fig. 1; as can be easily checked, a
convex terrain can intersect any two of the segments, but not all three. This
finishes the construction.



52 E.M. Arkin et al.

x1

x2

xn

C1

Cm

F

T

F

T

F

T

F

T
xi

xj

xk

C

Fig. 1. From left to right: The variable gadget and the 2 ways to traverse it. The
variable gadgets are threaded onto a convex chain; similarly, the clause gadgets are
threaded. The chains (dotted) are not parts of the construction and are shown only for
reference. The clause gadget can be traversed in only one way. A clause C = xi∨x̄j∨x̄k:
three paths are shown that pick different subsets of the three connecting segments. The
gadgets and their locations are not to scale: the gadgets are thinner, so that the points
are very close to the supporting line of the segment – this makes the turn angles of
the paths close to π; also, consecutive gadgets along each chain are separated so that
a convex terrain can make independent choices in each of them.

The reduction. If the 3SAT instance is feasible, the stabber may traverse
the variables gadgets according to the satisfying truth assignment. In each of
the clauses, at least one of the connecting segments (the one connecting to the
satisfying variable) may be omitted; the other two are picked up by one of the
three paths.

Conversely, if there exists a stabber, it must omit (at least) one connecting
segment per clause. Set the variable True or False depending on whether the
omitted segment connects from a True or False part of the variable gadget;
this satisfies all the clauses. The True/False setting is consistent because any
segment omitted by the stabber in the clause gadget must have been stabbed in
the variable gadget, and there either only the True-subpath or only the False-
subpath segments could have been stabbed, but not both.

2.2 Extensions

Our proof can be modified to show hardness of stabbing regular k-gons, and
hardness of stabbing balls in 3D.

3 Stabbing Disjoint Segments and Convex Pseudodisks

We present a dynamic program (DP) to decide stabbability of a set S of pairwise-
disjoint segments in the plane by a convex stabber whose vertices are restricted
to come from a given discrete set C ⊂ R

2 of candidate points. A subproblem in



Convex Transversals 53

the DP is specified by a pair of potential stabber edges together with a constant-
complexity “bridge” between the edges (the bridge is either a single segment or
a segment—visibility-edge—segment chain). The disjointness of the segments
allows us to determine which segments must be stabbed within the subproblem.
We show that a segment-free triangle can be found that separates a subproblem
into smaller subproblems, which allows the DP to recurse. In the end of the
section we also describe how the DP extends to the case of stabbing the maximum
cardinality subset of arbitrary convex pseudodisks.

Nodes and arcs, chords and bridges. Let P ′ denote the set of intersections
between two types of segments: (1) segments that have both endpoints in C (i.e.,
potential stabber edges), and (2) segments in S. Let P = P ′ ∪ C; call points in
P nodes. A straight-line segment between two nodes is an arc. Two arcs pq, rt
are compatible if either they have a common endpoint or the supporting lines of
the arcs intersect outside each of pq, rt. In other words, the points p, q, r, t are
in convex position, and the pair pq, rt have the potential to be sides of a convex
polygon – the stabber. Refer to Fig. 2, left.

A chord is an arc that does not intersect a segment in its interior. A bridge is a
polygonal path whose both endpoints are nodes, that consists of at most 3 links,
and that has the following properties: (i) if it has 1 link, then the link is either a
chord or a part of a segment from S – in the latter case, the bridge is chordless ;
(ii) if it has 2 links, then one of the links is a chord, and the other is a part of a
segment; (iii) if it has 3 links, then they are a part of a segment, a chord, and a
part of another segment.

c

d

p

r

q

b
a

t

p

r

q

b

a

tW

a′

b′

a′

b′

r t

p
q

B

r′

p′

Fig. 2. Left: p, q are nodes, aa′, bb′, cd are segments from S. pq, rt are compatible.
ba, bq, bp, br, ap, qr are chords. pr, qabt are bridges; pr is chordless. Middle: The wedge
W (boundaries dashed) and the bridge B = tbaq. The segments in Spq,rt,B that have
to be stabbed to the left of B are bold; the segments in S \ Spq,rt,B are dash-dotted.
Right: An empty subproblem (pq, rt, B) and an induced subproblem (p′p, r′r, rp).

Subproblems. A subproblem in our DP is specified by two compatible arcs
and a bridge. More specifically, let p, q, r, t be four nodes forming compatible
arcs pq, rt. Without loss of generality let rt be below the line pq, and let q, p, r, t
be the order in which the nodes appear counterclockwise on the convex hull of the
arcs. We define the wedge W to be the region that is below the line supporting
pq and above the line supporting rt. In addition to the two arcs, the subproblem



54 E.M. Arkin et al.

has in the input a bridge B that connects an endpoint of pq to an endpoint of
rt. Refer to Fig. 2, middle.

Subproblem’s responsibility. The crucial observation that allows us to run
the DP is the following: Assuming that the arcs pq, rt are part of the stabber,
we know for each segment s ∈ S whether it should be stabbed to the left or
to the right of the bridge. Indeed, only those segments that have non-empty
intersection with the wedge W can be stabbed. On the other hand, no segment
can have points on both sides of the bridge – for that it would have to cross
the bridge, and this is impossible: the chord is not crossed by definition, and
no segment is crossed by another segment due to the assumption of pairwise-
disjointness of segments in S.

Let Spq,rt,B denote the segments that must be stabbed to the left of the bridge
B; i.e., the segments that intersect W in the part of the wedge that lies to the
left of B.

The function Stab(·). Define a Boolean function Stab(pq, rt, B) to be True
if the segments Spq,rt,B can be stabbed (assuming pq, rt is a part of the stab-
ber), and to be False otherwise; for an incompatible pair of arcs pq, rt define
Stab(pq, rt, ·) to be always False. The function shows whether the stabber can
be “completed” having pq, rt as its part.

In the remainder of this section we show how to evaluate the function on a
subproblem given its values at other subproblems, i.e., how to solve the DP.

Empty subproblems. A subproblem is empty (Fig. 2, right) if no segment
from S penetrates the region of W that is to the left of the bridge but to the
right of rp (this includes the possibility that the bridge is the segment rp itself).
An empty subproblem is closed if p = r. Closed subproblems are at the lowest
level of our DP: clearly, Stab(σ) = True for a closed subproblem σ.

Let (pq, rt, B) be an empty subproblem. We say that a subproblem (p′p, r′r, rp)
is an induced subproblem of (pq, rt, B) if pp′ is below (the supporting line of) pq,
and rr′ is above rt. That is, the angles qpp′ and trr′ are convex, and thus both
qpp′ and trr′ may potentially be parts of a convex chain – the stabber-to-be.
Empty subproblems are easy to reduce to induced subproblems: Stab(pq, rt, B)
= True for an empty subproblem (pq, rt, B) iff Stab(p′p, r′r, B) is True for at
least one subproblem induced by (pq, rt, B).

General subproblems. Let C be the sought stabber that has pq, rt as two of
the sides (Fig. 3, left). (Of course, we do not know C, but we will not use its
existence in the algorithm, we will only use C to argue that we can split the
subproblem into smaller ones.) Let C’ be the (convex) region bounded by C, and
let P be the part of C’ to the left of the bridge B (i.e., P is what is chopped off
C’ by B). Consider the set P ′ = P \

⋃
s∈Spq,rt,B

s. That is, P ′ is P “pierced” by
the segments Spq,rt,B that are stabbed in the subproblem (pq, rt, B).

Because C is a stabber, every segment in Spq,rt,B intersects the boundary of
P . This means that P ′ is a (weakly) simple polygon (i.e., no segment makes



Convex Transversals 55

p

r

q

b

a

t

a′

b′

c

C
P ′

B

p

q

rr
t

B

Fig. 3. Left: The (unknown) part of the stabber C is dotted. P ′ is the simple polygon
bounded by the unknown part of C, by pq, rt, by the bridge B = tbaq, and by the
piercing segments. abc is a separating, i.e., segment-free triangle inside P ′. Right: A
subproblem in a collection of convex pseudodisks. Because of the pseudodisks prop-
erty, no element lives on both sides of the bridge. Some potential boundaries between
subproblems are shown dotted.

a hole in P ′ by being fully contained in the interior of P ′). Each vertex of P ′

belongs to one of the following 5 (overlapping) sets: P1 – vertices of the bridge;
P2 – nodes that reside on the arcs pq, rt; P3 – nodes that belong to C except
those in P2; P4 – endpoints of segments from Spq,rt,B that are stabbed by pq or
rt; P5 – endpoints of segments from Spq,rt,B that are stabbed by C \ pq, rt. Note
that only P3 is not known to us (because we do not know C); all the other sets
are known as soon as the subproblem (pq, rt, B) is specified.

We define the important link ba of the bridge B as follows: if B is chordless,
then ba = B; otherwise ba is the chord of B. We assume that a is closer to q,
and b is closer to t along B. Our algorithm will search for a separating, i.e.,
segment-free triangle abc within P ′ where c is a vertex of P ′ and c /∈ P3. We
first argue that such a triangle exists, and next describe what to do depending
on the set, among P1, P2, P4, P5, to which c belongs.

Lemma 1. There exists a vertex c of P ′ such that c /∈ P3 and no segment
intersects the interior of abc.

Proof. The link ba is a side of P ′; thus, any triangulation of P ′ has a triangle
abc, with c being a vertex of P ′. If there exists a triangulation such that c /∈ P3,
we are done. Otherwise, let xy be the segment that contains c; i.e., c = xy ∩ C
(Fig. 4). Move c along xy inside P ′. Either c reaches the endpoint of the segment
(in which case we are done because c ∈ P5) or one of the sides of abc, say, bc hits
an endpoint z of a segment from Spq,rt,B; let c′ be the position of c on xy when
this happens. The convex quadrilateral cc′ba has no segments in the interior,
and abz is the sought triangle. ��

We emphasize that even though we used C in arguing the existence of the vertex
as in the above lemma, we can find such a vertex without knowing C (e.g., just
by trying all vertices in P1, P2, P4, P5).

We now show how our DP recurses into subproblems defined by the sides of
the triangle abc (Fig. 5):



56 E.M. Arkin et al.

p

r

q

b

a

t

a′

b′

c c′
x

y
z

C
P ′

B

Fig. 4. abc is a triangle in a triangulation of P ′; move c inside P ′. abz is the sought
triangle.

Case I: c is a vertex of the bridge; c ∈ P1. Then the bridge has one fewer
links, and Stab(pq, rt, B) = Stab(pq, rt, B′) where B′ is the new bridge.

Case II: c is on pq, rt; c ∈ P2. Without loss of generality suppose that c ∈ rt.
If there exists a segment s ∈ Spq,rt,B that lies in the interior of the triangle
tbc (i.e., s is not stabbed by tc), then s cannot be stabbed in the subproblem,
and hence Stab(pq, rt, B) = False. Otherwise (i.e., if no segment intersects tbc
or any segment that intersects tbc is already stabbed by rt), Stab(pq, rt, B) =
Stab(pq, rc, caq).

Case III: c is an endpoint of a segment from Spq,rt,B stabbed by pq, rt; c ∈ P4.
Without loss of generality suppose that c is the endpoint of a segment that
is stabbed by rt; let z be the point of the stabbing. If there exists a segment
s ∈ Spq,rt,B that lies in the interior of the quadrilateral tbcz (i.e., s is not stabbed
by tz), then s cannot be stabbed in the subproblem, and hence Stab(pq, rt, B)
= False. Otherwise, Stab(pq, rt, B) = Stab(pq, rz, zcaq).

Case IV: c is an endpoint of a segment from Spq,rt,B stabbed by C \ pq, rt;
c ∈ P5. Let d be the other endpoint of the segment touched by the triangle abc.
Then Stab(pq, rt, B) = True iff there exists an arc uv that intersects dc (say,
at a point z) such that both Stab(pq, uz, zcaq) and Stab(vz, rt, tbcz) are true.
Formally,

Stab(pq, rt, B) =
∨

arc uv :
dc∩uv=z �=∅

( Stab(pq, uz, zcaq) ∧ Stab(vz, rt, tbcz) )

Putting things together. If S is stabbable, then at least one subproblem will
have Stab(pq, rt, B) = Stab(rt, pq,

B

) = True, where

B

is the bridge B traversed
in the opposite direction. Indeed, if there exists a segment that intersects more
than one edge of the stabber, the segment serves as the 1-link bridge B. Oth-
erwise, let xy ∈ S be a segment that has endpoint y inside (the convex hull of)
the stabber; let z = xy ∩ C be the point of the stabbing. Rotate yz around y,
moving z along C, until it hits another stabbing point z′ or the endpoint w of
another segment ww′ (let z′′ = ww′ ∩ C in this case). Then zyz′ or zywz′′ is a
2- or 3-link bridge in the subproblem.



Convex Transversals 57

p

r

q

b

a

t

B

p

r

q

b

a

t

B

c

p

r

q

b

a

t

Bc

z

p

r

q

b

a

t

zd
c

B
u

v

Fig. 5. The DP recursion. Top: c ∈ P1, c ∈ P2. Bottom: c ∈ P4, c ∈ P5.

Conversely, if a subproblem has Stab(pq, rt, B) = Stab(rt, pq,

B

) = True, then
S is stabbable. Hence, after computing the value of the function Stab() on all
subproblems, we can determine if S is stabbable by checking for the existence
of a subproblem with Stab(pq, rt, B) = Stab(rt, pq,

B

) = True.

Stabbing convex pseudodisks. Our DP works also in the more general case
of S being a collection of arbitrary convex pseudodisks. A subproblem is again
specified by two potential edges of the stabber and a bridge between them; as
before, the bridge is either a single element of S or two elements connected
by a visibility edge (Fig. 3, right). Also as before, as soon as a subproblem is
specified, we know which elements must be stabbed in the subproblem (this
is where the pseudodisk property is used: no member of S may have points on
both sides of the bridge.) Again, the free space P ′ bounded by the bridge and the
(unknown, potential) stabber is simply connected, and hence can be triangulated
(pseudotriangulated if the objects in S are not polygonal). The DP recurses on
both sides of a triangle that has (part of) the bridge as a side.

Maximum stabbing. Our DP can be modified straightforwardly to find a
stabber that stabs as many pseudodisks as possible. For that, we let the function
Stab(pq, rt, B) denote the number of elements of S stabbed by pq, rt plus the
maximum number of other segments that can be stabbed in the subproblem
(pq, rt, B). The recursions for the function change to reflect that Stab(pr, qt, B)
is the sum of the values of the function on the subproblems.

3.1 Convexification

Consider the following problem: Given a set P of points in the plane, find the
minimum δ∗ such that shifting each point by at most δ∗ brings the points into
convex position. A 2-approximation can be computed as follows: Let P̄ be the
convex hull of P , and let δm be the maximum distance from a point in P to the



58 E.M. Arkin et al.

boundary of P̄ ; then δm ≤ 2δ∗ (this 2-approximation algorithm works in any di-
mension). To obtain a PTAS, lay out O( 1

ε )×O( 1
ε ) grids in the δm-neighborhoods

of points of P ; let G be the grid points. Then do a binary search to find a mini-
mum k ∈ {0, 1, . . . , 
 1

2ε
�} such that there exists a convex polygon with vertices

in G stabbing radius-(δm/2 + kεδm) disks centered on points of P .

4 Stabbing with Vertices of a Regular Polygon

The approximate symmetry detection problem is: Given a set of n disks in the
plane and an integer k, is it possible to find a point per disk such that the points
form a set invariant under rotations by 2π/k? While the problem is NP-hard for
general k [5], we solve the case k = n; i.e., we determine whether it is possible
to find a point per disk so that the points are vertices of a regular n-gon.

4.1 Polynomial-Time Algorithm

Let D = {d1, . . . , dn} be the given disks. For points p, c ∈ R
2 and integer k let

ρkc (p) denote the image of p after rotation around c by the angle k2π/n. For two
disks di, dj ∈ D, let Akij = {(p, c)|c ∈ R

2, p ∈ di, ρ
k
c (p) ∈ dj} ⊂ R

4 be the set of
all pairs (p, c) of points p ∈ di, c ∈ R

2 such that p moves to dj after rotating by
k2π/n around c; we call Akij the apex region.

Fix a disk d1. A regular n-gon with a vertex per disk of D exists iff there
exist p ∈ d1 and c ∈ R

2 (the center of the n-gon) such that ρjc(p) ∈ dj+1 for
j = 1, . . . , n − 1, or in other words, iff the intersection of n − 1 apex regions
Aj

1j+1 is non-empty (here the vertices of the regular n-gon stab the disks in the
order d1, d2, . . . ; of course this order is not known in advance). This prompts us
to go through “all possible” intersections between the apex regions, checking for
each of the intersections whether an n-gon exists.

Specifically, consider the (n−1)2 apex regions Ak1,j , j = 2, . . . , n, k = 1, . . . , n−
1. Call a point (p, c) ∈ R

4 feasible if it belongs to some n− 1 of the regions, with
each region being from a different disk with a different angle. Our problem has
a feasible solution iff there exists a feasible point in R

4.
There are O(n2) apex regions, and each is defined by 2 polynomials of constant

degree; thus the arrangement of the regions has polynomial complexity. The
feasibility of a point in R

4 does not change as the point moves inside the cell
of the arrangement; hence, in order to determine existence of a feasible point, it
is enough to check the feasibility of an arbitrary representative point r = (p, c)
inside every cell. By [2], a representative for each cell can be obtained in O(n2)
time.

To check if r = (p, c) is feasible, build the bipartite graph Gr; the n− 1 nodes
on one part correspond to the disks D \ d1, the n − 1 nodes on the other part
correspond to the angles {π/n, 4π/n, 6π/n, . . . , (n − 1)2π/n}. There is an edge
between a disk node dj and an angle node k2π/n if p rotated around c by the
angle k2π/n lands in dj , i.e., ρkc (p) ∈ dj . There is a perfect matching in Gr iff c
is the center of a regular n-gon with vertices in the disks from D.



Convex Transversals 59

The above algorithm can be used for objects other than disks, only the running
time will change depending on the complexity of the apex regions.

4.2 Optimization Problem: Symmetry with Imprecision

Consider the following problem (a sister of the convexification): Given a set
P = {p1, . . . , pn} of n points, find minimum δ∗ such that shifting each point
by at most δ∗ brings the points in symmetric position (which means they are
vertices of a regular n-gon).

It is immediate that in the optimal solution, some J points of P are shifted
by exactly δ∗; we argue that J ≤ 3. Renumber the points in P so that the points
shifted by δ∗ are p1, . . . , pJ , and let q1, . . . , qJ be the shifted points. Suppose
we know that qj is the kj -th vertex of the optimal n-gon, where k1, . . . , kJ are
some distinct integers between 1 and n. We can then write 3 equations for each
j = 1 . . . J :

|pjqj | = δ∗

qj − c = Rkj2π/n (q1 − c)

where c is the center of symmetry of the n-gon and Rkj2π/n is the rotation matrix
with rotation angle kj2π/n. Overall, we have 3J equations in 3 + 2J variables
(3 variables for c and δ∗ + 2 variables per qj). The system has a solution with
an isolated δ∗ when 3J = 3 + 2J .

The above observations lead to a (high) polynomial-time algorithm for the
problem: Guess 3 points of P and 3 numbers k1 . . . k3. For each guess, solve the
above described system of 9 equations in 9 unknowns to get (a constant num-
ber of) candidate values for δ∗; for each candidate run the symmetry detection
algorithm from Section 4.1 with radius-δ∗ disks centered on points of P in the
input.

A linear-time 4-approximation. Let g be the centroid of P . Take any point
p ∈ P and compute, in O(n) time, the regular n-gon Q that has p as a vertex
and g as center. It is known [5] that restricting the center of the n-gon to lie
at g does not hurt by more than a factor of 2, and that neither does insisting,
in addition, that p is a vertex of the n-gon. Interestingly, constructing Q alone
does not yield a 4-approximation of the value of δ∗ (even though we know that
Q is a 4-approximation); this is because (other than for p) we do not know which
point of P moves to which vertex of Q. If that is of interest, one can compute
a bottleneck matching between P and vertices of Q in additional O(n1.5 log n)
time [3].

A PTAS. We compute the 4-approximation, determine δ ≤ 4δ∗, and lay out
O( 1

ε
) × O(1

ε
) grids Gg, Gp in the δ-neighborhood of g and of some point p ∈ P

resp. Then, for each pair (gε, pε) of grid points from Gg × Gp we compute the
regular polygon Qgε,pε centered at gε and having a vertex at pε, and find the value
δqε,pε of the bottleneck matching between P and the vertices of Qgε,pε . The best
δgε,pε is a (1 + ε)-approximation of δ∗, and the running time is O( 1

ε4 n1.5 log n).



60 E.M. Arkin et al.

Acknowledgments

We thank anonymous reviewers for helpful comments. E. Arkin and J. Mitchell
are partially supported by the National Science Foundation (CCF-0729019, CCF-
1018388). Work by L. Schlipf was supported by the Deutsche Forschungsgemein-
schaft within the research training group ‘Methods for Discrete Structures’(GRK
1408). V. Polishchuk is funded by the Academy of Finland grant 138520.

References

1. Arkin, E.M., Mitchell, J.S.B., Polishchuk, V., Yang, S.: Convex transversals. In: Fall
Workshop on Computational Geometry (2010)

2. Basu, S., Pollack, R., Roy, M.-F.: On computing a set of points meeting every cell
defined by a family of polynomials on a variety. J. Complex. 13(1), 28–37 (1997)

3. Efrat, A., Itai, A., Katz, M.J.: Geometry helps in bottleneck matching and related
problems. Algorithmica 31(1), 1–28 (2001)

4. Goodrich, M.T., Snoeyink, J.: Stabbing parallel segments with a convex polygon.
Comput. Vision Graph. Image Process. 49(2), 152–170 (1990)

5. Iwanowski, S.: Testing approximate symmetry in the plane is NP-hard. Theor. Com-
put. Sci. 80(2), 227–262 (1991)

6. Kaplan, H., Rubin, N., Sharir, M.: Line transversals of convex polyhedra in R
3. In:

SODA 2009, pp. 170–179 (2009)
7. Löffler, M., van Kreveld, M.J.: Largest and smallest convex hulls for imprecise points.

Algorithmica 56(2), 235–269 (2010)
8. Tamir, A.: Problem 4-2 (New York University, Dept. of Statistics and Operations

Research). Problems Presented at the Fourth NYU Computational Geometry Day
(March 13, 1987)



How to Cover a Point Set with a V-Shape of

Minimum Width

Boris Aronov and Muriel Dulieu�

Department of Computer Science and Engineering, Polytechnic Institute of NYU,
Brooklyn, NY 11201-3840, USA

aronov@poly.edu, mdulieu@gmail.com

Abstract. A balanced V-shape is a polygonal region in the plane con-
tained in the union of two crossing equal-width strips. It is delimited by
two pairs of parallel rays that emanate from two points x, y, are con-
tained in the strip boundaries, and are mirror-symmetric with respect to
the line xy. The width of a balanced V-shape is the width of the strips.

We first present an O(n2 log n) time algorithm to compute, given a set
of n points P , a minimum-width balanced V-shape covering P . We then
describe a PTAS for computing a (1 + ε)-approximation of this V-shape
in time O((n/ε) log n+ (n/ε3/2) log2(1/ε)).

1 Introduction

Motivation. The problem we consider in this paper was motivated by the follow-
ing curve reconstruction question: One is given a set of points sampled from a
curve in the plane. The sample is noisy in the sense that the points lie near the
curve, but not exactly on it. One would like to reconstruct the original curve
from this data. Clearly one has to make some assumptions about the point set
and the curve: If the curve is “too wiggly” or the noise is too large, little can be
done. One approach is to assume that the curve is smooth and the sample points
lie not too far from it; see [10,11] and references therein.1 Roughly speaking, one
can then approximate a stretch of a curve by an elongated rectangle (or strip)
whose width is determined both by the curvature of the curve and the amount
of noise. Refining this approximation allows one to reconstruct the location of
the curve and its normal vector.

Complications arise when a curve makes a sharp turn, as it does not have
a well-defined direction near the point of turn. It has been suggested [10, 15]
that one approach to handle this situation is to replace fitting the set of points
corresponding to a smooth arc of a curve with a strip by fitting with a wedge-like

� Work on this paper has been supported by grant No. 2006/194 from the U.S.-Israel
Binational Science Foundation and by NSF Grant CCF-08-30691. Work by Boris
Aronov has also been supported by NSA MSP Grant H98230-10-1-0210.

1 See [6] for a detailed survey of different notions of measuring similarity between geo-
metric objects; is there a sensible (and relevant for our purposes) notion of closeness
between a discrete unordered point set and a curve?

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 61–72, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



62 B. Aronov and M. Dulieu

shape that we call a “balanced V-shape;” perhaps one might incorporate it in
an algorithm such as that of [13]. It is meant to model one thickened turn in a
piecewise-linear curve; refer to the figure and precise definitions below.

In this paper, we construct a slower exact algorithm for identifying a V-shape
that best fits a given set of points in the plane, then a faster constant-factor
approximation algorithm, and finally a considerably more involved algorithm
that produces a (1 + ε)-approximation.

The problem we solve is a new representative of a widely studied class of
problems, namely geometric optimization or fitting questions; see [1, 3, 4, 5] and
references therein. Generally, the problem is to find a shape from a given class
that best fits a given set of points. Classical examples of such problems are lin-
ear regression in statistics, the computation of the width of a point set (which
constructs a minimum-width strip covering the set), computing a minimum en-
closing ball, cylinder, or ellipsoid, a minimum-width spherical or cylindrical shell,
or a small number of strips of minimum width, covering the point set; see [8, 1].

Previous work most closely related to our problem is that of Glozman, Kedem,
and Shpitalnik [14]. They compute a double-ray center for a planar point set S.
A double-ray center is a pair of rays emanating from one apex, minimizing the
Hausdorff distance between S and the double ray. While the shape they consider
is not exactly a V-shape, it is similar enough to be used for the same purpose.
The exact algorithm they present runs in O(n3α(n) log2 n) time, however, in
contrast to our near-quadratic-time algorithm.

Another paper closely related to our problem is that of Agarwal, Procopiuc,
and Varadarajan [2]. It concerns the 2-line-center problem studied extensively
in the past; see the references in [2]. The goal is to cover a given set of points
by two strips of minimum possible width. A possible application is fitting two
lines to a point set. There had been several previously known near-quadratic time
exact algorithms for the problem. An O(n log n)-time 6-approximation algorithm,
and an O(n log n + nε−2 log(1/ε) + ε−7/2 log(1/ε))-time (1 + ε)-approximation
algorithm were presented in [2]. A V-shape covering a point set is a special case
of covering a point set by two strips, so some of the tools from [2] apply to our
problem as well.

X1

Y1 Y2

X2

R(V )
L(V )

x

y

Problem statement and results. In this
paper, we focus on the class of polyg-
onal regions in the plane that we call
balanced V-shapes. A balanced V-shape
has two vertices x and y and is delim-
ited by two pairs of parallel rays. One
pair of parallel rays emanate from x and
y on one side of the line xy and the other
pair of rays emanate from x and y on the
other side of xy, symmetrically with respect to xy (see the above figure). In par-
ticular, a balanced V-shape is completely contained in the union of two crossing
strips of equal width. Its width is the width of the strips.



How to Cover a Point Set with a V-Shape of Minimum Width 63

Consider a point set P of n points in the plane. We describe, in Section 3, an
O(n2 log n) time algorithm that computes a balanced V-shape with minimum
width covering P .

Our algorithm actually identifies a particular type of V-shapes that we call
“canonical” (see below for definitions) and enumerates all minimum-width canon-
ical V-shapes covering P ; as some degenerate n point sets have Θ(n2) such V-
shapes (see the full version of the paper), this approach will probably not yield
a subquadratic algorithm. This leaves open the problem of how quickly one can
identify just one minimum-width V-shape covering P .

In Section 4, we present an O(n log n) algorithm that constructs a V-shape
covering P with width at most 13 times the minimum possible width. In Sec-
tion 5, we show how to construct a (1+ε)-approximation in time O((n/ε) log n+
(n/ε3/2) log2(1/ε)), starting with the 13-approximation obtained earlier.

2 Reduction to Canonical V-Shapes

In the remainder of this paper, unless noted otherwise, we assume that the points
of P are in general position: no three points are collinear and no two pairs of
points define parallel lines.

We will find it convenient to consider a larger class of objects, namely V-
shapes. A (not necessarily balanced) V-shape (refer to the figure below) is a
polygonal region similar to a balanced V-shape except that the widths except

X1

L(V )
X2

Y1
Y2

R(V )

y

x

that the widths of its two arms need not
be the same. More formally, a V-shape V
is a polygonal region bounded by two
pairs of parallel rays emanating from its
two vertices x and y. One pair of paral-
lel rays (left rays X1 and Y1) lies on the
left side of the directed line xy, while the
other pair (right rays X2 and Y2) lies on
its right side. The inner rays Xi emanate
from x, while outer rays Yi emanate from y. X1∪X2 is the inner boundary of V ,
while Y1 ∪ Y2 is its outer boundary. The left arm, L = L(V ), of V is its portion
on the left of yx; i.e., it is the region bounded by rays X1 and Y1 and segment
xy. The width of the left arm, width(L(V )), is the distance between X1 and Y1.
The right arm and its width are defined analogously. The width of V , width(V ),
is the larger of the widths of its two arms. V is contained in the union of two
strips S1 and S2: Si is delimited by the lines containing Xi and Yi, respectively;
we refer to S1 and S2 as the left and right strip of V , respectively.

A minimum-width balanced V-shape can be obtained from a minimum-width
V-shape by widening the narrower arm until the widths of the arms are equal.

In the remainder of the paper, the n-point set P is fixed. We only consider
a particular type of V-shapes that we call canonical, unless otherwise stated.
A V-shape is canonical, if the bounding rays of each arm pass through exactly
three points of P ; more precisely if |Xi ∩ P | + |Yi ∩ P | ≥ 3, for i = 1, 2 (recall



64 B. Aronov and M. Dulieu

that, by our general position assumption, |Xi ∩P |, |Yi ∩P | ≤ 2); in addition, we
require that each arm of a canonical V-shape covering P is locally of minimum
width, i.e., neither arm can be narrowed by an infinitesimal motion.

It is not difficult to see that at least one minimum-width V-shape covering P is
canonical, so we discard any non-canonical V-shape considered by our algorithm.
Moreover we will assume that a canonical minimum-width covering V-shape
does not have a zero-width arm (it cannot, as proved in the full version of this
paper). The remaining canonical minimum-width V-shapes considered fall into
the following three categories:

both-outer. Each outer ray contains two points of P , and each inner ray con-
tains one.

inner-outer. On one arm of the V-shape, the outer ray contains one point of
P , and the inner ray contains two. For the other arm, it is the opposite, i.e.,
the outer ray contains two points of P , and the inner ray contains one.

both-inner. Each outer ray contains one point of P and each inner ray contains
two.

3 Computing a Canonical Minimum-Width V-Shape

To find a canonical minimum-width V-shape covering P , we will search inde-
pendently for the best solution for each of the three types identified above and
output the V-shape that minimizes the width. Put H := CH(P ).

V-shapes of both-outer type. Consider a covering V-shape V with outer rays
Y1, Y2 containing edges e1, e2 of H , respectively; refer to the figure on the

e2

y

e1

�

Y1
Y2

P1 P2

right. Let � be the bisector of the an-
gle Y1yY2. In the full version of this
paper, we argue that we can assume
that L(V ) lies to the left of � and R(V )
lies to the right of �. Hence it is suf-
ficient to find the point farthest from
Y1 (Y2) and lying to the left (respec-
tively, right) of �. The larger distance
determines the width of V . This can
be accomplished by building a data structure D(P ) on P that supports the fol-
lowing queries: Given a halfplane h and a direction d, return the extreme point
of P ∩ h in direction d. O(n2) queries are sufficient to enumerate all choices of
e1, e2 and identify the best both-outer-type V-shape. D(P ) can be constructed
in O(n2 log n) time and supports logarithmic-time queries, resulting in total run-
ning time of O(n2 log n).

D(P ) is constructed as follows: We build the arrangement A = A(P ∗) of lines
dual to points of P . Cells of A correspond to different ways to partition P by
a line. We construct a directed spanning tree T of the cells of A, starting with
the bottommost cell and allowing only arcs from a cell f to a cell immediately
above f and sharing an edge with it; we use Pf ⊂ P to denote the set of



How to Cover a Point Set with a V-Shape of Minimum Width 65

points whose dual lines lies below f . Using T as the history tree, we store the
convex hull Pf for every face f ∈ A, using a fully persistent version [12] of the
semi-dynamic convex hull data structure of [17]. We also preprocess A for point
location. Give a query (say, upper) half-plane h and direction d, we locate the
face f of A containing the point dual to the bounding line of h and consult the
data structure associated with f and storing Pf = P∩h to find the extreme point
Pf in direction d, all in logarithmic time. We omit the details in this version.

V-shapes of inner-outer type. In this section, we describe how to find a minimum-
width canonical V-shape covering P and having exactly one edge of CH(P ), say
e, on its outer boundary; due to our general position assumptions, it contains two
points of P on the inner bounding ray of its other arm. We handle each choice of e
independently, in O(n log n) time, yielding an overall O(n2 log n) time algorithm.

Y1

X1

X2

Y2

�

�′
�p1p2

S1

S2

e

q

p1

p2

p

Q

Q′

Having fixed an edge e of CH(P ), con-
sider a (minimum-width canonical) V-
shape V covering P that has e on its
boundary. For ease of description, suppose
Y1 ⊃ e, X2 contains two points p1, p2 ∈ P ,
while both Y2 and X1 contain one point
of P each, denoted p and q, respectively;
see the figure to the right.

Let � be the line containing e and �′ be
the line containing e′ := p1p2. Set Q :=
S1 ∩ P and Q′ := P \Q. We observe that

a) Q is the set of points of P at distance
at most dist(q, �) from �;

b) p1p2 is an edge of CH(Q′);
c) Y2 is contained in a supporting line

�p1p2 of CH(Q′) (which must also be a supporting line to CH(P ) for V to
cover P ) parallel to �′; this line lies on the same side of �′ as Q′;2 and

d) width(V ) = max(width(S1),width(S2)) =
max(dist(q, �),dist(p1p2, �p1p2)).

Our algorithm enumerates all choices for the point q, in order of decreasing
distance from �. For the current choice of q, it maintains CH(Q′), say as an
AVL tree, and, for each edge e′ of CH(Q′), the distance to the corresponding
supporting line �e′ to CH(P ) (not to CH(Q′)). Edges with distances are stored in
a min-heap; the minimum such distance gives the minimum width for S2 for the
current choice of S1; the larger of the two determines the width of the current
V-shape. We record the best width of any V-shape encountered in the process.

The algorithm is initialized with Q′ set to the set consisting of the point of P
furthest from �. A generic step of the algorithm involves moving the current point
q from Q to Q′. We update the convex hull of Q′ by computing the supporting
tangents from q to the old hull, in O(log n) time. For the two new hull edges e1, e2,

2 If width(R(V )) = 0, we have Q′ ⊂ �′ and Y2 ⊂ �′.



66 B. Aronov and M. Dulieu

we compute the corresponding supporting lines �e1 , �e2 of CH(P ), using a suitable
balanced-tree representation of CH(P ), also in logarithmic time. We add the new
edges with the corresponding widths to the min-heap, after removing from it the
entries of all the eliminated edges of CH(Q′). The root of the min-heap yields
the best width for S2 for the current partition {Q, Q′}. The algorithm requires
presorting points by distance from � and then a linear number of balanced-search-
tree and heap operations (since the number of edges inserted is less than 2n and
each cannot be deleted more than once), for a total running time of O(n log n)
for a fixed e, as claimed.

Working through the entire set P (except for the endpoints of e), in order of
decreasing distance from �, growing Q′ and shrinking Q, we obtain a sequence
of a linear number of V-shapes (which include all the canonical minimum-width
V-shapes covering P ) with e on its outer boundary and two other points of P
lying on the opposite arm’s inner boundary. It is not difficult to check (the details
are omitted in this version) that every combination (e, q, e′, �e′) examined by the
algorithm yields a valid V-shape covering P . In the list of all V-shapes considered
by the algorithm will appear all the canonical V-shapes of the inner-outer type
and therefore a minimum-width canonical V-shape of this type will be included.

To summarize, inner-outer type V-shapes can be handled in total time
O(n2 log n).

V-shapes of both-inner type. Now a covering V-shape V has points a, b of P on
its inner ray X1 and points c, d on X2; refer to the figure below; points a, b, c, d
are in convex position, in this counterclockwise order. It is known [16] that there
are at most O(n2) such wedges W = W (a, b, c, d) determined by some quadruple
of points a, b, c, d ∈ P and empty of points of P ; note that W determines V , so
it is sufficient to enumerate all empty wedges W .

CH(Q)

Q(a, b)

b

a

dc

For a pair a, b ∈ P , we compute all pairs
c, d, so that W (a, b, c, d) is an empty wedge.
Let Q(a, b) be the set of all points of P lying
to the left of the directed line ab.

Observation 1. W (a, b, c, d), in the above
notation, is an empty wedge if and only if line
cd supports CH(Q) and separates segment ab

from Q = Q(a, b) (and a, b, c, d are in this counterclockwise order).

Now enumerating all k pairs c, d for a fixed choice of a, b can be done in time
O((k + 1) log n), as follows. While handling V-shapes of both-outer type we
constructed a data structure D(P ) which, for a given line (here ab), produces
a balanced search tree storing the convex hull of the points of P lying to one
side of the line (here Q = Q(a, b)). Using D(P ), we find the point z of Q closest
to the line ab and traverse the boundary of CH(Q) in both directions from z,
to list all edges cd of CH(Q) satisfying the conditions of the above observation.
It is sufficient to examine k + 2 edges of CH(Q). Repeating the procedure for
all choices of a, b and recalling that the number of empty wedges is at most
quadratic, we deduce that the enumeration algorithm runs in time O(n2 log n).



How to Cover a Point Set with a V-Shape of Minimum Width 67

4 A 13-Approximation Algorithm

Let w be the minimum value such that a set of points P can be covered by a V-
shape of width w. We present an algorithm that computes a V-shape covering P
of width at most 13w in time O(n log n). For this purpose, we use the O(n log n)
time 6-approximation algorithm for the 2-line-center problem presented by Agar-
wal, Procopiuc, and Varadarajan [2]. The 2-line-center problem is the following:
Given a set P of n points in IR2, cover P by two congruent strips of minimum
width.

Observation 2. If w′ is the width of two congruent strips of minimum width
covering P , w′ ≤ w.

Our 13-approximation algorithm is as follows. Use the 6-approximation algo-
rithm of [2] to compute two congruent strips of width w′′ that cover P ; w′ ≤
w′′ ≤ 6w′. Find the median lines �1 and �2 of the strips. For all points in each
strip, project them onto �1 and �2 respectively (the points in the intersection
of the strips are duplicated and projected onto both �1 and �2). Let P ′ be the
resulting set of projected points. Compute an exact minimum width V-shape
V ′ covering P ′ (see Section 4.1) in O(n log n) time. The desired approximate
V-shape V is obtained by widening V ′ by w′′/2 in all directions.

Note that it is possible that the two strips computed above are such that a
V-shape defined by them contains P . In this case we return that V-shape. This
clearly produces a 6-approximation, due to Observation 2. In the remainder of
this section, we will assume that this is not the case, in other words, one of the
two strips has points of P on both sides of it.

Theorem 3. This algorithm computes a 13-approximation of a minimum-width
V-shape covering P .

Proof. Let Vbest be a minimum-width V-shape of P , V ′ — a minimum-width
V-shape of P ′, and Vapx — the approximate V-shape computed by the algorithm.
As the points of P have been moved by a distance of at most w′′/2 to form P ′,
width(V ′) ≤ width(Vbest)+w′′. Since Vapx is a widened version of V ′, it contains
the points of P . Moreover, width(Vapx) ≤ width(V ′)+w′′ ≤ width(Vbest)+2w′′ ≤
w + 12w′ ≤ 13w by Observation 2. �

Remark. Using the (1 + ε)-approximation algorithm of [2] in place of their
6-approximation algorithm in our procedure, we can attain any approximation
factor larger than three for the minimum-width V-shape. The running time
remains O(n log n), with the constant of proportionality depending on the quality
of the approximation. We do not discuss this extension further, since we present
our own (1 + ε)-approximation algorithm for the problem in Section 5.

4.1 Minimum-Width V-Shape for Points on Two Lines

We now describe how to compute the minimum-width V-shape, given a point
set P ′ contained in the union of two lines �1, �2 in the plane. Put z := �1 ∩ �2.



68 B. Aronov and M. Dulieu

Let P ′
1 := P ′ ∩ �1, and P ′

2 := P ′ ∩ �2. As we have assumed that �1, �2 do
not already form a V-shape containing P ′, �1 separates P ′

2 in two sets and/or �2

separates P ′
1. The convex hull CH(P ′) has three or four vertices. Moreover, by

reasoning similar to that of Section 3, the outer boundary of V ′ contains two,
three, or four vertices of CH(P ′) (in the case where an outer ray is contained in
�1 or �2, we consider only the extreme points). Before describing how we handle
these cases, we need a technical lemma, whose proof we omit in this version of
the paper.

Lemma 1. Given a line partitioning P ′ into P ′
r, P ′

� and given their convex hulls
CH(P ′

r), CH(P ′
�), the minimum-width canonical V-shape V ′ of P ′ containing P ′

r

in one strip and P ′
� in the other can be computed in constant time; some points

of P ′ might lie in both strips of V ′.

Now we consider the different types of canonical V-shapes covering P ′ and de-
scribe how to find a minimum-width V-shape of each type.

Case 1: An outer bounding ray of V ′ contains an edge e of CH(P ′). Let � be
the line containing e. For all points p of P ′, draw a line �p through p and parallel
to �. Apply Lemma 1 to (the partition induced by) �p. This can be implemented
to run in overall time O(n log n).

In the remaining cases, each of the outer rays of V ′ contains precisely one
vertex of CH(P ′) and each inner ray contains two points of P ′.

Case 2: An inner ray of V ′ lies on �1 or �2. Suppose an inner ray of V ′ is
contained in �1. Draw two lines parallel to �1 and very close to it, one to the left
of �1, one to the right of �1. Apply Lemma 1 to each of these two lines.

Case 3: Point z = �1 ∩ �2 lies between the two arms of V ′. Draw the two lines
passing through z and bisecting the angles between �1 ∩ �2. Apply Lemma 1 to
each of these two lines.

Case 4: Point z is inside an arm of V ′. For each pair of consecutive points
p, q ∈ P ′ on �1 or on �2 not separated by z, apply Lemma 1 to the perpendicular
bisector of the segment pq.

In the full version of the paper, we argue that the last procedure returns the
best minimum-width V-shape V ′ of P ′ with two points on its outer boundary
and z in one of its arms, correctly handling case 4 and thereby concluding our
description.

5 A (1 + ε)-Approximation Algorithm

In this section we describe how to construct, given a point set P and a real
number ε > 0, a V-shape V covering P , with width(V ) ≤ (1 + ε)wopt, where
wopt is the width of a minimum-width V-shape covering P .

We start by recalling the notion of an anchor pair used in [2]. Given a V-
shape V covering P , fix one of the strips of V , say S1. We say that a pair of
points p, q ∈ P ∩S1 is an anchor pair, if dist(p, q) ≥ diam(P ∩S1)/2. Lemma 3.3
in [2] describes how to identify at most 11 pairs of points in P , such that, for
any two-strip cover of P , at least one of the pairs is an anchor pair for one of



How to Cover a Point Set with a V-Shape of Minimum Width 69

the strips; the algorithm requires O(n log n) time. As covering by a V-shape is
a special case of covering by two strips, the definition and the algorithm apply
here as well.

We show how to, given a potential anchor pair p, q, construct a (1 + ε)-
approximation of the minimum-width V-shape covering P for which p, q is an
anchor pair. More precisely, below we prove

Lemma 2. Given a potential anchor pair p, q ∈ P , we can construct, in time
O((n/ε) log n+(n/ε3/2) log2(1/ε)), a V-shape covering P , of width at most 1+ε
times the minimum width of any V-shape covering P for which p, q is an anchor
pair.

Applying this procedure at most 11 times, we obtain our desired approximation
algorithm:

Theorem 4. A V-shape covering P and of width at most (1 + ε)wopt can be
constructed in time O((n/ε) log n + (n/ε3/2) log2(1/ε)).

We first prove that it is sufficient to consider those V-shapes V with anchor pair
p, q, for which the strip containing p, q has one of a small set of fixed directions.
Setting β := sin−1 min{εwidth(V )/(6d(p, q)), 1} and γ := β+sin−1(min{1, width
(V )/d(p, q)}), we prove the following

Lemma 3. Let V-shape V cover P , and let p, q be an anchor pair for S1(V ).
Rotating S1(v) by an angle at most β does not increase the width of the V-shape
by more than a factor of 1 + ε/3, and the angle between pq and the direction of
the rotated strip cannot exceed γ.

Proof. Put w := width(V ). Let B be the minimum bounding box of P ∩S1. More
precisely, it is the shortest rectangle cut out of S1 by two lines perpendicular to
S1 and containing P ∩S1; refer to Figure 1. Let s and t ≤ w be the length (along
the axis of S1) and width of B, respectively. Let S′

1 be the minimal parallel strip
containing B ∩ V , whose direction is α ≤ β away from that of S1 (there are two
choices for S′

1, corresponding to rotating clockwise and counterclockwise; only
one is shown; the argument applies to both cases). Then

V

S1 B

s

t

Fig. 1. Rotation by α does not change the width by much



70 B. Aronov and M. Dulieu

width(S′
1) ≤ s sinα + t cosα ≤ 2d(p, q) sinα + w

≤ w(1 + 2
d(p, q)

w
sinα) ≤ t(1 + ε/3),

since sin α ≤ sinβ ≤ εw/(6d(p, q)). Now replace S1 by S ′
1 to obtain a new V-

shape V ′ covering P . Its width is min{width(S′
1),width(S2)} ≤ (1 + ε/3)w, as

claimed.
Observe that in the above construction, the angle between pq and the direction

of S′
1 cannot exceed

α + sin−1(min{1, t/d(p, q)}) ≤ β + sin−1(min{1, width(V )/d(p, q)}) = γ. 	


We conclude that enumerating all V-shapes that contain p, q in their strip S1

and whose directions are (a) at most γ away from that of d(p, q) and (b) spaced
at most β apart, would yield a V-shape whose existence is claimed in Lemma 2.
The number of directions to be tested is at most O(γ/β) = O(1/ε).

Given a candidate anchor pair p, q, the algorithm proceeds by starting with
the direction pq. Since we need not consider V-shapes whose width is larger
than the approximate width wapx computed in Section 4 (this is where the 13-
approximation algorithm is used to bootstrap our (1 + ε)-approximation), we
replace width(V ) by the smaller wapx/13 in the definition of β above and by the
larger wapx in the definition of γ, thereby erring on the conservative side in each
case. Having computed (conservative estimates of) β and γ, we enumerate the
O(1/ε) directions of the form θi := θpq + iβ, where θpq is the direction of pq and
i is an integer ranging from −�γ/β� to �γ/β�. It remains to explain how to deal
with one such direction θ := θi.

Lemma 4. One can compute a canonical V-shape V covering P with one arm
in given direction θ and width at most 1 + ε/3 times the minimum width of any
such V-shape, in time O(n log n + (n/ε1/2) log2(1/ε)).

Proof. We use an approach similar to that of the inner-outer case of our exact
algorithm but with a slight twist.

Let � be a line in direction θ supporting CH(P ). We again let q be the furthest
point from � in Q := P ∩S1 and let Q′ := P \Q. When q is fixed, the minimum-
width V-shape is determined by the minimum-width strip S2 covering Q′ and
not “splitting” P , i.e., such that it does not have points of P on both sides of
it. It is easy to ensure that S2 does not split P by observing that a direction
of S2 lying between the directions of the common outer tangents to CH(Q) and
CH(Q′) is never useful. Depending on the side where the lines supporting these
tangents cross, a minimal strip S2 covering Q′ and lying in the range between
them either crosses Q (and therefore P ) or completely covers Q (and therefore
P ). In the former case, S1 and S2 do not form a legal V-shape covering P and
in the latter they form a covering V-shape with one empty strip, which never
yields minimum width (proof omitted in this version).

The width of the resulting V-shape is the maximum of dist(q, �) and (the re-
stricted) width(S2). The algorithm proceeds by processing points q in order of



How to Cover a Point Set with a V-Shape of Minimum Width 71

decreasing distance to �, keeping track of dist(q, �) and a coreset for Q′, which
is a subset of Q′ with the property that its directional width, in every direc-
tion, is at least 1 − ε/3 that of Q′ (and expanding it by 1 + ε/3 we get a strip
covering Q′). Chan [9], in Theorem 3.7 and remarks in Section 3.4, describes
a streaming algorithm that maintains an O(1/ε1/2)-size coreset at an amor-
tized cost of O((1/ε1/2) log2(1/ε)) per insertion. For a fixed q, we go through
the coreset (after computing its convex hull, if necessary), and determine the
narrowest strip covering it and satisfying our angle constraints. The maximum
of that and dist(q, �) gives the width of the minimum-width V-shape whose
boundary passes through q.3 The amortized cost per point is dominated by the
O((1/ε1/2) log2(1/ε)) cost of insertion. Together with presorting points by dis-
tance from �, the total cost is then O(n log n + (n/ε1/2) log2(1/ε)). �

Combining Lemmas 3 and 4 yields the procedure claimed in Lemma 2 and
thereby completes our description of the (1 + ε)-approximation algorithm.

6 Concluding Remarks

As mentioned in the introduction, this work has been inspired by research on
curve fitting, in the situations where a curve takes a sharp turn. Besides the exact
and approximate versions of the problem studied above, it would be natural to
investigate a variant that can handle a small number of outliers. A natural
“peeling” approach to the problem would be to eliminate the points defining the
optimal V-shape found by our exact algorithm and trying again. We leave this
investigation for the full version of this paper.

Are there natural assumptions (perhaps in the style of “realistic input mod-
els” [7] or in the form of requiring reasonable sampling density) that would be
relevant for the curve-fitting problem, and that would make finding the minimum-
width covering V-shape easier?

Returning to the problem studied in the paper, is it possible to find an exact
minimum-width covering V-shape in subquadratic time? Is the problem 3sum-
hard?

Is it possible to speed up the approximation algorithm, improving the depen-
dence of its running time on ε? Is time O(n + f(1

ε )) achievable?
Finally, we would like to point out that there are other “reasonable” definitions

for a V-shape, if the goal is to approximate a sharp turn of a curve: One can
imagine defining a V-shape as the Minkowski sum of a disk with the union of
two rays emanating from a common point as in [14]. The width of the V-shape
would be the diameter of the disk. Can the exact algorithm from [14] be sped
up? Is there a faster approximation algorithm? Is this version of the problem
better suited for curve fitting?

3 More precisely, q lies on the boundary of S1 and may not even appear on the bound-
ary of V . However, as before, all V-shapes we examine are valid and cover P , and
the desired approximating V-shape is among them, which is sufficient.



72 B. Aronov and M. Dulieu

References

1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via
coresets. In: Goodman, J.E., Pach, J., Welzl, E. (eds.) Current Trends in Com-
binatorial and Computational Geometry, vol. 52, pp. 1–30. MSRI Publications,
Cambridge University Press, New York (2005)

2. Agarwal, P.K., Procopiuc, C.M., Varadarajan, K.R.: A (1 + ε)-approximation al-
gorithm for 2-line-center. Comput. Geometry: Theory Appl. 26(2), 119–128 (2003)

3. Agarwal, P.K., Sen, S.: Randomized algorithms for geometric optimization prob-
lems. In: Pardalos, J., Rajasekaran, S., Reif, J., Rolim, J. (eds.) Handbook of
Randomized Computation, pp. 151–201. Kluwer Academic Press, The Netherlands
(2001)

4. Agarwal, P.K., Sharir, M.: Algorithmic techniques for geometric optimization. In:
van Leeuwen, J. (ed.) Computer Science Today. LNCS, vol. 1000, pp. 234–253.
Springer, Heidelberg (1995)

5. Agarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM
Computing Surveys 30, 412–458 (1998)

6. Alt, H., Guibas, L.J.: Discrete geometric shapes: matching, interpolation, and ap-
proximation. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geom-
etry, ch.3, pp. 121–153 (1999)

7. de Berg, M., Katz, M., van der Stappen, A.F., Vleugels, J.: Realistic input models
for geometric algorithms. Algorithmica 34(1), 81–97 (2008)

8. Chan, T.M.: Approximating the diameter, width, smallest enclosing cylinder, and
minimum-width annulus. Inter. J. Comput. Geom. Appl. 12, 67–85 (2002)

9. Chan, T.M.: Faster core-set constructions and data-stream algorithms in fixed
dimensions. Comput. Geom. Theory Appl. 35, 20–35 (2006)

10. Cheng, S.-W., Funke, S., Golin, M., Kumar, P., Poon, S.-H., Ramos, E.: Curve
reconstruction from noisy samples. Comput. Geom. Theory Appl. 31(1-2), 63–100
(2005)

11. Dey, T.K.: Curve and Surface Reconstruction: Algorithms with Mathematical Anal-
ysis. In: Cambridge Monographs on Applied and Computational Mathematics,
vol. 23. Cambridge Univ. Press, New York (2007)

12. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures
persistent. J. Computer System Sci. 38(1), 86–124 (1989)

13. Funke, S., Ramos, E.A.: Reconstructing a Collection of Curves with Corners and
Endpoints. In: Proc. 12th ACM-SIAM Symp. Discr. Algorithms, pp. 344–353
(2001)

14. Glozman, A., Kedem, K., Shpitalnik, G.: Computing a double-ray center for a
planar point set. Inter. J. Comp. Geom. Appl. 2(9), 103–123 (1999)

15. Mhatre, A., Kumar, P.: Projective clustering and its application to surface recon-
struction: extended abstract. In: Proc. 22nd Annu. Symp. Comput. Geom., pp.
477–478 (2006)

16. Pinchasi, R., Radoičić, R., Sharir, M.: On empty convex polygons in a planar point
set. Combinat. Theory, Series A 113, 385–419 (2006)

17. Preparata, F.P.: An optimal real time algorithm for planar convex hulls. Comm.
ACM 22, 402–405 (1979)



Witness Rectangle Graphs�

Boris Aronov1, Muriel Dulieu1, and Ferran Hurtado2

1 Department of Computer Science and Engineering, Polytechnic Institute of NYU,
Brooklyn, NY 11201-3840, USA

aronov@poly.edu, mdulieu@gmail.com
2 Departament de Matemàtica Aplicada II,

Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
ferran.hurtado@upc.edu

Abstract. In a witness rectangle graph (WRG) on vertex point set P
with respect to witness point set W in the plane, two points x, y in P are
adjacent whenever the open rectangle with x and y as opposite corners
contains at least one point in W . WRGs are representative of a larger
family of witness proximity graphs introduced in two previous papers.

We study graph-theoretic properties of WRGs. We prove that any WRG
has at most two non-trivial connected components. We bound the diam-
eter of the non-trivial connected components of a WRG in both the one-
component and two-component cases. In the latter case, we prove that a
graph is representable as a WRG if and only if each component is a co-
interval graph, thereby providing a complete characterization of WRGs
of this type. We also completely characterize trees drawable as WRGs.

Finally, we conclude with some related results on the number of points
required to stab all the rectangles defined by a set of n points.

1 Introduction

Proximity graphs have been widely used in situations in which there is a need
of expressing the fact that some objects in a given set—which are assigned to
nodes in the graph—are close, adjacent, or neighbors, according to some geo-
metric, physical, or conceptual criteria, which translates to edges being added to
the corresponding graph. In the geometric scenario the objects are often points
and the goal is to analyze the shape or the structure of the set of spatial data
they describe or represent. This situation arises in Computer Vision, Pattern
Recognition, Geographic Information Systems, and Data Mining, among other
fields. The paper [19] is a survey from this viewpoint, and several related pa-
pers appear in [27]. In most proximity graphs, given a point set P , the adjacency

� Research of B.A. has been partially supported by NSA MSP Grants H98230-06-1-
0016 and H98230-10-1-0210. Research of B.A. and M.D. has also been supported
by a grant from the U.S.-Israel Binational Science Foundation and by NSF Grant
CCF-08-30691. Research by F.H. has been partially supported by projects MEC
MTM2006-01267 and MTM2009-07242, and Gen. Catalunya DGR 2005SGR00692
and 2009SGR1040.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 73–85, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



74 B. Aronov, M. Dulieu, and F. Hurtado

between two points p, q ∈ P is decided by checking whether in their region of
influence there is no other point from P , besides p and q. One may say that
the presence of another point is considered an interference. There are many
variations, depending on the choice of the family of influence regions [19, 9, 21].

Given a combinatorial graph G = (V, E), a proximity drawing of G consists
of a choice of a point set P in the plane with |P | = |V |, for a given criterion
of neighborhood for points, such that the corresponding proximity graph on
P is isomorphic to G. This question belongs to the subject of graph drawing
problems, in which the emphasis is on geometrically representing graphs with
good readability properties and fulfilling some aesthetic criteria [4]. The main
issues are to characterize the graphs that admit a certain kind of representation,
and to design efficient algorithms for finding such a drawing, whenever possible.

Proximity drawings have been studied extensively and utilized widely [5, 21].
However, this kind of representation is somehow limited and there have been
some attempts to expand the class, for example using weak proximity graphs [6].
Another recently introduced generalization is the concept of witness proximity
graphs [1,2], in which the adjacency of points in a given vertex set P is decided by
the presence or absence of points from a second point set W—the witnesses—
in their region of influence. This generalization includes the classic proximity
graphs as a particular case, and offers both a stronger tool for neighborhood
description and much more flexibility for graph representation purposes.

In the positive witness version, there is an adjacency when a witness point is
covered by the region of influence. In the negative witness version, two points
are neighbors when they admit a region of influence free of any witnesses. In
both cases the decision is based on the presence or absence of witnesses in the
regions of influence, and a combination of both types of witnesses may also be
considered. Observe that by taking W = P playing a negative role, we recover
the original proximity graphs; so this is a proper generalization. Witness graphs
were introduced in [1], where the focus is on the generalization of Delaunay
graphs. The witness version of Gabriel graphs was studied in [2], and a thorough
exploration of this set of problems is the main topic of the thesis [14].

In this paper, we consider a positive witness proximity graph related to the
rectangle-of-influence graph, the witness rectangle graph. In the rectangle of
influence graph RIG(P ), usually studied as one of the basic proximity graphs
[22, 21], x, y ∈ P are adjacent when the rectangle B(x, y) they define covers no
third point from P ; B(x, y) is the unique open isothetic rectangle with x and y
at its opposite corners. The witness rectangle graph (WRG) of vertex point set
P (or, simply, vertices) with respect to witness point set W (witnesses), denoted
RG+(P, W ), is the graph with the vertex set P , in which two points x, y ∈ P
are adjacent when the rectangle B(x, y) contains at least one point of W . The
graph RG+(P, ∅) has no edges. When W is sufficiently large and appropriately
distributed, RG+(P, W ) is complete.We also note that a negative-witness version
of this graph with W = P would be precisely RIG(P ) discussed above; in fact
RG+(P, P ) is precisely the complement of RIG(P ). An example is shown in
Figure 1. We show in this paper that the connected components of WRGs are



Witness Rectangle Graphs 75

b

u v
a

c

d

b

a

c

d

Fig. 1. Left: A set of points P = {a, b, c, d} and a witness set W = {u, v}. Right: the
witness rectangle graph RG+(P, W ). In all our figures for WRGs solid dots denote
vertices and dots with a cross denote (positive) witnesses.

geometric examples of graphs with small diameter; these have been attracting
substantial attention in the pure graph theory setting, and are far from being
well understood, even for diameter two [16, 24, 25].

Besides some computational issues, such as the construction of RG+(P, W ) for
given sets P and W in an output-sensitive manner, in this paper we study sev-
eral graph-theoretic properties of WRGs: (a) We completely characterize trees
drawable as WRGs (Theorem 2). (b) We argue that any WRG has zero, one, or
two non-trivial connected components (see the definition below and Theorem 3).
(c) We prove that the diameter of a single-component WRG is at most six, and
that this bound is tight in the worst case (Theorem 3 and subsequent discus-
sion). (d) We prove that the diameter of a (non-trivial) connected component of
a two-component WRG is at most three and this can be achieved in the worst
case (Theorem 3). (e) In the two-component case, we provide a complete charac-
terization of graphs representable as WRGs. Such graphs, disregarding isolated
vertices, are precisely disjoint unions of two co-interval graphs (Theorem 4). This
last result allows us to recognize in polynomial time if a combinatorial graph with
two non-trivial components can be drawn as a WRG.

Finally, in Section 5, we present some related results on stabbing rectangles
defined by a set of points with other points. They can be interpreted as questions
on “blocking” rectangular influences.

Terminology and notation. Throughout the paper, we will work with finite point
sets in the plane, in which no two points lie on the same vertical or the same
horizontal line.

Hereafter, for a graph G = (V, E) we write xy ∈ E or x ∼ y to indicate that
x, y ∈ V are adjacent in G, and generally use standard graph terminology as
in [8]. When we speak of a non-trivial connected component of a graph, we refer
to a connected component with at least one edge (and at least two vertices).

Given two graphs G1 = (V1, E1) and G2 = (V2, E2) with disjoint vertex sets,
their join is the graph G1 + G2 = (V1 ∪ V2, E1 ∪ E2 ∪ V1 × V2) [28].

How to compute a witness rectangle graph. De Berg, Carlsson, and Overmars [7]
generalized the notion of dominance in a way that is closely related to witness
rectangle graphs by defining dominance pairs p, q of a set of points P , with re-
spect to a set O of so-called obstacle points. More precisely, p is said to dominate
q with respect to O if there is no point o ∈ O such that p dominates o and o



76 B. Aronov, M. Dulieu, and F. Hurtado

dominates q. Recall that p = (p1, p2) dominates q = (q1, q2) if and only if pi ≥ qi,
for i = 1, 2, and p �= q.

Moreover they prove the following theorem:

Theorem 1 (De Berg, Carlsson, and Overmars [7]). All dominance pairs
in a set of points P with respect to a set of points O can be computed in time
O(n log n + k), where n = |P |+ |O| and k is the number of answers.

Collecting all dominance pairs in a set of points P with respect to a set of points
W , and repeating the procedure after rotating the plane by 90◦, one obtains the
negative version of the witness rectangle graph. A simple modification of their
algorithm yields the positive version:

Corollary 1. Let P and W be two point sets in the plane. The witness rectangle
graph RG+(P, W ) with k edges can be computed in O(k + n log n) time, where
n := max{|P |, |W |}.

2 Structure of Witness Rectangle Graphs

Let G := RG+(P, W ) be the witness rectangle graph of vertex set P with respect
to witness set W . We assume that the set of witnesses is minimal, in the sense
that removing any one witness from W changes G. Put n := max{|P |, |W |} and
let E := E(G) be the edge set of G. We partition E into E+ and E− according
to the slope sign of the edges when drawn as segments. Slightly abusing the
terminology we refer to two edges of E+ (or two edges of E−) as having the
same slope and an edge of E+ and an edge of E− as having opposite slopes.

corner

bay

bay

corner

Recall that the open isothetic rectangle (or
box, for short) defined by two points p and q in
the plane is denoted B(p, q); for an edge e = pq
we also write B(e) instead of B(p, q). Every
edge e, say in E+, defines four regions as in the
figure on the right, that we call (open) corners
and (closed) bays.

Observation 1. Every x ∈ P inside a corner
of an edge e is adjacent to at least one endpoint of e.

Note that for any P , W , and P ′ ⊂ P , the graph RG+(P ′, W ) is an induced
subgraph of RG+(P, W ), so the class of graphs representable as WRGs is closed
under the operation of taking induced subgraphs.

Two edges are independent when they share no vertices and the subgraph
induced by their endpoints contains no third edge. Below we show that G cannot
contain three pairwise independent edges, which imposes severe constraints on
the graph structure of G.

Lemma 1. Two independent edges in E+ (respectively, E−) cannot cross or
share a witness. The line defined by their witnesses is of negative (respectively,
positive) slope.



Witness Rectangle Graphs 77

Proof. Let the two edges be ab, cd ∈ E+, with x(a) < x(b) and x(c) < x(d).
A common witness would have a and c in its third quadrant and b and d in
the first, implying a ∼ d and c ∼ b, a contradiction. If ab and cd cross, assume
without loss of generality that x(a) < x(c). Neither c nor d can be inside B(a, b)
(because of Observation 1) and hence B(a, d)∪B(c, b) ⊃ B(a, b), implying a ∼ d
or c ∼ b, a contradiction. Finally, the second part of the statement is a direct
consequence of Observation 1. �

Lemma 2. Two independent edges with opposite slopes must share a witness.

Proof. Let ab ∈ E+ and cd ∈ E− be independent. Let w be a witness for ab
and let w′ be a witness for cd. The points c and d are not in quadrants I or III
of w, as otherwise the two edges would not be independent. If w is shared, we
are done. Otherwise it cannot be that c lies in quadrant II of w while d lies in
quadrant IV, or vice versa. Therefore c and d are either both in quadrant II or
both in quadrant IV of w. Assume, without loss of generality, the former is true.
The witness w′ is not outside of B(a, b), as we would have c ∼ a and/or c ∼ b
(assuming, without loss of generality, that x(c) < x(d)) and the edges would
not be independent. Therefore w′ is in B(a, b), so w′ is a shared witness, as
claimed. �

Lemma 3. There are no three pairwise independent edges in E+ (or in E−).

Proof. Assume that three pairwise independent edges e1, e2, e3 in E+ are wit-
nessed by w1, w2, w3, respectively, with x(w1) < x(w2) < x(w3). Then, by
Lemma 1, y(w1) > y(w2) > y(w3). By the same lemma at least one endpoint of
e1 is in the second quadrant of w2 and at least one endpoint of e3 is in its fourth
quadrant, contradicting their independence. �

Lemma 4. G does not contain three pairwise independent edges.

Proof. By Lemma 3, two edges ab and cd of the three pairwise independent edges
ab, cd, and ef have opposite slopes. By Lemma 2, ab and cd share a witness point
w. Every quadrant of w contains one of the points a, b, c, or d, therefore both e
and f must be adjacent to one of them, a contradiction. �

The preceding results allow a complete characterization of the trees that can
be realized as WRGs. An analogous result for rectangle-of-influence graphs was
given in [22].

Theorem 2. A tree is representable as an WRG if and only if it has no three
independent edges.

Sketch of the proof. Examine all combinatorial trees without three independent
edges. This requires a case analysis that we omit in this version. Any such tree
is a subtree of one of the two maximal trees depicted in Figure 2, both of which
happen to be representable as WRGs, as seen in the figure. �



78 B. Aronov, M. Dulieu, and F. Hurtado

+

+

+

+ +

+

+

+

Fig. 2. All WRG trees have this form. Any number of vertices can be added in the
regions containing three vertices.

Lemma 4 immediately implies the following structural result that is far from a
complete characterization, yet narrows substantially the class of graphs repre-
sentable as WRGs.

Theorem 3. A WRG has at most two non-trivial connected components. If
there are exactly two, each has diameter at most three. If there is one, its diam-
eter is at most six.

Note that the bounds on the diameter are tight: the tree in Figure 2 (right) has
diameter six and it is easy to draw the disjoint union of two three-link paths as
a WRG, by removing one vertex from Figure 2 (right), for example.

3 Two Connected Components

In this section we define a subclass of witness rectangle graphs, called staircase
graphs. We argue that a WRG with precisely two non-trivial connected com-
ponents has a very rigid structure. Namely, each of its non-trivial connected
components is isomorphic to a staircase graph.

Definition 1. A staircase graph of type IV is a witness rectangle graph, such
that the witnesses form an ascending chain (i.e., for every witness, other wit-
nesses lie only in its quadrants I and III) and all the vertices lie above the chain
(i.e., quadrant IV of every witness is empty of vertices); refer to Figure 3.

Staircase graphs of types I, II, and III are defined analogously; they are rotated
versions of the above. The type of the staircase graph is determined by which
quadrant of all witnesses is empty of vertices.

Note that an induced subgraph of a staircase graph is a staircase graph (of the
same type)—a property that immediately follows from the definition and that
we will find useful below.



Witness Rectangle Graphs 79

+

+

+

+

+

Fig. 3. Staircase graph of type IV

Lemma 5. A combinatorial graph G = (V, E), isomorphic to a staircase graph,
is a join G1 + G2 if and only if it can be realized as a staircase graph of type IV
with some witness containing points corresponding to V (G1) in quadrant I and
points corresponding to V (G2) in quadrant III.

Proof. Suppose G = G1 + G2. The combinatorial graphs G1 and G2 are isomor-
phic to staircase graphs RG+(P1, W1) and RG+(P2, W2) of type IV, which can
be obtained, for example, by considering any realization of G as a staircase graph
of type IV and dropping the points corresponding to V (G2) and V (G1), respec-
tively. Create a staircase graph of type IV isomorphic to G by placing a copy of
RG+(P1, W1) in quadrant I of a new witness w and a copy of RG+(P2, W2) in
its quadrant III.

Conversely, given a staircase graph of type IV isomorphic to G such that some
of its vertices (call the set P1) are in the first quadrant of a witness w ∈ W ,
and the remaining vertices (call them P2) are in its third quadrant, it is easily
checked that G = G1 + G2, where G1 and G2 are the subgraphs of G induced
by (the sets of vertices of G corresponding to) P1 and P2, respectively. �

Lemma 6. In a WRG, if witness w has no vertices in one of its quadrants, any
witness in the empty quadrant is redundant.

Proof. Suppose quadrant II of w contains a witness w′ but no vertices. Hence
quadrant II of w′ is empty of vertices as well. Suppose w′ witnesses edge ab, and
a and b are in its quadrants I and III respectively. (They cannot lie in quadrants
II and IV, as quadrant II is empty of vertices.) As quadrant IV of w is included
in quadrant IV of w′, a and b must be in quadrants I and III of w, respectively, as
well. Therefore w witnesses ab. Since this argument applies to all edges witnessed
by w′, w′ is redundant. �

Lemma 7. In a WRG, if no witness has a vertex in its quadrant IV, then the
graph is a staircase graph of type IV (possibly after removing some redundant
witnesses).

Proof. First remove any redundant witnesses, if present. Now apply Lemma 6, to
the possibly smaller, new witness set, to conclude that every remaining witness



80 B. Aronov, M. Dulieu, and F. Hurtado

has its quadrant IV empty of witnesses as well. Therefore the remaining witnesses
form an ascending chain and all vertices lie above it, as in the definition of a
staircase graph of type IV. �

Of course, if the empty quadrant in the above lemma is not IV but I, II, or III,
we get a staircase graph of the corresponding type.

Theorem 4. In a witness rectangle graph with two non-trivial connected com-
ponents, each component is isomorphic to a staircase graph. Conversely, the
disjoint union of two graphs representable as staircase graphs is isomorphic to a
witness rectangle graph.

Proof. We distinguish two cases.

All edges have the same slope: Suppose all edges of components C1, C2 have the
same slope, say positive. Let ab be an edge of C1 witnessed by w1 and cd be an
edge in C2 witnessed by w2, with x(a) < x(b) and x(c) < x(d). By Lemma 1,
w1 and w2 are distinct. The vertices a and b are in quadrants III and I of w1,
respectively. As c and d are not adjacent to a or b, and as cd doesn’t share its
witness with ab, c and d are both in quadrant II or both in quadrant IV of w1.
Suppose, without loss of generality, that cd is in quadrant IV of w1 (see Figure 4).
By a symmetric argument, ab is in quadrant II of w2. This holds for any two edges
ab ∈ C1 and cd ∈ C2. (Given two edges ef ∈ C1 and gh ∈ C2, we say ef < gh
if a witness of ef is in quadrant II of a witness of gh, and gh < ef otherwise.
We claim that either ef < gh for all choices of edges ef ∈ C1 and gh ∈ C2,
or gh < ef , for all such choices. Otherwise there would have to exist, without
loss of generality, a triple of edges ef, ij ∈ C1 and gh ∈ C2, with ef < gh < ij.
This implies that some witnesses w′, w′′, w′′ of ef , gh, ij, respectively, form
a descending chain. Considering the relative positioning of the three edges and
three witnesses, we conclude that ef and ij must be independent. Hence we
have three pairwise independent edges in E+, contradicting Lemma 3, thereby
proving the claim.) Notice that no vertex of C1 is in quadrant II of any witness
of C1 or it would be connected to C2. Similarly, no vertex of C2 is in quadrant IV
of any witness of C2 or it would be connected to C1. Hence, by Lemma 7, C1

and C2 are both staircase graphs.

At least two edges have opposite slopes: There is at least one pair of edges ab ∈ C1

and cd ∈ C2 of opposite slopes. Suppose, without loss of generality, that ab ∈ E+

and cd ∈ E−. By Lemma 2, ab and cd share a witness w (see Figure 4, center).
Draw isothetic boxes B1 and B2, as follows: B1 is the minimum bounding box

of the vertices of C1, while B2 is its analog for C2 (see Figure 4, right).
Consider C1; we argue that it is isomorphic to a staircase graph; as we can

apply the same reasoning to C2, this will imply the first part of the theorem. By
Lemma 2, every edge in E+ ∩C1 shares some witness with cd; the witness must
therefore lie in B := B1∩B2. Let W ′ be the set of all such witnesses; w ∈ W ′. All
vertices of C1 lie in quadrants I and III of every w′ ∈ W ′, and all vertices of C2

lie in quadrants II and IV of every w′; otherwise C1 and C2 would be connected.
Now remove redundant witnesses from W ′, i.e., pick a minimal subset W ′′ of



Witness Rectangle Graphs 81

cIII

II I

IV

1

a d
w2

b

w

+

+

II

IV

a

c

d

b

w

III

I

+

B2
1

+

B

wC

C

1

2

Fig. 4. Cases in the proofs of Lemmas 1, 2, 3, 4 and Theorem 4: Two edges of positive
slope (left), two edges of opposite slopes (center). Minimum bounding boxes of C1:
B1 (dashed), and of C2: B2 (plain). C1 is in quadrants I and III, C2 is in quadrants
II and IV (right).

W such that H := RG+(V (C1), W ′) coincides with RG+(V (C1), W ′′). H is a
staircase graph and the witnesses of W ′′ form an ascending chain, by Lemma 7.

Consider the portion of C1 in quadrant III of w. All witnesses to the left of B2

and above its lower edge, or below B2 and to the right of its left edge, have two
consecutive quadrants empty of vertices of C1 (if there were some vertices of C1

in these quadrants they would be adjacent to vertices of C2 defining the borders
of B2). Therefore such a witness would not witness any edges and cannot be
present in W .

Hence all remaining witnesses (in quadrant III of w) of edges of C1 must lie
below and to the left of B2 (and, of course, in B1). All these witnesses have B2

in their first quadrant, therefore they witness edges of E−∩E(C1). Let W ′′′ be a
minimal subset of such witnesses. Each of them has their quadrant III empty of
vertices of C1 (any vertex of C1 in quadrant III of such a witness w′′′ would be
adjacent to vertices in C2 as B2 is in quadrant I of w′′′), therefore by Lemma 7,
RG+(V (C1), W ′′′) is a staircase graph.

Consider the lowest leftmost witness w� of W ′′ (recall that they form an
ascending chain). As shown previously, w� doesn’t have any vertex of C1 in its
second and fourth quadrants. Let V1 be the set of vertices of C1 in its first
quadrant and let V2 be the vertices of C1 in its third quadrant. As shown above,
RG+(V1, W

′′ \ {w′
�}) and RG+(V2, W

′′′) are staircase graphs, and, therefore, by
Lemma 5, RG+(V (C1), W ′′ ∪W ′′′) is isomorphic to a staircase graph. We apply
similar reasoning to quadrant I of B, to conclude that C1 is a join of at most
three staircase graphs and therefore isomorphic to a staircase graph.

C2 is handled by a symmetric argument (in fact, though it does not affect the
reasoning as presented, either C1 contains negative-slope edges, or C2 contains
positive-slope edges, but not both), concluding the first part of the proof.
Converse: Given two staircase graphs G1 and G2, place a scaled and reflected
copy of G1 in quadrant I of the plane, with witnesses on the line x + y = 1 and
vertices below the line. Place a scaled and reflected copy of G2 in quadrant III
of the plane, with witnesses on the line x + y = −1 and vertices above the line.
It is easy to check that the result is a witness rectangle graph isomorphic to
G1 ∪G2. �



82 B. Aronov, M. Dulieu, and F. Hurtado

4 What Are Staircase Graphs, Really?

The above discussion is unsatisfactory in that it describes one new class of
graphs in terms of another such new class. In this section, we discover that the
class of graphs representable as staircase graphs is really a well known family of
graphs.

Recall that an interval graph is one that can be realized as the intersection
graph of a set of intervals on a line, i.e., its set of vertices can be put in one-
to-one correspondence with a set of intervals, with two vertices being adjacent
if and only if the corresponding intervals intersect. A co-interval graph is the
complement of an interval graph, i.e., a graph representable as a collection of
intervals in which adjacent vertices correspond to disjoint intervals.

Lemma 8. Graphs representable as staircase graphs are exactly the co-interval
graphs.

Proof. Consider a vertex v in a staircase graph RG+(V, W ). Without loss of
generality, assume the witnesses W lie on the line � : y = x and the vertices
lie above it. Create an artificial witness on � lying above all vertices. Associate
v with the smallest interval Iv of � containing all witnesses lying to the right
and below v as well as the witness immediately above v. It is easily checked
that v ∼ v′ in RG+(V, W ) if and only if Iv and Iv′ do not meet. Thus the
intersection graph of the intervals {Iv | v ∈ V } is isomorphic to the complement
of RG+(V, W ).

Conversely, let H be a co-interval graph on n vertices and {Iv} its realization
by a set of intervals on the line � : x = y. Extend each interval, if necessary,
slightly, to ensure that the 2n endpoints of the intervals are distinct. Place 2n−1
witnesses along �, separating consecutive endpoints, and transform each interval
Iv = (av, av), (bv, bv) into point pv = (av, bv). Let W and P be the set of witnesses
and points thus generated. Now Iv misses Iw if and only if av < bv < aw < bw
or aw < bw < av < bv, which happens if and only if the rectangle B(pv, pw)
contains a witness. Hence RG+(P, W ) is isomorphic to H , as claimed. �

Theorem 4 and Lemma 8 imply the following more satisfactory statement:

Theorem 5. The class of graphs representable as witness rectangle graphs with
two non-trivial connected components is precisely the class of graphs formed as
a disjoint union of zero or more isolated vertices and two co-interval graphs.

Corollary 2. Whether or not a given combinatorial graph G = (V, E) with two
non-trivial connected components can be drawn as a WRG can be tested in time
O(|V |+ |E|); a drawing, if it exists, can be constructed in the same time.

Proof. Use the linear-time recognition and reconstruction algorithm for co-
interval graphs from [18,23]. �



Witness Rectangle Graphs 83

5 How to Stab Rectangles, Thriftily

Let P be a set of n points in the plane, and let S be some given family of
geometric regions, each with at least two points from P on its boundary. The
problem of how many points are required to stab all the elements of S using a
second set W of points has been considered several times for different families of
regions [1, 2, 20, 10, 26]. For example, among the shapes previously investigated
were the family of triangles with vertices in S and the family of disks whose
boundary passes through two points of P .

We consider here a variant of this problem that is related to WRGs, in which
we focus on the family R of all open isothetic rectangles containing two points
of P on their boundary and assume that the points of P have no repeated x-
or y-coordinates. We denote by stR(n) the maximum number of piercing points
that are required, when all sets P of n points are considered. Stabbing all the
rectangles that have p and q on their boundary is equivalent to just stabbing
B(p, q). Therefore we see that

stR(n) = max
|P |=n

min{|W | : RG+(P, W ) = K|P |}.

Theorem 6. The asymptotic value of stR(n) is 2n−Θ(
√

n).

Proof. We first construct a set Q of n points, no two of them with equal abscissa
or ordinate, that admits a set of 2n−Θ(

√
n) pairwise openly-disjoint rectangles,

whose boundary contains two points from Q, which will imply the lower bound.
Start with a grid of size

√
n×
√

n, then rotate the whole grid infinitesimally
clockwise and finally perturb the points very slightly, so that no point coordinate
is repeated and there are no collinearities. The desired set of rectangles contains
B(p, q) for every pair of points p, q ∈ Q that were neighbors in the original grid;
refer to Figure 5 (left).

For the proof that 2n − Θ(
√

n) points suffice to stab all the rectangles refer
to Theorem 6 in [1] (illustrated in Figure 5 (right)). �

+ +

+ +

+ +

+

+

+

+

+

+

+ +

+

+

+

+

+

+

+

+

+

+

+

++

+

+ +

+ +

+

+

+

+ +

Fig. 5. Construction of a set Q with a large number of rectangles with disjoint interiors,
each one with two points from Q on its boundary; every point of Q participates in four
rectangles, with the exception of those on the boundary of the configuration (left).
Construction, for a point set P , of a set W of positive witnesses such that RG+(P, W ) =
K|P | (right).



84 B. Aronov, M. Dulieu, and F. Hurtado

References

1. Aronov, B., Dulieu, M., Hurtado, F.: Witness (Delaunay) graphs. Computational
Geometry Theory and Applications 44(6-7), 329–344 (2011)

2. Aronov, B., Dulieu, M., Hurtado, F.: Witness Gabriel graphs. Computational Ge-
ometry Theory and Applications (to appear)

3. Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J., Urrutia, G. (eds.)
Handbook of Computational Geometry, ch.5, pp. 201–290. Elsevier Science Pub-
lishing, Amsterdam (2000)

4. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, Englewood Cliffs (1998)

5. Di Battista, G., Lenhart, W., Liotta, G.: Proximity drawability: A survey. In:
Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 328–339. Springer,
Heidelberg (1995)

6. Di Battista, G., Liotta, G., Whitesides, S.: The strength of weak proximity. J.
Discrete Algorithms 4(3), 384–400 (2006)

7. de Berg, M., Carlsson, S., Overmars, M.: A general approach to dominance in the
plane. J. Algorithms 13(2), 274–296 (1992)

8. Chartrand, G., Lesniak, L.: Graphs and Digraphs, 4th edn. Chapman & Hall, Boca
Raton (2004)

9. Collette, S.: Regions, Distances and Graphs., PhD thesis. Université Libre de Brux-
elles (2006)

10. Czyzowicz, J., Kranakis, E., Urrutia, J.: Dissections, cuts, and triangulations. In:
Proc. 11th Canadian Conf. Comput. Geometry, pp. 154–157 (1999)

11. Dillencourt, M.B.: Toughness and Delaunay triangulations. Discrete Comput. Ge-
ometry 5(6), 575–601 (1990)

12. Dillencourt, M.B.: Realizability of Delaunay triangulations. Inf. Proc. Let-
ters 33(6), 283–287 (1990)

13. Dillencourt, M.B., Smith, W.D.: Graph-theoretical conditions for inscribability and
Delaunay realizability. Discrete Math. 161(1-3), 63–77 (1996)

14. Dulieu, M.: Witness proximity graphs. PhD thesis. Polytechnic Institute of NYU,
Brooklyn, New York (2012)

15. Dushnik, B., Miller, E.W.: Partially ordered sets. American J. Math. 63, 600–619
(1941)

16. Erdős, P., Fajtlowicz, S., Hoffman, A.J.: Maximum degree in graphs of diameter
2. Networks 10(1), 87–90 (2006)

17. Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Goodman, J.E.,
O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, 2nd edn.,
ch.23, pp. 513–528. CRC Press, Boca Raton (2004)

18. Habib, M., McConnell, R., Paul, C., Viennot, L.: Lex-BFS and partition refine-
ment, with applications to transitive orientation, interval graph recognition and
consecutive ones testing. Theoretical Computer Science 234(1-2), 59–84 (2000)

19. Jaromczyk, J.W., Toussaint, G.T.: Relative neighborhood graphs and their rela-
tives. Proc. IEEE 80(9), 1502–1517 (1992)

20. Katchalski, M., Meir, A.: On empty triangles determined by points in the plane.
Acta Math. Hungar. 51, 23–328 (1988)

21. Liotta, G.: Proximity Drawings. In: Tamassia, R. (ed.) Handbook of Graph Draw-
ing and Visualization. Chapman & Hall/CRC Press, (in preparation)

22. Liotta, G., Lubiw, A., Meijer, H., Whitesides, S.: The rectangle of influence drawa-
bility problem. Computational Geometry Theory and Applications 10(1), 1–22
(1998)



Witness Rectangle Graphs 85

23. McConnell, R.: Personal communication (2011)
24. McKay, B.D., Miller, M., Širáň, J.: A note on large graphs of diameter two and

given maximum degree. Combin. Theory Ser. B 74, 110–118 (1998)
25. Miller, M., Širáň, J.: Moore graphs and beyond: A survey of the degree/diameter

problem. Electron. J. Combin. DS14, 61 (2005)
26. Sakai, T., Urrutia, J.: Covering the convex quadrilaterals of point sets. Graphs and

Combinatorics 23(1), 343–357 (2007)
27. Toussaint, G.T. (ed.): Computational Morphology. North-Holland, Amsterdam

(1988)
28. Weisstein, E.W.: Graph Join. From MathWorld–A Wolfram Web Resource,

http://mathworld.wolfram.com/GraphJoin.html



Faster Optimal Algorithms for Segment Minimization
with Small Maximal Value�

Therese Biedl1, Stephane Durocher2, Céline Engelbeen3,
Samuel Fiorini4, and Maxwell Young1

1 David R. Cheriton School of Computer Science, University of Waterloo, ON, Canada
{biedl,m22young}@uwaterloo.ca

2 Department of Computer Science, University of Manitoba, MB, Canada
durocher@cs.umanitoba.ca

3 Département de Mathématique, Université Libre de Bruxelles, Brussels, Belgium
{celine.engelbeen,sfiorini}@ulb.ac.be

Abstract. The segment minimization problem consists of finding the smallest set
of integer matrices (segments) that sum to a given intensity matrix, such that each
summand has only one non-zero value (the segment-value), and the non-zeroes
in each row are consecutive. This has direct applications in intensity-modulated
radiation therapy, an effective form of cancer treatment.

We study here the special case when the largest value H in the intensity ma-
trix is small. We show that for an intensity matrix with one row, this problem is
fixed-parameter tractable (FPT) in H ; our algorithm obtains a significant asymp-
totic speedup over the previous best FPT algorithm. We also show how to solve
the full-matrix problem faster than all previously known algorithms. Finally, we
address a closely related problem that deals with minimizing the number of seg-
ments subject to a minimum beam-on-time, defined as the sum of the segment-
values. Here, we obtain an almost-quadratic speedup.

1 Introduction

Intensity-modulated radiation therapy (IMRT) is an effective form of cancer treatment,
where radiation produced by a linear accelerator is delivered to the patient through a
multileaf collimator (MLC). The MLC is mounted on an arm that can revolve freely
around the patient so that he or she can be irradiated from several angles. We focus
on the so-called step-and-shoot mode, where the radiation is delivered in a series of
steps. In each step, two banks of independent metal leaves in the MLC are positioned
to obstruct certain portions of the radiation field, while leaving others exposed. Neither
the head of the MLC, nor its leaves move during irradiation. A treatment plan specifies
the amount of radiation to be delivered along each angle.

For any given angle, the radiation field is discretized and decomposed into m × n
pixels, where m is typically the number of pairs of leaves of the MLC. This determines

� This work was supported by the “Actions de Recherche Concertées” (ARC) fund of the “Com-
munauté française de Belgique”, and the National Sciences and Engineering Research Coun-
cil of Canada (NSERC). C.E. acknowledges support from the “Fonds pour la Recherche dans
l’Industrie et l’Agriculture” (F.R.I.A.).

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 86–97, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Faster Optimal Algorithms for Segment Minimization 87

1 1 2 2 2 1
1 2 4 4 2 0
1 1 1 0
0 1 1 0 00

22

0 0

1 1 0
0

0 0 000
000

000000
0 0 0 0

10 0

0 0

0
0 0 00

111
11

0
00

00

0 0 0
0

111

1 0 0

0
1 10 0

0 0
1 1 1
1 0
1 1 1 0
0 1 1 0 00

1 1 1
1 1 1

11

0 00

0

0 1

x
0 1 1 1 1 0

= +2 x 1 x + 1

Fig. 1. An example of a segmentation of an intensity matrix where H = 4

a decomposition of the radiation beam into m×n beamlets. The amount of radiation is
represented as an m×n intensity matrix A of non-negative integer values, whose entries
represent the amount of radiation to be delivered through the corresponding pixel.

The leaves of the MLC can be seen as partially covering rows of A; for each row i
of A there are two leaves, one of which may slide inwards from the left to cover the
elements in columns 1 to �− 1 of that row, while the other may slide inwards from the
right to cover the elements in columns r + 1 to n. Thus the entries of A that are not
covered form an interval [�, r] := {�, � + 1, . . . , r} of consecutive columns. After each
step, the amount of radiation applied in that step (this can differ per step) is subtracted
from each entry of A that has not been covered. The irradiation is completed when all
entries of A have reached 0.

Setting leaf positions in each step requires time. Minimizing the number of steps
reduces treatment time, which increases patient comfort, and can result in increased
patient throughput, reduced machine wear, and overall reduced cost of the procedure.
Minimizing the number of steps for a given treatment plan is the primary objective of
this paper.

Formally, a segment is a m× n binary matrix S such that ones in each row of S are
consecutive. Each segment S has an associated non-negative integer weight which we
call the segment-value, denoted by vS(S) or simply v(S) when S is understood. We
call a segment a t-segment if its value is t. A segmentation of A is a set of segments
whose weighted sum equals A. So, S is a segmentation of A if and only if we have
A =

∑
S∈S v(S)S. Figure 1 illustrates the segmentation of an intensity matrix.

The (minimum-cardinality) segmentation problem is, given an intensity matrix A, to
find a minimum cardinality segmentation of A. We also consider the special case of a
matrix A with one row, which we call the single-row segmentation problem, in contrast
with the more general full-matrix segmentation problem with m rows.

We also briefly examine a different, but closely related lex-min problem: find a min-
imum cardinality segmentation among those with minimum beam-on-time, defined as
the total value

∑
S∈S v(S) of the segmentation.1 As the segmentation problem focuses

on the time incurred for establishing leaf positions, optimizing the beam-on-time also
has implications for making procedures more efficient by reducing the time spent ad-
ministering the treatment corresponding to the segments themselves.

Related Work: The segmentation problem is known to be NP-complete in the strong
sense, even for a single row [9,2,3], as well as APX-complete [4]. Bansal et al. [4]
provide a 24/13-approximation algorithm for the single-row problem and give better

1 The lex-min problem is also known as the min DT-min DC problem where DT stands for
decomposition time (i.e., the beam-on-time) and DC stands for decomposition cardinality (i.e.,
the number of segments); however, we refer to this as the lex-min problem throughout.



88 T. Biedl et al.

approximations for more constrained versions. Work by Collins et al. [10] shows that
the single-column version of the problem is NP-complete and provides some non-trivial
lower bounds given certain constraints. Work by Luan et al. [16] gives two approxima-
tion algorithms for the full m×n segmentation problem, and Biedl et al. [6] extend this
work to achieve better approximation factors.

A number of heuristics are known [3,18,11,14] as well as approaches for obtaining
optimal (exact) solutions [7,1,17]. Particularly relevant to our work is that of Cam-
bazard et al. [8] who show that the segmentation of a single row is fixed-parameter
tractable (FPT); specifically, they give an algorithm which achieves an optimal segmen-
tation in O(p(H)2 n) time, where H is the largest value in A and p(H) is the number
of partitions of H .

Kalinowski [15] studies the lex-min problem and gives polynomial time algorithms
for the case when H is a constant. In the single-row case, he gives an O(p(H)2 n) time
algorithm. The solution output by this first algorithm is also optimal for the minimum-
cardinality segmentation problem (this follows from known results, e.g. [4]). For gen-
eral m×n intensity matrices, he provides a O(2H

√
H m n2H+2) time algorithm. From

this second algorithm, one can derive an algorithm for the full m × n minimum seg-
mentation problem with time complexity O(2HH5/2 m n2H+3) by guessing the beam-
on-time T of a minimum cardinality segmentation and appending a row to the intensity
matrix to increase its minimum beam-on-time to T ; it can be shown that T ∈ O(H2 n).

Our Contributions: We summarize our contributions below:

– For the single-row segmentation problem, we provide a faster exact algorithm. In
particular, our algorithm runs in O(p(H)H n) time, which is polynomial in n so
long as H ∈ O(log2 n). In comparison to the result of Cambazard et al. [8], our
algorithms is faster by a factor of Ω(p(H)/H).

Significant challenges remain in solving the full-matrix problem and here we achieve
two important results:

– For general H , we give an algorithm that yields an optimal solution to the full-
matrix segmentation problem in O(m nH/2(1−ε)(H)) time for an arbitrarily small
constant ε > 0. In contrast, applying the variant of Kalinowski’s algorithm men-
tioned above yields a worst-case run-time of Ω(m n2H+3). Therefore, our result
improves the run-time by more than Ω(n3).

– For H = 2, the full matrix problem can be solved optimally in O(m n) time in
contrast to the O(m n2) time implied by the previous result for general H . This
result also has implications for the approximation algorithms in [6] where it can be
employed as a subroutine to improve results in practice.

Finally, we address the lex-min problem:
– For general H , we give an algorithm that yields an optimal solution to the full-

matrix lex-min problem in time O(m nH/2( 1
2−ε)H). In comparison to the previous

best result by Kalinowski [15], our algorithm improves the run-time by more than
Ω(n2).

Therefore, our algorithms represent a significant asymptotic speed-up and the tech-
niques required to achieve these improvements is non-trivial. Due to space restrictions,
we omit some proofs and details; these can be found in [5].



Faster Optimal Algorithms for Segment Minimization 89

2 Single-Row Segmentation

In this section, we give an algorithm for the single-row segmentation problem that is
FPT in H , the largest value in the intensity matrix A. Since A has only one row, we
represent it as a vector A[1..n]. Let Δ[j] := A[j] − A[j − 1] for j ∈ [n + 1] (for the
purpose of such definitions, we will assume that A[0] = A[n + 1] = 0.) We say that
there is a marker between index j − 1 and j if Δ[j] �= 0, i.e., if the value in A changes.

Any segmentation of a row can be standardized as follows: (1) Every segment S
begins (i.e., has its first non-zero entry) and ends (i.e., has its last non-zero entry) adja-
cent to a marker. For if it doesn’t, then some other segment(s) must end where S begins
(or vice versa), and by moving all these endpoints to the nearest marker, we retain a
segmentation without adding new segments. (2) Whenever a segment ends at a marker,
then no other segment of the same value begins at that marker. For otherwise the two
segments could be combined into one. Note that standardization of a segmentation can
only decrease the number of t-segments for all t; hence it can only improve the cardi-
nality of the segmentation and its beam-on time.

For the single-row problem, we can improve segments even further. Call a segmen-
tation of A[1..n] compact if any two segments in it begin at different indices end end at
different indices. Similarly as above one can show:

Lemma 1. For any segmentationS of a single row, there exists a compact segmentation
S′ with |S ′| ≤ |S|.

Our algorithm uses a dynamic programming approach that computes an optimal seg-
mentation of any prefix A[1..j] of A. We say that a segmentation of A[1..j] is almost-
compact if any two segments in it begin at different indices, and any two segments in
it either end at different indices or both end at index j. We will only compute almost-
compact segmentations; this is sufficient by Lemma 1. We compute the segmentation
conditional on the values of the last segments in it.

Let S be a segmentation of vector A[1..j]; each S ∈ S is hence a vector S[1..j].
Define the signature of S to be the multi-set obtained by taking the value v(S) of each
segment ending in j. Note that the signature of a segmentation of A[1..j] is a partition
of A[j], i.e., a multi-set of positive integers that sum to A[j] ≤ H . We use operations
such as ∪,∩, set-difference, subset, adding/deleting elements generalized to multi-sets
in the obvious way.

The key idea of our algorithm is to compute the best almost-compact segmentation
of A[1..j] subject to a given signature. Thus define a function f as follows:

Given an integer j and a partition φ of A[j], let f(j, φ) be the minimum number of
segments in an almost-compact segmentation S of A[1..j] that has signature φ.

We will show that f(j, φ) can be computed recursively. To simplify computation we
will use f(0, ·) as a base case; we assume that A[0] = A[n + 1] = 0. The only possible
partition of 0 is the empty partition, and so f(0, ∅) = 0 is our base case.

Given a partition φ of A[j], let Φj−1(φ) be the set of those partitions of A[j− 1] that
can be obtained from φ by deleting at most one element, and then adding at most one
element. The following recursive formula for f can be shown:
Lemma 2. For j ≥ 1, f(j, φ) = min

ψ∈Φj−1(φ)
{f(j − 1, ψ) + ||φ− ψ||}



90 T. Biedl et al.

Theorem 1. The single-row segmentation problem can be solved in O(p(H)H · n)
time and O(n + p(H)H) space, where p(H) is the number of partitions of H .

Proof. The idea is to compute f(j, φ) with Lemma 2 recursively with a dynamic pro-
gramming approach; the optimal value can then be found in f(n + 1, ∅). To achieve
the time complexity, we need to store the partitions in a suitable data structure. The key
property here is that any partition φ of A[j] ≤ H has O(

√
H) distinct integers in the

set [H] := {1, . . . , H}. Thus, we can describe a partition in O(
√

H) space. We store
partitions using a trie where each node uses O(H) space but allows access to the correct
child in constant time; a partition can then be located in O(

√
H) time.

So to compute f(n + 1, ∅), go through j = 1, . . . , n and through all partitions φ of
A[j]. For each distinct integer t ∈ φ, compute the partition ψ ∈ Φj−1(φ) obtained by
deleting t and then adding one element so that ψ is a partition of A[j − 1]. Look up ψ
(and the value of f(j − 1, ψ) stored with it) in the trie, add ||φ − ψ|| to it, and update
f(j, φ) if the result is smaller than what we had before. Analyzing these loops, we see
that the runnning time is O(n · p(H) ·

√
H ·
√

H) as desired. 
�

Note that the algorithm is fixed-parameter tractable with respect to parameter H . It

is known that p(H) ≤ eπ·
√

2·H
3 [12], so this algorithm is in fact polynomial as long

as H ∈ O(log2 n). In the present form, it only returns the size of the smallest seg-
mentation, but standard dynamic programming techniques can be used to retrieve the
segmentation in the same run-time with an O(log n) space overhead.

3 Full-Matrix Segmentation

In this section, we give an algorithm that computes the optimal segmentation for a full
matrix, and which is polynomial as long as H is a constant.

3.1 Segmenting a Row under Constraints

The difficulty of full-matrix segmentation lies in that rows cannot be solved indepen-
dently of each other, since an optimal segmentation of a full matrix does not mean that
the induced segmentations of the rows are optimal. Consider for example

⎡

⎣
1 1 1
2 2 2
3 3 3

⎤

⎦ =

⎡

⎣
1 1 1
0 0 0
1 1 1

⎤

⎦+

⎡

⎣
0 0 0
2 2 2
2 2 2

⎤

⎦

which is optimal, but the induced segmentation for the third row is not optimal.
If S is a segmentation, then let mt(S) be the number of t-segments in S; note that

this defines a multi-set over [H ] which we refer to as the multi-setM(S) defined by
segmentation S. We now want to compute whether a row A[1..n] has a segmentation
S such that M(S) ⊆ ν for some given multi-set ν. We do this again with dynamic
programming, by further restricting the segmentation to the first j elements and by
restricting its signature. Thus define:

Given an integer j, a partition φ of A[j], and a multiset ν over [H], define
f ′(j, φ, ν) to be 1 if there exists a segmentation S of A[1..j] with signature φ
and multi-setM(S) ⊆ ν. Define f(j, φ, ν) to be 0 otherwise.



Faster Optimal Algorithms for Segment Minimization 91

For example, consider A = [1 3 2 4], φ = {1, 3} and ν = {1, 1, 1, 2, 3}. Then
f ′(4, φ, ν) asks whether we can segment A such that at index 4 we use one 1-segment
and one 3-segment, and overall we use at most three 1-segments, at most one 2-segment,
and at most one 3-segment. The answer in this case is yes ([1 3 2 4] = [1 1 0 0] +
[0 2 2 0] + [0 0 0 1] + [0 0 0 3]), so f ′(4, φ, ν) = 1. Note that we were allowed one
more 1-segment than was actually used; this is acceptable since the multi-set of the
segmentation is allowed to be a subset of ν.

We claim that f ′(·, ·, ·) has a simple recursive formula. The base case is again j = 0
and f ′(0, ∅, ν) = 1 for all possible multi-sets ν. For j ≥ 1, we can compute f ′(j, φ, ν)
from f ′(j − 1, ·, ·) as follows (details are in the full paper):

Lemma 3. For all j ≥ 1,

f ′(j, φ, ν) = max
ψ is a partition ofA[j − 1]

f ′(j − 1, ψ, ν − (φ− ψ)). (1)

We will illustrate it with the above example of A = [1 3 2 4], φ = {1, 3} and ν =
{1, 1, 1, 2, 3}. Let ψ = {2} and ν′ = {1, 1, 2}. Then f ′(3, ψ, ν′) = 1 since [1 3 2] =
[1 1 0]+[0 2 2]. Furthermore, we have φ−ψ = {1, 3} and ν−(φ−ψ) = {1, 1, 2} = ν′.
Therefore, the formula says that f ′(4, φ, ν) should be 1, which indeed it is.

We now turn to the run-time of actually computing f ′. In the above definition, we
have not imposed any bounds on ν, other than that it is a multi-set over [H]. But clearly
we can restrict the multi-sets considered. Assume for a moment that we know an opti-
mal segmentation S∗ of the full matrix. We call a multi-set ν relevant if ν ⊆ M(S∗).
Clearly it suffices to compute f ′ for all relevant multi-sets.

To find (a superset of) relevant multi-sets without knowingS∗, we exploit thatM(S∗)
cannot contain too many segments of the same value. Recall that a marker is a place
where the values within a row change; let ρi be the number of markers in row i, and
ρ = maxi ρi. One can show the following:

Lemma 4. If all rows of A have at most ρ markers, then there exists a minimum cardi-
nality segmentation that has at most ρ/2 segments of value t for all t ∈ [H].

Now let M be all those multi-sets over [H] where all multiplicities are at most ρ/2; this
contains all relevant multi-sets. We store these in an H-dimensional array with indices
in [0..ρ/2]; this takes O((ρ/2)H) space, and allows lookup of a multi-set in O(H) time.
We can then compute the values f ′(j, φ, ν) with Algorithm 1.

The run-time of this algorithm is analyzed as follows. Computing ν′ (given ν, φ and
ψ) can certainly be done in O(H) time. To look up f ′(j − 1, ψ, ν′), we first look up
ν in the array in O(H) time. With each multi-set ν ∈ M, we store all partitions of
A[j − 1] and of A[j] (for the current value of j), and with each of them, the values of
f ′(j−1, ψ, ν) and f ′(j, ψ, ν), respectively. Looking up or changing these values (given
ν and ψ) can then be done in O(

√
H) time by storing partitions in tries.

So lines 9-11 require O(H) time. They are executed p(H) times from line 8, p(H)
times from line 6, |M| times from line 5, and n + 1 times from line 4; the run-time is
hence O(n(ρ/2 + 1)Hp(H)2H).

As for the space requirements, we need to store all relevant multi-sets, and with each,
all partitions of A[j − 1] and A[j], which takes O(H) space per partition. So the total
space is O(p(H)H(ρ/2)H).



92 T. Biedl et al.

Algorithm 1
1: Let M be all multi-sets where all multiplicities are at most ρ/2.
2: for all multi-sets ν in M do
3: Initialize f ′(0, ∅, ν) = 1.
4: for j = 1, . . . , n+ 1 do
5: for all multi-sets ν in M do
6: for all partitions φ of A[j] do
7: Initialize f ′(j, φ, ν) = 0
8: for all partitions ψ of A[j − 1] do
9: Compute ν′ = ν − (φ− ψ)

10: if f ′(j − 1, ψ, ν′) = 1 then
11: Set f ′(j, φ, ν) = 1 and break
12: end if
13: end for
14: end for
15: end for
16: end for
17: end for

Lemma 5. Consider one row A[1..n]. In O(n(ρ/2)Hp(H)2H) time and O(p(H)H
(ρ/2)H) space we can compute an H-dimensional binary array F such that for any
m1, . . . , mH ≤ ρ/2 we have F(m1, . . . , mH) = 1 if and only if there exists a segmen-
tation of A[1..n] that uses at most mt segments of value t for t ∈ [H ].

3.2 Full-Matrix

To solve the full-matrix problem, compute for all rows i the table Fi described in
Lemma 5. This takes time O(mn(ρ/2)Hp(H)2H) total. The space is O(p(H)H
(ρ/2)H) per row, but once done with a row i we only need to keep the O((ρ/2)H ) values
for the corresponding table Fi; therefore, in total, it is O(max{m, p(H)H}(ρ/2)H).

Now, in O(m(ρ/2)H) time find the numbers m1, . . . , mH for which Fi(m1, . . . ,
mH) is 1 for all rows i and for which m1 + · · ·+ mH is minimized. Then by definition
we can find a segmentation Si for each row i that has at most mt segments of value t
for t ∈ [H]. We can combine these segmentations in the natural way (see also [6]) to
obtain a segmentation S of A with at most mt segments of value t for t ∈ [H]. This
shows that an optimal segmentation has at most m1 + · · ·+mH segments, and since we
used the minimum possible such sum, no segmentation can be better than this bound.
Since the computation for this can be accomplished by scanning all (ρ/2)H multi-sets
across m rows, we have the following result:

Theorem 2. The full-matrix segmentation problem can be solved in O(mn(ρ/2)H

p(H)2H) time and O(max{m, p(H)H}(ρ/2)H) space if each row has at most ρ
markers.

Note that one could view our result as FPT in parameter is H + ρ. However, normally ρ
will be large. In particular, if a natural pre-processing step is applied that removes from



Faster Optimal Algorithms for Segment Minimization 93

each row of A any consecutive identical numbers (this does not affect the size of the op-
timum solution), then ρ = n+1. We therefore prefer to re-phrase our theorem to express
the worst-case run-time in terms of m, n and H only. Note that ρ ≤ n + 1 always, so

the run-time becomes O(mnH+1p(H)2H/2H). Recall that p(H) ≤ eπ
√

2H
3 ≤ e2.6

√
H

and, therefore, Hp(H)2 ≤ He5.2
√
H = 2lg (H)+5.2

√
H lg (e) ≤ 28.6

√
H , implying that

p(H)2H/2H ∈ O(2−(1−ε)H) for arbitrarily small ε > 0 if H is sufficiently large.

Corollary 1. The full-matrix segmentation problem can be solved in O(mnH+1

/2(1−ε)H) time, where ε > 0 is an arbitrarily small constant, and O(mnH ) space.

3.3 Further Improvements of the Complexity

We sketch a further improvement that removes a factor of n from the running time.
Recall that the function f ′(j, φ, ν) was defined to be 1 if and only if there exists a
segmentation S of A[1..j] with signature φ and multi-set M(S) ⊆ ν. In its place,
we can instead define a function f ′′(j, φ, ν), which contains the minimum number of 1-
segments in a segmentationS of A[1..j] with signature φ and multi-setM(S) ⊆ ν+ν1.
Here, ν1 is the multi-set that has m1(ν1) =∞ and mt(M1) = 0 for all t �= 1. In other
words, the segmentation that defines f ′′ is restricted in the number of t-segments only
for t > 1, and the restriction on 1-segments is expressed in the return-value of f ′′. In
particular, the value of f ′′(j, φ, ν) is independent of the first multiplicity of ν, and hence
must be computed only for those ν with m1(ν) = 0; there are only (ρ/2 + 1)H−1 such
multi-sets ν.

It remains to argue that f ′′ can be computed efficiently, with a similar formula as for
f ′. This is quite simple. To compute f ′′(j, φ, ν), try all possible partitions ψ of A[j−1],
compute ν′ = ν − (φ − ψ), and let ν′′ be ν′ with its first multiplicity changed to 0.
Look up the value f ′′(j − 1, ψ, ν′′) and add to it the number of 1s in φ− ψ. This gives
one possible candidate for a segmentation; we find the best one by minimizing over all
ψ. We leave the formal proof of correctness to the reader.

We can hence compute f ′′(n+1, ∅, ν) for all (ρ/2)H−1 multi-sets ν in O(n(ρ/2)H−1

p(H)2H) time. Doing this for all rows, we can compute the maximum of the values
f ′′(n + 1, ∅, ν) over all rows. The optimum segmentation can then be found by choos-
ing the one that minimizes this maximum plus ||ν|| over all ν. As before, this only adds
an extra O(m) factor to the run-time, which is hence O(mn(ρ/2)H−1p(H)2H), and
similarly as before this can be simplified to O(mnH/2(1−ε)H).

Theorem 3. The full-matrix segmentation problem can be solved in O(mnH/2(1−ε)H)
time, for ε > 0 an arbitrarily small constant, and O(mnH−1) space.

3.4 Solving the Lex-Min Problem

Recall that the lex-min problem is that of finding a minimum cardinality segmentation
among those with minimum beam-on-time, defined as the total value

∑
S∈S v(S) of

the segmentation. Here, we show how to apply our techniques to achieve a speed up
in solving this problem. To this end, we need the notion of the complexity of row A[i]
which is defined as:



94 T. Biedl et al.

c(A[i]) :=
1
2

n+1∑

j=1

|Δ[i][j]| =
n+1∑

j=1

max{0, Δ[i][j]} =
n+1∑

j=1

−min{0, Δ[i][j]},

where as before Δ[i][j] := A[i][j]− A[i][j − 1] for j ∈ [n + 1].
Importantly, is was shown in [14] that the minimum beam-on time can be computed

efficiently; it is c(A) := maxi{c(A[i])}. To solve the lex-min problem, we simply have
to change our focus regarding the set M of interesting multi-sets. Instead of the relevant
multi-sets as used earlier, we need all multi-sets ν such that

∑H
t=1 t · mt(ν) equals

the minimum beam-on time. Let Mlex be the set of these multi-sets and their subsets.
While Lemma 4 no longer applies, we still obtain a useful bound on the size Mlex,
whose proof is in the full paper.

Lemma 6. If all rows of A have at most ρ markers, then there exists a minimum car-
dinality segmentation among all those that have minimum beam-on time that has at
most ρ − 1 t-segments for all t ∈ [H]. Moreover, for t > H/2, there are at most ρ/2
t-segments.

We can hence find and store a (super-set of) Mlex by using all entries in an H-
dimensional array [0, ρ]�H/2� × [0, ρ/2]�H/2	, and there are O(ρH/2H/2) such multi-
sets. We will compute f ′′(n+1, ∅, ν) for all such multi-sets ν, and then pick a multi-set
ν for which ||ν||+

∑H
t=1 mt(ν) is minimized, and for which

∑H
t=1 tmt(ν) equals c(A).

This is then the multi-set used for a minimum segmentation among those with mini-
mum beam-on time; we can find the actual segmentation by re-tracing the computation
of f ′′(n + 1, ∅, ν).

By the same analysis used for the minimum cardinality segmentation problem, and
the improvement described in the previous Section 3.3, we have:

Theorem 4. The lex-min problem can be solved in O(mnH/2( 1
2−ε)) time and with

O(mnH−1) space.

Recall that Kalinowski’s algorithm in [15] has a time complexity of O(2H
√

H · m ·
n2H+2). So we obtain a significant improvement in the time complexity. Finally, we
note that it is intuitively reasonable that our algorithm can be applied to the lex-min
problem since the restriction on the space of feasible solutions that the beam-on time be
minimized can be captured by modifying appropriately the set of interesting multi-sets
Mlex.

4 The Special Case of H = 2

For H = 2 (i.e., a 0/1/2-matrix), the algorithm of Section 3.3 has run-time O(mn2). As
we show in this section, however, yet another factor of n can be shaved off by analyzing
the structure of the rows more carefully. In a nutshell, the function f ′′ of Section 3.3
can be computed from the structure of the row alone, without needing to go through
all possible signatures; we explain this now. Throughout Section 4, we assume that all
entries in the intensity matrix are 0, 1, or 2.



Faster Optimal Algorithms for Segment Minimization 95

... ... ... ...

Fig. 2. Two kinds of simple steps, a tower, and a double-step

4.1 Single Row for H = 2

As before, let A[1..n] be a single row of the matrix. Consider a maximal interval [j′, j′′]
such that A[j′..j′′] has all its entries equal to 2. We call A[j′..j′′] a tower if A[j′ − 1]
and A[j′′ +1] both equal 0, a simple step if one of A[j′−1] and A[j′′ +1] equals 1 and
the other 0, and a double step otherwise. (As usual we assume that A[0] = A[n + 1] =
0.) We use t, s and u to denote the number of towers, simple steps and double steps,
respectively. Figure 2 illustrates how interpreting A[i] = t as t blocks atop each other
gives rise to these descriptive names.

Recall that c(A[i]) =
∑n+1
j=1 max{Δ[i][j], 0} is the complexity of a row i of a full

matrix A; we use c(A) for the complexity of the single row A under consideration.

Lemma 7. Define g(d) as follows:

g(d) :=

⎧
⎨

⎩

c(A)− 2d if d < t,
c(A)− t− d if t ≤ d ≤ s + t,
c(A)− 2t− s if t + s < d.

Then for any d ≥ 0, f ′′(n+1, ∅, {0, d}) = g(d). In other words, any segmentation S of
A with at most d segments of value 2 has at least g(d) segments of value 1. Moreover,
there exists a segmentation that has at most d segments of value 2 and at most g(d)
segments of value 1.

Proof. Let S be a segmentation of A that uses at most d segments of value 2. As before,
we assume that S has been standardized, which can be done without increasing the
number of 2-segments. Therefore, any tower, step or double-step of A is either entirely
covered by a 2-segment, or it does not intersect any 2-segment.

Let s2, t2 and u2 be the number of steps, towers, and double-steps that are entirely
covered by a 2-segment. We claim the the number of 1-segments of S is c(A)−s2−2t2,
and can prove this by induction on s2 + t2 + u2. If s2 + t2 + u2 = 0, then S has only
1-segments, and since S is standardized, the number of 1-segments equals c(A). If, say,
t2 > 0, then let A′ be the vector obtained from A by removing a tower that is covered by
a 2-segment (i.e., by replacing the 2s of that tower by 0s), and let S′ be the segmentation
of A′ obtained from S by removing the 2-segment that covers that tower. Then A′ has
t′2 = t2 − 1 towers covered by 2-segments, and furthermore c(A′) = c(A) − 2. Since
S and S′ have the same number of 1-segments, the claim easily follows by induction.
Similarly one proves the claim by induction if s2 > 0 or u2 > 0.

Therefore the number of 1-segments in S is c(A) − s2 − 2t2. We also know that
s2 + t2 + u2 ≤ d. So to get a lower bound on the number of 1-segments, we should
minimize c(A) − s2 − 2t2, subject to s2 + t2 + u2 ≤ d and the obvious 0 ≤ s2 ≤ s,
0 ≤ t2 ≤ t and 0 ≤ u2 ≤ u. The bound now easily follows by distinguishing whether
d < t (the minimum is at t2 = d, s2 = u2 = 0), or t ≤ d < t + s (minimum at t2 = t,
s2 = d− t, u2 = 0) or t + s < d (minimum at t2 = t, s2 = s, u2 = 0.)



96 T. Biedl et al.

For the second claim, we obtain such a segmentation by using min{d, t} 2-segments
for towers, then min{d− t, s} 2-segments for stairs if d ≥ t, and cover everything else
by 1-segments. 
�

The crucial idea for H = 2 is that since g(·) can be described explicitly with only three
linear equations that can easily be computed, we can save space and time by not storing
f ′′(n+1, ∅, {0, d}) explicitly as an array of length ρ/2+1, and not spending O(n ·ρ/2)
time to fill it.

4.2 Full Matrix Segmentation for H = 2

As in Section 3.3, to solve the full-matrix problem we need to find the value d∗ that
minimizes d + maxi{f ′′

i (n + 1, ∅, {0, d})} =: D, where f ′′
i (·) is function f ′′(·) =

g(·) for row i. We can hence find the optimal segmentation of A as follows. Compute
the complexity and the number of towers and stairs in each row; this takes O(mn)
time total. Each f ′′

i (·) is then the maximum of three lines defined by these numbers.
Hence d + maxi{f ′′

i (n + 1, ∅, {0, d})} is the maximum of 3m lines. We hence can
compute D (and with it d∗) by taking the intersection of the upper half-spaces defined
by the 3m lines (this can be done in O(m) expected time easily, and in O(m) worst-
case time with a complicated algorithm [13]), and then finding the grid point with the
smallest y-coordinate in it.

Once we found d∗, we can easily compute a segmentation of each row that has at
most D − d∗ segments of value 1 and at most d∗ segments of value 2 (see the proof of
Lemma 7) and combine them into a segmentation of the full matrix with the greedy-
algorithm; this can all be done in O(mn) time. Thus the overall run-time is O(mn).

Theorem 5. A minimum cardinality segmentation of an intensity matrix with values in
{0, 1, 2} can be found in O(mn) time.

An immediate application of this result is that it can be combined with the O(log h)
approximation algorithm in [6]. While approximation guarantee remains unchanged,
this should result in improved solutions in practice while not substantially increasing
the running time.

One naturally asks whether this approach could be extended to higher values of H .
This would be feasible if we could find (say for H = 3) a simpler expression for the
function f ′′(n + 1, ∅, {0, d2, d3}), i.e. the minimum number of 1-segments given that
at most d2 2-segments and d3-3-segments are used. It seems likely that this function
would be piecewise linear (just like g(d) was), but it is not clear how many pieces there
are, and whether we can compute them easily from the structure of the row. Thus a
faster algorithm for H = 3 (or higher) remains to be found.

5 Conclusion

In this work, we developed several algorithms that provide drastic running time im-
provements for the minimum cardinality problem. At this point, a couple interesting
problems remain open. Does the full-matrix problem admit a FPT result if m > 1 but
m is small (i.e., a small number of rows)? Is the full-matrix problem W [1]-hard in H?



Faster Optimal Algorithms for Segment Minimization 97

References

1. Baatar, D., Boland, N., Brand, S., Stuckey, P.J.: Minimum cardinality matrix decomposition
into consecutive-ones matrices: CP and IP approaches. In: Van Hentenryck, P., Wolsey, L.A.
(eds.) CPAIOR 2007. LNCS, vol. 4510, pp. 1–15. Springer, Heidelberg (2007)

2. Baatar, D., Hamacher, H.W.: New LP model for multileaf collimators in radiation therapy.
In: Contribution to the Conference ORP3. Universität Kaiserslautern (2003)

3. Baatar, D., Hamacher, H.W., Ehrgott, M., Woeginger, G.J.: Decomposition of integer ma-
trices and multileaf collimator sequencing. Discrete Applied Mathematics 152(1-3), 6–34
(2005)

4. Bansal, N., Coppersmith, D., Schieber, B.: Minimizing setup and beam-on times in radia-
tion therapy. In: Dı́az, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and
RANDOM 2006. LNCS, vol. 4110, pp. 27–38. Springer, Heidelberg (2006)

5. Biedl, T., Durocher, S., Engelbeen, C., Fiorini, S., Young, M.: Faster optimal algorithms for
segments minimization with small maximal value. Technical Report CS-2011-08. University
of Waterloo (2011)

6. Biedl, T., Durocher, S., Hoos, H.H., Luan, S., Saia, J., Young, M.: A note on improving
the performance of approximation algorithms for radiation therapy. Information Processing
Letters 111(7), 326–333 (2011)

7. Brand, S.: The sum-of-increments constraint in the consecutive-ones matrix decomposition
problem. In: Proceedings of the 24th Symposium on Applied Computing (SAC), pp. 1417–
1418 (2009)

8. Cambazard, H., O’Mahony, E., O’Sullivan, B.: A shortest path-based approach to the multi-
leaf collimator sequencing problem. In: van Hoeve, W.-J., Hooker, J.N. (eds.) CPAIOR 2009.
LNCS, vol. 5547, pp. 41–55. Springer, Heidelberg (2009)

9. Chen, D.Z., Hu, X.S., Luan, S., Naqvi, S.A., Wang, C., Yu, C.X.: Generalized geometric
approaches for leaf sequencing problems in radiation therapy. In: Fleischer, R., Trippen, G.
(eds.) ISAAC 2004. LNCS, vol. 3341, pp. 271–281. Springer, Heidelberg (2004)

10. Collins, M.J., Kempe, D., Saia, J., Young, M.: Non-negative integral subset representations
of integer sets. Information Processing Letters 101(3), 129–133 (2007)

11. Cotrutz, C., Xing, L.: Segment-based dose optimization using a genetic algorithm. Physics
in Medicine and Biology 48(18), 2987–2998 (2003)

12. de Azevedo Pribitkin, W.: Simple upper bounds for partition functions. The Ramanujan Jour-
nal 18(1), 113–119 (2009)

13. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry, 3rd edn.
Springer, Heidelberg (2008)

14. Engel, K.: A new algorithm for optimal multileaf collimator field segmentation. Discrete
Applied Mathematics 152(1-3), 35–51 (2005)

15. Kalinowski, T.: The complexity of minimizing the number of shape matrices subject to mini-
mal beam-on time in multileaf collimator field decomposition with bounded fluence. Discrete
Applied Mathematics 157(9), 2089–2104 (2009)

16. Luan, S., Saia, J., Young, M.: Approximation algorithms for minimizing segments in radia-
tion therapy. Information Processing Letters 101(6), 239–244 (2007)

17. Wake, G.M.G.H., Boland, N., Jennings, L.S.: Mixed integer programming approaches to
exact minimization of total treatment time in cancer radiotherapy using multileaf collimators.
Computers and Operations Research 36(3), 795–810 (2009)

18. Xia, P., Verhey, L.J.: Multileaf collimator leaf sequencing algorithm for intensity modulated
beams with multiple static segments. Medical Physics 25(8), 1424–1434 (1998)



Orthogonal Cartograms with Few Corners

Per Face

Therese Biedl and Lesvia Elena Ruiz Velázquez

Cheriton School of Computer Science, University of Waterloo, Waterloo,
ON N2L 3G1, Canada

{biedl,leruizve}@uwaterloo.ca

Abstract. We give an algorithm to create orthogonal drawings of 3-
connected 3-regular planar graphs such that each interior face of the
graph is drawn with a prescribed area. This algorithm produces a drawing
with at most 12 corners per face and 4 bends per edge, which improves
the previous known result of 34 corners per face.

1 Introduction

A planar graph is a graph that can be drawn without crossing. Fáry, Stein and
Wagner [11,25,28] proved independently that every planar graph has a drawing
such that all edges are drawn as straight-line segments.

Sometimes additional constraints are imposed on the drawings. The most fa-
mous one is to have integer coordinates while keeping the area small; it was
shown in 1990 that this is always possible in O(n2) area [8,24]. Another restric-
tion might be to ask whether all edge lengths are integral; this exists if the graph
is 3-regular [12], but is open in general. We consider drawings with prescribed
face areas. Ringel [22] showed that not all planar graphs have straight-line draw-
ings with prescribed face areas. Thomassen [26] showed that they do exist for
planar graphs with maximum degree 3. We study here orthogonal drawings.

Graph drawings with prescribed face areas are motivated by cartograms,
which are distortions of maps such that faces (i.e., countries in a map) should
be proportional to some property of the country, such as population. Note that
with a few exceptions, maps have maximum degree 3 in the interior (i.e., no
four countries meet in a point.) We use the term orthogonal cartogram for an
orthogonal drawing with prescribed areas for interior faces.

Known results. Raisz introduced rectangular cartograms [21], which are or-
thogonal cartograms where every face (including the outer-face) is a rectangle.
Kant and He [15] and Ungar [27] characterized (independently) exactly which
planar graphs have a rectangular drawing, but not all these graphs have a rect-
angular drawing that respects given face areas. Eppstein et al. [10] gave an
algorithm to test whether a graph has a rectangular cartogram for all possible
area assignments, but their algorithm is not polynomial.

So to create a cartogram of an arbitrary graph, one must either allow error on
the area, or on the adjacencies, or allow more complicated shapes. In 2004, Van

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 98–109, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Orthogonal Cartograms with Few Corners Per Face 99

Kreveld and Speckmann gave an algorithm to draw rectangular cartograms,
where there can be a small error both on the adjacencies and on the areas
[17]. In 2005, de Berg, Mumford, and Speckmann proved that any planar graph
with maximum degree 3 and 3-connected dual can be drawn orthogonally with
prescribed face areas and at most 60 corners per face [4]. In their journal version
they reduced this to 40 corners [6], and Kawaguchi and Nagamochi reduced it
further to 34 corners per face [16]. In a different work, Rahman, Miura and
Nishizeki, gave an algorithm to draw a special class of graphs called good slicing
graphs with at most 8 corners per face [20]. See also [5,7,13,18] for other works
on rectangular and orthogonal cartograms.

Our results. In this paper, we give a new algorithm to create orthogonal
cartograms of 3-connected 3-regular planar graphs. The resulting drawings have
at most 12 corners per face. The outer-face is a rectangle. Our work hence
improves the work by de Berg et al. and Kawaguchi and Nagamochi [6,16].
Contrasting our work to the one by Rahman et al. [20], they use fewer corners,
but our result is significantly less restrictive on the graph class. Our drawings
can be found in O(n log n) time.

Our approach is substantially different from the one in [4]. They obtained
drawings by modifying the graph until it has a rectangular cartogram, and then
“fixing up” adjacencies. Our approach works throughout with the original graph
and produces a drawing directly. We find this a more natural approach, and
it also eases bounding the number of bends. Our algorithm is based on Kant’s
canonical ordering [14], a useful tool for many graph drawing algorithms. How-
ever, it does not use the ordering directly, but uses it for a divide & conquer
approach to split the graph into two smaller graphs (or one graph and a face);
this decomposition to our knowledge was not known before and may be of inde-
pendent interest in the graph drawing community.

Due to space limits we omit some details; a full exposition is in [23].

2 Background and Preliminaries

Let G = (V, E) be a graph with n = |V | vertices. We only consider graphs that
are simple (no loops or multiple edges) and planar, i.e., it can be drawn without
crossing. Such a drawing determines faces, i.e., the maximal connected pieces
of the plane. The unbounded piece is called the outer-face; we assume that the
outer-face has been fixed. All other faces are called interior faces.

An orthogonal drawing of a planar graph is a drawing without crossing where
vertices are represented by points and edges are represented by sequences of
contiguous horizontal or vertical line segments. We often identify the graph-
theoretic entity (e.g. vertex) with the geometric entity (e.g. point) that represents
it. A place where an edge switches direction is called a bend.

For orthogonal drawings, it is important to keep the number of bends small,
so that the drawings can be understood easily. For cartogram purposes, it is also
important to keep the shape of the face as simple as possible. Hence we will also



100 T. Biedl and L.E. Ruiz Velázquez

bound the number of corners in a face, which is the number of angles other than
180◦. Every bend is a corner, but corners may also occur at vertices.

Let A be a function that assigns non-negative weights to interior faces of G.
We say that a planar drawing of G respects the given face areas if every interior
face f of G is drawn with area A(f). We use A(G) to denote the sum of A(f)
over all interior faces f of a graph G, and Amin to denote the minimum area-
requirement of any face of G.

A graph is 3-connected if it is necessary to remove at least 3 vertices to make it
disconnected. A planar 3-connected graph is known to have a canonical ordering
[14]. This is a partition V = V1 ∪ . . . ∪ VK such that V1 contains the endpoints
v1, v2 of an edge on the outer-face, as well as exactly all vertices on the interior
face adjacent to (v1, v2). For 1 < k < K, set Vk can be (a) a singleton {z} that
has at least two neighbours in V1 ∪ . . . ∪ Vk−1 and at least one neighbour in
Vk+1 ∪ . . .∪ VK , or (b) a chain, i.e., path {z1, . . . , zr} of r ≥ 2 vertices such that
z1 and zr have exactly one neighbour in V1 ∪ . . . ∪ Vk−1, no other vertex of the
chain has a neighbour in V1 ∪ . . . ∪ Vk−1, and all vertices of the chain have a
neighbour in Vk+1 ∪ . . .∪VK . Finally, VK is a singleton {vn} that belongs to the
outer-face and is adjacent to v1. See Figure 1 for an example, and many graph
drawing papers and books (e.g. [14,2,3,19,9]) for more details on the canonical
ordering and its applications.

We assume that the input graph is undirected, but during the algorithm we
impose directions onto some of the edges, resulting in a partially oriented graph.
In such a partially oriented graph, the in-degree (out-degree) of a vertex is the
number of its incoming (outgoing) edges.

3 Dart-Shaped Graphs

Assume that G = (V, E) is a 3-connected 3-regular planar graph with a canonical
ordering V = V1 ∪ . . . ∪ VK . This naturally implies a partial edge orientation of
G which we call a canonical orientation: direct the edges from a vertex in Vi to a
vertex in Vj if i < j. Edges between vertices in the same set remain undirected.
This partial orientation is acyclic, i.e., it contains no directed cycle.

In a partially oriented graph we use the term vertical path for a simple path
where all edges are directed from one end to the other. In a canonical orientation
a vertical path connects vertices in Vi1 , Vi2 , ..., Vik

with i1 < i2 < · · · < ik; hence
the name. A horizontal path is a simple path where all edges are undirected. In
a canonical orientation, all vertices in a horizontal path belong to the same set
Vi; hence the name.

Definition 1. Let G = (V, E) be a plane graph with an acyclic partial edge
orientation. G is called dart-shaped with respect to the orientation if:

D1. The outer-face consists of a horizontal path Pb (connecting a vertex cl to
a vertex cr), and two vertical paths, Pl (from cl to a vertex ct), and Pr

(from cr to ct). These paths are interior vertex-disjoint. The vertices cl,
cr, ct will be called left, right and top corner-vertex, and the paths Pb, Pl,
Pr will be called bottom, left and right path of G.



Orthogonal Cartograms with Few Corners Per Face 101

v1 v2

v5 v4

V9 = {vn}

V1

V2

V3 V4

V5

V6

V8

V7

v3

(a)

vj = cl

vn = ct

v2 = crv1

v3

(b)

Fig. 1. (a) Canonical orientation of G. (b) G−v1 is dart-shaped. Undirected edges are
hatched.

D2. Walking around any face, we encounter an undirected edge, a non-empty
vertical path in the same direction as the walk, a horizontal path (possibly
empty), and a non-empty vertical path in the opposite direction to the walk.

D3. deg(cl) = deg(cr) = deg(ct) = 2. All other vertices have degree at most 3.
D4. Every vertex �= ct has exactly one outgoing edge.

See also Figure 1b. From now on, whenever we speak of a dart-shaped graph G,
we use cl, cr, ct, Pb, Pl, Pr for its corner-vertices and paths without specifically
recalling that notation. Notice that D3. and D4. imply that no vertex on Pb has
an incoming edge.

Using the properties of a canonical ordering, it is easy to show:

Lemma 1. Let G be a planar 3-connected 3-regular graph. Let V1 ∪ . . . ∪ VK

be a canonical ordering of G, with V1 = {v1, · · · , vj} (in order around the face)
and VK = vn. Then G′ = G − v1, with the partial orientation induced by the
canonical orientation of G, is dart-shaped and its corner-vertices are cl = vj,
cr = v2 and ct = vn.

We now show how to split a dart-shaped graph into smaller dart-shaped graphs,
which will allow us later to build a recursive algorithm to create orthogonal
cartograms. The partial edge orientation remains the same throughout all splits,
and hence will not always be mentioned.

Theorem 1. Let G be a dart-shaped graph. If G has more than one interior
face, then:

(a) G can be decomposed into two dart-shaped graphs by splitting along a vertical
path from the interior of Pb to the interior of Pl or Pr (see Figure 2a), or



102 T. Biedl and L.E. Ruiz Velázquez

cl

ct

v

u

Gl Gr

Pb
cr

PrPl

(a)

ct

c′r

crcl

Gt

Gb

Ph

Pl Pr

Pb

c′l

(b)

Fig. 2. (a) Vertical decomposition of G into two dart-shaped graphs. (b) Horizontal
decomposition of G into a dart shaped graph and a face.

(b) G can be decomposed into a dart-shaped graph and a face containing cl and
cr by splitting along a horizontal path from the interior of Pl to the interior
of Pr (see Figure 2b).

Proof. The proof has two cases, leading to two different splits.

Case (1): Pb has at least two edges. Pick any vertex u �= cl, cr in the interior
of Pb. Follow the vertical path starting from the outgoing edge of u. This path
is not a cycle because G is acyclic, and it is unique since every vertex �= ct has
out-degree one. Also, the path must reach some vertex �= cl, cr, ct on Pl or Pr

since vertices on Pb have in-degree 0 and ct has in-degree 2 and its incident edges
are one on Pl and the other on Pr. Let v be the first vertex on Pl ∪Pr that is on
this path, and let Pv be the path from u to v. Pv divides G into two subgraphs,
and it is not hard to verify that they are dart-shaped.

Case (2): Pb is an edge (cl, cr). By condition (D1), (cl, cr) is undirected. Consider
the interior face of G adjacent to (cl, cr). By (D2), it consists of the edge (cl, cr),
a vertical path P1 ⊆ Pl (since every vertex has only one outgoing edge) starting
at cl and ending at some vertex c′l, a vertical path P2 ⊆ Pr starting at cr and
ending at some vertex c′r, and (maybe) a horizontal path Ph from c′l to c′r.

If Ph is empty, then c′l = c′r, which (since Pl and Pr are interior vertex-disjoint)
implies c′l = c′r = ct and all of G is one interior face, a contradiction. So Ph is
non-empty, and it splits G into the face containing (cl, cr) and the subgraph Gt

containing ct. It is not hard to see that Gt is dart-shaped as desired. ��

4 Algorithm for Orthogonal Cartograms

We first provide an outline of the steps of our algorithm to create orthogo-
nal cartograms. (1) Compute the canonical order of G and the partial edge



Orthogonal Cartograms with Few Corners Per Face 103

orientation. (2) Let G′ = G − v1; G′ is dart-shaped. (3) Split G′ into two dart-
shaped graphs G1 and G2. (4) Draw G1 and G2 separately (recursively) within a
prescribed shape. (5) Combine the drawings of G1 and G2 into a single drawing.
(6) Re-insert v1 suitably.

The difficulty of this algorithm lies in combining the drawings of G1 and G2.
These two graphs share vertices, so if we draw G1 first, this forces some of the
vertices to be at fixed locations in the drawing of G2. Since our algorithm works
recursively, we must allow to fix the positions of some vertices on the outer-face
of the graph. But then it is not possible to split the drawing region into simple
regions, such as rectangles.

Therefore, we use a significantly more complex shape, which we call a T-
staircase, defined formally in Section 4.1. In order to draw subgraphs in it re-
cursively, we need to break it apart into smaller T-staircases of fixed area; we
discuss this in Section 4.2. In Section 4.3 we describe exactly where on a T-
staircase the vertices of G′ can be fixed, so that G′ can be drawn with correct
face areas inside any T-staircase. We call this a correct pinning. Then we com-
bine everything together and explain the choice of T-staircase in the outermost
recursion in Lemma 4.

4.1 T-Staircases

Definition 2. A T-staircase is an x-monotone orthogonal polygon for which the
upper chain consists of just one edge (the top side) and the lower chain consists
of a descending staircase (the left curve), one horizontal edge (the base) and an
ascending staircase (the right curve). Furthermore, all corners of the polygon
except the two bottommost ones are within distance ε from the top, where ε > 0
will be specified below.

See Figure 3a for an example. The top ε-region is the topmost region inside the
T-staircase with height ε; by definition it contains all corners on the left and
right curves. Thus, the segments of these curves outside the top ε-region are
straight vertical lines. The left and right stairs are the portion of the left and
right curves inside the top ε-region and the left and right sides are the segments
of the left and right curves outside the top ε-region.

The left/right ε-region is an ε × h rectangle adjacent to the left/right side,
and inside the T-staircase. We presume that ε has been chosen so small that the
top, left and right ε-regions together have area less than Amin (the minimum
area required for any face.) We use the ε-regions to place all necessary bends.
Since ε-regions have less area than any face, it is possible to include any portion
of the ε-regions in any face and still be able to draw it with correct area.

The allowed segment of the top side is the segment starting at the x-coordinate
of the right side of the left ε-region and ending at the x-coordinate of the left
side of the right ε-region. We will later see that vertices on the top side of a
T-staircase will only be assigned to points along the allowed segment. For any
T-staircase T , denote its area by A(T ).



104 T. Biedl and L.E. Ruiz Velázquez

4.2 Decomposing T-Staircases

The idea now is to break any dart-shaped graph G into two pieces (as in Theorem
1), and place the pieces in a T-staircase T recursively. To do so, we first must
argue that T can be divided into two T-staircases suitably, even if the endpoints
of the dividing line are restricted in their location. Let a pinning point be a point
that is either on the interior of a vertical segment of the left or right stairs, or
on a reflex corner of the left or right stairs.

We now give two lemmas for how to divide a T-staircase; they mirror (and
will be applied to) the two different cases of how to divide a dart-shaped graph.

Lemma 2. Let T be a T-staircase and let Amin ≤ A ≤ A(T ) − Amin. Then
we can divide T with an orthogonal path l into two T-staircases of area A and
A(T )−A. Moreover, we can restrict l as follows:

– l begins at a (pre-specified) pinning point v, or at an (un-specified) point on
the allowed segment of T .

– l ends at an (un-specified) point on the base of T .
– l has at most one bend.

Proof. Assume l is restricted to begin at a pinning point v, which by symmetry
we assume to be on the left stairs. Draw a horizontal line from v to some x-
coordinate X (to be determined later) that is above the base; this is feasible
since v is at a pinning point. Continue vertically to the base from there. See
Figure 3b. If l is instead restricted to begin at the allowed segment, then simply
make it a vertical line segment at x-coordinate X (to be determined.)

To see that a suitable value X exists, use the mean value theorem. If X is
the largest x-coordinate of the left ε-region, then the area to the left of l is less
than Amin, so this X was too small. If X is the smallest x-coordinate of the right
ε-region, then the area to the right of l is less than Amin, so this X was too big.
By the mean value theorem, hence a suitable X exists.

One can easily verify that the two resulting shapes are T-staircases. ��

Lemma 3. Let T be a T-staircase and let Amin ≤ A ≤ A(T )− Amin. Then we
can divide T with an orthogonal path l into a T-staircase T ′ of area A containing
the allowed segment and a polygon B. Moreover, we can restrict l as follows:

– l begins at a pinning point on the left stairs, or at the left endpoint of the
allowed segment.

– l ends at a pinning point on the right stairs, or at the right endpoint of the
allowed segment.

– l has at most 4 bends.

Proof. Assume first that the endpoints of l are required to be the pinning points
u and v on the left/right stairs. We usually cannot draw a straight line from u
to v because their positions are fixed, and the line between them may not be
horizontal and/or may not create an area of appropriate size. Thus, we connect u



Orthogonal Cartograms with Few Corners Per Face 105

ε

ε

allowed segment

top ε-region

le
ft

ε-
re

g
io

n

ri
g
h
t

ε-
re

g
io

n

(a)

X

v

(b)

Fig. 3. (a) Example of a T-staircase. (b) Division of T into two T-staircases. Figures
are not to scale. (the height of the ε-regions is hugely exaggerated.)

Y

u
v

B

T ′

(a)

v

u

Y

T ′

B

(b)

Fig. 4. Example of B and T ′ when (a) both ends of l are at pinning points, and (b)
exactly one end of l is at a pinning point

to v with a path l with four bends, as follows: Go right from u till the boundary of
the left ε-region, then go down to some y-coordinate Y (to be determined), then
go right till the boundary of the right ε-region, then go up to the y-coordinate of
v, then go right to v. The other cases of restrictions on endpoints of l are done
similarly, except that we omit the first and/or last segment. See e.g. Figure 4.

In any of the cases above, we can see that the area T ′ above l is a T-staircase
since its corners (except the bottommost ones) are in the top ε-region. It remains
to argue that a suitable Y exists. If Y = 0 then the area below l would have
area less than Amin, so Y = 0 is too small. If Y is the smallest y-coordinate of
the top ε-region, then the area above l would have area less than Amin, so this
Y is too big. So by the mean value theorem a suitable value for Y exists. ��



106 T. Biedl and L.E. Ruiz Velázquez

4.3 Pinning Dart-Shaped Graphs to T-Staircases

Now we define a condition that guarantees that a dart-shaped graph with pre-
scribed interior face areas can be drawn inside a T-staircase:

Definition 3. Let G be a dart-shaped graph and T be a T-staircase. A partial
assignment of outer-face vertices of G to points on the boundary of T is called
a correct pinning of G to T if the following constraints are satisfied:

C1. The points assigned to vertices correspond to the order of vertices along the
outer-face of G.

C2. Any vertex v ∈ Pl ∪ Pr with deg(v) = 3 is either assigned to a pinning
point on the left/right stairs, or could be assigned to a point on the allowed
segment such that the order of vertices is respected.

C3. Any corner of T has a vertex assigned to it, with at most 6 exceptions: the
endpoints of the top side, the endpoints of the base, and the bottommost
corner of the left and right stairs. These points are circled in Figure 3a.

C4. If there is a bend at the bottommost corner of the left or right stairs, then
there are no vertices assigned to a pinning point on the segment below it.

Lemma 4. Let G be a dart-shaped graph that is pinned correctly to a T-staircase
T of area A(G). Then G has an orthogonal drawing inside T that respects the
pinned vertices and the given face areas.

Proof. If G has only a single interior face, then the correct pinning ensures that
fixed vertices are drawn in order, and unpinned vertices can be added suitably.
So assume that G has at least two interior faces. By Theorem 1 G can be split
into smaller graphs, either with a vertical path or a horizontal path. We now
distinguish two cases, depending on the type of split.

Case (1): Assume G can be divided into two dart-shaped graphs Gl and Gr by
a vertical path from a vertex u �= cl, cr in Pb to a vertex v �= cl, cr, ct in Pl ∪ Pr.
Assume that v ∈ Pl; the other case is similar. Since G is pinned correctly to T
and deg(v) = 3, vertex v is either assigned to a pinning point on the left stairs
or could be placed on the allowed segment. By Lemma 2, we can divide T into
two T-staircases Tl and Tr of area A(Gl) and A(Gr) such that the dividing line l
begins at the pinning point of v (or at the allowed segment where we then place
v), and ends at the base (where we then place u.)

The interior vertices of Pv are pinned to l as follows:

– If v was on the allowed segment, then l is a vertical segment. Pin all interior
vertices of Pv in order on l inside the top ε-region. See Figure 5a.

– If v was at a pinning point (hence l has a bend b), then let w be the topmost
(closest to v) vertex of degree 3 on Pv for which the neighbour that is not on
Pv belongs to Gr. If w does not exist, then all vertices in Pv remain unpinned
(they will be placed on the allowed segment for Gl, and have degree 2 in Gr.)
If w does exist, then pin it to b, and pin all vertices between w and u on Pl on
the vertical segment of l, below w, in order and within the top ε-region. The
other points of Pl remain unpinned and will be on the horizontal segment
adjacent to w (which is the allowed segment for Tl.) See Figure 5b.



Orthogonal Cartograms with Few Corners Per Face 107

Case (2): Assume G can be divided into a dart-shaped graph Gt and a single
face Gb by a horizontal path Ph from a vertex c′l �= cl, ct ∈ Pl to a vertex
c′r �= cr, ct ∈ Pr . Since G is pinned correctly to T , c′l and c′r are assigned to
a pinning point or could be placed on the allowed segment. By Lemma 3 it is
possible to draw an orthogonal path l from c′l to c′r that divides T into a T-
staircase T ′ of area A(Gt) and a polygon B of area A(Gb). We will not assign
any vertices �= c′l, c

′
r to positions in T ′.

The verification that in both cases we get a correct pinning is tedious but
straightforward, and left to the reader. So in either case, the subgraphs that have
more than one interior face have been pinned correctly to a T-staircase of appro-
priate area. Hence by induction the subgraphs can be drawn while respecting the
pinned vertices, and putting the drawings together gives a drawing of G. ��

Theorem 2. Any 3-regular 3-connected planar graph G = (V, E) can be drawn
orthogonally with given interior face areas, at most 4 bends per edge, and at most
12 corners per face.

Proof. Compute a canonical order with V1 = {v1, . . . , vj} and VK = {vn} and
orient edges accordingly. Then G′ = G− v1 is dart-shaped with corners cl = vj ,
cr = v2 and ct = vn (Lemma 1).

Let T be any rectangle with area A(G′). Clearly T is a T-staircase. Pin vj

to the bottom left corner, v2 to the bottom right corner, and vn to the left top
corner of T . Pin all vertices on the vertical path from vj to vn to the left side
of T , in order, and inside the ε-region. Then G′ is pinned correctly to T . By
Lemma 4, we can recursively draw G′ inside T respecting the face areas.

Any edge is part of a dividing path created during the algorithm, and hence
has at most 4 bends. To show that each interior face of G′ has at most 12
corners, we prove that it has at most 4 reflex corners. Observe that such corners
are necessarily at bends, since vertices �= v1, v2, vn have degree 3, and v1, v2, vn

do not form reflex corners for interior faces.
Recall that any T-staircase has at most 2 bends that are at reflex corners if

its graph is pinned correctly to it. Hence any face reached in the base case of the

v

u

(a)

wv

u

(b)

Drawing of G− v1f1

f2vjv1

vn

v2

(c)

Fig. 5. (a) Pinning vertices when dividing the T-staircase vertically. (b) Pinning ver-
tices when dividing the T-staircase with one bend, and vertex w exists. (c) The base
case: Pinning v2 and the vertices on Pl, and how to add v1.



108 T. Biedl and L.E. Ruiz Velázquez

recursion has at most 2 reflex corners. The only kind of face not reached in the
base case is the polygon B below the dividing path l that we create in Lemma 3.
This path adds at most 2 reflex corners to the polygon below, so such a face has
at most 4 reflex corners. Either way, each face has at most k ≤ 4 reflex corners.
Since it has k + 4 convex corners, the total number of corners is at most 12.

Thus G′ is now drawn inside the rectangle with at most 4 bends per edge
and 12 corners per face. To draw G, we need to add the vertex v1 and its three
incident edges, and it is easy to do so while respecting areas and with 2 bends
in those edges; see Figure 5c. ��

5 Remarks

In this paper, we studied orthogonal cartograms, and showed that 12 corners
are sufficient to create an orthogonal cartogram of any 3-connected 3-regular
graph. Ours was a theoretical paper, with focus on minimizing the number of
corners. We did not consider other aspects of “good” cartograms such as being
similar to an input map, or avoiding the “thin connectors” that happen in the
top ε-region, and this remains a topic for future study.

Following our construction, it is easy to see that if all areas are rational, then
all coordinates are also rational if we choose the rectangle for the outer-most
recursion, and the “free” coordinate for pinning vertices to be rational. However,
it remains open how small the rational coordinates are, i.e., what grid-size would
be needed if we scaled them to be integers. We do not expect a polynomial bound
here, but do the coordinates satisfy, say, O(n!2n) if A ≡ 1? Or can we at least
bound the minimum edge-segment length or minimum feature size?

Finally, what is the “correct” bound for the corners of faces? A lower bound
of 8 is known [29]. A very recent result shows that 10 bends are possible [1]. Is
8 or 10 the correct bound?

References

1. Alam, J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G.: Proportional con-
tact representations of planar graphs with rectilinear polygons (in preparation)

2. Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Int.
J. Comput. Geometry Appl. 7(3), 211–223 (1997)

3. Chrobak, M., Nakano, S.: Minimum-width grid drawings of plane graphs. In: GD
1994. LNCS, vol. 894, pp. 104–110. Springer, Heidelberg (1994)

4. de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted
plane graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp.
61–72. Springer, Heidelberg (2006)

5. de Berg, M., Mumford, E., Speckmann, B.: Optimal BSPs and rectilinear car-
tograms. In: ACM Intl. Symp. on Advances in Geographic Information Systems
(GIS 2006), pp. 19–26. ACM, New York (2006)

6. de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted
plane graphs. Discrete Mathematics 309(7), 1794–1812 (2009)

7. de Berg, M., Mumford, E., Speckmann, B.: Optimal BSPs and rectilinear car-
tograms. Int. J. Comput. Geometry Appl. 20(2), 203–222 (2010)



Orthogonal Cartograms with Few Corners Per Face 109

8. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10, 41–51 (1990)

9. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.: Drawings of planar graphs
with few slopes and segments. In: Comput. Geom. Theory Appl., vol. 38, pp. 194–
212. Springer, Heidelberg (2005)

10. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal rectangu-
lar layouts. In: ACM Symposium on Computational Geometry (SoCG 2009), pp.
267–276 (2009)

11. Fáry, I.: On straight line representation of planar graphs. Acta. Sci. Math.
Szeged 11, 229–233 (1948)

12. Geelen, J., Guo, A., McKinnon, D.: Straight line embeddings of cubic planar graphs
with integer edge lengths. Journal of Graph Theory 58(3), 270–274 (2008)

13. Heilmann, R., Keim, D.A., Panse, C., Sips, M.: Recmap: Rectangular map approx-
imations. In: InfoVis 2004, pp. 33–40. IEEE, Los Alamitos (2004)

14. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),
4–32 (1996)

15. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its appli-
cations in graph drawing problems. Theor. Comput. Sci. 172(1-2), 175–193 (1997)

16. Kawaguchi, A., Nagamochi, H.: Orthogonal drawings for plane graphs with spec-
ified face areas. In: Cai, J.-Y., Cooper, S.B., Zhu, H. (eds.) TAMC 2007. LNCS,
vol. 4484, pp. 584–594. Springer, Heidelberg (2007)

17. Kreveld, M. van, Speckmann, B.: On rectangular cartograms. Comput. Geom.
Theory Appl. 37(3), 175–187 (2007)

18. Meulemans, W., van Renssen, A., Speckmann, B.: Area-preserving subdivision
schematization. In: Fabrikant, S.I., Reichenbacher, T., Kreveld, M. van, Schlieder,
C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 160–174. Springer, Heidelberg
(2010)

19. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. Lecture Notes Series on
Computing. World Scientific Publishing Company, Singapore (2004)

20. Rahman, M.S., Miura, K., Nishizeki, T.: Octagonal drawings of plane graphs with
prescribed face areas. Comput. Geom. Theory Appl. 42(3), 214–230 (2009)

21. Raisz, E.: The rectangular statistical cartogram. Geographical Review 24(3), 292–
296 (1934)

22. Ringel, G.: Equiareal graphs. Contemporary Methods in Graph Theory. BI Wis-
senschaftsverlag, 503–505 (1990)

23. Ruiz Velázquez, L.E.: Drawing planar graphs with prescribed face areas. Master’s
thesis. University of Waterloo (2010), http://uwspace.uwaterloo.ca/bitstream/
10012/5481/1/RuizVelazquezLesviaElena.pdf

24. Schnyder, W.: Embedding planar graphs on the grid. In: SODA 1990: Proceedings
of the First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148.
Society for Industrial and Applied Mathematics, Philadelphia (1990)

25. Stein, S.: Convex maps. American Mathematical Society 2, 464–466 (1951)
26. Thomassen, C.: Plane cubic graphs with prescribed face areas. Combinatorics,

Probability & Computing 1, 371–381 (1992)
27. Ungar, P.: On Diagrams Representing Maps. Journal of the London Mathematical

Society s1-28(3), 336–342 (1953)
28. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen

Mathematiker-Vereinigung 46, 26–32 (1936)
29. Yeap, K.H., Sarrafzadeh, M.: Floor-planning by graph dualization: 2-concave rec-

tilinear modules. SIAM Journal on Computing 22, 500–526 (1993)



Smoothed Analysis of Partitioning Algorithms

for Euclidean Functionals

Markus Bläser1, Bodo Manthey2, and B.V. Raghavendra Rao1

1 Saarland University, Department of Computer Science
{mblaeser,bvrr}@cs.uni-saarland.de

2 University of Twente, Department of Applied Mathematics
b.manthey@utwente.nl

Abstract. Euclidean optimization problems such as TSP and mini-
mum-length matching admit fast partitioning algorithms that compute
near-optimal solutions on typical instances.

We develop a general framework for the application of smoothed anal-
ysis to partitioning algorithms for Euclidean optimization problems. Our
framework can be used to analyze both the running-time and the ap-
proximation ratio of such algorithms. We apply our framework to obtain
smoothed analyses of Dyer and Frieze’s partitioning algorithm for Eu-
clidean matching, Karp’s partitioning scheme for the TSP, a heuristic
for Steiner trees, and a heuristic for degree-bounded minimum-length
spanning trees.

1 Introduction

Euclidean optimization problems are a natural class of combinatorial optimiza-
tion problems. In a Euclidean optimization problem, we are given a set X of
points in R

2. The topology used is the complete graph of all points, where the
Euclidean distance ‖x − y‖ is the length of the edge connecting the two points
x, y ∈ X .

Many such problems, like the Euclidean traveling salesman problem [18] or
the Euclidean Steiner tree problem [11], are NP-hard. For others, like minimum-
length perfect matching, there exist polynomial-time algorithms. But still these
polynomial-time algorithms are sometimes too slow to solve large instances.
Thus, fast heuristics to find near-optimal solutions for Euclidean optimization
problems are needed.

A generic approach to design heuristics for Euclidean optimization problems
are partitioning algorithms: They divide the Euclidean plane into a number of
cells such that each cell contains only a small number of points. This allows us
to quickly find an optimum solution for our optimization problem for the points
within each cell. Finally, the solutions of all cells are joined in order to obtain a
solution to the whole set of points. This joining should be done quickly to obtain
a fast algorithm.

Although this is a rather simple ad-hoc approach, it works surprisingly well
and fast in practice [13, 20]. This is at stark contrast to the worst-case per-
formance of partitioning algorithms: They can both be very slow and output

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 110–121, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals 111

solutions that are far from the optimal solutions. Thus, as is often the case,
worst-case analysis is far too pessimistic to explain the performance of parti-
tioning algorithms. The reason for this is that worst-case analysis is dominated
by artificially constructed pathological instances that often do not resemble prac-
tical instances.

Both to explain the performance of partitioning algorithms and to gain prob-
abilistic insights into the structure and value of optimal solutions of Euclidean
optimization problems, the average-case performance of partitioning algorithms
has been studied a lot. In particular, Steele [27] proved complete convergence of
Karp’s partitioning algorithm [15] for Euclidean TSP. Also strong central limit
theorems for a wide range of optimization problems are known. We refer to
Steele [28] and Yukich [31] for comprehensive surveys.

However, also average-case analysis has its drawback: Random instances usu-
ally have very specific properties with overwhelming probability. This is often
exploited in average-case analysis: One shows that the algorithm at hand per-
forms very well if the input has some of these properties. But this does not mean
that typical instances share these properties. Thus, although a good average-case
performance can be an indicator that an algorithm performs well, it often fails
to explain the performance convincingly.

In order to explain the performance of partitioning schemes for Euclidean
optimization problems, we provide a smoothed analysis. Smoothed analysis has
been introduced by Spielman and Teng [23] in order to explain the performance
of the simplex method for linear programming. It is a hybrid of worst-case and
average-case analysis: An adversary specifies an instance, and this instance is
then slightly randomly perturbed. The perturbation can, for instance, model
noise from measurement. Since its invention in 2001, smoothed analysis has been
applied in a variety of contexts [4, 22, 9, 3]. We refer to Spielman and Teng [24]
for a survey.

We develop a general framework for smoothed analysis of partitioning algo-
rithms for optimization problems in the Euclidean plane (Section 3). We con-
sider the most general model where the adversary specifies n density functions
f1, . . . , fn : [0, 1]2 → [0, φ]. The parameter φ controls the adversary’s power: The
larger φ, the more powerful the adversary. (See Section 2.2 for a formal expla-
nation of the model.) We analyze the expected running-time and approximation
performance of a generic partitioning algorithm under this model. The smoothed
analysis of the running-time for partitioning algorithms depends crucially on the
convexity of the worst-case bound of the running-time of the problem under con-
sideration. The main tool for the analysis of the expected approximation ratio
is Rhee’s isoperimetric inequality [21].

We apply the general framework to obtain smoothed analyses of partitioning
algorithms for Euclidean matching, Karp’s partitioning scheme for the TSP,
Steiner trees, and degree-bounded minimum spanning trees in the Euclidean
plane. Table 1 shows an overview. To summarize, for φ ≤ logO(1) n, Dyer and
Frieze’s partitioning algorithm [7] has an almost linear running-time, namely
O(n logO(1) n). For φ ∈ o(log2 n), its expected approximation ratio tends to 1



112 M. Bläser, B. Manthey, and B.V. Raghavendra Rao

Table 1. Smoothed bounds for some Euclidean optimization problems

problem running-time approximation ratio reference

matching [7] O(nφ2 log4 n) 1 +O(
√
φ/ log n) Corollary 4.2

TSP [15] poly(n) 1 +O(
√
φ/ log n) Corollary 5.1

Steiner tree [14] poly(n) 1 +O(
√
φ/ log n) Corollary 6.1

degree-bounded MST poly(n) 1 +O(
√
φ log log n/ log n) Corollary 7.1

as n increases. The approximation ratios of the partitioning algorithms for TSP
and Steiner trees tend to 1 for φ ∈ o(log n). For degree-bounded spanning trees,
this is the case for φ ∈ o(log n/ log log n). Our general framework is applicable
to many other partitioning algorithms as well.

Due to space limitations, many proofs are omitted and will appear in the full
version of the paper.

2 Preliminaries

2.1 Euclidean Functionals

A Euclidean functional is a function F : ([0, 1]2)� → R that maps a finite point
set X ⊆ [0, 1]2 to a real number F(X). The following are examples of Euclidean
functionals:

– MM maps a point set to the length of its minimum-length perfect matching
(length means Euclidean distance, one point is left out if the cardinality of
the point set is odd).

– TSP maps a point set to the length of its shortest Hamiltonian cycle, i.e., to
the length of its optimum traveling salesman tour.

– MST maps a point sets to the length of its minimum-length spanning-tree.
– ST maps a point set to the length of its shortest Steiner tree.
– dbMST maps a point set to the length of its minimum-length spanning tree,

restricted to trees of maximum degree at most b for some given bound b.

The Euclidean functionals that we consider in this paper are all associated with
an underlying combinatorial optimization problem. Thus, the function value
F(X) is associated with an optimum solution (minimum-length perfect matching,
optimal TSP tour, . . . ) to the underlying combinatorial optimization problem.
In this sense, we can design approximation algorithms for F: Compute a (near-
optimal) solution (where it depends on the functional what a solution actually is;
for instance, a perfect matching), and compare the objective value (for instance,
the sum of the lengths of its edges) to the function value.

We follow the notation of Frieze and Yukich [31,10]. A Euclidean functional F
is called smooth [31,21] if there is a constant C such that

∣
∣F(X ∪ Y )− F(X)

∣
∣ ≤

C
√
|Y | for all finite X, Y ⊆ [0, 1]2.



Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals 113

Let C1, . . . , Cs be a partition of [0, 1]2 into rectangles. We call each C� a cell.
Note that the cells are not necessarily of the same size. For a finite set X ⊆ [0, 1]2

of n points, let X� = X ∩C� be the points of X in cell C�. Let n� = |X�| be the
number of points of X in cell C�. Let diameter(C�) be the diameter of cell C�.

We call F sub-additive if

F(X) ≤
s∑

�=1

(
F(X�) + diameter(C�)

)
.

F is called super-additive if

F(X) ≥
s∑

�=1

F(X�).

The Euclidean functions TSP, MM and MST are smooth and sub-additive [31,
27, 28].

A combination of sub-additivity and super-additivity for a Euclidean func-
tional F is a sufficient (but not a necessary) condition for the existence of a
partitioning heuristic for approximating F. We will present such a generic par-
titioning heuristic in Section 3. Following Frieze and Yukich [10], we define a
slightly weaker additivity condition that is sufficient for the performance analy-
sis of partitioning algorithms.

Frieze and Yukich [10] call a Euclidean function F near-additive if, for all
partitions C1, . . . , Cs of [0, 1]2 into cells and for all finite X ⊆ [0, 1]2, we have

∣
∣F(X)−

∑s
�=1 F(X�)

∣
∣ ≤ O

(∑s
�=1 diameter(C�)

)
. (1)

It is not hard to see that, if F is sub-additive and super-additive, then F is also
near-additive. Euclidean functionals such as TSP, MM, and MST are sub-additive
but not super-additive. However, these functionals can be approximated by their
corresponding canonical boundary functionals, which are super-additive [10,31].
Yukich [31] has shown that this is a sufficient condition for a Euclidean functional
to be near-additive.

Proposition 2.1 (Yukich [31, Lemma 5.7]). Let F be a sub-additive Eu-
clidean functional. Let FB be a super-additive functional that well-approximates
F. (This means that |F(X)− FB(X)| = O(1) for all finite X ⊆ [0, 1]2.) Then F
is near-additive.

The functionals MM, TSP, MST, ST, and dbMST are near-additive.
Limit theorems are a useful tool for the analysis of Euclidean functionals.

Rhee [21] proved the following limit theorem for smooth Euclidean functionals
over [0, 1]2. We will mainly use it to bound the probability that F assumes a too
small function value.

Theorem 2.2 (Rhee [21]). Let X be a set of n points drawn independently
according to identical distributions from [0, 1]2. Let F be a smooth Euclidean
functional. Then there exist constants C and C′ such that for all t > 0, we have

P
[∣
∣F(X)− E

[
F(X)

]∣
∣ > t

]
≤ C · exp

(
−C′t4/n

)
.



114 M. Bläser, B. Manthey, and B.V. Raghavendra Rao

Remark 2.3. Rhee proved Theorem 2.2 for the case that x1, . . . , xn are identi-
cally distributed. However, as pointed out by Rhee herself [21], the proof carries
over to the case when x1, . . . , xn are drawn independently but their distributions
are not necessarily identical.

2.2 Smoothed Analysis

In the classical model of smoothed analysis [23], an adversary specifies a point set
X̄, and then this point set is perturbed by independent identically distributed
random variables in order to obtain the input set X . A different view-point is
that the adversary specifies the means of the probability distributions according
to which the point set is drawn. This model has been generalized as follows [4]:
Instead of only specifying the mean, the adversary can specify a density function
for each point, and then we draw the points independently according to their
density functions. In order to limit the power of the adversary, we have an
upper bound φ for the densities: The adversary is allowed to specify any density
function [0, 1]2 → [0, φ]. If φ = 1, then this boils down to the uniform distribution
on the unit square [0, 1]2. If φ gets larger, the adversary becomes more powerful
and can specify the location of the points more and more precisely. The role of
φ is the same as the role of 1/σ in classical smoothed analysis, where σ is the
standard deviation of the perturbation. We summarize this model formally in
the following assumption.

Assumption 2.4. Let φ ≥ 1. An adversary specifies n probability density func-
tions f1, . . . , fn : [0, 1]2 → [0, φ]. We write f = (f1, . . . , fn) for short. Let
x1, . . . , xn ∈ [0, 1]2 be n random variables where xi is drawn according to fi,
independently from the other points. Let X = {x1, . . . , xn}.

If the actual density functions f matter and are not clear from the context, we
write X ∼ f to denote that X is drawn as described above. If we have a perfor-
mance measure P for an algorithm (P will be either running-time or approxima-
tion ratio in this paper), then the smoothed performance is maxf

(
EX∼f [P (X)]

)
.

Note that the smoothed performance is a function of the number n of points and
the parameter φ.

Let F be a Euclidean functional. For the rest of this paper, let μF(n, φ) be a
lower bound for the expected value of F if X is drawn according to the proba-
bilistic model described above. More precisely, μF is some function that fulfills
μF(n, φ) ≤ minf

(
EX∼f [F(X)]

)
. The function μF comes into play when we have

to bound F (or: the objective value of an optimum solution) from below in order
to analyze the approximation ratio.

3 Framework

In this section, we present our framework for the performance analysis of par-
titioning heuristics for Euclidean functionals. Let Aopt be an optimal algorithm
for some smooth and near-additive Euclidean functional F, and let Ajoin be an



Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals 115

algorithm that combines solutions for each cell into a global solution. We assume
that Ajoin runs in time linear in the number of cells. Then we obtain the following
algorithm, which we call A.

Algorithm 3.1 (generic algorithm A). Input: set X ⊆ [0, 1]2 of n points.

1. Divide [0, 1]2 into s cells C1, . . . , Cs.
2. Compute optimal solutions for each cell using Aopt.
3. Join the s partial solutions to a solution for X using Ajoin.

We use the following assumptions in our analysis and mention explicitly when-
ever they are used.

Assumption 3.2. 1. φ ∈ O(s). This basically implies that the adversary can-
not concentrate all points in a too small number of cells.

2. φ ∈ ω(s log n/n). This provides a lower bound for the probability mass in a
“full” cell, where full is defined in Section 3.1.

3. φ ∈ o(
√

n/ logn). With this assumption, the tail bound of Theorem 2.2 be-
comes sub-polynomial.

These assumptions are not too restrictive: For the partitioning algorithms we
analyze here, we have s = O(n/ logO(1) n). Ignoring poly-logarithmic terms,
the first and third assumption translate roughly to φ = O(n) and φ = o(

√
n),

respectively. But φ = Θ(
√

n) suffices for the adversary to specify an individual
small square for each point, thus we can expect to approach almost worst-case
behavior for φ = Ω(

√
n). The second assumption roughly says φ = ω(1). But

for φ = O(1), we can expect (almost) average-case behavior.

3.1 Smoothed Running-Time

Many of the schemes that we analyze choose the partition in such a way that
we have a worst-case upper bound on the number of points in each cell. Other
algorithms, like the one for matching, have a fixed partition independent of the
input points. In the latter case, the running-time also depends on φ.

Let T (n) denote the worst-case running-time of Aopt on n points. Then the
running-time of A is bounded by

∑s
�=1 T (n�)+O(s). The expected running-time

of A is thus ∑s
�=1 E[T (n�)] + O(s). (2)

For the following argument, we assume that T (the running-time of Aopt) is a
monotonically increasing, convex function, and that the locations of the cells are
fixed and all their volumes are equal. (The assumption about the cells is not ful-
filled for all partitioning heuristics. For instance, Karp’s partitioning scheme [15]
chooses the cells not in advance but based on the actual point set. However, in
Karp’s scheme, the cells are chosen in such a way that there is a good worst-
case upper bound for the number of points per cell, so there is no need for a
smoothed analysis.) By abusing notation a bit, let fi(C�) =

∫
C�

fi(x) dx be the
cumulative density of fi in the cell C�. Since fi is bounded from above by φ, we



116 M. Bläser, B. Manthey, and B.V. Raghavendra Rao

have fi(C�) ≤ φ/s. Let f(C�) =
∑n
i=1 fi(C�). Note that fi(C�) = P(xi ∈ C�)

and f(C�) = E[n�].
We call a cell C� full with respect to f if f(C�) = nφ/s. We call C� empty

if f(C�) = 0. Our bound (2) on the running-time depends only on the values
f1(C�), . . . , fn(C�), but not on where exactly within the cells the probability
mass is assumed.

Our goal is now to show that the adversary, in order to make our algorithm
as slow as possible, will make as many cells as possible full. Note that there
are at most �s/φ full cells. Assume that we have �s/φ full cells and at most
one cell that is neither empty nor full. Then the number of points in any full
cell is a binomially distributed random variable B with parameters n and φ/s.
By linearity of expectation, the expected running-time is bounded by

(⌊
s
φ

⌋
+

1
)
· E

[
T (B)

]
+ O(s). Since φ = O(s) by Assumption 3.2 (1), this is bounded

by O
(
s
φ
· E[T (B)] + s

)
. If T is bounded by a polynomial, then this evaluates to

O
(
s
φ · T (nφ/s) + s

)
by the following Lemma 3.3. This lemma can be viewed as

“Jensen’s inequality in the other direction” with p = φ/s for φ ∈ ω(s log n/n).
The latter is satisfied by Assumption 3.2 (2).

Lemma 3.3 (inverse Jensen’s inequality). Let T be any convex, monoton-
ically increasing function that is bounded by a polynomial, and let B be a bino-
mially distributed random variable with parameters n ∈ N and p ∈ [0, 1] with
p ∈ ω(log n/n). Then E[T (B)] = Θ(T (E[B])).

What remains to be done is to show that the adversary will indeed make as
many cells as possible full. This follows essentially from the convexity of the
running-time. Thus, we obtain the following theorem.

Theorem 3.4. Assume that the running-time of Aopt can be bounded from above
by a convex function T that is bounded by a polynomial. Then, under Assump-
tion 2.4 as well as Assumptions 3.2 (1) and (2), the expected running-time of A
on input X is bounded by O

(
s
φ
· T (nφ/s) + s

)
.

3.2 Smoothed Approximation Ratio

The value computed by A can be bounded from above by A(X) ≤
∑s
�=1 F(X�)+

J ′, where J ′ is an upper bound for the cost incurred by joining the solu-
tion for the cells. Since F is near-additive, A(X) ≤ F(X) + J for J = J ′ +
O(

∑s
�=1 diameter(C�)). Dividing by F(X) yields

A(X)
F(X)

≤ 1 + O
(

J
F(X)

)
. (3)

For estimating the expected approximation ratio E[A(X)/ F(X)] for some al-
gorithm A, the main challenge is that F(X) stands in the denominator. Thus,
even if we know A(X) precisely, we are basically left with the problem of es-
timating E[1/ F(X)]. Jensen’s inequality yields 1/ E[F(X)] ≤ E[1/ F(X)]. But
this does not help, as we need upper bounds for E[1/ F(X)]. Unfortunately, such



Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals 117

upper bounds cannot be derived easily from 1/ E[F(X)]. The problem is that
we need strong upper bounds for the probability that F(X) is close to 0. Theo-
rem 2.2 is too weak for this. This problem of bounding the expected value of the
inverse of the optimum objective value arises frequently in bounding expected
approximation ratios [8, 9].

There are two ways to attack this problem: The first and easiest way is if A
comes with a worst-case guarantee α(n) on its approximation ratio for instances
of n points. Then we can apply Theorem 2.2 to bound F(X) from below. If
F(X) ≥ μF(n, φ)/2, then we can use (3) to obtain a ratio of 1 + O

(
J

μF(n,φ)

)
.

Otherwise, we obtain a ratio of α(n). If α(n) is not too large compared to the
tail bound obtained from Theorem 2.2, then this contributes only little to the
expected approximation ratio. The following theorem formalizes this.

Theorem 3.5. Assume that A has a worst-case approximation ratio of α(n)
for instance consisting of n points. Then, under Assumption 2.4, the expected
approximation ratio of A is

E

[
A(X)
F(X)

]

≤ 1 + O

(
J

μF(n, φ)

)

+ α(n) · exp
(

−μF(n, φ)4

Cn

)

.

Now we turn to the case that the worst-case approximation ratio of A cannot be
bounded by some α(n). In order to be able to bound the expected approximation
ratio, we need an upper bound on E[1/ F(X)]. This upper bound is formalized
in the following theorem.

Theorem 3.6. Assume that there exists a β ≤ J and a function hn such that
P(F (X) ≤ x) ≤ hn(x) for all x ∈ [0, β]. Then, under Assumption 2.4, the
expected approximation ratio of A is

E

[
A(X)
F(X)

]

≤ 1 + O

(

J ·
(

1
μF(n, φ)

+
exp

(
−μF(n,φ)4

Cn

)

β
+

∫ ∞

1/β

hn

(
1
x

)

dx

))

.

4 Matching

As a first example, we apply our framework to the matching functional MM
defined by the Euclidean minimum-length perfect matching problem. A parti-
tioning algorithm, which we call DF, for approximating MM was proposed by
Dyer and Frieze [7]. This algorithm divides [0, 1]2 into k2 equal-sized sub-squares,
computes an optimum matching within these cells and combines the solutions
using the so-called strip heuristic.

Let DF(X) be the cost of the matching computed by the algorithm above on
input X = {x1, . . . , xn}, and let MM(X) be the cost of a perfect matching of
minimum total length. Dyer and Frieze showed that DF(X) converges to MM(X)
with probability 1 if the points in X are drawn according to uniform distributions
on [0, 1]2 (this corresponds to Assumption 2.4 with φ = 1) and n goes to infinity.
We extend this to the case when X is drawn as described in Assumption 2.4.



118 M. Bläser, B. Manthey, and B.V. Raghavendra Rao

4.1 Smoothed Running-Time

A minimum-length perfect matching can be found in time O(n3) [1]. By Theo-
rem 3.4, we get the following corollary.

Corollary 4.1. Under Assumption 2.4 as well as Assumption 3.2 (1) and (2),
the expected running-time of DF on input X is at most O

(
n3φ2

k4 + k2
)
. If we plug

in k =
√

n/ logn, we obtain an expected running-time of at most O(nφ2 log4 n).

4.2 Smoothed Approximation Ratio

To estimate the approximation performance, we have to specify the function
μMM(n, φ). To obtain a lower bound for μMM(n, φ), let NN(X) denote the total
edge length of the nearest-neighbor graph for the point set X ⊆ [0, 1]2. This
means that

NN(X) =
∑
x∈X miny∈X:y �=x ‖x− y‖.

We have MM(X) ≥ NN(X)/2. We will use E[NN(X)] to bound E[MM(X)]. Next,
one shows the tail bound P

(
MM(X) ≤ c

)
≤ (2φπc)n/2. This allows us to apply

Theorem 3.6

Corollary 4.2. Under Assumption 2.4 and 3.2 (3), the expected approximation
ratio of DF is 1 + O

( √
φ

logn

)
.

Remark 4.3. 1. There exist other partitioning schemes for Euclidean match-
ing [2], which can be analyzed in a similar way.

2. Instead of a standard cubic-time algorithm, we can use Varadarajan’s match-
ing algorithm [30], which has a running-time of O(m1.5 log5 m) for m points,
for computing the optimal matchings within each cell. This improves the
running-time bound to O(n

√
φ log(n) log5(φ log n)).

5 Karp’s Partitioning Scheme for Euclidean TSP

Karp’s partitioning scheme [15] is a well-known heuristic for Euclidean TSP.
For a point set X ⊆ [0, 1]2, let KP(X) denote the cost of the tour through
X computed by Karp’s scheme. Steele [27] has proved complete convergence
of KP(X) to TSP(X) with probability 1, if the points are chosen uniformly
and independently. Using our framework developed in Section 3, we extend the
analysis of KP to the case of non-uniform and non-identical distributions.

Since Karp’s scheme chooses the cells adaptively, based on the point set X ,
our framework for the analysis of the running-time cannot be applied. However,
the total running-time of the algorithm is T (n) = 2O(n/k2) poly(n/k2) + O(k2),
which is, independent of the randomness, polynomial in n for k2 = n/ log n.

The nice thing about the TSP is that every tour has a worst-case approxi-
mation guarantee of at most n

2
· TSP(X). Thus, we can use Theorem 3.5 with

α(n) = n/2.

Corollary 5.1. Under Assumption 2.4 as well as Assumption 3.2 (3), the ex-
pected approximation ratio of KP is E

[ KP(X)
TSP(X)

]
≤ 1 + O

(√
φ/ log n

)
.



Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals 119

6 Euclidean Steiner Trees

Kalpakis and Sherman [14] proposed a partitioning algorithm for the Euclidean
minimum Steiner tree problem analogous to Karp’s partitioning scheme for Eu-
clidean TSP. The worst case cost of the Steiner tree computed by the algorithm,
however, could be larger than optimal by a constant factor. Let KS(X) denote
the cost of the Steiner tree computed.

The running-time of this algorithm is polynomial for the choice of s =
n/ logn [6]. For the same reason as for Karp’s partitioning scheme, we can-
not use our framework to estimate the running-time, because the choice of cells
depends on the actual point set.

As for the traveling salesman problem, we have a worst-case approximation
ratio of α(n) = O(n). The reason is that, for any two points x, y ∈ X , we have
‖x− y‖ ≤ ST(X). Since Kalpakis and Sherman’s partitioning algorithm outputs
a tree with at most a linear number of edges, we have KS(X) ≤ O

(
n · ST(X)

)
.

This gives us a worst-case approximation ratio of O(n) and yields the following
corollary of Theorem 3.5.

Corollary 6.1. Under Assumption 2.4 as well as Assumption 3.2 (3), the ex-
pected approximation ratio of KS is E

[KS(X)
ST(X)

]
≤ 1 + O

(√
φ/ log n

)
.

7 Degree-Bounded Minimum Spanning Tree

A b-degree-bounded minimum spanning tree of a given set of points in [0, 1]2 is a
spanning tree in which the degree of every point is bounded by b. For 2 ≤ b ≤ 4,
this problem is NP-hard, and it is solvable in polynomial time for b ≥ 5 [19].
Let dbMST denote the Euclidean functional that maps a point set to the length
of its shortest b-degree-bounded minimum spanning tree. This is a smooth, sub-
additive, and near-additive Euclidean functional [25].

Naturally, near-additivity implies that Karp’s partitioning scheme can be ex-
tended to the b-degree-bounded minimum spanning tree problem. Let P-bMST
be the adaptation of Karp’s partitioning algorithm to dbMST with parameter
k2 = n log logn

logn . With this choice of k, P-bMST runs in polynomial-time as a
degree-bounded minimum-length spanning tree on m nodes can be found in
time 2O(m logm) using brute-force search.

Again, we cannot use our framework for the running-time. The running-time
is guaranteed to be bounded by a polynomial. But we can use Theorem 3.5 to
obtain the following result.

Corollary 7.1. Under Assumption 2.4 as well as Assumption 3.2 (3), the ex-
pected approximation ratio is E

[P-bMST(X)
dbMST(X)

]
≤ 1 + O

(√
φ log log n/ logn

)
.

8 Concluding Remarks

We have provided a smoothed analysis of partitioning algorithms for Euclidean
optimization problems. The results can be extended to distributions over R

2 by



120 M. Bläser, B. Manthey, and B.V. Raghavendra Rao

scaling down the instance so that the inputs lie inside [0, 1]2. The analysis can
also be extended to higher dimensions. However, the value of φ for which our
results are applicable will depend on the dimension d.

Even though solutions computed by most of the partitioning algorithms
achieve convergence to the corresponding optimal value with probability 1 un-
der uniform samples, in practice they have constant approximation ratios close
to 1 [13, 20]. Our results show that the expected function values computed by
partitioning algorithms approach optimality not only under uniform, identical
distributions, but also under non-uniform, non-identical distributions, provided
that the distributions are not sharply concentrated.

One prominent open problem for which our approach does not work is the
functional defined by the total edge weight of a minimum-weight triangulation in
the Euclidean plane. The two main obstacles for this problem are that, first, the
functional corresponding to minimum-weight triangulation is not smooth and,
second, the value computed by the partitioning heuristic depends on the number
of points in the convex hull of the point set [12]. Damerow and Sohler [5] provide
a bound for the smoothed number of points in the convex hull, but this bound
is not strong enough for this purpose.

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice-Hall, Engle-
wood Cliffs (1993)

2. Anthes, B., Rüschendorf, L.: On the weighted Euclidean matching problem in Rd

dimensions. Applicationes Mathematicae 28(2), 181–190 (2001)
3. Arthur, D., Manthey, B., Röglin, H.: k-means has polynomial smoothed complexity.

In: Proc. 50th Ann. IEEE Symp. on Foundations of Computer Science (FOCS),
pp. 405–414. IEEE, Los Alamitos (2009)

4. Beier, R., Vöcking, B.: Random knapsack in expected polynomial time. J. Comput.
System Sci. 69(3), 306–329 (2004)

5. Damerow, V., Sohler, C.: Extreme points under random noise. In: Albers, S.,
Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 264–274. Springer, Heidelberg
(2004)

6. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–
207 (1971)

7. Dyer, M.E., Frieze, A.M.: A partitioning algorithm for minimum weighted eu-
clidean matching. Inform. Process. Lett. 18(2), 59–62 (1984)

8. Engels, C., Manthey, B.: Average-case approximation ratio of the 2-opt algorithm
for the TSP. Oper. Res. Lett. 37(2), 83–84 (2009)

9. Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the
2-Opt algorithm for the TSP. In: Proc. 18th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA), pp. 1295–1304. SIAM, Philadelphia (2007)

10. Frieze, A.M., Yukich, J.E.: Probabilistic analysis of the traveling salesman prob-
lem. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and Its
Variations, ch.7, pp. 257–308. Kluwer, Dordrecht (2002)

11. Garey, M.R., Graham, R.L., Johnson, D.S.: The complexity of computing Steiner
minimal trees. SIAM J. Appl. Math. 32(4), 835–859 (1977)



Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals 121

12. Golin, M.J.: Limit theorems for minimum-weight triangulations, other euclidean
functionals, and probabilistic recurrence relations. In: Proc. 7th Ann. ACM-SIAM
Symp. on Discrete Algorithms (SODA), pp. 252–260. SIAM, Philadelphia (1996)

13. Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP.
In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and Its Vari-
ations, ch.9, pp. 369–443. Kluwer, Dordrecht (2002)

14. Kalpakis, K., Sherman, A.T.: Probabilistic analysis of an enhanced partitioning
algorithm for the Steiner tree problem in Rd. Networks 24(3), 147–159 (1994)

15. Karp, R.M.: Probabilistic analysis of partitioning algorithms for the traveling-
salesman problem in the plane. Math. Oper. Res. 2(3), 209–224 (1977)

16. León, C.A., Perron, F.: Extremal properties of sums of Bernoulli random variables.
Statist. Probab. Lett. 62(4), 345–354 (2003)

17. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge University
Press, Cambridge (2005)

18. Papadimitriou, C.H.: The Euclidean traveling salesman problem is NP-complete.
Theoret. Comput. Sci. 4(3), 237–244 (1977)

19. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the
traveling salesman problem. J. Algorithms 5(2), 231–246 (1984)

20. Ravada, S., Sherman, A.T.: Experimental evaluation of a partitioning algorithm
for the steiner tree problem in R2 and R3. Networks 24(8), 409–415 (1994)

21. Rhee, W.T.: A matching problem and subadditive euclidean functionals. Ann.
Appl. Probab. 3(3), 794–801 (1993)

22. Röglin, H., Teng, S.-H.: Smoothed analysis of multiobjective optimization. In: Proc.
50th Ann. IEEE Symp. on Foundations of Computer Science (FOCS), pp. 681–690.
IEEE, Los Alamitos (2009)

23. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. J. ACM 51(3), 385–463 (2004)

24. Spielman, D.A., Teng, S.-H.: Smoothed analysis: An attempt to explain the be-
havior of algorithms in practice. Comm. ACM 52(10), 76–84 (2009)

25. Srivastav, A., Werth, S.: Probabilistic Analysis of the Degree Bounded Minimum
Spanning Tree Problem. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS,
vol. 4855, pp. 497–507. Springer, Heidelberg (2007)

26. Michael Steele, J.: Complete convergence of short paths in Karp’s algorithm for
the TSP. Math. Oper. Res. 6, 374–378 (1981)

27. Michael Steele, J.: Subadditive Euclidean functionals and nonlinear growth in ge-
ometric probability. Ann. Probab. 9(3), 365–376 (1981)

28. Michael Steele, J.: Probability Theory and Combinatorial Optimization. CBMS-
NSF Regional Conf. Series in Appl. Math., vol. 69. SIAM, Philadelphia (1987)

29. Supowit, K.J., Reingold, E.M.: Divide and conquer heuristics for minimum
weighted euclidean matching. SIAM J. Comput. 12(1), 118–143 (1983)

30. Varadarajan, K.R.: A divide-and-conquer algorithm for min-cost perfect matching
in the plane. In: Proc. 39th Ann. Symp. on Foundations of Computer Science
(FOCS), pp. 320–331. IEEE, Los Alamitos (1998)

31. Yukich, J.E.: Probability Theory of Classical Euclidean Optimization Problems.
Lecture Notes in Mathematics, vol. 1675. Springer, Heidelberg (1998)



Feedback Vertex Set in Mixed Graphs

Paul Bonsma1,� and Daniel Lokshtanov2

1 Humboldt-Universität zu Berlin, Institut für Informatik, Unter den Linden 6,
10099 Berlin, Germany

bonsma@informatik.hu-berlin.de
2 University of California, San Diego, Department of Computer Science and Engineering,

9500 Gilman Drive, La Jolla, CA 92093-0404, USA
dlokshtanov@cs.ucsd.edu

Abstract. A mixed graph is a graph with both directed and undirected edges.
We present an algorithm for deciding whether a given mixed graph on n vertices
contains a feedback vertex set (FVS) of size at most k, in time O(47.5k · k! ·n4).
This is the first fixed parameter tractable algorithm for FVS that applies to both
directed and undirected graphs.

1 Introduction

For many algorithmic graph problems, the variant of the problem for directed graphs
(digraphs) is strictly harder than the one for undirected graphs. In particular, replac-
ing each edge of an undirected graph by two arcs going in opposite directions yields
a reduction from undirected to directed graphs for most network design, routing, dom-
ination and independence problems including SHORTEST PATH, LONGEST PATH and
DOMINATING SET.

The Feedback Vertex Set problem is an exception to this pattern. A feedback vertex
set (FVS) of a (di)graph G is a vertex set S ⊆ V (G) such that G − S contains no
cycles. In the Feedback Vertex Set (FVS) problem we are given a (di)graph G and an
integer k and asked whether G has a feedback vertex set of size at most k. Indeed, if
one replaces the edges of an undirected graph G by arcs in both directions, then every
feedback vertex set of the resulting graph is a vertex cover of G and vice versa. Hence,
this transformation can not be used to reduce FEEDBACK VERTEX SET in undirected
graphs to the same problem in directed graphs, and other simple transformations do not
seem possible either. Thus FVS problems on undirected and directed graphs are differ-
ent problems; one is not a generalization of the other. This is reflected by the fact that
the algorithms for the two problems differ significantly across algorithmic paradigms,
be it approximation [1,2,11], exact exponential time algorithms [14,15,24] or parame-
terized algorithms [3,6,7,8]. In this paper we bridge the gap between the parameterized
algorithms for FEEDBACK VERTEX SET by giving one algorithm that works for both
directed and undirected graphs. More generally, we give the first algorithm for FVS in
mixed graphs, which are graphs that may contain both edges and arcs. Cycles in mixed
graphs are defined as expected: these may contain both edges and arcs, but all arcs
should be in the same direction (see Section 2 for precise definitions).

� Supported by DFG grant BO 3391/1-1.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 122–133, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Feedback Vertex Set in Mixed Graphs 123

For a mixed graph G on n vertices and an integer k, our algorithm decides in time
2O(k)k! O(n4) whether G contains a FVS S with |S| ≤ k, and if so, returns one. Algo-
rithms of this type are called Fixed Parameter Tractable (FPT) algorithms. In general,
the input for a parameterized problem consists of an instance X and integer parame-
ter k. An algorithm for such a problem is an FPT algorithm if its time complexity is
bounded by f(k) ·O (|X |c), where |X | denotes the input size of X , f(k) is an arbitrary
computable function of k, and c is a constant independent of k. The function f(k) is
also called the parameter function of the complexity, or of the algorithm. Since the first
systematic studies on FPT algorithms in the ’90s (see e.g. [9]), this has become a very
active area in algorithms. See [13,21] for recent introductions to the area.

FEEDBACK VERTEX SET is one of the classical graph problems and it was one of the
first problems to be identified as NP-hard [19]. The problem has found applications in
many areas, see e.g. [12,7] for references, with one of the main applications in deadlock
recovery in databases and operating systems. Hence the problem has been extensively
studied in algorithms [1,2,11,15,14,24,26]. The parameterized complexity of FEED-
BACK VERTEX SET on undirected graphs was settled already in 1984 in a monograph
by Melhorn [20]. Over the last two decades we have seen a string of improved algo-
rithms [3,9,10,22,18,23,16,8,6] (in order of improving parameter function), and the cur-
rent fastest FPT algorithm for the problem has running time O

(
3.83kkn2

)
[5], where n

denotes the number of vertices of the input graph. On the other hand, the parameterized
complexity of FEEDBACK VERTEX SET on directed graphs was considered one of the
most important open problems in Parameterized Complexity for nearly twenty years,
until an FPT algorithm with running time O

(
n44kk3k!

)
was given by Chen et al [7] in

2007. Interestingly, in [17], the permanent deadlock resolution problem as it appears in
the development of distributed database systems, is reduced to feedback vertex set in
mixed graphs. However, to the best of our knowledge, no algorithm for FVS on mixed
graphs has previously been described.

We now give an overview of the paper. We start by giving precise definitions in
Section 2. In Section 3 we give a sketch of the algorithm, and outline some the ob-
stacles one needs to overcome in order to design an FPT algorithm for FVS in mixed
graphs. Our algorithm has three main components: The frame of the algorithm is a stan-
dard iterative compression approach described in Section 3. The core of our algorithm
consists of two parts: the first is a reduction from a variant of FVS to a multi-cut prob-
lem called SKEW SEPARATOR. This reduction, described in Section 4 is a non-trivial
modification of the reduction employed for FVS in directed graphs by Chen et al [7].
Our reduction only works on pre-conditioned instances, we describe how to perform
the necessary pre-conditioning in Section 5.

2 Preliminaries

We consider edge/arc labeled multi-graphs: formally, mixed graphs consist of a tuple
G = (V, E, A, ψ), where V is the vertex set, E is the edge set, and A is the arc set.
The incidence function ψ maps edges e ∈ E to sets {u, v} with u, v ∈ V , also denoted
as uv = vu. Arcs a ∈ A are mapped by ψ to tuples (u, v) with u, v ∈ V . In the
remainder, we will often denote mixed graphs simply by the tuple G = (V, E, A), and
denote e = uv for edges e ∈ E with ψ(e) = {u, v}, and a = (u, v) for arcs a ∈ A with



124 P. Bonsma and D. Lokshtanov

ψ(a) = (u, v). V (G), E(G) and A(G) denote the vertex, edge and arc set respectively
of the mixed graph G.

The operation of contracting an edge e = uv into a new vertex w consists of the
following operations: introduce a new vertex w, for every edge or arc with u or v as end
vertex, replace this end vertex by w, and delete u and v. Note that edge identities are
preserved: ψ(e) may for instance change from {x, u} to {x, w}, but e is still considered
the same edge. Note also that contractions may introduce parallel edges or arcs (pairs
of edges or arcs e and f with ψ(e) = ψ(f)), and loops (edges e with ψ(e) = {w, w}
or arcs a with ψ(a) = (w, w)).

For G = (V, E, A) and S ⊆ V or S ⊆ E ∪ A, by G[S] we denote the subgraph
induced by S. In particular, G[E] is obtained by deleting all arcs and resulting isolated
vertices. Deletion of S is denoted by G − S. The out-degree d+(v) (in-degree d−(v))
of a vertex v ∈ V is the number of arcs e ∈ A with ψ(e) = (v, w) (ψ(e) = (w, v)) for
some w. If an arc (v, w) ((w, v)) exists, w is called an out-neighbor (in-neighbor) of v.
Similarly, the edge degree d(v) is the number of incident edges, and if vw ∈ E then w
is an edge neighbor of v.

A walk of length l in a mixed graph G = (V, E, A) is a sequence v0, e1, v1, e2, . . .,
el, vl such that for all 1 ≤ i ≤ l, ei ∈ E ∪ A and ei = vi−1vi or ei = (vi−1, vi).
This is also called a (v0, vl)-walk. v0, vl are its end vertices, v1, . . . , vl−1 its internal
vertices. A walk is a path if all of its vertices are distinct. A walk v0, e1, v1, . . . , vl of
length at least 1 is a cycle if the vertices v0, . . . , vl−1 are distinct, v0 = vl, and all ei are
distinct. (Note that this last condition is only relevant for walks of length 2. Note also
that if e is a loop on vertex u, then u, e, u is also considered a cycle.) We will usually
denote walks, paths and cycles just by their vertex sequence v0, . . . , vl. In addition, we
will sometimes encode paths and cycles by their edge/arc set EP = {e1, . . . , el}.

3 Outline of the Algorithm

In this section we give an informal overview of our algorithm, the details are given in
the following sections. Similar to many previous FVS algorithms [5,6,7,8,16], we will
employ the iterative compression technique introduced by Reed, Smith and Vetta [25].
Essentially, this means that we start with a trivial subgraph of G and increase it one
vertex at a time until G is obtained, maintaining a FVS of size at most k +1 throughout
the computation. Every time we add a vertex to the graph we perform a compression
step. That is, given a graph G′ with a FVS S of size k + 1, the algorithm has to decide
whether G′ has a FVS S′ of size k. If the algorithm concludes that G′ has no FVS of
size k, we can conclude that G does not either, since G′ is a subgraph of G. In each
compression step the algorithm loops over all 2k+1 possibilities for S ∩ S′. For each
choice of S′ ∩ S we need to solve the following problem.

S-DISJOINT FVS:
INSTANCE: A mixed graph G = (V, E, A) with a FVS S.
TASK: Find a FVS S′ of G with |S′| < |S| and S′ ∩ S = ∅, or report that this does not
exist.

A FVS S ′ with |S′| < |S| and S′ ∩ S = ∅ is called a small S-disjoint FVS. The
application of iterative compression implies the following lemma.



Feedback Vertex Set in Mixed Graphs 125

Lemma 1 (�). 1 Suppose S-DISJOINT FVS can be solved in time O ((k + 1)!f(k)nc),
with n = |V |, k = |S| − 1 and f(k) non-decreasing. Then FVS can be solved in time
O

(
k(k + 1)!f(k)nc+1

)
.

Chen et al [7] gave an algorithm for S-Disjoint FVS restricted to digraphs, which we
will call S-Disjoint Directed FVS. In Section 4 we show that their algorithm can be ex-
tended in a non-trivial way to solve the following generalization of the problem to mixed
graphs. Let G be an undirected graph with S ⊆ V (G). A vertex set S ′ ⊆ V (G)\S is
a multiway cut for S (in G) if there is no (u, v)-path in G − S′ for any two distinct
u, v ∈ S.

FEEDBACK VERTEX SET / UNDIRECTED MULTIWAY CUT (FVS/UMC):
INSTANCE: A mixed graph G = (V, E, A) with a FVS S, and integer k.
TASK: Find a FVS S ′ of G with |S′| ≤ k and S ′ ∩ S = ∅, that is also a multiway cut
for S in G[E], or report that this does not exist.

A multiway cut S′ for G[E], S is also called an undirected multiway cut (UMC) for
G, S. The remaining question is: how can the FPT algorithm for FVS/UMC be used to
solve S-Disjoint FVS? Let G, S be an S-Disjoint FVS instance. Suppose there exists a
small S-Disjoint FVS S′ for the graph G. If we know which undirected paths between
S-vertices do not contain any S ′-vertices, then these can be contracted, and S′ remains
a FVS for the resulting graph G∗. In addition, this gives a new vertex set S∗ consisting
of the old S-vertices and the vertices introduced by the contractions. This then yields
an instance G∗, S∗ of FVS/UMC, for which S ′ is a solution. In Section 5 we prove this
more formally. However, since we do not know S′, it remains to find which undirected
paths between S-vertices do not contain S′-vertices. One approach would be to try
all possible combinations, but the problem is that the number of such paths may not be
bounded by any function of k = |S|−1, see the example in Figure 1 (a). (More complex
examples with many paths exist, where the solution S′ is not immediately obvious.) The
example in Figure 1 (a) contains many vertices of degree 2, which are simply reduced
in nearly all fast undirected FVS algorithms [8,26,16,5]. However in our case we can
easily add arcs to the example to prevent the use of (known) reduction rules, see e.g.
Figure 1 (b). Because there may be many such paths, and there are no easy ways to
reduce these, we will guess which paths do not contain S′-vertices in two stages: this
way we only have to consider 2O(k) possibilities, which is shown in Section 5.

(a) (b)

: S′
: S

...
...

...
...

Fig. 1. Graphs with a FVS S and small S-disjoint FVS S′, with many undirected S-paths

1 The (full) proofs of claims marked with � have been omitted due to space restrictions.



126 P. Bonsma and D. Lokshtanov

4 An Algorithm for FVS/UMC: Reduction to Skew Separator

Let G be a digraph and S = s1, . . . , s� and T = t1, . . . , t� be mutually disjoint vertex
sequences such that all si ∈ V (G) have in-degree 0 and all ti ∈ V (G) have out-
degree 0. A subset C ⊆ V (G) disjoint from {s1, . . . , s�, t1, . . . , t�} is called a skew
separator if for all i ≥ j, there is no (si, tj)-path in G − C. The vertices in S will be
called out-terminals and the vertices in T in-terminals. An FPT algorithm to solve the
SKEW SEPARATOR problem defined below is given as a subroutine in the algorithm for
DIRECTED FEEDBACK VERTEX SET by Chen et al [7].

SKEW SEPARATOR (SS):
INSTANCE: A digraph G, vertex sequences S = s1, . . . , s� and T = t1, . . . , t� where
all si ∈ V (G) have in-degree 0 and all ti ∈ V (G) have out-degree 0, and an integer k.
TASK: Find a skew separator C of size at most k, or report that this does not exist.

Theorem 1 (Chen et al [7]). The Skew Separator problem on instances G,S, T , k with
n = |V (G)| can be solved in time 4kk ·O(n3).

43

1

1
1

2
2

3

4
4

3

1

2
2

1

3

4

3

4

2

: terminals

: skew separator

: terminals

: skew separator

σ(1) σ(1) σ(1) σ(1)

σ(2) σ(2) σ(2) σ(2)

S: T : S: T :

(c) incorrect transformation

σ(1) σ(2)

: S

: FVS+UMC S′

(a) FVS/UMC instance G, S (b) correct transformation

Fig. 2. Correct and incorrect transformations from FVS/UMC to Skew Separator. In- and out-
terminals are ordered from top to bottom, so ‘allowed paths’ go from top left to bottom right.

We will use this to give an algorithm for FVS/UMC, using a non-trivial extension of
the way SS is used in [7] to give an algorithm for S-Disjoint Directed FVS. We will
transform a FVS/UMC instance G, S to a SS instance GSS, S, T , in such a way that S′

is a FVS and UMC for G, S if and only if it is a skew separator for GSS,S, T . Since
every cycle in G contains at least one vertex from S, this can be done by replacing every
S-vertex by a set of in- and out-terminals in GSS. The following proposition shows how
the order of these terminals should be chosen. A bijective function σ : {1, . . . , �} →
S is called a numbering of S. It is an arc-compatible numbering if there are no arcs
(σ(i), σ(j)) in G with i > j.

Proposition 1 (�). Let C ⊆ V \S be a FVS and UMC for the graph G = (V, E, A) and
vertex set S ⊆ V . Then a numbering σ of S exists such that for all 1 ≤ j < i ≤ |S|,
there is no path from σ(i) to σ(j) in G− C.

Since in our case edges are present, we cannot achieve the desired correspondence by
introducing just one terminal pair for every S-vertex, as was done by Chen et al [7].



Feedback Vertex Set in Mixed Graphs 127

Instead, for every vertex v ∈ S, we introduce a single terminal pair for all arcs incident
with v in G, and in addition, for every edge incident with v we introduce a terminal
pair specifically for this edge. The transformation is illustrated in Figure 2 (a) and (b).
Numbers and colors for edges show how edges in G correspond to arcs in GSS. For
every v ∈ S, the red terminal pair is used for all incident arcs. Observe that in this
example, a set S′ is a FVS and UMC in G, S if and only if it is a skew separator
in GSS,S, T . However, this correspondence does not hold for arbitrary orderings of
the edges incident with a vertex v ∈ S, as is shown by the different order used in
Figure 2 (c). The indicated skew separator of size 2 does not correspond to a FVS and
UMC in G, S.

Construction: We now define the transformation in detail. Let G, S, k be an instance
of FVS/UMC, with |S| = �. We define the relation ≺ on V (G)\S as follows: u ≺ v if
and only if there is a (v, u)-path in G− S but no (u, v)-path (and u �= v). Observe that
≺ is transitive and antisymmetric, and therefore a partial order on V (G)\S.

For any numbering σ of S, the graph GSS(G, σ) is obtained from G as follows: For
every i ∈ {1, . . . , �}, we do the following: denote v = σ(i). let vw1, . . . , vwd be
the edges incident with v, ordered such that if wx ≺ wy then x < y. Since ≺ is a
partial order, such an ordering exists and is given by an arbitrary linear extension of
≺. Apply the following operations: (1) Add the vertices s1

i , . . . , s
d+1
i and t1i , . . . , t

d+1
i .

(2) For every arc (v, u) with u �∈ S, add an arc (sd+1
i , u). (3) For every arc (u, v) with

u �∈ S, add an arc (u, t1i ). (4) For every edge vwj , add arcs (sji , wj) and (wj , t
j+1
i ). (5)

Delete v.
After this is done for every v ∈ S, replace all remaining edges xy with two arcs

(x, y) and (y, x). This yields the digraph GSS(G, σ) and vertex sequences S = s1
1, . . .,

sd1+1
1 , s1

2, . . . , s
d2+1
2 , . . . . . . , sd�+1

� andT = t11, . . . , t
d1+1
1 , t12, . . . , t

d2+1
2 , . . . . . . , td�+1

� ,
where di = d(σ(i)) is the edge degree of σ(i). The integer k remains unchanged.
GSS(G, σ),S, T , k is an instance for SS.

Lemma 2 (�). Let S be a FVS for a mixed graph G = (V, E, A), such that G[S]
contains no edges and G contains no cycles of length at most 2. Then C ⊆ V (G)\S is
a FVS and UMC for G and S if and only if there exists an arc-compatible numbering σ
of S such that C is a skew separator for GSS(G, σ),S, T , as constructed above.

Proof sketch: Let C be a FVS and UMC for G, S. By Proposition 1, we can define a
numbering σ of S such that for all i > j, there is no path from σ(i) to σ(j) in G − C.
Therefore, σ is arc-compatible.

We now show that for this σ, C is a skew separator for GSS(G, σ),S, T . Let GSS =
GSS(G, σ). Suppose C is not a skew separator, so GSS−C contains a path P = sxi , v1, . . .,
v�, t

y
j with i > j, or with i = j and x ≥ y. Then P ′ = σ(i), v1, . . . , v�, σ(j) is (the

vertex sequence of) a walk in G−C; note that arcs of P may correspond to edges in P ′

but that the vertex sequence still constitutes a walk. If i > j, then all vertices of the walk
P ′ are different and hence it is a (σ(i), σ(j))-path in G−C, contradicting the choice of
σ. If i = j, then P ′ is a closed walk in G−C of which all internal vertices are distinct.
In all cases, it can be shown that P ′ is a cycle in G−C, which gives a contradiction. In
the case where P ′ has length 2 it follows from x ≥ y and the construction of GSS that
distinct e and f can be chosen to ensure that P ′ = σ(i), e, v1, f, σ(i) is a cycle. Thus,
C is a skew separator for GSS.



128 P. Bonsma and D. Lokshtanov

Let C be a skew separator for GSS = GSS(G, σ), for some arc-compatible numbering
σ of S. We prove that C is a FVS and UMC for G, S. Suppose G[E] − C contains
a (u, v)-path P = u, v1, . . . , v�, v with u, v ∈ S, and no internal vertices in S. Let
u = σ(i) and v = σ(j). Since we assumed that G[S] contains no edges, P has length
at least 2. Since all edges not incident with S are replaced with arcs in both directions
during the construction of GSS, for some x, y this yields both a path sxi , v1, . . . , v�, t

y+1
j

in GSS − C and a path syj , v�, . . . , v1, t
x+1
i in GSS − C. One of these paths contradicts

that C is a skew separator. This shows that C is a multiway cut for G[E] and S.
Next, suppose G − C contains a cycle K . Since S is a FVS for G, K contains

at least one vertex of S. If K contains at least two vertices of S, then K contains a
path P from σ(i) to σ(j) for some i > j, with no internal vertices in S. Let P =
σ(i), v1, . . . , v�, σ(j). P has length at least two, since σ is arc-compatible, and there
are no edges in G[S]. Then P ′ = sxi , v1, . . . , v�, t

y
j is a path in GSS − C for some

x, y, contradicting that C is a skew separator. So now we may suppose that K contains
exactly one vertex of S, w.l.o.g. K = σ(i), v1, . . . , v�, σ(i). Every cycle in G has length
at least 3, so v1 �= v�. Using the relation ≺ that was used to construct GSS, it can be
shown that in every case K yields a path P = sxi , v1, . . . , v�, t

y+1
i in GSS − C for

some x > y, or that K consists only of edges (proofs omitted). In the latter case,
P ′ = syi , v�, v�−1, . . . , v1, t

x+1
i with y > x is the path in GSS − C that contradicts that

C is a skew separator. This concludes the proof that C is a FVS and UMC for G, S. �

Lemma 2 yields a way to reduce FVS/UMC to the SS problem in the case that the input
graph G does not contain any short cycles. To solve such an instance of FVS/UMC, we
try all possible arc-compatible orderings σ of S (at most �!) and solve the instances of
SS using Theorem 1. The FVS/UMC instance is a yes-instance if and only if at least one
of the produced SS instances is. Using simple reduction rules one can reduce general
instances of FVS/UMC to instances which do not contain short cycles. This reduction,
together with Theorem 1 gives an FPT algorithm for FVS/UMC.

Theorem 2 (�). FVS/UMC on instances G, S, k with n = |V (G)|, k ≥ 1 and � = |S|
can be solved in time O(n3) · �! 4kk.

5 An Algorithm for S-Disjoint FVS: Contracting Paths

In this section we give an FPT algorithm for S-Disjoint FVS, by reducing it to
FVS/UMC. Throughout this section, let G = (V, E, A) be a mixed graph, and S be
a FVS for G. The main idea of our algorithm is to try out different guesses for a set
of edges F ⊆ E that is not hit by a possible S-disjoint FVS S′, and contract F . If a
solution S′ exists and the appropriate set F that corresponds to S′ is considered, then
S′ remains a FVS, but in addition becomes a UMC. So in the resulting graph, we have
an algorithm for finding S′. We now make this precise with the following definition
and propositions. Let G∗ be the graph obtained from G by contracting a set of edges
F ⊆ E. Let the set S∗ consist of all vertices in G∗ resulting from a contraction, and all
remaining S-vertices (those that were not incident with an edge from F ). Then we say
that G∗, S∗ is the result of contracting F in G, S. The short proof of Proposition 2 is
omitted, while Proposition 3 follows easily from the definitions.



Feedback Vertex Set in Mixed Graphs 129

Proposition 2 (�). Let S be a FVS in a mixed graph G = (V, E, A). Let G∗, S∗ be the
result of contracting a set F ⊆ E in G, S, where G[F ] is a forest. Then a set S′ ⊆ V (G)
is an S-disjoint FVS for G that is not incident with edges from F if and only if it is an
S∗-disjoint FVS in G∗.

Proposition 3. Let S be a FVS in a mixed graph G = (V, E, A), and let S′ be an S-
disjoint FVS for G. Let F ⊆ E be the set of all edges that lie on a path between two
S-vertices in G[E] − S ′. Let G∗, S∗ be the result of contracting F in G, S. Then S′ is
a UMC for G∗, S∗.

The previous two propositions show that it is safe to contract sets of edges that contain
no cycles (no solutions are introduced), and when considering the appropriate set, a
possible solution S′ indeed becomes a FVS and UMC in the resulting graph. The re-
maining task is to find a way to consider only a limited number (2O(k)) of possibilities
for F , while ensuring that a correct choice is among them. To this end we introduce the
following definitions and bounds. The definitions are illustrated in Figure 3.

A branching vertex for G, S is a vertex v such that there are at least three internally
vertex disjoint paths from v to S in G[E]. By B = B(G, S) we denote the set of
branching vertices for G, S. A connection path is a path in G[E] with both end vertices
in S and B, and no internal vertices in S and B.

: S′′
: S∗

: S′
: S

: S′

: B

: E(Pc)
: S′′
: S

Contract E(Pc): E(P\Pc)

FVS/UMC instance G∗, S∗:

The S-shaved subgraph of G:

Delete arcs,
shave

Delete BFVS

: S

: BFVS

: B
: BFVS

(d)

(b)(a) DFVS instance G, S, solution S′:

(c) G′ = G− BFVS:

Fig. 3. The graphs and sets defined in Section 5

Before we give a bound on the number of branching vertices and connection paths,
we introduce a different viewpoint on these notions. Given a mixed graph G = (V, E, A)
and a FVS S, we construct the S-shaved subgraph of G by starting with G[E], and it-
eratively deleting non-S-vertices that have degree 1, as long as possible. Hence the
S-shaved subgraph GS of G is an undirected graph in which every non-S-vertex has
degree at least 2. Considering the three internally vertex disjoint paths from a branch-
ing vertex v ∈ B to S, and using the fact that S-vertices are never deleted, we see that



130 P. Bonsma and D. Lokshtanov

Algorithm 1. An algorithm for S-Disjoint FVS

INPUT: A mixed graph G = (V,E,A) with FVS S, and integer k = |S| − 1.
OUTPUT: a small S-disjoint FVS S′ for G, S, or ‘NO’ if this does not exist.
1. Compute the set B of branching vertices of G,S.
2. if |B| > 3k then return ‘NO’
3. for all BFVS ⊆ B with |BFVS| ≤ k:
4. k′ := k − |BFVS|.
5. G′ := G− BFVS.
6. Compute the set P of connection paths of G′, S.
7. if |P| > 3k + k′ then continue
8. for all Pc ⊆ P with |P| − |Pc| ≤ k′:
9. Let F = E(Pc).

Let F ∗ ⊆ F be the edges of components of G′[F ] containing an S-vertex.
10. if G′[F ∗] contains a cycle then continue
11. Construct G∗, S∗ by contracting F ∗ in G′, S.
12. if G∗ contains no loops incident with S∗-vertices and

there is a FVS and UMC S′′ for G∗, S∗ with |S′′| ≤ k′, then
13. return S′ := S′′ ∪ BFVS

14. return ‘NO’

this process does not delete vertices from B, and neither does it delete vertices from
connection paths. Furthermore vertices in B still have degree at least 3 in GS . In fact, it
turns out that this is another way to characterize the branching vertices and connection
paths of G, S:

Proposition 4 (�). Let B be the set of branching vertices of a mixed graph G =
(V, E, A) with FVS S, and let GS be its S-shaved graph. Then B is exactly the set
of non-S-vertices in GS that have degree at least 3.

The graph GS can be thought of as a forest whose all leaves are in S, but where a vertex
in S can be simultaneously used as a leaf for multiple paths, or “branches”, of the forest.
With this viewpoint in mind one can use counting arguments that relate the number of
leaves and vertices of degree at least 3 in forests to prove the following lemma.

Lemma 3 (�). Let S be a FVS of a mixed graph G = (V, E, A) with k = |S| − 1, and
let S′ be a small S-disjoint FVS for G, S. Then G has at most 3k branching vertices
with respect to S, and G has at most 3k connection paths with no vertices in S′.

We now present Algorithm 1, the algorithm for S-Disjoint FVS. Recall that the ‘con-
tinue’ statement continues with the next iteration of the smallest enclosing for- (or
while-) loop, so it skips the remainder of the current iteration. Note that in Line 6,
the set P of connection paths of G′ = G−BFVS is considered, not the connection paths
of G. For a set of paths Pc ⊆ P , we denote by E(Pc) the set of all edges that occur in
a path in Pc. The following two lemmas prove the correctness of Algorithm 1.

Lemma 4. Let S be a FVS of a mixed graph G = (V, E, A) with k = |S| − 1. If
Algorithm 1 returns a set S′ = S′′ ∪ BFVS, then S′ is a small S-disjoint FVS for G.



Feedback Vertex Set in Mixed Graphs 131

Proof. Suppose a solution S ′ = S ′′ ∪ BFVS is returned in Line 13. Then S′′ is a FVS
and UMC for G∗ and S∗, which are obtained from G′, S by contracting the edge set
F ∗ ⊆ E(G′). Since G′[F ∗] contains no cycles (otherwise the condition in Line 10
is satisfied), S′′ is an S-disjoint FVS in G′ (Proposition 2). Because G′ = G − BFVS,
S′′ ∪ BFVS is then an S-disjoint FVS in G, of size at most k′ + |BFVS| = k. �

Lemma 5. Let S be a FVS of a mixed graph G = (V, E, A) with k = |S| − 1. If there
exists a small S-disjoint FVS S′ for G, then a solution is returned by Algorithm 1.

Proof. Let S′ be a small S-disjoint FVS, and let B = B(G, S). By Lemma 3, |B| ≤ 3k,
so the algorithm does not terminate in Line 2. Now consider the iteration of the for-loop
in Line 3 that considers BFVS := B∩S′, and thus the graph G′ = G−BFVS and parameter
k′ = k − |BFVS|. Let S ′′ = S′\BFVS, which is an S-disjoint FVS for G′ of size at most
k′. So we may apply the propositions and lemmas from this section to G′, S and S′′.

Observe that after deleting a subset BFVS of branching vertices of G, some other ver-
tices may lose their branching vertex status, but no branching vertices are introduced.
In other words, B(G′, S) ⊆ B(G, S)\BFVS. Therefore, S′′∩B(G′, S) = ∅. From Propo-
sition 4 and the fact that all connection paths of G′ are part of the S-shaved subgraph of
G′, it follows that connection paths of G′ share no internal vertices. Combining these
two facts shows that at most |S′′| ≤ k′ connection paths of G′ are incident with a ver-
tex from S′′. Lemma 3 shows that G′ contains at most 3k connection paths not incident
with S′′, so there are at most 3k +k′ connection paths in total. Therefore, in Line 7, the
algorithm does not continue to the next iteration.

Now let P be the set of connection paths of G′, S, and let Pc ⊆ P be those connec-
tion paths that are not incident with an S′′-vertex. Since we observed that |P\Pc| ≤ k′,
we may consider the iteration of the for-loop in Line 8 that considers Pc. Note that the
set F ∗ constructed in Line 9 contains all edges of G′ that lie on some undirected path
P between two S-vertices in G′ − S′′, since every such path P consists of a sequence
of connection paths. Since S ′′ is a FVS for G′, every component of G′[F ∗] is a tree, so
in Line 10 the algorithm does not continue to the next iteration. Let G∗, S∗ be obtained
by contracting F ∗ in G′, S. By Proposition 2, S′′ is an S∗-disjoint FVS in G∗. By
Proposition 3, S′′ is a UMC for G∗, S∗. Hence in Line 13, a solution will be returned.

�

Proposition 5 (�). For all constants c > 2,
∑k

i=0

(
ck
i

)
∈ O

((
cc

(c−1)c−1

)k
)

.

Theorem 3 (�). On an instance G = (V, E, A), S with n = |V | and k = |S| − 1,
Algorithm 1 correctly solves S-Disjoint FVS in time O

(
k(k + 1)! 47.5k n3

)
.

Lemmas 4 and 5 show that Algorithm 1 returns the correct answer, so it only remains
to prove the complexity bound. A detailed analysis is deferred to the full version of this
article. We argue here that the complexity is bounded by 2O(k)k! · nO(1): By Line 2,
|B| ≤ 3k, so the number of iterations of the first for-loop is at most

∑k
i=0

(
3k
i

)
∈

O(6.75k) (Proposition 5). For every such iteration, let k′ = k − |BFVS|. By Line 7,
|P| ≤ 3k + k′ ≤ 4k holds whenever the second for-loop is entered, so this loop

iterates at most
∑k′

i=0

(
4k
i

)
∈ O(9.49k) times (Proposition 5). At most once for every



132 P. Bonsma and D. Lokshtanov

iteration, a FVS/UMC problem on the instance G∗, S∗, k′ is solved, which can be done
with parameter function |S∗|! · 4k′k′ (Theorem 2). By construction, every component
of G′[F ∗] contains an S-vertex, so |S∗| ≤ |S|, and therefore this contributes at most
(k + 1)!4kk to the parameter function. Hence the total parameter function is bounded
by O(6.75k · 9.49k · 4k · k (k + 1)!) ⊆ O(256.5k k!). The running time dependence
on n is dominated by solving the FVS/UMC problem in time O(n3) (Theorem 2), and
the construction of G∗, S∗, which can also be shown to require O(n3) time. Combining
Theorem 3 with Lemma 1 yields the main theorem of this paper.

Theorem 4. In time O
(
(k + 1)!k247.5k n4

)
, it can be decided whether a mixed graph

G = (V, E, A) with |V | = n contains a FVS S with |S| ≤ k.

6 Discussion

Our research showed that for some problems, perhaps surprisingly, combining the undi-
rected case with the directed case may provide a significant challenge. We therefore
think that mixed graphs deserve more attention in the area of graph algorithms.

We remark that our algorithms can be used to decide whether a mixed graph G
contains a set S of edges and arcs with |S| ≤ k such that G − S is acylic (Feedback
Edge/Arc Set (FE/AS)). For undirected graphs, this is a trivial problem. For directed
graphs this can easily be reduced to directed FVS, by subdividing all arcs with a vertex
and replacing all original vertices with k +1 copies (to ensure that they are not selected
in a FVS of size at most k). For mixed graphs, this last transformation does not work.
However, in the full version of the article we extend our algorithms for a certain vertex
weighted variant, which can then be used to solve FE/AS.

Our first question is whether the complexity of our algorithm can be improved, in
particular whether the k! factor can be removed. Not only does this factor asymptoti-
cally dominate the running time, but it also seems to be critical in practice: the 47.5k

factor is based on combining a number of upper bounds and it is unlikely that the worst
case complexity bound actually applies to arbitrary instances.

Secondly, one may ask whether FVS in mixed graphs admits a polynomial kernel-
ization (see e.g. [4,26]). Both questions seem to be very challenging, in fact they remain
unresolved even when restricted to planar digraphs (see [4]).

Acknowledgement. The authors would like to thank Dániel Marx for suggesting that
the FVS algorithm might be extended to solve Feedback Edge/Arc Set in mixed graphs.

References

1. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback
vertex set problem. SIAM J. Discrete Math. 12, 289–297 (1999)

2. Becker, A., Geiger, D.: Optimization of Pearl’s method of conditioning and greedy-like ap-
proximation algorithms for the vertex feedback set problem. Artif. Intell. 83, 167–188 (1996)

3. Bodlaender, H.L.: On disjoint cycles. Int. J. Found. Comput. Sci. 5, 59–68 (1994)
4. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S., Thilikos, D.M.

(Meta) kernelization. In: FOCS 2009, pp. 629–638. IEEE, Los Alamitos (2009)



Feedback Vertex Set in Mixed Graphs 133

5. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set new measure and new structures. In:
Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 93–104. Springer, Heidelberg (2010)

6. Chen, J., Fomin, F., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex
set problems. J. Comput. Syst. Sci. 74, 1188–1198 (2008)

7. Chen, J., Liu, Y., Lu, S., O’sullivan, B., Razgon, I.: A fixed-parameter algorithm for the
directed feedback vertex set problem. J. ACM 55, 1–19 (2008)

8. Dehne, F., Fellows, M.R., Langston, M., Rosamond, F., Stevens, K.: An O(2O(k)n3) FPT
algorithm for the undirected feedback vertex set problem. Theor. Comput. Syst. 41, 479–492
(2007)

9. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness I: Basic results.
SIAM J. Comput. 24, 873–921 (1995)

10. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, New York (1999)
11. Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and

multicuts in directed graphs. Algorithmica 20, 151–174 (1998)
12. Festa, P., Pardalos, P.M., Resende, M.: Feedback set problems. Handbook of Combinatorial

Optimization A(Supplement), 209–258 (1999)
13. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
14. Fomin, F., Villanger, Y.: Finding induced subgraphs via minimal triangulations. In: STACS

2010. LIPIcs, vol. 5, pp. 383–394. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik
(2010)

15. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set
problem: Exact and enumeration algorithms. Algorithmica 52, 293–307 (2008)

16. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-
parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72,
1386–1396 (2006)

17. Jain, K., Hajiaghayi, M., Talwar, K.: The generalized deadlock resolution problem. In:
Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS,
vol. 3580, pp. 853–865. Springer, Heidelberg (2005)

18. Kanj, I., Pelsmajer, M., Schaefer, M.: Parameterized algorithms for feedback vertex set. In:
Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 235–247.
Springer, Heidelberg (2004)

19. Karp, R.: Reducibility among combinatorial problems. Complexity of Computer Computa-
tions, 85–103 (1972)

20. Mehlhorn, K.: Data Structures and Algorithms 2: Graph Algorithms and NP-Completeness.
Springer, Heidelberg (1984)

21. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press, Oxford
(2006)

22. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for
undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS, vol. 2518,
pp. 241–248. Springer, Heidelberg (2002)

23. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for
finding feedback vertex sets. ACM Trans. Algorithms 2, 403–415 (2006)

24. Razgon, I.: Computing minimum directed feedback vertex set in O(1.9977n). In: ICTCS, pp.
70–81 (2007)

25. Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32, 299–301
(2004)

26. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Trans. Algorithms 6 (2010)



Switching to Directional Antennas with

Constant Increase in Radius and Hop Distance

Prosenjit Bose1, Paz Carmi2, Mirela Damian3,
Robin Flatland4, Matthew J. Katz5, and Anil Maheshwari6

1 Carleton University, Ottawa, Canada
jit@scs.carleton.ca

2 Ben-Gurion University, Beer-Sheva, Israel
carmip@cs.bgu.ac.il

3 Villanova University, Villanova, P.A., USA
mirela.damian@villanova.edu

4 Siena College, Loudonville, N.Y., USA
flatland@siena.edu

5 Ben-Gurion University, Beer-Sheva, Israel
matya@cs.bgu.ac.il

6 Carleton University, Ottawa, Canada
anil@scs.carleton.ca

Abstract. For any angle α < 2π, we show that any connected com-
munication graph that is induced by a set P of n transceivers using
omni-directional antennas of radius 1, can be replaced by a strongly con-
nected communication graph, in which each transceiver in P is equipped
with a directional antenna of angle α and radius rdir, for some constant
rdir = rdir(α). Moreover, the new communication graph is a c-spanner of
the original graph, for some constant c = c(α), with respect to number
of hops.

Keywords: directional antennas, wireless networks, communication
graph, hop spanner.

1 Introduction

Motivation and Problem Definition: Antennas used in wireless networks have
traditionally been omni-directional. Such an antenna broadcasts in all directions,
and its broadcast region can be represented geometrically by a disk centered at
the transceiver. Recently, attention has been given to directional antennas which
broadcast over a limited angle. The broadcast region of a directional antenna
can be represented geometrically as a (closed) circular sector with an angular
aperture α and radius rdir. An antenna orientation is specified by a counter-
clockwise angle θ measured from the positive x-axis to the sector’s bisector.
Directional antennas have the advantage of requiring less power compared to
omni-directional antennas of the same radius, or by using the same power they
can reach farther. In addition, narrower broadcast regions reduce interference
and provide an added measure of security from eavesdroppers.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 134–146, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Switching to Directional Antennas 135

The direction assignment problem is the task of finding orientations for a set
of directional antennas such that the induced communication graph has cer-
tain desired properties. Let P be a set of n points in the plane representing n
transceivers each equipped with an antenna. The induced communication graph
has a vertex for each point and an edge directed from a to b if and only if b’s point
is contained in the broadcast region of a’s antenna. Let DG(r) be the induced
communication graph when the points in P are equipped with omni-directional
antennas of radius r. We will assume r is sufficiently large to ensure that DG(r)
is connected. It is easy to see that to achieve connectivity, r must be at least as
long as the longest edge in a Euclidean minimum spanning tree of P . Consider
now the same point set but with each point equipped instead with a directional
antenna of angle α. Our goal is to determine a small radius rdir = rdir(r, α)
for the directional antennas and to assign orientations to them, such that the
resulting communication graph, Gdir, is (i) strongly connected, and (ii) for any
two points p, q ∈ P , the number of hops (i.e., edges) in a minimum-hop path
from p to q in Gdir is bounded by some constant c = c(α) times the number of
hops in a minimum-hop path from p to q in DG(r). In other words, condition
(ii) requires that Gdir is a c-spanner of DG(r) with respect to number of hops.
Without loss of generality, we will assume going forward that r = 1.

New results: For α ≤ π/3, we show (in Section 2) that by fixing the radius of
the antennas to 4

√
2(3.5k−6), where k = �2π/α�, one can assign orientations to

the antennas such that Gdir is strongly connected and a (�8 log k� − 1)-spanner
of DG(1) with respect to the number of hops. In Section 3, we show that for the
special case of α = π/3 a radius of 36

√
2 is sufficient to obtain a hop 10-spanner.

This result immediately yields a hop 10-spanner using a radius of 4
√

2(3 + k),
for any α > π/3. We also consider a path version of the problem in Section 4
where DG(1) is assumed to be a path, and prove that a radius of �(3k +3)/2� is
sufficient to obtain a hop (2k + 4)-spanner, for α ≤ π/3. For α > π/3, the result
holds (trivially) using the same radius and hops as for α = π/3. We note that
although our directed networks have the advantages of reduced interference and
added security, they do not achieve a power savings over the omni-directional
network DG(1) since the power savings of the smaller broadcast angle is offset
by the larger radius rdir > 1. We leave it as an open problem to find directed
networks with rdir small enough to achieve a power savings.

Related Work: Caragiannis et al. [5] consider the problem of orienting directional
antennas to form a strongly connected communication graph using minimal r,
but they do not attempt to minimize the hops. For any α ≥ 0, they present
an algorithm that constructs a communication graph containing a Hamiltonian
tour and achieves a 3-approximation of the optimal radius. However, the num-
ber of hops between two nodes at unit distance or less can be linear. In [7],
Damian and Flatland minimize both the radius and hops (as we do here) but
for antennas with α ≥ π/2. Their approach depends fundamentally on find-
ing orientations for small, proximate groups of antennas such that together the



136 P. Bose et al.

antennas completely cover an encompassing circular region and at the same time
form a strongly connected sub-network amongst themselves. This, however, is
not generally achievable for α < π/2 — consider for example the case when the
antennas all lie on a line — and thus their approach does not generalize to smaller
angles. To our knowledge, our work here is the first to consider minimizing both
the radius and hops for small angles α < π/2.

In other related work, Nijnatten [10] considers a variant of the problem in
which each antenna may have a different radius and the goal is to minimize
the overall power consumption of the network. Ben-Moshe et al. [2] consider
antennas with α = π/2 but restrict the orientations to one of the four standard
quadrant directions. Carmi et al. [6] show that for any set of points equipped
with π/3 antennas, one can direct the antennas so that the resulting undirected
communication graph is connected, assuming the antennas have a radius equal
to the diameter of the point set. Ackerman et al. [1] later presented a simpler
proof for the same result. Bhattacharya et al. [3] and Dobrev et al. [8] consider
transceivers with multiple directional antennas; in the former they focus on min-
imizing the sum of the antenna angles for a fixed r, and in the latter they show
that with k antennas per node, strong connectivity can be achieved using a ra-
dius that is at most 2 sin( π

k+1 ) times the optimal, for any α ≥ 0. For a survey of
recent results on directional antennas, see [9].

2 α ≤ π/3

Recall that DG(1) is the communication graph induced by omni-directional an-
tennas of radius 1 positioned at the points in P . Without loss of generality, we
assume the point set is normalized so that the longest edge in a minimum span-
ning tree of P is at most 1, and thus DG(1) is connected. Replacing each of
the omni-directional antennas with a directional antenna of angle α ≤ π/3, we
describe here how to determine orientations and a small radius rdir = rdir(α) for
the antennas such that (i) the resulting communication graph, Gdir, is strongly
connected, and (ii) for any two points p, q ∈ P , the number of hops in a minimum-
hop path from p to q in Gdir is bounded by some constant c = c(α) times the
number of hops in a minimum-hop path from p to q in DG(1).

Lemma 1. Let Q be a set of m ≥ 3 points in the plane. Then, there exist three
points a, b, c ∈ Q, such that ∠abc ≤ π/m.

Proof. Let m′ ≤ m be the number of vertices in CH(Q), the convex hull of Q.
Then, the sum of the angles at the vertices of CH(Q) is (m′ − 2)π, and there
exists a vertex v whose corresponding angle is at most (m′− 2)π/m′. Connect v
to each of the points in Q. We obtain (m− 2) wedges, and the angle of at least
one of them is bounded by (m′−2)π/m′

m−2
≤ π

m
, since m′−2

m′ ≤ m−2
m

. �	

For simplicity of exposition, assume for now α is such that k = �2π/α� is a power
of 2. We will later eliminate this restriction (in Theorem 1). We first describe
our main building block.



Switching to Directional Antennas 137

k leaves

At least k / 2 3 pts

b

a c

b

a c1

1

1

b

a c2

2

2

z

p
x

y

u

q

2l

(a) (b)

Fig. 1. (a) The communication structure of Theorem 1. (b) A path from p to q.

Tree Construction. We start with the assumption that there are sufficient points
available for the construction described here. Later, we will determine a minimum
number of points that are necessary to carry out this construction. Let Q be an
arbitrary set of points. We construct a rooted binary tree whose nodes are points
in Q and whose edges are directed towards the leaves (see Figure 1a). The tree
has k leaves, and the angle formed at each internal node is at most α. We
construct this tree as follows. Use Lemma 1 to pick three points a, b, c ∈ Q, such
that ∠abc ≤ α. Make b the root of the tree and a and c the left and right children
of b, respectively; remove points a, b, c from Q. Now, use Lemma 1 once again
to obtain three new points a1, b1, c1 ∈ Q, such that ∠a1b1c1 ≤ α. Make b1 the
single child of a, and make a1 and c1 the left and right children of b1, respectively;
remove points a1, b1, c1 from Q. In the next application of Lemma 1, we obtain
three new points a2, b2, c2 ∈ Q, such that ∠a2b2c2 ≤ α, and make b2 the single
child of c, etc. We continue applying Lemma 1 until we obtain a balanced tree
consisting of 3k − 3 nodes, of which k are leaves, k − 1 have two children each,
and k − 2 have one child each. See Figure 1a.

We now analyze the minimum number of points in Q necessary for this con-
struction. Note that, in the last application of Lemma 1, we need π/|Q| ≤ α, to
be able to select three points in Q forming an angle of at most α. So at least
π/α ≤ π/(2π/k) = k/2 points are necessary in the last iteration. Therefore, |Q|
must be at least (3k−3)+(k/2−3) = 3.5k−6, since (3k−3) points are selected
(as established above), and at least (k/2− 3) points remain in Q after the last
iteration. So the minimum size of Q is � = 3.5k − 6.

From this point on, whenever we use the term tree, we refer to the rooted tree
constructed using this method. We refer to those points that are in the tree as
nodes, to distinguish them from the points not in the tree.

Antenna Orientations. Once we have built our tree, we assign an orientation to
each of the antennas at the points in Q according to the following rules:



138 P. Bose et al.

(A1) At each node p in the tree, orient p’s antenna to induce the directed
edge(s) outgoing from p. This is always possible, because the angle
spanned by the outgoing edge(s) at each node does not exceed α.

(A2) At each point p ∈ Q that is not in the tree, orient p’s antenna to point
to the root of the tree (refer to Figure 1a).

(A3) At the k tree leaves, assign antenna orientations so that collectively they
cover the whole plane (assuming infinite range). By the result by Bose et
al. [4], this is always possible with k antennas of angle at least 2π/k ≤ α.

The following lemma summarizes the properties of the resulting communication
structure. All paths in this structure are directed.

Lemma 2. Let Q be a set of points, each representing a transceiver equipped
with a directional antenna of angle α ≤ π/3 and range diam(Q). Assume that
k = �2π/α� is a power of 2 and that |Q| ≥ 3.5k − 6. Then, one can assign an
orientation to each of the antennas at the points in Q, such that the resulting
directed graph contains a rooted tree T with the following properties: (i) for any
node q of T other than the root, there exists a path from q to a leaf of T consisting
of at most (2 log k − 2) hops, and (ii) for any point q ∈ Q, there exists a path
from the root of T to q consisting of at most (2 log k) hops.

Proof. Property (i) is immediate, since the number of hops from the root of T
to a leaf equals the height of T , which is (2 log k− 1); since q is assumed to be a
non-root node, the worst case occurs when q is a child of the root, which yields
(2 log k − 2) hops. Rule (A3) for orienting the antennas at the leaf nodes in T
guarantees the existence of a leaf node p that covers q. This hop, summed up
with the (2 log k − 1) from the root to p, yields the claimed bound of (2 log k)
hops from the root to q.

We now describe how to direct the antennas of the transceivers in the input set
P . Recall that we are assuming that r = 1. We may assume that |P | ≥ �, because
otherwise, the distance between any two points in P is bounded by �−2, and we
can set rdir = � − 2 and form a directed cycle with at most � − 2 hops between
any two points. Lay a grid G over P such that the length of each side of a cell is
2�. Let C be a cell of G, and define the block of C as the 3× 3 portion of G that
is centered at C. Each of the 8 cells surrounding C is a neighbor of C. A cell of G
is considered full if it contains at least � points of P . It is considered non-full if
it contains at least one point of P , but less than � points of P .

Proposition 1. Let C be a cell of G. Then, any path in DG(1) that begins at
a point in C and exits the block of C, must pass through a full cell in C’s block
(not including C itself, which may or may not be full). In particular, if there are
points of P outside C’s block, then at least one of the 8 neighbors of C is full.

Proof. This follows immediately from the fact that the maximum distance be-
tween any two adjacent points along this path is 1, and the edge length of a cell
is 2�. See Figure 2(a). �	



Switching to Directional Antennas 139

Let F be the set of full cells of G. We distinguish between two cases: F = ∅ and
F �= ∅. If F = ∅, then it is easy to see (using considerations similar to those
used in the proof of Proposition 1) that P can be enclosed in a 2�× 2� square.
In other words, one can enclose P within a single grid cell, by shifting the grid
if necessary. In this case, we simply set rdir = 2

√
2� and apply the construction

used by Lemma 2 to the set P , with one simple modification:

( A3a) For each leaf node p of the tree, if p’s antenna covers only tree nodes,
then rotate it so that it covers the root of the tree.

This alteration guarantees that p can reach any point in P , via the tree root.
Note that Lemma 2 still holds after reorienting some antennas, according to the
rule (A3a) above. Let Gdir be the induced communication graph.

Lemma 3. Gdir is a directed, strongly connected, (4 log k)-spanner of DG(1),
with respect to number of hops.

Proof. Pick an arbitrary edge pq ∈ DG(1). We show that Gdir contains a path
from p to q with at most (4 log k) hops. Refer to Figure 1b. If p is a tree node
other than the root, then by Lemma 2(i), there is a path in Gdir from p to
a tree leaf x, with at most (2 log k − 2) hops. Rule (A3a) for reorienting the
antennas at the leaves (if necessary), guarantees that x points either to the
root z of the tree, or to a non-tree point y ∈ P , which in turn points to z.
By Lemma 2(ii), there is a path from z to q in Gdir with at most 2 log k hops.
Concatenating these paths together yields a path from p to q in Gdir with at
most (2 log k − 2) + 2 + (2 log k) = (4 log k) nodes. The remaining cases when p
is the root of the tree, or a non-tree point in P , are subsumed by the case when
p is a tree node discussed above. �	

Assume now that F �= ∅, i.e., there exists at least one full cell. Before discussing
how to handle full cells, we introduce a few definitions. For any full cell C+ ∈ F ,
let T (C+) denote the tree associated with C+. We say that the antenna at a
leaf node of T (C+) is useful, if one of the following three conditions holds: (i) it
covers the root of either T (C+), or the tree associated with another full cell in
C+’s block; (ii) it covers a point in C+ that is not a node in T (C+); (iii) it covers
a point in a non-full cell in C+’s block, whose antenna covers the root of T (C+).
These situations are depicted in Figure 2(b)-(d). Define the hop-distance between
a point p ∈ P and a full cell C+ ∈ F as the number of hops in a minimum-hop
path in DG(1) between p and a point in C+.

We are now ready to define the orientations of the antennas at the points of P :

(A4) For each full cell C+ ∈ F , apply the construction of Lemma 2 to its
corresponding set of points. Then, for each leaf x of T (C+), if the antenna
at x is not useful, reorient it so that it covers the root of T (C+).

(A5) For each non-full cell C− and for each point p ∈ C−, direct the antenna
at p to the root of T (C+), where C+ is the (hop-distance) closest full cell
to p. Ties are broken arbitrarily.



140 P. Bose et al.

c

(b)

+

x

c

(d)

+

x

c

(c)

+

x

C

C2C1

2 l = 8

(a)

Fig. 2. (a) At least one of C’s neighbors (C1) is full, (b-d) Situations in which leaf node
x is useful

Note that Lemma 2 still holds, when applied to the point set restricted to a
single full cell C+, and the full cell that determines the direction of the antenna
at a point p that lies in a non-full cell C−, is a neighbor of C− (this follows from
Proposition 1). Lemma 4 below identifies two key properties of the leaf nodes in
a full cell C+.

Lemma 4. For any full cell C+ and any leaf node q of T (C+), the following
properties hold: (i) there is a path from q to the root of T (C+) consisting of at
most (2 logk + 1) hops, and (ii) there is a path from q to the root of the tree
associated with any full cell in C+’s block, via the root of T (C+), with at most
(4 log k + 1) hops.

Proof. Our reorientation rules force q to be useful, meaning that q either points
to the root of a tree T in C+’s block (see Figure 2(b)), or can reach the root
of T (C+) in two hops (see Figures 2(c),(d)). Recall that the original orientation
of the antennas at the k leaves of T guaranteed coverage of the entire plane, at
infinite range (Rule A3). In particular, one of these antennas covers the root of
T (C+), proving itself useful (and therefore not subject to reorientation). These
two hops (from q to the root of T , and from the leaf of T to the root of T (C+)),
summed up with the (2 log k−1) hops from the root to a leaf of T , yield (2 log k+
1) hops. So Property (i) is settled. To settle Property (ii), pick an arbitrary full
cell C in C+’s block. We extend the path from the root of T (C+) to the root of
T (C), in a similar way: one of the leaves of T (C+) must cover the root of T (C),
and we can reach this leaf from the root of T (C+) in (2 log k−1) hops. Summing
these up, we obtain (2 log k + 1) + (2 log k) = (4 log k + 1) hops. �	

Finally, we set the radius rdir of all antennas to 4
√

2�, so that a point p can reach
any other point in a neighboring cell (assuming the antenna at p is directed
accordingly). Let Gdir be the resulting communication graph.

Lemma 5. Gdir is a directed, strongly connected, (8 logk−1)-spanner of DG(1),
with respect to number of hops.

Proof. We prove that, for any edge pq of DG(1), there exists a path from p to q
in Gdir consisting of at most (8 log k − 1) hops. Let Cp be the cell containing p,
and Cq the cell containing q. Then, either Cp = Cq, or Cp and Cq are neighboring
cells, because |pq| ≤ 1. We discuss the cases where Cp is full or non-full.



Switching to Directional Antennas 141

(a)

cp

x

p

y

c  = f(q)q
q

cp

x

p

q

y
z

(c)

f(q)

x
q

y
z

f(q)

cq

p

(d)

q

f(p)

cq

p

x y

z

cp

f(q)

(b)

cp

Fig. 3. Path from p to q in Gdir. (a) q is a node of T (f(q)). (b) q is not a node of
T (f(q)). (c) p is not a node of T (Cp). (d) Cp is not full.

Cp is full. Associate with q a full cell, f(q), as follows. If Cq is full, then f(q) = Cq.
Otherwise, f(q) is the full cell that determines the direction of q’s antenna. Since
pq is an edge of DG(1), the hop-distance between q and Cp is at most 1, so the
hop-distance between q and f(q) is at most 1. It follows that f(q) is either Cp, or
a neighbor of Cp. We now show how to reach q from p via the root of T (f(q)). We
begin with the worst case scenario, in which p is a node in T (Cp) other than the
root. In this case, from p we can reach an arbitrary leaf node x of T (Cp), in at
most (2 log k−2) hops (by Lemma 2(i)). Next, we follow the path established in
the proof of Lemma 4(ii) to reach the root y of T (f(q)), in at most (4 log k + 1)
hops. (Notice that f(q) is in Cp’s block, thus enabling us to use Lemma 4.)
Finally, from y we follow the path in T (f(q)) that leads directly to q, if q is a
node in T (f(q)) (see Figure 3a); otherwise, we follow the path that leads to the
leaf z of T (f(q)) that covers q (see Figure 3b). Note that z always exists, since Cq
and f(q) are neighboring cells and q points to y. This latter path is longer, and
has (2 log k−1)+1 hops. Summing up the number of hops along the entire path
from p to q, we obtain a total of (2 log k−2)+(4 log k+1)+(2 log k) = (8 log k−1)
hops. The cases in which p is the root of T (Cp) or a point not in T (Cp) are similar.

Cp is non-full. Let f(p) be the full cell that determines the direction of p’s
antenna. Since pq is an edge of DG(1), the difference between the hop-distance
between p and f(p) and the hop-distance between q and f(q) is at most 1.
Moreover, from the definition of f(p) and f(q), it follows that the corresponding
paths (in DG(1)) from p to f(p) and from q to f(q) do not pass through a full
cell (except at their final point). (If f(q) is full, then the latter path is simply
the degenerate path q.) This implies that f(q) is either f(p) or a neighbor of
f(p). We now show how to reach q from p via the root of T (f(q)). From p, we
can reach the root of T (f(p)) in one hop. Next we follow the path in T (f(p))
from x to that leaf node y that covers the root z of T (f(q)); this path has
(2 log k − 1) hops. One hop takes us from y to z, then (2 log k − 1) more hops
take us from z to that leaf node of T (f(q)) that covers q. See Figure 3d. The
total number of hops along the entire path from p to q is therefore at most
1 + (2 log k) + (2 log k) = (4 log k + 1). �	

The following theorem summarizes the main result of this section.



142 P. Bose et al.

Theorem 1. Let P be a set of n points, each representing a transceiver equipped
with a directional antenna of radius α ≤ π/3, and assume that DG(1) is con-
nected. Then, one can assign a direction to each of the n antennas, such that by
fixing their transmission range to 4

√
2(3.5k − 6), where k = �2π/α�, the result-

ing communication graph is strongly connected. Moreover, it is a (�8 log k�− 1)-
spanner of DG(1), with respect to number of hops.

Proof. The assumption that k is a power of two is eliminated here, so the tree
with k leaves, used as the core communication structure within each full cell,
is not necessarily balanced. More precisely, the bottom level of the tree may be
incomplete. In this case, (�2 log k� − 1) is an upper bound on the height of the
tree. The result of this theorem follows immediately from Lemma 5. �	

In concluding this section, we observe (without proof, due to space constraints)
that our method for orienting antennas takes linear time in the number of points.

3 α = π/3

We now show that we can obtain better constants for the special case α = π/3.
In our solution, we use the following result by Ackerman et al. [1]:

Proposition 2. [1] Let Q be a set of points in the plane, equipped with antennas
of angle π/3 and range diam(Q). There exist three points x, y, z ∈ Q, whose
antennas can be oriented such that: (i) y covers x and z and both x and z cover
y, and (ii) every point in Q is covered by at least one of {x, y, z}.

Note that Proposition 2 does not claim that the three antennas can cover the
entire plane; in fact, this would not be possible with three antennas only. The
result is tied to a fixed point set Q: the three points are carefully selected from
among the points on the convex hull of Q, so that collectively they cover Q.

For a point set Q of at least nine points, we construct a rooted tree structure
T as follows. Select points x, y, z as in Proposition 2 and orient their antennas
accordingly. Make y the root of the tree and make x and z its children. Select any
six additional points in Q\{x, y, z}, and for each, make it the child of a point in
{x, y, z} whose antenna covers it. Orient the antennas of these six points so that
collectively they cover the entire plane when their radiuses are infinity. These six
leaves serve the same function as the k leaves of the tree structure of Section 2.
We note that x or z may also be a leaf of T ; for example, x is a leaf if the six
additional points are only covered by z’s antenna and thus are all made children
of z. But to remain consistent with Section 2, in what follows when we refer to
the leaves of T , we are only refering to the six additional points, not x or z. To
complete the construction, for each point in Q not in the tree, orient its antenna
to point to y.

This tree structure is analogous to the tree of Section 2 (with α = π/3), but
it has better hop spanning properties because it has smaller height (at most 2).
It is easy to verify properties analogous to those in Lemma 2 from Section 2 for
the tree here. Specifically, for any non-root node, there exists a path from it to



Switching to Directional Antennas 143

a leaf consisting of at most 3 hops (property (i)). For an example requiring 3
hops, consider the path from x to a leaf when all six leaves are children of z. For
property (ii), 3 hops are sufficient to go from the root y to any point in Q, since
the height of the tree is at most 2 and the leaves cover all points in Q.

Orienting the antennas of the input set P is now done the same as in Section 2,
but using the tree structure above in each full cell. Since 9 points are sufficient
to build the tree, we set l = 9. The grid cells are of size 18× 18, and a cell is full
if it encloses 9 or more points. By concatenating the same paths as in Lemma 4
but using the smaller trees described here, we immediately get the following two
analogous properties: for any full cell C+ and any leaf node q of T (C+), (i) there
is a path from q to the root of T (C+) consisting of at most 4 hops, and (ii) there
is a path from q to the root of the tree associated with any full cell in C+’s block
consisting of at most 7 hops. In fact, for the tree structure in this section, it is
easy to show that these two properties also hold for the non-leaf nodes {x, y, z}
of T (C+). This is true because both x and z’s antennas cover the root y. So from
a non-leaf node, it is at most 1 hop to the root y, at most 2 hops down T (C+)
to the leaf that covers the root of the desired tree in C+’s block, and then 1 hop
to that neighboring tree’s root.

By following the same arguments in Lemma 5 but using the smaller trees, we
can show that the induced communication graph, Gdir, is a strongly connected
10-spanner of DG(1), with respect to hops. As in Lemma 5, the worst case hop
count in going from point p to q (where pq is an edge in DG(1)) occurs when
Cp is full and p is a node in T (Cp) that is not the root. In this case, the path
goes from p to the root of the neighboring tree T (f(q)) (worst case 7 hops, when
p is a leaf), down T (f(q)) to the leaf that covers q (2 hops), and then to q (1
hop). We now set each antenna range to 36

√
2, so that any two points that lie in

neighboring cells can reach each other. Let Gdir be the resulting communication
graph. The following theorem summarizes the main result of this section.

Theorem 2. Let P be a set of n points, each representing a transceiver equipped
with a directional antenna of angle α = π/3, and assume that DG(1) is con-
nected. Then, one can assign a direction to each of the n antennas, and a trans-
mission range of 36

√
2, such that the resulting communication graph is a directed,

strongly connected, 10-spanner of DG(1), with respect to number of hops.

We observe that this result also applies to angles α > π/3 when using a radius
rdir = 4

√
2(3 + �2π/α�), noting that in this case � = 3 + �2π/α�. The hop count

remains the same.

4 Points along a Path

In this section we consider the special case in which the graph DG(1) is a path.
Let k be the smallest integer such that 2π/k ≤ α, and let m = �|P |/k�. Partition
DG(1) into a sequence of m subpaths, the first m−1 of which have exactly k+3
points each. Let Pi denote the sequence of points along the ith subpath. Thus
each Pi, for i < m, contains k + 3 points (Pm may have fewer points).



144 P. Bose et al.

c3

x3

a3

x2

a2
c2

b3b2
x1

a1
c1

b1

x4

y1 y2 y3 y4z1 z2 z3 z4

Fig. 4. The highlighted path shows that the hop bound of Theorem 3 is tight

Consider a sequence Pi with k + 3 points. Define the entry point of Pi to be
the midpoint xi of Pi. Let yi and zi be the start and end point of the sequence
Pi, respectively. From the point set Qi = Pi \ {xi, yi, zi}, select three points ai,
bi and ci, such that ∠aibici ≤ α. By Lemma 1, such points always exist, because
|Qi| = k. This enables us to orient bi’s antenna so that it covers both ai and ci.
At each point p in the sequence Ri = Pi \{ai, bi, ci}, orient p’s antenna so that it
covers the next point in Ri, with two exceptions: the antenna at the predecessor
of xi is oriented to cover bi, and the antenna at zi covers yi. Finally, orient ai’s
antenna to cover the entry point xi−1 in the sequence Pi−1, if i > 1, or the entry
point xi of the same sequence, if i = 1. Orient ci’s antenna to cover the entry
point xi+1 in the sequence Pi+1.

If Pm contains k+3 points as well, then we use the same approach for antenna
orientations, with the difference that cm’s antenna points to xm. If Pm contains
fewer than k+3 points, then we orient the antenna at each point to cover the next
point in the sequence, with two exceptions: the antenna at the predecessor of xm
covers xm−1, and the antenna at zm covers ym. A specific example is depicted in
Figure 4. Now note that a path from ci to xi+1 in DG(1) can go through at most
k+1 points in Pi (this accounts for all points in Pi, with the exception of yi and
ai), and at most �(k + 3)/2� points in Pi+1 (because xi+1 is the midpoint of the
sequence). So the number of hops from ci to xi+1 in DG(1) is bounded above
by �(3k + 3)/2�. The link from ci to xi+1 (and symmetrically, from ai to xi−1)
is one of the longest links that needs to be realized by an antenna, therefore we
set rdir = �(3k + 3)/2�. Lemma 6 below (whose proof is omitted due to space
restrictions) summarizes properties of the resulting communication graph, Gdir.

Lemma 6. For each i < m, Gdir contains directed paths from ai to xi, and from
ci to xi, each with at most k +3 hops. In addition, Gdir contains a directed cycle
that passes through all points in Pi∪Pi+1 \ {ai, ci+1}, with at most 2k +4 hops.

Theorem 3. Let P be a set of n points, each representing a transceiver equipped
with a directional antenna of radius α ≤ π/3, and assume that DG(1) is a
path. Then, one can assign a direction to each of the n antennas, such that by
fixing their transmission range to �(3k + 3)/2�, where k = �2π/α�, the resulting
communication graph Gdir is a directed, strongly connected, (2k + 4)-spanner of
DG(1), with respect to the number of hops.

Proof. We prove that, for each edge pq of DG(1), there exists a path from p to
q in Gdir consisting of at most (2k + 4) hops. Note that p and q are either in



Switching to Directional Antennas 145

the same sequence Pi, or in adjacent sequences Pi and Pi+1, for some i ≥ 1. If
Pm contains fewer than k + 3 points, assume i < m− 1. By Lemma 6, there is
a cycle passing through all points in Pi ∪ Pi+1 \ {ai, ci+1}, with at most 2k + 4
hops. If both p and q are on this cycle, then at most 2k+3 hops separate q from
p. Otherwise, p and q must belong to a same sequence, because neither ai nor
ci+1 is a start or end point of a sequence (by our construction), and therefore it
cannot be adjacent in DG(1) to a point in a different sequence. If p = ai, then
one can go from p to xi in at most k+3 hops (by Lemma 6), then from xi to q in
at most k + 1 additional hops, for a total of at most 2k + 4 hops. The situations
p = ci+1, q = ai, and q = ci+1 are similar.

The case when Pm contains fewer than k + 3 points and i = m− 1 is similar:
Gdir contains a directed cycle with at most 2k + 4 hops, that passes through all
points in Pm ∪Pm−1 \ {am−1}. From this point on, the analysis is similar to the
one above. �	

We note that the transmission radius for the path case discussed in this section
is smaller than the transmission radius for the general case (Section 2) by a
factor of 26.4. And, although the hop count established by Theorem 3 increases
linearly with 1/α, (as opposed to logarithmically in the general case,) the hop
count for the path case is smaller than the hop count for the general case for
any k ≤ 16, which corresponds to α ≥ π/8.

Acknowledgments. Many thanks to the Fields Institute for financial support.
Work by M. Katz was partially supported by grant 1045/10 from the Israel Sci-
ence Foundation, and by the Israel Ministry of Industry, Trade and Labor (con-
sortium CORNET). Work by P. Carmi was partially supported by the Lynn and
William Frankel Center for Computer Sciences and grant 2240-2100.6/2009 from
the German Israeli Foundation for scientific research and development (GIF).

References

1. Ackerman, E., Gelander, T., Pinchasi, R.: On connected wedge-graphs.
(manuscript) (2010)

2. Ben-Moshe, B., Carmi, P., Chaitman, L., Katz, M.J., Morgenstern, G., Stein, Y.:
Direction Assignment in Wireless Networks. In: CCCG 2010, pp. 39–42 (2010)

3. Bhattacharya, B., Hu, Y., Shi, Q., Kranakis, E., Krizanc, D.: Sensor network con-
nectivity with multiple directional antennae of a given angular sum. In: IPDPS
2009, pp. 1–11 (2009)

4. Bose, P., Guibas, L., Lubiw, A., Overmars, M., Souvaine, D., Urrutia, J.: The
floodlight problem. J. Assoc. Comput. Mach. 9, 399–404 (1993)

5. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Commu-
nication in wireless networks with directional antennae. In: SPAA, pp. 344–351
(2008)

6. Carmi, P., Katz, M.J., Lotker, Z., Rosén, A.: Connectivity guarantees for wireless
networks with directional antennas. (manuscript) (2009)

7. Damian, M., Flatland, R.: Spanning Properties of Graphs Induced by Directional
Antennas. In: Electronic Proc. of the 20th Fall Workshop on Computational Ge-
ometry, Stony Brook, NY (2010)



146 P. Bose et al.

8. Dobrev, S., Kranakis, E., Krizanc, E., Opatrny, J., Stacho, L.: Strong Connectivity
in Sensor Networks with Given Number of Directional Antennae of Bounded Angle.
In: Wu, W., Daescu, O. (eds.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 72–86.
Springer, Heidelberg (2010)

9. Kranakis, E., Krizanc, D., Morales, O.: Maintaining Connectivity in Sensor Net-
works Using Directional Antennae. In: Nikoletseas, S., Rolim, J. (eds.) Theoretical
Aspects of Distributed Computing in Sensor Networks, Part 2, pp. 59–84. Springer,
Heidelberg (2011), ISBN 978-3-642-14848-4

10. van Nijnatten, F.: Range Assignment with Directional Antennas. Master’s Thesis.
Technische Universiteit Eindhoven (2008)

11. Wu, W., Du, H., Jia, X., Li, Y., Huang, S.C.-H.: Minimum connected dominating
sets and maximal independent sets in unit disk graphs. Theoretical Computer
Science 352, 1–7 (2006)



Frequency Capping in Online Advertising

(Extended Abstract)

Niv Buchbinder1, Moran Feldman2,�,
Arpita Ghosh3, and Joseph (Seffi) Naor2,��

1 Open University, Israel
niv.buchbinder@gmail.com

2 Computer Science Dept., Technion, Haifa, Israel
{moranfe,naor}@cs.technion.ac.il
3 Yahoo! Research, Santa Clara, CA

arpita@yahoo-inc.com

Abstract. We study the following online problem. Each advertiser ai

has a value vi, demand di, and frequency cap fi. Supply units arrive
online, each one associated with a user. Each advertiser can be assigned
at most di units in all, and at most fi units from the same user. The
goal is to design an online allocation algorithm maximizing total value.

We first show a deterministic upper bound of 3/4-competitiveness,
even when all frequency caps are 1, and all advertisers share identical
values and demands. A competitive ratio approaching 1 − 1/e can be
achieved via a reduction to a model with arbitrary decreasing valuations
[GM07]. Our main contribution is analyzing two 3/4-competitive greedy
algorithms for the cases of equal values, and arbitrary valuations with
equal demands. Finally, we give a primal-dual algorithm which may serve
as a good starting point for improving upon the 1− 1/e ratio.

1 Introduction

Display advertising, consisting of graphic or text-based ads embedded in web-
pages, constitutes a large portion of the revenue from Internet advertising, to-
taling billions of dollars in 2008. Display, or brand, advertising is typically sold
by publishers or ad networks on a pay-per-impression basis, with the advertiser
specifying the total number of impressions she wants (the demand) and the price
she is willing to pay per impression.1

Since display ads are sold on a pay-per-impression rather than on a pay-per-
click or pay-per-action basis, effective delivery of display ads is very important to
maximize advertiser value — each impression that an advertiser pays for must
� Moran Feldman is a recipient of the Google Europe Fellowship in Market Algorithms,

and this research is supported in part by this Google Fellowship.
�� This work was supported in part by ISF grant 1366/07 and the Google Inter-

university center for Electronic Markets and Auctions.
1 In contrast, sponsored search advertisers typically pay per click or per action, and

usually have budgets, rather than demands, or quotas, on the number of impressions.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 147–158, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



148 N. Buchbinder et al.

be shown to as valuable a user as possible. One aspect of effectively delivering
display ads, which has been widely studied, is good targeting — matching ads
to users who are likely to be responsive to the content of the ad. Another very
important, but less studied, aspect is limiting user exposure to an ad - displaying
the same ad to a user multiple times diminishes value to the advertiser, since the
incremental benefit from repeatedly displaying the same ad to a user is likely to
be small (a user is unlikely to react to an ad after he has seen it a few times).

The notion of limiting the number of times a user is exposed to a particular
ad is called frequency capping [19], and is often cited as a way to avoid banner
ad burnout. That is, frequency capping prevents ads from being displayed re-
peatedly to the point where visitors are being overexposed and response drops.2

Serving frequency capped ads is a very real requirement to maximize value de-
livered to display advertisers, particularly in the pay-per-impression structure of
the display advertising marketplace. This is recognized by a number of publish-
ers and ad networks (for instance, RightMedia, Google and Yahoo!) who already
offer or implicitly implement frequency capping for their display advertisers.

Serving display ads subject to a frequency capping constraint poses an online
assignment problem since the supply of users, or impressions, is not known to
the ad server in advance. How should the ad server allocate impressions to ad-
vertisers in this setting? In this paper, we study the simplest abstractions of the
assignment problems motivated by frequency capping.

Problem Statement. There are n advertisers. Advertiser i has value per impres-
sion vi, which is the price she is willing to pay for an impression, and a demand
di, which is the maximum number of impressions she is interested in. In addi-
tion, she also has a frequency cap fi, which is the maximum number of times
her ad can be displayed to the same user. That is, an advertiser pays vi only for
impressions from users who have not seen her ad more than fi times. The set of
advertisers, and their parameters, is known to the ad server in advance.

Impressions from users arrive online. We say an advertiser is eligible for an
impression if she still has leftover demand, and has not yet exhausted her fre-
quency cap for the user associated with this impression. When an impression
arrives, the ad server must immediately decide which ad, among the set of eligi-
ble advertisers, to display for that impression. The total revenue obtained by an
algorithm is the sum of the revenues from each impression it allocates. We want
to design algorithms that are competitive against the optimal offline allocation,
which knows the supply of impressions (with their associated users) in advance.
(This problem is captured by the model in [14], see §1.1.)

In the absence of the frequency capping constraint (fi = ∞), the natural
greedy algorithm, which assigns each arriving impression to the advertiser with
the highest per-impression value vi, is optimal. However, with the frequency
capping constraint, the ad server faces a tradeoff between assigning an arriving
impression to an advertiser with high vi but large frequency cap (since the

2 While it might be argued that multiple displays of an ad to a user reinforces its
message, repeated display without an upper limit clearly diminishes value.



Frequency Capping in Online Advertising 149

supply can stop anytime) and a lower value advertiser with a smaller frequency
cap (since small fi means this advertiser needs to be assigned to many distinct
users). In fact, even when all advertisers have identical values (with arbitrary tie
breaking), the greedy algorithm is not optimal, as the following example shows:
there are two advertisers, the first with v1 = 1, f1 = n, and the second with
v2 = 1 − ε and f2 = 1; both advertisers have demand n (the 1 − ε is used for
tie breaking). The sequence of users is u1, . . . , un, un+1, . . . , un+1, where the last
user appears n times (n impressions). The greedy allocation gets a value of n+1,
whereas the optimal offline allocation gets 2n.

As the next example shows, however, it is not even the different frequency
caps that lead to the suboptimality of the greedy algorithm: suppose there are
n + 1 advertisers each with fi = 1. The first n advertisers have value 1 and
demand 1, and the last advertiser has value 1− ε and demand n. With the same
arrival sequence of users, a greedy allocation, again, gets a value of n+1, whereas
the optimal value is 2n. In fact, as we will show in §3, even when all values and
demands are equal and all frequency caps are 1, no deterministic algorithm can
have a competitive ratio better than 3/4.

Distinction from Online Matching. Finding a matching in a bipartite graph
where one side is known and the other side is exposed one vertex at a time is
known as online matching. While the problem of online allocation with frequency
capping constraints appears to be similar to online matching, they are actually
quite different. In the frequency capping problem, a-priori each impression can
be assigned to any of the advertisers. Now, as the impressions arrive, in the lan-
guage of online matching, the existence of an edge between an advertiser and an
arriving impression depends on the previous assignments made by the algorithm
because of the frequency capping constraint. Specifically, if the algorithm has al-
ready assigned enough impressions from user j to advertiser i, or has exhausted
i’s demand, there is no edge between advertiser i and a newly arrived impression;
otherwise, there is an edge. This means that an adversary can no longer control
the set of edges hitting each new impression; instead, the online algorithm de-
termines the set of edges using indirect means. While we expect this property
to translate into better competitive ratios for the frequency capping problem,
taking advantage of the difference is not easy, a fact which is demonstrated by
the involved analysis for the natural greedy algorithm for the problem.

Results. Our online assignment problem can be stated abstractly as follows:
There are n agents, each with a total demand di, and a value vi for items. Items
of different types arrive one by one in an online fashion and must be allocated to
an agent immediately. Agent i wants at most fi copies of any single type of item.
How should an online algorithm assign each arriving item to agents to maximize
value? This abstract statement suggests the following simpler questions.

– Equal values, arbitrary di, fi: Suppose agents (advertisers) have identical
values for items (impressions), that is, vi = 1 for all i. Now, the goal of the
online algorithm is simply to assign as many items as possible. Our main
technical contribution is the analysis of a novel greedy algorithm, proving



150 N. Buchbinder et al.

that it is 3/4-competitive; this is optimal for a deterministic algorithm. The
first step is to show that we can assume without loss of generality that every
advertiser has frequency cap 1, i.e., wants no more than one impression from
each user (the reduction is independent of advertisers having the same value,
and also applies when advertisers have arbitrary values). This reduction is
simple, yet crucial — for each of the cases we study, designing algorithms
directly, with arbitrary frequency caps, turns out to be rather hard.

We then analyze our greedy algorithm, which assigns arriving impressions
in decreasing order of total demand amongst eligible advertisers, for instances
with unit frequency cap. (Assigning greedily according to maximum residual
demand does not work; this algorithm cannot do better than 2/3.) The unit
frequency cap means that an advertiser is eligible for an impression if she has
leftover demand and has not yet been assigned to this user. We first prove
that any non-lazy algorithm has competitive ratio 3/4 when all demands
are equal (in addition to the equal value); then we build on this analysis to
account for the fact that advertisers have unequal demands.

Combinatorial analysis of online algorithms is usually done via a potential
function argument which shows that at each step, the change in the potential
function plus the algorithm’s revenue are comparable to the gain of the opti-
mal solution. Surprisingly, our analysis considers only the final assignment,
disregarding the way in which it is reached. This allows us to avoid coming
up with a potential function (which in many cases seems to come “out of
nowhere”), and skip the tedious consideration of each possible step.

Our result is especially interesting in light of the known upper bounds for
unweighted online matching: 0.5 and 1 − 1/e ≈ 0.63 for deterministic and
randomized algorithms, respectively [16].

– Arbitrary values, equal di/fi: The ideas used in the analysis of the equal val-
ues case can be extended to analyze the case where advertisers have different
values, but the same ratio of demand to frequency cap. We show here that
the natural greedy algorithm, which assigns in decreasing order of value,
has a competitive ratio of 3/4; again, this is optimal in the sense that no
deterministic algorithm can do better.

– Arbitrary values, di and fi, with targeting: Finally, for the general case with
arbitrary values, demands and frequency caps, we design a primal-dual algo-
rithm whose competitive ratio approaches 1− 1/e ≈ 0.63 when di/fi � 13;
we also show an upper bound of 1/

√
2 for this case. Our online primal-dual

algorithm has an interesting feature: it both increases and decreases pri-
mal variables during the execution of the algorithm. The same algorithm
and competitive ratio also apply when advertisers have target sets, i.e., they
have value vi for impressions from a set Si of users, and value of 0 for other
impressions. For this case, we have a matching upper bound for determinis-
tic online algorithms, using the upper bound on online b-matching [15]. (See
§1.1 for a discussion regarding [14] and online primal dual algorithms.)

3 The competitive ratio of 1− 1/e in [14] is under an assumption similar to ours.



Frequency Capping in Online Advertising 151

1.1 Related Work

Maximizing revenue in online ad auctions has received much attention in recent
years [8,7,18,17,6,11,12]. The problem of designing online algorithms to maximize
advertising revenue was introduced in the adwords model [18]: advertisers have
budgets, and bids for different keywords. Keywords arrive online, and the goal
is to match advertisers to keywords to maximize revenue, while respecting the
advertisers’ budget constraints. Goel and Mehta [14] extend the adwords model,
allowing advertisers to specify bids for keywords which are decreasing functions
of the number of impressions (of the keyword) already assigned to the advertiser.
Our frequency capping problem is, in fact, a special case of the model of [14]
(but not of the adwords model of [18]), where keywords correspond to users, and
the decreasing function takes the form of a step function with cutoff fi. Hence,
the (1−1/e)-competitive online algorithm of [14] applies to our problem as well.
On the other hand, the upper bounds in [14] do not apply to our problem since
the model of [14] also captures online matching. Improving upon the ratio of
1− 1/e in special cases is posed as an open problem in [14].

Our greedy algorithms in §3 and §4 obtain a ratio of 3/4, improving upon this
ratio of 1− 1/e. While the competitive ratio of our algorithm in §5 is the same
as that in [14], the algorithms are quite different. Moreover, our model does not
inherit the upper bound of 1− 1/e4, and in fact, the best upper bound for the
case without target sets is 1/

√
2. Also, while the most general problem we solve

in this paper remains within the model of [14], the most general and realistic
version of the frequency capping problem (§6) cannot be stated as a special case
of the model of [14]. For this model the question of both a competitive algorithm
and an upper bound (tighter than 1− 1/e) are open.

The primal dual framework for online problems, first introduced by Buch-
binder and Naor [9], has been shown to be useful in many online scenarios
including ad auctions, see [4,5,3,2,10,11]. Unlike these primal-dual algorithms
(e.g., [9,11]), which simply update the primal variables monotonically in each
round, our primal-dual algorithm is novel in that it reassigns primal variables
several times during the execution of the algorithm; hence, the primal variables
do not necessarily increase monotonically with each round of new supply.

Mirrokni et al. [13] consider frequency capping in a stochastic model, but
they leave open the question of improving upon the 1− 1/e ratio in this model.
Finally, the work in [1] also addresses user fatigue in the context of sponsored
search; however, the model and algorithms substantially differ from ours.

2 Preliminaries

We denote by A(σ) the revenue of algorithm A on a sequence σ of arrivals of
impressions, and by OPT (σ) the revenue of the optimal offline algorithm, which

4 Since the model of [14] captures the adwords model of [18], it inherits an upper
bound of 1 − 1/e on the competitive factor. The frequency capping problem does
not generalize the adwords model, and therefore, does not inherit this upper bound.



152 N. Buchbinder et al.

knows σ in advance. The goal is to design an online algorithm A that assigns
each impression immediately upon arrival, and produce a feasible allocation
whose total value A(σ) is competitive against OPT (σ) for any σ. The natural
greedy algorithm for the problem, denoted by GREEDYV , allocates each arriv-
ing impression to the eligible advertiser with the highest value (breaking ties
arbitrarily, but consistently). The examples in the introduction show that the
greedy algorithm at most 1/2-competitive. The next theorem shows that this is
tight, due to space limitations, its proof is deferred to a full version of this paper.

Theorem 1. The competitive ratio of GREEDYV is 1/2.

We now establish a reduction from general frequency caps to unit frequency
caps which greatly simplifies our algorithms. The following theorem allows us to
assume fi = 1 in the rest of the paper, its proof is also deferred to a full version.

Theorem 2 (Reduction to Unit Frequency Cap). For every frequency cap-
ping instance there is an equivalent instance where all frequency caps are 1.
Moreover, any solution to the equivalent instance can be transformed in an on-
line fashion to an equivalent solution in the original model.

3 Identical Valuations

In this section, we assume all advertisers have identical valuations, i.e., for each
advertiser ai, w.l.o.g., vi = 1. The following theorem gives an upper bound on
any deterministic online algorithm; due to space limitations, its proof is deferred
to a full version of this paper.

Theorem 3. No deterministic online algorithm is better than 3/4-competitive,
even if all advertisers have identical values, demands, and frequency caps.

We now turn to online algorithms. A natural greedy algorithm is one that as-
signs an arriving impression to an eligible advertiser with the maximum residual
demand. However, assigning according to residual demand, breaking ties arbi-
trarily, cannot have a competitive ratio better than 2/3, as the following example
shows. There are two advertisers, with d1 = 1 and d2 = 2, with ties broken in
favor of a1. The sequence of arrivals is u2, u1, u2. The residual demand algorithm
allocates only two impressions: the first impression to a2 and then the second
impression to a1. The optimal assignment, however, can assign all 3 impressions.

We show that an alternative greedy algorithm, GREEDYD, which assigns
according to total demand, is 3/4-competitive. Hereby is algorithm GREEDYD:

1. Sort advertisers a1, . . . , an in a non-decreasing demand order (d1 ≥ . . . ≥ dn).
2. Assign an arriving impression to the first eligible advertiser in this order.

We need the following notation. Let yi denote the number of impressions assigned
by GREEDYD to ai, and let y∗ = mini yi. Let k denote the number of advertisers
whose demand is exhausted by GREEDYD. In §3.1, we analyze the case of
equal demands, and in §3.2 we build on this analysis to deal with the case where
demands are arbitrary. We include the proof of the equal demands case since it
is simpler, yet gives some insight into the proof of the general case.



Frequency Capping in Online Advertising 153

3.1 Equal Demand Case

Algorithm GREEDYD is non-lazy, i.e., it allocates every impression it receives,
unless no advertiser is eligible for it. We show that any non-lazy algorithm,
including GREEDYD, is 3/4-competitive if all advertisers have equal demand d.

Theorem 4. Let ALG be a non-lazy algorithm, and let σ be a sequence of im-
pressions. Then, ALG(σ)/OPT (σ) ≥ 3/4.

Before going into the proof of Theorem 4, consider the example depicted in
Figure 1. The rectangle is divided into three areas: R1 is the total allocation
of advertisers who have exhausted their demand, R2 is the total allocation of
advertisers who have not exhausted their demand, and R3 is “unused” demand.
We use two bounds on |OPT (σ)| − |ALG(σ)|: |R3| ≤ (d − y∗) · (n− k) ≤ |R2| ·
(d−y∗)/y∗, and k ·y∗ ≤ |R1| ·y∗/d (note that y∗ > 0 since an advertiser who has
received no impressions can always be assigned at least one impression without
violating the frequency cap constraint). The theorem follows from these bounds,
and the observation |ALG(σ)| = |R1|+ |R2|.

Let A be the set of impressions allocated by OPT , and let B ⊆ A be of size
OPT (σ) − ALG(σ). Associate each impression of B with an advertiser, such
that up to d − yi impressions of B are associated with each advertiser ai. This
is possible since

∑n
i=1(d− yi) = nd−ALG(σ) ≥ OPT (σ)−ALG(σ) = |B|.

Lemma 1. |B| = OPT (σ)−ALG(σ) ≤ y∗k.

Proof. Let ai∗ be an advertiser for which yi∗ = y∗. If y∗ = d, then ALG(σ) =
nd = OPT (σ), so we can assume y∗ < d. Thus, each impression ALG fails to al-
locate belongs to a user already having an impression allocated to ai∗ (else ALG
could have assigned it to ai∗). Hence, there are at most y∗ users having unallo-
cated impressions. Each such user u has at most k more impressions allocated
by OPT than by ALG (if u has an unassigned impression, all n− k advertisers
with non-exhausted demands must have been assigned an impression of u).

We define two types of payments received by each impression x ∈ B. Suppose
impression x is associated with advertiser ai. The first payment x gets is px =
yi/(d− yi), and the second payment is p′x = d/y∗.

k n-k

y*

d-y*
R
1

R
2

R
3

Fig. 1. Each column is an advertiser and each row corresponds to a unit demand



154 N. Buchbinder et al.

Lemma 2. The total payment received by all impressions of B is at most ALG(σ).

Proof. Let E denote the set of advertisers whose demand is not exhausted by
ALG (i.e., |E| = n − k). Let ai ∈ E. For each impression x associated with ai,
we have px = yi/(d− yi) and the number of such impressions is at most d− yi.
Therefore, the first type of payment received by impressions associated with ai
sums up to at most yi. Adding up over all advertisers of E, the sum of the first
type payments to all impressions in B is at most

∑
ai∈E yi. Since payments of

the second type all equal values, they add up to |B| · d
y∗ ≤ y∗k · d

y∗ = dk. Note
that dk +

∑
ai∈E yi = ALG(σ), since ai 
∈ E ⇒ yi = d, completing the proof.

Lemma 3. For each impression x ∈ B, px + p′x ≥ 3.

Proof. Suppose x is associated with an advertiser ai. The total payment received
by x is: yi

d−yi
+ d

y∗ ≥
y∗

d−y∗ + d
y∗ = y∗2+d(d−y∗)

y∗(d−y∗) = 3 + (2y∗−d)2
y∗(d−y∗) ≥ 3 .

Corollary 1. ALG(σ) ≥ 3|B|.

The proof of Theorem 4 is now immediate:

ALG(σ)
OPT (σ)

=
ALG(σ)

ALG(σ) + |B| ≥
3|B|

3|B|+ |B| =
3
4

. (1)

3.2 General Case

In this section we prove the main result of our paper. Unfortunately, the proof
from the previous section does not readily generalize; the core of the difficulty
is that it is no longer possible to sort the advertisers in non-decreasing demand
order such that all exhausted advertisers appear before the non-exhausted adver-
tisers. Instead, exhausted and non-exhausted advertisers might be interleaved in
every non-decreasing demand ordering of the advertisers. Thus, it is hard to guar-
antee the extent to which impressions of exhausted advertisers can be charged. A
simple approach to overcome this difficulty is to split the advertisers into blocks,
making sure that within each block the exhausted advertisers appear before the
non-exhausted ones. However, this fails since OPT and GREEDYD may place
impressions in different blocks. To circumvent this problem we consider subsets
of advertisers having demand above a given threshold. The proof then makes a
connection between the difference in number of impressions allocated by OPT
and GREEDYD to a subset of the advertisers and the number of exhausted
advertisers in the subset, yielding a lower bound on the payment that can be
extracted from the impressions of the exhausted advertisers.

The next theorem shows that GREEDYD is 3/4-competitive also for arbitrary
demands; due to space limitations, its proof is deferred to a full version.

Theorem 5. For any sequence σ of input impressions, GREEDYD(σ)
OPT (σ)

≥ 3/4.



Frequency Capping in Online Advertising 155

4 Equal Demands/Arbitrary Valuations

In this section, we assume advertisers have different values, but equal ratio of
demand to frequency cap (this can happen, e.g., when each advertiser has fre-
quency cap fi and wants to advertise to the same number of distinct users u, i.e.,
di = fiu). The reduction to unit frequency caps makes this equivalent to assum-
ing all demands are equal and all frequency caps are 1. The following theorem
shows that the natural greedy algorithm GREEDYV , assigning in decreasing
order of value, is 3/4-competitive. Note that by Theorem 3, this ratio is optimal.

Theorem 6. For any sequence σ of input impressions, GREEDYV (σ)
OPT (σ)

≥ 3/4,
under the above assumptions.

The proof builds on the ideas developed in Theorem 5, and due to lack of space,
it is deferred to a full version of this paper.

5 Arbitrary Valuations

We now consider arbitrary valuations vi. We first prove an improved upper bound
for this case. Due to space imitations, the proofs of the theorems of this section
are deferred to a full version of this paper.

Theorem 7. No deterministic algorithm is better than 1/
√

2 ≈ 0.707-competitive.

5.1 A Primal-Dual Algorithm

In order to apply the primal-dual approach to the problem, we first formulate
the offline allocation problem as a linear program as following. Let A be the set
of advertisers. Let B be the set of users. Finally, for each user j ∈ B, let K(j)
be the number of impressions of user j. We define variables y(i, j, k) indicating
that the k-th impression of user j is assigned to advertiser ai.

max
∑

ai∈A
vi

∑

j∈B

K(j)∑

k=1

y(i, j, k) (D)

s.t.
∑

j∈B

K(j)∑

k=1

y(i, j, k) ≤ di ∀ai ∈ A

K(j)∑

k=1

y(i, j, k) ≤ fi ∀ai ∈ A, j ∈ B

∑

ai∈A
y(i, j, k) ≤ 1 ∀j ∈ B, k ∈ {1, 2 . . . , K(j)}

y(i, j, k) ≥ 0

The first set of constraints guarantees that at most di impressions are assigned to
advertiser ai. The second set of constraints guarantees the frequency cap of each



156 N. Buchbinder et al.

advertiser. Finally, the last set of constraints guarantees that each impression
is assigned only once. For consistency with previous work [9], we refer to the
maximization problem as the dual problem. We now define the primal problem.
We have variable x(i) for each advertiser ai, a variable w(i, j) for each pair of
advertiser ai and user j and variable z(j, k) for the k-th impression of user j.

min
∑

ai∈A
dix(i) +

∑

ai∈A,j∈B
fiw(i, j) +

∑

j∈B,k
z(j, k) (P )

s.t. x(i) + w(i, j) + z(j, k) ≥ vi ∀ai ∈ A, j ∈ B, k
x, w, z ≥ 0

The allocation algorithm is as follows. We assume that the reduction to the case
where the frequency cap of each advertiser is 1 has already been applied.

Allocation Algorithm: Upon arrival of impression k of user j:

– Let S(j) be those advertisers not yet assigned impressions of user j, and
let S(j) = A \ S(j).

– Let m1 ∈ S(j) be the advertiser that maximizes vi − x(i). Let m2 ∈
S(j) \m1 be the advertiser that maximizes vi − x(i).a

1. Assign impression k to advertiser m1.
2. For each advertiser i ∈ S(j) ∪ m1 set: w(i, j) ← max{0, (vi − x(i)) −

(vm2 − x(m2))}.
3. For each advertiser i ∈ S(j) \m1 set: w(i, j)← 0.
4. For each impression � ≤ k of user j set: z(j, �)← vm2 − x(m2).
5. For advertiser m1: x(m1) ← x(m1)

(
1 + 1

di

)
+ vm1

c·di
(c is a constant to

be determined later).

a If maxS(j)(vi − x(i)) ≤ 0, or S(j) = ∅, no assignment is made and no variables
are updated. If there is no m2, we view vm2 − x(m2) as equal to 0.

Notice that this algorithm differs from the standard online primal-dual ap-
proach because it both increases and decreases primal variables.

Theorem 8. The algorithm is (1−(c+1)−1)-competitive, for c = (1+ 1
dmin

)dmin−
1, where dmin is the minimum demand of any advertiser.

Targeting constraints. We assumed thus far that advertisers valued all users
equally. In practice, however, when buying display ad space, advertisers can
provide targeting information, specifying which subset of impressions is accept-
able. That is, advertisers have value vi for acceptable impressions that meet the
targeting constraints and value of 0 for others (contracts for display ads typi-
cally specify a single price-per-impression that does not vary across the set of
acceptable impressions, i.e., vi does not take on different non-zero values).

Suppose targeting information is user-dependent only, i.e., an advertiser may
value only a subset of users with certain characteristics (age, gender, location,
etc.), but does not distinguish between different impressions (e.g., when visiting



Frequency Capping in Online Advertising 157

different webpages) from the same user. In this case, advertiser values have the
following form: v(i, j) is either vi or 0 (i.e., ai finds users with v(i, j) = vi
acceptable, and the rest unacceptable). We observe that the above algorithm
also works for this more general setting. The only change is that the sets S(j)
and S(j) include only advertisers that accept user j. This implies the following.

Theorem 9. For c = (1 + 1
dmin

)dmin − 1, the algorithm remains (1− (c + 1)−1)-
competitive, when v(i, j) ∈ {0, vi} for all i, j.

Theorem 10. With targeting constraints, no deterministic algorithm has a com-
petitive ratio higher than 1− 1/e, even when demand are large.

6 Further Directions

The frequency capping problem is an important practical problem which imposes
interesting algorithmic challenges. Here are two main directions for further work.
– Improving 1− 1/e for arbitrary valuations: There is a gap between the best

upper bound of 1/
√

2 and the best algorithm (1− 1/e) for the case of arbi-
trary valuations without targeting constraints, discussed in §5. The targeting
constraints are to be blamed for the “matching” aspects, leading to the upper
bound of 1 − 1/e in Theorem 10. By removing these constraints, the differ-
ence between our problem and online matching resurfaces, and the upper
bound of 1 − 1/e does not hold anymore. We believe that our primal-dual
algorithm is an excellent starting point for a future online algorithm for
frequency capping with arbitrary values that will go beyond 1− 1/e.

– Content-based targeting specifications: Targeting specifications may be not
only user-based, but also depend on the webpage’s content. For instance,
an advertiser might want to display her ads only to males (user targeting)
when they browse a sports related webpage (content targeting); targeting
constraints are often of this form. So, advertisers now have valuations of
the form v(i, j, k) ∈ {0, vi}, i.e., the value of the k-th impression of the j-th
user to advertiser i is either vi or 0 depending on what page the user was
surfing on his k-th impression. Note that the model of [14] does not capture
this problem, which entangles a matching aspect with frequency capping.
The questions of designing a good online algorithm and finding the smallest
upper bound (of course, 1− 1/e is a trivial upper bound since this problem
generalizes arbitrary valuations with targeting) are both open.

Acknowledgments. We are extremely grateful to Ning Chen for several helpful
discussions, and for first suggesting the total demand algorithm.

References

1. Abrams, Z., Vee, E.: Personalized ad delivery when ads fatigue: An approximation
algorithm. In: 3rd International Workshop on Internet and Network Economics,
pp. 535–540. Springer, Heidelberg (2007)



158 N. Buchbinder et al.

2. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: A general approach
to online network optimization problems. ACM Transactions on Algorithms 2(4),
640–660 (2006)

3. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover
problem. SIAM J. Comput. 39(2), 361–370 (2009)

4. Bansal, N., Buchbinder, N., Naor, J.: A primal-dual randomized algorithm for
weighted paging. In: 48th Annual IEEE Symposium on Foundations of Computer
Science, pp. 507–517. IEEE Computer Society, Washington, DC (2007)

5. Bansal, N., Buchbinder, N., Naor, J.: Randomized competitive algorithms for gen-
eralized caching. In: 40th ACM Symposium on Theory of Computer Science, pp.
235–244. ACM, New York (2008)

6. Bansal, N., Chen, N., Cherniavsky, N., Rudra, A., Schieber, B., Sviridenko, M.:
Dynamic pricing for impatient bidders. In: 18th Annual ACM-SIAM Symposium on
Discrete Algorithms, pp. 726–735. Society for Industrial and Applied Mathematics,
Philadelphia (2007)

7. Blum, A., Hartline, J.: Near-optimal online auctions. In: 16th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1156–1163. Society for Industrial and Ap-
plied Mathematics, Philadelphia (2005)

8. Blum, A., Kumar, V., Rudra, A., Wu, F.: Online learning in online auctions. Theor.
Comput. Sci. 324(2-3), 137–146 (2004)

9. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing.
Math. Oper. Res. 34(2), 270–286 (2009)

10. Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via
a primal-dual approach. In: 47th Annual IEEE Symposium on Foundations of
Computer Science, pp. 293–304. IEEE Computer Society, Washington, DC (2006)

11. Buchbinder, N., Jain, K., Naor, J(S.): Online primal-dual algorithms for maximiz-
ing ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 253–264. Springer, Heidelberg (2007)

12. Feldman, J., Korula, N., Mirrokni, V., Muthukrishnan, S., Pál, M.: Online ad
assignment with free disposal. In: Leonardi, S. (ed.) WINE 2009. LNCS, vol. 5929,
pp. 374–385. Springer, Heidelberg (2009)

13. Feldman, J., Mehta, A., Mirrokni, V.S., Muthukrishnan, S.: Online stochastic
matching: Beating 1 − 1/e. In: 50th Annual IEEE Symposium on Foundations of
Computer Science, pp. 117–126. IEEE Computer Society, Washington, DC (2009)

14. Goel, G., Mehta, A.: Adwords auctions with decreasing valuation bids. In: Deng,
X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp. 335–340. Springer,
Heidelberg (2007)

15. Kalyanasundaram, B., Pruhs, K.R.: An optimal deterministic algorithm for online
b-matching. Theor. Comput. Sci. 233(1-2), 319–325 (2000)

16. Karp, R.M., Vazirani, U.V., Vazirani, V.V.: An optimal algorithm for on-line bi-
partite matching. In: 22nd Annual ACM Symposium on Theory of Computing, pp.
352–358. ACM, New York (1990)

17. Mahdian, M., Saberi, A.: Multi-unit auctions with unknown supply. In: 7th ACM
Conference on Electronic Commerce, pp. 243–249. ACM, New York (2006)

18. Mehta, A., Saberi, A., Vazirani, U., Vazirani, V.: Adwords and generalized online
matching. J. ACM 54(5), 22 (2007)

19. Marketing Terms.com,
http://www.marketingterms.com/dictionary/frequency_cap



Adjacency-Preserving Spatial Treemaps

Kevin Buchin1, David Eppstein2, Maarten Löffler2,
Martin Nöllenburg3, and Rodrigo I. Silveira4

1 Dept. of Mathematics and Computer Science, TU Eindhoven
2 Dept. of Computer Science, University of California, Irvine

3 Institute of Theoretical Informatics, Karlsruhe Institute of Technology
4 Dept. de Matemàtica Aplicada II, Universitat Politècnica de Catalunya

Abstract. Rectangular layouts, subdivisions of an outer rectangle into smaller
rectangles, have many applications in visualizing spatial information, for instance
in rectangular cartograms in which the rectangles represent geographic or politi-
cal regions. A spatial treemap is a rectangular layout with a hierarchical structure:
the outer rectangle is subdivided into rectangles that are in turn subdivided into
smaller rectangles. We describe algorithms for transforming a rectangular layout
that does not have this hierarchical structure, together with a clustering of the
rectangles of the layout, into a spatial treemap that respects the clustering and
also respects to the extent possible the adjacencies of the input layout.

1 Introduction

Spatial treemaps are an effective technique to visualize two-dimensional hierarchical
information. They display hierarchical data by using nested rectangles in a space-filling
layout. Each rectangle represents a geometric or geographic region, which in turn can
be subdivided recursively into smaller regions. On lower levels of the recursion, rect-
angles can also be subdivided based on non-spatial attributes. Typically, at the lowest
level some attribute of interest of the region is summarized by using properties like
area or color. Treemaps were originally proposed to represent one-dimensional infor-
mation in two dimensions [14]. However, they are well suited to represent spatial—
two-dimensional—data because the containment metaphor of the nested rectangles has
a natural geographic meaning, and two-dimensional data makes an efficient use of
space [18].

Spatial treemaps are closely related to rectangular cartograms [13]: distorted maps
where each region is represented by a rectangle whose area corresponds to a numerical
attribute such as population. Rectangular cartograms can be seen as spatial treemaps
with only one level; multi-level spatial treemaps in which every rectangle corresponds
to a region are also known as rectangular hierarchical cartograms [15, 16]. Spatial
treemaps and rectangular cartograms have in common that it is essential to preserve
the recognizability of the regions shown [17]. Most previous work on spatial treemaps
reflects this by focusing on the preservation of distances between the rectangular re-
gions and their geographic counterparts (that is, they minimize the displacement of the
regions). However, often small displacement does not imply recognizability (swapping
the position of two small neighboring countries can result in small displacement, but

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 159–170, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



160 K. Buchin et al.

a big loss of recognizability). In the case of cartograms, most emphasis has been put
on preserving adjacencies between the geographic regions. It has also been shown that
while preserving the topology it is possible to keep the displacement error small [4,17].

In this paper we are interested in constructing high-quality spatial treemaps by prior-
itizing the preservation of topology, following a principle already used for rectangular
cartograms. Previous work on treemaps has recognized that preserving neighborhood re-
lationships and relative positions between the regions were important criteria [8,12,18],
but we are not aware of treemap algorithms that put the emphasis on preserving topology.

North End

Vincent Square

Fryent

ymleomleyBB eyomBro

Muswe

C
re

m
or

ne

Whalebone

S
tr

ea
th

am
 W

el
ls

St George's

Parsloes

Markhouse

Crouch End

St Dunstan's and Stepney  G reen

Brentford

M
er

to
n 

P

Gooshays
Chadwell Heath

Walpole

Woodside

Bensham Manor

Squirrel's Heath

C
ra

y 
V

al
le

y 
W

es
t

Sidcup

S
t M

a

Eltham West

Bethnal Green South

Lower Edmonton

Tudor betthbetmbamLLaL th
Berrylands

F
ie

ld
w

ay

ark

Q
ue

en
sb

ur
y

Th
am

es
m

ea
d 

E
as

t

Me nerttonMeerttonnMM

P
ar

k
ar

k

Gree wicwichhenw chGGree

Lady Margaret

gstoK onKingKing t
Berrylands

Enfield Highway

Colliers Wood

Ch ill

Falconwood and We

F
or

es
t

Dalston

Town

G
ro

ve

KK

N
ew

 A
dd

in
gt

on

Queensbridge

Thornton Heath

Darwin

ntBrBrrenrenB tBr ntB Brondesbury Paondesbury

ds
e

y

Lo
ng

th
or

nt
o

n
U

pp
er

 E
dm

on
to

n

ove

F
or

es
t 

G
at

e 
S

ou
th

Canning Town North

Whitton

Bryanston and Dorset Square

Bow East

w Parkhh

yn
do

n

icic

Pettits

S
tre

at
ha

m
 H

ill

The Wrythe

Courtfield

North End

Le
yt

on
st

on
e

Bromley Town

Li
m

eh
ou

se

A
sh

bu
rt

on

Greenhill

Peckham Rye

B
ed

di
ng

to
n 

S
ou

th

nd
W

a
W

a
W

ds
w

h
W

w
or

t

H k C t l

Enfield Lock

B
aar

et
B

ar
nrn

t
ar

B
tt

Kings

Dormers Wells

uburbBB

Fullwell

Springfield

Christchurch

C
ro

ha
m

Trinity

V
illa

ge

Junction

Beddington North

Beverley
Wandswo nn

Haggerston

Lo
ng

br
id

ge

Clock House

Stonecot

Hounslow Heath

H
es

to
n 

E
as

t

Wealdstone

Welsh Harp

R
us

he
y

Underhill

Regent's Park

C
at

ha
ll

W
im

bl
ed

on
 P

ar
k

Downham

Hoxton

S
ha

dw

Abbey

Valence

Queen's ParkGolborne

Alexandra

Brampton

Maida Vale

Preston

S
an

ds
 E

nd

Bounds Green

Weavers

Northwick Park

Sydenham

bury

Hale E nd and Highams Park

Ickenham

C
hu

rc
h 

E
nd

Queens Park

C
lis

so
ld

East Dulwich

Clerkenwell

Mi ddle Park and  Sutcliffe

Sutton North

mesonon

W
es

t H
am

ps
te

ad

Shooters Hill

Penge and Cator

Victoria

Clapham Common

Highbury East

Larkhall

E
as

t I
nd

ia
 a

nd
 L

an
sb

ur
y

West Hill

Stonebridge

Townfield

Barnhill

Ruislip

South Horn

Tollington

La
tc

hm
er

e

Whitechapel

singgtoni tKKens
Courtfieldeld

Turnham Green

enen
Yeading

H
ig

h 
S

tr
ee

t

Wick

Hillingdon East

B
ed

fo
nt

G
re

en

P
lu

m
st

ea
d

Cranbrook

S
t K

at
ha

rin
e'

s 
an

d 
W

ap
pi

ng

betbet
St Mark's

Warwick

T
he

 L
an

e

White Hart Lane

Tottenham Hale

Chapel End

Greenford Green

Knightsbridge and Belgravia

arar
St Leonard's

ydoC onCroCroydoonC

m

Old Malden
W

al
lin

gt
on

 S
ou

th

Canons

veriHavH veriingH ingggHav
qett ts

nchurch

w
 W

es
t

Higham Hill

Fulwell and Hampton Hill

C
an

n 
H

al
l

ckton

Pinkwell

La
nc

as
te

r 
G

at
e

Fairlop

Leabridge

S
tr

at
fo

rd
 a

nd
 N

ew
 T

ow
n

A
sk

ew

Ju
bi

le
e

Lavender Fields

Woolwich Riverside

R
o

th
er

hi
th

e

Broad GrCC

Little Ilford

Newbury

Cockfosters

Noel Park

Cheam

Heston West Coombe Hill

S
ou

th
 A

ct
o

n

ee

Turkey Street

Gascoigne

West Thornton

H
yd

e 
P

ar
k

Erith

oc
k

Headstone North

Wallington North
Heathfield

Brownswood

K
e

nt
is

h 
T

ow
n

Tachbrook

W
e

Harrow Road

Cavendish

Pembridge

ord

West Drayton

Westbourne

to
w

 N
or

th

Le
a 

B
rid

g
e

E
as

t F
in

ch
le

y

Hampton

ocks

E
lt

Kenley

East Walworth

East Ham South

Hend BB
Village

A
bb

ey

H
am

pt
on

 W
ic

k

A
ct

on
 C

en
tr

al

Uxbridge North

Thamesmead Moorings

Greenford Broadway

Plaistow and Sundridge

Heaton

Hylands

mbeonon

Willesden Green

Coombe Vale

Br
om

le
y-

by
-B

ow

Rainham and Wennington

ls
id

e

MM

R
av

e
ns

co
ur

t P
a

rk

Palace Riverside

Shortlands

Gipsy Hill

Woodhousenn
W

or
m

ho
lt 

an
d 

W
hi

te
 C

ity

M nn

Eltham South

Dundonald

Oval

F
el

th

Perry Vale

D
e 

B
ea

uv
oi

r

Bedford

Totteridg

Northumberland  Park

Ladywell

Camberwell Gree

Avonmore and Brook Green

Hackney Downs

Earls

WW

S
ud

bu
ry

Bellingham

un
sl

ow
 C

en
tr

al

Regent's Park

New Cross

Wood Street

Endlebury

Bunhill

C
ol

dh
ar

bo
u

r

Coldharbour and New Eltham

Cricket Green

Heathrow Villages

William Morris

Cannon Hill

gg

Camden Town with Primrose Hill

West Twickenham

Uxbridge South

H
an

w
or

th

Northo lt West En d

Queenstown

Coulsdon East

Valley

er HoweTo er HHamletsw
el

l
w

el
l

in
e'

s 
an

d 
WW

B
ow

Rayners Lane

M
ar

y
le

bo
ne

 H
ig

h 
S

tr
ee

t

Fulham Broadway

Norland

Stockwell

Upper Norwood

A
bb

ey
 R

oa
d

W t E d

Belmont

Figge's Marsh

Chatham

Brunswick Park

R
ed

cl
iff

e

Coppettsaa
Chiswick Riverside

Isleworth

G
ra

ng
e

B
ar

E
nd

 E
as

t

aa

E
ve

ly
n

Roxeth

Nightingale

St Mary's

South Richmond

R monRichR ndRich
enhamenham

Haselbury

C
am

be
rw

el
lOsterley and Spring Grove

Wandle Valley

Colville

Brompton

S
tre

at
h

am
 S

ou
th

V
al

en
tin

es

Selsdon and Ballards

Plaistow South

Harrow on the Hill

Lewisham Central

M
ile

 E
nd

 a
nd

 G
lo

be
 T

ow
n

Wanstead

on

Chingford GreenHatch End

enwenw

Heston Central

Pollards Hill

C
at

fo
rd

E

G
ra

ve
ne

y

F
or

tis
 G

re
en B

rid
ge

Southfield

St Ann's

Kelsey and EBB

Kenton

eg
at

e

Mapesbury

Hounslow West

St Mary's Parkhh

ns
bu

ry
 P

ar
k

Hobbayne

Longlands

A
bb

ey
 W

oo
d

rowwHHaHHarrGreenhillreenh
QueensbQueen

es
t H

ar
ro

w
st

H
ar

ro
w

Hounslow South

HackknekneH eyeyHack
Hackney Central

C
lis

so
lis

so

ChathStoke Newington Central

South Norwood

Bethnal Green North

Clayhall

E
ar

l's
 C

ou
rt

L
ow

er
 M

or
de

n

Perivale

Prince's

Sanderstead

E
al

in
g

 C
om

m

shaLeewis mLe y 
G

re
en

y 
G

re
e

Crofton ParkCrofton Park

d 
S

ou
th

d 
S

ou
t

Town

esstoram FoWWWaltha es
t

esHoe StreetHoe Streetee
t

ee
t

St Peter's

Munster

 Easteyey

H
an

w
or

th
 P

ar
k

mbmb

Cazenove

C
ar

sh
al

to
n 

C
e

nt
ra

l

R
ox

bo
ur

ne

M
ot

tin
gh

am
 a

nd
 C

hi
sl

eh
ur

st
 N

or
th

Larkswood

St Pancras and Somers Town

H
ar

ef
ie

ld

Kew

Hacton

Parsons Green and Walham

Colindale

Alexandra

ew mNeew amNe hahN whhN Custom HouseCustom House Becec

P
la

is
t

E
as

t H
am

 C
en

tr
al

E
as

t H
am

 C
en

tr

Kenton East

C hessington North and Hook

Millwall

West BarnMM

G
ree

Bloomsbury

Colyers

Wall End

Hale

Aldborough

N
un

he
ad

gtoonIsIsslin onslinngto

ar
y'

s
y

s

F
in

F
in

Norbury

haha

Ho lborn a nd  Co vent Ga rden

Southall Broadway

C
a

nt
el

ow
es

Green Stree t East

Chadwell

owntonton

Monkhams

G
ro

ve
 P

ar
k

C
ha

uc
er

Sutton South

Hanger Hill

W
es

t H
en

d
on

Stanley

Woolwich Common

F
ur

ze
do

w
n

nd

S
ou

th
al

l G
re

en

Grove Green

Belmont

North Greenford

Eastcote and East Ruislip

Childs Hill

Goodmayes

Barnes

Thamesfield

CroCro

Barnhill

Fulham Reach

Northolt Mandeville

momo

Blackwall and Cubitt Town

Chislehurst

mersmmersmiithammH mithamm
P l Ri idP

Forest Gate North

Harold Wood

St Helier

King's Cross

Le
sn

es
 A

bb
ey

w
ay

B
rix

to
n 

H
ill

aa
C

a
rs

ha
lto

n 
S

ou
th

 a
nd

 C
loc

kh
ou

se

nslowHHouun owunnslowH am
 N

or
th

am
 N

or
t H

ou
H

B
el

ve
de

re

BrBr

Seven Sisters

East Sheen

Bishop's

Biggin Hill

B
ot

w
el

West Ruislip

Barnsbury

S
na

re
sb

ro
ok

Queen's Gate

Herne Hill

H
ai

na
ul

t

Waddon

Kilburn

Chelsfield  and Pratts Bottom

Kensal Green

South Twickenham

Blendon and  Penhill

Addison

ThorntonLL

G
re

en
w

ic
h 

W
es

t

Riverside

Fortune Green

Clementswood

East Putney

Manor

Hammersmith Broadway

Golders Green

Caledonian

LeytonT ottenham Green

Eltham North

Harlesden

F
in

ch
le

y 
C

hu
rc

h 
E

nd

Highbury West

Fairfieldswsw

Newington

Eastbrook

Northcote

Emerson Park

Mayfield

wauthwwaarkS uthwthouSoSSoSo aou So
ut

h 
B

er
m

on
d

S
ou

th
 B

e

Surrey DoSurrey D
enn

PeckhamPeckhamS
ou

th
 C

S
ou

CCnn

E
as

tb
ur

y

Coulsdon West

Spitalfields and Banglatown

H
a

m
 P

et
er

sh
am

 a
nd

 R
ic

hm
on

d 
R

iv
er

si
de

Kilburn

Southbury

Brockley

S
he

p
he

rd
's

 B
us

h 
G

re
en

Northumberland Heath

East Acton

R
ay

ne
s 

P
ar

k

Northwood

Ravensbury

Mawneys

St Michael's

Hayes and Coney Hall

Belsize

Brooklands

Telegraph Hill

Worcester Park

Vassall

S
t A

nd

nn

N
ew

 R
iv

e
r

Campden

S
ur

bi
to

n 
H

ill

Bwhwh

Lo
xf

or
d

N
or

th
fie

ld

ydoydo

Balham

Pinner SouHH

H
ig

hg
at

e

Clapham Town

Wembley Central

Heath

HHarin eyngeH eyngeHarinell Hillell

Bruce GroBruce Gro

W
es

t 
G

es
t

Charlton

Nons

S
ou

th
ga

te

East Ham North

Southgate Green

Northwood Hills

Royal Hospital

West Wickham

Chiswick Homefields

Hampton North

Crystal Palace

SoSo

West Ham

G
ra

ve
ne

y

Heathfield

Orpington

tonS tSuttS tt nS Sutton CentralSutton CentralSutton Westutton West

suchsuc

Pinner

es Commonndnd

D
ol

lis
 H

ill

East Wickham

Harringay

Lee Green

Chase

Palmers Green

E gEa galingaliing
Dormers WellsDormers We

th
or

ne
or

ne A
ct

on
C

en
t

A
ct

on
C

m
o

n

C
le

ve
la

n
C

le
ve

E
al

in
g 

B
ro

ad
w

B
r

H
ig

hg
at

e

Edgware

Shirley

Yiewsley

H
ol

la
nd

KK

geridgRRed ridgdb geRReddb Seven KSeven K
Cranbrook Newbury

S
t H

el
ie

r

Church Street

ForesLeLe

Lo
nd

C
y 

of
 L

ity
do

n
ity

L
C

rip
pl

e
C

rip
pl

e

Syon

l

B
ic

kl
ey

Brunel

arar

High Barnet tt
Woodside

F
el

th
am

 W
es

t

Knight's Hill

P
ur

le
y

Roding

St Charles

W
hi

te
fo

ot

B
ro

m
le

y 
C

om
m

on

mm

S
t J

am
es

's

Frognal and Fitzjohns

Kenton West

U
pm

in
st

er

dnfiEn dnfielldEE ldEnBush Hill Parkush Hill ParkWinchmore HillWinchmore Hill

Edmonton GreenEdmonton Gree

nn

College Park and Old Oak

Stanmore Park

P
on

ddd
Bowes

rs
 C

op
e

roro

B
ur

nt
 O

ak

Churchill

West nstetmin erW tminP
ar

k
P

ar

West EndE

S
tJ

amJ

Marlborough

St Mar garets and North Twickenham

Te
dd

in
gt

on

R
iv

er

P
en

in
su

la

Manor Park

Norwood Green

CanNN

Grange

EE

Tooting

Becontree

Cathedrals

Harrow Weald Hatch Lane

Blackheath

King's Park

Southfields

Highlands

Shaftesburyoo
N

ot
tin

g 
B

ar
ns

C
an

on
bu

ry

Havering Park

H
ill

ris
e

dbdb

Cranham

B
ay

sw
at

er

WW

Farnborough and Crofton

ngdoonHillinHH donngdHillinCharvilleCharville South RHillingdon EastHillingdon SouthSo

llll

Th
am

es

C mdenmdennCam np
st

 H
am

Gospel Oakk

H
av

er
st

o
H

av
e

Swiss CottageSwiss Cottage

R
om

fo
rd

 T

aa

Little Venice

ii

Bexex eyleB yBe leyBeBBellin gelling

p

Danson ParkDanson Park

CrayfoCra

rn
eh

u
rs

t
hu

rs
t

Colye

Blackfen and LamorbeyBlackfen and Lamorb

Cray Meadows

Holloway

arinarin

Norbiton

Lordship

Alperton

E
dg

w
ar

e

gd
on

enen

Stroud Green

th
 W

es
tc

om
be

rere

B
ru

n
sw

ic
k 

P
ar

k

Hampstead Town

W
es

t P
ut

ne
y

gBB rkinBar ngg

br
id

ge
dg

e
AA

GoresbrookGoresbrookMayesbrookMayesbrook AliboAlibo

Cranford

Chessington South

Canbury

Roehampton

Mildmay

East Barnettt

yy

aaa
Village

North Richmond

C
ol

le
ge

uu

Elm Park

Fig. 1. A 2-level spatial treemap from [15]; used
with permission

The importance of preserving ad-
jacencies in spatial treemaps can be
appreciated by viewing a concrete
example. Figure 1, from [15], shows
a spatial treemap of property trans-
actions in London between 2000 and
2008, with two levels formed by
the boroughs and wards of London
and colors representing average prices.
To see whether housing prices of
neighboring wards are correlated, it
is important to preserve adjacencies:
otherwise it is easy to draw incorrect
conclusions, like seeing clusters that
do not actually exist, or missing exist-
ing ones.

Preserving topology in spatial treemaps poses different challenges than in (non-
hierarchical) rectangular cartograms. Topology-preserving rectangular cartograms exist
under very mild conditions and can be constructed efficiently [4,17]. As we show in this
paper, this is not the case when a hierarchy is added to the picture.

In this paper we consider the following setting: the input is a hierarchical rectan-
gular subdivision with two levels. We consider only two levels due to the complexity
of the general m-level case. However, the two-level case is interesting on its own, and
applications that use only two-level data have recently appeared [15].

Furthermore, we adopt a 2-phase approach for building spatial treemaps. In the first
phase, a base rectangular cartogram is produced from the original geographic regions.
This can be done with one of the many algorithms for rectangular cartograms [4]. The
result will contain all the bottom-level regions as rectangles, but the top-level regions
will not be rectangular yet, thus will not represent the hierarchical structure. In the
second phase, we convert the base cartogram into a treemap by making the top-level
regions rectangles. It is at this stage that we intend to preserve the topology of the base
cartogram as much as possible, and where our algorithms come in. See Figure 2 for an
example.

The advantage of this 2-phase approach is that it allows for customization and user in-
teraction. Interactive exploration of the data is essential when visualizing large amounts
of data. The freedom to use an arbitrary rectangular layout algorithm in the first phase
of the construction allows the user to prioritize the adjacencies that he or she considers



Adjacency-Preserving Spatial Treemaps 161

(a) (b)

Fig. 2. (a) An example input: a full layout of the bottom level, but the regions at a higher level in
the hierarchy are not rectangles. (b) The desired output: another layout, in which as many lower-
level adjacencies as possible have been kept while reshaping the regions at a higher level into
rectangles.

most essential. In the second phase, our algorithm will produce a treemap that will try
to preserve as many as the adjacencies in the base cartogram as possible.

In addition, we go one step further and consider preserving the orientations of the
adjacencies in the base cartogram (that is, whether two neighboring regions share a
vertical or horizontal edge, and which one is on which side). This additional constraint
is justified by the fact that the regions represent geographic or political regions, and
relative positions between regions are an important factor when visualizing this type of
data [4,17]. The preservation of orientations has been studied for cartograms [5], but to
our knowledge, this is the first time they are considered for spatial treemaps.

We can distinguish three types of adjacency-relations: (i) top-level adjacencies, (ii)
internal bottom-level adjacencies (adjacencies between two rectangles that belong to
the same top-level region), and (iii) external bottom-level adjacencies (adjacencies be-
tween two rectangles that belong to different top-level regions). As we argue in the
next section, we can always preserve all adjacencies of types (i) and (ii) under a mild as-
sumption, hence the objective of our algorithms is to construct treemaps that preserve as
many adjacencies of type (iii) as possible. We consider several variants of the problem,
based on whether the orientations of the adjacencies have to be preserved, and whether
the top-level layout is given in advance. In order to give efficient algorithms, we restrict
ourselves to top-level regions that are orthogonally convex. This is a technical limitation
that seems difficult to overcome, but that we expect does not limit the applicability of
our results too much: our algorithms should still be useful for many practical instances,
for example, by subdividing non-convex regions into few convex pieces.

Results. In the most constrained case in which adjacencies and their orientations need
to be preserved and the top-level layout is given, we solve the problem in O(n) time,
where n is the total number of rectangles. The case in which the global layout is not fixed
is much more challenging: it takes a combination of several techniques based on regular
edge labelings to obtain an algorithm that solves the problem optimally in O(k4 logk +
n) time, for k the number of top-level regions; we expect k to be much smaller than n.
Finally, we prove that the case in which the orientations of adjacencies do not need to
be preserved is NP-hard; we give worst-case bounds and an approximation algorithm.



162 K. Buchin et al.

2 Preliminaries

Rectangles and Subdivisions. All geometric objects like rectangles and polygons in
this paper are defined as rectilinear (axis-aligned) objects in the Euclidean plane R

2.
A set of rectangles R is called a rectangle complex if the interiors of none of the rect-
angles overlap, and each pair of rectangles is either completely disjoint or shares part
of an edge; no two rectangles may meet in a single point. Each rectangle of a rectangle
complex is a cell of that complex. We represent rectangle complexes using a structure
that has bidirectional pointers between neighboring cells. LetR be a rectangle complex.
The boundary ofR is the boundary of the the union of the rectangles inR.R is simple
if its boundary is a simple polygon, i.e., it is connected and has no holes. We say that
R is convex if its boundary is orthogonally convex, i.e., the intersection of any horizon-
tal or vertical line with R is either empty or a single line segment. We say that R is
rectangular if its boundary is a rectangle. LetR′ be another rectangle complex. We say
that R′ is an extension of R if there is a bijective mapping between the cells in R and
R′ that preserves the adjacencies and their orientations. Note that R′ could have adja-
cencies not present in R though. We say that R′ is a simple extension of R if R is not
simple butR′ is; similarly we may call it a convex extension or a rectangular extension.
Every rectangle complex has a rectangular extension (proof in full version [3]).

We define D = {left, right, top,bottom} to be the set of the four cardinal directions.
For a direction d ∈ D we use the notation −d to refer to the direction opposite from
d. We define an object O ⊂ R

2 to be extreme in direction d with respect to a rectangle
complex R if there is a point in O that is at least as far in direction d as any point in
R. Let R ∈R be a cell, and d ∈D a direction. We say R is d-extensible if there exists a
rectangular extension R′ of R in which R is extreme in direction d with respect to R′
(or in other words, if its d-side is part of the boundary ofR′). A set of simple rectangle
complexesL is called a (rectilinear) layout if the boundary of the union of all complexes
is a rectangle, the interiors of the complexes are disjoint, and no point in L belongs to
more than three cells. If all complexes are rectangular we say that L is a rectangular
layout. We call the rectangle bounding L the root box. Let L be a rectilinear layout.
We define the global layout L′ of L as the subdivision of the root box of L, in which
the (global) regions are defined by the boundaries of the complexes in L. We say L′ is
rectangular if all regions in L′ are rectangles.

Dual Graphs of Rectangle Complexes. The dual graph of a rectangular complex is
an embedded planar graph with one vertex for every rectangle in the complex, and an
edge between two vertices if the corresponding rectangles touch (have overlapping edge
pieces). The extended dual graph of a rectangular complex with a rectangular boundary
has four additional vertices for the four sides of the rectangle, and an edge between a
normal vertex and an additional vertex if the corresponding rectangle touches the cor-
responding side of the bounding box. We will be using dual graphs of the whole rect-
angular layout, of individual complexes, and of the global layout (ignoring the bottom
level subdivision); Figure 3 shows some examples. Extended dual graphs of rectangular
rectangle complexes are fully triangulated (except for the outer face which is a quadri-
lateral), and the graphs that can arise in this way are characterized by the following
lemma [9, 11, 17]:



Adjacency-Preserving Spatial Treemaps 163

(a) (b) (c) (d)

Fig. 3. (a) A bottom level rectangle complex. (b) The dual graph of the complex. (c) A global
layout. (d) The extended dual graph of the global layout.

Lemma 1. A triangulated plane graph G with a quadrilateral outer face is the dual
graph of a rectangular rectangle complex if and only if G has no separating triangles.

Now, consider the three types of adjacencies we wish to preserve: 1) (top-level) adja-
cencies between global regions, 2) internal (bottom-level) adjacencies between the cells
in one rectangle complex, and 3) external (bottom-level) adjacencies between cells of
adjacent rectangle complexes.

Observation 1. It is always possible to keep all internal bottom-level adjacencies.

Observation 2. It is possible to keep all top-level adjacencies if and only if the ex-
tended dual graph of the global input layout has no separating triangles.

Observation 1 is proven in the full version [3], and Observation 2 follows from Lemma 1
since the extended dual graph of the global regions is fully triangulated.

Fig. 4. Not all external adjacen-
cies can be kept

From now on we assume that the dual graph of the
global regions has no separating triangles, and we will
preserve all adjacencies of types 1 and 2. Unfortunately,
it is not always possible to keep adjacencies of type 3—
see Figure 4—and for every adjacency of type 3 that we
fail to preserve, another adjacency that was not present
in the original layout will appear. Therefore, our aim is
to preserve as many of these adjacencies as possible.

3 Preserving Orientations

We begin studying the version of the problem where all internal adjacencies have to be
preserved respecting their original orientations. Additionally, we want to maximize the
number of preserved and correctly oriented (bottom-level) external adjacencies. We con-
sider two scenarios: first we assume that the global layout is part of the input, and then
we study the case in which we optimize over all global layouts. The former situation is
particularly interesting for GIS applications, in which the user specifies a certain global
layout that needs to be filled with the bottom-level cells. If, however, the bottom-level
adjacencies are more important, then optimizing over global layouts allows to preserve
more external adjacencies.



164 K. Buchin et al.

(a) (b) (c) (d)

Fig. 5. (a) A region in the input. (b) The same region in the given global layout. (c) Edges of
rectangles that want to become part of a boundary have been marked with arrows. Note that one
rectangle wants to become part of the top boundary but can’t, because it is not extensible in that
direction. (d) All arrows that aren’t blocked can be made happy.

3.1 Given the Global Layout

In this section we are given, in addition to the initial two-level subdivision L, a global
target layout L′. The goal is to find a two-level treemap that preserves all oriented
bottom-level internal adjacencies and that maximizes the number of preserved oriented
bottom-level external adjacencies in the output.

First observe that in the rectangular output layout any two neighboring global regions
have a single orientation for their adjacency. Hence we can only keep those bottom-level
external adjacencies that have the same orientation in the input as their corresponding
global regions have in the output layout. Secondly, consider a rectangle R in a complex
R, and a rectangle B in another complex B. Observe that if R and B are adjacent in the
input, for example with R to the left of B, then their adjacency can be preserved only if
R is right-extensible inR and B is left-extensible in B.

The main result in this section is that the previous two conditions are enough to
describe all adjacencies that cannot be preserved, whereas all the other ones can be
kept. Furthermore, we will show how to decide extensibility for convex complexes, and
how to construct a final solution that preserves all possible adjacencies, leading to an
algorithm for the optimal solution.

Recall that we assume all regions are orthogonally convex. Consider each rectangle
complex of L separately. Since we know the required global layout and since all cells
externally adjacent to our region are consecutive along its boundary, we can immedi-
ately determine the cells on each of the four sides of the output region (see Figure 5).
The reason is that for a rectangle R that is exterior to its region R, and that is adjacent
to another rectangle B ∈ B, their adjacency is relevant only if R and B are adjacent
with the same orientation in the global layout. We can easily categorize the extensible
rectangles of a convex rectangle complex. For the proof of the following lemma and
other proofs in this section we refer to the full version [3].

Lemma 2. LetR be a convex rectangle complex, let R∈R be a rectangle, and d ∈D a
direction. R is d-extensible if and only if there is no rectangle R′ ∈ R directly adjacent
to R on the d-side of R.

Unfortunately, though, we cannot extend all extensible rectangles at the same time.
However, we show that we can actually extend all those rectangles that we want to
extend for an optimal solution.



Adjacency-Preserving Spatial Treemaps 165

We call a rectangle of a certain complex belonging to a global region engaged if
it wants to be adjacent to a rectangle of another global region, and the direction of
their desired adjacency is the same as the direction of the adjacency between these two
regions in the global layout. We say it is d-engaged if this direction is d ∈ D.

Therefore, the rectangles that we want to extend are exactly those that are d-extensible
and d-engaged, since they are the only ones that help preserve bottom-level exterior
adjacencies. It turns out that extending all these rectangles is possible, because the en-
gaged rectangles ofR have a special property:

Lemma 3. If we walk around the boundary of a regionR, we encounter all d-engaged
rectangles consecutively.

This property of d-engaged rectangles is useful due to the following fact.

Lemma 4. Let R be a convex rectangle complex composed of r rectangles, and let S
be a subset of the extensible and engaged rectangles in R with the property that if we
order them according to a clockwise walk along the boundary of R, all d-extensible
rectangles in S are encountered consecutively for each d ∈ D and in the correct clock-
wise order. We can compute, in O(r) time, a rectangular extensionR′ ofR in which all
d-extensible rectangles in S are extreme in direction d, for all d ∈ D.

Therefore, the engaged and extensible rectangles form a subset of rectangles for which
Lemma 4 holds, thus by using the lemma we can find a rectangular extension where all
extensible and engaged rectangles are extreme in the appropriate direction.

Then we can apply this idea to each region. Now we still have to match up the ad-
jacencies in an optimal way, that is, preserving as many adjacencies from the input as
possible. This can be done by matching horizontal and vertical adjacencies indepen-
dently. It is always possible to get all the external bottom-level adjacencies that need to
be preserved. This can be seen as follows. We process first all horizontal adjacencies.
Consider a complete stretch of horizontal boundary in the global layout. Then the posi-
tion and length of the boundary of each region adjacent to that boundary are fixed, from
the global layout. The only freedom left is in the x-coordinates of the vertical edges of
the rectangles that form part of that boundary (except for the leftmost and rightmost
borders of each region, which are also fixed). Since the adjacencies that want to be
preserved are part of the input, it is always possible to set the x-coordinates in order
to fulfill them all. The same can be done with all horizontal boundaries. The vertical
boundaries are independent, thus can be processed in exactly the same way. This yields
the main theorem in this subsection.

Theorem 1. Let T be a 2-level treemap, where n is the number of cells in the bottom
level, and where all global regions are orthogonally convex. For a given global target
layoutL, we can find, in O(n) time, a rectangular layout of T that respects L, preserves
all oriented internal bottom-level adjacencies, and preserves as many oriented external
bottom-level adjacencies as possible.

3.2 Unconstrained Global Layout

In this section the global target layout of the rectangle complexes is not given, i.e.,
we are given a rectilinear input layout and need to find a rectangular output layout



166 K. Buchin et al.

preserving all adjacencies of the rectangle complexes and preserving a maximum num-
ber of adjacencies of the cells of different complexes.

We can represent a particular rectangular global layout L as a regular edge label-
ing [10] of the dual graph G(L) of the global layout. Let G(L) be the extended dual
graph of L. Then L induces an edge labeling as follows: an edge corresponding to a
joint vertical (horizontal) boundary of two rectangular complexes is colored blue (red).
Furthermore, blue edges are directed from left to right and red edges from bottom to top.
Clearly, the edge labeling obtained from L in this way satisfies that around each inner
vertex v of G(L) the incident edges with the same color and the same direction form
contiguous blocks around v. The edges incident to one of the external vertices {l,t,r,b}
all have the same label. Such an edge labeling is called regular [10]. Each regular edge
labeling of the extended dual graph G(L) defines an equivalence class of global layouts.

In order to represent the family of all possible rectangular global layouts we apply
a technique described by Eppstein et al. [6, 5]. Let L be the rectilinear global input
layout and let G(L) be its extended dual graph. The first step is to decompose G(L) by
its separating 4-cycles into minors called separation components with the property that
they do not have non-trivial separating 4-cycles any more, i.e., 4-cycles with more than
a single vertex in the inner part of the cycle. If C is a separating 4-cycle the interior
separation component consists of C and the subgraph induced by the vertices interior to
C. The outer separation component is obtained by replacing all vertices in the interior of
C by a single vertex connected to each vertex of C. This decomposition can be obtained
in linear time [6]. We can then treat each component in the decomposition independently
and finally construct an optimal rectangular global layout from the optimal solutions of
its descendants in the decomposition tree. So let’s consider a single component of the
decomposition, which by construction has no non-trivial separating 4-cycles.

Preprocessing of the bottom level. We start with a preprocessing step to compute
the number of realizable external bottom-level adjacencies for pairs of adjacent global
regions. This allows us to ignore the bottom-level cells in later steps and to focus on the
global layout and orientations of global adjacencies.

Let L be a global layout, let R and S be two adjacent rectangle complexes in L,
and let d ∈ D be an orientation. Then we define ω(R,S,d) to be the total number of
adjacencies between d-engaged and d-extensible rectangles in R and −d-engaged and
−d-extensible rectangles in S. By Lemma 4 there is a rectangular layout of R and S
with exactly ω(R,S,d) external bottom-level adjacencies betweenR and S.

We show the following (perhaps surprising) lemma:

Lemma 5. For any pair L and L′ of global layouts and any pair R and S of rectan-
gular rectangle complexes, whose adjacency direction with respect to R is d in L and
d′ in L′ the number of external bottom level adjacencies between R and S in any opti-
mal solution for L′ differs by ω(R,S,d′)−ω(R,S,d) from L. For adjacent rectangle
complexes whose adjacency direction is the same in both global layouts the number of
adjacencies in any optimal solution remains the same.

This basically means we can consider changes of adjacency directions locally and in-
dependent from the rest of the layout. Furthermore, since the values ω(R,S,d) are



Adjacency-Preserving Spatial Treemaps 167

A B

CD

A
B

C
D

(a) edge flip BD

A
B

C
D

A
B

C
D

EE

(b) vertex flip E

Fig. 6. Flip operations

directly obtained from counting the numbers of d-extensible and d-engaged rectangles
inR (or −d-extensible and −d-engaged rectangles in S) we get the next lemma.

Lemma 6. We can compute all values ω(R,S,d) in O(n) total time.

Optimizing in a graph without separating 4-cycles. Here we will prove the
following:

Theorem 2. Let G be an embedded triangulated planar graph with k′ vertices without
separating 3-cycles and without non-trivial separating 4-cycles, except for the outer
face which consists of exactly four vertices. Furthermore, let a weight ω(e,d) be as-
signed to every edge e in G and every orientation d in D. Then we can find a rectangu-
lar subdivision of which G is the extended dual that maximizes the total weight of the
directed adjacencies in O(k′4 logk′) time.

In order to optimize over all rectangular subdivisions with the same extended dual graph
we make use of the representation of these subdivisions as elements in a distributive
lattice or, equivalently, as closures in a partial order induced by this lattice [6,5]. There
are two moves or flips by which we can transform one rectangular layout (or its regular
edge labeling) into another one, edge flips and vertex flips (Figure 6). They form a
graph where each equivalence class of rectangular layouts is a vertex and two vertices
are connected by an edge if they are transformable into each other by a single move,
with the edge directed toward the more counterclockwise layout with respect to this
move. This graph is acyclic and its reachability ordering is a distributive lattice [7]. It
has a minimal (maximal) element that is obtained by repeatedly performing clockwise
(counterclockwise) moves.

By Birkhoff’s representation theorem [2] each element in this lattice is in one-to-one
correspondence to a partition of a partial order P into an upward-closed set U and a
downward-closed set L. The elements in P are pairs (x, i), where x is a flippable item,
i.e., either the edge of an edge flip or the vertex of a vertex flip [5, 6]. The integer
i is the so-called flipping number fx(L) of x in a particular layout L, i.e., the well-
defined number of times flip x is performed counterclockwise on any path from the
minimal element Lmin to L in the distributive lattice. An element (x, i) is smaller than
another element (y, j) in this order if y cannot be flipped for the j-th time before x is
flipped for the i-th time. For each upward- and downward-closed partition U and L,
the corresponding layout can be reconstructed by performing all flips in the lower set
L. P has O(k′2) vertices and edges and can be constructed in O(k′2) time [5, 6]. The
construction starts with an arbitrary layout, performs a sequence of clockwise moves



168 K. Buchin et al.

(a) (b)

Fig. 7. (a) A graph with non-trivial separating 4-cycles. Note that some 4-cycles intersect each
other. (b) A possible decomposition tree of 4-cycle-free graphs (root on the left).

until we reach Lmin, and from there performs a sequence of counterclockwise moves
until we reach the maximal element. During this last process we count how often each
element is flipped, which determines all pairs (x, i) of P . Since each flip (x, i) affects
only those flippable items that belong to the same triangle as x, we can initialize a queue
of possible flips, and iteratively extract the next flip and add the new flips to the queue in
total time O(k′2). In order to create the edges in P we again use the fact that a flip (x, i)
depends only on flips (x′, i′), where x′ belongs to the same triangle as x and i′ differs by
at most 1 from i. The actual dependencies can be obtained from their states in Lmin.

Next, we assign weights to the nodes in P . Let Lmin be the layout that is mini-
mal in the distributive lattice, i.e., the layout where no more clockwise flips are pos-
sible. For an edge-flip node (e, i) let R and S be the two rectangle complexes adjacent
across e. Then the weight ω(e, i) is obtained as follows. Starting with the adjacency
direction between R and S in Lmin we cycle i times through the set D in counter-
clockwise fashion. Let d be the i-th direction and d′ the (i + 1)-th direction. Then
ω(e, i) = ω(e,d′) = ω(R,S,d′)−ω(R,S,d). For a vertex-flip node (v, i) let R be
the degree-4 rectangle complex surrounded by the four complexes S1, . . . ,S4. We again
determine the adjacency directions betweenR and S1, . . . ,S4 in Lmin and cycle i times
through D to obtain the i-th directions d1, . . . ,d4 as well as the (i + 1)-th directions
d′1, . . . ,d

′
4. Then ω(v, i) = ∑4

j=1 ω(R,S j ,d′j)−ω(R,S j,d j). Equivalently, if the four

edges incident to v are e1, . . . ,e4, we have ω(v, i) = ∑4
j=1 ω(e j,d′j).

Finally, we compute a maximum-weight closure ofP using a max-flow algorithm [1,
Chapter 19.2], which will take O(k′4 logk′) time for a graph with O(k′2) nodes.

Optimizing in General Graphs. In this section, we show how to remove the restriction
that the graph should have no separating 4-cycles. We do this by decomposing the graph
G by its separating 4-cycles and solving the subproblems in a bottom-up fashion.

Lemma 7 (Eppstein et al. [6]). Given a plane graph G with k vertices, there exists
a collection C of separating 4-cycles in G that decomposes G into separation compo-
nents that do not contain separating 4-cycles any more. Such a collection C and the
decomposition can be computed in O(k) time.

These cycles naturally subdivide G into a tree of subgraphs, which we will denote as
TG. Still following [6], we add an extra artificial vertex inside each 4-cycle, which cor-
responds to filling the void in the subdivision after removing all rectangles inside by a
single rectangle. Figure 7 shows an example of a graph G and a corresponding tree TG.



Adjacency-Preserving Spatial Treemaps 169

Now, all nodes of TG have an associated graph without separating 4-cycles on which
we can apply Theorem 2. The only thing left to do is assign the correct weights to the
edges of these graphs. For a given node ν of TG, let Gν be the subgraph of G associated
to ν (with potentially extra vertices inside its 4-cycles).

For every leave ν of TG, we assign weights to the internal edges of Gν by simply
setting ω(e,d) = ω(R,S,d) if e separates R and S in the global layout L. For the
external edges of Gν (the edges that are incident to one of the “corner” vertices of the
outer face), we fix the orientations in the four possible ways, leading to four different
problems. We apply Theorem 2 four times, once for each orientation. We store the
resulting solution values as well as the corresponding optimal layouts at ν in TG.

Now, in bottom-up order, for each internal node ν in TG, we proceed in a similar
way with one important change: for each child μ of ν , we first look up the four optimal
layouts of μ and incorporate them in the weights of the four edges incident to the single
extra vertex that replaced Gμ in Gν . Since these four edges must necessarily have four
different orientations, their states are linked, and it does not matter how we distribute
the weight over them; we can simply set the weight of three of these edges to 0 and the
remaining one to the solution of the appropriately oriented subproblem. The weights of
the remaining edges are derived from L as before, and again we fix the orientations of
the external edges of Gν in four different ways and apply Theorem 2 to each of them.
We again store the resulting four optimal values and the corresponding layouts at ν , in
which we insert the correctly oriented subsolutions for all children μ of ν .

This whole process takes O(k4 logk) time in the worst case. Finally, since weights
are expressed as differences with respect to the minimal layout Lmin we compute the
value of Lmin and add the offset computed as the optimal solution to get the actual value
of the globally optimal solution. This takes O(n) time.

Theorem 3. Let T be a 2-level treemap, such that the extended dual graph G of the
global layout has no separating 3-cycles. Let n be the number of cells in the bottom
level and k the number of regions in the top level. Then we can find a rectangular
subdivision that preserves all oriented internal bottom-level adjacencies, and preserves
as many oriented external bottom-level adjacencies as possible in O(k4 logk + n) time.

4 Without Preserving Orientations

In this section we do not need to preserve orientations of internal adjacencies. The
global regions are convex and we assume that the global layout is given. However, max-
imizing the number of preserved external adjacencies in this case is NP-hard even if we
only have two top-level regions. For two top-level regions we give a 1/3-approximation
algorithm for this problem. Furthermore, this algorithm preserves at least 1/9 of the ex-
ternal adjacencies. We also show that we sometimes cannot keep more than 1/4 of the
adjacencies. The algorithm extends to more than two regions. In this case it is a 1/6-
approximation and at least 1/18 of the adjacencies are kept. Due to space restrictions,
we defer all details of these results to the full version of this paper [3].



170 K. Buchin et al.

Acknowledgements

This research was initiated at MARC 2009. We would like to thank Jo Wood for propos-
ing this problem, and all participants for sharing their thoughts on this subject.

D. E. is supported by the National Science Foundation under grant 0830403. D. E.
and M. L. are supported by the U.S. Office of Naval Research under grant N00014-08-
1-1015. M. N. is supported by the German Research Foundation (DFG) under grant NO
899/1-1. R. I. S. is supported by the Netherlands Organisation for Scientific Research
(NWO).

References

1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, Englewood Cliffs
(1993)

2. Birkhoff, G.: Rings of sets. Duke Mathematical Journal 3(3), 443–454 (1937)
3. Buchin, K., Eppstein, D., Löffler, M., Nöllenburg, M., Silveira, R.I.: Adjacency-preserving

spatial treemaps. Arxiv report, arXiv:1105.0398 (cs.CG) (May 2011)
4. Buchin, K., Speckmann, B., Verdonschot, S.: Optimizing regular edge labelings. In: Bran-

des, U., Cornelsen, S. (eds.) GD 2010. LNCS, vol. 6502, pp. 117–128. Springer, Heidelberg
(2011)

5. Eppstein, D., Mumford, E.: Orientation-constrained rectangular layouts. In: Dehne, F.,
Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 266–277.
Springer, Heidelberg (2009)

6. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal rectangular layouts.
In: Proc. SoCG, pp. 267–276 (2009)

7. Fusy, É.: Transversal structures on triangulations: A combinatorial study and straight-line
drawings. Discrete Mathematics 309(8), 1870–1894 (2009)

8. Heilmann, R., Keim, D.A., Panse, C., Sips, M.: Recmap: Rectangular map approximations.
In: Proceedings of the IEEE Symposium on Information Visualization, pp. 33–40. IEEE
Computer Society, Washington, DC, USA (2004)

9. Kant, G., He, X.: Two algorithms for finding rectangular duals of planar graphs. In:
van Leeuwen, J. (ed.) WG 1993. LNCS, vol. 790, pp. 396–410. Springer, Heidelberg (1994)

10. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in
graph drawing problems. Theoretical Computer Science 172(1-2), 175–193 (1997)

11. Kozminski, K., Kinnen, E.: Rectangular duals of planar graphs. Networks 5(2) (1985)
12. Mansmann, F., Keim, D.A., North, S.C., Rexroad, B., Sheleheda, D.: Visual analysis of

network traffic for resource planning, interactive monitoring, and interpretation of security
threats. IEEE Transactions on Visualization and Computer Graphics 13, 1105–1112 (2007)

13. Raisz, E.: The rectangular statistical cartogram. Geographical Review 24(2), 292–296 (1934)
14. Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans.

Graph. 11(1), 92–99 (1992)
15. Slingsby, A., Dykes, J., Wood, J.: Configuring hierarchical layouts to address research ques-

tions. IEEE Trans. Vis. Comput. Graph. 15(6), 977–984 (2009)
16. Slingsby, A., Dykes, J., Wood, J.: Rectangular hierarchical cartograms for socio-economic

data. Journal of Maps v2010, 330–345 (2010), doi:10.4113/jom.2010.1090
17. van Kreveld, M., Speckmann, B.: On rectangular cartograms. CGTA 37(3) (2007)
18. Wood, J., Dykes, J.: Spatially ordered treemaps. IEEE Trans. Vis. Comput. Graph. 14(6),

1348–1355 (2008)



Register Loading via Linear Programming�

Gruia Calinescu1 and Minming Li2

1 Department of Computer Science, Illinois Institute of Technology
calinescu@iit.edu

2 Department of Computer Science, City University of Hong Kong
minmli@cs.cityu.edu.hk

Abstract. We study the following optimization problem. The input is
a number k and a directed graph with a specified “start” vertex, each
of whose vertices may have one “memory bank requirement”, an inte-
ger. There are k “registers”, labeled 1 . . . k. A valid solution associates to
the vertices with no bank requirement one or more “load instructions”
L[b, j], for bank b and register j, such that every directed trail from the
start vertex to some vertex with bank requirement c contains a vertex
u that has been associated L[c, i] (for some register i ≤ k) and no ver-
tex following u in the trail has been associated an L[b, i], for any bank
b. The objective is to minimize the total number of associated load in-
structions. We give a k(k + 1)-approximation algorithm based on linear
programming rounding, with (k+1) being the best possible unless Vertex
Cover has approximation 2 − ε for ε > 0. We also present a O(k log n)
approximation, with n being the number of vertices in the input directed
graph. Based on the same linear program, another rounding method out-
puts a valid solution with objective at most 2k times the optimum for k
registers, using 2k registers.

1 Introduction

We study the following optimization problem, called k-BSIM. The input is a
number k and a directed graph with a specified “start” vertex, each of whose
vertices may have one “memory bank requirement”, an integer. There are k
“registers”, labeled 1 . . . k. A valid solution associates to the vertices with no
bank requirement one or more “load instructions” L[b, j], for bank b and register
j, such that every directed trail from the start vertex to some vertex with bank
requirement c contains a vertex u that has been associated L[c, i] (for some
register i ≤ k) and no vertex following u in the trail has been associated an
L[b, i], for any bank b. The objective is to minimize the total number of associated
load instructions. This problem has applications in embedded systems. k-BSIM
is used to solve a slightly more complicated problem, described below.

The Original k-Bank Selection Instruction Minimization problem (k-OBSIM)
is defined as follows: The input is a number k and a directed graph, called the
� Gruia Calinescu is supported in part by NSF grant NeTS-0916743 and Minming Li

is supported in part by a grant from Research Grants Council of the Hong Kong
Special Administrative Region, China [Project No. CityU117408].

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 171–182, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



172 G. Calinescu and M. Li

Control Flow Graph (CFG), with a specified “start” vertex, and for each vertex
we have at most one “memory bank requirement”, an integer. The vertices of the
CFG correspond to blocks of code in an embedded system, and arcs represent
possible jumps in the code. Many embedded systems use partitioned memory
architecture, and program variables are stored in “banks” that must be stored
in registers before use. A vertex with no associated bank is called transparent
node and a vertex with one associated bank is called required vertex. There are
k registers, labeled 1 . . . k. Let B be the set of possible banks.

Each vertex of the CFG may “load” a bank (use a bank load instruction),
either at the “entrance” or at the “exit” of the vertex (or both). We write
Luin[b, j] for loading bank b in register j at the entrance of vertex u, and Luout[b, j]
for loading at the exit. Although loading is allowed also on the arcs of the CFG,
we prefer to subdivide such arcs with transparent vertices to keep the problem
description simpler. Also, when k = 1, a small proof shows that any arc load can
be done instead at the entry of the head of the arc, resulting in another feasible
solution not worse in number of load instructions.

1

2 2

12 2

L(2,1)

L(1,1)

Fig. 1. An example input with a feasible solution when k=1. Circles represent nodes
and the number in the circle means the bank required by this node. The start vertex
is not represented (or it could be the top vertex, without the bank requirement).

For a directed path P , let P̂ denote the set of vertices in P other than the start
and end vertices. Let s be the start vertex of the CFG. Bank load instructions
must be associated to CFG vertices such that, for any trail (directed path, not
necessarily simple) P from s to some node v that has a bank requirement b, P
has a vertex w (which may be v) and a register j for some j ≤ k such that one
of the following holds:

1. w = v, and we have Lwin[b, j] but no Lwin[c, j] for any c ∈ B with c �= b
2. w has Lwout[b, j], and for no c ∈ B with c �= b there is Lvin[c, j] or Lwout[c, j] or

a vertex u of P̂ with either Luout[c, j] or Luin[c, j]
3. w has Lwin[b, j], and for no c ∈ B with c �= b there is Lvin[c, j] or Lwin[c, j] or

Lwout[c, j] or a vertex u of P̂ with either Luout[c, j] or Luin[c, j]

See figures 1 and 2 for examples of feasible solutions. In other words, b is always
loaded in some register and no other bank loads over b on any path leading to
v. The objective is to minimize the total number of bank load instructions (as
to keep the embedded code as short as possible).



Register Loading via Linear Programming 173

1

2

2

3

1

3

4

2 3

1 4

L(1,1)

L(2,2)

L(3,3)

L(3,2)

L(2,3)

L(4,1)

L(1,3)

3

Fig. 2. An example input with a feasible solution when k=3. For the bottom node
which accesses bank 1, there are three paths entering it, where two of them have bank
1 loaded in register 1 and one of them has bank 1 loaded in register 3. We abbreviate
Lout[b, j] or Lin[b, j] to L[b, j] since the figure clearly shows the insertion position. The
start vertex is not represented and has only one arc, to the top-most vertex.

Partitioned memory architecture is common in 8-bit microcontrollers. For ex-
ample, Freescale [1] 68HC11 8-bit microcontrollers allow multiple 64KB memory
banks to be accessed by their 16-bit address registers with only one bank being
active at a time. Zilog [2] Z80 also addresses a maximum of 64 KB memory us-
ing 16-bit address registers. Other examples include Intel 8051 processor family
and MOS technology 6502 series microcontrollers. For embedded systems using
these 8-bit microcontrollers, how to insert bank selection instructions (called by
us previously “load”) to minimize the code size is an important research topic.

The paper [22] studies 1-OBSIM without transparent nodes, showing NP-
Hardness and a 2-approximation algorithm. We generalize this result, by giving
a k(k + 1)-approximation algorithm for k-OBSIM (transparent nodes also al-
lowed) based on linear programming rounding. In a personal communication,
Yuan Zhou [29] claimed that 1-OBSIM without transparent nodes does not have
a 2 − ε approximation algorithm unless Vertex Cover has a 2 − ε approxima-
tion algorithm (and it is believed that such an algorithm does not exist). We
also present such a reduction, and generalize it to show that k-OBSIM without
transparent nodes does not have a α− ε approximation algorithm unless (k+1)-
uniform Hypergraph Vertex Cover has such an algorithm. It is known that it is
NP-hard to approximate Hypergraph Vertex Cover in a r-uniform-hypergraph
to within a factor of (r − 1 − ε) [11], and it is believed that an approximation
ratio of r is the best a polynomial-time algorithm can do. Thus it is NP-Hard
to approximate k-OBSIM (k ≥ 2) within a factor of k − ε.



174 G. Calinescu and M. Li

Based on the same linear program, we also present O(k log n) approximation,
with n being the number of vertices in the input directed graph, and an algo-
rithm with objective at most 2k times optimum, however using 2k instead of k
registers. The linear program contains one “clever” constraint which makes it
similar, for k = 1, to the linear program used by Garg, Vazirani, and Yannakakis
[14] to obtain a 2-approximation for Node Weighted Multiway Cut. In addi-
tion to the k-uniform Hypergraph Vertex Cover, k-BSIM inherits some hardness
from k-coloring (as in the register allocation papers of Thorup [26] and Kannan
and Proebsting [18]) and we see intuitive connections to Directed Steiner Tree
[28,8,30] and Multicut in Directed Graphs [9,15,3].

Note that we are not optimizing the run-time of the program (in which case
the problem would resemble caching [24]) nor the number of registers needed
for a program (as in Thorup [26], Kannan and Proebsting [18], and Jansen and
Reiter [17]). An early related work is [16]. More recent work appears in [23],
while [13,19,20,25,21] and many other papers deal with practical issues of NP-
hard variants of register allocation. Also, as opposed to most theoretical work, we
do not assume any structure (such as low treewidth) for the input graph. Most
related to our model are the “spill heuristics” discussed in [6,5,7,27,12,10], but
as the name suggest we do not know of any previous approximation algorithms.
Here “spill” means putting some variables in the RAM instead of registers and
the aim of those heuristics is to minimize the number of variables “spilled”.

So, while our problem resembles register allocation, it differs in the following
ways. We do not force a bank with a “live-range” to stay in the same register but
allow the register to change content over time. We also have the restriction that
a bank variable cannot be stored in RAM when it is to be visited (it must come
back to a register in time, which is different from the Register Allocation problem
where a variable can be spilled). In the new setting, our goal is to minimize the
total number of content switching instructions for registers inserted into the
program.

We omit due to lack of space the approximation-preserving reduction from
(k + 1)-uniform Hypergraph Vertex Cover to k-OBSIM without transparent
nodes. The other reduction appears next. Section 3 presents our integer linear
program for 1-BSIM and the rounding procedure giving the 2-approximation.
Section 4 presents our results for k-BSIM.

2 Reduction

We continue by showing how k-OBSIM reduces to k-BSIM (with transparent
nodes), a problem easier to describe. Given an instance of k-OBSIM, for every
node v in CFG with bank requirement b, add a transparent node vtin which takes
in all the incoming arcs of v and has one arc to v, thus v has exactly one incoming
arc. Also add a transparent node vtout which sends out all the outgoing arcs of v,
and has one arc from v, thus v has exactly one outgoing arc. If for the k-OBSIM
instance, there is a load operation at the entrance of some vertex v with bank
requirement b, then in the transformed k-BSIM instance, we do the same load
to node vtin; if there is a load operation at the exit of some vertex v with bank



Register Loading via Linear Programming 175

requirement b, then in the transformed k-BSIM instance, we do the same load
to node vtout. Thus, with the above correspondence, a feasible solution for the
k-OBSIM instance can be changed to a feasible solution for the transformed k-
BSIM instance. Also, it is easy to see that a feasible solution for the transformed
k-BSIM instance can be changed to a feasible solution for the original k-OBSIM
instance, without an increase in the objective function.

3 1-BSIM

Assume that every node is reachable from the start vertex s. We again do a sim-
ilar transformation for the given OBSIM instance. The linear program obtained
later after this transformation is more intuitive (but this reduction only works
for k = 1).

Create a new transparent start vertex, s′, with exactly one arc, outgoing to
the original s. For every node v in CFG with bank requirement b, split v in two
nodes, vin with all the incoming arcs of v, and vout with all the outgoing arcs of
v; both have requirement b. Note that we do not have an arc from vin to vout.
Moreover, for vin, add a transparent node which takes in all the incoming arcs
of vin and has one arc to vin, thus vin has exactly one incoming arc. Also, for
vout, add a transparent node which sends out all the outgoing arcs of vout, and
has one arc from vout, thus vout has exactly one outgoing arc. We now insist that
all load instructions are done at transparent nodes.

Call the resulting directed graph G = (V, E). Let F be the set of transparent
nodes, RI be the required nodes with one incoming arc each (that is, the vin
nodes), and RO be the required nodes with one outgoing arc each (that is, the
vout nodes). For a ∈ B, let RI

a be the subset of RI with requirement a, and RO
a

be the subset of RO with requirement a. In G, we insist that for every bank
a ∈ B and every vertex v ∈ RI

a, every path ending in v and starting at either
s′ or a vertex of RO \ RO

a contains a transparent vertex u loading bank a, and
no load instructions after u. Call BSIM this new problem. One can check that
a 1-OBSIM feasible solution for the original instance corresponds to a BSIM
feasible solution to the constructed instance, with the same number of load
instructions.

For v ∈ V and a ∈ B, let Pva be the (possibly infinite) set of (not necessarily
simple) paths of G from v to some node of RI

a. Write the following integer linear
program (IP1), with variables xvb for every node v ∈ F and bank requirement
b ∈ B (xvb in the IP would be 1 if transparent node v loads bank b), and variables
dvb for every node v ∈

(
F ∪RO

)
and bank requirement b ∈ B (dvb in the IP would

be 1 if either Pvb = ∅ or, for any P ∈ Pvb , P̂ contains at least one node that loads
bank b).

min
∑

v∈F,b∈B
xvb subject to



176 G. Calinescu and M. Li

∑

b∈B
xvb ≤ 1 ∀v ∈ F (1)

dua ≥ 1 ∀a ∈ B ∧ ∀u ∈
(
{s′} ∪RO \RO

a

)
(2)

dva ≥ xvb ∀a �= b ∈ B ∧ ∀v ∈ F (3)
dua ≤ dva + xva ∀a ∈ B ∧ ∀u ∈

(
F ∪RO

)
∧ ∀v ∈ F such that uv ∈ E (4)

dua = 0 ∀a ∈ B ∧ ∀u ∈ F such that ∃v ∈ RI
a such that uv ∈ E (5)

dua + dub ≥ 1 ∀a �= b ∈ B ∧ ∀u ∈ F (6)
xva ≥ 0 ∀v ∈ F ∧ a ∈ B (7)
dva ≥ 0 ∀v ∈

(
F ∪RO

)
∧ ∀a ∈ B (8)

xva, d
v
a ∈ Z ∀v ∈ V ∧ ∀a ∈ B (9)

We sketch the fact that any IP solution obtained from a BSIM solution satisfies
all these constraints, and that we can construct a valid BSIM solution from
any IP solution. It is rather obvious the objective function matches. Constraint
(1) enforces only one load per transparent vertex. Constraint (2) enforces the
condition that for every bank a ∈ B and every vertex v ∈ RI

a, every path ending
in v and starting at either s′ or a vertex of RO\RO

a contains a transparent vertex
loading bank a; it does not guarantee however no load instructions after that
transparent vertex. This is done by Constraint (3), which enforces the following
observation: if bank b is loaded in vertex v, then for any path from v to a vertex
requiring bank a, there must be at least one load of bank a. Constraint (4)
enforces the following: if for bank a and vertices u, v with uv ∈ E, we have that
Pva �= ∅ and there exists path P ∈ Pva such that P̂ contains no node that loads
bank a, and v also does not load a, then Pua �= ∅ and there exists path P ′ ∈ Pua
(namely, edge uv followed by P ) such that P̂ ′ contains no node that loads bank
a. Constraint (5) means that if v ∈ RI

a and uv ∈ E, then Pua �= ∅ and there
exists path P ′ ∈ Pua (namely, edge uv) such that P̂ ′ contains no node that loads
bank a.

The trickier to verify constraint is (6), which indeed holds for integer solutions
as, if for vertex v and banks a �= b, Pva and Pvb are both non-empty, then no
matter if or what bank is loaded in v or in any other free vertex, either we must
have that every path P ∈ Pva satisfies that P̂ contains at least one node that
loads bank a, or we must have that every path P ∈ Pvb satisfies that P̂ contains
at least one node that loads bank b. Indeed, if there is a path P ∈ Pva with P̂
not loading a, then we must have that either v loads a, or all the paths from
{s′} ∪ R0 to v load a or are coming from RO

a (and a path from {s′} ∪ R0 to
v must exist since we assumed every vertex of the CFG is reachable from s).
Thus if such a P exists, we must have that every path P ′ ∈ Pvb satisfies that
P̂ ′ contains at least one node that loads bank b. It is the crucial (and clever)
Constraint (6) that allows good approximation algorithms.



Register Loading via Linear Programming 177

3.1 LP Rounding

Let LP1 be the linear programming relaxation of IP1, which can be solved in
polynomial time. Let x̄va, d̄

v
a be an optimum LP1 solution. Pick uniformly at

random real number δ ∈ (0, 1/2). Set xva = 1 iff d̄va < δ ≤ d̄va + x̄va. Set dva = 1 iff
Pva = ∅ or any path P in Pva has some u ∈ P̂ with xua = 1. It is immediate that
Pr[xva = 1] ≤ 2x̄va, and thus we have a 2-approximation, provided we prove that
for any such δ, we get a valid IP solution.

Lemma 1. For any δ ∈ (0, 1/2), and for any v ∈ (F ∪ R0) and b ∈ B, if
d̄vb ≥ 1/2 and Pvb �= ∅, then any path P ∈ Pvb has a vertex z �= v with xzb = 1 (in
other words, bank load b at CFG vertex z).

Proof. Let P be such a path from v to some x ∈ RI
b . Note that the vertex y

before x in P has d̄yb = 0. Therefore P must have consecutive vertices u and u′

such that d̄u
′
b < δ and d̄ub ≥ δ; here u may be v. Note that u′ ∈ F . Constraint

(4) also gives d̄u
′
b + x̄u

′
b ≥ d̄ub ≥ δ, and therefore xu

′
b is set to 1 by the algorithm.

The lemma holds with z = u′. ��

Now we check the feasibility of all constraints. For Constraint (1), note that for
a �= b ∈ B and v ∈ F , in order to have both xva and xvb be made 1, we must have
d̄va < 1/2 and d̄vb < 1/2, leading to d̄ violating Constraint (6).

Constraint (2), for a ∈ B and u ∈ RO \ RO
a follows from d̄ua ≥ 1 and the

lemma above.
Constraint (3), for a �= b ∈ B and v ∈ F follows as follows: if xvb = 1, then

d̄vb < 1/2, and therefore by d̄ satisfying Constraint (6), d̄va ≥ 1/2. Therefore, by
the lemma above applied to v and a, we set dva = 1 whether Pva = ∅ or not.

Constraint (4), for a ∈ B and uv ∈ E, follows from the way d was constructed:
if both dva = 0 and xva = 0, then Pua �= ∅ since Pva �= ∅, and there is a path P ∈ Pua
such that, for all z ∈ P̂ , xza = 0: use uv and then the path P ′ ∈ Pva with, for all
z ∈ P̂ , xza = 0.

Constraint (5), for a ∈ B and u ∈ F such that there exists uv ∈ E with
v ∈ RI

a is also satisfied since Pua �= ∅ and the path with its only arc uv has no
interior.

Constraint (6), for a �= b ∈ B and u ∈ F follows as follows: either d̄ua ≥ 1/2
or d̄ub ≥ 1/2, and the lemma above ensures that the one at least 1/2 becomes 1.

Note that only a polynomial number of values of δ must be tried, so deran-
domization is immediate. A more complicated analysis, omitted for lack of space,
shows that every value of δ works. We do not see half-integrality as in [14], and
we do not see a direct primal-dual algorithm.

4 k-BSIM

Assume that every node is reachable from the start vertex s, which is transparent.
Let R be the set of required vertices, and, for a ∈ B, let Ra be the subset of R
with requirement a. For v ∈ V and a ∈ B, let Pva be the (possibly infinite) set
of (not necessarily simple) paths of G from v to some node of Ra.



178 G. Calinescu and M. Li

Write the following integer linear program (IP2), with variables xvb for every
node v ∈ F and bank requirement b ∈ B (xvb in the IP would be 1 if transparent
node v loads bank b, in any of its registers), and variables dvb for every node
v ∈ ((F ∪R) \Rb) and bank requirement b ∈ B (dvb in the IP would be 1 if
either Pvb = ∅ or, for any P ∈ Pvb , P̂ contains at least one node that loads bank
b, in any register).

min
∑

v∈F,b∈B
xvb subject to

∑

b∈B
xvb ≤ k ∀v ∈ F (10)

dua ≥ 1 ∀a ∈ B ∧ ∀u ∈ ({s} ∪R \Ra) (11)
∑

a∈B
dua ≥ |B| − k ∀u ∈ F (12)

dua ≤ dva + xva ∀a ∈ B ∧ ∀u ∈ (F ∪R \Ra) ∧ ∀v ∈ F with uv ∈ E (13)
dua = 0 ∀a ∈ B ∧ ∀u ∈ F with ∃v ∈ Ra such that uv ∈ E (14)

1 ≥ xva ≥ 0 ∀v ∈ F ∧ ∀a ∈ B (15)
1 ≥ dva ≥ 0 ∀a ∈ B ∧ ∀v ∈ (F ∪R \Ra) (16)
xva, d

v
a ∈ Z ∀v ∈ F ∧ ∀a ∈ B (17)

Constraints (12) are the generalization of the “clever” constraints (6). Con-
straints (12) indeed hold for integer solutions since, if for vertex v there are k+1
banks b with variable dvb = 0, then for any of these banks b, Pvb �= ∅ and there
is at least one path P ∈ Pvb such that no node in P̂ loads bank b in any of its
registers. Then no matter what banks arrive or are loaded at v, we do not get a
valid k-BSIM solution. Note that constraints

∑

a∈Q
dua ≥ |Q| − k ∀Q ⊆ B ∧ ∀u ∈ F (18)

are implied by (16) and (12).
IP2 above is not equivalent to k-BSIM, as it does not specify in which register

a bank is loaded. Nevertheless, from a k-BSIM solution, we can get an IP2
solution of the same value (but not vice versa; that will be a coloring problem),
by setting xvb to be 1 iff transparent node v loads bank b and dvb to be 1 iff either
Pvb = ∅ or, for any P ∈ Pvb , P̂ contains at least one node that loads bank b. We
relax IP2 to the linear program LP2, and solve it in polynomial time.

Let x̄va, d̄
v
a be an optimum LP2 solution. Pick uniformly at random real num-

ber δ ∈ (0, 1/(k+1)). Set xva = 1 iff d̄va < δ ≤ d̄va+x̄va. Set dva = 1 iff Pva = ∅ or any
path P in Pva has u ∈ P̂ with xua = 1. It is immediate that Pr[xva = 1] ≤ (k+1)x̄va.
We load at v all the q banks a with dua < 1/(k + 1) if at least one of them has
xva = 1, using registers 1, 2, . . . , q. We have q ≤ k, since Constraint (18) implies
that, for any vertex u, at most k banks a can have d̄ua < 1/(k + 1). One needs to



Register Loading via Linear Programming 179

check that indeed this is a valid solution of k-BSIM: pick any u ∈ V , requiring
a ∈ B, any path P from s to u has vertex v′ with d̄v

′
a < δ ≤ d̄v

′
a + x̄v

′
a . Let v be

the last vertex on P̂ with d̄vb < δ ≤ d̄vb + x̄vb , for some b ∈ B; such a vertex v
exists since v′ is a candidate. Then also d̄va < δ ≤ 1/(k + 1) and therefore bank
a is loaded in some register at v. As we go on P̂ from v to u, no further load
instructions are selected by the algorithm, and thus at vertex u bank a is loaded.
The expected cost of the solution is at most k(k + 1) the LP cost.

For the derandomization, we can try polynomially many values of δ ∈ (0, 1/(k+
1)), or prove any such value will do. The following comprises this discussion (as
well as that of Section 3):

Theorem 1. There is a k(k + 1)-approximation algorithm for k-BSIM.

Theorem 2. There is a polynomial-time algorithm whose output uses at most
2k registers and a number of load instructions at most 2k times the optimum
solution with k registers.

Proof. If we use 2k − 1 registers (in a bicriteria fashion), we choose uniformly
at random real numbers δb ∈ (0, 1/2). Then, for every v ∈ F , if there is an a
with d̄va < δa ≤ d̄va + x̄va, we load at node v all the banks b with d̄vb < δb. There
can be at most 2k − 1 banks b with d̄vb < 1/2, from Constraint (18). Moreover,
for any u ∈ V , requiring a ∈ B, any path P from s to u has vertex v′ with
d̄v

′
a < δa ≤ d̄v

′
a + x̄v

′
a . Let v be the last vertex on P̂ with d̄vb < δb ≤ d̄vb + x̄vb , for

some b ∈ B. Then also d̄va < δa (as otherwise there is a further, on P̂ , vertex v′′

with d̄v
′′
a < δa ≤ d̄v

′′
a + x̄v

′′
a ). and therefore bank a is loaded in some register at

v. As we go on P̂ from v to u, no further load instructions are selected by the
algorithm, and thus at vertex u bank a is loaded. Let Qv be the set of banks a
with d̄va < 1/2. The probability that bank b is loaded at vertex v ∈ Qv is

Pr[x̂vb = 1] ≤
∑

a∈Qv

2x̄vaPr[d̄vb < δb], (19)

and thus the expected number of loads at node v is at most
∑

b∈Qv

Pr[d̄vb < δb]2
∑

a∈Qv

x̄va

If |Qv| ≤ k, then this quantity is at most 2k
∑

a∈B x̄va. Otherwise, it is at most
∑

b∈Qv

(1− 2d̄vb )2
∑

a∈Qv

x̄va = (|Qv| − 2
∑

b∈Qv

d̄vb )2
∑

a∈Qv

x̄va

≤ (|Qv| − 2(|Qv| − k))2
∑

a∈Qv

x̄va = (2k − |Qv|)2
∑

a∈Qv

x̄va ≤ 2k
∑

a∈B
x̄va,

where we used Constraint (18) for the first inequality and |Qv| ≥ k for the last.
In all cases, the expected number of bank loads is at most 2k times the LP
solution value. ��
Assuming ln n << k, the following result is an improvement:



180 G. Calinescu and M. Li

Theorem 3. There is a O(k ln n) approximation algorithm for k-BSIM.

Proof. Use the rounding method of the previous theorem, with the interval
(0, 1/(8 lnn)) for each δa. Let Qv be the set of banks a with d̄va < 1/(8 lnn);
as above |Qv| ≤ 2k. Let Q′

v be the (random) set of banks used by the algorithm
at v.

Claim. Pr[|Q′
v| > k] ≤ 1

n2

Proof. We are setting up a Chernoff bound. We define da = d̄va, Q = Qv, q = |Q|,
and σ =

∑
a∈Q da. We may assume q > k or else the claim is trivially true. For

bank a ∈ Q, define the random variables:

Za =
{

1 if da > δa
0 otherwise

Define the random variable Z =
∑

a∈Q Za. Let pa = 8da ln n and p =
∑

a∈Q pa

q .
Let Xa (a ∈ Q) be the random variables Za − pa. Then Xa are mutually inde-
pendent with Pr[Xa = 1 − pa] = pa and Pr[Xa = −pa] = 1 − pa. Define the
random variable X =

∑
a∈QXa. Then X satisfies Assumptions A.1.3 of [4] and

therefore Theorem A.1.13 of [4] states that, for any α > 0,

Pr[X < −α] < e−α
2/2pq. (20)

We have that the event |Q′
v| > k is the event Z < q − k, which is the event

X < (q − k)−
∑

a∈Q pa. Note that

−(q − k) +
∑

a∈Q
pa = −(q − k) + 8 lnn

∑

a∈Q
da ≥ 7σ ln n,

where we used Constraints (18), which state σ ≥ (q−k). Thus Chernoff’s bound
from Equation (20) gives

Pr[|Q′
v| > k] < e−(7σ lnn)2/(2·8σ lnn) ≤ e−2σ lnn ≤ e−2 lnn,

which is what the claim requires. ��
The expected number of banks, computed as in the bicriteria algorithm, does
not exceed 8k lnn. Thus Markov’s inequality gives Pr[number of banks used >
16k(lnn)Z∗

LP2] ≤ 1/2, where Z∗
LP2 is the objective value of LP2. From Claim 4,

taken as a union over all v, for only 1/n of this event there is a vertex loading
more than k banks. So with probability 1/3 no vertex is overloaded and less than
16k(lnn)Z∗

LP2 banks are loaded in total. This concludes the proof of Theorem 3.
��

5 Conclusion

We leave open the ratio of LP2 to the optimum k-BSIM solution. Our algorithm
can easily be extended to the case when required nodes each have a set of banks
A ⊂ B with |A| ≤ k, and all banks of A must be loaded.



Register Loading via Linear Programming 181

References

1. Freescale, http://www.freescale.com

2. Zilog, http://www.zilog.com

3. Agarwal, A., Alon, N., Charikar, M.S.: Improved approximation for directed cut
problems. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory
of Computing, STOC 2007, pp. 671–680. ACM, New York (2007)

4. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. Wiley Interscience,
Hoboken (2000)

5. Bergner, P., Dahl, P., Engebretsen, D., O’Keefe, M.: Spill code minimization via
interference region spilling. In: Proceedings of the ACM SIGPLAN 1997 Conference
on Programming Language Design and Implementation, PLDI 1997, pp. 287–295.
ACM, New York (1997)

6. Bernstein, D., Golumbic, M., Mansour, Y., Pinter, R., Goldin, D., Krawczyk, H.,
Nahshon, I.: Spill code minimization techniques for optimizing compliers. In: Pro-
ceedings of the ACM SIGPLAN 1989 Conference on Programming Language De-
sign and Implementation, PLDI 1989, pp. 258–263. ACM, New York (1989)

7. Briggs, P., Cooper, K.D., Torczon, L.: Coloring register pairs. ACM Lett. Program.
Lang. Syst. 1, 3–13 (1992)

8. Charikar, M., Chekuri, C., Cheung, T.-Y., Dai, Z., Goel, A., Guha, S., Li,
M.: Approximation Algorithms for Directed Steiner Problems. Journal of Algo-
rithms 33(1), 73–91 (1999)

9. Cheriyan, J., Karloff, H.J., Rabani, Y.: Approximating directed multicuts. Combi-
natorica 25(3), 251–269 (2005)

10. Cooper, K., Dasgupta, A., Eckhardt, J.: Revisiting Graph Coloring Register Al-
location: A Study of the Chaitin-Briggs and Callahan-Koblenz Algorithms. In:
Ayguadé, E., Baumgartner, G., Ramanujam, J., Sadayappan, P. (eds.) LCPC 2005.
LNCS, vol. 4339, pp. 1–16. Springer, Heidelberg (2006)

11. Dinur, I., Guruswami, V., Khot, S., Regev, O.: A new multilayered PCP and the
hardness of Hypergraph Vertex Cover. In: STOC 2003: Proceedings of the Thirty-
Fifth Annual ACM Symposium on Theory of Computing, pp. 595–601. ACM, New
York (2003)

12. Falk, H.: Wcet-aware register allocation based on graph coloring. In: 46th
ACM/IEEE, Design Automation Conference, DAC 2009, pp. 726–731 (2009)

13. Fu, C., Wilken, K.: A faster optimal register allocator. In: Proceedings of the
35th Annual ACM/IEEE International Symposium on Microarchitecture, MICRO,
vol. 35, pp. 245–256. IEEE Computer Society Press, Los Alamitos (2002)

14. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in directed and node
weighted graphs. In: Proceedings of the 21st International Colloquium on Au-
tomata, Languages and Programming (1994)

15. Gupta, A.: Improved results for directed multicut. In: Proceedings of the Four-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003, pp.
454–455. Society for Industrial and Applied Mathematics, Philadelphia (2003)

16. Jansen, K.: The allocation problem in hardware design. Discrete Applied Mathe-
matics 43(1), 37–46 (1993)

17. Jansen, K., Reiter, J.: An approximation algorithm for the register allocation prob-
lem. Integration 25(2), 89–102 (1998)

18. Kannan, S., Proebsting, T.A.: Proebsting. Register allocation in structured pro-
grams. J. Algorithms 29(2), 223–237 (1998)



182 G. Calinescu and M. Li

19. Koes, D., Goldstein, S.C.: A progressive register allocator for irregular architec-
tures. In: Proceedings of the International Symposium on Code Generation and
Optimization, CGO 2005, pp. 269–280. IEEE Computer Society, Washington, DC,
USA (2005)

20. Koes, D.R., Goldstein, S.C.: A global progressive register allocator. In: Proceedings
of the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2006, pp. 204–215. ACM, New York (2006)

21. Koes, D.R., Goldstein, S.C.: Register allocation deconstructed. In: Proceedings
of the 12th International Workshop on Software and Compilers for Embedded
Systems, SCOPES 2009, pp. 21–30. ACM, New York (2009)

22. Li, M., Xue, C.J., Liu, T., Zhao, Y.: Analysis and approximation for bank selec-
tion instruction minimization on partitioned memory architecture. In: Proceedings
of the ACM SIGPLAN/SIGBED 2010 Conference on Languages, Compilers, and
Tools for Embedded Systems (2010)

23. Pereira, F.M.Q., Palsberg, J.: Register allocation by puzzle solving. In: Proceedings
of the 2008 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2008, pp. 216–226. ACM, New York (2008)

24. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

25. Smith, M.D., Ramsey, N., Holloway, G.: A generalized algorithm for graph-coloring
register allocation. In: Proceedings of the ACM SIGPLAN 2004 Conference on Pro-
gramming Language Design and Implementation, PLDI 2004, pp. 277–288. ACM,
New York (2004)

26. Thorup, M.: All structured programs have small tree-width and good register al-
location. Inf. Comput. 142(2), 159–181 (1998); Preliminary version in WG 1997

27. Zalamea, J., Llosa, J., Ayguad, E., Valero, M.: Modulo scheduling with integrated
register spilling. In: Dietz, H. (ed.) LCPC 2001. LNCS, vol. 2624, pp. 115–130.
Springer, Heidelberg (2003)

28. Zelikovsky, A.: A series of approximation algorithms for the acyclic directed Steiner
tree problem. Algorithmica 18 (1997)

29. Zhou, Y.: Hardness of register loading. Personal Communication (2010)
30. Zosin, L., Khuller, S.: On directed Steiner trees. In: SODA, pp. 59–63 (2002)



Connecting a Set of Circles

with Minimum Sum of Radii

Erin Wolf Chambers1, Sándor P. Fekete2, Hella-Franziska Hoffmann2,
Dimitri Marinakis3,4, Joseph S.B. Mitchell5, Venkatesh Srinivasan4,

Ulrike Stege4, and Sue Whitesides4

1 Department of Computer Science, Saint Louis University, USA
echambe5@slu.edu

2 Algorithms Group, TU Braunschweig, Braunschweig, Germany
{s.fekete,h-f.hoffmann}@tu-bs.de

3 Kinsol Research Inc., Duncan, BC, Canada
dmarinak@kinsolresearch.com

4 Department of Computer Science, University of Victoria, Victoria, BC, Canada
{sue,stege,venkat}@uvic.ca

5 Department of Applied Mathematics and Statistics, Stony Brook University, USA
jsbm@ams.stonybrook.edu

Abstract. We consider the problem of assigning radii to a given set of
points in the plane, such that the resulting set of circles is connected, and
the sum of radii is minimized. We show that the problem is polynomially
solvable if a connectivity tree is given. If the connectivity tree is unknown,
the problem is NP-hard if there are upper bounds on the radii and open
otherwise. We give approximation guarantees for a variety of polynomial-
time algorithms, describe upper and lower bounds (which are matching
in some of the cases), provide polynomial-time approximation schemes,
and conclude with experimental results and open problems.

Keywords: intersection graphs, connectivity problems, NP-hardness
problems, approximation, upper and lower bounds.

1 Introduction

We consider a natural geometric connectivity problem, arising from assigning
ranges to a set of center points. In a general graph setting, we are given a weighted
graph G = (V, E). Each vertex v ∈ V in the graph is assigned a radius rv, and
two vertices v and w are connected by an edge fvw in the connectivity graph
H = (V, F ), if the shortest-path distance d(v, w) in G does not exceed the sum
rv+rw of their assigned radii. In a geometric setting, V is given as a set of points
P = {p1, . . . , pn} in the plane, and the respective radii ri correspond to circular
ranges: two points pi, pj have an edge fij in the connectivity graph, if their circles
intersect. The Connected Range Assignment Problem (CRA) requires an
assignment of radii to P , such that the objective function R =

∑
i r
α
i , α = 1 is

minimized, subject to the constraint that H is connected.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 183–194, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



184 E.W. Chambers et al.

Problems of this type have been considered before and have natural motiva-
tions from fields including networks, robotics, and data analysis, where ranges
have to be assigned to a set of devices, and the total cost is given by an objective
function that considers the sum of the radii of circles to some exponent α. The
cases α = 2 or 3 correspond to minimizing the overall power; an example for
the case α = 1 arises from scanning the corresponding ranges with a minimum
required angular resolution, so that the scan time for each circle corresponds to
its perimeter, and thus radius.

In the context of clustering, Doddi et al. [7], Charikar and Panigraphy [5], and
Gibson et al. [9] consider the following problems. Given a set P of n points in a
metric space, metric d(i, j) and an integer k, partition P into a set of at most k
clusters with minimum sum of a) cluster diameters, b) cluster radii. Thus, the
most significant difference to our problem is the lack of a connectivity constraint.
Doddi et al. [7] provide approximation results for a). They present a polynomial-
time algorithm, which returns O(k) clusters that are O(log(nk ))-approximate. For
a fixed k, transforming an instance into a min-cost set-cover problem instance
yields a polynomial-time 2-approximation. They also show that the existence
of a (2 − ε)-approximation would imply P = NP . In addition, they prove that
the problem in weighted graphs without triangle inequality cannot be efficiently
approximated within any factor, unless P = NP . Note that every solution to
b) is a 2-approximation for a). Thus, the approximation results can be applied
to case a) as well. A greedy logarithmic approximation and a primal-dual based
constant factor approximation for minimum sum of cluster radii is provided by
Charikar and Panigraphy [5]. In a more geometric setting, Bilò et al. [3] provide
approximation schemes for clustering problems.

Alt et al. [1] consider the closely related problem of selecting circle centers
and radii such that a given set of points in the plane are covered by the circles.
Like our work, they focus on minimizing an objective function based on

∑
i r
α
i

and produce results specific to various values of α. The minimum sum of radii
circle coverage problem (with α = 1) is also considered by Lev-Tov and Peleg
[10] in the context of radio networks. Again, connectivity is not a requirement.

The work of Clementi et al. [6] focuses on connectivity. It considers minimal
assignments of transmission power to devices in a wireless network such that
the network stays connected. In that context, the objective function typically
considers an α > 1 based on models of radio wave propagation. Furthermore,
in the type of problem considered by Clementi et al. the connectivity graph
is directed; i.e. the power assigned to a specific device affects its transmission
range, but not its reception range. This is in contrast to our work in which we
consider an undirected connectivity graph. See [8] for a collection of hardness
results of different (directed) communication graphs.

Carmi et al. [4] prove that an Euclidean minimum spanning tree is a constant-
factor approximation for a variety of problems including the Minimum-Area
Connected Disk Graph problem, which equals our problem with the different ob-
jective of minimizing the area of the union of disks, while we consider minimizing
the sum of the radii (or perimeters) of all circles.



Connecting a Set of Circles with Minimum Sum of Radii 185

In this paper we present a variety of algorithmic aspects of the problem. In
Section 2 we show that for a given connectivity tree, an optimal solution can be
computed efficiently. Section 3 sketches a proof of NP-hardness for the problem
when there is an upper bound on the radii. Section 4 provides a number of
approximation results in case there is no upper bound on the radii. In Section 5
we present a PTAS for the general case, complemented by experiments in Section
6. A concluding discussion with open problems is provided in Section 7.

2 CRA for a Given Connectivity Tree

For a given connectivity tree, our problem is polynomially solvable, based on the
following observation.

Lemma 1. Given a connectivity tree T with at least three nodes. There exists
an optimal range assignment for T with ri = 0 for all leaves pi of T .

Proof. Assume an optimal range assignment for T has a leaf pi ∈ P with radius
ri > 0. The circle Ci around pi with radius ri intersects circle Cj around pi’s
parent pj with radius rj . Extending Cj to rj := dist(pi, pj) while setting ri := 0
does not increase the solution value R =

∑
pi∈P ri. ��

Direct consequences of Lemma 1 are the following.

Corollary 1. There is an optimal range assignment satisfying Lemma 1 and
rj > 0 for all pj ∈ P of height 1 in T (i.e., each pj is a parent of leaves only).

Corollary 2. Consider an optimal range assignment for T satisfying Lemma 1.
Further let pj ∈ P be of height 1 in T . Then rj ≥ maxpi is child of pj{dist(pi, pj)}.

These observations allow a solution by dynamic programming. The idea is to
compute the values for subtrees, starting from the leaves. Details are omitted.

Theorem 1. For a given connectivity tree, CRA is solvable in O(n).

3 Range Assignment for Bounded Radii

Without a connectivity tree, and assuming an upper bound of ρ on the radii,
the problem becomes NP-hard. In this extended abstract, we sketch a proof of
NP-hardness for the graph version of the problem; for the geometric version, a
suitable embedding (based on Planar 3SAT) can be used.

Theorem 2. With radii bounded by some constant ρ, the problem CRA is NP-
hard in weighted graphs.

See Figure 1 for the basic construction. The proof uses a reduction from 3Sat.
Variables are represented by closed “loops” at distance ρ that have two feasible
connected solutions: auxiliary points ensure that either the odd or the even
points in a loop get radius ρ. (In the figure, those are shown as bold black or



186 E.W. Chambers et al.

Fig. 1. Two variable gadgets connected to the same clause gadget. “True” and “False”
vertices marked in bold white or black; auxiliary vertices are indicated by small dots;
the clause vertex is indicated by a triangle. Connectivity edges are not shown.

white dots. The additional small dots form equilateral triangles with a pair of
black and white dots, ensuring that one point of each thick pair needs to be
chosen, so a minimum-cardinality choice consists of all black or all white within
a variable.) Additional “connectivity” edges ensure that all variable gadgets are
connected. Each clause is represented by a star-shaped set of four points that is
covered by one circle of radius ρ from the center point. This circle is connected
to the rest of the circles, if and only if one of the variable loop circles intersects
it, which is the case if and only if there is a satisfying variable.

4 Solutions with a Bounded Number of Circles

A natural class of solutions arises when only a limited number of k circles may
have positive radius. In this section we show that these k-circle solutions already
yield good approximations; we start by giving a class of lower bounds.

Theorem 3. A best k-circle solution may be off by a factor of (1 + 1
2k+1−1

).

Fig. 2. A class of CRA instances that need k + 1 circles in an optimal solution

Proof. Consider the example in Fig. 2. The provided solution r is optimal, as
R :=

∑
ri = dist(p0,pn)

2
. Further, for any integer k ≥ 2 we have d1 = 2·

∑k−2
i=0 2i+

2k−1 < 2 · 2k + 2k−1 = d2. So the radius rk+1 cannot be changed in an optimal
solution. Inductively, we conclude that exactly k + 1 circles are needed. Because
we only consider integer distances, a best k-circle solution has cost Rk ≥ R + 1,
i.e., Rk

R ≥ 1 + 1
2k+1−1

. ��



Connecting a Set of Circles with Minimum Sum of Radii 187

In the following we give some good approximation guarantees for CRA using
one or two circles.

Lemma 2. Let P a longest (simple) path in an optimal connectivity graph, and let
em be an edge in P containing the midpoint of P. Then

∑
ri ≥ max{ 1

2 |P|, |em|}.

This follows directly from the definition of the connectivity graph which for any
edge e = pupv in P requires ru + rv ≥ |e|.

Theorem 4. A best 1-circle solution for CRA is a 3
2
-approximation, even in

the graph version of the problem.

Proof. Consider a longest path P = (p0, . . . , pk) of length |P|=dP(p0, . . . , pk) :=
∑k−1

i=0 |pipi+1| in the connectivity graph of an optimal solution. Let R∗ :=
∑

r∗i
be the cost of the optimal solution, and em = pipi+1 as in Lemma 2. Let d̄i :=
dP(pi, . . . , pk) and d̄i+1 := dP(p0, . . . , pi+1). Then min{d̄i, d̄i+1} ≤ d̄i+d̄i+1

2
=

dP(p0,...,pi)+2|em|+dP(pi+1,...,pk)
2

= |P|
2

+ |em|
2
≤ R∗+ R∗

2
= 3

2
R∗. So one circle with

radius 3
2R∗ around the point in P that is nearest to the middle of path P covers

P , as otherwise there would be a longer path. ��

Fig. 3. A lower bound of 3
2

for 1-circle solutions

Fig. 3 shows that this bound is tight. Using two circles yields an even better
approximation factor.

Theorem 5. A best 2-circle solution for CRA is a 4
3 -approximation, even in

the graph version of the problem.

Proof. Let P = (p0, . . . , pk) be a longest path of length |P| = dP(p0, . . . , pk) :=
∑k−1

i=0 |pipi+1| in the connectivity graph of an optimal solution with radii r∗i .
Then R∗ :=

∑
r∗i ≥ 1

2
|P|. We distinguish two cases; see Fig. 4.

Case 1. There is a point x on P at a distance of at least 1
3 |P| from both

endpoints. Then there is a 1-circle solution that is a 4
3
-approximation.

Case 2. There is no such point x. Then two circles are needed. One of them
is placed at a point in the first third of P , and the other circle is placed at
a point in the last third of P . Let em = pipi+1 be defined as in Lemma 2.
Further, let di := dP(p0, . . . , pi), and let di+1 := dP(pi+1, . . . , pk). Then |em| =
|P| − di − di+1 and di, di+1 < 1

3 |P|.



188 E.W. Chambers et al.

Fig. 4. The two 4
3
-approximate 2-circle solutions constructed in the proof of Theorem 5:

(Top) case 2a; (bottom) case 2b

Case 2a. If |em| < 1
2
|P| then di + di+1 = |P| − |em| > 1

2
|P| > |em|. Set

ri := di and ri+1 := di+1, then the path is covered. Since di, di+1 < 1
3
|P| we

have ri + ri+1 = di + di+1 < 2
3 |P| ≤

4
3R∗ and the claim holds.

Case 2b. Otherwise, if |em| ≥ 1
2 |P| then di + di+1 ≤ 1

2 |P| ≤ |em|. Assume
di ≥ di+1. Choose ri := di and ri+1 := |em| − di. As di+1 ≤ |em| − di the path
P is covered and ri + ri+1 = di + (|em| − di) = |em|, which is the lower bound
and thus the range assignment is optimal. ��

If all points of P lie on a straight line, the approximation ratio for two circles
can be improved.

Lemma 3. Let P be a subset of a straight line. Then there is a non-overlapping
optimal solution, i.e., one in which all circles have disjoint interior.

Proof. An arbitrary optimal solution is modified as follows. For every two over-
lapping circles Ci and Ci+1 with centers pi and pi+1, we decrease ri+1, such that
ri + ri+1 = dist(pi, pi+1), and increase the radius of Ci+2 by the same amount.
This can be iterated, until there is at most one overlap at the outermost circle Cj
(with Cj−1). Then there must be a point pj+1 on the boundary of Cj : otherwise
we could shrink Cj contradicting optimality. Decreasing Cj ’s radius rj by the
overlap l and adding a new circle with radius l around pj+1 creates an optimal
solution without overlap. ��

Theorem 6. Let P a subset of a straight line g. Then a best 2-circle solution
for CRA is a 5

4 -approximation.

Proof. According to Lemma 3 we are, w.l.o.g., given an optimal solution with
non-overlapping circles. Let p0 and pn be the outermost intersection points of the
optimal solution circles and g. W.l.o.g., we may further assume p0, pn ∈ P and



Connecting a Set of Circles with Minimum Sum of Radii 189

Fig. 5. A non-overlapping optimal solution

R∗ :=
∑

ri = dist(p0,pn)
2

(otherwise, we can add the outermost intersection point
of the outermost circle and g to P , which may only improve the approximation
ratio). Let pi denote the rightmost point in P left to the middle of p0pn and
let pi+1 its neighbor on the other half. Further, let di := dist(p0, pi), di+1 :=
dist(pi+1, pn) (See Fig. 5). Assume, di ≥ di+1. We now give 5

4 -approximate
solutions using one or two circles that cover p0pn.

Case 1. If 3
4
R∗ ≤ di then 5

4
R∗ ≥ 2R∗ − di = dist(pi, pn). Thus, the solution

consisting of exactly one circle with radius 2R∗ − di centered at pi is sufficient.
Case 2. If 3

4
R∗ > di ≥ di+1 we need two circles to cover p0pn with 5

4
R∗.

Fig. 6. A 5
4
-approximate 2-circle solution with di < 3

4
R∗. The cross marks the position

of the optimal counterpart p∗
i to pi and the grey area sketches Ai.

Case 2a.The point pi could be a center point of an optimal two-circle solution
if there was a point p∗i with dist(Ci, p∗i ) = dist(p∗i , pn) = R∗ − di. So in case
there is a p′i ∈ P that lies in a 1

4
R∗-neighborhood of such an optimal p∗i we get

dist(Ci, p′i),dist(p′i, pn) ≤ R∗ − di + 1
4
R∗ (see Fig. 6). Thus, r(pi) := di, r(p′i) :=

R∗ − di + 1
4R∗ provides a 5

4 -approximate solution.
Case 2b. Analogously to Case 2a, there is a point p′i+1 ∈ P within a 1

4
R∗-

range of an optimal counterpart to pi+1. Then we can take r(pi+1) := di+1,
r(p′i+1) := R∗ − di+1 + 1

4R∗ as a 5
4 -approximate solution.



190 E.W. Chambers et al.

Case 2c. Assume that there is neither such a p′i nor such a p′i+1. Because
di, di+1 are in (1

4R∗, 3
4R∗), we have 1

4R∗ < R∗− dj < 3
4R∗ for j = i, i + 1, which

implies that there are two disjoint areas Ai, Ai+1, each with diameter equal to
1
2
R∗ and excluding all points of P . Because pi, the rightmost point on the left

half of p0pn, has a greater distance to Ai than to p0, any circle around a point
on the left could only cover parts of both Ai and Ai+1 if it has a greater radius
than its distance to p0. This contradicts the assumption that p0 is a leftmost
point of a circle in an optimal solution. The same applies to the right-hand side.
Thus, Ai ∪ Ai+1 must contain at least one point of P , and therefore one of the
previous cases leads to a 5

4
-approximation. ��

Fig. 7. A lower bound of 5
4

for 2-circle solutions

Fig. 7 shows that the bound is tight. We believe that this is also the worst
case when points are not on a line. Indeed, the solutions constructed in the proof
of Theorem 6 cover a longest path P in an optimal solution for a general P . If
this longest path consists of at most three edges, pi(=: p′i+1) and pi+1(=: p′i) can
be chosen as circle centers, covering all of P . However, if P consists of at least
four edges, a solution for the diameter may produce two internal non-adjacent
center points that do not necessarily cover all of P .

5 Polynomial-Time Approximation Schemes

We now consider the problem in which each of the n points of P = {p1, . . . , pn}
has an associated upper bound, r̄i, on the radius ri that can be assigned to pi.

5.1 Unbounded Radii

We begin with the case in which r̄i =∞, for each i. Consider an optimal solution,
with radius r∗i associated with input point pi. We first prove a structure theorem
that allows us to apply the m-guillotine method to obtain a PTAS. The following
simple lemma shows that we can round up the radii of an optimal solution, at a
small cost to the objective function:

Lemma 4. Let R∗ =
∑
i r

∗
i be the sum of radii in an optimal solution, D∗.

Then, for any fixed ε > 0, there exists a set, Dm, of n circles of radii ri centered
on points pi, such that (a). ri ∈ R = {D/mn, 2D/mn, . . . , D}, where D is the
diameter of the input point set P and m = 	2/ε
; and (b).

∑
i ri ≤ (1 + ε)R∗.



Connecting a Set of Circles with Minimum Sum of Radii 191

Disks centered at the points P of radii in the setR = {D/mn, 2D/mn, . . . , D}
will be referred to as Rε,P -circles, or R-circles, for short, with the understand-
ing that ε and P will be fixed throughout our discussion. Consider the arrange-
ment of all R-circles. We let Ix (resp., Iy) denote the x-coordinates of the
left/right (resp., y-coordinates of the top/bottom) extreme points of these cir-
cles. (Specifically, Ix = {xpi ± j(D/mn) : 1 ≤ i ≤ n, 0 ≤ j ≤ mnr̄i/D} and
Iy = {ypi ± j(D/mn) : 1 ≤ i ≤ n, 0 ≤ j ≤ mnr̄i/D}.)

We say that a set D of n R-circles is m-guillotine if the bounding box, BB(D),
of D can be recursively partitioned into a rectangular subdivision by axis-parallel
“m-perfect cuts” that are defined by coordinates Ix and Iy, with the finest
subdivision consisting of a partition into rectangular faces each of which has no
circle of D strictly interior to it. An axis-parallel cut line � is m-perfect with
respect to D and a rectangle ρ if � intersects at most 2m circles of D that have
a nonempty intersection with ρ.

Key to our method is a structure theorem, which shows that we can transform
an arbitrary set D of circles centered on points P , having a connected union and
a sum of radii R, into an m-guillotine set of R-circles, Dm, having sum of radii
at most (1 + ε)R∗. More specifically, we show (proof deferred to the full paper):

Theorem 7. Let D be a set of circles of radii ri centered at points pi ∈ P , such
that the union of the circles is connected. Then, for any fixed ε > 0, there exists
an m-guillotine set Dm of n R-circles such that the union of the circles Dm is
connected and the sum of the radii of circles of Dm is at most (1+(C/m))

∑
i ri.

Here, m = 	1/ε
 and C is a constant.

A detailed proof can be found in the full version of the paper.
We now give an algorithm to compute a minimum-cost (sum of radii) m-

guillotine set of R-circles whose union is connected. The algorithm is based on
dynamic programming. A subproblem is specified by a rectangle, ρ, with x- and
y-coordinates among the sets Ix and Iy, respectively, of discrete coordinates.
The subproblem includes specification of boundary information, for each of the
four sides of ρ. Specifically, the boundary information includes: (i) O(m) “portal
circles”, which are R-circles intersecting the boundary, ∂ρ, of ρ, with at most
2m circles specified per side of ρ; and, (ii) a connection pattern, specifying which
subsets of the portal circles are required to be connected within ρ. There are a
polynomial number of subproblems, for any fixed m. For a given subproblem,
the dynamic program optimizes over all (polynomial number of) possible cuts
(horizontal at Iy-coordinates or vertical at Ix-coordinates), and choices of up to
2m R-circles intersecting the cut bridge, along with all possible compatible con-
nection patterns for each side of the cut. The result is an optimal m-guillotine
set of R-circles such that their union is connected and the sum of the radii
is minimum possible for m-guillotine sets of R-circles. Since we know, from the
structure theorem, that an optimal set of circles centered at points P can be con-
verted into an m-guillotine set of R-circles centered at points of P , whose union
is connected, and we have computed an optimal such structure, we know that



192 E.W. Chambers et al.

the circles obtained by our dynamic programming algorithm yield an approxi-
mation to an optimal set of circles. In summary, we have shown the following
result:

Theorem 8. There is a PTAS for the min-sum radius connected circle problem
with unbounded circle radii.

5.2 Bounded Radii

We now address the case of bounded radii, in which circle i has a maximum
allowable radius, r̄i < ∞. The PTAS given above relied on circle radii being
arbitrarily large, so that we could increase the radius of a single circle to cover the
entire m-span segment. A different argument is needed for the case of bounded
radii.

We obtain a PTAS for the bounded radius case, if we make an additional
assumption: that for any segment pq there exists a connected set of circles,
centered at points of pi ∈ P and having radii ri ≤ r̄i, such that p and q each lie
within the union of the circles and the sum of the radii of the circles is O(|pq|).

Here, we only give a sketch of the method, indicating how it differs from the
unbounded radius case. The PTAS method proceeds as above in the unbounded
radius case, except that we now modify the proof of the structure theorem by
replacing each m-span bridge ambm by a shortest connected path of R-circles.
We know, from our additional assumption, that the sum of the radii along such
a shortest path is O(|ambm|), allowing the charging scheme to proceed as before.
The dynamic programming algorithm changes some as well, since now the sub-
problem specification must include the “bridging circle-path”, which is specified
only by its first and last circle (those associated with the bridge endpoints am
and bm); the path itself, which may have complexity Ω(n), is implicitly specified,
since it is the shortest path (which we can assume to be unique, since we can
specify a lexicographic rule to break ties).

Theorem 9. There is a PTAS for the min-sum radius connected circle problem
with bounded circle radii, assuming that for any segment pq, with p and q within
feasible circles, there exists a (connected) path of feasible circles whose radii are
O(|pq|).

6 Experimental Results

It is curious that even in the worst case, a one-circle solution is close to be-
ing optimal. This is supported by experimental evidence. In order to generate
random problem instances, we considered different numbers of points uniformly
distributed in a 2D circular region. For each trial considering a single distri-
bution of points, we enumerated all possible spanning trees using the method
described in [2], and recorded the optimal value with the algorithm mentioned
in Section 2. This we compared with the best one-circle solution; as shown in
Fig. 8, the latter seems to be an excellent heuristic choice. These results were
obtained in several hours using an i7 PC.



Connecting a Set of Circles with Minimum Sum of Radii 193

2 4 6 8 10
0.5

1

1.5

2

2.5

3

Number of points

R
at

io
 to

 b
es

t s
ol

ut
io

n

Average
Best 1 circle-

Fig. 8. Ratios of the average over all enumerated trees and of the best 1-circle tree to
the optimal

∑
ri. Results were averaged over 100 trials for each number.

7 Conclusion

A number of open problems remain. One of the most puzzling is the issue of
complexity in the absence of upper bounds on the radii. The strong performance
of the one-circle solution (and even better of solutions with higher, but limited
numbers of circles), and the difficulty of constructing solutions for which the
one-circle solution is not optimal strongly hint at the possibility of the problem
being polynomially solvable. Another indication is that our positive results for
one or two circles only needed triangle inequality, i.e., they did not explicitly
make use of geometry.

One possible way may be to use methods from linear programming: modeling
the objective function and the variables by linear methods is straightforward;
describing the connectivity of a spanning tree by linear cut constraints is also
well known. However, even though separating over the exponentially many cut
constraints is polynomially solvable (and hence optimizing over the resulting
polytope), the overall polytope is not necessarily integral. On the other hand,
we have been unable to prove NP-hardness without upper bounds on the radii,
even in the more controlled context of graph-induced distances. Note that some
results were obtained by means of linear programming: the tight lower bound
for 2-circle solutions (shown in Fig. 7) was found by solving appropriate LPs.

Other open problems are concerned with the worst-case performance of heuris-
tics using a bounded number of circles. We showed that two circles suffice for a
4
3
-approximation in general, and a 5

4
-approximation on a line; we conjecture that

the general performance guarantee can be improved to 5
4
, matching the existing

lower bound. Obviously, the same can be studied for k circles, for any fixed k; at
this point, the best lower bounds we have are 7

6
for k = 3 and 1+ 1

2k+1 for general
k. We also conjecture that the worst-case ratio f(k) of a best k-circle solution
approximates the optimal value arbitrarily well for large k, i.e., limk→∞ f(k) = 1.



194 E.W. Chambers et al.

Acknowledgments. A short version of this extended abstract appears in the in-
formal, non-competitive European Workshop on Computational Geometry. This
work was started during the 2009 Bellairs Workshop on Computational Geom-
etry. We thank all other participants for contributing to the great atmosphere.

References

1. Alt, H., Arkin, E.M., Brönnimann, H., Erickson, J., Fekete, S.P., Knauer, C.,
Lenchner, J., Mitchell, J.S.B., Whittlesey, K.: Minimum-cost coverage of point sets
by disks. In: Proc. 22nd ACM Symp. Comp. Geom. (SoCG), pp. 449–458 (2006)

2. Avis, D., Fukuda, K.: Reverse search for enumeration. Disc. Appl. Math. 65(1-3),
21–46 (1996)

3. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering
to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA
2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005)

4. Carmi, P., Katz, M.J., Mitchell, J.S.B.: The minimum-area spanning tree problem.
Comput. Geom. Theory Appl. 35, 218–225 (2006)

5. Charikar, M., Panigrahy, R.: Clustering to minimize the sum of cluster diameters.
J. Comput. Syst. Sci. 68, 417–441 (2004)

6. Clementi, A.E., Penna, P., Silvestri, R.: On the power assignment problem in radio
networks. Mobile Networks and Applications 9(2), 125–140 (2004)

7. Doddi, S., Marathe, M.V., Ravi, S.S., Taylor, D.S., Widmayer, P.: Approximation
algorithms for clustering to minimize the sum of diameters. Nordic J. of Comput-
ing 7, 185–203 (2000)

8. Fuchs, B.: On the hardness of range assignment problems. Networks 52(4), 183–195
(2008)

9. Gibson, M., Kanade, G., Krohn, E., Pirwani, I.A., Varadarajan, K.: On clustering
to minimize the sum of radii. In: Proc. 19th ACM-SIAM Symp. Disc. Alg. (SODA),
pp. 819–825 (2008)

10. Lev-Tov, N., Peleg, D.: Polynomial time approximation schemes for base station
coverage with minimum total radii. Computer Networks 47(4), 489–501 (2005)



Streaming and Dynamic Algorithms for

Minimum Enclosing Balls in High Dimensions

Timothy M. Chan and Vinayak Pathak

School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada
{tmchan,vpathak}@uwaterloo.ca

Abstract. At SODA’10, Agarwal and Sharathkumar presented a stream-
ing algorithm for approximating the minimum enclosing ball of a set of
points in d-dimensional Euclidean space. Their algorithm requires one
pass, uses O(d) space, and was shown to have approximation factor at
most (1 +

√
3)/2 + ε ≈ 1.3661. We prove that the same algorithm has

approximation factor less than 1.22, which brings us much closer to a
(1 +

√
2)/2 ≈ 1.207 lower bound given by Agarwal and Sharathkumar.

We also apply this technique to the dynamic version of the minimum
enclosing ball problem (in the non-streaming setting). We give an O(dn)-
space data structure that can maintain a 1.22-approximate minimum en-
closing ball in O(d log n) expected amortized time per insertion/deletion.

1 Introduction

In this paper, we study a fundamental and well-known problem in computational
geometry: Given a set P of points in R

d, find the ball with the smallest radius
that contains all points in P . This is known as the minimum enclosing ball or
the 1-center problem and has various applications, for example, in clustering
and facility location. We will not survey the many known exact algorithms for
the problem, as the focus of the paper is on approximation algorithms in the
streaming and the dynamic setting.

In the standard streaming model , we consider algorithms that are allowed one
pass over the input and can store only a small (usually polylogarithmic) amount
of information at any time, as points arrive one at a time. In low constant
dimensions, it is not difficult to devise a streaming algorithm that computes a
(1+ ε)-approximation to the minimum enclosing ball using O(1/ε(d−1)/2) space,
by maintaining extreme points along a number of different directions. In fact,
streaming techniques for ε-kernels [1,8,3,11] allow many other similar geometric
optimization problems to be solved with approximation factor 1+ε using 1/εO(d)

space. However, these techniques do not work well in high dimensions because
of the exponential dependencies on d.

In high dimensions, there is a trivial streaming algorithm with approximation
factor 2: fix the center of the ball B at an arbitrary input point p0 (say the first
point), and whenever a new point p arrives that lies outside B, expand B to
include p while keeping the center unchanged (see Section 2.1). Zarrabi-Zadeh
and Chan [12] gave a nontrivial analysis showing that another equally simple

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 195–206, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



196 T.M. Chan and V. Pathak

streaming algorithm achieves approximation factor 3/2: whenever a new point
p arrives that lies outside the current ball B, replace B by the smallest ball
enclosing B ∪ {p}. An advantage of these simple algorithms is that they avoid
the exponential dependencies on d, using asymptotically the minimal amount
of storage, namely, O(d) space. (We assume that a unit of space can hold one
coordinate value.)

Most recently, Agarwal and Sharathkumar [2] described a new streaming algo-
rithm that also required just O(d) space but with an even better approximation
factor. They proved that the factor is upper-bounded by (1+

√
3)/2+ε ≈ 1.3661,

where as usual, ε denotes an arbitrarily small positive constant. They also proved
a complementary lower-bound result: any algorithm in the one-pass streaming
model with space polynomially bounded in d has worst-case approximation fac-
tor at least (1 +

√
2)/2 > 1.207. The gap between 1.3661 and 1.207 raises an

interesting question of what the best constant could be. It also reveals our cur-
rent lack of general understanding on high-dimensional geometric problems in
the streaming model, as the minimum enclosing ball problem is one of the most
basic and simplest to consider.

In this paper, we describe an improved upper bound of 1.22 for minimum
enclosing ball in the streaming model. The improvement is actually achieved by
the same algorithm as Agarwal and Sharathkumar’s; our contribution lies in a
better analysis of their algorithm. As intermediate solutions, we first present two
simple proofs, one yielding upper bounds of 4/3 + ε ≈ 1.333 . . .1 and another
yielding 16/13 + ε ≈ 1.2307. The 1.22 bound is obtained through more involved
numerical calculations done with the assistance of a computer program.

In the second part of the paper, we investigate the dynamic version of the
approximate minimum enclosing ball problem. Here, we are interested in data
structures that support insertions and deletions of input points efficiently. Unlike
in the streaming model, linear space is acceptable. As before, the problem is not
difficult in low dimensions: one can maintain a (1 + ε)-approximation to the
minimum enclosing ball in O(1/ε(d−1)/2 log n) time with a data structure using
O(n/ε(d−1)/2) space, by keeping track of extreme points along various directions.
The log n factor in the update time can be reduced to constant in the word RAM
model [9].

In the high-dimensional case, it is possible to dynamize the trivial factor-2
method by using a simple randomization trick (see Section 3.1), but we are
not aware of any prior work on efficient dynamic data structures that achieve
approximation factor smaller than 2 and avoid exponential dependency on d.

We show that Agarwal and Sharathkumar’s approach, which was originally in-
tended for streaming, can be applied to the dynamic problem as well, if combined
in the right way with ideas from other known techniques: specifically, Bădoiu and
Clarkson’s static method for high-dimensional minimum enclosing ball [6], and

1 Independent to our work, Agarwal and Sharathkumar (personal communication,
Dec. 2010) have also found a proof of the 4/3 upper bound, which will appear in
the journal version of their paper. Even compared against the 4/3 bound, our 1.22
bound is a substantial improvement.



Streaming and Dynamic Algorithms for Minimum Enclosing Balls 197

Chan’s dynamization strategy for low-dimensional ε-kernels [9]. The resulting
data structure requires O(dn) space and supports updates in O(d log n) expected
amortized time. Our analysis of Agarwal and Sharathkumar’s technique implies
that the same 1.22 upper bound carries over to this dynamic data structure.

2 Streaming MEB

2.1 Preliminaries and Agarwal and Sharathkumar’s Algorithm

Let P be a set of points in R
d. We use MEB(P ) to denote the minimum enclosing

ball of the set P . For a ball B, we use r(B) and c(B) to denote its radius and
center respectively. αB stands for the ball with center at c(B) and radius equal
to αr(B).

A very simple factor-2 streaming algorithm for approximating the MEB works
as follows. Let the first point be p0. Find the point p1 in P that is farthest
away from p0. This can be implemented by a one-pass streaming algorithm.
Return the ball centered at p0 of radius ‖p0p1‖. This ball clearly encloses P .
The approximation factor is at most 2, since the MEB of P must enclose p0 and
p1, and any ball that encloses p and q must have radius at least ‖p0p1‖/2.

If more than one pass is allowed, we can get better ratios. In particular, Bădoiu
and Clarkson [6] (building on prior work by Bădoiu, Har-Peled, and Indyk [7])
proved that we can achieve an approximation factor of 1 + ε in O(1/ε) passes.
The algorithm works as follows. Pick a point p0 ∈ P . Next, pick p1 to be the
point farthest from p0 in P . In general, pick pj to be the point farthest from
c(MEB({p0, . . . , pj−1})) in P . It was shown that after �2/ε� iterations, the set
K of O(1/ε) chosen points satisfies the following coreset property, which implies
that r(MEB(K)) (computable by brute force) is a (1 + ε)-approximation:

Definition 1. Given a set P of points in R
d, an ε-coreset of P is a subset

K ⊆ P such that P ⊆ (1 + ε)MEB(K).

Using Bădoiu and Clarkson’s algorithm as a subroutine, Agarwal and Sharathku-
mar [2] gave a streaming algorithm for finding a ((1 +

√
3)/2 + ε)-factor MEB

of a given set of points. The algorithm works as follows. Let the first point
in the input stream be its own coreset and call the coreset K1. Next, as long
as the new arriving points lie inside (1 + ε)MEB(K1), do nothing. Otherwise,
if pi denotes the new point, call Bădoiu and Clarkson’s algorithm on the set
K1 ∪ {pi}. This gives a new coreset K2. In general, maintain a sequence of core-
sets K = 〈K1, . . . , Ku〉 and whenever a new point pi arrives such that it does
not lie in (1 + ε)MEB(Kj) for any j, call Bădoiu and Clarkson’s algorithm on
the set

⋃u
j=1 Kj ∪ {pi}. However, doing this might make the sequence K too

large. To reduce space, whenever a new call to the subroutine is made, the algo-
rithm also removes some of the previous Ki’s when r(MEB(Ki)) is smaller than
O(ε)r(MEB(Ku)). Agarwal and Sharathkumar proved that this removal process
does not hurt the effectiveness of the data structure, and the following invariants
are maintained, where Bi = MEB(Ki):



198 T.M. Chan and V. Pathak

(P1) For all i, r(Bi+1) ≥ (1 + Ω(ε2))r(Bi).
(P2) For all i < j, Ki ⊂ (1 + ε)Bj.
(P3) P ⊂

⋃u
i=1(1 + ε)Bi.

The sequence K of coresets was called an ε-blurred ball cover in the paper.
Property (P1) ensures that the number of coresets maintained at any time is
u = O(log(1/ε)). Since each coreset has size O(1/ε), the total space is O(d) for
constant ε. Let B = MEB(

⋃u
i=1 Bi) (computable by brute force). Property (P3)

ensures that (1+ ε)B encloses P . Using property (P2), Agarwal and Sharathku-
mar proved that r(B) ≤ (1+

√
3

2 + ε) r(MEB(P )), thus giving a factor-1.366 algo-
rithm for MEB in the streaming model. We show that in fact, the approximation
factor is less than 1.22. The proof amounts to establishing the following (purely
geometric) theorem:

Theorem 1. Let K1, . . . , Ku be subsets of a point set P in R
d, with Bi =

MEB(Ki), such that r(Bi) is increasing over i and property (P2) is satisfied for a
sufficiently small ε > 0. Let B = MEB(

⋃u
i=1 Bi). Then r(B) < 1.22 r(MEB(P )).

2.2 An Improved Analysis

We will prove Theorem 1 in the next few subsections. First we need the following
well-known fact, often used in the analysis of high-dimesional MEB algorithms:

Lemma 1 (the “hemisphere property”). Let P be a set of points in R
d.

There is no hemisphere of MEB(P ) that does not contain a point from P . In
other words, assuming the origin to be at the center of MEB(P ), for any unit
vector v, there exists a point p ∈ P such that p lies on the boundary of MEB(P )
and v · p ≤ 0.

We introduce a few notations. Without loss of generality, let r(B) = 1 and c(B)
be the origin. Let ui be the unit vector in the direction of the center of Bi and
σij = ui ·uj be the inner product between the vectors ui and uj . Let us also write
r(Bi) simply as ri and set ti = 1/(1 − ri). Note that the ti ≥ 1 are increasing
over i.

Lemma 2. For all i < j with ti ≤ tj < 10 such that Bi and Bj touch ∂B,

σij ≥
tj
ti
− tj + ti − O(ε).

Proof. Let c, ci, cj be the centers of the balls B, Bi, Bj respectively. Figure 1
shows the projection of B, (1 + ε)Bi, Bj onto the plane formed by c, ci, cj. Let p
be one of the points where (1 + ε)Bj intersects Bi in this plane. Applying the
cosine law to the triangle cicjc, we get

‖cicj‖2 = ‖ccj‖2 + ‖cci‖2 − 2‖cci‖‖ccj‖σij . (1)

Next, we apply the hemisphere property to the ball Bi = MEB(Ki). Choosing
v to be the vector cj − ci, we deduce the existence of a point q ∈ Ki such that



Streaming and Dynamic Algorithms for Minimum Enclosing Balls 199

c cj

ci
p

B

(1 + ε)Bj

Bi

Fig. 1. Proof of Lemma 2

q lies on ∂Bi and ∠cjciq ≥ π/2. By property (P2) of the blurred ball cover, we
know that q ∈ Ki ⊂ (1 + ε)Bj . Since ‖cip‖ = ‖ciq‖ and ‖cjp‖ ≥ ‖cjq‖, we have
∠cjcip ≥ ∠cjciq ≥ π/2. This means

‖cjp‖2 ≥ ‖cicj‖2 + ‖cip‖2. (2)

Substituting ‖cjp‖ = (1 + ε)rj , ‖cip‖ = ri, ‖ccj‖ = 1− rj , ‖cci‖ = 1− ri into
(1) and (2) and combining them, we get

(1 + ε)2r2
j ≥ (1− rj)2 + (1− ri)2 − 2(1− ri)(1 − rj)σij + r2

i .

Letting si = 1− ri and sj = 1− rj and ti = 1/si and tj = 1/sj, we get

(1 + ε)2(1− 2sj + s2
j) ≥ s2

i + s2
j − 2sisjσij + (1− 2si + s2

i )
=⇒ 2sisjσij ≥ 2s2

i − 2si + 2sj −O(ε)
=⇒ σij ≥ ti − tj + tj/ti −O(εtitj).

(The assumption ti ≤ tj < 10 allows us to rewrite O(εtitj) as O(ε).) ��

2.3 Proof of Factor 4/3

As a warm-up, in this subsection, we give a short proof of a weaker 4/3 upper
bound on the constant in Theorem 1.

Let Bi be the largest ball that touches ∂B. Since B is the minimum enclosing
ball of

⋃u
�=1 B�, by applying the hemisphere property to B with v = ui there

must exist another ball Bj such that σij ≤ 0. Combining with Lemma 2, we get

ti
tj
− ti + tj ≤ O(ε) =⇒ ti ≥

tj −O(ε)
1− 1/tj

.



200 T.M. Chan and V. Pathak

Since tj ≥ 1, the minimum value achievable by ti that satisfies the above inequal-
ity can be easily found to be 4 − O(ε) (attained when tj ≈ 2). This translates
to a minimum value of 3/4−O(ε) for ri = 1− 1/ti. Since r(MEB(P )) ≥ ri and
r(B) = 1, this proves a version of Theorem 1 with the constant 4/3 + O(ε).

Remark : We have implicitly assumed that tj ≤ ti < 10 when applying Lemma 2,
but this is without loss of generality since ti ≥ 10 would imply ri > 0.99 giving
an approximation factor of ≈ 1.01.

2.4 Proof of Factor 16/13

In attempting to find an example where the 4/3 bound might be tight, one
could set ti = 4 and tj = 2, which implies σij ≈ 0 by Lemma 2, i.e., ui and uj
are nearly orthogonal. However, by the hemisphere property, B would not be
defined by the 2 balls Bi, Bj alone. This suggests that an improved bound may
be possible by considering 3 balls instead of just 2, as we will demonstrate next.

Let Bi be the largest ball that touches ∂B, and Bj be the smallest ball that
touches ∂B. Let α ≥ 0 be a parameter to be set later. By applying the hemisphere
property to B with v = ui + αuj , there must exist a k such that Bk touches ∂B
and uk · (ui + αuj) ≤ 0. This means

σik + ασjk ≤ 0. (3)

Note that tj ≤ tk ≤ ti. By Lemma 2, we get

ti
tk
− ti + tk + α

(
tk
tj
− tk + tj

)

≤ O(ε)

=⇒ ti ≥
tk + α(tk/tj − tk + tj)−O(ε)

1− 1/tk
≥ tk + α(2

√
tk − tk)−O(ε)

1− 1/tk
.

The last step follows since the minimum of tk/x + x is achieved when x =
√

tk
(e.g., by the A.M.–G.M. inequality). The final expression from the last step is in
one variable, and can be minimized using standard techniques. Obviously, the
minimum value depends on α. As it turns out, the best bound is achieved when
α = 4/3 and the minimum value is 16/3− O(ε) (attained when tk ≈ 4). Thus,
ti ≥ 16/3−O(ε), implying ri = 1− 1/ti ≥ 13/16−O(ε) and an upper bound of
16/13 + O(ε) in Theorem 1.

2.5 Proof of Factor 1.22

For our final proof of Theorem 1, the essential idea is to consider 4 balls instead
of 3.

As before, let Bi be the largest ball that touches ∂B, and Bj be the smallest
ball that touches ∂B. Choose a parameter α = α(tj) ≥ 0; unlike in the previous
subsection, we find that making α dependent on tj can help. By the hemi-
sphere property, there must exist a Bk that touches ∂B while satisfying (3):



Streaming and Dynamic Algorithms for Minimum Enclosing Balls 201

σik + ασjk ≤ 0. By applying the hemisphere property once more with v =
βui + γuj + uk, for every β, γ ≥ 0, there must exists a B� that touches ∂B
satisfying

βσi� + γσj� + σk� ≤ 0. (4)

We prove that with Lemma 2, these constraints force ti > 5.54546, implying
ri = 1 − 1/ti > 0.8197 and the claimed 1.22 bound in Theorem 1. We need
a noticeably more intricate argument now, to cope with this more complicated
system of inequalities. Assume ti ≤ τ := 5.54546.

Note that 2 cases are possible: tj ≤ tk ≤ t� ≤ ti or tj ≤ t� ≤ tk ≤ ti. We first
eliminate the variable � in (4). By (4), we have ∀β, γ ≥ 0:

[

∃t� ∈ [tk, τ ] : β

(
τ

t�
− τ + t�

)

+ γ

(
t�
tj
− t� + tj

)

+
t�
tk
− t� + tk ≤ O(ε)

]

∨
[

∃t� ∈ [tj , tk] : β

(
τ

t�
− τ + t�

)

+ γ

(
t�
tj
− t� + tj

)

+
tk
t�
− tk + t� ≤ O(ε)

]

.

Observe that in each of the 2 cases, multiplying the left hand side by t� yields
a quadratic inequality in t� of the form at2� + bt� + c ≤ 0. (The O(ε) terms are
negligible.) In the first case, a = β + γ/tj − γ + 1/tk − 1, b = −βτ + γtj + tk,
and c = βτ ; in the second case, a = β + γ/tj − γ + 1, b = −βτ + γtj − tk,
and c = βτ + tk. The variable t� can then be eliminated by the following rule:
(∃x ∈ [x1, x2] : ax2 + bx + c ≤ 0) iff (ax2

1 + bx1 + c ≤ 0) ∨ (ax2
2 + bx2 + c ≤

0) ∨ [(a ≥ 0) ∧ (b2 ≥ 4ac) ∧ (2ax1 ≤ −b ≤ 2ax2)].
For β, we try two fine-tuned choices: (i) β = −γ(τ/tj − τ + tj)− (τ/tk − τ +

tk) + O(ε) (which is designed to make the above inequality tight at t� = τ), and
(ii) a root β of the equation b2 = 4ac where a, b, c are the coefficients of the
first quadratic inequality in the preceding paragraph (for fixed tj , tk, γ, this is
a quadratic equation in β). As it turns out, these two choices are sufficient to
derive the contradiction at the end.

Three variables γ, tj , tk still remain and the function α(tj) has yet to be
specified. At this point, it is best to switch to a numerical approach. We wrote a
short C program to perform the needed calculations. For γ, we try a finite number
of choices, from 0 to 1 in increments of 0.05, which are sufficient to derive the
desired contradiction. For (tj , tk), we divide the two-dimensional search space
into grid cells of side length 0.0005. For each grid cell that intersects {tk ≤ tj}, we
lower-bound the coefficients of the above quadratic inequalities over all (tj , tk)
inside the cell, and attempt to obtain a contradiction with (4) by the strategy
discussed above. If we are not able to get a contradiction for the cell this way,
we turn to (3), which implies

τ

tk
− τ + tk + α

(
tk
tj
− tk + tj

)

≤ O(ε);

from this inequality, we can generate an interval of α values that guarantees a
contradiction in the (tj , tk) cell. We set α(tj) to any value in the intersection
of all α-intervals generated in the grid column of tj . After checking that the
intersection is nonempty for each grid column, the proof is complete.



202 T.M. Chan and V. Pathak

Remarks : Our analysis of the system of inequalities derived from (3) and (4)
is close to tight, as an example shows that these inequalities cannot yield a
constant better than 1.219 regardless of the choice of the function α(tj): Consider
ti = 5.56621 and tj = 2. If α < 1.15, pick tk = 2.67; otherwise, tk = 5.08. In
either case, by solving a 2-variable, 100-constraint linear program in β and γ, one
can verify that ∀β, γ ≥ 0, there exists a t� from a discrete set of 100 uniformly
spaced values in [tk, ti] and [tj , tk] such that the inequality derived from (4) is
satisfied.

By choosing Bk and B� more carefully, one could add in the constraints σij ≤
0, σij ≤ σik, σij ≤ σi�, and σik + ασjk ≤ σi� + ασj�, though tj ≤ tk, t� is no
longer guaranteed; however, the system of inequalities becomes even harder to
optimize, and we suspect that any improvements would be very small. Likewise,
an analysis involving 5 or more balls does not seem to be worth the effort, until
new ideas are found to simplify matters.

3 Dynamic MEB

3.1 Preliminaries and a Dynamic Coreset Technique

In this section, we investigate how to maintain the MEB of points in high di-
mensions if both insertions and deletions are allowed.

The simple factor-2 streaming algorithm from Section 2 can be modified to
give a factor-2 dynamic algorithm as follows. In the preprocessing stage, pick
any random point p0 from the point set P uniformly and arrange the rest of the
points in a priority queue with the key being the distance of the point from p0.
Let’s call p0 the “anchor point.” To insert a new point, simply insert it into the
priority queue. This takes time O(log n), where n is the number of points. The
MEB returned at any time is the ball centered at p0 and having a radius equal
to the maximum key. To delete a point, remove it from the priority queue if the
point being deleted is not the anchor point itself. Otherwise, rebuild the whole
data structure by picking a new random anchor point p and arranging the rest in
a priority queue. Since the choice of the anchor point is random, the probability
with which it will be deleted is 1/n. Therefore the expected cost of deletion
is 1

n
O(n log n) + O(log n) = O(log n). The space used is linear. (The update

time can be reduced to O(1) in the word RAM model by using an approximate
priority queue [9].)

To obtain a ratio better than 2, we modify a dynamization technique by
Chan [9]. His method was originally for maintaining a different type of coresets
(called ε-kernels [1]) which can be applied to many problems in low dimen-
sions, such as computing minimum-volume (non-axis-aligned) bounding boxes.
We outline his method here and point out the difficulty in adapting it for high-
dimensional MEB.

The starting point is a simple constant-factor approximation algorithm for
the minimum bounding box [1,4]. Pick a point p0 ∈ P . This is the first anchor
point. Next, let p1 be the point farthest from p0 in P . In general, pick point pj to
be the point farthest from aff{p0, . . . , pj−1}, where aff S denotes the affine hull



Streaming and Dynamic Algorithms for Minimum Enclosing Balls 203

of a set S. The resulting anchor points p0, . . . , pd form a coreset whose minimum
bounding box approximates the minimum bounding box of P to within O(1)
factor. The factor can be reduced to 1 + ε by building a grid along a coordinate
system determined by the anchor points; the size of the coreset increases to
O(ε−d).

Now, to make this algorithm dynamic, the approach is to choose the anchor
points in some random way and then whenever an anchor point is deleted, rebuild
the whole data structure. Because of the randomness, the deleted point will be
an anchor point with only a low probability. Thus instead of choosing pj to be
the point farthest from aff{p0, . . . , pj−1}, we pick pj uniformly at random from
the set Aj of α|P | farthest points from aff{p0, . . . , pj−1} and discard Aj . Thus,
after picking all the anchor points, we obtain a set R =

⋃
j Aj of all discarded

points. Since R is not “served” by the anchor points chosen, we recurse on R.
Since |R| is a fraction less than |P | if the constant α is sufficiently small, this
gives us a collection of O(log n) coresets. The final coreset returned is the union
of all of them. Insertions can be incorporated in a standard way, analogous to
the logarithmic method [5].

The above technique cannot be directly applied to high-dimensional MEB
because of the exponential dependency of the grid size on d. Also, with our
weaker form of coreset from Definition 1 for MEB, the union of coresets of a
collection of subsets is not necessarily a good coreset for the whole set.

3.2 A New Dynamic Algorithm

To modify the above technique to solve MEB, we propose two ideas. First,
instead of the static constant-factor algorithm for minimum bounding box, we
use Bădoiu and Clarkson’s algorithm for MEB (see Section 2.1) as the starting
point. A variant of Bădoiu and Clarkson’s algorithm fits nicely here: instead of
picking pj to be the point in P farthest from c(MEB({p1, . . . , pj−1})), we look
at the α|P | farthest points from c(MEB({p1, . . . , pj−1})) and pick pj to be one
of them at random with uniform probability. Secondly, instead of returning the
union of the coresets found, we use Agarwal and Sharathkumar’s blurred ball
cover concept to get a good approximation factor. In order to satisfy property
(P2), the key is to add all points from previous coresets found into the current
point set. The precise details are given in pseudocode form in Algorithms 1–3.

The set P at the root level is initialized with K̂P = ∅. Let u be the maximum
number of levels of recursion. Note that |K̂P | ≤ O(u/ε) at all levels. For |P | �
u/ε, note that |R| is a fraction less than |P | if we make the constants α and
δ sufficiently small (relative to ε). Thus, for c sufficiently large, u is bounded
logarithmically in n. Let K = 〈K1, . . . , Ku〉 denote the sequence of coresets KP

over all currently active point sets P , arranged from the root level to the last
level. Let Bi = MEB(Ki). Then property (P3) is satisfied because of Bădoiu
and Clarkson’s algorithm. The trick of inserting coresets at earlier levels to
the current set ensures property (P2). We can then use Theorem 1 to infer
that B = MEB(

⋃u
i=1 Bi) is a 1.22-approximation to MEB(P ) for a sufficiently

small ε.



204 T.M. Chan and V. Pathak

Algorithm 1. P .preprocess()
if |P | < c log n then
KP ← P and return

end if
Q← P
p0 ← random point of P
for j = 1, . . . , �2/ε� do
Aj ← the α|P | farthest points of Q from c(MEB({p0, . . . , pj−1}))
Q← Q−Aj

pj ← a random point of Aj

end for
KP ← {p0, . . . , p�2/ε�} {an ε-coreset of Q by Bădoiu and Clarkson}
K̂R ← K̂P ∪KP {K̂P is a union of coresets at earlier levels}
R← (P −Q) ∪ K̂P {remember to add earlier coresets K̂P to the next level}
R.preprocess()
P .counter ← δ|P |

Algorithm 2. P .delete(p), where p ∈ P − K̂P

if |P | < c log n then
remove p from P , reset KP ← P , and return

end if
remove p from P
P .counter ← P .counter− 1
if P .counter = 0 or p ∈ KP then
P .preprocess() {rebuild all sets after current level}

end if
if p ∈ R then
R.delete(p)

end if

Algorithm 3. P .insert(p)
if |P | < c log n then

insert p into P , reset KP ← P , and return
end if
insert p into P
P .counter ← P .counter− 1
if P .counter = 0 then
P .preprocess() {rebuild all sets after current level}

end if
R.insert(p)



Streaming and Dynamic Algorithms for Minimum Enclosing Balls 205

Instead of applying an exact algorithm to compute B, it is better to first
compute a (1 + ε)-approximation B′

i to MEB(Ki) for each i, and then return a
(1 + ε)-approximation to MEB(

⋃u
i=1 B′

i). (Note that every Ki has size O(1/ε),
except for the last set, which has size O(log n).) The latter can be done by a
known approximation algorithm of Kumar, Mitchell, and Yildirim [10], which
generalizes Bădoiu and Clarkson’s algorithm for sets of balls. The time required
is O(du) = O(d log n) (we ignore dependencies on ε from now on). It can be
checked that the proof of Theorem 1 still goes through with Bi replaced by B′

i,
since the hemisphere property is still satisfied “approximately” for B′

i.
The for loop in P .preprocess() takes O(dn) time for constant ε. Thus, the

total preprocessing time is bounded by a geometric series summing to O(dn).
Space is O(dn) as well. In the pseudocode for P .delete(), although the cost of
the call to P .preprocess() is O(d|P |), it can be shown [9] that the probability of
deleting an anchor point p ∈ Ki is O(1/|P |) at any fixed level. Excluding the cost
of computing B, the analysis of the expected amortized update time is essentially
the same as in Chan’s paper [9] and yields O(d log n). (The randomized analysis
assumes that the update sequence is oblivious to the random choices made by
the algorithm.) We conclude:

Theorem 2. A factor-1.22 approximation of the MEB of points in R
d can be

maintained with an algorithm that takes preprocessing time O(dn log n), uses
space O(dn) and takes expected amortized time O(d log n) for the updates.

4 Final Remarks

Agarwal and Sharathkumar [2] have given an example showing that their stream-
ing algorithm has approximation factor strictly greater than their (1 +

√
2)/2

lower bound. Thus, if their lower bound is the right answer, a different streaming
algorithm would be required. It would be interesting to investigate other high-
dimensional geometric problems besides MEB in the streaming model. For exam-
ple, before the recent developments on MEB, Chan [8] had given a (5 + ε)-factor
streaming algorithm for the smallest enclosing cylinder problem with O(d) space.
Can the new techniques help in improving the approximation factor further?

On the dynamic MEB problem, the (1 +
√

2)/2 lower bound on the approxi-
mation factor is not applicable, and the possibility of a (1 + ε)-factor algorithm
with dO(1) log n update time and dO(1)n space has not been ruled out. Also,
O(d log n) may not necessarily be the final bound on the update time. For exam-
ple, Chan [9] described an O(1)-factor dynamic algorithm with O(d) expected
amortized update time for the smallest enclosing cylinder problem in the word
RAM model.

References

1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures
of points. Journal of the ACM 51, 606–635 (2004)



206 T.M. Chan and V. Pathak

2. Agarwal, P.K., Sharathkumar, R.: Streaming algorithms for extent problems in
high dimensions. In: Proc. 21st ACM–SIAM Sympos. Discrete Algorithms, pp.
1481–1489 (2010)

3. Agarwal, P.K., Yu, H.: A space-optimal data-stream algorithm for coresets in the
plane. In: Proc. 23rd Sympos. Comput. Geom., pp. 1–10 (2007)

4. Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume
bounding box of a point set in three dimensions. J. Algorithms 38, 91–109 (2001)

5. Bentley, J.L., Saxe, J.B.: Decomposable searching problems I: Static-to-dynamic
transformations. J. Algorithms 1, 301–358 (1980)

6. Bădoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: Proc. 14th ACM-SIAM
Sympos. Discrete Algorithms, pp. 801–802 (2003)

7. Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In:
Proc. 34th ACM Sympos. Theory Comput., pp. 250–257 (2002)

8. Chan, T.M.: Faster core-set constructions and data stream algorithms in fixed
dimensions. Comput. Geom. Theory Appl. 35, 20–35 (2006)

9. Chan, T.M.: Dynamic coresets. Discrete Comput. Geom. 42, 469–488 (2009)
10. Kumar, P., Mitchell, J.S.B., Yildirim, E.A.: Approximating minimum enclosing

balls in high dimensions using core-sets. ACM J. Experimental Algorithmics 8, 1.1
(2003)

11. Zarrabi-Zadeh, H.: An almost space-optimal streaming algorithm for coresets in
fixed dimensions. In: Halperin, D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193,
pp. 817–829. Springer, Heidelberg (2008)

12. Zarrabi-Zadeh, H., Chan, T.M.: A simple streaming algorithm for minimum en-
closing balls. In: Proc. 18th Canad. Conf. Comput. Geom., pp. 139–142 (2006)



New Algorithms for 1-D Facility Location and

Path Equipartition Problems�

Danny Z. Chen and Haitao Wang��

Department of Computer Science and Engineering,
University of Notre Dame, Notre Dame, IN 46556, USA

{dchen,hwang6}@nd.edu

Abstract. We study the one-dimensional facility location problems.
Given a set of n customers on the real line, each customer having a cost
for setting up a facility at its position, and an integer k, we seek to find
at most k of the customers to set up facilities for serving all n customers
such that the total cost for facility set-up and service transportation is
minimized. We consider several problem variations including k-median
and k-coverage and a linear model. We also study a related path equipar-
tition problem: Given a vertex-weighted path and an integer k, remove
k−1 edges so that the weights of the resulting k sub-paths are as equal as
possible. Based on new problem modeling and observations, we present
improved algorithms for these problems over the previous work.

1 Introduction

A fundamental problem in location theory is to determine the optimal sites
for building k facilities among n customers at given positions. It finds many
applications, e.g., shape analysis, data compression, information retrieval, data
mining, etc. In this paper, we consider the one-dimensional versions, i.e., all
customers are on the real line.

Given a set of n sites, P = {p1, . . . , pn}, sorted on the real line, with each
site holding a customer, a typical location problem is to choose a subset F of P
to set up facilities to serve all the customers. For convenience, we also use pi to
denote its coordinate on the line. Each pi is associated with a cost ci for setting
up a facility at the location pi. For each pi, define d(pi, F ) as the (Euclidean)
distance from pi to the nearest point in F , i.e., d(pi, F ) = minpj∈F {|pi − pj |};
for any two points pi and pj , d(pi, pj) = |pi − pj|. For each customer pi, define
fi(d(pi, F )) as the transportation cost between pi and the facility set, where fi(d)
is a monotone nondecreasing function for the real distance d and fi(0) = 0. We
assume that given any distance d, the value of fi(d) can be computed in constant
time. Let k be an integer with 1 ≤ k ≤ n. The objective is to find F ⊆ P such
that |F | ≤ k and the sum

∑
pi∈F ci +

∑n
i=1 fi(d(pi, F )) is minimized. For any

pi, if d(pi, F ) = d(pi, pj) and pj ∈ F , we say pi is served by the facility at pj .

� This research was supported in part by NSF under Grant CCF-0916606.
�� Corresponding author.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 207–218, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



208 D.Z. Chen and H. Wang

Table 1. Summary of the results, where T = min{n√k log n, n2O(
√

log k log log n)}

Problem Previous Ours Ours is better when

k-median O(nk) [4,11] O(T log n) k = Ω(log3 n)
Uniform k-median O(nk) [4,11] O(T ) k = Ω(logn)
Infinity k-coverage O(nk) [11,23] O(T ) k = Ω(logn)
Linear model O(nk) [11] O(T log2 n) k = Ω(log5 n)
L∞ path equipartition O(nk log k) [16] O(nk) always
Ld path equipartition O(nk) [12] O(T ) k = Ω(logn)

As shown by Hassin and Tamir [11], the above definition unifies several lo-
cation problem models and we call it the general model. If for each 1 ≤ i ≤ n,
ci = 0 and fi(d) = ai · d for a constant ai ≥ 0, then the general model becomes
the k-median problem; if all ai’s are equal, we call it the uniform k-median. The
k-coverage problem is the following case: For each 1 ≤ i ≤ n, there are two
constants ri and bi, and fi(d) = 0 if d ≤ ri and fi(d) = bi otherwise. We refer
to the special case when bi = +∞ for each 1 ≤ i ≤ n as the infinity k-coverage.

The general model is solvable in O(n2) time by dynamic programming (DP)
[11]. It appears that one cannot do better even when k = 1, implying the general
model algorithm may not help much for some specific applications. To character-
ize some special cases without losing much generality, we consider a linear model:
For each 1 ≤ i ≤ n, fi(d) = ai · d for a constant ai ≥ 0. Note that the linear
model is different from the k-median in that every ci is zero in the k-median.

All the above problem models have been studied before. We give improved
algorithms in this paper. Let T = min{n

√
k log n, n2O(

√
log k log logn)} throughout

the paper. The results are summarized in Table 1.
Noted that while we do explore the Monge property of some of these problems,

our approaches are not simple applications of the algorithm given by Aggarwal,
Schieber, and Tokuyama [3] or the one given by Schieber [22], but hinged on
nontrivial observations, new efficient data structures, and extensive modifications
of the algorithms in [3,22] (while keeping their main scheme).

A related problem is the L∞ path equipartition. Given a path P with vertices
{p1, . . . , pn} and edges {(p1, p2), . . . , (pn−1, pn)}, each vertex pi has a weight
ci ≥ 0. For any sub-path P ′ of P , let its weight C(P ′) be the weight sum of all
vertices in P ′. Given an integer k with 1 ≤ k ≤ n, the goal is to remove k − 1
edges from P such that the weights of the k resulting sub-paths P1, . . . , Pk are
as equal as possible, i.e., max1≤i≤k |C(Pi)−μ| is minimized, where μ = C(P )/k.
The problem was solved in O(nk log k) time [16]. In this paper, we give an O(nk)
time solution (actually, the algorithm works for any value μ). If the objective is to
minimize the value

∑k
i=1 |C(Pi)−μ|d for a real d ≥ 1, the problem becomes the

Ld path equipartition, which was solved in O(nk) time [12]. We present an O(T )
time solution, which is an improvement when k = Ω(log n). Refer to [12,16] for
applications of these problems.



New Algorithms for 1-D Facility Location and Path Equipartition Problems 209

1.1 Related Work

A problem closely related to k-median is the k-center problem, in which the
maximum distance of any input point to a facility is minimized. It is well-known
that the facility location, the k-median and the k-center problems in the plane
or higher-dimensional space are NP-hard, and approximation algorithms have
also been studied (see [1] for a survey). Many classical problems are special cases
of these problems, e.g., the smallest enclosing circle problem [19], its weighted
version [7] and discrete version [15], the Fermat-Weber problem [5], etc. Refer
to [6] for many other variants of the facility location problem.

Most one-dimensional problems are solvable efficiently. The k-median was
solved in O(n2k) time in [17] by DP. By using the concave Monge property,
an improved O(nk) time algorithm was shown in [11]. Independently, an O(nk)
time algorithm for the k-median was given [4], using the same DP scheme with
a somewhat different implementation. We are not aware of any faster algorithm
specifically for the uniform k-median. In [11], the general model was solved in
O(n2) time by DP with the concave Monge property; the k-coverage and its
infinity case were solved in O(n2) and O(nk) time, respectively. In [23], based
on parametric search, a new k-coverage algorithm of O(nk log n) time was given
and the infinity case was solved in O(nk) time. In addition, an “asymmetric”
k-median problem on a path is studied in [24], where Monge property is explored.

In the graph setting, for a tree, the k-center is solvable in O(n) time [8], and
both the k-coverage and k-median are solvable in O(n2k) time [20].

The L∞ equipartition can be solved in O(n2k) time by DP. By exploring some
properties, a shifting algorithm of O(nk log k) time was given [16]. If μ = 0, the
problem is solvable in O(n) time by the algorithm in [8], which however does not
work for μ �= 0. An O(n) time algorithm was also given in [8] for the max-min
partition on a tree. Refer to [18,21] for other min-max partition models. For the
Ld equipartition (for any real value d ≥ 1), an O(nk) time algorithm is known
[12] based on dynamic programming with the concave Monge property.

The rest of the paper is organized as follows. In Section 2, we discuss our
problem modeling on the general model. Section 3 discusses the k-median prob-
lem. In Section 4, we present our algorithm for the infinity k-coverage problem.
The algorithm for the linear model is given in Section 5. Our results on the L∞
and Ld path equipartitions are presented in Section 6.

2 The Problem Modeling of the Facility Location

In this section, we reduce the general model to the problem of finding a shortest
path with at most k edges in a DAG G of O(n) vertices. We prove that the
edge weights of G satisfy the concave Monge property. Note that this result
is applicable to any problem in the general model, and particularly, to the k-
median, the infinity k-coverage and the linear model.

Given a point set P in sorted order on the real line, an easy but critical
observation is that there is an optimal solution for the general model, with
F ⊆ P as the facility set, such that for any pi ∈ F , if Pi ⊆ P is the set



210 D.Z. Chen and H. Wang

Fig. 1. The DAG G: The solid nodes are
the vertices of G and the hollow ones are
the customers

Fig. 2. The common intersection (between
the two dashed lines) of a set of intervals

of customers served by pi, then all customers in Pi are consecutive in P . Our
problem modeling is based on this observation.

For the point set P , we build a weighted DAG G = (V, E) as follows. The
vertex set V contains n + 1 vertices v0, v1, . . . , vn such that each vertex vi cor-
responds to a point between pi and pi+1 on the line (v0 is to the left of p1 and
vn is to the right of pn). For any 0 ≤ i < j ≤ n, we put a directed edge e(i, j)
from vi to vj in E. Fig. 1 shows an example. Denote by P(i + 1, j) the special
sub-problem with the consecutive points pi+1, . . . , pj as the customers, for which
we seek a single facility pt with i + 1 ≤ t ≤ j to provide service for all these
customers such that the objective value obj(t, i+1, j) = ct+

∑j
l=i+1 fl(d(pl, pt))

is minimized. Define the weight of the edge e(i, j) as this minimum objective
value for P(i + 1, j), denoted by w(i, j). We call an edge of a path in G a
link of the path. As in [3,22], we call a path from v0 to vn in G a diameter
path. Clearly, a feasible solution of the general model corresponds to a short-
est diameter path in G with at most k links. Below, we will prove the edge
weights of G satisfy the concave Monge property, i.e., for all 0 ≤ i + 1 < j < n,
w(i, j) + w(i + 1, j + 1) ≤ w(i, j + 1) + w(i + 1, j) holds.

For each t = i + 1, . . . , j, we define wl(t, i + 1) =
∑t

m=i+1 fm(d(pm, pt)) and
wr(t, j) =

∑j
m=t+1 fm(d(pm, pt)); thus, we have obj(t, i + 1, j) = ct + wl(t, i +

1) + wr(t, j). We will use these notations throughout the paper.
Note that the previous work (e.g., [11]) observed the Monge property on the

transportation costs, i.e.,
∑j

l=i fl(d(pi, pl)). In contrast, the Monge property we
explore is defined on the w(i, j)’s, which contain not only the transportation
costs but also the costs for setting up facilities, and is more general.

Denote by I(i, j) the index of the facility in an optimal solution for the special
sub-problem P(i, j); if there are multiple optimal solutions, let I(i, j) be the
leftmost one. For convenience, we also use I(i, j) to represent the corresponding
point. Denote by opt(i, j) the optimal solution with I(i, j) as the facility. The
following observation is self-evident.

Observation 1. For any i ≤ j1 ≤ j2 ≤ n, I(i, j1) ≤ I(i, j2) holds; for any
1 ≤ i1 ≤ i2 ≤ j, I(i1, j) ≤ I(i2, j) holds.

The following lemma proves that the graph G is a concave Monge DAG, i.e.,
w(i, j) +w(i +1, j +1) ≤ w(i, j + 1)+w(i +1, j) holds for all 0 ≤ i+ 1 < j < n.

Lemma 1. The graph G is a concave Monge DAG.



New Algorithms for 1-D Facility Location and Path Equipartition Problems 211

Proof. Our goal is to prove the inequality w(i, j)+w(i+1, j +1) ≤ w(i, j +1)+
w(i + 1, j) holds for all 0 ≤ i + 1 < j < n.

Consider any two integers i and j with 0 ≤ i+1 < j < n. By Observation 1, we
have I(i+1, j) ≤ I(i+1, j+1) and I(i+2, j) ≤ I(i+2, j+1). However, it can be
either I(i+1, j+1) ≤ I(i+2, j) or I(i+1, j+1) > I(i+2, j). Below, we prove that
if I(i+1, j+1) ≤ I(i+2, j), then w(i, j)+w(i+1, j+1) ≤ w(i, j+1)+w(i+1, j)
holds. The proof for the other case is omitted since it is quite similar.

If I(i+1, j+1) ≤ I(i+2, j), then since I(i+2, j) ≤ j, we have I(i+1, j+1) ≤ j,
which means pj+1 is not the facility in the optimal solution opt(i + 1, j + 1) for
the sub-problem P(i + 1, j + 1). Thus, if we remove the customer pj+1 and its
corresponding transportation cost from opt(i+1, j +1), we can obtain a feasible
solution for the sub-problem P(i + 1, j). Recall that w(i, j + 1) is the objective
value of opt(i + 1, j + 1). Therefore, the value w(i, j + 1) − fj+1(d(pj+1, I(i +
1, j + 1))) is the objective value of a feasible solution for P(i + 1, j). Since
w(i, j) is the objective value of an optimal solution for P(i + 1, j), it must be
w(i, j) ≤ w(i, j + 1)− fj+1(d(pj+1, I(i + 1, j + 1))).

On the other hand, w(i + 1, j) is the objective value of the optimal solution
opt(i+2, j) for the sub-problemP(i+2, j). Similarly, we can connect the customer
pj+1 to the facility at I(i + 2, j) in opt(i + 2, j) to obtain a feasible solution
for the sub-problem P(i + 2, j + 1). In other words, the value w(i + 1, j) +
fj+1(d(pj+1, I(i + 2, j))) is the objective value of a feasible solution for P(i +
2, j + 1). Since w(i + 1, j + 1) is the objective value of an optimal solution for
P(i+2, j +1), it must be w(i+1, j +1) ≤ w(i+1, j)+ fj+1(d(pj+1, I(i+2, j))).

In addition, I(i+1, j+1) ≤ I(i+2, j) < j +1 implies d(pj+1, I(i+1, j+1)) ≥
d(pj+1, I(i+2, j)). Thus, fj+1(d(pj+1, I(i+1, j+1))) ≥ fj+1(d(pj+1, I(i+2, j)))
holds. By combining all the above results, we have w(i, j + 1) + w(i + 1, j) ≥
w(i, j) + w(i + 1, j + 1).

The lemma thus follows.

By Lemma 1, a shortest diameter path with at most k links can be obtained
efficiently. Suppose G′ is a concave Monge DAG and any edge weight in G′ can be
obtained in O(1) time. The algorithms in [3,22] can compute a shortest diameter
path with exactly k links in G′ in O(T ) time. Below, we present our O(T ) time
algorithm, called Algo-k-link, for computing a shortest diameter path with at
most k links in G′.

Denote by D(k) the weight of the shortest diameter path with exactly k links
in G′. Corollary 7 of [3] implies that any local minimum of the function D(k) with
variable k must also be the global minimum (a similar observation is also given
in [22]). The algorithm Algo-k-link then works as follows. First, we compute a
shortest diameter path in G′ (without restricting the number of links), which
takes O(n) time [10,13,14]. If this path has at most k links, then we are done.
Otherwise, we apply the algorithms in [3,22] to find a shortest diameter path
with exactly k-link as our solution. The running time of Algo-k-link is dominated
by the algorithms in [3,22], which is O(T ). Thus, we have the following result.

Lemma 2. In O(T ·W ) time, where O(W ) is the time for computing any edge
weight in G, we can find a shortest diameter path with at most k links in G,



212 D.Z. Chen and H. Wang

and consequently obtain an optimal solution for the general model with at most
k facilities.

3 The k-Median Problem

In this section, we present our algorithm for the k-median problem. By Lemma 2,
it is sufficient to design an efficient data structure for answering w(i, j) queries.

Recall that in the k-median problem, for each 1 ≤ i ≤ n, we have ci = 0 and
fi(d) = ai · d with ai ≥ 0 for any real distance d. To compute w(i, j), we need
to find t with i + 1 ≤ t ≤ j that minimizes the value obj(t, i + 1, j), which is
wl(t, i +1)+ wr(t, j) (since ct = 0), and the sought t is I(i +1, j). The following
observation (related to the weighted median) is crucial.

Observation 2. For any 1 ≤ i ≤ j ≤ n, if there exists an index b with i < b ≤ j
such that

∑b−1
t=i at <

∑j
t=b at and

∑b
t=i at ≥

∑j
t=b+1 at, then I(i + 1, j) = b;

otherwise, I(i + 1, j) = i.

As preprocessing, in O(n) time, we compute the prefix sums
∑i
t=1 at for all

1 ≤ i ≤ n. For any query q(i, j), by Observation 2, we can compute I(i, j) by
binary search in O(log n) time. For the uniform case, by Observation 2, it is easy
to see that I(i, j) = 	(i + j)/2
.

To compute the value of w(i, j), we first compute I(i+1, j) as described above.
Let b = I(i+1, j). We then have w(i, j) =

∑b−1
t=i+1(pb−pt)·at+

∑j
t=b(pt−pb)·at =

pb · (
∑b−1

t=i+1 at−
∑j

t=b at)+
∑j

t=b(pt ·at)−
∑b−1
t=i+1(pt ·at). Therefore, with O(n)

time preprocessing, which computes
∑i
t=1(pt · at) for each 1 ≤ i ≤ n, we can

obtain the value of w(i, j) in O(1) time (after I(i + 1, j) is known).
Therefore, with O(n) time preprocessing, the value of any w(i, j) can be ob-

tained in O(log n) time for the k-median, and in O(1) time for its uniform case.
By Lemma 2, we have the following result.

Theorem 1. The k-median and its uniform case are solvable in O(T log n) time
and O(T ) time, respectively.

4 The Infinity k-Coverage Problem

In this section, we present our algorithm for the infinity k-coverage problem.
By Lemma 2, it is sufficient to design an efficient data structure for answering
w(i, j) queries. With O(n) time preprocessing, our data structure computes any
w(i, j) in O(1) time. This data structure actually solves a more general problem
on intervals, and may find other applications as well.

Recall that in the infinity k-coverage problem, for each 1 ≤ i ≤ n, fi(d) = 0 if
d ≤ ri, and fi(d) = +∞ otherwise. We define an interval Ii = [αi, βi] on the real
line for each 1 ≤ i ≤ n, with αi = pi − ri and βi = pi + ri. To compute w(i, j),
note that it is obj(t, i + 1, j) = ct + wl(t, i + 1) + wr(t, j) where t = I(i + 1, j).
The value of wl(t, i + 1) + wr(t, j) is either 0 or +∞. We assume ci < +∞ for
each 1 ≤ i ≤ n (this assumption is only for the simplicity of the analysis, and
our algorithm still works when the assumption does not hold).



New Algorithms for 1-D Facility Location and Path Equipartition Problems 213

Observation 3. w(i, j) < +∞ if and only if there exists a point pt ∈ P such
that i + 1 ≤ t ≤ j and pt ∈ ∩jt=i+1It.

Observation 3 implies that to compute w(i, j), it suffices to find a point pm ∈
∩jt=i+1It with the smallest cm and i + 1 ≤ m ≤ j. The index m is I(i + 1, j) and
w(i, j) = cm. We generalize our problem to the following problem, which may
find other applications. Given a set P of n sorted points p1 ≤ p2 ≤ · · · ≤ pn and
a set I of n intervals It = [αt, βt] with 1 ≤ t ≤ n on the real line, such that each
pt ∈ It (i.e., αt ≤ pt ≤ βt) and pt has a weight ct, for any query q(i, j) with
1 ≤ i ≤ j ≤ n, report a point pm with the smallest cm such that i ≤ m ≤ j and
pm ∈ ∩jt=iIt. We call it the points in intervals (PII) query problem.

Below, we build a data structure in O(n) time, which answers any PII query
in O(1) time. To provide some intuition, we begin with a preliminary solution
which answers each query in O(1) time after an O(n log n) time preprocessing,
and then show how to reduce the preprocessing time to O(n).

For each 1 ≤ i ≤ n, define a new interval I ′i = [α′
i, β

′
i] which is the maximal

interval such that I ′i ⊆ Ii and each endpoint of I ′i is a point of P . Let I ′ be the
set of all these new intervals. Note that for any q(i, j), the query answer on I is
the same as that on I ′. Our algorithm below processes such queries on I.

We first compute I′. For each i, to determine α′
i, we can use binary search to

find t such that pt−1 < αi ≤ pt, in O(log n) time, and set α′
i = pt. The value of

β′
i is determined similarly. Therefore, computing I′ takes O(n log n) time.
For a query q(i, j), we first determine the interval I∗ = ∩jt=iI ′t; if I∗ �= ∅, then

we find a point pm ∈ I∗ with i ≤ m ≤ j whose weight cm is the smallest. Let
I∗ = [α∗, β∗], where α∗ = maxi≤t≤j α′

t and β∗ = mini≤t≤j β′
t (see Fig. 2). Note

that I∗ �= ∅ if and only if α∗ ≤ β∗. Since all α′
t and β′

t are points in P , α∗ and
β∗ are also points in P . Let the indices of the points α∗ and β∗ be i∗ and j∗,
respectively. It should be noted that since α∗ is determined by the left endpoints
of all intervals from i to j, i∗ < i is possible (i.e., if α′

t ≤ pi−1 for every t with
i ≤ t ≤ j); similarly, j < j∗ is also possible. Thus, the point pm whose weight
cm is minmax{i∗,i}≤t≤min{j∗,j} ct is reported as our answer to the query q(i, j).

To implement the above algorithm, we utilize the range-minima (resp., range-
maxima) data structure [9], which, after an O(n) time preprocessing on a given
array A[1 . . . n] (not in any sorted order), can report in O(1) time the smallest
(resp., largest) element in the sub-array A[i . . . j] specified by any query (i, j).
Let A be the array of α′

t’s, i.e., A[t] = α′
t for each 1 ≤ t ≤ n. Similarly, let B

and C be the arrays of β′
t’s and ct’s, respectively. We build a range-maxima data

structure on A and a range-minima data structure on B, respectively. Then for
each PII query q(i, j), α∗ and β∗ can be obtained in O(1) time. When computing
an interval I ′t = [α′

t, β
′
t], suppose α′

t = ps; then we store the index s together
with α′

t. We do the similar thing for β′
t. Thus, once we obtain α∗ and β∗, we

also know i∗ and j∗. We build a range-minima data structure on the array C,
which allows us to find the sought point pm in O(1) time. In summary, after the
set I′ is computed in O(n log n) time, with additional O(n) time preprocessing,
we can answer each query q(i, j) in O(1) time.



214 D.Z. Chen and H. Wang

The dominating part of the above preprocessing is for computing the new
interval set I′, which is O(n log n). To reduce the O(n log n) preprocessing time,
we might need a faster way to compute I′. However, it appears that computing
the exact I ′ requires Ω(n log n) time. To circumvent the difficulty, we choose not
to compute I′. Instead, we compute a set of truncated intervals in O(n) time,
such that any query q(i, j) can be answered based on these truncated intervals.

The truncated intervals are defined as follows. For each 1 ≤ i ≤ n, define a
truncated interval I′′i = [α′′

i , β
′′
i ] as the maximal interval such that (1) I′′i ⊆ Ii;

(2) each endpoint of I ′′
i is a point of P ; (3) suppose α′′

i is the point ps, then ps
is contained in all intervals It with s ≤ t ≤ i; (4) similarly, suppose β′′

i is the
point ps, then ps is contained in all intervals It with i ≤ t ≤ s. Let I′′ be the
set of all truncated intervals. Below, we first show that I ′′ can be computed in
O(n) time; then we prove that the answer for each query q(i, j) can be obtained
on I′′ by using the same procedure for answering a query on I′.

To compute all α′′
i ’s for 1 ≤ i ≤ n, we scan both P and I in an incremental

fashion. Initially, for p1 and I1, set α′′
1 = p1. By checking each interval incre-

mentally, we find the first interval Is such that p1 �∈ Is. For each 1 ≤ t ≤ s− 1,
set α′′

t = p1. We then continue with p2 and Is. It is not difficult to see that if
2 ≤ s − 1, then p2 ∈ It holds for every 2 ≤ t ≤ s − 1. If p2 ∈ Is, then we find
the first index s′ > s such that p2 �∈ Is′ , and set α′′

t = p2 for each s ≤ t ≤ s′− 1.
Otherwise, we consider p3 and Is in the same way. We continue this process until
the value of α′′

n is set. Clearly, this procedure takes O(n) time. All β′′
i ’s can also

be obtained in O(n) time by scanning P and I in the reverse order.
We claim that any query q(i, j) can be answered based on the truncated

interval set I′′. Consider an interval It ∈ I and the truncated interval I ′′t ∈ I ′′
for any 1 ≤ t ≤ n. It is possible that there exist some pm ∈ It \ I ′′

t . Clearly, the
claim is true if we can show for any such pm, pm can never be an answer to any
query q(i, j) with i ≤ t ≤ j.

Lemma 3. For any t with 1 ≤ t ≤ n, if a point pm ∈ It \ I ′′t , then pm cannot
be the answer to any query q(i, j) for i ≤ t ≤ j.

Proof. Since pm ∈ It and pm �∈ I ′′t , it must be either αt ≤ pm < α′′
t or β′′

t <
pm ≤ βt due to I ′′t ⊆ It. Assume that it is the former case (the latter case can
be analyzed similarly). Since pm < α′′

t , it must be pm < pt and thus m < t.
By the definition of I ′′

t , there must exist an interval Ib ∈ I with m < b ≤ t
such that pm �∈ Ib. For any query q(i, j) with i ≤ t ≤ j, if i ≤ b, due to pm �∈ Ib,
we have pm �∈ ∩jl=iIl; otherwise, we have m < i. In either case, pm cannot be an
answer to the query q(i, j). The lemma thus follows.

Therefore, the answer to any query q(i, j) on I′′ is the same as that on I or I ′.
As for the case of I ′, with O(n) time preprocessing, any query can be answered
in O(1) time. In summary, we have the following result.

Lemma 4. For the PII query problem, with O(n) time preprocessing, any query
q(i, j) can be answered in O(1) time.



New Algorithms for 1-D Facility Location and Path Equipartition Problems 215

Back to the infinity k-coverage problem, Lemma 4 implies that any edge weight
w(i, j) can be obtained in O(1) time after O(n) time preprocessing. By Lemma
2, we have the following conclusion.

Theorem 2. The infinity k-coverage problem is solvable in O(T ) time.

5 The Linear Model

In this section, we derive an O(T log2 n) time algorithm for the linear model.
We begin with computing a single edge weight w(i, j). Recall that w(i, j) is

the objective value of an optimal solution for the sub-problem P(i + 1, j), i.e.,
w(i, j) = obj(t, i + 1, j) = ct + wl(t, i + 1) + wr(t, j) where t = I(i + 1, j).

Consider computing wl(t, i + 1) for an arbitrary t with i + 1 ≤ t ≤ j. We
have wl(t, i + 1) =

∑t
m=i+1 fm(d(pm, pt)) =

∑t
m=i+1(am · (pt − pm)) = pt ·

∑t
m=i+1 am−

∑t
m=i+1(am ·pm). Thus, if for each i = 1, 2 . . . , n, we have the two

prefix sums
∑i
j=1 aj and

∑i
j=1(aj · pj), then each wl(t, i + 1) can be computed

in O(1) time. Clearly, it takes O(n) time to compute these prefix sums for i =
1, 2, . . . , n. Similarly, every wr(t, j) can be computed in O(1) time. Therefore,
with O(n) time preprocessing, each objective value obj(t, i+1, j) can be obtained
in O(1) time. Consequently, we can compute each edge weight w(i, j) in O(j− i)
time. Thus, applying Lemma 2 yields an O(T · n) time solution for the linear
model. Next, we present a more efficient algorithm.

Although computing a single w(i, j) may require Ω(n) time, for any fixed
i ∈ {0, 1, . . . , n}, we are able to compute all w(i, j)’s for j = i + 1, . . . , n in only
O(n log n) time (see Lemma 5). Based on this result, we develop new algorithms
for column-minima and (unrestricted) shortest paths, and use them to modify
the components of our algorithm Algo-k-link.

Consider the problem of computing w(0, j)’s for all 1 ≤ j ≤ n. Our idea
is based on the monotonicity of I(i, j) in Observation 1. We first give some
intuition. Suppose we know I(1, j) for some 1 ≤ j ≤ n and are to compute I(1, j+
1). By Observation 1, I(1, j) ≤ I(1, j+1). Clearly, I(1, j+1) ∈ {I(1, j), . . . , j+1},
and we need to compute all obj(i, 1, j + 1)’s for I(1, j) ≤ i ≤ j + 1 to determine
I(1, j + 1), in O(j + 2 − I(1, j)) time. Hence, if the w(0, j)’s are computed in
an incremental manner, in the worst case it takes O(n2) time to compute all
w(0, j)’s for 1 ≤ j ≤ n. Lemma 5 gives a faster algorithm.

Lemma 5. The w(0, j)’s, for all 1 ≤ j ≤ n, can be computed in O(n log n) time.

Proof. Below, we present an algorithm that has O(log n) stages and each stage
runs in O(n) time. In the first stage, we compute w(0, n2 ) and I(1, n2 ), which
takes O(n

2
) time. In the following, let I(i) denote I(1, i) for any 1 ≤ i ≤ n.

The second stage computes w(0, n
4
), I(n

4
) and w(0, 3

4
n), I( 3

4
n), as follows. By

Observation 1, I(n4 ) ≤ I(n2 ) ≤ I(3
4n). Thus, to compute w(0, 3

4n) and I( 3
4n),

we only need to compute the obj(i, 1, 3
4
n)’s for all I(n

2
) ≤ i ≤ 3

4
n. Similarly,

to compute w(0, n
4
) and I(n

4
), we only need to compute the obj(i, 1, n

4
)’s for all

1 ≤ i ≤ min{I(n2 ), n4 }. Hence, the number of obj values we need to compute in



216 D.Z. Chen and H. Wang

this stage is no more than 3
4n. As discussed before, each objective value can be

obtained in O(1) time (after O(n) time preprocessing). Hence, the running time
of the second stage is O( 3

4n).
In general, in the t-th stage, we can compute the w(0, 2i−1

2t n)’s and I(2i−1
2t n)’s,

for all 1 ≤ i ≤ 2t−1, in O( 2t−1
2t n) time. The details are omitted and can be found

in our full paper. The lemma thus follows.

By generalizing the algorithm in Lemma 5, we have the following corollary.

Corollary 1. For any 0 ≤ i ≤ j ≤ n, the weights w(i, t) for all i ≤ t ≤ j and
w(t, j) for all i ≤ t ≤ j can be obtained in O((j − i + 1) log(j − i + 1)) time.

Before giving the shortest path algorithm, we first describe our column-minima
algorithm. Given a matrix M , a column-minima algorithm finds the minimum
element in every column of M . For a totally monotone n × n matrix M , the
SMAWK algorithm in [2] can find all column minima of M in O(n) time. In
our setting, the matrix whose elements are edge weights of G is concave Monge,
implying that the matrix is totally monotone. However, since computing a single
edge weight takes O(n) time, applying the SMAWK algorithm can only give an
O(n2) time solution. Based on Corollary 1, Lemma 6 shows that the column-
minima in our problem can be computed in O(n log2 n) time. The lemma proof
is omitted due to the space limit and can be found in our full paper.

For any i and j with 0 ≤ i ≤ j ≤ n, let Mij [0, j− i; 0, j− i] denote the matrix
whose elements are the weights of all edges between the vertices of {vi, . . . , vj}
in G, i.e., each element Mij [i′, j′] = w(i + i′, i + j′) if 0 ≤ i′ ≤ j′ ≤ j − i
and +∞ otherwise. By Corollary 1, every column of Mij can be obtained in
O((j − i + 1) log(j − i + 1)) time.

Lemma 6. The column minima of any matrix Mij can be obtained in
O((j − i + 1) log2(j − i + 1)) time.

Our shortest path algorithm computes a shortest diameter path (without re-
stricting its number of links) in G. For a DAG of n vertices whose edge weights
satisfy the concave Monge property, the algorithms in [10,13,14] can find a short-
est path in linear time provided that any edge weight can be obtained in O(1)
time. However, since computing a single edge weight needs O(n) time in our
setting, applying these algorithms directly would give an O(n2) time solution.
To derive a faster algorithm, we modify Galil and Park’s algorithm [10], as fol-
lows. First, the algorithm in [10] uses the SMAWK algorithm to compute the
column-minima of some sub-matrices. If applied to our problem, we observe that
the elements of each such sub-matrix are the weights of all edges between the
vertices in some sequence of consecutive vertices. Thus, our column-minima algo-
rithm in Lemma 6 can be applied. Second, in the algorithm [10], some individual
matrix elements are also used besides the SMAWK algorithm. If applied to our
problem, each of these individual elements is the weight of an edge connecting
two neighboring vertices, i.e., w(j − 1, j) with 1 ≤ j ≤ n, which can be obtained
in O(1) time. With these modifications, we can find a shortest diameter path in
G in O(n log2 n) time.



New Algorithms for 1-D Facility Location and Path Equipartition Problems 217

Lemma 7. A shortest diameter path in G can be computed in O(n log2 n) time.

To find a shortest diameter path with at most k links in G, we modify the
algorithm Algo-k-link, by modifying the algorithms in [3,22] and using the results
in Lemmas 6 and 7. For the algorithm in [3], we first replace the linear time
shortest path algorithm by our algorithm in Lemma 7, and then replace the
SMAWK algorithm by our algorithm in Lemma 6 to compute the column-minima
for sub-matrices. The resulting algorithm takes O(n

√
k log n log2 n) time. Similar

modifications can also be made to the algorithm [22]. We have the result below.

Theorem 3. In O(T log2 n) time, we can find a shortest diameter path with at
most k links in G, and hence obtain an optimal solution for the linear model.

6 The Path Equipartition Problems

In this section, we discuss the L∞ and Ld path equipartition problems. We first
consider the L∞ version, which is solved based on dynamic programming.

Given a path P = (p1, p2, . . . , pn) with vertex weights ci ≥ 0, for any j ≤ i, let
Pji denote the sub-path of P from pj to pi and C(Pji) denote the sum of vertex
weights of Pji. For 1 ≤ i ≤ n and 1 ≤ l ≤ k, let W (i, l) denote the minimum
objective value for partitioning the sub-path P1i into l sub-paths. Our goal is
to compute W (n, k). It is easy to see W (i, l) = min1≤j≤i{max{W (j − 1, l −
1), h(j, i)}}, where h(j, i) = |C(Pji) − μ| and μ = C(P )/k. We set W (0, l) = 0
for any 1 ≤ l ≤ k and W (i, 1) = |C(P1i) − μ| for any 1 ≤ i ≤ n. Thus, in
a straightforward manner, one can find an optimal partition of P in O(n2k)
time. To reduce the running time, we prove that the matrix involving the values
W (i, l) is totally monotone [2], and thus the linear time row-minima algorithm
[2] can be applied. Consequently, the above DP can be solved in O(nk) time.
The details are omitted due to the space limit. Not that if μ is not C(P )/k but
an arbitrary value, the above result is still applicable.

For the Ld path equipartition problem, since Monge property has already been
proved in [12], we simply point out here (without giving any further details) that
it can be modeled as finding a shortest path with k edges in a concave Monge
graph, and thus is solvable in O(T ) time [3,22].

References

1. Aggarwal, P.K., Sharir, M.: Efficient algorithms for geometric optimization. ACM
Computing Surveys 30(4), 412–458 (1998)

2. Aggarwal, A., Klawe, M., Moran, S., Shor, P., Wilbur, R.: Geometric applications
of a matrix-searching algorithm. Algorithmica 2, 195–208 (1987)

3. Aggarwal, A., Schieber, B., Tokuyama, T.: Finding a minimum weight k-link path
in graphs with concave Monge property and applications. Discrete & Computa-
tional Geometry 12, 263–280 (1994)

4. Auletta, V., Parente, D., Persiano, G.: Placing resources on a growing line. Journal
of Algorithms 26(1), 87–100 (1998)



218 D.Z. Chen and H. Wang

5. Chandrasekaran, R., Tamir, A.: Algebraic optimization: The Fermat-Weber loca-
tion problem. Mathematical Programming 46(2), 219–224 (1990)

6. Drezner, Z., Hamacher, H.W.: Facility Location: Applications and Theory.
Springer, New York (2004)

7. Dyer, M.E.: On a multidimensional search technique and its application to the
Euclidean one centre problem. SIAM Journal on Computing 15(3), 725–738 (1986)

8. Frederickson, G.N.: Optimal algorithms for tree partitioning. In: Proc. of the 2nd
Annual ACM-SIAM Symposium of Discrete Algorithms, pp. 168–177 (1991)

9. Gabow, H., Bentley, J., Tarjan, R.: Scaling and related techniques for geometry
problems. In: Proc. of the 16th Annual ACM Symposium on Theory of Computing
(STOC), pp. 135–143 (1984)

10. Galil, Z., Park, K.: A linear-time algorithm for concave one-dimensional dynamic
programming. Information Processing Letters 33(6), 309–311 (1990)

11. Hassin, R., Tamir, A.: Improved complexity bounds for location problems on the
real line. Operations Research Letters 10, 395–402 (1991)

12. Ho, P.-H., Tamir, A., Wu, B.Y.: Minimum Lk path partitioning – An illustration
of the Monge property. Operations Research Letters 36(1), 43–45 (2008)

13. Klawe, M.M.: A simple linear time algorithm for concave one-dimensional dynamic
programming. Technical Report 89-16. University of British Columbia, Vancouver,
Canada (1989)

14. Larmore, L., Schieber, B.: On-line dynamic programming with applications to
the prediction of RNA secondary structure. Journal of Algorithms 12(3), 490–515
(1991)

15. Lee, D.T., Wu, Y.F.: Geometric complexity of some location problems. Algorith-
mica 1(1-4), 193–211 (1986)

16. Liverani, M., Morgana, A., Simeone, B., Storchi, G.: Path equipartition in the
Chebyshev norm. European Journal of Operational Research 123(2), 428–435
(2000)

17. Love, R.F.: One-dimensional facility location-allocation using dynamic program-
ming. Management Science 22(5), 614–617 (1976)

18. Manne, F., Sørevik, T.: Optimal partitioning of sequences. Journal of Algo-
rithms 19(2), 235–249 (1995)

19. Megiddo, N.: Linear-time algorithms for linear programming in R3 and related
problems. SIAM Journal on Computing 12(4), 759–776 (1983)

20. Megiddo, N., Zemel, E., Hakimi, S.L.: The maximum coverage location problem.
SIAM J. on Algebraic and Discrete Methods 4(2), 253–261 (1983)

21. Olstad, B., Manne, F.: Efficient partitioning of sequences. IEEE Transactions on
Computers 44(1995), 1322–1326 (1995)

22. Schieber, B.: Computing a minimum weight k-link path in graphs with the concave
Monge property. Journal of Algorithms 29(2), 204–222 (1998)

23. van Hoesel, S., Wagelmans, A.: On the p-coverage problem on the real line. Statis-
tica Neerlandica 61(1), 16–34 (2007)

24. Woeginger, G.J.: Monge strikes again: optimal placement of web proxies in the
Internet. Operations Research Letters 27(3), 93–96 (2000)



Multicut in Trees Viewed through the Eyes of

Vertex Cover

Jianer Chen1,�, Jia-Hao Fan1, Iyad A. Kanj2,��,
Yang Liu3, and Fenghui Zhang4

1 Department of Computer Science and Engineering, Texas A&M University,
College Station, TX 77843

{chen,grantfan}@cs.tamu.edu
2 School of Computing, DePaul University, 243 S. Wabash Avenue,

Chicago, IL 60604
ikanj@cs.depaul.edu

3 Department of Computer Science, University of Texas-Pan American,
Edinburg, TX 78539
yliu@cs.panam.edu

4 Google Kirkland, 747 6th Street South, Kirkland, WA 98033
fhzhang@gmail.com

Abstract. We take a new look at the multicut problem in trees through
the eyes of the vertex cover problem. This connection, together with
other techniques that we develop, allows us to significantly improve the
O(k6) upper bound on the kernel size for multicut, given by Bous-
quet et al., to O(k3). We exploit this connection further to present a
parameterized algorithm for multicut that runs in time O∗(ρk), where
ρ = (

√
5+1)/2 ≈ 1.618. This improves the previous (time) upper bound

of O∗(2k), given by Guo and Niedermeier, for the problem.

1 Introduction

Let F be a forest (i.e., a collection of disjoint trees). A request is a pair (u, v),
where u, v ∈ V (F). Let R be a set of requests. A subset of edges E′ ⊆ E(F)
is said to be an edge cut, or simply a cut, for R if for every request (u, v) in R,
there is no path between u and v in F−E′. The size of a cut E′ is |E′|. A cut E′

is minimum if its cardinality is minimum among all cuts. The (parameterized)
multicut problem in trees is defined as follows:

multicut
Given: A forest F and a set of requests R ⊆ V (F)× V (F).
Parameter: A nonnegative integer k.
Question: Is there a cut for R of size at most k?

� The work of the first two authors was supported in part by the USA National Science
Foundation under the Grants CCF-0830455 and CCF-0917288.

�� Supported in part by a DePaul University Competitive Research Grant.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 219–230, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



220 J. Chen et al.

The multicut problem has applications in networking [5]. The problem is
known to be NP-hard, and its optimization version can be approximated to
within ratio 2 [7]. We consider the multicut problem from the parameterized
complexity perspective. We mention that the parameterized complexity of sev-
eral graph separation problems, including variants of the multicut problem,
was studied with respect to different parameters by Marx in [9]. Guo and Nie-
dermeier [8] showed that the multicut problem is fixed-parameter tractable
by giving an O∗(2k) time algorithm for the problem. (The asymptotic notation
O∗(f(k)) denotes time complexity of the form f(k) · nO(1), where n is the input
length.) They also showed that multicut has an exponential-size kernel. Re-
cently, Bousquet, Daligault, Thomassé, and Yeo, improved the upper bound on
the kernel size for multicut to O(k6) [3].

In this paper we take a new look at multicut through the eyes of the
vertex cover problem. This connection allows us to give an upper bound
of O(k3) on the kernel size for multicut, significantly improving the previous
O(k6) upper bound given by Bousquet et al. [3]. We exploit this connection
further to give a parameterized algorithm for multicut that runs in O∗(ρk)
time, where ρ = (

√
5 + 1)/2 ≈ 1.618 (golden ratio) is the positive root of the

polynomial x2 − x− 1; this improves the O∗(2k) time algorithm, given by Guo
and Niedermeier [8]. To obtain the O(k3) upper bound on the kernel size, we
first group the vertices in the forest into O(k) groups. We then introduce an or-
dering that orders the leaves in a group with respect to every other group. This
ordering allows us to introduce a set of reduction rules that limits the number
of leaves in a group that have requests to the vertices in another group. At the
core of this set of reduction rules is a rule that utilizes the crown kernelization
algorithm for vertex cover [1]. All the above allows us to upper bound the
number of leaves in the reduced instance by O(k2), improving the O(k4) upper
bound on the number of leaves obtained in [3]. Finally, we show that the size of
the reduced instance is at most the number of leaves in it multiplied by a linear
factor of k, thus yielding an upper bound of O(k3) on the size of the kernel.
To obtain the O∗(((

√
5 + 1)/2)k) time algorithm, we first establish structural

connections between multicut and vertex cover that allow us to simplify
the instance of multicut. We then exploit the simplified structure of the re-
sulting instance to present a simple search-tree algorithm for multicut that
runs in time O∗(((

√
5 + 1)/2)k). We note that, even though some connection

between multicut and vertex cover was observed in [7,8], this connection
was not developed or utilized in kernelization algorithms, nor in parameterized
algorithms for multicut.

We mention that, very recently, the multicut problem in general graphs was
shown to be fixed-parameter tractable independently by Bousquet, Daligault,
and Thomassé [2], and by Marx and Razgon [10], answering an open problem in
parameterized complexity theory.

Most of the proofs were omitted from this version due to the lack of space.



Multicut in Trees Viewed through the Eyes of Vertex Cover 221

2 Preliminaries

We assume familiarity with the basic notations and terminologies about graphs
and parameterized complexity (refer, for example, to [6,11]).

For a graph H we denote by V (H) and E(H) the set of vertices and edges of H ,
respectively. For a set of vertices S ⊆ V (H), we denote by H [S] the subgraph of H
induced by the set of vertices in S. For a vertex v ∈ H , H − v denotes H [V (H) \
{v}], and for a subset of vertices S ⊆ V (H), H − S denotes H [V (H) \ S]. By
removing a subgraph H ′ of H we mean removing V (H ′) from H to obtain H −
V (H ′). Two vertices u and v in H are said to be adjacent or neighbors if uv ∈
E(H). For two vertices u, v ∈ V (H), we denote by H−uv the graph (V (H), E(H)\
{uv}), and by H+uv the simple graph (V (H), E(H)∪{uv}). By removing an edge
uv from H we mean setting H = H − uv. For a subset of edges E′ ⊆ E(H), we
denote by H−E′ the graph (V (H), E(H)\E′). For a vertex v ∈ H , N(v) denotes
the set of neighbors of v in H . The degree of a vertex v in H , denoted degH(v), is
|N(v)|. The degree of H , denoted Δ(H), is Δ(H) = max{degH(v) : v ∈ H}. The
length of a path in a graph H is the number of edges in it. A matching in a graph
is a set of edges such that no two edges in the set share an endpoint. A vertex
cover for a graph H is a set of vertices such that each edge in H is incident to at
least one vertex in this set. A vertex cover for H is minimum if its cardinality is
minimum among all vertex covers of H ; we denote by τ(H) the cardinality/size
of a minimum vertex cover of H .

A tree is a connected acyclic graph. A leaf in a tree is a vertex of degree at
most 1. A nonleaf vertex in a tree is called an internal vertex. The internal degree
of a vertex v in a tree is the number of nonleaf vertices in N(v). For two vertices
u and v, the distance between u and v in T , denoted distT (u, v), is the length of
the unique path between u and v in T . A leaf x in a tree is said to be attached
to vertex u if u is the unique neighbor of x in the tree. A caterpillar is a tree
consisting of a path with leaves attached to the vertices on the path. A forest is
a collection of disjoint trees.

Let T be a tree with root r. For a vertex u �= r in V (T ), we denote by π(u) the
parent of u in T . A sibling of u is a child v �= u of π(u) (if exists), an uncle of u is a
sibling of π(u), and a cousin of u is a child of an uncle of u. A vertex v is a nephew
of a vertex u if u is an uncle of v. For a vertex u ∈ V (T ), Tu denotes the subtree
of T rooted at u. The children of a vertex u in V (T ), denoted children(u), are the
vertices in N(u) if u = r, and in N(u)−π(u) if u �= r. A vertex u is a grandparent
of a vertex v if π(v) is a child of u. A vertex v is a grandchild of a vertex u if u is
a grandparent of v.

A parameterized problem is a set of instances of the form (x, k), where x ∈ Σ∗

for a finite alphabet set Σ, and k is a non-negative integer called the parameter.
A parameterized problem Q is kernelizable if there exists a polynomial-time
reduction that maps an instance (x, k) of Q to another instance (x′, k′) of Q
such that: (1) |x′| ≤ g(k) for some recursive function g, (2) k′ ≤ k, and (3) (x, k)
is a yes-instance of Q if and only if (x′, k′) is a yes-instance of Q. The instance
(x′, k′) is called the kernel of (x, k).



222 J. Chen et al.

Let (F , R, k) be an instance of multicut, and let uv be an edge in E(F). If
we know that edge uv can be included in the solution sought, then we can remove
uv from F and decrement the parameter k by 1; we say in this case that we cut
edge uv. By cutting a leaf we mean cutting the unique edge incident to it. If T is a
rooted tree in F and u ∈ T is not the root, we say that we cut u to mean that we
cut the edge uπ(u). (Note that after cutting an edge uv that is not incident to a
leaf we obtain two trees: one containing u and the other containing v. Obviously,
any request in R that goes across the two trees can be discarded.) On the other
hand, if we know that edge uv can be excluded from the solution sought, we say
in this case that edge uv is kept, and we can contract it by identifying the two
vertices u and v, i.e., removing u and v and creating a new vertex with neighbors
(N(u)∪N(v))\{u, v}). If edge uv is contracted and w is the new vertex, then any
request in R of the form (u, x) or (v, x) is replaced by the request (w, x).

A leaf x in F is said to be good if there exists another leaf y such that x and
y are attached to the same vertex in F and (x, y) is a request in R; otherwise,
x is said to be a bad leaf. (We differ from the terminology used in [3]. What
we call good leaves are called bad leaves in [3], and vice versa.) We define an
auxiliary graph for F , denoted G for simplicity, as follows. The vertices of G
are the good leaves in F , and two vertices x and y in G are adjacent (in G) if
and only if x and y are attached to the same vertex of F and there is a request
between x and y in R. Without loss of generality, we shall call the vertices in
G with the same names as their corresponding good leaves in F , and it will be
clear from the context whether we are referring to the good leaves in F or to
their corresponding vertices in G. Note that there is no edge in G between two
good leaves that are attached to different vertices even though there could be a
request between them. Therefore, G consists of isolated subgraphs, each is not
necessarily connected and is induced by the set of good leaves that are attached
to the same vertex in F . For an internal vertex u ∈ F we denote by Gu the
subgraph of G induced by the good leaves that are attached to u (if any).

It is not difficult to see that if a set of vertices C in G is a vertex cover for G
then EC = {uw ∈ E(F) | w ∈ C}, which has the same cardinality as C, cuts all
the requests between every two good leaves that are attached to the same vertex
in F . On the other hand, for any cut, the edges in the cut that are incident to
the leaves in G is a vertex cover of G. It follows that the cardinality of the set
of edges that are incident to the leaves in G in a minimum cut of F is at least
the size of a minimum vertex cover for G.

3 The Kernel

In this section we prove an upper bound of O(k3) on the kernel size for multicut.
Let (F , R, k) be an instance of multicut, and let T be tree in F . Two requests
(u, v) and (p, q) in R are said to be disjoint if the path between u and v in F is
edge-disjoint from the path between p and q in F . A request (p, q) dominates a
request (u, v) if the path from p to q in F is a subpath of the path from u to
v in F . The following reduction rules for multicut are folklore, easy to verify,
and can be implemented to run in polynomial time (see [3,8] for proofs).



Multicut in Trees Viewed through the Eyes of Vertex Cover 223

Reduction Rule 1 (Useless edge). If no request in R is disconnected by the
removal of edge uv ∈ E(F), then remove edge uv from F .

Reduction Rule 2 (Useless pair). If (u, v) ∈ R where u, v are in two differ-
ent trees of F , then remove (u, v) from R.

Reduction Rule 3 (Unit request). If (u, v) ∈ R and uv ∈ E(F), then re-
move uv from F and decrement k by 1.

Reduction Rule 4 (Disjoint requests). If there are k + 1 pairwise disjoint
requests in R, then reject the instance (F , R, k).

Reduction Rule 5 (Unique direction). Let x be a leaf or an internal degree-
2 vertex in F . If all the requests from x have the same direction then: if x is a
leaf then contract the edge incident to x, and if x is an internal degree-2 vertex
then contract the edge incident to x that is not on any of the paths corresponding
to the requests from x.

Reduction Rule 6 (Domination/Inclusion). If a request (p, q) dominates
another request (u, v) then remove (u, v) from R.

It was shown in [3] that the number of good leaves (called bad leaves in [3])
is O(k2). We introduce a reduction rule next that allows us to derive the same
upper bound on the number of good leaves in F , and which uses Buss’ kernel-
ization algorithm for the vertex cover problem [4] (this reduction rule was
implicitly observed in [8]). (The vertex cover problem is: Given a graph H
and a parameter k, decide if there is a vertex cover for H of size at most k.)
Recall that the graph G is the graph whose vertices are the good leaves in F and
whose edges correspond to the requests between good leaves that are attached
to the same vertex in F .

Reduction Rule 7 (Bound on good leaves). Apply Buss’ algorithm for
vertex cover [4] to (G, k): for every vertex x in G whose degree (in G) is
at least k + 1, cut leaf x in F . If the number of remaining good leaves in F is
more than 2k2, then reject the input instance (F , R, k).

We shall assume henceforth that none of Reduction Rules 1 – 7 applies to
(F , R, k). We shall also assume that isolated vertices are removed from F at
all times. The statements in the following lemma were shown in [3]:

Lemma 1. The following are true:

a. (Claim 5 in [3]) The number of internal vertices in F of internal degree 1 is
at most k.

b. (Claim 6 in [3]) The number of internal vertices in F of internal degree at
least 3 is at most k.

We now define a grouping of the vertices in F into three types of groups.



224 J. Chen et al.

Definition 1. A type-I group consists of an internal vertex u of F that has at
least one good leaf attached to it, together with all the leaves (bad and good)
that are attached to u; we say that vertex u forms the type-I group. A type-II
group consists of an internal vertex u in F of internal degree at least 3 that
does not have any good leaves attached to it, together with all the (bad) leaves
attached to u (if any); we say that vertex u forms the type-II group. A type-III
group consists of the vertices (internal and leaves) of a caterpillar in F such that:
(1) every internal vertex of the caterpillar has internal degree 2 in F , and (2)
there is no request between any two vertices (internal-internal, leaf-internal, nor
leaf-leaf) of the caterpillar. Note that condition (2) implies that all the leaves
attached to the internal vertices in a type-III group are bad leaves.

Lemma 2. V (F ) can be partitioned in polynomial time into O(k) type-I, type-
II, and type-III groups.

Definition 2. Let Gi be a type-I, type-II, or a type-III group. The intergroup
edges of Gi are the edges in F with exactly one endpoint in Gi; the intergroup
degree of Gi, denoted di, is the number of intergroup edges of Gi. Note that if
Gi is a type-I or a type-II group, where u is the internal vertex in F that forms
Gi, then di is the internal degree of u in F . On the other hand, if Gi is a type-III
group then di = 2. The internal vertices of Gi are the internal vertices of F that
are in Gi. The internal edges of Gi are the edges between the internal vertices
of Gi. Note that only type-III groups can have internal edges. The leaves (resp.
good/bad leaves) of Gi are the leaves (resp. good/bad leaves) attached to the
internal vertices of Gi.

Lemma 3 ∑

Gi is a group
di = O(k).

We introduce next a reduction rule that is used to bound the number of bad
leaves that have requests to good leaves. We apply the crown reduction ker-
nelization algorithm, described in [1], to the instance (G, k) of vertex cover.
This algorithm partitions V (G) into three sets I, H , and O, such that: (1) I is
an independent set of G, and no edge exists between the vertices in I and those
in O, (2) there exists a minimum vertex cover of G containing H , (3) there exists
a matching M that matches every vertex in H to a vertex in I, and (4) |O| ≤ 3k
if a solution to (G, k) exists [1].

Reduction Rule 8 (Crown reduction). Apply the crown reduction algorithm
to (G, k) to partition V (G) into the three sets H, I, O. If |O| > 3k or |H | > k,
then reject the instance (F , R, k).

Consider Gu, where u is a vertex in F that forms a type-I group. Denote by
Hu, Iu, Ou the intersection of H, I, O with V (Gu), respectively. Clearly, the
matching M matching H into I in G induces a matching Mu in Gu that matches
Hu into Iu. Let OUTu be the set of vertices in Iu that are not matched by Mu

(i.e., Iu \ V (Mu)). We have the following lemma:



Multicut in Trees Viewed through the Eyes of Vertex Cover 225

Lemma 4. Let u be a vertex in F that forms a type-I group. Any vertex cover
of Gu that contains � vertices from OUTu has size at least τ(Gu) + �.

Corollary 1. Let u be a vertex in F that forms a type-I group Gi. If (F , R, k)
has a solution, then it has a solution that cuts at most di − 1 = du − 1 leaves
from OUTu, where du is the internal degree of u.

Lemma 5. If there exists a solution to the instance (F , R, k), then there exists
a solution S to (F , R, k) such that, for any group Gi: if Gi is a type-I or a type-II
group then S cuts at most di − 1 bad leaves of Gi, and if Gi is a type-III group
then the number of bad leaves and internal edges of Gi that are cut by S is at
most di − 1 = 1.

Next, we introduce reduction rules to bound the number of bad leaves in (F , R, k).
The main idea behind these reduction rules is to use several orderings (defined
later) on the set bad leaves of a group Gi w.r.t. to another group Gj , to limit
the number of bad leaves of Gi that have requests to bad leaves or vertices of
Gj to at most di × dj . For a leaf x of a group Gi, we shall refer to the internal
vertex in Gi that x is attached to by ν(x).

Reduction Rule 9. Let x be a vertex, and let Gi be a group. If there are at
least di bad leaves in Gi that have requests to x, then let Lx be the list containing
the bad leaves in Gi that have requests to x sorted in a nondecreasing order of
their distance to x, where ties are broken arbitrarily. For every bad leaf z in Gi

whose rank in Lx is at least di, replace the request (z, x) in R with the request
(ν(z), x).

Proof. Suppose that the above reduction rule applies to a group Gi in (F , R, k)
and some vertex x, and let (F , R′, k) be the resulting instance. Clearly, any
solution to (F , R′, k) is also a solution to (F , R, k). Therefore, it suffices to
prove that if there exists a solution for (F , R, k) then there also exists a solution
for (F , R′, k). Suppose that there is a solution to (F , R, k). By Lemma 5, we can
assume that there is a solution S that cuts at most di− 1 bad leaves from Gi. It
follows from the preceding statement that if y is the the bad leaf whose rank in
Lx is di, then S must cut an edge on the path between ν(y) and x (otherwise S
would cut the first di bad leaves in Lx). Consequently, any request (z, x) from
a bad leaf z whose rank in Lx is at least di that was replaced with the request
(ν(z), x) is cut by S, and S is a solution to (F , R′, k). 	


Definition 3. Let Gi and Gj be two distinct groups. If x is a bad leaf in Gi

that has a request to at least one internal vertex in Gj , then among all internal
vertices in Gj that x has requests to, we define the vertex-offset of x with respect
to Gj , denoted v-offsetj(x), to be the vertex of minimum distance to x. If x is a
bad leaf in Gi that has a request to a bad leaf in Gj , then among all bad leaves
in Gj that x has requests to, we define the leaf-offset of x with respect to Gj ,
denoted l-offsetj(x), to be a leaf of minimum distance to x. Let u be the vertex
in Gj with the minimum distance to the vertices in Gi. We define an order �vj
on the set of vertex-offsets of the bad leaves in Gi that have requests to internal



226 J. Chen et al.

vertices in Gj as follows. For two vertex-offsets y and y′ of two bad leaves in Gi,
y �vj y′ if and only if the distance from u to y is smaller or equal to the distance
from u to y′. The �vj order on the vertex-offsets in Gj of the bad leaves in Gi

having requests to internal vertices in Gj induces an order �vj on the bad leaves
in Gi in a natural way: for two bad leaves x and x′ in Gi that have requests
to internal vertices in Gj : x �vj x′ if and only if v-offsetj(x) �vj v-offsetj(x′).
Similarly, we can define an order �lj on the set of leaf-offsets of the bad leaves
in Gi, which induces an order �lj on the bad leaves in Gi (that have requests to
bad leaves in Gj) as follows: for two bad leaves x and x′ in Gi that have requests
to bad leaves in Gj : x �lj x′ if and only if l-offsetj(x) �vj l-offsetj(x′).

Reduction Rule 10. Let Gi and Gj be two distinct groups. If there are at least
di bad leaves in Gi that have requests to internal vertices of Gj , then consider
all bad leaves in Gi that have requests to internal vertices of Gj, and sort them
in a non-decreasing order with respect to the order �vj ; let Li be the sorted list.
For every bad leaf x in Li whose rank in Li is at least di, replace every request
(x, p) in R from x to an internal vertex p of Gj with the request (ν(x), p).

Reduction Rule 11. Suppose that Reduction Rule 9 does not apply to (F , R, k).
Let Gi and Gj be two distinct groups. If there are at least (di − 1)× dj + 1 bad
leaves in Gi that have requests to bad leaves in Gj , then consider all the bad
leaves in Gi that have requests to bad leaves of Gj, and sort them in a non-
decreasing order with respect to the order �lj; let Li be the sorted list. For every
bad leaf x in Gi whose rank in Li is at least (di − 1) × dj + 1, replace every
request (x, y) in R from x to a bad leaf y of Gj with the request (ν(x), y).

Reduction Rule 12. Suppose that Reduction Rule 9 does not apply to (F , R, k).
Let u be a vertex such that u forms a type-I group Gj , and let Gi �= Gj be a
group. If there are at least dj × (di − 1) + 1 many bad leaves in Gi that have re-
quests to leaves in OUTu, let Li be the list of bad leaves in Gi that have requests
to vertices in OUTu sorted in a non-decreasing order of their distance from u.
For each bad leaf x in Li whose rank is at least dj × (di − 1) + 1, replace every
request (x, y) in R from x to a leaf y in OUTu with the request (ν(x), y).

Definition 4. The instance (F , R, k) is said to be reduced if none of Reduction
Rules 1 – 12 is applicable to it.

This lemma follows from Reduction Rules 8–12 after summing over all groups:

Lemma 6. Let (F , R, k) be a reduced instance. The number of leaves in F is
O(k2).

This lemma follows from Lemma 2 and Lemma 6:

Lemma 7. Let (F , R, k) be a reduced instance. The number of vertices in F
that are not internal degree-2 vertices is O(k2).

Lemma 8. Let (F , R, k) be a reduced instance. The number of internal degree-2
vertices in F is O(k3).



Multicut in Trees Viewed through the Eyes of Vertex Cover 227

Theorem 1. The multicut problem has a kernel of at most O(k3) vertices.

Proof. The statement of the theorem follows directly from Lemmas 7 and 8, and
the fact that Reduction Rules 1 – 12 can be implemented in polynomial time. 	


4 The Algorithm

Let (F , R, k) be a reduced instance of multicut. Since (F , R, k) is reduced,
we can assume that every tree in F is nontrivial (i.e., contains at least two
vertices), and that there is at least one request between the vertices of every
tree in F . We shall assume that every tree in F is rooted at some internal
vertex in the tree (chosen arbitrarily). Let T be a tree in F rooted at a vertex
r. A vertex u ∈ V (T ) is important if all the children of u are leaves. For a
set of vertices V ′ ⊆ V (T ) and a vertex u ∈ V ′, u is farthest from r w.r.t.
V ′ if distT (u, r) = max{distT (w, r) | w ∈ V ′}. The following lemma, which
again emphasizes the importance of vertex cover for both kernelization and
parameterized algorithms for multicut, will be pivotal:

Lemma 9. Let (F , R, k) be a reduced instance of multicut. Let T be a tree
in F rooted at r. There exists a minimum cut Emin for the requests of R in T
such that, for every important vertex u ∈ V (T ), the subset of edges in Emin that
are incident to the children of u (if any) corresponds to a minimum vertex cover
of Gu. (Recall that Gu is the subgraph of G induced by the vertices in G that
correspond to the good leaves attached to u.)

Reduction Rule 13. Let (F , R, k) be a reduced instance of multicut, let T be
a tree in F rooted at r, and let u �= r be a vertex in T . If there exists no request
between a vertex in V (Tu) and a vertex in V (Tπ(u)) \ V (Tu) then contract the
edge uπ(u).

Reduction Rule 14. Let (F , R, k) be a reduced instance of multicut, let T
be a tree in F rooted at r, and let u be an important vertex in T such that
Δ(Gu) ≤ 2. If there exists a (leaf) child l of u that is not in any minimum
vertex cover of Gu, then contract the edge ul.

Reduction Rule 15. Let (F , R, k) be a reduced instance of multicut, let T
be a tree of F rooted at r, and let w be an important vertex in T such that
Δ(Gw) ≤ 2. For every path in Gw of even length, cut the leaves in children(w)
that correspond to the unique minimum vertex cover of P .

Definition 5. Let (F , R, k) be a reduced instance of multicut, let T be a tree
of F rooted at r, and let w �= r be an important vertex in T . A request between
a vertex in V (Tw) and a vertex in V (Tπ(w)) \ V (Tw) is called a cross request.

Reduction Rule 16. Let (F , R, k) be a reduced instance of multicut, let T
be a tree rooted at r in F , and let w �= r be an important vertex in T such that
Δ(Gw) ≤ 2. If there is a minimum vertex cover of Gw such that cutting the
leaves in this minimum vertex cover cuts all the cross requests from the vertices
in V (Tw) then contract wπ(w).



228 J. Chen et al.

Definition 6. The instance (F , R, k) of multicut is said to be strongly reduced
if (F , R, k) is reduced and none of Reduction Rules 13 – 16 is applicable to it.

Proposition 1. Let (F , R, k) be a strongly reduced instance, and let T be a tree
in F rooted at a vertex r.
(i) For any vertex u ∈ V (T ), there exists no request between u and π(u).
(ii) For any vertex u �= r in V (T ), there exists a request between some vertex

in V (Tu) and some vertex in V (Tπ(u)) \ V (Tu).
(iii) For any internal vertex u ∈ V (T ), there exists at least one request between

the vertices in V (Tu)− u.
(iv) For any important vertex w ∈ V (T ) such that Δ(Gw) ≤ 2 and any child u

of w, there exists a request between u and a sibling of u, and hence all the
children of an important vertex are good leaves.

(v) For any important vertex w ∈ V (T ) such that Δ(Gw) ≤ 2, Gw contains no
path of even length.

(vi) For any important vertex w �= r in V (T ) such that Δ(Gw) ≤ 2, there is no
minimum vertex cover of Gw such that cutting the leaves in this minimum
vertex cover cuts all the cross requests from the vertices in V (Tw).

Let (F , R, k) be a strongly reduced instance of multicut. The algorithm is a
branch-and-search algorithm, and its execution can be depicted by a search tree.
The running time of the algorithm is proportional to the number of leaves in the
search tree, multiplied by the time spent along each root-leaf path, which will
be polynomial in k. Therefore, the main step in the analysis of the algorithm is
to derive an upper bound on the number of leaves L(k) in the search tree. We
shall assume that the instance (F , R, k) is strongly reduced before every branch
of the algorithm, and that the branches are considered in the listed order. We
first make the following observations.

Observation 2. Let T be a tree in F rooted at r, let w �= r be an important
vertex in T , and let S ⊆ children(w) be such that S is contained in some
minimum vertex cover of Gw. If edge wπ(w) is in some minimum cut of T ,
then the edges incident to the leaves of any minimum vertex cover of Gw are
contained in some minimum cut: simply replace all the edges that are incident to
the children of w in a minimum cut that contains wπ(w) with the edges incident
to the leaves corresponding to the desired minimum vertex cover of Gw. Since
S is contained in some minimum vertex cover of Gw, there is a minimum cut
that contains the edges that are incident to the (leaf) children of w that are in
S. Therefore, if we choose edge wπ(w) to be in the solution, then we can choose
the edges in {wu | u ∈ S} to be in the solution as well. If we choose to cut the
children of w that are in S when we cut edge wπ(w) in a branch, then we say
that we favor the vertices in S in this branch; this observation will be very useful
when branching. If S consists of a single vertex u, we simply say that we favor
vertex u. Note that if we favor the vertices in S, then using the contrapositive
of the statement “if w is cut then the vertices in S are cut”, if we decide not to
cut a certain vertex in S in a branch, then we can assume that w will not be cut
as well in the same branch. If we decide not to cut an edge in a certain branch,
we say that the edge is kept and we can contract it.



Multicut in Trees Viewed through the Eyes of Vertex Cover 229

Observation 3. Let T be a tree in F and let w ∈ V (T ) be an important
vertex. Let v ∈ Gw, and recall that degG(v) denotes the degree of v in Gw.
By Lemma 9, we can assume that the set of edges in Tw that are contained in
the solution that we are looking for corresponds to a minimum vertex cover of
Gw. Since any minimum vertex cover of Gw either contains v, or excludes v and
contains its neighbors, we can branch by cutting v in the first side of the branch,
and by cutting the neighbors of v in Gw in the second side of the branch. Note
that by part (iv) of Proposition 1, and the fact that there is no request between
a child and its parent (unit request rule), there must be at least one request
between v and another child of w, and hence, degG(v) ≥ 1. Therefore, we have:

BranchRule 4. Let T be a tree in F , and let w ∈ V (T ) be an important vertex.
If there exists a vertex v ∈ Gw such that degG(v) ≥ 3, then branch by cutting
v in the first side of the branch, and by cutting the neighbors of v in Gw in the
second side of the branch. Cutting v reduces the parameter k by 1, and cutting
the neighbors of v in Gw reduces k by at least 3. Therefore, the number of leaves
in the search tree of the algorithm, L(k), satisfies L(k) ≤ L(k − 1) + L(k − 3).

We can now assume that for any important vertex w, we have Δ(Gw) ≤ 2,
and hence, Gw consists of a collection of disjoint paths and cycles. Let T be
a tree in F rooted at r. Among all important vertices in T , let w be a vertex
that is farthest from r. Since every subtree of T contains an important vertex,
w must be a farthest vertex among all internal vertices of T . By part (ii) of
Proposition 1, there exists a cross request between a vertex in V (Tw) and a
vertex in V (Tπ(w))\V (Tw). Since w is farthest from r, the cross request between
a vertex in V (Tw) and a vertex in V (Tπ(w)) \ V (Tw) can be either a request: (1)
between w and a sibling of w, (2) between w and a nephew of w, (3) between a
child of w and its grandparent π(w), (4) between a child of w and an uncle, or
(5) between a child of w and a cousin. By symmetry (and by the choice of w),
the case when there is a request between w and a nephew is identical to the case
when there is a request between a child of w and an uncle. Therefore, we shall
only treat the latter case.

Case 1. Vertex w has a cross request to a sibling w′. In this case at
least one of w, w′ must be cut. We branch by cutting w in the first side of the
branch, and cutting w′ in the second side of the branch. Note that by part
(iii) of Proposition 1, the size of a minimum vertex cover in Gw is at least 1.
Moreover, a minimum vertex cover for Gw can be computed in polynomial time
since Δ(Gw) ≤ 2. Therefore, in the first side of the branch we end up cutting
the edges corresponding to a minimum vertex cover of Gw, which reduces the
parameter further by at least 1. Therefore, we have L(k) ≤ L(k− 2) + L(k− 1).

Case 2. There is a child u of w that has a cross request to its grand-
parent π(w). In this case we can cut u. This can be justified as follows. Any
minimum cut of T either cuts wπ(w) or does not cut it. If the minimum cut
cuts wπ(w), then we can assume that it cuts edge wu as well because by Reduc-
tion Rule 14, u is in some minimum vertex cover of Gw. On the other hand, if the



230 J. Chen et al.

minimum cut does not cut wπ(w), then it must cut edge wu since (u, π(w)) ∈ R.
It follows that in both cases there is a minimum cut that cuts wu. We have
L(k) ≤ L(k − 1) in this case.

Case 3. There is a child u of w such that u has a cross request to an
uncle w′. We favor u and branch as follows. In the first side of the branch we
cut u. In the second side of the branch we keep edge uw, and cut the neighbor(s)
of u in Gw. Since u is not cut in the second side of the branch and u is favored,
w is not cut as well, and hence w′ must be cut. Noting that u has at least one
neighbor in Gw, L(k) satisfies L(k) ≤ L(k − 1) + L(k − 2).

Case 4. There is a child u of w such that u has a cross request to a
cousin u′. Let w′ = π(u′) and note that π(w) = π(w′). We favor u and u′. We
branch as follows. In the first side of the branch we cut u. In the second side
of the branch uw is kept and we cut the neighbor(s) of u in Gw. Since in the
second side of the branch uw is kept and u is favored, wπ(w) is kept as well,
and u′ must be cut (otherwise, w′ is not cut as well because u′ is favored) since
(u, u′) ∈ R. Therefore, L(k) satisfies L(k) ≤ L(k − 1) + L(k − 2).

Theorem 5. The multicut problem can be solved in time O∗(ρk), where ρ =
(
√

5 + 1)/2 ≈ 1.618 is the positive root of the polynomial x2 − x− 1.

References

1. Abu-Khzam, F.A., Collins, R., Fellows, M., Langston, M., Suters, W., Symons, C.:
Kernelization algorithms for the vertex cover problem: theory and experiments. In:
Proceedings of ALENEX, pp. 62–69 (2004)

2. Bousquet, N., Daligault, J., Thomassé, S.: Multicut is fpt. In: CoRR,
abs/1010.5197, 2010 (to appear in STOC 2011)

3. Bousquet, N., Daligault, J., Thomassé, S., Yeo, A.: A polynomial kernel for multicut
in trees. In: Proceedings of STACS, pp. 183–194 (2009)

4. Buss, J., Goldsmith, J.: Nondeterminism within P. SIAM Journal on Computing 22,
560–572 (1993)

5. Costa, M., Letocart, L., Roupin, F.: Minimal multicut and maximal integer mul-
tiflow: A survey. European Journal of Operational Research 162(1), 55–69 (2005)

6. Downey, R., Fellows, M.: Parameterized Complexity. Springer, New York (1999)
7. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms

for integral flow and multicut in trees. Algorithmica 18(1), 3–20 (1997)
8. Guo, J., Niedermeier, R.: Fixed-parameter tractability and data reduction for mul-

ticut in trees. Networks 46(3), 124–135 (2005)
9. Marx, D.: Parameterized graph separation problems. Theoretical Computer Sci-

ence 351(3), 394–406 (2006)
10. Marx, D., Razgon, I.: Fixed-parameter tractability of multicut parameterized by

the size of the cutset. In: CoRR, abs/1010.3633, 2010 (to appear in STOC 2011)
11. West, D.B.: Introduction to graph theory. Prentice Hall Inc., Upper Saddle River

(1996)



Beyond Triangulation: Covering Polygons with

Triangles

Tobias Christ

Institute of Theoretical Computer Science, ETH Zürich, Switzerland

Abstract. We consider the triangle cover problem. Given a polygon P ,
cover it with a minimum number of triangles contained in P . This is a
generalization of the well-known polygon triangulation problem. Another
way to look at it is as a restriction of the convex cover problem, in which
a polygon has to be covered with a minimum number of convex pieces.
Answering a question stated in the Handbook of Discrete and Computa-
tional Geometry, we show that the convex cover problem without Steiner
points is NP-hard. We present a reduction that also implies NP-hardness
of the triangle cover problem and which in a second step allows to get
rid of Steiner points. For the problem where only the boundary of the
polygon has to be covered, we also show that it is contained in NP and
thus NP-complete and give an efficient factor 2 approximation algorithm.

1 Introduction

A triangulation of a polygon P is a set of triangles such that their union is P and
the intersection of two triangles is either empty, a common vertex or an edge.
It is well-known that triangulations always exist and how to construct one for a
given polygon. Furthermore, it is possible to triangulate every polygon without
introducing any new vertices that have not been polygon vertices before, which
for a simple polygon with n vertices always results in a triangulation consisting
of n−2 triangles. So usually one forbids new vertices (Steiner points) right away
and insists that the edges of the triangles are either diagonals or polygon edges.

Depending on the application, we might not care about the way the triangles
can intersect, which leads to the natural problem of describing a polygon as a
union of arbitrary triangles. A triangulation is always a solution to this prob-
lem, but having dropped the second condition, we might be able to find such a
description of a simple polygon using less than n− 2 triangles. We can see this
as a variant of the polygon cover problem: one wants to find a set of primitive
polygons inside a polygon P such that they cover a certain subset of P . In the
usual variant, this subset is the whole interior of P itself, in the boundary cover
problem just the boundary ∂P and in the vertex cover problem the vertex set
V (P ). Several ways of specifying different primitives have been proposed. The
classical art gallery problem is nothing else than the problem of covering a poly-
gon with star-shaped polygons. Beside that, pseudotriangles, spiral, convex, and
monotone polygons have been studied as possible primitives [1]. Using triangles
as primitives we arrive at the same problem as described above. Usually, one

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 231–242, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



232 T. Christ

wants to minimize the number of primitives in a solution. Here, we formulate it
as a decision problem. The Triangle Cover Problem: Given a polygonal region
P and a positive integer k, are there triangles t1, . . . , tk such that P =

⋃k
i=1 ti?

Refining the proof of Culberson and Reckow [2] for the convex cover problem,
we show NP-hardness of the triangle cover problem. The reduction can be shown
to be gap-preserving, implying APX-hardness. Then we modify the reduction to
settle the complexity of the convex cover problem without Steiner points, a
question not addressed by Culberson and Reckow and appearing as an open
problem in the Handbook of Discrete and Computational Geometry [3].

As it is the case for many geometrical problems (e.g. the minimum-weight
triangulation problem [4]), it is not clear whether these covering problems are in
NP (see the remarks in O’Rourke [5], p. 232 or in Culberson and Reckow [2] in
the conclusion). Forbidding Steiner points, the covering problems obviously are
in NP, as we can describe a solution in terms of the polygon vertices and check
it efficiently. The typical decomposition problems for rectilinear polygons are
trivially in NP, too. But for the general variants of the cover problems allowing
Steiner points, it is not obvious how a solution can be described in terms of the
input. The situation changes if the primitives are required to cover the boundary
of the input region only. The Boundary Cover Problem: Given a polygonal region
P and an integer k, are there triangles t1, . . . , tk ⊆ P such that ∂P ⊂

⋃k
i=1 ti?

As for the convex boundary cover problem [2], the boundary cover problem with
triangles remains NP-hard. But interestingly, it can be shown to be in NP. The
question remains whether we can find efficient approximation algorithms. The
usual approaches for covering problems boil down to finding an abstract set
cover greedily and therefore lead to factor O(log n) approximation algorithms
[6,7]. But in the context of triangles, this is not satisfactory. If the input polygon
does not have any collinear edges, a triangle can cover at most three polygon
edges. So simply triangulating is a factor 3 approximation algorithm for the
problem of minimizing the number of triangles in a cover, both for the boundary
and the general cover problem. Having shown APX-hardness on the other side,
there remains a small range for interesting approximation ratios only. For the
boundary cover problem, we give an efficient factor 2 approximation algorithm.

Related Work. It has been known for a long time that covering a polygon P
with a minimal number of convex polygons is NP-hard, as shown in 1983 by
O’Rourke and Supowit [8] along with other polygon cover problems. In 1988,
Culberson and Reckow [2] gave another NP-hardness proof, which also works
for polygons without holes. In 2001, Eidenbenz and Widmayer [7] presented
a O(log n)-approximation algorithm for the convex cover problem and further-
more, they observed that the reduction of Culberson and Reckow also implies
APX-hardness of the problem. If we look at the problem of partitioning a poly-
gon instead of covering it, the situation changes. We say a set of polygons is a
partition of P if they are pairwise internally disjoint and their union equals P . It
is possible to partition a simple polygon into convex pieces in time O(n3) using
dynamic programming [9,10]. If we allow the polygons to contain holes, the prob-
lem turns NP-hard as shown by Lingas in 1983 [11]. The proof by Lingas uses



Beyond Triangulation: Covering Polygons with Triangles 233

Table 1. Time complexity of decomposing a polygon on n vertices. The mark ∗ indi-
cates the results of this paper. GP stands for general position.

Steiner pts. convex triangles

cover interior
No NP-complete [∗] NP-complete (GP: O(n log n)) [∗]
Yes NP-hard [2] NP-hard [∗]

cover boundary Yes NP-hard [2] NP-complete [∗] (GP: open)

partition No O(n3) [13] O(n3) [12] (GP: O(n) [14])
simple polygons Yes O(n3) [9] open [12]
partition polygon No NP-cpl. [8] NP-cpl. [11] (GP: O(n log n) [12])

with holes Yes NP-hard [11] NP-hard [11]

Steiner points. But as he points out, the NP-hardness of the convex partition
problem disallowing Steiner points follows using the reduction of O’Rourke and
Supowit [8] reducing from planar 3SAT. If we ask for a partition into triangles
instead of convex polygons, it is known that it is possible to find a minimal parti-
tion efficiently if we do not allow Steiner points, as shown by Asano, Asano, and
Pinter [12] and later refined by Chen and Chang [10]. Note that if we restrict to
polygons in general position and still do not allow Steiner points, the problem of
partitioning a polygon into triangles is equivalent to the well-known problem of
triangulating a polygon. If we consider polygons with holes, again the problem
turns NP-hard as shown by Lingas [11]. The different results are summarized in
Table 1. In this work we close many gaps left by the research in the 1980’s, but
note that there are open problems still. In particular, it remains open if more of
the “NP-hard” entries in the table can be replaced by “NP-complete”.

Notation. We think of polygons as closed subsets of the plane including the
interior, i.e., a simple polygon P is a simply connected closed subset of the
plane whose boundary ∂P is a simple cycle of line segments. Simple means that
nonadjacent segments do not intersect and adjacent segments at their common
endpoint only. A polygon P is in general position if no more than two of its
vertices lie on a common line. We denote the edges of P by E(P ), the vertices
by V (P ) and n(P ) = |V (P )|. By a polygonal region we mean a closed subset P of
the plane such that its boundary ∂P is a finite disjoint union of simple cycles of
line segments. A polygonal region may consist of several connected components,
each of which being a polygon possibly containing holes.

2 NP-Hardness of the Triangle Cover Problem

To show NP-hardness we reduce the Boolean satisfiability problem (SAT) to the
triangle cover problem. Let F be a CNF formula with clauses C1, . . . , Cm on the
variables x1, . . . , xn. We call the number of clauses a variable xi appears in the
degree of xi and denote it by deg(xi) := |{Cj : xi ∈ Cj or xi ∈ Cj}|.

We define different gadgets, all of which are simple polygons. We will glue
them to the boundary of a big triangle to form one big simple polygon. The first



234 T. Christ

Ri1
Ri2

Ri3
Ri4

Ri5 Ri6
Ri7

Switch gadget

Clause gadget Rj

Fig. 1. A variable gadget Qi for xi with deg xi = 7, xi ∈ Ci1 , Ci2 , Ci3 , Ci4 and xi ∈
Ci5 , Ci6 , Ci7 . Special points are marked by dots, uncovered spots by disks.

basic ingredient are the switch gadgets, see Fig. 1. Such a switch gadget can be
covered optimally in essentially two ways. Thus, it can be used to encode the
truth value of a variable. Depending on how it is covered, one of the triangles
in its cover can be extended through the opening (i.e., where it is going to get
glued to the rest) to cover additional points far away. The other basic ingredient
is the clause gadget. We define a clause gadget Rj for every clause Cj . If we use
two triangles to cover it, there remains a small spot uncovered (depicted by a
cross). For every variable xi, we define a variable gadget Qi, which consists of
a big main switch gadget and deg(xi) many small switches. To the opposite of
every small switch, we put a small clause-gadget-like structure: like the clause
gadgets, they can be covered with two triangles leaving an uncovered spot. But in
contrast to the clause gadgets, where the uncovered spots are shielded away from
each other, now they lie more to the interior. The small switches corresponding
to clauses Cj with xi ∈ Cj are put to the bottom left of the main switch, the
small switches corresponding to clauses Cj with xi ∈ Cj are put to the right.
Depending on how the main switch is covered, namely which of the possible
triangles gets stretched out, either the uncovered spots of the left clause-gadget-
like structures or the uncovered spots of the right clause-gadget-like structures
get covered. If the spots at the bottom right get covered, the small switches at
the bottom left that correspond to positive occurrences of xi can be used to cover



Beyond Triangulation: Covering Polygons with Triangles 235

the small spot left by the corresponding clause gadgets, but the small switches
at the top right (corresponding to negative occurrences of xi) cannot cover their
corresponding clause gadget, because we are forced to extend their other free
triangle so they can cover the small spots left by their own clause-gadget-like
structures at the top left. If the spots at the top left get covered by the main
switch, then the exact opposite happens: the small switches at the top right can
be used to cover their corresponding clause gadgets, whereas the small switches
at the bottom left are bound to stay inside the variable gadget. (In addition to
the clause-gadget-like structures leaving an uncovered spot, there are two more
smaller such structures that do not leave an uncovered spot and are merely used
to connect the others with the main switch leaving room for the triangle of the
main switch if it should get extended.) Finally, glue the variable gadgets to the
upper edge and the clause gadgets to the lower edge of a huge triangle and
adjust the small switches in the variable gadgets such that their free triangle
can cover what it is supposed to cover, namely exactly the uncovered spot of the
specific clause gadget the small switch stands for. The whole procedure results
in a simple polygon φ(F ). Note that φ(F ) is not in general position as there are
many collinear edges. It is possible to get rid of them, but for lack of space, we
do not give the details here.

Lemma 1. If F is satisfiable, then φ(F ) can be covered with k triangles.

Proof. Depending on the truth value of xi we cover the variable gadget Qi either
extending the left or the right triangle of the main switch with 6 deg(xi) + 10
triangles as shown in Fig. 1, and the clause gadgets with two triangles each. As F
is satisfied by the assignment, for every clause there is at least one variable gadget
that is covered in such a way that there is a long thin triangle that extends to
the uncovered spot of the corresponding clause gadget. The huge space between
variable and clause gadgets can be covered by one additional triangle. We get a
cover with k =

∑n
i=1(6 deg(xi) + 10) + 2m + 1 triangles. ��

Lemma 2. If φ(F ) can be covered with k triangles, then F is satisfiable.

Proof. Fix special points as shown in Fig. 1 by disks. Additionally, put one special
point somewhere into the huge triangle connecting everything invisible to any
other special point. Notice that all special points are pairwise invisible. No two
of them can be covered by the same triangle. There are exactly k special points,
so each triangle covers exactly one special point. Now we derive a satisfying
assignment. Look at Qi. In the middle of its main switch there is a central
point denoted by a cross Fig. 1. At least one triangle covers it. Now the only
special points that are visible from there are the leftmost and the rightmost
convex vertex of the main switch. So the only triangles that are able to cover
the cross are those corresponding to these two special points. At most one of
the two does not cover the central point, so we define the truth value of xi

accordingly: If the triangle corresponding to the left special point does not cover
the central point, we define xi to be positive, else we set xi to negative. Now
we claim that this yields a satisfying assignment of F . Look at a clause gadget



236 T. Christ

Rj . We show that Cj is satisfied. There is a triangle t in the cover that covers
the central point of Rj , again depicted by a cross. Now the only special points
visible from the central point of Rj are those belonging to small switches of
corresponding variable gadgets, i.e., variable gadgets Qi such that xi ∈ Cj or
xi ∈ Cj . So t corresponds to a small switch gadget of a variable gadget, say Qi,
and assume without loss of generality xi ∈ Cj . The central point of the small
clause-gadget-like structure that lies opposite of this small switch to the right
must be covered by a triangle, call it t′. Now because t covers the central point
of the clause gadget, it cannot cover the central point of the small switch gadget,
which therefore has to be covered by the other free triangle of the small switch,
which cannot be t′. So t′ must belong to the main switch of Qi and it cannot
cover the central point, which implies that the variable xi is positive. ��

3 Inapproximability

Lemma 3. If F is a 3-CNF where each variable has degree at most 13, then φ is
gap-preserving: If F is satisfiable, φ(F ) can be covered with k =

∑n
i=1(6 deg(xi)+

10) + 2m + 1 triangles. If at most a 1 − δ fraction of the clauses of F can be
satisfied, then we need at least (1 + δ/144)k triangles to cover φ(F ).

Proof. Let F be a 3-CNF where every variable has degree 13 and at most (1−δ)m
of the clauses can be satisfied. Assume for contradiction that φ(F ) can be covered
by less than (1+δ/144)k triangles. Consider a cover as in the proof of Lemma 2.
But now there might be up to δk/144 more triangles than special points. We
define a triangle to be uncontrollable if it does not cover any special point. If
there are several triangles covering the same special point, we arbitrarily pick one
to be responsible for the special point and call the other triangles uncontrollable
as well. Consider a variable gadget Qi. If one of the uncontrollable triangles
intersects Qi, it might happen that Qi is both positive and negative, in the sense
that both triangles of the small switches to the left and of the small switches to
the right extend down to the corresponding clause gadgets. There are strictly
less than δk/144 uncontrollable triangles, so at most that many variable gadgets
are ambiguous in that they cover both clause gadgets they appear positively in
and clause gadgets they appear negatively in. So from the guarding we only get
a partial truth value assignment α. Go through the remaining unset variables
and set them to true or false depending on which satisfies more of the remaining
clauses. For each xi, deg(xi) ≤ 13. So there are at most 13 unsatisfied clauses xi

appears in. At most 6 of those remain unsatisfied after choosing a truth value for
xi. This leads to a complete assignment α′, which satisfies at least a 1−δ fraction
of the clauses: Look at a clause gadget Rj . There must be a triangle covering its
central point. Either there is one of the uncontrollable triangles directly covering
it (which it can do for at most one clause gadget) or there is a triangle of a small
switch of a variable gadget that covers it. If the latter is the case, then either
this variable gadget is unambiguous and so the clause already got satisfied by
the partial assignment α or the variable gadget is ambiguous and then there is
one of the uncontrollable triangles responsible for it. An uncontrollable triangle



Beyond Triangulation: Covering Polygons with Triangles 237

can either cover at most one central point of a clause gadget or it can cause
at most one variable gadget to be ambiguous. If a variable is ambiguous, after
choosing the better truth value for it, it leaves at most 6 clauses unsatisfied.
Therefore, an uncontrollable triangle is responsible for at most 6 clauses that
remain unsatisfied by α. At most 6δk/144 = δk/24 clauses remain unsatisfied.
An easy calculation shows k ≤ 24m. ��

Theorem 1. There is a constant δ > 0 such that it is NP-hard to approximate
the triangle cover problem within a factor smaller than 1 + δ.

Proof. For every ε > 0, there is a polynomial reduction from 3SAT to MAX3SAT
that maps satisfiable to satisfiable formulas and unsatisfiable to formulas where
at most a 7/8 + ε fraction of the clauses can be satisfied. Furthermore, there
is a reduction from MAX3SAT to MAX3SAT(13) such that satisfiable formulas
remain satisfiable and if at most a 1−γ fraction is satisfiable, at most a 1−γ/19
fraction is satisfiable in the reduced formula, for any γ > 0 [15]. So putting these
two reduction and φ together, we get a reduction from SAT to triangle cover such
that satisfiable formulas get mapped to polygons coverable with k triangles. And
unsatisfiable formulas get mapped to polygons where every cover needs at least
(1+δ/144)k = (1+γ/(19 ·144))k = ((1+(1/8−ε)/2736)k = (1+1/19152−ε′)k
triangles, for a constant ε′ we can make arbitrarily small. ��

4 Covering without Steiner Points

The Non-Steiner Triangle Cover Problem: Given a polygonal region P and an
integer k, are there triangles t1, . . . , tk with V (ti) ⊂ V (P ) such that P =

⋃k
i=1 ti?

Theorem 2. If P is a polygon in general position with h holes, then a Non-
Steiner triangle cover of P contains at least n(P ) + 2h − 2 triangles. If it has
exactly n(P ) + 2h− 2 triangles, then it is a triangulation of P .

Proof. Assume we have a Non-Steiner triangle cover of P consisting of k trian-
gles. Let v ∈ V (P ) and t be a triangle of the cover with v ∈ t. Because of the
general position assumption, this implies v ∈ V (T ). Define α(v) as the interior
angle of the polygon at a vertex v. The (interior) angles at v of all triangles cov-
ering v summed up must be at least α(v). Summing up this inequality over all
polygon vertices we get (n+2h−2)π =

∑
v∈V (P ) α(v) ≤ kπ. If we have equality,

then no two triangles overlap at any vertex v. We want to show that then it is
a triangulation. Assume there are two triangles t and t′ that overlap. A vertex
of t′ cannot be in the interior of t, neither can it be in the relative interior of
an edge of t. So we find a vertex v ∈ V (t) such that there is an edge e ∈ E(t′)
intersecting both edges of t incident to v. Pick for a fixed t the edge e of another
triangle t′ such that there is no other triangle edge crossing t between e and v.
Now look at the edge e. It must be a diagonal of P . On one of its sides there is
t′, on the other side there is another triangle t′′ it is an edge of. t′′ has a third
vertex w not incident to e. If w = v, we have a contradiction, because then t
and t′′ overlap at v, if w �= v, we get a contradiction to the choice of e. ��



238 T. Christ

This theorem shows that in the case of general position, an optimal Non-Steiner
cover is equivalent to a triangulation. A triangulation can be found in linear time
in the case of simple polygons [14] or in time O(n log n) for a polygon with holes
[12]. However, if we drop the general position assumption, there are examples
of polygons that can be covered by fewer than n− 2 triangles, think of the Star
of David for example. It turns out that finding an optimal Non-Steiner cover is
NP-hard if we allow collinear edges. To prove this, we basically use the same
reduction as before, we just have to get rid of all Steiner points. We adjust φ(F )
such that every triangle that appears in the solution as given in Lemma 1 has
all vertices on ∂φ(F ). Instead of only allowing polygon vertices to be triangle
vertices, we fix a finite set W with V (P ) ⊂ W ⊂ ∂P , which are the allowed
triangle vertices in a solution. We call W the set of generalized vertices.

Theorem 3. If P is a polygon and V (P ) ⊂ W ⊂ ∂P a finite set, then we can
compute a polygon P ′ in polynomial time, which is coverable with k+ |W \V (P )|
Non-Steiner triangles iff P can be covered by k triangles using only points in W .

Proof. Let m := |W \ V (P )|. Scale P such that its diameter is 1. Draw a line
through every pair of points in W . Let ε > 0 be smaller than the area of every
2-dimensional cell of this arrangement. Construct P ′ as follows. For every w ∈
W \V (P ) we attach a small spike such that the interior angle of the spike equals
arctan(ε/(k + m)), and the width of the spike is at most ε/(100(k + m)) and
small enough to make the spike fit without intersecting the polygon. If necessary,
tilt it a little bit such that the sector we get by prolonging the two edges of the
spike does not contain any point of W . First we observe that a k-cover of P using
only vertices in W carries over to a (k+m)-cover of P ′: Keep all the triangles as
they are and add one for every spike. Now assume that P has no k-cover on W .
So every possible set of k triangles in P using vertices from W leaves at least
one cell of the arrangement uncovered. Assume for contradiction that P ′ has a
Non-Steiner (k + m)-cover. At least one triangle has to cover the tip of a spike.
No triangle can cover two tips. All these m triangles have area strictly less than
ε/(k + m). So after removing them we adjust the remaining triangles that have
vertices on a spike-vertex by replacing these vertices by the point the spike came
from. This can decrease the area of a triangle by at most ε/(k+m) (every vertex
of the triangle gets moved by at most ε/(100(k+m))). We get a cover of P that
for sure leaves less than an (k + m)ε/(k + m) = ε area uncovered. ��

Theorem 4. The Non-Steiner triangle cover problem is NP-complete.

Proof. We adapt the reduction in Sect. 2 such that all triangle vertices lie on
∂φ(F ). See Fig. 2. This reduces SAT to the cover problem with a set of general-
ized vertices. We apply Theorem 3, yielding a polygon φ′(F ) := (φ(F ))′ where
all the generalized vertices have been replaced by spikes. φ′(F ) can be covered
with a certain number k of triangles if and only if the formula F is satisfiable. ��

Observe that this reduction works for convex covers as well, thus resolving a
question stated in the Handbook of Discrete and Computational Geometry [3].



Beyond Triangulation: Covering Polygons with Triangles 239

Fig. 2. How the gadgets can be adapted to get rid of Steiner points

The reduction yields a polygon φ′(F ) with collinear edges. But whereas in the
case of triangles the problem becomes easy if we ask for general position, in the
convex setting we can change the points slightly to achieve general position and
the problem remains NP-hard. Due to space limitations we omit the proof.

5 Covering the Boundary

We consider the setting where only the edges of P have to be covered by triangles,
which, however, still have to be inside P . We say a line segment s is covered by
a triangle t ⊆ P if t intersects s in more than just one point. If s ⊂ t, we say t
covers s completely. Otherwise, if only a subsegment of s is contained in t, we say
t covers s partly. In a cover of P , every edge has to be covered completely by some
triangle or partly by at least two triangles. In this setting, it is convenient to
allow triangles to be degenerate: line segments are also considered to be triangles.

Theorem 5. The boundary cover problem is NP-complete.

Proof. We show that the problem is in NP by restricting the set of possible
triangles in a solution. We define a triangle contained in a polygonal region P
to be nice if each of the three lines defined by its edges contains at least two
vertices of P . So nice triangles have a compact description in terms of the input.
We call a triangle problematic if it covers two polygon edges e, f ∈ E(P ) only
partly and one of its edges a has its startpoint in the relative interior of e and its
endpoint in the relative interior of f and does not cover any polygon edges. Note
that problematic triangles are not nice in general. Two of their defining lines are
given by polygon edges (namely by e and f) whereas the third triangle edge a
can be assumed to contain one polygon vertex v ∈ V (P ) (if not, just move a
outwards until it does) but not more. If we rotate a around v keeping the other
two defining lines fixed, the triangle covers more of, say, e while it covers less of
f , see Fig. 3. We call a = a(t) the free edge of the problematic triangle t.



240 T. Christ

e

f

t

v

p

q

t′

p′

t′′

e

f

t

vt′

p = p′

t′′

a(t) a(t)

Fig. 3. A problematic triangle and how its free edge (fat) gets rotated to make it fair

Let t be a triangle in a boundary cover of P . Replace t by a triangle t′ such
that t ∩ (∂P \ V (P )) ⊆ t′ ⊆ P and t′ is nice or problematic. If each edge of t
covers a polygon edge (partly or completely), then t is nice and we set t′ = t. If
an edge of t does not cover any edge of P , then the only points of ∂P it contains
are vertices of P . If only one of the edges of t covers a polygon edge, then we
can replace t by the degenerate triangle t′ which only consists of this one edge,
and therefore is nice. If t has exactly one edge a that does not cover any edge of
P , then either t is problematic and we set t′ = t or we can shrink t by moving a
and keeping the other two defining lines fixed until at least one of the endpoints
of a is on a polygon vertex v ∈ V (P ). Then we enlarge t again by rotating a
around v and keeping the rest fixed, until it contains a second polygon vertex.
This results in a triangle t′ which is nice and t∩ (∂P \V (P )) ⊆ t′. From now on
we assume that there are nice or problematic triangles only.

Let t be a problematic triangle whose free edge a(t) = pq does not cover
any edge and the other two edges cover the polygon edges e, f ∈ E(P ) partly,
p ∈ e and q ∈ f . In the cover there has to be another triangle t′ also covering
e and p ∈ t′. And there has to be a third triangle t′′ covering f and q ∈ t′′. We
may assume that a contains exactly one polygon vertex v ∈ V (P ) in its relative
interior. (If not, blow t up.) If one of the triangles t′ or t′′ is nice, shrink the
part of e covered by t (of f , respectively) rotating a around v until t ∩ t′ ∩ e
(t∩t′′∩f , respectively) is a single point, thus increasing the part it covers on the
other side. Then, t is not necessarily nice, but it has a compact description: two
of the lines defined by the edges are directly given by polygon vertices and the
third line through a is now defined by a polygon vertex and a vertex of another
triangle in the cover. See Fig. 3. We call such a triangle that can be described
by five polygon vertices and one vertex of another triangle fair. It might happen
that both t′ and t′′ are problematic as well. In this case, we say that t depends
on both t′ and t′′. Formally, we call two problematic triangles t and t′ dependent,
if they cover a common edge e ∈ E(P ) and t∩t′∩e = pp′, where p = e∩a(t) and
p′ = e∩a(t′) are the endpoints of the free edges of t and t′ (possibly p = p′). This
defines an abstract graph on the problematic triangles, in which each triangle
has degree at most 2. If a problematic triangle has degree at most one in this
graph, we can make it fair as described above, and then remove it from the
graph. Let t1, . . . , tk be a cycle in the graph. We replace the triangles t1, . . . , tk
by degenerate triangles b1, . . . , bk, where bi is defined as the line segment which
is the union of the edges of ti and ti+1 that together cover a polygon edge.



Beyond Triangulation: Covering Polygons with Triangles 241

So we may assume that every triangle is either nice or fair and that there are
no cyclic dependencies among the fair ones. Constructing the triangles involves
intersecting lines. Computing the coordinates of a fair triangle using another
fair triangle, only one of the points comes from this other triangle and the other
points involved are in V (P ). So the bit size of the coefficients of the defining
lines only grows by an additive term in each step (and this term is bounded by
the input size). So we have replaced the arbitrary boundary cover by a cover
consisting of triangles which can be described in polynomial space. Given such
a cover, it can be checked in polynomial time if it covers P . For lack of space,
we omit the NP-hardness proof, which is similar to the one in Sec. 2. ��
Theorem 6. Given a polygonal region P , we can find a boundary cover in time
polynomial in n(P ) using at most twice as many triangles as an optimal solution.

Proof. We define two edges e, f ∈ E(P ) to be equivalent if there is a line segment
s ⊂ P such that both e ⊂ s and f ⊂ s. (One might also require e and f to have
P on the same side, but for the proof it does not matter.) This defines an
equivalence relation on E(P ). We call the classes merged edges and denote them
by E′, n′ := |E′|. We define an abstract graph G on E′: e, f ∈ E′ are adjacent if
there is a triangle t ⊂ P such that both e ⊂ t and f ⊂ t. If P is a simple polygon,
G can be constructed in time O(n2) by constructing the visibility graph of V (P )
first. If there are holes, in time O(n2 log n): Fix a merged edge e and find the
neighbors of e in G in time O(n log n). Pick a point p in the interior of e such
that p ∈ ∂P . Construct the visibility polygon W with respect to p, which can be
done using an angular sweep around p in time O(n log n) [16]. Then preprocess
W to allow ray-shooting queries in O(log n) time, which can be done in time
O(n log n) as well, using a geodesic triangulation [17]. Finally, go through the
edges of W . If we find an edge f of W which is also a complete edge of P , we
have to find out if there is a triangle in W containing e and the merged edge f
is part of, which can be done by two ray-shooting queries.

The second step is to find a maximum matching M in G, which can be done
in time O(n2.376) using the algorithm by Mucha and Sankowski [18]. Now M
corresponds to a set of triangles T such that in total, the triangles in T cover
at least 2|M | merged edges completely. For all the remaining n′ − 2|M | merged
edges, we choose its own triangle to cover it and add it to T . Now the triangles
in T cover all merged edges completely and therefore the whole boundary of P .
So we have found a boundary cover of P consisting of n′ − |M | triangles. The
running time of the algorithm is dominated by the computation of the matching.

Let a be the number of triangles in a fixed optimal solution that cover at
least 2 merged edges completely and exclusively (i.e., no other triangle covers
it). Initially, every merged edge gets a charge of 1. Now we distribute this charge
evenly among all triangles that cover this merged edge. A triangle can cover at
most 3 merged edges. Therefore a triangle contributing to a gets charged at most
3 and all other triangles get charged at most 2 (namely at most 1 from a merged
edge possibly covered completely, and at most 1/2 from two other edges). So we
get 3a + 2(OPT − a) ≥ n′, where OPT is the number of triangles in an optimal
solution. This implies a ≥ n′−2OPT . |M | ≥ a, therefore n′−|M | ≤ 2OPT . ��



242 T. Christ

References

1. Keil, J.M.: Polygon decomposition. In: Handbook of Computational Geometry, pp.
491–518. North-Holland, Amsterdam (2000)

2. Culberson, J.C., Reckhow, R.A.: Covering polygons is hard. J. Algorithms 17(1),
2–44 (1994)

3. O’Rourke, J., Suri, S.: Polygons. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook
of Discrete and Computational Geometry, pp. 583–606. CRC Press, LLC, Boca
Raton, FL (2004)

4. Mulzer, W., Rote, G.: Minimum weight triangulation is NP-hard. In: Proc. 22nd
Annu. ACM Sympos. Comput. Geom., pp. 1–10 (2006)

5. O’Rourke, J.: Art gallery theorems and algorithms. International Series of Mono-
graphs on Computer Science. The Clarendon Press Oxford University Press, New
York (1987)

6. Ghosh, S.K.: Approximation algorithms for art gallery problems in polygons. Dis-
crete Appl. Math. 158(6), 718–722 (2010)

7. Eidenbenz, S.J., Widmayer, P.: An approximation algorithm for minimum convex
cover with logarithmic performance guarantee. SIAM J. Comput. 32(3), 654–670
(2003) (electronic)

8. O’Rourke, J., Supowit, K.J.: Some NP-hard polygon decomposition problems.
IEEE Trans. Inform. Theory IT-30, 181–190 (1983)

9. Chazelle, B., Dobkin, D.P.: Optimal convex decompositions. In: Computational
geometry. Mach. Intelligence Pattern Recogn., vol. 2, pp. 63–133. North-Holland,
Amsterdam (1985)

10. Chen, C., Chang, R.: On the minimality of polygon triangulation. BIT 30(4), 570–
582 (1990)

11. Lingas, A.: The power of non-rectilinear holes. In: Nielsen, M., Schmidt, E.M. (eds.)
ICALP 1982. LNCS, vol. 140, pp. 369–383. Springer, Heidelberg (1982)

12. Asano, T., Asano, T., Pinter, R.Y.: Polygon triangulation: Efficiency and minimal-
ity. J. Algorithms 7(2), 221–231 (1986)

13. Keil, M., Snoeyink, J.: On the time bound for convex decomposition of simple
polygons. Internat. J. Comput. Geom. Appl. 12(3), 181–192 (2002)

14. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput.
Geom. 6(5), 485–524 (1991)

15. Arora, S.: Exploring complexity through reductions. In: Computational complex-
ity theory. IAS/Park City Math. Ser., vol. 10, pp. 101–126. Amer. Math. Soc.,
Providence (2004)

16. Suri, S., O’Rourke, J.: Worst-case optimal algorithms for constructing visibility
polygons with holes. In: Proc. 2nd Annu. ACM Sympos. Comput. Geom., pp.
14–23 (1986)

17. Chazelle, B., Edelsbrunner, H., Grigni, M., et al.: Ray shooting in polygons using
geodesic triangulations. Algorithmica 12(1), 54–68 (1994)

18. Mucha, M., Sankowski, P.: Maximum matchings via gaussian elimination. In:
FOCS, pp. 248–255. IEEE Computer Society, Los Alamitos (2004)



Lossless Fault-Tolerant Data Structures

with Additive Overhead

Paul Christiano, Erik D. Demaine�, and Shaunak Kishore

MIT Computer Science and Artificial Intelligence Laboratory, 32 Vassar St.,
Cambridge, MA 02139, USA

{paulfc,edemaine,skishore}@mit.edu

Abstract. We develop the first dynamic data structures that tolerate δ
memory faults, lose no data, and incur only an Õ(δ) additive overhead
in overall space and time per operation. We obtain such data structures
for arrays, linked lists, binary search trees, interval trees, predecessor
search, and suffix trees. Like previous data structures, δ must be known
in advance, but we show how to restore pristine state in linear time,
in parallel with queries, making δ just a bound on the rate of memory
faults. Our data structures require Θ(δ) words of safe memory during an
operation, which may not be theoretically necessary but seems a practical
assumption.

1 Introduction

As computer memory systems increase in size, complexity, and density, so does
the chance that some bit flips during the lifetime of a computation or database.
A survey of practical studies [14] concludes that 1,000–5,000 soft errors (not
caused by permanent hardware failure) per billion hours per megabit is typical
on modern memory devices. On a modern PC with 24 gigabytes of memory, this
rate would imply one failure roughly every one to five hours. A recent study on
production Ask.com servers [12] suggests that the observed rate of soft errors on
ECC SDRAM is only 0.56 per billion hours per megabit, or roughly one failure
per year.

While these failure rates are reasonably small, in a complex data structure,
a single bit error can be catastrophic. For example, corrupting a single pointer
can make most of a data structure unreachable, losing data and likely causing
the system to crash. A natural problem, considered over the past 15 years, is
to design data structures that do not crash after a small number of memory
faults. Here we aim for the stronger property of losing none of the data in the
structure, preventing any higher-level algorithm from crashing. More precisely,
we develop data structures that tolerate a reasonable rate of memory failures
while remaining correct and efficient.

� Supported in part by MADALGO — Center for Massive Data Algorithmics — a
Center of the Danish National Research Foundation.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 243–254, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



244 P. Christiano, E.D. Demaine, and S. Kishore

Model. Our model of failure-prone computation is the faulty RAM of [11]. At
any time, an adversary can corrupt the value of any word in the random-access
memory to an arbitrary value, provided that the total number of corrupted words
remains at most a known parameter δ. A fault-tolerant algorithm nonetheless
reports the same result as if no words were changed; if all operations are fault
tolerant, we call the data structure fault tolerant or lossless.

In addition to the main memory, we assume a working store of memory that
cannot fail (e.g., CPU registers and level-1 cache) during the execution of a single
operation. The working store is temporary, and cannot be used to store actual
data between operations. This ephemerality means that the model supports mul-
tiple data structures with a single working store (CPU hardware). Naturally, our
results also hold if there is no working store, but the adversary can modify words
only between operations and not during (e.g., external storage media that might
be damaged between uses).

While we state results in terms of an upper bound δ on the total number
of faults, our data structures in fact support live recovery. In O(δ) time, we
can examine a block of O(δ) consecutive memory locations, correct all errors
within the block, restoring it to the state as if the errors never occurred. In
this way, the recovery process can proceed in parallel with other operations
with minimal locking, can be parallelized over multiple threads, and performs
well when memory transfers occur in blocks. Thus δ really becomes an upper
bound on the number of faults that can occur between passes of a background
linear-time recovery process.

Our results. We develop the first fault-tolerant data structures that are simul-
taneously lossless and dynamic, as well as the first fault-tolerant data structures
that are simultaneously lossless and efficient, requiring only an additive Õ(δ)
overhead in overall space and per-operation time. Furthermore, we show that
our techniques apply to a wide family of dynamic data structures: arrays, linked
lists, binary search trees, interval trees, predecessor structures, and suffix trees.
By contrast, previous work considered only dictionaries supporting membership,
linked lists, and static problems; and either lost data from memory errors, or
was static and required a lengthy recovery process.

Table 1 summarizes our results and how they compare to previous work. All
of the problems we consider have a trivial Ω(δ) lower bound on query time and
overall space: with o(δ) time, everything examined can be corrupted, and with
o(δ) space, some information must be lost. Hence, other than our interval trees
which have an additional Θ(log δ) factor, our time and space bounds are optimal.
The only suboptimal part is the requirement of Θ(δ) words of working store.
Improving this bound would require an advance in decoding error-correcting
codes of size Θ(δ) using failure-prone intermediate results.

Our data structures require δO(1) preprocessing time at the very beginning to
construct the necessary error-correcting codes. The dynamic interval tree data
structure (Section 5.1) uses randomization to solve stabbing queries, making them
prone to reporting corrupted results. Assuming an oblivious adversary, each stab-
bing query is guaranteed to succeed with probability 1− ε by spending a factor of



Lossless Fault-Tolerant Data Structures with Additive Overhead 245

Table 1. Summary of new and previous on fault-tolerant data structures. All time
bounds are amortized. Here δ denotes the upper bound on the number of faults, and
ε denotes query failure probability (guaranteed to be 0 except where ε appears in
bounds). Quantities (including δ) are measured in words (elements).

Loss/ Time/op. Space Working
Problem

error overhead overhead store
Model Ref.

Dynamic linked list 0 +O(δ) +O(δ) O(δ) RAM 2.7
Dynamic hash table 0 +O(δ) +O(δ) O(δ) RAM 2.8
Dynamic predecessor 0 +O(δ) +O(δ) O(δ) RAM 3.1
Dynamic binary search tree 0 +O(δ) +O(δ) O(δ) RAM 3.1
Dynamic interval tree 0 +O(δ lg δ),× lg 1

ε
+O(δ lg δ) O(δ) RAM 5.1

Suffix tree construction 0 +O(δ) +O(δ) O(δ) RAM 4.1

Dynamic linked list O(δ) O(1) O(1) O(δ) pointer [2]
Dynamic binary search tree O(δ) O(1) O(1) O(δ) pointer [2]
Static sorting 1 +O(δ) +O(δ) O(1) RAM [9]
Static search 1 +δ +O(δ) O(1) RAM [9]
Dynamic search tree 1 +O(δ) +O(δ) O(1) RAM [8]
Dynamic hash table 1 +O(δ) +O(δ) O(1) RAM [8]
Dynamic priority queues 1 +O(δ) +O(δ) O(1) RAM [3]

Static dictionary, δ = O(n) 0 O(1) 22
O(

√
lg n)

O(1) cell probe [6]

O(1/ε) in time. We analyze according to an adaptive adversary (following [11]),
which enables the adversary to corrupt any δ additional queries.

Related work. Finocchi and Italiano [11] introduced the faulty-memory RAM
model of failure-prone computation that we use, which led to the bulk of the
research in fault-tolerant data structures [9,8,3]. All of the results in this line,
however, tolerate the loss of one data element per fault, replacing it with an
arbitrary corrupted value. The idea behind this tolerance was to obtain better
bounds—additive instead of multiplicative Õ(δ) overheads—by avoiding repli-
cation. (Hence the conference version of [11] had a title ending “. . . (without
redundancy)”.). Our data structures show, however, that it is possible to never
lose data yet keep additive Õ(δ) overheads.

Before the work in the RAM model, Aumann and Bender [2] considered anal-
ogous problems in the pointer machine. Here it is necessary to assume that
O(δ) nodes of the structure cannot be corrupted, in order not to lose the entire
structure. Furthermore, because the model essentially prevents low-level manip-
ulation of data, without replication pointer-machine data structures necessarily
lose data from each error.

The only other work that considers lossless data structures is by de Wolf
[6]. His results are all static, and rely on locally decodable codes, for which an
optimal trade-off between local decodability and total space is an open problem.
As far as we know, the best known upper bound on space for a static dictionary
is superpolynomial in n, as indicated in Table 1.



246 P. Christiano, E.D. Demaine, and S. Kishore

2 Fundamental Techniques

Previous results in fault-tolerant data structures use one of two techniques to
store data in faulty memory: data replication or error-correcting codes. On the
one hand, a single word can be reliably stored by maintaining Θ(δ) copies—the
resilient variables of [10]. A resilient variable can be accessed quickly, but re-
quires Θ(δ) multiplicative space overhead. On the other hand, δ words can be
reliably stored in an error-correcting code of size Θ(δ). Although error-correcting
codes reduce the space overhead, reading a single word from an error-correcting
code requires Θ(δ) time. Our main contribution is the introduction of data struc-
tures that combine these two techniques to achieve simultaneous space and time
efficiency.

2.1 Blocked Fault-Tolerant Data Structures

Our data structures consist of “fault-tolerant blocks”, which interpolate grace-
fully between the performance of resilient variables and error-correcting codes.
To construct fault-tolerant blocks, we use the linear-time encodable and decod-
able error-correcting codes due to Spielman [13]. A concise statement of some of
their results is the following:

Theorem 2.1. [13] In kO(1) time, we can compute an O(k)-size description Ck
of an error-correcting code which can be used as input to encoding and decoding
algorithms E and D. Given a string x of k words, E(x, Ck) encodes x into a
string y of O(k) words such that any string z differing from y on at most k words
can be decoded: D(z, Ck) = x.

We call k the multiplicity of the error-correcting code. For our purposes, this
quantity is both the number of words stored by the code and the maximum
number of word errors the code corrects. We will always set the multiplicity k to
a power of 2 between 1 and δ. When creating any fault-tolerant data structure,
we precompute Ck for each of these values of k. Because these descriptions have
total size O(δ), we can store them all in safe memory. This precomputation takes
δO(1) time, constituting the preprocessing needed by our data structures.

A fault-tolerant block of multiplicity k stores a k-word string x in Θ(δ) space
by storing � 2δ+1

k � copies of the error-correcting code E(x, Ck) contiguously in
memory. Our data structures will call for fault-tolerant blocks of varying multi-
plicities. When a small amount of data must be accessed frequently, we will store
it in fault-tolerant blocks of constant multiplicity; in this limit, fault-tolerant
blocks reduce to resilient variables. When a large amount of data must be ac-
cessed infrequently, we will store it in fault-tolerant blocks of multiplicity Θ(δ);
in this limit, at least in spirit, a fault-tolerant block reduces to a single error-
correcting code which corrects δ errors. In between these two extremes, we obtain
useful trade-offs between space and time costs.

The data in a fault-tolerant block cannot be corrupted by fewer than δ + 1
word errors. The value stored in an error-correcting code in a fault-tolerant block



Lossless Fault-Tolerant Data Structures with Additive Overhead 247

of multiplicity k can only be changed if more than k of its words are corrupted.
Thus the total multiplicity of all corrupted codes is at most δ, while the total
multiplicity of all codes is at least 2δ + 1. It follows that the value stored in
a fault-tolerant block can be correctly recovered in time O(δ) by decoding all
of its error-correcting codes and taking the majority value. We can remove all
errors from a fault-tolerant block by safely reading its value in this way and then
writing a new fault-tolerant block which stores that value without errors.

A blocked fault-tolerant data structure is an array of fault-tolerant blocks; see
Fig. 1. All of our fault-tolerant data structures are blocked. One benefit is that
error detection and correction can be performed locally as described above. The
problem of removing all errors from a blocked fault-tolerant data structure is
embarrassingly parallel. (However, each parallel processor needs its own O(δ)
working store of safe memory.)

Theorem 2.2 (Live recovery). All errors can be removed from a blocked fault-
tolerant data structure of size n by p ≤ n

δ
processors in O(n/p) time.

2.2 Fault-Resistant Operations
Θ(δ)

index 3

block 1:

block 2:

block 3:

block 4:

block 5:

4 4

2 2 2 2

1 1 1 1 1 1 1 1

8

2 2 2 2

Fig. 1. Blocked data structures
consist of a sequence of blocks each
divided into Θ(δ/k) codes of multi-
plicity k, for varying (power-of-two)
values of k. If the prejudice number
is 3, then an operation will read the
shaded codes. The index 3 is faulty
if any of those codes are faulty.

We can read a fault-tolerant block of mul-
tiplicity k in time O(k) rather than O(δ)
by reading only one of its � 2δ+1

k � error-
correcting codes. This speed-up comes at the
expense of accuracy: by corrupting k < δ
memory locations, an adversary may change
the value returned by this operation. Our
general approach is to compose fast but inac-
curate operations with slow but reliable end-
to-end verification. Whenever an operation
fails, we implicitly discover the location of a
memory fault, which we may avoid in the fu-
ture, enabling us to amortize away the cost.
In this section, we formalize this approach.

We adopt the notion of prejudice numbers
from [10]. In their setting, each variable is
copied 2δ + 1 times, and the prejudice num-
ber p represents the minimal “trusted in-
dex.” Formally, whenever an operation needs
to access a variable, it uses the pth copy. If an operation fails, then a fault must
have occured in the pth copy of some variable, so the prejudice number is incre-
mented and the operation repeated.

In our setting, the prejudice numbers play a slightly different role; refer to
Fig. 1. Each prejudice number p ∈ {1, 2, . . . , 2δ + 1} is associated with one error-
correcting code from each fault-tolerant block, as follows: in a fault-tolerant
block of multiplicity k, the prejudice number p is associated with the � p

k
�th

error-correcting code. Thus k prejudice numbers are assigned to any given error-
correcting code of multiplicity k.



248 P. Christiano, E.D. Demaine, and S. Kishore

An error-correcting code is faulty if it no longer decodes to the correct value.
A prejudice number is faulty if it is associated with some faulty code. Because
multiple prejudice numbers may be assigned to the same error-correcting code,
a single faulty code may cause multiple indices to become faulty. By simple
counting, we can bound the number of faulty indices:

Lemma 2.3. The number of faulty indices is at most the number of memory
faults.

An operation is fault-resistant if it succeeds when given a nonfaulty prejudice
number. We can fault-resistantly read a resilient variable in constant time by
reading the copy indexed by the prejudice number. Using a similar idea, we can
quickly read a fault-tolerant block:

Lemma 2.4. We can fault-resistantly read a fault-tolerant block of multiplicity
k in O(k) time.

2.3 Fault-Tolerant Operations

An operation is fault-tolerant if it always succeeds. In particular, fault-tolerant
operations do not depend on the choice of a prejudice number. In this section,
we describe our basic approach to implementing fault-tolerant operations, which
is to compose a fault-resistant query with fault-tolerant verification.

Lemma 2.5. If a query Q has a fault-resistant implementation that runs in t1
time and does not modify the data structure, and it is possible to fault-tolerantly
verify the result of Q in t2 time, then Q has a fault-tolerant implementation with
amortized running time O(t1 + t2), assuming at least δ invocations.

Proof (sketch). We start with prejudice number p = 1. Whenever we perform
an operation, we verify the result. If the operation failed, then we increment
the prejudice number p and try again. Because the original operation is fault-
resistant, we only need to repeat the operation if the prejudice number is faulty.
By Lemma 2.3, this happens at most δ times. Some technical details arise when
this transformation is applied in general and when Q is probabilistic, which we
address in the full version of the paper. �

2.4 Fault-Tolerant Memory

A fault-tolerant memory is a large array implemented by a sequence of fault-
tolerant blocks of multiplicity δ. Fault-tolerant memory allows us to establish a
relationship with data structures in the external-memory model.

Lemma 2.6. Suppose that an operation can be completed in the external-
memory model using T memory transfers and t computation steps, with block size
B = δ and local memory M = O(δ). Then the same operation can be completed
fault-tolerantly in the faulty RAM model in O(δT + t) time.



Lossless Fault-Tolerant Data Structures with Additive Overhead 249

This correspondence does not generally produce efficient data structures because
it does not make use of fault-tolerant blocks with lower multiplicities, but it is
helpful in some cases.

Theorem 2.7. There is a fault-tolerant linked list that stores n elements using
O(n + δ) space. It supports advancing a pointer k steps, inserting k elements,
and deleting k elements in O(k + δ) time.

Theorem 2.8. There is a fault-tolerant dictionary that stores n elements using
O(n + δ) space and supports insertions, deletions, and lookups in O(δ) time per
operation.

3 Fault-Tolerant Predecessor

A predecessor data structure stores a set of keys xi from some fixed ordered
universe and supports insertions, deletions, and the predecessor query: given a
key x, find the largest xi that is at most x. Important examples of predecessor
structures include balanced binary search trees, van Emde Boas priority queues,
y-fast trees, and fusion trees.

We present a general technique for making any predecessor data structure
fault-tolerant. Asymptotically, the transformation introduces only O(δ) additive
space and time overhead. We require two technical conditions: (1) that prede-
cessor queries do not modify the data structure, and (2) that the space use
grows at least linearly with the number of keys. Splay trees do not satisfy the
first condition, although AVL trees, red-black trees, and scapegoat trees do. Van
Emde Boas queues whose size depends on the universe do not satisfy the second
condition, although van Emde Boas queues with hashing do.

Our construction is similar in spirit to the resilient dictionaries of [10]. The
main difference is that we use error-correcting codes within the leaves of our
structure rather than accepting a small number of errors. Our results also hold
for general predecessor structures rather than only for binary search trees. Our
amortized startup cost is higher, however: our amortization holds only after O(δ)
operations, rather than δε operations.

Theorem 3.1. Suppose that P is a predecessor data structure that stores n keys
in space s(n), supports queries in worst-case time tq(n) without modifying the
data structure, and supports updates in amortized time tu(n). Then there is a
fault-tolerant data structure P ′ that stores n keys in space O

(
δs

(
n
δ

))
, supports

queries in O(tq(n)+δ) amortized time, and supports updates in O(tq(n)+tu(n)+
δ) amortized time. The data structure also incurs δO(1) worst-case preprocessing
cost, plus an amortized startup cost of O(δ) operations. If the time bounds tq(n)
or tu(n) are valid only in expectation, then the amortized time bounds for P ′ are
also valid only in expectation.

Proof (sketch). We divide the keys into n
δ

contiguous groups of size Θ(δ). We
choose one representative from each group, and put these n

δ representatives into



250 P. Christiano, E.D. Demaine, and S. Kishore

an instantiation of P which we call the summary structure. This copy of P is
stored in resilient variables (i.e., copied 2δ + 1 times), while the keys themselves
are stored in fault-tolerant memory.

In order to find the predecessor of x, we perform a fault-resistant query in the
summary structure to find the group representative which precedes x. We then
fault-tolerantly access the corresponding group, and search for the predecessor
of x there. By Lemma 2.5, we can combine these operations to perform a fault-
tolerant predecessor query.

In order to insert or delete a key, we first perform a predecessor query to find
the group that should contain that key and then modify that group. Every Ω(δ)
operations, a group may grow too large or too small. When this happens, we
either split the group in two or merge it with an adjacent group, updating the
summary structure appropriately. �

4 Suffix Trees

A suffix tree stores a string S and supports the substring query: given a pat-
tern P , report the positions of all occurrences of P in S. Each character of S
may be an arbitrary machine word. Suffix trees occupy linear space, and can
be constructed in linear time plus the time required to sort the stored string
[7]. In this section, we describe a fault-tolerant suffix tree with the following
guarantees:

Theorem 4.1. There is a fault-tolerant suffix tree that stores a string S of
length n in O(n + δ) space. The tree can be constructed in O(n log n + δ) time,
and supports substring queries in O(m + k + δ) amortized time, where m is the
length of the pattern and k is the number of its occurrences. The data structure
also incurs δO(1) worst-case preprocessing cost, plus an amortized startup cost of
O(δ) operations.

Our construction is based on a new decomposition of a tree into short paths
and small subtrees, which we describe first. We then show how to to apply
this decomposition to build a suffix tree that supports fault-resistant substring
queries. Finally, we describe how to store some extra data which makes it possible
to efficiently verify the results of substring queries.

4.1 Fault-Resistant Tries

A trie is a rooted tree in which each edge is assigned a constant-size label. Each
vertex may also have a constant-size label. Tries support the retrieval operation:
given a pattern P of length m, return the vertex obtained by starting at the root
and walking down the tree, following the edges labeled by the corresponding ele-
ments of P . Let T be a trie of n nodes. We show how to build an implementation
of T that supports fault-resistant retrieval operations.



Lossless Fault-Tolerant Data Structures with Additive Overhead 251

Fig. 2. Our fault-tolerant trie first decom-
poses into micro trees, rooted subtrees of
size at most δ, and splits the remainder into
nonbranching paths of length at most δ.
Here δ = 3.

First we partition T into micro
trees and micro paths as described by
the following lemma; refer to Fig. 2.

Lemma 4.2. Any rooted tree on n
nodes can be partitioned into a col-
lection of rooted subtrees of at most
δ nodes, called micro trees, and O(n

δ
)

paths of length at most δ, called micro
paths.

Proof (sketch). We start with the
micro-tree/macro-tree decomposition
of [1]. Then we split non-branching
paths in the macro tree into subpaths
of length at most δ. �

The central idea of our construction is to store a micro tree or micro path of
size k in a fault-tolerant block of multiplicity k. Every micro path traversed in a
retrieval operation is read in its entirety, except perhaps the last one. By storing
each path in its own fault-tolerant block, we are able to perform these accesses
in total time that is linear in |P |. Only one micro tree gets touched during a
traversal, which we can access in O(δ) time.

The use of fault-tolerant blocks of intermediate multiplicity is essential, be-
cause a micro path of size k must be stored in O(δ) space and must be traversable
in O(k) time. This is precisely the guarantee afforded by our fault-tolerant blocks.

In order to perform the tree decomposition safely in the presence of memory
faults, we use the correspondence observed in Lemma 2.6 and standard tech-
niques for manipulating trees in external memory.

Lemma 4.3. Given an Euler tour of a trie of size n in fault-tolerant memory,
we can fault-tolerantly construct a fault-resistant trie in O(n + δ) time.

We can efficiently perform a fault-resistant retrieval query analogously to a re-
trieval query on a traditional trie. Essentially, each time the retrieval accesses
a micro path or micro tree, we read the entire path or tree and load the result
into safe memory.

Theorem 4.4. There is a fault-resistant algorithm to retrieve a pattern P of
length m (provided as a stream) in a fault-resistant trie T in O(m + δ) time.

4.2 Fault-Tolerant Suffix Trees

Suppose that S is a string of length n stored in external memory in blocks of
size B. There is an external-memory algorithm that computes the Euler tour
of the compressed suffix tree for S which runs in O(n log n) time and O(n log n

B
)

memory transfers [4]. Given access to a string S as a stream, we can construct a
fault-tolerant suffix tree for S as follows. By Lemma 2.6, there is a fault-tolerant



252 P. Christiano, E.D. Demaine, and S. Kishore

algorithm that computes the Euler tour of the suffix tree for S in O(n log n + δ)
time and that stores the result in fault-tolerant memory. By Lemma 4.4, we
can build a fault-resistant version of this trie. Our fault-tolerant suffix tree is
composed of the string S and an Euler tour of the suffix tree, stored in fault-
tolerant memory, and of the fault-resistant trie. This additional information
allows us to perform fault-tolerant queries on the suffix tree.

In order to perform a fault-tolerant suffix tree operation, we first perform a
fault-resistant query in the compressed suffix trie. With some care, we can verify
the result of this query by fault-tolerantly examining the corresponding location
of S. We then apply Lemma 2.5.

5 Interval Trees

An interval is a pair [ai, bi] of elements from some fixed ordered universe with
ai ≤ bi. Interval (ai, bi) contains x if ai ≤ x ≤ bi. An interval tree maintains
a set of intervals and supports insertions, deletions, and the stabbing query:
given element x, report all intervals containing x. In this section, we describe a
fault-tolerant interval tree with the following guarantees:

Theorem 5.1. There is a fault-tolerant interval tree that stores n intervals in
O(n+δ log δ) space, supports fault-tolerant updates in O(log n+δ log δ) amortized
time, and supports fault-tolerant stabbing queries in O((log n+k) log 1

ε + δ log δ)
amortized time, where k is the number of reported intervals and ε is an upper
bound on the probability of failure. The data structure also incurs δO(1) worst-
case preprocessing cost, plus an amortized startup cost of O(δ) operations. An
adversary may adaptively corrupt the results of δ stabbing queries, and each other
stabbing query fails with probability at most ε.

We follow the construction of interval trees from [5]. The interval tree stores
every interval’s endpoints in the leaves of a binary tree. Each interval is stored
twice at the least common ancestor of the leaves that store its endpoints: once
in a list sorted in increasing order of left endpoint, and once in a list sorted in
decreasing order of right endpoint. To perform a stabbing query at x, we search
the binary search tree for x. Every interval containing x was stored in one of
the nodes passed during this search. Whenever we move to the left child of a
node, we report all intervals with left endpoint less than x; whenever we move
to the right child of a node, we report all intervals with right endpoint at least
x. If x is contained in k of the intervals stored at an internal node, we can find
all k in O(k) time by scanning the appropriate list until we find an interval not
containing x.

The principal difficulty in making this structure fault-tolerant is that we do
not know in advance how many intervals we will need to read from an internal
node. In order to achieve a runtime O(log n + k) + Õ(δ), we need to report each
interval in amortized constant time. But in order to report m intervals from an
internal node in O(m) time using the techniques we have seen so far, we need to
store them in a fault-tolerant block of multiplicity O(m). This strategy would



Lossless Fault-Tolerant Data Structures with Additive Overhead 253

incur significant space overhead, because m may be much smaller than δ. To
overcome this difficulty, we store the intervals in a prefix list, composed of a
sequence of fault-tolerant blocks of exponentially increasing size; see Fig. 3.

Theorem 5.2. A fault-tolerant prefix list stores n elements from an ordered
universe in O(n + δ log δ) space, supports fault-resistant access to the first k ele-
ments in O(k) time for any k, and supports insertions and deletions in O(log n+
δ log δ) time.

Θ(δ)

block 1:

block 2:

block 3:

block 4:

1 1 1 1 1 1 1 1

1 2 1 1 12 2 2

1 2 3 4 4321

1 2 3 4 5 6 7 8

Fig. 3. The prefix list stores δ copies of the
first element, δ/2 copies of the first and sec-
ond elements in a fault-tolerant block of mul-
tiplicity 2, δ/4 copies of the first four elements
in a fault-tolerant block of multiplicity 4, etc.,
and 1 copy of the first δ elements.

Proof (sketch). We store the first 2i

elements in a fault-tolerant block of
multiplicity 2i for i = 0, 1, . . . , log δ.
Because very little data is stored
redundantly, the total space over-
head is only O(δ log δ), but to read
k elements, we can read a single
fault-tolerant block of multiplicity
at most 2k, in O(k) time. �
By a similar argument, a fault-
tolerant prefix list supports finding
all k elements less than a fixed value
x in O(k) time.

We can now implement a fault-
resistant interval tree by carefully
transforming the classical construc-
tion, using a prefix list to store the
intervals at each interior node. In contrast with our previous data structures,
we have no way to verify the results of an interval stabbing query. Instead, we
guarantee that our results are correct with high probability by reading several
error-correcting codes at random from each fault-tolerant block we access.

References

1. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: Proc. 39th
Annual Symposium on Foundations of Computer Science, pp. 534–543 (1998)

2. Aumann, Y., Bender, M.A.: Fault tolerant data structures. In: Proc. 37th Annual
Symposium on Foundations of Computer Science, pp. 580–589 (1996)

3. Brodal, G.S., Fagerberg, R., Finocchi, I., Grandoni, F., Italiano, G.F., Jørgensen,
A.G., Moruz, G., Mølhave, T.: Optimal resilient dynamic dictionaries. In: Arge, L.,
Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 347–358. Springer,
Heidelberg (2007)

4. Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vit-
ter, J.S.: External-memory graph algorithms. In: Proc. 6th Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 139–149 (1995)

5. Chiang, Y.-J., Tamassia, R.: Dynamic algorithms in computational geometry. Proc.
IEEE 80(9), 1412–1434 (1992)



254 P. Christiano, E.D. Demaine, and S. Kishore

6. de Wolf, R.: Error-correcting data structure. In: Proc. 26th International Sympo-
sium on Theoretical Aspects of Computer Science, pp. 313–324 (February 2009)

7. Farach-Colton, M., Ferragina, P., Muthukrishnan, S.: On the sorting-complexity of
suffix tree construction. J. ACM 47, 987–1011 (2000)

8. Finocchi, I., Grandoni, F., Italiano, G.F.: Resilient search trees. In: Proc. 18th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 547–553 (2007)

9. Finocchi, I., Grandoni, F., Italiano, G.F.: Optimal resilient sorting and searching in
the presence of memory faults. Theoretical Computer Science 410(44), 4457–4470
(2009)

10. Finocchi, I., Grandoni, F., Italiano, G.F.: Resilient dictionaries. ACM Transactions
on Algorithms 6(1) (2009)

11. Finocchi, I., Italiano, G.F.: Sorting and searching in faulty memories. Algorith-
mica 52(3), 309–332 (2008)

12. Li, X., Shen, K., Huang, M.C., Chu, L.: A memory soft error measurement on
production systems. In: Proc. 2007 USENIX Annual Technical Conference, pp.
21:1–21:6 (2007)

13. Spielman, D.A.: Linear-time encodable and decodable error-correcting codes. IEEE
Transactions on Information Theory 42(6), 1723–1732 (1996)

14. Tezzaron Semiconductor. Soft errors in electronic memory. White paper (January
2004), http://www.tezzaron.com/about/papers/soft errors 1 1 secure.pdf



Binary Identification Problems for Weighted Trees

Ferdinando Cicalese1, Tobias Jacobs2, Eduardo Laber3, and Caio Valentim3

1 University of Salerno, Italy
2 National Institute of Informatics, Japan

3 PUC – Rio de Janeiro, Brazil

Abstract. The Binary Identification Problem for weighted trees asks for the min-
imum cost strategy (decision tree) for identifying a node in an edge weighted tree
via testing edges. Each edge has assigned a different cost, to be paid for testing
it. Testing an edge e reveals in which component of T − e lies the vertex to be
identified. We give a complete characterization of the computational complexity
of this problem with respect to both tree diameter and degree. In particular, we
show that it is strongly NP-hard to compute a minimum cost decision tree for
weighted trees of diameter at least 6, and for trees having degree three or more.
For trees of diameter five or less, we give a polynomial time algorithm. More-
over, for the degree 2 case, we significantly improve the straightforward O(n3)
dynamic programming approach, and provide an O(n2) time algorithm. Finally,
this work contains the first approximate decision tree construction algorithm that
breaks the barrier of factor logn.

1 Introduction

We study the Binary Identification Problem (BIP) [8] when the underlying space of ob-
jects and tests can be represented by a weighted tree. By a weighted tree we understand
a pair (T,c) where T is a tree and c is a cost assignment to the edges E(T ) of T, i.e.,
c : e ∈ E(T ) �→ c(e) ∈ R

+
0 .

The Binary Identification Problem for weighted trees. A decision tree for a weighted
tree (T,c) is a binary tree recursively defined as follows: if the tree T has only one
vertex, then the decision tree is a single leaf labeled with the only vertex in T. If T has
at least one edge, a decision tree for T has its root r labeled with one edge e = {u,v}
in T, and the subtrees rooted at the children of r are decision trees for the connected
components Tu and Tv of T − e.

For the sake of distinguishing between the input tree and the decision tree, we shall
reserve the term node to the decision tree and the term vertex to the input tree.

A decision D for (T,c) naturally defines a strategy for identifying an initially un-
known vertex x from T via edge queries. If node w of D is labeled with the edge
e = {u,v} of T, we map w to the question “Is x in Tu or in Tv?”, where Tu (resp. Tv)
denotes the component of T − e which contains u (resp. v). The search strategy now
consists in starting with the query at the root of D and then recursively continuing with
the subtree being a decision tree for the component indicated in the answer. Accord-
ingly, each leaf � of D is then labeled with the vertex of T uniquely identified by the
sequence of questions and answers corresponding to the path from the root of D to �.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 255–266, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



256 F. Cicalese et al.

The cost of a decision tree D for T is 0 if D consists of just one leaf (i.e., T has only
one vertex), and otherwise it is the cost of the edge in the root of D plus the maximum
of the costs of the decision trees rooted at the children of the root of D, in formulae

cost(D) = c(root(D))+ max{cost(DL),cost(DR)},

where DL and DR are the decision trees rooted at the left and right child of the root of
D, respectively.

We also define the cost of searching a single vertex u ∈ T according to D as the sum
of the costs of the edges labeling the nodes in the path from the root of D to the leaf
labeled with u. With this definition, we have that the cost of D is equal to the maximum
among the search costs of the vertices from T according to D.

Given a weighted tree (T,c) the Binary Identification Problem asks for the decision
tree for T of minimum cost.

Our results. We provide a complete characterization of the complexity of the Binary
Identification Problem for weighted trees. We show strong NP-hardness of both the
class of instances with diameter 6 and the class of degree 3 instances. Both thresholds
are tight. In fact, we show a polynomial time algorithm for instances of bounded diame-
ter at most 5. We reserve special attention to the case of instances of maximum degree 2
(simple paths). It is easy to see that for such instances, a natural dynamic programming
approach results in an O(n3) algorithm for building an optimal decision tree, and, to
the best of our knowledge, no algorithm with better asymptotic was known prior to this
paper. We present a non-trivial DP based algorithm which provides the optimal decision
tree in O(n2) time. Such a speed up has been obtained in analogous problems by em-
ploying the Knuth-Yao technique [11,19]. However, this technique cannot be directly
applied to the problem considered here as we discuss in Section 4.

Finally, for general trees, we provide an o(logn)-approximation algorithm. Although
this result is not a significant improvement, in numerical terms, over the existing O(logn)
approximation [6], it is interesting as it shows a sharp separation in the complexity pic-
ture of the binary identification problem with costs. This is because the general BIP
(not restricted to tree instances), even with uniform weights, does not admit an o(logn)-
approximation unless P = NP [13].

Related work. The binary identification problem (BIP) for unweighted trees has been
extensively studied in the contexts of searching and edge ranking [9,5,14,1,17,18]. The
edge ranking problem and its connection to the problem studied here is precisely ex-
plained later when we discuss some applications. Linear time algorithms that construct
an optimal decision tree for unweighted trees are presented in [14,17].

The BIP for weighted trees was first studied by [6] in the context of edge ranking.
In this initial paper, the problem was defined and proved to be NP-complete already for
the class of instances of diameter at most 10. In addition, an O(logn) approximation
algorithm was also provided. In fact, O(logn) approximation can be attained for a more
general version of the problem (not restricted to tree instances), via a simple greedy
procedure [3].

When the weighted tree is a path, the BIP is equivalent to the problem of searching
in an ordered array with costs depending on the position probed. A natural DP approach



Binary Identification Problems for Weighted Trees 257

solves this problem in O(n3) time. A linear time algorithm with constant approxima-
tion factor is presented in [12]. In [2], Charikar et al. consider this problem from a
competitive analysis perspective.

Applications. The BIP is a basic problem in computer science and has applications in
many different scenarios.

The BIP for (weighted) trees arises when one has to identify the faulty component
of a system. As an example, a system is represented by a network (in our case a tree)
and its faulty component (vertex) has to be found. Different points of the network might
require more or less expensive operations for the inspection. Inspecting one spot (edge)
in the network reveals only directional information about the location of the failure
w.r.t. the inspected point. One such problem is described, e.g., in [15] as searching for
holes in an oil pipeline. In [18], the problem of finding a bug in a software application
is mentioned.

As already mentioned, the BIP for trees is equivalent to the edge ranking prob-
lem for trees. An edge ranking of T is an assignment to each edge e of T of an
integer r(e) (the rank of e) s.t. for any two edges e1,e2 ∈ T if r(e1) = r(e2), then
the path connecting e1 and e2 contains an edge e with r(e) > r(e1). The cost of an
edge ranking of a weighted tree (T,c), denoted by rankcost(T,c) is defined as fol-
lows: If T has only one node, then rankcost(T,c) = 0. Otherwise, rankcost(T,c) =
c(e∗)+max{rankcost(Tu,c), rankcost(Tv,c)}, where e∗= uv is the edge with maximum
rank in T and Tu (resp. Tv) is the connected component of T − e that contains u (resp.
v). Given a weighted tree (T,c) the edge ranking problem asks for the minimum cost
ranking. The equivalence to the decision tree problem is easily seen (see also [7]).

The edge ranking problem arises in the context of parallel query processing in large
database systems [16]. Also, it can be used to optimize multi-part product assembly
[10,6]. Assume that each edge represents the operation of assembling two parts of a
product and the weight of an edge represents the time necessary to complete the corre-
sponding assembly operation. In addition, edges that share an endpoint correspond to
dependent operations so that they cannot be processed simultaneously. An edge ranking
provides a scheduling of the assembly operations with the guarantee that only indepen-
dent operations are scheduled simultaneously. Moreover, the cost of the edge ranking is
the total time necessary for completely assembling the product.

2 Proofs of Strong NP-Hardness

Our proofs of NP-hardness proceed in two steps. In the first step, we reduce from a
certain scheduling problem, which we call Flexible Machine Scheduling (FMS). This
problem can be reduced both to the BIP on weighted trees of diameter 6 and to the
problem on degree 3 trees. Both reductions have the property that the edge costs of the
resulting weighted tree instance are polynomial in the processing times and deadlines of
the scheduling instance we reduce from. In the second step, we reduce Problem 3SAT
to FMS and thereby show strong NP-hardness of that scheduling problem.

The Flexible Machine Scheduling problem is defined as follows: We are given k pairwise
disjoint sets of jobs S1, . . . ,Sk. Each job J from one of those sets is characterized by its
length l(J) ∈ R

+
0 and deadline d(J) ∈ R

+
0 . Furthermore, each job set Si has a so-called



258 F. Cicalese et al.

separation time si ∈R
+
0 . Initially, the jobs have to be scheduled on a single machine M.

However, at any point of time t we can open an extra machine Mi, 1≤ i≤ k, where the
remaining jobs from set Si will be processed afterwards. Opening machine Mi takes time
si, which means that, during the time interval (t,t + si), neither M nor Mi can process
a job. We are interested in the problem to decide whether for a given FMS instance
there exists a feasible solution, i.e. one where each job is completely processed before
its deadline is reached.

In the following we show how to reduce FMS to the bounded diameter case of BIP
on weighted trees. After that, we will explain how to modify the reduction in order to
obtain bounded degree instances.

It will be comfortable to talk of a decision tree in terms of the search strategy it
defines. Recall that, in this perspective, we interpret the edge labels of the nodes of the
decision tree as queries. Also, we talk about the search cost of a vertex v in the input
tree, as the sum of the costs of the edges queried in the decision tree on the path from
the root to the leaf labeled with v. We will call such path the search path to/of v. We also
say that this path isolates v.

Let I be an instance of FMS, determined by the job sets S1, . . . ,Sk and the corre-
sponding separation times s1, . . . ,sk. Let S = S1 ∪ . . .∪ Sk. For each job J ∈ S, the tree
T contains two edges e(J),e′(J). The cost of e(J) is the length l(J) of J. The cost of
e′(J) is A−d(J), where A ∈ R is a large constant, depending on instance I, whose ex-
act value will be determined later. The edges e(J) and e′(J) have a common endpoint
denoted v(J). The other endpoint of e′(J) is a leaf.

Before continuing with the description of (T,c), we give some first intuition about
the idea of the reduction. I will be reduced to the problem of deciding whether there
exists a search strategy for (T,c) where the search cost of any vertex is no more than A.
Observe that, in order to isolate the vertex v(J), the edge e′(J) has to be queried. This
means that the total cost of all other queries on the search path of vertex v(J) must not
exceed d(J).

For each job set Si, i = 1, . . . ,k, the tree T contains a vertex ui, which serves as the
common endpoint of all edges e(J), so that e(J) connects ui with v(J) for each J ∈ Si.
In addition ui has one further incident edge fi, whose cost is set to the separation time
si. The construction of T is completed by letting f1, . . . , fk share the common endpoint
u. Clearly, T has diameter 6, see Figure 1(a) for an example.

Intuitively, a query to edge fi will correspond to opening machine Mi in the FMS
instance. This causes additional search cost si to all vertices v(J) that have not been
separated from the central vertex u by a query to e(J) or to f j with V ∈ S j, j 	= i.

Lemma 1. There is a feasible solution to I if and only if there is a decision tree for
(T,c) of cost not larger than A.

Proof. “⇒” Assume that there is a feasible schedule for I. If some machines are not
opened during the execution of the schedule, we can equivalently assume that these
machines are opened after all jobs have been processed. We can also assume that any
idle time between two consecutive jobs on M is completely used for opening new ma-
chines, and there is no idle time between jobs on any other machine. A feasible schedule
with that property can easily be constructed from an arbitrary feasible schedule.



Binary Identification Problems for Weighted Trees 259

A search strategy for (T,c) is constructed from the schedule by interpreting the as-
signments to machine M as the search path to vertex u. Assigning job J to M corre-
sponds to a query to edge e(J), and opening machine Mi corresponds to a query to edge
fi. Hence, the cost of the search path to u equals the point of time when the last job
has been finished on M and the last machine has been opened. For i = 1, . . . ,k, node
ui shares its search path with u until edge fi is queried. After that, its search path is
represented by the order of the jobs on machine Mi, where job J ∈ Si corresponds to
edge e(J). The cost of the search path to ui therefore corresponds to the point of time
when the last job on Mi has been completed and the machine has been opened. For each
J ∈ S, the edge e′(J) is queried right after e(J). Therefore, the search cost of v(J) is by
the cost of e′(J) larger than the time when job J has been processed. As the schedule
is feasible, the search cost is at most d(J)+ c(e′(J)) = A. The search path to the leaf
incident to e′(J) has the same cost as v(J). For A large enough, the search cost of u as
well as the search costs of u1, . . . ,uk are not larger than the search costs to the v(J)s, and
thus we have a search strategy where the search cost of each vertex is no more than A.

“⇐” Assume that there is a search strategy for (T,c) where each vertex has search
cost A or less. For any J ∈ S, the search cost of the leaf adjacent to e′(J) is not larger
than the search cost of v(J). This is because the search path to both vertices is the same
until e′(J) is queried, and after that query the leaf is already isolated.

We can assume that e(J) is queried before e′(J) for any J ∈ S, because otherwise
we can interchange the queries to e(J) and e′(J), which makes no search path except
the one to the leaf adjacent to e′(J) more expensive, and the latter search path has cost
which is not larger than the search cost of v(J).

Under this assumption, a schedule for I can be directly constructed from the search
strategy. The schedule with respect to machine M processes jobs J in exactly the order
of the search path to u, where a query to e(J) corresponds to processing of job J, and
a query to an edge fi is translated into opening machine Mi. After Mi has been opened,
it processes jobs in the order the edges e(J) with J ∈ Si that are queried after fi. This
way, we achieve that the completion time of job J is at most c(e′(J)) = A− d(J) less
than the search cost of e(J). As that search cost is no more than A by assumption, J is
completed by time d(J). �

To ensure that the search costs of the v(J)s are not smaller than the search costs of the
other internal vertices, we set A to ∑J∈S c(e(J))+ ∑k

i=1 c( fi)+ max{d(J) | J ∈ S}+ 1.
We achieve that e′(J) has a cost larger than the cost of the search paths to u and all ui.

Reduction of FMS to bounded degree instances. The tree T has diameter 6, but its
degree is unbounded. For constructing a bounded degree tree instead, we need to replace
the star structure of T with a binary tree structure. Construct a binary tree rooted at u,
having k leaves u1, . . . ,uk. The edges f1, . . . . fk are the edges of that binary tree that end
in u1, . . . ,uk, respectively. Now enhance the tree constructed so far by making ui the
root of a binary tree having |Si| leaves v(J),J ∈ Si, for i = 1, . . . ,k. For J ∈ Si, the edge
incident to v(J) is e(J). Finally, for J ∈ S add a further outgoing edge to v(J), namely,
the edge e′(J). The other end points of the edges e′(J), J ∈ S, are the final leaves of the
constructed tree T ′. The edges e(J),e′(J) and fi have the same costs as before, except
that we need A to have a different value.



260 F. Cicalese et al.

Let E ′ be the set of all edges that do not occur in the diameter 6 realization of T . We
need to ensure that no edge from E ′ appears on the search path to some v(J). This is
achieved by making them expensive: we assign cost c′ = max{d(J),J ∈ S}+1 to them,
which implies that no search strategy querying an edge from E ′ during the search for
a v(J) can reach the cost bound A. As we still need the search costs of the e(J)s to be
dominating the other nodes, we set A = |T ′|c′.
Strong Hardness of FMS. We show it by a reduction from 3SAT.

Definition 1 (3SAT). Given a set of m clauses C1, . . . ,Cm over a set of n boolean vari-
ables x1, . . . ,xn, where each clause depends on exactly three variables, decide whether
there is an assignment to the variables such that each clause is satisfied.

Let C1, . . . ,Cm be an instance of 3SAT with variables x1, . . . ,xn. We show how to con-
struct an equivalent instance I of FMS.

Instance I consists of 2n sets of jobs S1, . . . ,Sn, S̄1, . . . , S̄n which correspond to the lit-
erals x1, . . . ,xn, x̄1, . . . , x̄n, respectively. The separation time of all machines associated
to the job sets is 2. For i = 1, . . . ,n, Si contains a job Ji with processing time 1 and
deadline 5(i−1)+3. Furthermore, Si contains job Ki with processing time 2 and dead-
line 5i. The set S̄i contains a pair of jobs J̄i, K̄i with the same characteristics as Ji,Ki.
Those 4n jobs will enforce that at time 5n any feasible schedule has opened either the
machine associated with Si or with S̄i for i = 1, . . . ,n. Note that the construction so far
is independent of the clauses.

Now, for j = 1, . . . ,m, add jobs L j1, . . . ,Ljn, L̄ j1, . . . , L̄ jn to S1, . . . ,Sn, S̄1, . . . , S̄n, re-
spectively, all having processing time 1. The jobs added to the three sets corresponding
to the literals in Cj have deadline 5n +( j− 1)n + 2, while the deadline of all 2n− 3
other jobs is 5n + jn. The idea of this construction is that we need at least one machine
corresponding to a literal in Cj to be open, because we cannot process all three jobs with
deadline 5n +( j−1)n + 2 on machine M. The proof of the following result is omitted.

Lemma 2. The 3SAT instance has a solution iff a feasible schedule exists for I.

Theorem 1. The BIP on weighted trees is strongly NP-hard on instances of diameter
6. The same complexity holds for degree 3 instances.

Proof. By Lemma 1, a pseudo-polynomial algorithm for diameter 6 or degree 3 in-
stances of BIP, implies a pseudo-polynomial algorithm for FMS. Therefore, the state-
ment immediately follows by the NP-hardness of FMS (Lemma 2). �

3 A Polynomial Time Algorithm for Diameter 5 Instances

In this section we show that with respect to the diameter the threshold of 6 in the hard-
ness result of the previous section is tight. We provide a polynomial time solution for
instances of diameter not larger than 5. The following lemmas allow us to focus on
some particular optimal strategies. In addition, Lemma 4 below allows us to assume
that in the tree under consideration each node has at most one leaf neighbor. Due to the
space constraints, the proofs are deferred to the extended version of the paper.

For any node u in T , let L(u) be the set of leaves adjacent to u.



Binary Identification Problems for Weighted Trees 261

f1f4

u4

u1

u f2

u2

u3 e(J)

v(J)

e(J)

f3

A

b

a

β

B

lb

la

(a) (b)

Fig. 1. (a) A tree obtained from the reduction of an instance of FMS. Here J is a job in S3. (b) An
instance of a diameter 5 tree.

Lemma 3. For any tree T there exists an optimal search strategy where no leaf is sep-
arated from its neighbor u before u has been separated from all its non-leaf neighbors.

Lemma 4. For some internal node u of T , let (T̃ , c̃) be obtained from (T,c) by replac-
ing nodes L(u) and edges {(u,v) | v ∈ L(u)} with a single leaf lu and edge {u, lu} with
cost c̃({u, lu}) = ∑v∈L(u) c({u,v}), while for all other edges, c̃ and c coincide. Then
T and T̃ are equivalent problem instances, i.e. an optimal solution for (T,c) can be
transformed into one for (T̃ , c̃) and vice versa.

Under the assumption of this last lemma, any diameter 5 tree can be described as fol-
lows. There is a “central” edge {α,β}, and α and β are connected to the set of nodes
β ∪A and α ∪B, respectively. Each a ∈ A is connected to a leaf la, and each b ∈ B is
connected to a leaf lb. Although there exist diameter 5 trees where some a does not have
a neighbor besides α , we can assume in that case that the edge {a, la} has cost zero. See
Figure 1(b) for an example tree with |A|= 4 and |B|= 3.

The edges {a, la},a ∈ A and {b, lb},b ∈ B are called outer edges, and the edges
incident to α and β , except edge {α,β}, are called inner edges. From Lemma 3 we
know that any outer edge {a, la} or {b, lb} can be assumed to be queried after the query
to the respective inner edge {α,a} or {β ,b}. We therefore only need to reason about
the optimal strategy for querying the edges incident to α and β . Furthermore, we can
ignore the search costs to the leaves, because of Lemma 3. The following lemma shows
that we can restrict ourselves to certain ordered strategies.

Lemma 5. There is an optimal solution that is ordered, i.e.
(a) the inner edges (α,a),a ∈ A, are queried in the order of the nonincreasing cost of

their respective outer edges {a, la}. The same holds for the edges {β ,b},b ∈ B.
(b) the inner edges queried before {α,β} are queried in order of the nonincreasing

cost of their respective outer edges.

From Lemma 5 one can straightforwardly derive an optimal algorithm. First, sort the
inner edges by the cost of their adjacent outer edges. For j = 0, . . . , |A|+ |B|, evaluate the
search strategy which queries the first j inner edges, then performs a query to {α,β},
then queries the remaining elements of A and B in two different branches of the search



262 F. Cicalese et al.

tree, but according to the same order. Finally, choose the best among the |A|+ |B|+ 1
evaluated solutions.

We have constructed an algorithm for trees having diameter exactly 5. However, trees
with diameter less than 5 can be reduced to diameter 5 trees by adding nodes that are
connected to the original nodes via cost 0 edges. This leads to the following result.

Theorem 2. The problem to compute an optimal search strategy for trees of diameter
at most 5 admits a polynomial time algorithm.

4 A Quadratic Time Algorithm for Path Instances

In this section we consider the particular case when the tree T is a simple path P =
e1, . . . ,en, with n edges. A natural dynamic programming procedure finds the optimal
decision tree for the path in O(n3) time. It is based on the observation that the cost of the
optimal decision tree OPT [i, j] for the subpath P[i, j] = ei, . . . ,e j can be determined as

OPT [i, j] = min
k=i... j

(
c(ek)+ max{OPT [i,k−1],OPT [k + 1, j]}

)
(1)

for j > i, and otherwise OPT [i, i] = c(ei) and OPT [i, i− 1] = 0. There are O(n2) sub-
problems, and for each subproblem one has to compare O(n) different possibilities for
index k, which is why this algorithm has cubic runtime.

We shall now present a dynamic programming algorithm which cuts a factor of n
from the natural DP. The Knuth-Yao Quadrangle Inequality [11,19] is a well known
technique to speed up dynamic programs of the same flavor—unfortunately, it does not
hold here. The Quadrangle Inequality would imply OPT [i, j]+OPT [i′, j′]≤OPT [i, j′]+
OPT [i′, j], for each i ≤ i′,≤ j ≤ j′. However, for the problem instance e1, . . . ,e7 with
c(e1) = 1999,c(e2) = 2,c(e3) = 3,c(e4) = c(e5) = c(e6) = 1000, and c(e7) = 3, one
can verify that OPT [1,6]+ OPT [6,7] > OPT [1,7]+ OPT [6,6].

Assume that we want to compute OPT [i, j] using Equation 1. We need the previously
computed values of OPT [i, i],OPT [i, i + 1], . . . ,OPT [i, j− 1], and we need the values
OPT [i+1, j],OPT [i+2, j] . . . ,OPT [ j, j]. Straightforward argumentation (or the use of
Lemma 7, in the next section) shows that the first sequence is nondecreasing and the
second one is nonincreasing.

Therefore, for j > i, let bi j be the smallest integer s in [i+ 1, j] such that OPT [i,s−
1]≥OPT [s+1, j]. Note that bi j is well defined because OPT [i, j−1]≥OPT [ j+1, j] =
0. In addition, the monotonicity property, mentioned in the above paragraph, implies
that OPT [i,k− 1] < OPT [k + 1, j] for each k ∈ [i + 1,bi j − 1] and OPT [i,k− 1] ≥
OPT [k + 1, j] for each k ∈ [bi j, j]. We call bi j the transition index of the set {i, . . . , j}.

Let LC(i, j) := c(e j)+OPT [i, j−1] the left cost of j with respect to i. Analogously,
we let RC(i, j) := c(ei)+OPT [i+1, j] and we call it the right cost of i w.r.t. j. Exploit-
ing the transition index, Equation 1 can be rewritten as

OPT [i, j] = min

{

min
k=i,...,bi j−1

RC(k, j), min
k=bi j ,..., j

LC(i,k)
}

.

Motivated by this formula, we let

�i j = argmink∈[bi j , j]{LC(i,k)} and ri j = argmink∈[i,bi j−1]{RC(k, j)},



Binary Identification Problems for Weighted Trees 263

so that OPT [i, j] = min{LC(i, �i j),RC(ri j, j)}. Thus, we can find the cost of a minimum
cost decision tree for P[1,n] through the following simple procedure.

Algorithm PATHOPT(P,c,n)
For i = 1, ...n do

OPT(i, i−1) = 0 ; OPT(i, i)← c(ei)
For len = 2, ...n do

For i = 1...(n− len+1) do
j← (i+ len−1)
Find bi j

Find �i j and ri j
OPT(i, j) = min{LC(i, �i j),RC(ri j, j)}.

End do
End do

We will now show that we can find bi j, �i j and ri j in O(1) amortized time. We start
with bi j. The following monotonicity property turns out to be useful

Lemma 6. Let i, j be such that 1≤ i < j ≤ n and j ≥ i+2. Then, bi, j−1 ≤ bi j ≤ bi+1, j.

Proof. We only show bi, j−1 ≤ bi j, because the other inequality can be shown symmet-
rically. By the definition of bi, j−1, we have OPT [i,k− 1] < OPT [k + 1, j− 1] for each
k ∈ [i + 1,bi j−1− 1]. By Lemma 7 it holds that OPT [k + 1, j− 1] ≤ OPT [k + 1, j] for
any k. It follows that OPT [i,k− 1] < OPT [k + 1, j] for k ∈ [i + 1,bi, j−1− 1], which is
why bi j cannot be smaller than bi, j−1. �

The above lemma implies that for computing bi j it suffices to consider the positions
between bi, j−1 and bi+1, j. Among these positions, bi j is computed as the smallest in-
dex k such that LC(i,k) ≥ RC(k, j), where all values of LC and RC required for this
computation can be determined reusing previously computed values of OPT [·, ·]. Fix a
value of len (algorithm’s outer loop); the total number of positions that are considered
for determining the indices bi j, with j− i = len− 1, is

n−len+1

∑
i=1

(bi+1,i+len−1− bi,i+len−2 +1) = (n− len+ 1)+ bn−len+2,n− b1,len−1 < 2n.

Thus, the algorithm spends O(n2) to find all bi j’s.
It remains to show how to find the indices �i j and ri j in O(1) amortized time. We just

detail how to compute �i j because ri j can be computed in a symmetric way.
Assume some i to be fixed throughout the following paragraphs. In order to find the

�i j’s in an efficient way, we organize candidates for �i, j in an additional data structure
Li. Recall that the candidates for �i, j are the indices bi j, . . . , j. If k > k′ and LC(i,k′) ≥
LC(i,k) we say that k′ is left dominated by k with respect to i. Note that if k′ is left
dominated by some k then we can conclude that �i j 	= k′ for j = k, . . . ,n since k is a
choice better than k′ (whenever k′ is a candidate). This is a key property for finding
the �i j’s efficiently because it allows to discard some candidates from Li during the
algorithm’s execution.



264 F. Cicalese et al.

The algorithm implements Li as a queue and maintains the following invariants:

(a) right after processing the path P[i, j− 1] in the above pseudo code, Li stores the
indices from [bi, j−1, j− 1] that are not left dominated, with respect to i, by any other
index in that set.

(b) The indices in Li are sorted by increasing order of their left costs w.r.t. i.

These conditions together imply that, right after processing P[i, j− 1], Li is also
sorted by increasing order of edge indices.

When j = i + 1, we set �i,i+1 = i + 1 and then we put this index into the initially
empty queue Li. Since bi,i+1 = i + 1 we have that both (a) and (b) are satisfied right
after processing P[i, i + 1]. To find �i j in later iterations and maintain the invariants
we proceed as follows: (Step 1) Remove from Li every index smaller than bi j. This is
done because, as bi j is nondecreasing in j, these indices can never be candidate indices
any more; (Step 2) Remove from Li all indices k such that LC(i, j) ≤ LC(i,k). This is
because these indices are left dominated by j; (Step 3) Insert j at the tail of the queue;
(Step 4) Set �i j as the index at the head of Li.

Using the size of Li as a potential function, one easily show that the time for comput-
ing some �i j is amortized constant. This is because the only nonlinear time operations
are the deletions in Step 1 and 2, and here the runtime coincides with the decrease of
the potential function. Thus we have the following theorem.

Theorem 3. There is an O(n2) time algorithm that finds the optimal search tree for the
problem of searching in a weighted path.

5 An o(logn) Approximation Algorithm

We shall first present two natural lower bounds on the cost of the optimal decision tree
for a given weighted tree. We shall use OPT (T,c) to denote the cost of an optimal
decision tree for the weighted tree instance (T,c). When the cost assignment is clear
from the context we use OPT (T ) instead of OPT (T,c). In this section, by writing T ′ ⊆
T we mean that T ′ is a subtree obtained from T by the deletion of vertices and edges.
We prepare the following easy lower bounds on the cost of an optimal solution, whose
proof is omitted due to the space constraints.

Lemma 7. OPT (T,c)≥maxT ′⊆T OPT (T ′,c)

Lemma 8. OPT (T,c)≥maxT ′⊆T cmin(T ′) log |T ′|, where cmin(T ′) is the minimum cost
of an edge of T ′ according to the cost assignment c.

For a forest F we denote by K (F) the set of connected components (trees) in F. We
use K(F) to denote the size of the largest component of F, i.e., K(F) = maxC∈K (F) |C|.

Let t be a parameter whose exact value will be determined in the course of the anal-
ysis. The algorithm makes use of a maximal set of vertices S such that all edges of the
subtree T [S], induced by S, are reasonably good separators for T , that is, K(T − e) ≤
(1− t)|T | for every e ∈ T [S]. More specifically, the set S is constructed starting with
the centroid of T (i.e., the unique vertex v with K(T − v)≤ |T |/2) and then keeping on



Binary Identification Problems for Weighted Trees 265

adding vertices v such that v is adjacent to some vertex u ∈ S for which K(T −{u,v})≤
(1− t)|T |. This procedure stops when there is no vertex in T − S which satisfies the
required conditions.

Proposition 1. Each component of K (T − S) has size at most t · |T |.

Proof. Let C be a component of K (T−S) and let e be the edge that connects C to T [S].
In addition, let u be the endpoint of e that belongs to C. Since u is not added to S, the
larger component of T − e has size larger than (1− t)|T |, hence the smaller component
of T − e has size smaller than or equal to t|T |. This smaller component must be C, for
otherwise C would contain the centroid vertex, contradicting the construction of S. �

The algorithm constructs the set S as explained above and then, depending on the size
of S, proceeds with one of the following two cases:

Case 1: |S|> logn. Let e∗ = {u,v} be the edge of minimum cost in S. Let Tu (resp. Tv)
be the connected component of T − e∗ containing u (resp v). The algorithm probes the
edge e∗ and then recurses in the subtrees Tu and Tv. The choice of e∗ guarantees that the
algorithm probes an edge which is both cheap and a reasonably good separator. This
yields the following equation

APP(|T |)≤ c(e∗)+ max{cost(Tv),cost(Tu)}
OPT (T )

≤ 1/ loglogn +APP((1− t) · |T|),

where APP(s) denotes the approximation ratio achieved by the algorithm on an input
tree with s vertices. In the above equation, c(e∗)/OPT (T ) ≤ 1/ log |S| ≤ 1/ loglogn
follows from Lemma 8.

Case 2: |S| ≤ logn. In this case the algorithm takes advantage of the fact that S is a good
separator for T (Proposition 1) and that an optimal decision tree for S can be constructed
in O(n logn) through dynamic programming (cf. [4]).

Let ST be the vertices of S that are adjacent to some vertex in T −S. The algorithm
proceeds as follows: (i) Build an optimal decision tree for T [S]; (ii) For each v ∈ ST

build the optimal decision tree for Sv, where Sv is the star induced by v and the vertices
of T − S adjacent to v. (iii) Recurse in the components of K (T − S); (iv) Assemble a
decision tree D for T as follows: (a) For each v ∈ ST , replace the leaf of the optimal
tree for T [S] corresponding to v with the optimal decision tree for Sv; (b) For each
v ∈ ST and for each w ∈ Sv−{v}, replace the leaf of the optimal decision tree for Sv

corresponding to w with the decision tree recursively constructed for the component of
T −S that contains w.

Note that any decision tree for a star is optimal. The construction yields the following
estimate of the approximation achieved by the algorithm:

APP(|T |)≤
OPT (T [S])+maxv∈ST {OPT (Sv)}+maxC∈K (T−S){cost(C)}

OPT (T )
≤ 2+APP(t · |T |) .

Putting together the two cases, we obtain

App(|T |)≤max{1/ loglogn+ APP((1− t) · |T|),2 +APP(t · |T |)}



266 F. Cicalese et al.

By setting t = 1/ loglog logn, standard methods for solving recurrences give APP(n) =
O(logn/ logloglog logn) = o(logn). Note that t is fixed throughout the algorithm, that
is, it does not change together with the size of the different trees which are considered
in the recursion process. Summarizing, we have shown the following result.

Theorem 4. There is an o(logn)-approximation algorithm for the problem of searching
in weighted trees.

Acknowledgments. We thank Marco Molinaro for several inspiring discussions.

References

1. Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees. SIAM Journal on Comput-
ing 28(6), 2090–2102 (1999)

2. Charikar, M., Fagin, R., Guruswami, V., Kleinberg, J.M., Raghavan, P., Sahai, A.: Query
strategies for priced information. J. of Comp. and System Sc. 64(4), 785–819 (2002)

3. Cicalese, F., Jacobs, T., Laber, E., Molinaro, M.: On greedy algorithms for decision trees.
In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010, Part II. LNCS, vol. 6507, pp.
206–217. Springer, Heidelberg (2010)

4. Cicalese, F., Jacobs, T., Laber, E., Molinaro, M.: On the complexity of searching in trees:
Average-case minimization. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der
Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 527–539. Springer, Hei-
delberg (2010)

5. de la Torre, P., Greenlaw, R., Schäffer, A.: Optimal edge ranking of trees in polynomial time.
Algorithmica 13(6), 592–618 (1995)

6. Dereniowski, D.: Edge ranking of weighted trees. DAM 154, 1198–1209 (2006)
7. Dereniowski, D.: Edge ranking and searching in partial orders. DAM 156, 2493–2500 (2008)
8. Garey, M.: Optimal binary identification procedures. SIAM J. Appl. Math. 23(2), 173–186

(1972)
9. Iyer, A., Ratliff, H., Vijayan, G.: On an edge ranking problem of trees and graphs. Discrete

Applied Mathematics 30(1), 43–52 (1991)
10. Iyer, A.V., Ratliff, H.D., Vijayan, G.: On an edge ranking problem of trees and graphs. Dis-

crete Appl. Math. 30, 43–52 (1991)
11. Knuth, D.: Optimum binary search trees. Acta. Informat. 1, 14–25 (1971)
12. Laber, E., Milidiú, R., Pessoa, A.: On binary searching with non-uniform costs. In: Proc. of

SODA 2001, pp. 855–864 (2001)
13. Laber, E., Nogueira, L.: On the hardness of the minimum height decision tree problem. Dis-

crete Applied Mathematics 144(1-2), 209–212 (2004)
14. Lam, T.W., Yue, F.L.: Optimal edge ranking of trees in linear time. In: Proc. of SODA 1998,

pp. 436–445 (1998)
15. Lipman, M., Abrahams, J.: Minimum average cost testing for partially ordered components.

IEEE Transactions on Information Theory 41(1), 287–291 (1995)
16. Makino, K., Uno, Y., Ibaraki, T.: On minimum edge ranking spanning trees. J. Algorithms 38,

411–437 (2001)
17. Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy in linear time.

In: Proc. of SODA 2008, pp. 1096–1105 (2008)
18. Onak, K., Parys, P.: Generalization of binary search: Searching in trees and forest-like partial

orders. In: Proc. of FOCS 2006, pp. 379–388 (2006)
19. Yao, F.F.: Efficient dynamic programming using quadrangle inequalities. In: Proc. of STOC

1980, pp. 429–435 (1980)



Computing the Fréchet Distance between Folded

Polygons�

Atlas F. Cook IV1, Anne Driemel1, Sariel Har-Peled2,
Jessica Sherette3, and Carola Wenk3

1 Department of Information and Computing Sciences,
University of Utrecht, Netherlands

{atlas,driemel}@cs.uu.nl
2 Department of Computer Science, University of Illinois, USA

sariel@uiuc.edu
3 Department of Computer Science, University of Texas at San Antonio, USA

{jsherett,carola}@cs.utsa.edu

Abstract. Computing the Fréchet distance for surfaces is a surprisingly
hard problem and the only known algorithm is limited to computing it
between flat surfaces. We adapt this algorithm to create one for com-
puting the Fréchet distance for a class of non-flat surfaces which we
call folded polygons. Unfortunately, the original algorithm cannot be
extended directly. We present three different methods to adapt it. The
first of which is a fixed-parameter tractable algorithm. The second is
a polynomial-time approximation algorithm. Finally, we present a re-
stricted class of folded polygons for which we can compute the Fréchet
distance in polynomial time.

Keywords: Computational Geometry, Shape Matching, Fréchet
Distance.

1 Introduction

The Fréchet distance is a similarity metric for continuous shapes such as curves
and surfaces. In the case of computing it between two (directed open) curves
there is an intuitive explanation of the Fréchet distance. Suppose a man walks
along one curve, a dog walks along the other, and they are connected by a leash.
They can vary their relative speeds but cannot move backwards. Such a walk
pairs every point on one curve to one and only one point on the other curve
(i.e., creates homeomorphism) in a continuous way. The Fréchet distance of the
curves is the minimum leash length required for the man and dog to walk along
these curves. Although less intuitive, the idea is similar for surfaces.

While the Fréchet distance between polygonal curves can be computed in
polynomial time [1], computing it between surfaces is much harder. In [2] it
was shown that even computing the Fréchet distance between a triangle and
� This work has been supported by the National Science Foundation grant NSF CA-

REER CCF-0643597.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 267–278, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



268 A.F. Cook IV et al.

a self-intersecting surface is NP-hard. This result was extended in [3] to show
that computing the Fréchet distance between 2d terrains as well as between
polygons with holes is also NP-hard. Furthermore, while in [4] it was shown
to be upper semi-computable, it remains an open question whether the Fréchet
distance between general surfaces is even computable.

On the other hand, in [5] a polynomial time algorithm is given for computing
the Fréchet distance between two (flat) simple polygons. This was the first paper
to give any algorithm for computing the Fréchet distance for a nontrivial class of
surfaces and remains the only known approach. Our contribution is to generalize
their algorithm to a class of non-flat surfaces we refer to as folded polygons. Given
that theirs is the only known approach it is of particular importance to explore
extending it to new classes of surfaces. The major problem we encountered was
that the mappings between the folded polygons which need to be considered are
less restricted than those between simple polygons. We address three different
methods to resolve this problem. In Sect.3, we outline a fixed-parameter tractable
algorithm. In Sect.4, we describe a polynomial-time approximation algorithm to
compute the Fréchet distance between folded polygons within a constant factor.
In Sect.5, we describe a nontrivial class of folded polygons for which the original
algorithm presented in [5] will compute an exact result.

2 Preliminaries

The Fréchet distance is defined for two k-dimensional hypersurfaces P, Q : [0, 1]x

→ R
d, where x ≤ d, as

δF (P, Q) = inf
σ:A→B

sup
p∈A

‖P (p)−Q(σ(p))‖

where σ ranges over orientation-preserving homeomorphisms that map each
point p ∈ P to an image point q = σ(p) ∈ Q. Lastly, ‖ · ‖ is the Euclidean
norm but other metrics could be used instead.

Let P, Q : [0, 1]2 → R
d be connected polyhedral surfaces for each of which

we have a convex subdivision. We assume that the dual graphs of the convex
subdivisions are acyclic, which means that the subdivisions do not have any
interior vertices. We will refer to surfaces of this type as folded polygons. We
refer to the interior convex subdivision edges of P and Q as diagonals and edges
respectively. Let m and n be the complexities of P and Q respectively. Let k
and l be the number of diagonals and edges respectively. Assume without loss
of generality the number of diagonals is smaller than the number of edges. Let
Tmatrixmult(N) denote the time to multiply two N ×N matrices.

2.1 Simple Polygons Algorithm Summary

Buchin et al. [5] show that, while the Fréchet distance between a convex polygon
and a simple polygon is the Fréchet distance of their boundaries, this is not
the case for two simple polygons. They present an algorithm to compute the



Computing the Fréchet Distance between Folded Polygons 269

Fréchet distance between two simple polygons P , Q. The idea is to find a convex
subdivision of P and map each of the convex regions of it continuously to distinct
parts of Q such that taken together the images account for all of Q.

The decision problem δF (P, Q) ≤ ε can be solved by (1) mapping the bound-
ary of P , which we denote by ∂P , onto the boundary of Q, which we denote by
∂Q, such that δF (∂P, ∂Q) ≤ ε and (2) mapping each diagonal d in the convex
subdivision of P to a shortest path f ⊆ Q such that both endpoints of f lie on
∂Q and such that δF (d, f) ≤ ε.

In order to solve subproblem (1) they use the notion of a free space diagram.
For open curves f, g : [0, 1]→ R

d it is defined as FSε(f, g) = {(x, y) | x ∈ f, y ∈
g, ||x − y|| ≤ ε} where ε ≥ 0. A monotone path starting at the bottom left
corner of the free space diagram going to the top right exists if and only if the
curves are within Fréchet distance ε. As shown in [1], this can be extended to
closed curves by concatenating two copies of the free space diagram to create a
double free space diagram and searching for a monotone path which covers every
point in P exactly once, see Fig.1. This algorithm can be used to show whether
δF (∂P, ∂Q) ≤ ε and find the particular mapping(s) between ∂P and ∂Q. In turn
this defines a placement of the diagonals, i.e., a mapping of the endpoints of the
diagonals to endpoints of the corresponding image curves in Q.

p1

q1

p1q1 p1

ε

p2

p3

q2
q3

q4

q5

q6

q7

p4

p5

p6

q2

q3

q4

q5
q6
q7

q1

p2 p3 p4 p5 p6 p1p2 p3 p4 p5 p6

∂P ∂P

∂Q

P Q

Fig. 1. The white areas are those in free space diagram. The surfaces are within Fréchet
distance ε since there is a monotone path starting at the bottom of the free space
diagram and ending at the top which maps every point on the boundary of P exactly
once. This figure was generated using an ipelet created by Günter Rote.

Subproblem (2) is solved by only considering paths through the free space
diagram that map a diagonal d onto an image curve f such that δF (d, f) ≤ ε.
Naturally the particular placement of the diagonals determined in subproblem
(1) could affect whether this is true. Therefore, they must check this for many
paths in the free space diagram. Fortunately they can show that it is sufficient
to only consider mapping a diagonal to an image curve which is the shortest
path between the end points determined by the placement.

Solving these subproblems generates a mapping between P and Q for ε. This
mapping might not be a homeomorphism but the authors show by making very
small perturbations of image curves the mapping can be made into one. These
perturbations can be arbitrarily small. Thus, because the Fréchet distance is the



270 A.F. Cook IV et al.

infimum of all homeomorphisms on the surfaces, the Fréchet distance is ε. For
simplicity we will refer to these generated mappings as homeomorphisms. By
performing a binary search on a set of critical values they can use the above
algorithm for the decision problem to compute the Fréchet distance of P and Q.

2.2 Shortest Path Edge Sequences

Our algorithm extends the simple polygons algorithm to one for folded polygons.
The idea of the algorithm is to subdivide one surface, P , into convex regions and
pair those with corresponding regions in the other surface, Q. Those regions of
Q are now folded polygons rather than just simple polygons. The authors of [5]
show that the Fréchet distance of a convex polygon and a simple polygon is just
the Fréchet distance of their boundaries. Using essentially the same argument
we prove the following lemma.

Lemma 1. The Fréchet distance between a folded polygon P and a convex poly-
gon Q is the same as that between their boundary curves.

For the simple polygon algorithm it suffices to map diagonals onto shortest paths
between two points on ∂Q. By contrast, there are folded polygons where a home-
omorphism between the surfaces does not exist when diagonals are mapped to
shortest paths but does exist when the paths are not restricted, see Fig.2. We
must therefore consider mapping the diagonals to more general paths. Fortu-
nately, we can show that these more general paths still have some nice properties
for folded polygons.

(b)

Q

d

(a)

Q

a bs1

s2

s1

s2

a b

d

Fig. 2. The curve s1 is the shortest path in Q between the points a and b but the curve
s2 has smaller Fréchet distance to d than s1 has. (a) overhead view, (b) sideview

Lemma 2. Let u and v be points such that u, v ∈ ∂Q, E = {e0, e1, . . . , es} be a
sequence of edges in the convex subdivision of Q, and d be a line segment. Given
ε > 0, a curve f in Q that follows the edge sequence E from u to v such that
δF (d, f) ≤ ε can be computed, if such a curve exists, in O(s) time.

Proof. We construct a series F = FSε(e0, d), FSε(e1, d), . . . , FSε(es, d), of 2-
dimensional free space diagrams. Any two edges ei and ei+1 are on the boundary
of the same convex polygon in the convex subdivision of Q so we can assume



Computing the Fréchet Distance between Folded Polygons 271

without loss of generality that f consists of straight line segments between the
edge intersections. This is similar to the shortcutting argument used to prove
Lemma 3 in [5]. Thus, we only need to check the points where f crosses an edge
of Q. For δF (d, f) ≤ ε to be true, the preimages of those crossing points must
be monotone along d. Let FS

′
ε(ei, d) be the projection of FSε(ei, d) onto d. Let

F
′
= FS

′
ε(e1, d), FS

′
ε(e2, d), . . . , FS

′
ε(es, d).

To verify that the preimage points on d can be chosen such that they are
monotone, we check the intervals of F

′
. Specifically, for i < j, the point on d

mapped to ei must come before the one mapped to ej . This can be checked by
greedily scanning left to right and always choosing the smallest point on d which
can be mapped to some edge. A search of this form takes O(s) time. �	
The dual graph of the faces of Q is acyclic. This implies that there is a unique
sequence of faces through which a shortest path from u to v, where u, v ∈ ∂Q,
must pass. Necessarily, there must also be a unique edge sequence that the
shortest path follows. We refer to this as the shortest path edge sequence.

Lemma 3. Let Q be a folded polygon and d be a diagonal. If there is a curve
f ⊆ Q with δF (d, f) ≤ ε then there is a curve g ⊆ Q which follows the shortest
path edge sequence such that δF (d, g) ≤ ε.

Proof. Let Ef and Eg be the edge sequences of f and g respectively. By definition
the dual graph of the faces of Q is acyclic, so Eg must be a subsequence of Ef .
Eg induces a sequence of free space intervals. If there is a monotone path in the
free space interval sequence induced by Ef , we can cut out some intervals and
have a monotone path in the free space for Eg. �	
From Lemma 3, we just need to consider paths that follow the shortest path
edge sequence. We refer to paths that follow this edge sequence and consist of
straight line segments between edges as Fréchet shortest paths. In addition, s
in Lemma 2 is bounded by the number of edges along the shortest path edge
sequence between u and v. This implies the following theorem.

Theorem 1. Let Q be a folded polygon, u and v be points such that u, v ∈ ∂Q,
and d be a line segment. Given ε > 0, we can in O(l) time find a curve f in Q
from u to v such that δF (d, f) ≤ ε if such a curve exists.

Suppose we have a homeomorphism between ∂P and ∂Q. The endpoints of the
image curves must appear on ∂Q in the same order as their respective diagonal
endpoints on ∂P . The homeomorphism also induces a direction on the diagonals
in P and on the edges in Q. Specifically, we consider diagonals and edges to start
at their first endpoint along ∂P or ∂Q respectively in a counterclockwise traversal
of the boundaries. We denote by De the set of diagonals whose associated shortest
path edge sequences contain an edge e ⊆ Q. Observe that pairwise non-crossing
image curves must intersect an edge e in the same order as their endpoints occur
on ∂Q. We refer to this as the proper intersection order for an edge e.



272 A.F. Cook IV et al.

2.3 Diagonal Monotonicity Test and Untangleability

We now define a test between two folded polygons P and Q which we call the
diagonal monotonicity test. For a given ε this test returns true if the following
two things are true. First, δF (∂P, ∂Q) ≤ ε. Second, for every diagonal di in the
convex subdivision of P , the corresponding Fréchet shortest path fi in Q has
δF (di, fi) ≤ ε. We refer to the class of mappings of the folded polygons generated
by this test as monotone diagonal mappings. This is similar to the test used by
[5] except ours uses Fréchet shortest paths instead of the shortest paths.

Unfortunately, because the image curves of the diagonals are no longer short-
est paths, they may cross each other and we will no longer be able to generate a
mapping between the folded polygons which is a homeomorphism. Thus the di-
agonal monotonicity test might return true when in fact a homeomorphism does
not exist. We must explicitly ensure that the image curves of all diagonals are
non-crossing. In particular, we refer to a set of image curves F = {f1 . . . fk} as
untangleable for ε if and only if there exists a set of image curves F

′
= {f ′

1 . . . f
′
k}

where fi and f
′
i have the same end points on ∂Q, δF (di, f

′
i ) ≤ ε, and the curves

of F
′

are pairwise non-crossing. A homeomorphism exists between the folded
polygons for ε if and only if there exists a monotone diagonal mapping whose
image curves are untangleable for ε. The proof of this is straight forward and,
due to lack of space, is omitted.

As shown in Theorem 1, computing Fréchet shortest paths instead of shortest
paths does not increase the asymptotic run time. To optimize this ε we can
perform a binary search on a set of critical values. As in [5], the number of critical
values is O(m2n + mn2). The three types of critical values between a diagonal
and its corresponding path through Q are very similar to those outlined in the
simple polygons algorithm. So, by following the paradigm set forth by [5], we
arrive at the following theorem:

Theorem 2. The minimum ε for which two folded polygons P and Q, pass the di-
agonal monotonicity test can be computed in time O(kTmatrixmult(mn) log(mn)).

3 Fixed-Parameter Tractable Algorithm

In this section we outline an algorithm to decide for a fixed mapping between the
boundaries of a pair of folded polygons whether the image curves induced from
the mapping are untangleable. From this we create a fixed-parameter tractable
algorithm for computing the Fréchet distance between a pair of folded polygons.

3.1 Untangleability Space

Let e be an edge in Q which is crossed by the image curves of h diagonals,
d1, . . . , dh. We assume without loss of generality that the image curves of the
diagonals cross e in proper intersection order if, for all 1 ≤ i, j ≤ h where i < j,
the image curve of di crosses e before the image curve of dj crosses e. Let the
untangleability space Ue contain all h-tuples of points on the diagonals which can



Computing the Fréchet Distance between Folded Polygons 273

be mapped to crossing points on the edge e within distance ε and such that the
crossing points are in the proper intersection order along e. Ue can be shown to
be convex yielding the following theorem.

Theorem 3. Ue(d1, . . . , dh) is convex.

This theorem can be proven by linearly interpolating between points in Ue. Due
to lack of space the proof is deferred to the full version of this paper.

3.2 Fixed-Parameter Tractable Algorithm

We assume the complexity of k and l, the convex subdivisions of P and Q are
constant. Checking for the existence of a set of image curves which are untan-
gleable can be done by using the untangleability spaces of the edges. Assume we
are given some homeomorphism between ∂P and ∂Q from which we get a place-
ment of the diagonals. We first choose an edge in Q to act as the root of the edge
tree that corresponds to the dual graph of Q. We propagate constraints imposed
by each untangleability space up the tree to the root node to determine if the
set of image curves induced by the placement of the diagonals is untangleable.

The untangleability space of an edge e, Ue, contains exactly those sets of
points on the diagonals in De which can be mapped to the edge in the proper
intersection order. The point chosen in Ue imposes a constraint on what points
may be chosen in other untangleability spaces. In particular the corresponding
points on all of the diagonals must be monotone with respect to their edge
sequence. We define C(Uei) as the Minkowski sum of Uei with a ray in the
opposite direction of the constraint on each of the diagonals in Dei , see Fig.3.
The direction of this constraint depends on which side of the edge ei the next
edge is. C(Uei) contains exactly those sets of points on the diagonals not excluded
from having a monotone mapping with Uei .

d1

d2

Fig. 3. Ue is shown in white and C(Ue) is the union of the white and light gray portions

We define for every edge e a k-dimensional propagation space Pe. If e is a leaf
in the tree, then Pe = Ue. Otherwise, define

Pe = Ue ∩ C(Pe1) ∩ . . . ∩ C(Pej )

where e is the parent of the edges e1, e2, . . . , ej. C(Pej ) contains only those points
that are not excluded by the constraints of the tree rooted at ej from being
used to untangle on the parent of ej . The propagation space for the root will
be empty if and only if this set of image curves are not untangleable. From our



274 A.F. Cook IV et al.

assumptions, the propagation space of the root can be computed in constant time
as the intersection of semi-algebraic sets [6]. Let F (k, l) be the time complexity
of computing this intersection.

Consider two different mappings between ∂P and ∂Q. These determine differ-
ent placements of the diagonals. If all of the image curves of all of the diagonals
have the same shortest path edge sequence in both of the mappings the test
will return the same result. Thus, we only need to test paths through the free
space diagram which cross the diagonals and edges in a different order. The free
space diagram for ∂P and ∂Q contains 2k vertical line segments that will each
contribute O(kl) different mappings of the diagonals and edges. Hence, there
are O((kl)2k) paths through the free space diagram which we need to test. For
each of these we can check whether a global untangling exists as described above
in constant time. Similar to the algorithm for polygonal curves [1] we can per-
form Cole’s [7] technique for parametric search [8] to optimize the value of ε.
For a constant number of edges l and diagonals k, this yields a fixed-parameter
tractable algorithm with runtime polynomial in m and n.

Theorem 4. We can compute the Fréchet distance of two folded polygons in
time O((F (k, l)(kl)2k + kTmatrixmult(mn)) log(mn)).

4 Constant Factor Approximation Algorithm

In this section we present an approximation algorithm which avoids the problem
tangles altogether. First we prove the following theorem:

Theorem 5. If two folded polygons, P and Q, pass the diagonal monotonicity
test for some ε, then δF (P, Q) ≤ 9ε.

Proof. Consider the image curves of the diagonals of P found by performing our
diagonal monotonicity test. To pass the diagonal monotonicity test there must
be a homeomorphism between ∂P and ∂Q. The image curves of the diagonals
will be mapped in the proper order along the boundary of Q. Therefore, if a pair
of image curves cross in Q they must do so an even number of times.

Take two consecutive points u, v on the boundary of P that are connected
by a diagonal d = uv, and consider the convex ear of P that d “cuts off”. Let
d

′
be the image curve of d in Q. In order to create a homeomorphism between

P and Q, d
′

should cut off an ear of Q which can be mapped to the ear of P .
Unfortunately, some image curves may cross this d

′
and cause tangles. Consider

the arrangement of image curves in Q and let d
′′

be the highest level of this
arrangement closest to the top of the ear (∂Q), such that d

′′
connects the image

points u and v on the boundary of Q.
Observe that if an image curve d

′
1 crosses d

′
from below then that intersection

point a
′

has a pre-image on both d and d1. These points a on d and a1 on d1

can be no more than 2ε apart since they both map to the intersection within
distance ε. In addition, d

′
1 must cross back below d

′
eventually since all image

curves which cross do so an even number of times (take the first such occurrence



Computing the Fréchet Distance between Folded Polygons 275

after the initial crossing). The preimage points b and b1 of this second intersection
b
′
are also no more than 2ε apart. Since both d and d

′
are line segments, every

point on the line segment ab on d is ≤ 2ε distance from some point on the line
segment a1b1 on d1. For an approximation of 3ε we can map a point on d to its
corresponding point on d1 and then to where that point maps on d

′
1, see Fig.4(a).

Thus, d can be mapped to an image curve above d
′
1 within Fréchet distance 3ε.

d
′
1

d1

d

d
′

≤ ε
≤ ε ≤ ε

≤ ε

a
′

b
′

(a)

d
′
1

d

d
′

d
′
2

≤ 6ε

d
′
3 d

′
4

≤ 6ε
≤ 6ε?

a
′

b
′

a2 a1b4 b3

d
′
1

d

d
′

d
′
2

≤ 6ε

≤ 3ε≤ 3ε

(b) (c)

a1

a

b1

b

Fig. 4. (a) the intersections between d and d1 imply that ab can be mapped to the

region of d
′
1 between a

′
and b

′
within Fréchet distance 3ε. (b) this is the preimage of

the intersection between d
′
1 and d

′
2 on d. (c) this is an example of the preimages of two

intersections occurring out of order of d.

If this image curve d
′
1 then crosses another image curve d

′
2 this argument above

cannot be just repeated because the approximation factor would depend linearly
on the number of image curves which cross each other. The preimage points on
d of such an intersection not involving d

′
are separated by at most 6ε. This is

because both diagonals involved in the intersection have a 3ε correspondence
between the region of them mapped above d

′
and d. If the preimages are in

order there is no problem. If they occur out of order they cause a monotonicity
constraint. Fortunately, we can collapse this region on d to the leftmost preimage
with 6ε and then map it to the corresponding point on d

′
2 in 3ε for a total of 9ε,

see Fig.4(b).
Thus, we can approximate away single intersections with 9ε. We must also

verify that if the preimages of single intersections occur out of order it does not
effect our approximation, see Fig.4(c). Due to lack of space the proof of these
technical cases is deferred to the full version of this paper.

From these we get that δF (d, d
′′
) ≤ 9ε. Now collapse the ear we initially

selected in P to d. Likewise in Q collapse the corresponding ear to d
′′
. This is

okay because d
′′

is above all of the other image curves in Q. This pairs the ear we
cut off of P with the part of Q above d

′′
which is a folded polygon. By Lemma

1 these regions must be within Fréchet distance 9ε.
Choose another ear in P . We can repeat the above arguments to remove this

new ear and its corresponding ear in Q. The dual graph of P is a tree. Each time
we repeat this argument we are removing a leaf from the tree. Eventually, the
tree will contain only a single node which corresponds to some convex portion
of P which we map to the remainder of Q. �	



276 A.F. Cook IV et al.

As a direct consequence of Theorems 2 and 5 we get the following theorem:

Theorem 6. We can compute a 9-approximation of the Fréchet distance of two
folded polygons in time O(kTmatrixmult(mn) log(mn)).

5 Axis-Parallel Folds and L∞ Distance

In this section we outline a special class of surfaces for which using the L∞
metric allows us to avoid the problem of untangling. Specifically, if all of the
line segments in the convex subdivision of the surfaces are parallel to the x-axis,
y-axis, or z-axis, we show that it is sufficient to use shortest paths instead of
Fréchet shortest paths. Since shortest paths never cross we can use the simple
polygons algorithm [5] to compute the Fréchet distance of the surfaces. We first
prove the following lemma.

Lemma 4. Let R be a half-space such that the plane bounding it, ∂R, is parallel
to the xy-plane, yz-plane, or xz-plane. Given a folded polygon Q with edges par-
allel to the x-axis, y-axis, or z-axis and points a, b ∈ Q∩R, let f be a path in Q,
which follows the shortest path edge sequence between a and b. If f is completely
inside of R so is the shortest path f

′
between a and b.

For the lemma to be false there must exist a Q, R, and f which serve as a
counter example. There must be at least one edge ej in Q such that f ∩ ej ∈ R

and f
′ ∩ ej �∈ R. In particular, let ej be the first edge where this occurs along

the shortest path edge sequence. First consider a Q where all of the edges of it
are perpendicular to ∂R. A line segment in the shortest path f

′
connects the

endpoints of two edges in Q. Let ei and ek be the edges that define the line
segment in f

′
that passes through ej . We now consider several cases in how

those edges are positioned.
Case (I) occurs when ek is completely outside of R, see Fig.5(a). While this

does force f
′

to cross ej outside of R, there is no f which can pass through ek
while remaining inside of R. Because Q is a folded polygon any path between a
and b must path through the edges in the shortest path edge sequence including
ek. Thus no f can exist entirely within R.

Case (II) occurs when part of ek is in R and f
′
crosses it in the part in R, see

Fig.5(b). In this case f
′
does not cross ej outside of R.

Due to space limitations the discussion of the remaining cases have been
omitted. Each of these remaining cases can be reduced to these first two. Using
this lemma we can prove the following theorem:

Theorem 7. The Fréchet distance between two surfaces, P and Q, both with
only diagonals/edges parallel to the x-axis, y-axis, or z-axis, can be computed in
time O(kTmatrixmult(mn) log(mn)).

Proof. Let d be a diagonal and f
′
be the shortest path between points a and c

on ∂Q. Using Lemma 4 we prove that if there exists a Fréchet shortest path f
between points a and c such that δF (d, f) ≤ ε, then δF (d, f

′
) ≤ ε.



Computing the Fréchet Distance between Folded Polygons 277

ej

ek

f
′

R

ei

ej

ek

f
′

R

ei

(b)(a) (d)(c)

e2 e1

e2 e1

p1p2

d

d

dp1

dp2

dq1

q1q2

dq2

a

R2 ∩R1

e1

e2

b

q2

c

q1

Fig. 5. (a), (b) are examples of case (I) and case (II). (c) is an example of intervals
for the two different paths. (d) together the edges e1 and e2 cause a monotonicity
constraint.

Minkowski Sum Constraints. Since we are using the L∞ distance, the unit
ball is a cube. The Minkowski sum of a diagonal d in P and a cube of side length
ε yields a box. Points in the diagonal d can only map to points in this region. It
can be defined by the intersection of 6 half-spaces; all of these have boundaries
parallel to either the xy-axis, the xz-axis, or the yz-axis. Thus, from Lemma 4,
we know that if any path through Q is completely within this box, then the
shortest path f

′
will be, too. This means that for each edge ei on the shortest

path edge sequence f
′ ∩ ei is within distance ε of some non-empty interval of d.

Monotonicity Constraints. For the shortest path f
′

between the boundary
points to have δF (d, f

′
) > ε, at least two of these intervals must be disjoint and

occur out of order along d, see Fig.5(c). Such a case introduces a monotonicity
constraint on ε. If no such intervals existed then we could choose a monotone
sequence of points along d such that each point is within distance ε of an edge
and the sequence of edges they map to would have the same order as the shortest
path edge sequence showing that δF (d, f

′
) ≤ ε.

Let e1 and e2 be two edges along the shortest path edge sequence for which
such bad intervals occur. Let p1 and p2 be points on the shortest path where it
intersect edges e1 and e2 respectively. Let q1 and q2 be the same for f . Finally,
let dr denote all of the points on d which are within distance ε of the point r.
Since δF (d, f) ≤ ε, dq1 and dq2 must overlap or occur in order along d.

Let R1 be the half-space whose bounding plane contains q1 and is perpendic-
ular to d. likewise let R2 be the half-space whose bounding plane contains q2

and is perpendicular to d, see Fig.5(d). Let R1 extend to the left along d and
R2 extend to the right along d. ∂R2 must occur before ∂R1 along d or the edges
are in order and no monotonicity constraint is imposed. Assume R1 encloses all
of f

′
between a and e2. If it does not we can choose a new edge between a and

e2 to use as e1 for which this is true. Doing so only increases the monotonicity
constraint. Likewise we can assume R2 encloses all of f

′
between e2 and c.

Assume a, b, and c lie on f
′
. Specifically, let a and c be the end points of f

′
on

∂Q. Naturally, a shortest path must exist between a and c and it must contain
at least one point in R1 ∩ R2 which we call b. f follows the shortest path edge



278 A.F. Cook IV et al.

sequence between a and c, so it must also cross all of the edges in the shortest
path edge sequence between a and b. Therefore, to show that p2 is inside of R1

we can directly apply Lemma 4 to the points a and b. A similar method can be
used for e2 with points b and c to show p1 is inside R2. Since dq1 and dq2 overlap
or are in order, dp1 and dp2 must as well. Therefore, δF (d, f

′
) ≤ ε and shortest

paths can be used for this variant of folded polygons instead of Fréchet shortest
paths. Because we are using shortest paths we can just use the simple polygons
algorithm. This yields Theorem 7. �	

6 Future Work

The constant factor approximation outlined in Sect.4 can likely still be improved.
Specifically, we consider only the worst case for each of the out-of-order mappings
which may not be geometrically possible to realize. In addition, we currently
approximate the Fréchet distance by mapping image curves one-by-one to the
top of the arrangement of other image curves. It would of course be more efficient
to untangle image curves by mapping them to some middle curve rather than
forcing one to map completely above the others.

Finally, while the problem of untangling seems hard, it is also possible that a
polynomial-time exact algorithm could exist. The acyclic nature of our surfaces
seems to limit the complexity of our mappings. The methods used to prove that
computing the Fréchet distance between certain classes of surfaces is NP-hard
in [3] are not easy to apply to folded polygons.

References

1. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves.
International Journal of Computational Geometry and Applications 5, 75–91 (1995)

2. Godau, M.: On the complexity of measuring the similarity between geometric objects
in higher dimensions. PhD thesis. Freie Universität Berlin, Germany (1998)

3. Buchin, K., Buchin, M., Schulz, A.: Fŕ’echet distance of surfaces: Some simple hard
cases. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6347, pp. 63–74.
Springer, Heidelberg (2010)

4. Alt, H., Buchin, M.: Can we compute the similarity between surfaces? Discrete and
Computational Geometry 43, 78–99 (2010)

5. Buchin, K., Buchin, M., Wenk, C.: Computing the Fréchet distance between simple
polygons in polynomial time. In: 22nd Symposium on Computational Geometry
(SoCG), pp. 80–87 (2006)

6. Basu, S., Pollack, R., Roy, M.F.: Algorithms in real algebraic geometry. Algorithms
and Computation in Mathematics (2006)

7. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J.
ACM 34, 200–208 (1987)

8. Megiddo, N.: Applying parallel computation algorithms in the design of serial algo-
rithms. J. ACM 30, 852–865 (1983)



Parameterized Reductions and Algorithms for

Another Vertex Cover Generalization

Peter Damaschke and Leonid Molokov

Department of Computer Science and Engineering,
Chalmers University, 41296 Göteborg, Sweden

{ptr,molokov}@chalmers.se

Abstract. We study a novel generalization of the Vertex Cover prob-
lem which is motivated by, e.g., error correction in the inference of chem-
ical mixtures by their observable reaction products. We focus on the
important case of deciding on one of two candidate substances. This
problem has nice graph-theoretic formulations situated between Ver-
tex Cover and 3-Hitting Set. In order to characterize their param-
eterized complexity we devise parameter-preserving reductions, and we
show that some minimum solution can be computed faster than by solv-
ing 3-Hitting Set in general. More explicitly, we introduce the Union
Editing problem: In a hypergraph with red and blue vertices, edit the
colors so that the red set becomes the union of some hyperedges. The
case of degree 2 is equivalent to Star Editing: In a graph with red and
blue edges, edit the colors so that the red set becomes the union of some
stars, i.e., vertices with all their incident edges.

1 Introduction

Definitions: A computational problem with input size n and another input pa-
rameter k is fixed-parameter tractable (FPT) if it can be solved in O(p(n) ·f(k))
time where p is a polynomial and f any function. Since we focus on the f(k)
factor, we adopt the O∗(f(k)) notation that suppresses polynomial factors. (The
polynomial factor cannot be neglected in practice, but usually it is moderate,
so that f(k) “dominates” the complexity.) For introductions to parameterized
algorithms we refer to [6,13], in particular we assume that the reader is familiar
with the notions of bounded search trees, branching vector, and branching num-
ber. For brevity, a branching rule is said to be a bv rule if its branching number
is less than or equal to that of branching vector bv. We deal with graph problems
and denote by n the number of vertices.

The following is a classical FPT problem, and a tremendous amount of work
has been devoted to its parameterized complexity.

Vertex Cover: In a graph, find a set C of at most k vertices being incident
to all edges.

A hypergraph is a vertex set equipped with a family of subsets of vertices
called hyperedges. The degree of a vertex is the number of hyperedges it belongs

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 279–289, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



280 P. Damaschke and L. Molokov

to, and the degree of a hypergraph is the maximum vertex degree. We introduce
the following problem.

Union Editing: Given a hypergraph whose vertices are colored red and blue,
paint at most k blue vertices red, and paint at most m red vertices blue, so that
the set of red vertices becomes exactly the union of some of the hyperedges.
(Note that the union is not necessarily disjoint.)

Union Editing (Degree r) is, as the name suggests, the Union Editing
problem on hypergraphs of degree at most r.

Motivation: The problem arises from chemical analytics. In fact, it was pro-
posed in [11], however without algorithmic analysis. Every hyperedge represents
a possible substance in an unknown mixture, and the vertices therein repre-
sent the reaction products that can be directly identified by experiments. For
instance, unknown protein mixtures can be analyzed by splitting the proteins
enzymatically into peptides which are then identified by, e.g., mass spectrometry.
A database of proteins and their peptides is finally used to identify the proteins
from the set of peptides. Many peptides, especially those with large masses, are
unique for a protein, others appear in r different proteins, very often just r = 2.
The problem to resolve these ambiguities [5,9,12] is just Set Cover or Hitting
Set, as also observed by biologists. Case r = 2 is Vertex Cover again.

However, here we do not address this inference step but another problem that
appears prior to the actual mixture reconstruction: Ideally, the set of observed
vertices should be exactly the union of some of the hyperedges (those repre-
senting the substances in the mixture). But in practice, observations may be
corrupted in two ways: by at most k vertices that should appear but are not ob-
served, and by at most m vertices that are observed but should not appear. (Our
red vertices are the observed ones.) The question arises how we can efficiently
correct a limited number of such errors, assuming that reliable bounds k and
m are known from experience. Different problem versions may be considered:
decide the existence of a solution with k and m errors, enumerate them all, or
enumerate all vertices being recolored in some solution (the error candidates).

Contributions: Union Editing (Degree 1) is a trivial problem, in a sense:
As the hyperedges are pairwise disjoint, we only have to decide for every hy-
peredge whether to color it completely red or blue. For each pair (k, m) we can
solve the problem in polynomial time by dynamic programming, as it is essen-
tially a knapsack problem with unary representations of numbers. We can even
enumerate all possible solutions in an implicit way, as the system of all paths in
a certain directed graph of partial solutions. All this is a straightforward exercise
in dynamic programming, therefore we skip the details. In this paper we maily
deal with Union Editing (Degree 2) which is the “smallest nontrivial case”
but is already important in the intended application.

In Section 2 we introduce several equivalent formulations as (hyper)graph
editing problems. We relate them to each other and to established problems.
These problems are NP-complete but also in FPT, with the solution size as



Parameterized Reductions and Algorithms 281

the parameter. Union Editing (Degree 2) turns out to be a special case of
the well-known 3-Hitting Set problem. In Section 3 we give a parameterized
O∗(1.9k+m) time algorithm for minimizing k + m (corresponding to the total
number of error corrections). This is clearly faster than the state-of-the-art result
for 3-Hitting Set in general. The gain is not very high (e.g., about 10% larger
instances can be solved in a given time budget, compared to the 3-Hitting Set
algorithm in [15]), nevertheless the result indicates that our problem is also an
interesting subcase from an algorithmic point of view. We can also compute,
within the same time bound, a kernel that contains all optimal solutions.

Related work: The currently fastest algorithm [2] runs in O∗(1.2738k) time.
Several Vertex Cover variants and generalizations have been addressed in,
e.g., [1,7,8,10,14], including vertex covers with additional constraints and partial
vertex covers. One of our problem formulations is a case of partial vertex covers
where, however, the number of uncovered edges is also limited by a parameter.

2 Some Equivalent Parameterized Graph Editing
Problems

Consider the problem Union Editing (Degree 2). We wish to translate it into
an equivalent graph problem. Since we are then on more familiar grounds, this
will make it easier to characterize the complexity of the problem. Our graphs
may contain loops and parallel edges. In a graph, we call the set of all edges
incident to some vertex v the star with center v. (This should not be confused
with other notions of “star” in graph theory.) Specifically we define:

Star Editing: In a graph with red and blue edges, recolor at most k blue edges
and m red edges, so that the union of some stars becomes exactly the set of red
edges, or equivalently, the edge set of some induced subgraph becomes exactly
the set of blue edges.

Theorem 1. Union Editing (Degree 2) and Star Editing are equivalent,
through some polynomial-time reduction that preserves parameters k and m.

Proof. Given any hypergraph H of degree 2, we construct a graph G as follows.
For every hyperedge of H create a vertex of G. Every vertex of H that belongs
to the intersection u∩ v of hyperedges u and v becomes an edge uv in G. (Thus,
parallel edges may appear.) Every vertex of H that belongs to only one hyperedge
v becomes a loop at v in G. This defines a one-to-one correspondence between
hypergraphs of degree 2 and graphs with loops and parallel edges, as we can also
reconstruct H from G: Every edge of G becomes a vertex of H , and every star
in G becomes a hyperedge in H . Obviously, the solutions of the two problems in
H and G correspond to each other. ��

Alternatively we may view Star Editing as a vertex selection, rather than edge
selection, problem. This is what we show next.



282 P. Damaschke and L. Molokov

Deficient Vertex Cover with Cost Edges: In a graph with red and blue
edges, find a subset C of vertices incident to at most k blue edges and non-
incident to at most m red edges.

This problem extends the ordinary Vertex Cover problem (in graphs with
only red edges) in two directions: m red edges may remain uncovered by C, and
the “cost” k of C is the number of incident blue edges. In the special case when
all blue edges are loops, they merely encode an integer-valued cost function on
the vertices. The new twist is that any two vertices u and v joined by a blue
edge uv share one unit of cost, in the sense that only one of them, say u, pays
for this blue edge when u ∈ C, while the cost of adding v to C is reduced by
one. Because of this role of the blue edges we also call them cost edges. These
pairwise dependencies of costs have no counterpart in the ordinary Vertex
Cover problem. Also note that, to any vertex cover C, we may add, at zero
cost, those vertices incident only to blue edges being already incident with C.

Let Vertex Cover with Cost Edges denote the special case when m = 0.
We also remark that the other natural special case, Deficient Vertex Cover
where all blue edges are loops, was also studied in [1], though in a weighted ver-
sion and under a different name. Both FPT and W[]-hardness results are shown
in [14] for another interesting Vertex Cover generalization called Vector
Dominating Set where the number of uncovered incident edges is individually
prescribed for each vertex.

Theorem 2. Problems Star Editing and Deficient Vertex Cover with
Cost Edges are equivalent, via a polynomial-time reduction that preserves the
parameters k and m.

Proof. Consider a set C that solves Deficient Vertex Cover with Cost
Edges for parameters k and m. By recoloring the blue edges incident to C
and the red edges non-incident to C we get a solution to Star Editing for
parameters k and m, where C is the set of centers of stars whose union consists
of exactly the red edges. For the other direction, consider a solution to Star
Editing where at most k blue and m red edges are recolored. Then, the set C
of all centers of entirely red stars (after recoloring) solves Deficient Vertex
Cover with Cost Edges. ��

Vertex Cover with Cost Edges still appears as a proper generalization of
Vertex Cover, so the following reduction to Vertex Cover might be a little
surprising.

We define a conflict triple as a set of three edges: two blue edges uv and xy
joined by a red edge vx, where v �= x. (The other vertices are not necessarily
distinct, i.e., we can have u = y, or the blue edges may be loops, or parallel to
vx.) The red and blue degree of a vertex is the number of incident red and blue
edges, respectively, where a loop counts only once.

Theorem 3. Vertex Cover and Vertex Cover with Cost Edges are
equivalent, through some polynomial-time reductions that preserve parameter k.



Parameterized Reductions and Algorithms 283

Proof. The reduction from Vertex Cover and Vertex Cover with Cost
Edges is trivial, as already mentioned: Attach to every vertex a blue loop that
encodes the vertex cost.

Conversely, consider any instance of Vertex Cover with Cost Edges, i.e.,
an edge-colored graph G and a parameter k. If a red loop is attached to some
vertex v, clearly we must put v in the solution C, moreover we remove v and all
incident edges and reduce k by the blue degree of v. If parallel red and blue edges
join two vertices u and v then, since some of u and v must eventually be in C,
we can immediately remove the blue edges uv and subtract their number from
k. After these data reductions, G has neither red loops nor blue edges parallel
to red edges.

Now we construct a graph G′ as follows. Every blue edge of G becomes a vertex
of G′. For any conflict triple uv, vx, xy, we create an edge between vertices uv
and xy in G′. Thus, the same red edge vx may give rise to several edges of G′;
we call them copies of vx.

Consider any vertex cover C of cost k in G. Let C ′ be the set of blue edges
incident to C. Observe that C′ has size k and is a vertex cover in G′: For any
red edge vx in G, we have v ∈ C or x ∈ C, by symmetry assume v ∈ C. Hence
all blue edges incident with v are in C ′. It follows that all copies, in G′, of the
edge vx are covered by vertices from C′.

To see the opposite direction of the equivalence, consider any vertex cover C′

of size k in G′. For every red edge vx from G, all blue edges at v or all blue edges
at x must belong to C′, in order to cover all copies of edge vx in G′. Define C
as the set of all vertices v of G where all blue edges incident to v are in C ′. Due
to the sentence before, C is a vertex cover in G. The cost of C is the number of
incident blue edges, which is at most k, as these edges were in C′. ��

A hitting set in a hypergraph is a subset of vertices that intersects every hyper-
edge. The rank of a hypergraph is the maximum size of hyperedges. We denote
by r-Hitting Set the problem of finding a hitting set with at most k vertices
in a hypergraph of rank r. Hence 2-Hitting Set is Vertex Cover. We refine
r-Hitting Set to a two-parameter problem:

s, r-Hitting Set: Given is a hypergraph whose vertices are colored red and
blue, where every hyperedge consists of at most s blue and r red vertices. (We
also say that the blue rank and red rank is s and r, respectively.) Find a hitting
set C of at most k blue and m red vertices.

Theorem 3 essentially relies on m = 0. For m > 0 we do not see any parameter-
preserving reduction from Deficient Vertex Cover with Cost Edges to
Vertex Cover. It seems that Vertex Cover with both missed edges and
cost edges is intrinsically more difficult. However we can reduce it to the next
higher problem in the “hitting set hierarchy”:

Theorem 4. Deficient Vertex Cover with Cost Edges, is reducible to
2,1-Hitting Set, through some polynomial-time reduction that preserves the
parameters k and m.



284 P. Damaschke and L. Molokov

Proof. Every edge of the given graph G becomes a vertex of a hypergraph H .
The hyperedges of H are the following sets of size 2 or 3: every red loop with
every incident blue edge; every red edge with every parallel blue edge; and every
conflict triple. We call the first two cases conflict pairs.

Let C be any solution to Deficient Vertex Cover with Cost Edges in
G. We claim that the set F consisting of all blue edges incident to C and all
red edges non-incident to C is a hitting set in H . To prove the claim, consider
any red edge vx. Assume that some end vertex is in C, say v ∈ C. If vx forms
a conflict pair with some blue edge, then either v = x (red loop), or vx and
the blue edge are parallel. In both cases the blue edge is incident to C, thus F
intersects the conflict pair. If vx forms a conflict triple with blue edges uv and
xy, then the blue edge uv is incident to C, too. If v, x /∈ C then vx ∈ F . Note
that F intersects every conflict pair/triple containing vx.

Conversely, let F be any hitting set of k blue edges and m red edges in H .
We construct a vertex set C in G and show that C is incident to at most k blue
edges and non-incident to at most m red edges. Let vx be any red edge with
vx /∈ F . If v = x, we put this vertex in C. Note that the incident blue edges are
all in F , since F intersects all conflict pairs with the red loop vx. In the following
let be v �= x. All blue edges at v or all blue edges at x are in F , since otherwise
some conflict triple with vx in the middle, or some conflict pair with a parallel
blue edge vx, would be disjoint to F . We put v in C if all blue edges incident
to v are in F , and similarly for x. Due to the construction of C, a blue edge is
incident to C, and a red edge is non-incident to C, only if it belongs to F . ��

3 Solving Star Editing Faster than 3-Hitting Set

We defined Star Editing as a problem with two separate parameters k and
m. Nevertheless, let us consider the simplest version of the problem where we
only want to find some solution minimizing the total number k + m of edits. In
the application mentioned in Section 1 this means to find a minimum number
of error corrections that may explain the data.

By Theorem 4 we can reduce this problem to 2,1-Hitting Set, and even
further to 3-Hitting Set as we need not distinguish red and blue vertices as
long as we only aim for a minimum k + m. Thus, we can find some solution us-
ing any parameterized algorithm for 3-Hitting Set, such as the O∗(2.076k+m)
time algorithm from [15]. (Slightly faster algorithms have been announced but
are apparently unpublished.) However, the hypergraphs of rank 3 from our re-
duction have a special structure, thus we might be able to solve Star Editing
significantly faster than 3-Hitting Set in general. In fact, we will now devise
an O∗(1.9k+m) algorithm.

We use the Deficient Vertex Cover with Cost Edges formulation of
our problem, which is more convenient for stating the branching rules. Accord-
ingly, we use C as a generic variable for a solution. We describe our algorithm
as a list of rules, each of which is applied as long as possible before going to the
next one.



Parameterized Reductions and Algorithms 285

(1) We will always remove every edge incident to some vertex just added to C,
and if it was a blue edge, we subtract 1 from parameter k. If we decided not to
put some vertex v in C, we turn every incident edges into a loop at its other
end vertex. If both vertices of a red edge are not put in C, we remove this red
edge and subtract 1 from parameter m. These trivial actions are usually not
mentioned any more in the branching rules below.

(2) If two parallel red edges connect some vertices v and x, then removing one of
them can only lower the parameter deductions in some branching rules, in those
branches where v, x /∈ C. Hence, in a worst-case analysis we can safely assume
that no parallel red edges exist.

(3) In our input graph G = (V, E) we can assume that all red and blue degrees
are positive: If some vertex v has red degree 0, we can immediately decide v /∈ C.
A vertex v with blue degree 0 can be put in C at no cost.

(4) Denote by V1, V2, V3 the set of vertices with blue degree 1, 2, and at least 3,
respectively. Since by (3) all blue degrees are positive, we have V = V1∪V2 ∪V3.
If some red edge vx connects two vertices v ∈ V2 and x ∈ V3, we decide whether
v, x /∈ C or v ∈ C or x ∈ C. (The last two branches do not rule out insertion of
the other vertex in C later on.) Obviously this gives us a (1, 2, 3) rule, and its
branching number evaluates to 1.84. A red edge within V3 (either normal edge or
loop) gives even better branching numbers, as is easy to check. We apply these
rules as long as possible to obtain a graph with red edges only within V1 ∪ V2

and between V1 and V3.

(5) Next we make a key observation relying on the fact that we are only to find
some (arbitrary) solution with minimum total cost k+m in this problem version.
Consider any red edge vx with v ∈ V1. If we decide v, x /∈ C, this red edge costs
1. If we take v ∈ C instead, we pay 1 for the blue edge incident to v, and this
decision is no worse than the case v, x /∈ C. This exchange argument shows that
we can ignore the branch v, x /∈ C. Due to this domination rule we can set the
red edge vx permanent, that is, we commit to put v or x in C, but defer the
actual choice of v or x. The same reasoning holds for red loops at any v ∈ V1,
but there we can decide v ∈ C instantly. Now all red edges except those in V2

are permanent and non-loops.

(6) As long as some red edge is incident with V3, being permanent due to (5),
we obviously have a (1, 3) rule. By covering these red edges by new members of
C and applying also (1), we eventually make V3 = ∅. Similarly, as long as some
(permanent!) red edges connect V2 and V1, we have a (1, 2) branching rule, with
branching number 1.62. After covering these red edges, too, our graph has blue
degree at most 2, and red edges only within V2 and within V1, and the latter
ones are permanent.

(7) If any two vertices u, v ∈ V2 are joined by two parallel blue edges, we can
assume that both u and v or none of them are in C, because if we put one



286 P. Damaschke and L. Molokov

vertex in C, we can add the other vertex for free. Hence we can identify u and
v, thereby turning the blue edges in two blue loops at u = v. Parallel red edges
are already excluded by (2). (Alternatively we might argue as follows: If any two
vertices u, v ∈ V2 are joined by two parallel red edges, we have a (2, 2, 2) rule
with branching number 1.74.) This excludes parallel edges of equal color in V2.

(8) Consider any w ∈ V2 of red degree at least 2, and let wu and wv be red edges.
Due to the structure already established, we have u, v ∈ V2 and u �= v. Now we
can decide w ∈ C with cost 2, or w /∈ C. In the latter case we also make the
decisions for u and v. For each of them the cost is either 2 for the incident blue
edges (if we put the vertex in C), or 1 for the red edge (if we don’t). In the worst
case however, one blue edge uv exists, which reduces the parameter deduction
by 1 in the branch where u, v ∈ C. Altogether, this still yields a (2, 2, 3, 3, 3) rule
with branching number 1.9. By applying also this rule as long as possible, all
vertices in V2 get red degree 1.

(9) As said before, we can suppose that no parallel red edges exist in V1 (in
particular). Next assume that some edge uv with u, v ∈ V1 is blue. As earlier,
if we put either of u and v in C, the other vertex can be added to C for free,
hence we identify u and v and shrink uv to a blue loop.

(10) Consider any w ∈ V1 of red degree at least 2, and let wu and wv be red
edges. From the preceding rules we have that u, v ∈ V1 and u �= v, and these red
edges are permanent. Hence we must take w ∈ C or u, v ∈ C. This is a (1, 2)
rule, since no blue edge uv exists, due to (9).

To summarize the current situation: All vertices are in V1 ∪ V2, all red degrees
are 1 (the red edges build a matching), red edges exist only within V2 and within
V1, all red edges within V1 are permanent, and blue edges exist only within V2,
between V2 and V1, and as blue loops in V1.

(11) Blue loops in V1 are removed as follows. When some v ∈ V1 has a blue loop
attached, and vx is a red edge (note x ∈ V1), we can safely decide x ∈ C, as the
option v ∈ C is only worse.

(12) Let vx be a red edge in V1. Since vx is permanent, we have to put some
vertex in C, say v ∈ C, the other case is symmetric. Vertex v is also involved
in a blue edge uv, where u ∈ V2. Vertex u in turn is incident to some red edge
yu, where y ∈ V2. Since we decided v ∈ C, the blue degree of u drops to 1, thus
u moves to V1, so that we can make uy permanent, using (5). Since we have to
choose u ∈ C or y ∈ C, this gives us a (1, 2) rule. We argue similarly in the
symmetric case starting with x ∈ C. This way we have appended a (1, 2) rule to
both branches of a (1, 1) rule. Altogether this makes a (2, 2, 3, 3) rule. Repeated
application of this rule empties V1.

After application of all the preceding rules, it remains a graph where every
vertex has exactly red degree 1 and blue degree 2. At this point, an optimal
solution consists in not adding any further vertices to C. The cost of this claimed



Parameterized Reductions and Algorithms 287

optimal solution is the number of the remaining red edges. We consider any
different solution (C �= ∅) and show that, in fact, it cannot be cheaper: Every
vertex added to C reduces the cost of the red edges by at most 1 but has to pay
for two blue edges. And trivially, at most two vertices in C can share the cost of
a blue edge. Consequently the total cost has not improved. Since rule (8) is the
worst, this finally shows:

Theorem 5. A solution to Deficient Vertex Cover with Cost Edges
(or Star Editing) with minimal k + m can be found in O∗(1.9k+m) time. ��
The optimization problem only asks for some solution with minimum k + m.
But it might not be unique, and in the error correction application one cannot
simply assume that an arbitrary optimal solution explains the data correctly. It
is more appropriate to return all possible minimum solutions, but if these are
exponentially many, this raises new issues. A nice compromise is to return just
the set of all edges that are recolored in solutions with minimum k + m, i.e., the
potential errors.

Theorem 6. All edges recolored in all solutions to an instance of Star Editing
with minimum k + m can be found in O∗(1.9k+m) time.

Proof. The idea is natural, only its correct implementation needs a little bit of
care: Let c = k + m be the minimum number of recolorings. For every edge
e = uv we test (from scratch) whether there is a solution where e is recolored,
and hence c− 1 other edges are recolored. In the following we use the equivalent
Deficient Vertex Cover with Cost Edges formulation.

If e is red, we color it blue, that is, we decide u, v /∈ C, and apply the triv-
ial postprocessing steps mentioned above in step (1). If e is blue, we color it
red and mark it permanent. In both cases we solve the residual problem with
parameter value c− 1. For the latter case, however, we have to extend the De-
ficient Vertex Cover with Cost Edges problem in yet another direction:
We allow permanent red edges already in the input graph. Now we argue that
this generalization can still be solved in O∗(1.9k+m) time, using the algorithm
from Theorem 5 with slight modifications. In all branchings we can abandon
the branches with u, v /∈ C, if there are some. Trivially, deleting some branches
can only improve the branching numbers. Once we reach a graph where all ver-
tices have red degree 1 and blue degree 2, and some red edge is permanent, we
clearly have a (2, 2) rule and can continue. All other situations are resolved as in
Theorem 5. ��
The number of such edges recolored in all minimal solutions is at most quadratic
in k + m, as can be shown by simple degree arguments. Since the problem
generalizes Vertex Cover, the worst-case lower bound is also quadratic, due
to our result for Vertex Cover in [4].

4 Open Questions

It would be desirable to improve the base 1.9 for Star Editing further. One
may try and improve rule (8), or look for a completely different FPT algorithm



288 P. Damaschke and L. Molokov

design technique. Also, our Star Editing result does not imply that we can
find in O∗(1.9k+m) time a solution where each of k and m separately respects
some prescribed values: Rule (5) does not apply here, as it might be beneficial
to pay for an uncovered red edge if k is “too small”.

Our focus on degree 2 is, of course, a limitation, therefore it is worth looking
at the general case. Union Editing (Degree s), for any fixed degree s, can
be transformed into hypergraph editing problems analogously to the case s = 2,
where edge is replaced with hyperedge of size at most s, and vertex cover is
replaced with hitting set.

Then, our results raise some further questions for general s: Can we solve the
corresponding optimization problem significantly faster than s, 1-Hitting Set
and (s + 1)-Hitting Set, and even faster than O∗(sk+m)? Can we enumerate
all solutions (compute the transversal hypergraph) faster than in these Hitting
Set instances?

Furthermore: Is there a linear kernel for the optimization version of Star
Editing (cf. [1])? What is the parameterized complexity of our problems when
k and m are limited separately (as in the Pareto framework we proposed in [3])?

Acknowledgment

The workhas been supported by the Swedish ResearchCouncil (Vetenskapsr̊adet),
through grant 2010-4661, “Generalized and fast search strategies for parameter-
ized problems”. We thank the referees for their careful comments.

References

1. Bar-Yehuda, R., Hermelin, D., Rawitz, D.: An Extension of the Nemhauser-Trotter
Theorem to Generalized Vertex Cover with Applications. SIAM J. Discr. Math. 24,
287–300 (2010)

2. Chen, J., Kanj, I.A., Xia, G.: Improved Upper Bounds for Vertex Cover. Theor.
Comput. Sci. 411, 3736–3756 (2010)

3. Damaschke, P.: Pareto complexity of two-parameter FPT problems: A case study
for partial vertex cover. In: Chen, J., Fomin, F. (eds.) IWPEC 2009. LNCS,
vol. 5917, pp. 110–121. Springer, Heidelberg (2009)

4. Damaschke, P., Molokov, L.: The Union of Minimal Hitting Sets: Parameterized
Combinatorial Bounds and Counting. J. Discr. Algor. 7, 391–401 (2009)

5. Dost, B., Bandeira, N., Li, X., Shen, Z., Briggs, S., Bafna, V.: Shared peptides in
mass spectrometry based protein quantification. In: Batzoglou, S. (ed.) RECOMB
2009. LNCS, vol. 5541, pp. 356–371. Springer, Heidelberg (2009)

6. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg
(1999)

7. Fernau, H., Manlove, D.: Vertex and Edge Covers with Clustering Properties: Com-
plexity and Algorithms. J. Discr. Algor. 7, 149–167 (2009)

8. Guo, J., Niedermeier, R., Wernicke, S.: Parameterized Complexity of Vertex Cover
Variants. Theory Comput. Syst. 41, 501–520 (2007)



Parameterized Reductions and Algorithms 289

9. He, Z., Yang, C., Yang, C., Qi, R.Z., Tam, J.P.M., Yu, W.: Optimization-based
peptide mass fingerprinting for protein mixture identification. In: Batzoglou, S.
(ed.) RECOMB 2009. LNCS, vol. 5541, pp. 16–30. Springer, Heidelberg (2009)

10. Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex
cover. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG
2008. LNCS, vol. 5344, pp. 240–251. Springer, Heidelberg (2008)

11. Molokov, L.: Application of Combinatorial Methods to Protein Identification in
Peptide Mass Fingerprinting. In: Int. Conf. on Knowledge Discovery and Info.
Retrieval KDIR 2010, pp. 307–313. SciTePress (2010)

12. Nesvizhskii, A.I., Aebersold, R.: Interpretation of Shotgun Proteomic Data: The
Protein Inference Problem. Mol. Cellular Proteomics 4, 1419–1440 (2005)

13. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford Lecture Series
in Math. and its Appl. Oxford Univ. Press (2006)

14. Raman, V., Saurabh, S., Srihari, S.: Parameterized algorithms for generalized dom-
ination. In: Yang, B., Du, D.Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165,
pp. 116–126. Springer, Heidelberg (2008)

15. Wahlström, M.: Algorithms, Measures, and Upper Bounds for Satisfiability and
Related Problems. PhD Thesis 1079, Linköping Studies in Science and Technol.
(2007)



Path Minima Queries in

Dynamic Weighted Trees

Gerth Stølting Brodal1, Pooya Davoodi1, and S. Srinivasa Rao2

1 MADALGO�, Department of Computer Science, Aarhus University
{gerth,pdavoodi}@cs.au.dk

2 School of Computer Science and Engineering, Seoul National University, S. Korea
ssrao@cse.snu.ac.kr

Abstract. In the path minima problem on trees each tree edge is as-
signed a weight and a query asks for the edge with minimum weight
on a path between two nodes. For the dynamic version of the problem
on a tree, where the edge-weights can be updated, we give comparison-
based and RAM data structures that achieve optimal query time. These
structures support inserting a node on an edge, inserting a leaf, and con-
tracting edges. When only insertion and deletion of leaves in a tree are
needed, we give two data structures that achieve optimal and significantly
lower query times than when updating the edge-weights is allowed. One
is a semigroup structure for which the edge-weights are from an arbitrary
semigroup and queries ask for the semigroup-sum of the edge-weights on
a given path. For the other structure the edge-weights are given in the
word RAM. We complement these upper bounds with lower bounds for
different variants of the problem.

1 Introduction

We study variants of the path minima problem on weighted unrooted trees,
where each edge is associated with a weight. The problem is to maintain a data
structure for a collection of trees (a forest) supporting the query operation:

– pathmin(u,v): return the edge with minimum weight on the path between
two given nodes u and v.

In the dynamic setting, a subset of the following update operations is provided:

– make-tree(v): make a single-node tree containing the node v.
– update(e,w): change the weight of the edge e to w.
– insert(e,v,w): split the edge e = (u1, u2) by inserting the node v along it. The

new edge (u1, v) has weight w, and (u2, v) has the old weight of e.
– insert-leaf(u,v,w): add the node v and the edge (u, v) with weight w.
– contract(e): delete the edge e = (u, v), and contract u and v to one node.
– delete-leaf(v): delete both the leaf v and the edge incident to it.

� Center for Massive Data Algorithmics, a Center of the Danish National Research
Foundation.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 290–301, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Path Minima Queries in Dynamic Weighted Trees 291

– link(u,v,w): add the edge (u, v) with weight w to the forest, where u and v
are in two different trees.

– cut(e): delete the edge e from the forest, splitting a tree into two trees.

We present path minima data structures to maintain trees under either updating
leaf edges or updating arbitrary edge-weights. Additionally, we study the com-
plexity of path minima queries on forests that can be updated by link and cut.

We define three different models depending on how data the algorithms can op-
erate on the edge-weights: (1) the comparison-based model, where the only allowed
operation on the edge-weights are comparisons; (2) the RAM model, where any
standard RAM operation is allowed on the edge-weights; and (3) the semigroup
model, in which the edge-weights are from an arbitrary semigroup and queries
ask to compute the semigroup-sum of the edge-weights along a path (notice that
a data structure over the semigroup (R, max) can be used to make a comparison-
based structure for the path minima problem). Except for the computation on
the edge-weights, our algorithms are in the unit-cost word RAM with word size
Θ(log n) bits, where n is the total number of nodes in the input trees.

1.1 Previous Work

Static weighted trees. The minimum spanning tree verification problem on
a spanning tree of a graph can be solved by asking a sequence of offline path
minima queries in the tree, which can be supported using amortized O(1) com-
parisons for each query [17]. In the online setting, Pettie proved that Ω(α(n))
amortized comparisons are required to answer each query [21], which is a tight
lower bound due to [8].

For online queries, Alon and Sheiber [1] considered trade-offs between the
preprocessing time and the query time in the semigroup model. They presented
a data structure that supports queries in at most 4k − 1 semigroup operations
with O(nkαk(n)) preprocessing time and space for a parameter k ≥ 1, where
αk(n) is a function in the inverse-Ackermann hierarchy (defined in Section 1.3).
They also proved that Ω(nα2k(n)) preprocessing time is required to obtain such
a query time in the worst case. Notice that α2k(n) = o(αk(n)) for k > 1 (Section
1.3). Similar trade-offs are known in the comparison-based model [21].

Dynamic weighted trees. In the comparison-based model, Demaine, Landau,
and Weimann [10] showed how to maintain an input tree under inserting and
deleting leaves in O(log n) amortized time and supporting queries in O(1) time
using linear space. In the RAM model, O(1) amortized update time with the
same query time and space can be achieved [2,15].

Tarjan was interested in maintaining a collection of rooted trees under the
operation link (incremental trees) to support a class of path minima queries,
where a root is one of the end points of the query paths [23, Section 6]. In the
semigroup model, for a sequence of m offline queries and updates, he obtained
O((m + n) · α(m + n, n)) time using O(m + n) space. In the RAM model, this
running time can be improved to O(1) for each online query and amortized O(1)
for each offline update [14]. Alstrup and Holm showed that arbitrary queries can



292 G. Stølting Brodal, P. Davoodi, and S. Srinivasa Rao

be supported in O(α(n)) time while online updates are performed in constant
amortized time in the RAM model [2]. Finally, Kaplan and Shafrir generalized
this result to arbitrary links in unrooted trees [15].

Dynamic trees (link-cut trees) of Sleator and Tarjan support many operations
including pathmin, link, cut, root, and evert in O(log n) amortized time, in the
semigroup model [22]. The operation root finds the root of the tree containing
a given node, and evert changes the root of the tree containing a given node
such that the given node becomes the root, by turning the tree “inside out”.
Essentially, this data structure can solve all the variants of the dynamic path
minima problem.

Relation to range minimum queries. A special case of the path minima
problem, is the one-dimensional range minimum query (1D-RMQ) problem,
where the input tree is a path. In this problem, we are given an array con-
taining n elements, and we have to find the position of the minimum element
within a query range.

The following lower bounds are derived from known lower bounds by reduction
from the 1D-RMQ problem: (1) In the semigroup model, with linear space,
Ω(α(n)) semigroup operations are required to answer a path minima query [25];
(2) In the RAM model, using O(n/c) bits of additional space, the number of cell
probes required to answer a path minima query is at least Ω(c), for a parameter
1 ≤ c ≤ n [7] (here, we assume that the edge-weights are given in a read-
only array); (3) In the RAM model, if we want to update the edge-weights in
polylogarithmic time, Ω(log n/ log log n) cell probes are required to support path
minima queries [3, Section 2.2]; (4) In the comparison-based model, if we want to
answer a path minima query in polylogarithmic time, Ω(log n) comparisons are
required to update the edge-weights [6]; (5) In the semigroup model, logarithmic
time to support path minima queries implies Ω(log n) time to update the edge-
weights, and vice versa [20].

Cartesian trees [24] are a standard structure that along with lowest common
ancestor structures can support range minimum queries in constant time with
linear space and preprocessing time [13]. Cartesian trees can be also defined for
weighted trees as follows: The Cartesian tree TC of a weighted tree T is a binary
tree, where the root of TC corresponds to the edge e of T with minimum weight,
and the two children of the root in TC correspond to the Cartesian trees of the
two components made by deleting e from T . The internal nodes of TC are the
edges of T , and the leaves of TC are the nodes of T .

Similar to range minimum queries, Cartesian trees can be used to support path
minima queries in O(1) time using linear space [18, Section 3.3.2], [5, Section
2], and [10, Theorem 2]. But constructing a Cartesian tree requires Ω(n log n)
comparisons derived by a reduction from sorting [10]. This lower bound implies
a logarithmic lower bound to maintain the Cartesian tree under inserting new
leaves in the original tree, which is tight due to the following lemma.

Lemma 1. ([10]) The Cartesian tree of a tree with n nodes can be maintained
in a linear space data structure that can be constructed in O(n log n) time, and
supports path minima queries in O(1) time and inserting leaves in O(log n) time.



Path Minima Queries in Dynamic Weighted Trees 293

1.2 Our Results

In Section 2, we present a comparison-based data structure that supports path
minima queries in Θ(log n/ log log n) time, and supports updates to the edge-
weights in Θ(log n) amortized time. In the RAM model, the update time is
improved to O(log n/ log log n) amortized. Both data structures support the op-
erations insert, insert-leaf, and contract with the same update times.

In Section 3, we dynamize the data structure of Alon and Shieber [1] in the
semigroup model, to support path minima queries in at most 7k − 4 semigroup
operations using O(nαk(n)) space, while supporting insertions and deletions of
leaves in O(αk(n)) amortized time. Using Lemma 1, we can obtain a RAM
structure that supports path minima queries in constant time and inserting and
deleting leaves in constant amortized time, giving an alternative approach to
achieve a known result [2,15].

In Section 4, we provide cell probe lower bounds for query-update trade-offs
when data structures are served by the operations pathmin, link and cut, in the
RAM model. We prove that if we want polylogarithmic update time, we cannot
hope for answering path minima queries in faster than Ω(log n/ log log n) time.
We also show that with logarithmic update time, Θ(log n) query time achieved
by the dynamic trees of Sleator and Tarjan is the best possible. Furthermore, we
prove that with sub-logarithmic query time, obtaining logarithmic update time
is impossible.

1.3 Preliminaries

In Sections 2 and 3, we design our data structures for rooted trees, though every
unrooted tree can be transformed to a rooted tree by choosing an arbitrary
node as the root. Notice that all the update operations except link play the
same role on rooted trees, whereas link in rooted trees is restricted to add new
edges between a root and another node. Moreover, we transform rooted trees to
binary trees using a standard transformation [11]: Each node u with d children is
represented by a path with max{1, d} nodes connected by +∞ weighted edges.
Each child of u becomes the left child of one of the nodes. Then, the operations
in rooted trees translate to a constant number of operations in binary trees.

Since we make our data structures for rooted trees, we can divided each path
minima query into two subqueries as follows. Every pathmin(u, v) is reduced to
two subqueries pathmin(c, u) and pathmin(c, v), where c is the lowest common
ancestor (LCA) of u and v. It is possible to maintain a tree under inserting
leaves and internal nodes, deleting leaves and internal nodes with one child, and
determining the LCA of any two nodes all in worst-case O(1) time [9]. Therefore,
we only consider queries pathmin(u, v), where u is an ancestor of v.

In our data structures, we utilize a standard decomposition of binary trees
denoted by micro-macro decompositions [4]. Given a binary tree T with n nodes
and a parameter x, where 1 ≤ x ≤ n, the set of nodes in T is decomposed into
O(n/x) disjoint subsets, each of size at most x, where each subset is a connected
subtree of T called a micro tree. Furthermore, the division is constructed such



294 G. Stølting Brodal, P. Davoodi, and S. Srinivasa Rao

that at most two nodes in a micro tree are adjacent to nodes in other micro
trees. These nodes are denoted by boundary nodes. The root of every micro tree
is a boundary node except for the micro tree that contains the root of T . The
macro tree is a tree of size O(n/x) consisting of all the boundary nodes, such
that it contains an edge between two nodes if either they are in the same micro
tree or there is an edge between them in T .

We use a variant of the inverse-Ackermann function α defined in [10,19]. First,
we define the inverse-Ackermann hierarchy for integers n ≥ 1: α0(n) = �n/2�,
αk(1) = 0, and αk(n) = 1 + αk(αk−1(n)), for k ≥ 1. Note that α1(n) = log n,
α2(n) = log∗ n, and α3(n) = log∗∗ n. Indeed for k ≥ 2, αk(n) = log∗∗···∗ n, where
the ∗ is repeated k−1 times in the superscript. In other words, αk(n) = min{j |
α

(j)
k−1(n) ≤ 1}, where α

(1)
k (n) = αk(n), and α

(j)
k (n) = αk(α

(j−1)
k (n)) for j ≥ 2.

The inverse-Ackermann function is defined as: α(n) = min{k | αk(n) ≤ 3}. The
two-parameter version of the inverse-Ackermann function for integers m, n ≥ 1
is defined as follows: α(m, n) = min{k : αk(n) ≤ 3 + m/n}. This definition of
the function satisfies α(m, n) ≤ α(n) for every m and n.

2 Data Structures for Dynamic Weights

In this section, we present two path minima data structures that support all
the update operations except link and cut in an input tree. The first data struc-
ture is in the comparison-based model and achieves Θ(log n/ log log n) query
time, Θ(log n) time for update, and O(log n) amortized time for insert, insert-
leaf, and contract. The second data structure improves the update time to
O(log n/ log log n) in the RAM model. Both the structures are similar to the
ones in [15]. In the following, we first describe the comparison-based structure,
and then we explain how to convert it to the RAM structure.

2.1 Comparison-Based Data Structure

We decompose the input binary tree T into micro trees of size O(logε n) with
the maximum limit 3 logε n, for some constant ε, where 0 < ε < 1, using the
micro-macro decomposition (Section 1.2). In our data structure, we do not use
macro trees. Each micro tree contracts to a super-node, and a new tree T ′ is
built containing these super-nodes. If there is an edge in T between two micro
trees, then there is an edge in T ′ between their corresponding super-nodes. The
weight of this edge is the minimum weight along the path between the root of
the child micro tree and the root of the parent micro tree. We binarize T ′, and
then we recursively decompose it into micro trees of the same size O(logε n).

Consider a path minima query between the nodes u and v, where u is an
ancestor of v. If u and v do not lie within the same micro tree, the query is
divided into at most four subqueries of three different types: (1) an edge that is
between two micro trees; (2) a query that is within a micro tree; and (3) a query
that is between the root of the micro tree containing v and a boundary node
of the micro tree containing u. Queries of type 1 are trivial, since we store the



Path Minima Queries in Dynamic Weighted Trees 295

edge-weights in all the levels of the decomposition. To support queries of type 2
efficiently, we precompute the answer of all possible queries within all possible
micro trees. Queries of type 3 are divided into subqueries recursively. There are
at most one subquery of type 3 at each level, and thus the overall query time is
determined by the number of levels.

Updating edge-weights and insertions are performed in the appropriate micro
tree in the first level, and if it is required we propagate them to the next levels
recursively. To support updates within each micro tree, we precompute the result
of all possible updates within all possible micro trees. We maintain the edge-
weights of each micro tree in sorted order in a balanced binary search tree that
supports insertions and deletions of new edge-weights in O(log(logε n)) time.
Additionally, we assign a local ID to each node within a micro tree, which is the
insertion time of the node.

We set the size of each micro tree in all the levels to O(logε n), thus the
number of levels is O(log n/ log log n).

Data structure. Let T0 denote an input tree, and for i ≥ 1, let Ti be the tree
that is built of super-nodes (to which micro trees contract) in the level i of the
decomposition. The data structure consists of the following parts:

– We explicitly store Ti in all the levels of the decomposition, including T0.
– For each node in Ti, we store a pointer to the micro tree in Ti that contains

the node. We also store the local ID of the node.
– We represent each micro tree μ with the tuple (sμ, pμ, rμ, |μ|) of size o(log n)

bits, where sμ, pμ, and rμ are arrays defined as follows. The array sμ is the
binary encoding of the topology of μ. The array pμ maintains the local IDs
of the nodes within μ, and enables us to find a given node inside μ. The
array rμ maintains the rank of the edge-weights according to the preorder
traversal of μ.

– For each micro tree μ, we store a balanced binary search tree containing all
the edge-weights of μ. This allows us to find the rank of a new edge-weight
within μ in O(log(logε n)) time.

– For each micro tree μ in Ti, we store an array of pointers that point to the
original nodes in Ti given the local IDs.

Precomputed tables. We precompute and store in a table all possible results
of performing each of the following operations within all possible micro trees:
pathmin, update, insert, insert-leaf, contract, LCA, root and child-ancestor. For
a micro tree μ, root returns the local ID of the root of μ, LCA returns the
local ID of the LCA of two given nodes in μ, and child-ancestor(u, v) returns
the local ID of the child of u that is also an ancestor of v (if such a child
does not exist, returns null). Each precomputed table is indexed by the tuples
(sμ, pμ, rμ, |μ|) and the arguments of the corresponding operation. To perform
update, insert, and insert-leaf within μ, we find the rank of the new edge-weight
among the existing edge-weights of μ using its balanced binary search tree in
O(log |μ|) = O(log log n) time. This rank becomes an index for the corresponding
tables. Using appropriate tables, we can achieve the following lemma.



296 G. Stølting Brodal, P. Davoodi, and S. Srinivasa Rao

Lemma 2. Within a micro tree of size O(logε n), we can support pathmin, LCA,
root, child-ancestor, and moving a subtree inside the tree in O(1) time. The op-
erations update, insert, insert-leaf, and contract can be supported in O(log log n)
time using the balanced binary search tree of the micro tree and precomputed
tables of total size o(n) bits that can be constructed in o(n) time.

Proof. Let μ be the micro tree. In the table used to perform pathmin, each entry
is a pointer to an edge of μ which can be stored using O(log log n) bits. The
index to the table consists of (i) (sμ, pμ, rμ, |μ|), and (ii) two indexes in the
range [1 · · · |μ|] which represent two query nodes. The number of different arrays
sμ is 2|μ|. The number of different arrays pμ and rμ is O(|μ|!). Therefore, the
table is stored in O(2|μ| · |μ|! · |μ|3 · log |μ|) = o(n) bits.

In the table used for update, each entry is an array rμ which maintains the
rank of the edge-weights of μ after updating an edge-weight. The index to the
table consists of (i) (sμ, pμ, rμ, |μ|), (ii) an index in the range [1 · · · |μ|] which
represents an edge to be updated, and (iii) the rank of the new edge-weight.
Therefore, the table can be stored in O(2|μ| · |μ|! · |μ|4 · log |μ|) = o(n) bits.

In the table used for insert-leaf, each entry is the tuple (sμ, pμ, rμ, |μ|) which
represents μ after adding the new leaf. The index to the table consists of (i)
(sμ, pμ, rμ, |μ|), (ii) an index in the range [1 · · · |μ|] which represents the node that
a new leaf is adjacent to, and (iii) the rank of the new edge-weight. Therefore,
the table can be stored in O(2|μ| · |μ|! · |μ|4 · log |μ|) = o(n) bits.

The sizes of the other tables used for LCA, root, child-ancestor, moving a
subtree, insert, and contract are analyzed similarly. Since the total number of
entries in all the tables is less than o(2|μ|

2
) and each entry can be computed in

time O(|μ|), all the tables can be constructed in o(n) time.
To compute the rank of the new edge-weight, which is part of the index to

the tables for updates, we search and then update the balanced binary search
tree of μ in O(log log n) time. �	

Query time. Each path minima query is divided into subqueries, and at most
one subquery is divided recursively into subqueries. The division continues for
O(log n/ log log n) levels, and at each level all subqueries (of types 1 and 2) are
supported in constant time. Therefore, the query time is O(log n/ log log n).

Update. We perform update(e, w) by updating the data structure in all the �
levels. W.l.o.g. assume that e = (u, v), where u is the parent of v. Let μ be
the micro tree in T0 that contains v. We start to update from the first level,
where the tree is T : (1) Update the weight of e in T . (2) If v is not the root
of μ, then we update μ using Lemma 2. If v is the root of μ, i.e., e connects μ
to its parent micro tree, we do not need to update any micro tree. (3) Perform
check-update(μ) which recursively updates the edge-weights in T1 between μ and
its child micro trees as follows. We check if pathmin along the path between the
root of μ and the root of each child micro tree of μ needs to be updated. We can
check this using pathmin within μ. If this is the case, for each one, we go to the
next level and perform the three-step procedure on T1 recursively. Since each
micro tree has at most one boundary node that is not the root, then at most



Path Minima Queries in Dynamic Weighted Trees 297

one of the child micro trees of μ can propagate the update to the next level,
and therefore the number of updates does not grow exponentially. Step 2 takes
O(log log n) time, and thus update takes totally O(log n) time in the worst case.

Insertion. We perform insert(e, v, w) using a three-step procedure similar to
update. Let μ be the micro tree in T that contains u2, where e = (u1, u2) and
u1 is the parent of u2. We start from the first level, where the tree is T : (1) To
handle insert in the transformed binary tree, we first insert v along e in μ. Note
that if u2 is the root of μ, then v is inserted as the new root of μ. This can be
done in O(log log n) time using Lemma 2. (2) If |μ| exceeds the maximum limit
3 logε n, then we split μ, in linear time, into k ≤ 4 new micro trees, each of size
at most 2 logε n + 1 such that each new micro tree has at most two boundary
nodes including the old boundary nodes of μ. These k micro trees are contracted
to nodes that should be in T1. One of the new micro trees that contains the root
of μ corresponds to the node that is already in T1 for μ. The other k−1 new micro
trees are contracted and inserted into T1 with appropriate edge-weights, using
insert recursively. Let μ′ be the new micro tree that contains the boundary node
of μ which is not the root of μ. We perform check-update(μ′) to recursively update
the edge-weights in T1 between μ′ and its child micro trees. (3) Otherwise, i.e.,
if |μ| does not exceed the maximum limit, we do check-update(μ) to recursively
update the edge-weights in T1 between μ and its child micro trees, which takes
O(log n) time.

To perform insert-leaf(u, v, w), we use the algorithm of insert with the following
changes. In step (1), we insert v as a child of u. This can be done in O(log log n)
time. The step (3) is not required.

A sequence of n insertions into T0, can at most create O(n/ logε n) micro trees
(since any created micro tree needs at least logε n node insertions before it splits
again). Since the number of nodes in T0, T1, . . . , T� is geometrically decreasing,
the total number of micro tree splits is O(n/ logε n). Because each micro tree
split takes O(logε n) time, the amortized time per insertion is O(1) for handling
micro tree splits. Thus, both insert and insert-leaf can be performed in O(log n)
amortized time.

Edge contraction. We perform contract(e) by marking v as contracted and up-
dating the weight of e to ∞ by performing update. When the number of marked
edges exceeds half of all the edges, we build the whole structure from scratch using
insert-leaf for the nodes that are not marked and the edges that do not have weight
of∞. Thus, the amortized deletion time is the same as insertion time.

Theorem 1. There exists a dynamic path minima data structure for an in-
put tree of n nodes in the comparison-based model, supporting pathmin in
O(log n/ log log n) time, update in O(log n) time, insert, insert-leaf, and contract
in O(log n/ log log n) amortized time using O(n) space.

2.2 RAM Structure

In this section, we improve the update time of the the structure of Theorem 1 to
O(log n/ log log n) in the RAM model. The bottleneck in our comparison-based



298 G. Stølting Brodal, P. Davoodi, and S. Srinivasa Rao

data structure is that we maintain a balanced binary search tree for the edge-
weights of each micro tree to find the rank of new edge-weights in O(log log n)
time. We improve this by using a Q-heap structure [12] to maintain the edge-
weights of each micro tree to find the rank of new edge-weights under insertions
and deletions in O(1) time with linear space and preprocessing time. The fol-
lowing theorem states our result.

Theorem 2. There exists a dynamic path minima data structure for an in-
put tree of n nodes in the RAM model, which supports pathmin and update in
O(log n/ log log n) time, and insert, insert-leaf and contract in O(log n/ log log n)
amortized time using O(n) space.

3 Data Structures for Dynamic Leaves

In this section, we first present a semigroup structure that supports path minima
queries, and leaf insertions/deletions but no updates to edge-weights. We then
describe a RAM structure supporting the same operations.

3.1 Optimal Semigroup Structure

Alon and Schieber [1] presented two static data structures to support path min-
ima queries in the semigroup model. We observe that their structures can be
made dynamic. The following theorems summarize our result. To prove this we
need an additional restricted operation insert(e,v,w), where w is larger than the
weight of e.

Theorem 3. There exists a semigroup data structure of size O(nαk(n)) to
maintain a tree containing n nodes, that supports path minima queries with
at most 7k − 4 semigroup operations and leaf insertions/deletions in O(αk(n))
amortized time, for a parameter k, where 1 ≤ k ≤ α(n).

By substituting k with α(n), we obtain the following.

Corollary 1. There exists a path minima data structure in the semigroup model
using O(n) space, that supports pathmin in O(α(n)) time, insert-leaf and delete-
leaf in amortized O(1) time.

3.2 RAM Structure

We also present a RAM structure that supports path minima queries and leaf
insertions/deletions. This structure does not give a new result (due to [2,15])
but is a another approach to solve the problem.

We decompose a tree into micro trees of size O(log n) and each micro tree
into micro-micro trees of size O(log log n) using the micro-macro decomposition
(see Section 1.3). Decomposition of the tree into micro trees generates a macro-
macro tree of size O(n/ log n), and decomposition of each micro tree into micro-
micro trees generates O(n/ log n) macro trees, each of size O(log n/ log log n).



Path Minima Queries in Dynamic Weighted Trees 299

The operations within each micro-micro tree is supported using precomputed
tables and Q-heaps [12]. We do not store any representation for the micro trees.
We represent the macro-macro tree and each macro tree with a Cartesian tree.

The query can be solved in O(1) time by dividing it according to the three
levels of the decomposition. A new leaf is inserted into the appropriate micro-
micro tree. When the size of a micro-micro tree exceeds its maximum limit, we
split it, and insert the new boundary nodes into the appropriate macro tree,
and split this macro if exceeds its maximum limit. Our main observation is the
following.

Lemma 3. When a micro tree splits, we can insert the new boundary nodes by
performing insert-leaf using the Cartesian tree of the corresponding macro tree.

We represent each Cartesian tree using Lemma 1. Thus, Lemma 3 allows us to
achieve the following.

Theorem 4. There exists a dynamic path minima data structure for an input
tree of n nodes using O(n) space that supports pathmin in O(1) time, and supports
insert-leaf and delete-leaf in amortized O(1) time.

4 Lower Bounds

We consider the path minima problem with the update operations link and cut.
Let tq denote the query time, and tu denote the maximum of the running time
of link, and cut. In the cell probe model, we prove that if we want to support link
and cut in a time within a constant factor of the query time, then tq = Ω(log n).
Moreover, if we want a fast query time tq = o(log n), then one of link or cut
cannot be supported in O(log n) time, e.g., if tq = O(log n/ log log n), then tu =
Ω(log1+ε n) for some ε > 0. We also show that O(log n/ log log n) query time
is the best achievable for polylogarithmic update time, e.g., a faster query time
O(log n/(log log n)2) causes tu to blow-up to (log n)Ω(log logn).

We reduce the fully dynamic connectivity and boolean union-find problems to
the path minima problem with link and cut.

The fully dynamic connectivity problem on forests is to maintain a forest
of undirected trees under the three operations connect, link, and cut, where
connect(x,y) returns true if there exists a path between the nodes x and y, and
returns false otherwise. Let tcon be the running time of connect, and tupdate be
the maximum of the running times of link and cut. Pǎtraşcu and Demaine [20]
proved the lower bound tcon log(2 + tupdate/tcon) = Ω(log n) in the cell probe
model. This problem is reduced to the path minima by putting a dummy root
r on top of the forest, and connect r to an arbitrary node of each tree with an
edge of weight −∞. Thus the forest becomes a tree. For this tree, we construct
a path minima data structure. The answer to connect(x,y) is false iff the an-
swer to pathmin(x,y) is an edge of weight −∞. To perform link(x,y), we first
run pathmin(x,r) to find the edge e of weight −∞ on the path from r to x.
Then we remove e and insert the edge (x, y). To perform cut(x,y), we first run



300 G. Stølting Brodal, P. Davoodi, and S. Srinivasa Rao

pathmin(x,r) to find the edge e of weight −∞. Then we change the weight of e
to zero, and the weight of (x, y) to −∞. Now, by performing pathmin(x,r), we
figure out that x is connected to r through y, or y is connected to r through
x. W.l.o.g. assume that x is connected to r through y. Therefore, we delete the
edge (x, y), insert (x, r) with weight −∞, and change the weight of e back to
−∞. Thus, we obtain the trade-off tq log tq+tu

tq
= Ω(log n). From this, we e.g.,

conclude that if tq = O(log n/ log log n), then tu = Ω(log1+ε n), for some ε > 0.
We can also show that if tu = O(tq), then tq = Ω(log n).

The boolean union-find problem is to maintain a collection of disjoint sets un-
der the operations: find(x,A): returns true if x ∈ A, and returns false otherwise;
union(A,B): returns a new set containing the union of the disjoint sets A and
B. Kaplan et al. [16] proved the trade-off tfind = Ω( log n

log tunion
) for this problem

in the cell probe model, where tfind and tunion are the running time of find and
union. The incremental connectivity problem is the fully dynamic connectivity
problem without the operation cut. The boolean union-find problem is trivially
reduced to the incremental connectivity problem. The incremental connectiv-
ity problem is reduced to the path minima problem with the same reduction
used above. Therefore, we obtain tq = Ω( log n

log(tq+tu)
). We can conclude that when

tq = O(log n/(log log n)2), slightly less than O(log n/ log log n), then the running
time of tu blows-up to (log n)Ω(log log n).

References

1. Alon, N., Schieber, B.: Optimal preprocessing for answering on-line product
queries. Technical report, Department of Computer Science, School of Mathemat-
ical Sciences, Tel Aviv University (1987)

2. Alstrup, S., Holm, J.: Improved algorithms for finding level ancestors in dynamic
trees. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS,
vol. 1853, pp. 73–84. Springer, Heidelberg (2000)

3. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: Proc. 39th
Annual Symposium on Foundations of Computer Science, p. 534. IEEE Computer
Society, Washington, DC, USA (1998)

4. Alstrup, S., Secher, J., Spork, M.: Optimal on-line decremental connectivity in
trees. Information Processing Letters 64(4), 161–164 (1997)

5. Bose, P., Maheshwari, A., Narasimhan, G., Smid, M., Zeh, N.: Approximating geo-
metric bottleneck shortest paths. Computational Geometry 29(3), 233–249 (2004)

6. Brodal, G.S., Chaudhuri, S., Radhakrishnan, J.: The randomized complexity of
maintaining the minimum. Nordic Journal of Computing 3(4), 337–351 (1996)

7. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range
minimum data structures. Algorithmica, Special issue on ESA 2010 (2011) (in
press)

8. Chazelle, B.: Computing on a free tree via complexity-preserving mappings. Algo-
rithmica 2, 337–361 (1987)

9. Cole, R., Hariharan, R.: Dynamic lca queries on trees. SIAM Journal on Comput-
ing 34(4), 894–923 (2005)



Path Minima Queries in Dynamic Weighted Trees 301

10. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range min-
imum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas,
S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5555, pp. 341–353. Springer, Hei-
delberg (2009)

11. Frederickson, G.N.: Data structures for on-line updating of minimum spanning
trees, with applications. SIAM Journal on Computing 14(4), 781–798 (1985)

12. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. Journal of Computer and System Sciences 48(3),
533–551 (1994)

13. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geom-
etry problems. In: Proc. 16th Annual ACM Symposium on Theory of Computing,
pp. 135–143. ACM Press, New York (1984)

14. Harel, D.: A linear time algorithm for finding dominators in flow graphs and related
problems. In: Proc. 17th Annual ACM Symposium on Theory of Computing, pp.
185–194. ACM Press, New York (1985)

15. Kaplan, H., Shafrir, N.: Path minima in incremental unrooted trees. In: Halperin,
D., Mehlhorn, K. (eds.) Esa 2008. LNCS, vol. 5193, pp. 565–576. Springer, Heidel-
berg (2008)

16. Kaplan, H., Shafrir, N., Tarjan, R.E.: Meldable heaps and boolean union-find. In:
Proc. 34th Annual ACM Symposium on Theory of Computing, pp. 573–582. ACM
Press, New York (2002)

17. King, V.: A simpler minimum spanning tree verification algorithm. Algorith-
mica 18(2), 263–270 (1997)

18. Neto, D.M.: Efficient cluster compensation for lin-kernighan heuristics. PhD thesis.
University of Toronto, Toronto, Ontario, Canada (1999)

19. Nivasch, G.: Inverse ackermann without pain (2009),
http://www.yucs.org/~gnivasch/alpha/

20. Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing 35(4), 932–963 (2006)

21. Pettie, S.: An inverse-ackermann type lower bound for online minimum spanning
tree verification. Combinatorica 26(2), 207–230 (2006)

22. Sleator, D., Endre Tarjan, R.: A data structure for dynamic trees. Journal of Com-
puter and System Sciences 26(3), 362–391 (1983)

23. Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM 26(4),
690–715 (1979)

24. Vuillemin, J.: A unifying look at data structures. Communications of the
ACM 23(4), 229–239 (1980)

25. Yao, A.C.-C.: Space-time tradeoff for answering range queries (extended abstract).
In: Proc. 14th Annual ACM Symposium on Theory of Computing, pp. 128–136.
ACM Press, New York (1982)



On Rectilinear Partitions with Minimum

Stabbing Number�

Mark de Berg1, Amirali Khosravi1, Sander Verdonschot2,
and Vincent van der Weele3

1 Department of Mathematics and Computing Science, TU Eindhoven,
Eindhoven, The Netherlands
{mdberg,akhosrav}@win.tue.nl

2 School of Computer Science, Carleton University, Ottawa, Canada
sverdons@connect.carleton.ca

3 Max-Planck-Institut für Informatik, Saarbrücken, Germany
vdweele@mpi-inf.mpg.de

Abstract. Let S be a set of n points in R
d, and let r be a param-

eter with 1 � r � n. A rectilinear r-partition for S is a collection
Ψ(S) := {(S1, b1), . . . , (St, bt)}, such that the sets Si form a partition
of S, each bi is the bounding box of Si, and n/2r � |Si| � 2n/r for all
1 � i � t. The (rectilinear) stabbing number of Ψ(S) is the maximum
number of bounding boxes in Ψ(S) that are intersected by an axis-parallel
hyperplane h. We study the problem of finding an optimal rectilinear r-
partition—a rectilinear partition with minimum stabbing number—for a
given set S. We obtain the following results.

– Computing an optimal partition is np-hard already in R
2.

– There are point sets such that any partition with disjoint bounding
boxes has stabbing number Ω(r1−1/d), while the optimal partition
has stabbing number 2.

– An exact algorithm to compute optimal partitions, running in polyno-
mial time if r is a constant, and a faster 2-approximation algorithm.

– An experimental investigation of various heuristics for computing
rectilinear r-partitions in R

2.

1 Introduction

Motivation. Range searching is one of the most fundamental problems in compu-
tational geometry. In its basic form it can be stated as follows: preprocess a set S
of objects in R

d into a data structure such that the objects intersecting a query
range can be reported (or counted) efficiently. The range-searching problem has
many variants, depending for example on the type of objects (points, or some
other type of objects), on the dimension of the underlying space (two- or higher
dimensional), and on the type of query range (boxes, simplices, etc.)—see the
survey of Agarwal and Erickson [1] for an overview.

� The research by Amirali Khosravi was supported by the Netherlands’ Organisa-
tion for Scientific Research (NWO) under project no. 639.023.301 and project
no. 612.000.631.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 302–313, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



On Rectilinear Partitions with Minimum Stabbing Number 303

A range-searching data structure that is popular in practice is the bounding-
volume hierarchy, or bvh for short. This is a tree in which each object from
S is stored in a leaf, and each internal node stores a bounding volume of the
objects in its subtree. Often the bounding volume is a bounding box : the smallest
axis-aligned box containing the objects in the subtree. When a bvh is stored in
external memory, one usually uses a B-tree [5, Chapter 18] as underlying tree
structure; the resulting structure (with bounding boxes as bounding volumes) is
then called an R-tree. R-trees are one of the most widely used external-memory
data structures for spatial data, and they have been studied extensively—see
for example the book by Manolopoulos et al. [11]. In this paper we study a
fundamental problem related to the construction of R-trees, as explained next.

One common strategy to construct R-trees is the top-down construction. Top-
down construction algorithms partition S into a number of subsets Si, and then
recursively construct a subtree Ti for each Si. Thus the number of subsets cor-
responds to the degree of the R-tree. When a range query with a range Q is
performed, one has to recursively search in the subtrees Ti for which the bound-
ing box of Si (denoted bi) intersects Q. If bi ⊂ Q, then all objects stored in Ti
lie inside Q; if, however, bi intersects ∂Q (the boundary of Q) then we do not
know if the objects stored in Ti intersect Q. Thus the overhead of the search
algorithm is determined by the bounding boxes intersecting ∂Q. If Q is a box,
as is often the case, then the number of bounding boxes bi intersecting ∂Q is
bounded, up to a factor 2d, by the maximum number of bounding boxes inter-
secting any axis-parallel plane. Thus we want to partition S into subsets so as
to minimize the number of bounding boxes intersecting any axis-parallel plane.

Further background and problem statement. Let S be a set of n points in R
d,

and let r be a parameter with 1 � r � n. A rectilinear r-partition for S is a
collection Ψ(S) := {(S1, b1), . . . , (St, bt)} such that the sets Si form a partition
of S, each bi is the bounding box of Si, and n/2r � |Si| � 2n/r for all 1 �
i � t. Note that even though the subsets Si form a (disjoint) partition of S,
the bounding boxes bi need not be disjoint. The stabbing number of an axis-
parallel hyperplane h with respect to Ψ(S) is the number of boxes bi whose
relative interior intersects h, and the (rectilinear) stabbing number of Ψ(S) is
the maximum stabbing number of any axis-parallel plane h. Observe that our
rectilinear r-partitions are the axis-parallel counterpart of the (fine) simplicial
partitions introduced by Matoušek [12].

It has been shown that there are point sets S for which any rectilinear r-
partition has stabbing number Ω(r1−1/d) [12]; an example is the case when the
points in S form a grid of size n1/d × · · · × n1/d. Moreover, any set S admits
a rectilinear r-partition with stabbing number O(r1−1/d); such a rectilinear r-
partition can be obtained by a construction similar to a kd-tree [6]. Thus from
a worst-case and asymptotic point of view the problem of computing rectilinear
r-partitions with low stabbing number is solved. However, any specific point set
may admit a rectilinear r-partition with a much lower stabbing number than
Θ(r1−1/d). For instance, if the points from S are all collinear on a diagonal line,
then there is a rectilinear r-partition with stabbing number 1. The question now



304 M. de Berg et al.

arises: given a point set S and a parameter r, can we compute a rectilinear
r-partition that is optimal for the given input set S, rather than worst-case
optimal? In other words, we want to compute a rectilinear r-partition that has
the minimum stabbing number over all rectilinear r-partitions for S.

Our results. We start by a theoretical investigation of the complexity of the
problem of finding optimal rectilinear r-partitions. In Section 2 we show that
already in R

2, finding an optimal rectilinear r-partition is np-hard if r is consid-
ered as a parameter. In Section 3 we then give an exact algorithm for computing
optimal rectilinear r-partitions which runs in polynomial time if r is a constant,
and a 2-approximation with a better running time. We conclude our theoretical
investigations by showing that algorithms only considering partitions with dis-
joint bounding boxes cannot have a good approximation ratio: there are point
sets such that any partition with disjoint bounding boxes has stabbing number
Ω(r1−1/d), while the optimal partition has stabbing number 2. We also perform
an experimental investigation of various heuristics for computing rectilinear r-
partitions with small stabbing number in R

2. A simple variant of a kd-tree
approach, which we call the windmill kd-tree turns out to give the best results.

2 Finding Optimal Rectilinear r-Partitions Is NP-Hard

The exact problem we consider in this section is as follows.

Optimal Rectilinear r-Partition
Input: A set S of n points in R

2 and two parameters r and k.
Output: yes if S admits a rectilinear r-partition w.r.t. r with stabbing number
at most k, no otherwise.

We will show that this problem is already np-complete for fixed values of k.

Theorem 1. Optimal Rectilinear r-Partition is np-complete for k = 5.

To prove the theorem we use a reduction from 3-sat, which is similar to the
proof by Fekete et al. [8] of the np-hardness of minimizing the stabbing number
of a matching on a planar point set. Let U := {x1, . . . , xm} be a set of m boolean
variables, and let C := C1∧· · ·∧Cs be a cnf formula defined over these variables,
where each clause Ci is the disjunction of three variables. The 3-sat problem
is to decide whether such a boolean formula is satisfiable; 3-sat is np-hard [9].
Our reduction will be such that there is a rectilinear r-partition with stabbing
number k = 5 for the Optimal Rectilinear r-Partition instance if and only
if the 3-sat instance is satisfiable. To simplify the reduction we assume that
n = 72r (to make

√
2n/r an integer greater than or equal to 12); however, the

reduction works for any n = α · r for α � 72. We first describe the various
gadgets we need and then explain how to put them together.

The barrier gadget. A barrier gadget is a set G of 25·h2 points, where h � 12 and
h2 = 2n/r, arranged in a regular 5h× 5h grid. To simplify the construction we
fix h = 12. Thus a barrier gadget is simply a 60×60 grid placed in a small square.



On Rectilinear Partitions with Minimum Stabbing Number 305

The idea is essentially that if we partition a barrier gadget and require stabbing
number 5, then both the vertical and the horizontal stabbing numbers will be
5. This will prevent any other bounding boxes from crossing the vertical strip
(and, similarly, the horizontal strip) whose bounding lines contain the vertical
(resp. horizontal) edges of the square containing the barrier gadget. Thus the
barrier gadget can be used to make sure there is no interaction between different
parts of the global construction. Lemma 1 below makes this precise by giving a
bound on the minimum stabbing number of any r-partition of a barrier gadget.
In fact, we are interested in the case where G is a subset of a larger set S. In our
construction we will place any barrier gadget G in such a way that the points in
S \G lie outside the bounding box of G, so when analyzing the stabbing number
of a barrier gadget we will always assume that this is the case.

Let G be a barrier gadget and S ⊃ G be a set of n points. We define Ψ(S ↓ G),
the restriction to G of a rectilinear r-partition Ψ(S) = {(S1, b1), . . . , (St, bt)}, as

Ψ(S ↓ G) := {(Si ∩G, bi) : 1 � i � t and Si ∩G �= ∅}.

In other words, the boxes in Ψ(S ↓ G) are the boxes from Ψ(S) whose associated
point set contains at least one point from the barrier. The following lemma,
which is proved in the full version of the paper, gives a bound on the vertical and
horizontal stabbing numbers of a rectilinear partition of a barrier gadget, where
the vertical (horizontal) stabbing number is defined as the maximum number of
boxes intersected by any vertical (horizontal) line.

Lemma 1. A barrier gadget G can be covered by a set of 25 boxes with stabbing
number 5. Moreover, for any rectilinear r-partition Ψ(S) of stabbing number 5,
the restriction Ψ(S ↓ G) has vertical as well as horizontal stabbing number 5.

The variable gadget. Fig. 1 shows the variable gadget. The three subsets in
the left part of the construction, and the three subsets in the right part, each
contain n/2r = 36 points. Because of the barrier gadgets, the points from one
subset cannot be combined with other points and must be put together into one
rectangle in the partition. The six subsets in the middle part of the construction
each contain 4n/r = 288 points. To make sure the stabbing number does not
exceed 5, these subsets can basically be grouped in two different ways. One
grouping corresponds to setting the variable to true, the other grouping to false—
see Fig. 1. Note that the gadget defines two vertical slabs. If the variable is set
to true then the left slab has stabbing number 2 and the right slab has stabbing
number 4, otherwise the opposite is the case.

The clause gadget. A clause gadget consists of three subsets of 4n/r = 288 points,
arranged as shown in Fig. 2(a), and placed in the left or right slab of the corre-
sponding variables: a positive literal is placed in the left slab, a negative lateral in
the right slab. If the stabbing number of the slab is already 4, which is the case
when the literal evaluates to false, then the subset of 4n/r points in the clause
gadget must be grouped into two “vertical” rectangles. Hence, not all literals in a
clause can evaluate to false if the stabbing number is to be at most 5.



306 M. de Berg et al.

(a) (b)

stabbing number 4

stabbing number 2

n/2r pts

n/r pts

barrier gadgets

light grey region:
no box can cross
because of barrier
gadgets

left slab right slab left slab right slab

Fig. 1. The variable gadget. (a) True setting. (b) False setting.

The global structure. The global construction is shown in Fig. 2(b). There are
variable gadgets, clause gadgets, and barrier gadgets. The variable gadgets are
placed diagonally and the clause gadgets are placed below the variables. We also
place barriers separating the clause gadgets from each other. Finally, the gadgets
for occurrences of the same variable in different clauses should be placed such
that they are not stabbed by a common vertical line. This concludes our sketch
of the construction which proves Theorem 1. A formal proof of the theorem can
be found in the full version of the paper.

3 Polynomial Time Algorithms for Constant r

In the previous section we showed that Optimal Rectilinear r-Partition is
np-hard when r is considered part of the input. Now we give a simple algorithm

x1

x2

xm

C1

Cs

C2

left slab of xi right slab of xj left slab of xk barrier gadgets(a) (b)

n/r ptsn/r pts

Fig. 2. (a) A clause gadget for (xi ∨ xj ∨ xk), and one possible grouping of the points.
(b) The global structure.



On Rectilinear Partitions with Minimum Stabbing Number 307

to show that the problem in R
d can be solved in polynomial time for fixed r in

dimension d. Our algorithm works as follows.

1. Let C be the set of all boxes defined by at most 2d points in S. Note that
|C| = O(n2d).

2. For each t with r/2 � t � 2r, proceed as follows. Consider all O(n2dt)
possible subsets B ⊂ C with |B| = t. Check whether B induces a valid
solution, that is, whether we can assign the points in S to the boxes in B
such that (i) each point is assigned to a box containing it, and (ii) each box
is assigned between n/2r and 2n/r points. How this is done will be explained
later.

3. Over all sets B that induce a valid solution, take the set with the smallest
stabbing number. Replace each box in it with the bounding box of the points
assigned to it, and report the partition.

To implement Step 2 we construct a flow network with node set {vsource, vsink}∪
S∪B. The source node vsource has an arc of capacity 1 to each point p ∈ S, each
p ∈ S has an arc of capacity 1 to every bj ∈ B that contains p, and each bj ∈ B
has an arc of capacity 2n/r to the sink node vsink. The arcs from the boxes to
the sink also have (besides the upper bound of 2n/r on the flow) a lower bound
of n/2r on the flow. The set B induces a valid rectilinear r-partition if and only
if there is an integer flow of n units from vsource to vsink. Such a flow problem can
be solved in O(min(V 3/2, E1/2)E log(V 2/E + 2) log c) time [2], where V is the
number of vertices in the network, E is the number of arcs, and c is the maximum
capacity of any arc. We have V = O(n), E = O(nr), and c = 2n/r. Since we have
to check O(n4dr) subsets B, the running time is O(n4dr · (nr)3/2 log2(n/r + 2))
and is polynomial (assuming r is a constant). We obtain the following result.

Theorem 2. Let S be a set of n points in R
d, and r a constant. Then we can

compute a rectilinear r-partition with optimal stabbing number in time
O(n4dr+3/2 log2 n)

We can significantly improve the running time if we are satisfied with a 2-
approximation. The trick is to place a collection Hi of 3r hyperplanes orthogonal
to the xi-axis (the ith-axis) such that there are at most n/3r points from S in
between any two consecutive hyperplanes in Hi. Instead of finding O(n2d) boxes
in the first step of the algorithm, we now find O(r2d) boxes defined by the hy-
perplanes in H := H1 ∪ · · · ∪ Hd. Then we have |C| = O(r2d). We apply the
Step 2 of the algorithm and find for r/2 � t � 2r all the O(r2dt) subsets B ⊂ C.
We check for each subset whether it is a valid solution, and take the best valid
solution. In the full version, we show that this gives a 2-approximation.

Theorem 3. Let S be a set of n points, and r a constant. Then we can com-
pute a rectilinear r-partition with stabbing number at most 2 · opt, where opt
is the minimum stabbing number of any rectilinear partition for S, in time
O(n3/2 log2 n).



308 M. de Berg et al.

4 Arbitrary versus Disjoint Rectilinear r-Partitions

Since computing optimal rectilinear r-partitions is np-hard, one should look
at approximation algorithms. It may be easier to develop an approximation
algorithm considering only rectilinear r-partitions with disjoint bounding boxes.
The next theorem shows that in R

2 such an approach will not give a good
approximation ratio. The same argument holds for R

d. (see the full version)

Theorem 4. Assume that 32 � r � 4 ·
√

n. Then there is a set S of n points
in R

2 whose optimal rectilinear r-partition has stabbing number 2, while any
rectilinear r-partition with disjoint bounding boxes has stabbing number Ω(

√
r).

Proof. Let G be a
√

r/8 ×
√

r/8 grid in R
2. (For simplicity assume that

√
r/8

is an integer. Since 32 � r we have
√

r/8 � 2.) We put each grid point in S
and call them black points. We call the lines forming the grid G black lines. Note
that there are r/8 black points. Fig. 3 shows an example with r = 128. Next
we refine the grid using 2(

√
r/8− 1) additional axis-parallel grey lines. At each

of the new grid points that is not fully defined by gray lines—the grey dots in
the figure—we put a tiny cluster of 2n/r points, which we also put in S. If the
cluster lies on one or more black lines, then all points from the cluster lie in the
intersection of those lines, as shown in Fig. 3.

So far we used (2r/8 − 2 ·
√

r/8) · 2n/r + r/8 points. Since r � 4 ·
√

n, the
number of points which we used so far is less than n. The remaining points can be
placed far enough from the construction (not influencing the coming argument.)
Next, we rotate the whole construction slightly so that no two points have the
same coordinate in any dimension. This rotated set is our final point set S.

To obtain a rectilinear r-partition with stabbing number 2, we make each of
the clusters into a separate subset Si, and put the black points into one separate
subset; the latter is allowed since r/8 � 2n/r. (If r/8 < n/2r we can use some
of the remaining points or the points of gray dots to fill up the subset.)

If the clusters are small enough, then the rotation we have applied to the point
set guarantees that no axis-parallel line can intersect two clusters at the same
time. Any line intersects at most one of the clusters and the rectangle containing
the black points, and the stabbing number of this rectilinear r-partition is 2.

We claim that any disjoint rectilinear r-partition for S has stabbing num-
ber Ω(

√
r/8). To see this, observe that no subset Si in a disjoint rectilinear

r-partition can contain two black points. Indeed, the bounding box of any two
black points contains at least one full cluster and, hence, together with the black
points would be too many points. We conclude that each black point is assigned
to a different bounding box. Let B be the collection of these bounding boxes.
Now duplicate each of the black lines, and move the two duplicates of each black
line slightly apart. This makes a set H of O(

√
r/8) axis-parallel lines such that

each bounding box in B intersects at least one line from H.
Then the total number of intersections between the boxes in B and the lines in

H is Ω(r), implying that there is a line in H with stabbing number Ω(
√

r/8). �



On Rectilinear Partitions with Minimum Stabbing Number 309

clusters

Fig. 3. Every rectilinear r-partition with disjoint bounding boxes has stabbing number
Ω(
√
r) while there exists a partition with stabbing number 2

Uniform Dense Line clusters Point clusters

Fig. 4. The different types of input sets

5 Experimental Results

In the previous sections we studied the complexity of finding an optimal rectilin-
ear r-partition of a given point set. For arbitrary r the problem is np-hard, and
for constant r the exact algorithm was polynomial but still very slow. Hence,
we now turn our attention to heuristics. In the initial experiments on which we
report below, the focus is on comparing the various heuristics and investigating
the stabbing numbers they achieve as a function of r, for fixed n.

Data sets. We tested our heuristics on four types of point sets–see Fig. 4. The
Uniform data set picks the points uniformly at random from the unit square.
For the Dense data set we take a Uniform data set and square all y-coordinates,
so the density increases near the bottom. For the Line Clusters data set we first
generated a few line segments, whose endpoints are chosen uniformly at random
in the unit square. To generate a point in P , we pick one of the line segments
randomly, select a position along the line segment at random and add some
Gaussian noise. The Point Clusters data set is similar, except that it clusters
around points instead of line segments. All sample sets contain n = 50, 000 points
and the reported stabbing numbers are averages over 20 samples.

Next we describe our heuristics. Let P denote the set of points in R
2 for which

we want to find a rectilinear r-partition with low stabbing number.

The windmill kd-tree. A natural heuristic is to use a kd-tree [6]: partition the
point set P recursively into equal-sized subsets, alternatingly using vertical and
horizontal splitting lines, until the number of points in each region drops below



310 M. de Berg et al.

2 2 4

3

4

4

8

6

KD

Windmill

Fig. 5. A kd-tree, a windmill kd-tree, and their stabbing numbers

100 400 700 1000 1300 1600 1900 2200 2500
0

10

20

30

40

50

60

70

r

st
a
b
b
in
g
n
u
m
b
er

Fig. 6. Comparison of the kd-tree and the windmill kd-tree

2n/r. For each region R of the kd-tree subdivision, put the pair (R∩P, bR) into
the rectilinear r-partition, where bR is the bounding box of R∩P . Note that this
method runs in O(n log n) time, and gives a stabbing number O(

√
r), which is

worst-case optimal. The windmill kd-tree is a version of kd-tree in which for two
of the four nodes of depth 2 the splitting line has the same orientation as the
splitting line at their parents. This is done in such a way that the subdivision
induced by the nodes at level 2 has stabbing number 3 rather than 4–see Fig. 5.
It turns out that the windmill kd-tree is always at least as good as the regular kd-
tree, and often performs significantly better. The results for the uniform Data set
are shown in Fig. 6 for r ranging from 100 to 2,500 with step size 100. The figure
shows that, depending on the value of r, the stabbing number of the kd-tree and
the windmill kd-tree are either the same, or the windmill has 25% lower stabbing
number. The switch between these two cases occurs exactly at the values of r
where the depth switches from even to odd (or vice versa), which is as expected
when looking at Fig. 5. In the remainder we only compare the windmill kd-tree
to the other methods, and ignore the regular kd-tree.
The greedy method. We first compute a set B of candidate boxes such that
n/2r � |bi ∩ P | � 2n/r for each box bi ∈ B. Each box bi ∈ B has a certain cost
associated to it. We then take the cheapest box bi ∈ B, put the pair (bi, P ∩ bi)
into the rectilinear r-partition, and remove the points in bi from P . Finally, boxes



On Rectilinear Partitions with Minimum Stabbing Number 311

1

23

45

(a) (b)

Fig. 7. A Hilbert curve and its use to generate a rectilinear r-partition

that now contain too few points are discarded, the costs of the remaining boxes
are updated, and the process is repeated. The method ends when the number of
points drops below 2n/r; these points are then put into a single box (which we
allow to contain less than n/2r points if needed).

This method can be implemented in various ways, depending on how the set
B and the cost of a box are defined. In our implementation we took m vertical
lines with (roughly) n/(m− 1) points in between any two consecutive lines, and
m horizontal lines in a similar manner. B then consists of all O(m4) boxes that
can be constructed by taking two vertical and two horizontal lines from these
lines. In our experiments we used m = 50, because this was the largest value that
gave reasonable computation times. The cost of a box bi is defined as follows.
We say that a point p ∈ P is in conflict with bi if p �∈ bi and the horizontal or
the vertical line through p intersects bi. Let Ci be the set of points in conflict
with bi. Then the cost of bi is |Ci|/|bi ∩ P |. The idea is that we prefer boxes
containing many points and in conflict with few points.

The Hilbert curve. A commonly used approach to construct R-trees is to use a
space-filling curve such as a Hilbert curve [10]—see Fig. 7(a). We can also use
a Hilbert curve to compute a rectilinear r-partition: first, sort the given points
according to their position on the Hilbert curve, and then generate the subsets in
the rectilinear r-partition by taking consecutive subsets along the Hilbert curve.
Since the lowest stabbing number is usually achieved by using as few rectangles
as possible, we do this in a greedy manner: put the first 2n/r points in the first
subset, the next 2n/r rectangles in the second subset, and so on—see Fig. 7(b).

K-Means. The final method we tested was to compute r clusters using K-means—
in particular, we used K-Means++ [3]—and then take the clusters as the subsets
in the rectilinear r-partition. Some of the resulting clusters may contain too many
or too few points. We solved this by shifting points into neighboring clusters.

5.1 Results of the Comparisons

Figs. 8.a-d shows the results of our experiments. The clear conclusion is that the
windmill kd-tree outperforms all other methods on all data sets. The Hilbert-
curve approach always comes in second, except for the Dense data set. Note



312 M. de Berg et al.

(a) (b)

(c) (d)

windmill

Hil. curve

K-means

greedy

10 40 70 100 130 160 190 220 250
0

5

10

15

20

25

30

35

40

st
a
b
b
in
g
n
u
m
b
er

0

10

20

30

40

50

60

st
a
b
b
in
g
n
u
m
b
er

10 40 70 100 130 160 190 220 250
r r

windmill

Hil. curve

K-means

greedy

0

5

10

15

20

25

30

35

40

st
a
b
b
in
g
n
u
m
b
er

10 40 70 100 130 160 190 220 250
0

5

10

15

20

25

30

35

40

st
a
b
b
in
g
n
u
m
b
er

10 40 70 100 130 160 190 220 250
r r

Fig. 8. The results of the comparison of methods on (a)uniform (b)dense (c)line clus-
ters (d)point cluster point sets

that the windmill and the greedy method give the same results for the Uniform
data set and the Dense data set—which is easily explained, since the rectilinear
r-partition computed by these methods only depends on the ranks (their position
in the sorted order) of the coordinates, and not on their actual values—while the
other two methods perform worse on the Dense data set: apparently they do not
adapt well to changing density. The windmill and the Hilbert-curve method not
only gave the best results, they were also the fastest. Indeed, both methods could
easily deal with large data sets. (On inputs with n = 10, 000, 000 and r = 500
they only took a few minutes.)

6 Conclusion

We studied the problem of finding optimal rectilinear r-partitions of point sets.
On the theoretical side, we proved that the problem is np-hard when r is part
of the input, although it can be solved in polynomial time for constant r. The
algorithm for constant r is still unpractically slow, however, so it would be inter-
esting to come up with faster exact algorithms (or perhaps a practically efficient
PTAS).



On Rectilinear Partitions with Minimum Stabbing Number 313

We also tested a few heuristics and concluded that our so-called windmill
kd-tree is the best method. This immediately leads to the question whether the
windmill approach could also lead to R-trees that are practically efficient. This
is, in fact, unclear. What we have tried to optimize is the maximum stabbing
number of any axis-parallel line. When querying with a rectangular region, how-
ever, we are interested in the number of regions intersected by the boundary of
the region. First of all, the boundary does not consist of full lines, but of line
segments that in practice are possibly small compared to the data set. Secondly,
the boundary of the rectangle consists of horizontal and vertical segments. Now,
what the windmill does (as compared to a regular kd-tree) is to balance the hor-
izontal and vertical stabbing number, so that the maximum is minimized. The
sum of the horizontal and vertical stabbing number in the subdivision does not
change, however. So it might be that the windmill approach is good to minimize
the worst-case query time for long and skinny queries. This would require further
investigation. It would also be interesting to find rectilinear r-partitions whose
(maximum or average) stabbing number is optimal with respect to a given set of
query boxes, or try to minimize the full partition tree, instead of just one level.

References

1. Agarwal, P.K., Erickson, J.: Geometric Range Searching and its Relatives. In:
Chazelle, B., Goodman, J., Pollack, R. (eds.) Advances in Discrete and Computa-
tional Geometry, pp. 1–56 (1998)

2. Ahuja, P.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs (1993)

3. Arthur, D., Vassilvitskii, S.: K-means++: the Advantages of Careful Seeding. In:
Proc. of the 18th Annual ACM-SIAM Sym. of Desc. Alg., pp. 1027–1035 (2007)

4. Chazelle, B., Welzl, E.: Quasi-optimal Range Searching in Spaces of Finite VC-
dimension. Arch. Rat. Mech. Anal. 4, 467–490 (1989)

5. Ahuja, P.K., Magnanti, T.L., Orlin, J.B.: Introduction to Algorithms, 2nd edn.
MIT Press and McGraw-Hill (2001)

6. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geome-
try: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008)

7. Dijkstra, E.W., Feijen, W.H.J., Sterringa, J.: A Method of Programming. Addison-
Wesley, Reading (1988)

8. Fekete, S.P., Lübbecke, M.E., Meijer, H.: Minimizing the Stabbing Number of
Matchings, Trees, and Triangulations. Discr. Comput. Geom. 40, 595–621 (2008)

9. Garey, M.R., Johnson, D.S.: Computers and Interactibility: A Guide to the Theory
of NP-Completness. W.H. Freeman and Co., New York (1979)

10. Haverkort, H., van Walderveen, F.: Four-dimensional Hilbert Curves for R-trees.
In: Proc. Workshop on Algorithms Engineering and Experiments, ALANEX (2009)

11. Manolopoulos, Y., Nanopoulos, A., Theodoridis, Y., Papadopoulos, A.: R-trees:
Theory and Applications. Series in Adv. Inf. and Knowledge Processing. Springer,
Heidelberg (2005)

12. Matoušek, J., Tarantello, G.: Efficient Partition Trees. Discr. Comput. Geom. 8,
315–334 (1992)



Flattening Fixed-Angle Chains

Is Strongly NP-Hard�

Erik D. Demaine and Sarah Eisenstat

MIT Computer Science and Artificial Intelligence Laboratory,
32 Vassar St., Cambridge, MA 02139, USA

{edemaine,seisenst}@mit.edu

Abstract. Planar configurations of fixed-angle chains and trees are well
studied in polymer science and molecular biology. We prove that it is
strongly NP-hard to decide whether a polygonal chain with fixed edge
lengths and angles has a planar configuration without crossings. In par-
ticular, flattening is NP-hard when all the edge lengths are equal, whereas
a previous (weak) NP-hardness proof used lengths that differ in size by
an exponential factor. Our NP-hardness result also holds for (nonequilat-
eral) chains with angles in the range [60◦ − ε, 180◦], whereas flattening
is known to be always possible (and hence polynomially solvable) for
equilateral chains with angles in the range (60◦, 150◦) and for general
chains with angles in the range [90◦, 180◦]. We also show that the flat-
tening problem is strongly NP-hard for equilateral fixed-angle trees, even
when every angle is either 90◦ or 180◦. Finally, we show that strong NP-
hardness carries over to the previously studied problems of computing
the minimum or maximum span (distance between endpoints) among
non-crossing planar configurations.

Keywords: geometric folding, linkages, hardness, polymers.

1 Introduction

Molecular geometry (also called stereochemistry) studies the 3D geometry of the
atoms (and the bonds between them) that constitute a molecule [5]. If we rep-
resent an atom by a vertex and a bond by an edge, we obtain a graph structure;
this structure comes equipped with fixed edge (bond) lengths, making a linkage,
and fixed (bond) angles between incident edges, making a fixed-angle linkage.
In general, a fixed-angle linkage is a geometrically embedded graph that can re-
configure (change embedding) so long as it preserves the fixed edge lengths and
angles [4]. Typical edge (bond) lengths in polymers are 100–270 picometers, and
typical (bond) angles are around 72◦, 90◦, 109◦, 120◦, and 180◦.

Most large (macro)molecules are polymers, and many are nonbranching poly-
mers, meaning that the graph structure decomposes into a chain of substruc-
tures of small size. Examples of nonbranching polymers include proteins, DNA
strands, and RNA strands. Motivated by this reality, the computational study
� Research supported in part by NSF grant CDI-0941538.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 314–325, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Flattening Fixed-Angle Chains Is Strongly NP-Hard 315

of fixed-angle linkages [4] usually focuses on fixed-angle chains, where the graph
is a path (representing the backbone of the polymer), and on fixed-angle trees,
where the graph is a tree, especially caterpillars, representing a small amount of
additional structure attached to the backbone.

Motivated by these applications to polymer science, Soss and Toussaint [9, 8]
introduced several computational problems, three of which we study here:

Flattening: Given a fixed-angle linkage, decide whether it has a continuous
non-crossing motion that results in a flat configuration (lying in the plane).

Min flat span: Compute the flat configuration of a fixed-angle linkage with
minimum possible span—distance between the two endpoints.

Max flat span: Compute the flat configuration of a fixed-angle linkage with
maximum possible span.

They proved that all three of these problems are weakly NP-hard, by reduc-
ing from the integer partition problem. Because the integer partition problem
is weakly NP-hard, it is only hard when the numbers in the problem are expo-
nentially large. Therefore, the reductions given by Soss and Toussaint show only
that the flattening and span problems are hard when the edge lengths differ by
exponential factors, or when the angles have polynomially many bits of precision.

Our results. In this paper, we show that all three problems are strongly NP-
hard, and thus hard when the edge lengths are all very close (or even identical)
and a constant number of different angles are used. More specifically, we prove
the following special cases to be strongly NP-hard:1

Problem Linkage Edge lengths Angle range Theorem

Flattening fixed-angle chain equilateral [16.26◦ , 180◦] 4
Flattening fixed-angle chain Θ(1) [60 − ε◦, 180◦] 5
Flattening fixed-angle caterpillar tree equilateral {90◦, 180◦} 3
Min flat span fixed-angle chain equilateral [16.26◦ , 180◦] 6
Max flat span fixed-angle chain equilateral [16.26◦ , 180◦] 7

The proofs given in this paper show the NP-hardness of the related problem
of deciding the existence of a non-crossing flat state. It is easy to modify our
proofs to establish hardness of flattening (by a continuous motion). The 16.26◦ ≈
arcsin 7

25
angle bound can easily be improved to around 22.6◦, and perhaps

further to 30◦ or 45◦.

Overview. Our proofs start in Section 3 with an artificial problem, flattening
semi-rigid fixed-angle chains, as a building block for the more interesting results
above. In a semi-rigid chain, some sections of the chain can be marked rigid,
meaning that the vertices in the section cannot move relative to each other.
Naturally, this additional set of constraints makes flattening more difficult, and
we show that the problem is NP-hard even for equilateral chains with all an-
gles in {90◦, 180◦}. Then we show in Section 4 how to remove the semi-rigidity
1 A linkage is equilateral if all edge lengths are equal. “Θ(1)” denotes that all edge

lengths are within constant factors of each other.



316 E.D. Demaine and S. Eisenstat

constraint using either sharper angles or fixed-angle trees. Finally, in Section 5,
we show how to transform the flat state into one with an especially small or
large span, and guarantee that the chain has a flat state in all cases (of possibly
suboptimal span). Omitted proof details will be available in the full version.

2 Definitions

2.1 Linkages

Definition 1. A linkage consists of a graph G = (V, E) and edge lengths � :
E → R≥0. G is called the structure graph of the linkage. A configuration of
a linkage in d dimensions is a mapping C : V → R

d satisfying the constraint
�(u, v) = ‖C(u)−C(v)‖ for each edge (u, v) ∈ E. A configuration is non-crossing
if any two edges e1, e2 ∈ E intersect only if the two edges are incident in the
structure graph, and intersect only at their shared vertex.

Definition 2. A fixed-angle linkage is a linkage with an additional set of con-
straints specifying an angle function θi : N (vi) × N (vi) → [0◦, 180◦] for each
vertex vi, where N (vi) is the set of neighbors of vi. In addition to satisfying the
length constraints of the linkage, any configuration of the linkage has the prop-
erty that for each vertex vi ∈ V and each pair of its neighbors vj , vk ∈ N (vi),
the angle ∠vjvivk has measure θi(vj , vk).

Definition 3. A chain of length n is a linkage whose structure graph is G =
(V, E) where V = {v1, v2, . . . , vn} and E = {(v1, v2); (v2, v3); . . . ; (vn−1, vn)}.
Definition 4. A linkage is equilateral if �(e) = 1 for all e ∈ E.

Definition 5. A fixed-angle linkage is orthogonal if all angles θi(vj , vk) are
either 90◦ or 180◦.

Definition 6. A flat state of a fixed-angle linkage is a non-crossing 2D configu-
ration of the linkage. A 3D configuration of a fixed-angle chain can be flattened
if there exists a continuous sequence of non-crossing configurations starting at
the current configuration and ending in a flat state.

Definition 7. The span of a flat state of a fixed-angle chain is the distance
between v1 and vn in that configuration.

Finally, we define a new kind of fixed-angle chain, which places an additional
constraint on the locations of the vertices in a configurations.
Definition 8. A semi-rigid chain of length n is a fixed-angle chain of length n
with constraints to ensure that parts of the chain are rigid. These constraints
are specified in two parts: a sequence s0 < s1 < . . . < s� such that s0 = 1 and
s� = n; and the distance functions d1, . . . , d�, where each di gives all pairwise
distances between the vertices {vsi−1 , vsi−1+1, . . . , vsi}. The articulation points
of a semi-rigid chain are the vertices vs0 , vs1 , . . . , vs�

.
The additional restrictions imposed by the semi-rigid chain make it easier to
prove that flattening the chain is NP-hard. The relationship between semi-rigid
chains and fixed-angle chains makes it possible to give a reduction from one to
the other.



Flattening Fixed-Angle Chains Is Strongly NP-Hard 317

2.2 Rectilinear Planar Monotone 3-SAT

One variant of the standard 3-SAT problem is planar 3-SAT, where the graph of
the variables and clauses, with edges between variables and the clauses that
contain them, has a planar embedding. Planar 3-SAT is known to be NP-
complete [7]. One variant of planar 3-SAT, rectilinear planar 3-SAT, places three
additional restrictions on the planarity of the graph:

1. All variables and clauses are rectangles.
2. All of the variables lie along a single horizontal line.
3. All edges lie along vertical lines.

Rectilinear planar 3-SAT is also known to be NP-complete [6]. In 2010, de Berg
and Khosravi introduced an even more restricted version of rectilinear planar
3-SAT [3]: an instance of the rectilinear monotone planar 3-SAT problem is a
rectilinear planar 3-SAT instance such that every clause is either all positive or
all negative, all positive clauses lie above the line of variables, and all negative
clauses lie below the line of variables. They proved the following theorem:

Theorem 1. It is NP-complete to decide whether an instance of rectilinear
monotone planar 3-SAT is satisfiable.

3 Flattening Semi-rigid Chains

In this section, we begin by constructing gadgets for a semi-rigid chain which
have a limited number of flat states. Then in Theorem 2, we use those gadgets
to show that it is NP-hard to find a flat state for an equilateral orthogonal
semi-rigid chain.

Lemma 1. Up to reflection, the semi-rigid chain depicted in Figure 1(a) has
three possible flat states, depicted in Figures 1(a), 1(b), and 1(c).

Lemma 2. Given the location of the section of chain between a0 and a1, each
flat state of the semi-rigid chain depicted in Figure 2 has the following properties:

1. The point a17 has coordinates (3, 0).
2. The y-coordinate of at least one of b1, b2, or b3 must be negative.

Lemmas 1 and 2 can both be proved by case analysis. We now use the results of
Lemma 2 to show the following theorem.

Theorem 2. There exists a polynomial-time algorithm reducing from an in-
stance φ of rectilinear planar monotone 3-SAT to an orthogonal equilateral semi-
rigid chain which can be flattened if and only if φ is satisfiable.

Proof. The pins of the clause gadget depicted in Fig. 2 are the rigid chains
between between articulation points a8 and a9, between a11 and a12, and between
a14 and a15. Lemma 2 shows that all possible flat states for that clause gadget



318 E.D. Demaine and S. Eisenstat

a0

(0, 0)

a1 (14,−13)

a2 (22,−11)

a3 (26,−9)

a4 (26,−6)

a5 (22,−4)

a6 (14,−2)

a7

(40, 0)

(a)

(b) (c)

Fig. 1. The three possible flat states for the semi-rigid chain given in Fig. 1(a). Each
labeled point is an articulation point; all other sections of the chain are rigid.

have the property that at least one of b1, b2, or b3 must lie below a certain line.
A clause has the property that at least one of its literals must be true. So to
set up the reduction from one to the other, our literals should be pieces of a
semi-rigid chain such that, if the literal is false, the chain will intersect with
the corresponding pin when it protrudes below the line. That way, if there is a
flat state, then at least one of the literals for that clause must be true. We will
accomplish this using gadgets like those depicted in Fig. 3. If the pin extends
below the line, then the literal gadget must also dip below the line. If the pin
does not extend below the line, then the literal gadget can go either way.

Because we are reducing from monotone rectilinear planar 3-SAT, we know
that each clause will contain either all negative or all positive literals, and that
all positive clauses will lie above the variables while all negative clauses will lie
below the variables. Our choice of gadget for the literal allows us to construct
a clause involving the literal’s negation by mirroring a clause gadget over the
horizontal line and making the pins point upwards instead of downwards.

Unfortunately, there are two problems with the idea we have sketched. The
first is direction. In the rigid chain which is partially depicted in Fig. 3, it would
be equally valid to have a flat state where the clause gadget is mirrored across
the line so that its pins point up. If there is only one clause gadget, then we
may say without loss of generality that the clause gadget will fall above the
line. However, as soon as there is more than one clause gadget, we may have
to consider the possibility of flat states where one clause gadget is in the right



Flattening Fixed-Angle Chains Is Strongly NP-Hard 319

a0

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11a12

a13

a14

a15

a16

a17

b1

b2

b3

Fig. 2. The semi-rigid chain used for a clause gadget. The articulation points are
a0, . . . , a17. The coordinates of all labelled points are given in Table 1. The parameter
h adjusts the height of the gadget; the parameters w1 and w2 adjust the distances
between the points b1, b2, and b3.

position while the other is in the wrong position. Hence, we need a way to
make sure that each clause gadget extends in the right direction. The second
problem we must consider is consistency. In order to correctly convert from the
rectilinear structure to our fixed-angle chain, we must be able to have a clause
gadget appear in between two literal gadgets for the same variable. But if the two
literal gadgets are independent, there is no way to ensure that the two gadgets
will take on the same value.

The modification we make will solve both of these problems. We will have
three separate sections of the chain running parallel to each other. The chain in
the middle will consist of a number of long variable gadgets, one for each variable
in the original formula. The chain above the middle chain will contain the clause
gadgets for all of the positive clauses, as well as smaller literal gadgets. This will
ensure that each clause gadget must extend above the chain; if it extended below,
it would intersect with the chain in the middle. The chain below the middle chain
will contain the clause gadgets for all of the negative clause gadgets, as well as
a number of smaller literal gadgets. A sample of this is depicted in Fig. 4. We
will connect the three chains as depicted in Fig. 5.

We say that a variable is true if the long gadget for that variable in the
middle chain dips below the center line of the middle chain; the variable is false
otherwise. Hence, if a variable is false, then all of the smaller gadgets for that



320 E.D. Demaine and S. Eisenstat

Table 1. The coordinates for the labeled points in Fig. 2

label x-coord y-coord
a0 0 0
a1 w1 − 5 h + 15
a2 w1 + 3 h + 13
a3 w1 − 1 h + 11
a4 w1 − 1 h+ 8
a5 w1 + 3 h+ 6
a6 w1 − 5 h+ 4

label x-coord y-coord
a7 w1 +w2 + 10 h
a8 w1 + w2 + 8 h+ 2
a9 w1 + 12 h+ 2
a10 w1 + 10 h
a11 w1 + 8 h− 2
a12 w1 + 5 h− 2
a13 w1 + 3 h

label x-coord y-coord
a14 w1 + 1 h+ 2
a15 5 h+ 2
a16 3 h
a17 3 0
b1 7 3
b2 w1 + 7 −1
b3 w1 + w2 + 7 3

Fig. 3. The interaction between the pins in the clause gadget and the gadgets used for
the literals

variable in the top chain must rise above the center line. So a clause containing
positive literals cannot lower one of its pins for a variable which is false. If on
the other hand a variable is true, then any smaller gadgets for that variable in
the bottom chain must also dip below the center line. Hence, any clause with all
negative literals cannot raise the pin for a variable which is true. In other words,
for any clause, the pin which is lowered (or raised, depending on the clause type)
cannot correspond to a false literal. So the only way to get a non-intersecting
flat state is to have at least one true literal in each clause. ��

4 Flattening Fixed-Angle Chains and Trees

In this section, we give reductions from semi-rigid chains to several kinds of fixed-
angle linkages. In Theorem 3, we provide a reduction to orthogonal equilateral
fixed-angle trees. In Theorem 4, we provide a reduction to equilateral fixed-
angle chains with minimum angle arcsin 7

25
≈ 16.26◦. In Theorem 5, we provide

a reduction to general fixed-angle chains with edge lengths Θ(1) and angles
> 60◦ − ε.

Theorem 3. There exists a polynomial-time algorithm which takes as input an
orthogonal equilateral semi-rigid chain, and outputs an orthogonal equilateral
fixed-angle tree that can be flattened if and only if the semi-rigid chain can be
flattened.

Proof. The first step in the conversion process is to merge adjacent edges within
the same rigid piece which have an angle of 180◦ between them. This means
that our semi-rigid chain is no longer equilateral, and instead has integer lengths



Flattening Fixed-Angle Chains Is Strongly NP-Hard 321

xi

xi

xi

xi xi

xj

xj xk

xk

xk xk

Fig. 4. A sample of the three pieces of the semi-rigid chain which will be used for the
reduction from rectilinear planar monotone 3-SAT

Fig. 5. The way in which we connect the three semi-rigid chains from Fig. 4. Once
the locations of the top and bottom chains are fixed, we know that clause gadgets will
protrude upwards from the top chain and downwards from the bottom chain. So the
only possible location for the middle chain is between the two other chains.

which are between 1 and n, where n is the length of the original chain. We then
scale up our semi-rigid chain by a factor of 6. Our goal is to replace the rigidity
constraints of the original chain with some new structure.

Say that points vi−3, vi−2, vi−1, and vi all lie within the same rigid piece. If
we have the locations of vi−1 and vi−2, then there are two possible locations for
vi. To determine which location is correct, it is sufficient to know whether vi−3

lies above or below the line between vi−1 and vi−2. Hence, to impose the rigidity
constraints, it is sufficient to create two types of local gadgets: one gadget which
can only be flattened if vi−3 and vi lie on the same side of the line between
vi−1 and vi−2; and one gadget which can only be flattened if vi−3 and vi lie on
different sides of the line between vi−1 and vi−2. Those gadgets are depicted in
Fig. 6. We attach each gadget halfway down the edge between vi−2 and vi−1.

Any flat state of the fixed-angle tree can be converted to a flat state of the
original semi-rigid chain by removing the new gadget edges. Each gadget can be
thought of as thickening the edge between vi−1 and vi−2, because the gadgets
can lie above or below the edge. The original edges were infinitely thin; the
new edges have thickness 4. Because each edge was scaled up by a factor of 6,
any non-crossing flat state of the original semi-rigid chain will not become self-
intersecting when the gadgets are added. Therefore, any flat state of the original
semi-rigid chain is a flat state of the fixed-angle tree we have created. ��



322 E.D. Demaine and S. Eisenstat

vi−3

vi−2 vi−1

vi

(a) To keep vi and vi−3 on the same side
of the line between vi−1 and vi−2.

vi−3

vi−2 vi−1

vi

(b) To keep vi and vi−3 on different sides
of the line between vi−1 and vi−2.

Fig. 6. The gadgets used in Theorem 3

7

24
25

(a) Zig-zag gadget

(b) Turn gadget (c) Switch gadget (d) Articulation gadget

Fig. 7. The gadgets used for the proof of Theorem 4

Theorem 4. There exists a polynomial-time algorithm which takes as input an
orthogonal equilateral semi-rigid chain, and outputs an equilateral fixed-angle
chain such that each flat state of one chain corresponds to a flat state of the
other chain, and the spans differ by a fixed constant factor c.

Proof. We begin by replacing each edge in the original semi-rigid chain with
three edges connected with a fixed angle of 180◦. Next, we introduce several
types of gadgets, each of which can be used to replace a section of the semi-rigid
chain. The first gadget is used to replace any interior edge in a rigid piece which
has fixed-angle 180◦ with the edges on either side. The gadget we use will zig-zag
across the original location of the edge, as depicted in Fig. 7(a). Each edge in
the depicted gadget has length 50, so we can consider each such edge to be a
sequence of 50 smaller equilateral edges.



Flattening Fixed-Angle Chains Is Strongly NP-Hard 323

The second gadget used is known as the turn gadget, which is depicted in
Fig. 7(b). It is used to cause the zig-zag to turn by a total of 90◦. The depicted
flat state for the turn gadget is the only possible flat state, barring reflection of
the whole gadget. If the turn gadget is connected to a zig-zag with a fixed-angle
of 2 arcsin(7/25), then the direction that the zig-zag goes in (that is, whether
the final point in the zig-zag is up or down) determines the direction of rotation
for the turn gadget.

If we were to use only zig-zags and turn gadgets, the result would be a spiral,
because each turn gadget would cause a rotation in the same direction. So in
order to allow us to switch directions, we use the gadget depicted in Fig. 7(c),
which is known as a switch gadget. When a switch gadget is used, it changes the
direction of the zig-zag. This means that when the next turn gadget is used, the
turn will go in the opposite direction to previous turns. Because we scaled up
the original chain, there will always be room to place a switcher gadget between
adjacent turns.

Together, these three gadgets ensure that if the first three points in our chain
are fixed, then there is only one way to arrange the rest of the chain. This lets
us enforce the rigidity constraints for each rigid piece of the original semi-rigid
chain. To join these rigid pieces together, we use the articulation gadget depicted
in Fig. 7(d). The articulation gadget has only one possible flat state, barring
reflection. It is used to replace the edges adjacent to an articulation point. The
right half of the articulation gadget lies in the same location as the end of the
replaced edge. Therefore, when we apply the fixed-angle constraint from the
original semi-rigid chain, it places the correct restriction on the angle between
the two rigid pieces. In addition, the use of this gadget for each articulation point
(including the ends of the original chain) means that when we transform a flat
state of the original semi-rigid chain to a flat state of the new fixed-angle chain,
the distances between articulation points will be scaled up by a constant factor.

Each of these gadgets replaces a single edge of length 1 with a gadget whose
flat state has length 84 and width 48. Just as in Theorem 3, the fact that we
scaled up the original chain by a factor of 3 means that the substitution of these
gadgets for the original edges of the tree will not create intersections. ��

In 2002, Aloupis et al. showed that every fixed-angle chain with angles between
90◦ and 180◦ has a canonical flat state [1]. In 2006, Aloupis and Meijer showed
that every equilateral fixed-angle chain with angles strictly between 60◦ and 150◦

has a canonical flat state [2]. We have shown that it is NP-hard to compute a
flat state for some equilateral fixed-angle chains with angles between 16.26◦ and
180◦. This naturally leads to the question of how large the minimum angle can
be while still ensuring that flattening is NP-hard. In our next result, we show
that it is NP-hard to compute a flat state for some fixed-angle chains with angles
between θ < 60◦ and 180◦. This result does not use equilateral chains, but all
edges used in this reduction have length Θ(1).

Theorem 5. Given any constant θ < 60◦, there exists a polynomial-time al-
gorithm which takes as input an orthogonal equilateral semi-rigid chain, and



324 E.D. Demaine and S. Eisenstat

an

ai
aj

a0

(a) For the min span problem.

an

ai
aj

a0

(b) For the max span problem.

Fig. 8. How to connect the three semi-rigid chains from Theorem 2 when reducing to
the minimum and maximum span problems. Note the new articulation point ai.

outputs a fixed-angle chain with minimum angle ≥ θ that can be flattened if and
only if the semi-rigid chain can be flattened.

Proof. Just as in Theorem 4, we will use four different gadgets: a zig-zag, a turn
gadget, a switcher, and an articulation gadget. Although most of the gadgets are
far more complex than their equilateral equivalents, their size depends only on
θ. The gadget we use to replace a single edge in the original semi-rigid chain is
a zig-zag with edge length 1 and fixed angle θ between each piece. To construct
a turn gadget capable of turning 90◦, we construct a turn gadget capable of
turning α degrees, and chain multiple gadgets together to produce a turn of 90◦.
The switcher gadget involves a zigzag with edge lengths x < 1 and fixed angle
θ. The articulation gadget is constructed in a way similar to the turn gadget,
but scaled down. These gadgets are combined as in Theorem 4 to produce the
desired result. ��

5 Flat Span

In this section, we adapt the proof of Theorem 2 to show the NP-hardness of
the related problems of minimum and maximum flat span.

Theorem 6. There exists a polynomial-time algorithm which takes as input a
rectilinear planar monotone 3-SAT instance φ, and outputs an equilateral fixed-
angle chain and a distance d such that the minimum span of the chain in any
flat state is less than d if and only if φ is satisfiable.

Proof. In Theorem 2, we saw a reduction that involved constructing three sep-
arate chains and connecting them as in Fig. 5. For this reduction, we connect
the same three chains as depicted in Fig. 8(a). In the depicted flat state, which
is non-crossing if and only if φ is satisfiable, a0 is at (0, 0), ai is at (w + 2,−1),
and an is at (w, 3), so the span is

√
w2 + 9. There are two other flat states,

both of which can be made non-crossing regardless of whether φ is satisfiable.
In the first flat state, we reflect the middle chain over the articulation point ai,
which moves a0 to coordinates (2w + 4, 0). In the second flat state, we flip the



Flattening Fixed-Angle Chains Is Strongly NP-Hard 325

middle chain over the articulation point ai and then over the articulation point
aj , which moves a0 to coordinates (2w + 4,−6). The span of either flat state
will be >

√
w2 + 9. By applying Theorem 4, we get an equilateral chain whose

minimum span depends on the satisfiability of φ. ��

Theorem 7. There exists a polynomial-time algorithm which takes as input a
rectilinear planar monotone 3-SAT instance φ, and outputs an equilateral fixed-
angle chain and a distance d such that the maximum span of the chain in any
flat state is greater than d if and only if φ is satisfiable.

Proof. The argument is similar to Theorem 6, but with the three chains from
Theorem 2 arranged as depicted in Fig. 8(b), so that an is at (w + 12, 3). ��

Acknowledgments. This research was initiated during the open-problem ses-
sions organized around MIT class 6.849: Geometric Folding Algorithms in Fall
2010. We thank the other participants of these sessions — Zachary Abel, Mar-
tin Demaine, Isaac Ellowitz, Jason Ku, Jayson Lynch, Tom Morgan, Jie Qi,
TB Schardl, and Tomohiro Tachi — for their helpful ideas and for providing a
conducive research environment.

References

1. Aloupis, G., Demaine, E.D., Vida, E.D., Erickson, J., Langerman, S., Meijer, H.,
O’Rourke, J., Overmars, M.H., Soss, M.A., Streinu, I., Toussaint, G.T.: Flat-state
connectivity of linkages under dihedral motions. In: Bose, P., Morin, P. (eds.) ISAAC
2002. LNCS, vol. 2518, pp. 369–380. Springer, Heidelberg (2002)

2. Aloupis, G., Meijer, H.: Reconfiguring planar dihedral chains. In: European Confer-
ence on Computational Geometry (March 2006)

3. de Berg, M., Khosravi, A.: Optimal binary space partitions in the plane. In: Thai,
M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 216–225. Springer,
Heidelberg (2010)

4. Demaine, E.D., O’Rourke, J.: Fixed-Angle Linkages. Cambridge University Press,
Cambridge (2007)

5. Gillespie, R.J., Popelier, P.L.A.: Molecular geometry and the vsepr model. In: Chem-
ical Bonding and Molecular Geometry: From Lewis to Electron Densities, ch.4. Ox-
ford University Press (2001)

6. Knuth, D.E., Raghunathan, A.: The problem of compatible representatives. SIAM
J. Discrete Math. 5(3), 422–427 (1992)

7. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982)

8. Soss, M.: Geometric and Computational Aspects of Molecular Reconfiguration. PhD
thesis. School of Computer Science, McGill University (2001)

9. Soss, M., Toussaint, G.T.: Geometric and computational aspects of polymer recon-
figuration. Journal of Mathematical Chemistry 27(4), 303–318 (2000)



An O(n log n) Algorithm for a

Load Balancing Problem on Paths

Nikhil R. Devanur1 and Uriel Feige2,�

1 Microsoft Research, Redmond, WA
nikdev@microsoft.com

2 Weizmann Institute of Science, Rehovot, Israel
uriel.feige@weizmann.ac.il

Abstract. We study the following load balancing problem on paths
(PB). There is a path containing n vertices. Every vertex i has an initial
load hi, and every edge (j, j + 1) has an initial load wj that it needs
to distribute among the two vertices that are its endpoints. The goal is
to distribute the load of the edges over the vertices in a way that will
make the loads of the vertices as balanced as possible (formally, mini-
mizing the sum of squares of loads of the vertices). This problem can be
solved in polynomial time, e.g, by dynamic programming. We present an
algorithm that solves this problem in time O(n log n).

As a mental aide in the design of our algorithm, we first design a hy-
draulic apparatus composed of bins (representing vertices), tubes (rep-
resenting edges) that are connected between bins, cylinders within the
tubes that constrain the flow of water, and valves that can close the con-
nections between bins and tubes. Water may be poured into the various
bins, to levels that correspond to the initial loads in the input to the PB
problem. When all valves are opened, the water flows between bins (to
the extent that is feasible due to the cylinders) and stabilizes at levels
that are the correct output to the respective PB problem. Our algorithm
is based on a fast simulation of the behavior of this hydraulic apparatus,
when valves are opened one by one.

1 Introduction

We describe a problem that we shall call Path Balancing (PB).
An instance of PB is a path on n vertices. Every vertex vi has an initial

height 0 ≤ hi ≤ 1. Every edge ej = (vj , vj + 1) has weight 0 ≤ wj ≤ 1. A
feasible solution splits the weight of every edge in an arbitrary way between its
endpoints, thus contributing to the heights of its endpoints. The goal is to make
the vector of heights as balanced as possible. (Here and elsewhere, heights, in
contrast to initial heights, will refer to the heights of vertices in a solution and
not in the input.) In a perfectly balanced solution all heights are identical. When
� The author holds the Lawrence G. Horowitz Professorial Chair at the Weizmann In-

stitute. Work supported in part by The Israel Science Foundation (grant No. 873/08).
Part of the work done while the author was visiting Microsoft Research, Redmond.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 326–337, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



An O(n log n) Algorithm for a Load Balancing Problem on Paths 327

there is no perfectly balanced solution, the notion of balance that we use is that
of minimizing the sum of squares of the heights.

The problem above can be formulated as a convex program as follows. For
1 ≤ i ≤ n−1, let xi denote the amount of weight that edge ei gives to vertex vi.
The rest of the weight of ei which is wi − xi is given to vertex vi+1. Then there
are n − 1 constraints of the form 0 ≤ xi ≤ wi, and the objective function is to
minimize (h1+x1)2+

∑n−1
i=2 (hi+(wi−1−xi−1)+xi)2+(hn+(wn−1−xn−1))2. For

simplicity of notation, we shall introduce fictitious xn = 0, w0 = 0 and x0 = 0,
and let h(vi) denote the value of hi + (wi−1 − xi−1) + xi. Hence the objective
function can be written as

∑n
i=1(h(vi))2. (Actually, the optimal solution with

the objective being any convex function of the h(vi)’s will turn out to be the
same, we just choose h(vi)2 for convenience.)

We are interested in efficient algorithms for PB. Since it can be formulated
as a convex program, it follows that it can be solved in polynomial time. In
fact, a natural dynamic programming approach gives a running time of O(n3)
and with some effort, one can obtain an algorithm that runs in time O(n2).
(The full version of the paper will contain a description and analysis of these
algorithms.) In this paper we show that this problem can be solved in O(n log n)
time. In measuring the running time of algorithms we shall count the number of
basic operations that they perform, without worrying too much about the cost
of each operation (e.g., the cost of basic arithmetic operations as a function of
the precision needed), or about the data structures that are needed in order to
implement the algorithms efficiently. Our assumption is that these issues can be
addressed while imposing only acceptable overhead on the algorithms.

Besides being a natural problem, the hope is that such an algorithm for
this problem might be useful in finding fast algorithms for computing maxi-
mum cardinality matchings in bipartite graphs. The fastest algorithms known
for this problem are by Hopcroft and Karp [HK71, HK73] (time O(m

√
n) ),

by Ibarra and Moran [IM81] (time O(nω))1 and by Feder and Motwani [FM95]
(time O(m

√
n logn(n2/m))). Recently, Goel et. al. [GKK09] gave an O(n log n)

algorithm to find a perfect matching in regular bipartite graphs. (The case of reg-
ular bipartite graphs is easier; O(m) time algorithm was known earlier [COS01]).
One approach to solve the matching problem is an interior point approach, which
searches through fractional matchings, updating them in each step. Our prob-
lem can be thought of as an analog of updating along an augmenting path for
fractional matchings. A vertex i in our problem corresponds to a vertex i on
one side (say L) of the bipartite graph. The edge i in our problem corresponds
to a vertex i′ on the other side (say R). Each vertex i′ ∈ R is adjacent to the
vertices i and i + 1 ∈ L. hi corresponds to the total amount of edges matched
to i from vertices other than i′ and (i− 1)′ ∈ R. wi corresponds to 1 minus the
total amount of edges matched to i′ from vertices other than i and i + 1 ∈ L.

The PB problem is also a special case of a power-minimizing scheduling prob-
lem that has been well studied [YDS95, LY05, LYY06]: suppose that there are
n jobs to be scheduled on a single machine. Each job has an arrival time, a

1 ω is the exponent in the matrix multiplication algorithm.



328 N.R. Devanur and U. Feige

deadline, and needs some amount of CPU cycles. The machine can be run at
different speeds, if it is run at speed s then it can supply s CPU cycles per unit
time, and consumes a power of s2 per unit time. (Again, it could be any convex
function of s.) The goal is to schedule the jobs on the machine and determine the
speeds so as to minimize the total power consumed. Li, Yao and Yao [LYY06]
gave the fastest known algorithm for this problem that runs in time O(n2 log n).
Designing an O(n log n) time algorithm is an open problem. The PB problem is
the following special case: there are n jobs with [arrival time, deadline] = [i, i+1]
which require hi CPU cycles, for i = 1 to n. There are n − 1 jobs with [arrival
time, deadline] = [i, i + 2] which require wi CPU cycles, for i = 1 to n− 1.

The design of our algorithm is aided by physical intuition. We first design a
hydraulic apparatus that may serve as an analog (rather than digital) computing
device that solves the PB problem. Thereafter, we design an efficient algorithm
that quickly simulates the operation of the hydraulic apparatus.

2 Preliminaries

Proposition 1. The optimal solution is unique.

The proof of the proposition, and all others in this section are in the full version
of the paper.

Proposition 2. There is a linear time algorithm for checking if there is a per-
fectly balanced solution.

When there is no perfectly balanced solution, we provide a structural character-
ization of the unique optimal solution.

Definition 1. A solution is said to have a block structure (BS) if it can be
partitioned into blocks in which each block is a consecutive set of vertices that
have the same height, and every edge between two adjacent blocks allocates all
its weight to the vertex of lower height (and hence is said to be oriented towards
that node).

Lemma 1. For any PB problem, there is a unique solution with a block
structure.

Lemma 2. A solution is optimal if and only if it has a block structure.

It follows that to solve the PB problem it suffices to find a BS solution.

2.1 Hydraulic Apparatus

Our goal is to design more efficient algorithms for the PB problem. But be-
fore that, we describe a hydraulic apparatus that solves the PB problem (See
Figure 1). The apparatus is constructed from a row of n identical bins arranged
from left to right, where each bin has base area 1 square unit and height 4 units.



An O(n log n) Algorithm for a Load Balancing Problem on Paths 329

Every two adjacent bins are connected by a horizontal cylindrical tube of base
area 1 square unit and length one unit. Inside the tube there is a solid cylinder
that exactly fits the width of the tube (no water can flow around it) and has
width (1−wj) for tube ej. (It would be desirable to have solid cylinders whose
width can be varied so as to encode different instances of the PB problem, but
the physical design of such cylinders is beyond the scope of this manuscript). The
openings between the tube and each of the adjacent bins have smaller diameter
than the tube, and hence the cylinder cannot extend out of the tube. There is a
valve between every tube and the bin to the left of it.

1 1 

1 

1 

   

 

 

Fig. 1. Illustration of the Hydraulic Apparatus

To input the initial conditions of the PB problem, first one shuts all valves.
Then, iteratively for i from 1 up to n−1, one opens valve i, pours (hi+wi−1+wi+
1) cube units of water into bin i (that now fill the tube to the right (ensuring this
is the reason for the +1 term in the volume of water) pushing the cylinder all the
way to the right), and closes valve i (closing valve i is not strictly necessary, but
helps understand the algorithms that will follow). For bin n there is no valve to
open, and one simply pours into it (hn+wn−1 +1) cubic units of water. Observe
that the initial condition corresponds to the case that the vertex to the right of
an edge gets all the weight of the edge (the bin to the left of a tube also gets a
volume of water corresponding to the weight of the corresponding edge, but this
volume is spent on filling the tube). Now one opens all the valves. As a result,
some of the cylinders may drift towards the left in their tubes (to an extent that
depends on the relative water levels of adjacent bins). This corresponds to the
situation where the corresponding edge allocates part (or all) of its weight to
the left. The water levels when the system stabilizes (minus 1) are the solution
to the PB problem.

Our algorithm is obtained by simulating (quickly) the action of the hydraulic
apparatus. Our algorithm will be monotone in the sense that in the mathematical
program, the variables xi are initially all set to 0, and in every step of the



330 N.R. Devanur and U. Feige

algorithm can only be raised. (This corresponds to cylinders only drifting to the
left and never to the right.)

Every edge will be in one of three states:

– closed. This corresponds to the situation when the valve of the corresponding
tube is closed. All the edge weight has to be allocated to the right. Equiva-
lently, the corresponding variable xi is set to 0. At this point, the PB problem
is broken into two independent subproblems, one to the left and one to the
right of the edge.

– open. This corresponds to the situation when the valve is open. The weight
of an edge may be distributed in an arbitrary way (including still allocating
all the weight to the right). Once an edge is open, it is never closed again.
Also, an edge is open unless it is blocked, which is the next state.

– blocked. This corresponds to the situation that all the weight of the edge
is allocated to the left. Equivalently, the corresponding variable xi is set to
wi. For the hydraulic apparatus, this means that the cylinder drifted all the
way to the left of the tube. Since our algorithms will be monotone, once an
edge is blocked it will never become unblocked again. Hence again, the PB
problem is broken into two independent subproblems, one to the left and
one to the right of the edge. However, since the edge will never reopen, the
subproblems remain independent until the algorithm ends.

Having introduced the notion of closed edges, we extend the notion of block
structure to that of constrained block structure (CBS). Here, some edges may
be designated as being closed, and the PB problem is broken into independent
subproblems separated by the closed edges, and one seeks BS solution for every
subproblem. In particular, the initial state of the hydraulic apparatus corre-
sponds to a CBS with all edges closed, and the final solution is a CBS with no
edge closed. Given the set of closed edges, there is a unique corresponding CBS.

3 An O(n log n) Algorithm

Our algorithm for PB will go through a sequence of CBS’s. Initially, all edges
are closed. At every step one more edge is opened, and the corresponding CBS
is found. Eventually, all edges become open and the final BS is found. We now
focus on the opening of one edge.

Opening one edge at a time. When a valve is opened, the water in the hy-
draulic apparatus re-adjusts itself to get to a stable point. We refer to this pro-
cess as one round. Suppose valve i is opened to begin a round. If at this point
h(vi) ≥ h(vi+1) then the system is already in a stable situation, and the old CBS
is also the new CBS. Otherwise, cylinder i moves to the left until it comes to rest
because either the heights of the vertices vi and vi+1 become the same, or edge
ei becomes blocked. During this process we track the instantaneous block struc-
ture (IBS) of the system: this is the block structure defined by the instantaneous
heights of the bins where consecutive bins with the same height belong to the same



An O(n log n) Algorithm for a Load Balancing Problem on Paths 331

block. An IBS satisfies all the conditions of a CBS, except at the newly opened
edge. As the cylinder i moves farther to the left, the IBS goes through a sequence
of changes, and the IBS when the cylinder i comes to rest is the new CBS. We now
identify the (only) two types of events that change the IBS.

Type 1 Events: Consider an edge ej which has been opened prior to the round,
but remained oriented to the right. That is, all its weight is allocated to the
vertex vj+1 and xj is set to 0. This is because prior to the round, h(vj) >
h(vj+1). If at some point during the round the heights become the same,
then cylinder j starts to move to the left, and the edge ej is no longer being
oriented. At this point the IBS changes: the blocks on either side of ej merge
to become a single block. For such an event we also say that an edge starts
to move.

Type 2 Events: The other type of event is when an edge becomes blocked.
Again the IBS changes: the block containing the edge is split into two blocks
on either side of it.

Opening the rightmost edge. We now consider a special case, suppose that
we have the CBS where all edges except en−1 are open. We then open edge en−1

and find the new CBS (which will be the BS solution). We use an algorithm for
this special case as a subroutine to design an algorithm for the PB problem. For
now we prove the following theorem which guarantees a fast algorithm for this
case.

Theorem 1. Given the CBS solution with all edges but en−1 open, the BS can
be found in O(n) time.

First, we present two lemmas that describe how the IBS changes when we open
the edge en−1. For the discussion that follows, we introduce a notion of time t.
t is set to 0 when the round begins. We assume that the cylinder n − 1 moves
to the left at unit speed and calculate all other values as a function of t. We
denote the speed at which cylinder i moves by dxi

dt
. We will also be interested

in the height of the block containing vertex vn−1 and denote it by h. We denote
the speed with which h increases by dh

dt
.

Lemma 3. Let the block containing vn−1 be [j, n− 1].

1. dh
dt = 1

n−j . The time at which the edge ej−1 starts to move, if no other event
happens earlier, is (n− j)(h(vj−1)− h(vj)).

2. dxi

dt = i−j+1
n−j . The time at which edge ei becomes blocked, if no other event

happens earlier, is (wi − xi)(n− j)/(i− j + 1).

Proof. 1. Water that flows into vn−1 at unit rate is distributed equally among
all the n− j vertices in the block [j, n− 1]. Edge ej−1 starts to move when
Δh = h(vj−1)− h(vj), that is, when Δt = (n− j)(h(vj−1)− h(vj)).

2. There are i − j + 1 vertices in the block to the left of ei, each of which
accumulates water at rate 1

n−j . The time at which edge i becomes blocked
is precisely when Δxi = wi − xi.



332 N.R. Devanur and U. Feige

Lemma 4. The events happen in the following order: Type 1 events happen from
right to left (decreasing order), and after all such events, Type 2 events happen
from left to right (increasing order).

Proof. Let the current block containing vn−1 be [j, n− 1]. Clearly, all the edges
that started to move in this round lie in the current block, and the only edge
that can start to move next is ej−1. Also, if the last event was an edge blocking
event, then it must have been the edge ej−1. In this case any subsequent event
does not effect the vertices in [1, j − 1]. Therefore the only subsequent events
that can happen are edges becoming blocked in [j, n− 1]. (Or n joins the block
[j, n−1] and the system stabilizes.) Thus, if the events upto some time follow the
given order, then the next event also follows the same order. The proof follows
by induction on the sequence of events.

The algorithm computes the sequence of events that happen and other relevant
information such as the heights of the blocks when these events happen, and
then the eventual BS. The block structure is represented using an array. The ith
element of the array contains information about the vertex i, whether it is the
left end of a block, the right end (or both), or in the middle of the block. If it is
the left end, then the position of the right end of the block is stored, and vice
versa if it is the right end. The height of the block is stored at both the ends.
Finally, for a vertex that is at an end of the block, we also store whether the
adjacent edge is closed.

Given a CBS, we compute the solution (xi values) that respects the CBS. It
is easy to see that this can be done in O(n) time.

Our algorithm proving Theorem 1 is composed of three procedures, where each
procedure makes gradual progress towards the solution. Procedure 1 assumes a
simplified version of the problem in which Type 2 events (blocking events) are
assumed not to happen. Hence only Type 1 events (edges starting to move)
happen, and the order of them happening is from right to left. The output of
Procedure 1 is a tentative sequence O1, O2, . . .On1 of Type 1 events in the order
in which they happen. For each event Ok, we store the edge jk that started to
move, the time tk at which it happened, and the height ĥk of the block at that
time. We also store the total number of such events, n1. Procedure 2 removes
a suffix of the tentative sequence O1, O2, . . .On1 , leaving a prefix that contains
only those Type 1 events that actually do happen. To do this, one considers
potential Type 2 events from left to right, and checks whether they would have
prevented a Type 1 event to the left of them. If so, the respective Type 1 event
is removed from the tentative sequence. Even though Procedure 2 considers
potential Type 2 events, its only goal is to gather sufficient information about
Type 2 events so as to be able to determine the correct sequence of Type 1
events. In particular, potential Type 2 events that are deemed irrelevant to this
goal are not considered by Procedure 2. The task of determining the correct
sequence of Type 2 events is left to Procedure 3, which is called only after the
correct sequence of Type 1 events was determined.



An O(n log n) Algorithm for a Load Balancing Problem on Paths 333

Procedure 1. Find Type 1 events

– k = 1, t0 = 0.
– j = the left end of the block whose right end is at n− 1.
– While j > 1 and edge j − 1 is not blocked, do
• jk = j − 1 /∗ The next edge that opens is immediately to the left of j
∗/

• tk = tk−1 + (n− j)(h(vj−1)− h(vj)), ĥk = h(vj−1).
• /∗ Move to the next block to the left ∗/
• j = the left end of the block whose right end is at j − 1.
• k = k + 1.

– n1 = k − 1.

Lemma 5. Procedure 1 runs in O(n) time.

We now describe Procedure 2. Let t = tn1 be the time at which the last Type 1
event happens (according to the output of Procedure 1). We start with i = jn1+1
and see if edge ei becomes blocked before time t. If not, then we move to the edge
to the right (by setting i = i+1) and continue. If ei does become blocked before
t, we update t to be the time at which the previous Type 1 event happened (set
n1 = n1− 1, and t = tn1). If i is still to the right of the new jn1 (since jk < jk−1

for all k), we continue with the same i, otherwise we set i = jn1 + 1. We end
when i = n.

One difficulty here is that we need to determine if ei becomes blocked by time
t in O(1) steps. Let Δxi(t) be the distance traveled by cylinder i at time t (in
the current round). Then ei is blocked by time t iff Δxi(t) ≥ wi − xi. Note that
Δxi(t) = Δxi−1(t)+ the increase in the height of vi at time t. This increase in
height is (ĥn1 − h(vi)). So we can iteratively compute Δxi(t) in O(1) steps.

This gives rise to another difficulty, if t changes then we might have to go back
and recompute Δxi starting from i = jn1 +1. This might make the procedure run
in quadratic time. We get around this by using the observation that Δxi(tk)−
Δxi(tk−1) = the distance traveled by cylinder i in the time interval [tk−1, tk],
which by Lemma 3 is equal to

(i− jk + 1)(tk − tk−1)
n− jk

.

Thus when we update t, we can also update Δxi(t) in O(1) steps and continue
with the same i.

Procedure 2. Eliminate Type 1 events

– i = jn1 + 1, Δxi = ĥn1 − h(vi).
– While i < n and n1 > 0 do
• If Δxi > wi−xi then /∗ Edge i would prevent edge jn1 from opening
∗/
∗ n1 = n1 − 1.
∗ If i > jn1 then /∗ i is still to the right of the new jn1 ∗/



334 N.R. Devanur and U. Feige

· Δxi = Δxi − (i−jn1+1)(tn1+1−tn1 )

n−jn1+1
.

∗ Else
· i = jn1 + 1, Δxi = ĥn1 − h(vi).

• Else
∗ i = i + 1.
∗ Δxi = Δxi−1 + ĥn1 − h(vi).

Lemma 6. Procedure 2 runs in O(n) time.

We now describe Procedure 3 that computes the sequence of Type 2 events, and
the times at which these happen. Note that the time at which an edge could
potentially become blocked depends on all the events that happen prior to that,
since each event changes the speed at which the cylinder moves. In particular,
it depends on when any of the edges to the left become blocked. In addition,
whether an edge ever becomes blocked depends on the Type 2 (blocking) events
that happen to the right of the edge. Thus the dependencies go both ways and
resolving these dependencies is a challenge. A naive algorithm that attempts
to iteratively find the next event in the sequence takes O(n2) time, whereas
our goal is to compute the entire sequence in O(n) time. To do so we build
the sequence of Type 2 events from left to right. We will borrow an approach
that we used for constructing the sequence of Type 1 events, which was to first
build the sequence under a simplifying assumption that certain blocking events
do not happen, and then correct for the fact that they do happen. For Type
1 events, this construction took two stages, Procedure 1 and Procedure 2. For
Type 2 events, we have only one stage, Procedure 3, but this procedure takes
many rounds. Procedure 3 scans edges from left to right, and at every round
it considers one more edge. It assumes that no blocking event happens to the
right of the edge currently scanned. This implies that this edge (say edge ei)
necessarily eventually becomes blocked and is tentatively added to the sequence
of blocking events. At this time we do another scan from right to left of the
tentative sequence of the Type 2 events we have constructed so far to determine
which ones can be removed because ei is blocked earlier to them. In fact this is
necessary to determine the exact time at which ei becomes blocked. This nested
loop hints at a quadratic running time, but we show that the time is indeed
O(n) based on the observation that once an event is removed from the sequence
it is never returned.

First of all, before we proceed further, we update the xi values upto time
τ0 = tn1 , the time of the last Type 1 event. Note that at this point all the
heights that have changed are in [jn1 + 1, n− 1], and they are all equal to ĥn1 .
It is easy to see that this update can be done in O(n) time.

Our algorithm builds the following iteratively, starting with the left most
edge and moving right: the sequence of Type 2 events, ending at ei becoming
blocked, assuming no events happen to the right of ei. The sequence of events,
say E1, E2, . . . , En2 in the order in which they happen, is maintained as an array.
For each event Ek in the sequence, we store the corresponding edge that was
blocked, say ik, the time at which the event happened, say τk, and the increase



An O(n log n) Algorithm for a Load Balancing Problem on Paths 335

in the height of the block when that event happened, say Δhk. The total number
of such events n2 is also maintained. Also for the sake of convenience, set i0 to
be the edge at the left end of the block containing jn1 , that is [i0 + 1, jn1 ] is a
block. The time τ0 as mentioned earlier is set to tn1 . Δh0 is set to 0.

At the beginning of the ith iteration, we have the sequence of events upto i−1,
that is the last event is ei−1 becoming blocked. In the ith iteration, we check if
ei becomes blocked before ei−1. If not then we insert ei after ei−1 and proceed
to the next iteration. Otherwise, we iteratively consider the previous event in
the sequence and do the same, until we either find an event that happens before
ei is blocked, or we eliminate all events in the sequence in which case ei will be
the only event in the new sequence.

We now show how to determine whether ei becomes blocked before Ek or not.
As before, let Δxi(τk) be the distance moved by cylinder i at time τk. Let j = ik
be the edge that was blocked during event Ek. Note that

Δxi(τk) = Δxj(τk) + (i − j)Δhk.

This is because, the distance moved by cylinder i is equal to the distance moved
by cylinder j plus the water that accumulated at the vertices in the range [j+1, i].
Further we know that Δxj(τk) = wj − xj since ej became blocked at τk. The
exception is when k = 0 in which case Δxi(τk) = 0. Thus we can determine if
Δxi(τk) ≥ wi − xi, which gives us the required answer.

Finally, once we have determined the right position k, we update Ek+1 to be
the event that ei becomes blocked. We set ik+1 = i and let j = ik. The time
τk+1 is given by

wi − xi = Δxi(τk+1) = Δxi(τk) +
i− j

n− j
(τk+1 − τk),

from which one gets

τk+1 = (wi − xi −Δxi(τk))
n− j

i− j
+ τk.

Δhk+1 = Δhk + 1
n−j (τk+1 − τk). Also n2 is set to k + 1.

Procedure 3. Find Type 2 events

– n2 = 0.
– For i = i0 + 1 to n− 1 do /∗ When is edge ei blocked? ∗/
• k = n2, j = ik.
• If k �= 0, then Δxi = wj − xj + (i− j)Δhk, Else Δxi = 0.
• While k > 0 and Δxi > wi − xi, /∗ ei is blocked before Ek ∗/
∗ k = k − 1, j = ik.
∗ If k �= 0, then Δxi = wj − xj + (i− j)Δhk, Else Δxi = 0.

• /∗ Insert ei being blocked as the event Ek+1 ∗/
• ik+1 = i.
• τk+1 = (wi − xi −Δxi) n−ji−j + τk.



336 N.R. Devanur and U. Feige

• Δhk+1 = Δhk + 1
n−j (τk+1 − τk).

• n2 = k + 1.

Lemma 7. Procedure 3 runs in time O(n) time.

Proof. Naively, each time the inner (While) loop for Procedure 3 might go from
n2 to 0 and this would give an n2 bound. However, note that each iteration of
the inner While loop eliminates an edge blocking event, and every such event
can be eliminated only once. Thus there can be only O(n) iterations of the inner
loop overall and hence the running time of this procedure is O(n).

Procedure 3 finds all the Type 2 events upto edge n− 1, assuming that nothing
happens to the right of n− 1. That is, Procedure 3 ignores the possibility that
the heights of vn−1 and vn might become the same and the round ends due to
that. Therefore we next compute at what time the heights become equal and
determine if some events need to be eliminated because of that. The height of
vn at time t is simply h(vn) − t. The height of vn−1 however depends on the
sequence of events that happen. Recall that for the Type 1 events, we actually
stored the height of vn−1 at each tk, which was ĥk. So for every k from 1 to n1,
we can compare the heights of vn−1 and vn and see if they cross over, that is
at time tk, the height of vn−1 is smaller than that of vn but at time tk+1 it is
larger. In that case, we set n1 = k, and n2 = 0. If the heights never cross over
during Type 1 events, we then move on to Type 2 events. Once again, we stored
the height increment of vn−1 at each τk, which was Δhk. Therefore as before we
can compare the heights of the two vertices at time τk for every k from 1 to n2

and see if they cross over. If they do cross over at k, then we set n2 = k.
Finally, once we have determined the entire sequence of events in a round,

we can update the block structure and the new xi values. Suppose first that
the round ended with en−1 becoming blocked. In this case the new blocks are
[i0 + 1, i1], [i1 + 1, i2], . . . , [in2−1 + 1, n − 1]. Everything to the left of i0, that
is everything in the range [1, i0] remains unchanged. We also know the heights
of each of these blocks, so finding the new xi values is easy. In case the round
ended with the heights of vn−1 and vn becoming equal, then everything is as
before, except that the last block is [in2 + 1, n]. It is easy to see that every-
thing after Procedure 3 can be done in O(n) time. This completes the proof of
Theorem 1.

Divide and Conquer. We now show how the technology developed for the
special case of opening the valve for the rightmost edge can be used to solve the
PB problem. First, we show that essentially the same algorithm can be used to
solve the case when it is the middle edge whose valve is closed to begin with.
Then we show how to use this case to apply a divide and conquer technique to
solve the entire problem.

Lemma 8. Given the CBS solution with all edges but en/2 open, the BS solution
can be found in O(n) time.



An O(n log n) Algorithm for a Load Balancing Problem on Paths 337

The divide and conquer strategy we follow is the most natural one: recursively,
each half can be solved separately by keeping the middle valve closed. We then
combine them by opening the middle valve.

Theorem 2. The BS can be found in O(n log n) time.

4 Conclusion and Open Problems

We gave an O(n log n) algorithm for a natural load balancing problem on paths.
The same problem can be generalized to trees, and trees in hypergraphs. Ex-
tending our techniques to handle these cases is an interesting open problem.
Our problem is also a special case of a power-minimizing scheduling problem for
which the best known algorithm runs in time O(n2 log n). A challenging open
problem is if our algorithm can be extended to solve this problem. Also, the orig-
inal motivation for our problem was that it could be useful in obtaining a faster
algorithm for bipartite matching. Improving the running time for this problem
is a long-standing open problem.

Acknowledgements

We thank Nikhil Bansal for directing us to relevant references.

References

[COS01] Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in
O(E logD) time. Combinatorica 21(1), 5–12 (2001)

[FM95] Feder, T., Motwani, R.: Clique partitions, graph compression and speeding-
up algorithms. J. Comput. Syst. Sci. 51(2), 261–272 (1995)

[GKK09] Goel, A., Kapralov, M., Khanna, S.: Perfect matchings in O(n logn) time in
regular bipartite graphs. In: CoRR, abs/0909.3346 (2009) (also to appear in
STOC 2010)

[HK71] Hopcroft, J.E., Karp, R.M.: A n5/2 algorithm for maximum matchings in
bipartite graphs. In: FOCS, pp. 122–125 (1971)

[HK73] Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput. 2(4), 225–231 (1973)

[IM81] Ibarra, O.H., Moran, S.: Deterministic and probabilistic algorithms for
maximum bipartite matching via fast matrix multiplication. Inf. Process.
Lett. 13(1), 12–15 (1981)

[LY05] Li, M., Yao, F.F.: An efficient algorithm for computing optimal discrete
voltage schedules. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005.
LNCS, vol. 3618, pp. 652–663. Springer, Heidelberg (2005)

[LYY06] Li, M., Yao, A.C., Yao, F.F.: Discrete and continuous min-energy sched-
ules for variable voltage processors. Proceedings of the National Academy of
Sciences of the USA 103, 3983–3987 (2006)

[YDS95] Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced cpu
energy. In: FOCS, pp. 374–382 (1995)



Fully-Dynamic Hierarchical Graph Clustering
Using Cut Trees

Christof Doll, Tanja Hartmann, and Dorothea Wagner

Department of Informatics, Karlsruhe Institute of Technology (KIT)�

christof@doll.de.com, {t.hartmann,dorothea.wagner}@kit.edu

Abstract. Algorithms or target functions for graph clustering rarely admit qual-
ity guarantees or optimal results in general. However, a hierarchical clustering
algorithm by Flake et al., which is based on minimum s-t-cuts whose sink sides
are of minimum size, yields such a provable guarantee. We introduce a new de-
gree of freedom to this method by allowing arbitrary minimum s-t-cuts and show
that this unrestricted algorithm is complete, i.e., any clustering hierarchy based
on minimum s-t-cuts can be found by choosing the right cuts. This allows for
a more comprehensive analysis of a graph’s structure. Additionally, we present
a dynamic version of the unrestricted approach which employs this new degree
of freedom to maintain a hierarchy of clusterings fulfilling this quality guarantee
and effectively avoid changing the clusterings.

1 Introduction

Graph clustering has become a central tool for the analysis of networks in general,
with applications ranging from the field of social sciences to biology and to the grow-
ing field of complex systems. The general aim of graph clustering is to identify dense
subgraphs (clusters) that are sparsely connected in networks, i.e., a good clustering con-
forms to the paradigm of intra-cluster density and inter-cluster sparsity. Countless for-
malizations thereof exist, however, the overwhelming majority of algorithms for graph
clustering relies on heuristics and do not allow for any structural guarantee on their out-
puts [1,2]. Inspired by the work of Kannan et al. [6], Flake et al. [3] recently presented
a hierarchical clustering algorithm that does guarantee a very reasonable bottleneck-
property based on an input parameter and returns clusterings at different levels of gran-
ularity. Their elegant approach exploits properties of cut trees, pioneered by Gomory
and Hu [4]. It partially constructs those trees using minimum s-t-cuts whose sink sides
are of minimum size. Due to this restriction the returned clusterings are unique. How-
ever, the algorithm possibly misses convenient clusterings in graphs where minimum
s-t-cuts and cut trees are not unique.

We show that a restriction to specific cuts is not necessary, i.e., permitting arbitrary
minimum s-t-cuts is a feasible degree of freedom. This makes the method more power-
ful since construction may actually use the most appropriate cut, depending on the ap-
plication (cp. Fig. 1). We further prove that the unrestricted approach is even complete,
i.e., any clustering hierarchy based on minimum s-t-cuts can be returned by choosing
the right cuts. Additionally, we develop the first update algorithm that efficiently and

� This work was partially supported by the DFG under grant WA 654/15-2.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 338–349, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Fully-Dynamic Hierarchical Graph Clustering Using Cut Trees 339

a b

cd 10α

10α

1
2
α 1

2
α

α

α

α

α
t

(a) Old cluster-
ing (gray).

a b

cd 10α

3
2α

1
2
α 1

2
α

α

α

α

α
t

(b) New unre-
stricted clus.

a b

cd 10α

3
2α

1
2
α 1

2
α

α

α

α

α
t

(c) New re-
stricted clus.

Fig. 1. Edge {a,b} changes, unrestricted approach
allows to retain old clustering and avoids singletons.

dynamically maintains a whole hier-
archy of clusterings, as found by our
unrestricted method, for a dynami-
cally changing graph. This algorithm
allows arbitrary atomic changes, and
employs the new degree of freedom
to save costs and keep consecutive
clusterings on the same level similar
(what we call temporal smoothness).

We briefly give our notational conventions and two fundamental insights in Sec. 2.
Then, in Sec. 3, we revisit the static hierarchical algorithm by Flake et al. [3] and prove
correctness and completeness of this approach when using arbitrary minimum cuts. In
Sec. 4 we present our new update algorithm and its analysis, concluding in Sec. 5.

2 Preliminaries and Notation

Throughout this work we consider an undirected, weighted graph G = (V,E,c) with
vertex set V , edge set E and a non-negative edge weight function c. We write c(u,v) as a
shorthand for c({u,v}) with u∼ v, i.e., {u,v} ∈ E . We reserve the term node (or super-
node) for compound vertices of abstracted graphs, which may contain several basic
vertices; however, we identify singleton nodes with the contained vertex without further
notice. Dynamic modifications of G will solely concern edges as vertex insertions and
deletions are trivial for a disconnected vertex. Thus, a modification of G always involves
an edge {b,d}, yielding G⊕ if {b,d} is newly inserted into G, and G� if it is deleted
from G. We write G⊕� as a shorthand for G⊕ or G�. Decreasing edge weights can be
handled by the same method as deletions, the techniques for edge insertions also apply
for increasing weights. We further assume G to be connected; otherwise one can work
on each connected component independently and the results still apply.

An edge eT = {u,v} of a tree T (G) = (V,ET ,cT ) on V induces a cut in G by de-
composing T (G) into two connected components. A weighted tree T (G) is called a
cut tree [4,5] if edge weights correspond to cut weights and if for any vertex pair
{u,v} ∈

(V
2

)
the cheapest edge on the unique path between u and v induces a minimum

u-v-cut in G. Neither must this edge be unique, nor T (G). Note that we sometimes
identify eT with the cut it induces in G.

A contraction of G by N ⊆ V means replacing the set N in G by a single node,
denoted by [N], and leaving this node adjacent to all former adjacencies u of vertices of
N, with edge weight equal to the sum of all former edges between N and u.

Our understanding of a clustering C(G) of G is a partition of V into subsets C, which
define vertex-induced subgraphs, called clusters. In the context of dynamic graphs and
edge modifications of {b,d} we particularly designate Cb, Cd and Cb,d containing b
and d, respectively. A hierarchy of clusterings is a sequence C1(G) ≤ ·· · ≤ Cr(G) of
clusterings such that Ci(G) ≤ C j(G) implies that each cluster in Ci(G) is a subset of a
cluster in C j(G). We say Ci(G)≤ C j(G) are hierarchically nested.

We start by giving two fundamental insights about cuts in static and dynamic graphs.
Lemma 1 results from the basic properties of cut trees and is proven in App. B of [10].
We will use Observation 2 without further notice.



340 C. Doll, T. Hartmann, and D. Wagner

Lemma 1. Let (U,V \U) denote a minimum u-v-cut in G, u∈U and x∈U. Then there
exists a minimum x-v-cut (X ,V \X) in G, x ∈ X, such that X ⊆U.

Observation 2. Suppose edge {b,d} changes in G yielding G⊕�. Let θ denote a min-
imum u-v-cut in G⊕� and θ̂ a min-u-v-cut in G, both not separating b and d. Then
c⊕�(θ) = c(θ ) = c(θ̂ ) = c⊕�(θ̂ ), i.e., θ̂ is a minimum u-v-cut in G⊕�.

3 The Static Hierarchical Clustering Algorithm

Flake et al. [3] propose and evaluate a hierarchical algorithm, which clusters instances in
a way that yields a certain guarantee on the quality of the clusters. This quality guarantee
is inherited from a basic clustering procedure, which computes one clustering. Applying
this procedure iteratively to instances obtained by contracting foregoing clusters yields
a clustering hierarchy.

The Basic Clustering Procedure. Inspired by a bicriterial approach for good cluster-
ings by Kannan et al. [6], Flake et al. [3] design a basic clustering procedure that, given
parameter α , asserts: 1

c(C,V \C)
|V \C|

︸ ︷︷ ︸
inter-cluster cut

≤ α ≤ c(P,Q)
min{|P|, |Q|}
︸ ︷︷ ︸

expansion of intra-cluster cut (P,Q)

∀C ∈ C(G) ∀P,Q 	= /0 P ·∪Q = C

This quality guarantee is due to special properties of cut trees, which are used by the
procedure: Given a graph G and parameter α > 0, augment G by inserting an artificial
vertex t and connecting t to each vertex in G by an edge of weight α . Then compute a
cut tree T (Gα) of the resulting graph Gα . Finally, remove t from T(Gα ), which decom-
poses T (Gα) into connected components, which are returned as clusters in C(G). In the
following we call a clustering that can be computed by this procedure a cut-clustering,
and we denote by G�α and G⊕α the augmented and modified graphs.

Flake et al. further point out that, instead of constructing a whole cut tree, only know-
ing the edges of T (Gα) incident to t would suffice. According to Lemma 3, which di-
rectly follows from a lemma introduced by Gusfield [5], Alg. 1 (LCC), with S = /0,
returns a cut-clustering by constructing such a partial cut tree, which is in fact a star
with center t. The parameter S will be used later for the dynamic approach. The number
of cuts calculated in LCC depends on the sequence of chosen sinks and the shape of the
returned cuts. Already known cuts might be covered by later cuts in line 7, i.e., possibly
computed without need.

Lemma 3 (Gusfield [5], Lemma 1). Let (Ci,Vα \Ci) be a min-t-r(Ci)-cut in G, with
r(Ci) ∈Ci. Let (H,Vα \H) be a min-t-u-cut, with t,u∈Vα \Ci and r(Ci) ∈H. Then the
cut (Ci∪H,(Vα \Ci)∩ (Vα \H)) is also a min-t-u-cut.

Line 3 in LCC represents the new degree of freedom. Whenever used in a hierarchi-
cal context, Flake et al. restricted this to minimum t-u-cuts whose sink sides are of

1 The disjoint union A∪B with A∩B = /0 is denoted by A ·∪B.



Fully-Dynamic Hierarchical Graph Clustering Using Cut Trees 341

Algorithm 1. LEVEL CUT-CLUSTERING (LCC as a shorthand)

Input: Graph Gα = (Vα ,Eα ,cα ), set S
C(G)← S; V ←Vα \ ({t}∪

⋃
C∈S C)1

while ∃ u ∈V do2

(U,Vα \U)← min-t-u-cut in Gα , t /∈U // new degree of freedom3

Cu←U ; r(Cu)← u4

forall Ci ∈ C(G) do5

if r(Ci) ∈Cu then // Cu =: H covers Ci6

Cu←Cu∪Ci; C(G)← C(G)\{Ci} // reshaping by Lem.37

else Cu←Cu \Ci // reshaping by Lem.3, Cu =: Vα \H8

C(G)← C(G)∪{Cu}; V ←V \Cu9

minimum size and called the minimum sink side the community of u and u a represen-
tative of its community. Analogously, we call U a cut side with representative r(U) if
(U,Vα \U) is a minimum t-u-cut in Gα , with u∈U . We assume, that the final clustering
C(G) found by LCC stores at least one representative per cluster. In the following we
identify t-u-cuts (U,Vα \U) with vertex sets U , u ∈U and t /∈U .

Algorithm 2. HIERARCHICAL CC

Input: G = (V,E,c), α1 > · · ·> αr

C0(G)←{{v} | v ∈V}; r({v})← v1

for i = 1, . . . ,r do2

forall C ∈ Ci−1(G) do3

contract C in Gαi4

associate [C] with r(C)5

Ci(G)← LCC(Gαi , /0)6

The Hierarchical Algorithm. Flake et
al. developed a hierarchical clustering ap-
proach (HCC), which uses LCC itera-
tively (see Alg. 2). On each level the re-
turned hierarchy provides a cut-clustering
Ci(G) of G with respect to a particular αi,
i.e., Ci(G) holds the quality guarantee. We
call such a hierarchy a cut-clustering hi-
erarchy. Iterating a cut-clustering hierar-
chy bottom-up the αi-values decrease, i.e.,
αi > α j for i < j. For the proof of correctness of Alg. 2 Flake et al. employed special
nesting properties of communities. These properties guarantee that communities do not
change in line 7 and 8 of Alg. 1 and that communities in the contracted graph (Alg. 2,
line 4) correspond to communities in the original graph. Thus, the restricted LCC ap-
plied to the contracted graph also returns a valid cut-clustering for G, and the resulting
hierarchy is a cut-clustering hierarchy.

Correctness and Completeness of Unrestricted HCC. In the following we show
that HCC remains correct if we apply LCC with arbitrary minimum t-u-cuts, and that
this unrestricted approach is complete. We further characterize the set of cut-clustering
hierarchies.

Theorem 4. Unrestricted HCC is correct and complete.

In order to prove the correctness of HCC independently from special nesting properties
of communities, we state the following lemma and show that arbitrary minimum t-u-
cuts in the contracted graph are also cut sides in the original graph. Otherwise, LCC
applied to the contracted graph would possibly not return a valid cut-clustering for G.



342 C. Doll, T. Hartmann, and D. Wagner

Lemma 5. Let (U,Vα j \U) denote a min-t-u-cut in Gα j with u ∈U, and for αi > α j

let (X ,Vαi \X) denote a minimum t-x-cut in Gαi with x ∈ X. Then it holds (a) X ⊆U if
x ∈U and (b) X ∩U = /0 if x /∈U and u /∈ X.

t

x
X

U

∅

X\U

(a) It is X ⊆ U if
x ∈U .

t

u

X

U X∩U

x∅

(b) X ∩U = /0 if x /∈
U and u /∈ X .

Fig. 2. Sketch to proof of Lem. 5

Figure 2 sketches X and U and the con-
clusions (dashed cuts) proven by contradic-
tion in App. C of [10]. Note that for our
purpose the case x /∈ U but u ∈ X is ir-
relevant. Lemma 5 tells us the following:
Consider a minimum t-r(C)-cut θ in the
original graph Gα j with r(C) a representative
of a designated node [C] in the contracted
graph, and let [C′] denote an arbitrary node
in the contracted graph. If r(C′) is in θ then θ also contains [C′]; in particular, θ con-
tains [C]. If r(C′) is not in θ then θ ∩C′ = /0. Thus, θ is a proper cut in the contracted
graph and contains [C]. Conversely, each minimum t-[C]-cut in the contracted graph is
a proper cut in Gα j and contains r(C). Consequently, there exists a 1-1-correspondence
between minimum t-r(C)-cuts in the original graph and minimum t-[C]-cuts in the
contracted graph, and LCC applied to the contracted graph returns a valid cut-
clustering for G.

According to the proof of correctness, by choosing the right cuts HCC is capable to
return any cut-clustering hierarchy where the representatives of clusters on one level are
a subset of the representatives on the level below. The following lemma shows that this
property holds for any cut-clustering hierarchy. Thus, Lemma 5 and Lemma 6 together
witness the completeness of HCC. The proof of Lemma 6 is in App. C of [10].

Lemma 6. Let Ci(G) and C j(G) denote two cut-clusterings with respect to αi > α j and
let C′ ∈ Ci(G) and C ∈ C j(G) denote two clusters with r(C′) 	= r(C) but r(C) ∈C′. Then
it holds C′ ⊆C and r(C′) is a representative of C in C j(G).

We further give the following simple characterization of all cut-clustering hierarchies
and present Corollary 8, which we will apply later to prove temporal smoothness and the
feasibility of certain vertex contractions. For a proof of Theorem 7 see App. C of [10].

Theorem 7. Given a sequence α1 > · · · > αr of parameter values each set of cut-
clusterings C1(G), . . . ,Cr(G) forms a hierarchy.

Corollary 8. A cluster C ∈ C j(G) separates G into C and V \C such that both parts
are clustered independently with respect to αi > α j , i.e., minimum cuts in Gαi with
representatives in C do not cover any vertex in V \C and vice versa.

Otherwise there would exist a cut-clustering Ci(G) that is not hierarchically nested in
C j(G) contradicting Theorem 7.

4 Update Algorithm for Dynamic Clustering Hierarchies

The second part of this work addresses a dynamic version of HCC. We give a method
that employs the new degree of freedom for consecutively updating cut-clustering hier-
archies with respect to a given sequence of α’s. Based on Theorem 7 this can be already



Fully-Dynamic Hierarchical Graph Clustering Using Cut Trees 343

done by simply updating each level independently using a dynamic version of the basic
clustering procedure LCC given by Hartmann et al. [8] (which corrects an approach pro-
posed by Saha and Mitra [7]). Since the static LCC, as introduced by Flake et al. [3],
is not restricted to communities, the dynamic version by Hartmann et al. also allows
for the use of arbitrary cuts, and thus, already achieves good temporal smoothness and
some cost savings. However, in the following we present a more efficient algorithm,
which also exploits the hierarchical structure to save costs and to provide high temporal
smoothness.

The Basic Clustering Procedure in a Dynamic Scenario. Hartmann et al. [8] devel-
oped an algorithm for dynamically updating single cut-clusterings. We will refer to this
algorithm by LU (for level update). Given a cut-clustering C(G), we distinguish four
cases of edge modification: inter-cluster deletion (inter-del), where the deleted edge is
incident to vertices in different clusters, intra-cluster deletion (intra-del), i.e., an edge
within a cluster is removed, and analogously, inter- and intra-cluster insertion (inter-ins,
intra-ins). LU reshapes cuts in order to prevent previous clusters from splitting. In this
way some clusters are guaranteed to remain clusters or at least subsets of clusters after
a change. Regarding different modification cases the following facts hold [8]:

a) all clusters in C(G)\{Cb,Cd} (for inter-ins) and in {Cb,Cd} (for inter-del) are still
cut sides in G⊕�α with respect to their previous representatives.

b) if Cb,d (for intra-del) or Cb and Cd (for inter-ins) are still cut sides with respect to
any representative after the change, C(G) is still a cut-clustering for G⊕�. We call
this the copy-property of C(G). However, the previous representatives of Cb,d or
Cb, Cd possibly become invalid.

c) for intra-ins, C(G) fulfills the copy-property retaining all representatives.
d) for inter-del, LU computes at most |C(G)|− 2 minimum cuts, and updating C(G)

by LU yields C(G) = C(G�) with valid representatives if C(G) fulfills the copy-
property.

e) for any deletion, consider C ∈ C(G) with b,d /∈C. There exists a minimum t-r(C)-
cut X in G�α with C ⊆ X .

An Intelligent Hierarchical Approach from Scratch. The naive way to compute a
new hierarchy after a change in G is to apply HCC from scratch. In Sec. 3 we showed
that HCC allows for the use of arbitrary cuts, i.e., the construction may use the most
appropriate cut, depending on the application. Given an appropriate initial hierarchy
we present a hierarchical approach that still calculates a new hierarchy from scratch but
adopts appropriate cuts applied before. To this end we modify HCC by improving LCC:
When computing a new min-t-u-cut θ (u may be a node) let C denote the cluster that
contains r(u) in the old clustering on the same level. If c⊕�(θ) = c⊕�(C) in G⊕�α , LCC
takes C as new minimum t-u-cut.

Lemma 9. In the situation described above it is u⊆C and C is a minimum t-u-cut in the
contracted graph (Alg. 2, line 4) resulting from G⊕�α . Thus, the intelligent hierarchical
approach is correct.

For a proof see App. D of [10]. In the following we will refer to the improved LCC
by intelligent LCC (or ILCC). We will further express the costs of our new update



344 C. Doll, T. Hartmann, and D. Wagner

algorithm in terms of costs of the intelligent hierarchical approach: Given a hierarchy
for G and a new hierarchy from level 1 to level i−1 we denote the costs for extending
the hierarchy to level j by T ([i, j],G⊕�).

For one level, T ([i, i],G⊕�) consists of the costs for contracting the clusters on level
i− 1 and the costs of ILCC applied to the contracted graph. The latter depend on the
size of the contracted graph, which influences the runtime of the cut computations, and
the number of calculated cuts.

Reusable Parts of the Hierarchy in a Dynamic Scenario. Given an edge modifica-
tion a cut-clustering hierarchy decomposes into two parts. Levels where the modifica-
tion induces an inter-cluster event form the lower part, intra-cluster event levels build
the upper part. The first idea in this paragraph considers levels of intra-cluster events.
According to Fact c) each intra-ins level can be copied to a new hierarchy. An intra-del
level can be copied if Cb,d remains a cut side, cf. Fact b). The following lemma gives a
further indicator for an intra-del level fulfilling the copy property. We sketch the proof
in App. D of [10].

Lemma 10. Let C(G) denote an intra-del cut-clustering with b,d ∈ Cb,d . If no cut-
clustering C(G�) exists with b,d in different clusters, C(G) fulfills the copy-property.
If there exists a cut-clustering Ci(G�) with b,d ∈Cb,d

i , each cut-clustering C j(G) with
αi > α j fulfills the copy-property.

According to Lemma 10 and Fact c) we get the following:

Theorem 11. Given a cut-clustering hierarchy, let k denote the lowest intra-del level
that fulfills the copy-property (deletion) or just the lowest intra-ins level (insertion).
Then all levels i ≥ k can be reused as part of a new hierarchy (however, in case of
deletion some representatives possibly become invalid, cf. Fact b)).

A second idea is to consider subtrees of clusters. A subtree of a cluster C on level i
consists of C and all clusters on lower levels in the hierarchy that are nested in C.
Lemma 12 (proof in App. D of [10]) and Theorem 13 attest that in some cases we can
preserve the whole subtree of a cluster after a change in G.

Lemma 12. Let C 	� b,d denote a cluster in C j(G) that remains a cut side for r(C)
(which is equivalent to any representative) in G⊕�α j

. Let further denote C′ ⊆C a cluster

in Ci(G), i < j. Then C′ remains a cut side for r(C′) in G⊕�αi
.

If C in Lemma 12 even remains a cluster in a new cut-clustering C j(G⊕�), according to
Corollary 8 the following holds:

Theorem 13. In a cut-clustering hierarchy let C 	� b,d denote a cluster in C j(G) that
is also a cluster in a cut-clustering C j(G⊕�). Then the whole subtree of C can be used
as part of a new hierarchy (representatives remain valid).

We define the root of a (inclusion-) maximal reusable subtree as a highest root.

Our New Update Approach. Our new update approach treats the two parts of inter-
and intra-cluster event levels of the hierarchy differently. We start by applying Theo-
rem 11 and Theorem 13 to intra-cluster event levels and estimate the costs in terms of
costs of the intelligent HCC.



Fully-Dynamic Hierarchical Graph Clustering Using Cut Trees 345

Algorithm 3. UPDATE INTRA-DEL LEVEL

Input: Graph D�α , cut-clustering C(G) �Cb,d

if ∃C ∈ C(G) that is not a proper union of nodes in V then // V := V (D�α )1

C(G�)← ILCC(D�α , /0) // ILCC takes nodes containing...2

return (C(G�), false) // ...representatives in C(G) first3

while ∃ u ∈V with u⊆Cb,d do // start with u � r(Cb,d)4

U ← community of u in D�α5

if ∃ x ∈U with x 	⊆Cb,d then apply line 4 to 9 of Algo 1; goto line 96

if c�(U) = c(Cb,d) then C(G�)← C(G); r(Cb,d)← u; return (C(G�), true)7

apply line 4 to 9 of Algo 1 (ILCC)8

while ∃ u ∈V do // ILCC takes nodes containing rep. in C(G) first9

apply line 3 to 9 of Algo 1 (ILCC)10

return (C(G�), false)11

In case of insertion, Theorem 11 tells us that we can just copy each intra-ins level to
a new hierarchy without further costs (cf. upper shaded area in Fig. 3).

In case of deletion, we search for the lowest intra-del level k that fulfills the copy
property. To this end, beginning at the lowest intra-del level � we iteratively apply Alg. 3
until the first copy-property level k is found. Alg. 3 takes an intra-del clustering Ci(G)
and a graph D�αi

obtained from G�αi
by contracting clusters on level i−1. Line 2 catches

a case where Ci(G) obviously does not fulfill the copy-property and applies ILCC in
this case. If Ci(G) fulfills the copy-property, according to Fact b) it suffices to find a
valid representative for Cb,d

i . Thus, lines 4 ff. search for such a representative and return
Ci(G) together with the representative if one is found and continue ILCC otherwise.
Lemma 17 in App. D of [10] shows that Alg. 3 finds a valid representative of Cb,d

i if
there is one. The costs for updating level � to k− 1 are about T ([�,k− 1],G�) since
Alg. 3 is just a modified LCC (see Fig. 3, area (1)).

After we found level k we can actually copy all levels i > k according to Theorem 11,
apart from the representatives of Cb,d

i , i = k + 1, . . . ,r. Hence, we apply the while-loop
in line 4 of Alg. 3 instead of copying the levels, since this additionally returns valid
representatives. This costs about ∑r

i=k T ([i, i],Cb,d
i ) also including the costs for level k

(see area (2), Fig.3).
However, in order to apply Alg. 3 the first time on level � we need to compute a

clustering C�−1(G�) on the highest inter-del level acting as a base for contracting the
initial instance. To this end, we contract Cb

�−1 and Cd
�−1 in G�α�−1

and associate the nodes

with r(Cb) and r(Cd). Then we apply LU to the obtained graph, which is feasible and
costs about T ([l−1, l− 1],G�); see App. E of [10].

In both cases, insertion and deletion, we can further reuse the subtrees of all clusters
C ∈ Ck(G) \ {Cb,d

k } by Theorem 13 (see lower shaded area in Fig. 3). This already
updates parts of inter-cluster event levels. In case of deletion, the clusters of subtrees
overlapping levels �−1 to k−1 already exist in C�−1(G�), . . . ,Ck−1(G�) since Alg. 3
and LU construct reusable subtrees, apart from highest roots, by default according to
Corollary 8 (see also Lemma 18 and Lemma 19 in App. D of [10]).



346 C. Doll, T. Hartmann, and D. Wagner

lowest intra-level k

kcopy-property

subtrees subtrees

property

?
1

old hierarchy edge insertion edge deletion

lCb,d

Cb,d
Cb,d

Cb,d
Cb,d
Cb,d

Cb,d

Cb,d

Cb,d

?

2 copy-

Fig. 3. Sketch of costs for updating a hierarchy using our first update approach. Shaded areas
represent saved costs compared to a hierarchical construction from scratch.

Observation 14. Each level i ≥ � (intra-del) or i ≥ k (intra-ins) that fulfills the copy-
property and each reusable subtree that is rooted on level i ≥ k is part of the new hier-
archy (with valid representatives) resulting from our update approach.

By updating the intra-cluster event levels with this approach, we reduce the problem of
updating a cut-clustering hierarchy of r levels to an update of k−1 levels (insertion) or
�−2 levels (deletion), regarding an instance just as big as Cb,d

k (cf. boxed question mark
in Fig. 3).

Strategies for Completing the Hierarchy on Inter-Cluster Event Levels. After our
first update step we still need to fill in the question marks in Fig. 3, i.e., construct a
hierarchy based on the vertices in Cb,d

k . According to Corollary 8, Cb,d
k and V \Cb,d

k
in G are clustered independently on the missing levels. Thus, when updating level i in
the following, we consider G⊕�αi

with V \Cb,d
k contracted into a node representing the

subtrees already used.
In case of insertion, we iterate the missing levels bottom-up contracting G⊕αi

as the
hierarchical approach does. On each level we apply Alg. 4, which is a modified LCC.
It takes an inter-ins clustering Ci(G) and a graph G⊕αi

contracted as described above.
Line 1 further contracts G⊕αi

, which, together with line 2, enables the algorithm to save
the costs for explicitly constructing reusable trees, as we will see later. The contraction
is as follows:Contract each C ∈ Ci(G) \ {Cb,Cd} that is a proper union of nodes in
the current instance G⊕αi

. Associate a new node [C] with r(X), where X ∈ Ci−1(G⊕)
contains r(C). In Lemma 21, found in App. E of [10], we prove that applying ILCC to
the obtained graph D⊕αi

is correct, i.e., returns a cut-clustering for G⊕. Line 3 catches
a case where Ci(G) obviously does not fulfill the copy-property and applies ILCC in
this case. If Ci(G) fulfills the copy-property according to Fact b) it suffices to find a
valid representative for Cb

i and Cd
i . Thus, lines 6 ff. search for those representatives and

return the part of Ci(G) that is nested in Cb,d
k together with the representatives if some

are found or continue ILCC otherwise. The proof that Alg. 4 finds valid representatives
of Cb

i and Cd
i if some exist is analog to Alg. 3. Although Alg. 4 detects each level

that fulfills the copy-property, when updating inter-ins levels we cannot directly benefit
from their copy-property. Thus, applying Alg. 4 to k− 1 inter-ins levels costs about
T ([1,k−1],Cb,d

k ); see App. E of [10].
Furthermore, the bottom-up iteration makes the reuse of subtrees impossible. How-

ever, Alg. 4 counterbalances the missing subtree conservation. Using the same



Fully-Dynamic Hierarchical Graph Clustering Using Cut Trees 347

Algorithm 4. UPDATE INTER-INS LEVEL

Input: Graph G⊕α , partial clustering P := {C ∈ C(G) |C ⊆Cb,d
k } ⊇ {Cb,Cd}

D⊕α ←contract some C ∈ P\{Cb,Cd} in G⊕α according to text description1

S←{C ∈ P | [C] in D⊕α formed in line 1} //identify V := V (G⊕α ) with Cb,d
k2

if ∃C ∈ P that is not a proper union of nodes in V then3

C(G⊕)← ILCC(D⊕α , S); return (C(G⊕),false)4

C(G⊕)← S; V ←V \⋃C∈S C; b← false; d← false // V = Cb∪Cd5

while ∃ u ∈V do // start with ub � r(Cb) and ud � r(Cd)6

U ← community of u in D⊕α7

if ∃ x ∈U with x 	⊆Cb or x 	⊆Cd then skip line 3 in later iterations8

if c⊕(U) = c(Cb) or c⊕(U) = c(Cd) then9

b←true; r(Cb)← u; U ←Cb (if currently u⊆Cb =: Z)10

d←true; r(Cd)← u; U ←Cd (if currently u⊆Cd =: Z)11

in later iterations only consider u 	⊆ Z, in line 612

if b and d then C(G⊕)← P; return (C(G⊕), true)13

apply line 4 to 9 of Algo 1 (ILCC)14

return (C(G⊕),false)15

techniques as Alg. 3, Alg. 4 returns all reusable subtrees by default, apart from highest
roots. It even saves the costs for explicitly constructing such trees, due to lines 1 and 2
as follows: By Corollary 8 each cluster of a reusable subtree is contracted in line 1 and
added to S in line 2. Due to Fact a) the nodes in S are considered as cut sides that are
already known, and thus, omitted when choosing sinks for cut computations in ILCC.
Particularly, Alg. 4 avoids cut computations for clusters in reusable subtrees. Hence, we
deduct the costs T for explicitly constructing reusable subtrees (see Fig. 4(a)).

In case of deletion, a bottom-up approach would not allow the reuse of subtrees.
Thus, we iterate the old hierarchy top-down updating each level in the same way as
level �− 1 in the first update step, but using a smaller instance due to already known
subtrees. As we have seen before, this method detects each reusable subtree, possi-
bly apart from highest roots. Thus, we copy those subtrees to the new hierarchy and
merge the found roots with the node in G�αi

that represents previously found subtrees in
order to save costs. Hence, completing the hierarchy in case of deletion costs about
T ([1, �− 2],Cb,d

k )− T (see Fig. 4(a)). Since for inter-cluster deletions LU bases on
ILCC, it further respects the copy-property (cf. Fact d)).

Observation 15. Each level i ≤ �−1 (inter-del) or i≤ k−1 (inter-ins) that fulfills the
copy-property and each reusable subtree that is rooted on level i ≤ k− 1 is part of the
new hierarchy (with valid representatives), possibly apart from highest roots.

Performance. In the following we just sum up the costs and the observations regarding
temporal smoothness already given with the description of our new update approach.
The latter—which we left unformalized— in parts synergizes with cost saving, an ob-
servation foremost reflected in the first update step.

Theorem 16. Each level fulfilling the copy-property and each reusable subtree (possi-
bly apart from highest roots) is part of the new hierarchy (with valid representatives)



348 C. Doll, T. Hartmann, and D. Wagner

Table 1. Sketch of costs, cpc = costs per cut. C∗i (G) := {C ∈ Ci(G) |C⊆C∗i+1}with C∗i+1 := Cb,d
i+1

or C∗i+1 := Cb
i+1∪Cd

i+1

arbitrary hierarchy hierarchy remains valid
general costs lowest possible costs

insertion T ([1,k−1],Cb,d
k )−T 2(k−1) cpc

deletion ∑r
i=k T ([i, i],Cb,d

i ) +T ([l−1,k−1],G�)
+T ([1, l−2],Cb,d

k )−T
(r− k +1) +∑k−1

i=1 |C∗i (G)| cpc

copy-property

subtrees

edge insertion

Cb,d

T

k

subtrees

property

1

edge deletion

l

Cb,d
Cb,d

Cb,d

2 copy-

T

(a) Costs regarding an arbitrary hierarchy.

k

copy-property

subtrees subtrees

copy-property

edge insertion edge deletion

Cb,dCb,d

2cuts
per
level

1cut
per
level

(b) Lower bounds if hierarchy still valid.

Fig. 4. Sketch of costs for updating a hierarchy applying our new update approach. Shaded areas
represent saved costs compared to a hierarchical approach from scratch.

build by our update algorithm. In particular, our algorithm returns the previous hierar-
chy if this is still a cut-clustering hierarchy after the change.

We sketch the general costs for updating an arbitrary hierarchy in Table 1 and visualize
them in Fig. 4(a). Furthermore, we consider the—possibly rather common—case that
the old hierarchy is still valid after some graph modification. For this case we list the
lowest possible costs in Table 1, which occur if on each inter-ins level Alg. 4 in line 6
chooses valid representatives for Cb and Cd as first nodes, or if on each intra-del level
Alg. 3 in line 4 hits a representative for Cb,d at the beginning (see Fig. 4(b)).

5 Conclusion

The hierarchical clustering algorithm by Flake et al. [3] returns a set of clusterings
at different levels of granularity. The striking feature of graph clusterings computed
by this method is that they are guaranteed to yield a certain expansion—a bottleneck
measure—within and between clusters, tunable by an input parameter α . However, their
method, which is based on minimum s-t-cuts, was restricted to the use of communities,
and hence, was not complete. We have proven that the hierarchical approach by Flake
et al. [3] remains correct if we introduce a new degree of freedom by permitting the use
of arbitrary minimum s-t-cuts instead of communities. This makes the method more
powerful since construction may actually use the most appropriate cut, depending on the
application. We have further given a simple characterization of the set of all clustering
hierarchies based on minimum s-t-cuts and have shown that the unrestricted approach
is complete, i.e., any clustering hierarchy in this set can be found by choosing the right
cuts. This allows for a more detailed analysis of a graph’s structure.



Fully-Dynamic Hierarchical Graph Clustering Using Cut Trees 349

Furthermore, we have presented an algorithm that efficiently and fully-dynamically
maintains an entire hierarchy of clusterings, as computed by the unrestricted method.
Clusterings in the updated hierarchy fulfill the same quality guarantee regarding expan-
sion and, as a secondary criterion, we encourage temporal smoothness, i.e., changes
to the clustering hierarchies are kept at a minimum, whenever possible. Thereby, our
update algorithm employs the new degree of freedom which allows to reuse clusters
independently of their special shape, and thus, saves computational costs and increases
temporal smoothness (cp. Fig. 1). We also conjecture our new update algorithm, by im-
plementing some small modifications, to be a correct dynamic version of the restricted
hierarchical clustering algorithm by Flake et al., i.e., when restricted to maintaining
clusters that are communities (see [9] for a first study).

Future work includes the proof of the conjecture, a systematic comparison of our
algorithm to other dynamic clustering techniques and the analysis of batch updates.

Acknowledgements. We thank Ignaz Rutter and Sascha Meinert for their helpful sug-
gestions regarding the structure of this paper and Robert Görke who improved many a
formulation. We further thank the anonymous reviewers for their thoughtful comments.

References

1. Brandes, U., Erlebach, T. (eds.): Network Analysis: Methodological Foundations LNCS,
vol. 3418. Springer, Heidelberg (2005)

2. Brandes, U., Delling, D., Gaertler, M., Görke, R., Höfer, M., Nikoloski, Z., Wagner, D.: On
Modularity Clustering. IEEE TKDE 20(2), 172–188 (2008)

3. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph Clustering and Minimum Cut Trees.
Internet Mathematics 1(4), 385–408 (2004)

4. Gomory, R.E., Hu, T.: Multi-terminal network flows. Journal of the Society for Industrial and
Applied Mathematics 9(4), 551–570 (1961)

5. Gusfield, D.: Very simple methods for all pairs network flow analysis. SIAM Journal on
Computing 19(1), 143–155 (1990)

6. Kannan, R., Vempala, S., Vetta, A.: On Clusterings: Good, Bad and Spectral. JACM 51(3),
497–515 (2004)

7. Saha, B., Mitra, P.: Dynamic Algorithm for Graph Clustering Using Minimum Cut Tree. In:
Proc. of the 2007 SIAM Int. Conf. on Data Mining, pp. 581–586 (2007)

8. Görke, R., Hartmann, T., Wagner, D.: Dynamic Graph Clustering Using Minimum-Cut Trees.
In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664,
pp. 339–350. Springer, Heidelberg (2009)

9. Doll, C.: Hierarchical Cut Clustering in Dynamic Scenarios. Student Research
Project, KIT Karlsruhe Institute of Technology, Department of Informatics (Febru-
ary 2011), http://i11www.iti.uni-karlsruhe.de/_media/teaching/theses/

studienarbeitchristofdoll.pdf

10. Doll, C., Hartmann, T., Wagner, D.: Fully-Dynamic Hierarchical Graph Clustering Using
Cut Trees. Karlsruhe Reports in Informatics 2011-10, KIT Karlsruhe Institute of Technology
(2011)



Flow Computations on Imprecise Terrains

Anne Driemel1,�, Herman Haverkort2, Maarten Löffler3,��,
and Rodrigo I. Silveira4,�

1 Dept. of Computer Science, Utrecht University
2 Dept. of Computer Science, Eindhoven University of Technology

3 Computer Science Dept., University of California, Irvine
4 Dept. de Matemàtica Aplicada II, Universitat Politècnica de Catalunya

Abstract. We study water flow computation on imprecise terrains. We
consider two approaches to modeling flow on a terrain: one where water
flows across the surface of a polyhedral terrain in the direction of steepest
descent, and one where water only flows along the edges of a predefined
graph, for example a grid or a triangulation. In both cases each vertex has
an imprecise elevation, given by an interval of possible values, while its
(x, y)-coordinates are fixed. For the first model, we show that the problem
of deciding whether one vertex may be contained in the watershed of
another is NP-hard. In contrast, for the second model we give a simple
O(n log n) time algorithm to compute the minimal and the maximal
watershed of a vertex, where n is the number of edges of the graph.
On a grid model, we can compute the same in O(n) time.

1 Introduction

Simulating the flow of water on a terrain is a problem that has been studied for a
long time in geographic information science (gis), and has received considerable
attention from the computational geometry community due to the underlying
geometric problems. It can be an important tool in analyzing flash floods for
risk management [1], for stream flow forecasting [12], and in the general study of
geomorphological processes [2], and it could contribute to obtaining more reliable
climate change predictions [17].

When modeling the flow of water across a terrain, it is generally assumed
that water flows downward in the direction of steepest descent. It is common
practice to compute drainage networks and catchment areas directly from a
digital elevation model of the terrain. Most hydrological research in gis models
the terrain surface with a grid in which each cell can drain to one or more of its
eight neighbors (e.g. [16]). This can also be modeled as a computation on a graph,
in which each node represents a grid cell and each edge represents the adjacency
of two neighbors in the grid. Alternatively, one could use an irregular network
in which each node drains to one or more of its neighbors. We will refer to this
as the network model, and we assume that, from every node, water flows down
� Supported by the Netherlands Organisation for Scientific Research (NWO).

�� Funded by the U.S. Office of Naval Research under grant N00014-08-1-1015.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 350–361, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Flow Computations on Imprecise Terrains 351

Fig. 1. Left: An imprecise terrain. Each vertex of the triangulation has a elevation
interval (gray). Center: a realization of the imprecise terrain. Right: the same realization
together with the highest and lowest possible realizations of the imprecise terrain.

along the steepest incident edge. Assuming the elevation data is exact, drainage
networks can be computed efficiently in this model (e.g. [3]). In computational
geometry and topology, researchers have studied flow path and drainage network
computations on triangulated polyhedral surfaces (e.g. [4,6,14]). In this model,
which we call the surface model, the flow of water can be traced across the surface
of a triangle. This avoids creating certain artifacts that arise when working
with grid models. However, the computations on polyhedral surfaces may be
significantly more difficult than on network models [5].

Naturally, all computations based on terrain data are subject to various
sources of uncertainty, like measurement, interpolation, and numerical errors.
The gis community has long recognized the importance of dealing with uncer-
tainty explicitly, in particular for hydrological modeling. A possible way to deal
with this imprecision is to model the elevation at a point of the terrain using
stochastic methods [19]. However, the models available in the hydrology liter-
ature are unsatisfactory [15] and computationally expensive [18]. A particular
challenge is posed by the fact that hydrological computations can be extremely
sensitive to small elevation errors [10,13].

A non-probabilistic model of imprecision that has received some attention in
computational geometry consists in representing an imprecise attribute (such as
location) by a region that is guaranteed to contain the true value. This approach
has also been applied to polyhedral terrains (e.g. [8]), replacing the exact ele-
vation of each surface point by an imprecision interval (see Figure 1). In this
way, each terrain vertex does not have one fixed elevation, but a whole range of
possible elevations which includes the true elevation. Assuming error only in the
z-coordinate (and not in the x, y-coordinates) is motivated by the fact that error
in the x, y-coordinates normally produces elevation error, and that commercial
terrain data suppliers often only report elevation error [7]. Choosing a concrete
elevation for each vertex results in a realization of the imprecise terrain. The
realization is a (precise) polyhedral terrain. Since the set of all possible realiza-
tions is guaranteed to include the true (unknown) terrain, one can now obtain
bounds on parameters of the true terrain by computing the best- and worst-case
values of these parameters over the set of all possible realizations.

In this paper we apply this model of imprecise terrains to problems related to
the simulation of water flow, both on terrains represented by surface models and



352 A. Driemel et al.

on terrains represented by network models. The watershed of a point in a terrain
is the part of the terrain that drains to this point. One of the most fundamental
questions one may ask about water flow on terrains is whether water flows from
a point p to another point q. In the context of imprecise terrains, reasonable
answers may be “definitely not”, “possibly”, and “definitely”. Phrasing the same
question in terms of watersheds leads us to introduce the concepts of potential
(maximal) and core and persistent (minimal) watersheds.

Results. In Section 2 we show that the problem of deciding whether water can
flow between two given points in the surface model is NP-hard. Fortunately,
the situation is much better for the network model, and therefore as a special
case also for the D-8 model which is widely adopted in gis applications. In
Section 3 we present an algorithm to compute the potential watershed of a point
in this model. On a terrain with n edges, our algorithm runs in O(n log n) time;
for grid models the running time can even be improved to O(n). We extend
these techniques and achieve the same running times for computing the core
and persistent watersheds of a point and its potential downstream area.

Definitions and Notation. We define an imprecise terrain T as a possibly
non-planar geometric graph in IR2 in which each node v ∈ IR2 has an imprecise
third coordinate, which represents its elevation . We denote the bounds of the
elevation of v with low(v) and high(v). A realization R of an imprecise terrain
T consists of the given graph together with an assignment of elevations to nodes,
such that for each node v its elevation elevR(v) is at least low (v) and at most
high(v). We denote with R− the realization, such that elevR−(v) = low (v) for
every vertex v and similarly the realization R+, such that elevR+(v) = high(v).
We denote the set of all realizations of an imprecise terrain T with RT .

2 NP-Hardness in the Surface Model

In the surface model water flows across the surface of a polyhedral terrain.
This surface is formed by the realization of an imprecise terrain as defined above,
where the graph that represents the terrain forms a planar triangulation in the
(x, y)-domain. The water that arrives at any particular point p on this surface
will always follow the true direction of steepest descent at p across the surface,
possibly across the interior of a triangle. In this section we prove that it is NP-
hard to decide whether water potentially flows from a point s to another point t
in this model. The reduction is from 3-SAT; the input is an instance with n
variables and m clauses.

We present a global description of the proof, the technical details are left to
the full version of the paper. The construction, depicted in Figure 2, consists of
a grid with O(m) × O(n) squares, where each clause corresponds to a column
and each variable to a row of the grid; the construction also contains some
columns and rows that do not directly correspond to clauses and variables. The
grid is placed across the slope of a “mountain” with a shape similar to that of



Flow Computations on Imprecise Terrains 353

s

tN E

SW

t

s

t

Fig. 2. Left: Global view of the NP-hardness construction, showing the grid on the
mountain slope (all vertical faces can be made non-vertical). The fixed parts are shown
in gray, the variable parts are shown yellow (for divider gadgets) and orange (for
connector gadgets). Right: Top down view of the grid showing the locations of the
gadgets, and the n× 2m green vertices, the only ones with imprecise elevations.

a pyramidal frustum; columns are oriented north-south and rows are oriented
east-west. The idea is to create a spiraling water flow path from s at the top of
the mountain, through all these clause constructions, to t. The water can reach t
if and only if the 3-SAT formula can be satisfied.

The key element in the construction is the divider gadget (Figure 3, left),
which is placed at every intersection of a clause column and a variable row. It
contains two imprecise vertices with a long edge between them and ensures that
only if the two imprecise vertices are at opposite extreme elevations, any water
can pass the gadget, otherwise it will flow to a local minimum.

In order to link the values of the elevations of the imprecise vertices in the
divider gadgets that belong to the same variable together, we need to make
sure that neighboring vertices have opposite extremal elevations, just like in
divider gadgets. For this, we use a connector gadget, which has basically the
same construction as the divider gadget, see Figure 3 (right). A complicating
factor is that the elevations of these vertices differ vastly. As soon as a water
stream enters the imprecise triangle, it will plummet toward the west. But since
the direction of steepest descent on this part of the terrain is still toward the
south, if only slightly, the water will still cross the variable triangles if we make
them sufficiently narrow. As in the divider gadget, we only let the water escape
if the elevations of the imprecise vertices are at opposite extremes.

Thus the connector gadgets link the divider gadgets in each variable row
together such that a spiraling flow path from s to t can only cross each gadget
successfully if either (i) all divider gadgets have their west-side vertex on a low
elevation and their east-side vertex on a high elevation, or (ii) all divider gadgets
have their west-side vertex on a high elevation and their east-side vertex on a
low elevation. This defines two valid states of each row: we let low west-side
vertices correspond to the variable being true, and we let low east-side vertices
correspond to the variable being false.



354 A. Driemel et al.

Fig. 3. Left: A divider gadget contains two imprecise vertices with an edge between
them. Right: A connector gadget. The triangles must be much narrower, and the water
streams need to be much closer to the center of the construction than in the picture.

x1

x2

x3

x1 ∨ ¬x3 ∨ x4

x4

Across each divider gadget, water may flow
in several courses, which may each veer off to
the west or the east, depending on the eleva-
tions of the imprecise vertices: to the west if
the variable is true, or to the east if the vari-
able is false. To encode each clause, we let the
water flow to a local minimum if and only if
the clause is not satisfied. The figure to the
right shows an example. We define possible
water courses for each of the eight possible
combinations of truth values for the variables
in the clause. The course that water would
take if the clause is not satisfied leads to a local minimum; the other seven
courses merge again into one after passing all divider gadgets. These possible
water courses will also cross divider gadgets of variables that are not part of the
clause: in that case, each course splits into two courses, which are merged again
immediately after emerging from the divider gadget.

Thus water can only flow through each clause plateau if the variables are
such that each clause is true. Therefore, we conclude that deciding whether
there exists a realization of T such that water can flow from s to t is NP-hard.
The exact coordinates of the vertices in our construction, and the proof that with
these coordinates flow is directed as required, can be found in the full version of
the paper.

3 Watersheds in the Network Model

An imprecise terrain is defined as a semi-embedded graph as described in Sec-
tion 1. A realization is an embedded graph. In the network model we assume
that water only flows along the edges of this graph. The water that arrives at
a node of the graph continues along one of the downwards pointing edges in-
cident to this node. The steepness of descent (slope) along an edge (p, q) in a
realization R is defined as σR(p, q) = (elevR(p) − elevR(q))/|pq|, where |pq| is



Flow Computations on Imprecise Terrains 355

the distance between p and q in the plane. The water that arrives at a particular
node p, flows to a neighbor q, such that σR(p, q) is positive and maximal over all
edges incident to p. If water from p reaches q in a realization R we write p→

R
q

(“p flows to q in R”); note that we have p→
R

p for all p, R. Now, on horizontal
edges water may flow in either direction, and if the steepest descent neighbor of a
node is not unique, then water may leave this node on multiple edges. However,
for simplicity of exposition, we assume in this abstract that the steepest descent
neighbor is always unique and that edges are never horizontal in the realizations
considered. The issues with possible ties and horizontal flow are discussed and
resolved in the full version of the paper.

For any set of nodes Q, we define its neighborhood as the set {s : (s, t) ∈ E,
t ∈ Q, s /∈ Q}, that is, the set of nodes outside Q that are adjacent to nodes
of Q. Given a realization R, we call a node q a local minimum if all nodes
in the neighborhood of q have elevation higher than elevR(q). We also call a
connected set of nodes at the same elevation a local minimum, if all nodes in its
neighborhood have higher elevation. Water that arrives in any local minimum Q
does not continue to flow to any node outside Q.

The watershed of a vertex q in a realization R is defined as the set W(R, q) =
{p : p→

R
q}. The potential watershed of a node q in a terrain T is

W∪(q) =
⋃

R∈RT

W(R, q),

that is, it is the set of points p for which there exists a realization R, such
that water flows from p to q. Similarly, we can define W∩(q) =

⋂
R∈RT

W(R, q),
which is the set of points from which water flows to q in every realization. We
call this the core watershed of a node q. We will discuss possible issues with
this definition in Section 3.3.

3.1 Potential Watersheds

We prove that for any given node q in an imprecise terrain, there exists a re-
alization R such that W(R, q) = W∪(q). For this we introduce the notion of
the overlay of a set of watersheds. Informally, the overlay sets every node that
is contained in one of these watersheds to the lowest elevation it has in any of
these watersheds.

Definition 1. Given a set of watersheds W(R1, q1), ...,W(Rk, qk), we define
their watershed-overlay as the realization R∗ such that for every node v, we
have that elevR∗(v) = high(v) if v /∈

⋃
W(Ri, qi) and otherwise

elevR∗(v) = min
i:v∈W(Ri,qi)

elevRi(v).

Lemma 1. Let R∗ be the watershed-overlay of W(R1, q), . . . ,W(Rk, q), then
W(R∗, q) contains W(Ri, q), for any i ∈ {1, . . . , k}.



356 A. Driemel et al.

Proof. Let u be a node of the terrain, which is contained in one of the given wa-
tersheds. Let Ri be a realization from R1, ..., Rk such that elevR∗(u) = elevRi(u).
To prove the lemma, we show that u is contained in W(R∗, q) by induction on
increasing elevation of u in R∗. The base case is that u is equal to q, and in this
case the claim holds trivially.

Now, consider the node v which is reached from u by taking the steepest de-
scent edge in Ri. Since elevR∗(v) ≤ elevRi(v) < elevRi(u) = elevR∗(u), it holds
that v lies lower than u in R∗. Therefore, by induction, v ∈W(R∗, q). If v is still
the steepest descent neighbor of u in R∗, then this implies u ∈W(R∗, q). Other-
wise, there is a node v̂ such that σR∗(u, v̂) > σR∗(u, v). There must be an Rj such
that v̂ ∈ W(Rj , q), since otherwise, by construction of the watershed-overlay,
we have elevR∗(v̂) = high(v̂) ≥ elevRi(v̂) and thus, σRi(u, v̂) ≥ σR∗(u, v̂) >
σR∗(u, v) ≥ σRi(u, v) and v would not be the steepest descent neighbor of u in
Ri. Therefore, by induction, also v̂ ∈W(R∗, q) and, again, u ∈W(R∗, q). ��
The above lemma implies that for any node q, the watershed-overlay R∪(q) of
W(R, q) over all possible realizations R ∈ RT , realizes the potential watershed
of q, that is, W∪(q) = W(R∪(q), q). Therefore, we call R∪(q) the canonical
realization of the potential watershed W∪(q).

Remark 1. There is a natural extension of the definitions given above to the
watershed of a set of nodes Q. This would be the set of nodes such that water
flows to at least one node in Q. The lemma given above and the algorithms
that follow can also be applied in this case. For simplicity of exposition we only
discuss the algorithms for single nodes.

Algorithm. Next, we describe how to compute W∪(q) and its canonical real-
ization for a given node q. The idea of the algorithm is to compute the nodes
of W∪(q) and their elevations in the canonical realization in increasing order of
elevation, similar to the way in which Dijkstra’s shortest path algorithm com-
putes distances from the source. The algorithm is laid out in Algorithm 1. A key
ingredient of the algorithm is a subroutine, Expand(q′, z′), defined as follows.

Definition 2. Let Expand(q′, z′) denote a function that returns for a node q′

and an elevation z′ ∈ [low (q′), high(q′)] the set of neighbors P of q′, such that for
each p ∈ P , there exists a realization R with elevR(q′) ∈ [z′, high(q′)], such that
p→
R

q′. In particular, it returns tuples of the form (p, z), where z is the minimum
elevation of p over all such realizations R.

Preprocessing. Before presenting the algorithm for the expansion of a node,
we discuss a data structure that allows us to make the algorithm more efficient.

We define the slope diagram of a node p as the set of points q̂i = (δi, high(qi)),
such that qi is a neighbor of p and δi is its distance to p in the (x, y)-projection.
Let q1, q2, ..., be a subset of the neighbors of p indexed such that q̂1, q̂2, ... appear
in counter-clockwise order along the boundary of the convex hull of the slope di-
agram, starting from the leftmost point and continuing to the lowest point. We
ignore neighbors that do not lie on this lower left chain.



Flow Computations on Imprecise Terrains 357

Algorithm 1. ComputePWS(q)
1: Enqueue (q, z) with key z = low(q)
2: while the Queue is not empty do
3: (q′, z′) = DequeueMin()
4: if q′ is not already in the output set then
5: Output q′ and set elevR∗(q′) = z′

6: Enqueue each (p, z) ∈ Expand(q′, z′)

q̂i+1

high(qi)

δi

zi

q̂i
zi+1

̂q′

z

U (p)

Let Hi be the halfplane in the slope dia-
gram that lies above the line through q̂i and
q̂i+1. Let U (p) be the intersection of these
halfplanes H1, H2, ..., the halfplane right of
the vertical line through the leftmost point,
and the halfplane above the horizontal line
through the bottommost point of the convex
chain, see the shaded area in the figure. We
compute U(p) for all nodes p of the terrain in
a preprocessing phase.

Expansion of a node. For a neighbor p of q′, we can now compute the elevation
of p as it should be returned by Expand(q′, z′) by computing the lower tangent
to U(p) which passes through the point q̂′ = (δ′, z′), where δ′ is the distance
from q′ to p in the (x, y)-projection. This can be done via a binary search on
the boundary of U(p). Intuitively, this tangent intersects the corner of U(p)
which corresponds to the neighbor of p that the node q′ has to compete with for
being the steepest-descent neighbor of p. The elevation z at which the tangent
intersects the vertical axis, is the lowest elevation of p such that q′ wins, see the
figure. See the full version of this paper for a full description and special cases.
The computations can be done in time logarithmic in the degree of p. This leads
to the following lemma and theorem.

Lemma 2. After precomputations in O(n log dmax) time and O(n) space, the
algorithm Expand(q′, z′) can be implemented to run in O(d log dmax) time, where
d is the node degree of q′, dmax is the maximum node degree in the terrain, and
n is the number of edges of the terrain.

Theorem 1. Algorithm ComputePWS(q) computes the potential watershed
W∪(q) of a node q and its canonical realization R∪(q) in time O(n log n), where
n is the number of edges in the terrain. The canonical realization of the potential
watershed W∪(Q) of a set of nodes Q can be computed in the same time.

To prove Theorem 1 we use an induction on the nodes extracted from the priority
queue in the order of their extraction. The full proof can be found in the full
version of the paper. In the analysis of the running time, Lemma 2 implies that
the total time spent on expanding nodes is O(n log dmax). For grid terrains,



358 A. Driemel et al.

dmax = O(1), and thus, preprocessing and expansions take only O(n) time. We
can use the techniques from Henzinger et al. [11] for shortest paths to overcome
the priority queue bottleneck, and obtain the following result (details in the full
version):

Theorem 2. The potential watershed of a set of cells Q and its canonical real-
ization in an imprecise grid terrain of n cells can be computed in O(n) time.

3.2 Core Watersheds

In this section we show how to compute the core watershed W∩(q) of a given
node q, which is the set of nodes for which water always flows to q. Observe
that this set is the complement of the set of nodes, for which it is possible that
water does not flow to q in some realization. This nice observation enables us to
give an efficient algorithm that is based on computing the potential watersheds
of nodes where the water would otherwise flow to, if it does not flow to q.

More specifically, we can characterize this set as follows. Clearly, a node cannot
be in the core watershed W∩(q) if it is not in the potential watershed W∪(q).
Furthermore, it may not flow to q if it is a local minimum. We call a node r for
which there exists a realization in which r is a local minimum a potential local
minimum . Now, a node p of the terrain is contained in W∩(q) unless one of
the following holds:

(i) p is a potential local minimum (unless p = q);
(ii) p /∈W∪(q);
(iii) There exists a realization R in which p→

R
r, where r is of type (i) or (ii)

and q is not on the flow path from p to r.
Nodes of type (i) are easy to identify in O(n) time, and nodes of type (ii) can be
identified in O(n log n) time by computing W∪(q) and taking the complement. In
order to identify the nodes of type (iii), we define r-avoiding potential watersheds.
Note that it is different from the potential watershed of q in the terrain T ′ that
is obtained by removing r and its incident edges from T .

Definition 3. The r-avoiding potential watershed of a set of nodes Q is
the set of nodes p, such that there is a realization R and a node q ∈ Q such that
p→
R

q and r is not on the flow path from p to q. We denote this set with W
\r
∪ (Q).

Lemma 3. There is an algorithm which outputs the r-avoiding potential wa-
tershed of Q and takes time O(n log n), where n is the number of edges of the
terrain. (proof in the full version)

Note that we now have:

W∩(q) = V \W
\q
∪ (L ∪ (V \W∪(q))) ,

where V denotes the set of all nodes of the terrain and L denotes the set of
potential local minima. By applying Lemma 3 to compute the complement of
the nodes of type (iii), we obtain:

Corollary 1. We can compute the core watershed W∩(q) of q in time O(n log n),
where n is the number of edges of the terrain.



Flow Computations on Imprecise Terrains 359

3.3 Persistent Watersheds – An Alternative Definition

Although the definition of core watersheds as presented above is very natural
in its context, it is questionable whether this definition is meaningful enough
for practical purposes. Observe that water can “get stuck” in a potential local
minimum as soon as the imprecision intervals of neighboring nodes overlap in the
vertical dimension. This would not only happen in relatively flat terrains, but
could also lead to problems in non-flat terrains. Consider the case of a measuring
device with a constant elevation error. It is possible that, by increasing the
density of measurement points, the extent of a core watershed can be reduced
arbitrarily. Based on these considerations we propose a definition of a persistent
watershed, which can be computed using the same techniques.

Definition 4. Let V be the nodes of the graph that define an imprecise terrain.
We define the persistent watershed of a given node q as the set

W ·∩(q) = V \W
\q
∪ (V \W∪(q)) .

This is the set of nodes that do not have a potential flow path to a node outside
the potential watershed of q, unless this path goes through q.

To be able to design data structures that store imprecise watersheds and answer
queries about flow of water between nodes efficiently, it would be convenient if
the watersheds satisfy the following nesting condition : if p is contained in the
watershed of q, then the watershed of p is contained in the watershed of q. Core
watersheds satisfy this condition. However, persistent watersheds are not nested
in this way, a counter-example can be found in the full version of the paper. To
overcome this limitation, we propose the following regularity condition:

Definition 5. Given an imprecise terrain T , let S be any set of nodes that forms
a local minimum in R−. We call T a regular terrain if any such set S contains a
local minimum in any realization and no proper subset S′ ⊂ S has this property.

On regular terrains, the persistent watersheds satisfy the nesting condition: when
p ∈W ·∩(q), we have W ·∩(p) ⊆W ·∩(q), and even W∪(p) ⊆W∪(q). However, even
on regular terrains the potential watersheds are generally not nested. Interest-
ingly, it may also happen that a persistent watershed is not simply connected.
These results can be found in the full version of the paper.

The regularity condition could be guaranteed by a preprocessing step which
raises the lower bounds on the elevations such that local minima that violate the
regularity condition are removed from the lowest possible realization of the ter-
rain. We could do so with the algorithm from Gray et al. [9] while still respecting
the given upper bounds on the elevations. Indeed, in hydrological applications
it is common practice to preprocess terrains by removing local minima before
doing flow computations [16].



360 A. Driemel et al.

3.4 Potential Downstream Areas

Similar to the potential watershed of q, we can define the set of points that po-
tentially receive water from q. Naturally, there exists no canonical realization for
this set, however, it can be computed in a similar way as described in Section 3.1
using a priority queue that processes nodes in decreasing order of their maximal
elevation such that they would still receive water from q. The following result
can be found in the full version of the paper.

Theorem 3. Given a set of nodes Q of an imprecise terrain, we can compute
the set

⋃
R∈RT

{p : ∃ q ∈ Q s.t. q→
R

p} in time O(n log n), where n is the number
of edges in the terrain.

4 Conclusions

In this paper we studied flow computations on imprecise terrains under two
general models of water flow. For the surface model we showed NP-hardness for
deciding whether water can flow between two points. For the network model we
gave efficient algorithms to compute potential, core, and persistent watersheds.
Our algorithms also work for sets of nodes (lakes, river beds, etc.), and can be
modified for related concepts, such as potential downstream areas.

An important contribution of this paper is at a conceptual level. Surprisingly,
the most natural definitions of a minimal watershed lack properties that seem
natural, most notably the lack of robustness of the core watersheds in the pres-
ence of overlapping elevation intervals, and the fact that persistent watersheds
are not nested. Interestingly, there are some parallels to observations made in
the gis literature. Firstly, Hebeler et al. [10] observe that the watershed is more
sensitive to elevation error in “flatlands”. Secondly, simulations have shown that
also potential local minima or “small sub-basins” can severely affect the out-
come of hydrological computations [13]. We propose a regularity assumption for
terrains for future research on efficient data structures for watershed hierarchies.
However, we also leave it as an open question whether an alternative, more
robust and informative definition of persistent water flow can be proposed.

Furthermore, the contrast between the results in Section 2 and Section 3 leaves
room for further research questions, e.g., can we develop a model to measure the
quality of approximations of water flow, and how does it relate to the network
model? Other flow models have been proposed in the gis literature, e.g., D-∞, in
which the incoming water at a vertex is distributed among the outgoing descent
edges according to steepness. These models can be seen as modified network
models which approximate the steepest descent direction more truthfully. In
order to apply the techniques we developed for watersheds, we first need to
formalize to which extent a node is part of a watershed in these models.

Acknowledgments. We thank Chris Gray for many interesting discussions.



Flow Computations on Imprecise Terrains 361

References

1. Borga, M., Gaume, E., Creutin, J., Marchi, L.: Surveying flash floods: gauging the
ungauged extremes. Hydrological Processes 22, 3883–3885 (2008)

2. Craddock, W., Kirby, E., Harkins, N., Zhang, H., Shi, X., Liu, J.: Rapid fluvial
incision along the Yellow River during headward basin integration. Nature Geo-
science 3, 209–213 (2010)

3. Danner, A., Mølhave, T., Yi, K., Agarwal, P.K., Arge, L., Mitásová, H.: TerraS-
tream: from elevation data to watershed hierarchies. In: Proc. 15th ACM Int. Symp.
on Geographic Information Systems (ACM-GIS 2007), pp. 212–219 (2007)

4. de Berg, M., Cheong, O., Haverkort, H., Lim, J.-G., Toma, L.: The complexity
of flow on fat terrains and its I/O-efficient computation. Comput. Geom. Theory
Appl. 43(4), 331–356 (2010)

5. de Berg, M., Haverkort, H., Tsirogiannis, C.: Flow on noisy terrains: An experi-
mental evaluation. In: 27th Eur. Worksh. Comput. Geom., pp. 111–114 (2011)

6. de Berg, M., Haverkort, H., Tsirogiannis, C.: Implicit flow routing on terrains with
applications to surface networks and drainage structures. In: Proc. 22nd ACM-
SIAM Symp. on Discrete Algorithms (SODA), pp. 285–296 (2011)

7. Fisher, P.F., Tate, N.J.: Causes and consequences of error in digital elevation mod-
els. Progress in Physical Geography 30(4), 467–489 (2006)

8. Gray, C., Evans, W.: Optimistic shortest paths on uncertain terrains. In: Proc.
16th Canad. Conf. on Comput. Geom., pp. 68–71 (2004)

9. Gray, C., Kammer, F., Löffler, M., Silveira, R.I.: Removing local extrema from
imprecise terrains. In: CoRR, abs/1002.2580 (2010)

10. Hebeler, F., Purves, R.: The influence of elevation uncertainty on derivation of
topographic indices. Geomorphology 111(1-2), 4–16 (2009)

11. Henzinger, M., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algorithms
for planar graphs. J. Computer and System Sciences 55(1), 3–23 (1997)

12. Koster, R.D., Mahanama, S.P.P., Livneh, B., Lettenmaier, D.P., Reichle, R.H.:
Skill in streamflow forecasts derived from large-scale estimates of soil moisture and
snow. Nature Geoscience 3(9), 613–616 (2010)

13. Lindsay, J., Evans, M.: The influence of elevation error on the morphometrics
of channel networks extracted from DEMs and the implications for hydrological
modelling. Hydrological Processes 22(11), 1588–1603 (2008)

14. Liu, Y., Snoeyink, J.: Flooding triangulated terrain. In: Proc. 11th Int. Symp.
Spatial Data Handling, Berlin, pp. 137–148 (2005)

15. Montanari, A.: What do we mean by ‘uncertainty’? The need for a consistent
wording about uncertainty assessment in hydrology. Hydr. Proc. 21, 841–845 (2006)

16. Tarboton, D.: A new method for the determination of flow directions and upslope
areas in grid dig. elev. models. Water Resources Research 33(2), 309–319 (1997)

17. Tetzlaff, D., McDonnell, J., Uhlenbrook, S., McGuire, K., Bogaart, P., Naef, F.,
Baird, A., Dunn, S., Soulsby, C.: Conceptualizing catchment processes: simply too
complex? Hydrological Processes 22, 1727–1730 (2008)

18. Vrugt, J.A., Diks, C.G.H., Gupta, H.V., Bouten, W., Verstraten, J.M.: Improved
treatment of uncertainty in hydrologic modeling: Combining the strengths of global
optimization and data assimilation. Water Resources Research 41 (2005)

19. Wechsler, S.P.: Uncertainties associated with digital elevation models for hydrologic
applications: a review. Hydrology and Earth System Sc. 11(4), 1481–1500 (2007)



Tracking Moving Objects with Few Handovers

David Eppstein, Michael T. Goodrich, and Maarten Löffler

Dept. of Computer Science, Univ. of California, Irvine

Abstract. We study the online problem of assigning a moving point to a base-
station region that contains it. Our goal is to minimize the number of handovers
that occur when the point moves outside its assigned region and must be assigned
to a new one. We study this problem in terms of a competitive analysis measured
as a function of Δ, the ply of the system of regions, that is, the maximum number
of regions that cover any single point.

1 Introduction

A common problem in wireless sensor networks involves the online tracking of moving
objects [6,9,14,20,21]. Whenever a moving object leaves a region corresponding to its
tracking sensor, a nearby sensor must take over the job of tracking the object. Similar
handovers are also used in cellular phone services to track moving customers [16]. In
both the sensor tracking and cellular phone applications, handovers involve consider-
able overhead [6, 9, 14, 16, 21], so we would like to minimize their number.

Geometrically, we can abstract the problem in terms of a set of n closed regions
in R

d , for a constant d, which represent the sensors or cell towers. We assume that
any pair of regions intersects at most a constant number of times, as would be the
case, say, if they were unit disks (a common geometric approximation used for wireless
sensors [6,9,14,21]). We also have one or more moving entities, which are represented
as points traveling along 1-dimensional curves (which we do not assume to be smooth,
algebraic, or otherwise well-behaved, and which may not be known or predictable by
our algorithms) with a time stamp associated to each point on the curve (Figure 1).

We need to track the entities via regions that respectively contain them; hence, for
each moment in time, we must assign one of the regions to each entity, p, with the
requirement that p is inside its assigned region at each moment in time. Finally, we

Fig. 1. Example input

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 362–373, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Tracking Moving Objects with Few Handovers 363

want to minimize the number of times that we must change the assignment of the region
tracking an entity, so as to minimize the number of handovers.

We also consider a generalized version of this problem, where each point p is re-
quired to be assigned to c regions at each moment in time. This generalization is mo-
tivated by the need for trilateration in cellular networks and wireless sensor networks
(e.g., see [18]), where directional information from three or more sensors is used to
identify the coordinates of a moving point.

Related Work. There has been considerable previous work in the wireless sensor lit-
erature on mobile object tracking. So, rather than providing a complete review of this
area, let us simply highlight some of the most relevant work from the wireless sensor
literature.

Zhou et al. [21] introduce the idea of using handovers to reduce energy in mobile
object tracking problems among wireless sensor networks. Pattem et al. [14] study
energy-quality trade-offs for various strategies of mobile object tracking, including one
with explicit handovers. He and Hou [9] likewise study mobile object tracking with re-
spect to handover minimization, deriving probabilistic upper and lower bounds based
on distribution assumptions about the moving objects and wireless sensors. Ghica et
al. [6] study the problem of tracking an object among sensors modeled as unit disks
so as to minimize handovers, using probabilistic assumptions about the object’s future
location while simplifying the tracking requirements to discrete epochs of time.

The analysis tool with which we characterize the performance of our algorithms
comes from research in online algorithms, where problems are defined in terms of a
sequence of decisions that must be made one at a time, before knowing the sequence
of future requests. In competitive analysis [15], one analyzes an online algorithm by
comparing its performance against that of an idealized adversary, who can operate in an
offline fashion, making his choices after seeing the entire sequence of items.

We are not aware of any previous work that applies competitive analysis to the prob-
lem of handover minimization. Nevertheless, this problem can be viewed from a com-
putational geometry perspective as an instantiation of the observer-builder framework
of Cho et al. [2], which itself is related to the incremental motion model of Mount et
al. [12], the observer-tracker model of Yi and Zhang [20], and the well-studied kinetic
data structures framework [8, 7]. In terms of the observer-builder model, our problem
has an observer who watches the motion of the point(s) we wish to track and a builder
who maintains the assignment of tracking region(s) to the point(s). This assignment
would define a set of Boolean certificates, which become violated when a point leaves
its currently-assigned tracking region. The observer would notify the builder of any vi-
olation, and the builder would use information about the current and past states of the
point(s) to make a new assignment (and define an associated certificate). The goal, as
in the previous work by Cho et al. [2], would be to minimize the number of interactions
between the observer and builder, as measured using competitive analysis. Whereas
Cho et al. apply their model to the maintenance of net trees for moving points, in our
case the interactions to be minimized correspond to handovers, and our results supply
the algorithms that would be needed to implement a builder for handover minimization.
Yi and Zhang [20] study a general online tracking problem, but with a different objec-
tive function than ours: when applied to mobile object tracking, rather than optimizing



364 D. Eppstein, M.T. Goodrich, and M. Löffler

the number of handovers, their scheme would aim to minimize the distance between
objects and the base-station region to which they are each assigned.

Several previous papers study overlap and connectivity problems for geometric re-
gions, often in terms of their ply, the maximum number of regions that cover any point.
Guibas et al. [7] study the maintenance of connectivity information among moving unit
disks in the kinetic data structure framework. Miller et al. [11] introduce the concept
of ply and show how sets of disks with low ply possess small geometric separators.
Eppstein et al. [3,5] study road network properties and algorithms using a model based
on sets of disks with low ply after outliers are removed. Van Leeuwen [17] studies the
minimum vertex cover problem for disk graphs, providing an asymptotic FPTAS for
this problem on disk graphs of bounded ply. Alon and Smorodinsky [1] likewise study
coloring problems for sets of disks with low ply.

Our problem can also be modeled as a metrical task system in which the sensor
regions are represented as states of the system, the cost of changing from state to state
is uniform, and the cost of serving a request is zero for a region that contains the request
point and two for other regions. Known randomized online algorithms for metrical task
systems [10] would give a competitive ratio of O(logn) for our problem, not as good
as our O(logΔ) result, and known lower bounds for metrical task systems would not
necessarily apply to our problem.

New Results. In this paper, we study the problem of assigning moving points in the
plane to containing base station regions in an online setting and use the competitive
analysis to characterize the performance of our algorithms. Our optimization goal in
these algorithms is to minimize the number of handovers that occur when an object
moves outside the range of its currently-assigned base station and must be assigned to
a new base station. We measure the competitive ratio of our algorithms as a function
of Δ, the ply of the system of base station regions, that is, the maximum number of
such regions that cover any single point. When object motions are known in advance,
as in the offline version of the object traking problem, a simple greedy strategy suffices
to determine an optimal assignment of objects to base stations, with as few handovers
as possible. For the online problem, on the other hand, for moving points in one di-
mension, we present a deterministic online algorithm that achieves a competitive ratio
of O(logΔ), with respect to the offline optimal algorithm, and we show that no better
ratio is possible. For two or more dimensions, we present a randomized algorithm that
achieves a competitive ratio of O(logΔ), and a deterministic algorithm that achieves a
competitive ratio of O(Δ); again, we show that no better ratio is possible.

2 Problem Statement and Notation

Let D be a set of n regions in R
d . These regions represent the areas that can be covered

by a single sensor. We assume that each region is a closed, connected subset of R
d and

that the boundaries of any two regions intersect O(1) times – for instance, this is true
when each region is bounded by a piecewise algebraic curve in R

2 with bounded degree
and a bounded number of pieces. With these assumptions, the arrangement of the pieces
has polynomial complexity O(nd). The ply of D is defined to be the maximum over R

d



Tracking Moving Objects with Few Handovers 365

of the number of regions covering any point. We always assume that D is fixed and
known in advance.

Let T be the trajectory of a moving point in R
d . We assume that T is represented

as a continuous and piecewise algebraic function from [0,∞) to R
d , with a finite but

possibly large number of pieces. We also assume that each piece of T crosses each
region boundary O(1) times and that it is possible to compute these crossing points
efficiently. We also assume that T ([0,∞))⊂∪D ; that is, that the moving point is always
within range of at least one sensor; this assumption is not realistic, and we make it only
for convenience of exposition. Allowing the point to leave and re-enter ⊂ ∪D would
not change our results since the handovers caused by these events would be the same
for any online algorithm and therefore cannot affect the competitive ratio.

As output, we wish to report a tracking sequence S: a sequence of pairs (τi,Di) of a
time τi on the trajectory (with τ0 = 0) and a region Di ∈ D that covers the portion of
the trajectory from time τi to τi+1. We require that for all i, τi < τi+1. In addition, for
all i, it must be the case that T ([τi,τi+1]) ⊆ Di, and there should be no τ ′ > τi+1 for
which T ([τi,τ ′])⊂ Di; in other words, once a sensor begins tracking the moving point,
it continues tracking that point until it moves out of range and another sensor must take
over. Our goal is to minimize |S|, the number of pairs in the tracking sequence. We call
this number of pairs the cost of S; we are interested in finding tracking sequences of
small cost.

Our algorithm may not know the trajectory T completely in advance. In the offline
tracking problem, T is given as input, and we must find the tracking sequence S that
minimizes |S|; as we show, a simple greedy algorithm accomplishes this task. In the
online tracking problem, T is given as a sequence of updates, each of which specifies a
single piece in a piecewise algebraic decomposition of the trajectory T . The algorithm
must maintain a tracking sequence S that covers the portion of T that is known so far,
and after each update it must extend S by adding additional pairs to it, without changing
the pairs that have already been included. As has become standard for situations such
as this one in which an online algorithm must make decisions without knowledge of the
future, we measure the quality of an algorithm by its competitive ratio. Specifically, if a
deterministic online algorithm A produces tracking sequence SA(T ) from trajectory T ,
and the optimal tracking sequence is S∗(T ), then the competitive ratio of A (for a given
fixed set D of regions) is

sup
T

|SA(T )|
|S∗(T)| .

In the case of a randomized online algorithm, we measure the competitive ratio sim-
ilarly, using the expected cost of the tracking sequence it generates. In this case, the
competitive ratio is

sup
T

E[|SA(T )|]
|S∗(T)| .

As a variation of this problem, stemming from trilateration problems in cellular
phone network and sensor network coverage, we also consider the problem of finding
tracking sequences with coverage c. In this setting, we need to report a set of c tracking
sequences S1,S2, . . . ,Sc for T that are mutually disjoint at any point in time: if a region
D appears for a time interval [τi,τi+1] in one sequence Sk and a time interval [σ j,σ j+1]



366 D. Eppstein, M.T. Goodrich, and M. Löffler

pi+1

Di

pi

Fig. 2. The set Di of disks containing pi, and the point pi+1 where the trajectory leaves the last
disk of Di

in some other sequence Sl , we require that the intervals [τi,τi+1] and [σ j,σ j+1] are dis-
joint. We wish to minimize the total cost ∑c

i=1 |Si| of a set of tracking sequences with
coverage c, and in both the offline and online versions of the problem.

3 Offline Tracking

Due to space restrictions, we defer to the full version [4] our discussion of the offline
problem. We describe a simple greedy approach to solve the problem, either in the
simple coverage or c-coverage cases, by choosing at each handover the region that will
cover the trajectory the longest. Intuitively, the time the moving point spends within
each region may be viewed as forming a set of intervals of the real timeline, and we
are applying a standard greedy algorithm to find the smallest subset of the intervals that
covers the timeline. We prove the following:

Theorem 1. The greedy algorithm solves the offline tracking problem optimally, in
polynomial time.

4 Online Tracking

We now move on to the dynamic setting. We assume that we are given the start locations
of the trajectory, and receive a sequence of updates extending the trajectory. From these
updates we can easily generate a sequence of events caused when the trajectory crosses
into or out of a region. We will describe three algorithms for different settings, which
are all based on the following observations.

Let T be the (unknown) trajectory of our moving entity, and recall that T (τ) denotes
the point in space that the entity occupies at time τ. Let τ0 be the starting time. We will
define a sequence of times τi as follows. For any i, let pi = T (τi) be the location of the
entity at time τi, and let Di ⊂D be the set of regions that contain pi. For each Di j ∈Di,
let τ ′i j be first the time after τi that the entity leaves Di j. Now, let τi+1 = max j τ ′i j be



Tracking Moving Objects with Few Handovers 367

the moment that the entity leaves the last of the regions in Di (note that it may have
re-entered some of the regions). Figure 2 shows an example. Let τk be the last assigned
time (that is, the entity does not leave all disks Dk before the the end of its trajectory).

Observation 2 Any tracking sequence S for trajectory T must have length at least k.

Proof. For any i, a solution must have a region of Di at time τi. However, since by
construction there is no region that spans the entire time interval [τi,τi+1 + ε] (for any
ε > 0), there must be at least one handover during this time, resulting in at least k− 1
handovers, and at least k regions. �	

Randomized Tracking with Logarithmic Competitive Ratio. With this terminology
in place, we are now ready to describe our randomized algorithm. We begin by com-
puting τ0, p0 and D0 at the start of T . We will keep track of a set of candidate regions
C , which we initialize to C = D0, and select a random element from the candidate
set as the first region to track the entity. Whenever the trajectory leaves its currently
assigned region, we compute the subset C ⊂ Di of all regions that contain the whole
trajectory from pi to the event point, and if C is not empty we select a new region ran-
domly from C . When C becomes empty, we have found the next point pi+1, giving us
a new nonempty candidate set C . Intuitively, for each point pi, if the set of candidate
regions containing pi is ordered by their exit times, the selected regions form a random
increasing subsequence of this ordering, which has expected length O(logΔ), whereas
the optimal algorithm incurs a cost of one for each point pi. Refer to the full version for
a more formal description of the algorithm, as well as the proof of the following lemma.

Lemma 1. The randomized algorithm produces a valid solution of expected length
O(k logΔ).

Combining Observation 2 and Lemma 1, we see that the algorithm has a competitive
ratio of O(logΔ).

Deterministic Tracking with Linear Competitive Ratio. We now describe a deter-
ministic variant of the algorithm. The only thing we change is that, instead of selecting
a random member of the set C of candidate regions, we select an arbitrary element of
this set. Here we assume that C is represented in some deterministic way that we make
no further assumptions about. For example, if the elements in D are unit disks we might
store them as a sorted list by the x-coordinate of their center points.

This strategy may seem rather naı̈ve, and indeed produces a competitive ratio that is
exponentially larger than that of the randomized strategy of the previous section. But
we will see in Section 5 that this is unavoidable, even for the specific case of unit disks.

Again, the full version contains a more formal description of the algorithm, as well
as the proof of the following lemma.

Lemma 2. The deterministic algorithm produces a valid solution of length O(k Δ).

As before, combining Observation 2 and Lemma 2, we see that this algorithm has a
competitive ratio of O(Δ).



368 D. Eppstein, M.T. Goodrich, and M. Löffler

Deterministic Tracking in One Dimension. In the 1-dimensional case, a better de-
terministic algorithm is possible. In this case, the regions of D can only be connected
intervals, due to our assumptions that they are closed connected subsets of R.

Now, when we want to pick a new sensor, we have to choose between c = |C | in-
tervals that all contain the current position of the entity. For each interval Ci, let �i be
the number of intervals in C \ {Ci} that contain the left endpoint of Ci, and let ri be
the number of intervals in C \ {Ci} that contain the left endpoint of Ci. We say that an
interval Ci is good if max(�i,ri) ≤ c/2. Our deterministic algorithm simply chooses a
good sensor at each step. Figure 3 illustrates this.

Fig. 3. A set of 8 intervals covering the current location of the entity (blue dot). A good interval
is highlighted; this interval has �i = 3≤ 8/2 and ri = 2≤ 8/2.

The new algorithm is described in the full version, where we also prove the following
lemma.

Lemma 3. The deterministic one-dimensional algorithm produces a valid solution of
length O(k logΔ).

Combining Observation 2 and Lemma 3, we conclude that this algorithm also has a
competitive ratio of O(logΔ).

Summary of Algorithms. Our input assumptions ensure that any trajectory can be
transformed in polynomial time into a sequence of events: trivially, for each piece in
the piecewise description of the trajectory, we can determine the events involving that
piece in time O(n) (where n = |D |) and sort them in time O(n logn).

Once this sequence is known, it is straightforward to maintain both the set of re-
gions containing the current endpoint of the trajectory, and the set C of candidate re-
gions, in constant time per event. Additionally, each event may cause our algorithms
to select a new region, which may in each case be performed given the set C in time
O(|C |) = O(Δ). Therefore, if there are m events in the sequence, the running time of
our algorithms (once the event sequence is known) is at most O(mΔ).

Additionally, geometric data structures (such as those for point location among fat
objects [13]) may be of use in more quickly finding the sequence of events, or for more
quickly selecting a region from C ; we have not carefully analyzed these possibilities,
as our focus is primarily on the competitive ratio of our algorithms rather than on their
running times.

We summarize these results in the following theorem:

Theorem 3. Given a set D of n connected regions in R
d, and a trajectory T ,

– there is a randomized strategy for the online tracking problem that achieves a com-
petitive ratio of O(logΔ); and



Tracking Moving Objects with Few Handovers 369

Fig. 4. Four similar rhombi form a set of regions for which no stateless algorithm can be
competitive

– there are deterministic strategies for the online tracking problem that achieve a
competitive ratio of O(logΔ) when d = 1 or O(Δ) when d > 1.

Each of these strategies may be implemented in polynomial time.

5 Lower Bounds

We now provide several lower bounds on the best competitive ratio that any determin-
istic or randomized algorithm can hope to achieve. Our lower bounds use only very
simple regions in D : similar rhombi, in one case, unit disks in R

d in a second case, and
unit intervals in R in the third case. These bounds show that our algorithms are optimal,
even with strong additional assumptions about the shapes of the regions.

Lower Bounds on Stateless Algorithms. An algorithm is stateless if the next sensor
that covers the moving point, when it moves out of range of its current sensor, is a
function only of its location and not of its previous state or its history of motion. Because
they do not need to store and retrieve as much information, stateless algorithms provide
a very enticing possibility for the solution of the online tracking problem, but as we
show in this section, they cannot provide a competitive solution.

Theorem 4. There exists a set D of four similar rhombi in R
2, such that any stateless

algorithm for the online tracking problem has unbounded competitive ratio.

Proof. The set D is shown in Figure 4. It consists of four rhombi a, b, c, and d; these
rhombi partition the plane into regions (labeled in the figure by the rhombi containing
them) such that the common intersection abcd of the rhombi is directly adjacent to
regions labeled ab, ac, ad, bc, and cd.

Let G be a graph that has the four rhombi as its vertices, and the five pairs ab,
ac, ad, bc, and cd as its edges. Let A be a stateless algorithm for D , and orient the
edge xy of G from x to y if it is possible for algorithm A to choose region y when
it performs a handover for a trajectory that moves from region abcd to region xy. If
different trajectories would cause A to choose either x or y, orient edge xy arbitrarily.

Because G has four vertices and five edges, by the pigeonhole principle there must
be some vertex x with two outward-oriented edges xy and xz. There exists a trajectory



370 D. Eppstein, M.T. Goodrich, and M. Löffler

(a) (b)

Fig. 5. (a) A set of Δ disks whose centers are equally spaced on a circle. (b) The heart of the
construction, zoomed in. The yellow cell is inside all disks; the red cells are inside all but one
disk.

T that repeatedly passes from region abcd to xy, back to abcd, to xz, and back to abcd,
such that on each repetition algorithm A performs two handovers, from z to y and back
to z. However, the optimal strategy for trajectory T is to cover the entire trajectory with
region x, performing no handovers. Therefore, algorithm A has unbounded competitive
ratio. �	

Lower Bounds on Deterministic Algorithms. Next, we show that any deterministic
algorithm in two or more dimensions must have a competitive ratio of Δ or larger,
matching our deterministic upper bound and exponentially worse than our randomized
upper bound. The lower bound construction consists of a set of Δ unit disks with their
centers on a circle, all containing a common point (Figure 5). The idea is that if the
trajectory starts at this common point, it can exit from any single disk, in particular, the
one that a deterministic algorithm previously chose.

Theorem 5. There exists a set D of unit disks in R
2, such that any deterministic algo-

rithm for the online tracking problem has competitive ratio at least Δ−1.

Proof. Let D be a set of Δ unit disks whose centers are equally spaced on a given circle
C of slightly less than unit radius, as in Figure 5(a). Let the moving point to be tracked
start at the point p0 at the center of C, in the common interior of all disks. For each disk
Di ∈D , there exists a cell Xi in the arrangement that is interior to all disks in D \{Di},
but outside Di itself. Furthermore, this cell is directly adjacent to the center cell. See
Figure 5(b) for an illustration.

Now, let A be any deterministic algorithm for the online tracking problem, and con-
struct a sequence of updates to trajectory T as follows. Initially, T consists only of the
single point p0. At each step, let algorithm A update its tracking sequence to cover
the current trajectory, let Di be the final region in the tracking sequence constructed by
algorithm A, and then update the trajectory to include a path to Xi and back to the center.

Since Xi is not covered by Di, algorithm A must increase the cost of its tracking
sequence by at least one after every update. That is, |SA(T )| ≥ |T |. However, in the
optimal tracking sequence, every Δ−1 consecutive updates can be covered by a single
region Di, so S∗(T )≤ |T |/(Δ−1). Therefore, the competitive ratio of A is at least Δ−1.

�	



Tracking Moving Objects with Few Handovers 371

Fig. 6. A set of Δ = 8 intervals, and a tree of 8 different trajectories in R
1 (horizontal dimension)

This construction generalizes to any d > 2.

Lower Bounds on Randomized Algorithms. The above lower bound construction
uses the fact that the algorithm to solve the problem is deterministic: an adversary con-
structs a tracking sequence by reacting to each decision made by the algorithm. For
a randomized algorithm, this is not allowed. Instead, the adversary must select an en-
tire input sequence, knowing the algorithm but not knowing the random choices to be
made by the algorithm. Once this selection is made, we compare the quality of the
solution produced by the randomized algorithm to the optimal solution. By Yao’s prin-
ciple [19], finding a randomized lower bound in this model is equivalent to finding a
random distribution R on the set of possible update sequences such that, for every pos-
sible deterministic algorithm A, the expected value of the competitive ratio of A on a
sequence from R is high.

Our lower bound construction consists of Δ unit intervals that contain a common
point, and a tree of Δ different possible paths for the moving object to take, each of
which leaves the intervals in a different ordering, in a binary tree-like fashion. Half
of the trajectories start by going to the left until they are outside the right half of the
intervals, the others start towards the right until they are outside the left half of the
intervals, and this recurses, as shown in Figure 6.

More formally, let us assume for simplicity that Δ is a power of 2. Let D be a set of Δ
distinct unit intervals in R, containing a common point p0. For any k ∈ [1,Δ] we define
point pk to be a point outside the leftmost k intervals but in the interior of the rest, and
p−k to be a point outside the rightmost k intervals but in the interior of the rest.

Now, for each j ∈ [1,Δ], we construct a trajectory Tj with h = logΔ steps, as follows.
We define an index ξ ( j, i) for all j ∈ [1,Δ] and all i ∈ [1,h] such that trajectory Tj is at
point pξ ( j,i) at step i. At step 0, all trajectories start at ξ ( j,0) = 0. Then, at step i:

– all Tj with j mod 2h−i ≤ 2h−i−1 move to the left to ξ ( j, i) = minl<i ξ ( j, l)−2h−i,
– all Tj with j mod 2h−i > 2h−i−1 move to the right to ξ ( j, i) = maxl<i ξ ( j, l)+2h−i.

Figure 6 shows T be the resulting set of these Δ trajectories in a tree representation.

Theorem 6. There exists a set D of unit intervals in R, for which any randomized
algorithm to solve the online tracking problem has competitive ratio Ω(logΔ).

Proof. Let D and the set of trajectories T be as described above. Let R be a probability
distribution over the set of all possible trajectories that has a probability of 1/Δ to be
any element of T , and a probability of 0 elsewhere.



372 D. Eppstein, M.T. Goodrich, and M. Löffler

Now, let A be any deterministic algorithm for the online tracking problem. At each
level of the tree, each region Di that algorithm A might have selected as the final region
in its tracking sequence fails to cover one of the two points that the moving point could
move to next, and each of these points is selected with probability 1/2, so algorithm
A must extend its tracking sequence with probability 1/2, and its expected cost on that
level is 1/2. The number of levels is log2 Δ, so the total expected cost of algorithm
A is 1 + 1

2 log2 Δ, whereas the optimal cost on the same trajectory is 1. Therefore the
competitive ratio of algorithm A on a random trajectory with distribution R is at least
1 + 1

2 log2 Δ.
It follows by Yao’s principle that the same value 1 + 1

2 log2 Δ is also a lower bound
on the competitive ratio of any randomized online tracking algorithm. �	

Although the trajectories formed in this proof are short relative to the size of D , this is
not an essential feature of the proof: by concatenating multiple trajectories drawn from
the same distribution, we can find a random distribution on arbitrarily long trajectories
leading to the same 1+ 1

2 log2 Δ lower bound. This construction generalizes to unit balls
in any dimension d > 1 as well.

6 Trilateration

We can extend our results to the case where the entity needs to covered with c sensors
at any time. We refer to the full version for details; in particular, we prove the following
theorems:

Theorem 7. There exists a randomized algorithm that solves the trilateration problem
with a competitive ratio of O(log(Δ−c)).

Theorem 8. There exists a set D of intervals in R of two different lengths, for which
any randomized algorithm to solve the online tracking problem has competitive ratio
Ω(log(Δ−c)).

7 Conclusions

We studied the online problem of tracking a moving entity among sensors with a
minimal number of handovers, combining the kinetic data and online algorithms
paradigms. We provided several algorithms with optimal competitive ratios. Interest-
ingly, randomized strategies are able to provably perform significantly better than de-
terministic strategies, and arbitrarily better than stateless strategies (which form a very
natural and attractive class of algortihms in our application).

We are able to track multiple entities using the same algorithms, by simply treating
them independently. As a future direction of research, it would be interesting to study
the situation where each sensor has a maximum capacity C, and cannot track more than
C different entities at the same time. Another possible direction of research is to analyze
and optimize the running times of our strategies for particular classes of region shapes
or trajectories, something we have made no attempt at.



Tracking Moving Objects with Few Handovers 373

References

1. Alon, N., Smorodinsky, S.: Conflict-free colorings of shallow discs. In: Proc. 22nd Symp. on
Computational Geometry (SoCG), pp. 41–43. ACM, New York (2006)

2. Cho, M., Mount, D., Park, E.: Maintaining Nets and Net Trees under Incremental Motion.
In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 1134–1143.
Springer, Heidelberg (2009)

3. Eppstein, D., Goodrich, M.T.: Studying (non-planar) road networks through an algorithmic
lens. In: GIS 2008: Proceedings of the 16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp. 1–10 (2008)

4. Eppstein, D., Goodrich, M.T., Löffler, M.: Tracking moving objects with few handovers,
arXiv.org/abs/1105.0392 (2011)

5. Eppstein, D., Goodrich, M.T., Trott, L.: Going off-road: transversal complexity in road net-
works. In: Proc. 17th ACM SIGSPATIAL Int. Conf. on Advances in Geographic Information
Systems (ACM GIS), pp. 23–32. ACM, New York (2009)

6. Ghica, O., Trajcevski, G., Zhou, F., Tamassia, R., Scheuermann, P.: Selecting Tracking Prin-
cipals with Epoch Awareness. In: Proc. 18th ACM SIGSPATIAL Internat. Conf. on Advances
in Geographic Information Systems, ACM GIS (2010)

7. Guibas, L., Hershberger, J., Suri, S., Zhang, L.: Kinetic Connectivity for Unit Disks. Discrete
Comput. Geom. 25(4), 591–610 (2001)

8. Guibas, L.J.: Kinetic data structures — a state of the art report. In: Agarwal, P.K., Kavraki,
L.E., Mason, M. (eds.) Proc. Workshop Alg. Found. Robot., pp. 191–209 (1998)

9. He, G., Hou, J.: Tracking targets with quality in wireless sensor networks. In: 13th IEEE
Conf. on Network Protocols (ICNP), pp. 1–12 (2005)

10. Irani, S., Seiden, S.: Randomized algorithms for metrical task systems. Theor. Comput.
Sci. 194(1-2), 163–182 (1998)

11. Miller, G.L., Teng, S.-H., Thurston, W., Vavasis, S.A.: Separators for sphere-packings and
nearest neighbor graphs. J. ACM 44, 1–29 (1997)

12. Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A computational
framework for incremental motion. In: Proc. 20th Symp. on Computational Geometry
(SoCG), pp. 200–209. ACM, New York (2004)

13. Overmars, M., van der Stappen, F.: Range Searching and Point Location among Fat Objects.
J. Algorithms 21(3), 629–656 (1996)

14. Pattem, S., Poduri, S., Krishnamachari, B.: Energy-Quality Tradeoffs for Target Tracking in
Wireless Sensor Networks. In: Zhao, F., Guibas, L. (eds.) IPSN 2003. LNCS, vol. 2634, pp.
32–46. Springer, Heidelberg (2003)

15. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun.
ACM 28, 202–208 (1985)

16. Tekinay, S., Jabbari, B.: Handover and channel assignment in mobile cellular networks. IEEE
Communications Magazine 29(11), 42–46 (1991)

17. van Leeuwen, E.J.: Better Approximation Schemes for Disk Graphs. In: Arge, L., Freivalds,
R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 316–327. Springer, Heidelberg (2006)

18. Yang, Z., Liu, Y.: Quality of Trilateration: Confidence-Based Iterative Localization. IEEE
Trans. on Parallel and Distributed Systems 21(5), 631–640 (2010)

19. Yao, A.: Probabilistic computations: Toward a unified measure of complexity. In: 18th IEEE
Symp. on Foundations of Computer Science (FOCS), pp. 222–227 (1977)

20. Yi, K., Zhang, Q.: Multi-dimensional online tracking. In: Proc. of the 20th ACM-SIAM
Symp. on Discrete Algorithms (SODA), pp. 1098–1107. SIAM, Philadelphia (2009)

21. Zhao, F., Shin, J., Reich, J.: Information-driven dynamic sensor collaboration. IEEE Signal
Processing Magazine 19(2), 61–72 (2002)



Inducing the LCP-Array

Johannes Fischer�

KIT, Institut für Theoretische Informatik, 76131 Karlsruhe, Germany
johannes.fischer@kit.edu

Abstract. We show how to modify the linear-time construction algo-
rithm for suffix arrays based on induced sorting (Nong et al., DCC’09)
such that it computes the array of longest common prefixes (LCP-array)
as well. Practical tests show that this outperforms recent LCP-array
construction algorithms (Gog and Ohlebusch, ALENEX’11).

1 Introduction

The suffix array [15] is an important data structure in text indexing. It is used
to solve many tasks in string processing, from exact and inexact string matching
to more involved tasks such as data compression, repeat recognition, and text
mining. It is also the basic building block for the more complex text index called
the suffix tree, either indirectly for index construction, or directly when dealing
with compressed suffix trees [21]. In all of the above applications (possibly apart
from exact string matching), the suffix array is accompanied by its sister-array,
the array of longest common prefixes (LCP-array for short).

Since their introduction in the early 1990’s, much research has been devoted
to the fast construction of suffix arrays. Although it is in principle possible to
derive the suffix array from the suffix tree, for which linear-time algorithms
had already been discovered earlier [23], for reasons of time and space the aim
was to construct the suffix array directly, without help of the tree. This long
line of research (see [20] for a good reference) culminated in three linear-time
algorithms [11,13,14]. However, these algorithms were notorious for being “linear
but not fast” [2], as they were slower than other non-linear algorithms that had
been discovered before and continued to be discovered afterwards.

This un-satisfactory situation (at least for theoretical practitioners or practi-
cal theoreticians, who want linear-time algorithms to perform faster than super-
linear ones) changed substantially when in 2009 a new linear-time algorithm
based on induced sorting was presented [18]. A careful implementation of this
approach due to Yuta Mori led to one of the fastest known suffix array construc-
tion algorithms, called sais-lite, often outperforming all other linear or super-
linear implementations known by that time (see http://sites.google.com/
site/yuta256/ for some results). Later, the same author came up with an even
faster implementation, called libdivsufsort, also relying heavily on the idea of
induced sorting.
� Supported by the German Research Foundation (DFG).

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 374–385, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Inducing the LCP-Array 375

Less emphasis has been put on the efficient construction of the LCP-array.
Manber and Myers [15] mentioned that it can be constructed along with their
method for constructing the suffix array, but their algorithm ran in O(n lg n)
time and performed rather poor in practice. Kasai et al. [12] gave an elegant
algorithm for constructing the LCP-array in linear time, given the suffix array.
A few refinements of this algorithm led to improvements in either space [16]
or in running time [10]. However, these algorithms could not compete with the
carefully tuned algorithms for suffix arrays. This led to the odd situation that the
rather difficult task of sorting suffixes could be solved faster than the seemingly
simpler task of computing longest common prefixes.

This situation changed only recently when a theoretically slow O(n2) but
practically fast LCP-array construction algorithm was presented [7]. Their al-
gorithm exploits properties of the Burrows-Wheeler-Transformation (BWT) of
the text, which must be computed before. The authors of [7] also sketch how
their approach yields a linear-time algorithm (for constant alphabets, otherwise
it takes O(n lg σ) time).

Driven by the success of the fast linear-time algorithm based on induced sort-
ing [18], we show in Sect. 3 of this paper how it can be adapted such that it
also induces the LCP-values. This results in a new linear-time algorithm for con-
structing LCP-arrays (for integer alphabets). In Sect. 4 we show that an ad-hoc
implementation of the theoretical ideas leads to a fast practical algorithm that
outperforms all other previous algorithms. An additional advantage of our algo-
rithm is that it does not rely on the BWT, and is hence preferable in situations
where the BWT is not already present (such as compressed suffix arrays not
based on the BWT [17], for example).

Before detailing our theoretical and practical contributions, in Sect. 2 we first
introduce some notations, and then review the induced sorting algorithm for
suffix arrays.

2 Previous Work and Concepts

2.1 Suffix- and LCP-Arrays

Let T = t1 . . . tn be a text consisting of n characters drawn from an ordered
alphabet Σ of size σ = |Σ|. The substring of T ranging from i to j is denoted
by Ti..j , for 1 ≤ i ≤ j ≤ n. The substring Ti..n is called the i’th suffix of T and
is denoted by Si. As usual, for convenience we assume that T ends in a unique
character $ which is not present elsewhere in the text, and that $ < a for all
a ∈ Σ.

The suffix array SA[1, n] of T is a permutation of the integers in [1, n] such
that SSA[i−1] <lex SSA[i] for all 1 < i ≤ n. In other words, SA describes the
lexicographic order of the suffixes. As already mentioned in the introduction,
the suffix array can be built in linear time for integer alphabets.

The array LCP of longest common prefixes is based on the suffix array. It holds
the lengths of the longest common prefixes of lexicographically adjacent suffixes,
in symbols: LCP[i] = max{� ≥ 0 | TSA[i]..SA[i]+�−1 = TSA[i−1]..SA[i−1]+�−1} for



376 J. Fischer

1 < i ≤ n, and LCP[1] = 0. A direct “naive” algorithm emerging from this
definition runs in O(n2) time (compare characters until finding a mismatch).
Again, we already mentioned that there are also algorithms for constructing
LCP in linear time.

2.2 Constructing Suffix Arrays by Induced Sorting

As the basis of our new LCP-array construction algorithm is the induced sorting
algorithm for constructing suffix arrays [18], we explain this latter algorithm
in the following. Induced sorting has a venerable history in suffix sorting, see
[9, 14, 22]. Its basic idea is to sort a certain subset of suffixes, either directly
or recursively, and then use this result to induce the order of the remaining
suffixes. In the rest of this section, we follow the presentation of Okanohara and
Sadakane [19].

Definition 1. For 1 ≤ i < n, suffix Si is said to be S-type if Si <lex Si+1, and
L-type otherwise. The last suffix is defined to be S-type. For brevity, we also use
the terms S- and L-suffixes for suffixes of the corresponding type.

The type of each suffix can be determined in linear time by a right-to-left scan
of T : first, Sn is declared as S-type. Then, for every i from n − 1 to 1, Si is
classified by the following rule:

Si is S-type iff either ti < ti+1, or ti = ti+1 and Si+1 is S-type.

We further say that an S-suffix Si is of type S* iff Si−1 is of type L. (Note
that the S-suffixes still include the S*-suffixes in what follows.)

In SA, all suffixes starting with the same character c ∈ Σ form a consecutive
interval, called the c-bucket henceforth. Observe that in any c-bucket, the L-
suffixes precede the S-suffixes. Consequently, we can sub-divide buckets into
S-type buckets and L-type buckets.

Now the induced sorting algorithm can be explained as follows:

1. Sort the S*-suffixes. This step will be explained in more detail below.
2. Put the sorted S*-suffixes into their corresponding S-buckets, without chang-

ing their order.
3. Induce the order of the L-suffixes by scanning SA from left to right: for every

position i in SA, if SSA[i]−1 is L-type, write SA[i]−1 to the current head of the
L-type c-bucket (c = tSA[i]−1), and increase the current head of that bucket
by one. Note that this step can only induce “to the right” (the current head
of the c-bucket is larger than i).

4. Induce the order of the S-suffixes by scanning SA from right to left : for every
position i in SA, if SSA[i]−1 is S-type, write SA[i] − 1 to the current end
of the S-type c-bucket (c = tSA[i]−1), and decrease the current end of that
bucket by one. Note that this step can only induce “to the left,” and might
intermingle S-suffixes with S*-suffixes.

It remains to explain how the S*-suffixes are sorted (step 1 above). To this
end, we define:



Inducing the LCP-Array 377

Definition 2. An S*-substring is a substring Ti..j with i �= j of T such that
both Si and Sj are S*-type, but no suffix in between i and j is also of type S*.

Let R1, R2, . . . , Rn′ denote these S*-substrings, and σ′ be the number of different
S*-substrings. We assign a name vi ∈ [1, σ′] to any such Ri, such that vi < vj if
Ri <lex Rj and vi = vj if Ri = Rj . We then construct a new text T ′ = v1 . . . vn′

over the alphabet [1, σ′], and build the suffix array SA′ of T ′ by applying the
inducing sorting algorithm recursively to T ′ if σ′ < n′ (otherwise there is nothing
to sort, as then the order of the S*-suffixes is given by the order of the S*-
substrings). The crucial property [18] to observe here is that the order of the
suffixes in T ′ is the same as the order of the respective S*-suffixes in T ; hence,
SA′ determines the sorting of the S*-suffixes in T . Further, as at most every
second suffix in T can be of type S*, the complete algorithm has worst-case
running time T (n) = T (n/2) + O(n) = O(n), provided that the naming of the
S*-substrings also takes linear time, which is what we explain next.

The naming of the S*-substrings is similar to the inducing of the S-suffixes in
the induced sorting algorithm (steps 2–4 above), with the difference that in step
2 we put the unsorted S*-suffixes into their corresponding buckets (hence they
are only sorted according to their first character). Steps 3 and 4 work exactly as
described above. At the end of step 4, we can assign names to the S*-substrings
by comparing adjacent S*-suffixes naively until we find a mismatch or reach their
end; this takes overall linear time.

3 Inducing the LCP-Array

We now explain how the induced sorting algorithm (Sect. 2.2) can be modified
to also compute the LCP-array. The basic idea is that whenever we place two
S- or L-suffixes Si−1 and Sj−1 at adjacent places k − 1 and k in the final suffix
array (steps 3 and 4 in the algorithm), the length of their longest common prefix
can be induced from the longest common prefix of the suffixes Si and Sj . As
the latter suffixes are exactly those that caused the inducing of Si−1 and Sj−1,
we already know their LCP-value � (by the order in which we fill SA), and can
hence set LCP[k] to � + 1.

3.1 Basic Algorithm

We now describe the algorithm in more detail. We augment the steps of the
induced sorting algorithm as follows:

1′. Compute the LCP-values of the S*-suffixes (see Sect. 3.3).
2′. Whenever we place an S*-suffix into its S-bucket, we also store its LCP-value

at the corresponding position in LCP.
3′. Suppose that the inducing step just put suffix SSA[i]−1 into its L-type c-bucket

at position k. If SSA[i]−1 is the first suffix in its L-bucket, we set LCP[k] to 0.
Otherwise, suppose further that in a previous iteration i′ < i the inducing
step placed suffix SSA[i′]−1 at k − 1 in the same c-bucket. Then if i′ and



378 J. Fischer

i are in different buckets, the suffixes SSA[i] and SSA[i′] start with different
characters, and we set LCP[k] to 1, as the suffixes SSA[i]−1 and SSA[i′]−1

share only a common character c at their beginnings. Otherwise (i′ and i
are in the same c′-bucket), the length � of the longest common prefix of the
suffixes SSA[i] and SSA[i′] is given by the minimum value in LCP[i′ + 1, i], all
of which are in the same c′-bucket and have therefore already been computed
in previous iterations. We can hence set LCP[k] to � + 1.

4′. As in the previous step, suppose that the inducing step just put suffix SSA[i]−1

into its S-type c-bucket at position k. Suppose further that in a previous
iteration i′ > i the inducing step placed suffix SSA[i′]−1 at k + 1 in the same
c-bucket (if k is the last position in its S-bucket, we skip the following steps).
Then if i′ and i are in different buckets, their suffixes start with different
characters, and we set LCP[k + 1] to 1, as the suffixes SSA[i]−1 and SSA[i′]−1

share only a common character c at their beginnings. Otherwise (i′ and i
are in the same c′-bucket), the length � of the longest common prefix of the
suffixes SSA[i] and SSA[i′] is given by the minimum value in LCP[i+1, i′], all of
which are in the same c′-bucket and have therefore already been computed.
We can hence set LCP[k + 1] to � + 1.

(We will resolve the problem of computing the LCP-value between the last L-
suffix and the first S-suffix in a bucket at the end of this section.)

3.2 Finding Minima

To find the minimum value in LCP[i′+1, i] or LCP[i+1, i′] (steps 3′ and 4′ above),
we have several alternatives. The simplest idea is to scan the whole interval from
i′ +1 to i; this results in overall O(n2) running time. A better alternative would
be to keep an array M of size σ, such that the minimum is always given by M [c]
if we induce an LCP-value in bucket c. To keep M up-to-date, after each step i
we first set M [c] to LCP[i], and further update all other entries in M that are
larger than LCP[i] by LCP[i]; this approach has O(nσ) running time. A further
refinement of this technique stores the values in M in sorted order and uses
binary search on M to find the minima, similar to the stack used by [7]. This
results in overall O(n lg σ) running time.

Yet, we can also update the minima in O(1) amortized running time, as ex-
plained next. Let us first focus on the left-to-right scan (step 3′); we will comment
on the differences to the right-to-left scan (step 4′) at the end of this section.
Recall that the queries lie within a single bucket (called c′), and every bucket is
subdivided into an L- and an S-bucket. The idea is to also subdivide the query
into an L- and an S-query, and return the minimum of the two. The S-queries
are simple to handle: in step 3′, only S*-suffixes will be scanned, and these are
static. Hence, we can preprocess every S-type bucket with a static data struc-
ture for constant-time range minima, using overall linear space [4, Thm. 1]. The
L-queries are more difficult, as elements keep being written to them during the
scan. However, these updates occur in a very regular fashion, namely in a left-to-
right manner. This makes the problem simpler: we maintain a Two-Dimensional



Inducing the LCP-Array 379

Min-Heap [4, Def. 2] Mc′ for each bucket c′, which is initially empty (no L-
suffixes written so far). When a new L-suffix along with LCP-value � + 1 is
written into its c′-bucket, we climb up the rightmost path of Mc′ until we find
an element x whose corresponding array-entry is strictly smaller than �+1 (Mc′

has an artificial root holding LCP-value −∞ which guarantees that such an el-
ement always exists). The new element is then added as x’s new rightmost leaf;
an easy amortized argument shows that this results in overall linear time. Fur-
ther,Mc′ is stored along with a data structure for constant-time lowest common
ancestor queries (LCAs) which supports dynamic leaf additions in O(1) worst-
case time [3]. Then the minimum in any range in the processed portion of the
L-bucket can be found in O(1) time [4, Lemma 2].1

In the right-to-left scan (step 4′), the roles of the L- and S-buckets are reversed:
the L-buckets are static and the S-buckets dynamic. For the former, we already
have the range minimum data structures from the left-to-right scan (the 2d-
Min-Heaps together with LCA). For the S-buckets, we now build an additional
2d-Min-Heap along with dynamic LCAs; this works because the S-buckets are
filled in a strict right-to-left manner.

What we have described in the preceding two paragraphs was actually more
general than what we really needed: a solution to the semi-dynamic range min-
imum query problem with constant O(1) query- and amortized O(1) insertion-
time, with the restriction that new elements can only be appended at the end (or
beginning, respectively) of the array. Our solution might also have interesting ap-
plications in other problems. In our setting, though, the problem is slightly more
specific: the sizes of the arrays to be prepared for RMQs are known in advance
(namely the sizes of the L- or S-buckets); hence, we can use any of the (more
practical) preprocessing-schemes for (static) RMQs in O(1) worst-case time [1,5],
and update the respective structures, which are essentially precomputed RMQs
over suitably-sized blocks, whenever enough elements have arrived.

3.3 Computing LCP-Values of S*-Suffixes

This section describes how to compute the LCP-values of the suffixes in the
sample set (step 1′ above). The recursive call to compute the suffix array SA′ for
the text T ′ (the text formed by the names of the S*-substrings) also yields the
LCP-array LCP′ for T ′. The problem is that these LCP-values refer to characters
vi in the reduced alphabet [1, σ′], which correspond to S*-substrings Ri in T .
Hence, we need to “scale” every LCP-value in LCP′ by the lengths of the actual
S*-substrings that constitute this longest common prefix: a value LCP′[k] refers
1 Note that it is important to use the Two-Dimensional Min-Heap rather than the

usual Cartesian Tree for achieving overall linear time, for the following reason: Al-
though the Cartesian Tree also has O(1) amortized update-time for the operation
“append at end;” it also needs to relink entire subtrees, rather than only insert-
ing new leaves to the rightmost path [6]. For the relink-operation, no constant-time
solutions exist for maintaining O(1)-LCAs in the tree (not even in an amortized
sense); the best solution we are aware of takes α(·, n) update time [8], α(·, ·) being
the inverse Ackermann function.



380 J. Fischer

to the substring vSA′[k] . . . vSA′[k]+LCP′[k]−1 of T ′, and actually implies an LCP-

value of
∑LCP′[k]−1

i=0 |RSA′[k]+i| between the corresponding S*-suffixes in T .
A naive implementation of this calculation could again result in O(n2) running

time, consider the text T = abab . . .ab. However, we can make use of the fact
that the suffixes of T ′ appear lexicographically ordered in T ′: when “scaling”
LCP′[k], we know that the first m = min(LCP′[k − 1], LCP′[k]) S*-substrings
match, and can hence compute the actual LCP-value as

LCP′[k]−1∑

i=0

|RSA′[k]+i| =
m−1∑

i=0

|RSA′[k]+i|
︸ ︷︷ ︸
already computed

+
LCP′[k]−1∑

i=m

|RSA′[k]+i| .

This way, by an amortized argument it is easy to see that each character in T
contributes to at most 2 additions, resulting in an overall O(n) running time.

It is possible to stop the recursive LCP-calculation at a specified depth and
use any other LCP-array construction algorithm on the remaining (sparse) set
of sorted suffixes.

3.4 Computing LCP-Values at the L/S-Seam

There is one subtlety in the above inducing algorithm we have withheld so far,
namely that of computing the LCP-values between the last L-suffix and the first
S-suffix in a given c-bucket (we call this position the L/S-seam). More precisely,
when reaching an L/S-seam in step 3′, we have to re-compute the LCP-value
between the first S*-suffix in the c-bucket (if it exists) and the last L-suffix in the
same c-bucket (the one that we just induced), in order to induce correct LCP-
values when stepping through the S*-suffixes in subsequent iterations. Likewise,
when placing the very first S-suffix in its c-bucket in step 4′, we need to compute
the LCP-value between this induced S-suffix and the largest L-suffix in the same
c-bucket. (Note that step 4 might place an S-suffix before all S*-suffixes, so we
cannot necessarily re-use the LCP-value computed at the L/S-seam in step 3′.)

The following lemma shows that the LCP-computation at L/S-seams is par-
ticularly easy:

Lemma 1. Let Si be an L-suffix, Sj an S-suffix, and ti = c = tj (the suffixes are
in the same c-bucket in SA). Further, let � ≥ 1 denote the length of the longest
common prefix of Si and Sj. Then

Ti...i+�−1 = c� = Tj...j+�−1 .

Proof. Assume that ti+k = c′ = ti+k for some 2 ≤ k < � and c′ �= c. Then if
c′ < c, both Si and Sj are of type L, and otherwise (c′ > c), they are both of
type S. In any case, this is a contradiction to the assumption that Si is of type
L, and Sj of type S.

In words, the above lemma states that the longest common prefix at the L/S-
seam can only consist of equal characters. Therefore, a naive computation of the



Inducing the LCP-Array 381

LCP-values at the L/S-seam is sufficient to achieve overall linear running time:
every character ti contributes at most to the computation at the L/S-seam in
the ti-bucket, and not in any other c-bucket for c �= ti.

4 Experimental Results

We implemented a prototype of the algorithm from the previous section in C
and ran several tests on an AMD Dual Core Opteron 270, running at 2.0 GHz
with a 1MB L2-cache per core and 4GB of main memory.2 The basis of our
implementation was Yuta Mori’s linear-time C-implementation of the induced-
sorting algorithm [18], called sais-lite version 2.4.1 (http://sites.google.com/
site/yuta256/sais). We made the following implementation decisions: instead
of calculating the LCP-values of the S*-suffixes recursively, we used a sparse
variant of the Φ-algorithm [10] immediately on the first level, which calculates
the LCP-values of the S*-suffixes in overall linear time. For the inducing step,
we used the O(nσ)-variant described by Gog and Ohlebusch [7, Sect. 4] (we
constrained the stack size to about 10kB as in their implementations). The
resulting algorithm is called inducing henceforth. Its space consumption (apart
from negligibly small arrays) is no more than that of sais-lite plus the space for
the final LCP-array, since the arrays needed by the sparse Φ-algorithm can be
first stored within the LCP-array and subsequently be overwritten with actual
LCP-values.

We compared our implementation to the following LCP-array construction
algorithms:

KLAAP: the original linear-time method for constructing LCP [12], imple-
mented in a space-saving variant [16].

Φ: the Φ-algorithm of Kärkkäinen et al. [10], which is a clever variant of KLAAP
that avoids cache-misses by reorganizing the computations.

GO: the hybrid algorithm as described by [7]. It needs the Burrows-Wheeler-
Transformation (BWT) for LCP-array construction, and computes small
LCP-values naively, from which the larger LCP-values are deduced.

GO2: a semi-external variant of GO [7].
naive: for a sanity check, we also included the naive O(n2)-computation of the

LCP-array (step through the suffix array and compare the corresponding
suffixes character by character).

We used the implementations from the succinct data structures library (sdsl
0.9.0) [7] wherever possible. All programs were compiled using the same compiler
options (-ffast-math -O9 -funroll-loops -DNDEBUG).

We chose the test suite from http://pizzachili.dcc.uchile.cl/ for eval-
uation, which is by now a de-facto standard. It includes texts from natural lan-
guages (English), biology (dna and proteins), and structured documents
(dblp.xml and sources). Because the authors of [7] point out that the human

2 The source code is available at http://algo2.iti.kit.edu/1829.php



382 J. Fischer

Table 1. Running times (user+system in seconds) for LCP- and suffix-array construc-
tion. The first block of columns shows the running times for pure LCP-array construc-
tion (for KLAAP and Φ, these times include construction of the inverse suffix- and the
Φ-array, respectively). The second block shows the construction times of those arrays
that need to be constructed before LCP: SA (always) and BWT (for GO and GO2).
The third block shows the overall running times for computing both SA and LCP for
the best possible combinations of algorithms.

pure LCP-array construction SA BWT SA+LCP

K
L
A

A
P

[1
2
]

Φ
[1

0
]

G
O

[7
]

G
O

2
[7

]

n
ai

ve

in
d
u
ci

n
g
(∗

)
[t
h
is

p
a
p
er

]

d
iv

su
fs

or
t

sa
is
-l
it
e

G
O

+
B

W
T

+
d
iv

su
fs

or
t

n
ai

ve
+

d
iv

su
fs

or
t

in
d
u
ci

n
g
+

sa
is
-l
it
e

2
0
M

B

dna 7.4 6.4 4.2 6.3 3.3 3.7 4.9 6.8 2.7 11.8 8.2 10.5
english 6.4 5.7 10.1 12.4 135.0 4.0 4.9 6.5 2.7 17.7 139.9 10.5

dblp.xml 5.6 5.2 4.3 6.1 3.9 3.7 4.0 5.5 2.6 10.9 7.9 9.2
sources 5.3 5.0 4.6 6.8 4.1 3.5 3.5 5.4 2.2 10.3 7.6 8.9

proteins 6.3 5.7 7.8 9.9 11.9 3.8 5.1 7.3 2.5 15.4 17.0 11.1

hs (33MB) 12.6 10.9 6.9 10.2 4.8 6.2 8.2 10.9 4.3 19.4 13.0 17.1

5
0
M

B

dna 21.2 18.2 10.9 15.8 9.0 10.2 14.2 18.0 7.0 32.1 23.2 28.2
english 15.1 16.3 21.5 27.2 198.4 11.0 13.5 18.0 6.9 41.9 211.9 29.0

dblp.xml 15.1 14.2 10.9 15.5 10.3 9.8 11.1 14.3 6.4 28.4 21.4 24.1
sources 14.7 13.7 14.8 20.2 18.5 9.3 9.7 14.4 5.8 30.3 28.2 23.7

proteins 19.7 17.3 15.7 21.1 19.5 11.0 15.8 22.3 6.8 38.3 35.3 33.3

1
0
0
M

B

dna 47.8 41.3 22.3 32.6 19.1 22.7 32.3 38.9 15.1 69.7 51.4 61.6
english 41.6 36.5 39.0 49.1 556.3 25.0 29.8 39.7 14.7 83.5 586.1 64.7

dblp.xml 31.8 30.0 22.0 31.5 21.9 20.9 24.2 29.6 13.3 59.5 46.1 50.5
sources 30.2 28.7 28.3 38.5 111.2 19.4 20.9 30.2 12.3 61.5 132.1 49.6

proteins 43.4 36.7 36.0 47.0 51.7 24.3 35.4 48.5 14.6 86.0 87.1 72.8

2
0
0
M

B

dna 104.6 92.7 46.2 66.9 55.2 51.3 76.3 87.0 33.2 155.7 131.5 138.3
english 91.7 81.5 83.0 103.7 3272.4 56.5 68.8 88.8 31.8 183.6 3341.2 145.3

dblp.xml 69.7 64.9 44.6 64.0 46.8 50.4 53.3 63.6 27.9 125.8 100.1 114.0
sources 66.8 62.4 58.7 79.7 142.0 32.4 46.4 65.2 26.3 131.4 188.4 97.6

proteins 92.8 83.4 82.5 104.0 124.4 36.8 76.4 103.6 31.5 190.4 200.8 140.4

(∗) As inducing is inherently coupled with SA-construction (sais-lite in our implemen-
tation), the running times for pure LCP-array construction were calculated by taking
the difference of “inducing+sais-lite” and “sais-lite.”



Inducing the LCP-Array 383

chromosome 22 from Manzini’s corpus (hs) is a particular hard case for some
algorithms, it was also included.

The results are shown in Tbl. 1. The first block of columns shows the run-
ning times for pure LCP-array construction. For KLAAP and Φ, these times
include construction of the inverse suffix- and the Φ-array, respectively, as they
are needed for LCP-array computation. For GO and GO2, the times for com-
puting the BWT are not included; the reason is that in some cases the BWT is
also needed for other purposes, so it might already be in memory. As inducing is
inherently coupled with SA-construction [18], we could not measure its running
times for pure LCP-array construction directly; the figures in column “inducing”
of Tbl. 1 are hence obtained by first running the pure SA-construction (sais-lite),
then the combined LCP- and SA-construction, and finally taking the difference
of both running times. Measured this way, inducing takes almost always less time
than all other methods.

A fairer comparison of the algorithms is shown in the last three columns of
Tbl. 1, where the combined running times for SA- and LCP-array construc-
tion are given (for a selection of the best-performing LCP-algorithms). This
is because all other methods for LCP-array construction are independent of
the method for constructing SA, and can hence be combined with faster SA-
construction algorithms. It is by now widely agreed that Yuta Mori’s divsufsort
in version 2.0.1 is the fastest known such algorithm (http://code.google.com/
p/libdivsufsort/). Hence, for methods GO and naive we give the overall run-
ning times combined with divsufsort, whereas for inducing we give the overall
running time of sais-lite, adapted to induce LCP-values as well. Further, for
GO we also add the times to compute the BWT, as it is needed for LCP-array
construction.

Inspecting the results from Tbl. 1, we see that inducing+sais-lite is usually
the best possible combination, sometimes outperformed by naive+divsufsort. In
fact, the naive algorithm is rather competitive (especially for small inputs up
to 50MB), apart from the English text, which consists of long repetitions of the
same texts (and hence has large average LCP).

5 Conclusions and Outlook

We showed how the LCP-array can be induced along with the suffix array. A
rather ad-hoc implementation outperformed all state-of-the-art algorithms. We
point out the following potentials for practical improvements: (1) As suffix- and
LCP-values are always written to the same place, an interleaved storage of SA
and LCP could result in fewer cache misses. (2) As the faster divsufsort is also
based on induced sorting, incorporating our ideas into that algorithm could result
in better overall performance. (3) Computing the LCP-values of the S*-suffixes
recursively up to a certain (well-chosen) depth could be faster than just using
the Φ-algorithm on level 0, as in our implementation.



384 J. Fischer

Acknowledgments

We thank Moritz Kobitzsch for help on programming, and Peter Sanders for
interesting discussions.

References

1. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: A sur-
vey and a new algorithm for a distributed environment. Theory Comput. Syst. 37,
441–456 (2004)

2. Antonitio, Ryan, P.J., Smyth, W.F., Turpin, A., Yu, X.: New suffix array algorithms
— linear but not fast? In Proc. Fifteenth Australasian Workshop Combinatorial
Algorithms (AWOCA), pages 148–156, 2004.

3. Cole, R., Hariharan, R.: Dynamic LCA queries on trees. SIAM J. Comput. 34(4),
894–923 (2005)

4. Fischer, J.: Optimal succinctness for range minimum queries. In: López-Ortiz, A.
(ed.) LATIN 2010. LNCS, vol. 6034, pp. 158–169. Springer, Heidelberg (2010)

5. Fischer, J., Heun, V.: A new succinct representation of RMQ-information and
improvements in the enhanced suffix array. In: Chen, B., Paterson, M., Zhang, G.
(eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 459–470. Springer, Heidelberg (2007)

6. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for ge-
ometry problems. In: Proc. STOC, pp. 135–143. ACM Press, New York (1984)

7. Gog, S., Ohlebusch, E.: Fast and lightweight LCP-array construction algorithms.
In: Proc. ALENEX, pp. 25–34. SIAM Press, Philadelphia (2011)

8. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SIAM J. Comput. 13(2), 338–355 (1984); See also FOCS 1980

9. Itoh, H., Tanaka, H.: An efficient method for in memory construction of suffix
arrays. In: Proc. SPIRE/CRIWG, pp. 81–88. IEEE Press, Los Alamitos (1999)

10. Kärkkäinen, J., Manzini, G., Puglisi, S.J.: Permuted longest-common-prefix array.
In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009 Lille. LNCS, vol. 5577, pp. 181–
192. Springer, Heidelberg (2009)

11. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 1–19 (2006)

12. Kasai, T., Lee, G., Arimura, H., Arikawa, S., Park, K.: Linear-time longest-
common-prefix computation in suffix arrays and its applications. In: Amir, A.,
Landau, G.M. (eds.) CPM 2001. LNCS, vol. 2089, pp. 181–192. Springer, Heidel-
berg (2001)

13. Kim, D.K., Sim, J.S., Park, H., Park, K.: Constructing suffix arrays in linear time.
J. Discrete Algorithms 3(2-4), 126–142 (2005)

14. Ko, P., Aluru, S.: Space efficient linear time construction of suffix arrays. J. Discrete
Algorithms 3(2-4), 143–156 (2005)

15. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

16. Manzini, G.: Two space saving tricks for linear time LCP array computation. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 372–383.
Springer, Heidelberg (2004)

17. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Sur-
veys 39(1), Article No. 2 (2007)



Inducing the LCP-Array 385

18. Nong, G., Zhang, S., Chan, W.H.: Linear suffix array construction by almost pure
induced-sorting. In: Proc. DCC, pp. 193–202. IEEE Press, Los Alamitos (2009)

19. Okanohara, D., Sadakane, K.: A linear-time burrows-wheeler transform using in-
duced sorting. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 90–101. Springer, Heidelberg (2009)

20. Puglisi, S.J., Smyth, W.F., Turpin, A.: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys 39(2) (2007)

21. Sadakane, K.: Compressed suffix trees with full functionality. Theory of Computing
Systems 41(4), 589–607 (2007)

22. Seward, J.: On the performance of BWT sorting algorithms. In: Proc. DCC, pp.
173–182. IEEE Press, Los Alamitos (2000)

23. Weiner, P.: Linear pattern matching algorithms. In: Proc. Annual Symp. on Switch-
ing and Automata Theory, pp. 1–11. IEEE Computer Society, Los Alamitos (1973)



Horoball Hulls and Extents in Positive Definite Space�

P. Thomas Fletcher, John Moeller, Jeff M. Phillips,
and Suresh Venkatasubramanian

University of Utah

Abstract. The space of positive definite matrices P(n) is a Riemannian mani-
fold with variable nonpositive curvature. It includes Euclidean space and hyper-
bolic space as submanifolds, and poses significant challenges for the design of
algorithms for data analysis. In this paper, we develop foundational geometric
structures and algorithms for analyzing collections of such matrices. A key tech-
nical contribution of this work is the use of horoballs, a natural generalization of
halfspaces for non-positively curved Riemannian manifolds. We propose gener-
alizations of the notion of a convex hull and a centerpoint and approximations of
these structures using horoballs and based on novel decompositions of P(n). This
leads to an algorithm for approximate hulls using a generalization of extents.

1 Introduction

Data analysis and Euclidean geometry have traditionally been strongly linked, by rep-
resenting data as points in a Euclidean space and comparing data using the Euclidean
distance. However, as models for data analysis grow more sophisticated, it is becoming
clearer that accurate modeling of data requires the use of non-Euclidean geometry and
the induced geodesic distances. This geometry might be as simple as a surface embed-
ded in a Euclidean space but in general may be represented as a Riemannian manifold
with variable curvature [4].

One such manifold is P(n), the manifold of real symmetric positive definite matrices.
There are many application areas where the basic objects of interest, rather than points
in Euclidean space, are elements of P(n). In diffusion tensor imaging [3], matrices in
P(3) model the flow of water at each voxel of a brain scan, and a goal is to cluster these
matrices into groups that capture common flow patterns along fiber tracts. In mechanical
engineering [11], stress tensors are modeled as elements of P(6), and identifying groups
of similar tensors helps locate homogeneous regions in a material from samples. Kernel
matrices in machine learning are elements of P(n) [26], and motivated by the problems
of learning and approximating kernels for machine learning tasks, there has been recent
interest in studying the geometry of P(n) and related spaces [20,7,28].

In all these areas, a problem of great interest is the analysis [15,16] of collections
of such matrices (finding central points, clustering, doing regression). It is important to
note that in all these examples, the Riemannian structure of P(n) is a crucial element
of the modelling process: merely treating the matrices as points in R

n2
and endowing

� This research was supported in part by NSF awards SGER-0841185 and CCF-0953066 and a
subaward to the University of Utah under NSF award 0937060 to CRA.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 386–398, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Horoball Hulls and Extents in Positive Definite Space 387

the space with the Euclidean distance1 does not capture the correct notion of distance
or closeness that is meaningful in these applications [22,21,27,25,23]. For example, if
we want to interpolate between two matrices of similar volume (determinant), a line
between the two in R

n2
contains matrices of volume well outside the range of volumes

of the two matrices, but all matrices on a Riemannian geodesic have volume in the
range.

Performing data analysis in such spaces requires the standard geometric toolkit that
has proven successful for Euclidean data: methods for summarizing data sets (extents
and core sets), finding representatives (centerpoints), and even performing accurate
sampling (VC dimension estimates and ε-samples). In order to compute these objects,
we need appropriate generalizations of the equivalent concepts in Euclidean spaces.

Our Contributions. In this paper we initiate a study of geometric algorithms on P(n).
We develop appropriate generalizations of halfspaces and convex hulls and also prove
bounds on the VC-dimension of associated range spaces. We apply these results to the
problem of estimating approximate extents for collections of matrices in P(n), as well
as studying approximate center points for such collections. Our results indicate that
the horoball (a generalization of a halfspace) retains many, but not all, of the same
combinatorial and structural properties of halfspaces, and is therefore a crucial building
block for designing algorithms in this space.

1.1 Hulls and Convexity: From R
d to P(n)

P(n) is a good model space for algorithmic analysis. Like other Cartan-Hadamard
(C-H) manifolds [8], its metric balls under the geodesic distance are (geodesically)
convex, which is an important property2. P(n) has been extensively studied analyti-
cally, and there are simple closed form expressions for geodesics, the geodesic distance
and other important constructs (see Section 2 for details). This is in contrast to other
negatively-curved spaces like the δ -hyperbolic spaces [17], where in general one must
assume some oracle to compute distances between points.

However, the variable curvature of P(n) poses significant challenges for the con-
struction of standard geometric primitives. A natural notion of a halfspace that is both
“flat” and “convex” seems elusive, and it is not even clear whether a finite description
of the geodesic convex hull of 3 points exists! To understand why this is the case, and
why generalizing convex hulls to P(n) is difficult, it is helpful to first understand the
key properties used to define these notions in Euclidean space. In general, we desire a
compact representation of the convex hull of a set of points. Call this property (C):

(C): Given a finite set of points X , the convex hull C(X) of X has a finite description
using simple convex objects.

Euclidean hulls. In Euclidean space, the “simple convex objects” are halfspaces,
which satisfy two properties:

1 In other words, computing the Frobenius distance between matrices.
2 Compare this with even simple positively curved manifolds like the n-dimensional sphere, in

which this is no longer true.



388 P.T. Fletcher et al.

(P1) The complement of a closed halfspace is an open halfspace; both are convex.
Their boundary, a hyperplane, is also convex.

(P2) Generically, d hyperplanes intersect at a single point and n hyperplanes partition
R

d into Θ(nd) regions.

These two properties can be used to construct the convex hull (satisfying property
(C)) efficiently in two different ways. Painting Segments: Given a finite set X0 ⊂ R

d

we can paint segments between all x1,x2 ∈ X0; the union of these segments yields a set
X1. We can recursively apply this procedure d times to generate 〈X2, . . . ,Xd〉, where Xd

is the convex hull of X0 [5]. This is the convex combination of X0, and the boundary
is partitioned into a finite number of faces uniquely determined by painting segments
among d-point subsets of X0.

Intersection of Convex Families: The convex hull of X ⊂ R
d is the intersection of

all halfspaces which contain X ; we only need to consider the finite set of halfspaces
supported by d points. We can also define the convex hull of X as the intersection of
all balls which contain X . Again we only need to consider balls supported by d points;
fixing this incidence, let their radius grow to infinity so they become halfspaces in the
limit; see Figure 1(a).

Hyperbolic hulls. The first space we encounter as we move beyond Euclidean space
towards P(n) is the hyperbolic space H

d , which is a Riemannian manifold of constant
negative curvature. It is convenient to embed H

d in the unit ball of R
d using well-known

models, specifically the Klein model [8, I.6] of H
d in which geodesics are straight lines,

and the Poincaré model [8, I.6] of H
d in which metric balls are Euclidean balls and

geodesics are circular arcs normal to the boundary of the unit ball.
Since in the Klein model, geodesics are straight lines, the painting segments con-

struction yields a convex hull in the same way as in Euclidean space; see Figure 1(b).
Similarly, a hyperbolic halfspace can be written as the intersection of the unit ball with
a Euclidean halfspace, and so a finite description of the convex hull can be obtained via
the intersection of halfspaces; see Figure 1(c).

Hulls in P(n). Once we reach P(n), these concepts break down. There is no way, in
general, to construct a halfspace (convex, and whose complement is convex) supported
by d points; such an object is called a totally geodesic submanifold and might not pass

(a) (b) (c) (d)

Fig. 1. Illustration of different constructions of hulls in R
2 (a) and H

2 under the Klein
model (b,c) and Poincaré model (d). (a) Intersection of halfspaces, one halfspace as limit
of ball supported by 2 points. (b) Painting segments, X0 as circles, X1 as segments, and X2
shaded. (c) Intersection of hyperbolic-halfspaces, forming the convex hull. (d) Intersection
of horoballs, forming the ball hull.



Horoball Hulls and Extents in Positive Definite Space 389

through any given set of d points. This rules out constructions via the intersection of
convex families. Constructing a hull via painting of segments also does not work; the
resulting process may not terminate in a finite number of steps, and the resulting object
might be full-dimensional, and would not in general lend itself to a finite description.

There is however another way to approach the idea of halfspaces. Returning to H
d

and the Poincaré model, consider a ball fixed at a point whose radius is allowed to
grow to infinity. Such a ball is called a horoball, and is convex. In Euclidean space, this
construction yields a halfspace passing through the fixed point, but in a curved space,
the ball never completely “flattens” out in the sense of property (P1). Horoballs can be
described finitely by a point and a tangent vector (in the same way a Euclidean halfspace
can be described by a point and a normal). We can then describe the intersection of
all horoballs containing X , which we call the ball hull; it is convex and contains the
convex hull of X ; see Figure 1(d). In the rest of this paper, we will focus our attention
on horoballs and the ball hull.

1.2 Technical Overview

A key conceptual insight in this work is that the horoball acts functionally like a half-
space, and can be used as a replacement for halfspace in spaces (like P(n)) which do
not in general admit halfspaces that span arbitrary sets of points. As justification for
this insight, our main result is an algorithm for computing an approximate ball hull of
a set of points in P(n), where the approximation uses a generalized notion of extent de-
fined analogously to how (hyperplane) extent is defined in R

d . The construction itself
follows the rough outline of approximate extent constructions in R

d . In fact, we exploit
the fact that P(n) admits a decomposition into a collection of Euclidean subspaces, each
“indexed” by an element of SO(n), the group of n×n rotation matrices, and use a grid
construction to cover SO(n) with a net, followed by building convex hulls in each of
the (finitely many) Euclidean subspaces induced by the net and combining them. We
expect that this decomposition will be of independent interest.

We announce two other uses of horoballs, with details in the full version. We can
define range spaces of horoballs, and we analyze shatter dimension and VC-dimension
of P(2). We also use these results to study center points in P(n).

1.3 Related Work

The mathematics of Riemannian manifolds, Cartan-Hadamard manifolds, and P(n) is
well-understood; the book by Bridson and Haefliger [8] is an invaluable reference on
metric spaces of nonpositive curvature, and Bhatia [5] provides a detailed study of P(n)
in particular. However, there are very few algorithmic results for problems in these
spaces. To the best of our knowledge, the only prior work on algorithms for positive
definite space are the work by Moakher [22] on mean shapes in positive definite space,
the work by Fletcher and Joshi [15] on principal geodesic analysis in symmetric spaces,
the robust median algorithms of Fletcher et al [16] for general manifolds (including
P(n) and SO(n)), and the generic approximation technique of Arnaudon and Nielsen [2]
for the Riemannian 1-center.



390 P.T. Fletcher et al.

Geometric algorithms in hyperbolic space are much more tractable. The Poincaré and
Klein models of hyperbolic space preserve different properties of Euclidean space, and
many algorithm carry over directly with no modifications. Leibon and Letscher [19]
were the first to study basic geometric primitives in general Riemannian manifolds,
constructing Voronoi diagrams and Delaunay triangulations for sufficiently dense point
sets in these spaces. Their work was subsequently improved by Dyer et al. [13]. Epp-
stein [14] described hierarchical clustering algorithms in hyperbolic space.

δ -hyperbolic spaces [17] (metric spaces that “look” negatively curved without nec-
essarily having a smooth notion of curvature) have also been studied. Krauthgamer and
Lee [18] studied the nearest neighbor problem for points in δ -hyperbolic space. Chepoi
et al [9,10] advanced this line of research, providing algorithms for computing the diam-
eter and minimum enclosing ball of collections of points in δ -hyperbolic space. Work
by Billera et al. [6] showed how to model the space of phylogenetic trees as a spe-
cific CAT(0) space [8, II.1]; work by Owen and Provan investigated how to efficiently
compute geodesics in such a space [24].

2 Preliminaries

In this section we present the basic algebra and geometry needed to understand our
technical results without additional outside references. P(n) is the manifold consisting
of symmetric positive-definite real matrices. As a manifold, it has a Euclidean tangent
space TpP(n) at each point p, represented by the space of symmetric matrices S(n). A
point in the tangent space represents a vector tangent to a curve that passes through the
point p. The velocity of a particle moving along such a curve, for example, would be
represented by a vector in TpP(n) when it passes through p.

A geodesic through a point p is a special curve determined entirely by a tangent
vector A ∈ TpP(n). This relationship between the tangent space and the manifold is

realized by the exp map expp : S(n)→ P(n), defined as expp(A) = pep−1A, where eX

is just the matrix exponential. If c(t) is a geodesic with tangent A at c(0) = p, then
c(t) = expp(tA). For simplicity, we often assume that p = I so expI(A) = eA. The exp
map has a simple intuition: in Euclidean space, expp(u) = p+ u; that is, we just move
from the point p to another point that is in the direction of u, ‖u‖ units away.

We can then measure distance between two points on the manifold by finding a
geodesic between them, solving for the unknown tangent vector, and measuring its
length. The exp map is invertible, and its inverse is the log map, logp : P(n)→ S(n),
given by logp(q) = p log(p−1q), where log is the inverse of the matrix exponential. P(n)
is also endowed with the special property that expp is invertible across the entire mani-
fold, letting us measure distance between any two points. Because P(n) is a Riemannian

manifold, TpP(n) has an inner product 〈A,B〉p = tr(p−1Ap−1B), and ‖A‖p =
√
〈A,A〉p.

The resulting metric is then D(p,q) = ‖ logp(q)‖ =
√

tr(log(p−1q)2). Usually we as-
sume that ‖A‖p = 1, meaning that a geodesic’s parameter t equals distance traveled.

As mentioned before, P(n) is a Riemannian manifold of non-positive curvature. Its
exp map is surjective, which enables us to talk about geodesics between any two points
on the manifold. Therefore we need not concern ourselves with a radius of convexity; a
convex subset of P(n) need not be bounded. Another important property of P(n) is that



Horoball Hulls and Extents in Positive Definite Space 391

it is symmetric. This means that there is always an isometry that moves a point p to a
point q without altering the metric properties of the manifold, offering the equivalent of
translation invariance. A good reference for the reader is [8, II.10].

Structure of P(2). Worth mentioning is the specific 3-dimensional manifold P(2),
which has a structure that we exploit frequently. P(2) is isometric to R×P(2)1, where
P(2)1 is the same as H

2 with a factor of 1/
√

2 on the metric. P(2)1 is so named because
it represents the submanifold of P(2) containing all p.d. matrices of determinant 1.
Intuitively, we can think of this as a “stack” of hyperbolic spaces, leading us further
to a cylindrical representation of the space (see Figure 2). Decomposing a matrix p
as (r, p′) = er/2 · p′, we can represent the (log) determinant of p as r. Using a polar
representation, we can break p′ down further and realize the anisotropy, or ratio of
eigenvalues, as a radial coordinate. Since the eigenvectors form a rotation matrix, we
take the angle of this rotation (times 2) as the remaining coordinate.

2.1 Busemann Functions and Horoballs

In R
d , the convex hull of a finite set can be described by a finite number of hyperplanes

each supported by d points from the set. A hyperplane through a point may also be
thought of as the limiting case of a sphere whose center has been moved away to infinity
while a point at its surface remains fixed. This notion of “pulling away to infinity” can
be formalized: given a geodesic ray c(t) : R

+→M on a Cartan-Hadamard manifold M,
a Busemann function bc : M→R is defined bc : p 
→ limt→∞ D(p,c(t))−t. An important
property of bc is that it is convex [8, II.8].

As an example, we can easily compute the Busemann function in R
n for a ray

c(t) = tu, where u is a unit vector. Since limt→∞
1
2t (‖p− tu‖+ t)= 1,

bc(p) = lim
t→∞

1
2t

(
‖p− tu‖2− t2) =−〈p,u〉 .

A horoball Br(bc)⊂M is a sublevel set of bc; that is, Br(bc) is the set of all p ∈M
such that bc(p)≤ r (recall Figure 1). Since bc is convex, any sublevel set of it is convex,
and hence any horoball is convex. Continuing with the example of Euclidean space,
horoballs are simply halfspaces: all p ∈ R

d such that −〈p,u〉 ≤ r.

3 Ball Hulls

We now introduce our variant of the convex hull in P(n), which we call the ball hull.
For a subset X ⊂ P(n), the ball hull B(X) is the intersection of all horoballs that also
contain X :

B(X) =
⋂

bc,r

Br(bc), X ⊂ Br(bc).

Properties of the ball hull. Recall that the ball hull can be seen as an alternate
generalization of the Euclidean convex hull (i.e. via intersection of halfspaces) to P(n).
Furthermore, since it is the intersection of closed convex sets, it is itself guaranteed to be
closed and convex (and therefore C(X)⊆B(X)). We can also show that it shares critical
parts of its boundary with the convex hull (Theorem 1), but unfortunately, we cannot



392 P.T. Fletcher et al.

represent it as a finite intersection of horoballs (Theorem 2). We state these theorems
here, and defer proofs to the full version.

Theorem 1. Every x ∈ X (X finite) on the boundary of B(X) is also on the boundary
of C(X) (i.e., X ∩∂B(X)⊆ X ∩∂C(X)).

Theorem 2. In general, the ball hull cannot be described as the intersection of a finite
set of horoballs.

3.1 The ε-Ball Hull

Theorem 2 indicates that we cannot maintain a finite representation of a ball hull. How-
ever, as we show in this section, we can maintain a finite-sized approximation to the ball
hull. Our approximation will be in terms of extents; intuitively, a set of horoballs ap-
proximates the ball hull if a geodesic traveling in any direction traverses approximately
the same distance inside the ball hull as it does inside the approximate hull.

horoextent

In Euclidean space, we can capture extent by measuring the dis-
tance between two parallel hyperplanes that sandwich the set. The
analogue to this construction in P(n) is the horoextent, the distance
along a geodesic between two opposing horoballs. Let c(t) = qetq−1A

be a geodesic, and X ⊂ P(n). The horoextent Ec(X) with respect to c
is defined as:

Ec(X) =
∣
∣
∣
∣max

p∈X
bc+(p)+ max

p∈X
bc−(p)

∣
∣
∣
∣ ,

where bc+ is the Busemann function created when we follow c+(t) = c(t) to infinity as
normal, while bc− is the Busemann function created when we follow the geodesic point-
ing in the opposite direction, c−(t) = qetq−1(−A) = c(−t). Stated differently: bc+(p) =
limt→+∞(D(c(t), p)− t), and bc−(p) = limt→−∞(D(c(t), p)+ t). Observe that for any
c, Ec(X) = Ec(C(X)) = Ec(B(X)).

In Euclidean space, the distance between parallel planes is a constant. In general,
because of the effects of curvature, the distance between horoballs depends on the
geodesic used. For instance in P(n), horofunctions are nonlinear, so the distance be-
tween opposing horoballs is not constant. The width of the intersection of the opposing
horoballs is taken along the geodesic c, and a geodesic is described by a point q and a
direction A. We fix the point q so that we need only choose a uniform grid of directions
A for our approximation.

An intersection of horoballs is called an ε-ball hull with origin q (Bε,q(X)) if for all
geodesic rays c such that c(0) = q, |Ec(Bε,q(X))−Ec(X)| ≤ ε. For convenience, we
assume that I ∈ C(X) (this assumption will be removed in the full version), and our
origin q = I. Then we will refer to Bε ,I(X) as just an ε-ball hull Bε(X).

We will use DX ≤ diam(X) = maxp,q∈X D(p,q) in our bounds; see the full version
for more precise definition, and note diam(X) is an intrinsic parameter of the data.

4 Constructing the ε-Ball Hull

Main result. In this section we construct a finite-sized ε-ball hull.



Horoball Hulls and Extents in Positive Definite Space 393

Theorem 3. Let Γn(ε,DX ) = (sinh(DX )/ε)n−1. For a set X ⊂ P(n) of size N (for con-
stant n), we can construct an ε-ball hull of size O(Γn(ε,DX ) · (DX/ε)(n−1)/2) in time
O(Γn(ε,DX ) · ((DX/ε)n−3/2 + N)). Furthermore, we can construct a coreset Y ⊂ X of
size O(Γn(ε,DX ) · (DX/ε)(n−1)/2) whose (ε/2)-ball hull is an ε-ball hull of X.

Proof overview. We make extensive use of a structural decomposition in our proof.
But first it will be helpful to define a flat. Let us define a subspace of a manifold as the
result of applying expp to each point of a subspace of the tangent space TpP(n). If the
resulting submanifold is isometric to a Euclidean space, then it is called a flat. A flat has
the important property of being convex (in general a subspace is not). One canonical
example of a flat is the subspace of positive sorted diagonal matrices.

P(n) can then be realized as the union of a set of n-dimensional flats, and the space
can be parameterized by a rotation matrix Q ∈ SO(n), one for each flat F . The inter-
section of these flats is the line of multiples of I. In P(2), we can picture these flats as
panes in a revolving door; see Figure 2(a).

We construct ε-ball hulls by discretizing P(n) in two steps. First, we show that within
a flat F (i.e., given a rotation Q ∈ SO(n)) we can find a finite set of minimal horoballs
exactly, or we can use ε-kernel machinery [1] to approximate this structure. This is done
by showing an equivalence between halfspaces in F and horoballs in P(n) in Section
4.1. This result implies that computing all minimal horoballs with respect to a rotation
Q is equivalent to computing a convex hull in Euclidean space.

Second, we show that instead of searching over the entire space of rotations SO(n),
we can discretize it into a finite set of rotations such that when we calculate the horoballs
with respect to each of these rotations, the horoextents of the resulting ε-ball hull are
not too far from those of the ball hull. In order to do this, we prove a Lipschitz bound
for horofunctions (and hence horoextents) on the space of rotations.

Proving this theorem is quite technical. We first prove a Lipschitz bound in P(2),
where the space of rotations is a circle (as in Figure 2(b)). After providing a bound
in P(2) we decompose the distance between two rotations in SO(n) into �n/2� angles
defined by 2×2 submatrices in an n×n matrix. In this setting it is possible to apply the
P(2) Lipschitz bound �n/2� times to get the full bound. We present the proof for P(2)
in Section 4.2, and the generalization to P(n) in Section 4.3. Finally, we combine these
results in an algorithm in Section 4.4.

4.1 Decomposing P(n) into Flats

A critical operation associated with the decomposition (illustrated in Figure 2) is the
horospherical projection function πF : P(n)→ F that maps a point p ∈ P(n) to a point
πF(p) in a n-dimensional flat F . For each Busemann function bc there exists a flat F for
which it is invariant under the associated projection πF ; that is, bc(p) = bc(πF (p)) for
all p∈ P(n). Using πF for associated geodesic c(t) = etA where A∈ S(n), the Busemann
function bc : P(n)→ R can be written [8, II.10]

bc(p) =− tr(A log(πF(p))).
It is irrelevant which point is chosen for the origin of the geodesic ray, so we usually
assume that it is chosen in such a way that bc(I) = 0 in P(n).



394 P.T. Fletcher et al.

horospheres

2-flat

log(·)

(a) (b) (c) (d) (e)

Fig. 2. (a) P(2) as revolving door, (b) projection of X ⊂ P(2) onto det(x) = 1, (c) X ⊂ P(2),
(d) a flat in P(2), (e) flat of P(2) under log(·) map. Two horospheres drawn in views (b-d).

In P(2) it is convenient to visualize Busemann functions through horospheres. We
can embed P(2) in R

3 where the log of the determinant of elements grows along one
axis. The orthogonal planes contain a model of hyperbolic space called the Poincaré
disk that is modeled as a unit disk, with boundary at infinity represented by the unit
circle. Thus the entire space can be seen as a cylinder, as shown in Figure 2(c). Within
each cross section with constant determinant (Figure 2(b)), the horoballs are disks tan-
gent to the boundary at infinity. Within each flat F (Figure 2(d)) under a log(·) map
(Figure 2(e)) the horoballs are halfspaces. The full version provides a more technical
treatment of this decomposition and proofs of technical lemmas.

Rotation of Busemann functions. The following lemma describes how geodesics
(and horofunctions) are transformed by a rotation. In particular, this allows us to pick a
flat where computation of bc is convenient, and rotate the point set by Q to compute bc

instead of attempting computation of bc′ directly.

Lemma 1. For p ∈ P(n), rotation matrix Q, geodesics c(t) = etA and c′(t) = etQAQT
,

then bc′(p) = bc(QT pQ).
Projection to k-flat. We now establish an equivalence between horoballs and half-
spaces. That is, after we compute the projection of our point set, we can say that the
point set X lies inside a horoball Br(bc) if and only if its projection πF(X) lies inside a
halfspace Hr of F (recall that F is isometric to a Euclidean space under log).

Lemma 2. For any horoball Br(bc), there is a halfspace Hr ⊂ log(F)⊂ S(n) such that
log(πF(Br(bc))) = Hr.

Proof. If bc(p)≤ r, p ∈ P(n), and c(t) = etA, then− tr(A log(πF(p)))≤ r. Since πF(p)
is positive-definite, log(πF (p)) is symmetric. But tr((·)(·)) defines an inner product
on the Euclidean space of symmetric n× n matrices. Then the set of all Y such that
− tr(AY )≤ r defines a halfspace Hr whose boundary is perpendicular to A. Furthermore,
given a matrix ν such that b(ν pνT ) ≤ r (see the full version), we can compute νeY νT

for every Y ∈ Hr, so every such Y maps back to an element of Br(bc). ��

4.2 A Lipschitz Bound in P(2)

To show our Lipschitz bound we analyze the deviation between two flats with similar
directions. Since any two flats F and F ′ are identified with rotations Q and Q′, we can
move a point from F to F ′ simply by applying the rotation QT Q′, and measure the angle
θ between the flats. If we consider a geodesic c ⊂ F we can apply QT Q′ to c to get c′,
then for any point p ∈ P(n) we bound |bc(p)− bc′(p)| as a function of θ . Technical
proofs are in the full version.



Horoball Hulls and Extents in Positive Definite Space 395

Rotations in P(2). We start with some technical lemmas that describe the locus of
rotating points in P(2).

Lemma 3. Given a rotation matrix Q ∈ SO(2) corresponding to an angle of θ/2, Q
acts on a point p∈P(2) via QpQT as a rotation by θ about the (geodesic) axis etI = et I.

By Lemma 3, as we apply a rotation to p, it moves in a circle. Because any rotation Q
has determinant 1, det(QpQT ) = det(p). This leads to the following corollary:

Corollary 1. In P(2), the radius of the circle that p travels on is D(
√

det(p)I, p). Such
a circle lies entirely within a submanifold of constant determinant.

In fact, any submanifold P(2)r of points with determinant equal to some r ∈ R
+ is

isometric to any other such submanifold P(2)s for s ∈ R
+. This is easily seen by con-

sidering the distance function tr(log(p−1q)); the determinants of p and q will cancel.
We pick a natural representative of these submanifolds, P(2)1. This submanifold forms
a complete metric space of its own that has special structure:

Lemma 4. P(2)1 has constant sectional curvature −1/2.

To bound the error incurred by discretizing the space of directions, we need to under-
stand the behavior of bc as a function of a rotation Q. We show that the derivative of a
geodesic is constant on P(n).

Lemma 5. For a geodesic ray c(t) = etA where ‖A‖= 1, then ‖∇bc‖= 1 at any point
p ∈ P(n).

Lipschitz condition on Busemann functions in P(2).

Theorem 4. Consider Q∈ SO(2) corresponding to θ/2, c(t) = etA, and c′(t) = etQT AQ.
Then for any p ∈ X

|bc(p)− bc′(p)| ≤ |θ | ·
√

2sinh

(
DX√

2

)

.

Proof. The derivative of a function f along a curve γ(t) has the form
〈
∇ f |γ(t),γ ′(t)

〉
,

and has greatest magnitude when the tangent vector γ ′(t) to the curve and the gra-
dient ∇ f |γ(t) are parallel. When this happens, the derivative reaches its maximum at
‖∇ f |γ(t)‖ · ‖γ ′(t)‖. Since ‖∇bc‖= 1 anywhere by Lemma 5, the derivative of bc along
γ at γ(t) is bounded by ‖γ ′(t)‖. We are interested in the case where γ(θ ) is the circle
in P(2) defined by tracing Q(θ/2)pQ(θ/2)T for all −π < θ ≤ π . By Corollary 1, we
know that this circle has radius D(

√
det(p)I, p)≤D(I, p)≤DX and lies entirely within

a submanifold of constant determinant, which by Lemma 4 also has constant curvature
κ =−1/2. This implies that

‖γ ′(θ )‖=
1√
−κ

sinh(
√
−κ r) =

√
2sinh

(
D(

√
det(p)I, p)√

2

)

≤
√

2sinh

(
DX√

2

)

for any value of θ ∈ (−π,π] [8, I.6]. Then

|bc(p)− bc′(p)|= |bc(p)−bc(QT pQ)| ≤ |θ | ·
√

2sinh

(
DX√

2

)

. ��



396 P.T. Fletcher et al.

4.3 Generalizing to P(n)

Now to generalize to P(n) we need to decompose the projection operation πF(·) and the
rotation matrix Q. We can compute πF recursively, and it turns out that this fact helps
us to break down the analysis of rotations. Since we can decompose any rotation into
a product of �n/2� 2× 2 rotation matrices, decomposing the computation of πF in a
similar manner lets us build a Lipschitz condition for P(n). The full version formalizes
rotation decompositions we use.

Theorem 5 (Lipschitz condition on Busemann functions in P(n)). Consider a set
X ⊂P(n), a rotation matrix Q∈ SO(n) corresponding to an angle θ/2, geodesics c(t)=
etA and c′(t) = etQAQT

. Then for any p ∈ X

|bc(p)− bc′(p)| ≤ |θ | ·
⌊n

2

⌋
·
√

2sinh

(
DX√

2

)

.

Proof. Every rotation Q may be decomposed into a product of rotations, relative to
some orthonormal basis B; that is, Q = B(Q1Q2 · · ·Qk−1Qk)BT where k = �n/2� and
Qi is a 2× 2 subblock rotation corresponding to an angle θi/2 with |θi| ≤ |θ |. Now
applying Lemma 1, we can factor out B: c′(t) = etQAQT

= etB(Q1···Qk)BT AB(QT
k ···Q

T
1 )BT

, and
let ĉ′(t) = et(Q1···Qk)Â(QT

k ···Q
T
1 ), where Â = BT AB. This means that bc′(p) = bĉ′(BT pB) =

bĉ′(p̂) for p̂ = BT pB. Also, since c(t) = etA = etBÂBT
, bc(p) = bĉ(p̂) for ĉ(t) = etÂ.

From this point we will omit the “hat” notation and just assume the change of basis.

Then |bc(p)− bc′(p)|=
∣
∣
∣
∣

k

∑
i=1

(bi−1
c′ (p)−bi

c′(p))
∣
∣
∣
∣≤

k

∑
i=1

|bi−1
c′ (p)− bi

c′(p)|,

where b0
c′(p) = bc(p) and bi

c′(p) is bc(p) with the first i rotations successively ap-
plied, so bi

c′(p) = bc(QT
i · · ·QT

1 pQ1 · · ·Qi). Then by Theorem 4 |bi−1
c′ (p)− bi

c′(p)| ≤
|θi| ·
√

2sinh
(

DX√
2

)
, and therefore, since for all i we have |θi| ≤ |θ |,

|bc(p)− bc′(p)| ≤
(

k

∑
i=1
|θi|

)

·
√

2sinh

(
DX√

2

)

≤ |θ | ·
⌊n

2

⌋
·
√

2sinh

(
DX√

2

)

. ��

4.4 Algorithm

For X ⊂ P(n) we can construct ε-ball hull as follows. We place a grid Gε on SO(n) so
that for any Q′ ∈ SO(n), there is another Q ∈ Gε such that the angle between Q and
Q′ is at most (ε/4)/(2�n/2�

√
2sinh(DX /

√
2)). For each Q ∈ Gε , we consider πF(X),

the projection of X into the associated n-flat F associated with Q. Within F , we build
an (ε/4DX)-kernel [1] KF of log(πF(X)), and return the horoball associated with the
hyperplane passing through each facet of C(KF) in F , using the transformation specified
in Lemma 2. (This step can be replaced with an exact convex hull of log(πF(X)).) This
produces a coreset of X for extents, K =

⋃
F KF for all F associated with a Q ∈Gε .

To analyze this algorithm we can now consider any direction Q′ ∈ SO(n) and a ho-
rofunction bc′ that lies in the associated flat F ′. There must be another direction Q ∈Gε
such that the angle between Q and Q′ is at most (ε/4)/(2�n/2�

√
2sinh(DX /

√
2)). Let

bc be the similar horofunction to bc′ , except it lies in the flat F associated with Q. This
ensures that for any point p ∈ X , we have |bc′(p)−bc(p)| ≤ ε/4. Also, for p ∈ X , there



Horoball Hulls and Extents in Positive Definite Space 397

is a q ∈ KF such that bc(p)−bc(q)≤ (ε/4DX) ·DX = ε/4. Thus bc′(p)−bc(q)≤ ε/2.
Since Ec′(X) depends on two points in X , and each point p changes at most ε/2 from
bc′(p) to bc(q), we can argue that |Ec′(X)−Ec(K)| ≤ ε. Since this holds for any direc-
tion Q′ ∈ SO(n), the returned set of horoballs defines an ε-ball hull.

Let Γn(ε,DX ) = (sinh(DX)/ε)n−1. For constant n, the grid Gε is size O(Γn(ε,DX )).
In each flat, the (ε/4DX )-kernel is designed to have convex hull with O((ε/DX )(n−1)/2)
facets [1,12], and can be computed in O(N +(DX/ε)n−3/2) time. Thus a ε-ball hull rep-
resented as the intersection of O(Γn(ε,DX ) · (DX/ε)(n−1)/2) horoballs can be computed
in O(Γn(ε,DX ) · ((DX/ε)n−3/2 + N)) time, proving Theorem 3.

Acknowledgements. We sincerely thank the anonymous reviewers for their many
insightful comments and for their time digesting our work.

References

1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points.
JACM 51 (2004)

2. Arnaudon, M., Nielsen, F.: On Approximating the Riemannian 1-Center, arXiv:1101.4718v1
(2011)

3. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Bio-
phys. J. 66(1), 259–267 (1994)

4. Belkin, M., Niyogi, P.: Semi-supervised learning on Riemannian manifolds. Machine Learn-
ing 56(1), 209–239 (2004)

5. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2006)
6. Billera, L., Holmes, S., Vogtmann, K.: Geometry of the Space of Phylogenetic Trees. Ad-

vances in Applied Mathematics 27(4), 733–767 (2001)
7. Bonnabel, S., Sepulchre, R.: Riemannian metric and geometric mean for positive semidefi-

nite matrices of fixed rank. SIAM J. on Matr. Anal. & App. 31(3), 1055–1070 (2010)
8. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Springer, Heidelberg

(2009)
9. Chepoi, V., Dragan, F., Estellon, B., Habib, M., Vaxès, Y.: Diameters, centers, and approxi-

mating trees of delta-hyperbolicgeodesic spaces and graphs. In: SoCG (2008)
10. Chepoi, V., Estellon, B.: Packing and covering δ -hyperbolic spaces by balls. In: Charikar, M.,

Jansen, K., Reingold, O., Rolim, J.D.P. (eds.) RANDOM 2007 and APPROX 2007. LNCS,
vol. 4627, pp. 59–73. Springer, Heidelberg (2007)

11. Cowin, S.: The structure of the linear anisotropic elastic symmetries. Journal of the Mechan-
ics and Physics of Solids 40, 1459–1471 (1992)

12. Dudley, R.M.: Metric entropy of some classes of sets with differentiable boundaries. Journal
of Approximation Theory 10, 227–236 (1974)

13. Dyer, R., Zhang, H., Möller, T.: Surface sampling and the intrinsic Voronoi diagram. In: SGP,
pp. 1393–1402 (2008)

14. Eppstein, D.: Squarepants in a tree: Sum of subtree clustering and hyperbolic pants decom-
position. ACM Transactions on Algorithms (TALG) 5 (2009)

15. Fletcher, P.T., Joshi, S.: Principal geodesic analysis on symmetric spaces: Statistics of diffu-
sion tensors. Com. Vis. & Math. Methods Med. Biomed. Im. Anal, 87–98 (2004)

16. Fletcher, P.T., Venkatasubramanian, S., Joshi, S.: The geometric median on Riemannian man-
ifolds with application to robust atlas estimation. NeuroImage 45, S143–S152 (2009)



398 P.T. Fletcher et al.

17. Gromov, M.: Hyperbolic groups. Essays in Group Theory 8, 75–263 (1987)
18. Krauthgamer, R., Lee, J.R.: Algorithms on negatively curved spaces. In: FOCS (2006)
19. Leibon, G., Letscher, D.: Delaunay triangulations and Voronoi diagrams for Riemannian

manifolds. In: SoCG (2000)
20. Meyer, G., Bonnabel, S., Sepulchre, R.: Regression on fixed-rank positive semidefinite ma-

trices: a Riemannian approach, arXiv:1006.1288 (2010)
21. Moakher, M.: A Differential Geometric Approach to the Geometric Mean of Symmetric

Positive-Definite Matrices. SIAM J. on Matr. Anal. & App. 26 (2005)
22. Moakher, M., Batchelor, P.G.: Symmetric positive-definite matrices: From geometry to ap-

plications and visualization. In: Visualization and Processing of Tensor Fields (2006)
23. Nesterov, Y., Todd, M.: On the Riemannian geometry defined by self-concordant barriers and

interior-point methods. FoCM 2(4), 333–361 (2008)
24. Owen, M., Provan, J.: A Fast Algorithm for Computing Geodesic Distances in Tree Space,

arXiv:0907.3942 (2009)
25. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing.

IJCV 66(1), 41–66 (2006)
26. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis, Cambridge (2004)
27. Smith, S.: Covariance, subspace, and intrinsic Cramér-Rao bounds. IEEE Transactions on

Signal Processing 53(5), 1610–1630 (2005)
28. Vandereycken, B., Absil, P., Vandewalle, S.: A Riemannian geometry with complete

geodesics for the set of positive semidefinite matrices of fixed rank. status: submitted (2010)



Enumerating Minimal Subset Feedback Vertex

Sets�

Fedor V. Fomin1, Pinar Heggernes1, Dieter Kratsch2, Charis Papadopoulos3,
and Yngve Villanger1

1 Department of Informatics, University of Bergen, Norway
{fedor.fomin,pinar.heggernes,yngve.villanger}@ii.uib.no

2 LITA, Université Paul Verlaine – Metz, France
kratsch@univ-metz.fr

3 Department of Mathematics, University of Ioannina, Greece
charis@cs.uoi.gr

Abstract. The Subset Feedback Vertex Set problem takes as in-
put a weighted graph G and a vertex subset S of G, and the task is
to find a set of vertices of total minimum weight to be removed from
G such that in the remaining graph no cycle contains a vertex of S.
This problem is a generalization of two classical NP-complete problems:
Feedback Vertex Set and Multiway Cut. We show that it can be
solved in time O(1.8638n) for input graphs on n vertices. To the best
of our knowledge, no exact algorithm breaking the trivial 2nnO(1)-time
barrier has been known for Subset Feedback Vertex Set, even in the
case of unweighted graphs. The mentioned running time is a consequence
of the more general main result of this paper: we show that all minimal
subset feedback vertex sets of a graph can be enumerated in O(1.8638n)
time.

1 Introduction

Given a graph G = (V, E) and a set S ⊆ V , a subset feedback vertex set of (G, S)
is a set X ⊆ V such that no cycle in G[V \X ] contains a vertex of S. A subset
feedback vertex set is minimal if no proper subset of it is a subset feedback
vertex set. Given a weighted graph G with positive real weights on its vertices
and S as input, the Subset Feedback Vertex Set problem is the problem
of finding a subset feedback vertex set X of (G, S) such that the sum of weights
of the vertices in X is minimized.

Subset Feedback Vertex is a generalization of several well-known prob-
lems. When S = V , it is equivalent to the classical NP-hard Feedback Vertex
Set problem [10]. When |S| = 1, it generalizes the Multiway Cut problem.
Given a set T ⊆ V , called terminals, a multiway cut of (G, T ) is a set of ver-
tices whose removal from G disconnects every pair of terminals. Given a graph
G = (V, E), with weights on its vertices, and T ⊆ V , the Multiway Cut prob-
lem is the problem of computing a multiway cut of total minimum weight. It
� This work is supported by the Research Council of Norway.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 399–410, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



400 F.V. Fomin et al.

follows that this is a special case of Subset Feedback Vertex Set by adding
a singleton vertex with a large weight to the set S and making it adjacent to all
terminals in T . The unweighted versions of the three above mentioned problems
are obtained when the weight of every vertex of the input graph is 1. For fur-
ther results on variants of multiway cut problems see [2,11] and for connections
between variants of the subset feedback vertex set problem and the multiway
cut problems see also [4]. Subset Feedback Vertex Set was first studied
by Even et. al. who obtained a constant factor approximation algorithm [5]. In
this paper we are interested in an exact solution of Subset Feedback Vertex
Set. This does not seem to have been studied before, whereas there are a series
of exact results on Feedback Vertex Set. Razgon [13] gave the first improve-
ment over the trivial exact algorithm for unweighted Feedback Vertex Set.
This result has been improved by Fomin et. al. [6,9]. A minimum feedback vertex
set in an unweighted graph can be computed in O(1.7548n) time [6]. Further-
more, all minimal feedback vertex sets can be enumerated in O(1.8638n) time
[6]. The latter result implies that a minimum weight feedback vertex set can
be computed in O(1.8638n) time. So far, this is the best known algorithm for
Feedback Vertex Set. Fixed parameter tractability of Subset Feedback
Vertex Set was raised as an open question in [1], and only recently it was
proved to be fixed parameter tractable [4], whereas Feedback Vertex Set
has long been known to be fixed parameter tractable [3,12,14].

In this paper, we show that Subset Feedback Vertex Set can be solved in
time O(1.8638n). Prior to our result, no algorithm breaking the trivial 2nnO(1)-
time barrier has been known, even for the unweighted version of the problem.
As our main result, we give an algorithm that enumerates all minimal subset
feedback vertex sets of (G, S) and runs in O(1.8638n) time. Thus our running
time matches the best-known algorithm for enumerating all minimal feedback
vertex sets [6]. While the general branching approach for enumerating the subset
feedback vertex sets is similar to the one enumerating the feedback vertex sets
[6], we introduce and use here several non-trivial ideas and new techniques for
the subset variant of the problem. As mentioned above, our enumeration algo-
rithm can be trivially adapted to an algorithm computing a minimum weight
subset feedback vertex set in time O(1.8638n). Furthermore, by making use of
the reduction above, our algorithm can be used to enumerate all minimal mul-
tiway cuts within the same running time. As a consequence, we are also able to
solve Multiway Cut in time O(1.8638n). To our knowledge, this is the first
non-trivial exact algorithm for the solution of this latter problem, even for its
unweighted version. Some proofs has been moved due to space restrictions.

2 Preliminaries

All graphs in this paper are undirected and with weights on their vertices. All
graphs are simple unless explicitly mentioned; in particular input graphs are
always simple, but during the course of our algorithm, multiple edges are in-
troduced due to contraction of edges. A graph is denoted by G = (V, E) with
vertex set V and edge set E. We use the convention that n = |V | and m = |E|.



Enumerating Minimal Subset Feedback Vertex Sets 401

Each vertex v ∈ V is assigned a weight that is a positive real number. For a
vertex set X ⊆ V the weight of X is the sum of the weights of all vertices in X ,
and the subgraph of G induced by X is denoted by G[X ]. The neighborhood of a
vertex v of G is N(v) = {x | vx ∈ E}. For X ⊆ V , N(X) =

⋃
x∈X N(x) \X . In

this paper, we distinguish between paths (cycles) and induced paths (induced
cycles). A path (cycle) of G is induced if there are no edges in G between non-
consecutive vertices of the path (cycle). An edge of G is called a bridge if its
removal increases the number of connected components. A forest is a graph that
contains no cycles and a tree is a forest that is connected. The contraction of
edge {u, v} removes u and v from the graph, and replaces them with a new
vertex that is incident with every edge that was incident with u or v. If we say
that edge {u, v} is contracted to u, then u takes the role of the new vertex after
the contraction. Clearly, multiple edges might result from this operation.

Note that a minimum weight (or simply minimum) subset feedback vertex set
is dependent on the weights of the vertices, whereas a minimal subset feedback
vertex set is only dependent on the vertices and not their weights. Clearly, both
in the weighted and the unweighted versions, a minimum subset feedback vertex
set must be minimal.

3 Enumeration of All Minimal Subset Feedback Vertex
Sets

Let G = (V, E) be a graph and let S ⊆ V . In this section we give an algorithm
that enumerates all minimal subset feedback vertex sets of (G, S).

We define an S-forest of G to be a vertex set Y ⊆ V such that G[Y ] contains
no cycle with a vertex from S. An S-forest Y is maximal if no proper superset of
Y is an S-forest. Observe that X is a minimal subset feedback vertex set if and
only if Y = V \X is a maximal S-forest. Thus, the problem of enumerating all
minimal subset feedback vertex sets is equivalent to the problem of enumerating
all maximal S-forests. Thus we present an algorithm enumerating all maximal
S-forests of the input graph G which is equivalent to enumerating all subset
feedback vertex sets of (G, S).

Our algorithm is a branching algorithm consisting of a sequence of reduction
and branching rules. The running time of the algorithm is up to a polynomial
factor proportional to the number of generated subproblems, or to the number
of nodes of the branching tree. For more information on branching algorithms
and Measure & Conquer analysis of such algorithms we refer to [8].

In our algorithm each subproblem corresponding to a leaf of the branching
tree will define an S-forest, and each maximal S-forest will be defined by one
leaf of the branching tree. Each of the reduction and branching rules will reduce
the problem instance by making progress towards some S-forest.

To incorporate all information needed in the algorithm we use so-called red-
blue S-forests. Given a set B ⊆ V of blue vertices with B ∩ S = ∅ and a
set R ⊆ V of red vertices with R ⊆ S, a maximal red-blue S-forest of G is a
maximal S-forest Y of G such that R ∪ B ⊆ Y . If the set R ∪ B of vertices



402 F.V. Fomin et al.

have the property that no two red vertices, or no two blue vertices, are adjacent,
then we say that the red-blue coloring of these vertices is a proper 2-coloring.
Let RBF (G, S, R, B) be the set of all maximal red-blue S-forests in G. Hence
a maximal S-forest Y is an element of RBF (G, S, R, B) if R ∪B ⊆ Y . Observe
that the problem of enumerating all maximal S-forests of G is equivalent to
enumerating all elements of RBF (G, S, ∅, ∅). We refer to the vertices of V \(R∪B)
as non-colored. Before proceeding with the description of the algorithm, we need
the following observations concerning the set RBF (G, S, R, B).

Observation 1. Let Y = R ∪ B be an S-forest of G that is an element of
RBF (G, S, R, B). Let G′ be the graph obtained from G[Y ] by contracting every
edge whose endpoints have the same color, giving the resulting vertex that same
color, and removing self loops and multiple edges. Then G′ is a forest. Moreover,
red and blue vertices form a proper 2-coloring of G′.

Let Y be an S-forest of G and let u ∈ V \ Y . If G[Y ∪ {u}] contains an induced
cycle Cu that contains u and some vertex of S, then we say that Cu is a witness
cycle of u.

Observation 2. Let Y be a maximal S-forest of G. Then every vertex u ∈ V \Y
has a witness cycle Cu.

We are ready to proceed with the description of the enumeration algorithm. The
description of the algorithm is given by a sequence of reduction and branching
rules. We always assume that the rules are performed in the order in which they
are given (numbered), such that a rule is only applied if none of the previous
rules can be applied.

Initially all vertices of G are non-colored. Vertices that are colored red or blue
have already been decided to be in every maximal S-forest that is an element
of RBF (G, S, R, B). For a non-colored vertex v, we branch on two subproblems,
and the cardinality of RBF (G, S, R, B) is the sum of cardinalities of the sets
of maximal S-forests that contain v and those that do not. The first set is
represented by coloring vertex v red or blue, and second set is obtained by
deleting v. This partitioning defines a naive branching, where a leaf is reached
when there is at most one maximal S-forest in the set. We define the following
two procedures, which take as input vertex v and RBF (G, S, R, B).

Coloring of vertex v:
– if v ∈ S then proceed with RBF (G, S, R ∪ {v}, B);
– if v /∈ S then proceed with RBF (G, S, R, B ∪ {v}).

Deletion of vertex v:
– proceed with RBF (G[V \ {v}], S \ {v}, R, B).

After the description of each of the Rules 1-12, we argue that the rule is sound,
which means that there is a one-to-one correspondence between the maximal S-
forests in the problem instance and the maximal S-forests in the instances of
the subproblem(s). We start to apply the rules on instance RBF (G, S, ∅, ∅).



Enumerating Minimal Subset Feedback Vertex Sets 403

Rule 1. If G has a vertex of degree at most 1 then remove this vertex from the
graph.

Rule 1 is sound because a vertex of degree zero or one does not belong to any
cycle. Furthermore, when a vertex of degree zero or one is removed, every vertex
that previously belonged to a cycle still belongs to a cycle and maintains degree
at least two.

Note that removal of vertex v means that v belongs to every element of the set
RBF (G, S, R, B). We emphasize that there is a crucial difference to Deletion
of vertex v which means that the non-colored vertex v belongs to no element
of RBF (G, S, R, B). Such a removal of a vertex belonging to every element of
RBF (G, S, R, B) is done in Rules 1, 4 and 5 and it necessitates the backtracking
part of our algorithm to be explained later.

Rule 2. If R = ∅, and S �= ∅ then select an arbitrary non-colored vertex v ∈
S, and branch into two subproblems. One subproblem is obtained by applying
Deletion of v and the other by Coloring of v.

Rule 2 is sound for the following reason. Only vertices of S are colored red. Thus
if R = ∅, all vertices of S are non-colored vertices. For every maximal S-forest
Y , we have that either v ∈ Y (corresponding to Coloring of v), or v �∈ Y
(corresponding to Deletion of v).

After the application of Rule 2 there always exists a red vertex, unless S = ∅
when we reached a leaf of the branching tree. For many of the following rules
we need to fix a particular vertex t of the S-forest R∪B. We call it pivot vertex
t. If no pivot vertex exists (at some step a pivot vertex might be deleted), we
apply the following rule to select a new one.

Rule 3. If there is no pivot vertex then select a red vertex as new pivot vertex t.

The following reduction rule is to ensure (by making use of Observation 1) that
the graph G[R ∪B] induces a forest and that the current red-blue coloring is a
proper 2-coloring of this forest.

Rule 4. If there are two adjacent red vertices u, v, then contract edge {u, v} to
u to obtain a new graph G′. Let Z be the set of non-colored vertices that are
adjacent to u via multiple edges in G′. If v was the pivot then use u as new pivot
t. Proceed with problem instance RBF (G′ \ Z, S \ ({v} ∪ Z), R \ {v}, B).

Observe that Rule 4 corresponds to applying Deletion of w for every vertex
w of Z. Let us argue why this rule is sound. If a vertex w belongs to Z, then
because u, v ∈ S, we have that w cannot be in any S-forest of G. Thus applying
Deletion of this vertex does not change the set of maximal S-forests. Finally,
every cycle of length more than 3 in G corresponds to a cycle of length at least
3 in the reduced instance.

Rule 5. If there are two adjacent blue vertices u, v, then contract edge {u, v} to
u to obtain a new graph G′. Let Z be the set of non-colored vertices of S that



404 F.V. Fomin et al.

are adjacent to u via multiple edges in G′. We replace each set of multiple edges
between u and a vertex of Z with a single edge. If t ∈ {u, v} then use u as pivot
t. New problem instance is RBF (G′ \ Z, S \ Z, R, B \ {v}).

Observe that Rule 5 corresponds to applying Deletion of w for every vertex w
of Z. No vertex of Z can be in an S-forest containing u and v. Thus applying
Deletion of the vertices of Z is sound. As with the previous rule, every cycle
of length more than 3 in G corresponds to a cycle of length at least 3 in the
reduced instance. We conclude that Rule 5 is sound.

If none of Rules 1-5 can be applied to the current instance, and in particular
Rules 4 and 5 cannot be applied, we can assume that R∪B induces a forest and
that the red-blue coloring is a proper 2-coloring of this forest. We will call such
a forest (tree) a red-blue forest (tree).

Rule 6. If a non-colored vertex v has at least two distinct neighbors w1, w2 in
the same connected component of G[R ∪B], then apply Deletion of v.

As we already mentioned, the connected component of G[R ∪ B] that contains
w1 and w2 is a properly 2-colored red-blue tree T . Let w1, u1, u2, . . . , up = w2,
p ≥ 1, be the unique induced path in T between w1 and w2. Then either w1

or u1 is a red vertex, and thus no element of RBF (G, S, R, B) contains v. This
shows that Rule 6 is sound.

Let Tt be the vertices of the connected component of G[R ∪ B] containing
the pivot vertex t. Consider a non-colored vertex v adjacent to a vertex of the
red-blue tree G[Tt]. Observe that v has exactly one neighbor w in Tt, by Rule 6.
By Observation 2, every vertex u, which is not in a maximal S-forest Y , should
have a witness cycle Cu such that all vertices of Cu except u are in Y . Hence
every vertex u �∈ Y has at least two neighbors in Y . Since we cannot apply Rule 6
on vertex v, this implies that if v is not in Y , at least one of the vertices from
N(v) \ Tt is in Y .

For a non-colored vertex v adjacent to a vertex of Tt, we define vertex set
P (v) to be the set of non-colored vertices adjacent to v or reachable from v via
induced red-blue paths in G[V \ Tt]. Let w be the unique neighbor of v in Tt.
We define vertex set PW (v) to be the subset of P (v) consisting of every vertex
x of P (v) for which at least one of the following conditions holds:

P1 {w, v, x} ∩ S �= ∅,
P2 x �∈ N(w), or
P3 there exists an induced red-blue path from x to v in G[V \Tt] containing at

least one red vertex.

See Fig. 1 for an example of sets P (v) and PW (v). The intuition behind the
definition of PW (v) is the following. If vertex v does not belong to any maximal
S-forest Y of G, then there is a witness cycle Cv. This cycle Cv may pass through
some connected components of G[R ∪ B] and some non-colored vertices. If we
traverse Cv starting from v and avoiding Tt, then the first non-colored vertex we
meet will be a vertex of PW (v). Note that the vertex set PW (v) can easily be
computed in polynomial time.



Enumerating Minimal Subset Feedback Vertex Sets 405

a

v

t

w

c

b

d

Fig. 1. Let S∩{a, b, c, d, v} = ∅ and set P (v) = {a, b, c, d}. Vertex a ∈ PW (v) by (P2),
d ∈ PW (v) by (P3). Vertices b and c do not belong to PW (v).

Observation 3. For every vertex x ∈ PW (v)∩N(Tt), there is an induced cycle
containing x and v and at least one vertex of S.

Observation 4. Let v be a non-colored vertex adjacent to a vertex of Tt. If
there is an induced cycle C in G that contains v and some vertex of S, then C
contains also at least one vertex of P (v).

Lemma 5. A witness cycle Cv of a vertex v contains a vertex of PW (v).

Proof. Let us assume that v is not contained in a maximal S-forest Y , and let
Cv be a witness cycle for v. By Observation 4, Cv contains at least one vertex x
of P (v).

If x ∈ PW (v), we are done with the proof. Otherwise, by Observation 4,
x ∈ P (v) \ PW (v). As a consequence, v, w, x �∈ S, x is adjacent to w, and every
induced red-blue path from v to x in G[V \ Tt] contains only blue vertices.

Let us now trace the induced cycle Cv, starting from v on the path to x using
only blue vertices. By definition, no vertex on the path from v to x is contained
in S. Continue now in the same direction along Cv until a vertex of S is reached.
The cycle has to return to v without passing through vertex w; otherwise the
edge {x, w} would be a chord of Cv contradicting the fact that Cv is an induced
cycle. The path from x to v containing a vertex of S cannot be a red-blue path
as this contradicts the definition of x. As a consequence, Cv contains a second
vertex x′ of P (v) \PW (v). Maximal S-forest Y contains w because it is colored
blue, and Cv \Y = {v} due to the maximality. Now we have a contradiction since
the path P from x to x′ on Cv not containing v, contains at least one vertex of
S, and because of the edges {x, w} and {x′, w}, the graph G[P ∪ {w}] induces a
cycle containing a vertex of S. 	


The following rules depend on the cardinality of the set PW (v). Rules 7 and 8
are sound due to Lemma 5.

Rule 7. If PW (v) = ∅ then apply Coloring of v.

Rule 8. If PW (v) = {x} then branch into two subproblem instances: one ob-
tained by applying Deletion of v and then Coloring of x, and the other obtained
by applying Coloring of v.



406 F.V. Fomin et al.

Rule 9. If |PW (v)| ≥ 2 and PW (v) ⊆ N(Tt) then branch into two subproblem
instances: one obtained by applying Coloring of v and then Deletion of x to
all vertices x ∈ PW (v), and the other obtained by Deletion of v.

To see that Rule 9 is sound, observe that vertex v is either colored, or deleted. By
Observation 3, for each vertex x ∈ PW (v) the induced subgraph G[Tt ∪ {x, v}]
contains a cycle with a vertex of S and the non-colored vertices v and x. Thus
either x or v has to be deleted, for every x ∈ PW (v). When Rule 9 can not be
applied, at least one of the vertices in PW (v) is not contained in N(Tt).

Rule 10. If PW (v) = {x1, x2} and x1 �∈ N(Tt) then branch into three subprob-
lem instances. The first one is obtained by applying Coloring of v. The second
by Deletion of v and then Coloring of x1. The third one by applying Deletion
of v and x1 and then Coloring of x2.

Let us remark that vertex v is either colored or deleted. If v is deleted then by
Lemma 5, either x1 or x2 is contained in the witness cycle Cv. This shows that
Rule 10 is sound.

Rule 11. If PW (v) = {x1, x2, x3} and x1 �∈ N(Tt) then branch into four sub-
problem instances. The first instance is obtained by applying Coloring of v. The
second by Deletion of v and then Coloring of x1. The third by Deletion of
v and x1 and then Coloring of x2. The fourth by Deletion of v, x1, x2 and
Coloring of x3.

Again, the soundness of this rule follows by Lemma 5.

Rule 12. If |PW (v)| ≥ 4 then create two problem instances: one obtained by
applying Coloring of v, and the other obtained by applying Deletion of v.

This rule is sound because v is either colored or deleted.
We call an instance non-reducible if none of Rules 1-12 can be applied to it.

Such an instance corresponds to a leaf of the branching tree of our algorithm.
The following property of non-reducible instances of the the red-blue S-forest
problem is crucial for our arguments.

Lemma 6. Let (G, S, B, R) be an instance. If none of the Rules 1–12 can be
applied then RBF (G, S, R, B) contains at most one maximal red-blue S-forest.
Moreover, this forest can be computed in polynomial time.

Proof. If S = ∅ then trivially the only maximal S-forest of G is V . Let us assume
that S �= ∅. With every rule we either remove a vertex, select a pivot vertex, color
a vertex, delete a vertex or contract an edge. Rule 2 guarantees that the set of
red vertices is not empty. Rule 3 ensures that a pivot vertex t is selected. Rules 1,
2 and 4–12 can be applied as long as there are non-colored neighbors of red-blue
tree Tt. When the set N(Tt) becomes empty then Tt is completely removed by
Rule 1. Then the algorithm selects a new pivot vertex t and component Tt by
making use of Rule 3. Thus the conditions that none of the rules can be applied
and S �= ∅, yield that V = R ∪B. But then the only possible maximal S-forest
Y of RBF (G, S, R, B) is Y = R ∪B. 	




Enumerating Minimal Subset Feedback Vertex Sets 407

We are finally in the position to describe the algorithm. The algorithm enumer-
ates all elements of RBF (G, S, ∅, ∅) by applying Rules 1–12 in priority of their
numbering as long as possible. Let F be the set of all non-reducible instances
produced by the application of the rules. These are the instances corresponding
to the leaves of the branching tree. By Lemma 6, for each non-reducible instance
of F there is at most one red-blue S-forest which can be computed in polynomial
time. To enumerate all maximal S-forests of the input graph, we have to add
to each S-forest of an instance of F all vertices which were possibly removed
by applications of some of the rules on the unique path from the root of the
branching tree to the corresponding leaf. This can be done in polynomial time
by backtracking in the branching tree.

The correctness of the algorithm follows by Lemma 6 and the fact that each
rule is sound. Thus each maximal S-forests of the input graph can be mapped
to a private element of F . In the next section we analyze the running time.

4 Running Time

With every rule we either remove a vertex, select a pivot vertex, color a vertex,
delete a vertex, or contract an edge. Thus the height of the branching tree is
O(|V | + |E|). Hence, for every non-reducible instance, the backtracking part
of the algorithm producing the corresponding maximal S-forest in G can be
performed in polynomial time. Therefore, the running time of the algorithm,
up to a polynomial multiplicative factor, is proportional to the number of non-
reducible instances produced by reduction and branching rules.

In what follows, we upper bound the number of maximal S-forests of the input
graph enumerated by the algorithm, or equivalently, the number of leaves in the
corresponding branching tree. Rules 1, 3, 4, 5, 6, and 7 are reduction rules and
generate only one problem instance. Thus they do not increase the number of
leaves in the branching tree. Therefore we may restrict ourselves to the analyses
of the branching Rules 2, 8, 9, 10, 11, and 12 .

Our proof combines induction with Measure & Conquer [7]. Let us first define
a measure for any problem instance generated by the algorithm. All colored
vertices have weight 0, non-colored vertices contained in N(Tt) have weight 1,
and non-colored vertices not contained in N(Tt) have weight 1 + α. A problem
instance RBF (G, S, R, B) will be defined to have weight |N(Tt)|+ (1 + α) |V \
(R ∪B ∪N(Tt))|. Define f(μ) to be the maximum number of maximal red-blue
S-forests for any instance RBF (G, S, R, B) of weight μ where μ ≥ 0 is a real
number.

The induction hypothesis is that f(μ) ≤ xμ for x = 1.49468. Note that the
number of possible measures of problem instances is finite, and thus induction
is over a finite set.

Base case μ = 0. Since no vertex has weight greater than 0, we have that
all vertices are colored, and thus V is the unique maximal S-forest, implying
f(0) = 1. By the induction hypothesis we assume that f(k) ≤ xk for k < μ,
and we want to prove that f(μ) ≤ xμ. We prove this by showing that each
rule reduces a problem instance of weight μ to one or more problem instances of



408 F.V. Fomin et al.

weight μ1, . . . , μr where μi < μ such that f(μ) ≤
∑r
i=1 f(μi) ≤ xμ if f(μi) ≤ xμi

for 1 ≤ i ≤ r. Before proceeding to the detailed analysis, we mention that the
instance RBF (G, S, ∅, ∅) has weight n(1+α), and the result will thus imply that
f(n(1 + α)) ≤ 1.49468n(1+α) ≤ 1.8638n for α = 1.5491.

Rule 2. Vertex set R = ∅, so t = ∅ and N(Tt) is defined as the empty set. As a
consequence all non-colored vertices have weight 1 + α. In both new instances
the weight of v is reduced from 1 + α to zero. In the case when v is colored
(Rule 3), we use v as vertex t, and due to the minimum degree two property
by Rule 1 there are at least two neighbors with weights reduced by α. The two
subproblem instances are Deletion of v: μ1 ≤ μ − 1 − α and Coloring of v:
μ2 ≤ μ− 1− 3α, and we get that

f(μ) ≤ f(μ− 1− α) + f(μ− 1− 3α) ≤ xμ−1−α + xμ−1−3α ≤ xμ.

Rule 8. In both cases the weight of vertex v is reduced from 1 to zero. If x is
contained in N(Tt) then it has weight 1, otherwise x has weight 1 + α. Consider
first the case x ∈ N(Tt). Since x ∈ PW (v), we have by Observation 3 that
G[{v} ∪ Tt ∪ {x}] contains a cycle with a vertex of S. Hence either v, or x has
to be deleted. If v is colored, then x is deleted by Rule 6 in order to break the
cycle, and if v is deleted, then x is colored since it has to be in the witness cycle.
We have for Deletion of v and Coloring of x: μ1 ≤ μ − 2; for Deletion of x
and Coloring of v: μ2 ≤ μ− 2. Thus

f(μ) ≤ f(μ− 2) + f(μ− 2) ≤ xμ−2 + xμ−2 ≤ xμ

If x �∈ N(Tt), then the weight of x is 1 + α, and we have for Deletion of v and
Coloring of x: μ1 ≤ μ− 2− α; for Coloring of v: μ2 ≤ μ− 1− α, resulting in

f(μ) ≤ f(μ− 2− α) + f(μ− 1− α) ≤ xμ−2−α + xμ−1−α ≤ xμ.

Rule 9. All vertices in PW (v) have weight 1. Thus we have for Coloring of v
and Deletion of PW (v): μ1 ≤ μ− 1− |PW (v)|; for Deletion of v: μ2 ≤ μ− 1.
Since |PW (v)| ≥ 2, we have that

f(μ) ≤ f(μ− 3) + f(μ− 1) ≤ xμ−3 + xμ−1 ≤ xμ.

Rule 10. Vertex v has weight 1, x1 has weight 1+α, and x2 has weight 1 or 1+α.
Consider first the case where x2 has weight 1, meaning that x2 ∈ N(Tt). If v is
colored, then x2 is deleted by Rule 6 and Observation 3. We have for Coloring
of v: μ1 ≤ μ − 2 − α; Deletion of v and Coloring of x1: μ2 ≤ μ − 2 − α; and
Deletion of v, x1 and Coloring of x2: μ3 ≤ μ− 3− α. Thus

f(μ) ≤ 2f(μ− 2− α) + f(μ− 3− α) ≤ 2xμ−2−α + xμ−3−α ≤ xμ.

If x2 �∈ N(Tt), then it has weight 1 + α. We have for Coloring of v: μ1 ≤
μ− 1− 2α; Deletion of v and Coloring of x1: μ2 ≤ μ− 2− α; and Deletion
of v, x1 and Coloring of x2: μ3 ≤ μ− 3− 2α. Therefore,

f(μ) ≤ f(μ− 1− 2α) + f(μ− 2− α) + f(μ− 3− 2α)
≤ xμ−1−2α + xμ−2−α + xμ−3−2α ≤ xμ.



Enumerating Minimal Subset Feedback Vertex Sets 409

Rule 11. Let i be the number of vertices in PW (v) \ N(Tt) and assume that
xj �∈ N(Tt) for j ≤ i. The case i = 0 is covered by Rule 9. For i = 1, 2, we have
for Coloring of v: μ1 ≤ μ − 4 + i − iα; Deletion of v and Coloring of x1:
μ2 ≤ μ − 2 − α; Deletion of v, x1 and Coloring of x2: μ3 ≤ μ − 3 − iα; and
Deletion of v, x1, x2 and Coloring of x3: μ4 ≤ μ− 4− iα. In total

f(μ) ≤ f(μ− 4 + i− iα) + f(μ− 2− α) + f(μ− 3− iα) + f(μ− 4− iα)
≤ xμ−4+i−iα + xμ−2−α + xμ−3−iα + xμ−4−iα ≤ xμ.

For i = 3, we have for Coloring of v: μ1 ≤ μ − 1 − 3α, for Deletion of v
and Coloring of x1: μ2 ≤ μ − 2 − α, Deletion of v, x1 and Coloring of x2:
μ3 ≤ μ−3−2α, and Deletion of v, x1, x2 and Coloring of x3: μ4 ≤ μ−4−3α,
and we get that

f(μ) ≤ f(μ− 1− 3α) + f(μ− 2− α) + f(μ− 3− 2α) + f(μ− 4− 3α)
≤ xμ−1−3α + xμ−2−α + xμ−3−2α + xμ−4−3α ≤ xμ.

Rule 12. Let i be the number of vertices in PW (v) \ N(Tt) and assume that
xj �∈ N(Tt) for j ≤ i. The case where i = 0 is covered by Rule 9. For i ≥ 1, we
have for Coloring of v: μ1 ≤ μ− (1 + |PW (v)|) + i− iα; and for Deletion of
v: μ2 ≤ μ − 1. Since |PW (v)| ≥ 4, we notice that the value is minimum when
i = 4 and we get

f(μ) ≤ f(μ− 1− 4α) + f(μ− 1) ≤ xμ−1−4α + xμ−1 ≤ xμ.

We conclude the analysis of the running time of the algorithm with the fol-
lowing theorem, which is the main result of this paper.

Theorem 1. The maximum number of maximal S-forests of a graph G on n
vertices is at most 1.8638n. The minimal subset feedback vertex sets of an input
(G, S), where G is a graph on n vertices, can be enumerated in time O(1.8638n).

Proof. Correctness and completeness follows from the arguments above. The
number of leaves in the branching tree is at most O∗(x(1+α)n), and 1.494681+0.5491

is strictly less than 1.8638. 	


5 Concluding Remarks

The running time of our algorithm matches the running time of the algorithm
from [6] enumerating all minimal feedback vertex sets. Let us note that while
the running times of the enumeration algorithms for both Subset Feedback
Vertex Set and Feedback Vertex Set are the same, the number of minimal
feedback vertex sets in a graph can be exponentially larger or smaller than the
number of minimal subset feedback vertex sets.

We conclude with the following natural questions. Is it possible to show (see
[6]) that there are graphs with 1.5926n minimal subset feedback vertex sets?
Can it be that our enumeration algorithm overestimates the maximum number



410 F.V. Fomin et al.

of minimal subset feedback vertex sets, and that this number is significantly
smaller than 1.8638n, say O(1.6n)? Our enumeration algorithm can also be used
to compute a minimum weight subset feedback vertex set in time O(1.8638n).
It would be interesting to know whether a better running time can be obtained
for the unweighted Subset Feedback Vertex Set problem.

References

1. Open problems from Dagstuhl seminar 09511. Dagstuhl Seminar 09511 (2009)
2. Calinescu, G.: Multiway cut. In: Encyclopedia of Algorithms, Springer, Heidelberg

(2008)
3. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for

feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)
4. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex

set is fixed parameter tractable. In: CoRR, abs/1004.2972 (2010)
5. Even, G., Naor, J., Zosin, L.: An 8-approximation algorithm for the subset feedback

vertex set problem. SIAM J. Comput. 30(4), 1231–1252 (2000)
6. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback

vertex set problem: Exact and enumeration algorithms. Algorithmica 52(2), 293–
307 (2008)

7. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56, Article 25(5) (2009)

8. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. In: Texts in Theoretical
Computer Science. An EATCS Series. Springer, Berlin (2010)

9. Fomin, F.V., Villanger, Y.: Finding induced subgraphs via minimal triangulations.
In: Proceedings of STACS 2010, vol. 5, pp. 383–394. Schloss Dagstuhl—Leibniz-
Zentrum fuer Informatik (2010)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and
Co., New York (1978)

11. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in node weighted graphs.
J. Algorithms 50(1), 49–61 (2004)

12. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable al-
gorithms for finding feedback vertex sets. ACM Transactions on Algorithms 2(3),
403–415 (2006)

13. Razgon, I.: Exact computation of maximum induced forest. In: Arge, L., Freivalds,
R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 160–171. Springer, Heidelberg (2006)

14. Thomassé, S.: A 4k2 kernel for feedback vertex set. ACM Transactions on Algo-
rithms 6, Article 32(2) (2010)



Upper Bounds for Maximally Greedy Binary

Search Trees

Kyle Fox

Department of Computer Science, University of Illinois, Urbana-Champaign

kylefox2@illinois.edu

Abstract. At SODA 2009, Demaine et al. presented a novel connec-
tion between binary search trees (BSTs) and subsets of points on the
plane. This connection was independently discovered by Derryberry et
al. As part of their results, Demaine et al. considered GreedyFuture,
an offline BST algorithm that greedily rearranges the search path to min-
imize the cost of future searches. They showed that GreedyFuture is
actually an online algorithm in their geometric view, and that there is a
way to turn GreedyFuture into an online BST algorithm with only a
constant factor increase in total search cost. Demaine et al. conjectured
this algorithm was dynamically optimal, but no upper bounds were given
in their paper. We prove the first non-trivial upper bounds for the cost
of search operations using GreedyFuture including giving an access
lemma similar to that found in Sleator and Tarjan’s classic paper on
splay trees.

1 Introduction

The dynamic optimality conjecture states that given a sequence of success-
ful searches on an n-node binary search tree, the number of nodes accessed by
splay trees is at most a constant times the number of node accesses and rota-
tions performed by the optimal algorithm for that sequence. Sleator and Tarjan
gave this conjecture in their paper on splay trees in which they showed O(log n)
amortized performance as well as several other upper bounds [12]. Proving the
dynamic optimality conjecture seems very difficult. There is no known polyno-
mial time algorithm for finding an optimal BST in the offline setting where we
know all searches in advance,1 and this conjecture states that splaying is a simple
solution to the online problem.

Until recently, there has been little progress made directly related to this
conjecture. Wilber gave two lower bounds on the number of accesses needed for
any given search sequence [16]. There are a handful of online BST algorithms
that are O(log log n)-competitive [5,15,14,1], but no upper bound is known for
the competitiveness of splay trees except the trivial O(log n).

1 In fact, the exact optimization problem becomes NP-hard if we must access an
arbitrary number of specified nodes during each search [4].

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 411–422, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



412 K. Fox

1.1 A Geometric View

Recently, Demaine et al. introduced a new way of conceptualizing BSTs using
geometry [4]. A variant of this model was independently discovered by Derry-
berry et al. [6]. In the geometric view, BST node accesses are represented as
points (x, y) where x denotes the rank of the accessed node and y represents
which search accessed the node. A pair of points a and b in point set P are
called arborally satisfied if they lie on the same horizontal or vertical line, or if
the closed rectangle with corners a and b contains another point from P . The
family of arborally satisfied point sets corresponds exactly to BST accesses when
rotations upon accessed nodes are allowed [4].

By starting with a point set X that represents the points a BST must access
to complete searches in a given search sequence S, we can describe an optimal
BST algorithm for S as a minimum superset of X that is arborally satisfied [4].
This correspondence between BSTs and arborally satisfied supersets allows us
to focus on algorithms strictly in the geometric view. Additionally, it is possible
to show lower bounds for the BST model by showing the same for the geomet-
ric model. Demaine et al. take advantage of this fact to show a class of lower
bounds that supersede the lower bounds of Wilber [16,4]. Further, it is possible
to describe an online version of the arborally satisfied superset problem and
transform solutions to this problem into online BST algorithms with at most a
constant factor increase in cost [4].

1.2 Being Greedy

Demaine et al. also consider an offline BST algorithm they call GreedyFuture,
originally proposed by Lucas [10] and Munro [11]. GreedyFuture only touches
nodes on the search path, and then rearranges the search path in order to greedily
minimize the time for upcoming searches.

The worst-case example known for the competitiveness of GreedyFuture is
a complete binary search tree with searches performed in bit-reversal order upon
the leaves [11]. GreedyFuture has an amortized cost of lg n per search on this
sequence. The optimal algorithm rotates the leaves closer to the root and obtains
an amortized cost of lg n

2 + o(1). Given a search sequence of length m, let OPT
be the total cost of the optimal algorithm for that sequence. Demaine et al.
conjecture that GreedyFuture is O(1)-competitive. In fact, the bit-reversal
example suggests that the cost of GreedyFuture is at most OPT + m; it
appears optimal within an additive term.

Surprisingly, Demaine et al. showed that GreedyFuture, an offline algo-
rithm that uses very strong knowledge about the future, is actually an online
algorithm in the geometric model [4]. Recall that online algorithms in the geo-
metric model correspond to online algorithms in the BST model with essentially
the same cost. If GreedyFuture is actually an offline dynamically optimal BST
algorithm as it appears to be, then there exists an online dynamically optimal
BST algorithm.



Upper Bounds for Maximally Greedy Binary Search Trees 413

1.3 Our Contributions

Despite the apparent optimality of the GreedyFuture algorithm, nothing was
known about its amortized behavior when Demaine et al. wrote their report.
We provide the first theoretical evidence that GreedyFuture is an optimal
algorithm in the following forms:
– An access lemma similar to that used by Sleator and Tarjan for splay trees [12].

This lemma implies several upper bounds including O(log n) amortized per-
formance.

– A sequential access theorem that states GreedyFuture takes linear time
to access all nodes in order starting from any arbitrary BST.

We heavily use the geometric model of Demaine et al. to prove the access
lemma while focusing directly on BSTs to prove the sequential access theo-
rem. It is our hope that these results will create further interest in studying
GreedyFuture as its structural properties seem well suited for further theo-
retical analysis (the proof of the sequential access theorem takes only a page).
Additionally, the proof of the access lemma may provide additional insight into
other algorithms running in the geometric model.

1.4 A Note on Independent Work

John Iacono and Mihai Pătraşcu have discovered a similar access lemma to
that given here using different proof techniques from those shown below. The
author learned about their work via personal correspondence with them and
Erik Demaine well into performing the research contained in this report. Their
results have never been published.

Additionally, the author became aware of work by Goyal and Gupta [8] after
initially writing this report. They show GreedyFuture has O(log n) amortized
performance. This result appears in our paper as Corollary 2. As in our proof,
they use the geometric model, but they do not use a potential function as we do
to prove a more general access lemma.

2 Arboral and Geometric Models of BSTs

2.1 The Arboral Model

We will consider the same BST model used by Demaine et al. [4]. We consider
only successful searches and not insertions or deletions. Let n and m be the
number of elements in the search tree and the number of searches respectively.
We assume the elements have distinct keys in {1, . . . , n}.

Given a BST T1, a subtree τ of T1 containing the root, and a tree τ ′ on the
same nodes as τ , we say T1 can be reconfigured by an operation τ → τ ′ to
another BST T2 if T2 is identical to T1 except for τ being replaced by τ ′. The
cost of the reconfiguration is |τ | = |τ ′|.

Given a search sequence S = 〈s1, s2, . . . , sm〉, we say a BST algorithm ex-
ecutes S by an execution E = 〈T0, τ1 → τ ′

1, . . . , τm → τ ′
m〉 if all reconfigu-

rations are performed on subtrees containing the root, and si ∈ τi for all i.



414 K. Fox

For i = 1, 2, . . . , m, define Ti to be Ti−1 with the reconfiguration τi → τ ′
i . The

cost of execution E is
∑m

i=1 |τi|.
As explained by Demaine et al. [4], this model is constant-factor equivalent

to other reasonable BST models such as those by Wilber and Lucas [16,10].

2.2 The Geometric Model

We now turn our focus to the geometric model as given by Demaine et al. [4].
Define a point p to be a point in 2D with integer coordinates (p.x, p.y) such that
1 ≤ p.x ≤ n and 1 ≤ p.y ≤ m. Let �ab denote the closed axis-aligned rectangle
with corners a and b.

A pair of points (a, b) (or their induced rectangle �ab) is arborally satisfied
with respect to a point set P if (1) a and b are orthogonally collinear (horizontally
or vertically aligned), or (2) there is at least one point from P \ {a, b} in �ab. A
point set P is arborally satisfied if all pairs of points in P are arborally satisfied
with respect to P . See Fig. 1 and Fig. 2.

As explained in [4], there is a one-to-one correspondence between BST execu-
tions and arborally satisfied sets of points. Let the geometric view of a BST
execution E be the point set P (E) = {(x, y)|x ∈ τy}. The point set P (E) for any
BST execution E is arborally satisfied [4]. Further, for any arborally satisfied
point set X , there exists a BST execution E with P (E) = X [4].

Let the geometric view of an access sequence S be the set of points P (S) =
{(s1, 1), (s2, 2), . . . , (sm, m)}. The above facts suggest that finding an optimal
BST algorithm for S is equivalent to finding a minimum cardinality arborally
satisfied superset of S. Due to this equivalence with BSTs, we will refer to values
in {1, . . . , n} as elements.

Naturally, we may want to use the geometric model to find dynamically op-
timal online BST algorithms. The online arborally satisfied superset (on-
line ASS) problem is to design an algorithm that receives a sequence of points
〈(s1, 1), (s2, 2), . . . , (sm, m)〉 incrementally. After receiving the ith point (si, i),
the algorithm must output a set Pi of points on the line y = i such that
{(s1, 1), (s2, 2), . . . , (si, i)} ∪ P1 ∪ P2 ∪ · · · ∪ Pi is arborally satisfied. The cost of
the algorithm is m +

∑m
i=1 |Pi|.

We say an online ASS algorithm performs a search at time i when it outputs
the set Pi. Further, we say an online ASS algorithm accesses x at time i if (x, i)
is included in the input set of points or in Pi. The (non-amortized) cost of a
search at time i is |Pi|+ 1.

Unfortunately, the algorithm used to create a BST execution from an arborally
satisfied point set requires knowledge about points above the line y = i to
construct Ti [4]. We are not able to go directly from a solution to the online
ASS problem to a solution for the online BST problem with exactly the same
cost. However, this transformation is possible if we allow the cost of the BST
algorithm to be at most a constant multiple of the ASS algorithm’s cost [4].



Upper Bounds for Maximally Greedy Binary Search Trees 415

Fig. 1. An unsatisfied pair of points.
The closed axis-aligned rectangle with
corners defined by the pair is shown.

Fig. 2. An arborally satisfied superset
of the same pair of points

3 GreedyFuture

We now turn our focus to describing the GreedyFuture algorithm in more
detail. Let S = 〈s1, . . . , sm〉 be an arbitrary search sequence of length m. After
every search, GreedyFuture will rearrange the search path to minimize the
cost of future searches.

More precisely, consider the ith search for the given sequence S. If i = m, then
GreedyFuture does not rearrange the search path. Otherwise, if si+1 lies on
the search path τi, GreedyFuture makes si+1 the root of τ ′

i . If si+1 does not
lie along the search path, then GreedyFuture makes the predecessor and suc-
cessor of si+1 within τi the root and root’s right child of τ ′

i (if the successor
(predecessor) does not exist, then GreedyFuture makes the predecessor (suc-
cessor) the root and does not assign a right (left) child within τ ′

i .) Now that it has
fixed one or two nodes x� and xr with x� < xr, GreedyFuture recursively sets
the remaining nodes of τi less than x� using the subsequence of 〈si+1, . . . , sm〉
containing nodes less than x�. It then sets the nodes of τi greater than xr using
the subsequence of 〈si+1, . . . , sm〉 containing nodes greater than xr .

Taking a cue from Demaine et al., we will call the online geometric model of
the algorithm GreedyASS. Let X = P (S) for some BST access sequence S.
At each time i, GreedyASS simply outputs the minimal set of points at y = i
needed to satisfy X up to y ≤ i.

We note that the set of points needed to satisfy X up to y ≤ i is uniquely
defined. For each unsatisfied rectangle formed with (si, i) in one corner, we add
the other corner at y = i. We can also define GreedyASS as an algorithm that
sweeps right and left from the search node, accessing nodes that have increasingly
greater last access times. See Fig. 3.

GreedyASS, the online geometric view of GreedyFuture, greatly reduces
the complexity of predicting GreedyFuture’s behavior. By focusing our atten-
tion on this geometric algorithm, we proceed to prove several upper bounds on
both algorithms’ performance in the following section.

4 An Access Lemma and Its Corollaries

In their paper on splay trees, Sleator and Tarjan prove the access lemma, a
very general expression detailing the amortized cost of a splay (and therefore
search) operation [12]. They use this lemma to prove several upper bounds,
including the entropy bound, the static finger bound, and the working set bound.



416 K. Fox

key

time

Fig. 3. (Left) A sample execution of
GreedyASS. Search elements are rep-
resented as solid disks. For the latest
search, GreedyASS sweeps right, plac-
ing points when the greatest last access
time seen increases. The staircase repre-
sents these increasing last access times.

key

time

Fig. 4. (Right) Later in the same
execution of GreedyASS. The most
recent neighborhoods for two of the
elements are represented as line seg-
ments surrounding those elements. Ob-
serve that adding another search for
anything within a neighborhood will re-
sult in accessing the corresponding ele-
ment for that neighborhood.

Wang et al. prove a similar lemma for their multi-splay tree data structure
to show O(log log n)-competitiveness and O(log n) amortized performance, and
the version of the lemma given in Wang’s Ph.D. thesis is used to prove the
other distribution sensitive upper bounds listed above [15,14]. In this section, we
provide a similar lemma for GreedyASS and discuss its consequences.

4.1 Potentials and Neighborhoods

Fix a BST access sequence S and let X = P (S). We consider the execution of
GreedyASS on X . Let ρ(x, i) be the last access of x at or before time i. For-
mally, ρ(x, i) is the y coordinate of the highest point on the closed ray from (x, i)
to (x,−∞).

Let a be the greatest positive integer smaller than x such that ρ(a, i) ≥ ρ(x, i)
(or let a = 0 if no such integer exists). The left neighborhood of x at time i is
{a + 1, a + 2, . . . , x− 1} and denoted Γ�(x, i). The right neighborhood of x at
time i is defined similarly and denoted Γr(x, i). Finally, the inclusive neigh-
borhood of x at time i is Γ (x, i) = Γ�(x, i) ∪ Γr(x, i) ∪ {x}.

The inclusive neighborhood of x at time i contains precisely those keys whose
appearance as si+1 would prompt GreedyASS to access x at time i + 1. Intu-
itively, the inclusive neighborhood is similar to a node’s subtree in the arboral
model. See Fig. 4.

Assign to each element x ∈ {1, . . . , n} a positive real weight w(x). The
size of x at time i is σ(x, i) =

∑
e∈Γ (x,i) w(e). The rank of x at time i



Upper Bounds for Maximally Greedy Binary Search Trees 417

is r(x, i) = 
lg σ(x, i)�. Finally, define a potential function Φ(i) =
∑
x∈[n] r(x, i)

and let the amortized cost of a search at time i be 1 + |Pi|+ Φ(i)− Φ(i− 1).

Lemma 1 (Access Lemma). Let W =
∑

x∈[n] w(x). The amortized cost of a
search at time i is at most 5 + 6 
lg W � − 6r(si, i− 1).

4.2 Immediate Consequences

Before we proceed to prove Lemma 1, we will show several of its consequences.
Recall that the equivalence between the arboral and geometric models mean
these corollaries apply to both GreedyASS and GreedyFuture. The proofs
of these corollaries mirror the proofs by Sleator and Tarjan for splay trees [12].

Corollary 2 (Balance Theorem). The total cost of searching is O((m + n)×
log n).

Corollary 3 (Static Optimality Theorem). Let t(x) be the number of times x
appears in the search sequence S. If every element is searched at least once, the
total cost of searching is O (m +

∑n
x=1 t(x) log (m/t(x))).

Corollary 4 (Static Finger Theorem). Fix some element f . The total cost
of searching is O(m +

∑m
i=1 log(|si − f |+ 1)).

Corollary 5 (Working Set Theorem). Let d(i) be the number of distinct
elements in the search sequence S before si and since the last instance of si.
If there are no earlier instances of si, then let d(i) = i − 1. The total cost of
searching is O(m +

∑m
i=1 log(d(i) + 1)).

Note that Corollary 5 implies other upper bounds on GreedyFuture’s perfor-
mance such as key-independent optimality [9].

4.3 Telescoping Rank Changes

We proceed to prove Lemma 1. First we observe the following.

Lemma 6. Let x be any element not accessed during search i. Then we have
Γ (x, i− 1) = Γ (x, i).

Proof: Assume without loss of generality that x > si. Let x� be the greatest
element in {si, si + 1, . . . , x− 1} such that ρ(x�, i− 1) ≥ ρ(x, i− 1). Element x�
must exist, because GreedyASS does not access x at time i. No elements in
{x� + 1, . . . , x− 1} are accessed at time i since they have smaller last access
time than x�, so Γ�(x, i − 1) = Γ�(x, i). Likewise, no elements in Γr(x, i − 1)
are accessed at time i since they have smaller last access time than x. The
inclusive neighborhood of x (as well as its size and rank) remains unchanged by
the search. �



418 K. Fox

Consider a search at time i. Lemma 6 immediately implies the amortized cost
of the search is equal to

∑

x∈Pi∪{si}
(1 + r(x, i) − r(x, i− 1)) . (1)

Suppose we access an element x �= si. Assume x > si without loss of generality.
If it exists, let xr be the least accessed element greater than x. We call xr
the successor of x. Observe that Γ (x, i) contains a subset of the elements
in {si + 1, . . . , xr − 1} while Γ (xr, i − 1) contains a superset of the elements
in {si, . . . , xr}. This fact implies Γ (x, i) ⊂ Γ (xr, i− 1) which in turn implies

σ(x, i) < σ(xr, i− 1) and r(x, i) ≤ r(xr , i− 1). (2)

If the second inequality is strict, then

1 + r(x, i)− r(x, i − 1) ≤ r(xr , i− 1)− r(x, i − 1). (3)

Otherwise,

1 + r(x, i)− r(x, i − 1) = 1 + r(xr , i− 1)− r(x, i − 1). (4)

Call an accessed element x > si a stubborn element if x has a successor xr
and r(x, i) = r(xr , i − 1). From (1), (3), and (4) above, the amortized cost of
accessing elements greater than si forms a telescoping sum and we derive the
following lemma.

Lemma 7. Let α be the number of elements greater than si that are stubborn
and let er� and err be the least and greatest elements greater than si to be accessed.
The amortized cost of accessing elements greater than si is

1 + α + r(err, i)− r(er�, i− 1).

4.4 Counting Stubborn Elements

The biggest technical challenge remaining is to upper bound the number of
stubborn elements α. We have the following lemma.

Lemma 8. The number of accessed elements greater than si which are stubborn
is at most

1 + 2 
lg W � − 2r(si, i− 1)

Proof: Consider any stubborn element x > si and its successor xr. Let the left
size of x at time i be σ�(x, i) =

∑
e∈Γ�(x,i)

w(e). Further, let the left rank of x

at time i be r�(x, i) = 
lg(σ�(x, i))�. By the definitions of stubborn elements and
left sizes we see

σ(x, i) >
1
2
σ(xr , i− 1) >

1
2
σ�(xr , i− 1). (5)



Upper Bounds for Maximally Greedy Binary Search Trees 419

We note that for any accessed element v (stubborn or not) with si < v < x we
have

σ�(v, i− 1) <
1
2
σ�(xr, i− 1) (6)

by (5) since every element of Γ�(v, i − 1) is in Γ�(xr , i − 1), but none of these
elements are in Γ (x, i) since the left neighborhood of x at time i cannot extend
past v. Further,

σ�(x, i− 1) ≥ σ(si, i− 1) (7)

since all weights are positive and every element in Γ (si, i−1) is also in Γ�(x, i−1).
Let z > si be the greatest stubborn element, and let zr be its successor. We

will inductively argue the number of stubborn elements is at most

1 + 2r�(zr, i− 1)− 2r(si, i− 1)

which is a stronger statement than that given in the lemma. The argument can
be divided into two cases.

1. Suppose σ�(zr, i− 1) < 2σ(si, i− 1). For any stubborn element v between si
and z we have

σ�(v, i− 1) < σ(si, i− 1)

by (6). There can be no such element v by (7), making z the only stubborn
element. The total number of stubborn elements is

1 ≤ 1 + 2r�(z, i− 1)− 2r(si, i− 1)
≤ 1 + 2r�(zr, i− 1)− 2r(si, i− 1)

by (7) and the definition of left rank.
2. Now suppose σ�(zr, i− 1) ≥ 2σ(si, i− 1). Consider any stubborn element v

with successor vr such that si < v < vr < z. Note that if a stubborn element
exists with z as its successor, v cannot be this stubborn element. We have

σ�(vr, i− 1) <
1
2
σ�(zr, i− 1)

by (6). By induction on the left sizes of stubborn element successors greater
than si, the successors of at most

1 + 2
⌊

lg
(

1
2
σ�(zr, i− 1)

)⌋

− 2r(si, i− 1)

stubborn elements can have this smaller left size. Counting z and the one
other stubborn element that may exist with z as its successor, the total
number of stubborn elements is at most

3 + 2
⌊

lg
(

1
2
σ�(zr, i− 1)

)⌋

− 2r(si, i− 1) = 1 + 2r�(zr, i− 1)− 2r(si, i− 1).

�



420 K. Fox

4.5 Finishing the Proof

We now conclude the proof of Lemma 1.

Proof: By Lemma 6, the amortized cost of accessing si alone is

1 + r(si, i)− r(si, i− 1) ≤ 5 + 6 
lg W � − 6r(si, i− 1)

so the lemma holds in this case.
If all other accessed elements are greater than si, let er� and err be the least

and greatest of these elements. Observe r(er�, i − 1) ≥ r(si, i) and r(err, i) ≤

lg W �. By Lemma 7 and Lemma 8, the total amortized cost of accessing ele-
ments is at most

3 + r(si, i)− 3r(si, i− 1) + 2 
lg W �+ r(err, i)− r(er�, i− 1)
≤ 3 + 3 
lg W � − 3r(si, i− 1)
≤ 5 + 6 
lg W � − 6r(si, i− 1)

so the lemma holds in this case. It also holds in the symmetric case when all
accessed elements are smaller than si.

Finally, consider the case when there are accessed elements both greater than
and less than si. Let e�� and e�r be the least and greatest elements less than si.
Observe r(e��, i) ≤ 
lg W � and r(e�r, i− 1) ≥ r(si, i− 1). By two applications of
Lemma 7 and Lemma 8, the total amortized cost of the search is at most

5 + r(si, i)− 5r(si, i− 1) + 4 
lg W �+ r(err, i)− r(er�, i− 1)
+ r(e��, i)− r(e�r, i− 1)
≤ 5 + 6 
lg W � − 6r(si, i− 1)

�
5 A Sequential Access Theorem

The working set bound proven above shows that GreedyFuture has good
temporal locality. Accessing an element shortly after its last access guarantees
a small amortized search time. Sleator and Tarjan conjectured that their splay
trees also demonstrate good spatial locality properties in the form of the dynamic
finger conjecture [12]. This conjecture was verified by Cole, et al. [3,2].

One special case of the dynamic finger theorem considered by Tarjan and
others was the sequential access theorem [13,7,15,14]. We give a straightforward
proof of the sequential access theorem when applied to GreedyFuture. Note
that this theorem requires focusing on an arbitrary fixed BST, so we do not use
the geometric model in the proof.

Theorem 9 (Sequential Access Theorem). Let S = 〈1, 2, . . . , n〉. Starting
with an arbitrary BST T0, the cost of running GreedyFuture on search se-
quence S is O(n).

Let T0, T1, . . . , Tn be the sequence of search trees configured by GreedyFuture.
We make the following observations:



Upper Bounds for Maximally Greedy Binary Search Trees 421

Lemma 10. For all i > 1, either node i is the root of Ti−1 or i− 1 is the root
and i is the leftmost node of the root’s right subtree.

Proof: If i was accessed during the i − 1st search, then i is the root of Ti−1.
Otherwise, i− 1 is the predecessor node of i on the search path. Therefore, i− 1
is the root of Ti−1 and i is the leftmost node of the root’s right subtree. �

Lemma 11. Node x is accessed at most once in any position other than the root
or the root’s right child.

Proof: Consider node x and search i. Node x cannot be accessed if x < i − 1
according to Lemma 10. If x lies on the search path and x ≤ i + 1 then either x
becomes the root or x moves into the root’s left subtree so that i or i + 1 can
become the root.

Now suppose x lies along the search path and x > i + 1. Let x� be the least
node strictly smaller than x that does not become the root. If x� does not exist,
then x becomes the root’s right child as either x is the successor of i + 1 on the
search path, node i + 1 is on the search path and x = i + 2, or node i + 1 is on
the search path and x is the successor of i + 2 on the search path. If x� does
exist, then x� becomes the root’s right child for one of the reasons listed above
and x becomes a right descendent of x�.

Node x cannot be moved to the left subtree of the root’s right child in all the
cases above. Lemma 10 therefore implies x is accessed in the root’s left subtree
on the first search, x is accessed once in the left subtree of the root’s right child,
or x is never accessed anywhere other than as the root or root’s right child. �

We now conclude the proof of Theorem 9.

Proof: The cost of the first search is at most n. The costs of all subsequent
searches is at most 2(n− 1) + n according to Lemma 11; at most 2(n− 1) node
accesses occur at the root or root’s right child, and at most n nodes are accessed
exactly once in a position other than the root or the root’s right child. The total
cost of all searches is at most 4n− 2. �

6 Closing Remarks

The ultimate goal of this line of research is to prove GreedyFuture or splay
trees optimal, but showing other upper bounds may prove interesting. In par-
ticular, it would be interesting to see if some difficult to prove splay tree prop-
erties such as the dynamic finger bound have concise proofs when applied to
GreedyFuture. Another direction is to explore how GreedyFuture may be
modified to support insertions and deletions while still maintaining its small
search cost.

Acknowledgements. The author would like to thank Alina Ene, Jeff Erickson,
Benjamin Moseley, and Benjamin Raichel for their advice and helpful discussions
as well as the anonymous reviewers for their suggestions on improving this report.



422 K. Fox

This research is supported in part by the Department of Energy Office of
Science Graduate Fellowship Program (DOE SCGF), made possible in part by
the American Recovery and Reinvestment Act of 2009, administered by ORISE-
ORAU under contract no. DE-AC05-06OR23100.

References

1. Bose, P., Doüıeb, K., Dujmović, V., Fagerberg, R.: An O(log log n)-competitive
binary search tree with optimal worst-case access times. In: Kaplan, H. (ed.) SWAT
2010. LNCS, vol. 6139, pp. 38–49. Springer, Heidelberg (2010)

2. Cole, R.: On the dynamic finger conjecture for splay trees. Part II: The proof.
SIAM J. Comput. 30, 44–85 (2000)

3. Cole, R., Mishra, B., Schmidt, J., Siegel, A.: On the dynamic finger conjecture for
splay trees. Part I: Splay sorting log n-block sequences. SIAM J. Comput. 30, 1–43
(2000)

4. Demaine, E.D., Harmon, D., Iacono, J., Kane, D., Pătraşcu, M.: The geometry of
binary search trees. In: Proc. 20th ACM/SIAM Symposium on Discrete Algorithms,
pp. 496–505 (2009)

5. Demaine, E.D., Harmon, D., Iacono, J., Pătraşcu, M.: Dynamic optimality–almost.
SIAM J. Comput. 37(1), 240–251 (2007)

6. Derryberry, J., Sleator, D.D., Wang, C.C.: A lower bound framework for binary
search trees with rotations. Tech. Rep. CMU-CS-05-187. Carnegie Mellon Univer-
sity (2005)

7. Elmasry, A.: On the sequential access theorem and deque conjecture for splay trees.
Theoretical Computer Science 314(3), 459–466 (2004)

8. Goyal, N., Gupta, M.: On dynamic optimality for binary search trees (2011),
http://arxiv.org/abs/1102.4523

9. Iacono, J.: Key independent optimality. Algorithmica 42, 3–10 (2005)
10. Lucas, J.M.: Canonical forms for competitive binary search tree algorithms. Tech.

Rep. DCS-TR-250. Rutgers University (1988)
11. Munro, J.I.: On the competitiveness of linear search. In: Paterson, M. (ed.) ESA

2000. LNCS, vol. 1879, pp. 338–345. Springer, Heidelberg (2000)
12. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the As-

sociation for Computing Machinery 32(3), 652–686 (1985)
13. Tarjan, R.E.: Sequential access in splay trees takes linear time. Combinatorica 5,

367–378 (1985)
14. Wang, C.C.: Multi-Splay Trees. Ph.D. thesis. Carnegie Mellon University (2006)
15. Wang, C.C., Derryberry, J., Sleator, D.D.: O(log log n)-competitive binary search

trees. In: Proc. 17th Ann. ACM-SIAM Symp. Discrete Algorithms, pp. 374–383
(2006)

16. Wilber, R.E.: Lower bounds for accessing binary search trees with rotations. SIAM
J. Comput. 18(1), 56–67 (1989)



On the Matter of Dynamic Optimality in an

Extended Model for Tree Access Operations

Michael L. Fredman

Rutgers University, New Brunswick
fredman@cs.rutgers.edu

Abstract. The model of node access operations taking place in binary
search trees subject to rotations is extended to unordered binary trees, as
motivated by consideration of certain self-adjusting priority queues. Ro-
tations in this extended model can be preceded by sibling subtree swaps.
Whereas the Wilber lower bound for off-line computation extends to this
model of computation – a precondition for the possibility of dynamic op-
timality – the goal of dynamic optimality is nonetheless demonstrated
to be unattainable in this model.

1 Introduction

A model has recently been introduced (this author [1]) for node access operations
in binary trees that generalizes the standard search tree model with rotations.
As with search trees, distance from the root determines the immediate cost of an
access request, and rotation steps can be utilized to restructure a tree in order to
reduce the cost of subsequent access requests (with rotation count contributing
to the total implementation cost). The new model departs from that of search
trees by relaxing the search tree ordering constraint. This added freedom allows
for an expanded repertoire of rotation operations; the two subtrees of the node
promoted to the parent position may first be swapped, defining a non-standard
rotation. Figure 1 illustrates the notion. We refer to this model of computation
as the unordered tree model.

B
T

R S

A

R
A

S T

B

A

T

rotate(A, B)

B

S

R

or

Fig. 1. Standard and non-standard rotations

The unordered tree model naturally arises as a means for viewing a class of
self-adjusting priority queues such as the pairing heap [2]. The pertinent data
structures can be reformulated as tournament trees: a set of data originates in

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 423–437, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



424 M.L. Fredman

the leaves of a tree; each internal node stores the minimum value stored among its
two children, so that the set minimum is found in the tree root. A replacement op-
eration vacates the minimum value along the path from the root to its originating
leaf, places a new (replacement) value in this leaf, and reestablishes the root value
by recomputing the values stored in the nodes on the path previously vacated.
The cost of the operation is the length of the path. The replacement operation,
therefore, can be reinterpreted simply as a leaf access operation. Replacement op-
erations provide a vehicle for merging multiple sorted lists, with each list supply-
ing replacement values to a unique specified leaf. Tree restructuring to improve
performance is an option. For this type of application, the search tree constraint,
preserving left-to-right node ordering, is clearly unnecessary.

One form of tree restructuring available in this model of node access consists
of a purely “zig-zig” style splay operation [2,3], treating any path as though all
of its edges have consistent orientation (or equivalently, employing non-standard
rotation steps when this is not the case). In fact, the two-pass pairing heap
effectively functions this way when implementing alternating delete-min and
insertion operations.

With its enhanced repertoire of rotation operations it is entirely plausible
that the unordered tree model of computation is more powerful (offering greater
efficiencies) than that of search trees, and indeed this is the case for off-line com-
putations [1]. On the other hand, Wilber’s lower bound for search trees [4], that
for randomly generated access request sequences, log n access cost per item is
required, even for off-line computations, extends to the unordered tree model [1].
If the Wilber lower bound did not extend, that would definitively establish an
efficiency separation between on-line and off-line computations in the unordered
tree model. Thus, the on-line versus off-line situations for search trees and un-
ordered trees seem analogous, and one could, for instance, plausibly conjecture
that zig-zig access operations provide dynamic optimality in the unordered tree
model. Dynamic optimality asserts, with respect to a given on-line method for
processing access requests, that the method processes any given request sequence
as efficiently (to within a constant factor) as the optimal off-line processing of
the given sequence. Originally formulated in the context of binary search trees
[3], the dynamic optimality conjecture asserts that use of splay operations to
implement access requests provides dynamic optimality.

Our main result, however, shows that dynamic optimality in the unordered
tree model is not possible.

2 Technical Development

Definition. (swap-equivalent trees) Two trees are considered swap-equivalent
provided that one can be obtained from the other by a sequence of swaps of
sibling subtrees.

Observation A. Given two swap-equivalent trees T1 and T2 and a rotation
ρ acting on T1, there exists a rotation ρ′ acting on T2 such that the respective
resulting trees are equivalent.



On the Matter of Dynamic Optimality in an Extended Model 425

A consequence of this observation is that for off-line processing, an access re-
quest sequence, implemented commencing from T1, can be accomplished at the
same cost, commencing from T2. In the sequel sibling subtree swaps will be ex-
tensively utilized (but not explicitly acknowledged) for descriptive convenience.

Following standard practice as set forth by Wilber [4], we impose the con-
vention that any access request be accomplished by bringing the requested node
to the root position (at some point during the implementation of the request),
noting that this requirement reduces efficiency by at most a constant factor [4].

We make use of the following theorem [1], presented here in a slightly improved
form (proof given in the Appendix).

Theorem 1. Given an initial tree T upon which access request sequences are to
be implemented, there exists a binary encoding of these sequences such that the
encoding e(σ) of the request sequence σ satisfies

length(e(σ)) ≤ length(σ) + 4 · μ(T, σ),

where μ(T, σ) is the minimum number of rotations that suffice to implement the
request sequence off-line, starting with the tree T .

Additionally needed are the following constructs, terminology, and facts, ob-
tained from the Appendix. Given any implementation of an access request se-
quence, there exists a rearrangement of its rotations that contains a prefix, re-
ferred to as a root-sequence, that brings the same nodes to the root position of
the tree – and in the same order – as the original sequence of rotations. The
root-sequence can be augmented with navigation steps yielding an augmented
root-sequence, satisfying the following properties (Appendix: lemma 4 and sub-
sequent discussion).

1. Navigation proceeds from the root position.
2. A single step of navigation transfers the position of navigation to a specified

child of the node of current position. (We remark that the node at which
navigation is positioned does not change when a rotation takes place, thereby
providing a means by which the position of navigation can move toward
the root position.) Any node at which navigation has been positioned is
considered as having been visited .

3. A rotation of an edge can only take place after both of the nodes joined by
the edge have been visited (Appendix: Observation B).

4. The number of navigation steps inserted into a root-sequence, to form an
augmented root-sequence, is the same as the number of rotations it contains.

An augmented root-sequence implementation of an access request sequence
refers to a sequence of rotations having the form of a root-sequence, that im-
plements the given access request sequence, and which is also augmented with
navigation steps as described above. We readily note that one can always be
obtained without increasing rotation count.



426 M.L. Fredman

2.1 Outline

We construct an adversary that generates access request sequences for a tree of
size n, designed to elude efficient on-line implementation while admitting efficient
off-line implementation. The construction is outlined as follows.

1. We first prove the existence of a permutation π over the first m integers,
m = �

√
n�, such that for any arbitrary tree T of size n and any sequence

of m distinct nodes σ = x1, · · · , xm in T , one of the request sequences, σ or
π(σ) = xπ(1), · · · , xπ(m), requires Ω(m log m) rotations to implement off-line.

2. The adversary constructs a request sequence ζ that consists of a concatena-
tion of rounds – as many as desired – each of length approximately n. The
rounds are constructed so that each is independently implementable off-line
with a linear number of rotations. Let T1 and T2 be specified trees on a
common set of nodes. We proceed to define a (T1, T2)-round . Subdivide the
symmetric order sequence τ = a1, · · · , an of the nodes that comprise T1 into
contiguous blocks of size m, omitting the last up to m−1 nodes, should n not
be a multiple of m, and let τi, 1 ≤ i ≤ n/m, be the ith block of τ . A (T1, T2)-
round γ consists of a concatenation of �n/m� request blocks, β1 · · ·β�n/m�,
each βi consisting of m access requests, with these blocks defined inductively:
Given i ≥ 0, and the previously defined blocks βj , 1 ≤ j ≤ i, let T i2 be the
tree generated by the on-line processing of the concatenation, β1 · · ·βi, ini-
tiated from the tree T2 (T 0

2 = T2). As follows from the preceding step of this
outline, one of the sequences, τi+1 or π(τi+1), inherently requires Ω(m log m)
rotations to implement, initiated from T i2, and the adversary sets βi+1 to be
that choice, τi+1 or π(τi+1), requiring that many rotations. Now a round of
ζ consists of a (T1, T2)-round, where T1 is the tree generated by a specified
off-line implementation of the preceding rounds, and T2 is the tree generated
by the on-line implementation of the preceding rounds.

3. Given its construction, we immediately find, upon summing over the blocks
of a given round, that its on-line implementation requires Ω(n log n) rota-
tions. It will be the case, however, that any given round can be implemented
off-line with O(n) rotations.

2.2 Existence of the Permutation π

Lemma 1. Given an augmented root-sequence implementation σ of an access
request sequence commencing from a tree To, the set of nodes that are visited
comprise an embedded tree Eo within the tree To, that includes the root of To.
Moreover, the implementation of the request sequence can be regarded as com-
mencing from Eo, and implemented within this tree as it evolves.

Proof: We argue by induction on j that with respect to the first j steps (counting
both rotations and navigation steps) of σ, that (a) the nodes visited during
during these steps induce a connected subgraph of To that includes its root, (b)
any unvisited node that is a child of a visited node in the tree as it evolves, is also
a child of some visited node (possibly different) in To, and (c) the visited nodes



On the Matter of Dynamic Optimality in an Extended Model 427

induce a connected subgraph of the tree as it evolves (that includes its root).
When j is 0, the visited subgraph consists of the root of To, and the assertion is
immediate. Assume j > 0, and the claim holds after j − 1 steps of σ. If the next
step is a navigation step to a child x of a visited node, then there is nothing to
prove if x has been previously visited. Assuming otherwise, (c) holds trivially,
and moreover, (b) of the induction hypothesis implies that x is a child (in To)
of some previously visited node, so that (a) continues to hold. Furthermore,
the subtree rooted at x will be as found in To: no node in this subtree could
have already been visited, as this would be contrary to (c), and therefore no
rotation at an edge within this subtree (or incident upon x) could have taken
place since both nodes joined by the edge must be visited before such as rotation
can take place, as asserted by property 3 (following the statement of theorem
1). Therefore the children of x will be as found in To, so that (b) continues to
hold after this jth step. Now in the case that the jth step is a rotation, the set
of visited nodes is unaltered, and moreover, the collective set of the unvisited
children of visited nodes is the same as before the rotation (again following from
property 3). Thus, (a) and (b) continue to hold, as does (c). The final sentence
in the statement of the lemma follows from property 3. 	

Lemma 2. There exists a fixed permutation π over the first m integers that sat-
isfies the following. Given an arbitrary sequence of m distinct nodes x1, · · · , xm,
belonging to an arbitrary tree T , at least one of the request sequences, σ =
x1, · · · , xm or π(σ) = xπ(1), · · · , xπ(m), requires (m log2 m)/20 rotations to im-
plement (even) off-line, commencing from the tree T .

Proof: First we show that the claimed statement holds provided that we impose
the restriction that the size of T is bounded by (m log2 m)/10. Then we show
that this restriction can be removed.

Assume for now that the trees acted upon by the request sequences have size
bounded by (m log2 m)/10. We proceed to demonstrate the claimed existence of
π as follows. Let C denote the set of configurations (α, s), where α is an unlabeled
tree of size bounded by (m log2 m)/10, and s is a subset of m nodes in α. (We
refer to a node in an unlabeled tree by its symmetric order position within the
tree.) The size of C is bounded by mm/5 · (log2 m)m, as follows from the fact that
there are fewer than 4h unlabeled binary trees of size h (and using the inequality(
a
b

)
≤ (ea/b)b). Now map an arbitrary pair (r, g), where g is a tree of size bounded

by (m log2 m)/10 and r is a request sequence of length m, that references distinct
nodes within g, to a triple (δ, α, s), where (α, s) ∈ C, by choosing α to be g with
its node labels removed, choosing s to be the subset of nodes in α corresponding
to those that r references in g, and choosing δ to be the particular permutation
of the nodes in s that the order of the requests in r induces. And let 〈δ, s〉 denote
the request sequence consisting of requests to the nodes in s, as ordered by δ.
By extending the isomorphism between the trees g and α to implementations of
the corresponding request sequences, r and 〈δ, s〉, initiated from the respective
trees, g and α, we immediately conclude that the optimal efficiency with which
r can be implemented is uniquely determined by (δ, α, s), given that (r, g) →
(δ, α, s). Accordingly, we are justified in confining our analysis to the setting of



428 M.L. Fredman

request sequences 〈δ, s〉 being implemented commencing from unlabeled trees
α, with s a specified subset of nodes in α. Holding (α, s) fixed, we claim that
theorem 1 then implies that the number of permutations δ for which 〈δ, s〉 is
implementable with fewer than (m log2 m)/20 rotations, commencing from α is
bounded by mm/4. Namely, from the bound � = (m log2 m)/20 on the number of
rotations available for implementing 〈δ, s〉, theorem 1 implies a bound of 4�+m ≤
(m log2 m)/4 on the length of the derived binary encodings of these access request
sequences, which in turn imposes the bound mm/4 on the corresponding number
of permutations δ. Allowing (α, s) to vary, it follows that the total number κ of
triples (δ, α, s), with (α, s) ∈ C, such that 〈δ, s〉 is implementable with fewer than
(m log2 m)/20 rotations, commencing from α, is bounded by size(C) ·mm/4, so
that we have κ ≤ mm/5+m/4 · (log2 m)m.

Now we require a single permutation π such that whenever 〈δ, s〉 is imple-
mentable with fewer than (m log2 m)/20 rotations, commencing from α, π(〈δ, s〉)
requires at least (m log m)/20 rotations to implement. For each instance (δ, α, s)
contributing to κ, at most mm/4 candidates for π are eliminated, as again fol-
lows by application of theorem 1. (Those not eliminated are such that π(〈δ, s〉)
requires at least (m log m)/20 rotations to implement, commencing from α.)
Summing over the instances (δ, α, s) enumerated by κ, we conclude that at most
κ ·mm/4 < m7m/10 · (log2 m)m candidates for π are eliminated. As there are m!
potential candidates to choose from, a suitable choice exists (for m sufficiently
large).

We show next that the size restriction on T , assumed above, can be removed.
Assume otherwise, and let σ be such that both σ and π(σ) have implementations,
each involving fewer than (m log2 m)/20 rotations, in a tree T of size exceeding
(m log2 m)/10, where π satisfies the lemma provided that T is of size bounded by
(m log2 m)/10. Considering first σ, we identify an embedded tree T ′ in T (that
includes the root of T ), in which the implementation of σ can be confined, such
that the size of T ′ is bounded by (m log2 m)/20. T ′ is obtained by application of
lemma 1 with respect to an augmented root-sequence implementation of σ satisfy-
ing the requisite rotation bound. Since the number of navigation steps is bounded
by the number of rotations in an augmented root-sequence (property 4, above),
the size of the embedded tree defined by visited nodes in this particular instance
is bounded by (m log2 m)/20. Similarly, there is an embedded tree T ′′, similarly
bounded in size, in which the implementation of π(σ) can be confined. As both T ′

and T ′′ contain the root of T , their union gives an embedded tree of size bounded
by (m log2 m)/10, in which σ and π(σ) can both be implemented, each with fewer
than (m log2 m)/20 rotations. But this contradicts the choice of π. 	


2.3 Linear Off-Line Implementation

Lemma 3. Any round of the request sequence ζ can be implemented off-line
with O(n) rotations.

Proof: To facilitate this construction, the following library of transformation
macros will be referenced.



On the Matter of Dynamic Optimality in an Extended Model 429

Macro Library
Disclaimer: With respect to the transformation macros described below, the
implementation given for a particular macro may result in a tree that is only
swap-equivalent to what is described (which by Observation A suffices for the
purpose of implementing access requests).

M-1 The effect of a rotation can be reversed by just one rotation (always stan-
dard).

M-2 If B is a child of A, then the other child pointer of A and a child pointer
of B can be exchanged. This can be accomplished by rotating A → B and
then rotating B → A, with the standard–non-standard options appropriately
chosen.

M-3 The ordering of two nodes on a path can be exchanged, each bringing along
its own attached off-path subtree – accomplished by applying the (standard
or non-standard) rotation that leaves the path-continuation subtree appro-
priately situated.

M-4 Two sibling nodes can exchange child pointers. This uses a rotation, an
instance of M-2, and a rotation that reverses the first (see figure 5).

First, the tree T1, as generated by the off-line implementation of the prior rounds,
is transformed to a rightward linear list R (any child node is the right child of
its parent) using O(n) standard rotations.

Let ψ denote the symmetric order list of nodes of T1 (which conforms to the
list R). A round of ζ consists of requests that conform to contiguous blocks in ψ
of length m, some of which are internally permuted by the permutation π, and
referred to as π-blocks , and the remaining not internally reordered, referred to
as plain-blocks.

Broadly outlined,

(a) the list R is split into two lists, the left one L consisting of the (to become) π-
blocks, and the other consisting of the plain-blocks. (The left list constitutes
the left subtree attached to the first node of the other list.) The splitting
requires O(n) rotations. Next,

(b) the permutation π is applied (block-wise) to the list L consisting of the (to
become) π-blocks using O(n) rotations. Finally,

(c) the splitting process is reversed to merge the π-blocks with the plain-blocks,
to reform a single list that now conforms to the round of ζ, so that passing
its nodes through the root position satisfies the request sequence given by
the round.

We first describe the merging of two lists, noting that the splitting transforma-
tion is implemented by reversing the rotations (using transformation M-1) that
implement merging. The general configuration during the merging process ap-
pears as a “Y”, with the stem consisting of the merged result thus far formed,
and two arms of the Y being residual lists still needing to be merged. One arm
of the Y shifts relative to the other using transformation M-2 (being attached as



430 M.L. Fredman

a subtree to successive nodes of the other arm), as the second arm contributes
to the merged result. Then the second arm shifts relative to the first, etc. The
two arms thus shift in tandem relative to one another, until both are consumed,
forming a single list.

Next, we describe how the permutation π is applied to each of the blocks
of the list L, which constitutes the left subtree attached to the root of T1 as
modified immediately following the splitting step (a). For descriptive ease, we
speak of L as a stand-alone tree, separated from T1. Let xj,i denote the ith node
of the jth block (of size m) in L. The following outlines the execution. (View L
as being strictly leftward, its nodes being linked using left-child links.)

1. L is demultiplexed to form m chains; the jth node of the ith chain Pi is
given by xj,i. The nodes belonging to a common chain Pi are linked through
their respective right links, and had occupied positions in L belonging to a
common residue class (mod m) prior to the demultiplexing transformation.
Upon completion of the demultiplexing process a list whose individual ele-
ments consist of whole chains, formed by linking the respective first elements
of these chains through their left child links in the order P1, P2, · · · , Pm (with
the first node of P1 being the root), emerges. O(length(L)) rotations suffice
for this step. Figure 2 shows the completion of this demultiplexing.

2. A reordering of the list of chains is performed, so that they are then linked
through their respective first nodes in the order Pπ(1), · · · , Pπ(m). A bubble
sort can accomplish this step with O(m2) = O(n) applications of transforma-
tion M-3 to exchange neighboring chains (a less concisely described method
would be far more efficient). Figure 3 shows the completed reordering.

3. The chains are now reassembled (multiplexed), using O(length(L)) rotations,
to form a list consisting of the now-permuted π-blocks of L, with the order
among these blocks being the same as before the permutation π had been
applied.

Considering the multiplexing and demultiplexing steps, multiplexing (see
figure 4) is accomplished by alternating peeling and shifting phases, one peeling
phase and one shifting phase for each (permuted) block in L. A peeling phase
strips the lead elements from their respective residual chains, while simultane-
ously reconstituting the list of residual chains; each chain now having one less
element. Then during the shifting phase, the subtree consisting of the reconsti-
tuted list of chains is repeatedly shifted to be properly appended to the single
chain under construction. Demultiplexing is accomplished by reversing the pro-
cess of multiplexing via repeated application of transformation M-1.

A single step of a peeling phase is shown in figure 6, using the transformation
M-4. A single step of the shifting phase is shown in figure 7, using the transfor-
mation M-2. 	

The preceding lemmas substantiate the outline of section 2.1, so that the follow-
ing theorem has been established.

Theorem 2. Dynamic optimality is not attainable in the unordered tree model.



On the Matter of Dynamic Optimality in an Extended Model 431

3 Some Remarks

The established separation between off-line implementation versus on-line imple-
mentation in this model leaves open the question of what constitutes an efficient
and versatile on-line implementation. The above proof can be modified to show
that for any given on-line method, there is another (seemingly preposterous)
on-line method that will dominate the former with respect to certain specific
access request sequences. The latter method, moreover, satisfies the property
that its rotations restructure only the access path to an immediate request. Per-
haps a plausibility constraint of some sort, requiring that certain performance
guarantees such as static optimality [3] be satisfied (and maybe some additional
conditions), would circumvent this phenomenon, so that a reasonably defined
“optimal” on-line method can emerge.

· · ·

· · ·

· · ·

· · ·

· · ·

P2

Pm

P3

P1

Fig. 2. After demultiplexing (Edges point from parent to child)

· · ·

· · ·

· · ·

· · ·

· · ·

Pπ(2)

Pπ(m)

Pπ(3)

Pπ(1)

Fig. 3. After reordering chains



432 M.L. Fredman

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·
· · ·

· · ·

· · ·

· · ·

· · ·
· · ·

· · ·

· · ·

· · ·

· · ·

Fig. 4. Process of multiplexing: peeling and shifting

From left to right, the first diagram depicts a partially completed
peeling phase. The second diagram depicts the completion of the
peeling phase. The third diagram depicts a partially completed
follow-on shifting phase, and the last diagram shows the completion
of the shifting phase.

A

B

B

A

BA AB

Fig. 5. Transformation M-4

From left to right, the first tree is transformed via one rotation into
the second tree. The second is transformed via M-2 into the third,
and a rotation transforms the third tree into the fourth, completing
the M-4 transformation.



On the Matter of Dynamic Optimality in an Extended Model 433

c

b

a

· · · · · ·
c

b

a

Fig. 6. A peeling step

A single step of peeling is applied to the tree on the left, to obtain
that on the right. This is accomplished via M-4, exchanging point-
ers from nodes a and b, so that c is pointed to from b instead of a.
The other pointer in the exchanged pair isn’t shown.

c

c

· · ·

a

b

a

b

· · ·

· · ·

· · ·

Fig. 7. A shifting step

Transformation M-2 is applied to exchange pointers from nodes a
and b, so that c is pointed to from b instead of a. The other pointer
in the exchanged pair isn’t shown.

References

1. Fredman, M.L.: Generalizing a theorem of Wilber on rotations in binary search trees
to encompass unordered binary trees. Algorithmica (to appear)

2. Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The pairing heap: a new
form of self-adjusting heap. Algorithmica 1(1), 111–129 (1986)

3. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. JACM 32(3), 652–686
(1985)

4. Wilber, R.: Lower bounds for accessing binary trees with rotations. SIAM J. on
Computing 18(1), 56–67 (1989)



434 M.L. Fredman

A Appendix

We proceed to prove theorem 1, largely following the presentation given in [1],
but with certain changes that are necessary for the main body of this paper, and
also somewhat simplified. Our argument makes use of a root sequence construct.
A sequence of rotations acting on an evolving tree is considered a root sequence
provided that it satisfies the following recursively stated conditions:

1. A root sequence consists of zero or more blocks of rotations, referred to
as root sequence blocks , with each block having exactly one rotation that
changes the root node, that being its final rotation. Thus, the root node
and the node sets of its two connected subtrees are static throughout the
execution of the rotations of a single block, until the final rotation.

2. Let x be the node placed in the root position by the final rotation of a root
sequence block, and let H be the subtree connected to the root that contains
x (prior to the final rotation). Then all but the final rotation of the block
are restricted to act upon the (evolving) subtree H .

3. All but the final rotation of a root sequence block recursively constitute a
root sequence, but relative to the subtree H connected to the root that they
are confined to.

We proceed to show first that a sequence of rotations R acting on an initial
tree T can be rearranged to commence with a root sequence that brings nodes
to the root position, exactly as had occurred during the implementation of R
(including relative order).

A rearrangement of a sequence of rotations is considered equivalent to the
original provided that (a) each rotation specifies an existing edge of the evolv-
ing tree (preserving the parent-child relation), and (b) the net transformation
effected by the rearranged sequence is the same as that effected by the original
sequence. We shall make use of the observation that two consecutive rotations
commute provided that their respective edges are not incident upon a common
node. All sequence rearrangements discussed in the sequel are understood to
preserve equivalence, and will be verifiably so by design.

Lemma 4. Given a sequence of rotations R, there exists a rearrangement R1

of R having the form R1 = UV where U is a root sequence and V contains no
rotations involving the node in the root position. Moreover, the sequence of nodes
arriving at the root position of the evolving tree during the implementation of
U (referred to as the sequence of root-arrivals), is identical to the sequence of
root-arrivals for R.

Proof: If R contains no rotations involving the root, then V = R. Otherwise, let
S = s1, s2, · · · , sm, r be the prefix of R, where r is the first rotation involving
the root. Assume that the tree structure at the moment immediately preceding
the rotation r appears as shown below, and that r rotates the edge (A, B).



On the Matter of Dynamic Optimality in an Extended Model 435

I
B

HG

A

V ′

U ′

rotatesr

S ′′

[S ′, S ′′]
︸ ︷︷ ︸

S

r⇒ S ′S ′′r ⇒ U ′V ′S ′′r ⇒ U ′r︸︷︷︸
β

V ′S ′′

Fig. 8.

The above figure may prove helpful while reading the following description.
To explain the notation used in the figure, [X, Y ] refers to a sequence formed
of two subsequences X and Y interleaved in some arbitrary manner, and for
sequences K and L, K ⇒ L depicts K being rearranged as L. The encircled
substructures are labeled with rotation sequences; the constituent rotations of a
given label are confined to edges that join nodes belonging to the corresponding
encircled node sets as the structure evolves. We note that until the rotation r
takes place, the node sets of the two subtrees connected to A remain static. The
subtree comprised of the node set that contains B is referred to here as the
has-B-subtree. Now let S′ = t1, · · · , tg be the subsequence of rotations among
the sj ’s that occur among edges in the has-B-subtree. The subsequence S′′ of
remaining rotations among the sj ’s are on edges confined to nodes in the sibling
subtree (that depicted as I in figure 8) as it evolves. Thus, we preserve sequence
equivalence upon moving the S ′ subsequence of rotations ahead of the other ro-
tations S ′′ (the first of the three rearrangements represented in the above figure).
By induction these S ′ rotations can be rearranged (the second rearrangement
in the figure) as a sequence U ′V ′, where U ′ forms a root sequence for this has-
B-subtree (ultimately promoting B to its root position), and V ′ contains no
rotations involving the root of the subtree; this root staying fixed as B over the
course of V ′. (Referring to figure 8, V ′ consists of rotations on edges confined to
nodes in the subtrees G and H, as they evolve, whose respective node sets are
established upon completion of U ′.) Now the rotation r can be moved ahead of
the rotations S′′ (confined to the evolving subtree shown as I), and also ahead of
the rotations in V ′ (confined to G and H), preserving sequence equivalence (the
third rearrangement in the figure), since none of the these rotations that r passes
over are incident upon either of its two nodes. Doing so creates a syntactically



436 M.L. Fredman

valid first block, β = U ′r, for a root sequence, with the rotation r bringing the
same next node to the root position as had occurred during the implementation
of R.

The rearrangement leading to β has not altered the order of root arrivals.
By induction the remaining terms R̃ of R (consisting of all rotations that now
follow r) can be rearranged to commence with a root sequence (respecting root-
arrivals), that when appended to β yields the promised root sequence U (and
the residual tail of this rearrangement of R̃, being devoid of any rotations that
involve the root, provides the required V ). 	

We now proceed with the encoding of a root sequence. Given a root sequence
block (possibly embedded recursively in another block) we augment the block
with a navigation process as follows: navigation is considered as being initiated
from the root of the (sub)tree acted upon by the rotations of the block. A single
navigational bit is placed at the beginning of the block to indicate from which
subtree of the root its replacement node is drawn by the single rotation that
concludes the block, and a single step of navigation is considered as taking place,
with the position of navigation being transferred to the root of this subtree. By
design, immediately before the rotation that concludes the block takes place, the
position of navigation will be found at the node in the child position of the edge
being rotated, and remains at that node as the rotation takes place, so that it
will be positioned at the parent node end of the just rotated edge, and therefore
once again at the root node of the tree acted upon by the block rotations. The
recursive sub-blocks embedded in the given block are similarly augmented, and
at the completion of a given sub-block, the position of navigation is appropriately
located at the root node of the subtree to be acted upon by the follow-on sub-
block – should there be one – and when there is no follow-on sub-block, the
position of navigation is appropriately located at the child node end of the edge
to be rotated by the final rotation of the parent block. (If there are no recursive
sub-blocks the step of navigation placed at the beginning of a block positions
navigation at the appropriate node for the ensuing single rotation of the block.)
Generally, one bit of navigational information is provided for each rotation in a
root sequence block; the bit entered at the beginning of the block is accounted
for by the rotation that completes the block.

As there are only two possibilities for rotating an edge from the vantage of
the node in the child position, i.e. whether the rotation is standard or non-
standard, only one bit is required to specify a given rotation. We note that
the edge affected by the rotation is uniquely determined, given the position of
navigation at that point. To signify whether a bit is intended as descriptive of a
step of navigation versus the form (standard or non-standard) of a rotation, we
immediately precede it with an additional bit that serves this purpose. Thus we
obtain a binary encoding of a root sequence having length 4 times that of the
number of rotations in the sequence: given this encoding and a representation of
the tree acted upon by the root sequence, the evolution of the tree, as determined
by the associated root sequence, can be recovered. (Given the present position in
the present configuration of T , the next pair of bits in an encoding provides the



On the Matter of Dynamic Optimality in an Extended Model 437

next step of navigation, or the next rotation – as may be the case – so that the
next configuration of T and position of navigation within T can be determined.)
A further augmentation facilitates recovery (hence encoding) of an access request
sequence: indicators are inserted in appropriate locations that specify that the
node presently occupying the root position satisfies the pending access request.
When the root satisfies the pending access request, and navigation is positioned
at this root (as must be the case after the pertinent rotation), then placement of
a single bit (otherwise) signifying that the next bit describes a rotation, between
the node of current position and its parent – an impossibility in this positional
context – serves to provide this signal.

Applying this encoding method to the root sequence constructed in lemma 4,
derived from the least costly implementation of a given access request sequence,
completes the proof of Theorem 1.

The following Observation is used in the main body of the paper.

Observation B. Let σ be an augmented root-sequence. Prior to any rotation in
σ, the navigation process must at some point be positioned at each of the nodes
joined by the edge undergoing rotation.

This is clear by consideration of the root-sequence sub-block that concludes
with the rotation under consideration; navigation is positioned at the node in
the parent position of the edge to be rotated as the block gets underway, and at
the node in the child position immediately prior to the rotation.



Resilient and Low Stretch Routing through
Embedding into Tree Metrics

Jie Gao and Dengpan Zhou

Department of Computer Science,
Stony Brook University,

Stony Brook, NY 11794, USA
{jgao,dpzhou}@cs.sunysb.edu

Abstract. Given a network, the simplest routing scheme is probably routing on
a spanning tree. This method however does not provide good stretch — the route
between two nodes can be much longer than their shortest distance, nor does
it give good resilience — one node failure may disconnect quadratically many
pairs. In this paper we use two trees to achieve both constant stretch and good
resilience. Given a metric (e.g., as the shortest path metric of a given communi-
cation network), we build two hierarchical well-separated trees using random-
ization such that for any two nodes u, v, the shorter path of the two paths in the
two respective trees gives a constant stretch of the metric distance of u, v, and
the removal of any node only disconnect the routes between O(1/n) fraction of
all pairs. Both bounds are in expectation and hold true as long as the metric fol-
lows certain geometric growth rate (the number of nodes within distance r is a
polynomial function of r), which holds for many realistic network settings such
as wireless ad hoc networks and Internet backbone graphs. The algorithms have
been implemented and tested on real data.

1 Introduction

This paper considers a fundamental problem of designing routing schemes that give
low stretch and are resilient to node failures. We consider a metric (P, d) on n nodes
(e.g., as the shortest path metric of a given network), in particular, metrics of bounded
geometric growth as a popular family of metrics in the real world. The result we present
in this paper is a routing structure, constructed in a distributed manner such that each
node of P keeps routing information of size O(log n), the route discovered has constant
stretch (e.g., a constant factor longer than the metric distance), and the routing structure
is robust to node failures, where a single node failure will only disconnect O(1/n)
fraction of the routes between all possible pairs.

The technique we use in this paper is through embedding into tree metrics. Given a
metric (P, d), the simplest way to route is probably by taking a spanning tree to guide
message routing. This has a number of benefits, as a tree metric is a much simpler
metric with many special features. For example, between any two vertices in a tree,
there is a unique simple path connecting them, and the unique path can be found in a
local manner by first traversing up the tree towards the root, and traversing down the
tree at the lowest common ancestor. There is a simple labeling scheme such that one
can use routing table of O(log n) bits at each node to support routing on a tree [3].

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 438–450, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Resilient and Low Stretch Routing through Embedding into Tree Metrics 439

However, routing on a spanning tree of the metric has a number of problems, in
particular, the poor stretch and lack of resilience. The path on a tree might be much
longer than the metric distance. Take the shortest path metric of a cycle of n vertices,
any spanning tree will separate some pair of vertices, adjacent on the cycle, by distance
n− 1. That is, the distortion introduced by routing on a spanning tree is factor of Ω(n)
of their true distance. A more serious problem of routing on a tree is due to the lack
of robustness to node failures. If a node fails or decides not to cooperate and stops
forwarding messages, the tree is broken into pieces and in the worst case quadratically
many pairs have their paths disconnected.

In this paper we use embedding into tree metrics for efficient, scalable routing, but
address the shortcomings regarding stretch and resilience. Instead of using one tree,
we use simply two trees. The shorter one of the paths from two trees may have better
stretch. Regarding node failures, if a node u fails and the path between two nodes x, y is
disconnected as it goes through u, the path connecting x, y in the second tree hopefully
does not contain u and still remains valid. We briefly elaborate our technical approach
and then relate to prior work.

Our Results. The tree embedding we use follows from the embedding of a general
metric into tree metrics with low distortion. Given a metric (P, d) we embed it to a
hierarchically well-separated tree (HST). The leaf nodes of the HST are 1-to-1 mapped
to nodes in P and internal nodes of the HST are also mapped to nodes of P although
certain nodes may appear multiple times. The embedding of (P, d) into a tree metric
necessarily introduces distortions. As discussed earlier, using a fixed tree one cannot
avoid the worst case distortion of Ω(n). But if one build a tree, chosen randomly from a
family of tree metrics, the expected distortion can be bounded by O(log n). Thus using
this tree for routing one immediately obtains O(log n) stretch routing with low routing
overhead. Approximating a metric with probabilistic hierarchical well-separated trees
was first proposed by Bartal [6,5], with the motivation that many problems are easier to
solve on a tree than on a general graph. Later, Fakcharoenphol et al. [11] improved the
distortion to O(log n) for any n node metric and this is tight.

The results we prove in this paper are mainly in three pieces

– Using two HSTs, randomly constructed with independent seeds, we show that the
stretch can be improved to a constant in expectation. That is, for any two nodes
x, y, between the two paths in the two HSTs respectively, one of them is short and
is at most a constant factor of the metric distance between x, y.

– Regarding the resilience of using one HST for routing, we show that for any node
failure, the number of pairs with their routes on the HST disconnected is at most a
fraction of O(log Δ/n) of all pairs, where Δ is the aspect ratio of (P, d), defined as
the furthest pair distance versus the closest pair distance. When Δ is polynomial in
n the bound is as small as O(log n/n) but in the worst case when the aspect ratio
is exponential the bound can be bad.

– Using two HSTs we substantially improve the routing resilience. We build two
HSTs with random, independent seeds. In the case of a node failure, we show that
the number of pairs with their routes on both HSTs disconnected is at most a frac-
tion of O(1/n) of all pairs, thus removing the factor of O(log Δ) compared with
the case of a single HST.



440 J. Gao and D. Zhou

The results hold for metrics with ‘geometric growth’, that is, the number of nodes within
distance r from any node grows as a polynomial function of r, not exponential (as in
the case of a balanced binary tree). Such a family of metrics appears in many realis-
tic settings, either due to physical constraints such as in wireless networks and VLSI
layout networks, or due to geographical constraints such as in peer-to-peer overlay net-
works [25,22,24]. In the next section we introduce the rigorous definitions and elaborate
the precise assumptions for each of the results.

Last remark that in the case that (P, d) is the shortest path metric of a given network
G, there is a distributed algorithm [12] that constructs the HST with a total number
of messages bounded by O(n log n). In addition, each node is given a label of size
O(log n) such that one can route on an HST using only the node label information. Thus
the entire scheme of using one or multiple HSTs for robust, low-stretch and efficient
routing can be implemented in a completely de-centralized manner.

Prior Work. There is numerous prior work on routing. We only have the space to
review some most relevant ones.

The traditional routing methods as used for the Internet are essentially shortest path
routing. Essentially each node keeps a routing table of size O(n) to save the next hop
on the shortest path for each destination. This is equivalent to maintaining n shortest
path trees, rooted on every node. From this perspective, our approach defines one or two
global trees, rather than one tree per node. By doing so we can substantially reduce the
size of the routing table from O(n) to O(log n), while still keeping the routing stretch
by a constant.

From a theoretical aspect, compact routing that minimizes the routing table size
while achieving low stretch routing has been studied extensively [23,14]. There are
two popular models in the literature, the labeled routing model (in which naming and
routing schemes are jointly considered) [9,10,30] and name-independent routing (in
which node IDs are independent of the routing schemes) [2,17]. Generally speaking,
the theoretical results in compact routing in a graph whose shortest path metric has a
constant doubling dimension are able to obtain, with polylogarithmic routing table size,
1 + ε stretch routing in the labeled routing scheme (see [8] and many others in the
reference therein), and constant stretch factor routing in the name-independent routing
scheme [17,1] (getting a stretch factor of 3−ε will require linear routing table size [1]).
The schemes here are all by centralized constructions and aim to get the best asymptotic
bounds. Our focus of using tree embedding is to obtain practical routing solutions with
theoretical guarantee. Further, the compact routing schemes above have no considera-
tion of robustness to node failures.

Routing methods that can recover from node or link failures receive a lot of inter-
ests recently. There are many heuristic methods for Internet routing such as fast re-
routing [28], Loop-free alternate (LFA) [4], O2 [7], DIV-R [26] and MARA [31]. But
these methods have no theoretical guarantee. There are some previous work considering
approximate shortest paths avoiding a failed vertex [21]. Path splicing [19] uses mul-
tiple shortest path trees with perturbed edge weights. When routing in one tree metric
encounters a problem, the message is quickly routed on a different tree. Using a simi-
lar idea we can also use multiple HSTs to recover in-transit failures. The difference is
that we do not keep separate shortest path trees rooted at each node, but rather use two



Resilient and Low Stretch Routing through Embedding into Tree Metrics 441

global trees. Thus our storage overhead is substantially better. Our simulation shows
that we have roughly the same routing robustness, our stretch is a little higher but we
substantially save on routing table size. A more recent related work is using multiple
HSTs for information delivery to mobile users [20].

2 Preliminaries

Metrics with Geometric Growth. An important family of metrics is the metrics with
‘geometric growth’. There are several related definitions. Given a metric (P, τ), let
B(p, r) = {v | τ(p, v) ≤ r} denote the radius r ball centered at p. In [16], a metric
has bounded expansion rate (also called the KR-dimension, counting measure) k1 if
|B(v, 2r)| ≤ k1|B(v, r)| for a constant k1; and in [15], a metric has bounded doubling
dimension k2 if B(v, 2r) is contained in the union of at most k2 balls with radius r
for a constant k; in [18,13], a metric has upper bounded growth rate growth rate k3 if
for every p ∈ V and every r ≥ 1, |B(p, r)| ≤ ρrk3 , for a constant ρ and k3. A few
sensor network papers [27,32] consider a model when the growth rate is both upper and
lower bounded, i.e., ρ−rk4 ≤ |B(p, r)| ≤ ρ+rk4 for a constant k4, where ρ− ≤ ρ+

are two constants. We denote the family of metrics with constant expansion rate, con-
stant doubling dimension, constant upper bounded growth rate, and constant upper and
lower bounded growth rate asMexpansion,Mdoubling,M+

growth,Mgrowth respec-

tively. It is not hard to see thatMgrowth ⊆Mexpansion ⊆Mdoubling ⊆M
+

growth.

See [15,13] for more discussions. In terms of the results in this paper the detailed defi-
nitions actually matter. In the following we will make it clear which definition is needed
for each result.

Embedding into Tree Metrics. Given two metric spaces (X, dX) and (Y, dY ), an in-
jective mapping f : X → Y is called an embedding of X into Y . We can scale up Y to
make the embedding to be non-contractive, i.e., for any u �= v ∈ X : dY (f(u), f(v)) ≥
dX(u, v). We say Y dominates X . The distortion of the pair u, v is distf (u, v) =
dY (f(u),f(v))

dX(u,v)
. The distortion of the embedding f is dist(f) = maxu,v∈X distf (u, v).

Given a metric (P, d), we embed it to a tree metric and use the tree metric to guide
message routing. Ideally we want the route length to be close to the metric distance.
As shown in the introduction, it is not possible to get distortion of o(n) using a single
tree. However, it is known that for any metric (P, d), one can use randomization such
that the expected distortion is only O(log n). Such a tree is a type of a hierarchical
well-separated tree H , as defined below.

Definition 1 (α-HST [5]). A rooted weighted tree H is an α-HST if the weights of all
edges between an internal node to its children are the same, all root-to-leaf paths have
the same hop-distance, and the edge weights along any such path decrease by a factor
of α as we go down the tree.

In this paper we focus on 2-HST. The leaves of T are the vertices in P , and the internal
nodes are Steiner nodes. Fakcharoenphol, Rao and Talwar [11] have shown that for any
metric (P, d) one can find a family of trees such that a randomly selected metric from
the family has expected distortion of O(log n), which is also tight.



442 J. Gao and D. Zhou

Review of The FRT Algorithm [11]. Without loss of generality, we assume that the
smallest distance between any two vertices in P is 1 and the diameter of P is Δ. The
aspect ratio is also Δ. Assume 2δ−1 < Δ ≤ 2δ. The FRT algorithm proceeds in a
centralized manner by computing a hierarchical cut decomposition D0, D1, · · · , Dδ.

Definition 2 (Cut decomposition). For a parameter r, an r-decomposition of a metric
(P, d) is a partitioning of P into clusters, each centered at a vertex with radius r.

Definition 3 (Hierarchical cut decomposition). A hierarchical cut decomposition of
(P, d) is a sequence of δ + 1 nested cut decompositions D0, D1, · · · , Dδ such that

– Dδ = P , i.e.the trivial partition that puts all vertices in a single cluster.
– Di is a 2i-cut decomposition, and a refinement of Di+1. That is, each cluster in

Di+1 is further partitioned into clusters with radius 2i.

To find the hierarchical cut decomposition, one first chooses a random permutation
π : P → {1, 2, · · · , n} of the nodes. We use π(i) to denote the node with rank i in
the permutation. We also fix a value β chosen uniformly at random from the interval
[1, 2]. For each i, compute Di from Di+1 as follows. First set βi to be 2i−1β. Let S be
a cluster in Di+1. Each vertex u ∈ S is assigned to the first (according to π) vertex v
within distance βi. We also say that u nominates v. Each child cluster of S in Di then
consists of the set of vertices in S assigned to the same center. We denote the center of
a cluster C by center(C). Note that all clusters in Di have radius 2i−1 ≤ 2i−1β ≤ 2i.
Remark that a node can nominate a center outside of its current cluster in Di+1 and one
node can be the center for multiple clusters.

An alternative view of the hierarchical cut decomposition is to define for each node
u a δ-dimensional signature vector S(u). The i-th element in the vector is the lowest
rank node within distance 2iβ. S(u)i = arg minv∈B(u,2iβ) π(v) where B(p, r) is the
collection of nodes within distance r from node p. A cluster at level i contains all the
nodes with the same prefix [1, i] of their signature vectors.

To turn the hierarchical cut decomposition to a 2-HST, the points of P are the leaf
nodes of the HST and each internal node in the HST corresponds to a cluster of nodes
in the hierarchical partitioning. The refined clusters in Di−1 of a cluster C in Di are
mapped to children of C. The root corresponds to D0. We can also use the center u of
a cluster C as the representative node of C in the HST. Thus the root of the HST has
π(1) as its representative node. Denote by Pi the centers of the clusters in Di. Pi is the
set of node that are ‘nominated’ by others at level i.

The HST has δ + 1 levels, at 0, 1, · · · , δ. The level i has a number of internal nodes
in the HST corresponding to Pi. The edge weight connecting a cluster C in Di to its
children clusters in Di−1 is 2i, i.e., greater than the radius of the cluster C. Clearly the
HST metric dominates (V, d), as one only relaxes the distances. For any two nodes u, v,
suppose that they are first separated in different clusters in the decomposition Di, i.e.,
their lowest common ancestor in the HST is at level i + 1. In this case we have their
distance on the tree to be dH(u, v) = 2

∑i
j=1 2j = 2i+2. Fakcharoenphol, Rao and

Talwar [11] proved that dH(u, v) ≤ O(log n)d(u, v), in expectation over all random
choices of β and π. A distributed implementation of the algorithm is available in [12].



Resilient and Low Stretch Routing through Embedding into Tree Metrics 443

3 Constant Distortion Routing Using Two HSTs

Starting from this section we examine the properties of routing using two HSTs.

Constant Distortion Embedding in Two HSTs. For a given metric (P, d) with expan-
sion rate k, we build two HSTs, H1 and H2 with independent, random seeds
using the algorithm in [11]. For any two points u, v in P , we define the distance be-
tween them to be the minimum shortest path in the two trees. That is dH(u, v) =
min{dH1(u, v), dH2(u, v)}.

Theorem 1. For any metric (P, d) with expansion rate k and two HSTs H1, H2, there
is a constant c such that for any two nodes u, v ∈ P ,

E[dH(u, v)] = E[min{dH1(u, v), dH2(u, v)}] ≤ c · k4 · d(u, v).

For two nodes u, v ∈ P , denote their lowest common ancestor (LCA) in Hi by
LCAi(u, v), for i = 1, 2. And denote LCA(u, v) = min{LCAi(u, v), i = 1, 2}.
Thus dH(u, v) = 2i+2 if LCA(u, v) is at i + 1. Now we have E[dH(u, v)] =

∑δ−1
i=0

Prob{LCA(u, v) is at level i + 1} · 2i+2. With the following Lemma that bounds the
probability that LCA(u, v) is at i + 1 (the proof is in the Appendix), we can prove the
Theorem.

Lemma 1

Prob{LCA(u, v) is at level i + 1} ≤
{

0, if 2i+2 < d(u, v);
3k4 · d2(u, v)/22i−4, if 2i−2 ≥ d(u, v).

Proof (Theorem 1). With the above lemma, we can prove Theorem 1 easily. Suppose
j∗ is the smallest i such that 2i+2 ≥ d(u, v),

E[dH (u, v)] =
∑δ
i=0 Prob{LCA(u, v) is at level i + 1} · 2i+2

≤
∑δ
i=j∗+4[3k4 · d

2(u,v)
22i−4 ] · 2i+2 +

∑j∗+3
i=j∗ 2i+2

≤ 27 · 3k4 · d2(u, v)/2i
∗

+ 14d(u, v) ≤ (96k4 + 14) · d(u, v).

Routing with Two HSTs. To route a message from a source to a destination node, we
check each set of labels to see which tree gives a lower LCA (lowest common ancestor).
That tree will provide a path with only constant stretch. We remark that the storage
requirement for each node is very low, in the order of O(log n).

4 Resilience to Node Failures Using Two HSTs

In this section we show that using two trees, instead of one, can improve the routing
robustness substantially. For a pair of node u, v, if the path connecting them is discon-
nected on the first tree, it is still possible that there is a path between them on the second
tree. Thus one can switch to the second tree for a backup route and recover from sudden,
unforseen failures instantaneously, akin to the path splicing idea [19].

Robustness of a single random HST. We first examine the properties of a single HST
in terms of node failure. When a node u fails, any path on the HST that uses a cluster



444 J. Gao and D. Zhou

with u as the center is disconnected. We examine how many such pairs there are. The
worst case is that u is a center of a cluster near the root of the HST – this will leave big
components and Ω(n2) number of pairs disconnected. For example, if the node π(1)
fails. However, since the construction of the HST uses random permutations (assuming
the adversary has no control over the choice of this random permutation, as in standard
settings of randomized algorithms), a single node failure is unlikely to be near the root.
The following theorem works for any metric (P, d) with constant doubling dimension.

Theorem 2. Given a node u and an HST, the expected number of nodes within clusters
with u as center is O(log Δ), where Δ is the aspect ratio of the metric (P, d) with
constant doubling dimension.

Proof. Suppose a node x is within a cluster with u as the center, say this cluster is at
level i. Then we know that d(u, x) ≤ β2i and u is the highest rank node in B(x, β2i).
Now, take �u(x) as the lowest level j such that d(u, x) ≤ β2i. Clearly, �u(x) ≤ i. Thus
B(x, β2�u(x)) ⊆ B(x, β2i). That is, u is the lowest rank node at level �u(x) as well.
The probability for that to happen is 1/|B(x, β2�u(x))|. Thus the probability that x is
inside a cluster with u as center is no greater than 1/|B(x, β2�u(x))|.

Now, the expected number of nodes within clusters with u as center, W , is,

W =
∑
x Prob{x is in a cluster centered at u} ≤

∑
x 1/|B(x, β2�u(x))|

=
∑

j

∑
x∈B(u,β2j)\B(u,β2j−1) 1/|B(x, β2j)| ≤

∑
j

∑
x∈B(u,β2j) 1/|B(x, β2j)|.

Now, recall that the metric (P, d) has constant doubling dimension γ. Thus we can
cover the point set B(u, β2j) by balls of radius β2j−1, denoted as sets B1, B2, · · · , Bm,
m ≤ 2γ . Since the points in Bj are within a ball with radius β2j−1, all the points within
Bj are within distance β2j of each other. That is, for a node y ∈ Bi, Bi ⊆ B(y, β2j).
Thus |Bi| ≤ |B(y, β2j)|, where y ∈ Bi. Now we group the points of B(u, β2j) first
by the balls they belong to, and then take the summation over the balls.

W ≤
∑

j

∑
x∈B(u,β2j) 1/|B(x, β2j)| =

∑
j

∑m
i

∑
x∈Bi

1/|B(x, β2j)|
≤

∑
j

∑m
i

∑
x∈Bi

1/|Bi| =
∑
j

∑m
i |Bi| · 1/|Bi| =

∑
j m ≤ 2γδ = O(log Δ).

The above lemma shows that the total number of pairs disconnected if one random node
is removed is bounded by O(n log Δ).
Robustness of Two Random HSTs. We now examine the robustness property of using
two random HSTs and bound the number of pairs ‘disconnected’ in both trees, i.e.,
their routes by using both HSTs go through u. For this case we assume that (P, d) has
both constant upper and lower bounded growth ratio. By using two trees we reduce the
expected number of disconnected pairs from O(n log Δ) to O(n).

Theorem 3. The number of pairs of nodes disconnected in two HSTs, constructed using
independent random permutations, is a fraction of O(1/n) of all pairs, for a metric
(P, d) with both constant upper and lower bounded growth ratio.

Proof. Take a pair of nodes x, y, the paths connecting the two in both trees are discon-
nected if and only if in each of the tree, exactly one node is in a cluster with u as center
and another one is not in any cluster with u as center. Denote by Pu(x) the probability



Resilient and Low Stretch Routing through Embedding into Tree Metrics 445

that x is in a cluster with u as the center. Pu(x) ≤ 1/|B(x, β2�u(x))|. Thus the expected
number of pairs of nodes disconnected after node u is removed is,

W2 =
∑

y

∑
x 4[Pu(x)]2[1− Pu(y)]2 ≤

∑
y

∑
x 4[1/|B(x, β2�u(x))|]2

= 4n
∑
j

∑
x∈B(u,β2j)\B(u,β2j−1) 1/|B(x, β2j)|2

= 4n
∑
j(|B(u, β2j)| − |B(u, β2j−1)|)/|B(x, β2j)|2.

If (P, d) has constant bounded growth ratio k, we know that ρ−βk2jk ≤ |B(x, β2j)| ≤
ρ+βk2jk for constants ρ− ≤ ρ+. Thus

W2 ≤ 4n
∑
j [ρ

+βk2jk]/[ρ−βk2jk]2 = 4n
∑
j ρ+/(ρ−)2 · 1/(βk2jk) = O(n).

Robustness of Two HSTs with Reversed Rank. An alternative method to use two
trees for robust routing is to construct the second tree to be as different as possible
from the first tree. One idea is to build the second HST H2 by using permutation π2,
as the reverse of the permutation π1 used in H1. As an immediate consequence of that,
suppose x is in a cluster with u as the center in H1, then x can not be inside any cluster
with u as center in H2. This is because the rank of x is greater than u in π1, and the
rank of x must be smaller than the rank of u in π2. Thus x can never nominate u in
H2. This says that the set of nodes ‘chopped off’ by the failure of u in H1 will not be
chopped off in H2, ensuring certain robustness of routing. We also evaluate this method
by simulations and it performs no worse than the two random HSTs.

5 Simulations

This section evaluates our two HSTs mechanism in terms of path stretch and reliability
against node or link failures. We run our simulation on two data sets. The first data set is
a unit disk graph on a network of nodes deployed using perturbed grid model, a widely
used model for wireless sensor networks. To be specific, the networks are generated by
perturbing n nodes of the

√
n×
√

n grid in the [0, 1]2 unit square, by 2D Gaussian noise
of standard deviation 0.3√

n
, and connecting two resulting nodes if they are at most 2√

n

apart. The average degree of the network generated in this way is about 5. The second
data set is the Sprint backbone network topology inferred from Rocketfuel [29], which
has 314 nodes and 972 edges.

We first study the routing stretch by using 1 HST and 2 HSTs respectively assuming
no node or link failures. We also examine the number of pairs disconnected when using
one HST and two HSTs respectively. For the two HSTs, we carry out simulations for
both random HSTs and a pair of HSTs whose node rankings are in reverse of each other.
Next, we compare our scheme with the path splicing approach [19] when link or node
failures exist. We conducted two sets of experiments using two randomly constructed
HSTs, and a pair of HSTs with reversed rank. For both methods, the next hop has a
probability p to fail at each step. In case of a failure, we route a message using one HST
or one splicing, and switch to another HST or splicing instance when we encounter a
link or node failure on the next hop. The path stretch is computed only on the messages
that reach the destination before TTL runs down to zero.



446 J. Gao and D. Zhou

500 1000 1500 2000
2

2.5

3

3.5

Network size

A
ve

ra
ge

 p
at

h 
st

re
tc

h

 

 

1 HST
2 reverse HSTs
2 random HSTs

0.02 0.04 0.06 0.08 0.1
1

1.5

2

2.5

3

3.5

Probability of link failure

A
ve

ra
ge

 p
at

h 
st

re
tc

h

 

 

2 HSTs
Original path splicing

Fig. 1. [Left] Average path stretch using 2 HSTs v.s. 1 HST for the unit disk network (for each
network size, we sample 20 different networks and take the average value); [Right] Path stretch
using 2 HSTs v.s. path splicing on the Sprint topology, where each underlying link fails with
probability p from 0.01 to 0.1.

500 1000 1500 2000
0

0.01

0.02

0.03

0.04

0.05

Network size

Fr
ac

tio
n 

of
 d

is
co

nn
ec

te
d 

pa
ir

s

 

 

1 HST
2 random HSTs
2 reverse HSTs

500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

Network size

M
ax

. f
ra

ct
io

n 
of

 d
is

co
nn

ec
te

d 
pa

ir
s

 

 

1 HST
2 random HSTs
2 reverse HSTs

Fig. 2. By setting each node fail and removing all its adjacent edges from the network, we com-
pute the fraction of disconnected pairs using 1 HST v.s. 2 HSTs. [Left]: average value. [Right]:
maximum value. Results are the average for 20 unit disk networks for each network size.

0.02 0.04 0.06 0.08 0.1
0

0.1

0.2

0.3

0.4

0.5

Probability of node failure

Fr
ac

tio
n 

of
 d

is
co

nn
ec

te
d 

pa
ir

s

 

 

2 HSTs
Original path splicing
1 HST

0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

0.05

0.1

0.15

0.2

0.25

Probability of node failure

Fr
ac

tio
n 

of
 d

is
co

nn
ec

te
d 

pa
ir

s

 

 

2 HST
Original path splicing

Fig. 3. The fraction of messages that are not delivered to the destination when next hop node fails
with probability p. To avoid infinite loop, we set TTL to be 5n. [left]: results on Sprint network.
[Right]: average results on 50 unit disk graphs with 400 nodes.



Resilient and Low Stretch Routing through Embedding into Tree Metrics 447

Summary of simulation results. Our observations from these experiments are:

– Small path stretch. Without failure, the path stretch from two HSTs improves sig-
nificantly over a single HST (Figure 1 [left]). In case of failures, using two HSTs
gives worse stretch compared with path splicing, but reducing the routing table size
significantly (Figure 1 [right]).

– Extremely good resilience. The maximum number of disconnected pairs using one
HST can be bad, roughly 85% but using two HSTs the number drops to below 10%
(Figure 2). Combining 2 HSTs with path splicing, our routing performance (i.e.,
the delivery rate), is nearly as good as using 2n spanning trees in the path splicing
method (Figure 3).

References

1. Abraham, I., Gavoille, C., Goldberg, A.V., Malkhi, D.: Routing in networks with low dou-
bling dimension. In: Proc. of the 26th International Conference on Distributed Computing
Systems (ICDCS) (July 2006)

2. Abraham, I., Malkhi, D.: Name independent routing for growth bounded networks. In: SPAA
2005: Proceedings of the Seventeenth Annual ACM Symposium on Parallelism in Algo-
rithms and Architectures, pp. 49–55 (2005)

3. Alstrup, S., Gavoille, C., Kaplan, H., Rauhe, T.: Nearest common ancestors: a survey and
a new distributed algorithm. In: SPAA 2002: Proceedings of the Fourteenth Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 258–264 (2002)

4. Atlas, A., Zinin, A.: Basic specification for ip fast reroute: Loop-free alternates. In: IETF
RFC 5286 (September 2008)

5. Bartal, Y.: Probabilistic approximation of metric spaces and its algorithmic applications. In:
FOCS 1996: Proceedings of the 37th Annual Symposium on Foundations of Computer Sci-
ence, p. 184 (1996)

6. Bartal, Y.: On approximating arbitrary metrices by tree metrics. In: STOC 1998: Proceedings
of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 161–168 (1998)

7. Reichert, Y.G.C., Magedanz, T.: Two routing algorithms for failure protection in ip networks.
In: Proc. ISCC (2005)

8. Chan, H.T.-H., Gupta, A., Maggs, B.M., Zhou, S.: On hierarchical routing in doubling met-
rics. In: SODA 2005: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 762–771 (2005)

9. Cowen, L.J.: Compact routing with minimum stretch. In: SODA 1999: Proceedings of the
Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 255–260 (1999)

10. Eilam, T., Gavoille, C., Peleg, D.: Compact routing schemes with low stretch factor. J. Algo-
rithms 46(2), 97–114 (2003)

11. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics
by tree metrics. In: STOC 2003: Proceedings of the Thirty-Fifth Annual ACM Symposium
on Theory of Computing, pp. 448–455 (2003)

12. Gao, J., Guibas, L.J., Milosavljevic, N., Zhou, D.: Distributed resource management and
matching in sensor networks. In: Proc. of the 8th International Symposium on Information
Processing in Sensor Networks (IPSN 2009), pp. 97–108 (April 2009)

13. Gao, J., Zhang, L.: Tradeoffs between stretch factor and load balancing ratio in routing on
growth restricted graphs. IEEE Transactions on Parallel and Distributed Computing 20(2),
171–179 (2009)



448 J. Gao and D. Zhou

14. Gottlieb, L.-A., Roditty, L.: Improved algorithms for fully dynamic geometric spanners and
geometric routing. In: SODA 2008: Proceedings of the Nineteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms (2008)

15. Gupta, A., Krauthgamer, R., Lee, J.R.: Bounded geometries, fractals, and low-distortion em-
beddings. In: FOCS 2003: Proceedings of the 44th Annual IEEE Symposium on Foundations
of Computer Science, pp. 534–543 (2003)

16. Karger, D., Ruhl, M.: Find nearest neighbors in growth-restricted metrics. In: Proc. ACM
Symposium on Theory of Computing, pp. 741–750 (2002)

17. Konjevod, G., Richa, A.W., Xia, D.: Optimal-stretch name-independent compact routing in
doubling metrics. In: PODC 2006: Proceedings of the Twenty-Fifth Annual ACM Sympo-
sium on Principles of Distributed Computing, pp. 198–207 (2006)

18. Linial, N., London, E., Rabinovich, Y.: The geometry of graphs and some of its algorithmic
applications. Combinatorica 15, 215–245 (1995)

19. Motiwala, M., Elmore, M., Feamster, N., Vempala, S.: Path splicing. SIGCOMM Comput.
Commun. Rev. 38(4), 27–38 (2008)

20. Motskin, A., Downes, I., Kusy, B., Gnawali, O., Guibas, L.: Network Warehouses: Efficient
Information Distribution to Mobile Users. In: Proc. of the 30th Annual IEEE Conference on
Computer Communications (INFOCOM) (April 2011)

21. Neelesh Khanna, S.B.: Approximate shortest paths avoiding a failed vertex: Optimal size
data structures for unweighted graphs. In: STACS, pp. 513–524 (2010)

22. Ng, E., Zhang, H.: Predicting Internet network distance with coordinates-based approaches.
In: Proc. IEEE INFOCOM, pp. 170–179 (2002)

23. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on
Discrete Mathematics and Applications (2000)

24. Plaxton, C.G., Rajaraman, R., Richa, A.W.: Accessing nearby copies of replicated objects in
a distributed environment. In: Proc. ACM Symposium on Parallel Algorithms and Architec-
tures, pp. 311–320 (1997)

25. Raghavan, P., Thompson, C.D.: Provably good routing in graphs: regular arrays. In: Proceed-
ings of the 17th Annual ACM Symposium on Theory of Computing, pp. 79–87 (1985)

26. Ray, K.-W.K.S., Guerin, R., Sofia, R.: Always acyclic distributed path computation. To ap-
pear in IEEE/ACM Transactions on Networking (2009)

27. Sarkar, R., Zhu, X., Gao, J.: Spatial distribution in routing table design for sensor networks.
In: Proc. of the 28th Annual IEEE Conference on Computer Communications (INFOCOM
2009), Mini-Conference (April 2009)

28. Shand, M., Bryant, S.: Ip fast reroute framework. In: Internet Draft (June 2009)
29. Spring, N., Mahajan, R., Wetherall, D., Anderson, T.: Measuring isp topologies with rocket-

fuel. IEEE/ACM Trans. Netw. 12(1), 2–16 (2004)
30. Thorup, M., Zwick, U.: Compact routing schemes. In: SPAA 2001: Proceedings of the Thir-

teenth Annual ACM Symposium on Parallel Algorithms and Architectures, pp. 1–10 (2001)
31. Ohara, S.I.Y., Meter, R.V.: Mara: Maximum alternative routing algorithm. In: Proc. IEEE

INFOCOM (2009)
32. Zhou, D., Gao, J.: Maintaining approximate minimum steiner tree and k-center for mobile

agents in a sensor network. In: Proc. of the 29th Annual IEEE Conference on Computer
Communications (INFOCOM 2010) (March 2010)



Resilient and Low Stretch Routing through Embedding into Tree Metrics 449

A Appendix

To prove Lemma 1, we first evaluate the probability that in one tree, say, H1, the prob-
ability that u, v have a lowest common ancestor at level j, 1 ≤ j ≤ δ.

Lemma 2
Prob{LCA1(u, v) is at level i + 1}

≤
{

0, if 2i+1 < d(u, v);
k2 · d(u, v)/2i−2, if 2i−2 ≥ d(u, v).

Proof. First, if w = LCA1(u, v) is at level i + 1, then d(w, u) ≤ βi−1 ≤ 2i, d(w, v) ≤
βi−1 ≤ 2i. By triangle inequality d(u, v) ≤ d(u, w) + d(w, v) ≤ 2i+1. Thus in the
first case of the lemma, the probability is 0. Suppose j∗ is the smallest i such that
2i+2 ≥ d(u, v). In the following we focus on the second case, i.e., i ≥ j∗ + 4.

If u, v belong to different clusters at level i, we say that the decomposition Di sep-
arates u, v at level i. Thus LCA1(u, v) is at level i + 1 if and only if Di separates u, v
and Dj(j > i) does not. Thus,

Prob{LCA1(u, v)is at level i + 1} ≤ Prob{Di separates (u, v)}.

Take this level i such that Di separates u, v. There is a node w such that one of u, v is
first assigned to w and the other is not. We say that w settles the pair u, v at level i. Such
a node w is unique, as once the pair u, v is settled it won’t be settled again. Thus we will
consider the union of the probability for each node w of P to possibly settle u, v. If w
settles u, v and u is assigned to w, we say w cuts u out. Summarizing the above, we have
Prob{Di separates (u, v)} =

∑
w Prob{w settles u, v} =

∑
w Prob{w cuts u out} +∑

w Prob{w cuts v out}.
Let Ku

i be the set of nodes in P within distance 2i to node u, and let kui = |Ku
i |.

We rank the node in Ku
i with increasing order of distance from u: w1, w2, · · · , wku

i
.

For a node ws to cut u out of the pair u, v at level i, it must satisfy the following
conditions: (i) d(u, ws) ≤ βi. (ii) d(v, ws) > βi. (iii) ws settles u, v. Thus βi must lie in
[d(u, ws), d(v, ws)]. But we have d(v, ws) ≤ d(v, u) + d(u, ws) by triangle inequality.
so the length of interval [d(u, ws), d(v, ws)] is at most d(u, v). Since we choose βi
uniformly from the range [2i−1, 2i], the probability for βi to fall into this interval is at
most d(u, v)/2i−1.

We also need to bound the probability that it is ws that cut u out of the pair u, v,
not others in Ku

i . First we note that the points that are very close to both u, v cannot
possibly settle u, v. In fact, ws must lie outside Ku

i−2 for i ≥ j∗+4. Suppose otherwise,
ws is in Ku

i−2, and u is assigned to ws, then v must be assigned to ws too, by triangle
inequality, d(v, ws) ≤ d(v, u) + d(u, ws) ≤ 2i−2 + 2i−2 ≤ 2i−1 ≤ βi (note that
i ≥ j∗ +4). Thus only those in wku

i−2+1, wku
i−2+2, · · · , wku

i
can separate u, v in level i.

Since we have a random permutation on the node rank, the probability for ws to be the
first center assigned to u is at most 1/s. Then the probability that u is cut out of the pair

(u, v) at level i is bounded by
∑ku

i

s=ku
i−2+1

1
s ·

d(u,v)
2i−1 = d(u,v)

2i−1 · (Hku
i
−Hku

i−2
), where

H(m) is the harmonic function.



450 J. Gao and D. Zhou

For a metric with expansion ratio k, we have kui ≤ k · kui−1 ≤ k2 · kui−2. Then

Hku
i
−Hku

i−2
=

ku
i∑

s=ku
i−2+1

1
s

<

ku
i∑

s=ku
i−2+1

1
kui−2

=
kui

kui−2

− 1 ≤ k2.

Thus, we have Prob{Di separates (u, v)} = d(u, v) · k2

2i−2 , as required in the theorem.

Now we are ready to prove Lemma 1.
First, if LCA(u, v) is at level i + 1, then at least in one tree the lowest common

ancestor is at level i + 1, the probability of which is 0 if d(u, v) < 2i+2, as shown in
Lemma 2. In the following we focus on the second case when 2i−2 ≥ d(u, v).

If LCA(u, v) is at level i+1, the first time (smallest level) that u, v belong to different
clusters is i in one tree and is j ≥ i in another tree. Denote by P1(i) and P2(i) the
probability that LCA1(u, v) and LCA2(u, v) are at level i + 1 respectively.

Prob{LCA(u, v) is at level i + 1}
= P1(i)

∑δ
j=i+1 P2(j) + P2(i)

∑δ
j=i+1 P1(j) + P1(i)P2(i)

By using Lemma 2. Now we have

Prob{LCA(u, v) is at level i + 1}
≤ 2k2 d(u,v)

2i−2

∑δ
j=i+1[k

2 d(u,v)
2j−2 ] + [k2 d(u,v)

2i−2 ][k2 d(u,v)
2i−2 ]

= 3k4 · d2(u, v)/22i−4.



Consistent Labeling of Rotating Maps

Andreas Gemsa, Martin Nöllenburg, and Ignaz Rutter

Institute of Theoretical Informatics, Karlsruhe Institute of Technology (KIT), Germany

Abstract. Dynamic maps that allow continuous map rotations, e.g., on mobile
devices, encounter new issues unseen in static map labeling before. We study the
following dynamic map labeling problem: The input is a static, labeled map, i.e.,
a set P of points in the plane with attached non-overlapping horizontal rectangular
labels. The goal is to find a consistent labeling of P under rotation that maximizes
the number of visible labels for all rotation angles such that the labels remain
horizontal while the map is rotated. A labeling is consistent if a single active
interval of angles is selected for each label such that labels neither intersect each
other nor occlude points in P at any rotation angle.

We first introduce a general model for labeling rotating maps and derive ba-
sic geometric properties of consistent solutions. We show NP-completeness of
the active interval maximization problem even for unit-square labels. We then
present a constant-factor approximation for this problem based on line stabbing,
and refine it further into an EPTAS. Finally, we extend the EPTAS to the more
general setting of rectangular labels of bounded size and aspect ratio.

1 Introduction

Dynamic maps, in which the user can navigate continuously through space, are be-
coming increasingly important in scientific and commercial GIS applications as well
as in personal mapping applications. In particular GPS-equipped mobile devices offer
various new possibilities for interactive, location-aware maps. A common principle in
dynamic maps is that users can pan, rotate, and zoom the map view. Despite the pop-
ularity of several commercial and free applications, relatively little attention has been
paid to provably good labeling algorithms for dynamic maps.

Been et al. [2] identified a set of consistency desiderata for dynamic map labeling.
Labels should neither “jump” (suddenly change position or size) nor “pop” (appear and
disappear more than once) during monotonous map navigation; moreover, the labeling
should be a function of the selected map viewport and not depend on the user’s nav-
igation history. Previous work on the topic has focused solely on supporting zooming
and/or panning of the map [2, 3, 12], whereas consistent labeling under map rotations
has not been considered prior to this paper.

Most maps come with a natural orientation (usually the northern direction facing
upward), but applications such as car or pedestrian navigation often rotate the map view
dynamically to be always forward facing [6]. Still, the labels must remain horizontally
aligned for best readability regardless of the actual rotation angle of the map. A basic
requirement in static and dynamic label placement is that labels are pairwise disjoint,
i.e., in general not all labels can be placed simultaneously. For labeling point features,

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 451–462, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



452 A. Gemsa, M. Nöllenburg, and I. Rutter

(a)

Label 3

Label 5
Label 4

Label 2
Label 1

(b)

Label 5Label 4

Label 2Label 3
Label 1

(c)

Label 2

Label 1
Label 4

Label 3

Label 5

(d)

Label 2

Label 1

Label 4 Label 3

Label 5

Fig. 1. Input map with five points (a) and three rotated views with some partially occluded labels
(b)–(d)

it is further required that each label, usually modeled as a rectangle, touches the labeled
point on its boundary. It is often not allowed that labels occlude the input point of
another label. Figure 1 shows an example of a map that is rotated and labeled. The
objective in map labeling is usually to place as many labels as possible. Translating this
into the context of rotating maps means that, integrated over one full rotation from 0 to
2π , we want to maximize the number of visible labels. The consistency requirements
of Been et al. [2] can immediately be applied for rotating maps.

Our Results. Initially, we define a model for rotating maps and show some basic prop-
erties of the different types of conflicts that may arise during rotation. Next, we prove
that consistently labeling rotating maps is NP-complete, for the maximization of the to-
tal number of visible labels in one full rotation and NP-hard for the maximization of the
visibility range of the least visible label. Finally, we present a new 1/4-approximation
algorithm and an efficient polynomial-time approximation scheme (EPTAS) for unit-
height rectangles. A PTAS is called efficient if its running time is O( f (ε) · poly(n)).
Both algorithms can be extended to the case of rectangular labels with the property that
the ratio of the smallest and largest width, the ratio of the smallest and largest height,
as well as the aspect ratio of every label is bounded by a constant, even if we allow
the anchor point of each label to be an arbitrary point of the label. This applies to most
practical scenarios where labels typically consist of few and relatively short lines of
text.

Related Work. Most previous algorithmic research efforts on automated label placement
cover static labeling models for point, line, or area features. For static point labeling,
fixed-position models and slider models have been introduced [4,9], in which the label,
represented by its bounding box, needs to touch the labeled point along its boundary.
The label number maximization problem is NP-hard even for the simplest labeling mod-
els, whereas there are efficient algorithms for the decision problem that asks whether all
points can be labeled in some of the simpler models (see, e.g., the discussion by Klau
and Mutzel [8]). Approximation results [1,9], heuristics [14], and exact approaches [8]
are known for many variants of the static label number maximization problem.

In recent years, dynamic map labeling has emerged as a new research topic that
gives rise to many unsolved algorithmic problems. Petzold et al. [13] used a prepro-
cessing step to generate a reactive conflict graph that represents possible label overlaps
for maps of all scales. For any fixed scale and map region, their method computes a
conflict-free labeling using heuristics. Mote [11] presents another fast heuristic method



Consistent Labeling of Rotating Maps 453

for dynamic conflict resolution in label placement that does not require preprocessing.
The consistency desiderata of Been et al. [2] for dynamic labeling (no popping and
jumping effects when panning and zooming), however, are not satisfied by either of the
methods. Been et al. [3] showed NP-hardness of the label number maximization prob-
lem in the consistent labeling model and presented several approximation algorithms
for the problem. Nöllenburg et al. [12] recently studied a dynamic version of the alter-
native boundary labeling model, in which labels are placed at the sides of the map and
connected to their points by leaders. They presented an algorithm to precompute a data
structure that represents an optimal one-sided labeling for all possible scales and thus
allows continuous zooming and panning. None of the existing dynamic map labeling
approaches supports map rotation.

2 Model

In this section we describe a general model for rotating maps with axis-aligned rectan-
gular labels. Let M be a labeled input map, i.e., a set P = {p1, . . . , pn} of points in the
plane together with a set L = {�1, . . . , �n} of pairwise disjoint, closed, and axis-aligned
rectangular labels, where each point pi is a point on the boundary ∂�i of its label �i.
We say �i is anchored at pi. As M is rotated, each label �i in L remains horizontally
aligned and anchored at pi. Thus, label intersections form and disappear during rotation
of M. We take the following alternative perspective on the rotation of M. Rather than
rotating the points, say clockwise, and keeping labels horizontal we may instead rotate
each label around its anchor point counterclockwise and keep the set of points fixed. It
is easy to see that both rotations are equivalent and yield exactly the same results.

A rotation of L is defined by a rotation angle α ∈ [0,2π); a rotation labeling of M
is a function φ : L× [0,2π)→ {0,1} such that φ(�,α) = 1 if label � is visible or active
in the rotation of L by α , and φ(�,α) = 0 otherwise. We call a labeling φ valid if,
for any rotation α, the set of labels L(α) = {� ∈ L | φ(�,α) = 1} consists of pairwise
disjoint labels and no label in L(α) contains any point in P (other than its anchor point).
We note that a valid labeling is not yet consistent in terms of the definition of Been
et al. [2, 3]: given fixed anchor points, labels clearly do not jump and the labeling is
independent of the rotation history, but labels may still pop during a full rotation from
0 to 2π , i.e., appear and disappear more than once. In order to avoid popping effects,
each label may be active only in a single contiguous range of [0,2π), where ranges
are circular ranges modulo 2π so that they may span the input rotation α = 0. A valid
labeling φ , in which for every label � the set Aφ (�) = {α ∈ [0,2π) | φ(�,α) = 1} is a
contiguous range modulo 2π , is called a consistent labeling. For a consistent labeling φ
the set Aφ(�) is called the active range of �. The length |Aφ (�)| of an active range Aφ (�)
is defined as the length of the circular arc {(cosα,sinα) | α ∈ Aφ (�)} on the unit circle.

The objective in static map labeling is usually to find a maximum subset of pairwise
disjoint labels, i.e., to label as many points as possible. Generalizing this objective to
rotating maps means that integrated over all rotations α ∈ [0,2π) we want to display
as many labels as possible. This corresponds to maximizing the sum ∑�∈L |Aφ (�)| over
all consistent labelings φ of M; we call this optimization problem MAXTOTAL. An
alternative objective is to maximize over all consistent labelings φ the minimum length
min� |Aφ (�)| of all active ranges; this problem is called MAXMIN.



454 A. Gemsa, M. Nöllenburg, and I. Rutter

�
�′

t

l b

r

b′

r′t′

l′

(a) r∩ l′

� �′
t

l b

r

b′

r′t′

l′

(b) b∩ t ′

� �′
t

l

b
r

b′r′

t′ l′

(c) b∩ t ′

Fig. 2. Two labels � and �′ and three of their eight possible boundary intersection events. Anchor
points are marked as black dots.

3 Properties of Consistent Labelings

In this section we show basic properties of consistent labelings. If two labels � and
�′ intersect in a rotation of α they have a (regular) conflict at α , i.e., in a consistent
labeling at most one of them can be active at α . The set C(�,�′) = {α ∈ [0,2π) |
� and �′ are in conflict at α} is called the conflict set of � and �′.

We show the following lemma in a more general model, in which the anchor point p
of a label � can be any point within � and not necessarily a point on the boundary ∂�.

Lemma 1. For any two labels � and �′ with anchor points p ∈ � and p′ ∈ �′ the set
C(�,�′) consists of at most four disjoint contiguous conflict ranges.

Proof. The first observation is that due to the simultaneous rotation of all initially axis-
parallel labels in L, � and �′ remain “parallel” at any rotation angle α . Rotation is a
continuous movement and hence any maximal contiguous conflict range in C(�,�′) must
be a closed “interval” [α,β ], where 0≤ α,β < 2π . Here we explicitly allow α > β by
defining, in that case, [α,β ] = [α,2π)∪ [0,β ]. At a rotation of α (resp. β ) the two labels
� and �′ intersect only on their boundary. Let l,r,t,b be the left, right, top, and bottom
sides of � and let l′,r′,t ′,b′ be the left, right, top, and bottom sides of �′ (defined at a
rotation of 0). Since � and �′ are parallel, the only possible cases, in which they intersect
on their boundary but not in their interior are t ∩ b′, b∩ t ′, l ∩ r′, and r ∩ l′. Each of
those four cases may appear twice, once for each pair of opposite corners contained in
the intersection. Figure 2 illustrates three of these eight boundary intersection events.
Each of the conflicts defines a unique rotation angle and obviously at most four disjoint
conflict ranges can be defined with these eight rotation angles as their endpoints. �	

In the following we look more closely at the conditions under which the boundary
intersection events (also called conflict events) occur and at the rotation angles defining
them. Let ht and hb be the distances from p to t and b, respectively. Similarly, let wl and
wb be the distances from p to l and r, respectively (see Figure 3). By h′t , h′b, w′l , and w′r
we denote the corresponding values for label �′. Finally, let d be the distance of the two
anchor points p and p′. To improve readability of the following lemmas we define two
functions fd(x) = arcsin(x/d) and gd(x) = arccos(x/d).

Lemma 2. Let � and �′ be two labels anchored at points p and p′. Then the conflict
events in C(�,�′) are a subset of C = {2π− fd(ht +h′b),π + fd(ht +h′b), fd(hb +h′t),π−
fd(hb + h′t),2π−gd(wr + w′l),gd(wr + w′l),π−gd(wl + w′r),π + gd(wl + w′r)}.



Consistent Labeling of Rotating Maps 455

�

t

l

b

rp
ht

hb

wl wr

Fig. 3. Parameters of label �
anchored at p

p

�

t �′

b′

d

ht + h′b

α
p′

(a) rotation of 2π −α

p�

t
�′

b′

d

ht + h′b

α
p′

(b) rotation of π +α

Fig. 4. Boundary intersection events for t ∩b′

Proof. Assume without loss of generality that p and p′ lie on a horizontal line. First
we show that the possible conflict events are precisely the rotation angles in C. We
start considering the intersection of the two sides t and b′. If there is a rotation angle
under which t and b′ intersect then we have the situation depicted in Figure 4 and
by simple trigonometric reasoning the two rotation angles at which the conflict events
occur are 2π − arcsin((ht + h′b)/d) and π + arcsin((ht + h′b)/d). Obviously, we need
d ≥ ht + h′b. Furthermore, for the intersection in Figure 4a to be non-empty, we need
d2 ≤ (wr + w′l)

2 +(ht + h′b)
2; similarly, for the intersection in Figure 4b, we need d2 ≤

(wl + w′r)2 +(ht + h′b)
2.

From an analogous argument we obtain that the rotation angles under which b and
t ′ intersect are arcsin((hb + h′t)/d) and π − arcsin((hb + h′t)/d). Clearly, we need d ≥
hb + h′t . Furthermore, we need d2 ≤ (wr + w′l)

2 + (hb + h′t)2 for the first intersection
and d2 ≤ (wl +w′r)

2 +(hb +h′t)
2 for the second intersection to be non-empty under the

above rotations.
The next case is the intersection of the two sides r and l′. Here the two rotation

angles at which the conflict events occur are 2π−arccos((wr +w′l)/d) and arccos((wr +
w′l)/d). For the first conflict event we need d2 ≤ (wr + w′l)

2 + (ht + h′b)
2, and for the

second we need d2 ≤ (wr + w′l)
2 +(hb + h′t)

2. For each of the intersections to be non-
empty we additionally require that d ≥ wr + w′l .

Similar reasoning for the final conflict events of l∩ r′ yields the rotation angles π−
arccos((wl + w′r)/d) and π + arccos((wl + w′r)/d). The additional constraints are d ≥
wl + w′r for both events and d2 ≤ (wl + w′r)

2 +(hb + h′t)
2 for the first intersection and

d2 ≤ (wl + w′r)2 +(ht + h′b)
2. Thus, C contains all possible conflict events. �	

One of the requirements for a valid labeling is that no label may contain a point in P
other than its anchor point. For each label � this gives rise to a special class of conflict
ranges, called hard conflict ranges, in which � may never be active. The rotation angles
at which hard conflicts start or end are called hard conflict events. Every angle that is a
(hard) conflict event is called a label event. Obviously, every hard conflict is also a regu-
lar conflict. Regular conflicts that are not hard conflicts are also called soft conflicts. We
note that by definition regular conflicts are symmetric, i.e., C(�,�′) = C(�′, �), whereas
hard conflicts are not symmetric. The next lemma characterizes the hard conflict ranges.

Lemma 3. For a label � anchored at point p and a point q �= p in P, the hard conflict
events of � and q are a subset ofH= {2π− fd(ht),π + fd(ht), fd(hb),π− fd(hb),2π−
gd(wr),gd(wr),π−gd(wl),π + gd(wl)}.



456 A. Gemsa, M. Nöllenburg, and I. Rutter

Proof. We define a label of width and height 0 for q, i.e., we set h′t = h′b = w′l = w′r = 0.
Then the result follows immediately from Lemma 2. �	

A simple way to visualize conflict ranges and hard conflict ranges is to mark, for each
label � anchored at p and each of its (hard) conflict ranges, the circular arcs on the
circle centered at p and enclosing �. Figure 5 shows an example.

� �′
p p′

hard conflict range

Fig. 5. Conflict ranges of two labels � and �′

marked in bold on the enclosing circles

In the following we show that the
MAXTOTAL problem can be discretized
in the sense that there exists an opti-
mal solution whose active ranges are de-
fined as intervals whose borders are label
events. An active range border of a la-
bel � is an angle α that is characterized
by the property that the labeling φ is not
constant in any ε-neighborhood of α . We
call an active range where both borders
are label events a regular active range.

Lemma 4. Given a labeled map M there is an optimal rotation labeling of M consisting
of only regular active ranges.

Proof. Let φ be an optimal labeling with a minimum number of active range borders
that are no label events. Assume that there is at least one active range border β that is no
label event. Let α and γ be the two adjacent active range borders of β , i.e., α < β < γ ,
where α and γ are active range borders, but not necessarily label events. Then let Ll be
the set of labels whose active ranges have left border β and let Lr be the set of labels
whose active ranges have right border β . For φ to be optimal Ll and Lr must have the
same cardinality since otherwise we could increase the active ranges of the larger set
and decrease the active ranges of the smaller set by an ε > 0 and obtain a better labeling.

So define a new labeling φ ′ that is equal to φ except for the labels in Ll and Lr: define
the left border of the active ranges of all labels in Ll and the right border of the active
ranges of all labels in Lr as γ instead of β . Since |Ll | = |Lr| we shrink and grow an
equal number of active ranges by the same amount. Thus the two labelings φ and φ ′
have the same objective value ∑�∈L |Aφ (�)| = ∑�∈L |Aφ ′(�)|. Because φ ′ uses as active
range borders one non-label event less than φ this number was not minimum in φ—a
contradiction. As a consequence φ has only label events as active range borders. �	

4 Complexity

In this section we show that finding an optimal solution for MAXTOTAL (and also
MAXMIN) is NP-hard even if all labels are unit squares and their anchor points are
their lower-left corners. We present a gadget proof reducing from the NP-complete
problem planar 3-SAT [10]. Proofs of the lemmas in this section are found in the full
version of the paper [5]. Before constructing the gadgets, we show a special property of
unit-square labels.



Consistent Labeling of Rotating Maps 457

︸ ︷︷ ︸︸ ︷︷ ︸ ︸ ︷︷ ︸
inner chainterminal terminal

(a) A chain whose two different states are
marked as full green and dashed blue arcs.

inner chain �a �b

�c

�d

inner chain/
terminal

inner chain/
terminal

(b) A turn that splits one inner chain into two
inner chains.

3/4 · √
2

5 · √
2

(c) Inverter.

inner chain

(d) Literal Reader.

Fig. 6. Basic Building Blocks

Lemma 5. If two unit-square labels � and �′ whose anchor points are their lower-left
corners have a conflict at a rotation angle α , then they have conflicts at all angles
α + i ·π/2 for i ∈ Z.

For every label � we define the outer circle of � as the circle of radius
√

2 centered at
the anchor point of �. Since the top-right corner of � traces the outer circle we will use
the locus of that corner to visualize active ranges or conflict ranges on the outer circle.
Note that due to the fact that at the initial rotation of 0 the diagonal from the anchor
point to the top-right corner of � forms an angle of π/4 all marked ranges are actually
offset by π/4.

4.1 Basic Building Blocks

Chain. A chain consists of at least four labels anchored at collinear points that are
evenly spaced with distance

√
2. Hence, each point is placed on the outer circles of its

neighbors. We call the first and last two labels of a chain terminals and the remaining
part inner chain, see Figure 6a. We denote an assignment of active ranges to the labels
as the state of the chain. The important observation is that in any optimal solution of
MAXTOTAL an inner chain has only two different states, whereas terminals have mul-
tiple optimal states that are all equivalent for our purposes; see Figure 6a. In particular,
in an optimal solution each label of an inner chain has an active range of length π and
active ranges alternate between adjacent labels. We will use the two states of chains as
a way to encode truth values in our reduction.

Lemma 6. In any optimal solution, any label of an inner chain has an active range of
length π . The active ranges of consecutive labels alternate between (0,π) and (π ,2π).



458 A. Gemsa, M. Nöllenburg, and I. Rutter

Inverter. The second basic building block is an inverter. It consists of five collinear
labels that are evenly spaced with distance 3/4 ·

√
2 as depicted in Figure 6c. This

means that the five labels together take up the same space as four labels in a usual inner
chain. Similar to Lemma 6 the active ranges in an optimal solution also alternate. By
replacing four labels of an inner chain with an inverter we can alter the parity of an
inner chain.

Turn. The third building block is a turn that consists of four labels, see Figure 6b. The
anchor points pa and pb are at distance

√
2 and the pairwise distances between pb, pc,

and pd are also
√

2 such that the whole structure is symmetric with respect to the line
through pa and pb. The central point pb is called turn point, and the two points pc and
pd are called outgoing points. Due to the hard conflicts created by the four points we
observe that the outer circle of pb is divided into two ranges of length 5π/6 and one
range of length π/3. The outer circles of the outgoing points are divided into ranges of
length π , 2π/3, and π/3. The outer circle of pa is divided into two ranges of length π .
The outgoing points serve as connectors to terminals, inner chains, or further turns.
Note, by coupling multiple turns we can divert an inner chain by any multiple of 30◦.

Lemma 7. A turn has only two optimal states and allows to split an inner chain into
two equivalent parts in an optimal solution.

4.2 Gadgets of the Reduction

Variable Gadget. The variable gadget consists of an alternating sequence of two build-
ing blocks: horizontal chains and literal readers. A literal reader is a structure that
allows us to split the truth value of a variable into one part running towards a clause
and the part that continues the variable gadget, see Figure 6d. The literal reader con-
sists of four turns, the first of which connects to a literal pipe and the other three are
dummy turns needed to lead the variable gadget back to our grid. Note that some of the
distances between anchor points in the literal reader need to be slightly less than

√
2 in

order to reach a grid point at the end of the structure.
In order to encode truth values we define the state in which the first label of the first

horizontal chain has active range (0,π) as true and the state with active range (π ,2π)
as false.

Clause Gadget. The clause gadget consists of one inner and three outer labels, where
the anchor points of the outer labels split the outer circle of the inner label into three
equal parts of length 2π/3, see Figure 7. Each outer label further connects to an incom-
ing literal pipe and a terminal. These two connector labels are placed so that the outer
circle of the outer label is split into two ranges of length 3π/4 and one range of length
π/2.

The general idea behind the clause gadget is as follows. The inner label obviously
cannot have an active range larger than 2π/3. Each outer label is placed in such a way
that if it carries the value false it has a soft conflict with the inner label in one of the
three possible active ranges of length 2π/3. Hence, if all three labels transmit the value
false then every possible active range of the inner label of length 2π/3 is affected by a
soft conflict. Consequently, its active range can be at most π/2.



Consistent Labeling of Rotating Maps 459

pipe

pipe

pipe

terminal

terminal

terminal

variables

clause

Fig. 7. Clause gadget with one in-
ner and three outer labels

Fig. 8. Sketch of the gadget placement for the reduction

On the other hand, if at least one of the pipes transmits true, the inner label can be
assigned an active range of maximum length 2π/3.

Lemma 8. There must be a label in a clause or one of the incoming pipes with an
active range of length at most π/2 if and only if all three literals of that clause evaluate
to false.

Pipes. Pipes propagate truth values of variable gadgets to clause gadgets. We use three
different types of pipes, which we call left arm, middle arm, and right arm, depending
on where the pipe attaches to the clause.

One end of each pipe attaches to a variable at the open outgoing label of a literal
reader. Initially, the pipe leaves the variable gadget at an angle of 30◦. By using se-
quences of turns, we can route the pipes at any angle that is an integer multiple of 30◦.
Thus we can make sure that for a clause above the variables the left arm enters the
clause gadget at an angle of 150◦, the middle arm at an angle of 270◦, and the right arm
at an angle of 30◦ with respect to the positive x-axis. For clauses below the variables
the pipes are mirrored.

In order to transmit the correct truth value into the clause we first need to place the
literal reader such that the turn point of the first turn corresponds to an even position in
the variable chain. Next, for a positive literal we need a pipe of even length, whereas
for a negative literal the pipe must have odd length. Note that we can always achieve
the correct parity by making use of the inverter gadgets.

Gadget Placement. We place all variable gadgets on the same y-coordinate such that
each anchor point of variable labels (except for literal readers) lies on integer x- and
y-coordinates with respect to a grid of width and height

√
2. Clause gadgets and pipes

lie below and above the variables and form three-legged “combs”. The overall structure
of the gadget arrangement is sketched in Figure 8.

Theorem 1. MAXTOTAL is NP-complete.

Proof. For a given planar 3-SAT formula ϕ we construct the MAXTOTAL instance as
described above. For this instance we can compute the maximum possible sum K of
active ranges assuming that each clause is satisfiable. By Lemma 8 every unsatisfied
clause forces one label to have an active range of only π/2. Thus we know that ϕ is



460 A. Gemsa, M. Nöllenburg, and I. Rutter

satisfiable if and only if the MAXTOTAL instance has a total active range sum of at least
K. Constructing and placing the gadgets can be done in polynomial time and space.

Due to Lemma 4 we can discretize the MAXTOTAL problem. Thus we can construct
an oracle that guesses an active range assignment, which we can verify in polynomial
time. So MAXTOTAL is inNP . �	

We note that the same construction as for the NP-hardness of MAXTOTAL can also
be applied to prove NP-hardness of MAXMIN. The maximally achievable minimum
length of an active range for a satisfiable formula is 2π/3, whereas for an unsatisfiable
formula it is π/2 due to Lemma 8. This observation also yields that MAXMIN cannot
be efficiently approximated within a factor of 3/4.

Corollary 1. MAXMIN is NP-hard and it has no efficient approximation algorithm
with an approximation factor larger than 3/4 unless P =NP .

5 Approximation Algorithms

In the previous section we have established that MAXTOTAL is NP-complete. Unless
P = NP we cannot hope for an efficient exact algorithm to solve the problem. In
the following we devise a 1/4-approximation algorithm for MAXTOTAL and refine it
to an EPTAS. For both algorithms we initially assume that labels are congruent unit-
height rectangles with constant width w≥ 1 and that the anchor points are the lower-left
corners of the labels. Let d be the length of the label’s diagonal, i.e., d =

√
w2 +1.

Before we describe the algorithms we state four important properties that apply even
to the more general labeling model, where anchor points are arbitrary points within
the label or on its boundary, and where the ratio of the smallest and largest width and
height, as well as the aspect ratio are bounded by constants: i) the number of anchor
points contained in a square is proportional to its area, ii) the number of conflicts a
label can have with other labels is bounded by a constant, iii) any two conflicting labels
produce only O(1) conflict regions, and finally, iv) there is an optimal MAXTOTAL

solution where the borders of all active ranges are events.
Properties (i) and (ii) can easily be proved with a simple packing argument (see

full version of the paper [5] for details). Property (iii) follows from property (ii) and
Lemma 1. Property (iv) follows immediately from Lemma 4.

5.1 A 1/4-Approximation for MAXTOTAL

The basis for our algorithm is the line stabbing or shifting technique by Hochbaum and
Maass [7], which has been applied before to static labeling problems for (non-rotating)
unit-height labels [1, 9]. Consider a grid G where each grid cell is a square with side
length 2d. We can address every grid cell by its row and column index. Now we can
partition G into four subsets by deleting every other row and every other column with
either even or odd parity. Within each of these subsets we have the property that any
two grid cells have a distance of at least 2d. Thus no two labels whose anchor points lie
in different cells of the same subset can have a conflict. We say that a grid cell c covers
a label � if the anchor point of � lies inside c. By property (i) only O(1) labels are



Consistent Labeling of Rotating Maps 461

covered by a single grid cell. Combining this with property (ii) we see that the number
of conflicts of the labels covered by a single grid cell is constant. This implies that the
number of events in that cell (cf. Lemma 4) is also constant.

The four different subsets of grid cells divide a MAXTOTAL instance into four subin-
stances, each of which decomposes into independent grid cells. If we solve all subsets
optimally, at least one of the solutions is a 1/4-approximation for the initial instance due
to the pigeon-hole principle.

Determining an optimal solution for the labels covered by a grid cell c works as
follows. We compute, for the set of labels Lc ⊆ L covered by c, the set Ec of label
events. Due to Lemma 4 we know that there exists an optimal solution where all borders
of active ranges are label events. Thus, to compute an optimal active range assignment
for the labels in Lc we need to test all possible combinations of active ranges for all
labels � ∈ Lc. For a single cell this requires only constant time.

We can precompute the non-empty grid cells by simple arithmetic operations on the
coordinates of the anchor points and store those cells in a binary search tree. Since we
have n anchor points there are at most n non-empty grid cells in the tree, and each of
the cells holds a list of the covered anchor points. Building this data structure takes
O(n logn) time and then optimally solving the active range assignment problem in the
non-empty cells takes O(n) time.
Theorem 2. There exists an O(n logn)-time algorithm that yields a 1/4-approximation
of MAXTOTAL for congruent unit-height rectangles with their lower-left corners as
anchor points.

5.2 An Efficient Polynomial-Time Approximation Scheme for MAXTOTAL

We extend the technique for the 1/4-approximation to achieve a (1−ε)-approximation.
Let again G be a grid whose grid cells are squares of side length 2d. For any integer k
we can remove every k-th row and every k-th column of the grid cells, starting at two
offsets i and j (0 ≤ i, j ≤ k− 1). This yields collections of meta cells of side length
(k−1) ·2d that are pairwise separated by a distance of at least 2d and thus independent.
In total, we obtain k2 such collections of meta cells.

For a given ε ∈ (0,1) we set k = �2/ε�. Let c be a meta cell for the given k and let
again Lc be the set of labels covered by c, and Ec the set of label events for Lc. Then,
by properties (i) and (ii), both |Lc| and |Ec| are O(1/ε2). Since we need to test all
possible active ranges for all labels in Lc, it takes O(2O(1/ε2 log1/ε2)) time to determine
an optimal solution for the meta cell c.

For a given collection of disjoint meta cells we determine (as in Section 5.1) all
O(n) non-empty meta cells and store them in a binary search tree such that each cell
holds a list of its covered anchor points. This requires again O(n logn) time. So for
one collection of meta cells the time complexity for finding an optimal solution is
O(n2O(1/ε2 log1/ε2) + n logn). There are k2 such collections and, by the pigeon hole
principle, the optimal solution for at least one of them is a (1− ε)-approximation of
the original instance. This yields the following theorem.

Theorem 3. There exists an EPTAS that computes a (1− ε)-approximation of MAX-
TOTAL for congruent unit-height rectangles with their lower-left corners as anchor
points. Its time complexity is O((n2O(1/ε2 log1/ε2) + n logn)/ε2).



462 A. Gemsa, M. Nöllenburg, and I. Rutter

We note that this EPTAS basically relies on properties (i)–(iv) and that there is nothing
special about congruent rectangles anchored at their lower-left corners. Hence we can
generalize the algorithm to the more general labeling model, in which the ratio of the
label heights, the ratio of the label widths, and the aspect ratios of all labels are bounded
by constants. Furthermore, the anchor points are not required to be label corners; rather
they can be any point on the boundary or in the interior of the labels. Finally, we can
even ignore the distinction between hard and soft conflicts, i.e., allow that anchor points
of non-active labels are occluded. Properties (i)–(iv) still hold in this general model. The
only change in the EPTAS is to set the width and height of the grid cells to twice the
maximum diameter of all labels in L.

Corollary 2. There exists an EPTAS that computes a (1− ε)-approximation of MAX-
TOTAL in the general labeling model with rectangular labels of bounded height ratio,
width ratio, and aspect ratio, whose anchor points are arbitrary points in the respective
labels. The time complexity of the EPTAS is O((n2O(1/ε2 log1/ε2) + n logn)/ε2).

References

1. Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum independent set in
rectangles. Comput. Geom. Theory Appl. 11, 209–218 (1998)

2. Been, K., Daiches, E., Yap, C.: Dynamic map labeling. IEEE Trans. Visual. and Comput.
Graphics 12(5), 773–780 (2006)

3. Been, K., Nöllenburg, M., Poon, S.-H., Wolff, A.: Optimizing active ranges for consistent
dynamic map labeling. Comput. Geom. Theory Appl. 43(3), 312–328 (2010)

4. Formann, M., Wagner, F.: A packing problem with applications to lettering of maps. In: Proc.
7th Annu. ACM Sympos. Comput. Geom. (SoCG 1991), pp. 281–288 (1991)

5. Gemsa, A., Nöllenburg, M., Rutter, I.: Consistent Labeling of Rotating Maps. ArXiv e-prints,
arXiv:1104.5634 (April 2011)

6. Gervais, E., Nussbaum, D., Sack, J.-R.: DynaMap: a context aware dynamic map application.
In: Proc. GISPlanet, Estoril, Lisbon, Portugal (2005)

7. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing problems in
image processing and VLSI. J. ACM 32(1), 130–136 (1985)

8. Klau, G.W., Mutzel, P.: Optimal labeling of point features in rectangular labeling models.
Math. Programming (Series B), 435–458 (2003)

9. van Kreveld, M., Strijk, T., Wolff, A.: Point labeling with sliding labels. Comput. Geom.
Theory Appl. 13, 21–47 (1999)

10. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)
11. Mote, K.D.: Fast point-feature label placement for dynamic visualizations. Inform. Vi-

sual. 6(4), 249–260 (2007)
12. Nöllenburg, M., Polishchuk, V., Sysikaski, M.: Dynamic one-sided boundary labeling. In:

Proc. 18th ACM SIGSPATIAL Int’l Conf. Adv. Geo. Inform. Syst., pp. 310–319. ACM,
New York (2010)

13. Petzold, I., Gröger, G., Plümer, L.: Fast screen map labeling—data-structures and algorithms.
In: Proc. 23rd Int’l. Cartographic Conf. (ICC 2003), pp. 288–298 (2003)

14. Wagner, F., Wolff, A., Kapoor, V., Strijk, T.: Three rules suffice for good label placement.
Algorithmica 30(2), 334–349 (2001)



Finding Longest Approximate Periodic Patterns

Beat Gfeller

IBM Research - Zurich, Switzerland
bgf@zurich.ibm.com

Abstract. Motivated by the task of finding approximate periodic pat-
terns in real-world data, we consider the following problem: Given a se-
quence S of n numbers in increasing order, and α ∈ [0, 1], find a longest
subsequence T = s1, s2, . . . , sk of numbers si ∈ S , ordered as in S , un-
der the condition that maxi=1,...,k−1{si+1−si}/mini=1,...,k−1{si+1−si},
called the period ratio of T , is at most 1+α. We give an exact algorithm
with run time O(n3) for this problem. This bound is too high for large
inputs in practice. Therefore, we describe an algorithm which approxi-
mates the longest periodic pattern present in the input in the following
sense: Given constants α and ε, the algorithm computes a subsequence
with period ratio at most (1+α)(1+ ε), whose length is greater or equal
to the longest subsequence with period ratio at most (1+α). This latter
algorithm has a much smaller run time of O(n1+γ), where γ > 0 is an
arbitrarily small positive constant. As a byproduct which may be of inde-
pendent interest, we show that an approximate variant of the well-known
3SUM problem can also be solved in O(n1+γ + Tsort(n)) time, for any
constant γ > 0, where Tsort(n) is the time required to sort n numbers.

1 Introduction and Related Work

We study the problem of finding approximate arithmetic progressions in a se-
quence of numbers. This problem is motivated by the existence of many phe-
nomena in the real world in which a particular type of event repeats periodically
during a certain period of time. Examples of highly periodic events include road
traffic peaks, load peaks on web servers, monitoring events in computer net-
works and many others. Finding periodic patterns in real-world data often leads
to useful insights, because it sheds light on the structure of the data, and gives a
basis to predict future events. Moreover, in some applications periodic patterns
can point out a problem: In a computer network, for example, repeating error
messages can indicate a misconfiguration, or even a security intrusion such as
a port scan [4]. Note that such periodic patterns might only occur temporarily,
and need not persist throughout the whole period of time covered by the event
log. Since short (approximate) periodic patterns will appear in any sequence of
random events that is long enough, a periodic pattern is more interesting the
more repetitions it contains. Therefore, we are interested in finding a longest
periodic pattern, which contains the largest number of repetitions of the same
event.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 463–474, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



464 B. Gfeller

In general, the input data we are given can be modeled as a sequence of
events, each associated with a timestamp. Since we are only interested in the
repetition of events of the same type, we can treat each type of event separately.
Thus, the input consists of a sequence S of n distinct numbers t1, t2, . . . , tn in
increasing order, which are the times at which an event of a particular type has
occurred. A periodic pattern then corresponds to an (approximate) arithmetic
progression in this sequence. For a given sequence of numbers s1, s2, . . . , sk,
si ∈ S, we say that maxi=1,...,k−1{si+1−si}

minj=1,...,k−1{sj+1−sj} is the period ratio of the sequence,
and that maxi=1,...,k−1{si+1− si}−minj=1,...,k−1{sj+1− sj} is its period width.
We call the differences si+1− si of consecutive numbers in the sequence periods.
In most real-world applications, the timestamps which are given as input are
imprecise. Hence, no exact arithmetic progression may be present in the input,
and it is necessary to allow some slack in the periodic patterns.

If the approximate period of the patterns of interest are known, then the
periodic patterns that we want to find can be formally defined as follows:

Definition 1 (absolute error periodic pattern). Given pmin > 0, pmax ≥
pmin and a sequence S of numbers in increasing order, an absolute error periodic
pattern is a subsequence s1, s2, . . . , sk of S, such that the absolute difference
between any two consecutive numbers si, si+1 is at least pmin and at most pmax.

This type of pattern is useful if one is interested in a few particular periods: For
example, in a sequence of log file entries, one might be interested only in events
which occur (approximately) every hour, every day, every week, or every month.
In this case, one can define an interval of acceptable distances for each period
of interest: For hourly repetitions, for example, one could accept any distance
between pmin = 55 minutes and pmax = 65 minutes.

For a given interval [pmin, pmax], it is not difficult to compute the longest
absolute error periodic pattern in linear time. We describe such an algorithm in
Section 2, which forms the basis for our more involved algorithms.

Finding periodic patterns with arbitrary periods, where no period (or range
of periods) of interest is given in advance, is more challenging. In this case,
there are several choices for defining a valid pattern. We choose a definition
which bounds the ratio between the longest and the shortest distance between
consecutive events in the sequence. In contrast to an absolute error bound, this
formalization has the natural property that it is scale invariant. Our definition
is as follows:

Definition 2 (relative error periodic pattern). Given α ∈ [0, 1] and a se-
quence S of numbers in increasing order, a relative error periodic pattern is a
subsequence s1, s2, . . . , sk of S, for which there exists a number p such that the
absolute difference between any two consecutive numbers in the subsequence is
at least p and at most p(1 + α).

This type of periodic pattern is the main focus of this paper. In Section 3.1, we
give a simple O(n3) time algorithm to obtain, for a given α, the longest relative
error pattern in a sequence of n numbers. This bound is too high for large inputs



Finding Longest Approximate Periodic Patterns 465

in practice. Therefore, we explore approximate solutions, which approximate the
longest periodic pattern that is present in the input in the following sense: Given
constants α and ε, the algorithm computes a relative error periodic pattern which
is at least as long as the longest one with period ratio up to 1+α, but the period
ratio of the returned pattern can be up to (1+α)(1+ε). In other words, we allow
the period ratio of the output pattern to be slightly above 1+α. For example, if
the given tolerance is (1 + α) = 1.05, we could set ε = 0.001, and our algorithm
would return a longest sequence with period ratio at most 1.05105. Assuming
that the timestamps given as input are imprecise, one can choose ε small enough
such that the increase of the period width caused by the algorithm is smaller than
the error caused by the imprecision in the input. Thus, for practical purposes,
the output of our approximate algorithm is almost as good as an exact solution.
For this relaxed version of the problem, we are able to greatly reduce the run
time to O(n1+γ), for any constant γ > 0.

As a byproduct which may be of independent interest, our algorithm given
in Section 3.3 can be modified to solve an approximate variant of the 3SUM
problem in O(n1+γ + Tsort(n)) time, for any constant γ > 0. We describe the
details of these modifications in Section 4.

Related Work

Relatively few papers are closely related to this work. To the best of our knowl-
edge, the problem of finding longest relative error periodic patterns has not been
studied before. Ma and Hellerstein [4] also study the problem of finding approx-
imate arithmetic sequences. However, they use an absolute tolerance for the
variation of periods: In their definition, a pattern is valid only if its period width
is at most δ. Moreover, their algorithms are heuristic, and cannot guarantee to
find the longest pattern present in the input.

All maximal sequences of equally-spaced collinear points within a given point
set can be found in O(n2) time [3]. It follows that the longest exact arithmetic
progression in a sequence of numbers can also be found in O(n2) time. Motivated
by an application in landmine detection, Robins et al. studied the problem of
finding approximate sequences of equally-spaced collinear points in a given set
of points in the plane [6], and gave an algorithm with run time O(n5/2). Their
notion of pattern is rather different from ours: In their definition, a pattern is
valid only if there exists an imaginary exact sequence of equally-spaced collinear
points, such that each point in the pattern is within a square of side-length ε of
its corresponding imaginary point. Moreover, they postulate that any two points
in the input have distance greater than 8ε.

Finding periodic patterns is a widely studied subject in the data mining com-
munity (see for example [2,5,7,8]). In most of these works, the input is given
as a time series, where a measurement is taken at regular time intervals (say,
hourly), and yields the set of events present at this moment. Periodic patterns
have also been studied in bioinformatics (for example, tandem repeats in genomic
sequences), where the input is a sequence of discrete symbols, and in astronomy
(Lomb-Scargle periodograms), where the input is a real-valued timeseries. To



466 B. Gfeller

apply these previous methods to our problem, we would have to convert our
input consisting of timestamped events into a sequence of discrete symbols, each
indicating presense or absence of the event at a given time. However, this would
vastly increase the input size, since the average time between consecutive events
can be much larger than the granularity of the timestamps. The same reason
prevents us from simply using the fast Fourier transform to solve our problem.

2 Optimal Algorithm for Absolute Error Periodic
Patterns

In this section, we describe a linear time algorithm for computing the longest
absolute error periodic pattern in a sequence S of numbers. We use dynamic
programming: for each ti in S, we compute the length of a longest absolute error
periodic pattern which ends with ti, denoted by L[i]. Note that the possible
predecessors of ti are all the numbers of S in [ti − pmax, ti − pmin]. A naive
implementation using this idea would consider, for each ti, all valid predecessors
of ti (i.e., all tj < ti for which ti − tj ∈ [pmin, pmax]), and compose the longest
periodic pattern ending at ti by using the predecessor with the longest periodic
pattern among these. This approach would have a run time of O(n2). In the
following, we describe a solution with run time O(n) which uses two additional
observations:

Observation 1. If we consider the numbers ti for i = 1, . . . , n, then the valid
predecessors of ti are contained in a sliding window which moves from left to
right as we increase i. More precisely, let predl(x) and predr(x) denote the
leftmost and rightmost valid predecessor of x. Then, for any b > a, we have:
predl(tb) ≥ predl(ta) and predr(tb) ≥ predr(ta).

Observation 2. If two numbers ta, tb, with a < b, are both valid predecessors
of the same ti, and L[a] ≤ L[b], then the number ta need not be considered as a
predecessor of ti, nor for any other number tj > ti. To see this, note that due to
Observation 1, tb will be a valid predecessor for any number tj for which ta is a
valid predecessor.

Our algorithm, which we call Algorithm 1, uses these two observations as fol-
lows: We go through all numbers from left to right, maintaining a list Pre of
valid predecessors for the currently considered number ti. This list only contains
exactly those predecessors of ti which cannot be ignored according to Obser-
vation 2. Hence, the predecessors in Pre are sorted in decreasing order of L[ ]
and also ordered as in S. Therefore, the longest periodic pattern ending at ti is
always obtained using the first number tq in this list as ti’s predecessor (if the
list Pre is empty, the longest sequence ending at ti consists only of ti itself),
and appending ti to the longest periodic pattern ending at tq. To update this
list when moving from number ti to ti+1, we need to (i) delete the predecessors
which were valid for ti but no longer for ti+1 (unless they have already been
removed due to Observation 2), and (ii) insert the numbers which are valid pre-
decessors for ti+1 but were invalid for ti. Before inserting such a number into



Finding Longest Approximate Periodic Patterns 467

the list, we remove all predecessors which can be ignored because they are worse
than the new solution (according to Observation 2). Note that since the list is
sorted, all such entries can be found by traversing the list from right to left. We
omit the pseudocode of this approach due to lack of space.

Lemma 1. For any sequence S of n numbers, and bounds pmin, pmax, Algo-
rithm 1 computes a longest absolute error periodic pattern in S in O(n) time
and space.

Proof. The correctness of this algorithm follows from the above discussion. More-
over, its run time is linear in the input size because as we traverse S once from
t1 to tn, every number ti is inserted at the head of the list Pre at most once,
and at most once deleted from its tail. The space complexity of the algorithm is
also O(n), since at any step in the computation, the list Pre contains at most n
numbers. ��

3 Algorithms for Relative Error Periodic Patterns

This section is structured as follows. In Section 3.1, we describe an exact algo-
rithm for finding a longest relative error periodic pattern. Then, we give a basic
approximate algorithm for this problem in Section 3.2, on which we build in
Section 3.3 to obtain a more efficient approximate algorithm.

3.1 An Exact Algorithm

A longest relative error periodic pattern with period ratio at most 1 + α can be
found using a relatively simple approach. There are at most O(n2) values for the
smallest period pmin in the optimal pattern (all pairwise differences between the
input numbers), so we can run Algorithm 1 for each of these values, using an
upper bound of pmax := pmin(1 + α), to obtain the longest pattern with period
ratio at most 1 + α. This approach clearly has run time O(n3).

3.2 A Basic Approximate Algorithm

We now describe an algorithm for finding relative error periodic patterns which
is approximate in the following sense: Given constants α and ε, and an interval
[low, high] of periods to consider, it computes a relative error periodic pattern
whose length is at least as long as the longest one with period ratio 1 + α, but
the period ratio of the returned pattern can be up to (1 + α)(1 + ε). In other
words, the algorithm finds a solution comparable to the optimal one, except that
the allowed relative error is increased by a fixed percentage. The run time of this
algorithm is O(n log1+ε(high/low)), and its space complexity is O(n).

Basically, the idea of this algorithm, described in pseudocode in Algorithm 2,
is to run Algorithm 1 for a sequence of different period intervals, whose period
ratio is bounded by (1 + α)(1 + ε). As a result, we find only periodic patterns
whose period ratio is at most (1 + α)(1 + ε). Moreover, the periodic pattern will
be at least as long as the longest one with period ratio at most 1 + α:



468 B. Gfeller

Algorithm 2. relative error basic approximation algorithm

Input:
S : the input numbers t1, . . . , tn,
low, high: the (inclusive) bounds for the minimum and maximum period of
considered exact patterns,
α, and ε
for i := 0, 1, 2, . . . , �log1+ε(high/low)� do1

pi := low(1 + ε)i
2

Run Algorithm 1 on S with pmin := pi, pmax := min(pi(1 + α)(1 + ε), high)3

return the longest pattern found for any i4

Theorem 1. Given constants α, ε ≥ 0, and an interval [low, high], suppose that
among sequences with minimum period ≥ low and maximum period ≤ high, the
length of a longest relative error periodic pattern with period ratio at most 1+α is
L. Algorithm 2 computes a relative error periodic pattern with length at least L,
whose period ratio is at most (1+α)(1+ε), whose minimum period is at least low,
and whose maximum period is at most high. Its run time is O(n log1+ε(

high
low

)),
and it requires O(n) space.

Proof. Consider any longest relative error periodic pattern P with period ra-
tio at most 1 + α, with all periods within [low, high], and let Pmin be its
minimum period, and Pmax its maximum period. Consider the largest j for
which pj ≤ Pmin: Since Pmax ≤ Pmin(1 + α), and Pmin ≤ pj(1 + ε), we
have Pmax ≤ pj(1 + α)(1 + ε). Therefore, when we run Algorithm 1 for the
interval [pj , min(pj(1 + α)(1 + ε), high)], the pattern P is contained in the al-
lowed period interval, and we will find a pattern at least as long as P . By
construction, the period ratio of this pattern is at most (1+α)(1+ ε). Moreover,
its minimum period is at least pj ≥ low, and its maximum period is at most
min(pj(1+α)(1+ ε), high) ≤ high. The time and space bounds are obvious. ��

Corollary 1. Let dmin and dmax be the largest and the smallest difference be-
tween any two input numbers (note that these values are easy to compute in
O(n) time). Running Algorithm 2 with low := dmin and high := dmax yields an
approximate relative error pattern in O(n log1+ε(

dmax
dmin

)) time and O(n) space.

Note that if the ratio between the largest and the smallest difference of any
two numbers in the input is polynomially bounded, Algorithm 2 yields an ap-
proximate solution in O(n log n) time. In the following section, we describe an
algorithm which is efficient regardless of the ratio between smallest and largest
distance.

3.3 An Approximate O(n1+γ) Time Algorithm

In this section, we describe a recursive algorithm for finding approximate relative
error patterns, which achieves a run time of O(n1+γ), for any γ > 0.

Our approach is based on Algorithm 2, but we carefully select the period
intervals for which the algorithm is run, and not always apply the algorithm to



Finding Longest Approximate Periodic Patterns 469

the entire input, but only to selected parts of it. To achieve this, we combine the
two following basic observations:

– If there are two consecutive input numbers ti and ti+1 whose absolute differ-
ence is x, then any pattern which contains at least one number from t1, . . . , ti
and at least one number from ti+1, . . . , tn has a maximum period of at least
x. Hence, we can find all periodic patterns whose maximum period is smaller
than x by searching separately in the two parts t1, . . . , ti and ti+1, . . . , tn.

– If some numbers ti, . . . , tj are all within an interval of width y (i.e., tj− ti ≤
y), then any periodic pattern with minimum period at least y/ε contains at
most one number from ti, . . . , tj . Moreover, replacing such a number by any
other from ti, . . . , tj will only increase the period ratio of such a pattern by
a factor of at most 1+2ε

1−2ε (see Lemma 2). Hence, when searching for periodic
patterns with minimum period at least y/ε, one can omit some numbers in
the input if their mutual distance is smaller than y.

Lemma 2 (proof omitted). Consider a periodic pattern P, with minimum
period Pmin and maximum period Pmax. If we change each number in P by an
absolute value of at most ε · Pmin, where ε < 1/2, then we obtain a pattern H
whose minimum period is Pmin′ ≥ Pmin · (1 − 2ε), whose maximum period is
Pmax′ ≤ Pmax · (1 + 2ε), and whose period ratio is at most Pmax

Pmin
1+2ε
1−2ε

.

Algorithm description. We now describe our algorithm, and give some intu-
ition on how it works. For a detailed description of the algorithm in pseudocode,
see Algorithm 3. For an overview of terms used to describe our algorithm, see
Fig. 1. First, we select a number t′ which separates the input into two parts,
where the first part t1, . . . , t

′ contains a constant fraction of the input num-
bers. To that end, we set t′ := t�nq�, where q ∈ (0, 1) is a parameter that we
choose later. We select a second number t′′ := t�n(1−q)�, such that t′′, . . . , tn also
contains a constant fraction of the input numbers. To use both of the above
observations, we consider d := t′′− t′: It is clear that there exist two consecutive
numbers p′, p′′ in t′, . . . , t′′ whose distance is at least d/(n−1). For patterns with
maximum period smaller than d/(n − 1), we can therefore search separately in
t1, . . . , p

′ and p′′, . . . , tn. Furthermore, note that t′, . . . , t′′ contains a constant
fraction of all input numbers, all within an interval of length d. Thus, our sec-
ond observation applies: For patterns with minimum period at least d/ε, we can
omit all the numbers between t′ and t′′, because any such pattern contains at
most one number from t′, . . . , t′′, and replacing this number either by t′ or by
t′′ will only increase the period ratio of the pattern by at most a factor of 1+2ε

1−2ε
.

Thus, it suffices to search for these patterns in the sequence t1, . . . , t
′, t′′, . . . , tn.

It remains to search for patterns whose maximum period is at least d/(n−1) and
whose minimum period is smaller than d/ε. Fortunately, all these patterns have
a minimum period at least d/((n − 1)(1 + α)) and a maximum period at most
(1+α)d/ε. Therefore, running Algorithm 2 on t1, . . . , tn finds the longest of these
patterns present in the input in O(n log1+ε((n−1)(1+α)/ε)) = O(n log1+ε(n/ε))
time (see Theorem 1). Since some numbers of the original input are no longer



470 B. Gfeller

t1 tnt′ := t�nq� t′′ := t�n(1−q)�
≥ d/(n− 1)

p′ p′′

d

Fig. 1. Relative position of the different numbers selected by Algorithm 3

Algorithm 3. Average gap

Input: ε and the input numbers t1, t2, . . . , tn.
1. If n < 3

1−2q
, compute the longest periodic pattern in t1, . . . , tn whose period

ratio is at most (1 + α) 1+2ε
1−2ε

(using any exact algorithm, e.g. the one in
Section 3.1). return longest pattern found

2. Find t′ := t�nq�, t
′′ := t�n(1−q)� and d := t′′ − t′.

3. Find two consecutive numbers p′ and p′′ in t′, . . . , t′′ whose distance is at least
d/(n− 1).

4. Run Algorithm 2 on t1, . . . , tn with low := d/((1 + α)(n− 1)(1− 2ε)),
high := d(1 + α)(1 + 2ε)/ε, α′ := (1 + α) 1+2ε

1−2ε
− 1 and ε.

5. Run Algorithm 3 recursively on t1, . . . , p
′.

6. Run Algorithm 3 recursively on p′′, . . . , tn.
7. Run Algorithm 3 recursively on t1, . . . , t

′, t′′, . . . , tn.
8. return the longest periodic pattern found in any of the steps 4–7.

present in the recursive calls, we actually need to use a slightly lower minimum
period limit and a slightly larger maximum period limit. This will become clear
in the correctness proof for Algorithm 3.

Note that by construction, the size of each part which is recursively searched
is at most a fixed constant fraction of the input. This is important to achieve
logarithmic recursion depth. Since the inputs of the recursive calls are not dis-
joint, the total run time is ω(n log n). However, by decreasing q, the overlap can
be made small while keeping the logarithmic recursion depth.

Correctness. To prove the correctness of Algorithm 3, we will consider a par-
ticular sequence of recursive calls for every periodic pattern P that is present in
the original input S. The following lemma helps us find a suitable call sequence:

Lemma 3. Consider any relative error periodic pattern P with period ratio at
most 1 + α. Let Pmax be the maximum period of P, and Pmin its minimum
period. During the execution of Algorithm 3, there is a recursive call such that:

(A) For each number r in P, there exists some number u in the input of the
recursive call, such that the absolute difference between r and u is at most
εPmin, and

(B) (d/(n−1) ≤ Pmax ≤ d(1+α)/ε) or (n < 3
1−2q ), where n and d are defined

as in Algorithm 3.



Finding Longest Approximate Periodic Patterns 471

Proof. We follow a particular path of recursive calls of Algorithm 3 to prove our
claim. As we will show, there exists a path of recursive calls leading to a call
satisfying the conditions stated in the lemma. To that end, we show that the first
property (A) stated in the lemma is actually an invariant, in the sense that for
any P , we can select a particular call path for which (A) holds for all recursive
calls along the path.

Initially, the invariant holds trivially because all numbers of P are present
in the input. Moreover, whenever p′ and p′′ both lie to the right of P ’s last
number, or both lie to the left of P ’s first number, we consider the call which
fully contains P (i.e., either the call in step 5 or in step 6). The gap between p′

and p′′ is either to the left or to the right of P in this case. For any number r of
P which is not in the call’s input, let u be the closest number to r which is still
in the input (if there are two such numbers, pick one arbitrarily). Since there
are no numbers between u and r in the input, the gap p′, p′′ cannot lie between
u and r, and thus the invariant holds.

Otherwise, P contains some numbers to the left of p′ as well as some numbers
to the right of p′′. Thus, we have Pmax ≥ Pmin ≥ d/(n − 1) in this recursive
call. If it holds additionally that Pmax ≤ d(1 + α)/ε, then we have proved the
lemma because of the invariant. If n < 3

1−2q , then again the lemma is proved
thanks to the invariant. In the remaining case, Pmax > d(1+α)/ε, and Pmin ≥
Pmax/(1 + α) > d/ε. In this case, we continue the considered call path by
following the recursive call in step 7 of Algorithm 3. To show that the invariant
still holds in this case, we consider all the different possibilities of how it could
be violated. Note that as long as all numbers of P are still in the input for step
7, the invariant holds trivially. We need to consider two additional cases: (i) If
a number r of P is in the current input but is removed from the input in step
7 (i.e., r ∈ t�nq�+1, . . . , t�n(1−q)�−1), then we need to show that there remains
a number u in the input of the call in step 7 which differs from r by at most
εPmin. Recall that d < εPmin. Thus, when r is removed, the two numbers t′

and t′′ which remain in the input are both within distance less than εPmin from
r, and the invariant holds. (ii) If a number r of P is not in the current input,
by the invariant there is a number in the current input which is within distance
εPmin of r. Let u be the closest number to r in the current input. Note that if
u = t′ or u = t′′, u will not be removed from the input, and the invariant holds.
If u is removed from the input in step 7 (i.e., u ∈ t�nq�+1, . . . , t�n(1−q)�−1), we
need to show that there exists another number in the input to the call in step 7
which is also within distance εPmin of r. In this case, clearly r must lie between
t′ and t′′ (in the original input). Thus, r is within distance at most εPmin of
both t′ and t′′, and hence the invariant holds.

While we are following a particular path as described above, the size of the
input is guaranteed to decrease with each recursive call, because n ≥ 3

1−2q

ensures that t′, . . . , t′′ contains at least three numbers. The path we follow thus
eventually leads to a call satisfying the lemma, because (B) is satisfied as soon
as n is small enough, and (A) is an invariant of the considered path. ��



472 B. Gfeller

Theorem 2. Given constants α and δ ≤ α, Algorithm 3 returns a relative error
periodic pattern whose length is at least as long as the longest one with period
ratio at most 1 + α, whose period ratio is at most (1 + α)(1 + δ), if called with
suitably chosen ε.

Proof. Since we never insert any numbers in the input, but only remove some (for
the recursive calls in steps 5–7), and by correctness of Algorithm 2 (Theorem 1),
Algorithm 3 never outputs a pattern which is not present in the input. Thus, it
suffices to prove that for every relative error periodic pattern P with period ratio
at most 1+α, our algorithm returns a pattern whose length is at least as long as
P , and whose period ratio is at most (1+α)(1+δ). To this end, fix a particular P .
We focus on the recursive call defined by Lemma 3: We can replace each number
in P by a different point within distance (in terms of absolute difference) less
than εPmin which is still present in the input. Moreover, if we choose ε < 1/2,
then no two numbers of P will be replaced by the same number. Therefore, by
replacing each number P by its closest number which is still in the input, we
obtain a pattern H which is exactly as long as P , and which consists only of
numbers that are still present in the input. By Lemma 2, the period ratio of H
is at most Pmax

Pmin
1+2ε
1−2ε

.
Recall that in this call, Pmax ≤ d(1 + α)/ε, and Pmax ≥ Pmin ≥ d(n− 1).

Let Pmin′ and Pmax′ be the minimum and maximum period of H. We have
Pmin′ ≥ Pmin(1−2ε) ≥ Pmax/(1+α)·(1−2ε) ≥ d(1−2ε)/((1+α)(n−1)) and
Pmax′ ≤ Pmax(1 + 2ε) ≤ d(1 + α)(1 + 2ε)/ε. These bounds match exactly the
values for low and high in Algorithm 3. Moreover, we use α′ := (1 + α) 1+2ε

1−2ε − 1
for running Algorithm 2. Altogether, this ensures that H is a valid pattern, and
thus the algorithm returns a pattern whose length is at least as long as H (and
P), and whose period ratio is at most (1 + α)1+2ε

1−2ε
(1 + ε).

Summarizing, we have that for any pattern P with period ratio at most 1+α,
Algorithm 3 outputs a pattern which is at least as long as P , whose period ratio
is at most (1 + α) 1+2ε

1−2ε
(1 + ε). Clearly, this period ratio is at most (1 + α)(1 + δ)

for small enough ε, which concludes the proof. ��

Run time analysis. The run time of Algorithm 3 depends on the parameter
q. Indeed, by choosing the constant q sufficiently small, we obtain an exponent
which is arbitrarily close to 1:

Theorem 3. For any constant ε > 0, Algorithm 3 has run time O(n1+γ), where
γ > 0 is an arbitrarily small constant.

Proof. Let T (n) denote the run time of Algorithm 3 on n numbers. Assume q is
a fixed constant (its value will be determined later in the proof). Steps 1, 2 and
3 only require O(n) time. Step 4 takes O(n log1+ε(

d/ε
d/(n−1)

)) = O(n log1+ε(n/ε))
time (see Theorem 1). For the recursive calls in steps 5 and 6, we are guaranteed
that t1, . . . , p

′ contains at least nq numbers and at most n(1 − q) numbers.
Consequently, p′′, . . . , tn contains at least nq and at most n(1 − q) numbers.
Step 7 runs our algorithm on at most 2nq + 2 numbers. Thus, we have the
following recurrence relation for the run time:



Finding Longest Approximate Periodic Patterns 473

T (n) = an log1+ε(n/ε) + T (x) + T (n− x) + T (2nq + 2),

where nq ≤ x ≤ n(1− q), and where a is some constant.
We prove by induction on n that T (n) ≤ b ·nc for some constants b and c > 1.

The base case is trivial (for n below some constant, we can always find a suitable
b). For the induction step, assume T (i) ≤ b · ic for all i < n, and let n be large
enough such that nq > 1 and 2nq +2 < n. Then, T (n) ≤ an log1+ε(n/ε)+ b(xc+
(n − x)c) + b(2nq + 2)c. Assuming n ≥ 2/q, we have T (n) ≤ an log1+ε(n/ε) +
b(xc + (n − x)c) + b(3nq)c. Simple calculus shows that for qn ≤ x ≤ n(1 − q),
the term xc + (n − x)c is maximized when x = nq (or, equivalently, when x =
n(1 − q)). Thus, we have T (n) ≤ an log1+ε(n/ε) + bnc((1 − q)c + qc(1 + 3c))
= bnc

(
(1− q)c + qc(1 + 3c) + (a/b)n1−c log1+ε(n/ε)

)
. Note that if we set q such

that (1 − q)c−1 = (1 + 3c)qc−1 (which is true for q := 1/(1 + (1 + 3c)1/(c−1))),
we have (1− q)c + qc(1 + 3c) = (1− q)(1 + 3c)qc−1 + qc(1 + 3c) = (1 + 3c)qc−1.
Substituting our chosen value for q, we have

(1 + 3c)qc−1 =
1 + 3c

(1 + (1 + 3c)1/(c−1))c−1
<

1 + 3c

((1 + 3c)1/(c−1))c−1
= 1.

Hence, for any c > 1, we have (1−q)c+qc(1+3c)+(a/b)n1−c log1+ε(n/ε) < 1 for
some constant q > 0, for large enough n. This concludes the induction step. ��

4 Solving Approximate 3SUM in O(n1+γ +Tsort(n)) Time

The well-known 3SUM problem can be defined as follows [1]: “Given three sets
A, B, C of integers, each with cardinality at most n, is there a triple a ∈ A,
b ∈ B, c ∈ C such that a + b = c?” We briefly explain how Algorithm 3 can be
modified to give an approximate answer to the 3SUM problem, as follows:

– It concludes that no triple (a, b, c) ∈ A×B × C with a + b = c exists, or
– it outputs a triple (a, b, c) ∈ A×B × C with a + b ∈ [c/(1 + ε), c(1 + ε)].

Although this algorithm does not give an approximation in the usual way, it ap-
proximates 3SUM in the following sense: (i) Whenever the exact algorithm would
find an exact triple, our algorithm finds an approximate triple. (ii) Whenever
our algorithm does not find an approximate triple, the exact algorithm would
not find an exact triple either.

We first transform the given sets A, B, C as follows: A′ := {2x|x ∈ A}, B′ :=
{2x|x ∈ B}, C′ := C. We thus need to either find a triple (a′, b′, c′) ∈ A′×B′×C′

with a′+b′
2 ∈ [c′/(1+ε), c′(1+ε)], or to show that no triple exists with a′+b′

2 = c′.
Note that such a triple a′, b′, c′ is an arithmetic progression of length three, with
the constraints that it contains one number from each of A′, B′, C′, and that
the median of the three numbers is from C′. We solve the approximate 3SUM
problem by modifying Algorithm 3 such that it returns a triple (a′, b′, c′) ∈
A′ ×B′ × C′ with a′+b′

2
∈ [c′/(1 + ε), c′(1 + ε)] whenever an exact triple exists,

as follows:



474 B. Gfeller

– The input set S is replaced by the three sets A′, B′, C′, and we sort each set
in O(Tsort(n)) time.

– In line 3 of Algorithm 2, we replace Algorithm 1 by an algorithm which
determines whether any triple (a′, b′, c′) ∈ A′ × B′ × C′ exists such that
|a′ − c′| ∈ [pmin, pmax] and |b′ − c′| ∈ [pmin, pmax]. There exists a simple
linear time algorithm which achieves this. Hence, Algorithm 2, which is used
in step 4 of Algorithm 3, then also works with the additional constraint
mentioned above.

– In step 7 of Algorithm 3, we run Algorithm 3 recursively on the sequence
t1, . . . , t�nq�−1, t̂1, . . . , t̂6, t�n(1−q)�+1, . . . tn, where the sorted list t̂1, . . . , t̂6
contains, from each set X ∈ {A′, B′, C′}, the number in {t′, . . . , t′′} ∩ X
closest to t′ and the number in {t′, . . . , t′′} ∩X closest to t′′.

It is not hard to verify that after these modifications of the algorithm, Lemma 3
and Theorem 2 also hold for approximate periodic patterns of length three with
the mentioned additional constraints. Moreover, the run time analysis remains
the same, except that step 7 of Algorithm 3 may run on up to 2nq + 6 numbers
(instead of up to 2nq + 2), which does not affect the asymptotic time bound.

Acknowledgments. We would like to thank Metin Feridun and Dorothea
W. Wiesmann for inspiring discussions on finding periodic patterns.

References

1. Gajentaan, A., Overmars, M.H.: On a class of O(n2) problems in computational
geometry. Computational Geometry 5(3), 165–185 (1995)

2. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time
series database. In: Proc. of the 15th International Conference on Data Engineering
(ICDE 1999), pp. 106–115. IEEE Computer Society, Los Alamitos (1999)

3. Kahng, A.B., Robins, G.: Optimal algorithms for extracting spatial regularity in
images. Pattern Recognition Letters 12(12), 757–764 (1991)

4. Ma, S., Hellerstein, J.L.: Mining partially periodic event patterns with unknown
periods. In: Proc. of the 17th International Conference on Data Engineering (ICDE
2001), pp. 205–214. IEEE Computer Society, Los Alamitos (2001)

5. Rasheed, F., Alshalalfa, M., Alhajj, R.: Efficient Periodicity Mining in Time Series
Databases Using Suffix Trees. IEEE Transactions on Knowledge and Data Engi-
neering 99 (2010) (preprints)

6. Robins, G., Robinson, B.L.: Pattern Minefield Detection from Inexact Data. In:
Proc. SPIE International Symposium on Aerospace/Defense Sensing and Dual-Use
Photonics, vol. 2496, pp. 568–574 (1995)

7. Tanbeer, S., Ahmed, C., Jeong, B.-S., Lee, Y.-K.: Discovering periodic-frequent pat-
terns in transactional databases. In: Theeramunkong, T., Kijsirikul, B., Cercone, N.,
Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 242–253. Springer, Heidelberg
(2009)

8. Yang, J., Wang, W., Yu, P.S.: Mining asynchronous periodic patterns in time series
data. IEEE Trans. on Knowl. and Data Eng. 15, 613–628 (2003)



A (5/3 + ε)-Approximation for Strip Packing�

Rolf Harren1, Klaus Jansen2, Lars Prädel2, and Rob van Stee1

1 Max-Planck-Institut für Informatik (MPII), Campus E1 4, 66123 Saarbrücken, Germany
{rharren,vanstee}@mpi-inf.mpg.de

2 Universität Kiel, Institut für Informatik, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
{kj,lap}@informatik.uni-kiel.de

Abstract. We study strip packing, which is one of the most classical two-di-
mensional packing problems: Given a collection of rectangles, the problem is to
find a feasible orthogonal packing without rotations into a strip of width 1 and
minimum height. In this paper we present an approximation algorithm for the
strip packing problem with approximation ratio of 5/3 + ε for any ε > 0. This
result significantly narrows the gap between the best known upper bounds of 2
by Schiermeyer and Steinberg and 1.9396 by Harren and van Stee and the lower
bound of 3/2.

Keywords: strip packing, rectangle packing, approximation algorithm, absolute
worst-case ratio.

1 Introduction

Two-dimensional packing problems are classical in combinatorial optimization and
continue to receive a lot of research interest [4,5,9,10,11,13,14]. One of the most impor-
tant ones is the strip packing problem also known as the cutting stock problem: given a
set of rectangles I = {r1, . . . , rn} of specified widths wi and heights hi, the problem
is to find a feasible packing for I (i.e. an orthogonal arrangement where rectangles do
not overlap and are not rotated) into a strip of width 1 and minimum height.

The strip packing problem has many practical applications in manufacturing, logis-
tics, and computer science. In many manufacturing settings rectangular pieces need to
be cut out of some sheet of raw material, while minimizing the waste. Scheduling inde-
pendent tasks on a group of processors, each requiring a certain number of contiguous
processors or memory allocation during a certain length of time, can also be modeled
as a strip packing problem.

Since strip packing includes bin packing as a special case (when all heights are
equal), the problem is strongly NP-hard. Therefore, there is no efficient algorithm for
constructing an optimal packing, unless P = NP . We focus on approximation algo-
rithms with good performance guarantee. Let A(I) be the objective value (in our case
the height of the packing) generated by a polynomial-time algorithm A, and OPT(I)
be the optimal value for an instance I . The approximation ratio of A is supI

A(I)
OPT(I)

� Research supported by German Research Foundation (DFG) project JA612/12-1, “Design and
analysis of approximation algorithms for two- and three-dimensional packing problems” and
project STE 1727/3-2, “Approximation and online algorithms for game theory”.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 475–487, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



476 R. Harren et al.

whereas the asymptotic approximation ratio of A is defined by lim supOPT(I)→∞
A(I)

OPT(I)
. A problem admits a polynomial-time approximation scheme (PTAS) if there

is a family of algorithms {Aε | ε > 0} such that for any ε > 0 and any instance I, Aε
produces a (1 + ε)-approximate solution in time polynomial in the size of the input. A
fully polynomial-time approximation scheme (FPTAS) is aPTAS where additionally
Aε has run-time polynomial in 1/ε and the size of the input.

Results. The Bottom-Left algorithm by Baker et al. [2] has asymptotic approximation
ratio equal to 3 when the rectangles are ordered by decreasing widths. Coffman et al.
[6] provided the first algorithms with proven approximation ratios of 3 and 2.7, respec-
tively. The approximation algorithm presented by Sleator [16] generates a packing of
height 2 OPT(I) + hmax(I)/2. Since hmax(I) ≤ OPT(I) this implies an absolute
approximation ratio of 2.5. This was independently improved by Schiermeyer [15] and
Steinberg [17] with algorithms of approximation ratio 2.

In the asymptotic setting we consider instances with large optimal value. Here, the
asymptotic performance ratio of the above algorithms was reduced to 4/3 by Golan [7]
and then to 5/4 by Baker et al. [1]. An asymptotic FPTAS with additive constant of
O(hmax(I)/ε2) was given by Kenyon & Rémila [14]. Jansen & Solis-Oba [11] found
an asymptotic PTAS with additive constant of hmax(I).

On the negative side, since strip packing includes the bin packing problem as a spe-
cial case, there is no algorithm with absolute ratio better than 3/2 unless P = NP .
After the work by Steinberg and Schiermeyer in 1994, there was no improvement
on the best known approximation ratio until very recently. Jansen & Thöle [12] pre-
sented an approximation algorithm with approximation ratio 3/2 + ε for restricted
instances where the widths are of the form i/m for i ∈ {1, . . . , m} and m is poly-
nomially bounded in the number of items. Notice that the general version that we
consider appears to be considerably more difficult. Recently, Harren & van Stee [9]
were the first to break the barrier of 2 for the general problem and presented an al-
gorithm with a ratio of 1.9396. Our main result is the following significant
improvement.

Theorem 1. For any ε > 0, there is an approximation algorithm A which produces a
packing of a list I of n rectangles in a strip of width 1 and height A(I) such that

A(I) ≤
(5

3
+ ε

)
OPT(I).

Although our algorithm uses a PTAS as a subroutine and therefore has very high run-
ning time for small values of ε, this result brings us much closer to the lower bound of
3/2 for this problem.

Techniques. The algorithm approximately guesses the optimal height of a given in-
stance. In the main phase of the algorithm we use a recent result by Bansal et al. [3],
a PTAS for the so-called rectangle-packing problem with area maximization (RPA).
Given a set I of rectangles, the objective is to find a subset I ′ ⊆ I of the rectangles and
a packing of I ′ into a unit sized bin while maximizing the total area of I ′. For the itera-
tion close to the minimal height, the approximation scheme by Bansal et al. computes a



A (5/3 + ε)-Approximation for Strip Packing 477

packing of a subset of the rectangles with total area at least (1 − δ) times the total area
of all rectangles in I . After this step a set of unpacked rectangles with small total area
remains. The main idea of our algorithm is to create a hole of depth 1/3 and width ε in
the packing created by the PTAS , and use this to pack the unpacked tall items (with
height possibly very close to 1). (The other unpacked items account for the +ε in our
approximation ratio.) Finding a suitable location for such a hole and repacking the items
which we have to move out of the hole account for the largest technical challenges of
this paper. To achieve a packing of the whole input we carefully analyse the structure
of the generated packing and use interesting and often intricate rearrangements of parts
of the packing.

The techniques of this geometric analysis and the reorganization of the packing
could be useful for several other geometric packing problems. Our reoptimization could
also be helpful for related problems like scheduling parallel tasks (malleable and non-
malleable), three-dimensional strip packing and strip packing in multiple strips. To
achieve faster heuristics for strip packing, we could apply our techniques on different
initial packings rather than using the PTAS from [3].

2 Overview of the Algorithm

Let I = {r1, . . . , rn} be the set of given rectangles, where ri = (wi, hi) is a rectangle
with width wi and height hi. For a given packing P we denote the bottom left corner
of an item ri by (xi, yi) and its top right corner by (x′

i, y
′
i), where x′

i = xi + wi and
y′
i = yi + hi. So the interior of rectangle ri covers the area (xi, x′

i)× (yi, y′
i). It will be

clear from the context to which packing P the coordinates refer.
Let Wδ = {ri | wi > δ} be the set of so-called δ-wide items and let Hδ = {ri |

hi > δ} be the set of δ-high items. To simplify the presentation, we refer to the 1/2-
wide items as wide items and to the 1/2-high items as high items. Let W = W1/2 and
H = H1/2 be the sets of wide and high items, respectively.

For a set T of items, let A(T ) =
∑

i∈T wihi be the total area and let h(T ) =∑
ri∈T hi and w(T ) =

∑
ri∈T wi be the total height and total width, respectively.

Furthermore, let wmax(T ) = maxri∈T wi and hmax(T ) = maxri∈T hi.
We use two important subroutines in our algorithms, namely Steinberg’s algorithm

[17] and a recent algorithm by Bansal et al. [3]. The algorithm by Steinberg allows
us to pack a set T of rectangles into a container R = (a, b), when the following con-
ditions hold: wmax(T ) ≤ a, hmax(T ) ≤ b, and 2A(T ) ≤ ab − (2wmax(T ) −
a)+(2hmax(T )−b)+, where x+ = max(x, 0). Bansal, Caprara, Jansen, Prädel & Sviri-
denko [3] considered the problem of maximizing the total area packed into a unit-sized
bin. Using a technical Structural Lemma they derived a PTAS for this problem: For
any fixed δ > 0, the PTAS returns a packing of I ′ ⊆ I in a unit-sized bin such that
A(I ′) ≥ (1 − δ)OPTmax area(I), where OPTmax area(T ) denotes the maximum area
of items from T that can be packed into a unit-sized bin.

With similar methods as in [9], we can derive a statement on the existence of a
structured packing of certain sets of wide and high items (a full description is also
given in the full version of this paper [8]): For sets H ′ ⊆ H and W ′ ⊆W \H ′of high
and wide items with OPT(W ∪ H) ≤ 1 we can derive a packing of W ′ ∪ H ′ into a



478 R. Harren et al.

x

y

(a) PointI(x, y)

x2

y

x1

(b) HLI(x1, x2; y)

x2

y2

x1

y1

(c) AI(x1, x2; y1, y2)

y

x

(d) AI(VPCE(x, y))

Fig. 1. Notations

strip of height at most 1 + h(W ′)/2 such that the wide items are stacked in the bottom
right of the strip and the high items are stacked above the wide items at the left side of
the strip.

Modifying packings. Our methods involve modifying existing packings in order to
insert some additional items. To describe these modifications or, more specifically,
the items involved in these modifications, we introduce the following notations—see
Figure 1. Let PointI(x, y) be the item that contains the point (x, y) (in its interior).
We use the notation of vertical line items VLI(x; y1, y2) and horizontal line items
HLI(x1, x2; y) as the items that contain any point of the given vertical or horizontal
line in their interiors, respectively. Finally, we introduce two notations for items whose
interiors are completely contained in a designated area, namely AI(x1, x2; y1, y2) for
items completely inside the respective rectangle and AI(p) for items completely above
a given polygonal line p, where p is a staircase-function on [0, 1].

To describe such a polygonal line p we define the vertical polygonal chain exten-
sion of a point (x, y) inside a given packing P as follows. Start at position (x, y)
and move leftwards until hitting an item ri. Then move upwards to the top of ri, that
is, up to position y′

i. Repeat the previous steps until hitting the left side of the strip.
Then do the same thing to the right starting again at (x, y). We denote the polygonal
chain that results from this process by VPCE(x, y). In addition, let VPCEleft(x, y) and
VPCEright(x, y) be the left and right parts of this polygonal chain, respectively. Another
way to describe a polygonal line is by giving a sequence of points, which we denote as
PL((x1, y1), (x2, y2), . . .).

Algorithm. We start now with the presentation of our algorithm. Let ε < 1/(28 ·151) =
1/4228 throughout the paper. In a first step we scale the heights of all rectangles, so that
an optimal solution fits into a unit square. In order to do this, we first apply Steinberg’s
algorithm to get a 2-approximation, and then guess the optimal height up to ε accuracy.
Afterwards we scale the heights of all rectangles by this guess.

We will not make this explicit anymore but from now on only consider the case
where we have guessed correctly, hence OPT(I) ≤ 1 (for a full description of the
proof, we refer to [9] or the full version of this paper). We only give a high-level version
of the algorithm here. The phrases ’very close’ and ’very wide’ should be understood to
depend on our accuracy parameter ε.

In the next phase we use some direct methods involving Steinberg’s algorithm to
solve instances I with h(W1−130ε) ≥ 1/3 or w(H2/3) ≥ 27/28, that is, special cases
where many items have a width of almost 1, or almost all of the items are at least



A (5/3 + ε)-Approximation for Strip Packing 479

2/3 high. Having this many high or wide items makes it much easier to pack all items
without wasting much space. We present these methods in the full version of this paper,
and focus on the important general case in the rest of the paper.

Algorithm 1. Turn the PTAS packing into a strip packing
Requirement: ε < 1/4228, h(W1−130ε) < 1/3 and w(H2/3) < 27/28
Input: packing P produced by the PTAS from [3] with an accuracy of δ := ε2/2.
1: Pack the remaining unpacked items into C1 = (ε, 1) and C2 = (1, ε).
2: if there is 1/3-high item with one side at position x∗

1 ∈ [ε, 1/2 − ε],
and the total width of 2/3-high items to the left of x∗

1 is at most x∗
1−ε (or if these conditions

hold for P mirrored over x = 1/2) then
3: apply Algorithm 2 (Lemma 1), stop
4: if there is an item r1 of height h1 ∈ [1/3, 2/3] and width w1 ∈ [ε, 1 − 2ε]

and y1 ≥ 1/3 or y′1 ≤ 2/3 then
5: apply Algorithm 3 (Lemma 2), stop
6: Let r� be the rightmost 2/3-high item in AI(0, 1/2 − ε; 0, 1) and let rr be the leftmost

2/3-high item in AI(1/2 + ε, 1; 0, 1).
\\At this point, all vertical sides of 1/3-high items are to the left of r�,

\\ to the right of rr, or within ε distance of x = 1/2.
7: if there is no 1/3-high item in a particular horizontal interval of width ε very close to the side

of the strip, and the total height of very wide items is less than 1/3, then
8: create a strip for C1 in this interval.
9: Apply specific methods based on which of the cases shown in Figure 2 occurs. (Figure 2

covers all the cases because of where the 1/3-high sides of items can be, given that the
algorithm did not terminate yet.)

1

x′� xr

2
3

1
3

1/2

r� rr

r1

(a) A 1/3-high item
almost spans from
I� to Ir: apply the
method described in
Lemma 3

1
3

x′�

1

r1
r2

xr

2
3

1/2

r� rr

(b) A 1/3-high item
spans from I� to IM

and a 1/3-high item
spans from IM to Ir.

1
3

1

r1

x′� xr

2
3

1/2

rrr�

(c) A 1/3-high item
spans from IM to Ir

but no 1/3-high spans
between I� and IM .

1

1
3

x′� xr

2
3

1/2

rrr�

(d) No 1/3-high
items span across the
intervals.

Fig. 2. Schematic illustration of the main cases if Lemma 1 and 2 are not applicable. The area to
the left of r� and the area to the right of rr is almost completely covered by 2/3-high items (and
shown in darker shade). I�, Ir and IM are horizontal intervals very close to r�, rr and the middle
of the strip.

For the general case, we first apply the PTAS from [3] to pack most of the items
into a strip of height 1. Denote the resulting packing of I ′ ⊆ I by P and let R =
I \ I ′ be the set of remaining items. By the PTAS from [3] we have A(R) ≤ ε2/2 ·
OPTmax area(I) = ε2/2 · A(I) ≤ ε2/2. Pack R ∩Hε/2 into a container C1 = (ε, 1)



480 R. Harren et al.

(by forming a stack of the items of total width at most A(R)/(ε/2) ≤ ε) and pack
R \ Hε/2 with Steinberg’s algorithm into a container C2 = (1, ε) (this is possible by
Steinberg’s algorithm [17] since hmax(R \ Hε/2) ≤ ε/2, wmax(R \ Hε/2) ≤ 1 and
2A(R \Hε/2) ≤ ε2 < ε).

We will now modify the packing P to free a gap of width ε and height 1 to insert
the container C1 while retaining a total packing height of at most 5/3. This is the main
part of our work. Afterwards, we pack C2 above the entire packing, achieving a total
height of at most 5/3+ ε. The entire algorithm to modify the PTAS packing is given in
Algorithm 1. The running time of the PTAS from [3] is polynomial in the number of
items in the input (it is not explicitly stated in [3]). In the following sections that build
upon packing P we only give the additional running time for modifying the packing.

It is not possible to present all methods for modifying the packing P , due to page
limitations. Instead, we convey the main ideas and methods by presenting two selected
parts of our algorithm in Sections 3 and 4 in detail. For the omitted parts we refer to the
full version. We prove that we cover all the cases in Section 5.

3 Item of Height Greater than 1/3

Lemma 1. If the following conditions hold for P , namely

3.1. there is an item r1 of height h1 > 1/3 with one side at position x∗
1 ∈ [ε, 1/2− ε],

and
3.2. the total width of 2/3-high items to the left of x∗

1 is at most x∗
1 − ε, that is

w(AI(0, x∗
1; 0, 1) ∩H2/3) ≤ x∗

1 − ε,

then we can derive a packing of I into a strip of height 5/3 + ε in additional time
O(n log n).

Note that Condition 3.1 leaves open whether x∗
1 refers to the left or right side of r1 as

our method works for both cases. In particular, r1 could be one of the 2/3-high items
from Condition 3.2.

Proof. Assume w.l.o.g. y′
1 > 2/3 by otherwise mirroring the packing P over y = 1/2.

We lift up a part of the packing P in order to derive a gap of sufficient height to
insert the container C1. In this case we mirror the part of the packing that we lift up.
See Figure 3 for an illustration.

Consider the contour Clift defined by a horizontal line at height y = y′
1 − 1/3 to the

left of x∗
1, a vertical line at x = x∗

1 up to y′
1 and a vertical polygonal chain extension to

the right starting at the top of r1. More formally, Clift = PL((0, y′
1 − 1/3), (x∗

1, y
′
1 −

1/3), (x∗
1, y

′
1)) + VPCEright(x∗

1, y
′
1), where the +-operator denotes the concatenation

of polygonal lines (see thick line in Figure 3(a)). Let T = AI(Clift) be the set of items
that are completely above this contour.

Move up T by 2/3 (and hereby move T completely above the previous packing since
y′
1 > 2/3 and thus y′

1 − 1/3 > 1/3) and mirror T vertically, i.e., over x = 1/2. Let
ybottom be the height of Clift at x = 1/2 (i.e. Clift crosses the point (1/2, ybottom)). By
definition, Clift is non-decreasing and no item intersects with Clift to the right of x∗

1.
Therefore, T is completely packed above y = ybottom + 2/3 on the left side of the strip,



A (5/3 + ε)-Approximation for Strip Packing 481

i.e., for x ≤ 1/2, and P \T does not exceed ybottom between x = x∗
1 and x = 1/2. Thus

between x = x∗
1 and x = 1/2 we have a gap of height at least 2/3.

Let B = HLI(0, x∗
1; y′

1 − 1/3) be the set of items that intersect height y = y′
1 − 1/3

to the left of x∗
1 (see Figure 3(a)). Note that r1 ∈ B, if x∗

1 corresponds to the right side
of r1. Remove B from the packing, order the items by non-increasing order of height
and build a top-left-aligned stack at height y = ybottom +2/3 and distance ε from the left
side of the strip. Since we keep a slot of width ε to the left, the stack of B might exceed
beyond x∗

1. This overhang does not cause an overlap of items because Condition 3.1
ensures that x∗

1 ≤ 1/2− ε and thus the packing of B does not exceed position x = 1/2
and Condition 3.2 ensures that the excessing items have height at most 2/3 whereas the
gap has height at least 2/3.

Now pack the container C1 top-aligned at height ybottom +2/3 directly at the left side
of the strip. C1 fits here since ybottom +2/3− (y′

1−1/3) = 1+ybottom−y′
1 ≥ 1. Finally,

pack C2 above the entire packing at height y = 5/3, resulting in a total packing height
of 5/3 + ε. �	

1

y′1

y′1 − 1
3

1
3

x∗1

r1

T

B

Clift

(a) Definition of Clift, T and B.

1

5
3

y′1

y′1 − 1
3

1
3

x∗1

r1

T
B

≥ 2
3

ybottom + 2
3

ybottom

C1

(b) Modified packing where C1 is packed
in the slot of height 1 and width ε.

Fig. 3. Packing methods for Lemma 1

Algorithm 2. Edge of height greater than 1/3
Requirement: Packing P that satisfies Conditions 3.1 and 3.2 and y′1 > 2/3.
1: Move up the items T = AI(Clift) by 2/3 and then mirror the packing of these items vertically

at position x = 1/2.
2: Order the items of B = HLI(0, x∗

1; y
′
1 − 1/3) by non-increasing order of height and pack

them into a top-aligned stack at position (ε, ybottom + 2/3).
3: Pack C1 top-aligned at position (0, ybottom + 2/3) and pack C2 above the entire packing.

Note that Lemma 1 can symmetrically be applied for a 1/3-high item with one side at
position x∗

1 ∈ [1/2+ε, 1−ε] with w(AI(x∗
1, 1; 0, 1)∩H2/3) ≤ 1−x∗

1−ε by mirroring
P over x = 1/2.



482 R. Harren et al.

4 One Special Big Item in P

Lemma 2. If the following condition holds for P , namely

4.1. there is an item r1 of height h1 ∈ [1/3, 2/3] and width w1 ∈ [ε, 1 − 2ε], and
y1 ≥ 1/3 or y′

1 ≤ 2/3,

then we can derive a packing of I into a strip of height 5/3+ε in additional timeO(n).

1
T

2
3

1
3

r1
Clift

(a) Definition of T and Clift.

1

T

2
3

1
3

r1

5
3

C1

Clift

(b) Modified packing where C1 is packed in
the slot of height 1 and width ε.

Fig. 4. Packing methods for Lemma 2

Algorithm 3. Rectangle of height 1/3
Requirement: Packing P that satisfies Condition 4.1.
1: Define Clift := VPCE(x1, y

′
1) and move up T = AI(Clift) by 2/3.

2: Move up r1 by 2/3 and then by ε to the right, i.e., pack r1 at position (x1 + ε, y1 + 2/3).
3: Pack C1 into the slot vacated by r1 and pack C2 above the entire packing.

Proof. See Figure 4 for an illustration of the following proof. W.l.o.g. we assume that
y1 ≥ 1/3, by otherwise mirroring the packing horizontally, i.e., over y = 1/2. Further-
more, we assume that x′

1 ≤ 1− ε since w1 ≤ 1− 2ε and otherwise mirror the packing
vertically, i.e., over x = 1/2.

Define a vertical polygonal chain extension Clift = VPCE(x1, y
′
1) starting on top of

r1 and let T = AI(Clift). Move up the rectangles in T and the rectangle r1 by 2/3 and
hereby move r1 completely out of the previous packing, since y1 ≥ 1/3. Then move r1

to the right by ε, this is possible, since x′
1 ≤ 1− ε.

In the hole vacated by r1 we have on the left side a free slot of width ε (since w1 ≥ ε
and since we moved r1 to the right by ε) and height 2/3 + h1 ≥ 1 (since we moved up
T by 2/3 and since h1 ≥ 1/3). Place C1 in this slot and pack C2 on top of the packing
at height 5/3. �	



A (5/3 + ε)-Approximation for Strip Packing 483

Lemma 3. Let c1 > 0 be a constant. If the following conditions hold for P , namely

4.2. there is an item r1 of height h1 ∈ [1/3, 2/3] and width w1 ∈ [(4c1 + 1)ε, 1] with
y1 < 1/3 and with y′

1 > 2/3, and
4.3. we have w(H2/3) ≥ 1− w1 − c1ε,

then we can derive a packing of I into a strip of height 5/3+ε in additional time O(n).

Proof. Since the height of r1 is h1 ≤ 2/3 we can assume w.l.o.g. that r1 does not
intersect y = 1/6, i.e., y1 ≥ 1/6 (by otherwise mirroring over y = 1/2).

We want to line up all rectangles in the instance I of height greater than h =
max(1/2, 1 − h1) and the rectangle r1 on the bottom of the strip. These rectangles fit
there, since in any optimal solution they have to be placed next to each other (all rect-
angles of Hh = {ri | hi > h} have to intersect the horizontal line at height y = 1/2
and no rectangle of Hh fits above r1). Since 1 − h1 ≥ 1/3, H2/3 is included in the set
Hh. See Figure 5 for an illustration of the following algorithm.

1

2
3

1
3

T

B

L R

1
2

r1

(a) Definition of T , B, L, R and M (dark
items squeezed between L and R).

1
CM

T

B

2
3
1
2
1
3

5
3

C1\C ′1

r1

C ′1
(b) Modified packing where C ′

1 is packed
in the left-hand slot of height 1 and C1\C ′

1

is packed in the right-hand slot of height h
and width ε.

Fig. 5. Packing methods for Lemma 3

Let T = AI(0, 1; 2/3, 1) be the set of rectangles which lie completely above the
horizontal line at height y = 2/3. We move up the rectangles in T by 1/3 into the area
[0, 1]× [1, 4/3]. Now there is a free space of height at least 1/3 above r1.

Let B = AI(0, 1; 0, 1/3) be the rectangles which lie completely below the horizon-
tal line at height y = 1/3. We pack these items into a container CB = (1, 1/3) by
preserving the packing of B and pack CB at position (0, 4/3), i.e., directly above T .
Since by assumption r1 does not intersect the horizontal line at height y = 1/6, there is
a free space of height at least 1/6 below r1.

The remaining items of height smaller than h except r1 have to intersect one of the
horizontal lines at height 1/3 or 2/3 or lie completely between them. We denote these



484 R. Harren et al.

rectangles by M1 = HLI(0, 1; 1/3)\(Hh∪{r1}), M2 = HLI(0, 1; 2/3)\(Hh∪{r1}∪
M1) and M3 = AI(0, 1; 1/3, 2/3). Since each rectangle in H2/3 and r1 intersects both
of these lines, the rectangles in M = M1 ∪M2 ∪M3 lie between them in slots of total
width c1ε. Therefore, we can pack M1 and M2 each bottom-aligned into a container
(c1ε, h). Furthermore, the rectangles in M3 fit into a container (c1ε, 1/3) by pushing
the packing of the slots together. In total we pack M into a container CM = (3c1ε, h)
and pack it aside for the moment.

After these steps we removed all rectangles of height at most h except r1 out of the
previous packing. All remaining items intersect the horizontal line at height y = 1/2.
We line up the rectangles in L = HLI(0, x1; 1/2), i.e., the remaining rectangles on the
left of r1, bottom-aligned from left to right starting at position (0, 0). The rectangles in
R = HLI(0, x′

1; 1/2) (the remaining rectangles on the right of r1) are placed bottom-
aligned from right to left starting at position (1, 0). Now move r1 down to the ground,
i.e., pack r1 at position (x1, 0). Above r1 is a free space of height at least 1/2, since
we moved T up by 1/3 and r1 down by at least 1/6. The free space has also height at
least 1 − h1, since there is no item left above r1 up to height 1. Hence, in total, this
leaves us a free space of width w1 ≥ (4c1 + 1)ε and height h. Denote this area by
X = [x, x′]× [h1, h1 + h] with x = x1 and x′ = x1 + w1.

Move r1 to the right by at most c1ε until it touches the first rectangle in R, i.e., place
r1 at position (1 − w(R) − w1, 0). This reduces the width of the free area on top of r1

to X ′ = [x + c1ε, x
′]× [h1, h1 + h]. Note, the width of X ′ is still at least (3c1 + 1)ε.

In the next step we reorganize the packing of C1. Recall, that the rectangles in C1 are
placed bottom-aligned in that container. Let C ′

1 be the rectangles in C1 of height larger
than h. By removing C′

1, we can resize the height of C1 down to h. The resized container
C1 and the container CM have both height h and total width at most (3c1 + 1)ε. Place
them on top of r1 in the area X ′.

Then place the rectangles in C′
1 into the free slot on the left side of r1. They fit there,

since in any optimal packing all rectangles of height greater than h in the instance and
r1 have to be placed next to each other (all rectangles of height greater than h have to
intersect the horizontal line at height y = 1/2 and none of them fits above r1). Finally,
pack C2 above the entire packing at height 5/3. �	

5 Overview of the Cases

In this section we prove that our algorithm (stated on page 479) indeed covers all the
cases. Recall that ε < 1/(28 · 151) = 1/4228. Suppose

h(W1−130ε) < 1/3 and (1)

w(H2/3) < 27/28. (2)

Consider the intervals I� = [0, x′
� + ε], IM = [1/2 − ε, 1/2 + ε] and Ir = [xr −

ε, 1], where x′
� and xr refer to the items defined in line 6 of the algorithm. From the

inapplicability of Lemma 1 on items r� and rr follows that the intervals I� and Ir are
almost occupied with 2/3-high items. To be more precise we have w(AI(0, x′

�; 0, 1) ∩
H2/3) ≥ x′

� − ε and w(AI(xr, 1; 0, 1) ∩ H2/3) ≥ 1 − xr − ε. Furthermore, the x-
coordinates of the sides of all 1/3-high items are in I�, IM or Ir , since otherwise we



A (5/3 + ε)-Approximation for Strip Packing 485

could apply Lemma 1 on this rectangle. To put it in another way the rectangles in H1/3

are either completely inside one of these intervals or span across one interval to another.
If the algorithm reaches line 6 it is not possible that a 2/3-high item r1 spans from I�

to Ir, as otherwise we have w(H2/3) ≥ w(AI(0, x′
�; 0, 1)∩H2/3)+w(AI(xr, 1; 0, 1)∩

H2/3) + w1 ≥ x′
� − ε + 1− xr − ε + xr − x′

� − 2ε ≥ 1− 4ε > 27/28 for ε < 1/112.
The same holds if there were two 2/3-high rectangles r1, r2, that span from I� to IM
and IM to Ir , respectively (w(H2/3) ≥ w(AI(0, x′

�; 0, 1)∩H2/3)+w(AI(xr, 1; 0, 1)∩
H2/3) + w1 + w2 ≥ x′

� − ε + 1 − xr − ε + xr − x′
� − 4ε ≥ 1 − 6ε > 27/28 for

ε < 1/168).
If there is a 2/3-high item r that intersects with x = x′

� + ε, i.e., r spans from I�
to IM , then we redefine r� as the rightmost 2/3-high item in IM , or r� = r if there
is no 2/3-high item completely in IM . On the other hand, if there is a rectangle r that
intersects with x = xr − ε, i.e., r spans from IM to Ir , then we redefine rr as the
leftmost 2/3-high item completely in IM , or rr = r if no 2/3-high item is completely
in IM .

P now (after line 6 of the algorithm) has the following properties.

– The areas to the left of r� and to the right of rr are almost completely covered by
2/3-high items, i.e., w(AI(0, x′

�; 0, 1) ∩H2/3) > x′
� − 4ε and w(AI(xr, 1; 0, 1) ∩

H2/3) > 1− xr − 4ε.
– The x-coordinates of the sides of all 1/3-high items are in I�, IM or Ir.
– We have xr−x′

� > 143ε, since otherwise w(H2/3) ≥ w(AI(0, x′
�; 0, 1)∩H2/3)+

w(AI(xr , 1; 0, 1) ∩H2/3) ≥ x′
� − 4ε + 1 − xr − 4ε ≥ 1 − 151ε ≥ 27/28 for an

ε < 1/(28 · 151).

The first property follows from the inapplicability of Lemma 1 and the observation that
only uncovered area of total width 3ε in [x′

�, x
′
� + ε] (for the now outdated value of x′

�)
and [1/2− ε, 1/2 + ε] can be added if we redefine r� and/or rr .

The specific method that we apply in the next step depends on the existence of 1/3-
high items that span across the intervals I�, IM and Ir . See Figure 2 for a schematic
illustration of the following four cases (by the considerations above, all 1/3-high items
that span across the intervals have height at most 2/3).

– A 1/3-high item reaches close to r� and rr—see Figure 2(a).
In this case we assume that there is a 1/3-high item r1 that intersects with x =
x′
� + ε and with x = xr − ε, i.e., that spans from I� to Ir. By Inequality (1) we

have w1 ≤ 1 − 130ε as h1 > 1/3. Moreover, we have w1 ≥ xr − ε − x′
� − ε ≥

141ε (since xr − x′
� > 143ε). Thus if y1 ≥ 1/3 or y′

1 ≤ 2/3 we can apply the
methods of Lemma 2. Otherwise, we can apply Lemma 3 with c1 = 10 since
w1 ≥ xr − ε − x′

� − ε ≥ 141ε > (4c1 + 1)ε (since xr − x′
� > 143ε) and

w(H2/3) ≥ w(AI(0, x′
�; 0, 1) ∩H2/3) + w(AI(xr, 1; 0, 1) ∩H2/3) ≥ x′

� − 4ε +
1− xr − 4ε ≥ 1− w1 − 10ε = 1− w1 − c1ε.

For space reasons we could not present the methods needed to solve the other cases.
So we only state them here and refer to the full version of this paper for the required
methods and for the details of the following remaining cases.



486 R. Harren et al.

– Two 1/3-high items lie between r� and rr—see Figure 2(b).
– A 1/3-high item reaches from the middle close to rr but no 1/3-high item reaches

from r� to the middle (or vice versa)—see Figure 2(c).
– No 1/3-high items span across the intervals—see Figure 2(d).

These four cases cover all possibilities and therefore our algorithm always outputs
a packing into a strip of height at most 5/3 + 260ε/3. Thus by scaling the solution
we get an approximation ratio for the overall algorithm of 5/3 + 263ε/3. By scaling ε
appropriately we proved Theorem 1. The running time of the algorithm is O(TPTAS +
(n log2 n)/ log log n), where TPTAS is the running time of the PTAS from [3].

References

1. Baker, B.S., Brown, D.J., Katseff, H.P.: A 5/4 algorithm for two-dimensional packing. Jour-
nal of Algorithms 2(4), 348–368 (1981)

2. Baker, B.S., Coffman Jr., E.G., Rivest, R.L.: Orthogonal packings in two dimensions. SIAM
Journal on Computing 9(4), 846–855 (1980)

3. Bansal, N., Caprara, A., Jansen, K., Prädel, L., Sviridenko, M.: A structural lemma in 2-
dimensional packing, and its implications on approximability. In: ISAAC: Proc. 20th Inter-
national Symposium on Algorithms and Computation, pp. 77–86 (2009)

4. Bansal, N., Caprara, A., Sviridenko, M.: A new approximation method for set covering prob-
lems, with applications to multidimensional bin packing. SIAM Journal on Computing 39(4),
1256–1278 (2009)

5. Bansal, N., Correa, J.R., Kenyon, C., Sviridenko, M.: Bin packing in multiple dimen-
sions: Inapproximability results and approximation schemes. Mathematics on Operation Re-
search 31(1), 31–49 (2006)

6. Coffman Jr., E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level-
oriented two-dimensional packing algorithms. SIAM Journal on Computing 9(4), 808–826
(1980)

7. Golan, I.: Performance bounds for orthogonal oriented two-dimensional packing algorithms.
SIAM Journal on Computing 10(3), 571–582 (1981)

8. Harren, R., Jansen, K., Prädel, L., van Stee, R.: A (5/3 + ε)-approximation for strip pack-
ing. Technical Report 1105. University of Kiel (2011), http://www.informatik.
uni-kiel.de/en/ifi/research/technical-reports/

9. Harren, R., van Stee, R.: Improved absolute approximation ratios for two-dimensional
packing problems. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX 2009 and
RANDOM 2009. LNCS, vol. 5687, pp. 177–189. Springer, Heidelberg (2009)

10. Jansen, K., Prädel, L., Schwarz, U.M.: Two for one: Tight approximation of 2d bin packing.
In: WADS: Proc. Workshop on Algorithms and Data Structures, pp. 399–410 (2009)

11. Jansen, K., Solis-Oba, R.: Rectangle packing with one-dimensional resource augmentation.
Discrete Optimization 6(3), 310–323 (2009)

12. Jansen, K., Thöle, R.: Approximation algorithms for scheduling parallel jobs: Breaking the
approximation ratio of 2. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 234–245.
Springer, Heidelberg (2008)

13. Jansen, K., Zhang, G.: Maximizing the total profit of rectangles packed into a rectangle.
Algorithmica 47(3), 323–342 (2007)

14. Kenyon, C., Rémila, E.: A near optimal solution to a two-dimensional cutting stock problem.
Mathematics of Operations Research 25(4), 645–656 (2000)



A (5/3 + ε)-Approximation for Strip Packing 487

15. Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: van Leeuwen,
J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg (1994)

16. Sleator, D.D.: A 2.5 times optimal algorithm for packing in two dimensions. Information
Processing Letters 10(1), 37–40 (1980)

17. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM Journal
on Computing 26(2), 401–409 (1997)



Reversing Longest Previous Factor Tables is

Hard�

Jing He, Hongyu Liang, and Guang Yang

IInstitute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, China

{he-j08,lianghy08}@mails.tsinghua.edu.cn, 2006yangguang@gmail.com

Abstract. The Longest Previous Factor (LPF) table of a string s of
length n is a table of size n whose ith element indicates the length of
the longest substring of s starting from position i that has appeared
previously in s. LPF tables facilitate the computing of the Lempel-Ziv
factorization of strings [21,22] which plays an important role in text com-
pression. An open question from Clément, Crochemore and Rindone [4]
asked whether the following problem (which we call the reverse LPF
problem) can be solved efficiently: Given a table W , decide whether it is
the LPF table of some string, and find such a string if so.

In this paper, we address this open question by proving that the re-
verse LPF problem is NP -hard. Thus, there is no polynomial time algo-
rithm for solving it unless P = NP . Complementing with this general
hardness result, we also design a linear-time online algorithm for the
reverse LPF problem over input tables whose elements are all 0 or 1.

1 Introduction

The concept of Longest Previous Factor tables is introduced by Crochemore
and Ilie [7]. Let s be a string of length n. The Longest Previous Factor (LPF)
table of s, denoted by LPFs, is a table of length n defined as follows: For all
1 ≤ i ≤ n, the i-th element of LPFs (denoted as LPFs[i]) is the length of the
longest substring of s beginning at position i that appears previously in s. More
formally, we have

LPFs[i] = max{k | ∃1 ≤ j < i, s[i, i + k − 1] = s[j, j + k − 1]}, (1)

where s[i, j] denotes the substring of s starting from position i and ending at
position j (and it means the empty string if i > j).

Using LPF tables one can easily compute the Lempel-Ziv factorization of a
string [21,22], which is of great importance in lossless data compression and
dictionary compression methods. Other applications of LPF tables include de-
tecting all runs [17], computing leftmost maximal periodicities [18] and testing
square freeness of a string [5].
� This work was supported in part by the National Basic Research Program of China

Grant 2007CB807900, 2007CB807901, and the National Natural Science Foundation
of China Grant 61033001, 61061130540, 61073174.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 488–499, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Reversing Longest Previous Factor Tables is Hard 489

Various types of table-like data structures are very useful in designing algo-
rithms on strings, trees or sequences. The Border table is an essential part of
the famous KMP algorithm for string-matching [16]. The Suffix table plays an
important role in several string algorithms, including Boyer-Moore algorithm [3],
Apostolico-Giancarlo algorithm [1,9] and Gusfield’s algorithm [14]. The Prefix
table, a dual notion of the Suffix table, also has many applications [6]. All these
tables are computable in linear time [16,3,6]. Like others, the LPF table of a
given string of length n can be computed in time O(n) independent of the al-
phabet size. Crochemore and Ilie [7] gave two simple algorithms for computing
LPF tables using the Suffix Array [19] and the Longest Common Prefix table.

We study in this paper the reverse engineering problem on Longest Previous
Factor tables. The reverse LPF problem is defined as: Given an integer table W ,
test whether W is the LPF table of some string s, and return such a string if
so. Clément, Crochemore and Rindone [4] raised the open question that whether
the reverse LPF problem can be solved efficiently. We give a negative answer
to this question (with the belief of P �= NP ), by proving that the reverse LPF
problem is actually NP -hard. Our proof is by a reduction from the classical
NP -complete problem 3-SAT. Since the reduction itself is quite complicated, we
only show some intuitive ideas in this extended abstract. The technical details
will appear in the full version of this paper.

Our result actually exhibits a natural widely-used string-related data struc-
ture for which the reverse problem cannot be solved efficiently. Previously this
type of reverse problems have been considered by many authors, and they al-
most all proposed polynomial-time algorithms, or even linear-time algorithms,
for the corresponding problems. Franek et. al. [11] and Duval et. al. [10] both
gave a linear-time verification of Border tables, for unbounded alphabets and
bounded alphabets respectively. Clément, Crochemore and Rindone [4] provided
a linear-time algorithm for characterizing Prefix tables. Gawrychowski, Jeż and
Jeż [13] proposed a linear-time algorithm for checking whether a given array
is the failure function of the Knuth-Morris-Pratt algorithm (see [16]) for some
string. Linear-time algorithms for reversing Suffix tables have been proposed by
Bannai et al. [2] and Franek and Smyth [12]. The Parameterized Border tables
are considered by I et al. [15] and an O(n1.5) time algorithm is given. Crochemore
et al. studied minimal- and maximal- cover arrays [8] and designed linear-time
algorithms for reversing both arrays. To our knowledge, the only known hard
reverse problem prior to ours is that of inferring a string from the set of its runs,
due to Matsubara, Ishino and Shinohara [20].

Complementing with the intractability result, we also find a class of non-
trivial integer tables, namely the tables whose elements are all 0 or 1, on which
the reverse LPF problem can be solved in linear time. Our algorithm runs online;
that is, assuming that the elements of the input table is fed to the algorithm
one by one, our algorithm will maintain a string which is an LPF-string of the
current input table, or a special signal indicating that such string does not exist.
We also give a simple yet complete characterization of 0-1 LPF tables.



490 J. He, H. Liang, and G. Yang

2 Preliminaries

2.1 Notations and Definitions

A string w with alphabet Σ is a sequence (w[1], w[2], · · · , w[n]) with w[i] ∈ Σ
for all 1 ≤ i ≤ n. Call n the length of w, denoted as |w| = n. We say w[i] is the
i-th element of w, or, w[i] is at position i in w. Let w1w2 be the concatenation of
w1 and w2. Thus, we can write (w[1], w[2], . . . , w[n]) = w[1]w[2] · · ·w[n]. Denote
wk = ww . . . w︸ ︷︷ ︸

k copies of w

for k ∈ N. A string of the form ck, where c is a single character,

is called a unary string of c, or simply a unary string. Given a string w, let
w[i, j] = w[i]w[i+1] · · ·w[j] denote the substring (or alternatively called factor)
of w starting from position i to j. If w′ is a factor of w, we say that w′ appears in
w. If w′ starts from position i′ < i, we say that w′ appears in w before position
i. We also say w[i, j] appears before w[i′, j′] if i < i′. If uv is a factor of w, we
call u a length-|u| predecessor of v in w, and call v a length-|v| successor of u in
w. A length-1 predecessor (resp. successor) is simply called a predecessor (resp.
successor).

A string W is called an integer table, or simply a table, if its alphabet is a
subset of the set of non-negative integers, i.e. Σ(W ) ⊆ N. An integer table W is
called LPF-reversible if there exists a string w satisfying LPFw = W , and such
w is called an LPF-string of W .

2.2 Simple Properties of LPF Tables

Let w be a string of length n. Trivially LPFw[1] = 0. It is also clear that
LPFw[i] = 0 if and only if w[i] is a new character appeared in w (that is,
w[i] /∈ {w[j] | 1 ≤ j < i}), and LPFw[i] ≤ 1 (for i < n) if and only if the length-
2 factor w[i, i + 1] does not appear in w before position i. Furthermore, it holds
that LPFw[i] ≤ n− i + 1 and LPFw[i] ≥ LPFw[i− 1]− 1 (we let LPFw[0] = 0).
Other important observations include:

– LPFw[i] ≤ 1, then LPFw[1, i] = LPFw[1,i];
– If LPFw[i] > 1, then for every 1 ≤ j ≤ i, LPFw[1,i][j] = min(LPFw[j], i −

j + 1).

This statement enables us to “extract” a prefix from the whole table, which is
very useful in our construction. The proof is omitted due to lack of space.

3 Reduction from 3-SAT

In this section we demonstrate the main theorem of this paper.

Theorem 1. The problem of deciding whether a given integer table is LPF-
reversible is NP -complete.



Reversing Longest Previous Factor Tables is Hard 491

This problem is the decision version of the reverse LPF problem, and is in NP
since we can verify the validity of a witness (an LPF-string of the given table) in
linear time [7]. Thus we only need to present a polynomial-time reduction from
an NP -complete problem to it. We choose the classical problem 3-SAT.

Let F be a 3-CNF formula with variable set {Xi | 1 ≤ i ≤ n} and clause set
{Cj | 1 ≤ j ≤ m}. W.l.o.g. we assume n ≥ 3 and m ≥ 3. We wish to construct
an integer table W such that W is LPF-reversible if and only if F is satisfiable.
Our construction of W basically consists of three consecutive sections:

– Variable Section. In this part we add segments corresponding to the vari-
ables.

– Assignment Section. This part contains gadgets for encoding assignments
of the variables.

– Checking Section. This part is used for checking whether the correspond-
ing assignment satisfies the formula F .

We will carefully design the three sections to ensure that any LPF-string of W
corresponds to a satisfying assignment for F , and vice versa.

3.1 Variable Section

In the variable section, we aim to construct 2n + 2 characteristic segments for
the following 2n+2 literals and Boolean values: {Xi | 1 ≤ i ≤ n}∪{Xi | 1 ≤ i ≤
n}∪{T, F}. For the simplicity of expressions, we denote Xn+i = Xi, X2n+1 = T
and X2n+2 = F , and temporarily call all of them variables (instead of literals
and Boolean values).

Since LPF tables contain only information about lengths of factors, a natural
approach is to use different lengths to distinguish between variables. Our target
is to use long unary substrings, of distinct characters and lengths, to encode
different variables. Since what we are going to construct is the LPF table, it
must contain some special structure that can “force” its LPF-string to contain
long unary substrings.

To achieve this, we plant some highly overlapping structures in the LPF table.
As an example, consider what happens if the LPF table contains three consec-
utive entries 100, 101, 102. From the definition, these numbers mean the length
of the longest previous factors for these three positions. But we can in fact learn
more. We know that the three substrings, starting from these three positions
with length 100, 101, 102 respectively, have a common substring r of length 98
(that starts with the position of entry 102). This tells us that three copies of
r have appeared before them. Moreover, these copies must start from distinct
position. To see this, w.l.o.g. assume the two copies of r corresponding to 100
and 101 coincide with each other. Then by the definition of LPF tables, there
exists a previous factor of length 102 for the entry 100, a contradiction! Thus,
we have three copies of the same long string. In order to get our desired unary
substring, it suffices to guarantee the existence of two copies of r such that their
starting positions only differ by a small distance.



492 J. He, H. Liang, and G. Yang

Now comes the specific constructions. We choose 2n+2 odd integers {xi | 1 ≤
i ≤ 2n + 2} as follows:

(∀1 ≤ i ≤ 2n) xi = 8n + (6i− 2)m + 6i2 − 6i− 9; (2)
x2n+1 = 2(24n2 + 12mn + 34n + 8m− 9) + 1; (3)
x2n+2 = 2(24n2 + 12mn + 58n + 14m + 3) + 1. (4)

We call xi the characteristic length of variable Xi. Their values given above
are carefully chosen so that they have a “safe-but-not-too-long” distance from
each other. Now we formally define WV S, the variable section of W . It comprises
2n + 2 substrings each of which encodes one of the variables.

Definition 1. For every 1 ≤ i ≤ 2n + 2, let

W
(i)
V S := (0, 0, xi−1, xi−2, · · · , 1, 112i−7, 0, xi, xi+1, xi+12i−5, xi+12i−6, · · · , 1, 16i−1).

(5)

(Recall that 1k means a unary string of 1 of length k.)
Define the variable section WV S as:

WV S := (0, 1, W
(1)
V S , W

(2)
V S , · · · , W

(2n+2)
V S ).

The next lemma asserts that any LPF-string of WV S has a “fixed” structure.

Lemma 1. WV S is LPF-reversible. Moreover, if wV S is its LPF-string, then:

wV S = (a, a, w
(1)
V S , w

(2)
V S , · · · , w

(2n+2)
V S ),

where, for every 1 ≤ i ≤ 2n + 2,

w
(i)
V S = (bi, cxi

i , ui, di, cxi+2
i , ui, di, ci, vi),

(w(i)
V S corresponds to the factor W

(i)
V S), such that:

(a) {a} ∪ {bj, cj , dj | 1 ≤ j ≤ 2n + 2} is a set of 6n + 7 distinct characters;
(b) ui and vi are strings that end up with the character “a” and do not contain

new characters. Moreover, all length-2 factors of ui are exactly those length-2
strings (with already appeared characters) that do not appear in WV S before
(the first occurrence of) ui; similarly, all length-2 factors of vi consists of
precisely those length-2 strings (with old characters) that do not appear in
WV S before vi.

The rigorous proof is omitted from this short version, and here we just give
some intuitions. The crux of the proof is to analyze, as stated before the explicit
construction, the common substring r of length xi − 2 resulted from the highly
overlapping structures beginning with (xi, xi +1, xi + 12i− 5). We wish to force
the LPF-string to contain long unary substrings (cxi

i and cxi+2
i in w

(i)
V S , defined

in Lemma 1), which will be regarded as the “encoding” of the corresponding
variable. We hope to prove that there are two copies of r whose starting positions



Reversing Longest Previous Factor Tables is Hard 493

differ only by 1. The choice of {xi} is to ensure that xi+1 is large enough so that
such “long repeated pattern” cannot appear in the previous parts w

(j)
V S , j < i.

Another gadget is simply the 0 before (xi, xi + 1, xi + 12i − 5). Since this 0
corresponds to a new character di, it ensures that, if all three copies of r start
before di, then they also end before di. To see this, just notice that if one of
them contains di, so do the other two; but then they must locate at the same
position, contradicting the previous analysis. Furthermore, they must end before
the 112i−7 part, since an entry “1” in the LPF table means that the length-2
substring starting from it has not appeared before, but there are three copies of
r at different positions! Therefore, if all three copies of r start before di, then
they are restricted in a small range (0, 0, xi− 1, xi− 2, . . . , 1), which will lead to
contradictions by simple arguments. Thus, at least one of the three r’s appear
after di. However, since they are “previous factors” of the substring starting from
the position of xi + 12i − 5, there are only two possible starting positions for
them. Thus, a case-by-case investigation will help us find out the only possibility
of their positions, which turns out to be exactly what we want. Finally, the 16i−1

segment at the end of w
(i)
V S serves as a “clean-up” procedure, which ensures that

all the results for w
(i)
V S similarly apply to w

(i+1)
V S , thus leading to an inductive

proof of the lemma.
It should be noticed that this “proof pattern”, of utilizing highly overlapping

structures and carefully designed gadgets (for example, using new characters as
“separators” that cannot be contained in the considered substring) to force the
LPF-string to have a “good” form, is the most significant idea of the whole proof.

We end up this section by giving a formal definition of the characteristic
segment of a variable, which encodes the corresponding variable as a special
factor in the LPF-string. This concept will frequently appear in the following
sections.

Definition 2. A factor of W ’s LPF-string is called a characteristic segment
of Xi, if it has the form (α, cxi+δ

i , ui[1]) for some δ ≥ 0, where α is a new
character that has not appeared before. (Recall that xi is the characteristic length
of Xi defined before, and ui and ci are defined in Lemma 1.)

3.2 Assignment Section

The goal of the assignment section is to associate each variable Xi, 1 ≤ i ≤ 2n,
with a Boolean value T or F . In this section, we provisionally “forget” the
relation between Xi and Xn+i(= Xi), and just regard them as independent
variables. The legality of the assignment will be checked in the next part, namely
the checking section. Since “assignment” is the theme of this section, the two
Boolean values T and F will be highlighted. Thus, for the sake of clearness, we
write T and F as the subscripts corresponding to the two values, instead of using
2n + 1 and 2n + 2 as before. More formally, for I ∈ {x, b, c, d, u}, let IT and IF
denote I2n+1 and I2n+2, respectively. For example, xT = x2n+1 and dF = d2n+2.
We also write T = cT (= c2n+1) and F = cF (= c2n+2) for convenience, i.e., we



494 J. He, H. Liang, and G. Yang

do not distinguish between the two Boolean values and the characters associated
with them. (Recall that ci is the character used for encoding Xi.)

For every variable Xi, we first construct its characteristic segment, and then
append to it a “value segment” of length yi, with the hope that the corresponding
part of the LPF-string will be forced to have the form tyi

i where ti ∈ {T, F}; ti is
then interpreted as the assigned Boolean value to Xi. Once we want to inquire
for the value of Xi, we construct a special gadget to extract ti. Due to some
technique issues, the lengths of the value segments {yi | 1 ≤ i ≤ 2n} must be
carefully selected. We choose them as:

(∀1 ≤ i ≤ 2n) yi = 24n2 + 12mn + 28n + 8m− 14 + 3i. (6)

We need some other definitions to make the statement below clearer. Given
a string w and one of its unary substring s (recall that a unary string is one
that has the form ck), we say u is a non-trivial predecessor (resp. non-trivial
successor) of s in w if u is a predecessor (resp. successor) of the maximal unary
substring of w that contains s as a factor. For example, in the string abcaaaade,
we say c is a non-trivial predecessor of aa, and d is a nontrivial successor of aaa.

We now define the assignment section of W .

Definition 3. For every 1 ≤ i ≤ 2n, let

W
(i)
AS = (0, xi+2, xi+3, xi+3, xi+2, · · · , 1, 0, yi+1, yi+1, yi, yi−1, . . . , 1).

Define the assignment section WAS as

WAS := (W (1)
AS , W

(2)
AS , · · · , W

(2n)
AS ).

Lemma 2. Let WV S and WAS be defined as in Definitions 1 and 3. Then the
string WV SWAS is LPF-reversible. Furthermore, suppose wV SwAS is an LPF-
string of it with |wV S| = |WV S | (and hence |wAS | = |WAS |). Then, wV S has the
same form as stated in Lemma 1, and

wAS = (w(1)
AS , w

(2)
AS , · · · , w

(2n)
AS ),

where for every 1 ≤ i ≤ 2n,

w
(i)
AS = (ei, cxi+4

i , ui[1], fi, ri, tyi

i , si),

(w(i)
AS corresponds to the factor W

(i)
AS), such that:

(a) ei, fi are new characters never appeared before;
(b) ti ∈ {T, F};
(c) ri and si are respectively non-trivial predecessor and successor of tyi

i in wV S.

The key point of the proof of Lemma 2 is to show that the substring (0, xi +
2, xi + 3, xi + 3, xi + 2, · · · , 1, 0) of W

(i)
AS must correspond to eic

xi+4
i ui[1] (a

characteristic segment of Xi) in its LPF-string. This special structure enables



Reversing Longest Previous Factor Tables is Hard 495

us to “extract” ci, the encoding of the variable Xi, which is very useful since we
need to deal with the variables everywhere in the whole reduction. The proof is
omitted from this short version.

Up till now, we have successfully associated each variable Xi with a Boolean
value ti by appending a gadget string, which is forced to have the form tyi

i , to
the characteristic segment of Xi. However, it is possible that both Xi and Xi

are assigned with the same value, resulting in an infeasible assignment. We will
deal with this issue in the checking section.

3.3 Checking Section

The preceding parts of our construction involved no logical connections be-
tween variables. The assignment section can encode any possible assignment
to {Xi | 1 ≤ i ≤ 2n}, including those invalid ones (i.e. Xi = Xn+i for some i).
Moreover, WV SWAS is always LPF-reversible regardless of whether F is satis-
fiable or not. The checking section is designed to handle these problems. Recall
that {ti | 1 ≤ i ≤ 2n} is an assignment to {Xi | 1 ≤ i ≤ 2n} induced by the
assignment section WAS . The checking section WCS consists of 3 consecutive
substrings WCS1, WCS2, WCS3. We use WCS1 (resp. WCS2) to guarantee that
W is LPF-reversible implies at least one of ti and tn+i is F (resp. T ). Hence,
the first two parts enforce the assignment to be valid. The last part WCS3 is
to ensure that for every clause Cj , at least one of its literals is assigned with
T , if W is LPF-reversible. On the other hand, it is fairly easy to prove that the
satisfiability of F implies the LPF-reversibility of W (just follow the LPF-strings
defined in the lemmas). Thus, combining three parts together assures us that W
is LPF-reversible if and only if F is satisfiable.

In fact, the constructions of the three parts have similar structures; their
tasks are all to check if there is a certain value (T or F ) among the assigned
values of several (in fact 2 or 3) variables. Therefore, in this extended abstract
we only provide the definition and results of WCS1. The constructions of WCS2

and WCS3, as well as the rigorous proofs, will appear in the full paper.
We shall briefly explain the (somewhat seemingly unnatural) technique used

to guarantee at least one pre-specified value (say T ) among some variables. We
construct some gadgets in such a way that each of them implies the existence
of a distinct, previously appeared character-pair (p, q), where p and q are, re-
spectively, non-trivial predecessor and successor of a long unary string of T or
F (that is, T z or F z for some large integer z). Thus, some number of gadgets
imply the same number of such non-trivial (predecessor, successor)-pairs of T z

or F z. We can actually calculate the number of such pairs in our construction
till now. We then create some new successors by appending new characters to
long unary strings of the values that we need to check; note that we don’t know
whether the values are T or F , but we want at least one of them to be T . By
some careful design, we make sure that there are enough number of such pairs
if and only if at least one of the new successors is a successor of T z; in other
words, at least one of the values we consider is T . Some further discussions are
given after the statement of Lemma 3.



496 J. He, H. Liang, and G. Yang

We now formally define the first part of our checking section.

Definition 4. For each i ∈ {1, 2, . . . , n}, define

W
(i)
CS1 := (0, xi + 4, xi + 5, xi + 8 + zi, xi + 7 + zi, . . . , 1, 0,

0, xn+i + 4, xn+i + 5, xn+i + 8 + zi, xn+i + 7 + zi, . . . , 1, 0,

(0, zi + 1, zi + 1, zi, · · · , 1)10).

Define the first part of the checking section as:

WCS1 := (0, 0, xF + 2, xF + 3, xF + 3, xF + 2, . . . , 1,

W
(1)
CS1, W

(2)
CS1, · · · , W

(n)
CS1).

The substring W
(i)
CS is also called a block, which is the minimum unit of a

complete verification of the assignment for one variable. W
(i)
CS is to check that

at least one of Xi and Xn+i(= Xi) is assigned with F .
To avoid the circumstances where successors introduced by former blocks

interfere with the following blocks, we need to choose {zi | 1 ≤ i ≤ 2n+m} with
enough distances as follows: (Here {zi | n + 1 ≤ i ≤ 2n} is used for the second
part of checking section, and {zi | 2n + 1 ≤ i ≤ 2n + m} is used for the third
one; recall that the 3-CNF formula F has m clauses.)

(∀1 ≤ i ≤ 2n + m) zi = 24n2 + 12mn + 20n + 4m− 13 + 4i.

Lemma 3. If WV SWASWCS1 is LPF-reversible, then, for any LPF-string w of
it, w = wV SwASwCS1 holds, where wV S and wAS are defined as in Lemmas 1
and 2, and wCS1 has the following form:

wCS1 = (gF , rF , F xF +4, uF [1], w(1)
CS1, w

(2)
CS1, . . . , w

(n)
CS1),

where, for every 1 ≤ i ≤ n,

w
(i)
CS1 = (gi, cxi+6

i , ui[1], fi, ri, tzi+1
i , hi,

gn+i, c
xn+i+6
n+i , un+i[1], fn+i, rn+i, tzi+1

n+i , hn+i,

gi,1, ri,1, tzi

i,1, si,1,

...
gi,10, ri,10, tzi

i,10, si,10),

(w(i)
CS1 corresponds to the factor W

(i)
CS1), such that:

(a) {gi, hi | 1 ≤ i ≤ 2n} ∪ {gi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 10} ∪ {gF , rF } is a set of
distinct new characters;

(b) ∀1 ≤ i ≤ n, ∀1 ≤ j ≤ 10, ti,j ∈ {T, F} and ri,j , si,j are previously appeared
non-trivial predecessor and successor of tzi

i,j ;
(c) ∀1 ≤ i ≤ n, at least one of ti and tn+i must be F .



Reversing Longest Previous Factor Tables is Hard 497

Conversely, if there exists a string w = wV SwASwCS1 of the above form, then
WV SWASWCS1 is LPF-reversible and w is its LPF-string.

An important step in proving Lemma 3 is to show that any substring (0, xi +
4, xi + 5, xi + 8 + zi, xi + 7 + zi, . . . , 1, 0) of W

(i)
CS1 must correspond to

(gi, cxi+6
i , ui[1], fi, ri, tzi+1

i , hi) in its LPF-string. This allows us to extract ci as
well as ti, the assigned value of the variable Xi, which is important for later use.

We now give some intuitive ideas of how such scheme works. As claimed before,
the values of Xi and Xi (that is, ti and tn+i) can be extracted out, and hi, hn+i

correspond to non-trivial successors of tzi

i and tzi

n+i, respectively. With similar
analysis to the proof of Lemma 2, every component (0, zi+1, zi+1, zi, · · · , 1)
in W

(i)
CS1 corresponds to gi,jri,jt

zi

i,jsi,j in the LPF-string. Thus, (ri,j , si,j) is a
non-trivial (predecessor, successor)-pair of T zi or F zi that appeared before. We
can also argue that these 10 pairs should be pairwise different, which implies
the existence of 10 different non-trivial (predecessor, successor)-pairs of T zi or
F zi . We calculate the number of such predecessors and successors that have
appeared so far: T zi has bT , dT as its predecessors, and uT [1] as a successor; F zi

has predecessors bF , dF , rF and a successor uF [1]; also, there are two successors
hi and hn+i (of tzi

i and tzi
n+i, respectively) yet to be determined whose successor

they actually are. On the one hand, if both hi, hn+i are successors of T zi , there
are 2 × 3 + 3 × 1 = 9 (predecessor, successor)-pairs in all, contradicting the
requirement of 10 pairs. On the other hand, it is easy to verify the existence of
10 or 11 such pairs when at least one of hi and hn+i is a successor of F zi . Thus,
when WV SWASWCS1 is LPF-reversible, at least one of hi and hn+i should be
a successor of F zi , implying that at least one of ti and tn+i should be F . The
converse direction is only a matter of tedious verification.

Applying similar techniques to construct WCS2 and WCS3 completes our re-
duction. The details of the constructions of WCS2 and WCS3 are omitted due
to lack of space, and will appear in the full paper. The final (minor) step for
proving Theorem 1 is to show that the reduction runs in polynomial time, which
directly follows from our construction. We can also strengthen Theorem 1 as
follows by a padding argument.

Theorem 2. For every constant ε > 0, it is NP -complete to decide whether a
table of length n with at most nε zeros is LPF-reversible.

Note that we need an unbounded size alphabet in our hardness proof. It is
interesting to see what happens if the alphabet size is bounded. Formally, we
propose the following open question.

Question 1. Is it NP -complete to decide whether a table that contains at most
k zeros is LPF -reversible, where k is a fixed integer?

4 LPF Tables with 0-1 Entries

An integer table whose elements are all 0 or 1 is called a 0-1 table. In this
section, we prove that the reverse LPF problem is solvable in linear time over



498 J. He, H. Liang, and G. Yang

0-1 tables. Moreover, we give a complete characterization of LPF-reversible 0-1
tables (Theorem 3). Given a table W and an integer i, define

Num(W, i) := |{j | W [j] = i, 1 ≤ j ≤ |W |}|,

which is the number of elements in W that are equal to i.

Theorem 3. A 0-1 table W of length n is LPF-reversible if and only if

W [1] = 0 and (∀2 ≤ i ≤ n) i ≤ (Num(W [1, i], 0))2 + 1 . (7)

Theorem 4. There is a linear-time online algorithm for the reverse LPF prob-
lem on 0-1 tables.

It is easy to see that Theorem 3 implies the decision part of Theorem 4, since
we can test whether (7) holds or not in linear time simply using two counters.
The construction of an LPF-string in linear time needs more effort.

The “only if” direction of Theorem 3 is easy. Suppose the input 0-1 table W
of length n is LPF-reversible and let w be an LPF-string of W . Since W [i] ≤ 1
for each i, we know from Section 2.2 that for every i ∈ {1, 2, . . . , n − 1}, the
length-2 factor W [i, i + 1] does not appear in t before position i. Thus, w[1, i]
contains i− 1 distinct length-2 factors, whereas the total number of such factors
is (Num(T [1, i], 0))2. We therefore have i − 1 ≤ (Num(W [1, i], 0))2 for each
2 ≤ i ≤ n. Together with the trivial fact that W [1] = 0, the “only if” part of
Theorem 3 follows.

The idea of proving the “if” direction is to show the equivalence between the
LPF-reversibility of W and the existence of a “partial” Eulerian path with some
constraints in a directed graph associated with W . Let ZeroW = {i | W [i] =
0, 1 ≤ i ≤ n} and m = |ZeroW |. Assume ZeroW = {i1, i2, . . . , im} where
1 = i1 < i2 < . . . < im (by Equation (7) we have 1 ∈ ZeroW ). Let G be a
complete directed graph on the vertex set V = {1, 2, . . . , m} with all self-loops
included. A (not necessarily simple) path in G is called a partial Eulerian path
if it traverses each edge at most once. We can prove that the following two
statements are equivalent:

1. W is LPF-reversible.
2. G has a partial Eulerian path P of length n−1 (thus it contains n vertices),

such that for every 1 ≤ j ≤ m, the ij-th vertex on P is j, and it has not
been visited by P before.

The linear time online algorithm for the reverse LPF problem on 0-1 tables
is just based on a linear time algorithm for finding such a partial Eulerian path.
The detailed proofs of Theorems 3 and 4 will appear in the full version of this
paper.

Acknowledgements

We would like to thank Xiaoming Sun for helpful discussions, and the anonymous
referees for their suggestions on improving the presentation of this paper.



Reversing Longest Previous Factor Tables is Hard 499

References

1. Apostolico, A., Giancarlo, R.: The Boyer-Moore-Galil string searching strategies
revisited. SIAM J. Comput. 15(1), 98–105 (1986)

2. Bannai, H., Inenaga, S., Shinohara, A., Takeda, M.: Inferring strings from graphs
and arrays. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp.
208–217. Springer, Heidelberg (2003)

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commin. ACM 20(10),
762–772 (1977)

4. Clément, J., Crochemore, M., Rindone, G.: Reverse engineering prefix tables. In:
STACS 2009, Freiburg, pp. 289–300 (2009)

5. Crochemore, M.: Transducers and repetitions. Theoret. Comput. Sci. 45(1), 63–86
(1986)

6. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on strings. Cambridge Uni-
versity Press, Cambridge (2007)

7. Crochemore, M., Ilie, L.: Computing Longest Previous Factor in linear time and
applications. Inf. Process. Lett. 106(2), 75–80 (2008)

8. Crochemore, M., Iliopoulos, C.S., Pissis, S.P., Tischler, G.: Cover Array string
reconstruction. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
251–259. Springer, Heidelberg (2010)

9. Crochemore, M., Lecroq, T.: Tight bounds on the complexity of the Apostolico-
Giancarlo algorithm. Inf. Process. Lett. 63(4), 195–203 (1997)

10. Duval, J.-P., Lecroq, T., Lefebvre, A.: Efficient validation and construction of bor-
der arrays. In: Proceedings of 11th Mons Days of Theoretical Computer Science,
Rennes, France, pp. 179–189 (2006)

11. Franek, F., Gao, S., Lu, W., Ryan, P.J., Smyth, W.F., Sun, Y., Yang, L.: Veri-
fying a Border array in linear time. J. Combinatorial Math. and Combinatorial
Computing 42, 223–236 (2002)

12. Franek, F., Smyth, W.F.: Reconstructing a Suffix Array. International Journal of
Foundations of Computer Science 17(6), 1281–1295 (2006)

13. Gawrychowski, P., Jeż, A., Jeż, �L.: Validating the Knuth-Morris-Pratt failure
function, fast and online. In: Ablayev, F., Mayr, E.W. (eds.) CSR 2010. LNCS,
vol. 6072, pp. 132–143. Springer, Heidelberg (2010)

14. Gusfield, D.: Algorithms on strings, trees and sequences: computer science and
computational biology. Cambridge University Press, Cambridge (1997)

15. I., T., Inenaga, S., Bannai, H., Takeda, M.: Verifying a Parameterized Border Array
in O(n1.5) time. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
238–250. Springer, Heidelberg (2010)

16. Knuth, D.E., Morris, J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comput. 6(1), 323–350 (1977)

17. Kolpakov, R., Kucherov, G.: Finding maximal repetitions in a word in linear time.
In: FOCS 1999, pp. 596–604. IEEE Computer Society Press, New York (1999)

18. Main, M.G.: Detecting leftmost maximal periodicities. Discrete Applied Math. 25,
145–153 (1989)

19. Manber, U., Myers, G.: Suffix arrays: a new method for on-line search. SIAM J.
Comput. 22(5), 935–948 (1993)

20. Matsubara, W., Ishino, A., Shinohara, A.: Inferring strings from runs. In: Prague
Stringology Conference 2010, pp. 150–160 (2010)

21. Ziv, J., Lempel, A.: A Universal algorithm for sequential data compression. IEEE
Trans. Inform. Theory 23, 337–342 (1977)

22. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inform. Theory 24, 530–536 (1978)



Space Efficient Data Structures for Dynamic

Orthogonal Range Counting�

Meng He and J. Ian Munro

Cheriton School of Computer Science, University of Waterloo, Canada
{mhe,imunro}@uwaterloo.ca

Abstract. We present a linear-space data structure that maintains a
dynamic set of n points with coordinates of real numbers on the plane to
support orthogonal range counting, as well as insertions and deletions, in
O(( lg n

lg lg n
)2) time. This provides faster support for updates than previous

results with the same bounds on space cost and query time. We also
obtain two other new results by considering the same problem for points
on a U × U grid, and by designing the first succinct data structures for
a dynamic integer sequence to support range counting.

1 Introduction

The two-dimensional orthogonal range counting problem is a fundamental
problem in computational geometry. In this problem, we store a set, P , of n
points in a data structure so that given a query rectangle R, the number of points
in P∩R can be computed efficiently. This problem has applications in many areas
of computer science, including databases and computer graphics, and thus has
been studied extensively [4,11,13,12,3]. Among previous previous, Chazelle [4]
designed a linear-space data structure for points with real coordinates to support
orthogonal range counting in O(lg n) time1, while the linear-space data structure
of JáJá et al. [11] provides O( lgn

lg lg n )-time support for integer coordinates.
Researchers have also considered the orthogonal range counting problem in

dynamic settings. The goal is to maintain a dynamic set, P , of n points to
support orthogonal range counting, while allowing points to be inserted into and
deleted from P . Chazelle [4] designed a linear-space data structure that supports
orthogonal range counting, insertions and deletions in O(lg2 n) time. Nekrich [12]
designed another data structure of linear space with improved query time. With
his data structure, a range counting query can be answered in O(( lg n

lg lgn
)2) time,

matching the lower bound proved by Pǎtraşcu [13] under the group model, but
it takes O(lg4+ε n) amortized time to insert or delete a point. Thus in this paper,
we consider the problem of designing a linear-space data structure that matches
Nekrich’s query time while providing faster support for updates.

In addition to considering points on the plane, we also define range counting
over a dynamic sequence S[1..n] of integers from [1..σ]: given a range, [i1..i2],
� This work was supported by NSERC and the Canada Research Chairs program.
1 lgn denotes log2 n.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 500–511, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Space Efficient Data Structures for Dynamic Orthogonal Range Counting 501

of indices and a range, [v1..v2], of values, a range counting query returns the
number of entries of S[i1..i2] that store integers from [v1..v2].2 We are inter-
ested in designing succinct data structures to represent S. Succinct data
structures were first proposed by Jacobson [10] to encode bit vectors, trees and
planar graphs using space close to the information-theoretic lower bound, while
supporting efficient navigation operations in them. As succinct data structures
provide solutions to modern applications that process large data sets, they have
been studied extensively [14,6,5,7,3,8].

1.1 Our Results

Under the word RAM model with word size w = Ω(lg n), we present the following
results:

1. A linear-space data structure that maintains a dynamic set, P , of n points
on the plane to answers an orthogonal range counting query in O(( lgn

lg lg n )2)
worst-case time. A point can be inserted into or deleted from P in O(( lg n

lg lgn
)2)

amortized time. This improves the result of Nekrich [12]. The point coordi-
nates are real numbers, and we only require that any two coordinates can
be compared in constant time.

2. A linear-space data structure that maintains a dynamic set, P , of n points on
a U × U grid to provide O( lg n lgU

(lg lgn)2 ) worst-case time support for orthogonal
range counting, insertions and deletions. Note that for large data sets in
which lg n = Θ(lg U), the query and update times are both O(( lgn

lg lg n )2) in
the worst case.

3. A succinct representation of a dynamic sequence S[1..n] of integers from
[1..σ] in nH0+O(n lg σ lg lg n√

lgn
)+O(w) bits3 to support range counting, insertion

and deletion in O( lg n
lg lgn ( lg σ

lg lgn + 1)) time. When σ = O(polylog(n)), all the
operations can be supported in O( lgn

lg lg n ) time. This is the first dynamic
succinct data structure that supports range counting.

2 Data Structures for Range Sum

In this section, we present two data structures that are used in our solutions
to dynamic orthogonal range counting. Both data structures represent a two-
dimensional array A[1..r, 1..c] of numbers to support range sum queries that
return the sum of the elements in a rectangular subarray of A. More precisely, a
range sum query, range sum(A, i1, j1, i2, j2), evaluates

∑i2
u=i1

∑j2
v=j1

A[u, v], i.e.
the sum of the numbers stored in the subarray A[i1..i2, j1..j2], where 1 ≤ i1 ≤
i2 ≤ r and 1 ≤ j1 ≤ j2 ≤ c.

We define a special form of range sum queries as dominance sum queries.
These return the sum of the elements stored in subarrays of the form A[1..i, 1..j],
2 [i..j] denotes a range of integers, while [i, j], [i, j), etc. denote ranges of real values.
3 H0 denotes the zeroth empirical entropy of S, which is lg σ in the worst case.



502 M. He and J.I. Munro

where 1 ≤ i ≤ r and 1 ≤ j ≤ c. In other words, we define the operator
dominance sum(A, i, j) to be range sum(A, 1, i, 1, j). It is clear that any range
sum query can be answered using at most four dominance sum queries.

Our data structures also support update operations to the array A, namely
the following three operations:

– modify(A, i, j, δ), which sets A[i, j] to A[i, j]+δ (restrictions on δ will apply);
– insert(A, j), which inserts a 0 between A[i, j−1] and A[i, j] for all 1 ≤ i ≤ r,

thus increasing the number of columns of A by one;
– delete(A, j), which deletes A[i, j] for all 1 ≤ i ≤ r, decreasing the number

of columns of A by one, and to perform this operation, A[i, j] = 0 must hold
for all 1 ≤ i ≤ r.

The two data structures presented in this section solve the dynamic range sum
problem under different restrictions on the input data and updates, in order to
achieve desired time and space bounds of our range counting structures.

2.1 Range Sum in a Small Two-Dimensional Array

We now design a data structure for a small two-dimensional array A[1..r, 1..c] to
support range sum. Let n be a positive integer such that w = Ω(lg n), where w is
the word size of the RAM model. We require that rc = O(lgλ n) for any constant
λ ∈ (0, 1), and that each entry of A stores an nonnegative, b-bit integer where
b = O(lg n). This data structure supports modify(A, i, j, δ), where |δ| ≤ lg n,
but it does not support insert or delete.

Our data structure is a generalization of data structure of Raman et al. [14] on
supporting prefix-sum queries on a small one-dimensional array: the dominance
sum query is a two-dimensional version of prefix sum. It is not hard to adapt the
approach of Raman et al. to 2D and represent A in O(lg1+λ n) bits to support
range sum in O(1) worst-case time and modify in O(1) amortized time with
the help of a universal table, but deamortization is interesting and nontrivial.
We first present the following data structure that provides O(1) amortized time
support for queries and updates:

Lemma 1. The array A described above can be represented using O(lg1+λ n)
bits to support range sum in O(1) worst-case time and modify(A, i, j, δ), where
|δ| ≤ lgn, in O(1) amortized time. This data structure requires a precomputed
universal table of size O(nλ

′
) bits for any fixed constant λ′ ∈ (0, 1).

Proof. In addition to storing A, we construct and maintain a two-dimensional
array B[1..r, 1..c], in which B[i, j] stores

∑i
u=1

∑j
v=1 A[u, v], i.e. the result of

dominance sum(A, i, j). We however cannot always keep B up-to-date under up-
dates, so we allow B to get slightly “out of date”. More precisely, B is not
changed each time modify is performed; instead, after every rc modify opera-
tions, we reconstruct B from A to make B up-to-date. Since it takes O(rc) time
to reconstruct B, the amortized cost is O(1) per modify operation.

As mentioned before, to support the range sum operation, it suffices to provide
support for dominance sum. In order to answer dominance sum queries correctly



Space Efficient Data Structures for Dynamic Orthogonal Range Counting 503

using B, we maintain another two-dimensional array C[1..r, 1..c], whose con-
tent is set to all zeros each time we construct B. Otherwise, after an operation
modify(A, i, j, δ) is performed, we set C[i, j]← C[i, j] + δ. Thus we have:

dominance sum(A, i, j) = B[i, j] +
i∑

u=1

j∑

v=1

C[u, v] (1)

To use the above identity to compute dominance sum(A, i, j) in constant time,
it suffices to compute

∑i
u=1

∑j
v=1 C[u, v] in constant time. Since we set C[i, j] to

0 after every rc modify operations and we require |δ| ≤ lg n, we have |C[i, j]| ≤
rc lg n = O(lg1+λ n). Hence each entry of C can be encoded in O(lg lg n) bits.
Thus array C can be encoded in O(lgλ n lg lg n) = o(lg n) bits, which allows us
to build a O(nλ

′
)-bit precomputed table to perform the above computation in

constant time. It is clear that modify can be supported in O(1) amortized time,
and the arrays A, B and C can be encoded in O(lg1+λ n) bits in total. ��

To eliminate amortization, we design the following approach:

1. We construct a new table C′ after rc modify operations have been performed
since the table C was created, i.e. after the values of C have been changed
rc times. Initially, all entries of C′ are zeroes.

2. After we create C′, for the next rc modify operations, if the operation is
modify(A, i, j, δ), we set C′[i, j]← C′[i, j] + δ without changing the content
of C. We use the following identity instead of Identity 1 to answer queries:

dominance sum(A, i, j) = B[i, j] +
i∑

u=1

j∑

v=1

C[u, v] +
i∑

u=1

j∑

v=1

C′[u, v] (2)

3. We also maintain a pointer called refresh pointer that moves from B[1, 1]
to B[r, c] in row-major order. When we create the table C′, the refresh pointer
points to B[1, 1]. After each modify, we move the pointer by one position.
Right before we move the pointer that points to B[i, j], we perform the
following process of refreshing B[i, j]:
(a) Set B[i, j]← B[i, j] + C[i, j];
(b) If i < r, set C[i + 1, j]← C[i + 1, j] + C[i, j];
(c) If j < c, set C[i, j + 1]← C[i, j + 1] + C[i, j];
(d) If i < r and j < c, set C[i + 1, j + 1]← C[i + 1, j + 1]− C[i, j];
(e) Set C[i, j]← 0.

4. After we refresh B[r, c], rc modify operations have been performed since we
created C′. At this time, all the entries of C are zeroes. We then deallocate C,
rename C′ by C. Note that at this time, rc modify operations have already
been performed on the new array C (when it was named C′), so it is time
to go back to step 1, create a new table C′, and repeat this process.

In the above approach, modify clearly takes O(1) worst-case time, and A, B,
C and C′ can be encoded in O(lg1+λ n) bits. To show the correctness of the above



504 M. He and J.I. Munro

process, it is not hard to see that Identity 2 always holds. Finally, we need argue
that the right-hand side of Identity 2 can be evaluated in constant time. The term∑i

u=1

∑j
v=1 C′[u, v] can be evaluated in constant time using the precomputed

universal table. However, it is not clear whether
∑i

u=1

∑j
v=1 C[u, v] can still be

evaluated in constant time using this table: Because of the refresh process, it is
not trivial to show that each entry of C can still be encoded in O(lg lg n) bits.
For this we first present these two easy-to-prove lemmas (we omit their proofs):

Lemma 2. For any integers i ∈ [1, m] and j ∈ [1, d], a refresh process does not
change the value of

∑i
u=1

∑j
v=1 C[u, v] unless this process refreshes B[i, j].

Lemma 3. Let C∗[u, v] be the value of C[u, v] when the table C′ is created. Then
immediately before we refresh B[i, j], the value of C[i, j] is

∑i
u=1

∑j
v=1 C∗[u, v].

We can now show that each entry of C can be encoded in O(lg lg n) bits:

Lemma 4. The absolute value of any entry, C[i, j], of C never exceeds 4rc lgn.

Proof. We prove this lemma for i > 1 and j > 1; the other cases can be handled
similarly. When we create the table C′ and start to refresh the entries of B, rc
modify operations have been performed since C was created (recall that initially
C was named C′). Hence when we start to refresh the entries of B, the absolute
value of C[i, j] is at most rc lg n. When we refresh B[i, j], we set C[i, j] to 0 and
never changes its value till we deallocate C. Before B[i, j] is refreshed, the value
of C[i, j] changes at most three times: (i) when we refresh B[i − 1, j − 1]; (ii)
when we refresh B[i − 1, j]; and (iii) when we refresh B[i, j − 1]. In (i), we set
C[i, j]← C[i, j]−C[i−1, j−1] before we set C[i−1, j−1] to 0. By Lemma 3, the
absolute value of C[i− 1, j− 1] before we set it to 0 is at most rc lg n. Hence the
absolute value of C[i, j] does not exceed 2rc lg n after (i). By similar reasoning,
we can show that the absolute values of C[i, j] do not exceed 3rc lg n and 4rc lg n
after (ii) and (iii), respectively.4 ��

Our result in this section immediately follows from Lemma 4:

Lemma 5. Let n be a positive integer such that w = Ω(lg n), where w is
the word size of the RAM model. A two-dimensional array A[1..r, 1..c] of non-
negative, b-bit integers, where b = O(lg n) and rc = lgλ n for any constant
λ ∈ (0, 1), can be represented using O(lg1+λ n) bits to support range sum and
modify(A, i, j, δ), where |δ| ≤ lgn, in O(1) worst-case time. This data structure
can be constructed in O(rc) time, and it requires a precomputed universal table
of size O(nλ

′
) bits for any fixed constant λ′ ∈ (0, 1).

4 With greater care, we can show that the absolute value of any element of C never
exceeds rc lg n using the identity in Lemma 3, although this would not affect the
time/space bounds in Lemma 5.



Space Efficient Data Structures for Dynamic Orthogonal Range Counting 505

2.2 Range Sum in a Narrow Two-Dimensional Array

Our second data structure for dynamic range sum requires the array A[1..r, 1..c]
to be “narrow”, i.e. r = O(lgγ c) for a fixed constant γ ∈ (0, 1). Dominance
sum queries on this data structure can be viewed as a 2-dimensional versions
of prefix sum queries in the Collections of Searchable Partial Sums (CSPSI)
problem defined by González and Navarro [7]. Our data structure in based on
the solution to the CSPSI problem given by He and Munro [8,9], and the main
change is to use Lemma 5 to encode information encoded as small 2D arrays.
We have the following result:

Lemma 6. Let A[1..r][1..c] be a two-dimensional array of nonnegative integers,
where r = O(lgγ c) for any constant γ ∈ (0, 1), and each integer of A is encoded
in b = O(w) bits, where w = Ω(lg c) is the word size of the RAM model. A can be
represented using O(rcb+w) bits to support range sum, search, modify(C, i, j, δ)
where |δ| ≤ lg c, insert and delete in O( lg c

lg lg c ) time with a O(c lg c) bit buffer.

3 Range Counting in Integer Sequences

A basic building block for many succinct data structures [6,5,7,3,8] is a highly
space-efficient representation of a sequence S[1..n] of integers from [1..σ] to sup-
port the fast evaluation of rank and select5. Under dynamic settings, the fol-
lowing operations are considered:

– access(S, i), which returns S[i];
– rankα(S, i), which returns the number of occurrences of integer α in S[1..i];
– selectα(S, i), which returns the position of the ith occurrence of integer α

in the string S;
– insertα(S, i), which inserts integer α between S[i− 1] and S[i];
– delete(S, i), which deletes S[i] from S.

He and Munro [8] designed a succinct representation of S to support the above
operations in O( lgn

lg lg n
( lg σ
lg lg n

+1)) time. In this section, we extend their results to
support range counting on integer sequences. We are interested in the operation
range count(S, p1, p2, v1, v2), which returns the number of entries in S[p1..p2]
whose values are in the range [v1..v2].

3.1 Sequences of Small Integers

We first consider the case in which σ = O(lgρ n) for any constant ρ ∈ (0, 1).
In our approach, we encode S using a B-tree as in [8]. Each leaf of this B-tree
contains a superblock that has at most 2L bits, where L = � �lgn�

2

lg�lg n�	. Entries of
S are stored in superblocks. A two-dimensional array F [1..σ, 1..t] is constructed,
5 Many papers define S as a string of characters over alphabet [1..σ], which is equiv-

alent to our definition. We choose to define S as a sequence of integers as it seems
more natural to introduce range counting on integers.



506 M. He and J.I. Munro

where t denotes the number of superblocks. An entry F [α, i] stores the number of
occurrences of integer α in superblock i. The array F is encoded using Lemma 6.
We defer the details of our algorithms and data structures to the full version
of our paper, and only present our results here. We first present our result on
representing dynamic sequences of small integers to support range counting:

Lemma 7. Under the word RAM model with word size w = Ω(lg n), a sequence
S[1..n] of integers from universe [1..σ], where σ = O(lgρ n) for any constant
ρ ∈ (0, 1), can be represented using nH0 + O(n lg σ lg lgn√

lgn
) + O(w) bits to support

access, rank, select, range count, insert and delete in O( lgn
lg lgn ) time.

We also have the following lemma to show that a batch of update operations
performed on a contiguous subsequence S can be supported efficiently:

Lemma 8. Let S be a sequence represented by Lemma 7. Consider a batch of
m update operations performed on subsequence S[a..a + m− 1], in which the ith

operation changes the value of S[a+ i−1]. If m > 5L/ lgσ, then the above batch
of operations can be performed in O(m) time.

3.2 General Integer Sequences

To generalized our result on sequences of small integers to general integer se-
quences, we combine the techniques of Lemma 7 with generalized wavelet trees
proposed by Ferragina et al. [6]. Similar ideas were used by He and Munro [8]
to support rank and select operations on dynamic sequences, and by Bose et
al. [3] for static orthogonal range search structures on a grid. Here we apply
these techniques on range counting in dynamic settings:

Theorem 1. Under the word RAM model with word size w = Ω(lg n), a se-
quence S[1..n] of integers from [1..σ] can be represented using nH0+O(n lgσ lg lgn√

lgn
)

+O(w) bits to support access, rank, select, range count, insert and delete
operations in O( lgn

lg lgn ( lgσ
lg lgn + 1)) time. When σ = O(polylog(n)), all these op-

erations can be supported in O( lgn
lg lgn

) time.

4 Range Counting in Planar Point Sets

We now consider orthogonal range counting over a dynamic set of n points on
the plane. In Section 4.1, we consider a special case in which each point is on a
fixed U × U grid, i.e. each x or y-coordinate is an integer from universe [1..U ],
while in Section 4.2, points on the plane have arbitrary (real) coordinates as long
as any two coordinates can be compared in constant time.

4.1 Range Counting on a U × U Grid

Our orthogonal range counting structure for a dynamic set of n points on a
U × U grid is based on our data structure supporting range counting over an
integer sequence. The key idea is to convert coordinates in one dimension, say,
the x-coordinates, to rank space.



Space Efficient Data Structures for Dynamic Orthogonal Range Counting 507

Theorem 2. Under the word RAM model with word size w = Ω(lg n), there is
an O(n) word data structure that can maintain a dynamic set, P , of n points on
a U × U grid to answer orthogonal range counting queries in O( lg n lgU

(lg lgn)2 ) time.

A point can be inserted to or deleted from P in O( lgn lgU
(lg lgn)2 ) time.

Proof. Let Px be the set of x-coordinates. Without loss of generality, we assume
that x-coordinates are distinct. We construct an augmented red-black tree Tx
to represent Px: For each node v in Tx, we store additional information that
encodes the number of nodes in the subtree rooted at v. With such information,
given a value x, we can easily find out, in O(lg n) time, the number of elements
in Px that are less than or equal to x. Maintaining such information does not
slow down the O(lg n)-time support for insertions and deletions of values in Px.
This is because each insertion or deletion requires at most 3 tree rotations, so
we need only update the information of subtree size for the constant number of
nodes directly involved in the rotations and their O(lg n) ancestors.

We construct a sequence S[1..n] of integers from [1..U ], in which S[i] = u if
and only if the point in P with the ith smallest x-coordinate has y-coordinate u.
We represent S using Theorem 1. Since Tx maps x-coordinates to rank space, it
is easy to use Tx and S to support query and update. ��

4.2 Range Counting for General Point Sets

For general point sets, we can still use the augmented red-black tree designed
in the proof of Theorem 2 to map the set of x-coordinates to the rank space,
since this tree structure does not require any assumptions on the values stored.
Handling the other dimension, however, is challenging: We cannot simply use a
generalized wavelet tree, which is the main building block of the representation
of the sequence S used in the proof of Theorem 2. This is because a (generalized)
wavelet tree has, up to now, only been used to handle data of a two-dimensional
nature for which the range of values in at least one dimension is fixed [6,5,3,7,8],
such as sequences of integers from a fixed range in Theorem 1. To overcome
this difficulty, our main strategy is to combine the notion of range trees [2] with
generalized wavelet trees. Our work is the first that combines these two powerful
data structures.

Let Px and Py denote the set of x and y-coordinates of the points in P ,
respectively. Without loss of generality, we assume that the values in Px are
distinct, and so are the values in Py. We construct the following data structures:

1. An augmented red-black tree, Tx, that represents the set Px, as described in
the proof of Theorem 1. Recall that this structure supports the computation
of the number of values in Px that are less than or equal to a given value.

2. As amortizing a rebuilding cost to insertions or deletions will be crucial, we use
a weight-balanced B-tree [1], Ty. This is constructed over Py , with branching
factor d = Θ(lgε n) for a fixed constant ε ∈ (0, 1) and leaf parameter 1. Hence
each internal node has at least d/4 and at most 4d children, except the root for
which the lower bound on degree does not apply. Each leaf represents a range
[y, y′), where y and y′ are in Py , and y′ is the immediate successor of y. The



508 M. He and J.I. Munro

(contiguous) range represented by an internal node is the union of the ranges
represented by its children. The levels of Ty are numbered 0, 1, 2, · · · , starting
from the root level. We store the tree structure of Ty together with the start
and end values of the range represented by each node.

3. Next we use ideas analogous to those of generalized wavelet trees [6]. A
sequence L�[1..n] of integers from [1..4d] is constructed for each level � except
the leaf level, which is encoded using Lemma 7: For each internal node v at
level � of Ty, we construct a sequence, Sv of integers from [1..4d]. Each
entry of Sv corresponds to a point in P whose y-coordinate is in the range
represented by v, and Sv[i] corresponds to, among all the points with y-
coordinates within the range represented by v, the one with the ith smallest
x-coordinate. Sv[i] does not store this point directly. Instead, Sv[i] stores
j if the y-coordinate of the corresponding point in P is within the range
represented by the jth child of v. We further concatenate all the sequences
constructed for the nodes, from left to right, at level � to get the sequence
L�. It is important to understand that, for the top level of Ty, the entries
of L0 correspond to points in P ordered by x-coordinates, but as we move
down the tree Ty, the ordering gradually changes: The entries of L1, L2, · · ·
do not correspond to points ordered by x-coordinates, and at the bottom
level, the leaves correspond to points ordered by y-coordinates.

To analyze the space cost of our data structures, it is clear that Tx and Ty use
linear space. Our third set of data structures consist of O( lgn

lg lg n ) subsequences,
each storing n integers from [1..4d]. By Lemma 7, they occupy O(n lg d + w) ×
O( lgn

lg lgn ) = O(n lg n+w× lg n
lg lg n ) bits in total, where w is the size of a word. This

space cost is O(n) words. We now use these data structures to support queries:

Lemma 9. Under the word RAM model with word size w = Ω(lg n), the above
data structures support orthogonal range counting in O(( lgn

lg lgn
)2) time.

Proof. We first give an overview of our algorithm for orthogonal range count-
ing. Let R = [x1, x2] × [y1, y2] be the query rectangle. We use Tx to find two
x-coordinates x′

1 and x′
2 in Px that are the immediate successor of x1 and the

immediate predecessor of x2, respectively (if a value is present in Px, we define
its immediate predecessor/successor to be itself). We then perform a top-down
traversal in Ty to locate the (up to two) leaves that represent ranges contain-
ing y1 and y2. During this traversal, at each level � of Ty, at most two nodes
are visited. For a node v visited at level �, we answer a range counting query
range count(Sv, iv, jv, cv, dv), where Sv[iv..jv] is the longest contiguous subse-
quence of Sv whose corresponding points in P have x-coordinates in the range
[x′

1, x
′
2], and the children of v representing ranges that are entirely within [y1..y2]

are children cv, cv + 1, · · · , dv (child i refers to the ith child). The sum of the
results of the above range queries at all levels is the number of points in N ∩R.

To show how to perform the above process, we first observe that for the root
r of Ty, ir and jr are the numbers of values in Px that are less than or equal
to x′

1 and x′
2, respectively, which can be computed using Tx in O(lg n) time.



Space Efficient Data Structures for Dynamic Orthogonal Range Counting 509

To compute cr and dr, we can perform binary searches on the up to 4d ranges
represented by the children of r, which takes O(lg lg n) time. The binary searches
also tell us which child/children of r represent ranges that contain y1 and y2,
and we continue the top-down traversal by descending into these nodes.

It now suffices to show, for each node v visited at each level �, how to locate the
start and end positions of Sv in L�, how to compute iv, jv, cv and dv, and which
child/children of v we shall visit at level � + 1. Let u be the parent of v, and we
assume that v is the cth child of u. Let s be the start position of Su in L�−1, which
was computed when we visited u. We observe that, to compute the start and end
positions of Sv, it suffices to compute the numbers of entries of Su that are in the
range [1..c−1] and [1..c], respectively. Thus the start and end positions of Sv in L�
are s+range count(Su, 1, |Su|, 1, c−1)+1 and s+range count(Su, 1, |Su|, 1, c),
respectively. Positions iv and jv can also be computed by performing operations
on Su using the identities iv = rankc(Su, iu − 1) + 1 and jv = rankc(Su, ju).
Finally, to compute cv and dv, and to determine the child/children of v that
we visit at level � + 1, we perform binary searches on the ranges represented by
the at most 4d children of v using O(lg d) = O(lg lg n) time. Since we perform a
constant number of rank, select and range count operations on a sequence of
small integers at each level of Ty, and there are O( lgn

lg lg n ) levels, we can answer
an orthogonal range counting query over P in O(( lgn

lg lg n
)2) time. ��

Finally, we support update operations to achieve our main result:

Theorem 3. Under the word RAM model with word size w = Ω(lg n), there
is a data structure using O(n) words of structural information plus space for
the coordinates that can maintain a dynamic set, P , of n points on the plane
to answer orthogonal range counting queries in O(( lgn

lg lgn
)2) worst-case time. A

point can be inserted to or deleted from P in O(( lgn
lg lg n )2) amortized time.

Proof. To support update operations, we only show how to insert a point into P ;
deletions can be handled similarly. To insert a point with coordinates < x, y >
into P , we first insert x into Tx in O(lg n) time. Inserting y into Ty will either
cause a leaf of Ty to split into two, or create a new leaf that is either the leftmost
leaf or the rightmost. Without loss of generality, we assume that a leaf is split.
Then this leaf can be located by performing a top-down traversal, similar to the
process required to support range counting. Let q be the parent of this leaf, and
let �′ be the level number of the level right above the leaf level. Then the start
and end positions of Sq in L�′ can also be located in the above process, using
O(( lgn

lg lg n
)2) time in total. We first consider the case that the split of this leaf will

not cause q to split. In this case, since q has one more child, we insert one more
entry into Sq for the new child, and increase the values of at most |Sq | entries in
Sq by 1. This can be done by performing at most |Sq| insertions and deletions over
Sq, which costs O(d × lgn

lg lgn ) = O( lg1+ε n
lg lg n ) time. Since this insertion also causes

the length of the sequence Sv for the ancestor, v, of q at each level to increase
by 1, one integer is inserted into each string L� for � = 0, 1, · · · , �′ − 1. The
exact position where we should perform the insertion can be determined using



510 M. He and J.I. Munro

tree Tx for L0, and by performing one rank operation on L0, L1, · · · , L�′−2 for
L1, L2, · · · , L�′−1, respectively, during the top-down traversal. The exact value
to be inserted to each L� is an appropriate child number. So far we have spent
O(( lgn

lg lg n
)2) time in total.

Each insertion may however cause a number of internal nodes to split. Let v
be an internal node that is to split, and let v1 and v2 be the two nodes that v is to
be split into, where v1 is a left sibling of v2. Let f be the number of the level that
contains v. Then the splitting of v requires us to replace the substring, Sv, of Lf
by two substrings Sv1 and Sv2 . Since points corresponding to these substrings are
sorted by their x-coordinates, this is essentially a process that splits one sorted
list into two sorted lists. Thus, we can perform a linear scan on Sv, and perform
one insertion and one deletion for each entry of Sv. This costs O(|Sv| × lgn

lg lg n
)

time. This would have been messy, but fortunately the following two invariants
of weight-balanced B-trees allow us to bound the above time in the amortized
sense: First, if v is k levels above the leaf level, then |Sv| < 2dk. Second, after the
split of node v, at least dk/2 insertions have to be performed below v before it
splits again. Hence we can amortize the above O(|Sv| × lgn

lg lgn ) = O(2dk × lgn
lg lg n )

cost over dk/2 insertions, which is O( lgn
lg lg n ) per insertion.

Let u be the parent of v. The above split may also increase the values of up to
|Su| entires of Su by 1, which cost O(|Su|× lgn

lg lg n
) time. By the same argument as

above, we have |Su| < 2dk+1, and we can amortize the above O(|Su| × lgn
lg lgn ) =

O(2dk+1× lg n
lg lgn ) cost over dk/2 insertions, which is O( d lgn

lg lg n ) per insertion. Since
the insertion into a leaf may cause its O( lgn

lg lg n
) ancestors to split, and each

split charges O( d lgn
lg lgn

) amortized cost for this insertion, splitting these O( lgn
lg lg n

)

internal nodes after an insertion requires O( lg2+ε n
(lg lgn)2 ) = O(lg2+ε n) amortized

time.
To further speed up the process in the previous paragraph, we observe that the

bottleneck is the O(|Su|× lgn
lg lg n ) time required to change the values of up to |Su|

entires of Su after v is split. Since these entries are all in Su, which is a contiguous
subsequence of Lf−1, we apply Lemma 8. There is one more technical detail:
this lemma requires that |Su| > 5L/ lg(4d) where L = � �lg n�2

lg�lgn�	. By an invariant
maintained by a weight-balanced B-tree, |Su| > dk+1/2, since u is k + 1 levels
above the leaf level. Hence |Su| > 5L/ lg(4d) is true for all k > logd/2(5L/ lg(4d)),
and the floor of the right-hand side is a constant number. Let k0 denote this
constant. Hence if v is up to k0 levels above the leaf level, we use the approach
in the previous paragraph to update Su. Since each insertions can only cause a
constant number of internal nodes that are up to k0 levels above the leaf level
to split, this incurs O(k0d lgn

lg lg n ) = O(lg1+ε n) amortized cost per insertion. If v is
more than k0 levels above the leaf level, then we use Lemma 8 to update Lf−1

in O(|Su|) time. By the analysis in the previous paragraph, the cost of splitting
v can be amortized over dk/2 insertions, which is O(d) per insertion. Since each
insertions can potentially cause O( lgn

lg lg n ) nodes that are more than k0 levels
above the leaf level to split, this also incurs O( d lgn

lg lg n
) = O(lg1+ε n) amortized



Space Efficient Data Structures for Dynamic Orthogonal Range Counting 511

cost per insertion. Therefore, each insertion can be supported in O(( lgn
lg lgn )2) +

O(lg1+ε n) = O(( lgn
lg lg n

)2) amortized time.
We finish our proof by pointing out that the succinct global rebuilding ap-

proach of He and Munro [8] can be applied here to handle the change of the
value of �lg n	, which affects the choices of the value for d. ��

5 Concluding Remarks

We have presented three new dynamic range counting structures, and to obtain
these results, we designed two data structures for range sum queries, which are
of independent interest. We have also developed new techniques. Our approach
of deamortization on a two-dimensional array in Section 2.1 is interesting. Our
attempt on combining wavelet trees and range trees in Section 4.2 is the first
that combines these two very powerful data structures, and we expect to use the
same strategy to solve other problems.

References

1. Arge, L., Vitter, J.S.: Optimal external memory interval management. SIAM J.
Comput. 32(6), 1488–1508 (2003)

2. Bentley, J.L.: Multidimensional divide-and-conquer. Commun. ACM 23(4), 214–
229 (1980)

3. Bose, P., He, M., Maheshwari, A., Morin, P.: Succinct orthogonal range search
structures on a grid with applications to text indexing. In: Dehne, F., Gavrilova,
M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 98–109.
Springer, Heidelberg (2009)

4. Chazelle, B.: A functional approach to data structures and its use in multidimen-
sional searching. SIAM Journal on Computing 17(3), 427–462 (1988)

5. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. Journal of the ACM 57(1) (2009)

6. Ferragina, P., Manzini, G., Mäkinen, V., Navarro, G.: Compressed representations
of sequences and full-text indexes. ACM Transactions on Algorithms 3(2) (2007)

7. González, R., Navarro, G.: Rank/select on dynamic compressed sequences and
applications. Theoretical Computer Science 410(43), 4414–4422 (2009)

8. He, M., Munro, J.I.: Succinct representations of dynamic strings. In: SPIRE, pp.
334–346 (2010)

9. He, M., Munro, J.I.: Succinct representations of dynamic strings. CoRR
abs/1005.4652 (2010)

10. Jacobson, G.: Space-efficient static trees and graphs. In: FOCS, pp. 549–554 (1989)
11. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for multidi-

mensional dominance reporting and counting. In: Fleischer, R., Trippen, G. (eds.)
ISAAC 2004. LNCS, vol. 3341, pp. 558–568. Springer, Heidelberg (2004)

12. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Com-
putational Geometry: Theory and Applications 42(4), 342–351 (2009)

13. Pǎtraşcu, M.: Lower bounds for 2-dimensional range counting. In: STOC, pp. 40–46
(2007)

14. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437.
Springer, Heidelberg (2001)



Searching in Dynamic Tree-Like Partial Orders

Brent Heeringa1,�, Marius Cătălin Iordan2,��, and Louis Theran3,� � �

1 Dept. of Computer Science, Williams College
heeringa@cs.williams.edu

2 Dept. of Computer Science, Stanford University
mci@cs.stanford.edu

3 Dept. of Mathematics, Temple University
theran@temple.edu

Abstract. We give the first data structure for the problem of main-
taining a dynamic set of n elements drawn from a partially ordered uni-
verse described by a tree. We define the Line-Leaf Tree, a linear-sized
data structure that supports the operations: insert; delete; test member-
ship; and predecessor. The performance of our data structure is within
an O(log w)-factor of optimal. Here w ≤ n is the width of the partial-
order—a natural obstacle in searching a partial order.

1 Introduction

A fundamental problem in data structures is maintaining an ordered set S of
n items drawn from a universe U of size M � n. For a totally ordered U ,
the dictionary operations: insert ; delete; test membership; and predecessor are
all supported in O(log n) time and O(n) space in the comparison model via
balanced binary search trees. Here we consider the relaxed problem where U is
partially ordered and give the first data structure for maintaining a subset of a
universe equipped with a partial order that can be described by a tree.

As a motivating example, consider an email user that has stockpiled years of
messages into a series of hierarchical folders. When searching for an old message,
filing away a new message, or removing an impertinent message, the user must
navigate the hierarchy. Suppose the goal is to minimize, in the worst-case, the
number of folders the user must consider in order to find the correct location in
which to retrieve, save, or delete the message. Unless the directory structure is
completely balanced, an optimal search does not necessarily start at the top—it
might be better to start farther down the hierarchy if the majority of messages lie
in a sub-folder. If we model the hierarchy as a rooted, oriented tree and treat the
question “is message x contained somewhere in folder y?” as our comparison,
then maintaing an optimal search strategy for the hierarchy is equivalent to
maintaining a dynamic partially ordered set under insertions and deletions.

� Supported by NSF grant IIS-08125414.
�� Supported by the William R. Hewlett Stanford Graduate Fellowship.

� � � Supported by CDI-I grant DMR 0835586 to Igor Rivin and M.M.J. Treacy.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 512–523, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Searching in Dynamic Tree-Like Partial Orders 513

Fig. 1. (i) A partially ordered set {A, B,C, D, E, F, G, H, I, J}. A downward path from
node X to node Y implies X ≺ Y . Note that, for example, E ≺ F and G and I are
incomparable. (ii) An optimal search tree for the set {A, B, . . . , I}. For any query
(X, Y ) an answer of X means descend left and an answer of Y means descend right.
(iii) After adding the element J , a standard search tree would add a new query (B,J)
below (A, B) which creates an imbalance. (iv) The search tree after a rotation; the
subtree highlighted in grey is not a correct search tree for the partial order (i). (v) An
optimal search tree for the set {A, B, . . . , J}.

Related Work. The problem of searching in trees and partial orders has re-
cently received considerable attention. Motivating this research are practical
problems in filesystem synchronization, software testing and information re-
trieval [1]. However, all of this work is on the static version of the problem.
In this case, the set S is fixed and a search tree for S does not support the inser-
tion or deletion of elements. For example, when S is totally ordered, the optimal
minimum-height solution is a standard binary search tree. In contrast to the to-
tally ordered case, finding a minimum height static search tree for an arbitrary
partial order is NP-hard [2]. Because of this, most recent work has focused on
partial orders that can be described by rooted, oriented trees. These are called
tree-like partial orders in the literature. For tree-like partial orders, one can find
a minimum height search tree in linear time [3,4,5]. In contrast, the weighted
version of the tree-like problem (where the elements have weights and the goal is
to minimize the average height of the search tree) is NP-hard [6] although there
is a constant-factor approximation [7]. Most of these results operate in the edge
query model which we review in Sec. 2.

Daskalakis et al. have recently studied the problem of sorting partial or-
ders [8,9] and, in [9], ask for analogues of balanced binary search trees for dy-
namic partially ordered sets. We are the first to address this question.

Rotations do not preserve partial orders. Traditional data structures for
dynamic ordered sets (e.g., red black trees, AVL trees) appear to rely on the
total order of the data. All these data structures use binary tree rotations as the
fundamental operations; applied in an unrestricted manner, rotations require
a totally ordered universe. For example, consider Figure 1 (ii) which gives an
optimal search tree for the elements {A, B, . . . , I} depicted in the partial order of
Figure 1 (i). If we insert node J (colored grey) then we must add a new test (B, J)
below (A, B) which creates the sub-optimal search tree depicted in Figure 1 (iii).
Using traditional rotations yields the search tree given in Figure 1 (iv) which



514 B. Heeringa, M.C. Iordan, and L. Theran

does not respect the partial order; the leaf marked C should appear under the
right child of test (A, B). Figure 1 (v) denotes a correct optimal search for the
set {A, B, . . . , J}. The key observation is that, if we imagine the leaves of a
binary search tree for a total order partitioning the real line, rotations preserve
the order of the leaves, but not any kind of subtree relations on them. As a
consequence, blindly applying rotations to a search tree for the static problem
does not yield a viable dynamic data structure. To sidestep this problem, we
will, in essence, decompose the tree-like partial order into totally ordered chains
and totally incomparable stars.

Our Techniques and Contributions. We define the Line-Leaf Tree, the
first data structure that supports the fundamental dictionary operations for a
dynamic set S ⊆ U of n elements drawn from a universe equipped with a partial
order � described by a rooted, oriented tree.

Our dynamic data structure is based on a static construction algorithm that
takes as input the Hasse diagram induced by � on S and in O(n) time and space
produces a Line-Leaf Tree for S. The Hasse diagram HS for S is the directed
graph that has as its vertices the elements of S and a directed edge from x to y if
and only if x ≺ y and no z exists such that x ≺ z ≺ y. We build the Line-Leaf
Tree inductively via a natural contraction process which starts with HS and,
ignoring the edge orientations, repeatedly performs the following two steps until
there is a single node:

1. Contract paths of degree-two nodes into balanced binary search trees (which
we can binary search efficiently); and

2. Contract leaves into linear search structures associated with their parents
(since the children of an interior node are mutually incomparable).

One of these steps always applies in our setting since HS is a rooted, oriented tree.
We give an example of each step of the construction in Figure 2. We show that
the contraction process yields a search tree that is provably within an O(log w)-
factor of the minimum-height static search tree for S. The parameter w is the
width of S—the size of the largest subset of mutually incomparable elements of
S—which represents a natural obstacle when searching a partial order. We also
show that our analysis is tight. Our construction algorithm and analysis appear
in Section 3.

To make the Line-Leaf Tree fully dynamic, in Section 4 we give procedures
to update it under insertions and deletions. All the operations, take O(log w) ·
OPT comparisons and RAM operations where OPT is the height of a minimum-
height static search tree for S. Additionally, insertion requires only O(h) com-
parisons, where h is the height of the Line-Leaf Tree being updated. (The
non-restructuring operations test membership and predecessor also require at
most O(h) comparisons since the Line-Leaf Tree is a search tree). Because
w is a property of S, in the dynamic setting it changes under insertions and
deletions. However, the Line-Leaf Tree maintains the O(log w) ·OPT height
bound at all times. This means it is well-defined to speak of the O(log w) ·OPT
upper bound without mentioning S.



Searching in Dynamic Tree-Like Partial Orders 515

Fig. 2. Examples of (i) a line contraction where we build a balanced binary search tree
from a path and (ii) a leaf contraction where we build a linear search tree from the
leaves of a node.

The insertion and deletion algorithms maintain the invariant that the updated
Line-Leaf Tree is structurally equivalent to the one that we would have pro-
duced had the static construction algorithm been applied to the updated set S.
In fact, the heart of insertion and deletion is correcting the contraction process
to maintain this invariant. The key structural property of a Line-Leaf Tree—
one that is not shared by constructions for optimal search trees in the static
setting—is that its sub-structures essentially represent either paths or stars in
S, allowing for updates that make only local changes to each component search
structure. The O(log w)-factor is the price we pay for the additional flexibility.
The dynamic operations, while conceptually simple, are surprisingly delicate.
We devote detailed attention to them in the full version of this paper [10].

In Section 5 we provide empirical results on both random and real-world
data that show the Line-Leaf Tree is, in practice, competitive with the static
optimal search tree.

2 Models and Definitions

Let U be a finite set of M elements and let � be a partial order, so the pair (U ,�)
forms a partially ordered set. We assume the answers to �-queries are provided
by an oracle. (Daskalakis, et al. [8] provide a space-efficient data structure to
answer �-queries in O(1) time.)

In keeping with previous work, we say that U is tree-like if HU forms a rooted,
oriented tree. Throughout the rest of this paper, we assume that U is tree-
like and refer to the vertices of HU and the elements of U interchangeably. For
convenience, we add a dummy minimal element ν to U . Since any search tree for
a set S ⊆ U embeds with one extra comparison into a corresponding search tree
for S ∪ {ν}, we assume from now on that ν is always present in S. This ensures
that the Hasse diagram for S is always connected.

Given these assumptions it is easy to see that tree-like partial orders have the
following properties:

Property 1. Any subset S of a tree-like universe U is also tree-like.

Property 2. Every non-root element in a tree-like partially ordered set S ⊆ U
has exactly one predecessor in HS.



516 B. Heeringa, M.C. Iordan, and L. Theran

Fig. 3. Given two nodes x and y in S and a third node u ∈ U , a dynamic edge query on
(x, y) with respect to u can answer (i) y, in which case u falls somewhere in the shaded
area labelled Y; (ii) x, in which case u falls somewhere in the shaded area labelled X; or
(iii) here, in which case u falls somewhere in the shaded area labelled HERE. Notice
that if (x, y) forms an actual edge then the query reduces to a standard edge query.

Let TS be the rooted, oriented tree corresponding to the Hasse diagram for S.
We extend edge queries to dynamic edge queries by allowing queries on arbitrary
pairs of nodes in TS instead of just edges in TS .

Definition 1 (Dynamic Edge-Queries). Let u be an element in U and x
and y be nodes in TS. Let S′ = S ∪{u} and consider the edges (x, x′) and (y, y′)
bookending the unique path from x to y in TS′. Define T xS′, T yS′ and T here

S′ to
be the three connected components of TS′ \ {(x, x′), (y, y′)} containing x, y, and
neither x nor y, respectively. A dynamic edge query on (x, y) with respect to u
has one of the following three answers:

1. x: if u ∈ T xS′ (u equals or is closer to x)
2. y: if u ∈ T yS′ (u equals or is closer to y)
3. here: if u ∈ T here

S′ (u falls between, but is not equal to either, x or y)

Figure 3 gives an example of a dynamic edge query. Any dynamic edge query
can be simulated by O(1) standard comparisons when HS is tree-like. This is not
the case for more general orientations of HS and an additional data structure is
required to implement either our algorithms or algorithms of [3,4]. Thus, for a
tree-like S, the height of an optimal search tree in the dynamic edge query model
and the height of an optimal decision tree for S in the comparison model are
always within a small constant factor of each other. For the rest of the paper,
we will often drop dynamic and refer to dynamic edge queries simply as edge
queries.

3 Line-Leaf Tree Construction and Analysis

We build a Line-Leaf Tree T inductively via a contraction process on TS. Each
contraction step builds a component search structure of the Line-Leaf Tree.
These component search structures are either linear search trees or balanced bi-
nary search trees. A linear search tree LST (x) is a sequence of dynamic edge
queries, all of the form (x, y) where y ∈ S, that ends with the node x. A balanced
binary search tree BST (x, y) for a path of contiguous degree-2 nodes between, but
not including, x and y is a tree that binary searches the path using edge queries.



Searching in Dynamic Tree-Like Partial Orders 517

Let T0 = TS . If the contraction process takes m iterations total, then the final
result is a single node which we label T = T2m. In general, let T2i−1 be the
partial order tree after the line contraction of iteration i and T2i be the partial
order tree after the leaf contraction of iteration i where i ≥ 1. We now show how
to construct a Line-Leaf Tree for a fixed tree-like set S.

Base Cases. Associate an empty balanced binary search tree BST (x, y) with
every actual edge (x, y) in T0. Associate a linear search tree LST (x) with
every node x in T0. Initially, LST (x) contains just the node itself.

Line Contraction. Consider the line contraction step of iteration i ≥ 1: If
x2, . . . , xt−1 is a path of contiguous degree-2 nodes in T2(i−1) bounded on
each side by non-degree-2 nodes x1 and xt respectively, we contract this path
into a balanced binary search tree BST (x1, xt) over the nodes x2, . . . , xt−1.
The result of the path contraction is an edge labeled (x1, xt). This edge yields
a dynamic edge query.

Leaf Contraction. Consider the leaf contraction step of iteration i ≥ 1: If
y1, . . . , yt are all degree-1 nodes in T2i−1 adjacent to a node x in T2i−1, we
contract them into the linear search tree LST (x) associated with x. Each
node yj contracted into x adds a dynamic edge query (x, yj) to LST (x). If
nodes were already contracted into LST (x) from a previous iteration, we
add the new edge queries to the front (top) of the LST.

After m iterations we are left with T = T2m which is a single node. This node
is the root of the Line-Leaf Tree.

Searching a Line-Leaf Tree for an element u is tantamount to searching
the component search structures. A search begins with LST (x) where x is the
root of T . Searching LST (x) with respect to u serially questions the edge queries
in the sequence. Starting with the first edge query, if (x, y) answers x then we
move onto the next query (x, z) in the sequence. If the query answers here then
we proceed by searching for u in BST (x, y). If it answers y, then we proceed
by searching for u in LST (y). If there are no more edge queries left in LST (x),
then we return the actual element x. When searching BST (x, y), if we ever
receive a here response to the edge query (a, b), we proceed by searching for u
in BST (a, b). That is, we leave the current BST and search in a new BST. If the
binary search concludes with a node x, then we proceed by searching LST (x).
Searching an empty BST returns Nil.

Implementation Details. The Line-Leaf Tree is an index into HS but not
a replacement for HS. That is, we maintain a separate DAG data structure for
HS across insertions and deletions into S. This allows us, for example, to easily
identify the predecessor and successors of a node x ∈ S once we’ve used the
Line-Leaf Tree to find x in HS . The edges of HS also play an essential role
in the implementation of the Line-Leaf Tree. Namely, an edge query (x, y) is
actually two pointers: λ1(x, y) which points to the edge (x, a) and λ2(x, y) which
points to the edge (b, y). Here (x, a) and (b, y) are the actual edges bookending
the undirected path between x and y in TS. This allows us to take an actual edge
(x, a) in memory, rename x to w, and indirectly update all edge queries (x, z)



518 B. Heeringa, M.C. Iordan, and L. Theran

to (w, z) in constant time. Here the path from z to x runs through a. Note that
we are not touching the pointers involved in each edge query (x, z), but rather,
the actual edge in memory to which the edge query is pointing.

Edge queries are created through line contractions so when we create the
binary search tree BST (x, y) for the path x, a, . . . , b, y, we let λ1(x, y) = λ1(x, a)
and λ2(x, y) = λ2(b, y). We assume that every edge query (x, y) corresponding
to an actual edge (x′, y′) has λ1(x, y) = λ2(x, y) = (x′, y′).

Node Properties. We associate two properties with each node in S. The round
of a node x is the iteration i where x was contracted into either an LST or a
BST. We say round(x) = i. The type of a node represents the step where the
node was contracted. If node x was line contracted, we say type(x) = line,
otherwise we say type(x) = leaf.

In addition to round and type, we assume that both the linear and binary
search structures provide a parent method that operates in time proportional
to the height of the respective data structure and yields either a node (in the
case of a leaf contraction) or an edge query (in the case of a line contraction).
More specifically, if node x is leaf contracted into LST (a) then parent(x) =
a. If node x is line contracted into BST (a, b) then parent(x) = (a, b). We
emphasize that the parent operation here refers to the Line-Leaf Tree and
not TS. Collectively, the round, type, and parent of a node help us recreate
the contraction process when inserting or removing a node from S.

Approximation Ratio. The following theorem gives the main properties of
the static construction.

Theorem 1. The worst-case height of a Line-Leaf Tree T for a tree-like S
is Θ(log w) ·OPT where w is the width of S and OPT is the height of an optimal
search tree for S. In addition, given HS, T can be built in O(n) time and space.

Proof. We prove the upper bound here and leave the tight example to the full
version [10]. We begin with some lower bounds on OPT .

Claim. OPT ≥ max{Δ(S), logn, log D, log w} where Δ(S) is the maximum de-
gree of a node in TS, n is the size of S, D is the diameter of TS and w is the
width of S.

Proof. Let x be a node of highest degree Δ(S) in TS . Then, to find x in the
TS we require at least Δ(S) queries, one for each edge adjacent to x [11]. This
implies OPT ≥ Δ(S). Also, since querying any edge reduces the problem space
left to search by at most a half, we have OPT ≥ log n. Because n is an upper
bound on both the width w of S and D, the diameter of TS we obtain the final
two lower bounds. 	


Recall that the width w of S is the number of leaves in TS. Each round in the
contraction process reduces the number of remaining leaves by at least half:
round i starts with a tree T2i on ni nodes with wi leaves. A line-contraction
produces a tree T2i+1, still with wi leaves. Because T2i+1 is full, the number



Searching in Dynamic Tree-Like Partial Orders 519

of nodes neighboring a leaf is at most wi/2. Round i completes with a leaf
contraction that removes all wi leaves, producing T2i+2. As every leaf in T2i+2

corresponds to an internal node of T2i+1 adjacent to a leaf, T2i+2 has at most
wi/2 leaves. It follows that the number of rounds is at most log w. The length of
any root-to-leaf path is bounded in terms of the number of rounds. The following
lemma follows from the construction.

Lemma 1. On any root-to-leaf path in the Line-Leaf Tree there is at most
one BST and one LST for each iteration i of the construction algorithm.

For each LST we perform at most Δ(S) queries. In each BST we ask at most
O(log D) questions. By the previous lemma, since we search at most one BST
and one LST for each iteration i of the contraction process and since there
at most log w iterations, it follows that the height of the Line-Leaf Tree is
bounded above by: (Δ(S) + O(log D)) log w = O(log w) ·OPT .

We now prove the time and space bounds. Consider the line contraction step
at iteration i: we traverse T2(i−1), labeling paths of contiguous degree-2 nodes
and then traverse the tree again and form balanced BSTs over all the paths.
Since constructing balanced BSTs is a linear time operation, we can perform a
complete line contraction step in time proportional to the size of size of T2(i−1).
Now consider the leaf contraction step at iteration i: We add each leaf in T2i−1 to
the LST corresponding to its remaining neighbor. This operation is also linear
in the size of T2i−1. Since we know the size of T2i is halved after each itera-
tion, starting with n nodes in T0, the total number of operations performed is∑logn

i=0 O( n2i ) = O(n).
Given that the construction takes at most O(n) time, the resulting data struc-

ture occupies at most O(n) space. 	


4 Operations

Test Membership. To test whether an element A ∈ U appears in T , we search
for A in LST (x) where x is the root of T . The search ends when we reach a
terminal node. The only terminal nodes in the Line-Leaf Tree are either leaves
representing the elements of S or Nil (which are empty BSTs). So, if we find A
in T then test membership returns True, otherwise it returns False. Given
that test membership follows a root-to-leaf path in T , the previous discussion
constitutes a proof of the following theorem.

Theorem 2. Test Membership is correct and takes O(h) time.

Predecessor. Property 1 guarantees that each node A ∈ U has exactly one
predecessor in S. Finding the predecessor of A in S is similar to test member-
ship. We search T until we find either A or Nil. Traditionally if A appears in
a set then it is its own predecessor, so, in the first case we simply return A. In
the latter case, A is not in T and Nil corresponds to an empty binary search
tree BST (y, z) for the actual edge (y, z) where, say, y ≺ z. We know that A



520 B. Heeringa, M.C. Iordan, and L. Theran

falls between y and z (and potentially between y and some other nodes) so y
is the predecessor of A. We return y. Given that predecessor also follows a
root-to-leaf path in T , the previous discussion yields a proof of the following
theorem.

Theorem 3. Predecessor is correct and takes O(h) time.

Insert. Let A �∈ S be the node we wish to insert in T and let S′ = S ∪ {A}.
Our goal is to transform T into T ′ where T ′ is the search tree produced by
the contraction process when started on TS′ . We refer to this transformation as
correcting the Line-Leaf Tree and divide insert into three corrective steps:
local correction, down correction, and up correction. Local correction repairs
the contraction process on T for elements of S that appear near A at some
point during the contraction process. Down correction repairs T for nodes with
round at most round(A). Up correction repairs T for nodes with round at least
round(A). Our primary result is the following theorem.

Theorem 4. Insert is correct and takes O(h) time.

A full proof of Theorem 4 appears in the full version [10]. Here we give a detailed
outline of the insertion procedure. Let X be a node such that LST (X) has t edge
queries (X, Y1) . . . (X, Yt) sorted in descending order by round(Yi). That is, Y1

is the last node leaf-contracted into LST (X), Yt is the first node leaf-contracted
into LST (X) and Yi is the (t − i + 1)th node contracted into LST (X). Define
ρi(X) = Yi and μi(X) = round(Yi). If i > t, then let μi(X) = 0.

Local Correction. We start by finding the predecessor of A in TS . Call this node
B. In HS′ , A potentially falls between B and any number of children(B). Thus,
A may replace B as the parent of a set of nodes D ⊆ children(B). We use D to
identify two other sets of nodes C and L. The set C represents nodes that, in TS ,
were leaf-contracted into B in the direction of some edge (B, Dj) where Dj ∈ D.
The set L represents nodes that were involved in the contraction process of B
itself. Depending on type(B), the composition of L falls into one of the following
two cases:

1. if type(B) = line then let parent(B) = (E, F ). Let DE and DF be the
two neighbors of B on the path from E to F . If DE and DF are in D then
L = {E, F}. If only DE is in D, then L = {E}. If only DF is in D, then
L = {F}. Otherwise, L = ∅.

2. If type(B) = leaf then let parent(B) = E. Let DE be the neighbor of B
on the path B . . . E. Let L = {E} if DE is in D and let L = ∅ otherwise.

If C and L are both empty, then A appears as a leaf in TS′ and round(A) = 1.
In this case, we only need to correct T upward since the addition of A does not
affect nodes contracted in earlier rounds. However, if either C or L is non-empty,
then A is an interior node in TS′ and A essentially acts as B to the stolen nodes
in C. Thus, for every edge query (B, Ci) where Ci ∈ C, we remove (B, Ci) from



Searching in Dynamic Tree-Like Partial Orders 521

LST (B) and insert it into LST (A). In addition, we create a new edge (B, A)
and add it to HS which yields HS′ . This ends local correction.

Removing edge queries from LST (B) and inserting them into LST (A) may
cause changes in the contraction process that reverberate upward and downward
in the Line-Leaf Tree. Let P = A and Q = B when round(A) ≤ round(B)
and let P = B and Q = A otherwise. Broadly, there are two interesting cases. If
μ1(P ) �= μ2(P ) then P was potentially line contracted between ρ1(P ) and Q at
some earlier round. If this is the case then we must correct the contraction process
downward on BST (ρ1(P ), P ) and BST (P, Q). Likewise, when μ1(P ) = μ2(P )
then round(Q) might increase, which in turn may affect later rounds of the
contraction process. If this is the case then we must correct the contraction
process upward on Q.

Down Correction. Here we know that P was line contracted between ρ1(P )
and Q at some earlier round. The main idea of Down Correct is to float P
down to the BST created in the same round as P . We do this by examining
the rounds when BST (ρ1(P ), P ) and BST (P, Q) were created and recursively
calling Down Correct until we arrive at the BST with correct round.

Up Correction. In this case, we know that P increases the round of Q by one
which can affect the contraction process for nodes contracted in later rounds. If
Q was leaf-contracted into E (i.e., type(Q) = leaf and parent(Q) = E) then
P replaces Q in the edge query (Q, E) since Q is now line-contracted between
P and E in the iteration before. If Q was line-contracted into BST (E, F ) (i.e,
type(Q) = line and parent(Q) = (E, F )) then BST (E, F ) is now split into
BST (E, Q) and BST (Q, F ). The interesting case is when, in T , E was leaf-
contracted into F . In T ′, the edge query (E, Q) now appears in LST (Q) and
we’re in a position to recursively correct the contraction process upwards with
Q and F replacing P and Q respectively in the recursive call.

Delete. Deletion removes a node A from a Line-Leaf Tree T assuming A
appears in T . As with insertion, the goal is to repair T so that it mimics T ′ where
T ′ is the result of running the contraction process on TS′ where S′ = S \ {A}.
Deletion is a somewhat simpler operation than insertion. This is because when
we delete A, all of the successors of A become successors of A’s predecessor B. If
A outlasted B in the new contraction process, then B essentially plays the role
of A in T ′. If B outlasted A, then its role does not change. The only problem
is that B no longer has A as a neighbor which may create problems with nodes
contracted later in the process. Repairing these problems is the technical crux of
deletion. A thorough description of deletion, as well as a proof of the following
Theorem also appear in the full version [10].

Theorem 5. Delete is correct and takes O(log w) ·OPT time.

5 Empirical Results

To conclude, we compare the height of a Line-Leaf Tree to the height of an
optimal static search tree in two experimental settings: random tree-like partial



522 B. Heeringa, M.C. Iordan, and L. Theran

(a) (b)

Fig. 4. Results comparing the height of the Line-Leaf Tree to the optimal static
search search tree on (a) random tree-like partial orders; and (b) a large portion of the
UNIX filesystem. The non-shaded areas show the average height of both the Line-Leaf
Tree and optimal static algorithm. The shaded area shows their ratio (as well as the
min and max values over the 1000 iterations).

orders and the UNIX directory structure. For these experiments, we consider the
height of a search tree to be the maximum number of edge queries performed on
any root-to-leaf path. So any dynamic edge query in a Line-Leaf Tree counts
as two edge queries in our experiments.

In the first experiment, we examine tree-like partial orders of increasing size
n. For each n, we independently sample 1000 partial-orders uniformly at random
from all tree-like partial orders with n nodes [12] (this distribution give a tree
of height θ(log n), w.h.p. [13,14,15]).

The non-shaded area of Figure 4 (a) shows the heights of the Line-Leaf
Tree and the optimal static tree averaged over the samples. The important
thing to note is that both appear to grow linearly in logn. We suspect that the
differing slopes come mainly from the overheard of dynamic edge queries, and we
conjecture that the Line-Leaf Tree performs within a small constant factor of
OPT with high probability in the uniform tree-like model. The shaded area of
Figure 4 (a) shows the average, minimum, and maximum approximation ratio
over the samples.

Although the first experiment shows that the Line-Leaf Tree is competitive
with the optimal static tree on average tree-like partial orders, it may be that,
in practice, tree-like partial orders are distributed non-uniformly. Thus, for our
second experiment, we took the /usr directory of an Ubuntu 10.04 Linux distri-
bution as our universe U and independently sampled 1000 sets of size n = 100,
n = 1000, and n = 10000 from U respectively. The /usr directory contains 23,328
nodes, of which 17,340 are leaves. The largest directory is /usr/share/docwhich
contains 1551 files. The height of /usr is 12. We believe that this directory is
somewhat representative of the use cases found in our motivation. As with our
first experiment, the shaded area in Figure 4 (b) shows the ratio of the height of
the Line-Leaf Tree to the height of the optimal static search tree, averaged
over all 1000 samples for each sample size. The non-shaded area shows the actual



Searching in Dynamic Tree-Like Partial Orders 523

heights averaged over the samples. The Line-Leaf Tree is again very compet-
itive with the optimal static search tree, performing at most a small constant
factor more queries than the optimal search tree.

Acknowledgements. We would like to thank T. Andrew Lorenzen for his help in

running the experiments discussed in Section 5.

References

1. Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees. SIAM J. Com-
put. 28(6), 2090–2102 (1999)

2. Carmo, R., Donadelli, J., Kohayakawa, Y., Laber, E.S.: Searching in random par-
tially ordered sets. Theor. Comput. Sci. 321(1), 41–57 (2004)

3. Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy in
linear time. In: SODA 2008: Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 1096–1105. Society for Industrial and Ap-
plied Mathematics, Philadelphia (2008)

4. Onak, K., Parys, P.: Generalization of binary search: Searching in trees and forest-
like partial orders. In: FOCS 2006: Proceedings of the 47th Annual IEEE Sympo-
sium on Foundations of Computer Science, pp. 379–388. IEEE Computer Society,
Washington, DC, USA (2006)

5. Dereniowski, D.: Edge ranking and searching in partial orders. Discrete Appl.
Math. 156(13), 2493–2500 (2008)

6. Jacobs, T., Cicalese, F., Laber, E.S., Molinaro, M.: On the complexity of searching
in trees: Average-case minimization. In: Abramsky, S., Gavoille, C., Kirchner, C.,
Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp.
527–539. Springer, Heidelberg (2010)

7. Laber, E., Molinaro, M.: An approximation algorithm for binary searching in trees.
In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A.,
Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 459–471. Springer,
Heidelberg (2008)

8. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and
selection in posets. In: SODA 2009: Proceedings of the Nineteenth Annual ACM-
SIAM SODA, pp. 392–401. SIAM, Philadelphia (2009)

9. Daskalakis, C., Karp, R.M., Mossel, E., Riesenfeld, S., Verbin, E.: Sorting and
selection in posets. CoRR abs/0707.1532 (2007)

10. Heeringa, B., Iordan, M.C., Theran, L.: Searching in dynamic tree-like partial
orders. CoRR abs/1010.1316 (2010)

11. Laber, E., Nogueira, L.T.: Fast searching in trees. Electronic Notes in Discrete
Mathematics 7, 1–4 (2001)

12. Meir, A., Moon, J.W.: On the altitude of nodes in random trees. Canadian Journal
of Mathematics 30, 997–1015 (1978)

13. Bergeron, F., Flajolet, P., Salvy, B.: Varieties of increasing trees. In: Raoult, J.-C.
(ed.) CAAP 1992. LNCS, vol. 581, pp. 24–48. Springer, Heidelberg (1992)

14. Drmota, M.: The height of increasing trees. Annals of Combinatorics 12, 373–402
(2009), doi:10.1007/s00026-009-0009-x

15. Grimmett, G.R.: Random labelled trees and their branching networks. J. Austral.
Math. Soc. Ser. A 30(2), 229–237 (1980/1981)



Counting Plane Graphs: Flippability and Its

Applications�

Michael Hoffmann1, Micha Sharir2,3, Adam Sheffer2,
Csaba D. Tóth4, and Emo Welzl1

1 Institute of Theoretical Computer Science, ETH Zürich,
CH-8092 Zürich, Switzerland

{hoffmann,welzl}@inf.ethz.ch
2 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

{michas,sheffera}@tau.ac.il
3 Courant Institute of Mathematical Sciences, New York University,

New York, NY 10012, USA
4 Department of Mathematics and Statistics, University of Calgary,

Calgary, AB, Canada
cdtoth@ucalgary.ca

Abstract. We generalize the notions of flippable and simultaneously
flippable edges in a triangulation of a set S of points in the plane into so
called pseudo-simultaneously flippable edges.

We prove a worst-case tight lower bound for the number of pseudo-
simultaneously flippable edges in a triangulation in terms of the number
of vertices. We use this bound for deriving new upper bounds for the max-
imal number of crossing-free straight-edge graphs that can be embedded
on any fixed set of N points in the plane. We obtain new upper bounds
for the number of spanning trees and forests as well. Specifically, let tr(N)
denote the maximum number of triangulations on a set of N points in
the plane. Then we show (using the known bound tr(N) < 30N ) that any
N -element point set admits at most 6.9283N · tr(N) < 207.85N crossing-
free straight-edge graphs, O(4.8795N ) · tr(N) = O(146.39N ) spanning
trees, and O(5.4723N ) · tr(N) = O(164.17N ) forests. We also obtain up-
per bounds for the number of crossing-free straight-edge graphs that have
fewer than cN or more than cN edges, for a constant parameter c, in
terms of c and N .

� Work by Micha Sharir and Adam Sheffer was partially supported by Grant 338/09
from the Israel Science Fund. Work by Micha Sharir was also supported by NSF
Grant CCF-08-30272, by Grant 2006/194 from the U.S.-Israel Binational Science
Foundation, and by the Hermann Minkowski–MINERVA Center for Geometry at
Tel Aviv University. Work by Csaba D. Tóth was supported in part by NSERC
grant RGPIN 35586; research by this author was conducted at ETH Zürich. Emo
Welzl acknowledges support from the EuroCores/EuroGiga/ComPoSe SNF grant
20GG21 134318/1. Part of the work on this paper was done at the Centre Interfac-
ultaire Bernoulli (CIB), during the Special Semester on Discrete and Computational
Geometry, Fall 2010, and supported by the Swiss National Science Foundation.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 524–535, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Counting Plane Graphs: Flippability and Its Applications 525

1 Introduction

A crossing-free straight-edge graph G is an embedding of a graph in the plane
such that the vertices are mapped to a set S of points in the plane and the edges
are pairwise non-crossing line segments between pairs of points in S. In this
paper, we fix a labeled set S of points in the plane, and we only consider planar
graphs that admit a straight-edge embedding with vertex set S. (In an unlabeled
point set, isomorphic triangulations are considered identical and counted as a
single triangulation.)

The first exponential bound on the number of crossing-free straight-edge
graphs was proved by Ajtai et al. [2] back in 1982. Namely, they proved that
no more than 1013N such graphs can be embedded over any specific set of N
points. Since then, progressively more reasonable bounds have been derived, all
depending on the bound for the maximal number of triangulations that can be
embedded over any specific point set. Obtaining sharper bounds on the number
of such graphs is also a major theme of the present paper.

A triangulation of a set S of N points in the plane is a maximal crossing-free
straight-edge graph on S (that is, no additional straight edges can be inserted
without crossing some of the existing edges). Triangulations are an important
geometric construct which is used in many algorithmic applications, and are also
an interesting object of study in discrete and combinatorial geometry (recent
comprehensive surveys can be found in [6,13]).

Improving the bound on the maximum number of triangulations that any set
of N points in the plane can have has been a major research theme during the
past 30 years. The initial upper bound 1013N of [2] has been steadily improved
in several paper (e.g., see [7,21,23]), culminating with the current record of 30N

due to Sharir and Sheffer [22]. Other papers have studied lower bounds on the
maximal number of triangulations (e.g., [1,8]), and upper or lower bounds on
the number of other kinds of planar graphs (e.g., [4,5,19,20]).

For a set S of points in the plane, we denote by T (S) the set of all triangu-
lations of S, and put tr(S) := |T (S)|. Similarly, we denote by P(S) the set of
all crossing-free straight-edge graphs on S, and put pg(S) := |P(S)|. We also
let tr(N) and pg(N) denote, respectively, the maximum values of tr(S) and of
pg(S), over all sets S of N points in the plane.

Let S be a set of N points in the plane. Every crossing-free straight-edge
graph in P(S) is contained in at least one triangulation in T (S). Additionally,
since a triangulation has fewer than 3N edges, every triangulation T ∈ T (S)
contains fewer than 23N = 8N crossing-free straight-edge graphs. This imme-
diately implies pg(S) < 8N · tr(S). However, this inequality seems rather weak
since it potentially counts some crossing-free straight-edge graphs many times.
More formally, given a graph G ∈ P(S) contained in x distinct triangulations of
S, we say that G has a support of x, and write supp(G) = x. Thus, every graph
G ∈ P(S) will be counted supp(G) times in the preceding inequality.

Recently, Razen, Snoeyink, and Welzl [18] managed to break the 8N barrier
by overcoming the above inefficiency. However, they obtained only a slight im-
provement, with the bound pg(S) = O

(
7.9792N

)
· tr(S). Using a careful analysis



526 M. Hoffmann et al.

of the supports of graphs in P(S), we give a more significant improvement with
an upper bound of 6.9283N · tr(N). Combining this bound with the recent bound
tr(S) < 30N [22], we get pg(N ) < 207.85N . We provide similar bounds for the
numbers of crossing-free straight-edge spanning trees and forests (i.e, cycle-free
graphs). Table 1 summarizes these results1.

Table 1. Upper and lower bounds for the number of several types of crossing-free
straight-edge graphs on a set of N points in the plane. By plane graphs, we mean all
crossing-free straight-edge graphs over a specific point set. Our new bounds are in the
right two columns.

Graph type Lower bound Previous New upper In the form
upper bound bound aN · tr(N)

Plane Graphs Ω(41.18N ) [1] O(239.4N ) [18,22] 207.85N 6.9283N · tr(N)

Spanning Trees Ω(11.97N ) [8] O(158.6N ) [5,22] O(146.39N) O(4.8795N) · tr(N)

Forests Ω(12.23N ) [8] O(194.7N ) [5,22] O(164.17N) O(5.4723N) · tr(N)

We also derive similar bounds for the number of crossing-free straight-edge
graphs that can be embedded on a fixed set S and that have at most c|S| edges,
and for the number of such graphs with at least c|S| edges, for 0 < c < 3. More
precisely, the former bound applies for 0 < c ≤ 5/4, and the latter bound applies
for 7/4 ≤ c < 3. For both cases we obtain the bound2

O∗
((

55/2

8(c + t− 1/2)c+t−1/2(3− c− t)3−c−t(2t)t(1/2− t)1/2−t

)N

· tr(S)

)

,

where t = 1
2

(√
(7/2)2 + 3c + c2 − 5/2− c

)
.

Triangulations: Notations and simple facts. We only consider point sets S
in general position, that is, no three points in S are collinear. For upper bounds
on the number of graphs, this involves no loss of generality, because the number
of graphs can only increase if collinear points are slightly perturbed into general
position.

Every triangulation of S contains the edges of the convex hull of S, and
the remaining edges of the triangulation decompose the interior of the convex
hull into triangular faces. Assume that S contains N points, h of which are
on the convex hull and the remaining n = N − h points are interior to the
hull (we use this notation throughout). By Euler’s formula, every triangulation
of S has 3n + 2h − 3 edges (h hull edges, common to all triangulations, and
3n+h−3 interior edges, each adjacent to two triangles), and 2n+h−2 bounded
(triangular) faces.

1 Up-to-date bounds for these and for other families of graphs can be found
in http://www.cs.tau.ac.il/~sheffera/counting/PlaneGraphs.html (version of
February 2011).

2 In the notations O∗(), Θ∗(), and Ω∗(), we neglect polynomial factors.



Counting Plane Graphs: Flippability and Its Applications 527

(a) (b) (c)

ab

c

d
e

ab

c

d
e

Fig. 1. (a) The edge ce can be flipped to the edge ad. (b) The two bold edges are
simultaneously flippable. (c) Interior-disjoint convex quadrilateral and convex pentagon
in a triangulation.

Edge Flips. Edge flips are simple operations that replace one or several edges
of a triangulation with new edges and produce a new triangulation. As we will
see in Sect. 2, edge flips are instrumental for counting various classes of sub-
graphs in triangulations. In the next few paragraphs, we review previous results
on edge flips, and propose a new type of edge flip. We say that an interior edge
in a triangulation of S is flippable, if its two adjacent triangles form a convex
quadrilateral. A flippable edge can be flipped, that is, removed from the graph
of the triangulation and replaced by the other diagonal of the corresponding
quadrilateral, thereby obtaining a new triangulation of S. An edge flip opera-
tion is depicted in Fig. 1(a), where the edge ce is flipped to the edge ad. Already
in 1936, Wagner [27] has shown that any unlabeled non-embedded triangulation
T can be transformed into any other triangulation T ′ (with the same number of
vertices) through a series of edge-flips (here one uses a more abstract notion of
an edge flip). When we deal with a pair of triangulations over a specific common
(labeled) set S of points in the plane, there always exists such a sequence of
O(|S|2) flips, and this bound is tight in the worst case (e.g., see [3,16]). More-
over, there are algorithms that perform such sequences of flips to obtain some
“optimal” triangulation (typically, the Delaunay triangulation; see [9] for exam-
ple), which, as a by-product, provide an edge-flip sequence between any specified
pair of triangulations of S.

How many flippable edges can a single triangulation have? Given a triangula-
tion T , we denote by flip(T ) the number of flippable edges in T . Hurtado, Noy,
and Urrutia [16] proved the following lower bound.

Lemma 1. [16] For any triangulation T over a set of N points in the plane,
flip(T ) ≥ N/2 − 2. Moreover, there are triangulations (of specific point sets of
arbitrarily large size) for which this bound is tight.

Fig. 2. Constructing a triangulation with N/2 − 2 flippable edges



528 M. Hoffmann et al.

To obtain a triangulation with exactly N/2 − 2 flippable edges, start with a
convex polygon with N/2 + 1 vertices, triangulate it in some arbitrary manner,
insert a new point into each of the N/2 − 1 resulting bounded triangles, and
connect each new point p to the three hull vertices that form the triangle con-
taining p. Such a construction is depicted in Fig. 2. The resulting graph is a
triangulation with N vertices and exactly N/2 − 2 flippable edges, namely the
chords of the initial triangulation.

Simultaneous Flippability. We say that two flippable edges e and e′ of a tri-
angulation T are simultaneously flippable if no triangle of T is incident to both
edges; equivalently, the quadrilaterals corresponding to e and e′ are interior-
disjoint. See Fig. 1(b) for an illustration. Notice that flipping an edge e cannot
affect the flippability of any edge simultaneously flippable with e. Given a trian-
gulation T , let flips(T ) denote the size of the largest subset of edges of T , such
that every pair of edges in the subset are simultaneously flippable. The following
lemma is taken from Souvaine et al. [24].

Lemma 2. [24] For any triangulation T over a set of N points in the plane,
flips(T ) ≥ (N − 4)/5.

Galtier et al. [10] show that this bound is tight in the worst case, by presenting
a specific triangulation in which at most (N − 4)/5 edges are simultaneously
flippable.

Pseudo-simultaneously flippable edge sets. A set of simultaneously flip-
pable edges in a triangulation T can be considered as the set of diagonals of a
collection of interior-disjoint convex quadrilaterals. We consider a more liberal
definition of simultaneously flippable edges, by taking, within a fixed triangu-
lation T , the diagonals of a set of interior-disjoint convex polygons, each with
at least four edges (so that the boundary edges of these polygons belong to T ).
Consider such a collection of convex polygons Q1, . . . , Qm, where Qi has ki ≥ 4
edges, for i = 1, . . . , m. We can then retriangulate each Qi independently, to
obtain many different triangulations. Specifically, each Qi can be triangulated
in Cki−2 ways, where Cj is the j-th Catalan number (see, e.g., [25, Section 5.3]).
Hence, we can get M =

∏m
i=1 Cki−2 different triangulations in this way. In par-

ticular, if a graph G ⊆ T (namely, a graph all of whose edges are edges of T ) does
not contain any diagonal of any Qi (it may contain boundary edges though) then
G is a subgraph of (at least) M distinct triangulations. An example is depicted
in Fig. 1(c), where by “flipping” (or rather, redrawing) the diagonals of the
highlighted convex quadrilateral and pentagon, we can get C2 · C3 = 2 · 5 = 10
different triangulations. We say that a set of interior edges in a triangulation
is pseudo-simultaneously flippable (ps-flippable for short) if after the deletion of
these edges every bounded face of the remaining graph is convex, and there are
no vertices of degree 0. Notice that all three notions of flippability are defined
within a fixed triangulation T of S (although each of them gives a recipe for
generating many other triangulations).



Counting Plane Graphs: Flippability and Its Applications 529

Table 2. Bounds for minimum numbers of the various types of flippable edges in a
triangulation of N points. All of these bounds are tight in the worst case.

Edge Type Lower bound

Flippable N/2 − 2 [16]

Simultaneously flippable N/5 − 4/5 [10,24]

Ps-flippable max{N/2 − 2, h− 3}

We derive a lower bound on the size of the largest set of ps-flippable edges in
a triangulation, and show that this bound is tight in the worst case. Specifically,
we have the following ps-flippability lemma:

Lemma 3. Let S be a set of N points in the plane, and let T be a triangulation
of S. Then T contains a set of at least max{N/2− 2, h− 3} ps-flippable edges.
This bound cannot be improved.

Lemma 3 is the major technical contribution of this paper. See the full version
of this paper [14] for its proof. Table 2 summarizes the bounds for minimum
numbers of the various types of flippable edges in a triangulation.

In Sect. 2, we use Lemma 3 to derive several upper bounds on the numbers
of crossing-free straight-edge graphs of various kinds embedded as crossing-free
straight-edge graphs on a fixed set S.

(a) (b)

Fig. 3. (a) A convex decomposition of S. When completing it into a triangulation, the
added (dashed) diagonals form a set of ps-flippable edges. This is one of the C2 ·C2 ·C3 =
20 possible completions. (b) A double chain configuration with 16 vertices.

Convex decompositions. Ps-flippable edges are closely related to the notion
of convex decompositions of a point set S. These are crossing-free straight-edge
graphs on S such that (i) they include all the hull edges, (ii) each of their bounded
faces is a convex polygon, and (iii) no point of S is isolated. See Fig. 3(a) for
an illustration. Urrutia [26] asked what is the minimum number of faces that
can always be achieved in a convex decomposition of any set of N points in the
plane. Hosono [15] proved that every planar set of N points admits a convex
decomposition with at most �75(N + 2)� (bounded) faces. For every N ≥ 4,
Garćıa-Lopez and Nicolás [11] constructed N -element point sets that do not
admit a convex decomposition with fewer than 12

11
N−2 faces. By Euler’s formula,

if a connected crossing-free straight-edge graph has N vertices and e edges, then



530 M. Hoffmann et al.

it has e − N + 2 faces (including the exterior face). It follows that for convex
decompositions, minimizing the number of faces is equivalent to minimizing the
number of edges. (For convex decompositions contained in a given triangulation,
this is also equivalent to maximizing the number of removed edges, which form
a set of ps-flippable edges.)

Lemma 3 directly implies the following corollary. (The bound that it gives is
weaker than the bound in [15], but it holds for every triangulation.)

Corollary 1. Let S be a set of N points in the plane, so that its convex hull
has h vertices, and let T be a triangulation of S. Then T contains a convex
decomposition of S with at most 3

2N − h ≤ 3
2N − 3 convex faces and at most

5
2
N − h − 1 ≤ 5

2
N − 4 edges. Moreover, there exist point sets S of arbitrarily

large size, and triangulations T ∈ T (S) for which these bounds are tight.

Notation. Here are some additional notations that we use.

For a triangulation T and an integer i ≥ 3, let vi(T ) denote the number of
interior vertices of degree i in T .

Given two crossing-free straight-edge graphs G and H over the same point set
S, we write G ⊆ H provided every edge in G is also an edge in H .

Similarly to the case of edges, the hull vertices (resp., interior vertices) of a set
S of points in the plane are those that are part of the boundary of the convex
hull of S (resp., not part of the convex hull boundary).

2 Applications of Ps-Flippable Edges

In this section we apply the ps-flippability lemma (Lemma 3) to obtain several
improved bounds on the number of crossing-free straight-edge graphs of various
kinds on a fixed set of points in the plane.

2.1 The Ratio between the Number of Crossing-Free Straight-Edge
Graphs and the Number of Triangulations

Let S be a set of N points in the plane. Recall that the relation pg(S) < 8N ·tr(S)
can be obtained by noticing that every triangulation of S contains at most 8N

crossing-free straight-edge graphs. Also, recall that this inequality is rather weak,
since every graph G ∈ P(S) will be counted supp(G) times. We overcome this
inefficiency, using a technique that relies on the ps-flippability lemma.

Theorem 1. For every set S of N points in the plane, h of which are on the
convex hull,

pg(S) ≤

⎧
⎨

⎩

(4
√

3)N

2h · tr(S) < 6.9283N

2h · tr(S), for h ≤ N/2 ,

8N (3/8)h · tr(S), for h > N/2 .



Counting Plane Graphs: Flippability and Its Applications 531

Proof. The exact value of pg(S) is easily seen to be

pg(S) =
∑

T∈T (S)

∑

G∈P(S)
G⊆T

1
supp(G)

, (1)

because every graph G appears supp(G) times in the sum, and thus contributes
a total of supp(G) · 1

supp(G) = 1. We obtain an upper bound on this sum as
follows. Consider a graph G ∈ P(S) and a triangulation T ∈ T (S), such that
G ⊆ T . By Lemma 3, there is a set F of t = max(N/2 − 2, h − 3) ps-flippable
edges in T . Let FḠ denote the set of edges that are in F but not in G, and
put j = |FḠ|. Removing the edges of FḠ from T yields a convex decomposition
of S which still contains G and whose non-triangular interior faces have a total
of j missing diagonals. Suppose that there are m such faces, with j1, j2, . . . , jm
diagonals respectively, where

∑m
k=1 jk = j. Then these faces can be triangulated

in
∏m
k=1 Cjk+1 ways, and each of the resulting triangulations contains G. Since

Ci+1 ≥ 2i holds for any i ≥ 1, we have supp(G) ≥ 2j . (Equality occurs if and
only if all the non-triangular faces of T \ FḠ are quadrilaterals.)

Next, we estimate the number of subgraphs G ⊆ T for which the set FḠ is
of size j. Denote by E the set of edges of T that are not in F , and assume that
the convex hull of S has h vertices. Since there are 3N − 3 − h edges in any
triangulation of S, |E| ≤ 3N−3−h− t. To obtain a graph G for which |FḠ| = j,
we choose any subset of edges from E, and any j edges from F (the j edges of F
that will not belong to G). Therefore, the number of such subgraphs is at most

23N−h−t−3 ·
(

t

j

)

. We can thus rewrite (1) to obtain

pg(S) ≤
∑

T∈T (S)

t∑

j=0

23N−h−t−3 ·
(

t

j

)

· 1
2j

= tr(S) · 23N−h−t−3
t∑

j=0

(
t

j

)
1
2j

= tr(S) · 23N−h−t−3 · (3/2)t .

If t = N/2− 2, we get pg(S) < tr(S) · (4
√

3)N

2h
<

6.9283N

2h
· tr(S). If t = h − 3,

we have pg(S) ≤ tr(S) · 23N−2h · (3/2)h = tr(S) · 8N · (3/8)h. To complete the
proof, we note that N/2− 2 > h− 3 when h < n + 2, or h < N/2 + 1.

For a lower bound on pg(S)/tr(S), we consider the double chain configurations,
presented in [12] (and depicted in Fig. 3(b)). It is shown in [12] that, when S is a
double chain configuration, tr(S) = Θ∗(8N ) and pg(S) = Θ∗(39.8N) (the upper
bound for pg(S) appears in [1]). Thus, we have pg(S) = Θ∗(4.95N ) · tr(S) (for
this set h = 4, so h has no effect on the asymptotic bound of Theorem 1).

Recall the notations tr(N) = max|S|=N tr(S) and pg(N) = max|S|=N pg(S).
Combining the bound tr(N) < 30N [22], with the first bound of Theorem 1
implies pg(N) < 207.849N . The bound improves significantly as h gets larger.



532 M. Hoffmann et al.

2.2 The Number of Spanning Trees and Forests

Spanning Trees. For a set S of N points in the plane, we denote by ST (S)
the set of all crossing-free straight-edge spanning trees of S, and put st(S) :=
|ST (S)|. Moreover, we let st(N) = max|S|=N st(S).

Buchin and Schulz [5] have recently shown that every crossing-free straight-
edge graph contains O

(
5.2852N

)
spanning trees, improving upon the earlier bound

of 5.3̄N due to Ribó Mor and Rote [19,20]. We thus get st(S) = O
(
5.2852N

)
·tr(S)

for every set S of N points in the plane. The bound from [5] cannot be improved
much further, since there are triangulations with at least 5.0295N spanning trees
[19,20]. However, the ratio between st(S) and tr(S) can be improved beyond that
bound, by exploiting the fact that, as in the case of general graphs, some spanning
trees may get multiply counted in many triangulations.

We now derive such an improved ratio by using ps-flippable edges. The proof
goes along the same lines of the proof of Theorem 1.

Theorem 2. For every set S of N points in the plane, st(S) = O
(
4.8795N

)
·

tr(S).

Proof . We have st(S) =
∑

T∈T (S)

∑

τ∈ST (S)
τ⊂T

1
supp(τ)

. Consider a spanning tree

τ ∈ ST (S) and a triangulation T ∈ T (S), such that τ ⊂ T . As in Theorem 1,
let F be a set of N/2 − 2 ps-flippable edges in T . Also, let Fτ̄ denote the set
of edges that are in F but not in τ , and put j = |Fτ̄ |. Thus, as argued earlier,
supp(τ) ≥ 2j .

Next, we estimate the number of spanning trees τ ⊂ T for which the set Fτ̄
is of size j. First, there are

(|F |
j

)
<
(
N/2
j

)
ways to choose the j edges of F that

τ does not use. Then τ uses N/2− 2 − j edges of F , and its other N/2 + j + 1
edges have to be chosen from the complementary set E, as in the preceding
proof. Since |E| < 5N/2 − h, there are fewer than

(
N/2
j

)
·
( 5N/2−h
N/2+j+1

)
spanning

trees τ ⊂ T with |Fτ̄ | = j. Notice that we may count many graphs that are not
trees, but this does not affect the validity of the upper bound. However, when j
is large, it is better to use the bound O

(
5.2852N

)
from [5] instead.

We thus get, for a threshold parameter a < 0.5 that we will set in a moment,

st(S) <
∑

T∈T (S)

⎛

⎝
aN∑

j=0

(
N/2

j

)

·
(

5N/2 − h

N/2 + j + 1

)

· 1

2j
+

N/2∑

j=aN+1

O
(
5.2852N

)
· 1

2j

⎞

⎠ .

The terms in the first sum over j increase when a ≤ 0.5, so the sum is at most
N/2 times its last term. Using Stirling’s formula and ignoring the effect of h, we
get that for a ≈ 0.1152, the last term in the first sum is Θ∗ (5.2852N/2aN

)
=

O
(
4.8795N

)
. Since this also bounds the second sum, we get

st(S) <
∑

T∈T (S)

O
(
4.8795N

)
= O

(
4.8795N

)
· tr(S) .

(a was optimized numerically.)



Counting Plane Graphs: Flippability and Its Applications 533

Combining the bound just obtained with tr(N) < 30N [22] implies

Corollary 2. st(N) = O
(
146.385N

)
.

This improves all previous bounds, the smallest of which is O(158.6N) [5,22].

Forests. For a set S of N points in the plane, we denote by F(S) the set
of all crossing-free straight-edge forests (i.e., cycle-free graphs) of S, and put
f(S) := |F(S)|. Moreover, we let f(N) = max|S|=N f(S). Buchin and Schulz
[5] have recently shown that every crossing-free straight-edge graph contains
O
(
6.4884N

)
forests (improving the simpler bound O∗(6.75N), noted below).

Using this bound, we obtain

Theorem 3. For every set S of N points in the plane, f(S) = O
(
5.4723N

)
·

tr(S).

The proof is a simple adaptation of the proof of Theorem 2. For more details,
see the full version of the paper [14]. As in the previous cases, we can combine
this with the bound tr(N ) < 30N [22] to obtain

Corollary 3. f(N) = O
(
164.169N

)
.

This should be compared with the best previous upper bound O(194.7N ) [5,22].

2.3 The Number of Crossing-Free Straight-Edge Graphs with a
Bounded Number of Edges

In this subsection we derive an upper bound for the number of crossing-free
straight-edge graphs on a set S of N points in the plane, with some constraints on
the number of edges. Specifically, we bound the number of crossing-free straight-
edge graphs with at most cN edges (for 0 < c ≤ 5/4) and the number of crossing-
free straight-edge graphs with at least cN edges (for 7/4 ≤ c < 3).

For a set S of N points in the plane and a constant 0 < c ≤ 3, we denote by
Pc(S) (resp., P̄c(S)) the set of all crossing-free straight-edge graphs of S with
at most cN edges (resp., at least cN edges), and put pgc(S) := |Pc(S)| (resp.,
p̄gc(S) :=

∣
∣P̄c(S)

∣
∣).

For c ≤ 1.5, we can obtain a trivial upper bound for pgc(S) by bounding
the maximal number of such crossing-free straight-edge graphs that any fixed
triangulation of S can contain. Using Stirling’s formula, we have

pgc(S) < tr(S) ·
((

3N

0

)

+
(

3N

1

)

+ · · ·+
(

3N

cN

))

= O∗
(

tr(S) ·
(

3N

cN

))

= O∗
(

tr(S) ·
(

27
cc · (3− c)3−c

)N
)

.

For example, the above implies that there are at most O∗ (6.75N
)
·tr(S) crossing-

free straight-edge graphs with at most N edges, over every set S of N points in
the plane. In particular, this is also an upper bound on the number of crossing-
free straight-edge forests on S (a bound already observed in [1] and mentioned



534 M. Hoffmann et al.

above), or of spanning trees, or of spanning cycles. Of course, better bounds
exist for these three special cases, as demonstrated earlier in this paper for the
first two bounds. A bound for the number of graphs with a least c ≥ 1.5 edges
can be obtained symmetrically.

We now present a theorem that improves these trivial bounds. For the proof,
together with a couple of applications, see the full version [14].

Theorem 4. For every set S of N points in the plane and 0 < c ≤ 5/4,

pgc(S)
tr(S)

= O∗
((

55/2

8(c + t− 1/2)c+t−1/2(3− c− t)3−c−t(2t)t(1/2− t)1/2−t

)N)

,

where t =
(√

(7/2)2 + 3c + c2 − 5/2− c
)

/2. The same upper bound also applies
to p̄gc(S)/tr(S) when 7/4 ≤ c < 3.

3 Conclusion

In this paper we have introduced the notion of pseudo-simultaneously flippable
edges in triangulations, have shown that many such edges always exist, and
have used them to obtain several refined bounds on the number of crossing-free
straight-edge graphs on a fixed (labeled) set of N points in the plane. The paper
raises several open problems and directions for future research.

One such question is whether it is possible to further extend the notion of
ps-flippability. For example, one could consider, within a fixed triangulation T ,
the set of diagonals of a collection of pairwise interior-disjoint simple, but not
necessarily convex, polygons. The number of such diagonals is likely to be larger
than the size of the maximal set of ps-flippable edges, but it not clear how large
is the number of triangulations that can be obtained by redrawing diagonals.

We are currently working on two extensions to this work. The first extends
our techniques to the cases of crossing-free straight-edge perfect matchings and
spanning (Hamiltonian) cycles. This is done within the linear-algebra frame-
work introduced by Kasteleyn (see [4,17]). The second work studies charging
schemes in which the charge is moved across certain objects belonging to differ-
ent crossing-free straight-edge graphs over the same point set. This cross-graph
charging scheme allows us to obtain bounds that do not depend on the current
upper bound for tr(N) (or depend on tr(N) in a non-linear fashion).

References

1. Aichholzer, O., Hackl, T., Huemer, Hurtado, F., Krasser, H., Vogtenhuber, B.: On
the number of plane geometric graphs. Graph. Comb. 23(1), 67–84 (2007)

2. Ajtai, M., Chvátal, V., Newborn, M.M., Szemerédi, E.: Crossing-free subgraphs.
Annals Discrete Math. 12, 9–12 (1982)

3. Bose, P., Hurtado, F.: Flips in planar graphs. Comput. Geom. Theory Appl. 42(1),
60–80 (2009)



Counting Plane Graphs: Flippability and Its Applications 535

4. Buchin, K., Knauer, C., Kriegel, K., Schulz, A., Seidel, R.: On the number of cycles
in planar graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 97–107.
Springer, Heidelberg (2007)

5. Buchin, K., Schulz, A.: On the number of spanning trees a planar graph can have.
In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 110–121. Springer,
Heidelberg (2010)

6. De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms
and Applications. Springer, Berlin (2010)

7. Denny, M.O., Sohler, C.A.: Encoding a triangulation as a permutation of its point
set. In: Proc. 9th Canadian Conf. on Computational Geometry, pp. 39–43 (1997)

8. Dumitrescu, A., Schulz, A., Sheffer, A., Tóth, C.D.: Bounds on the maximum multi-
plicity of some common geometric graphs. In: Proc. 28th International Symposium
on Theoretical Aspects of Computer Science, pp. 637–648 (2011)

9. Fortune, S.: Voronoi diagrams and Delaunay triangulations. In: Du, D.A., Hwang,
F.K. (eds.) Euclidean Geometry and Computers, pp. 193–233. World Scientific
Publishing Co., New York (1992)

10. Galtier, J., Hurtado, F., Noy, M., Pérennes, S., Urrutia, J.: Simultaneous edge
flipping in triangulations. Internat. J. Comput. Geom. Appl. 13(2), 113–133 (2003)

11. Garćıa-Lopez, J., Nicolás, M.: Planar point sets with large minimum convex par-
titions. In: Proc. 22nd Euro. Workshop Comput. Geom., Delphi, pp. 51–54 (2006)

12. Garćıa, A., Noy, M., Tejel, J.: Lower bounds on the number of crossing-free sub-
graphs of KN . Comput. Geom. Theory Appl. 16(4), 211–221 (2000)

13. Hjelle, Ø., Dæhlen, M.: Triangulations and Applications. Springer, Berlin (2009)
14. Hoffmann, M., Sharir, M., Sheffer, A., Tóth, C.D., Welzl, E.: Counting Plane

Graphs: Flippability and its Applications, arXiv:1012.0591
15. Hosono, K.: On convex decompositions of a planar point set. Discrete Math. 309,

1714–1717 (2009)
16. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Com-

put. Geom. 22, 333–346 (1999)
17. Lovász, L., Plummer, M.: Matching theory. North Holland, Amsterdam (1986)
18. Razen, A., Snoeyink, J., Welzl, E.: Number of crossing-free geometric graphs vs.

triangulations. Electronic Notes in Discrete Math. 31, 195–200 (2008)
19. Ribó, A.: Realizations and Counting Problems for Planar Structures: Trees and

Linkages, Polytopes and Polyominos, Ph.D. thesis. Freie Universität Berlin (2005)
20. Rote, G.: The number of spanning trees in a planar graph. Oberwolfach Reports 2,

969–973 (2005)
21. Santos, F., Seidel, R.: A better upper bound on the number of triangulations of a

planar point set. J. Combinat. Theory Ser. A 102(1), 186–193 (2003)
22. Sharir, M., Sheffer, A.: Counting triangulations of planar point sets. Electr. J.

Comb. 18(1) (2011), arXiv:0911.3352v2
23. Sharir, M., Welzl, E.: Random triangulations of planar point sets. In: Proc. 17th

Ann. ACM-SIAM Symp. on Discrete Algorithms, pp. 860–869 (2006)
24. Souvaine, D.L., Tóth, C.D., Winslow, A.: Simultaneously flippable edges in trian-

gulations. In: Proc. XIV Spanish Meeting on Comput. Geom. (to appear, 2011)
25. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press,

Cambridge (1999)
26. Urrutia, J.: Open problem session. In: Proc. 10th Canadian Conference on Com-

putational Geometry. McGill University, Montréal (1998)
27. Wagner, K.: Bemerkungen zum Vierfarbenproblem. J. Deutsch. Math.-Verein. 46,

26–32 (1936)



Geometric Computations on Indecisive Points�

Allan Jørgensen1, Maarten Löffler2, and Jeff M. Phillips3

1 MADALGO
2 University of California, Irvine

3 University of Utah

Abstract. We study computing with indecisive point sets. Such points
have spatial uncertainty where the true location is one of a finite num-
ber of possible locations. This data arises from probing distributions a
few times or when the location is one of a few locations from a known
database. In particular, we study computing distributions of geometric
functions such as the radius of the smallest enclosing ball and the di-
ameter. Surprisingly, we can compute the distribution of the radius of
the smallest enclosing ball exactly in polynomial time, but computing
the same distribution for the diameter is #P-hard. We generalize our
polynomial-time algorithm to all LP-type problems. We also utilize our
indecisive framework to deterministically and approximately compute on
a more general class of uncertain data where the location of each point
is given by a probability distribution.

1 Introduction

We consider uncertain data point sets where each element of the set is not known
exactly, but rather is represented by a finite set of candidate elements, possibly
weighted, describing the finite set of possible true locations of the data point. The
weight of a candidate location governs the probability that the data point is at
that particular location. We call a point under this representation an indecisive
point. Given indecisive input points we study computing full probability distri-
butions (paramount for downstream analysis) over the value of some geometric
query function, such as the radius of the smallest enclosing ball.

Indecisive points appear naturally in many applications. They play an impor-
tant role in databases [7,1,6,5,14], machine learning [3], and sensor networks [18]
where a limited number of probes from a certain data set are gathered, each
potentially representing the true location of a data point. Alternatively, data
points may be obtained using imprecise measurements or are the result of inex-
act earlier computations.

We can generalize the classification of indecisive points to when the true loca-
tion of each data point is described by a probability distribution. We call these
points uncertain points. In addition to indecisive points, this general class also
� The second author is funded by NWO under the GOGO project and the Office of

Naval Research under grant N00014-08-1-1015; the third author is supported by a
subaward to the University of Utah under NSF award 0937060 to CRA.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 536–547, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Geometric Computations on Indecisive Points 537

includes for instance multivariate normal distributions and all points within a
unit disk. More broadly, these data points could represent any (uncertain) geo-
metric object, such as a hyperplane or disc; but since these objects can usually
be dualized to points, our exposition will focus on points.

Related work on uncertain points. One of the earliest models for uncertain
points was a simple circular region [8], where each point has an infinite set of
possible locations: all locations inside a given unit disk. This model has received
considerable attention since [2,9] and can be extended to more complicated re-
gions [16]. Most work in these models focuses on computing the minimum or
maximum possible values of a query.

The full model of uncertain points, where each point’s location is repre-
sented by a probability distribution, has received much less attention in the
algorithms community, mainly because its generality is difficult to handle and
exact solutions seem impossible for all but the most simple questions. Löffler
and Phillips [11] study simple randomized algorithms.

There has also been a recent flurry of activity in the database community [7]
on problems such as indexing [14], clustering [6], and histogram building [5].
However, the results with detailed algorithmic analysis generally focus on one-
dimensional data; furthermore, they often only return the expected value or the
most likely answer instead of calculating a full distribution.

Contribution. We study several geometric measures on sets of indecisive points
in Section 2. We compute an exact distribution over the values that these mea-
sures can take, not just an expected or most-likely value. Surprisingly, while for
some measures we present polynomial time algorithms (e.g. for the radius of the
smallest enclosing ball), other seemingly very similar measures either are #P-
Hard (e.g. the diameter) or have a solution size exponential in the number of
indecisive input points (e.g. the area of the convex hull). In particular, we show
that the family of problems which admit polynomial-time solutions includes all
LP-type problems [13] with constant combinatorial dimension. #P-hardness re-
sults for indecisive data have been shown before [7], but the separation has not
been understood as precisely, nor from a geometric perspective.

In Section 3 we extend the above polynomial-time algorithms to uncertain
points. We describe detailed results for data points endowed with multivariate
normal distributions representing their location. We deterministically reduce un-
certain points to indecisive points by creating ε-samples (aka ε-approximations)
of their distributions; however, this is not as straightforward as it may seem.
It requires a structural theorem (Theorem 4) describing a special range space
which can account for the dependence among the distributions, dependence that
is created by the measure being evaluated. This is required even when the dis-
tributions themselves are independent because once an ε-sample has been fixed
for one uncertain point, the other ε-samples need to account for the interaction
of those fixed points with the measure. All together, these results build impor-
tant structure required to transition between sets of continuous and discrete
distributions with bounded error, and may be of independent interest.



538 A. Jørgensen, M. Löffler, and J.M. Phillips

These results provide a deterministic alternative to some of the results in [11].
The determinism in these algorithms is important when there can be no prob-
ability of failure, the answer needs to be identical each time it is computed, or
when each indecisive point has a small constant number of possible locations.
For space, several proofs and extensions are deferred to a full version.

2 Exact Computations on Indecisive Point Sets

In this section, we assume that we are given a set of n indecisive points, that
is, a collection Q = {Q1, Q2, . . . , Qn} of n sets containing k points each, so
Qi = {qi1, qi2, . . . , qik}. We say that a set P of n points is a support from Q if
it contains exactly one point from each set Qi, that is, if P = {p1, p2, . . . , pn}
with pi ∈ Qi. In this case we also write P � Q.

When given a set of indecisive points, we assume that each indecisive point
is at each of its locations with a fixed probability. Often these probabilities are
equal, but for completeness, we describe our algorithms for when each point
has a distinct probability of being the true position. For each Qi ∈ Q and each
qij ∈ Qi, let w(qij) be a positive weight. We enforce

∑k
j=1 w(qij) = k, and

w(qij)/k is the probability that qij is the true position of Qi.
We let f denote the function we are interested in computing on Q, that is, f

takes a set of n points as input and computes a single real number as output.
Since Q is indecisive, the value of f is not fixed, rather we are interested in
the distribution of the possible values. We show that for some measures, we can
compute this distribution in polynomial time, while for others it is #P-hard or
the solution itself has size exponential in n.

2.1 Polynomial Time Algorithms

We are interested in the distribution of the value f(P ) for each support P � Q.
Since there are kn possible supports, in general we cannot hope to do anything
faster than that without making additional assumptions about f . Define f̃(Q, r)
as the fraction (measured by weight) of supports of Q for which f gives a value
smaller than or equal to r. We start with a simple example and then generalize.
In this version, for simplicity, we assume general position and that kn can be
described by O(1) words.

Smallest enclosing disk. Consider the problem where f measures the radius
of the smallest enclosing disk of a support and let all weights be uniform so
w(qi,j) = 1 for all i and j.

Evaluating f̃(Q, r) in time polynomial in n and k is not completely trivial
since there are kn possible supports. However, we can make use of the fact that
each smallest enclosing disk is in fact defined by a set of at most 3 points that
lie on the boundary of the disk. For each support P � Q we define BP ⊆ P to
be this set of at most 3 points, which we call the basis for P . Bases have the
property that f(P ) = f(BP ).



Geometric Computations on Indecisive Points 539

Now, to avoid having to test an exponential number of supports, we define a
potential basis to be a set of at most 3 points in Q such that each point is from
a different Qi. Clearly, there are less than (nk)3 possible potential bases, and
each support P � Q has one as its basis. Now, we only need to count for each
potential basis the number of supports it represents. Counting the number of
samples that have a certain basis is easy for the smallest enclosing circle. Given
a basis B, we count for each indecisive point Q that does not contribute a point
to B itself how many of its members lie inside the smallest enclosing circle of B,
and then we multiply these numbers.

Now, for each potential basis B we have two values: the number of supports
that have B as their basis, and the value f(B). We can sort these O((nk)3) pairs
on the value of f , and the result provides us with the required distribution. We
spend O(nk) time per potential basis for counting the points inside and O(n)
time for multiplying these values, so combined with O((nk)3) potential bases
this gives O((nk)4) total time.

Theorem 1. Let Q be a set of n sets of k points. In O((nk)4) time, we can
compute a data structure of O((nk)3) size that can tell us in O(log(nk)) time
for any value r how many supports of P � Q satisfy f(P ) ≤ r.

LP-type problems. The approach described above also works for measures
f : Q → R other than the smallest enclosing disk. In particular, it works for
LP-type problems [13] that have constant combinatorial dimension. An LP-type
problem provides a set of constraints H and a function ω : 2H → R with the
following two properties:

Monotonicity: For any F ⊆ G ⊆ H , ω(F ) ≤ ω(G).
Locality: For any F ⊆ G ⊆ H with ω(F ) = ω(G) and an h ∈ H such that

ω(G ∪ h) > ω(G) implies that ω(F ∪ h) > ω(F ).

A basis for an LP-type problem is a subset B ⊂ H such that ω(B′) < ω(B) for
all proper subsets B′ of B. And we say that B is a basis for a subset G ⊆ H if
B ⊆ G, ω(B) = ω(G) and B is a basis. A constraint h ∈ H violates a basis B if
w(B∪h) > w(B). The radius of the smallest enclosing ball is an LP-type problem
(where the points are the constraints and ω(·) = f(·)) as are linear programming
and many other geometric problems. Let the maximum cardinality of any basis
be the combinatorial dimension of a problem.

For our algorithm to run efficiently, we assume that our LP-type problem has
available the following algorithmic primitive, which is often assumed for LP-
type problems with constant combinatorial dimension [13]. For a subset G ⊂ H
where B is known to be the basis of G and a constraint h ∈ H , a violation
test determines in O(1) time if ω(B ∪ h) > ω(B); i.e., if h violates B. More
specifically, given an efficient violation test, we can ensure a stronger algorithmic
primitive. A full violation test is given a subset G ⊂ H with known basis B and
a constraint h ∈ H and determines in O(1) time if ω(B) < ω(G∪h). This follows
because we can test in O(1) time if ω(B) < ω(B ∪ h); monotonicity implies
that ω(B) < ω(B ∪ h) only if ω(B) < ω(B ∪ h) ≤ ω(G ∪ h), and locality



540 A. Jørgensen, M. Löffler, and J.M. Phillips

implies that ω(B) = ω(B ∪ h) only if ω(B) = ω(G) = ω(G ∪ h). Thus we can
test if h violates G by considering just B and h, but if either monotonicity or
locality fail for our problem we cannot.

We now adapt our algorithm to LP-type problems where elements of each Qi

are potential constraints and the ranking function is f . When the combinatorial
dimension is a constant β, we need to consider only O((nk)β) bases, which will
describe all possible supports.

The full violation test implies that given a basis B, we can measure the sum
of probabilities of all supports of Q that have B as their basis in O(nk) time.
For each indecisive point Q such that B ∩Q = ∅, we sum the probabilities of all
elements of Q that do not violate B. The product of these probabilities times the
product of the probabilities of the elements in the basis, gives the probability of
B being the true basis. See Algorithm 2.1 where the indicator function applied
1(f(B∪{qj}) = f(B)) returns 1 if qj does not violate B and 0 otherwise. It runs
in O((nk)β+1) time.

Algorithm 2.1. Construct Probability Distribution for f(Q)
1: for all potential bases B ⊂ P � Q do
2: for i = 1 to n do
3: if there is a j such that qij ∈ B then
4: Set wi = w(qij).
5: else
6: Set wi =

∑k
j=1 w(qij)1(f(B ∪ {qj}) = f(B)).

7: Store a point with value f(B) and weight (1/kn)
∏

i wi.

As with the special case of smallest enclosing disk, we can create a distribution
over the values of f given an indecisive point set Q. For each basis B we calculate
μ(B), the summed probability of all supports that have basis B, and f(B). We
can then sort these pairs according to the value as f again. For any query value
r, we can retrieve f̃(Q, r) in O(log(nk)) time and it takes O(n) time to describe
(because of its long length).

Theorem 2. Given a set Q of n indecisive point sets of size k each, and given
an LP-type problem f : Q → R with combinatorial dimension β, we can create
the distribution of f over Q in O((nk)β+1) time. The size of the distribution is
O(n(nk)β).

If we assume general position of Q relative to f , then we can often slightly
improve the runtime needed to calculate μ(B) using range searching data struc-
tures. However, to deal with degeneracies, we may need to spend O(nk) time
per basis, regardless.

If we are content with an approximation of the distribution rather than an
exact representation, then it is often possible to drastically reduce the storage
and runtime. This requires the definition of ε-quantizations [11], which is delayed
until Section 3 where it is discussed in more detail.



Geometric Computations on Indecisive Points 541

Measures that fit in this framework for points in R
d include smallest enclosing

axis-aligned rectangle (measured either by area or perimeter) (β = 2d), smallest
enclosing ball in the L1, L2, or L∞ metric (β = d+1), directional width of a set
of points (β = 2), and, after dualizing, linear programming (β = d).

2.2 Hardness Results

In this section, we examine some extent measures that do not fit in the above
framework. First, diameter does not satisfy the locality property, and hence we
cannot efficiently perform the full violation test. We show that a decision variant
of diameter is #P-Hard, even in the plane, and thus (under the assumption that
#P 
= P), there is no polynomial time solution. Second, the area of the convex
hull does not have a constant combinatorial dimension, thus we can show the
resulting distribution may have exponential size.
Diameter. The diameter of a set of points in the plane is the largest distance
between any two points. We will show that the counting problem of computing
f̃(Q, r) is #P-hard when f denotes the diameter.

Problem 1. PLANAR-DIAM: Given a parameter d and a set Q = {Q1, . . . , Qn}
of n sets, each consisting of k points in the plane, how many supports P � Q
have f(P ) ≤ d?

We will now prove that Problem 1 is #P-hard. Our proof has three steps. We
first show a special version of #2SAT has a polynomial reduction from Mono-
tone #2SAT, which is #P-complete [15]. Then, given an instance of this special
version of #2SAT, we construct a graph with weighted edges on which the
diameter problem is equivalent to this #2SAT instance. Finally, we show the
graph can be embedded as a straight-line graph in the plane as an instance of
PLANAR-DIAM.

Let 3CLAUSE-#2SAT be the problem of counting the number of solutions to
a 2SAT formula, where each variable occurs in at most three clauses, and each
variable is either in exactly one clause or is negated in exactly one clause. Thus,
each distinct literal appears in at most two clauses.

Lemma 1. Monotone #2SAT has a polynomial reduction to 3CLAUSE-#2SAT.

We convert this problem into a graph problem by, for each variable xi, creating a
set Qi = {p+

i , p−i } of two points. Let Q =
⋃
i Qi. Truth assignments of variables

correspond to a support as follows. If xi is set TRUE, then the support includes
p+
i , otherwise the support includes p−i . We define a distance function f between

points, so that the distance is greater than d (long) if the corresponding literals
are in a clause, and less than d (short) otherwise. If we consider the graph formed
by only long edges, we make two observations. First, the maximum degree is 2,
since each literal is in at most two clauses. Second, there are no cycles since a
literal is only in two clauses if in one clause the other variable is negated, and
negated variables are in only one clause. These two properties imply we can use
the following construction to show that the PLANAR-DIAM problem is as hard
as counting Monotone #2SAT solutions, which is #P-complete.



542 A. Jørgensen, M. Löffler, and J.M. Phillips

Lemma 2. An instance of PLANAR-DIAM reduced from 3CLAUSE-#2SAT
can be embedded so Q ⊂ R

2.

Proof. Consider an instance of 3CLAUSE-#2SAT where there are n variables,
and thus the corresponding graph has n sets {Qi}ni=1. We construct a sequence
Γ of n′ ∈ [2n, 4n] points. It contains all points from Q and a set of at most as
many dummy points. First organize a sequence Γ ′ so if two points q and p have
a long edge, then they are consecutive. Now for any pair of consecutive points in
Γ ′ which do not have a long edge, insert a dummy point between them to form
the sequence Γ . Also place a dummy point at the end of Γ .

We place all points on a circle C of diameter d/ cos(π/n′), see Figure 1. We
first place all points on a semicircle of C according to the order of Γ , so each
consecutive points are π/n′ radians apart. Then for every other point (i.e. the
points with an even index in the ordering Γ ) we replace it with its antipodal
point on C, so no two points are within 2π/n′ radians of each other. Finally we
remove all dummy points. This completes the embedding of Q, we now need to
show that only points with long edges are further than d apart.

Fig. 1. Embedded

points are solid, at cen-

ter of circles of radius d.

Dummy points hollow.

Long edges are drawn.

We can now argue that only vertices which were con-
secutive in Γ are further than d apart, the remainder
are closer than d. Consider a vertex p and a circle Cp
of radius d centered at p. Let p′ be the antipodal point
of p on C. Cp intersects C at two points, at 2π/n′ radi-
ans in either direction from p′. Thus only points within
2π/n′ radians of p′ are further than a distance d from p.
This set includes only those points which are adjacent
to p in Γ , which can only include points which should
have a long edge, by construction. ��

Combining Lemmas 1 and 2:

Theorem 3. PLANAR-DIAM is #P-hard.

Convex hull. Our LP-type framework also does not work for any properties
of the convex hull (e.g. area or perimeter) because it does not have constant
combinatorial dimension; a basis could have size n. In fact, the complexity of
the distribution describing the convex hull may be Ω(kn), since if all points in
Q lie on or near a circle, then every support P � Q may be its own basis of size
n, and have a different value f(P ).

3 Approximate Computations on Uncertain Points

Perhaps the most general way to model an imprecise point is by providing a
full probability distribution over R

d; all popular simpler models can be seen
as special cases of this. However, probability distributions can be difficult to
handle, specifically, it is often impossible to do exact computations on them. In
this section we show how the results from Section 2 can be used to approximately



Geometric Computations on Indecisive Points 543

answer questions about uncertain points by representing each distribution by a
discrete point set, resulting in a set of indecisive points.

In this section, we are given a set X = {X1, X2, X3, . . . , Xn} of n inde-
pendent random variables over the universe R

d, together with a set M =
{μ1, μ2, μ3, . . . , μn} of n probability distributions that govern the variables, that
is, Xi ∼ μi. We call a set of points P = {p1, p2, p3, . . . , pn} a support of X , and
because of the independence we have probability Pr[X = P ] =

∏
i Pr[Xi = pi].

As before, we are interested in functions f that measure something about a
point set. We now define f̂(X , r) as the probability that a support P drawn from
M satisfies f(P ) ≤ r. In most cases, we cannot evaluate this function exactly, but
previous work [11] describes a Monte Carlo algorithm for approximating f̂(X , r).
Here we show how to make this approximate construction deterministic.

To approximate f̂(X , r), we construct an ε-quantization [11]. Let g : R →
R

+ be a distribution so
∫

R
g(x) dx = 1, and let G be its integral so G(t) =

∫ t
−∞ g(x) dx. Then G : R → [0, 1] is a cumulative density function. Also, let R

be a set of points in R, that is, a set of values. Then R induces a function HR

where HR(v) = |{r∈R|r≤v}|
|R| , that is, HR(v) describes the fraction of points in R

with value at most v. We say that R is an ε-quantization of g if HR approximates
G within ε, that is, for all values v we have |HR(v) − G(v)| ≤ ε. Note that we
can apply techniques from [11] to deterministically reduce the exact distributions
created in Section 2 to ε-quantizations of size O(1/ε).

The main strategy will be to replace each distribution μi by a discrete point
set Qi, such that the uniform distribution over Qi is “not too far” from μi (Qi

is not the most obvious ε-sample of μi). Then we apply the algorithms from
Section 2 to the resulting set of point sets. Finally, we argue that the result is in
fact an ε-quantization of the distribution we are interested in, and we show how
to simplify the output in order to decrease the space complexity for the data
structure, without increasing the approximation factor too much.

Range spaces and ε-samples. Before we describe the algorithms, we need
to formally define range spaces and ε-samples. Given a set of elements Y let
A ⊂ 2Y be a family of subsets of Y . For instance, if Y is a point set, A could
be all subsets defined by intersection with a ball. A pair T = (Y,A) is called a
range space.

We say a set of ranges A shatters a set Y if for every subset Y ′ ⊆ Y there
exists some A ∈ A such that Y ′ = Y ∩A. The size of the largest subset Y ′ ⊆ Y
that A shatters is the VC-dimension [17] of T = (Y,A), denoted νT .

Let μ : Y → R
+ be a measure on Y . For discrete sets Y μ is cardinality, for

continuous sets Y μ is a Lebesgue measure. An ε-sample (often referred to by
the generic term ε-approximation) of a range space T = (Y,A) is a subset S ⊂ Y

such that ∀A ∈ A :
∣
∣
∣
∣
μ(A ∩ S)

μ(S)
− μ(A ∩ Y )

μ(Y )

∣
∣
∣
∣ ≤ ε. A random subset S ⊂ Y of size

O((1/ε2)(νT + log(1/δ))) is an ε-sample with probability at least 1− δ [17,10].
For a range space T = (Y,A) with Y discrete and μ(Y ) = n, there are also
deterministic algorithms to generate ε-samples of size O((νT /ε2) log(1/ε)) in
time O(ν3νT

T n((1/ε2) log(νT /ε))νT ) [4]. Or when the ranges A are defined by the



544 A. Jørgensen, M. Löffler, and J.M. Phillips

intersection of k oriented slabs (i.e. axis-aligned rectangles with k = d), then
an ε-sample of size O((k/ε) log2k(1/ε)) can be deterministically constructed in
O((n/ε3) log6k(1/ε)) time [12].

In the continuous setting, we can think of each point y ∈ Y as representing
μ(y) points, and for simplicity represent a weighted range space as (μ,A) when
the domain of the function μ is implicitly known to be Y (often R

2 or R
d).

Phillips [12] studies ε-samples for such weighted range spaces with ranges defined
as intersection of k intervals; the full version extends this.

General approach (KEY CONCEPTS). Given a distribution μi : R
2 →

R
+ describing uncertain point Xi and a function f of bounded combinatorial

dimension β defined on a support of X , we can describe a straightforward range
space Ti = (μi,Af ), where Af is the set of ranges corresponding to the bases of f
(e.g., when f measures the radius of the smallest enclosing ball, Af would be the
set of all balls). More formally, Af is the set of subsets of R

d defined as follows:
for every set of β points which define a basis B for f , Af contains a range A that
contains all points p such that f(B) = f(B ∪ {p}). However, taking ε-samples
from each Ti is not sufficient to create sets Qi such that Q = {Q1, Q2, . . . , Qn}
so for all r we have |f̃(Q, r)− f̂(X , r)| ≤ ε.

f̂(X , r) is a complicated joint probability depending on the n distributions
and f , and the n straightforward ε-samples do not contain enough information
to decompose this joint probability. The required ε-sample of each μi should
model μi in relation to f and any instantiated point qi representing μj for i 
= j.
The following crucial definition allows for the range space to depend on any n−1
points, including the possible locations of each uncertain point.

Let Af,n describe a family of Lebesgue-measurable sets defined by n − 1
points Z ⊂ R

d and a value w. Specifically, A(Z, w) ∈ Af,n is the set of points
{p ∈ R

d | f(Z ∪ p) ≤ w}. We describe examples of Af,n in detail shortly, but
first we state the key theorem using this definition. Its proof, delayed until after
examples of Af,n, will make clear how (μi,Af,n) exactly encapsulates the right
guarantees to approximate f̂(X , r), and thus why (μi,Af ) does not.

Theorem 4. Let X = {X1, . . . , Xn} be a set of uncertain points where each
Xi ∼ μi. For a function f , let Qi be an ε′-sample of (μi,Af,n) and let Q =

{Q1, . . . , Qn}. Then for any r,
∣
∣
∣f̂(X , r) − f̃(Q, r)

∣
∣
∣ ≤ ε′n.

Smallest axis-aligned bounding box by perimeter. Given a set of points
P ⊂ R

2, let f(P ) represent the perimeter of the smallest axis-aligned box that
contains P . Let each μi be a bivariate normal distribution with constant variance.
Solving f(P ) is an LP-type problem with combinatorial dimension β = 4, and
as such, we can describe the basis B of a set P as the points with minimum and
maximum x- and y-coordinates. Given any additional point p, the perimeter of
size ρ can only be increased to a value w by expanding the range of x-coordinates,
y-coordinates, or both. As such, the region of R

2 described by a range A(P, w) ∈
Af,n is defined with respect to the bounding box of P from an edge increasing
the x-width or y-width by (w − ρ)/2, or from a corner extending so the sum of
the x and y deviation is (w − ρ)/2. See Figure 2(Left).



Geometric Computations on Indecisive Points 545

Since any such shape defining a range A(P, w) ∈ Af,n can be described as
the intersection of k = 4 slabs along fixed axis (at 0◦, 45◦, 90◦, and 135◦), we
can construct an (ε/n)-sample Qi of (μi,Af,n) of size k = O((n/ε) log8(n/ε))
in O((n6/ε6) log27(n/ε)) time [12]. From Theorem 4, it follows that for Q =
{Q1, . . . , Qn} and any r we have

∣
∣
∣f̂(X , r) − f̃(Q, r)

∣
∣
∣ ≤ ε.

We can then apply Theorem 2 to build an ε-quantization of f(X ) in O((nk)5) =
O(((n2/ε) log8(n/ε))5) = O((n10/ε5) log40(n/ε)) time. The size can be reduced
to O(1/ε) within that time bound.

Corollary 1. Let X = {X1, . . . , Xn} be a set of indecisive points where each
Xi ∼ μi is bivariate normal with constant variance. Let f measure the perime-
ter of the smallest enclosing axis-aligned bounding box. We can create an ε-
quantization of f(X ) in O((n10/ε5) log40(n/ε)) time of size O(1/ε).

Smallest enclosing disk. Given a set of points P ⊂ R
2, let f(P ) represent

the radius of the smallest enclosing disk of P . Let each μi be a bivariate normal
distribution with constant variance. Solving f(P ) is an LP-type problem with
combinatorial dimension β = 3, and the basis B of P generically consists of
either 3 points which lie on the boundary of the smallest enclosing disk, or 2
points which are antipodal on the smallest enclosing disk. However, given an
additional point p ∈ R

2, the new basis Bp is either B or it is p along with 1 or
2 points which lie on the convex hull of P .

We can start by examining all pairs of points pi, pj ∈ P and the two disks
of radius w whose boundary circles pass through them. If one such disk Di,j

contains P , then Di,j ⊂ A(P, w) ∈ Af,|P |+1. For this to hold, pi and pj must lie
on the convex hull of P and no point that lies between them on the convex hull
can contribute to such a disk. Thus there are O(n) such disks. We also need to
examine the disks created where p and one other point pi ∈ P are antipodal.
The boundary of the union of all such disks which contain P is described by part
of a circle of radius 2w centered at some pi ∈ P . Again, for such a disk Bi to
describe a part of the boundary of A(P, w), the point pi must lie on the convex
hull of P . The circular arc defining this boundary will only connect two disks
Di,j and Dk,i because it will intersect with the boundary of Bj and Bk within
these disks, respectively. An example of A(P, w) is shown in Figure 2(Middle).

Fig. 2. Left: A shape from Af,n for axis-aligned bounding box, measured by perimeter.
Middle: A shape from Af,n for smallest enclosing ball using the L2 metric. The curves
are circular arcs of two different radii. Right: The same shape divided into wedges from
Wf,n.



546 A. Jørgensen, M. Löffler, and J.M. Phillips

Unfortunately, the range space (R2,Af,n) has VC-dimension O(n); it has O(n)
circular boundary arcs. So, creating an ε-sample of Ti = (μi,Af,n) would take
time exponential in n. However, we can decompose any range A(P, w) ∈ Af,n
into at most 2n “wedges.” We choose one point y inside the convex hull of P . For
each circular arc on the boundary of A(P, w) we create a wedge by coning that
boundary arc to y. LetWf describe all wedge shaped ranges. Then S = (R2,Wf)
has VC-dimension νS at most 9 since it is the intersection of 3 ranges (two half-
spaces and one disk) that can each have VC-dimension 3. We can then create
Qi, an (ε/2n2)-sample of Si = (μi,Wf ), of size k = O((n4/ε2) log(n/ε)) in
O((n2/ε)5+2·9 log2+9(n/ε)) = O((n46/ε23) log11(n/ε)) time (proof in full ver-
sion). It follows that Qi is an (ε/n)-sample of Ti = (μi,Af,n), since any range
A(Z, w) ∈ Af,n can be decomposed into at most 2n wedges, each of which has
counting error at most ε/2n, thus the total counting error is at most ε.

Invoking Theorem 4, it follows that Q = {Q1, . . . , Qn}, for any r we have∣
∣
∣f̂(X , r) − f̃(Q, r)

∣
∣
∣ ≤ ε. We can then apply Theorem 2 to build an ε-quantization

of f(X ) in O((nk)4) = O((n20/ε8) log4(n/ε)) time. This is dominated by the time
for creating the n (ε/n2)-samples, even though we only need to build one and
then translate and scale to the rest. Again, the size can be reduced to O(1/ε)
within that time bound.

Corollary 2. Let X = {X1, . . . , Xn} be a set of indecisive points where each
Xi ∼ μi is bivariate normal with constant variance. Let f measure the ra-
dius of the smallest enclosing disk. We can create an ε-quantization of f(X )
in O((n46/ε23) log11(n/ε)) time of size O(1/ε).

Now that we have seen two concrete examples, we prove Theorem 4.

Proof of Theorem 4. When each Xi is drawn from a distribution μi, then we
can write f̂(X , r) as the probability that f(X ) ≤ r as follows. Let 1(·) be the
indicator function, i.e., it is 1 when the condition is true and 0 otherwise.

f̂(X , r) =
∫

p1

μ1(p1) . . .

∫

pn

μn(pn)1(f({p1, p2, . . . , pn}) ≤ r) dpndpn−1 . . . dp1

Consider the inner most integral
∫

pn

μn(pn)1(f({p1, p2, . . . , pn}) ≤ r) dpn, where

{p1, p2 . . . , pn−1} are fixed. The 1(·) = 1 when f({p1, p2, . . . , pn−1, pn}) ≤ r, and
hence pn is contained in a shape A({p1, . . . , pn−1}, r) ∈ Af,n. Thus if we have
an ε′-sample Qn for (μn,Af,n), then we can guarantee that∫

pn

μn(pn)1(f({p1, . . . , pn}) ≤ r) dpn ≤
1
|Qn|

∑

pn∈Qn

1(f({p1, . . . , pn}) ≤ r) + ε′.

We can then move the ε′ outside and change the order of the integrals to write:

f̂(X , r)≤ 1
|Qn|

∑

pn∈Qn

(∫

p1

μ1(p1)..
∫

pn−1

μn−1(pn−1)1(f({p1, .., pn}) ≤ r)dpn−1..dp1

)

+ε′.

Repeating this procedure n times, where Q =
⋃
i Qi, we get:

f̂(X , r) ≤
(

n∏

i=1

1
|Qi|

)
∑

p1∈Q1

. . .
∑

pn∈Qn

1(f({p1, . . . , pn}) ≤ r) + ε′n. = f̃(Q, r) + ε′n.



Geometric Computations on Indecisive Points 547

Similarly we can achieve a symmetric lower bound for f̂(X , r). ��

Acknowledgements. We thank Joachim Gudmundsson and Pankaj Agarwal
for helpful discussions in early phases of this work, Sariel Har-Peled for discus-
sions about wedges, and Suresh Venkatasubramanian for organizational tips.

References

1. Agrawal, P., Benjelloun, O., Sarma, A.D., Hayworth, C., Nabar, S., Sugihara, T.,
Widom, J.: Trio: A system for data, uncertainty, and lineage. In: PODS (2006)

2. Bandyopadhyay, D., Snoeyink, J.: Almost-Delaunay simplices: Nearest neighbor
relations for imprecise points. In: SODA (2004)

3. Bi, J., Zhang, T.: Support vector classification with input data uncertainty. In:
NIPS (2004)

4. Chazelle, B., Matousek, J.: On linear-time deterministic algorithms for optimiza-
tion problems in fixed dimensions. Journal of Algorithms 21, 579–597 (1996)

5. Cormode, G., Garafalakis, M.: Histograms and wavelets of probabilitic data. In:
ICDE (2009)

6. Cormode, G., McGregor, A.: Approximation algorithms for clustering uncertain
data. In: PODS (2008)

7. Dalvi, N., Suciu, D.: Efficient query evaluation on probabilitic databases. The
VLDB Journal 16, 523–544 (2007)

8. Guibas, L.J., Salesin, D., Stolfi, J.: Epsilon geometry: building robust algorithms
from imprecise computations. In: SoCG (1989)

9. Held, M., Mitchell, J.S.B.: Triangulating input-constrained planar point sets. In-
formation Processing Letters 109(1) (2008)

10. Li, Y., Long, P.M., Srinivasan, A.: Improved bounds on the samples complexity of
learning. Journal of Computer and System Sciences 62, 516–527 (2001)

11. Löffler, M., Phillips, J.M.: Shape fitting on point sets with probability distributions.
In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 313–324. Springer,
Heidelberg (2009)

12. Phillips, J.M.: Algorithms for ε-approximations of terrains. In: Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008, Part I. LNCS, vol. 5125, pp. 447–458. Springer, Heidelberg (2008)

13. Sharir, M., Welzl, E.: A combinatorial bound for linear programming and related
problems. In: STACS (1992)

14. Tao, Y., Cheng, R., Xiao, X., Ngai, W.K., Kao, B., Prabhakar, S.: Indexing multi-
dimensional uncertain data with arbitrary probability density functions. In: VLDB
(2005)

15. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Jour-
nal on Computing 8, 410–421 (1979)

16. van Kreveld, M., Löffler, M.: Largest bounding box, smallest diameter, and re-
lated problems on imprecise points. Computational Geometry: Theory and Appli-
cations 43, 419–433 (2010)

17. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies
of events to their probabilities. Theory of Probability and its Applications 16,
264–280 (1971)

18. Zou, Y., Chakrabarty, K.: Uncertainty-aware and coverage-oriented deployment of
sensor networks. Journal of Parallel and Distributed Computing (2004)



Closest Pair and the Post Office Problem

for Stochastic Points

Pegah Kamousi1, Timothy M. Chan2, and Subhash Suri1

1 Computer Science, UC Santa Barbara, CA 93106
2 Computer Science, University of Waterloo, Ontario N2L3G1

Abstract. Given a (master) set M of n points in d-dimensional Eu-
clidean space, consider drawing a random subset that includes each point
mi ∈ M with an independent probability pi. How difficult is it to com-
pute elementary statistics about the closest pair of points in such a sub-
set? For instance, what is the probability that the distance between the
closest pair of points in the random subset is no more than �, for a given
value �? Or, can we preprocess the master set M such that given a query
point q, we can efficiently estimate the expected distance from q to its
nearest neighbor in the random subset? We obtain hardness results and
approximation algorithms for stochastic problems of this kind.

1 Introduction

Many years ago, Knuth [12] posed the now classic post-office problem, namely,
given a set of points in the plane, find the one closest to a query point q. The
problem, which is fundamental and arises as a basic building block of numerous
computational geometry algorithms and data structures [7], is reasonably well-
understood in small dimensions. In this paper, we consider a stochastic version
of the problem in which each post office may be closed with certain probability.
In other words, a given set of points M in d dimensions includes the locations
of all the post offices but on a typical day each post office mi ∈M is only open
with an independent probability pi. The set of points M together with their
probabilities form a probability distribution where each point mi is included in
a random subset of points with probability pi. Thus, given a query points q, we
now must talk about the expected distance from q to its closest neighbor in M .
Similarly, instead of simply computing the closest pair of points in a set, we must
ask: how likely is it that the closest pair of points are no more than � apart?

In this paper, we study the complexity of such elementary proximity problems
and establish both upper and lower bounds. In particular, we have a finite set of
points M in a d-dimensional Euclidean space, which constitutes our master set
of points, and hence the mnemonic M . Each member mi of M has probability pi
of being present and probability 1−pi of being absent. (Following the post-office
analogy, the ith post office is open with probability pi and closed otherwise.)
These probabilities are independent, but otherwise arbitrary, and lead to a sam-
ple space of 2n possible subsets, where a sample subset includes the ith point
with independent probability pi. We achieve the following results.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 548–559, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Closest Pair and the Post Office Problem for Stochastic Points 549

1. It is NP -Hard to compute the probability that the closest pair of points
have distance at most a value �, even for dimension 2 under the L∞ norm.

2. In the linearly-separable and bichromatic planar case, the closest pair prob-
ability can be computed in polynomial time under the L∞ norm.

3. Without the linear separability, even the bichromatic case is NP -Hard under
the L2 or L∞ norm.

4. Even with linear separability and L∞ norm, the bichromatic case becomes
NP -Hard in dimension d ≥ 3.

5. We give a linear-space data structure with O(log n) query time to compute
the expected distance of a given query point to its (1+ε)-approximate nearest
neighbor when the dimension d is a constant.

Related Work

A number of researchers have recently begun to explore geometric computing
over probabilistic data [1,2,14,19]. These studies are fundamentally different from
the classical geometric probability that deals with properties of random point
sets drawn from some infinite sets, such as points in unit square [11]. Instead,
the recent work in computational geometry is concerned with worst-case set of
objects and worst-case probabilities or behavior. In particular, the recent work
of Agarwal [1,2] deals with the database problem of skyline computation using a
multiple-universe model. The work of van Kreveld and Löffler [14,19] deals with
objects whose locations are randomly distributed in some uncertainty regions.
Unlike these results, our focus is not on the locational uncertainty but rather on
the discrete probabilities which which each point may appear.

2 The Stochastic Closest Pair Problem

We begin with the complexity of the stochastic closest pair problem, which asks
for the probability that the closest pair has distance at most a given bound �. We
will show that this basic problem is intractable, via reduction from the problem
of counting vertex covers in planar unit disk graphs (UDGs). In order to show
that even the bichromatic closest pair problem is hard, we also prove that a
corresponding vertex cover counting problem is hard for a bichromatic version
of the unit disk graphs.

2.1 Counting Vertex Covers in Unit Disk Graphs

The problem of counting the vertex covers in a graph [13,16,18] is the following.
Given a graph G = (V, E), how many subsets S ⊆ V constitute a vertex cover,
where S is a vertex cover of G if for each uv ∈ E, either u ∈ S or v ∈ S. (We
note that we are counting vertex covers and not minimum vertex covers.) This
problem is known to be #P-hard even for planar bipartite graphs with maximum
degree 4 [16]. Our reduction will use unit disk graphs (UDG), which are the



550 P. Kamousi, T.M. Chan, and S. Suri

intersection graphs of n equal-sized circles in the plane: each node corresponds
to a circle, and there is an edge between two nodes if the corresponding circles
intersect. We will first prove that the minimum vertex cover problem is hard for
planar unit disk graphs of maximum degree 3 (3-planar UDG), using which we
then prove that counting the vertex covers is also hard for 3-planar UDGs. We
will then extend this result to a special class of planar unit disk graphs, which
we call the rectilinear unit disk graphs (to be defined later). The first step in the
proof is the following well-known lemma of Valiant [17].

Lemma 1. A planar graph G = (V, E) with maximum degree 4 can be embed-
ded in the plane using O(|V |) area in such a way that its nodes are at integer
coordinates and its edges are drawn so that they are made up of line segments of
the form x = i or y = j, for integers i and j.

Throughout this section, we assume that the disks defining unit disk graphs have
radius 1. We use the notation d(P, Q) for the L2 distance between two sets P
and Q. (When using the L∞ or L1 norms, we will use d∞(P, Q) and d1(P, Q).)

Lemma 2. The minimum vertex cover problem is NP-hard for planar unit disk
graphs of maximum degree 3.

Proof. The reduction is from minimum vertex cover for planar graphs with max-
imum degree three [8]. Let G = (V, E) be an instance of such graphs. We embed
G in the plane according to Lemma 1. Let Gr = (Vr, Er) be the graph obtained
from this embedding by replacing each edge uv ∈ E by a path consisting of
even number 2kuv of intermediate nodes, each at distance ≤ 1 from the previ-
ous one, in such a way that the resulting graph is a unit disk graph. The value
kuv depends on the L1 distance between u and v in Gr. (To avoid unwanted
edges between the intermediate nodes on different edges, some scaling may be
required, but it is easy to see that this is always possible.)

It is not hard to see that G has a vertex cover of size ≤ k if and only if Gr

has a vertex cover of size ≤ k +
∑

uv∈E kuv . But Gr is a 3-planar UDG, which
shows that the 3-planar UDG vertex cover is NP-hard. ��

The graph Gr above is a unit disk graph with maximum degree 3, which can be
embedded in the plane such that the length of each edge is ≥ 2/3, and the edges
lie on the integer grid lines. This is possible by placing the 2kuv intermediate
nodes on integer grid points if d1(u, v) is an odd number, or uniformly distribut-
ing d1(u, v) intermediate points on uv in case d1(u, v) is even (in the extreme
case where d1(u, v) = 2, we place 2 nodes on uv and obtain 3 edges of length
2/3). Let us call a unit disk graph that admits such embedding a rectilinear unit
disk graph. We have the following corollary of Lemma 2.

Corollary 1. The minimum vertex cover problem is NP-hard for rectilinear
unit disk graphs.

Theorem 1. It is NP-hard to count the vertex covers in a rectilinear unit disk
graph. Moreover, the number of vertex covers cannot be approximated to any
multiplicative factor in polynomial time assuming P �= NP.



Closest Pair and the Post Office Problem for Stochastic Points 551

Proof. We will prove the inapproximability, which shows the hardness as well.
Let G = (V, E) be a rectilinear UDG. Suppose we have an α-approximation
algorithm for counting the vertex covers in G, i.e., if c(G) is the number of vertex
covers, the algorithm outputs a value c̃ such that (1/α)c(G) ≤ c̃ ≤ αc(G).

Let Gp be the stochastic graph obtained from G by assigning the probability
p = 1/(2nα2) of being present to each of the nodes in G. Since this probability is
the same for all the nodes, an α-approximation algorithm for counting the vertex
covers in G readily provides an α-approximation algorithm for computing the
probability that a random subset of nodes in Gp is a vertex cover. Let Pr(Gp)
denote this probability, and r̃ be an α-approximation to Pr(Gp).

The key observation is that r̃ ≥ pk if and only if G has a vertex cover of
size k or less. To see this, suppose G has a vertex cover C of size k or less.
Then the probability that a random subset of nodes of Gp is a vertex cover is
at least pk, i.e., the probability that all the nodes in C are present. In this case,
r̃ ≥ pk/α. Otherwise, at least k +1 nodes must be present to constitute a vertex
cover, which happens with probability at most 2|V |pk+1 < pk/α2. In this case
r̃ < pk/α. Corollary 1, however, shows that the minimum vertex cover problem
is hard for G, and therefore Pr(Gp) cannot be approximated to any factor α in
polynomial time assuming P �= NP. This completes the proof. ��

2.2 Bichromatic Unit Disk Graphs

We introduce the class of bichromatic unit disk graphs as the graphs defined over
a set of points in the plane, each colored as blue or red, with an edge between
a red and a blue pair if and only if their distance is ≤ 1. (We do not put edges
between nodes of the same color regardless of the distance between them.) We
will show that counting the vertex covers is NP-hard for bichromatic UDGs. We
will need the following lemma from [15]. Remember that a Vandermonde matrix
M is in the form Mij = (μji , 0 ≤ i, j ≤ n) (or its transpose) for a given sequence
of numbers μ0, . . . , μn. (See [9, §5.1].)

Lemma 3. Suppose we have vi and bi, i = 0, . . . , n, related by the equation
vi =

∑n
j=0 aijbi, j = 0, . . . , n. Further suppose that the matrix of the coefficients

(aij) is Vandermonde, with parameters μ0, . . . , μn which are distinct. Then given
the values v0, . . . , vn, we can obtain the values b0, . . . , bn in time polynomial in n.

Now consider the gadget H in Fig. 1 (a), which consists of l paths between u
and v, for a given l. Let G = (V, E) be an instance of a rectilinear UDG. Let
G′ = (V ′, E′) be the graph obtained from G by replacing each edge uv ∈ E with
the graph H. We color u, v and the bi’s red, and the remaining nodes blue.

Lemma 4. The graph G′ is a bichromatic unit disk graph.

Proof. First we embed the original graph G in the plane with edges of length
≥ 2/3 lying on integer grid lines (this is possible by definition of G). We will then
scale the grid by a factor of 3.5, so that for all uv ∈ E, 2 < d2(u, v) ≤ 3.5. Next
we embed the graph H on each edge uv ∈ E such that d(ai, bi) = d(bi, ci) = 1,



552 P. Kamousi, T.M. Chan, and S. Suri

while d(u, ai) = d(v, ci) ≤ 1, for i = 1, . . . , l. This is always possible since
2 < d2(u, v) ≤ 3.5.

It is easy to see that the distance between two nodes of different colors from
two different rows is always greater than 1, and therefore there won’t be any
edges between two different rows. Moreover, there should not be any connections
between two different gadgets placed on two edges. Given that we can scale the
initial embedding as desired, the only case to worry about is for two orthogonal
edges. Considering Fig. 1 (b), it is easy to see that each two nodes of different
colors in two different gadgets are at distance > 1. This completes the proof. ��

u v

a1 b1 c1

al bl cl

l copies

u v

w

l copies

u

v

w

a

l c
op

ie
s

Fig. 1. (a) The gadget H (b) Two orthogonal gadgets (c) Two rotated gadgets

Finally we arrive at the following theorem.

Theorem 2. It is NP-hard to count the number of vertex covers in a bichro-
matic unit disk graph even if the distances are measured in the L∞ metric.

Proof. The reduction is from counting the vertex covers in rectilinear unit disk
graphs. It is inspired by a technique in [15]. Let G = (V, E) be an instance of
a rectilinear UDG. Let G′(l) = (V ′(l), E′(l)) be the graph obtained from G by
replacing each edge uv ∈ E with the gadget H in Fig. 1 (a). By Lemma 4, G′(l)
is a bipartite unit disk graph (note that when l = 0, the graph G′(l) has no
edges at all). Let N =

(
m+2

2

)
, where m = |E|. We will show that by counting

the vertex covers in G′(l), l = 0, . . . , N − 1, we can effectively count the vertex
covers in G.

In the graph H, the number of vertex covers containing neither u nor v is
2l since any vertex cover necessarily contains all the ai’s and ci’s (i = 1, . . . , l),
while bi’s may or may not be included. Moreover, the number of vertex covers
containing one of u and v is 3l, and the number of vertex covers containing both
u and v is 5l. (To see this, notice that when u is included and v is not, all the ci’s
are necessarily included, and to cover the remaining edges on the i-th path, we
need either ai, bi, or both. On the other hand, when both u and v are included,
we would have 5 choices to cover the remaining two edges on each path.)

Let Aijk be the number of subsets of nodes of the original graph, G, by which
exactly i edges from G have none of their endpoints covered, j edges have exactly



Closest Pair and the Post Office Problem for Stochastic Points 553

one endpoint, and k edges have both of their endpoint covered. Then if c′(l) is
the number of vertex covers of G′(l), we have

c′(l) =
∑

i+j+k=m, i,j,k≥0

Aijk(2l)i(3l)j(5l)k =
∑

i+j+k=m, i,j,k≥0

Aijk(2i3j5k)l. (1)

The value we are interested in is
∑
j+k=m A0jk, which is the number of vertex

covers of G. Let B = (bql) be the N ×N matrix defined as

bql = (2iq3jq5kq)l q = 1, . . . , N, l = 0, . . . , N − 1,

where (iq, jq, kq) are all the triples summing up to m. Then B is a Vandermonde
matrix and the values μq are distinct for q = 1, · · · , N since μq = 2iq , 3jq , 5kq =
2ir , 3jr , 5kr = μr if and only if iq = ir, jq = jr and kq = kr. By Lemma 3, we
can solve (1) to obtain {Aijk}i+j+k=m, i,j,k≥0, and therefore also

∑
j+k=m A0jk.

We conclude that by counting the vertex covers in bichromatic unit disk graphs,
we can count the vertex covers in rectilinear unit disk graphs. But Theorem 1
shows that this problem is hard.

Finally, we will show that the problem remains hard when we consider the
distances under the L∞ norm. Consider Fig. 1 (c), which illustrates a simple
rotation of G′(l) by the angle π/2. Consider the L∞ ball around the point a.
This ball does not include any point of a different color which is not connected
to a in G′(l). It is easy to see that the same applies to all other points in the
graph, the connectivity structure of the graph remains unchanged, and so does
the number of vertex covers. This completes the proof. ��

2.3 Complexity of the Stochastic Closest Pair Problem

We are now ready to prove the following result.

Theorem 3. Given a set M of points in the plane, where each point mi ∈ M
is present with probability pi, it is NP-hard to compute the probability that the
L2 or L∞ distance between the closest pair is ≤ � for a given value �.

Proof. In a unit disk graph G = (V, E) defined over the full set M of points,
a random subset S of nodes is a vertex cover if and only if in the complement
of that subset, no two nodes are at distance ≤ 1. (In other words, all the edges
are covered by S.) Therefore, computing the probability that a random subset
of nodes is a vertex cover in G amounts to computing the probability that the
closest pair of present points in a random subset S are at distance > 1. But
as discussed in Theorem 1, counting the vertex covers in a unit disk graph is
NP-hard. The fact that Theorem 1 applies to rectilinear unit disk graphs readily
proves that the problem remains hard for the L∞ metric.

The next theorem, which considers the bichromatic version of this problem, is
based on the same argument as above along with Theorem 2.



554 P. Kamousi, T.M. Chan, and S. Suri

Theorem 4. Given a set R of red and a set B of blue points in the plane, where
each point ri ∈ R is only present with an independent, rational probability pi,
and each point bi ∈ B is present with probability qi, it is NP-hard to compute
the probability that the closest L2 or L∞ distance between a bichromatic pair of
present points is less that a given value �.

3 Linearly Separable Point Sets under the L∞ Norm

In the following, we show that when the red points are linearly separable from
the blue points by a vertical or a horizontal line, the stochastic bichromatic
closest pair problem under L∞ distances can be solved in polynomial time. We
only describe the algorithm for the points separable by a vertical line, noting
that all the arguments can be adapted to the case of a horizontal line.

Let U = {u1, . . . , un} be the set of red points on one side, and V = {v1, . . . , vm}
the set of blue points on the other side of a line. Each point ui ∈ U is present
with probability pi, while each point vj ∈ V is present with probability qj . We
sort the red points by x-coordinate (from right to left), and the blue points by
y-coordinate (top-down). Let R[i, j, k] be the region defined by the intersection
of the halfplanes x ≤ 0, x ≥ x(ui)−1, y ≥ y(vj) and y ≤ y(vk), for y(vj) < y(vk)
(Fig. 2 (a), where x(ui) and y(vj) denote the x-coordinate of the i-th red point
and the y-coordinate of the j-th blue point, respectively. By abuse of notation,
we will also use R[i, j, k] to refer to the set of (blue) points inside this region.

Let P [i, j, k] denote the probability that the subset Ui = {u1, u2, . . . , ui} of red
points does not have a neighbor within distance≤ 1 in R[i, j, k]. The value we are
interested in is P [n, m, 1], which is the probability that the closest pair distance
is > 1. We fill up the table for P [i, j, k] values using dynamic programming, row
by row starting from u1 (the rightmost red point).

vk

vj

ui

R[i, j, k]

(a)

ui

(b)

vl

ui

(c)

ui

vh

(d)

ui

vl

vh

(e)

Fig. 2. Different configurations of R[i, j, k] and B(ui)

Let B(ui) be the L∞ ball of radius 1 around ui. In the computation of the
entry P [i, j, k], there are 4 cases:

1. B(ui) contains the region R[i, j, k] (Fig. 2 (a)). In this case

P [i, j, k] = pi
∏

vt∈B(ui)

(1 − qt) + (1− pi) · P [i− 1, j, k].



Closest Pair and the Post Office Problem for Stochastic Points 555

2. B(ui) does not intersect with R[i, j, k] (Fig. 2 (b)). In this case, P [i, j, k] =
P [i− 1, j, k].

3. B(ui) partially intersects with R[i, j, k]. If y(ui)− 1 < y(vk) (Fig. 2 (c)),

P [i, j, k] = pi
∏

vt∈B(ui)∩R[i,j,k]

(1− qt) · P [i− 1, j, l] + (1 − pi) · P [i− 1, j, k],

where vl is the highest blue point in R[i, j, k] but outside B(ui).
If y(ui) + 1 < y(vk)) (Fig. 2 (d)), then

P [i, j, k] = pi
∏

vt∈B(ui)∩R[i,j,k]

(1 − qt) · P [i− 1, h, k] + (1− pi) · P [i− 1, j, k],

where vh is the lowest blue point in R[i, j, k] but outside B(ui).
4. B(ui) is contained in R[i, j, k] (Fig. 2 (e)). In this case

P [i, j, k] = (1−pi)·P [i−1, j, k]+pi
∏

vt∈B(ui)∩R[i,j,k]

(1−qt)·P [i−1, j, l]·P [i−1, h, k],

where vl and vh are defined as before. The subtlety is that the two events
of Ui−1 having no close neighbor in R[i − 1, j, l], and Ui−1 having no close
neighbor in R[i − 1, h, k] are independent. Therefore we can multiply the
corresponding probabilities. The reason is that all the points in Ui−1 that
potentially have a close neighbor in R[i − 1, j, l] must necessarily lie below
the line y = y(ui), while those potentially close to a point in R[i − 1, h, k]
must lie above that line. The two sets are therefore disjoint.

The base case (R[1, j, k], j, k ∈ {1, . . . , m}) can be easily computed. The size
of the table is O(n3). The values

∏
vt∈B(ui)∩R[i,j,k](1−qt) can be precomputed in

O(n2) for each point vi (by a sweep-line approach for example). This brings the
computation time of each table entry down to a constant, and the running time
of the whole algorithm to O(n3). This assumes a nonstandard RAM model of
computation where each arithmetic operation on large numbers takes unit time.

Next Theorem considers the problem for d > 2.

Theorem 5. Given a set R of red and a set B of blue points in a Euclidean space
of dimension d > 2, each being present with an independent, rational probability,
it is NP-hard to compute the probability that the L∞ distance between the closest
pair of bichromatic points is less than a given value r, even when the two sets
are linearly separable by a hyperplane orthogonal to some axis.

Proof. Let d∞(R, B) be the minimum L∞ distance between all the bichromatic
pairs. It is always possible to make the two sets linearly separable in d = 3 by
lifting all the blue (or red) points from the plane by a small value ε < d∞(R, B).
This does not change the L∞ distance of any pair of points. Therefore, an algo-
rithm for solving the problem for linearly separable sets in d > 2, is essentially an
algorithm for the stochastic bichromatic closest pair problem, which is NP-hard
by Theorem 4. This completes the proof. ��



556 P. Kamousi, T.M. Chan, and S. Suri

4 Stochastic Approximate Nearest Neighbor Queries

Given a stochastic set M of points in a d-dimensional Euclidean space, and a
query point q, what is the expected (L2) distance of q to the closest present
point of M? In this section we target this problem, and design a data structure
for approximating the expected value of d(S, q) = minp∈S d(p, q) with respect to
a random subset S of M , assuming that d is a constant. (Technically, at least
one point needs to be assigned probability 1 to ensure that the expected value
is finite; alternatively, we can consider the expectation conditioned on the event
that d(S, q) is upper-bounded by a fixed value.) We obtain a linear-space data
structure with O(log n) query time. Although our method is based on known
techniques for approximate nearest neighbor search (namely, balanced quadtrees
and shifting [3,4,5]), a nontrivial adaptation of these techniques is required to
solve the stochastic version of the problem.

4.1 Approximation via a Modified Distance Function �̃

As before, we are given a set M of points in a d-dimensional Euclidean space
and each point is only present with an independent probability. Assume that the
points lie in the universe {0, . . . , 2w − 1}d. Fix an odd integer k = Θ(1/ε). Shift
all points in M by the vector (j2w/k, j2w/k, . . . , j2w/k) for a randomly chosen
j ∈ {0, . . . , k − 1}.

A quadtree box is a box of the form [i12�, (i1 +1)2�)×· · ·× [id2�, (id+1)2�) for
natural numbers �, i1, . . . , id. Given points p and q, let D(p, q) be the side length
of the smallest quadtree box containing p and q. Let Bs(p) be the quadtree
box of side length 		s

 containing p, where 		s

 denotes the largest power of 2
smaller than s. Let cs(p) denote the center of Bs(p). Let [X ] be 1 if X is true,
and 0 otherwise.

Definition 1. (a) Define �(p, q) = d(Bs(p), Bs(q)) + 2
√

ds with s = ε2D(p, q).
Let �(S, q) = minp∈S �(p, q).

(b) r is said to be q-good if the ball centered at cε2r(q) of radius 2r is contained
in B12kr(q).

(c) Define �̃(S, q) = [�(S, q) is q-good] · �(S, q).

Lemma 5. (a) �(S, q) ≥ d(S, q). Furthermore, if �(S, q) is q-good, then �(S, q) ≤
(1 + O(ε))d(S, q).

(b) �(S, q) is q-good for all but at most d choices of the random index j.
(c) �̃(S, q) ≤ (1 + O(ε))d(S, q) always, and Ej [�̃(S, q)] ≥ (1−O(ε))d(S, q).

Proof. Let p∗, p ∈ S satisfy d(S, q) = d(p∗, q) = r∗ and �(S, q) = �(p, q) = r.
The first part of (a) follows since �(p, q) ≥ d(p, q). For the second part of

(a), suppose that r is q-good. Since d(p∗, q) ≤ d(p, q) ≤ �(p, q) = r, we have
d(p∗, cε2r(q)) < 2r, implying D(p∗, q) ≤ 12kr. Then r = �(p, q) ≤ �(p∗, q) ≤
d(p∗, q) + O(ε2D(p∗, q)) ≤ r∗ + O(εr), and so r ≤ (1 + O(ε))r∗.

For (b), we use [6, Lemma 2.2], which shows that the following property holds
for all but at most d choices of j: the ball centered at q with radius 3r∗ is



Closest Pair and the Post Office Problem for Stochastic Points 557

contained in a quadtree box with side length at most 12kr∗. By this property,
D(p∗, q) ≤ 12kr∗, and so r = �(p, q) ≤ �(p∗, q) ≤ d(p∗, q) + O(ε2D(p∗, q)) =
(1 + O(ε))r∗. Then the ball centered at cε2r(q) of radius 2r is contained in the
ball centered at q of radius (2+O(ε2))r < 3r∗, and is thus contained in B12kr∗(q).

(c) follows from (a) and (b), since 1 − d/k ≥ 1− O(ε) (and d(S, q) does not
depend on j). ��

By (c), Ej [ES [�̃(S, q)]] approximates ES [d(S, q)] to within factor 1 ± O(ε). It
suffices to give an exact algorithm for computing ES[�̃(S, q)] for a query point q
for a fixed j; we can then return the average, over all k choices of j.

4.2 The Data Structure: A BBD Tree

We use a version of Arya et al.’s balanced box decomposition (BBD) tree [3]. We
form a binary tree T of height O(log n), where each node stores a cell, the root’s
cell is the entire universe, a node’s cell is equal to the disjoint union of the two
children’s cells, and each leaf’s cell contains Θ(1) points of M . Every cell B is a
difference of a quadtree box (the outer box ) and a union of O(1) quadtree boxes
(the holes). Such a tree can be constructed by forming the compressed quadtree
and repeatedly taking centroids, as described by Arya et al. (in the original
BBD tree, each cell has at most 1 hole and may not be perfect hypercubes).
We will store O(1/εO(1)) amount of extra information (various expectation and
probability values) at each node. The total space is O(n/εO(1)).

4.3 An Exact Query Algorithm for �̃

In this section, we describe the algorithm for estimating ES [�̃(S, q)], given a query
point q. First we extend the definition of �̃ slightly: let �̃(S, q, r0) = [�(S, q) ≤
r0] · [�(S, q) is q-good] · �(S, q).

Consider a cell B of T and a query point q ∈ B. Let R(Bc, q) denote the set of
all possible values for �(p, q) over points p in Bc, the complement of B. We solve
the following extension of the query problem (all probabilities and expectations
are with respect to the random subset S):

Problem 1. For every r0 ∈ R(Bc, q), compute the values Pr[�(S∩B, q) > r0] and
E[�̃(S ∩B, q, r0)].

It suffices to compute these values for r0 ≤
√

d|B|, where |B| denotes the
maximum side length of B, since they don’t change as r0 increases beyond

√
d|B|.

Lemma 6. The number of elements in R(Bc, q) that are below
√

d|B| is O(1/ε2d).

Proof. If p is inside a hole H of B, then D(p, q) ≥ |H|, so we can consider a grid
of side length Θ(ε2|H |) and round p to one of the O(1/ε2d) grid points without
affecting the value of �(p, q).

If p is outside the outer box of B, then D(p, q) ≥ |B|, so we can round p
using a grid of side length Θ(ε2|B|). In this case the number of grid points for
d(p, q) ≤ �(p, q) ≤

√
d|B| is O(1/ε2d) as well. ��



558 P. Kamousi, T.M. Chan, and S. Suri

We now describe the query algorithm. The base case when B is a leaf is trivial.
Let B1 and B2 be the children cells of B. Without loss of generality, assume
that q ∈ B2 (i.e., q �∈ B1). We apply the following formulas, based on the fact
that �(S ∩ B, q) = min{�(S ∩ B1, q), �(S ∩ B2, q)} and that S ∩ B1 and S ∩ B2

are independent:

Pr[�(S ∩B, q) > r0] = Pr[�(S ∩B1, q) > r0] · Pr[�(S ∩B2, q) > r0]; (2)

E[�̃(S ∩B, q, r0)]

=
∑

r≤√
d|B2|

Pr[�(S ∩B1, q) = r] · E[�̃(S ∩B2, q, min{r, r0})] + (3)

∑

r≤√
d|B2|

Pr[�(S ∩B1, q) = r] · Pr[�(S ∩B2, q) > r] · [r < r0] · [r is q-good] · r (4)

+ Pr[�(S ∩B1, q) >
√

d|B2|] · E[�̃(S ∩B2, q, r0)] (5)

+ E

[
[�(S ∩B1, q) >

√
d|B2|] · �̃(S ∩B1, q, r0)

]
· Pr[S ∩B2 = ∅]. (6)

(3) and (5) cover the case when �(S ∩ B2, q) ≤ �(S ∩ B1, q), and (4) and (6)
cover the case when �(S∩B1, q) < �(S∩B2, q). For (5), note that �(S∩B2, q) ≤ r0

already implies S ∩B2 �= ∅ and �(S ∩B2, q) ≤
√

d|B2|.
By recursively querying B2, we can compute all probability and expectation

expressions concerning S∩B2 in (2)–(6). Note that r0 ∈ R(Bc, q) ⊆ R(Bc
2, q), and

in the sums (3) and (4), it suffices to consider r ∈ R(Bc
2, q) since S ∩ B1 ⊂ Bc

2.
In particular, the number of terms with r ≤

√
d|B2| is O(1/ε2d), as already

explained. For the probability and expectation expressions concerning S ∩B1,
we examine two cases:

– Suppose that q is inside a hole H of B1. For all p ∈ B1, D(p, q) ≥ |H| and
�(p, q) ≥ Ω(ε2|H|), so we can consider a grid of side length Θ(ε4|H|) and
round q to one of the O(1/ε4d) grid points without affecting the value of
�(p, q), nor affecting whether �(p, q) is q-good. Thus, all expressions concern-
ing S ∩ B1 remain unchanged after rounding q. We can precompute these
O(1/εO(1)) values for all grid points q (in O(n/εO(1)) time) and store them
in the tree T .

– Suppose that q is outside the outer box of B1. For all p ∈ B1, D(p, q) ≥ |B1|,
so we can consider a grid of side length Θ(ε2|B1|) and round each point
p ∈ M ∩ B1 to one of the O(1/ε2d) grid points without affecting the value
of �(p, q). Duplicate points can be condensed to a single point by combining
their probabilities; we can precompute these O(1/ε2d) probability values (in
O(n) time) and store them in the tree T . We can then evaluate all expressions
concerning S ∩B1 for any given q by brute force in O(1/εO(1)) time.

Since the height of T is O(log n), this recursive query algorithm runs in time
O((1/εO(1)) log n). Therefore we arrive at the main result of this section.

Theorem 6. Given a stochastic set of n points in a constant dimension d, we
can build an O(n/εO(1))-space data structure in O((1/εO(1))n log n) time, so



Closest Pair and the Post Office Problem for Stochastic Points 559

that for any query point, we can compute a (1 + ε)-factor approximation to the
expected nearest neighbor distance in O((1/εO(1)) log n) time.

Acknowledgment

The work of the first and the third author was supported in part by National
Science Foundation grants CCF-0514738 and CNS-1035917.

References

1. Afshani, P., Agarwal, P.K., Arge, L., Larsen, K.G., Phillips, J.M.: (Approximate)
uncertain skylines. In: ICDT, pp. 186–196 (2011)

2. Agarwal, P.K., Cheng, S.-W., Tao, Y., Yi, K.: Indexing uncertain data. In: PODS,
pp. 137–146 (2009)

3. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM 45,
891–923 (1998)

4. Chan, T.M.: Approximate Nearest Neighbor Queries Revisited. Discrete and Com-
putational Geometry 20, 359–373 (1998)

5. Chan, T.M.: Closest-point problems simplified on the RAM. In: Proc. SODA, pp.
472–473 (2002)

6. Chan, T.M.: Polynomial-time approximation schemes for packing and piercing fat
objects. J. Algorithms 46, 178–189 (2003)

7. De Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational geome-
try: algorithms and applications. Springer, Heidelberg (2008)

8. Garey, M.R., Johnson, D.S.: The Rectilinear Steiner Tree Problem is NP-Complete.
SIAM Journal on Applied Mathematics 32(4), 826–834 (1977)

9. Hardy, G.H., Polya, G., Littlewood, J.E.: Inequalities. Cambridge Press, New York
(1952)

10. Kamousi, P., Chan, T., Suri, S.: Stochastic Minimum Spanning Trees in Euclidean
Spaces. In: Proc. SoCG (2011) (to appear)

11. Klain, D.A., Rota, G.: Introduction to Geometric Probability, Cambridge (1997)
12. Knuth, D.E.: The Art of Computer Programming, Volume III: Sorting and Search-

ing. Addison-Wesley, Reading (1973)
13. Lin, M.-S., Chen, Y.-J.: Counting the number of vertex covers in a trapezoid graph.

Inf. Process. Lett. 109, 1187–1192 (2009)
14. Löffler, M., van Kreveld, M.J.: Largest and Smallest Convex Hulls for Imprecise

Points. Algorithmica 56(2), 235–269 (2010)
15. Provan, J.S., Ball, M.O.: The Complexity of Counting Cuts and of Computing the

Probability that a Graph is Connected. SIAM J. Comput. 12(4), 777–788 (1983)
16. Vadhan, S.P.: The Complexity of Counting in Sparse, Regular, and Planar Graphs.

SIAM Journal on Computing 31, 398–427 (1997)
17. Valiant, L.: Universality Considerations in VLSI Circuits. IEEE Trans. Comput-

ers 30, 135–140 (1981)
18. Valiant, L.G.: The Complexity of Enumeration and Reliability Problems. SIAM

Journal on Computing 8(3), 410–421 (1979)
19. van Kreveld, M.J., Löffler, M., Mitchell, J.S.B.: Preprocessing Imprecise Points and

Splitting Triangulations. SIAM J. Comput. 39(7), 2990–3000 (2010)



Competitive Search in Symmetric Trees

David Kirkpatrick1 and Sandra Zilles2

1 Department of Computer Science, University of British Columbia, Canada
kirk@cs.ubc.ca

2 Department of Computer Science, University of Regina, Canada
zilles@cs.uregina.ca

Abstract. We consider the problem of searching for one of possibly many goals
situated at unknown nodes in an unknown tree T . We formulate a universal search
strategy and analyse the competitiveness of its average (over all presentations
of T ) total search cost with respect to strategies that are informed concerning
the number and location of goals in T . Our results generalize earlier work on
the multi-list traversal problem, which itself generalizes the well-studied m-lane
cow-path problem. Like these earlier works our results have applications in areas
beyond geometric search problems, including the design of hybrid algorithms and
the minimization of expected completion time for Las Vegas algorithms.

1 Introduction

The m-lane cow-path problem specifies a sequence of m rays (lanes) of unbounded
length incident on a common origin (crossroad). A goal (pasture) lies at some unknown
distance d from the origin along some (unknown) ray. The objective is to formulate a
provably good strategy (minimizing the total search cost) for an agent (cow) to reach
the goal, starting from the origin.

The cow-path problem is a special instance of a family of problems called search
games, in which a searcher tries to minimize the time needed to find a hidden goal. For a
detailed study of search games, the reader is referred to [1]. The cow-path problem itself
has been studied in several variations, including directionally dependent traversal costs,
turnaround penalties, shortcuts and dead-ends [4,6,11,12,15]. It has also been analysed
in terms of worst-case and average-case competitive ratio (using d as a benchmark), as
well as in a game-theoretic framework [3,8,16,17,18].

Essentially the same ideas as those used in solving the cow-path problem have been
used in the synthesis of deterministic and randomized hybrid algorithms with (near)
optimal competitive ratios [2,7]. Given are a number of basic algorithms each of which
might (or might not) be useful in solving some problem. The goal is to synthesize a
hybrid algorithm from these basic components by some kind of dovetailing process.
Memory limitations may restrict the number of processes that can be suspended at any
given time (the alternative being a complete restart with successively larger computation
bounds).

More recently, the cow-path problem has been generalized in a new and fundamen-
tally different direction. The multi-list traversal problem [10] assumes that every ray
leads to a goal, and the objective is to minimize the total search cost in finding a goal on

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 560–570, 2011.
© Springer-Verlag Berlin Heidelberg 2011



Competitive Search in Symmetric Trees 561

at least one path. (Conventional one-goal cow-path problems correspond to the special
case in which all goals but one are located arbitrarily far from the origin). Essentially
the same problem has been studied by McGregor et al. [14] as an “oil searching prob-
lem”, where the objective is to maximize the number of goals (wells) discovered for a
specified budget. Even earlier, similar results were presented by Luby et al. [13] for the
problem of minimizing the expected execution time of Las Vegas algorithms (viewed
as an infinite sequence of deterministic algorithms with unknown completion times.)

The m-lane cow paths problem, the multi-list traversal problem, and its variants can
all be thought of as search-with-backtracking problems, in which backtracking always
brings the algorithm back to the origin of search, from where a new path can be chosen
or search in a previously visited path can be resumed. In many real-world search prob-
lems, it is often the case that part of the search effort invested into one search path eases
the search along another path. Backtracking would then allow the search algorithm to
return to a fork part-way along the current path and to search along a new path branch-
ing from the current one (without repeating the search effort to reach the fork from the
origin). The simplest search domain allowing this kind of backtracking is a tree.

Motivated by the desire to understand the limitations of oblivious backtracking al-
gorithms, we consider a generalization of the multi-list traversal problem in which the
search domain is an unknown unbounded fully-symmetric tree T with goals at one or
more nodes. Fleischer et al. [5] considered search problems on trees as part of a more
general study of algorithms that minimize the optimal search ratio: essentially the worst
case ratio of the cost of finding a goal in a search domain to the length of the shortest
path to that goal. For our competitive analysis we compare uninformed algorithms to
those that know T , including the locations of all goals, but not the specific presentation
of T (i.e. the ordering of the children at each of its internal nodes). In fact, McGregor et
al. [14] already introduced a generalization of their oil-searching problem to symmetric
trees in an appendix to their paper. Unfortunately, their algorithm exhibits a rather poor
competitive ratio for general symmetric trees, motivating a more in-depth treatment of
the symmetric tree search problem. Note that while it is possible to study backtrack-
ing in asymmetric trees (or more general graphs), it is natural to restrict attention to
search domains in which all search paths are equivalent up to relabeling: as McGre-
gor et al. [14] point out, asymmetries serve to amplify the knowledge (concerning goal
locations) of informed algorithms, making competitive analysis simultaneously more
difficult and less meaningful.

1.1 Symmetric Tree Traversal

In many respects our treatment of search in symmetric trees parallels and generalizes
earlier work on the multi-list search problem. Where previously an algorithm would be
evaluated with respect to possible input presentations ranging over all possible permu-
tations of a multi-set of list lengths, we are now interested in inputs that correspond
to presentations of some fixed symmetric tree. Thus an instance of our symmetric tree
traversal problem is an unbounded rooted unordered fully-symmetric1 tree T , one or
more nodes of which are distinguished as goal nodes, called goals for short. We assume,

1 All nodes at the same level � have the same number of children d�.



562 D. Kirkpatrick and S. Zilles

without loss of generality, that the path from the root to any goal does not contain any
other goal. We denote by Π(T ) the set of all presentations of the problem instance T .
Each such presentation is an ordering of T , i.e. for each internal node x of T , a bijec-
tion from the set {1, . . . , dx} to the edges joining x to the dx children of x. In this way,
every presentation of T assigns to every node x, and in particular every goal, in T a
labeled path from the root to x. We interpret the concatenation of labels on this path as
the index of x in the given presentation.

We assume that in general algorithms take an arbitrary presentation π of T as input,
and know nothing about the number or location of goals in T . Algorithms proceed in a
stepwise fashion. In the first step the root node is explored, and in every subsequent step
a specified child of some previously explored node is explored, continuing until some
goal node is reached. We denote by search cost(A, π) the total search cost (number of
explored nodes) of algorithm A on input presentation π.2 We analyse this search cost
of algorithms (both deterministic and randomized) for specific problem instances T in
both the worst and average cases (over all presentations of T ). For worst-case behaviour
we can think of an adversary choosing the least favorable presentation of T , knowing
the search strategy of the algorithm. We view randomized (Las Vegas) algorithms as
probability distributions over deterministic algorithms; in this case we are interested in
expected search cost.

For the purpose of competitive analysis we contrast general uninformed algorithms
with several informed variants that are only required to behave correctly on problem
instances that satisfy certain constraints on the number or location of the goals. A
instance-informed algorithm knows the problem instance, i.e. the location of goals in
T , but not their index in the given input presentation. A level-count-informed algorithm
knows the number of goals at each level of T , but not their location. A cost-informed
algorithm knows an upper bound on the worst-case search cost that is realizable by the
best instance-informed algorithm for the given instance.

We start by restricting our attention to the case where T is a full binary tree (i.e.
d� = 2, at every level). Section 2 considers the situation where all goals are known to
lie on one fixed level of T , and results are developed for both the full search cost as well
as the search cost restricted to the goal level. These results are extended, in Section 3, to
the general situation where goals may appear on multiple levels. Finally, the restriction
to binary trees is relaxed in Section 4. (Most of the proofs in this last section are most
easily understood as elaborations of the proofs of corresponding results for binary trees;
full details of these proofs are presented in [19].)

In general, our oblivious search algorithms not only significantly improve the search
bounds provided by the tree-searching algorithm of McGregor et al. [14], but they also
are arguably close to optimal in the competitive ratio of their search cost with that of
non-oblivious counterparts. For example, for binary trees with k goals on one fixed
level h, our algorithm guarantees an average search cost that is within a factor h of that
achievable by any algorithm that is only required to perform efficiently on presentations
of one fixed tree. In the same situation, the strategy proposed in [14] is only claimed to

2 Our results apply equally well when the cost of backtracking is taken into account, i.e., when
the search cost includes the cost of re-visiting nodes.



Competitive Search in Symmetric Trees 563

have a corresponding competitive ratio which is bounded by the square of the number
of nodes in the tree!

2 The Case Where All Goals Are Known to Lie at the Same Level

In the multi-list traversal problem the best uninformed strategy employs a non-uniform
interleaving (dubbed “hyperbolic dovetailing” in [10]) of strategies each of which
searches all lists uniformly to some fixed depth. Motivated by that, we first consider
the case where all goals are known to lie at some fixed level h. In this case, it does not
make any sense for an algorithm to explore paths in T to a level more or less than h.
Therefore we initially consider T to be truncated at level h and count just the number
of probes an algorithm makes of nodes at the leaf level h, ignoring the cost associated
with reaching those nodes. In this restricted setting, a level-count-informed algorithm
knows the number k of goals at level h in T , but not their location. We denote by
probe cost(A, π) the total number of nodes on level h explored by algorithm A on
input presentation π.

Since every presentation of the full binary tree T of height h fixes, for each of its
2h − 1 internal nodes x, one of two possible labelings on the pair of edges leading to
the children of x , we have the following:

Observation 1. If T is a full binary tree of height h then |Π(T )| = 22h−1.

2.1 Worst-Case Probe Cost

It is clear that an arbitrary uninformed probing algorithm will never need to make more
than 2h − k + 1 probes at level h, when faced with a problem instance T with exactly
k goals at level h. On the other hand, an adversary can force this many probes by any
fixed (even count-informed) algorithm by choosing a suitable problem instance T with
exactly k goals at level h and a suitable presentation π ∈ Π(T ). Thus,

Observation 2. For every deterministic level-count-informed algorithmA, there exists
a problem instance T with exactly k goals at level h such that
maxπ∈Π(T ) probe cost(A, π) = 2h − k + 1.

As we observe next, fully informed probing algorithms can, at least for some prob-
lem instances, have significantly lower worst-case probe cost. In the next section, we
show that similar reductions are always achievable if we measure instead the average
or expected probe cost.

Observation 3. There exists a deterministic instance-informed algorithm A and, for
every j ≥ 0, a problem instance Tj with exactly 2j goals at level h, such that
maxπ∈Π(Tj) probe cost(A, π) ≤ 2h−j .

Proof. If tree Tj has goals at all 2j leaves of some subtree rooted at an internal node at
level h− j, then it suffices to probe one leaf in each of the 2h−j subtrees rooted at level
h − j, in any presentation of Tj . As a second example, if Tj has one goal in each of its
2j subtrees rooted at internal nodes at level j, it suffices to explore all 2h−j leaves in
any one of these subtrees, in any presentation of Tj . ��



564 D. Kirkpatrick and S. Zilles

It follows from Theorem 4 below that instances like Tj above are the least complex, in
terms of their worst-case probe cost, for fully informed algorithms. As Theorem 5 and
its corollary demonstrate, the most complex such instances have a significantly higher
worst-case probe cost.

Theorem 4. For every deterministic instance-informed algorithm A, and every prob-
lem instance T with exactly k goals at level h,
maxπ∈Π(T ) probe cost(A, π) ≥ 2h/k.

Proof. For any node x in T and any index i of a fixed probe location at level h, x is

assigned index i in exactly 22h−1

2h presentations of T , since any presentation that maps x
to a fixed probe location fixes the labels associated with the h edges on the path to that

goal, and only those edges. Thus, for any i, there are exactly k 22h−1

2h presentations that
assign one of k goals to the probe with location index i. It follows that any deterministic
algorithm that uses fewer than 2h

k probes at level h fails to detect a goal for at least one
presentation of T . ��

Theorem 5. For any r, 0 ≤ r ≤ h, there exists a problem instance Tr,h with k =
∑h

j=r

(
h
j

)
goals at level h, such that for every deterministic instance-informed algo-

rithm A, maxπ∈Π(Tr,h) probe cost(A, π) ≥ 2r.

Proof. (Sketch) The tree Tr,h is defined recursively for 0 ≤ r ≤ h: (i) T0,h is the
complete tree with 2h leaves, all of which are goals; (ii) Th,h is the complete tree with
2h leaves, exactly one of which is a goal; and (iii) Tr,h is the complete tree whose root
has subtrees Tr,h−1 and Tr−1,h−1, when 0 < r < h.

One can show, by induction on r and h, that (i) Tr,h has k =
∑h
j=r

(
h
j

)
goals at level

h and (ii) for any set of fewer than 2r probes in Tr,h there is a presentation of Tr,h for
which no probe detects a goal. (See [19] for details.) ��

2.2 Average and Expected-Case Probe Cost

Theorem 4 extends to average case behaviour of fully informed algorithms:

Theorem 6. For every deterministic instance-informed algorithm A, and every prob-
lem instance T with exactly k goals at level h,
avgπ∈Π(T )probe cost(A, π) ≥ 2h−2/k.

Proof. As shown in the proof of Theorem 4, for any i, there are exactly k 22h−1

2h pre-
sentations that assign one of k goals to the location index i. Thus, any deterministic
algorithm using fewer than 2h−1

k probes at level h fails to detect a goal in at least half of

the presentations of T . Hence every deterministic algorithm uses at least 2h−1

k probes
at level h on at least half of its input presentations. ��

Theorem 6 can be strengthened to apply to the expected case behaviour of random-
ized instance-informed algorithms A, by viewing A as a probability distribution over
deterministic algorithms in the standard way (see [19] for details).



Competitive Search in Symmetric Trees 565

Theorem 7. For every randomized instance-informed algorithm A, and every problem
instance T with exactly k goals at level h,
avgπ∈Π(T )E[probe cost(A, π)] ≥ 2h−2/k.

The following theorem, whose proof embodies the central idea of our general oblivious
tree-searching strategy, shows that the lower bound of Theorem 6 is realizable to within
a constant factor, even by an uninformed algorithm.

Theorem 8. There is a deterministic uninformed algorithm A0 such that, for every
problem instance T with exactly k goals at level h,
avgπ∈Π(T )probe cost(A0, π) ≤ 2h+2/k.

Proof. For any r, 0 ≤ r ≤ h, we can interpret an arbitrary presentation of T as a bottom
tree T ′, consisting of all nodes of T at level at most r, together with 2r top trees, each
with 2h−r leaves.

The algorithmA0 proceeds in rounds: at the completion of round r ≥ 0, exactly one
leaf in each of the 2r trees rooted at nodes on level r has been probed. The algorithm
terminates if a goal is discovered in at least one of its probe locations. The total number
of probes in round r is just 2r − 2r−1 = 2r−1.

We count the fraction Φr of presentations of T for which algorithm A0 terminates
by the end of round r. Each goal resides in one of the 2r top trees with 2h−r leaves, and
coincides with the probed leaf in that tree in exactly 1

2h−r of the presentations of that
top tree. Thus each individual goal is probed in 1

2h−r of the presentations of T , by the
end of round r.

Of course, some presentations map two or more goals to probe positions. So to count
Φr we number the goals arbitrarily and, for 1 ≤ i ≤ k, we count, among the presenta-
tions of T that map none of the first i − 1 goals to a probe position, the fraction fi that
map the i-th goal to a probe position. Clearly, Φr =

∑
1≤i≤k fi · [

∏
1≤j<i(1 − fj)].

Furthermore, fi ≥ 1
2h−r , where equality holds just when none of the first i − 1 goals

occupy the same top tree as the i-th goal.
If we define Fx =

∑
x≤i≤k fi · [

∏
x≤j<i(1−fj)], for 1 ≤ x ≤ k, then Fk = fk and,

for 1 ≤ x < k, Fx = fx + (1− fx)Fx+1. It is straightforward to confirm by induction
that Fx ≥ 1− (1− 1

2h−r )k−x+1. Thus Φr = F1 ≥ 1− (1− 1
2h−r )k > 1− (1

e
)k/2

h−r

.

Now if 2h−j ≤ k < 2h+1−j , then at most ( 1
e
)k/2

h−j−i ≤ (1
e
)2

i

of the presentations
of T have not terminated after r = j + i rounds. Hence the average, over all presenta-
tions of T , of the number of probes of algorithmA0 is at most
2j +

∑
i≥1(2

j+i−1( 1
e
)2

i−1
) < 2j(1 +

∑
s≥1(s(

1
e
)s)) < 2j(1 + e

(e−1)2
) < 4 2h

k
. ��

Remark 1. Choosing k = 2h−1 in Theorem 8 and r = h/2 in Theorem 5 demonstrates
a large gap between the average and worst-case behaviours of deterministic instance-
informed algorithms. Specifically, the problem instance Th/2,h with 2h−1 goals at level
h has the property that algorithmA0 has average probe cost of at most 8, whereas every
deterministic instance-informed algorithm requires at least 2h/2 probes in the worst
case.
Remark 2. It is easy to see that the total additional search cost in round r of Algorithm
A0 is 2r−1(h − r + 1). Thus if 2h−j ≤ k < 2h+1−j the proof above implies that the



566 D. Kirkpatrick and S. Zilles

average total search cost is at most 2j(h− j)+
∑
i≥1(2

j+i−1(h− j− i+1)(1
e )

2i−1
) <

2j(h− j)(1 +
∑

s≥1(s(
1
e
)s)) = O((h − j) 2h

k
) = O(2h

k
(1 + lg k)).

By simply randomizing the given presentation before running algorithm A0 the
average-case bound of Theorem 8 can be realized as the worst-case expected cost, pro-
viding a tight complement to the lower bound of Theorem 7:

Corollary 9. There is a randomized uninformed algorithm A1 such that, for every
problem instance T with exactly k goals at level h,
maxπ∈Π(T ) E[probe cost(A1, π)] ≤ 2h+2/k.

2.3 Taking Full Search Cost into Consideration

As noted above, the algorithmA0 outlined in Section 2.2 has probe cost O(2h

k ) but total

search cost O( 2h

k (1 + lg k)). For some problem instances, e.g., the tree Tj (described
in Theorem 3) with goals at its leftmost k = 2j leaves, even fully informed algorithms
require average total search cost Ω( 2h

k
(1+lg k)), since at least one probe must be made

in at least half of the top-level trees of size k, or the algorithm will fail on at least half of
the permutations. Hence this additional lg k factor is unavoidable in some cases, even
when k = o(2h)).

Nevertheless, we have not been able to formulate a notion of intrinsic total search
cost that would permit a tighter general competitive bound than that given by the fol-
lowing:

Theorem 10. The uninformed algorithm A0 has the property that, for every problem
instance T , avgπ∈Π(T )search cost(A0, π) = O(cinf(T ) · (h + 1 − lg(cinf(T )))),
where cinf(T ) denotes the minimum, over all informed algorithms B, of avgπ∈Π(T )

probe cost(B, π).

Proof. Suppose that input T has k goals. By Theorem 6, cinf(T ) is Ω(2h/k). Further-
more, it is easy to see from the proof of Theorem 8 that the average, over all presenta-
tions π ∈ Π(T ), of the total search cost of A0 on presentation π is

O( 2h

k (1 + h− lg( 2h

k ))) = O(cinf(T ) · (h + 1− lg(cinf(T )))). ��

Following Corollary 9, it is easy to see that the competitive bound in Theorem 10 holds
for the expected search cost of Algorithm A1 as well. This should be contrasted with the
O(cinf(T ) · 4h) bound, given by Theorem 23 of McGregor et al. [14], for the expected
cost of their uninformed search strategy in this same situation.

3 The Case Where Goals May Appear on Many Different Levels

To this point we have assumed that all problem instances have the property that all goals
lie on one fixed level h. In this section we develop a dovetailing strategy that allows us
to relax this assumption.

We have already noted that the uninformed algorithm A0 described in Theorem 8
is competitive (in terms of expected total search cost), to within a factor of at most h,



Competitive Search in Symmetric Trees 567

with the best fully informed algorithm, for input instances all of whose goals lie on
level h. For more general instances, we first generalize Theorem 6, establishing a lower
bound on the intrinsic total expected search cost, and then show how algorithmA0 can
be modified to minimize its competitive ratio with this bound. We then argue that the
competitive ratio achieved by this modified uninformed algorithm cannot be improved,
by more than a logarithmic factor, even by an algorithm that is cost-informed (that is, is
constrained only to work correctly for problem instances of a known bounded intrinsic
cost).

Theorem 11. For every deterministic instance-informed algorithmA, and every prob-
lem instance T with exactly kt goals at level t,
avgπ∈Π(T )search cost(A, π) ≥ mint≥0{t + 2t

2kt
}/2.

Proof. Let T be any problem instance with exactly kt goals at level t and let A be
any informed goal-searching algorithm. Suppose A makes pt probes at level t, and let
m = max{t | pt > 0} and p =

∑
t≥0 pt. We consider the fraction of the presentations

of T that take some goal to some probe location. We can restrict our attention to the
22m−1 presentations of T truncated at level m. By the argument in Theorem 4, at most

ptkt
22m−1

2t presentations take a goal on level t to a probe on level t. Thus at most a frac-

tion
∑m
t=0

ptkt

2t ≤ p/ mint≤m{ 2t

kt
} of the presentations of T take some goal to some

probe location. It follows that if p < mint≤m{ 2t

kt
}/2 then A fails to detect a goal for

at least half of the presentations of T . Thus, any deterministic algorithm must make at
least minm≥0 max{m, mint≤m{ 2t

kt
}/2} = mint≥0 max{t, 2t

2kt
} ≥ mint≥0{t+ 2t

2kt
}/2

probes on at least half of the presentations of T . ��

AlgorithmA0, as described in the proof of Theorem 8, makes 2r equally spaced probes,
for increasing values of r, at one fixed level h, at a total cost of 2r(h− r+1). To spread
the cost equitably among levels we formulate a modification A2 of algorithm A0 that,
for increasing values of r, probes all 2r nodes at level r, and makes 2r−i equally spaced
probes at all 2i levels in the interval (r − 2 + 2i, r − 2 + 2i+1], for 1 ≤ i < r.

Algorithm A2 effectively simulates algorithm A0, for all values of h. The total
cost of algorithm A2, up to a fixed value r0 of the parameter r, is (r0 + 1)2r0 . Let
t0 = argmint≥0{(t + 1)2t/kt}. Then, from the proof of Theorem 8, we know that the
fraction of presentations for which algorithm A2 requires more than 2j2t0/kt0 probes
on level t0 before hitting a goal is less than ( 1

e )
2j

. It follows that the average num-
ber of probes made on level t0 before hitting a goal on that level is O(2t0/kt0) and
the average total search cost of algorithm A2 is O((r0 + 1)2r0+1), provided 2r0 ≥
(t0 − r0 + 1)2t0/kt0 .

We summarize this result in the following:

Theorem 12. The uninformed algorithm A2 has the property that, for every problem
instance T with exactly kt goals at level t,
avgπ∈Π(T )search cost(A2, π) ≤ mint≥0{(t + 1) 2t

kt
} · lg(mint≥0{(t + 1) 2t

kt
}).

When kt0 = 2t0/t0 and kt = 0, when t �= t0, the ratio of the O(t20 lg t0) average
search cost of AlgorithmA2 (given by Theorem 12) and the Ω(t0) lower bound on the



568 D. Kirkpatrick and S. Zilles

same cost for any instance-informed algorithm (given by Theorem 11), is maximized.
It turns out that at least a quadratic cost inflation is unavoidable, even for cost-informed
algorithms:

Theorem 13. For every cost c ≥ 0, there is a family F of problem instances, each
member of which can be searched with worst-case total search cost at most c by some
fully informed deterministic search algorithm, such that any cost-informed search al-
gorithm A must have average, over all input presentations, total search cost at least
Ω(c2), on at least half of the instances in the family.

Proof. (Sketch) F includes instances Ti with 2i+1/(c − i) goals equally-spaced on
level i. For each such instance (c − i)/2 probes at level i (and at most c total search
cost) suffices in the worst case, by a instance-informed algorithm (cf. Theorem 3), and
(c− i)/8 probes at level i are necessary on average (by Theorem 6). ��

4 General Symmetric Trees

To this point we have restricted our attention to full binary trees. Not surprisingly, all of
our results generalize to arbitrary symmetric trees. There are some subtleties, however,
arising both from nodes with just one child, which can be used to form trees whose
number of leaves is significantly smaller than the number of internal nodes, and nodes
with a very large number of children, which complicate our round-based algorithms. In
the remainder of this section, we outline our generalized results.

We denote by Di,j the expression
∏j
�=i d�, where d�, recall, denotes the number of

children of all internal nodes at level �. Clearly, the number of nodes at level h is now
D0,h−1, and Observation 1 generalizes to the following:

Observation 14. If T is a general symmetric tree of height h then |Π(T )| =
∏h−1
j=0 d

D0,j−1
j .

Using this, Theorems 4, 6 and 7 generalize directly to arbitrary symmetric trees, with
2h replaced by D0,h−1. Theorem 8 generalizes in the same way, by a relatively straight-
forward modification of algorithmA0:

Theorem 15. There is a deterministic uninformed algorithm A0 such that, for every
problem instance T with exactly k goals at level h,
avgπ∈Π(T )probe cost(A0, π) = O(D0,h−1/k).

The next theorem gives a generalization of Theorem 11. It should be noted that our
analysis presented here sacrifices comprehensiveness for brevity; it is possible to tighten
the analysis to better exploit the situation where the degrees on many successive levels
are all one (giving rise to subtrees whose number of leaves is far exceeded by their
number of internal nodes).

Theorem 16. For every deterministic instance-informed algorithmA, and every prob-
lem instance T with exactly kt goals at level t,
avgπ∈Π(T )search cost(A, π) = Ω(mint≥0{t + D0,t−1/kt}).



Competitive Search in Symmetric Trees 569

Next, we give a generalization of Theorem 12. We begin by describing algorithm A3,
the general tree variant of binary tree search algorithm A2. We dovetail, as in Theo-
rem 12, but in rounds that are partitioned into sub-rounds. Let σr =

∑
0≤j≤r D0,j−1,

the total number of nodes of T on levels 0 through r. After round r ≥ 0, the tree T
has been completely searched up to level r, at a cost of σr . In addition, for 0 ≤ j <
lg D0,r−1, D0,r−1/2j nodes on all levels in the interval (r− 1+ σr/D0,r−12j , r− 1+
σr/D0,r−12j+1] have been searched, at an additional total cost of σr lg D0,r−1.

More generally, after sub-round s of round r, s + 1 of the dr−1 children of each
node on level r − 1 have been probed, at a cost of σr−1 + (s + 1)D0,r−2. In addi-
tion, for 0 ≤ j < lg((s + 1)D0,r−2), (s + 1)D0,r−2/2j nodes on all levels in the
interval (r − 2 + (σr−1 + (s + 1)D0,r−2)/((s + 1)D0,r−2)2j , r − 2 + (σr−1 + (s +
1)D0,r−2)/((s + 1)D0,r−2)2j+1] have been searched, at an additional total cost of
(σr−1 + (s + 1)D0,r−2) lg((s + 1)D0,r−2).

Theorem 17. The uninformed algorithm A3 has the property that, for every problem
instance T with exactly kt goals at level t, avgπ∈Π(T )search cost(A3, π)
= O(mint≥0{(t + 1)D0,t−1

kt
} · lg(mint≥0{(t + 1)D0,t−1

kt
})).

Contrasting Theorems 16 and 17, we obtain competitive bounds comparable to those
achieved in the case of binary trees; of course, the competitive limit captured by Theo-
rem 13 still applies.

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC).

References

1. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic Pub-
lishers, Dordrecht (2003)

2. Azar, Y., Broder, A.Z., Manasse, M.S.: On-line choice of on-line algorithms. In: Proc. 4th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 432–440 (1993)

3. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inform. Com-
put. 106(2), 234–252 (1993)

4. Demaine, E., Fekete, S., Gal, S.: Online searching with turn cost. Theoret. Comput. Sci. 361,
342–355 (2006)

5. Fleischer, R., Kamphans, T., Klein, R., Langetepe, E., Trippen, G.: Competitive online ap-
proximation of the optimal search ratio. In: Proc. 12th Annual European Symposium on
Algorithms, pp. 335–346 (2004)

6. Kao, M.-Y., Littman, M.L.: Algorithms for informed cows. In: AAAI 1997 Workshop on
On-Line Search (1997)

7. Kao, M.-Y., Ma, Y., Sipser, M., Yin, Y.: Optimal constructions of hybrid algorithms. J. Al-
gorithms 29(1), 142–164 (1998)

8. Kao, M.-Y., Reif, J.H., Tate, S.R.: Searching in an unknown environment: An optimal ran-
domized algorithm for the cow-path problem. Inform. Comput. 131(1), 63–79 (1996)



570 D. Kirkpatrick and S. Zilles

9. Kenyon, C.: Best-fit bin-packing with random order. In: Proc. 7th Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 359–364 (1996)

10. Kirkpatrick, D.: Hyperbolic dovetailing. In: Proc. 17th Annual European Symposium on
Algorithms, pp. 516–527 (2009)

11. Koutsoupias, E., Papadimitriou, C., Yannakakis, M.: Searching a fixed graph. In: Proc. 23rd
International Colloquium on Automata, Languages and Programming, pp. 280–289 (1996)

12. Lopez-Ortiz, A., Schuierer, S.: The ultimate strategy to search on ı̈ rays. Theoret. Comput.
Sci. 261, 267–295 (2001)

13. Luby, M., Sinclair, A., Zuckerman, D.: Optimal speedup of Las Vegas algorithms. In: Proc.
Second Israel Symposium on Theory of Computing and Systems, Jerusalem, pp. 128–133
(June 1993)

14. McGregor, A., Onak, K., Panigrahy, R.: The oil searching problem. In: Proc. 17th Annual
European Symposium on Algorithms, pp. 504–515 (2009)

15. Papadimitriou, C.H., Yannakakis, M.: Shortest paths without a map. In: Ronchi Della Rocca,
S., Ausiello, G., Dezani-Ciancaglini, M. (eds.) ICALP 1989. LNCS, vol. 372, pp. 610–620.
Springer, Heidelberg (1989)

16. Schönhage, A.: Adaptive raising strategies optimizing relative efficiency. In: Proc. 30th In-
ternational Colloquium on Automata, Languages and Programming, pp. 611–623 (2003)

17. Schuierer, S.: Lower bounds in on-line geometric searching. Comp. Geom. 18, 37–53 (2001)
18. Schuierer, S.: A lower bound for randomized searching on ı̈ rays. In: Klein, R., Six, H.-W.,

Wegner, L. (eds.) Computer Science in Perspective. LNCS, vol. 2598, pp. 264–277. Springer,
Heidelberg (2003)

19. http://www2.cs.uregina.ca/˜zilles/kirkpatrickZ11b.pdf



Multiple-Source Single-Sink Maximum Flow in

Directed Planar Graphs in O(diameter · n log n)
Time

Philip N. Klein� and Shay Mozes��

Brown University, Providence, RI, USA
{klein,shay}@cs.brown.edu

Abstract. We develop a new technique for computing maximum flow in
directed planar graphs with multiple sources and a single sink that sig-
nificantly deviates from previously known techniques for flow problems.
This gives rise to an O(diameter · n log n) algorithm for the problem.

1 Introduction

The study of maximum flow in planar graphs has a long history. In 1956, Ford
and Fulkerson introduced the max st-flow problem, gave a generic augmenting-
path algorithm, and also gave a particular augmenting-path algorithm for the
case of a planar graph where s and t are on the same face (that face is tra-
ditionally designated to be the infinite face). Researchers have since published
many algorithmic results proving running-time bounds on max st-flow for (a)
planar graphs where s and t are on the same face, (b) undirected planar graphs
where s and t are arbitrary, and (c) directed planar graphs where s and t are
arbitrary. The best bounds known are (a) O(n) [5], (b) O(n log log n) [6], and
(c) O(n log n) [2], where n is the number of nodes in the graph.

This paper is concerned with the maximum flow problem in the presence of
multiple sources. In max-flow applied to general graphs, multiple sources presents
no problem: one can reduce the problem to the single-source case by introducing
an artificial source and connecting it to all the sources. However, as Miller and
Naor [10] pointed out, this reduction violates planarity unless all the sources are
on the same face to begin with. Miller and Naor raise the question of computing
a maximum flow in a planar graph with multiple sources and multiple sinks.
Until recently, the best known algorithm for computing multiple-source max-
flow in a planar graph is to use the reduction in conjunction with a max-flow
algorithm for general graphs. That is, no planarity-exploiting algorithm was
known for the problem. A few months after developing the technique described
in this paper we developed with collaborators an algorithm for the more general
problem of maximum flow in planar graphs with multiple sources and sinks [3]
which runs in O(n log3 n) time and uses a recursive approach. Given these recent
� Supported in part by NSF Grant CCF-0964037.

�� Supported by NSF Grant CCF-0964037 and by a Kanellakis fellowship.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 571–582, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



572 P.N. Klein and S. Mozes

developments, the algorithm presented here is mostly interesting for the new
technique developed.

In this paper we present an alternative algorithm for the maximum flow
problem with multiple sources and a single sink in planar graphs that runs in
O(diameter · n log n) time. The diameter of a graph is defined as the maximum
over all pairs of nodes of the minimum number of edges in a path connecting the
pair. Essentially, we start with a non-feasible flow that dominates a maximum
flow, and convert it into a feasible maximum preflow by eliminating negative-
length cycles in the dual graph. The main algorithmic tool is a modification
of an algorithm of Klein [9] for finding multiple-source shortest paths in pla-
nar graphs with nonnegative lengths; our modification identifies and eliminates
negative-length cycles. This approach is significantly different than all previously
known maximum-flow algorithms. While the relation between flow in the primal
graph and shortest paths in the dual graph has been used in many algorithms for
planar flow, considering fundamentally non-feasible flows and handling negative
cycles is novel. We believe that this is an interesting algorithmic technique and
are hopeful it will be useful beyond the current context.

1.1 Applications

Schrijver [12] has written about the history of the maximum-flow problem. Ford
and Fulkerson, who worked at RAND, were apparently motivated by a clas-
sified memo of Harris and Ross on interdiction of the Soviet railroad system.
That memo, which was declassified, contains a diagram of a planar network that
models the Soviet railroad system and has multiple sources and a single sink.

A more realistic motivation comes from selecting multiple nonoverlapping
regions in a planar structure. Consider, for example, the following image-
segmentation problem. A grid is given in which each vertex represents a pixel,
and edges connect orthogonally adjacent pixels. Each edge is assigned a cost such
that the edge between two similar pixels has higher cost than that between two
very different pixels. In addition, each pixel is assigned a weight. High weight
reflects a high likelihood that the pixel belongs to the foreground; a low-weight
pixel is more likely to belong to the background.

The goal is to find a partition of the pixels into foreground and background
to minimize the sum

weight of background pixels
+ cost of edges between foreground pixels and background pixels

subject to the constraints that, for each component K of foreground pixels, the
boundary of K forms a closed curve in the planar dual that surrounds all of K
(essentially that the component is simply connected).

This problem can be reduced to multiple-source, single-sink max-flow in a
planar graph (in fact, essentially the grid). For each pixel vertex v, a new vertex
v′, designated a source, is introduced and connected only to v. Then the sink
is connected to the pixels at the outer boundary of the grid. See [4] for similar
applications in computer vision.



Multiple-Source Single-Sink Maximum Flow in Directed Planar Graphs 573

1.2 Related Work

Most of the algorithms for computing maximum flow in general (i.e., non-planar)
graphs build a maximum flow by starting from the zero flow and iteratively
pushing flow without violating arc capacities. Traditional augmenting path al-
gorithms, as well as more modern blocking flow algorithms, push flow from the
source to the sink at each iteration, thus maintaining a feasible flow (i.e., a flow
assignment that respects capacities and obeys conservation at non-terminals)
at all times. Push-relabel algorithms relax the conservation requirement and
maintain a feasible preflow rather than a feasible flow. However, none of these
algorithms maintains a flow assignment that violates arc capacities.

There are algorithms for maximum flow in planar graphs that do use flow
assignments that violate capacities [11,10]. However, these violations are not
fundamental in the sense that the flow does respect capacities up to a circulation
(a flow with no sources or sinks). In other words, the flow may over-saturate some
arcs, but no cut is over-saturated. We call such flows quasi-feasible flows.

The value of a flow that does over-saturate some cuts is higher than that of a
maximum flow. This situation can be identified by detecting a negative-length
cycle in the dual of the residual graph. One of the algorithms in [10] uses this
property in a parametric search for the value of the maximum flow. When a
quasi-feasible flow with maximum value is found, it is converted into a feasible
one. This approach is not suitable for dealing with multiple sources because the
size of the search space grows exponentially with the number of sources.

Our approach is the first to use and handle fundamentally infeasible flows.
Instead of interpreting the existence of negative cycles as a witness that a given
flow should not be used to obtain a maximum feasible flow, we use the negative
cycles to direct us in transforming a fundamentally non-feasible flow into a max-
imum feasible flow. A negative-length cycle whose length is −c corresponds to a
cut that is over saturated by c units of flow. This implies that the flow should
be decreased by pushing c units of flow back from the sink across that cut.

2 Preliminaries

In this section we provide basic definitions and notions that are useful in pre-
senting the algorithm. Additional definitions and known facts that are relevant
to the proof of correctness and to the analysis are presented later on.

We assume the reader is familiar with the basic definitions of planar embedded
graphs and their duals (cf. [2]). Let G = 〈V, A〉 be a planar embedded graph
with node-set V and arc-set A. For notational simplicity, we assume here and
henceforth that G is connected and has no parallel edges and no self-loops. For
each arc a in the arc-set A, we define two oppositely directed darts, one in
the same orientation as a (which we sometimes identify with a) and one in the
opposite orientation. We define rev(·) to be the function that takes each dart to
the corresponding dart in the opposite direction. It is notationally convenient to
equate the edges, arcs and darts of G with the edges, arcs and darts of the dual
G∗. It is well-known that contracting an edge that is not a self-loop corresponds



574 P.N. Klein and S. Mozes

w

v

u

Fig. 1. A primal graph (black) and its dual (gray). The cut δ({u, v, w}) in the primal
corresponds to a counterclockwise dual cycle (dashed arcs).

to deleting it in the dual, and that a set of darts forms a simple directed cycle
in G iff it forms a simple directed cut in the dual G∗ [13]; see Fig. 1.

Given a length assignment length(·) on the darts, we extend it to sets D of
darts by length(D) =

∑
d∈D length(d). For a set X of nodes, let δ(X) denote

the set of darts crossing the cut (X, V − X). Namely, δ(X) = {d : tail(d) ∈
X, head(d) /∈ X}. Let T be a rooted spanning tree of G∗. For a node v ∈ G∗, let
T [v] denote the unique root-to-v path in T . The reduced length of d with respect
to T is defined by

lengthT (d) = length(d) + length(T [tailG∗(d)])− length(T [headG∗(d)]) (1)

The edges of G not in T form a spanning tree τ of G. A dart d is unrelaxed if
lengthT (d) < 0. Note that, by definition, only darts not in T can be unrelaxed.
A leafmost unrelaxed dart is an unrelaxed dart d of τ such that no proper de-
scendant of d in τ is unrelaxed. For a dart d not in T , the elementary cycle of
d with respect to T in G∗ is the cycle composed of d and the unique path in T
between the endpoints of d.

2.1 Flow

Let S ⊂ V be a set vertices called sources, and let t /∈ S be vertex called sink.
A flow assignment f(·) in G is a real-valued function on the darts of G satis-

fying antisymmetry:
f(rev(d)) = −f(d)

A capacity assignment c(·) is a real-valued function on darts. A flow assign-
ment f(·) is feasible or respects capacities if, for every dart d, f(d) ≤ c(d). Note
that, by antisymmetry, f(d) ≤ c(d) implies f(rev(d)) ≥ −c(d). Thus a negative
capacity on a dart acts as a lower bound on the flow on the reverse dart.

For a given flow assignment f(·), the net inflow (or just inflow) node v is
inflowf (v)=

∑
d∈A:head(d)=v f(d).1 The outflow of v is outflowf (v) = −inflowf (v).

1 An equivalent definition, in terms of arcs, is inflowf (v) =
∑

a∈A:head(a)=v f(a) −
∑

a∈A:tail(a)=v f(a).



Multiple-Source Single-Sink Maximum Flow in Directed Planar Graphs 575

The value of f(·) is the inflow at the sink, inflowf (t). A flow assignment f(·) is
said to obey conservation at node v if inflowf (v) = 0. A flow assignment is a
circulation if it obeys conservation at all nodes. A flow assignment is a flow if it
obeys conservation at every node other than the sources and sink. It is a preflow
if for every node other than the sources, inflowf (v) ≥ 0.

For two flow assignments f, f ′, the addition f + f ′ is the flow that assigns
f(d)+ f ′(d) to every dart d. A flow assignment f is a quasi-feasible flow if there
exists a circulation φ such that f + φ is a feasible flow. This concept is not new,
but it is so central to our algorithm that we introduce a name for it.

The residual graph of G with respect to a flow assignment f(·) is the graph
Gf with the same arc-set, node-set and sink, and with capacity assignment cf (·)
defined as follows. For every dart d, cf (d) = c(d)− f(d).

Given a feasible preflow f+ in a planar graph, there exists an O(n log n)-time
algorithm that converts f+ into a feasible flow f with the same value (cf. [7]).
In fact, this can be done in linear time by first canceling flow cycles using the
technique of Kaplan and Nussbaum [8], and then by sending any excess flow
from back to the sources in topological sort order.

2.2 Quasi-Feasible Flows and Negative-Length Dual Cycles

Miller and Naor prove that f is a quasi-feasible flow in G if and only if G∗
f

contains no negative-length cycles. Intuitively, a negative-length cycle in the
dual corresponds to a primal cut whose residual capacity is negative. That is,
the corresponding cut is over-saturated. Since a circulation obeys conservation
at all nodes it does not change the total flow across any cut. Therefore, there
exists no circulation whose addition to f would make it feasible. Conversely, they
show that if G∗

f has no negative-length cycles, then shortest path distances from
any arbitrary node in the dual define a feasible circulation in the primal.

3 The Algorithm

We describe an algorithm that, given a graph G with n nodes, a sink t incident
to the infinite face f∞, and multiple sources, computes a maximum flow from
the sources to t in time O(diameter · n log n), where diameter is the diameter of
the face-vertex incidence graph of G. Initially, each dart d has a non-negative
capacity, which we denote by length(d) since we will interpret it as a length in
the dual. During the execution of the algorithm, the length assignment length(·)
is modified. Even though the algorithm does not explicitly maintain a flow at all
times, we will refer throughout the paper to the flow pushed by the algorithm.
At any given point in the execution of the algorithm we can interpret the lengths
of darts in the dual as their residual capacities in the primal. By the flow pushed
by the algorithm, we mean the flow that would induce these residual capacities.

The algorithm starts by pushing an infeasible flow that saturates δ(s) from
every source s to t (Line 4). It then starts to reduce that flow in order to make
it feasible. This is done by using a spanning tree τ of G and a spanning tree



576 P.N. Klein and S. Mozes

Algorithm 1. Multiple-source single-sink maximum flow (G, S, t, c0)
Input: planar directed graph G with capacities c0, source set S, sink t incident to f∞
Output: a maximum feasible flow f

1: length(d) := c0(d) for every dart d
2: initialize spanning tree T of G∗ rooted at f∞ using right-first-search
3: let τ be the spanning tree of G consisting of edges not in T , and root τ at t
4: for each source s ∈ S
5: for each dart d on the s-to-t path in τ
6: length(d) := length(d)− length(δ({s}))
7: length(rev(d)) := length(rev(d)) + length(δ({s}))
8: while there exist unrelaxed darts in G∗

9: let d̂ be an unrelaxed dart that is leafmost in τ
10: if d̂ is not a back-edge in T then //perform a pivot
11: remove from T the parent edge of headG∗ (d̂) and insert d̂ into T
12: else // fix a negative cycle by pushing back flow
13: let C denote the elementary cycle of d̂ with respect to T in G∗

14: for each dart d of the d̂-to-t path of darts in the primal spanning tree τ

length(d) := length(d) + |length(C)|
length(rev(d)) := length(rev(d))− |length(C)|

15: for every dart d strictly enclosed by C
16: f(d) := c0(d)− lengthT (d)
17: in G, contract d //in G∗, delete d
18: f(d) := c0(d)− lengthT (d) for every dart d
19: convert the preflow f into a flow.

T of G∗ such that each edge is in exactly one of these trees. The algorithm
repeatedly identifies a negative cycle C in G∗, which corresponds in G to an
over-saturated cut. Line 14 decreases the lengths of darts on a primal path in
τ that starts at the sink t and ends at some node v (a face in G∗) that is
enclosed by C. We call such a path a pushback path. This change corresponds to
pushing flow back from the sink to v along the pushback path, making the over-
saturated cut exactly saturated. We call the negative-turned-zero-length cycle C
a processed cycle. Processed cycles enclose no negative cycles. This implies that
there exists a feasible preflow that saturates the cut corresponding to a processed
cycle (see Lemma 5). The algorithm records that preflow (Line 16) and contracts
the source-side of the cut into a single node referred to as a super-source.

When no negative length cycles are left in the contracted graph, the flow
pushed by the algorithm is quasi-feasible. That is, the flow pushed by the algo-
rithm is equivalent, up to a circulation, to a feasible flow in the contracted graph.
Combining this feasible flow in the contracted graph and the preflows recorded
at the times cycles were processed yields a maximum feasible preflow for the
original uncontracted graph. In a final step, this feasible preflow is converted
into a feasible flow.



Multiple-Source Single-Sink Maximum Flow in Directed Planar Graphs 577

We now describe in more detail how negative cycles are identified and pro-
cessed by the algorithm. The algorithm maintains a spanning tree T of G∗ rooted
at the infinite face f∞ of G, and a spanning tree τ of G, rooted at the sink t.
The tree τ consists of the edges not in T . The algorithm tries to transform T
into a shortest-path tree by pivoting into T unrelaxed darts according to some
particular order (line 9). However, if an unrelaxed dart d̂ happens to be a back-
edge2 in T , the corresponding elementary cycle C is a negative-length cycle. To
process C, flow is pushed from t to head(d̂) along the t-to-d̂ path in τ (line 14).
The amount of flow the algorithm pushes is |length(C)|, so after C is processed
its length is zero, and d̂ is no longer unrelaxed. The algorithm then records a
feasible preflow for C, deletes the interior of C, and proceeds to find the next
unrelaxed dart. See Fig. 2 for an illustration. When all darts are relaxed, T is a
shortest-path tree, which implies no more negative-length cycles exist.

d^

Fig. 2. Identifying and processing a negative cycle. On the left, the tree T is shown
in solid. Non-tree edges are dashed. The unrelaxed dart d̂ is dotted. The elementary
cycle of d̂ w.r.t. T has negative length. The primal pushback path is double-lined gray.
After the negative cycle is processed, its interior is deleted (on the right).

To control the number of pivots we initialize T to have a property called right-
shortness, and show it is preserved by the algorithm and that it implies that the
number of pivots of any dart is bounded by the diameter of the graph. We later
discuss how data structures enable the iterations to be performed efficiently.

4 Correctness and Analysis

We refer the reader to the full version of this paper3 for complete proofs of some
of the lemmas in this section as well as for the precise definitions of the following
(standard) terms that are used in the sequel: clockwise and counterclockwise,
being left-of and right-of, reduced lengths, and winding numbers. We begin with
2 A non-tree dart d is a back edge of T if head(d) is an ancestor in T of tail(d).
3 Available on the authors’ website and at http://arxiv.org/abs/1104.4728



578 P.N. Klein and S. Mozes

a couple of basic lemmas. Consider the sink t as the infinite face of G∗. By our
conventions, any clockwise (counterclockwise) cycle C in G∗ corresponds to a
primal cut (X, V −X) such that t ∈ X (t /∈ X); see Fig. 1.

Lemma 1. Consider the sink t as the infinite face of G∗. The length of any
clockwise (counterclockwise) dual cycle does not decrease (increase) when flow is
pushed to t. The length of any clockwise (counterclockwise) dual cycle does not
increase (decrease) when flow is pushed from t.

The following is a restatement of a theorem of Miller and Naor [10].

Lemma 2. Let G be a planar graph. Let c0 be a capacity function on the darts
of G. Let f be a flow assignment. Define the length of a dart d to be its residual
capacity c0(d) − f(d). If f is quasi-feasible then f ′(d) = c0(d) − lengthT (d) is
a feasible flow assignment, where T is a shortest-path tree in G∗. Furthermore,
f ′ = f + φ for some circulation φ.

Correctness. To prove the correctness of the algorithm, we first show that an
elementary cycle w.r.t. a back-edge is indeed a negative-length cycle.

Lemma 3. Let d̂ be an unrelaxed back-edge w.r.t. T . The length of the elemen-
tary cycle of d̂ w.r.t. T is negative.

Proof. Consider the price function induced by from-root distances in T . Every
tree dart whose tail is closer to the root than its head has zero reduced length.
The reduced length of an unrelaxed dart is negative. Since d̂ is a back edge w.r.t.
T , its elementary cycle C uses darts of T whose length is zero. Therefore the
reduced length of C equals the reduced length of just d̂, which is negative. The
lemma follows since the length and reduced length of any cycle are the same.

Lemma 4. Let C be the negative-length cycle defined in line 13. After C is
processed in line 14, length(C) = 0 and d̂ is relaxed. Furthermore, the following
invariants hold just before line 14 is executed:

1. the flow pushed by the algorithm satisfies flow conservation at every node
other than the sources (including super-sources) and the sink.

2. the outflow at the sources is non-negative.
3. there are no clockwise negative-length cycles.

The proof is omitted. The idea is that initially the invariants hold since flow is
pushed from the sources to the sink in the initialization step. Subsequently, the
invariants are maintained since whenever a negative-length cycle is processed,
flow is pushed back into that cycle to make the corresponding cut exactly satu-
rated. Then the interior of the cycle is deleted.

We now prove properties of the flow computed by the algorithm. The following
lemma characterizes the flow recorded in line 16. Intuitively, this shows that it
is a saturating feasible flow for the cut corresponding to the processed cycle.



Multiple-Source Single-Sink Maximum Flow in Directed Planar Graphs 579

Lemma 5. Let C be a cycle currently being processed. Let (X, V − X) be the
corresponding cut, where t /∈ X. Let δc be the set of darts crossing the cut. The
flow assignment f computed in the loop in Line 16 satisfies:

1. f(d) ≤ c0(d) for all darts whose endpoints are both in X.
2. every node in X except sources and tails of darts of δc satisfies conservation.
3. for every d′ ∈ δc,

∑
d:head(d)=tail(d′) f(d) ≥

∑
d∈δc:tail(d)=tail(d′) c0(d)

The proof is omitted. The main idea is that at the time C is processed it encloses
no negative-length cycles. Furthermore, the tree T is a shortest-path tree for the
interior of C at that time. Since the length of the cycle is adjusted to be zero,
the corresponding cut is exactly saturated, so by the relation of quasi-feasible
flows, the distances in T define a feasible flow in which that cut is saturated.

Lemma 6. The following invariant holds. In G∗ every source is enclosed by
some zero-length cycle that encloses no negative-length cycles.

The proof is omitted. The idea is that the initialization guarantees the invariant
holds initially. It is preserved since a processed cycle has length zero and its
interior is deleted and replaces with a super-source. The following lemma,
whose proof is omitted, is an easy consequence of Lemma 6.

Lemma 7. The following invariant holds. There exists no feasible flow f ′ s.t.
inflowf ′(t) is greater than inflowf (t), where f is the flow pushed by the algorithm.

Lemma 8. The flow f computed in Line 18 is a maximum feasible flow in the
contracted graph G w.r.t. the capacities c0.

Proof. The flow pushed by the algorithm satisfies conservation by Lemma 4. By
Lemma 7, there is no feasible flow of greater value. Since there are no unre-
laxed darts, T is a shortest-path tree in G∗ and G∗ contains no negative cycles.
Therefore, the flow pushed by the algorithm is quasi-feasible. This shows that
the conditions of Lemma 2 are satisfied. It follows that f computed in Line 18
satisfies conservation, respects the capacities c0 and has maximum value.

Lemma 9. The flow assignment f(d) is a feasible maximum preflow in the (un-
contracted) graph G w.r.t. the capacities c0.

Proof. f is well defined since each dart is assigned a value exactly once; in
Line 16 at the time it is contracted, or in Line 18 if it was never contracted. By
Lemma 8 and by part 1 of Lemma 5, f(d) ≤ c0(d) for all darts d, which shows
feasibility. By Lemma 8 and by part 2 of Lemma 5, flow is conserved everywhere
except at the sources, the sink, and nodes that are tails of darts of processed
cycles. However, for a node v that is the tail of some dart of a processed cycle,∑

d:head(d)=v f(d) ≥ 0. This is true by part 3 of Lemma 5, and since f(d) ≤ c0(d)
for any dart. f(·) is therefore a preflow. Finally, the value of f(·) is maximum
by Lemma 8.

Lemma 9 completes the proof of correctness since line 19 converts the maximum
feasible preflow into a feasible flow of the same value.



580 P.N. Klein and S. Mozes

Efficient implementation. The dual tree T is represented by a table parentD[·]
that, for each nonroot node v, stores the dart parentD[v] of T whose head in
G∗ is v. The primal tree τ is represented using a dynamic-tree data structure
such as self-adjusting top-trees [1]. Each node and each edge of τ is represented
by a node in the top-tree. Each node of the top-tree that represents an edge
e of τ has two weights, wL(e) and wR(e). The values of these weights are the
reduced lengths of the two darts of e, the one oriented towards leaves and the
one oriented towards the root.4 The weights are represented so as to support
an operation that, given a node x of the top-tree and an amount Δ, adds Δ to
wR(e) and subtracts Δ from wL(e) for all edges e in the x-to-root path in τ .

This representation allows each of the following operations be implemented
in O(log n) time: lines 9, 13, 11, 16, and 17, the loop of line 5, and the loop of
line 14.5

Running-Time Analysis. Lines 16 and 17 are executed at most once per
edge. To analyze the running time it therefore suffices to bound the number of
pivots in line 11 and the number of negative cycles encountered by the algorithm.
Note that every negative length cycle strictly encloses at least one edge. This is
because the length of any cycle that encloses just a single source is initially set
to zero, and since the length of the cycle that encloses just a single super-source
is set to zero when the corresponding negative cycle is processed and contracted.

Since the edges strictly enclosed by a processed cycle are deleted, the number
of processed cycles is bounded by the number of edges, which is O(n).

It remains to bound the number of pivots. We will prove that at the tree T
satisfies a property called right-shortness. This property implies that the number
of times a given dart pivots into T is bounded by the diameter of the graph.

Definition 1. [9] A tree T is right-short if for all nodes v ∈ T there is no
simple root-to-v path P that is: as short as T [v] and strictly right of T [v].

Since T is initialized using right first search, initially, for every node v there is
no simple path in G∗ that is strictly right of T [v]. Therefore, initially, T is right-
short. The algorithm changes T in two ways; either by making a pivot (line 11)
or by processing a negative-length cycle (line 14).

Lemma 10. [9] leafmost dart relaxation (line 11) preserves right-shortness.

Lemma 11. Right-shortness is preserved when processing the counterclockwise
negative-length cycle C in line 14.

The proof is omitted. The main idea is that the changes in lengths of darts in
line 14 correspond to pushing back flow from the sink t. By Lemma 1, the length
of any counterclockwise cycle does not decrease. Since lengths of darts of T are
not affected by line 14, this implies that right-shortness is preserved. We have
thus established that
4 Note that the length of the the cycle C in line 13 is exactly the reduced length of d̂.
5 The whole initialization in the loop of line 4 can instead be carried out in linear time

by working up from the leaves towards the root of τ .



Multiple-Source Single-Sink Maximum Flow in Directed Planar Graphs 581

Corollary 1. T is right-short at all times.

f

v
d

T
1
[v]

T
2
[v] T

3
[v]

Fig. 3. Bounding the number of pivots of dart d whose head is a node v of G∗. Three
tree paths to v at times t1 < t2 < t3 are shown. T3[v] (triple-lined) is left of T2[v]
(double-lined) and T2[v] is left of T1[v] (black) . The dart d is in T1[v] and T3[v], but
not in T2[v]. Therefore, it must have pivoted out of T and into T between time t1 and
t3. The curve γ (dashed) visits only nodes of G∗. The winding number of T1[v] about γ
is 0. The winding number of T3[v] must be greater than that of T1 (1 in this example).

Consider a dart d of G∗ with head v. Let γ be an arbitrary root(T )-to-v curve
on the sphere. Let T1[v] and T2[v] denote the tree path to v at two distinct times
in the execution of the algorithm. Since right-shortness is preserved throughout
the algorithm and since with every pivot length(T [v]) may only decrease, if T2[v]
occurs later in the execution than T1[v], then T2[v] is left of T1[v]. It follows that
the winding number of T [v] about γ between any two occurrences of d as the
pivot dart in line 11 must increase. See Fig. 3. Therefore, if we let T0 denote the
initial tree T , and Tt denote the tree T at the latest time node v appears in G∗,
then the number of times d may appear as the pivot dart in line 11 is bounded
by the difference of the winding numbers of Tt[v] and T0[v] about γ. Since γ is
arbitrary, we may choose it to intersect the embedding of G∗ only at nodes, and
to further require that it visit the minimum possible number of nodes of G∗.
This number is bounded by the diameter of the face-vertex incidence graph of
G, which is bounded by the minimum of the diameter of G and the diameter of
G∗. Since both T0 and T are simple, the absolute value of their winding number
about γ is trivially bounded by the number of nodes γ visits. Therefore, the
total number of pivots is bounded by

∑
d diameter = O(diameter · n). The total

running time of the algorithm is thus bounded by O(diameter · n log n).

References

1. Alstrup, S., Holm, J., de Lichtenberg, K., Thorup, M.: Maintaining information in
fully dynamic trees with top trees. ACM Transactions on Algorithms 1(2), 243–264
(2005)



582 P.N. Klein and S. Mozes

2. Borradaile, G., Klein, P.N.: An O(n log n) algorithm for maximum st-flow in a
directed planar graph. Journal of the ACM 56(2) (2009)

3. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-
source multiple-sink maximum flow in directed planar graphs in near-linear time
(2011) (submitted)

4. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow al-
gorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis
and Machine Intelligence 26, 1124–1137 (2004)

5. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path al-
gorithms for planar graphs. Journal of Computer and System Sciences 55(1), 3–23
(1997)

6. Italiano, G.F., Nussbaum, Y., Sankowski, P., Wulff-Nilsen, C.: Improved algorithms
for min cut and max flow in undirected planar graphs. In: Proceedings of the 43rd
Annual ACM Symposium on Theory of Computing (to appear, 2011)

7. Johnson, D.B., Venkatesan, S.: Using divide and conquer to find flows in directed
planar networks in O(n3/2 log n) time. In: Proceedings of the 20th Annual Allerton
Conference on Communication, Control, and Computing, pp. 898–905 (1982)

8. Kaplan, H., Nussbaum, Y.: Maximum flow in directed planar graphs with vertex
capacities. In: Proceedings of the 17th European Symposium on Algorithms, pp.
397–407 (2009)

9. Klein, P.N.: Multiple-source shortest paths in planar graphs. In: Proceedings of the
16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 146–155 (2005)

10. Miller, G.L., Naor, J.: Flow in planar graphs with multiple sources and sinks. SIAM
Journal on Computing 24(5), 1002–1017 (1995); preliminary version in FOCS 1989

11. Reif, J.: Minimum s-t cut of a planar undirected network in O(n log2 n) time. SIAM
Journal on Computing 12, 71–81 (1983)

12. Schrijver, A.: On the history of the transportation and maximum flow problems.
Mathematical Programming 91(3), 437–445 (2002)

13. Whitney, H.: Planar graphs. Fundamenta Mathematicae 21, 73–84 (1933)



Planar Subgraphs without Low-Degree Nodes

Evangelos Kranakis1, Oscar Morales Ponce1, and Jukka Suomela2

1 School of Computer Science, Carleton University, Ottawa, Canada
kranakis@scs.carleton.ca, omponce@connect.carleton.ca

2 Helsinki Institute for Information Technology HIIT, University of Helsinki, Finland
jukka.suomela@cs.helsinki.fi

Abstract. We study the following problem: given a geometric graph G
and an integer k, determine if G has a planar spanning subgraph (with
the original embedding and straight-line edges) such that all nodes have
degree at least k. If G is a unit disk graph, the problem is trivial to solve
for k = 1. We show that even the slightest deviation from the trivial case
(e.g., quasi unit disk graphs or k = 2) leads to NP-hard problems.

1 Introduction

We study the problem of finding planar subgraphs that do not have low-degree
nodes. More precisely, given a geometric graph G = (V, E) and an integer k,
we want to determine if G has a planar spanning subgraph with the original
embedding and straight-line edges such that all nodes have degree at least k.

This is a natural prerequisite in many problems related to communication net-
works. For example, if the answer is no, then certainly we cannot find a k-vertex
connected or k-edge connected planar spanning subgraph, either. Moreover, if
the answer is no, then we know that the domatic number (the maximum number
of disjoint dominating sets) of any planar spanning subgraph is at most k. On
the positive side, if the answer is yes for k = 1, then we can find a planar span-
ning subgraph that has domatic number at least 2. That is, we can partition the
nodes in two disjoint dominating sets; for example, in a monitoring application,
the two sets of nodes can take turns in order to conserve energy.

The problem is easy to solve if G is a complete graph and k ≤ 2: any triangula-
tion of V is a planar graph of degree at least 2, and hence the answer is yes iff we
have at least k + 1 nodes. The case of complete graphs and k = 3 requires more
thought, but it turns out that there is a planar spanning subgraph of minimum
degree 3 iff we have at least 4 nodes and they are not in a convex position [2,11].
Hence the problem can be solved in polynomial time for complete graphs and
k ≤ 3. On the other hand, for k ≥ 6 the answer is always no: any planar graph
contains a node of degree at most 5.

The problem is also easy to solve if G is a connected unit disk graph (see
below for the definitions) and k = 1: the answer is yes if there are at least two
nodes, since the Euclidean minimum spanning tree in G is planar. In this work
we investigate what happens if we slightly deviate from the trivial case of a unit
disk graph and k = 1. In particular, can we solve the problem efficiently in quasi

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 583–594, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



584 E. Kranakis, O.M. Ponce, and J. Suomela

unit disk graphs [3], which are relaxations of unit disk graphs? Or can we solve
the problem in other simple families of geometric graphs such as graphs with
orthogonal edges? And what happens if k = 2 or k = 3? Surprisingly, it turns
out that even the slightest deviations lead to NP-complete decision problems.

Related Work. To our knowledge, this problem has not been studied before,
but there are related problems that have been considered in prior work.

In a non-geometric setting (i.e., the embedding of the nodes is not fixed), find-
ing a planar spanning subgraph is trivial: any spanning tree is planar. However,
finding large planar subgraphs is hard. For example, deciding if there is a planar
subgraph with a certain number of edges is a classical NP-complete problem [5,
problem GT27]. We refer to the survey by Liebers [8] for many variants of the
theme.

Our focus is on a geometric setting: the input is a graph with a fixed em-
bedding of the nodes, edges are straight lines, and a subgraph is planar if its
edges do not cross each other. With these definitions, finding a planar spanning
subgraph is no longer trivial: for example, an arbitrary spanning tree may have
crossing edges. However, in unit disk graphs the problem is easy to solve: the
Euclidean minimum spanning tree is planar. Indeed, a spanning tree is also con-
nected, and many algorithms have been proposed to obtain a connected planar
spanning subgraph of a unit disk graph – see, e.g., Gabriel and Sokal [4] and
Toussaint [12]. However, none of these algorithms guarantee that the minimum
degree is greater than one, and more general settings such as quasi unit disk
graphs have not been extensively studied.

Another closely related problem is connectivity augmentation in which new
edges are added to a graph to increase the connectivity. Abellanas et al. [1],
Rutter and Wolff [9], and Tóth [10] consider geometric planar graphs and add
edges to obtain 2-edge connected planar graphs, and Tóth and Valtr [11] and Al-
Jubeh et al. [2] consider the problem of augmenting a geometric planar graph into
a 3-edge connected planar graph. However, in these results the newly added edges
are of unbounded length. Recently, Kranakis et al. [6] proved that a geometric
planar graph can be augmented to a 2-edge connected planar graph with edges
of length at most three times the largest edge in the graph.

Notation and Preliminaries. A geometric graph (straight line graph) G =
(V, E) is a graph where each v ∈ V is a point in the Euclidean plane and each
e ∈ E is a straight line segment joining two distinct points. Throughout this
paper we assume that the points are in general position (no three points being
collinear). A geometric graph is planar if its edges do not cross each other except
at their endpoints, and it is orthogonal if each edge is either horizontal or vertical.
A graph is k-vertex connected if it remains connected after the removal of any
k−1 vertices, and it is k-edge connected if it remains connected after the removal
of any k − 1 edges. The degree of node v in graph G is denoted by deg(G, v).

We define the family qUDG(s) of quasi unit disk graphs with parameter s ≤ 1
as follows. A geometric graph G = (V, E) is in qUDG(s) if the following holds for
all u, v ∈ V : if the distance between u and v is at most s, then there is an edge



Planar Subgraphs without Low-Degree Nodes 585

Table 1. Computational complexity of finding a planar spanning subgraph that has a
given minimum degree in different families of geometric graphs. NP-C = NP-complete.

Degree Complete graphs UDG qUDG(1− ε) Orthogonal graphs Reference

≥ 1 in P in P NP-C if ε > 0 NP-C §3
≥ 2 in P NP-C NP-C if ε ≥ 0 (open) §4
≥ 3 in P [11] NP-C NP-C if ε ≥ 0 (open) §5

Table 2. Computational complexity of the augmentation problem

Degree Graph family Complexity Reference

≥ 1 UDG in P

≥ 2 UDG NP-C if α <
√

5/2 §4
UDG in P if α ≥ 3 [6]

UDG, strip of height h in P if α ≥ √1 + h2 §6
≥ 3 UDG NP-C if α <

√
5/2 §5

{u, v} ∈ E, and if the distance between u and v is larger than 1, then there is no
edge between u and v. The family UDG of unit disk graphs is equal to qUDG(1);
in a unit disk graph, the locations of the nodes determine the set of edges.

If G ∈ UDG and α ≥ 1 is a real number, then we define the geometric αth
power of a geometric graph G, denoted by G(α), as the graph obtained from G
by adding all edges between vertices of Euclidean distance at most α.

Contributions. Our results are summarized in Tables 1 and 2.
In Section 3 we study the case of minimum degree 1. While the problem is

trivial to solve in UDG, we show that it is NP-complete in qUDG(1− ε) for any
positive constant ε. We also show that the problem is NP-complete in orthogonal
graphs. The case of k = 2 is investigated in Section 4, and the case of k = 3 in
Section 5. In both cases it turns out that the problem is NP-complete in UDG.

As the strict decision problem turns out to be NP-complete in UDG if k ∈
{2, 3}, it is natural to ask whether we can solve the augmentation version of the
problem with parameter α ≥ 1: either (i) prove that a given G ∈ UDG does not
have a planar spanning subgraph of minimum degree k, or (ii) prove that G(α)

has a planar subgraph of minimum degree k. The case of α = 1 is equivalent
to the original decision problem. Our results in Sections 4 and 5 show that the
case of k ∈ {2, 3} and α <

√
5/2 is NP-hard, while prior work [6] implies that

the case of k = 2 and α = 3 can be solved in polynomial time. In Section 6 we
present an algorithm that solves the augmentation problem in narrow strips of
height h in polynomial time for k = 2 and α =

√
1 + h2.

The main new technique that we introduce in this work is the concept of
planar circuit networks. In Section 2 we show that the problem of choosing
an orientation of such a network is NP-complete, and Sections 3–5 demonstrate



586 E. Kranakis, O.M. Ponce, and J. Suomela

that the orientation problem on planar circuit networks serves as a useful starting
point in NP-completeness proofs that are related to planar subgraphs.

2 Orientation Problem on Planar Circuit Networks

A planar circuit network is a planar geometric graph C = (VC , EC) with the
following properties:

(i) The node set VC = TC ∪SC ∪UC consists of three disjoint subsets: terminals
TC, switches SC, and users UC .

(ii) The edge set EC = PC ∪WC consists of two disjoint subsets: ports PC and
wires WC . Each port is labeled with either 1, 2, or 3; the set of ports with
label x is denoted by PC(x).

(iii) Each wire joins a pair of terminals. Each port joins a terminal and a non-
terminal.

(iv) Each terminal is incident to exactly 2 edges, and at least one of them is a
wire.

(v) Each switch or user is incident to exactly 3 edges, and all of them are ports
with different labels. That is, for each v ∈ SC ∪ UC and x ∈ {1, 2, 3}, there
is exactly one edge in PC(x) that is incident to v.

Refer to Fig. 1 for an illustration; we draw terminals as black dots, switches as
trapezoids with the port 1 on the short side, and users as squares. In what follows,
we use the notation v(x) to refer to the unique port with label x ∈ {1, 2, 3} that
is incident to v ∈ SC ∪ UC.

We can partition a circuit network into components that are connected to each
other by terminals. More precisely, a component consists of (i) a wire and two
terminals or (ii) a user or a switch, three ports, and three terminals. Note that
each terminal is contained in exactly two components. However, if a is a wire,
switch, or user, then there is a unique component C[a] that contains a; in that
case, we use the notation a • t to denote that t is a terminal in the component
C[a]. We write a x • t if the port that leads from switch or user a to terminal t
has label x.

Orientation Problem. An orientation of a planar circuit network C assigns a
direction to each edge e ∈ EC . If a • t, and t has indegree 1 in the component

2

3

user

3
port portwire

terminal

1 21

switch

component

Fig. 1. A circuit network



Planar Subgraphs without Low-Degree Nodes 587

1(a)

(b)

2

3

1

3

2

Fig. 2. (a) Valid and (b) invalid orientations of a circuit network

C[a], then we write a �• t; otherwise a � • t. If a x • t, we use notation a x �• t or
a � x • t.

A valid orientation of a component C[a] satisfies the following requirements
(the first one is trivially satisfied but is listed here for reference):

(i) If a is a wire, then there is at least one terminal t with a � • t.
(ii) If a is a user, then there is at least one terminal t with a � • t.
(iii) If a is a switch with s 2 �• t2 or s 3 �• t3, then s � 1 • t1.

A valid orientation of a circuit network C satisfies the following additional re-
quirement:

(iv) Each terminal has indegree at least one.

See Fig. 2 for an illustration. Not all circuit networks have valid orientations; in
the orientation problem the task is to decide if a given planar circuit network C
has a valid orientation.

The following lemma shows that we can replace a path of wires by a single
wire and vice versa, without affecting the essential properties of the problem.

Lemma 1. Let C be a planar circuit network, and let e = {u, v} ∈ WC be a
wire in C. Construct another planar circuit network C′ by repeatedly subdividing
e; that is, we replace e by a path P that consists of wires and terminals. Then
if we are given a valid orientation of C, we can find in polynomial time a valid
orientation of C′, and vice versa.

Proof. Clearly if we are given a valid orientation of C, we can construct a valid
orientation of C′ as well. Now assume that we are given a valid orientation of C′.
Since all internal nodes of P have indegree at least 1, there must be at least one
endpoint of P that has indegree 0. W.l.o.g., we can assume that u is an endpoint
with indegree 0. Then we can orient the wire e in C from u to v. The orientations
of all other edges are inherited from C′. ��

We will use the following theorem in reductions throughout this work.

Theorem 1. The orientation problem on planar circuit networks is NP-complete.

Proof. By a reduction from planar 3SAT; see the extended version of this work [7].



588 E. Kranakis, O.M. Ponce, and J. Suomela

3 Degree One

In this section we study the problem of deciding if a given geometric graph
has a planar spanning subgraph. The problem is trivial in UDG – a minimum
spanning tree is a planar spanning subgraph. We will show that the problem is
NP-complete in quasi unit disk graphs and in orthogonal graphs.

Theorem 2. The following problem is NP-complete for any ε > 0: given a graph
G ∈ qUDG(1− ε), decide if G has a planar spanning subgraph.

To prove the theorem, assume that we are given an ε > 0 and a planar circuit
network C. We will show how to construct a graph G ∈ qUDG(1− ε) with the
following property: G has a planar spanning subgraph if and only if C has a valid
orientation. The claim then follows by Theorem 1.

In our construction of G, we replace each component C[a] of C by a gadget G[a]
that implements the component. In the construction, we will have two kinds of
nodes in G: black nodes are identified with the terminals of C, while grey nodes
are internal to a gadget. A component with a wire is replaced with the gadget of
Fig. 3a, a component with a switch is replaced with the gadget of Fig. 3b, and a
component with a switch is replaced with the gadget of Fig. 3c. Note that each
black node is shared by exactly two gadgets.

To guarantee that the gadgets are in qUDG(1− ε), we must choose appropriate
dimensions. Moreover, two gadgets must not be placed too close to each other;
for example, an internal node of one gadget cannot be within distance 1 − ε
from the internal node of another gadget. Hence we cannot directly replace
the components by gadgets in an arbitrary embedding of C. However, we can
always find an appropriate embedding by moving the components around and
by exploiting the flexibility provided by Lemma 1; see Fig. 3d for an illustration

(a) (b)

1

2

3

(c)

1

2

3

(d)

Fig. 3. Gadgets for qUDG(1− ε) and minimum degree 1: (a) wire, (b) switch, (c) user.
(d) Embedding of a switch, three ports, and three wires



Planar Subgraphs without Low-Degree Nodes 589

of the embedding in the neighborhood of a switch. Note that we can use a
polynomially-sized grid to embed the nodes, as we have some flexibility in the
choice of the exact coordinates: for example, in the wire gadget, the distance
between the two terminals can be chosen from the range (2− ε, 2).

Now we proceed to relate the orientations of C and the planar spanning sub-
graphs of G. Let us first focus on a component C[a] and the gadget G[a] that
implements it. We say that a subgraph G′[a] of G[a] is internally good if G′[a] is
planar and each grey node of G[a] has degree at least one in G′[a]. Note that if we
have a planar spanning subgraph G′ of G, then G′ restricted to G[a] is internally
good. The key observation is summarized in the following lemma.

Lemma 2. Given a valid orientation of C[a], we can find an internally good
subgraph G′[a] such that a �• t implies deg(G′[a], t) ≥ 1. Conversely, given an
internally good subgraph G′[a], we can find a valid orientation of C[a] such that
a • t and deg(G′[a], t) ≥ 1 implies a �• t.

Proof. A straightforward case analysis. ��

Now if we are given a valid orientation of C, we can apply Lemma 2 to each
component C[a] to find an internally good subgraph G′[a] for each G[a]; the
union of G′[a] forms a subgraph G′ of G. By construction, G′ is planar and
each grey node has degree at least one. It remains to be shown that each black
node has degree at least one. To verify this, consider a terminal t. In a valid
orientation, there is a component C[a] such that a �• t. Hence in G′[a] we have
deg(G′[a], t) ≥ 1, and therefore also deg(G′, t) ≥ 1. Hence G′ is a planar spanning
subgraph of G.

Conversely, if we are given a planar spanning subgraph G′ of G, we can apply
Lemma 2 to each component G[a] to orient C. We will have a valid orientation
for each component; it remains to be shown that each terminal has indegree
at least one. To verify this, consider a terminal t. Since deg(G′, t) ≥ 1 we have
a component C[a] such that deg(G′[a], t) ≥ 1, and hence a valid orientation
with a �• t. Hence we have a valid orientation of C. This concludes the proof of
Theorem 2.

Theorem 3. The following problem is NP-complete: given an orthogonal graph
G, decide if it has a planar spanning subgraph.

Proof. The structure of the proof is identical to the proof of Theorem 2. We are
only using a different set of gadgets: see Fig. 4. ��

4 Degree Two

In this section we study the case of planar spanning subgraphs that have degree
at least 2. It turns out that finding such subgraphs is NP-hard even in the case
of UDG.

In what follows, we prove a stronger result by considering a variant in which
we are allowed to augment the graph by adding edges of length α ≥ 1. In the



590 E. Kranakis, O.M. Ponce, and J. Suomela

(a) (b)

1

2

3
(c)

1

2

3

Fig. 4. Gadgets for orthogonal graphs: (a) wire, (b) switch, (c) user

augmentation problem we are allowed to return the answer that “the original
graph does not have a planar spanning subgraph with minimum degree at least 2”
or “I do not know about the original graph, but if I first add some edges of length
α, I can construct a planar spanning subgraph with minimum degree at least 2”.
Obviously, the case of α = 1 is equivalent to the original decision problem.

If α = 3, the problem can be solved in polynomial time by using techniques
from prior work [6]: If we are given a graph G ∈ UDG, we can consider each con-
nected component of G separately. If a connected component contains fewer than
3 nodes, then we know that G does not have a planar subgraph with minimum
degree 2. Otherwise we can first find a spanning tree in each component, and then
augment the trees by adding non-crossing edges of length at most 3 so that each
connected component becomes 2-edge connected. In particular, after augmenta-
tion, the graph is planar and each node has minimum degree at least 2.

In what follows, we prove that the problem is NP-complete if α <
√

5/2 ≈
1.118. We do this by formulating the problem as a promise problem.

Theorem 4. The following promise problem is NP-complete for any 1 ≤ α <√
5/2: given a graph G ∈ UDG, decide whether (i) there is no planar spanning

subgraph of G such that each node has degree at least 2, or (ii) there is a planar
spanning subgraph of G(α) such that each node has degree at least 2.

Proof. The structure of the proof is similar to the proof of Theorem 2. For the
sake of brevity, we only list the differences.

In Theorem 2 we constructed a graph G ∈ qUDG(1 − ε); this time we construct
a graph G ∈ UDG. Moreover, our construction satisfies G = G(α), that is, the
augmentation does not change the graph at all, and hence the augmentation
problem is exactly as difficult as deciding if G has a planar spanning subgraph
with minimum degree at least two.

We use a new set of gadgets; see Fig. 5. In addition to the gadgets that
correspond to the components of the circuit network, we also have a gadget
for each terminal. It can be verified that the distance between any pair of non-
adjacent nodes within a gadget is larger than α, and that there is an embedding
that preserves this property.



Planar Subgraphs without Low-Degree Nodes 591

(a) ε

0.5

0.5

(b)

2 3

1

(c)

1

2

3

(d)

Fig. 5. Gadgets for UDG, minimum degree 2: (a) wire, (b) switch, (c) user, (d) terminal

As we are finding a subgraph of minimum degree 2, we change the definition
of an internally good subgraph accordingly: each grey node must have degree at
least 2. With this change, Lemma 2 holds verbatim.

The key difference with the proof of Theorem 2 is that we have to deal with the
terminal gadgets. If we are given a valid orientation of C, we can apply Lemma 2
to each component C[a] to find an internally good subgraph G′[a] for each G[a].
The union of the subgraphs G′[a] and all terminal gadgets forms a subgraph G′
of G. By construction, G′ is planar and each grey node has degree at least 2. Now
consider a terminal t. In a valid orientation, there is a component C[a] such that
a �• t, and we have deg(G′[a], t) ≥ 1. Furthermore, t is incident to exactly one
edge from the terminal gadget. In summary, deg(G′, t) ≥ 2. Hence G′ is a planar
spanning subgraph of G and all nodes have degree at least 2.



592 E. Kranakis, O.M. Ponce, and J. Suomela

Conversely, given a planar spanning subgraph G′ with minimum degree 2, we
can verify that we can construct a valid orientation of C: each terminal gadget
contributes only one edge, and hence for each terminal t we must have a �• t
such that deg(G′[a], t) ≥ 1. This concludes the proof. ��

5 Degree Three

In this section, we consider the case of planar spanning subgraphs with minimum
degree at least k = 3. This case turns out to be similar to that of k = 2 in
Section 4. Again, we can prove that the problem is NP-complete, and even the
augmentation version of the problem is NP-complete.

Theorem 5. The following promise problem is NP-complete for any 1 ≤ α <√
5/2: given a graph G ∈ UDG, decide whether (i) there is no planar spanning

subgraph of G such that each node has degree at least 2, or (ii) there is a planar
spanning subgraph of G(α) such that each node has degree at least 2.

Proof. The proof is similar to Theorem 2. The key differences are as follows: We
have a new set of gadgets, see Fig. 6. We do not have any terminal gadgets. The
definition of an internally good subgraph is changed accordingly: each grey node
has degree at least 3. Finally, Lemma 2 is modified as follows.

Lemma 3. Given a valid orientation of C[a], we can find an internally good sub-
graph G′[a] such that a • t implies deg(G′[a], t) ≥ 1 and a �• t implies deg(G′[a], t)

(a)

ε

0.5
(b)

2 3

1

(c)

1

2

3

(d)

Fig. 6. Gadgets for UDG and minimum degree 3: (a) wire, (b) switch, (c) user. (d) Em-
bedding of a switch and three wires.



Planar Subgraphs without Low-Degree Nodes 593

≥ 2. Conversely, given an internally good subgraph G′[a], we can find a valid ori-
entation of C[a] such that a • t and deg(G′[a], t) ≥ 2 implies a �• t.

Now if we are given a valid orientation of C, we can apply Lemma 3 to each com-
ponent in order to construct a planar subgraph G′ of G. For each terminal t there
are a �• t and b • t with a 
= b. Now deg(G′, t) = deg(G′[a], t) + deg(G′[b], t) ≥
2 + 1 = 3. The converse case is similar. ��

6 Augmenting with Bounded Length Edges

As we saw in Section 4, the augmentation problem for the case of minimum
degree k = 2 is NP-complete in UDG if we are allowed to augment by adding
edges of length α <

√
5/2, and it can be solved in polynomial time if α = 3. In

this section we present an algorithm that solves the augmentation problem for
α =
√

1 + h2 in narrow strips of height h.

Theorem 6. The following problem can be solved in polynomial time: given a
graph G ∈ UDG in which all nodes are inside a strip of height h, either (i) show
that there is no planar spanning subgraph of G such that each node has degree
at least 2, or (ii) find a planar spanning subgraph of G(α) for α =

√
1 + h2 such

that each node has degree at least 2.

Proof. Let V = {v1, v2, . . . , vn} be the nodes of G ordered by their x-coordinates,
and let xi be the x-coordinate of node vi; that is, we have xi ≤ xi+1 for all i < n.
We say that Vs,t = {vs, vs+1, . . . , vt} is a section if

– xi + 1 ≥ xi+1 for all s ≤ i < t,
– s = 1 or xs−1 + 1 < xs, and
– t = n or xt + 1 < xt+1.

Put otherwise, a section is a maximal set of nodes such that the x coordinates
are separated by at most 1 unit. Note that the subgraph Gs,t induced by section
Vs,t consists of one or more connected components of G.

Now consider each subgraph Gs,t one by one; we will either conclude that we
have case (i), or we will show how find a planar subgraph G′s,t of G(α)

s,t :

– If t− s ≤ 5, we have a constant-size subproblem that we can solve by brute
force: either decide that we have case (i), or construct a planar subgraph
G′s,t.

– If xs + 1 < xs+2, then the degree of vs in G is at most one, and we have
case (i). Similarly, if xt−2 + 1 < xt, then the degree of vt in G is at most one,
and we have case (i).

– Otherwise we can construct G′s,t as follows: the edge set of G′s,t consists of
{vs, vs+2}, {vt−2, vt}, and {vi, vi+1} for all s ≤ i < t; each of these has length
at most α, and they are nonintersecting.

If we do not have case (i), we can find a planar subgraph of G(α) as a union of
the subgraphs G′s,t. ��



594 E. Kranakis, O.M. Ponce, and J. Suomela

7 Conclusions

In this work we have studied the problem of finding a planar spanning subgraph
with minimum degree k in different families of geometric graphs. One of the
main discoveries is the existence of a very sharp threshold in the computational
complexity of such problems: the case of k = 1 and unit disk graphs is trivial,
while a minor deviation from k = 1 to k = 2, or from unit disk graphs to quasi
unit disk graphs makes the problem NP-complete. A major open problem is a
full characterization of the complexity of the augmentation problem: for which
values of the parameter α can the problem be solved in polynomial time?

Acknowledgements. We thank the anonymous reviewers for their helpful com-
ments and suggestions. This work was supported in part by NSERC, MITACS,
CONACYT, the Academy of Finland (Grant 132380), the Finnish Cultural Foun-
dation, and the Research Funds of the University of Helsinki.

References

1. Abellanas, M., Garćıa, A., Hurtado, F., Tejel, J., Urrutia, J.: Augmenting the
connectivity of geometric graphs. Computational Geometry: Theory and Applica-
tions 40(3), 220–230 (2008)

2. Al-Jubeh, M., Ishaque, M., Rédei, K., Souvaine, D.L., Tóth, C.D.: Tri-edge-
connectivity augmentation for planar straight line graphs. In: Dong, Y., Du, D.-Z.,
Ibarra, O. (eds.) ISAAC 2009. LNCS, vol. 5878, pp. 902–912. Springer, Heidelberg
(2009)

3. Barrière, L., Fraigniaud, P., Narayanan, L., Opatrny, J.: Robust position-based
routing in wireless ad hoc networks with irregular transmission ranges. Wireless
Communications and Mobile Computing 3(2), 141–153 (2003)

4. Gabriel, K.R., Sokal, R.R.: A new statistical approach to geographic variation
analysis. Systematic Zoology 18(3), 259–278 (1969)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. WH Freeman and Company, New York (1979)

6. Kranakis, E., Krizanc, D., Ponce, O.M., Stacho, L.: Bounded length, 2-edge aug-
mentation of geometric planar graphs. In: Wu, W., Daescu, O. (eds.) COCOA 2010,
Part I. LNCS, vol. 6508, pp. 385–397. Springer, Heidelberg (2010)

7. Kranakis, E., Morales Ponce, O., Suomela, J.: Planar subgraphs without low-degree
notes (2011), http://www.iki.fi/jukka.suomela/low-degree

8. Liebers, A.: Planarizing graphs—a survey and annotated bibliography. Journal of
Graph Algorithms and Applications 5(1), 1–74 (2001)

9. Rutter, I., Wolff, A.: Augmenting the connectivity of planar and geometric graphs.
Electronic Notes in Discrete Mathematics 31, 53–56 (2008)

10. Tóth, C.D.: Connectivity augmentation in plane straight line graphs. Electronic
Notes in Discrete Mathematics 31, 49–52 (2008)

11. Tóth, C.D., Valtr, P.: Augmenting the edge connectivity of planar straight line
graphs to three. In: Proc. 13th Spanish Meeting on Computational Geometry, EGC
2009 (2009)

12. Toussaint, G.T.: The relative neighbourhood graph of a finite planar set. Pattern
Recognition 12(4), 261–268 (1980)



Constructing Orthogonal de Bruijn Sequences

Yaw-Ling Lin1,�, Charles Ward2, Bharat Jain2, and Steven Skiena2,��

1 Dept. of Comp. Sci. and Info. Eng., Providence University
yllin@pu.edu.tw

2 Dept. of Comp. Sci., Stony Brook University
charlesbward@gmail.com, {bkjain,skiena}@cs.sunysb.edu

Abstract. A (σ, k)-de Bruijn sequence is a minimum length string on
an alphabet set of size σ which contains all σk k-mers exactly once.
Motivated by an application in synthetic biology, we say a given collection
of de Bruijn sequences are orthogonal if no two of them contain the same
(k + 1)-mer; that is, the length of their longest common substring is k.

In this paper, we show how to construct large collections of orthogo-
nal de Bruijn sequences. In particular, we prove that there are at least
�σ/2� mutually-orthogonal order-k de Bruijn sequences on alphabets of
size σ for all k. Based on this approach, we present a heuristic which
proves capable of efficiently constructing optimal collections of mutually-
orthogonal sequences for small values of σ and k, which supports our
conjecture that σ − 1 mutually-orthogonal de Bruijn sequences exist for
all σ and k.

Keywords: de Bruijn graphs, de Bruijn sequences, orthogonal sequences,
Eulerian cycles, DNA synthesis.

1 Introduction

New technologies create new questions about classical objects. Here we introduce
a natural class of combinatorial sequence design problems in response to rapid
advances in DNA synthesis technology.

An exciting new field of synthetic biology is emerging with the goal of designing
novel organisms at the genetic level. DNA sequencing technology can be thought
of as reading DNA molecules, so as to describe them as strings on {A, C, G, T}
for computational analysis. DNA synthesis is the inverse operation, where one
can take any desired string and construct DNA molecules to specification with
exactly the given sequence. Indeed, commercial vendors such as GeneArt and
Blue Heron today charge under 40 cents per base, or only a few thousand dollars
to synthesize virus-length sequences, and prices are rapidly dropping [4,6]. In
May 2010, Venter’s group announced the first synthetic life form, a feat requiring
synthesizing a 1.08 megabase bacterial chromosome [8]. The advent of cheap
� This work is supported in part by the National Science Council (NSC-99-2632-E-

126-001-MY3), Taiwan, ROC.
�� Supported in part by NIH Grant 5R01AI07521903, NSF Grants IIS-1017181 and

DBI-1060572, and IC Postdoctoral Fellowship HM1582-07-BAA-0005.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 595–606, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



596 Y.-L. Lin et al.

synthesis will have many exciting new applications throughout the life sciences
(including our own work on synthetic vaccines [5,16,15]): the freedom to design
new sequences to specification leads to a variety of new algorithmic problems on
sequences.

We are particularly concerned with the problem of designing novel sequences
encoding large collections of target patterns. A collaboration with microbiol-
ogists Bruce Futcher (Stony Brook University) and Lucas Carey (Weizmann
Institute) revealed the need for several distinct sequence designs each containing
representative binding sites for a large set of transcription factors. Three distinct
objectives of these designs needed to be satisfied:

1. Minimum Length – Since synthesis cost increases as a function of length,
these sequence designs must be as short as possible.

2. Variability – Several equivalent designs were needed, in order to control for
the possibility of innoportunely inserting larger signal patterns, and to pro-
vide additional confirmatory evidence of the findings.

3. Orthogonality – The final goal is that each pair of our designed sequences
avoid common (or reverse-complement) sequences to minimize the chances
of cross-hybridization. Such molecular interactions could lead to a variety
of problems, including blocking the very binding sites the molecules were
specifically designed to include.

A particularly relevant class of DNA sequences contain occurrences of all 4k

patterns of length k. Simple concatenation would yield a string of length k4k,
but considerable length reduction is possible by overlapping patterns. Indeed,
de Bruijn sequences [7,11] yield optimal circular strings of length 4k containing
each pattern exactly once. These can be linearized, as in the case of the string
AACAGATCCGCTGGTTA containing all 16 two-base nucleotide sequences
(as shown in Figure 1(left)). Such compression can have a big impact on syn-
thesis costs: realizing all 6-mers using the concatenation design would require
24,576 bases, as opposed to the linearized de Bruijn sequence of only 4,101 bases.
Further, the number of distinct de Bruijn sequence of length (order) k and al-
phabet σ grow exponentially as a function of k and σ, addressing the second
criteria.

In this paper we deal with the third criteria: orthogonality. In particular, we
define two order-k de Bruijn sequences as orthogonal if they contain no (k + 1)-
mer in common – even though they both must contain all k-mers in common. A
set S of de Bruijn sequences are mutually orthogonal if each pair is orthogonal,
meaning that no (k + 1)-mer occurs more than once in S. For example, the
following three sequences:

AAACAAGCACCAGACGAGTCATACTCCCGCCTAGGCGTGATCTGTAATTTGCTTCGGTTATGGGAA
AAAGAATGAGGATAGTATCGACAGCGGGTGGCATTGTCTACGCTCAACCCTGCCGTTCCACTTTAA
AAATAACTATTACATCACGTAGATGTTTCTTGACCTCGCAGTGCGAAGGGCTGGTCCGGAGCCCAA

each contain all 43 possible DNA triplets exactly once, but have no 4-base se-
quence in common.

In this paper we show how to construct large sets of orthogonal de Bruijn
sequences. In particular:



Constructing Orthogonal de Bruijn Sequences 597

– Small σ – We prove that a pair of orthogonal de Bruijn sequences exist for
all orders k ≥ 1 for σ ≥ 3, and further that this is the smallest alphabet
which permits orthogonal de Bruijn sequences. Similarly, a pair of orthogonal
sequences always exist on the related Kautz graphs for σ ≥ 4.

– Large σ – Through an algorithmic construction, we prove that there are at
least �σ/2� mutually orthogonal order-k de Bruijn sequences for all k ≥ 1.
Since there can be at most σ−1 mutually orthogonal sequences, this family is
at least half as large as optimal. Further our result generalizes to constructing
edge-pair disjoint Eulerian cycles of σ-regular directed graphs, and hence can
be used to construct large sets of orthogonal sequences of difference types
(such as Kautz sequences [13]).
We conjecture that σ − 1 mutually-orthogonal de Bruijn sequences exist for
all k ≥ 1, σ ≥ 3. However, significantly improving our result seems intimately
connected with a well-known conjecture on Hamiltonian decompositions of
line graphs [1], and hence appears difficult.

– Optimal constructions for fixed σ and k – The technique employed in our
combinatorial result suggests a heuristic procedure for constructing even
larger sets of orthogonal sequences. We couple this heuristic with exhaustive
search to construct maximal sets of sequences for all reachable k on σ ≤ 26.
These constructions support our conjecture that σ − 1 mutually-orthogonal
sequences exist for all k.

We have made these constructions available at http://www.algorithm.cs.
sunysb.edu/orthogonal, along with the programs that identified them, where
we anticipate they will suffice for all near-term DNA synthesis applications.
Indeed, a proposal is now pending to synthesize our three mutually-orthogonal
σ = 4, k = 6 sequence designs as plasmids within a host such as yeast or E.
coli, where they can be easily grown as needed for new experiments without
additional costly synthesis. These plasmids will be made available to the re-
search community, where we anticipate they will find a wide variety of
applications.

– Kautz Sequences – Many of our approaches in de Bruijn graphs can be
applied on the Kautz graphs as well. In particular, we find that it is possible
to find σ− 1 orthogonal Kautz Sequences on alphabet size with σ > 3, for a
modest size of k. These results suggest that it is possible to find Hamiltonian
decompositions of Kautz graphs with σ > 3, a very nice property for a
network topology. Further, we also discover a simple deduction on counting
the number of different Kautz sequences, independent of previous approaches
using spectral graph theory [18].

– Specialized Constructions – Kása [12] conjectures that there are orthogonal
de Bruijn sequences of size σ − 1 for σ ≥ 3, k ≥ 2, that can be constructed
from one de Bruijn sequence s and series of morphism operations. We im-
plement tools for constructing orthogonal de Bruijn sequences of this kind
for relatively small σ and k.

In this vein, we propose a conjectured form of orthogonal de Bruijn se-
quence sets of size σ − 1. These sets have the property of being uniquely de-
scribed by a single input sequence. These sequences seem relatively abundant



598 Y.-L. Lin et al.

for small values of σ and k, but grow increasing more scarce as the problem
size increases. We show that such sequences exist for σ up to 9 when k = 2,
and up to k = 6 when σ = 4.

This paper is organized as follows. Section 2 introduces previous work on
constructing de Bruijn sequences. Analytical results are presented in Section 3.
Our heuristic construction and experimental results are presented in Section 4.
Open problems, particularly related to d-orthogonal sequences, are described in
Section 5.

2 Preliminaries

The de Bruijn sequences are well studied combinatorial objects. There are a
number of useful characterizations for the construction of de Bruijn sequences,
including as an Eulerian Tour of the de Bruijn Graph [7,11] and as the output
of a feedback shift register [10,17]. We will focus on the former characterization
here, and review a number of useful known properties of the de Bruijn sequences.

Definition 1. A de Bruijn graph of order k on an alphabet of size σ, denoted by
Gσ,k, is a directed graph with vertices representing all σk−1 sequences of length
(k−1), and σk edges joining pairs of vertices whose sequences have the maximum
possible overlap (length k − 2). See, for example, Figure 1(middle).

The standard method for constructing de Bruijn sequences is to construct an
Eulerian cycle of this graph. Every Eulerian cycle on the de Bruijn graph Gσ,k

defines a distinct, minimum length de Bruijn sequence containing all σk k-mers
exactly once. Note that this Eulerian cycle approach can be applied to any
pattern set whose overlap graph contains vertices of equal in- and out-degree.

The de Bruijn graph Gσ,2 is isomorphic to the directed complete graph K̂∗
σ

(with σ self loops). Every Eulerian cycle of Gσ,k defines a distinct, minimum
length de Bruijn (circular) sequence containing all σk k-mers exactly once. We

Fig. 1. (left) An order-2, σ = 4 de Bruijn sequence representing the shortest DNA
sequence containing all 16 distinct bi-nucleotide patterns. (middle) The order-4, σ = 2
de Bruijn graph, Eulerian tours of which correspond to de Bruijn sequences. (right)
The order-4, σ = 3 Kautz graph, discussed in section 2.1.



Constructing Orthogonal de Bruijn Sequences 599

say a given collection of de Bruijn sequences are orthogonal if any two sequences
maximally differ in sequence composition; that is, their longest common sub-
string is length k. As an example, the collection {001122021, 002211012} is an
orthogonal collection of de Bruijn sequences on G3,2; while {0011223313032021,
0023212203113301, 0033221101312302} is an orthogonal collection of de Bruijn
sequences on G4,2.

The directed line graph L(G) of a directed graph G = (V, E) contains a vertex
x for each edge (u, v) ∈ G, and directed edges (x, y) ∈ L(G) iff x = (u, v) and
y = (v, w), where u, v, w ∈ V and x, y ∈ E.

Observation 2. Gσ,k+1 is the directed line graph of Gσ,k. Then any Eulerian
cycle in Gσ,k corresponds to a Hamiltonian cycle in Gσ,k+1.

Note that two orthogonal de Bruijn sequences correspond to two Eulerian cycles
in Gσ,k such that these two cycles do not share any pair of consecutively incident
edges. It follows directly that:

Observation 3. An orthogonal collection of de Bruijn sequences on Gσ,k cor-
responds to a set of Eulerian cycles in Gσ,k such that no two cycles share any
common adjacent pair of edges. By the line graph property of Observation 2,
these correspond to a set of edge-disjoint Hamiltonian cycles in Gσ,k+1.

Let us define Ω(σ, k) to be the maximum size of all orthogonal collections of de
Bruijn sequences on Gσ,k. Observation 2 tells us that:

Corollary 4. The size of an orthogonal collection of de Bruijn sequences on
Gσ,k can not exceed σ − 1. That is, Ω(σ, k) ≤ σ − 1.

Proof. An orthogonal collection of de Bruijn sequences on Gσ,k corresponds to a
set of edge-disjoint Hamiltonian cycles in Gσ,k+1. However, the minimum in/out
degree of any vertex in Gσ,k+1 is σ − 1 plus a self-loop. As the self-loop cannot
contribute towards an additional edge-disjoint cycle, there can be at most σ− 1
mutually edge-disjoint Hamiltonian cycles on Gσ,k+1, and therefore at most σ−1
orthogonal de Bruijn sequences on Gσ,k. �
It is conjectured [3,12] that Ω(σ, k) = σ − 1, for k ≥ 2. In the case of k = 1,
note that an orthogonal collection of de Bruijn sequences over Gσ,1, actually
corresponds to a Hamiltonian decomposition of the complete directed graph K∗

σ

(without self-loops). It is known that all K∗
n admit a (directed) Hamiltonian

decomposition of size n− 1, except for the case of K∗
4 and K∗

6 [1]. These results
directly lead to Ω(σ, 1) = σ − 1 when σ �= 4 or 6 (Ω(4, 1) = 2 and Ω(6, 1) = 4).
The conjecture remains plausible for the case of k ≥ 2, and we will later give
compelling experimental evidence for this.

Subsequent to submitting this work for publication, we discovered Fleischner
and Jackson’s [9] result on compatible Eulerian circuits which implies our The-
orem 8. Rowley and Bose [20,19] use feedback shift registers [10,17] to obtain
σ − 1 orthogonal sequences when σ is a power of 2, and σ orthogonal sequences
on a modified de Bruijn graph when σ is the power of a prime.



600 Y.-L. Lin et al.

2.1 Kautz Graphs

A Kautz graph [13] is a labeled graph, very similar to the de Bruijn graph. Like
the de Bruijn graph, vertices of Kzσ,k are labeled by strings of length k over
an alphabet Σ with σ letters, but with the additional restriction that every two
consecutive letters in the string must be different. As in the de Bruijn graph,
there is a directed edge from a vertex u to another vertex v if it is possible to
transform the string of u into the string of v by removing the first letter and
appending a letter to it. See figure 1(right) for an example of a Kautz graph.

For a fixed degree and number of vertices, the Kautz graph has the smallest
diameter of any possible directed graph; furthermore, a degree-δ Kautz graph
has δ disjoint paths from any node u to any other node v. These properties
suggest that the Kautz graph can be a nice candidate of the network topology for
connecting processors in interconnection networks [2]. Note that Kautz graphs
have in-degree equal to out-degree, both being σ − 1, for each node. It thus
follows that all Kautz graphs are Eulerian.

As with the de Bruijn sequences, a Kautz sequence naturally corresponds
to a Euler path in the underlying Kautz graph. Thus, a Kautz sequence is a
sequence of minimal length that produces all possible length-(k + 1) sequences,
but with the restriction that every two consecutive letters in the sequences must
be different. A set of three mutually orthogonal Kautz sequences for σ = 4 and
k = 3 are:

01202303021320312313010323212102013101
01213020212323013210102310313120303201
01230232020321313231212010130310210301

Observation 5. Kzσ,k+1, is the directed line graph of Kzσ,k. Thus, an Eulerian
cycle in Kzσ,k, corresponds to a Hamiltonian cycle in Kzσ,k+1.

Therefore, both Kautz and de Bruijn graphs can be considered as families of
iterated line graphs. Kzσ,k are obtained from k−1 iterated line graph operations
on K∗

σ, while Gσ,k are the (k−2)-th iterated line graph from K̂∗
σ (with self-loops.)

3 Analytical Results

To be Eulerian, each vertex of a directed graph must have the same in-degree as
out-degree. Furthermore, an Euler tour in G corresponds to a pairing of each in-
edge to its out-edge for each vertex v ∈ G. Such an edge-pairing defines a perfect
matching between input edges to output edges of v. We call such an edge-pairing
an (edge) wiring of v. Two wirings of a vertex are disjoint if the corresponding
matchings are edge-disjoint. Note that an Euler tour defines a specific wiring for
each vertex in G; however, a set of arbitrary wirings for vertices of G usually ends
up with several disconnected (edge) cycles. As a restatement of Observation 3,
we have

Observation 6. Two Euler tours in G are orthogonal to each other if and only
if the two induced wirings for each vertex of G are disjoint.



Constructing Orthogonal de Bruijn Sequences 601

Kőnig [23] proved that an r-regular bipartite graph can be decomposed into r
edge-disjoint perfect matchings, implying that it is hopeful to find an orthogonal
collection of Euler tour with size δ in an Eulerian graph with minimum in/out-
degree δ. However, it is easily verified that we cannot find two orthogonal Euler
tours in the directed complete graph K∗

3 (without self-loops), whose minimum
in/out-degree is δ = 2. In contrast, the directed complete graph K̂∗

3 with 3 self-
loops, has minimum degree 3, but there exist two orthogonal Euler tours in K̂∗

3 .
We now show that there exist at least two orthogonal Euler tours in digraph G
whenever δ ≥ 3:

Theorem 7. There exists an orthogonal collection of Euler tours of size 2 in
any Eulerian digraph G with minimum degree at least 3. Hence, there exists an
orthogonal collection of de Bruijn sequences on Gσ,k with size 2 if σ ≥ 3. That
is, Ω(σ, k) ≥ 2 if σ ≥ 3

Proof. Let C be an arbitrary Euler tour of G, defining a specific wiring for each
vertex in G. We can rewire each vertex v in G such that the new wiring is disjoint
and still forms an Euler tour. Note that the initial wiring of v partition edges of G
into δ disjoint nonempty paths, namely {P1, P2, . . . , Pδ}, with C = (P1P2 · · ·Pδ)
in circular order. Let ai (bi) denote the first (last) edge of Pi. Note that the vertex
v wires bi to a

1+i mod δ
. It is easily verified that the newly constructed wiring of v

by connecting bi to a
2+i mod δ

produces a disjoint Euler tour (PδPδ−1 · · ·P2P1).
Note that the argument fails for δ = 2 where (P1P2) = (P2P1). Figure 2 shows
this diagrammatically for an example for σ = 3. �

The idea of rewiring the edge-disjoint perfect matchings in Theorem 7 can be ex-
tended so that we can find more orthogonal Euler tours, if possible, by repeatedly
rewiring the edge matching while maintaining the one connected Euler tour:

Fig. 2. An example of rewiring a vertex with σ = 3 for the proof of Theorem 7

Theorem 8. Given an Eulerian digraph G with minimum degree δ, there exists
an orthogonal collection of Euler tours in G of size �δ/2�. Therefore, there exists
an orthogonal collection of de Bruijn sequences of Gσ,k with size at least �σ/2�;
that is, �σ/2� ≤ Ω(σ, k) ≤ σ − 1.

Proof. Given an orthogonal collection of m Euler tours on G,
{C1, C2, . . . , Cm}, 1 ≤ m < �δ/2�, we will show that it is always possible



602 Y.-L. Lin et al.

to rewire each vertex v ∈ G such that the new wiring is disjoint and maintains
an Euler tour.

Observe that these m disjoint Euler tours induce m forbidden bipartite match-
ings between the input and output edges for each vertex for the rewiring in the
(m+1)-st sequence. Similar to the analysis of Theorem 7, take an arbitrary Euler
tour with respect to a vertex v, partition edges of Gσ,k into δ disjoint nonempty
paths, namely {P1, P2, . . . , Pδ}, with the Eulerian tour C = (P1P2 · · ·Pδ). Let ai
(bi) denote the first (last) edge of Pi, and thus the original wiring of v wires bi
to a

1+i mod δ
, as, again, in Figure 2.

We define the permissible wiring graph of v as the digraph Wv with vertex set
{P1, P2, . . . , Pδ} & edge set {(Pi, Pj)| (bi, aj) is not an edge of Cx, 1 ≤ x ≤ m}.
That is, two path vertices are connected by an edge if they have not been wired
together in a previous tour. We now wish to find a Hamiltonian path on this
graph, as it will correspond to a wiring which is both permissible and preserves
an Eulerian tour of the graph.

Observe that both the in-degree and out-degree of each vertex of the wiring
graph are at least δ − 1 − m ≥ δ/2. By the Ghouila-Houri theorem [23], a
directed graph D with n vertices has a Hamiltonian cycle if both the in-degree
and out-degree of every vertex of D are at least n/2. Thus, it follows that our
wiring graph has a Hamilton cycle, and thus every vertex v can be successfully
rewired, maintaining an Euler tour in G, while having the property that the
edge-matching in v is orthogonal to those of the previous m tours. �

3.1 Special Orthogonal Families

Kása [12] observed small samples of orthogonal de Bruijn sequences following
a special pattern. In particular, a de Bruijn sequence can be transformed into
another by means of a morphism function, μ, where μ(0) = 0, μ(σ− 1) = 1, and
μ(i) = 1 + i for 1 ≤ i ≤ σ − 2. Kása conjectured that for σ ≤ 3, k ≤ 2, sets
of orthogonal de Bruijn sequences of size σ − 1 can be constructed from one de
Bruijn sequence s and morphism operations νi(s), 1 ≤ i ≤ σ − 2. For example,
the following are a set of Kása’s orthogonal de Bruijn sequences on σ = 4, k = 2,

00102113230331220
00203221310112330
00301332120223110

We implement tools for constructing orthogonal de Bruijn sequences of this
kind under small σ and k. Kása’s orthogonal de Bruijn sequences collection is
interesting since it provides a simple construction of σ − 1 orthogonal de Bruijn
sequences. In terms of routing in interconnection networks, this corresponds to
a set of disjoint Hamiltonian cycles in the line graph, de Bruijn graph Gσ,k+1 .
Unfortunately, verifying and/or disproving Kása’s conjecture is not easy mostly
because of the abundance of de Bruijn sequences to be tested, and we were unable
to find additional empirical evidence to support or disprove the conjecture.

We also define a new class of orthogonal de Bruijn sequences. Specifically, we
note that there seem to exist sets of orthogonal de Bruijn sequences s1, . . . , sσ−1



Constructing Orthogonal de Bruijn Sequences 603

with the property that, for each k-mer X which is followed in si by the symbol y
(i.e., yielding the k+1-mer Xy), in sequence si+1 the k-mer X will be followed by
the symbol y + 1(mod σ). For example, the sequences below have this property:

00102231121320330
00232103011331220
00313020123322110

These sets have the property of being uniquely determined by a single starting
sequence. We have no guarantee that any de Bruijn sequence will yield such a
set of sequences, although if they exist, the construction itself guarantees their
orthogonality. If a randomly-generated de Bruijn sequence has this property,
construction of such a set of orthogonal sequences is immediate. Unfortunately,
the probability that a random de Bruijn sequence will have this property seems
to decrease exponentially with increasing σ and k. Through extensive computa-
tional experiments, we have verified the existence of such sets of sequences up
to σ = 9 for k = 2 and up to k = 6 for σ = 4.

3.2 Counting Eulerians

The matrix-tree theorem for graphs (see [21,22,23]), states that the number of
Eulerian circuits in a labeled Eulerian digraph G is equal to

ε(G) = T ·Πv∈G(deg(v)− 1)!

where T is the number of (directed) spanning trees rooted at any particular
vertex of G. Note that the number of directed spanning trees in an Eulerian
digraph does not depend on the vertex where it is rooted. Plugging in the terms
T = σσ

k−1−k, deg(v) = σ, and |V (G)| = σk−1, it follows that number of Eulerian
circuits in Gσ,k is [(σ − 1)!]σ

k−1 · σσk−1−k or (σ!)σ
k−1

/σk.
To count the number of Eulerian circuits in Kautz graphs, and thus the num-

ber of Kautz sequences, van Aardenne-Ehrenfest’s formula [22] again can be
applied here. The interesting part is to calculate the number of rooted directed
spanning tree on Kautz graphs. Here we use an induction on k; the inductive
base is easily derived from Cayley’s formula T (Kzσ,1) = σσ−1. The inductive
hypothesis can be derived from Knuth’s line graph spanning tree recursion [14]:

T (L(G)) = T (G)Πv∈G deg+(v)deg−(v)−1

where T (G) denote the number of spanning trees on G; L(G) is the line graph
of G. It follows that T (Kzσ,k+1) = T (Kzσ,k) · (σ− 1)(σ−2)σ(σ−1)k−1

; note that k
is decreased by 1 at deducing the final form. It follows that number of Eulerian
circuits in Kzσ,k is σσ−2[(σ−1)!]σ(σ−1)k−1

/(σ−1)σ+k−1. The formula can also be
derived by the graph spectral theory in characteristic polynomial and permanent
of the arc-graph [18]. The abundance of Kautz sequences suggests an orthogonal
collection of Kautz sequences with large size.



604 Y.-L. Lin et al.

4 Heuristic Construction of Orthogonal Sequences

The algorithm described in Theorem 8 gives no fewer than �σ/2� orthogonal
de Bruijn sequences. In order to find the σ − 1 − �σ/2� orthogonal sequences
conjectured to remain, we extend the idea used in the proof of Theorem 8. Note
that the algorithm, in visiting every vertex v of G, expects the wiring graph of
v to be Hamiltonian connected. Failing to satisfy the condition, the algorithm
stops and reports the certified orthogonal sequences. However, it is possible (and
generally the case, beyond the first σ/2 sequences) that an orthogonal sequence
can only be found by rewiring two or more vertices simultaneously, while fixing
any one of these vertices alone does not render an orthogonal sequence.

Thus, the refined approach rewires one vertex at a time, according to the
temporarily fixed matches of other vertices of the graph, only this time, instead
of trying to connect all paths incident to the vertex in one step, the algorithm
picks a good wiring according to a heuristic, and continues to proceed to other
vertices. Hopefully, in later stages of the algorithm, some vertex can be rewired
and lead to an disjoint Eulerian cycle, rendering another orthogonal sequence.

To justify a good wiring, recall that the wiring graph of v, a digraph
Wv, in essence, defines the permissible connectivity between the paths Q =
{P1, P2, . . . , Pσ} incident to vertex v. Furthermore, a permissible (perfect)
matching between σ pairs of in-edges and out-edges of v connects the paths of
Q, forming disjoint cycles made of Q. Originally, the idea is to find a matching
that forms a single loop. Here we define a good match is the one that maximizes
the length of the smallest cycle. A good wiring makes sure that more discon-
nected vertices on the smallest cycle have a higher chance being fixed in the
later stage. In order to find an orthogonal de Bruijn sequence, no disjoint cycle
left on the graph is allowed. We have experimented with other heuristics, such
as maximizing the longest cycle; however, these approaches do not successfully
lead to finding all σ − 1 orthogonal de Bruijn sequences as efficiently.

This algorithm allows us to efficiently find de Bruijn sequences up to useful
values of σ and k; the running times for our algorithm finding σ − 1 orthogonal
de Bruijn sequences for various values of σ and k are illustrated in Figure 3.

It is straightforward to apply our algorithm to find orthogonal Eulerians in
Kautz graphs as well. When applied to the Kautz graph, thus, we obtain orthog-
onal Kautz sequences. The first σ−2 Kautz sequences are found by the algorithm
in time somewhat less than that of the equivalent de Bruijn sequences; however,
the algorithm frequently fails to find the (σ − 1)st Kautz sequence, because
the final sequence is entirely determined by the preceding sequences. Figure 3
presents runtimes for finding σ − 1 orthogonal Kautz sequences for realizable
values of σ and k.

Based on the empirical results of this program, we conjecture that Ω(Kzσ,k) =
σ − 1 for all σ ≥ 4, and, moreover, that this is true for σ = 3 when
k ≥ 5. A Python implementation of this algorithm, as well as sets of
orthogonal de Bruijn and Kautz sequences, are available at our website
http://www.algorithm.cs.sunysb.edu/orthogonal.



Constructing Orthogonal de Bruijn Sequences 605

de Bruijn sequences

max total seq
k σ length

2 26 16,900
3 12 19,008
4 7 14,406
5 5 12,500
6 4 12,288
7 3 4,374
8 3 13,122
9 3 39,366

Fig. 3. (left)Run-time of our algorithm for various values of σ and k, finding both
orthogonal de Bruijn and Kautz sequences. (right) Largest achievable value of σ for
each fixed k using our heuristic, given a small running time limit (1000 seconds).

5 Open Problems

We have proven that large families of orthogonal de Bruijn sequences of any
order exist for all σ ≥ 3. Further, we give optimal constructions for a large
number of finite cases, particular those of interest in synthetic biology.

Several open problems remain. We say that two order-k de Bruijn sequences
are d-orthogonal if they contain no (k + d)-mer in common, generalizing the
notion beyond d = 1. The most compelling problem concerns tightening the
bounds on the number of d-orthogonal (σ,k) de Bruijn sequences as a function
of d, σ, and k. In particular, we know very little for d > 1.

We also envision a second class of diverse de Bruijn sequence families, designed
to identify motifs from fragment length assays (e.g. electrophoresis) instead of
sequencing. Suppose we seek to identify the cutter sequence of a specific restric-
tion enzyme. If we design two sequences such that the resulting fragment lengths
are distinct for each possible cutter, the cutter identity follows directly from ob-
servation. The applications for these sequences are more speculative than those
comprising the body of this paper, but the algorithmics appear interesting.

References

1. Bermond, J.-C.: Hamiltonian decompositions of graphs, directed graphs and hyper-
graphs. Ann. Discrete Math. 3, 21–28 (1978); Présentéau Cambridge Combinatorial
Conf., Advances in Graph Theory , Trinity College, Cambridge, England (1977)

2. Bermond, J.-C., Darrot, E., Delmas, O., Perennes, S.: Hamilton circuits in the
directed wrapped butterfly network. Discrete Applied Mathematics 84(1), 21–42
(1998)



606 Y.-L. Lin et al.

3. Bond, J., Iványi, A.: Modelling of interconnection networks using de bruijn graphs.
In: Iványi, A. (ed.) Third Conference of Program Designer, Budapest (1987)

4. Bugl, H., Danner, J.P., Molinari, R.J., Mulligan, J.T., Park, H.-O., Reichert, B.,
Roth, D.A., Wagner, R., Budowle, B., Scripp, R.M., Smith, J.A.L., Steele, S.J.,
Church, G., Endy, D.: DNA synthesis and biological security. Nature Biotechnol-
ogy 25, 627–629 (2007)

5. Coleman, J.R., Papamichial, D., Futcher, B., Skiena, S., Mueller, S., Wimmer,
E.: Virus attenuation by genome-scale changes in codon-pair bias. Science 320,
1784–1787 (2008)

6. Czar, M.J., Anderson, J.C., Bader, J.S., Peccoud, J.: Gene synthesis demystified.
Trends in Biotechnology 27(2), 63–72 (2009)

7. de Bruijn, N.G.: A combinatorial problem. Koninklijke Nederlandse Akademie v.
Wetenschappen 49, 758–764 (1946)

8. Gibson, D., et al.: Creation of a bacterial cell controlled by a chemically synthesized
genome. Science (2010), doi:10.1125./science.1190719

9. Fleischner, H., Jackson, B.: Compatible euler tours in eulerian digraphs. In: Cycles
and Rays, Proceeding Colloquium Montreal, 1987. ATO ASI Ser. C, pp. 95–100.
Kluwer Academic Publishers, Dordrecht (1990)

10. Golomb, S.W.: Shift Register Sequences. Holden-Day (1967)
11. Good, I.J.: Normal recurring decimals. J. London Math. Soc. 21, 167–172 (1946)
12. Kása, Z.: On arc-disjoint hamiltonian cycles in de Bruijn graphs. CoRR

abs/1003.1520 (2010)
13. Kautz, W.H.: Bounds on directed (d,k) graphs. In: Theory of Cellular Logic Net-

works and Machines, AFCKL-68-0668 Final Rep., vol. 24, pp. 20–28 (1968)
14. Knuth, D.E.: Oriented subtrees of an arc digraph. Journal of Combinatorial The-

ory 3, 309–314 (1967)
15. Montes, P., Memelli, H., Ward, C., Kim, J., Mitchell, J., Skiena, S.: Optimizing

restriction site placement for synthetic genomes. In: Amir, A., Parida, L. (eds.)
CPM 2010. LNCS, vol. 6129, pp. 323–337. Springer, Heidelberg (2010)

16. Mueller, S., Coleman, R., Papamichail, D., Ward, C., Nimnual, A., Futcher, B.,
Skiena, S., Wimmer, E.: Live attenuated influenza vaccines by computer-aided
rational design. Nature Biotechnology 28 (2010)

17. Ronse, C.: Feedback Shift Registers. Springer, Berlin (1984)
18. Rosenfeld, V.R.: Enumerating Kautz sequences. Kragujevac Journal of Mathemat-

ics 24, 19–41 (2002)
19. Rowley, R., Bose, B.: Edge-disjoint Hamiltonian cycles in de Bruijn networks. In:

Distributed Memory Computing Conference, pp. 707–709 (1991)
20. Rowley, R., Bose, B.: On the number of arc-disjoint Hamiltonian circuits in the de

Bruijn graph. Parallel Processing Letters 3(4), 375–380 (1993)
21. Tutte, W.T.: The dissection of equilateral triangles into equilateral triangles. Math-

ematical Proceedings of the Cambridge Philosophical Society 44, 463–482 (1948)
22. van Aardenne-Ehrenfest, T., de Bruijn, N.G.: Circuits and trees in oriented linear

graphs. Simon Stevin: Wisen Natuurkundig Tijdschrift 28, 203–217 (1951)
23. West, D.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs

(2000)



A Fast Algorithm for Three-Dimensional Layers

of Maxima Problem

Yakov Nekrich

Department of Computer Science, University of Bonn
yasha@cs.uni-bonn.de

Abstract. We show that the three-dimensional layers-of-maxima prob-
lem can be solved in o(n log n) time in the word RAM model. Our al-
gorithm runs in O(n(log log n)3) deterministic time or O(n(log log n)2)
expected time and uses O(n) space. We also describe a deterministic al-
gorithm that uses optimal O(n) space and solves the three-dimensional
layers-of-maxima problem in O(n log n) time in the pointer machine
model.

1 Introduction

A point p dominates a point q if each coordinate of p is larger than or equals to
the corresponding coordinate of q. A point p is a maximum point in a set S if no
point of S dominates p. The maxima set of S is the set of all maximum points
in S. In the layers-of-maxima problem we assign points of a set S to layers Si,
i ≥ 1, according to the dominance relation: The first layer of S is defined as
the maxima set of S, the layer 2 of S is the maxima set of S \ S1, and the i-th
layer of S is the maxima set of S \ (∪i−1

j=1Sj). In this paper we show that the
three-dimensional layers-of-maxima problem can be solved in o(n log n) time.

Previous and Related Work. The algorithm of Kung, Luccio, and
Preparata [23] finds the maxima set of a set S in O(n log n) time for d = 2 or
d = 3 dimensions and O(n logd−2 n) time for d ≥ 4 dimensions. The algorithm of
Gabow, Bentley, and Tarjan [16] finds the maxima set in O(n logd−3 n log log n)
time for d ≥ 4 dimensions. Very recently, Chan, Larsen, and Pǎtraşcu [11] de-
scribed a randomized algorithm that solves the d-dimensional maxima problem
(i.e., finds the maxima set) for d ≥ 4 in O(n logd−3 n) time. Numerous works are
devoted to variants of the maxima problem in different computational models
and settings: In [8], the authors describe a solution for the three-dimensional
maxima problem in the cache-oblivious model. Output-sensitive algorithms and
algorithms that find the maxima for a random set of points are described
in [7,13,18,22]. The two-dimensional problem of maintaining the maxima set
under insertions and deletions is considered in [21]; the problem of maintaining
the maxima set for moving points is considered in [15].

The general layers-of-maxima problem appears to be more difficult than the
problem of finding the maxima set. The three-dimensional layers-of-maxima
problem can be solved in O(n log n log log n) time [1] using dynamic fractional

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 607–618, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



608 Y. Nekrich

cascading [24]. The algorithm of Buchsbaum and Goodrich [9] runs in O(n log n)
time and uses O(n log n log log n) space. Giyora and Kaplan [17] described a data
structure for point location in a dynamic set of horizontal segments and showed
how it can be combined with the approach of [9] to solve the three-dimensional
layers-of-maxima problem in O(n log n) time and O(n) space.

The O(n log n) time is optimal even if we want to find the maxima set in
two dimensions [23] provided that we work in the infinite-precision computation
model in which input values, i.e. point coordinates, can be manipulated with
algebraic operations and compared. On the other hand, it is well known that
it is possible to achieve o(n log n) time (resp. o(log n) time for searching in a
data structure) for many one-dimensional as well as for some multi-dimensional
problems and data structures in other computational models. For instance, the
grid model, that assumes all coordinates to be integers in the range [1, U ] for a
parameter U , was extensively studied in computational geometry. Examples of
problems that can be solved efficiently in the grid model are orthogonal range
reporting queries [26] and point location queries in a two- and three-dimensional
rectangular subdivisons [5]. In fact, we can use standard techniques to show
that these queries can be answered in o(log n) time when all coordinates are ar-
bitrary integers. Recently, a number of other important geometric problems was
shown to be solvable in o(n log n) time (resp. in o(log n) time) in the word RAM
model. An incomplete list1 includes Voronoi diagrams and three-dimensional
convex hulls in O(n · 2O(

√
log logn)) time [12], two-dimensional point location in

O(log n/ log log n) time [27,10], and dynamic convex hull in O(log n/ log log n)
time [14]. Results for the word RAM model are important because they help us
better understand the structure and relative complexity of different problems
and demonstrate how geometric information can be analyzed in algorithmically
useful ways.

Our Results. In this paper we show that the three-dimensional layers-of-
maxima problem can be solved in O(n(log log n)3) deterministic time and O(n)
space in the word RAM model. If randomization is allowed, our algorithm runs in
O(n(log log n)2) expected time. For comparison, the fastest known deterministic
linear space sorting algorithm runs in O(n log log n) time [19]. Our result is
valid in the word RAM computation model, but the time-consuming operations,
such as multiplications, are only used during the pre-processing step when we
sort points by coordinates (see section 2). For instance, if all points are on the
n× n× n grid, then our algorithm uses exactly the same model as [26] or [5].

We also describe an algorithm that uses O(n) space and solves the three-
dimensional layers-of-maxima problem in optimal O(n log n) time in the pointer
machine model [28]. The result of Giyora and Kaplan [17] that achieved the
same space and time bounds is valid only in the RAM model. Thus we present
the first algorithm that solves the three-dimensional layers-of-maxima problem
in optimal time and space in the pointer machine model.

1 We note that problems in this list are more difficult than the layers-of-maxima
problem because in our case we process a set of axis-parallel segments.



A Fast Algorithm for Three-Dimensional Layers of Maxima Problem 609

Overview. Our solution, as well as the previous results, is based on the
sweep plane algorithm of [9] described in section 2. The sweep plane algorithm
assigns points to layers by answering for each p ∈ S a point location query in
a dynamically maintained staircase subdivision. We observe that general data
structures for point location in a set of horizontal segments cannot be used to
obtain an o(n log n) time solution. Even in the word RAM model, no dynamic
data structure that supports both queries and updates in o(log n) time is known.
Moreover, by the lower bound of [2] any data structure for a dynamic set of
horizontal segments needs Ω(log n/ log log n) time to answer a point location
query. We achieve a significantly better result using the methods described below.

In section 3 we describe the data structure for point location in a staircase
subdivision that supports queries in O((log log n)3) time and updates2 in poly-
logarithmic time per segment. This result may be of interest on its own.

The data structure of section 3 is not sufficient to obtain the desired runtime
and space usage mainly due to high costs of update operations. To reduce the
update time and space usage, we construct auxiliary staircases Bi, such that: 1.
the total number of segments in Bi and the total number of updates is O(n/d)
for a parameter d = logO(1) n; 2. locating a point p among staircases Bi gives
us an approximate location of p among the original staircases Mi (up to O(d)
staircases). An efficient method for maintaining staircases Bi, described in sec-
tion 4, is the most technically challenging part of our construction. In section 5
we show how the data structure of section 3 can be combined with the auxiliary
staircases approach to obtain an O(n(log log n)3) time algorithm. We also sketch
how the same approach enables us to obtain an O(n log n) time and O(n) space
algorithm in the pointer machine model.

2 Sweep Plane Algorithm

Our algorithm is based on the three-dimensional sweep method that is also used
in [9]. We move the plane parallel to the xy plane3 from z = +∞ to z = 0 and
maintain the following invariant: when the z-coordinate of the plane equals v all
points p with p.z ≥ v are assigned to their layers of maxima. Here and further
p.x, p.y, and p.z denote the x,- y-, and z-coordinates of a point p. Let Si(v) be
the set of points q that belong to the i-th layer of maxima such that q.z > v; let
Pi(v) denote the projection of Si(v) on the sweep plane, Pi(v) = {π(p) | p ∈ Si(v)}
where π(p) denotes the projection of a point p on the xy-plane. For each value of
v maximal points of Pi(v) form a staircaseMi; see Fig. 1. When the z-coordinate
of the sweep plane is changed from v + 1 to v, we assign all points with p.z = v to
their layers of maxima. If π(p), such that p.z = v, is dominated by a point from
Pi(v + 1), then p belongs to the j-th layer of maxima and j > i. If π(p), such
that p.z = v, dominates a point on Pk(v + 1), then p belongs to the j-th layer of
maxima and j ≤ k. We observe that π(p) dominates Pi(v + 1) if and only if the
2 We will describe update operations supported by our data structure in sections 2

and 3.
3 We assume that all points have positive coordinates.



610 Y. Nekrich

staircaseMi is dominated by p, i.e., the vertical ray shot from p in −y direction
passes through Mi. Hence, the point p belongs to the layer i, such that π(p) is
between the staircaseMi−1 and the staircaseMi. This means that we can assign
a point to its layer by answering a point location query in a staircase subdivision.
When all p with p.z = v are assigned to their layers, staircases are updated.

Thus to solve the layers of maxima problem, we examine points in the de-
scending order of their z-coordinates. For each v, such that there is at least
one p with p.z = v, we proceed as follows: for every p with p.z = v operation
locate(p) identifies the staircaseMi immediately below π(p). If the first stair-
case below π(p) has index i (π(p) may also lie onMi), then p is assigned to the
i-th layer of maxima; if π(p) is below the lowest staircaseMj, then p is assigned
to the new layer j +1. When all points with p.z = v are assigned to their layers,
the staircases are updated. All points p such that p.z = v are examined in the
ascending order of their x-coordinates. If a point p with p.z = v is assigned
to layer i, we perform operation replace(p, i) that removes all points of Mi

dominated by p and inserts p into Mi. If the staircase i does not exist, then
instead of replace(p, i) we perform the operation new(p, i); new(p, i) creates a
new staircase Mi that consists of one horizontal segment h with left endpoint
(0, p.y) and right endpoint π(p) and one vertical segment t with upper endpoint
π(p) and lower endpoint (0, p.x). See Fig. 1 for an example.

a

b
c

d

e

y

x
125 4 3

a

b
c

d

e

y

x
6 5 4 3 2 1

(a) (b)

Fig. 1. Points a, b, c, d, and e have the same z-coordinate. (a) Points a, b and c are
assigned to layer 2, d is assigned to layer 3, and e is assigned to a new layer 6. (b)
Staircases after operations replace(a, 2), replace(b, 2), replace(c, 2), replace(d, 3),
and new(e). Observe that b is not the endpoint of a segment in the staircase M2 after
updates.

We can reduce the general layers of maxima problem to the problem in the
universe of size O(n) using the reduction to rank space technique [26,16]. The
rank of an element e ∈ S is defined as the number of elements in S that
are smaller than e: rank(e, S) = |{a ∈ S | a < e}|; clearly, rank(e, S) ≤ |S|.
For a point p = (p.x, p.y, p.z), p ∈ S, let τ(p) = (rank(p.x, Sx)+1, rank(p.y, Sy)+
1, rank(p.z, Sz) + 1). Let S′ = {τ(p) | p ∈ S}. Coordinates of all points in S′



A Fast Algorithm for Three-Dimensional Layers of Maxima Problem 611

belong to range [1, n]. A point p dominates a point q if and only if rank(p.x, Sx) ≥
rank(q.x, Sx), rank(p.y, Sy) ≥ rank(q.y, Sy), and rank(p.z, Sz) ≥ rank(q.z, Sz)
where Sx, Sy, Sz are sets of x-, y-, and z-coordinates of points in S. Hence if a
point p′ ∈ S′ is assigned to the i-th layer of maxima of S′, then τ−1(p′) belongs
to the i-th layer of maxima of S. We can find ranks of x−, y−, and z−coordinates
of every point by sorting Sx, Sy, and Sz. Using the sorting algorithm of [19], Sx,
Sy, and Sz can be sorted in O(n log log n) time and O(n) space. Thus the layers
of maxima problem can be reduced to the special case when all point coordinates
are bounded by O(n) in O(n log log n) time.

3 Fast Queries, Slow Updates

In this section we describe a data structure that supports locate(q) in
O((log log n)3) time and update operations replace(q, i) and new(q, i) in
O(log n(log log n)2) time per segment. We will store horizontal segments of all
staircases in a data structure that supports ray shooting queries : given a query
point q identify the first segment s crossed by a vertical ray that is shot from q
in −y direction; in this case we will say that the segment s precedes q (or s is the
predecessor segment of q). In the rest of this paper, segments will denote hori-
zontal segments. Identifying the segment that precedes q is (almost) equivalent
to answering a query locate(q). Operation replace(q, i) corresponds to a dele-
tion of all horizontal segments dominated by q and an insertion of at most two
horizontal segments, see Fig 1. Operation new(q, i) corresponds to an insertion
of a new segment.

Our data structure is a binary tree on x-coordinates and segments are stored
in one-dimensional secondary structures in tree nodes. The main idea of our
approach is to achieve fast query time by binary search of the root-to-leaf path:
using properties of staircases, we can determine in O((log log n)2) time whether
the predecessor segment of a point q is stored in the ancestor of a node v or in
the descendant of a node v for any node v on the path from the root to q.x. Our
approach is similar to the data structure of [5], but we need additional techniques
to support updates.

For a horizontal segment s, we denote by start(s) and end(s) the x-
coordinates of its left and right endpoints respectively; we denote by y(s) the
y-coordinate of all points of s. An integer e ∈ S precedes (follows) an integer x
in S if e is the largest (smallest) element in S, such that e ≤ x (e ≥ x). Let H be
a set of segments and let Hy be the set of y-coordinates of segments in H . We
say that s ∈ H precedes (follows) an integer e if the y-coordinate of s precedes
(follows) e in Hy. Thus a segment that precedes a point q is a segment that
precedes q.y in the set of all segments that intersect the vertical line x = q.x.

We construct a balanced binary tree T of height log n on the set of all possible
x-coordinates, i.e., n leaves of T correspond to integers in [1, n]. The range of a
node v is the interval rng(v) = [left(v), right(v)] where left(v) and right(v)
are leftmost and rightmost leaf descendants of v.



612 Y. Nekrich

We say that a segment s spans a node v if start(s) < left(v) < right(v) <
end(s); a segment r belongs to a node v if left(v) < start(s) < end(s) <
right(v). A segment s l-cuts a node v if s intersects the vertical line x = left(v),
but s does not span v, i.e., start(s) ≤ left(v) and end(s) < right(v); a
segment s r-cuts a node v if s intersects the vertical line x = right(v) but s does
not span v, i.e., start(s) > left(v) and end(s) ≥ right(v). A segment s such
that [start(s), end(s)]∩rng(v) �= ∅ either cuts v, or spans v, or belongs to v. We
store y-coordinates of all segments that l-cut (r-cut) a node v in a data structure
Lv (Rv). Using exponential trees [4], we can implement Lv and Rv in linear
space, so that one-dimensional searching (i.e. predecessor and successor queries)
is supported in O((log log n)2) time. Since a segment cuts O(log n) nodes (at most
two nodes on each tree level), all Lv and Rv use O(n log n) space. We denote by
index(s) the index of the staircaseMi that contains s, i.e., s ∈ Mindex(s). The
following simple properties are important for the search procedure:

Fact 1. Suppose that an arbitrary vertical line cuts staircases Mi and Mj,
i < j, in points p and q respectively. Then p.y > q.y because staircases do not
cross.

Fact 2. For any two points p and q on a staircase Mi, if p.x < q.x, then
p.y ≥ q.y

Fact 3. Given a staircase Mi and a point p, we can determine whether Mi is
below or above p and find the segment s ∈Mi such that p.x ∈ [start(s), end(s)]
in O((log log n)2) time. The data structure Di that supports such queries uses
linear space and supports finger updates in O(1) time.

Proof : The data structure Di contains x-coordinates of all segment endpoints of
Mi. Di is implemented as an exponential tree so that it uses O(n) space. Using
Di we can identify s ∈ Mi such that p.x ∈ [start(s), end(s)] in O((log log n)2)
time; Mi is below p if and only if s is below p. �

Using Fact 3 we can determine whether a segment s precedes a point q in
O((log log n)2) time: Suppose that s belongs to a staircase Mi. Then s is the
predecessor segment of q iff q.x ∈ [start(s), end(s)], q.y ≥ y(s) and the staircase
Mi−1 is above q.

We can use these properties and data structures Lv and Rv to determine
whether a segment b that precedes a point q spans a node v, belongs to a node
v, or cuts a node v. If the segment b we are looking for spans v, then it cuts
an ancestor of v; if that segment belongs to v, then it cuts a descendant of v.
Hence, we can apply binary search and find in O(log log n) iterations the node f
such that the predecessor segment of q cuts f . Observe that in some situations
there may be no staircaseMi below q, see[25] for an example. To deal with such
situations, we insert a dummy segment sd with left endpoint (1, 0) and right
endpoint (n, 0); we set index(sd) = +∞ and store sd in the data structure Lv0
where v0 is the root of T .

Let lx be the leaf in which the predecessor of q.x is stored. We will use variables
l, u and v to guide the search for the node f . Initially we set l = lx and u is the



A Fast Algorithm for Three-Dimensional Layers of Maxima Problem 613

q

index(r)

index(s)

left(v) right(v)

q
index(r)−1

index(s)

index(r)

left(v) right(v)

q

index(r)−1

index(s)

index(r)

left(v) right(v)

(a) (b) (c)

Fig. 2. Search procedure in a node v. Staircases are denoted by their indexes. Figures
(a) and (b) correspond to cases 1 and 2 respectively. The case when the predecessor
segment belongs to Mindex(r) is shown on Fig. (c).

root of T . We set v to be the middle node between u and l: if the path between
u and l consists of h edges, then the path from u to v consists of 
h/2� edges
and v is an ancestor of l.

Let r and s denote the segments in Lv that precede and follow q.y. If there
is no segment s in Lv with y(s) > q.y, then we set s = NULL. If there is no
segment r in Lv with y(r) ≤ q.y, then we set r = NULL. We can find both r
and s in O((log log n)2) time. If the segment r �= NULL, we check whether the
staircase Mindex(r) contains the predecessor segment of q; by Fact 3, this can
be done in O((log log n)2) time. If Mindex(r) contains the predecessor segment
of q, the search is completed. Otherwise, the staircaseMindex(r)−1 is below q or
r = NULL. In this case we find the segment r′ that precedes q.y in Rv. If r′ is
not the predecessor segment of q or r′ = NULL, then the predecessor segment
of q either spans v or belongs to v. We distinguish between the following two
cases:
1. The segment s �= NULL and the staircase that contains s is below q. By
Fact 1, a vertical line x = q.x will cross the staircase of s before it will cross a
staircase Mi, i > index(s). Hence, a segment that spans v and belongs to the
staircaseMi, i > index(s), cannot be the predecessor segment of q. If a segment
t spans v and index(t) < index(s), then the y-coordinate of t is larger than the
y-coordinate of s by Fact 1. Since y(t) > y(s) and y(s) > q.y, the segment t is
above q. Thus no segment that spans v can be the predecessor of q.
2. The staircase that contains s is above q or s = NULL. If r exists, the
staircase Mindex(r)−1 is below q. Hence, the predecessor segment of q belongs
to a staircase4 Mi, index(s) < i ≤ index(r) − 1. Since each staircase Mi,
index(s) < i ≤ index(r) − 1, contains a segment that spans v, the predecessor
segment of s is a segment that spans v. If r does not exist, then every segment
below the point q spans the node v. Hence, the predecessor segment of s spans
v. See Fig. 2 for an example.

If the predecessor segment spans v, we search for f among ancestors of v; if
the predecessor segment belongs to v, we search for f among descendants of v.

4 To simplify the description, we assume that index(s) = 0 if s = NULL.



614 Y. Nekrich

Hence, we set l = v in case 2, and we set u = v in case 1. Then, we set v to be
the middle node between u and l and examine the new node v. Since we examine
O(log log n) nodes and spend O((log log n)2) time in each node, the total query
time is O((log log n)3).

If the predecessor segment is the dummy segment sd, then there is no hori-
zontal segment of anyMi below q. In this case we must identify the staircase to
the left of q.x. Let mi denote the rightmost point on the staircase Mi, i.e., mi

is a point on Mi such that mi.y = 0. Then q is between staircases Mi−1 and
Mi, such that mi.x < q.x < mi−1.x. We can find mi in O((log log n)2) time.

When a segment s is deleted, we delete it from the corresponding data struc-
ture Di. We also delete s from all data structures Lv and Rw for all nodes v and
w, such that s l-cuts v (respectively r-cuts w). Since a segment cuts O(log n)
nodes and exponential trees support updates in O((log log n)2) time, a deletion
takes O(log n(log log n)2) time. Insertions are supported in the same way5. Oper-
ation new(q, l) is implemented by inserting a segment with endpoints (0, q.y) and
(q.x, q.y) into T , incrementing by one the number of staircases l, and creating
the new data structure Dl. To implement replace(q, i) we delete the segments
“covered” by q from T and Di and insert the new segment (or two new segments)
into T and Di.

Lemma 1. We can store n horizontal staircase segments with endpoints on
n × n grid in a O(n log n) space data structure that answers ray shoot-
ing queries in O((log log n)3) time and supports operation replace(q, i) in
O(m log n(log log n)2) time where m is the number of segments inserted into
and deleted from the staircase Mi, and operation new(q) in O(log n(log log n)2)
time.

The data structure of Lemma 1 is deterministic. We can further improve the
query time if randomization is allowed.

Fact 4. Given a staircase Mi and a point p, we can determine whether Mi is
below or above p and find the segment s ∈Mi such that p.x ∈ [start(s), end(s)]
in O((log log n)) time. The data structure Di that supports such queries uses
linear space and supports finger updates in O(1) expected time.

Proof : The data structure is the same as in the proof of Fact 3, but we use the
y-fast tree data structure [29] instead of the exponential tree. �

Lemma 2. We can store n horizontal staircase segments with endpoints on n×n
grid in a O(n log n) space data structure that answers ray shooting queries in
O((log log n)2) time and supports operation replace(q, i) in O(m log n log log n)
expected time where m is the number of segments inserted into and deleted from
the staircase Mi, and operation new(q) in O(log n log log n) expected time.

Proof : Our data structure is the same as in the proof of Lemma 1. But we
implement Di using Fact 4. Data structures Lv and Rv are implemented using
5 The update time can be slightly improved using fractional cascading and similar

techniques, but this is not necessary for our presentation.



A Fast Algorithm for Three-Dimensional Layers of Maxima Problem 615

the y-fast tree [29]. Hence, the search procedure spends O(log log n) time in each
node of T and a query is answered in O((log log n)2) time. �

Although this is not necessary for further presentation, we can prove a similar
result for the case when all segment endpoints are on a U × U grid; the query
time is O(log log U + (log log n)3) and the update time is O(log3 n(log log n)2)
per segment. We refer to the full version of this paper [25] for a proof of this
result.

4 Additional Staircases

The algorithm in the previous section needs O(n log n(log log n)2) time to con-
struct the layers of maxima: n ray shooting queries can be performed in
O(n(log log n)3) time, but O(n) update operations take O(n log n(log log n)2)
time. To speed-up the algorithm and improve the space usage, we reduce the
number of updates and the number of segments in the data structure of Lemma 1
to O(n/ log2 n).

Let D denote the data structure of Lemma 1. We construct and maintain a
new sequence of staircases B1,B2, . . . ,Bm, where m ≤ n/d and the parameter
d will be specified later. All horizontal segments of B1, . . . ,Bm are stored in D.
The new staircases satisfy the following conditions:
1. There are O(n

d
) horizontal segments in all staircases Bi

2. D is updated O(nd ) times during the execution of the sweep plane algorithm.
3. For any point q and for any i, if q is between Bi−1 and Bi, then q is situated
betweenMk andMk+1 for (i − 3/2)d ≤ k ≤ (i + 1/2)d.

Conditions 1 and 2 imply that the data structure D uses O(n) space and all
updates of D take O(n) time if d ≥ log n(log log n)2. Condition 3 means that
we can use staircases Bi to guide the search among Mk: we first identify the
index i, such that the query point q is between Bi+1 and Bi, and then locate
q in M(i−3/2)d, . . . ,M(i+1/2)d. It is not difficult to construct Bi that satisfy
conditions 1 and 3. The challenging part is maintaining the staircases Bi with a
small number of updates.

Lemma 3. The total number of inserted and deleted segments in all Bi is O(nd ).
The number of segments stored in Bi is O(nd ).

We describe how staircases can be maintained and prove Lemma 3 in the full
version of this paper [25].

5 Efficient Algorithms for the Layers-of-Maxima Problem

Word RAM Model. To conclude the description of our main algorithm, we
need the following simple.



616 Y. Nekrich

Lemma 4. Using a O(m) space data structure, we can locate a point in a group
of d staircases Mj ,Mj+1, . . . ,Mj+d in O(log d · (log log m)2) time, where m is
the number of segments inMj ,Mj+1, . . . ,Mj+d. An operation replace(q, i) is
supported in O((log log m)2 +mq) time, where mq is the number of inserted and
deleted segments in the staircase Mi, j ≤ i ≤ i + d.

Proof : We can use Fact 3 to determine whether a staircase is above or below a
staircase Mk for any j ≤ k ≤ j + d. Hence, we can locate a point in O(log d ·
(log log m)2) time by a binary search among d staircases. �

We set d = log2 n. The data structure Fi contains all segments of staircases
M(i−1)d+1,M(i−1)d+2, . . . ,Mid for i = 1, 2, . . . , j, where j = 
l/d� and l is the
highest index of a staircase; the data structure Fj+1 contains all segments of
staircasesMjd+1, . . . ,Ml. We can locate a point q in each Fi in O((log log n)3)
time by Lemma 4. Since each staircase belongs to one data structure, all Fi use
O(n) space. We also maintain additional staircases Bi as described in section 4.
All segments of all staircases Bi are stored in the data structure D of Lemma 1;
since D contains O(n/d) segments, the space usage of D is O(n).

Now we can describe how operations locate, replace, new can be imple-
mented in O((log log n)3) time per segment.

– locate(q): We find the index k, such that q is between Bk−1 and Bk in
O((log log n)3) time. As described in section 4, q is between Mkd+g and
M(k−1)d−g. Hence, we can use data structures Fk+1, Fk , and Fk−1 to identify
j such that q is betweenMj andMj+1. Searching Fk+1, Fk, and Fk−1 takes
O((log log n)3) time, and the total time for locate(q) is O((log log n)3).

– replace(q, i): let mq be the number of inserted and deleted segments. The
data structure F�i/d� can be updated in O(mq + (log log n)2) time. We may
also have to update B�i/d�, B�i/d�+1, and the data structure D.

– new(q, l): If l = kd + 1 for some k, a new data structure Fk+1 is created.
We add the horizontal segment of the new staircase into the data structure
Fk+1. If l = kd, we create a new staircase Bk and add the segments of Bk
into the data structure D.

There are O(n/d) update operations on the data structure D that can be per-
formed in O((n/d) log n(log log n)2) = O(n) time. If we ignore the time to
update D, then replace(q, i) takes O(mq(log log n)2) time and new(q, l) takes
O((log log n)2) time. Since

∑
q∈S mq = O(n) and new(q, l) is performed at most

n times, the algorithm runs in O(n(log log n)3) time. We thus obtain the main
result of this paper.

Theorem 1. The three-dimensional layers-of-maxima problem can be solved in
O(n(log log n)3) deterministic time in the word RAM model. The space usage of
the algorithm is O(n).

If we use Fact 4 instead of Fact 3 in the proof of Lemma 4 and Lemma 2 instead
of Lemma 1 in the proof of Theorem 1, we obtain a slightly better randomized
algorithm.



A Fast Algorithm for Three-Dimensional Layers of Maxima Problem 617

Theorem 2. The three-dimensional layers-of-maxima problem can be solved in
O(n(log log n)2) expected time. The space usage of the algorithm is O(n).

Pointer Machine Model. We can apply the idea of additional staircases to
obtain an O(n log n) algorithm in the pointer machine model. This time, we
set d = log n and maintain additional staircases Bi as described in section 4.
Horizontal segments of all Bi are stored in the data structure D of Giyora and
Kaplan [17] that uses O(m logεm) space and supports queries and updates in
O(log m) and O(log1+ε m) time respectively, where m is the number of segments
in all Bi and ε is an arbitrarily small positive constant. Using dynamic fractional
cascading [24], we can implement Fi so that Fi uses linear space and answers
queries in O(log n + log log n log d) = O(log n) time. Updates are supported in
O(log n) time; details will be given in the full version of this paper. Using D and
Fi, we can implement the sweep plane algorithm in the same way as described
in the first part of this section. The space usage of all data structures Fi is O(n),
and all updates of Fi take O(n log n) time. By Lemma 3, the data structure D
is updated O(n/ log n) times; hence all updates of D take O(n log n) time. The
space usage of D is O(m logεm) = O(n). Each new point is located by answering
one query to D and at most three queries to Fi; hence, a new point is assigned
to its layer of maxima in O(log n) time.

Theorem 3. A three-dimensional layers-of-maxima problem can be solved in
O(n log n) time in the pointer machine model. The space usage of the algorithm
is O(n).

Acknowledgment

The author wishes to thank an anonymous reviewer of this paper for a stimu-
lating comment that helped to obtain the randomized version of the presented
algorithm.

References

1. Agarwal, P.K.: Personal communication
2. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked Ancestor Problems. In: Proc. FOCS

1998, pp. 534–544 (1998)
3. Atallah, M.J., Goodrich, M.T., Ramaiyer, K.: Biased Finger Trees and Three-

dimensional Layers of Maxima. In: Proc. SoCG 1994, pp. 150–159 (1994)
4. Andersson, A., Thorup, M.: Dynamic Ordered Sets with Exponential Search Trees.

J. ACM 54, Article No. 13 (2007)
5. de Berg, M., van Kreveld, M.J., Snoeyink, J.: Two- and Three-Dimensional Point

Location in Rectangular Subdivisions. J. Algorithms 18, 256–277 (1995)
6. Bender, M.A., Cole, R., Demaine, E.D., Farach-Colton, M., Zito, J.: Two Simplified

Algorithms for Maintaining Order in a List. In: Möhring, R.H., Raman, R. (eds.)
ESA 2002. LNCS, vol. 2461, pp. 152–164. Springer, Heidelberg (2002)

7. Bentley, J.L., Clarkson, K.L., Levine, D.B.: Fast Linear Expected-Time Algorithms
for Computing Maxima and Convex Hulls. In: Proc. SODA 1990, pp. 179–187
(1990)



618 Y. Nekrich

8. Brodal, G.S., Fagerberg, R.: Cache Oblivious Distribution Sweeping. In: Widmayer,
P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 426–438. Springer, Heidelberg (2002)

9. Buchsbaum, A.L., Goodrich, M.T.: Three-Dimensional Layers of Maxima. Algo-
rithmica 39, 275–286 (2004)

10. Chan, T.M.: Point Location in o(log n) Time, Voronoi Diagrams in o(n log n) Time,
and Other Transdichotomous Results in Computational Geometry. In: Proc. FOCS
2006, pp. 333–344 (2006)

11. Chan, T.M., Larsen, K., Pǎtraşcu, M.: Orthogonal Range Searching on the RAM,
Revisited (to be published in SoCG 2011)

12. Chan, T.M., Pǎtraşcu, M.: Voronoi Diagrams in n2o(
√

lglgn) time. In: Proc. STOC
2007, pp. 31–39 (2007)

13. Clarkson, K.L.: More Output-Sensitive Geometric Algorithms. In: Proc. FOCS
1994, pp. 695–702 (1994)

14. Demaine, E.D., Pǎtraşcu, M.: Tight Bounds for Dynamic Convex Hull Queries
(Again). In: Proc. SoCG 2007, pp. 354–363 (2007)

15. Franciosa, P.G., Gaibisso, C., Talamo, M.: An Optimal Algorithm for the Maxima
Set Problem for Data in Motion. In: Proc. CG 1992, pp. 17–21 (1992)

16. Gabow, H.N., Bentley, J.L., Tarjan, R.E.: Scaling and Related Techniques for Ge-
ometry Problems. In: Proc. STOC 1984, pp. 135–143 (1984)

17. Giyora, Y., Kaplan, H.: Optimal Dynamic Vertical Ray Shooting in Rectilinear
Planar Subdivisions. ACM Transactions on Algorithms 5 (2009)

18. Golin, M.J.: A Provably Fast Linear-Expected-Time Maxima-Finding Algorithm.
Algorithmica 11, 501–524 (1994)

19. Han, Y.: Deterministic Sorting in O(nloglogn) time and linear space. J. Algo-
rithms 50, 96–105 (2004)

20. Itai, A., Konheim, A.G., Rodeh, M.: A Sparse Table Implementation of Priority
Queues. In: Proc. ICALP 1981, pp. 417–431 (1981)

21. Kapoor, S.: Dynamic Maintenance of Maximas of 2-d Point Sets. In: Proc. SoCG
1994, pp. 140–149 (1994)

22. Kirkpatrick, D.G., Seidel, R.: Output-Size Sensitive Algorithms for Finding Max-
imal Vectors. In: Proc. SoCG 1985, pp. 89–96 (1985)

23. Kung, H.T., Luccio, F., Preparata, F.P.: On Finding the Maxima of a Set of Vec-
tors. J. ACM 22, 469–476 (1975)

24. Mehlhorn, K., Näher, S.: Dynamic Fractional Cascading. Algorithmica 5, 215–241
(1990)

25. Nekrich, Y.: A Fast Algorithm for Three-Dimensional Layers of Maxima Problem.
In: CoRR, abs/1007.1593 (2010)

26. Overmars, M.H.: Efficient Data Structures for Range Searching on a Grid. J. Al-
gorithms 9(2), 254–275 (1988)

27. Pǎtraşcu, M.: Planar Point Location in Sublogarithmic Time. In: Proc. FOCS 2006,
pp. 325–332 (2006)

28. Tarjan, R.E.: A Class of Algorithms which Require Nonlinear Time to Maintain
Disjoint Sets. J. Comput. Syst. Sci. 18(2), 110–127 (1979)

29. Willard, D.E.: Log-Logarithmic Worst-Case Range Queries are Possible in Space
Θ(N). Information Processing Letters 17(2), 81–84 (1983)

30. Willard, D.E.: A Density Control Algorithm for Doing Insertions and Deletions in
a Sequentially Ordered File in Good Worst-Case Time. Information and Compu-
tation 97, 150–204 (1992)



Succinct 2D Dictionary Matching with No

Slowdown

Shoshana Neuburger1,� and Dina Sokol2,��

1 Department of Computer Science, The Graduate Center of the City University of
New York, New York, NY, 10016
shoshana@sci.brooklyn.cuny.edu

2 Department of Computer and Information Science, Brooklyn College of the City
University of New York, Brooklyn, NY, 11210

sokol@sci.brooklyn.cuny.edu

Abstract. The dictionary matching problem seeks all locations in a
given text that match any of the patterns in a given dictionary. Efficient
algorithms for dictionary matching scan the text once, searching for all
patterns simultaneously. This paper presents the first 2-dimensional dic-
tionary matching algorithm that operates in small space and linear time.
Given d patterns, D = {P1, . . . , Pd}, each of size m ×m, and a text T
of size n× n, our algorithm finds all occurrences of Pi, 1 ≤ i ≤ d, in T .
The preprocessing stores the dictionary in entropy compressed form, in
|D|Hk(D)+O(|D|) bits. Our algorithm uses O(dm log dm) bits of extra
space. The time complexity of our algorithm is linear O(|D|+ |T |).

1 Introduction

Dictionary matching is the problem of searching a given text for all occurrences
of any pattern from a given set of patterns. A search for specific phrases in a
book, virus detection software, network intrusion detection, searching a DNA se-
quence for a set of motifs, and image identification, are all applications of dictio-
nary matching. In this work we are concerned with efficiently solving the
2-dimensional dictionary matching problem in small space. The motivation for
this is that there are many scenarios, such as on mobile and satellite devices, where
storage capacity is limited. The added constraint of performing efficient dictionary
matching using little extra space is a challenging and practical problem.

Linear-time single pattern matching algorithms in both one and two dimen-
sions have achieved impressively small space complexities. For 1D data, we have
pattern matching algorithms that require only constant extra space, [10, 8, 18,
11]. For 2D pattern matching, Crochemore et al. present a linear time algorithm
that works with log extra space for pattern preprocessing and O(1) extra space

� This work has been supported in part by the National Science Foundation Grant
DB&I 0542751.

�� This work has been supported in part by the National Science Foundation Grant
DB&I 0542751 and the PSC-CUNY Research Award 63343-0041.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 619–630, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



620 S. Neuburger and D. Sokol

to scan the text [7]. Such an algorithm can be trivially extended to perform
dictionary matching but its runtime would depend on the number of patterns in
the dictionary. The goal of an efficient dictionary matching algorithm is to scan
the text once so that its running time depends only on the size of the text and
not on the size of the patterns sought.

Concurrently searching for a set of patterns within limited working space
presents a greater challenge than searching for a single pattern in small space.
Much effort has recently been devoted to solving 1-dimensional dictionary match-
ing in small space [6, 14, 15, 3, 13]. The most recent result of Hon et al. [13] has es-
sentially closed this problem, with a linear-time algorithm that uses |D′|Hk(D′)+
O(|D′|) bits of space, given a dictionary D′ of 1D patterns. Hk, i.e. the kth or-
der empirical entropy of a string, describes the minimum number of bits that are
needed to encode each symbol of the string within context, and it is often used to
demonstrate that storage space meets the information-theoretic lower bounds of
data.

In this paper, our objective is to extend succinct 1D dictionary matching to the
two-dimensional setting, in a way similar to the Bird and Baker (BB) extension
of the Aho-Corasick 1D dictionary matching algorithm (AC). It turns out that
this problem is not trivial, due to the necessity to label each position of the text.
However, using new techniques of dynamic dueling, we indeed achieve a linear
time algorithm that solves the Small-Space 2D Dictionary Matching Problem.

Specifically, given a dictionary D of d patterns, D = {P1, . . . , Pd}, each of size
m × m, and a text T of size n × n, our algorithm finds all occurrences of Pi,
1 ≤ i ≤ d, in T . During the preprocessing stage, the patterns are stored in en-
tropy compressed form, in |D|Hk(D)+O(|D|) bits. Hk(D) denotes the kth order
empirical entropy of the string formed by concatenating all the patterns in D,
row by row. The preprocessing is completed in O(|D|) time using O(dm log dm)
bits of extra space. Then, the text is searched in O(|T |) time using O(dm log dm)
bits of extra space. For ease of exposition, we discuss patterns that are all of size
m×m, however, our algorithm generalizes to patterns that are the same size in
only one dimension, and the complexity would depend on the size of the largest
dimension. As in [3] and [13], the alphabet can be non-constant in size.

In the next section we give an overview of Bird/Baker [5, 2] and Hon et al. [13]
and outline how it is possible to combine these algorithms to yield a small space
2-dimensional dictionary matching algorithm for certain types of patterns. In
Section 3 we introduce a distinction between highly periodic patterns and non-
periodic patterns, and summarize the algorithm for the periodic case. In section
4 we deal with the non-periodic case, introducing new space-saving techniques
including dynamic dueling. We conclude with open problems in Section 5.

2 Overview

The first linear-time 2D pattern matching algorithm was developed indepen-
dently by Bird [5] and Baker [2]. Although the BB algorithm was initially pre-
sented for a single pattern, it is easily extended to perform dictionary matching



Succinct 2D Dictionary Matching with No Slowdown 621

by replacing the KMP automaton with an AC automaton. In Algorithm 1 we
outline the dictionary matching version of BB.

Algorithm 1. Bird/Baker algorithm for 2D Dictionary Matching

1. Preprocess Pattern:
a) Form Aho-Corasick automaton of pattern rows, called AC1.
Let � denote the number of states in AC1.
b) Name pattern rows using AC1, and store a 1D pattern of names
for each pattern in D, called D′.
c) Construct AC automaton of D′, called AC2.
Let �′ denote the number of states in AC2.

2. Row Matching:
Run Aho-Corasick on each text row using AC1.
This labels positions at which a pattern row ends.

3. Column Matching:
Run Aho-Corasick on named text columns using AC2.
Output pattern occurrences.

The basic concept used here is the translation of the 2D patterns into 1D
patterns using naming. Rows of each pattern are perceived as metacharacters
and named so that distinct rows receive different names. The text is named in a
similar fashion and 1D dictionary matching is performed over the text columns
and the patterns of names. The linear time complexity of the algorithm depends
on the assumption that the label of each state fits into a single word of RAM.

Space Complexity of BB: We use � to denote the number of states in the
Aho-Corasick automaton of D, AC1. Note that � ≤ |D| = dm2. O(� log �) bits of
space are needed to store AC1, and labeling all text locations uses O(n2 log dm)
bits of space. Overall, the BB algorithm uses O(� log �+n2 log dm) bits of space.

Our objective is to improve upon this space requirement. As a first attempt
to conserve space, we replace the traditional AC algorithm in Step 1 of BB with
the compressed AC automaton of Hon et al. [13]. The algorithm of [13] builds
upon the work of Belazzougui [3] which encodes the three functions of the AC
automaton (goto, report, failure) separately and in different ways. The space
complexity is reduced from 0th order empirical entropy to kth order empirical
entropy by employing the XBW transform [9] to store the goto function. The
details of these papers are very interesting, but for our purposes, we can actually
use their algorithm as a black box replacement for the AC automata in both Steps
1a and 1c of the BB algorithm.

To reduce the algorithm’s working space, we work with small overlapping text
blocks of size 3m/2× 3m/2. This way, we can replace the O(n2 log dm) bits of
space used to label the text in Step 3 with O(m2 log dm), relating the working
space to the size of the dictionary, rather than the size of the entire text.

Theorem 1. We can solve the 2D dictionary matching problem in linear
O(dm2 + n2) time and �Hk(D) + �′Hk(D′) + O(� + m2 log dm) bits of space.



622 S. Neuburger and D. Sokol

Proof. Since the algorithm of Hon et al. [13] has no slowdown, replacing the
AC automata in BB with compressed AC automata preserves the linear time
complexity. The space used by the preprocessing is: �Hk(D)+O(�)+�′Hk(D′)+
O(�′) bits. The compressed AC1 automaton uses �Hk(D) + O(�) bits of space
and it replaces the original dictionary, while the compressed AC2 automaton uses
�′Hk(D′)+O(�′) extra bits of space. Text scanning uses O(m2 log dm) extra bits
of space to label each location of a text block. ��

Although this is an improvement over the space required by the uncompressed
version of BB, we would like to improve on this further. Our aim is to reduce the
working space to O(dm log dm) bits, thus completely eliminating the dependence
of the working space on the size of the given text. Yet, note that this constraint
still allows us to store O(1) information per pattern row to linearize the dic-
tionary in the preprocessing. In addition, we will have the ability to store O(1)
information about each pattern per text row to allow linearity in text scanning.

The following corollary restates Theorem 1 in terms of O(dm log dm) for the
case of a dictionary with many patterns. It also omits the term �′Hk(D′)+O(�′),
since �′Hk(D′) + O(�′) = O(dm log dm).

Corollary 1. If d > m, we can solve the 2D dictionary matching problem in
linear O(dm2 + n2) time and �Hk(D) + O(�) + O(dm log dm) bits of space.

The rest of this paper deals with the case in which the number of patterns is
smaller than the dimension of the patterns, i.e., d = o(m). For this case, we
cannot label each text location and therefore the Bird and Baker algorithm can-
not be applied trivially. We present several clever space-saving tricks to preserve
the spirit of Bird and Baker’s algorithm without incurring the necessary storage
overhead.

3 Preliminaries

A string S is primitive if it cannot be expressed in the form S = uj , for j > 1
and a prefix u of S. String S is periodic in u if S = u′uj where u′ is a suffix of
u, u is primitive, and j ≥ 2. A periodic string p can be expressed as u′uj for one
unique primitive u. We refer to u as “the period”of p. Depending on the context,
u can refer to either the string u or the period size |u|.

There are two types of patterns, and each one presents its own difficulty. In
the first type, which we call Case 1 patterns, all rows are periodic, with periods
≤ m/4. The difficulty in this case is that many overlapping occurrences can
appear in the text in close proximity to each other, and we can easily have more
candidates than the working space we allow. The second type, Case 2 patterns,
have at least one aperiodic row or one row whose period is larger than m/4. Here,
each pattern can occur only O(1) times in a text block. Since several patterns
can overlap each other in both directions, a difficulty arises in the text scanning
stage. We do not allow the time to verify different candidates separately, nor do
we allow space to keep track of the possible overlaps for different patterns.



Succinct 2D Dictionary Matching with No Slowdown 623

In the initial preprocessing step, we divide the patterns into two groups based
on 1D periodicity. For Case 1 patterns, the algorithm presented by the authors
[17] for LZ-compressed texts can be adapted here to solve the general 2D dictio-
nary matching problem. Since every row of every pattern is periodic with period
≤ m/4, we have the following.

Observation 1. Any text row that is included in a pattern occurrence must have
exactly one maximal periodic substring of length ≥ m.

Hence, we can run the Main and Lorentz algorithm [16] on the text rows, using
location m as the ‘center.’ Once text rows are labeled, we use our innovative
naming technique [17] based on Lyndon words to name both pattern rows and
text rows. We then run the traditional AC automaton on the 1D patterns of
names and 1D text of names to identify candidates for pattern occurrences.
Verification of actual occurrences proceeds using similar data structures.

Lemma 1. [17] 2D dictionary matching for Case 1 patterns can be done in
O(dm2 + n2) time and �Hk(D) + O(�) + O(dm log m) bits of space.

For Case 2 patterns, we can use the aperiodic row to filter the text. This simplifies
the identification of an initial set of candidates. Yet, verification in one pass
over the text presents a difficulty. In dictionary matching, different candidates
represent different patterns, and it is infeasible to compute and store information
about the relationship between all patterns. In the next section we present an
approach to verify a set of candidate positions for a set of patterns in linear time
using a new technique called dynamic dueling.

4 The Algorithm

Recall that we focus on the case in which the number of patterns in the dictionary
is smaller than the dimension of a pattern, i.e. d < m. We further assume that
each pattern has at least one aperiodic row. The case of a pattern having a row
that is periodic with period size between m/4 and m/2 will add only a small
constant to the stated complexities.

The difficulty in applying BB is that we do not have sufficient space to label all
text positions. However, we can initially filter the text block using the aperiodic
row. Thus, the text scanning stage first identifies a small set of positions that are
candidates for pattern occurrences. Then, in a second pass over the text block,
we verify which candidates are actually pattern occurrences.

4.1 Pattern Preprocessing

1. Construct (compressed) AC automaton of first aperiodic row of each pattern.
Store row number of each of these rows within the patterns.

2. Form a compressed AC automaton of the pattern rows.
3. Construct witness tree of pattern rows and preprocess for LCA.
4. Name pattern rows. Index the 1D patterns of names in a suffix tree.



624 S. Neuburger and D. Sokol

In the first step, we form an AC automaton of one aperiodic row of each
pattern, say, the first aperiodic row of each pattern. This will allow us to filter
the text and limit the number of potential pattern occurrences to consider. Since
we use only one row from each pattern, using a compressed version of the AC
automaton is optional.

In the second step, the pattern rows are named as in BB to form a 1D dictio-
nary of patterns. Here we use a compressed AC automaton of the pattern rows.
An example of two patterns and their 1D representation is shown in Fig. 1.

��������	

� � � �

� � � �

� � � �

� � � �

�

�

�

�

��������


� � � �

� � � �

� � � �

� � � �

�

�

�

�

Fig. 1. Two linearized 2D patterns with their 1D names

Another necessary data structure is the witness tree introduced in [17] and
summarized in Appendix A. A witness tree is used to store pairwise distinctions
between different patterns, or pattern rows, of the same length. A witness tree
provides a witness between pattern rows in constant time if it is preprocessed
for Lowest Common Ancestor (LCA).

Preprocessing proceeds by indexing the 1D patterns of names. We form a
suffix tree of the 1D patterns to allow efficient computation of longest common
prefix (LCP) queries between substrings of the 1D patterns.

Lemma 2. The pattern preprocessing stage for Case 2 patterns completes in
O(dm2) time and O(dm log m) extra bits of space.

Proof. The AC automaton of the first non-periodic row of each pattern is con-
structed in O(dm) time and is stored in O(dm log m) bits, in its uncompressed
form. A compressed AC automaton of all pattern rows occupies �Hk(D) + O(�)
bits of space and can then become the sole representation of the dictionary [13].
The witness tree occupies O(dm log m) bits of space [17]. A rooted tree can be
preprocessed in linear time and space to answer LCA queries in O(1) time [12, 4].
The patterns are converted to a 1D representation in O(dm2) time. A suffix tree
of the 1D dictionary of names can be constructed and stored in linear time and
space, e.g. [19]. ��

4.2 Text Scanning

The text scanning stage has three steps.



Succinct 2D Dictionary Matching with No Slowdown 625

1. Identify candidates in text block with 1D dictionary matching of a non-
periodic row of each pattern.

2. Duel to eliminate inconsistent candidates within each column.
3. Verify pattern occurrences at surviving candidate positions.

Step 1. Identify Candidates. We identify a limited set of candidates in the
text block using 1D dictionary matching on the first aperiodic row of each pat-
tern. There can be only one occurrence of any non-periodic pattern row in a text
block row. Each occurrence of an aperiodic pattern row demarcates a candidate,
at most d per row. In total, there can be up to dm candidates in a text block,
with candidates for several distinct 1D patterns on a single row of text. If the
same aperiodic row occurs in several patterns, several candidates can occur at
the same text position, but candidates are still limited to d per row.

We run the Aho-Corasick algorithm over the text block, row by row, to find
up to dm candidates. Then we update each candidate to reflect the position at
which we expect a pattern to begin. This is done by subtracting the row number
of the selected aperiodic row from the row number of its found location in the
text block.

Complexity of Step 1: 1D dictionary matching on a text block takes O(m2)
time with the AC method1. Marking the positions at which patterns can begin is
done in constant time per candidate found; overall, this requires O(dm) = o(m2)
time. The AC algorithm uses extra space proportional to the dictionary, which is
O(dm log m) bits of space for this limited set of pattern rows. The dm candidates
can also be stored in O(dm log m) bits of space.

Step 2. Eliminate Vertically Inconsistent Candidates. We call a pair of
candidate patterns consistent if all positions of overlap match. Vertically consis-
tent candidates are two candidates that appear in the same column, and have
a suffix/prefix match in their 1D representations. In order to verify candidates
in a single pass over the text, we take advantage of the fact that overlapping
segments of consistent candidates can be verified simultaneously.

We eliminate inconsistent candidates with a dueling technique inspired by the
2D single pattern matching algorithm of Amir et al. [1]. In the single pattern
matching algorithm, duels are performed between candidates for the same pat-
tern. In dictionary matching, we perform duels between candidates for different
patterns.

In general, the dueling paradigm requires that a witness, i.e. position of mis-
match in the overlap, be precomputed and stored for all possible overlaps. If no
witness exists for a given distance, then such candidates are consistent. During
a duel, the text location is compared to the witness, killing one or more of the
candidates involved in the duel. To date, the dueling paradigm has not been
applied to dictionary matching since it is prohibitive to precompute and store
witnesses for all possible overlaps of all candidate patterns in a set of patterns.
However, here we show an innovative way of performing 2D duels for a set of
patterns.
1 Hashing techniques achieve linear time complexity in the AC algorithm.



626 S. Neuburger and D. Sokol

For our purposes, we need only eliminate vertically inconsistent candidates.
Thus, we introduce dynamic dueling between two candidates in a given column.
In dynamic dueling, no witness locations are computed in advance. We are given
two candidate patterns and their locations, candidate A at location (i, j) in
the text and candidate B at location (k, j) in the text, i < k. Since all of our
candidates are in an m/2×m/2 square, we know that there is overlap between
the two candidates.

A duel consists of two steps. In the first step, the 1D representation of names
is used for A and B, denoted by A′ and B′. An LCP query between the suffix
k − i + 1 of A′ against B′ returns the number of overlapping rows that match.
If this number is ≥ i+m− k then the two candidates are consistent. Otherwise,
we are given a “row-witness,” i.e. the LCP points to the first row at which the
patterns differ. In the second step of the duel, we use the witness tree to locate
the position of mismatch between the two different pattern rows, and we use
that position to eliminate one or both candidates.

To demonstrate how a witness is found and the duel is performed, we return to
the patterns in Fig. 1. Assume two candidates exist; directly below a candidate
for Pattern1, we have a candidate for Pattern2. The LCP of 121, (second suffix
of linearized Pattern1) and 1234 (linearized Pattern2) is 2. Since 2 < 3, the
LCP query reveals that the patterns are inconsistent, and that a witness exists
between the fourth row of Pattern1 (name 1) and the third row of Pattern2
(name 3). We then procure a witness from the witness tree shown in Fig. 3 by
taking the LCA of the leaves that represent names 1 and 3. The result of this
query shows that the first position is a point of distinction between names 1 and
3. If the text has an ‘a’ at that position, Pattern1 survives the duel. Otherwise,
if the character is a ‘c’, Pattern2 survives the duel. If neither ‘a’ nor ‘c’ occur at
the text location, both candidates are eliminated.

����������	

�
����
���

�

�����������	

�
����
���

���

����������	

�
����
���

���

����������	

�
����
���

���

Fig. 2. (a) Duel between vertically inconsistent candidates in a column. (b) Surviving
candidates if the lower candidate wins the duel. (c) Surviving candidates if the upper
candidate wins the duel.



Succinct 2D Dictionary Matching with No Slowdown 627

Lemma 3. A duel between two candidate patterns A and B in a given column
j of the text can be performed in constant time.

Proof. The suffix tree constructed in Step 4 of the pattern preprocessing answers
LCP queries in the 1D patterns of names in O(1) time. The witness tree gives
a position of a row-witness in O(1) time, and retrieving the text character to
perform the actual duel takes constant time. ��

Verification begins by dueling top-down between candidates within each column.
Since consistency is a transitive relation, if the lower candidate is killed, this does
not affect the consistent candidates above it in the same column. However, if the
lower candidate survives, it triggers the elimination of all candidates within m
rows above the witness row. Pointers link consecutive candidates in each column.
This way, a duel eliminates the set of consistent candidates that are within range
of the mismatch. This is shown in Fig. 2. Note that the same method can be used
when two (or more) candidates occur at a single text position.

Complexity of Step 2: Step 2 begins with at most dm candidate positions.
Each candidate is involved in exactly one duel, and is either killed or survives. If
a candidate survives, it may be visited exactly one more time to be eliminated
by a duel beneath it. Since a duel is done in constant time, by Lemma 3, this
step completes in O(dm) time. Recall that d < m. Hence, the time for Step 2 is
O(m2).

Step 3. Verify Surviving Candidates After eliminating vertically inconsis-
tent candidates, we verify pattern occurrences in a single scan of the text block.
We process one text block row at a time to conserve space. Before scanning the
current text block row, we label the positions at which we expect to find a pat-
tern row. This is done by merging the labels from the previous row with the list
of candidates that begin on the new row. If a new candidate is introduced in a
column that already has a label, we keep only the label of the lower candidate.
This is permissible since the label must be from a consistent candidate in the
same column. Thus, each position in the text has at most one label.

The text block row is then scanned sequentially, to mark actual occurrences of
pattern rows. This is done by running AC on the text row with the compressed
AC automaton of all pattern rows. The lists of expected row names and actual
row names are then compared sequentially. If every expected row name appears
in the text block row, the candidate list remains unchanged. If an expected
row name does not appear, a candidate is eliminated. The pointers that connect
candidates are used to eliminate candidates in the same column that also include
the label that was not found.

After all rows are verified in this manner, all surviving candidates in the text
are pattern occurrences of their respective patterns.

Complexity of Step 3: When a text block row is verified, we mark each
position at which a pattern row (1D name) is expected to begin. This list is
limited by m/2 due to the vertical consistency of the candidates. We also mark
actual pattern row occurrences in the text row which are again no more than



628 S. Neuburger and D. Sokol

m/2 due to distinctness of the row names. Thus, the space complexity for Step 3
is O(m). The time complexity is also linear, since AC is run on the row in linear
time, and then two sorted lists of pattern row names are merged. Over all 3m/2
rows in the text block, the complexity of Step 3 is O(m2).

Lemma 4. The algorithm for 2D dictionary matching, when pattern rows are
not highly periodic and d < m, completes in O(n2) time and O(dm log m) bits
of space, in addition to �Hk(D) + O(�) bits of space to store the compressed AC
automaton of the dictionary.

Proof. This follows from Lemma 2 and the complexities of Steps 1, 2, and 3. ��

Theorem 2. Our algorithm for 2D dictionary matching completes in
O(dm2 + n2) time and O(dm log dm) bits of extra space.

Proof. For d > m, this is stated in Corollary 1 of Theorem 1. For d ≤ m, the
patterns are split into groups according to periodicity. Case 1 patterns are proven
in Lemma 1, and Case 2 patterns are proven in Lemma 4. ��

5 Conclusion

We have developed the first linear-time small-space 2D dictionary matching al-
gorithm. We work with a dictionary of d patterns, each of size m × m. After
preprocessing the dictionary in small space, and storing the dictionary in a com-
pressed self-index, our algorithm processes the text in linear time. That is, it
uses O(n2) time to search a 2D text that is O(n2) in size. Yet, our algorithm
requires only O(dm log dm) bits of extra space.

Our algorithm is suitable for patterns that are all the same size in at least one
dimension. This property is carried over from the Bird/Baker solution. Small
space 2D dictionary matching for rectangular patterns remains an open prob-
lem. Other interesting variations of small-space dictionary matching include the
approximate versions of the problem in which one or more changes occur either
in the patterns or in the text.

Acknowledgments

The authors wish to thank J. S. Vitter for elucidating the use of compressed
indexes in pattern matching.

References

[1] Amir, A., Benson, G., Farach, M.: An alphabet independent approach to two-
dimensional pattern matching. SICOMP: SIAM Journal on Computing 23 (1994)

[2] Baker, T.J.: A technique for extending rapid exact-match string matching to ar-
rays of more than one dimension. SIAM J. Comp. (7), 533–541 (1978)



Succinct 2D Dictionary Matching with No Slowdown 629

[3] Belazzougui, D.: Succinct dictionary matching with no slowdown. In: Amir, A.,
Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 88–100. Springer, Heidelberg
(2010)

[4] Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

[5] Bird, R.S.: Two dimensional pattern matching. Information Processing Let-
ters 6(5), 168–170 (1977)

[6] Chan, H.L., Hon, W.K., Lam, T.W., Sadakane, K.: Compressed indexes for dy-
namic text collections. ACM Transactions on Algorithms 3(2) (2007)

[7] Crochemore, M., Gasieniec, L., Plandowski, W., Rytter, W.: Two-dimensional
pattern matching in linear time and small space. In: STACS: Annual Symposium
on Theoretical Aspects of Computer Science (1995)

[8] Crochemore, M., Perrin, D.: Two-way string-matching. J. ACM 38(3), 650–674
(1991)

[9] Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled
trees for optimal succinctness, and beyond. In: FOCS 2005, pp. 184–196 (2005)

[10] Galil, Z., Seiferas, J.: Time-space-optimal string matching (preliminary report).
In: STOC 1981: Proceedings of the Thirteenth Annual ACM Symposium on The-
ory of Computing, pp. 106–113. ACM, New York (1981)

[11] G ↪asieniec, L., Kolpakov, R.: Real-time string matching in sublinear space. In: Sahi-
nalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109,
pp. 117–129. Springer, Heidelberg (2004)

[12] Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.
SICOMP: SIAM Journal on Computing 13 (1984)

[13] Hon, W.-K., Ku, T.-H., Shah, R., Thankachan, S.V., Vitter, J.S.: Faster com-
pressed dictionary matching. In: SPIRE, pp. 191–200 (2010)

[14] Hon, W.-K., Lam, T.W., Shah, R., Tam, S.-L., Vitter, J.S.: Compressed index for
dictionary matching. In: DCC, pp. 23–32 (2008)

[15] Hon, W.-K., Lam, T., Shah, R., Tam, S.-L., Vitter, J.S.: Succinct index for dy-
namic dictionary matching. In: Dong, Y., Du, D.-Z., Ibarra, O. (eds.) ISAAC 2009.
LNCS, vol. 5878, pp. 1034–1043. Springer, Heidelberg (2009)

[16] Main, M.G., Lorentz, R.J.: An O(n log n) algorithm for finding all repetitions in
a string. ALGORITHMS: Journal of Algorithms 5 (1984)

[17] Neuburger, S., Sokol, D.: Small-space 2D compressed dictionary matching. In:
Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp. 27–39. Springer,
Heidelberg (2010)

[18] Rytter, W.: On maximal suffixes and constant-space linear-time versions of kmp
algorithm. Theor. Comput. Sci. 299(1-3), 763–774 (2003)

[19] Ukkonen, E.: On-line construction of suffix trees. Algorithmica 14(3), 249–260
(1995)

A Witness Tree

Given a set S of k strings, each of length m, a witness tree can be constructed to
name these strings in linear time and O(k) space [17]. Furthermore, the witness
tree can provide the answer to the following query in constant time.

Query: For any two strings s, s′ ∈ S, return a position of mismatch between
s and s′ if s �= s′, otherwise return m + 1.



630 S. Neuburger and D. Sokol

�

�

�

�

�

��

�
�
�

��������	
��

�
�
��

�

�
�
�

	

���� ���	
�

� �

� ���

� ���

� ��

Fig. 3. A witness tree for several strings of length 4

For completeness, we review the construction of the witness tree. We omit all
proofs, which have been included in [17].

Components of witness tree:

– Internal node: position of a character mismatch. The position is an integer
∈ [1, m].

– Edge: labeled with a character in the alphabet Σ. Two edges emanating from
a node must have different labels.

– Leaf: A name (i.e an integer ∈ [1, k]). Identical strings receive identical
names.

Construction of the witness tree begins by choosing any two strings in S and
sequentially comparing them. When a mismatch is found, comparison halts and a
node is added to the witness tree to represent this witness. Each successive string
is compared to the witnesses stored in the tree to identify to which name, if any,
the string belongs. Characters of a new string are examined in the order dictated
by traversal of the witness tree, possibly out of sequence. If traversal halts at
an internal node, the string receives a new name. Otherwise, traversal halts at
a leaf, and the new string is sequentially compared to the string represented by
the leaf as done with the first two strings.

As an example, we explain how the string bbaa is named 4 using the witness
tree of Fig. 3. Since the root represents position 2, the first comparison finds a
‘b’ as the second character in bbaa. Then, we look at position 1 and find ‘b’.
Since this character is not a child of the current node, a new leaf is created to
represent the name 4.

Proprocessing the witness tree to allow Lowest Common Ancestor (LCA)
queries on its leaves allows us to answer the above witness query between any
two strings in S in constant time.



PTAS for Densest k-Subgraph in Interval

Graphs

Tim Nonner

IBM Research - Zurich
tno@zurich.ibm.com

Abstract. Given an interval graph and integer k, we consider the prob-
lem of finding a subgraph of size k with a maximum number of induced
edges, called densest k-subgraph problem in interval graphs. It has been
shown that this problem is NP-hard even for chordal graphs [17], and
there is probably no PTAS for general graphs [12]. However, the ex-
act complexity status for interval graphs is a long-standing open prob-
lem [17], and the best known approximation result is a 3-approximation
algorithm [16]. We shed light on the approximation complexity of find-
ing a densest k-subgraph in interval graphs by presenting a polynomial-
time approximation scheme (PTAS), that is, we show that there is an
(1+ ε)-approximation algorithm for any ε > 0, which is the first such ap-
proximation scheme for the densest k-subgraph problem in an important
graph class without any further restrictions.

1 Introduction

The densest k-subgraph problem is defined as follows: given a graph with n ver-
tices and an integer k ≤ n, find a subgraph with k vertices that maximizes the
number of induced edges. The NP-hardness is a direct consequence of the well-
known fact that finding a maximum clique is NP-hard. This contrasts to the
problem of finding an arbitrary-sized subgraph of maximum density, i.e., a sub-
graph with maximum average degree, which is polynomially solvable [14]. The
first approximation algorithm for the densest k-subgraph problem with an ap-
proximation guarantee of O(n0.3885) was given by Kortsarz and Peleg [13]. Feige
et al. [8] improved this factor to O(nδ) for some δ < 1/3. Until recently, when
Bhaskara et al. [5] presented an O(n1/4+ε)-approximation algorithm for any
ε > 0, it has been a long-standing open problem whether the factor O(n1/3) can
be significantly beaten. Ashahiro et al. [3] showed that a simple greedy strategy
yields an approximation ratio ofO(n/k), and Feige and Langberg [7] showed that
n/k is achievable using semidefinite programming. On the other hand, using a
random sampling technique, Arora et al. [2] presented a polynomial-time approx-
imation scheme (PTAS) for dense graphs with k = Ω(n), that is, if the number
of edges is Ω(n2) and k = Ω(n), then there is an (1+ε)-approximation algorithm
for any ε > 0. However, there is probably no PTAS for general graphs [12].

These weak approximation guarantees for general graphs motivated the study
of special graph classes, like perfect graphs, chordal graphs, and interval graphs.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 631–641, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



632 T. Nonner

Unfortunately, although a maximum clique of a perfect graph can be found in
polynomial time [10], finding a densest k-subgraph remains NP-hard even for
chordal graphs and bipartite graphs [17], two important subclasses of perfect
graphs. However, the complexity status of finding a densest k-subgraph in in-
terval graphs, a subclass of chordal graphs, has been a prominent open problem
over the last three decades [17]. In an interval graph, each vertex corresponds
to an interval, and two vertices are connected via an edge if their corresponding
intervals overlap. Such a geometric structure occurs frequently in scheduling,
VLSI-design, and biology, see for instance [9]. This unknown complexity status
gave rise to the search for approximation results. Liazi et al. [16] presented a
3-approximation algorithm for interval graphs and chordal graphs, and there is
moreover a PTAS if the clique graph is a star [15], i.e., if the intersection graph
of the maximal cliques is a star. Recently, Chen et al. [6] showed that a large
family of intersection graphs, including interval graphs, admit constant factor
approximation algorithms. Finally, Backer and Keil [4] gave a 3/2-approximation
algorithm for proper interval graphs [4], a subclass of interval graphs where no
interval is allowed to contain another one.

Contributions. We significantly improve upon the known approximation
results by presenting a PTAS for finding a densest k-subgraph in interval graphs.
It is worth mentioning here that this is the first PTAS for an import graph class
without any further restrictions, since so far only PTASs for dense graphs with
k = Ω(n) [2] and a quite restricted subclass of chordal graphs [15] are known.
We conjecture that finding a densest k-subgraph in interval graphs is NP-hard,
but proving this (or giving a polynomial time algorithm instead) remains a
challenging open problem [17].

Technique and outline. If k is constant, then we can easily find a densest k-
subgraph in polynomial time by simply enumerating all

(
n
k

)
= O(nk) subgraphs

of size k. Hence, the difficulty of the problem stems from the fact that k is part of
the input. Now, let V be the vertices of the input interval graph, and let V ∗ ⊆ V
with |V ∗| = k be a subset of vertices that induce a densest k-subgraph. Consider
some clique C ⊆ V , and let C∗ = C ∩V ∗ be the subclique of C contained in V ∗.
Assume then that we already know the vertices V ∗\C, and hence we only need
to pick some k − |V ∗\C| vertices from C that maximize the number of induced
edges in combination with V ∗\C. Clearly, C∗ will solve this simplified problem.
However, we might need to enumerate

( |C|
|C∗|

)
subcliques of C in order to find C∗

(or another subclique of similar quality), which is not possible in polynomial time
if |C∗| is not constant. Therefore, we show in Section 4 that, by losing an (1− ε)-
factor in the number of induced edges for an arbitrary small ε > 0, it suffices
to only consider a polynomial number of subcliques (Lemma 4). To extend this
search space restriction to the whole interval graph, we first need to introduce the
notion of a sequence representation in Section 3 which allows us to decompose
any densest k-subgraph into a sequence of cliques. Finally, we present a backward
dynamic program in Section 5 that finds a densest k-subgraph in this restricted



PTAS for Densest k-Subgraph in Interval Graphs 633

search space in polynomial time. The principle of reducing the search space in
order to make it treatable by dynamic programming in polynomial time has
been succesfully applied during the last decades [11,1] to obtain approximation
schemes. However, finding the right reduction and dynamic program is a highly
problem-specific challenge.

2 Preliminaries

Let G = (V, E) be an interval graph, i.e., each vertex in V corresponds to an
interval, and two vertices are connected via an edge in E if their corresponding
intervals overlap. Hence, the we can also think of the vertices in V as intervals.
For an interval subset V ′ ⊆ V , let E(V ′) denote the number of edges of the
subgraph of G induced by V ′, i.e., the number of overlaps between intervals in V ′.
Hence, our goal is to find an interval set V ∗ ⊆ V of size k that maximizes E(V ∗).
We also refer to such a subset as a densest k-interval subset. Let OPT := E(V ∗)
denote this maximal number of overlaps. Finally, for two disjoint interval sets
V ′, V ′′ ⊆ V , let E(V ′, V ′′) denote the number of edges of the bipartite subgraph
of G induced by these two interval sets, i.e., the number of overlaps between
intervals in V ′ and intervals in V ′′. Observe that a clique C ⊆ V is a set of
intervals with ∩I∈CI �= ∅.

Let lI ∈ R and rI ∈ R denote the left and right endpoint of an interval I ∈ V ,
respectively, and assume that all endpoints of intervals are distinct, which can
be easily ensured without changing the overlap structure. This also ensures that
all intervals are distinct. We write I1 < I2 for two intervals I1, I2 ∈ V if rI1 < lI2 .
In this case, we also say that the pair I1, I2 is consecutive. Analogously, we call
a sequence of intervals I1, I2, . . . , Is ∈ V with I1 < I2 < . . . < Is a consecutive
interval sequence. Finally, for an interval I ∈ V , let VI ⊆ V be the set of all
intervals I ′ ∈ V with I ⊆ I ′.

Lemma 1. For any densest k-interval subset V ∗ ⊆ V , we may assume for each
interval I ∈ V ∗ that VI ⊆ V ∗.

Proof. Assume for contradiction that there is an interval I ∈ V ∗ and another
interval I ′ ∈ VI\V ∗. In this case, since I ⊂ I ′, we could replace interval I by
interval I′ without modifying the size of V ∗ and without decreasing E(V ∗).
Therefore, iterating this scheme terminates and gives us a densest k-interval
subset V ∗ that satisfies the property from the claim. 	


3 Sequence Representations

For a consecutive interval pair I1, I2 ∈ V , let CI1I2 denote the clique of all
intervals I ∈ V with lI1 < lI < rI1 and rI1 < rI < rI2 . Moreover, let C ′

I1I2
denote the clique of all intervals I ∈ V with rI1 < lI < rI2 and rI2 ≤ rI . Note
that I2 ∈ C′

I1I2
. We illustrate the cliques CI1I2 and C ′

I1I2
in Figure 1.



634 T. Nonner

I1 I2lI1 rI1 lI2 rI2

⊆ CI1 I2

⊆ CI1 I2

∈ CI1 I2

Fig. 1. Example intervals in the cliques CI1I2 and C′
I1I2

To avoid case distinctions, we add a dummy interval I∞ to V with I < I∞
for any other interval I ∈ V \{I∞}. Our goal is then to find a densest (k + 1)-
interval subset V ∗ ⊆ V with I∞ ∈ V ∗. Since I∞ does not overlap with any other
interval in V , this slightly modified problem is equivalent to our original problem
of simply finding a densest k-interval subset. Specifically, removing I∞ from a
solution V ′ ⊆ V for this modified problem yields a solution for our original
problem with the same number of interval overlaps E(V ′). Hence, OPT denotes
the maximal number of interval overlaps in both cases.

We say that an interval subset V ′ ⊆ V admits a sequence representation if
there is a consecutive interval sequence I1, I2, . . . , Is and a sequence of cliques
Q1, Q2, . . . , Qs−1 with Qi ⊆ CIiIi+1 for each 1 ≤ i < s such that V ′ = ∪si=1VIi ∪
∪s−1
i=1 Qi. In words, for each interval I ∈ V ′, we either have that there is an

index 1 ≤ i ≤ s with Ii ⊆ I, or there is an index 1 ≤ i < s with I ∈ Qi.
We schematically depict the overlap structure of the cliques Q1, Q2, . . . , Qs−1

in Figure 2. If I∞ ∈ V ′, note that it must then hold for any such sequence
representation that Is = I∞.

I1 I2 IsI3

. . .

Q1

Q2

Q3 Qs−1

. . .

. . .

Fig. 2. Overlap structure of the cliques Q1, Q2, . . . , Qs−1

The following lemma says that we only have to consider interval subsets that
admit a sequence representation.

Lemma 2. We may assume that any densest (k + 1)-interval subset V ∗ ⊆ V
with I∞ ∈ V ∗ admits a sequence representation.

Proof. Given a densest (k + 1)-interval subset V ∗ ⊆ V with I∞ ∈ V ∗, we in-
ductively construct the claimed sequence representation. During each iteration,
we want to conserve the invariant that the currently constructed interval se-
quence I1, I2, . . . , Ii and cliques Q1, Q2, . . . , Qi−1 are a sequence representation
of {I ∈ V ∗ | lI ≤ lIi}. Since we extend this interval sequence by one interval



PTAS for Densest k-Subgraph in Interval Graphs 635

in each iteration, this already gives that we end up with the claimed sequence
representation I1, I2, . . . , Is and Q1, Q2, . . . , Qs−1 of V ∗. Note that we obtain
that finally Is = I∞.

To start this inductive construction, let I1 ∈ V ∗ be the interval with leftmost
left endpoint lI1 subject to the constraint that there is no interval I ∈ V ∗ with
I ⊂ I1. Recall that we know from Lemma 1 that we may assume that VI1 ⊆ V ∗.
Hence, to see that the invariant described above holds, we only have to show
that also {I ∈ V ∗ | lI < lI1} ⊆ VI1 . Recall here the assumption that all left
endpoints of intervals are distinct, and thus I = I1 if lI = lI1 . Now, assume for
contradiction that there is an interval I ∈ V ∗ with lI < lI1 and I �∈ VI1 . Hence,
we obtain that rI < rI1 . Let then I ′ ∈ V ∗ be an interval with the properties that
I ′ ⊆ I and there is no interval I ′′ ∈ V ∗ with I ′′ ⊂ I ′. If lI′ > lI1 , then I ′ ⊂ I1,
which contradicts the selection of I1. On the other hand, if lI′ < lI1 , then I1

is not an interval with leftmost left endpoint, which contradicts the selection
of I1 as well. This shows that the invariant holds after the first iteration. Now
assume that, for some i ≥ 1, we have a sequence representation I1, I2, . . . , Ii
and Q1, Q2, . . . , Qi−1 of {I ∈ V ∗ | lI ≤ lIi}. If Ii = I∞, then we are done.
Otherwise, let Ii+1 ∈ V ∗ be the interval with leftmost left endpoint lIi+1 subject
to the constraints that Ii < Ii+1 and there is no interval I ∈ V ∗ with I ⊂ Ii+1.
Moreover, define Qi := V ∗∩CIiIi+1 . Using nearly the same arguments as for the
first iteration shows that the invariant is conserved during each iteration. 	


4 Simple Sequence Representations

Consider some fixed but arbitrary small ε > 0, and assume that 1/ε is integral
and 2/ε + 2 ≥ 4. Moreover, let C ⊆ V be some clique, and let I ′

1, I
′
2, . . . , I

′
u with

rI′1 > rI′2 > . . . > rI′u be an ordering of the intervals in C according to their right
endpoints. Recall here the assumption that all interval endpoints are distinct.
We will show how the following inputs define a subclique Q ⊆ C:

(1) an integer v with 2 ≤ v ≤ 2/ε + 2,
(2) an integer sequence j1, j2, . . . , jv with j1 = 1 < j2 < . . . < jv = u + 1,
(3) an integer sequence h1, h2, . . . , hv−1 with 0 ≤ ht ≤ jt+1− jt for each 1 ≤ t <

v.

We define Q as follows: for each 1 ≤ t < v, Q contains exactly the ht intervals in
{I ′jt , I

′
jt+1, . . . , I

′
jt+1−1} with leftmost left endpoints. Thus, any such combination

of inputs defines a subclique Q ⊆ C. Let then Pε(C) be the set of all subcliques
constructed in this way for all possible such inputs. Since |C| = u ≤ n, we
immediately obtain the polynomial bound |Pε(C)| ≤ (2/ε + 1) · n2/ε · n2/ε+1.

Example. Consider the clique C of intervals I ′1, I ′2, . . . , I ′7 depicted in Figure 3
which are ordered according to their right endpoints. Then, for the inputs v = 4,
j1 = 1 < j2 = 4 < j3 = 7 < j4 = 8, h1 = h2 = 2, and h3 = 0, we add the set
Q = {I ′1, I ′3, I ′5, I ′6} to Pε(C), which are the intervals with solid lines in Figure 3.
To see this, note that I ′

1 and I ′3 are the h1 intervals in {I ′1, I ′2, I ′3} with leftmost
left endpoints, and I ′5 and I ′

6 are the h2 intervals in {I ′
4, I

′
5, I

′
6} with leftmost left

endpoints. Since h3 = 0, Q does not contain the single interval in {I ′7}.



636 T. Nonner

I1
I2

I3
I4

I5
I6

I7

Fig. 3. Example construction of a clique Q ∈ Pε(C)

Let V ′ ⊆ V be an interval subset with a sequence representation I1, I2, . . . , Is
and Q1, Q2, . . . , Qs−1. We then say that V ′ admits a simple sequence represen-
tation if additionally Qi ∈ Pε(CIiIi+1) for each 1 ≤ i < s. The following lemma
is critical for the correctness of the PTAS, since it allows us to trade the size of
the search space for accuracy.

Lemma 3. There is an interval subset V ′ ⊆ V with |V ′| = k + 1, I∞ ∈ V ′, and
E(V ′) ≥ (1 − 8ε)OPT that admits a simple sequence representation.

To prove Lemma 3, we need one preliminary lemma.

Lemma 4. Consider an interval subset V ′ ⊆ V with a sequence representation
I1, I2, . . . , Is and Q1, Q2, . . . , Qs−1. Then, for any 1 ≤ i < s, there exists a clique
Q ∈ Pε(CIiIi+1) with |Q| = |Qi| such that replacing the clique Qi by Q decreases
E(V ′) by at most ε|Qi||Q′

i|, where Q′
i := V ′∩C ′

IiIi+1
. Moreover, if |Qi| = 1, then

E(V ′) does not decrease at all.

Proof. We abbreviate C = CIiIi+1 and C′ = C′
IiIi+1

throughout this proof, and
let I ′1, I

′
2, . . . , I

′
u with rI′1 > rI′2 > . . . > rI′u be an ordering of the intervals in

C according to their right endpoints. First, consider the case that |Qi| = 1. In
this case, there is one input that defines a set Q ∈ Pε(C) with exactly Q = Qi.
Specifically, if Qi = {I ′t} for t < u, then we use the input j1 = 1 < j2 = t < j3 =
t + 1 < j4 = u + 1, h1 = h3 = 0, and h2 = 1. On the other hand, if Qi = {I ′u},
then we use the input j1 = 1 < j2 = u < j3 = u + 1, h1 = 0, and h2 = 1. This
proves the second part of the claim. Hence, we may assume that |Qi| > 1 in
what follows.

To define the set Q ∈ Pε(C) for the first part of the claim, we have to define
the respective inputs of Q used during the construction of Pε(C). To this end,
for each 1 ≤ j ≤ u, let bj := E({I ′j}, Q′

i) denote the number of intervals in
Q′
i which overlap with I ′j . Consequently, since the intervals I ′1, I

′
2, . . . I

′
u ∈ C

are ordered according to their right endpoints and all intervals in Q′
i ⊆ C′ are

right of these intervals as schematically depicted in Figure 1, we obtain that
|Q′

i| ≥ b1 ≥ b2 ≥ . . . ≥ bu. Using this, we now inductively construct a sequence
j1, j2, . . . , jv with j1 = 1 < j2 < . . . < jv = u + 1 as follows:



PTAS for Densest k-Subgraph in Interval Graphs 637

Since j1 = 1, the start of this inductive construction is well-defined. Now
assume that we have already defined some integers j1, j2, . . . , jt. Then, if bjt −
bjt+1 > ε|Q′

i|, set jt+1 := jt + 1. Otherwise, let jt+1 > jt be the maximal index
such that still bjt − bjt+1 ≤ ε|Q′

i|. If this index is the last index u, then set
jt+1 := u + 1 instead, and terminate this inductive construction. This gives the
integer sequence j1, j2, . . . , jv.

Observe that it holds for any 1 ≤ t ≤ v − 2 that bjt − bjt+2 > ε|Q′
i|. Conse-

quently, since b1 ≤ |Q′
i|, we obtain that v ≤ 2/ε+2. Moreover, for each 1 ≤ t < v,

we either have that jt+1 = jt + 1 or bjt − bjt+1 ≤ ε|Q′
i|.

Example. Assume that C is the clique from Figure 3, and moreover assume
that ε|Q′

i| = 5, b1 = 10, b2 = 8, b3 = 6, b4 = 6, b5 = 0, b6 = 0, and b7 = 0. In any
case, we have j1 = 1. Consequently, it holds that j2 = 4 is the maximal index
such that still bj1 − bj2 = 4 ≤ ε|Q′

i|. Next, since bj2 − bj2+1 = 6 > ε|Q′
i|, we set

j3 := j2 + 1. Finally, j4 = 7 is the maximal index such that still bj3 − bj4 = 0 <
ε|Q′

i|. However, since this is the last index, we set j4 := 8 instead.
Finally, for each 1 ≤ t < v, define Ct := {I ′jt , I ′jt+1, . . . , I

′
jt+1−1}, and let ht :=

|Qi∩Ct|. Hence,
∑v−1
t=1 ht = |Qi|. The sequences j1, j2, . . . , jv and h1, h2, . . . , hv−1

are the inputs required to define the claimed set Q ∈ Pε(C). Because of the
definition of the sequence h1, h2, . . . , hv−1, we immediately obtain |Q| = |Qi|.
For each 1 ≤ t < v, observe that the construction of Q implies that Q ∩ Ct
contains the ht intervals in Ct with leftmost left endpoints.

We still have to show that the interval set Q constructed above has the claimed
property. First, since |Q| = |Qi|, we have E(Q) = E(Qi) = E(V ′∩C). Therefore,
to bound the decrease of E(V ′) due to replacing Qi by Q, we only need to show
that E(Q, V ′\C) ≥ E(Qi, V

′\C)−ε|Qi||Q′
i|. To this end, we partition V ′\C into

four pairwise disjoint parts:

V < := {I ∈ V ′\C | rI < rIi},
V = := {I ∈ V ′\C | lI < rIi ≤ rI},
V > := {I ∈ V ′\C | rIi < lI < rIi+1},
V � := {I ∈ V ′\C | lI > rIi+1}.

Since these sets are pairwise disjoint, we may consider them separately:

Case V <: Consider some index 1 ≤ t < v, and recall that Q∩Ct contains the
ht intervals in Ct with leftmost left endpoints. On the other hand, Qi∩Ct also
contains ht from Ct, but these are not necessarily the ones with leftmost left
endpoints. Consequently, since V < are the intervals left of rIi and it holds
for any interval I ∈ Ct that rIi ∈ I, this shows that E(Q ∩ Ct, V

<) ≥
E(Qi ∩ Ct, V

<). Combining this for all indices 1 ≤ t < v finally gives that
E(Q, V <) ≥ E(Qi, V

<).
Case V =: Since |Q| = |Qi| and rIi ∈ I for each interval I ∈ C, we have that
E(Q, V =) = E(Qi, V

=).



638 T. Nonner

Case V �: Since no interval V � overlaps with an interval in C, we trivially
obtain E(Q, V �) = 0 = E(Qi, V

�). Therefore, combining this case with
the last two cases, we see that the next case is the only case where E(V ′)
might decrease.
Case V >: Since the consecutive interval pair Ii, Ii+1 is part of a sequence
representation of V ′, there is no interval I ∈ V ′ with rIi < lI < rIi+1 and
rI < rIi+1 . Therefore, we obtain that V > = Q′

i := V ′ ∩ C ′. Hence, we
only need to upper bound E(Qi, Q

′
i)−E(Q, Q′

i) =
∑v−1

t=1 at, where, for each
1 ≤ t < v, we define at := E(Qi ∩ Ct, Q

′
i) − E(Q ∩ Ct, Q

′
i). Now note that,

for each 1 ≤ t < v, each interval in Ct overlaps with at least bjt+1 and at
most bjt intervals in Q′

i. On the other hand, the sets Qi∩Ct and Q∩Ct both
contain exactly ht intervals. Combining this, we find that at ≤ ht(bjt−bjt+1),
where we define bjv := 0. Therefore, we obtain that

v−1∑

t=1

at =
∑

t:jt+1>jt+1

at ≤
∑

t:jt+1>jt+1

ht(bjt − bjt+1)

≤ ε|Q′
i|

∑

t:jt+1>jt+1

ht ≤ ε|Q′
i||Qi|.

The equality in the first line is due to the fact that if jt+1 = jt + 1, then
trivially Qi∩Ct = Q∩Ct, since |Ct| = 1, and consequently at = 0. Moreover,
the first inequality in the second line is due to the earlier observation that
either jt+1 = jt + 1 or bjt − bjt+1 ≤ ε|Q′

i|. Hence, by combining all these
arguments, we conclude that E(Q, V >) ≥ E(Qi, V

>)− ε|Qi||Q′
i|.

Combining all four cases proves the claim. 	


Proof (Lemma 3). Consider a densest (k + 1)-interval subset V ∗ ⊆ V with
I∞ ∈ V ∗ and E(V ∗) = OPT. We know from Lemma 2 that we may assume
that V ∗ admits a sequence representation I1, I2, . . . , Is and Q1, Q2, . . . , Qs−1.
Moreover, Lemma 4 implies that, for each 1 ≤ i < s, we can replace Qi by a clique
Q ∈ Pε(CIiIi+1) with |Q| = |Qi| such that E(V ∗) decreases by at most ε|Qi||Q′

i|,
and if |Qi| = 1, then E(V ∗) does not decrease at all. Iterating these replacements
yields the claimed interval subset V ′. We will argue in the following paragraph
that these replacements can indeed be done iteratively without amplifying these
decreases.

Assume that, for some 1 ≤ i < s, we have already replaced Qt for each t > i as
described above. However, we obtain that the only such replacement that might
affect the next replacement of Qi by some clique Q ∈ Pε(CIiIi+1) is the one
with t = i + 1. Therefore, consider the clique Q′ ∈ Pε(CIi+1Ii+2) that replaced
Qi+1. Because we always select intervals with leftmost left endpoints during the
construction of Q′ and |Qi+1| = |Q′|, we can identify each interval I ∈ Qi+1 with
an interval I ′ ∈ Q′ with lI′ ≤ lI . Hence, since Q ⊆ CIiIi+1 is left of CIi+1Ii+2 ,
we even have that E(Q, Q′) ≥ E(Q, Qi+1). Consequently, replacing Qi by Q will
still decrease E(V ∗) by at most ε|Qi||Q′

i|, even if we replace Qi+1 by Q′ first.



PTAS for Densest k-Subgraph in Interval Graphs 639

To bound the total decrease of E(V ∗), observe that

E(V ∗)− E(V ′) ≤
∑

i:|Qi|>1

ε|Qi||Q′
i|

≤ ε

(
s−1∑

i=1

2|Qi|(|Qi| − 1) +
s−1∑

i=1

2|Q′
i|(|Q′

i| − 1)

)

= ε

(
s−1∑

i=1

4E(Qi) +
s−1∑

i=1

4E(Q′
i)

)

≤ ε8E(V ∗)

which completes the proof of the lemma. The first line is due to Lemma 4 and
the arguments above. The second line is due to the simple observation that
ab ≤ 2(a(a−1)+b(b−1)) for any pair of integers a > 1 and b ≥ 1. Moreover, the
third line uses the fact that E(C) =

(|C|
2

)
= |C|(|C|−1)/2 for any clique C ⊆ V .

Finally, the fourth line is due to the fact that the cliques Q1, Q2, . . . , Qs−1 ⊆ V ∗

are pairwise disjoint, and hence
∑s−1
i=1 E(Qi) ≤ E(V ∗). The same holds for the

cliques Q′
1, Q

′
2, . . . , Q

′
s−1 ⊆ V ∗. 	


5 Dynamic Programming

We have a dynamic programming array Π with integral entries of the form
Π(h, s, Is−1, Is, Qs−1), where h is an integer with 0 ≤ h ≤ k + 1, s is an in-
teger with 2 ≤ s ≤ n, Is−1, Is ∈ V are two consecutive intervals, and Qs−1 ∈
Pε(CIs−1Is ). The indexing of Is−1, Is, and Qs−1 with s is just for convenience.
Our goal is to fill this array such that Π(h, s, Is−1, Is, Qs−1) = E(V ′) for an
interval subset V ′ ⊆ V with |V ′| = h that maximizes E(V ′) subject to the
constraint that V ′ admits a simple sequence representation I1, I2, . . . , Is and
Q1, Q2, . . . , Qs−1. Hence, only the last parts in this sequence representation are
defined by the entry. We can bound the size of Π by n4 ·maxIs−1<Is |Pε(CIs−1Is)|.
The second part of this product is simply the maximal size of Pε(CIs−1Is ) for
any consecutive interval pair Is−1, Is. Consequently, since we already know that
Pε(CIs−1Is ) has polynomial size for any such interval pair Is−1, Is ∈ V , we im-
mediately obtain that the array Π has polynomial size as well.

We initialize Π by filling all entries of the form Π(h, 2, I1, I2, Q1) with |Q1 ∪
VI1 ∪VI2 | = h. Specifically, for any integer h with 0 ≤ h ≤ k+1, any consecutive
interval pair I1, I2 ∈ V , and any interval set Q1 ∈ Pε(I1, I2) with |Q1∪VI1∪VI2 | =
h, we set Π(h, 2, I1, I2, Q1) := E(Q1 ∪ VI1 ∪ VI2). All other entries of Π are
initialized as −∞.

To define a recurrence relation, assume that we have already filled all entries
of the form Π(h, s− 1, Is−2, Is−1, Qs−2), and now we want to use them to fill all
entries of the form Π(h, s, Is−1, Is, Qs−1), i.e., we want to increase the sequence
length s by one. To this end, we can use the following recurrence relation:



640 T. Nonner

Π(h, s, Is−1, Is, Qs−1) =

max
Is−2<Is−1,Qs−2∈Pε(CIs−2Is−1)

{

Π(h− |Qs−1| − |VIs\VIs−1 |, s− 1, Is−2, Is−1, Qs−2)

+E(Qs−2 ∪ VIs−1 , Qs−1 ∪ VIs\VIs−1) + E(Qs−1 ∪ VIs\VIs−1)
}

In words, we take the maximum over all intervals Is−2 ∈ V with Is−2 < Is−1 and
all cliques Qs−2 ∈ Pε(CIs−2Is−1). Since Pε(CIs−1Is) has polynomial size as already
used above, this recurrence relation can be clearly implemented in polynomial
time. Hence, in combination with the size of Π listed above, we find that it takes
polynomial time to fill Π .

To see the correctness of this recurrence relation, consider an interval sub-
set V ′ ⊆ V that realizes an entry of the form Π(h, s, Is−1, Is, Qs−1), and let
I1, I2, . . . , Is and Q1, Q2, . . . , Qs−1 be a simple sequence representation of V ′.
Let then V ′′ ⊆ V ′ be the subset with the shorter simple sequence representation
I1, I2, . . . , Is−1 and Q1, Q2, . . . , Qs−2. Hence, we have that V ′′ = V ′\(Qs−1 ∪
VIs\VIs−1). Now observe that, as schematically illustrated in Figure 4, the only
intervals in V ′′ which might overlap with an interval in V ′\V ′′ = Qs−1∪VIs\VIs−1

are the ones in Qs−2∪VIs−1 . Consequently, we obtain the decomposition E(V ′) =
E(V ′′) + E(Qs−2 ∪ VIs−1 , Qs−1 ∪ VIs\VIs−1) + E(Qs−1 ∪ VIs\VIs−1) as used in
the recurrence relation. Thus, since V ′ minimizes E(V ′), we have that also V ′′

minimizes E(V ′′), since we could otherwise improve V ′ by replacing the inter-
vals V ′′ by another interval subset. This shows that E(V ′′) realizes the entry
Π(h−|Qs−1|− |VIs\VIs−1 |, s−1, Is−2, Is−1, Qs−2). Combining these facts shows
the correctness of the recurrence relation.

Is−2 Is−1 Is

Qs−2

Qs−1

VIs−1

VIs\VIs−1

Fig. 4. Overlap structure during a recurrence relation

Theorem 1. There is a PTAS for finding a densest k-subgraph in interval
graphs.

Proof. Use the dynamic programming approach explained above to compute
all entries Π(h, s, Is−1, Is, Qs−1) with h = k + 1 and Is = I∞, and let V ′ be
the interval set that realizes an optimal such entry, i.e., one that maximizes
E(V ′) = Π(h, s, Is−1, Is, Qs−1). By the definition of Π , we obtain that V ′ is a



PTAS for Densest k-Subgraph in Interval Graphs 641

densest (k + 1)-interval subset with I∞ ∈ V ′ subject to the constraint that V ′

admits a simple sequence representation. Consequently, by Lemma 3, we find
that E(V ′\{I∞}) = E(V ′) ≥ (1− 8ε)OPT. This proves the claim. 	


References

1. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman
and other geometric problems. Journal of the ACM 45(5), 753–782 (1998)

2. Arora, S., Karger, D.R., Karpinski, M.: Polynomial time approximation schemes for
dense instances of np-hard problems. J. Comput. Syst. Sci. 58(1), 193–210 (1999)

3. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily finding a dense sub-
graph. J. Algorithms 34(2), 203–221 (2000)

4. Backer, J., Keil, J.M.: Constant factor approximation algorithms for the densest
k-subgraph problem on proper interval graphs and bipartite permutation graphs.
Inf. Process. Lett. 110(16), 635–638 (2010)

5. Bhaskara, A., Charikar, M., Chlamtac, E., Feige, U., Vijayaraghavan, A.: Detecting
high log-densities: an O(n1/4)-approximation for densest k-subgraph. In: Proceed-
ings of the 42nd ACM Symposium on Theory of Computing (STOC 2010), pp.
201–210 (2010)

6. Chen, D.Z., Fleischer, R., Li, J.: Densest k-subgraph approximation on intersection
graphs. In: Jansen, K., Solis-Oba, R. (eds.) WAOA 2010. LNCS, vol. 6534, pp. 83–
93. Springer, Heidelberg (2011)

7. Feige, U., Langberg, M.: Approximation algorithms for maximization problems
arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

8. Feige, U., Peleg, D., Kortsarz, G.: The dense k-subgraph problem. Algorith-
mica 29(3), 410–421 (2001)

9. Golumbic, M.C., Trenk, A.N.: Tolerance Graphs. Cambridge University Press,
Cambridge (2004)

10. Gröschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial
Optimization. Springer, Heidelberg (1988)

11. Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. Journal of the ACM 22 (1975)

12. Khot, S.: Ruling out ptas for graph min-bisection, dense k-subgraph, and bipartite
clique. SIAM J. Comput. 36(4), 1025–1071 (2006)

13. Kortsarz, G., Peleg, D.: On choosing a dense subgraph. In: Proceedings of the
34th Annual Symposium on Foundations of Computer Science (FOCS 1993), pp.
692–701 (1993)

14. Lawler, E.L.: Combinatorial optimization - networks and matroids. Holt, Rinehart
and Winston, New York (1976)

15. Liazi, M., Milis, I., Pascual, F., Zissimopoulos, V.: The densest k-subgraph problem
on clique graphs. J. Comb. Optim. 14(4), 465–474 (2007)

16. Liazi, M., Milis, I., Zissimopoulos, V.: A constant approximation algorithm for the
densest k-subgraph problem on chordal graphs. Inf. Process. Lett. 108(1), 29–32
(2008)

17. Perl, Y., Corneil, D.G.: Clustering and domination in perfect graphs. Discrete
Applied Mathematics 9(1), 27–39 (1984)



Improved Distance Queries in Planar Graphs

Yahav Nussbaum�

The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
yahav.nussbaum@cs.tau.ac.il

Abstract. There are several known data structures that answers dis-
tance queries between two arbitrary vertices in a planar graph. The
tradeoff is among preprocessing time, storage space and query time. In
this paper we present three data structures that answer such queries,
each with its own advantage over previous data structures. The first one
improves the query time of data structures of linear space. The second
improves the preprocessing time of data structures with a space bound
of O(n4/3) or higher while matching the best known query time. The
third data structure improves the query time for a similar range of space
bounds, at the expense of a longer preprocessing time. The techniques
that we use include modifying the parameters of planar graph decompo-
sitions, combining the different advantages of existing data structures,
and using the Monge property for finding minimum elements of matrices.

1 Introduction

There are several known data structures that answer distance queries in planar
graphs. We survey them below. All of these data structures use the following
basic idea. They split the graph into pieces, where each piece is connected to the
rest of the graph only through its boundary vertices. Then, every path can go from
one piece to another only through these boundary vertices. The different data
structures find different efficient ways to store or compute the distance between
two boundary vertices or between a boundary vertex and a non-boundary vertex.

Frederickson [10] gave the first data structures that answers distance queries
in planar graphs fast. He gave a data structure of linear size and O(n log n)
preprocessing time that finds the shortest path tree rooted at any vertex in O(n)
time, where n is the number of vertices in the graph. This leads also to an O(n2)
time algorithm to compute all-pairs shortest-paths in a planar graph, and implies
a distance query data structure of size O(n2) with O(1) query time. Feuerstein
and Marchetti-Spaccamela [9] modified the data structure of [10] and showed how
to decrease the time of a distance query by increasing the preprocessing time.
They do not provide an analysis of their data structure in terms of preprocessing
time, storage space, and query time, but they show the total running time of k
queries, which is O(nk + n log n), O(n4/3k1/3), O(n5/3), O(n

√
k) for k ≤ √n,√

n ≤ k ≤ n, n ≤ k ≤ n4/3, n4/3 ≤ k ≤ n2, respectively. This solution actually
� Research was partially supported by the United States - Israel Binational Science

Foundation grant no. 2006204 and the Israel Science Foundation grant no. 822/10.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 642–653, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Improved Distance Queries in Planar Graphs 643

consists of three different data structures for the three cases k ≤ √n,
√

n < k ≤ n
and n < k, where the data structure for the first case is the one of [10].

Henzinger, Klein, Rao and Subramanian [11] gave an O(n) time algorithm
for the single-source shortest path problem. This implies a trivial distance query
data structure, which uses the algorithm, and takes O(n) space and query time.

Djidjev [6] gave three data structures. We will use the specific section number
in [6] – §3, §4, or §5, to refer to each one of them. The first one [6, (§3)] works for
S ∈ [n3/2, n2] and has size O(S), O(S) preprocessing time, and O(n2/S) query
time. The same data structure was also presented by Arikati et al. [3]. This data
structure is similar to the two data structures of [9], but takes advantage of the
algorithm of [11] to get a better preprocessing time. The second [6, (§4)] works
for S ∈ [n, n3/2] and has size O(S), O(n

√
S) preprocessing time, and O(n2/S)

query time. The third data structure [6, (§5)] works for S ∈ [n4/3, n2], has size
O(S), O(n

√
S) preprocessing time, and O(n log(n/

√
S)/
√

S) query time. Chen
and Xu [5] presented a data structure with the same time and space bounds.1

Fakcharoenphol and Rao [8] gave a data structure with O(n log n) space,
O(n log3 n) preprocessing time and O(

√
n log2 n) query time. Klein [13] improved

the preprocessing time of this data structure to O(n log2 n).
Cabello [4] presented a data structure of O(S) space and construction time for

S ∈ [n4/3 log1/3 n, n2], and O(n log3/2(n)/
√

S) query time. This data structure
answers k queries in a total of O(n4/3 log1/3 n+k2/3n2/3 log n) time. If the queries
are known in advance, the algorithm of [4] avoids storing the entire structure,
and uses only O(n + k) space.

In this paper we present three new data structures for the problem:

– Section 3: A data structure with O(n) space, O(n log n) preprocessing time,
and O(n1/2+ε) query time, for any constant ε > 0. This data structure has
the best known query time achievable with linear space. This also improves
the total running time for answering k distance queries when k is O(n1/2−ε)
and ω(log n), and if we limit ourselves to data structures with O(n + k)
space then the upper bound on the range of k grows to O(n5/6−ε). The data
structure is based on the data structure of [8], by combing the recursive
decomposition of [8] with r-decomposition as in [10]. As the data structure
of [8], our data structure also generalizes to graphs embedded in a surface
of bounded genus.

– Section 4: For S ∈ [n4/3, n2], a data structure with O(S) space, O(S log n)
preprocessing time, and O(n log(n/

√
S)/
√

S) query time. This data struc-
ture matches the query time of [5,6, (§5)], which is the best previously
known for this range of storage space, with a better preprocessing time for
S = o(n2/ log2 n). We obtain this data structure by combining a preprocess-
ing algorithm similar to [4] with a data structure similar to [6, (§5)].

1 Djidjev [6, (§5)] presents his result for S ∈ [n4/3, n3/2] with O(n log(n)/
√

S) query
time, however the same data structure works within the bounds stated here. Chen
and Xu [5] do not bound the time and space of the data structure in terms of S,
the bounds here are derived by setting r = n2/S in the bounds that appear below
Lemma 28 (page 477) of [5].



644 Y. Nussbaum

Table 1. Comparison of distance query data structures for planar graphs. Time bounds
are expressed as a function of the storage space. The data structures are ordered by
decreasing storage space and then by decreasing query time.

Reference Storage space O(S) Query time Preprocessing time

[10,11] S = n2 O(1) O(n2)

[3,6, (§3)] S ∈ [n3/2, n2] O(n2/S) O(S)

[4] S ∈ [n4/3 log1/3 n, n2] O(n log3/2(n)/
√

S) O(S)

[5,6, (§5)] S ∈ [n4/3, n2] O(n log(n/
√

S)/
√

S) O(n
√

S)

Section 4 S ∈ [n4/3, n2] O(n log(n/
√

S)/
√

S) O(S log n)

Section 5 S ∈ [n4/3, n2] O(n/
√

S) O((S3/2/
√

n) log2 n)

[6, (§4)] S ∈ [n, n3/2] O(n2/S) O(n
√

S)
[8]+[13] S = n log n O(

√
n log2 n) O(n log2 n)

[10] S = n O(n) O(n log n)
[11] S = n O(n) —

Section 3 S = n O(n1/2+ε) O(n log n)

– Section 5: For S ∈ [n4/3, n2], a data structure with O(S) space, requir-
ing O((S3/2/

√
n) log2 n) preprocessing time, and O(n/

√
S) query time. This

data structure improves the query time for the same range of storage space
as the previous structure, but with a longer preprocessing time. We obtain
the fast query time with an efficient minimum search in a Monge matrix.

The different data structures are summarized in Table 1.

2 Preliminaries

We consider a directed simple planar graph G. We let n = |V (G)|, and by Euler’s
formula |E(G)| = O(n). We assume that G is given with a fixed planar embed-
ding, in other words it is a plane graph. Without loss of generality we assume
that G is a triangulated, bounded degree graph; this assumption is required by
algorithms that we use and are described in Sect. 2.1 and 2.2. We assume that
G is connected, as we can handle each connected component separately.

Every edge in E(G) has a non-negative length. The length of a path is the
sum of lengths of its edges. The distance from a vertex u to a vertex v is the
minimum length of a path from u to v. With additional O(n log2 n/ log log n)
preprocessing time we can allow negative edge lengths as well, using a reduced
length technique, see [8,14,18] for details.

Let F, H be subgraphs of G. We write dH(u, v) to denote the distance from
u to v in H. The graph F ∩ H is the subgraph induced by E(F ) ∩ E(H). For
short we denote |H| = |V (H)|.

2.1 Decomposition

A decomposition of a planar graph G is a set of subgraphs of G, such that each
edge is in exactly one subgraph and each vertex of G is in at least one subgraph.
Each of the subgraphs which define the decomposition is called a piece.



Improved Distance Queries in Planar Graphs 645

A vertex v ∈ V (B) is a boundary vertex of the piece B, if it is incident to
some edge not in E(B), and it is an internal vertex otherwise. The set of all
boundary vertices of B is the boundary of B, denoted by ∂B. A hole is a face of
B (including the external face) that is not a face of G. For a hole H we denote
by H also the subgraph of G inside H. A boundary walk of B is a facial walk of
B around a hole H. For a piece B with hole H we denote ∂B[H ] = ∂B ∩ V (H).

All distance query data structures mentioned in the introduction decompose
the planar graph. They take advantage of the fact that a path can go from one
piece to another only through boundary vertices.

A recursive decomposition [8] is obtained by starting with G itself being the
only piece in level 0 of the decomposition. At each level, we split each piece B
with |B| vertices and |∂B| boundary vertices that has more than one edge into
two pieces, each with at most 2|B|/3 vertices and at most 2|∂B|/3 + O(

√
|B|)

boundary vertices. We require that the boundary vertices of a piece B are also
boundary vertices of the subpieces of B. A property of this decomposition is
that each piece B has O(

√
|B|) boundary vertices.

An r-decomposition [10] is a decomposition of the graph into O(n/r) pieces,
each of size at most r with O(

√
r) boundary vertices.

Fakcharoenphol and Rao [8] showed how to find a recursive decomposition of
G, such that each piece is connected and has at most a constant number of holes.
They use these two properties for their distance algorithm. The construction of
the decomposition takes O(n log n) time using O(n log n) space, and is done
by recursively applying the separator algorithm of Miller [16]. Frederickson [10]
showed how to find an r-decomposition in O(n log n) time and O(n) space by
recursively applying the separator algorithm of Lipton and Tarjan [15]. Thus,
an r-decomposition is a limited type of recursive decomposition where we stop
the recursion earlier (when we get to pieces of size r), and do not store all the
levels of the recursion (we store only the leaves). Cabello [4] combined the two
constructions of [8] and [10] (using [16] instead of [15]) and constructed an r-
decomposition with the properties that the number of holes per piece is bounded
by a constant, and that each piece is connected.

In Sect. 3 we use a combination of recursive decomposition and r-decomposi-
tion – we decompose the graph recursively, but we decompose each piece into
O(n/r) pieces instead of two. In Sect. 4 we use r-decomposition. In Sect. 5
we use r-decomposition as well, there we take advantage of the fact that the
construction of an r-decomposition is the same as of a recursive decomposition,
which was stopped earlier.

2.2 The Dense Distance Graph

Fakcharoenphol and Rao [8] define the dense distance graph of a recursive de-
composition. For each piece B in the recursive decomposition they add a piece to
the dense distance graph that contains the vertices of ∂B and for every u, v ∈ ∂B
an edge from u to v of length dB(u, v). The multiple-source shortest paths algo-
rithm of Klein [13] finds k distances where the sources of all of them are on the
same face in O((k + n) log n) time. Therefore, using [13] it takes O(|B| log |B|)



646 Y. Nussbaum

time to find the part of the dense distance graph that corresponds to a piece
B (recall that |∂B| = O(

√
|B|) and B has a constant number of holes). It thus

takes O(n log2 n) time to construct the dense distance graph over all pieces of
the recursive decomposition.

Every single edge defines a piece in the base of the recursive decomposition, so
it is clear that the distance from u to v in the dense distance graph is the same
as the distance between these two vertices in the original graph. Fakcharoenphol
and Rao noticed that in order to find the distance from u to v we do not have
to search the entire dense distance graph, but that it suffices to consider only
edges that correspond to shortest paths between boundary vertices in a limited
number of pieces. The pieces are these containing either u or v, and their siblings
in the recursive decomposition. There are O(log n) such pieces with a total of
O(
√

n) boundary vertices. Fakcharoenphol and Rao gave an implementation of
Dijkstra’s algorithm that runs over a subgraph of the dense distance graph with
q vertices, defined by a subset of the pieces in the recursive decomposition, in
O(q log2 n) time. This gives the O(

√
n log2 n) query time of their data structure.

We use dense distance graphs in two of our data structures (Sect. 3 and 5).
In both cases it is on a variant of recursive decomposition, as discussed above.

2.3 The Monge Property

A p×q matrix M satisfies the Monge property if for every two rows i ≤ k and two
columns j ≤ �, M satisfies Mij + Mk� ≤Mi� + Mkj . We can find the minimum
element of M using the SMAWK algorithm [1]. If we do not store M explicitly,
but are able to retrieve each entry in O(1) time this takes O(p + q) time. Note
that if we add a constant to an entire row or to an entire column of a matrix
with the Monge property, then the property remains.

Consider two disjoint sets X and Y of consecutive boundary vertices on a
boundary walk of some piece B. Rank the vertices of X from x1 to x|X| according
to their order around the boundary walk, and rank the vertices of Y from y1 to
y|Y | according to their order in the opposite direction around the boundary walk.
For i ≤ k and j ≤ �, the shortest path from xi to y� inside B and the shortest
path from xk to yj inside B must cross each other. Let w be a vertex common to
both paths. Then, dB(xi, yj)+dB(xk, y�) ≤ dB(xi, w)+ dB(w, yj)+ dB(xk, w)+
dB(w, y�) ≤ dB(xi, y�) + dB(xk, yj) (see Fig. 1). Therefore, the matrix M such
that Mij = dB(xi, yj) has the Monge property. The Monge property was first
used explicitly for distance queries in planar graphs by [8].

A partial matrix is a matrix that may have some blank entries. In a falling
staircase matrix the non-blank entries are consecutive in each row starting not
before the first non-blank entry of the previous row and ending at the end of
the row, inverse falling staircase matrix is defined similarly by exchanging the
positions of the non-blanks and the blanks (see Fig. 2). Aggarwal and Klawe [2]
presented a technique that allows us to find the minimum of an (inverse) falling
staircase matrix whose non-blank entries satisfy the Monge property in O(q +p)
time by filling the blanks with appropriate values and using the SMAWK [1]
algorithm.



Improved Distance Queries in Planar Graphs 647

X Y

xi

xk

yj

y�
w

Fig. 1. The distances from X to Y sat-
isfy the Monge property

⎡

⎢
⎣

1 2 3 4
5 6 7

8 9
0

⎤

⎥
⎦

⎡

⎢
⎣

1
2 3
4 5 6
7 8 9 0

⎤

⎥
⎦

Fig. 2. A falling staircase matrix (left)
and an inverse falling staircase matrix
(right)

In Sect. 5 we use this tool for finding the minimum of two staircase matrices
whose non-blank entries satisfy the Monge property.

3 Linear-Space Data Structure

In this section we present a data structure with linear space, almost linear pre-
processing time, and query time faster than any previous data structure of lin-
ear space. We generalize the data structure of Fakcharoenphol and Rao [8] by
combining a recursive decomposition of the graph with r-decomposition. This
is similar to the way that Mozes and Wulff-Nilsen [18] improved the shortest
path algorithm of Klein, Mozes and Weimann [14]. Mozes and Sommer [17] have
independently obtained a similar result.

We find an r-decomposition of G into p = O(n/r) pieces, for some p ∈ [2, n],
and then we recursively decompose each piece into p subpieces, until we get to
pieces with a single edge. The depth of the decomposition is O(log n/ log p) where
at level i we have pi pieces, each of size O(n/pi) and with O(

√
n/pi) boundary

vertices. Constructing this recursive decomposition takes O(n log n log n
log p

) time.
An alternative way to describe this decomposition is to perform a recursive
decomposition on G while storing only levels k log p for k = 0, . . . , �log n/ log p�
of the recursion tree and the leaves of the recursion (the pieces containing single
edges).

We compute the dense distance graph for the recursive decomposition, in the
same way as in the data structure of [8]. That is, we compute the distance be-
tween every pair of boundary vertices in each piece. Using the algorithm of Klein
[13] this takes O(n log n) time for each level, and a total of O(n log n log n

log p
) time.

The size of dense distance graph over our recursive decomposition is O(n log n
log p ).

When a distance query from u to v arrives, we use the Dijkstra implementation
of [8] to answer it. We run the algorithm on the subgraph of the dense distance
graph that includes all the pieces that contain either u or v, and the p−1 siblings
in the recursive decomposition of each such piece. We require the sibling pieces
because the shortest path can get out of a piece B into a sibling of B without
getting out of any piece that contains B. Therefore, the number of boundary
vertices involved in each distance query is O(

∑log n/ log p
i=1 p

√
n/pi) = O(p

√
n).

Hence the query time using the algorithm of [8] is O(p
√

n log2 n).
We conclude that for a planar graph with n vertices and any p ∈ [2, n], we

can construct in O(n log2 n/ log p) time a data structure of size O(n log n/ log p)



648 Y. Nussbaum

that computes the distance between any two vertices in O(p
√

n log2 n) time. If
we set p = 2 we get exactly the data structure of [8]. If we set p = nδ for a
constant 0 < δ < ε we get:

Theorem 1. For a planar graph with n vertices and any constant ε > 0, we
can construct in O(n log n) time a data structure of size O(n) that computes the
distance between any two vertices in O(n1/2+ε) time.

The total time for k distance queries is O(n log n + kn1/2+ε) and the required
space is O(n + k). This improves the fastest time for k distance queries for
k = O(n1/2−ε), or k = O(n5/6−ε) if we consider only data structures of O(n+k)
space, and k = ω(log n) simultaneously.

Fakcharoenphol and Rao [8] noted that Smith suggested that their algorithm
can be generalized to graphs of bounded genus. If a graph G with bounded
vertex degree is embedded in an orientable surface of genus g, then [7,12] showed
how to find a planarizing set of O(

√
ng) edges whose removal from the graph

makes the graph planar, in O(n + g) time. We use the planarizing set for the
first decomposition of the graph, and combine the Dijkstra implementation of
[8] with standard implementation using a heap for the topmost pieces in the
recursion. We get that the bounds of Theorem 1 apply also to graphs embedded
in an orientable surface of a fixed genus.

4 Improved Preprocessing Time for S ∈ [n4/3, n2]

In this section we present a data structure that matches the space-query time
tradeoff of the data structures of Djidjev [6, (§5)] and Chen and Xu [5] with
the preprocessing time of the data structure of Cabello [4]. Our data structure
combines parts from the data structures of [6, (§5)] and of [4].

First, we construct an r-decomposition of G in O(n log n) time, for some
parameter r ∈ (0, n). For each piece B our data structure has three parts:

(i) The distances dG(u, v) and dG(v, u) for every u ∈ ∂B and v ∈ V (B).
(ii) A data structure that reports dB(u, v) in O(

√
r) time for u, v ∈ V (B).

(iii) For each hole H of B we store dH(u, v) for every u ∈ ∂B[H] and v ∈ V (H)
such that v is a boundary vertex of some piece contained in H.

Part (i) is from the data structure of Cabello [4]. The construction of this
part requires O(n log n+ r3/2) time and O(n+ r3/2) space per piece [4]. Part (ii)
was used both by Djidjev [6, (§5)] and by Cabello [4]. This is the data structure
of [3,6, (§3)] with S = r3/2, its construction takes O(r3/2) time and space per
piece. Part (iii) is from the data structure of [6, (§5)], but we construct it more
efficiently. We find the distances for this part using the multiple-source shortest
paths algorithm of Klein [13] for every boundary walk. The required space per
piece for part (iii) is O(n) and the preprocessing time is O(n log n).

Since there are O(n/r) pieces, each with a constant number of holes and
O(
√

r) boundary vertices, constructing the three parts for the entire graph takes
a total of O((n2/r) log n + n

√
r) time and O(n2/r + n

√
r) space.



Improved Distance Queries in Planar Graphs 649

Let u, v be a query pair. We use the data structure of this section to find
dG(u, v) in O(

√
r log r) time. If u and v are in the same piece then we find the

distance from u to v using parts (i) and (ii) of the data structure with the query
algorithm of [4] in O(

√
r) time (see details in Sect. 5.2 below). If u and v are in

different pieces then we find the distance using parts (i) and (iii) with the query
algorithm of [6, (§5)] in O(

√
r log r) time.

We conclude that for a planar graph with n vertices and any r ∈ (0, n), we can
construct in O((n2/r) log n + n

√
r) time a data structure of size O(n2/r + n

√
r)

that computes the distance between any two vertices in O(
√

r log r) time. The
sum n2/r + n

√
r minimizes at n4/3, and for r = n2/S we get:

Theorem 2. For a planar graph with n vertices and S ∈ [n4/3, n2], we can
construct in O(S log n) time a data structure of size O(S) that computes the
distance between any two vertices in O(n log(n/

√
S)/
√

S) time.

5 Improved Query Time for S ∈ [n4/3, n2]

In this section we present a data structure with an improved query time, for
the same range of space bounds as in the previous section. In return, the pre-
processing time is higher. For this purpose we use minimum search in Monge
matrices. While previous planar distance data structures have taken advantage
of the Monge property before, this is the first to use fast minimum search in a
Monge matrix with the SMAWK algorithm [1].

Again, we construct an r-decomposition of G. Assume that we want to find
the distance from a vertex u to a vertex v that are in two different pieces. Let B
and B′ be the different pieces that contain u and v respectively, let H and H ′ be
the holes of B and B′ that contain v and u respectively, and let X = ∂B[H] and
Y = ∂B′[H ′]. Let J = H ∩H ′ be the subgraph of G contained both in H and
in H ′. We assume without lost of generality that J contains the infinite face.

The shortest path from u to v must contain a vertex x ∈ X and a vertex
y ∈ Y (it is possible that x = y). We assume that there is no internal vertex of
B or B′ between x and y in this path, since otherwise we can replace x with a
later vertex. Therefore, dG(u, v) = minx∈X,y∈Y {dG(u, x) + dJ (x, y) + dG(y, v)}.

Our goal then is to find x, y that minimize dG(u, x) + dJ(x, y) + dG(y, v). For
a particular order of X and of Y , which we specify below, let M be the matrix
such that Mij = dJ (xi, yj), and N be the matrix such that Nij = dG(u, xi) +
dJ(xi, yj)+dG(yj , v). We show how to order the members of X and Y such that
M decomposes into two staircase matrices, each with the Monge property. Since
dG(u, xi) is fixed for a fixed xi, and dG(yj , v) is fixed for a fixed yj , then N also
consists of two staircase matrices with the Monge property. Thus we can use the
algorithm of Aggarwal and Klawe [2] to find the minimum entry of N , which is
the desired distance.

For every x ∈ X we define the leftmost shortest path from x to Y , denoted by
L(x) as follows. We add to the embedding of J a vertex u′ inside B and connect
it with an edge to x, and a vertex v′ inside B′ and connect with an edge every
vertex of Y to v′ (recall the internal vertices of B and B′ are not in J). We set



650 Y. Nussbaum

the length of all new edges to be 0. An edge e = (w, z) ∈ E(J) is called tight if
the length of e is equal to dJ(u′, z)− dJ (u′, w), that is if e is on some shortest
path from u′ to z. We remove all non-tight edges from the graph, and perform
a left-first search from u′ until we find v′ (i.e. we perform a depth-first search
from u′, and visit the edges outgoing from a specific vertex according to their
left-to-right order, see also [13]). Let L(x) be the path we obtain by removing
the first and the last edges of the leftmost path we found from u′ to v′, and let
�(x) ∈ Y be the last vertex of L(x). Note that L(x) is a shortest path from x
to �(x). The reason we added u′ is to decide between two paths that diverge at
x itself, the reason we added v′ is to decide between two paths such that one is
a prefix of the other. Note that L(x) may contain more than one vertex of Y .
Moreover, even if x ∈ X ∩ Y it is not necessarily true that �(x) = x.

Fix some arbitrary vertex of X to be x1 and rank the other vertices of X in a
clockwise order. Let y|Y | = �(x1), and rank the vertices of Y in a counterclockwise
order. Let P = L(x1). Since P is the leftmost shortest path from x1 to Y , we
get the following lemma:

Lemma 1. Let xi ∈ X and yj ∈ Y . There is a shortest path Q in J from xi to
yj such that either Q does not cross P , or every prefix of Q crosses P from the
left side of P to its right side at most once more than it crosses P from its right
side to its left side.

Proof. Assume that every shortest path from xi to yj in J crosses P , and let
Q be such a path. The first time that Q emanates from P it emanates from its
right side, since otherwise there is a shortest path from x1 to yj ending with a
suffix of Q to the left of P . We may assume that if Q meets P at a vertex w,
and then again at a vertex w′ such that w′ follows w also in P , then the subpath
of Q between w and w′ is the same subpath as in P . From this assumption we
get that in two consecutive times that Q crosses P , it does so from different
directions, since otherwise Q must cross itself. From this the lemma follows. �	

Let M ′ be the partial matrix of M where M ′
ij is non-blank if there is a shortest

path in J from xi to yj that does not cross P , and let M ′′ be the partial matrix
of M where M ′′

ij is non-blank if every shortest path from xi to yj crosses P .
The partial matrix M ′ has the Monge property, we get this by cutting open J

along P and using the claim from Sect. 2.3 (see xi, xk in Fig. 3). Using Lemma 1,
a similar argument (by taking two copies of J open at P and “gluing” the right
side of one of them to the left side of the other) shows that M ′′ also has the
Monge property (see x′

i, x
′
k in Fig. 3).

The entire first row of M is in M ′, the non-blank entries of row i > 1 in M ′

are from �(xi) to y|Y | = �(x1), and the rest of the row is in M ′′. The partial
matrix M ′ is a falling staircase matrix and M ′′ is an inverse falling staircase
matrix, since L(xi+1), the leftmost path from xi+1 to Y , cannot cross the path
L(xi) from its right side to its left. Let N ′ and N ′′ be the corresponding staircase
matrices partial to N (with same blank entries as M ′ and M ′′ respectively), both
of them have the Monge property.



Improved Distance Queries in Planar Graphs 651

P
x1

xi yj

y|Y |

X

Y

xk y�

x′i

x′k

Fig. 3. If a shortest path from X to Y does not cross the path P (solid lines), or always
cross P (dashed lines), then M has the Monge property (cf. Fig. 1)

In order use the insights above, we take parts (i) and (ii) of the data structure
of the previous section together with the following two new parts, where X, Y
and J are as defined above (part (iii) is not necessary):

(iv) For each two pieces B and B′ we store dJ (x, y) for every x ∈ X , y ∈ Y .
(v) For each two pieces B and B′, and every x ∈ X , we store �(x).

Notice that dJ (x, y) and �(x) depend on the specific pieces B and B′. There
are O(n/r) pieces, each piece has O(

√
r) boundary vertices, so the total space

required for the two new parts is O(n2/r). This does not increase the total space
complexity of the data structure which remains O(n2/r + n

√
r).

5.1 The Preprocessing Algorithm

We have an r-decomposition of G obtained by a recursive decomposition, where
we decomposed each piece into two pieces and stopped the recursion at pieces of
size O(r), from which we took only the pieces that correspond to leaves of the re-
cursion tree. Now we will take all the pieces of the entire recursive decomposition
which defined the r-decomposition. We build a dense distance graph for G based
on this recursive decomposition using the algorithm of Fakcharoenphol and Rao
[8] with the improvement of Klein [13] in O(n log2 n) time and O(n log n) space.

For two fixed pieces B and B′ we use a subgraph of the dense distance graph
to compute the distances from vertices of X to vertices of Y in J . We should
choose carefully a set S of pieces of the recursive decomposition to use, we must
obey three rules – we cannot take any piece of the O(log n) pieces that contain
either B or B′, we should cover all the paths from X to Y , and the total number
of boundary vertices of pieces in S should not be too large.

We start with the entire graph G, the root of the recursive decomposition,
as the single piece in S. As long as there is a piece C in S containing either B
or B′ in it (an ancestor of B or B′ in the recursion tree), we replace C with
both of its children in the recursion tree. When we get to B or B′, we remove
them from S. At the end of this process, S contains O(log n) pieces with O(

√
n)

boundary vertices. Every vertex of X or Y is a boundary vertex of some piece in
S (otherwise such a vertex will be an internal vertex of some member of S which
is an ancestor of B or B′), and the paths in J among these vertices are covered



652 Y. Nussbaum

by S (since S only misses internal vertices of B and B′), as required. Denote the
subgraph of the dense distance graph that includes exactly the pieces of S by D.

For x ∈ X , we compute part (iv), by computing dJ(x, y) for every y ∈ Y
using the Dijkstra implementation of [8] on D in O(

√
n log2 n) time.

We use the distances of vertices of D from x to find �(x) for part (v) as well.
We add to D a vertex u′ inside B and connect it to x, and a vertex v′ inside
B′ and connect every vertex of Y to it, as described before. Since the edge from
u′ to x has length 0, for every vertex z in D, dJ (u′, z) = dJ (x, z), so we can
determine for each edge of D whether it is tight in constant time. Even though
D is not planar, we can define a cyclic order on the edges incident to each vertex
using the embedding of G. The order of edges incident to a specific vertex of D
is defined by the order of the shortest paths in G that they represent. We can
compute this order in a total time of O(n log3 n) when we construct the dense
distance graph of G, we skip the details of this procedure. Then, we ignore all
non-tight edges in D and find �(x) by finding the leftmost path from u′ to v′.
This takes time proportional to the number of vertices in D, which is O(

√
n).

We perform the computation of parts (iv) and (v) for every B and B′, and
x ∈ X . For every x this computation takes O(

√
n log2 n) time, and we repeat

it O(n2/r3/2) times. The total time required for constructing the data structure
is O((n5/2/r3/2) log2 n + n

√
r) (note that the term n log3 n is dominated by

this bound). We note that it is also possible to perform the computation in
O((n3/r2) log n) time using the algorithm of Klein [13] for every pair of pieces,
however this does not improve the time bound for our range of r.

5.2 The Query Algorithm

Let u, v be a query pair. We use the data structure of this section to find dG(u, v)
in O(

√
r) time. Again, let B, B′ be the pieces that contain u, v respectively.

If B = B′ then we can answer the query in O(
√

r) time in same way as in
the previous data structure, which uses the query algorithm of [4]. Either the
shortest path from u to v is inside B or the shortest path contains some vertex
b ∈ ∂B. In other words, dG(u, v) = min{dB(u, v),minb∈∂B{dG(u, b)+dG(b, v)}}.
We retrieve the distance dB(u, v) from part (ii) of the data structure in O(

√
r)

time. For each b ∈ ∂B we retrieve dG(u, b)+ dG(b, v) from part (i) in O(1) time.
Since |∂B| = O(

√
r), it takes O(

√
r) time to go over all vertices of ∂B and

find b ∈ ∂B that minimizes dG(u, b) + dG(b, v). Then, dG(u, v) is the minimum
between dB(u, v) and dG(u, b) + dG(b, v).

For the case where u and v are in different pieces, let X and Y be as before. Fix
x1 to be an arbitrary vertex of X and let y|Y | = �(x1). Let the matrices N , N ′,
N ′′ be as before. We compute an entry Nij = dG(u, xi)+dJ(xi, yj)+dG(yj , v) in
O(1) time using parts (i) and (iv) of the data structure. We determine whether
an entry of N is in N ′ or in N ′′ in O(1) time using part (v). Therefore, we can
use the SMAWK algorithm [1] as in [2] to find the minimum value in N in O(

√
r)

time. This value is the requested distance.
We conclude that for a planar graph with n vertices and any r ∈ (0, n),

we can construct in O((n5/2/r3/2) log2 n + n
√

r) time a data structure of size



Improved Distance Queries in Planar Graphs 653

O(n2/r + n
√

r) that computes the distance between any two vertices in O(
√

r)
time. As in Sect. 4, by setting r = n2/S we get:

Theorem 3. For a planar graph with n vertices and S ∈ [n4/3, n2], we can con-
struct in O((S3/2/

√
n) log2 n) time a data structure of size O(S) that computes

the distance between any two vertices in O(n/
√

S) time.

References

1. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications
of a matrix-searching algorithms. Algorithmica 2, 195–208 (1987)

2. Aggarwal, A., Klawe, M.: Applications of generalized matrix searching to geometric
algorithms. Discrete Appl. Math. 27, 3–23 (1990)

3. Arikati, S.R., Chen, D.Z., Chew, L.P., Das, G., Smid, M.H., Zaroliagis, C.D.: Planar
spanners and approximate shortest path queries among obstacles in the plane. In:
Dı́az, J., Serna, M.J. (eds.) ESA 1996. LNCS, vol. 1136, pp. 514–528. Springer,
Heidelberg (1996)

4. Cabello, S.: Many distances in planar graphs. Algorithmica (to appear)
5. Chen, D.Z., Xu, J.: Shortest path queries in planar graphs. In: STOC 2000, pp.

469–478. ACM, New York (2000)
6. Djidjev, H.N.: Efficient algorithms for shortest path queries in planar digraphs. In:

d’Amore, F., Franciosa, P.G., Marchetti-Spaccamela, A. (eds.) WG 1996. LNCS,
vol. 1197, pp. 151–165. Springer, Heidelberg (1997)

7. Djidjev, H.N., Venkatesan, S.M.: Planarization of graphs embedded on surfaces. In:
Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 62–72. Springer, Heidelberg (1995)

8. Fakcharoenphol, J., Rao, S.: Planar graphs, negative weight edges, shortest paths,
and near linear time. J. Comput. Syst. Sci. 72, 868–889 (2006)

9. Feuerstein, E., Marchetti-Spaccamela, A.: Dynamic algorithms for shortest paths
in planar graphs. Theor. Comput. Sci. 116, 359–371 (1993)

10. Frederickson, G.N.: Fast algorithms for shortest paths in planar graphs, with ap-
plications. SIAM J. Comput. 16, 1004–1022 (1987)

11. Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algo-
rithms for planar graphs. J. Comput. Syst. Sci. 55, 3–23 (1997)

12. Hutchinson, J.P., Miller, G.L.: Deleting vertices to make graphs of positive genus
planar. In: Discrete Algorithms and Complexity Theory, pp. 81–98. Academic
Press, Boston (1986)

13. Klein, P.N.: Multiple-source shortest paths in planar graphs. In: SODA 2005, pp.
145–155. SIAM, Philadelphia (2005)

14. Klein, P.N., Mozes, S., Weimann, O.: Shortest paths in directed planar graphs
with negative lengths: A linear-space O(n log2 n)-time algorithm. ACM Trans. Al-
gorithms 6, 1–18 (2010)

15. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. on
Appl. Math. 36, 177–189 (1979)

16. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs.
J. Comput. Syst. Sci. 32, 265–279 (1986)

17. Mozes, S., Sommer, C.: Exact Distance Oracles for Planar Graphs,
arXiv:1011.5549v2 (2010)

18. Mozes, S., Wulff-Nilsen, C.: Shortest paths in planar graphs with real lengths in
O(n log2 n/ log log n) time. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS,
vol. 6347, pp. 206–217. Springer, Heidelberg (2010)



Piercing Quasi-Rectangles: On a Problem of Danzer and
Rogers

János Pach1,� and Gábor Tardos2,��

1 EPFL, Lausanne and Rényi Institute, Budapest
pach@cims.nyu.edu

2 Department of Computer Science, Simon Fraser University,
Burnaby and Rényi Institute, Budapest

tardos@cs.sfu.edu

Abstract. It is an old problem of Danzer and Rogers to decide whether it is
possible arrange O( 1

ε
) points in the unit square so that every rectangle of area ε

contains at least one of them. We show that the answer to this question is in the
negative if we slightly relax the notion of rectangles, as follows. Let δ be a fixed
small positive number. A quasi-rectangle is a region swept out by a continuously
moving segment s, with no rotation, so that throughout the motion the angle
between the trajectory of the center of s and its normal vector remains at most δ.
We show that the smallest number of points needed to pierce all quasi-rectangles
of area ε is Θ

(
1
ε

log 1
ε

)
.

� Supported by NSF Grant CCF-08-30272, by OTKA, and by Swiss National Science Founda-
tion Grant 200021-125287/1.

�� Supported by NSERC grant 329527, OTKA grants T-046234, AT-048826, and NK-62321, and
by the Bernoulli Center at EPFL.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, p. 654, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



Faster Algorithms for Minimum-Link Paths with

Restricted Orientations

Valentin Polishchuk and Mikko Sysikaski

Helsinki Institute for Information Technology,
Department of Computer Science, University of Helsinki

firstname.lastname@cs.helsinki.fi

Abstract. We give an O(n2 log2 n)-time algorithm for computing a mini-
mum-link rectilinear path in an n-vertex rectilinear domain in three di-
mensions; the fastest previously known algorithm of [Wagner, Drysdale
and Stein, 2009] has running time O(n2.5 log n). We also present an al-
gorithm to find a minimum-link C-oriented path in a C-oriented domain
in the plane; our algorithm is simpler and more time-space efficient than
the earlier one of [Adegeest, Overmars and Snoeyink, 1994].

1 Introduction

Computing minimum-link rectilinear paths amidst rectilinear obstacles in the
plane is one of the oldest and best studied problems in computational geometry
[2, 3, 12, 13, 14, 15, 16, 19, 22, 25, 26, 27]. For a domain with n vertices, an
optimal, O(n log n)-time linear-space algorithm was presented at WADS 1991 by
Das and Narasimhan [2]. A similar algorithm was claimed in the lesser known
work of Sato, Sakanaka and Ohtsuki [22].

1.1 3D Rectilinear Paths

In three dimensions, the problem is somewhat farther from being solved. De Berg
et al. [4] give an O(nd log n)-time algorithm to find shortest path in combined
metric (a linear combination of length and number of links) amidst axis-parallel
boxes in R

d. An O(n3)-time algorithm for minimum-link rectilinear path in a
3D rectilinear domain is implied by results of Mikami and Tabuchi [17]. Fitch,
Butler and Rus [6] presented an algorithm for the 3D case with good practical
performance; in many cases, their algorithm runs in O(n2 log n) time. Still, the
worst-case running time of the algorithm in [6] is cubic.

The fastest current solution for the minimum-link rectilinear path problem
in R

3 is due to Wagner, Drysdale and Stein [23]. Their algorithm, based on
searching binary space partition (BSP) of the domain, runs in O(n2.5 log n) time
and O(n2.5) space.

1.2 C-oriented Paths in the Plane

Another generalization of the 2D rectilinear setting is the C-oriented version
[1, 8, 9, 10, 18, 21, 24] in which orientations of path edges and the domain

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 655–666, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



656 V. Polishchuk and M. Sysikaski

sides come from a fixed set C of directions. (Abusing the notation, we use C
to denote also the cardinality of the set C.) Minimum-link C-oriented paths in
the plane were studied by Adegeest, Overmars and Snoyeink [1]. Two algorithms
are presented in [1]: one running in O(C2n log n) time and space, the other—in
O(C2n log2 n) time and O(C2n) space.

1.3 Contributions

We revisit the two generalizations of the 2D minimum-link rectilinear path prob-
lem, giving more efficient algorithms for both versions. Specifically,

– In Section 2 we give an O(n2 log2 n)-time O(n2)-space algorithm for the 3D
minimum-link rectilinear path problem.

– In Section 3 we present an O(C2n logn)-time O(Cn)-space algorithm to find
a minimum-link C-oriented path in a C-oriented domain in the plane.

Similarly to the earlier works, our algorithms actually build shortest path maps
– data structures to answer efficiently link distance queries to a fixed source (in
the case of rectilinear paths in 3D, constructing the map with our algorithm
requires O(n2 log2 n) space – slightly more than just finding one shortest path).

2 Rectilinear Paths Amidst Rectilinear Obstacles in R
3

Let P be an n-vertex rectilinear domain in 3D, and let s, t ∈ P be given points;
the goal is to find a minimum-link rectilinear s-t path in P . We follow the “staged
illumination” paradigm [7, Sections 26.4, 27.3], dominant in the minimum-link
literature: on first step illuminate (and label with link distance 1) the set reach-
able with a single link from s, on second step illuminate and label with 2 what
is reachable with two links, and so on, until t is lit.

At any step k, the illumination is done by sweeping a plane in each of the
six directions ±x,±y,±z. We will describe the sweep of a horizontal plane in
+z (vertical) direction; the other sweeps are analogous. The goal of the sweep is
two-fold: (1) to discover (and label with k) the volume illuminated when shining
light upwards from the volume lit at step k − 1, and (2) to generate events for
(all six) sweeps on step k + 1.

As in [23], we assume that obstacle faces are decomposed into rectangles; we
call them obstacle rectangles. The sweep is guided by a decomposition of the free
space into axis-aligned boxes (cells), with each cell storing links to the neighbor
boxes and the obstacle rectangles touching the box.

The status of the sweep plane is the subset of the plane that gets illuminated
if light is shone upwards from the points that were illuminated at step k − 1;
the status is maintained as a set of rectangles in a 2D segment tree. With each
rectangle R we store a variable zR which is the smallest z-coordinate of the
origin of an upward-shining light ray that hits R; in other words, if one moves
down from a point r ∈ R, then zR is the height below which there is no point
that was illuminated at step k − 1 and can see r.



Faster Algorithms for Minimum-Link Paths with Restricted Orientations 657

The event queue contains events of three types:

– CellEvent occurs when the sweep plane reaches the upper boundary of a
cell. Processing the event involves the following operations: (1) each upper
neighbor of the cell is inserted, as a CellEvent, into the event queue; (2) each
obstacle rectangle (if any) touching the cell from above is inserted, as an
ObstacleEvent, into the event queue; (3) the cell is inserted as a CellEvent
into the event queues for the sweeps in the other directions at the next step,
k +1; (4) if the cell is not labeled (i.e., has not been illuminated before), the
cell is labeled with k.

– ObstacleEvent occurs when the sweep plane reaches an obstacle rectangle
Ro; let zo be the time (height) of the event. For each rectangle R from the
status, intersected by Ro, let [xmin

R , xmax
R ] × [ymin

R , ymax
R ] be the intersection

R ∩Ro. We generate an AddRectangleEvent into the event queue for the +x
sweep at step k + 1: the generated rectangle is [ymin

R , ymax
R ]× [zR, zo] and the

time of the event is xmax
R . Analogous rectangles are inserted to other sweeps.

Ro is removed from the sweep plane status.
– AddRectangleEvent, on which a rectangle is added to the segment tree.

This sweep-label-generate strategy is a common one. Clearly, the running time
of the algorithm employing the strategy, depends heavily on the number of cells
in the decomposition (all cells must be labeled, after all): using the O(n1.5)-size
BSP [5, 11, 20] instead of the O(n3) “full grid” allowed [23] to bring the time
complexity from cubic down to O(n2.5 log n). Following this direction, one might
improve the running time by using a yet smaller-size decomposition; we, however
were not able to do this. Instead, we resort to a seemingly worse, quadratic-size
decomposition. We compensate the increase in the number of cells by a bet-
ter (albeit still quadratic) bound on the number of neighbor relations between
the cells; the number enters the algorithm’s running time via the need to per-
form Operation (1) in CellEvents. While [23] spend O(n2.5) time determining the
neighbor relations, we get them for free. Any quadratic-size decomposition with
quadratic number of cell-to-cell pointers works for us; one simple decomposition
is obtained by sweeping a horizontal plane in +z direction stopping at every hor-
izontal obstacle rectangle, decomposing the cross-section of P with the stopped
plane into rectangles by extending maximal free horizontal segments through
vertices of the cross-section, and pulling the rectangles up in +z direction until
the height of the next stop of the sweep plane.

The above description is very generic, and many technical details have to be
filled in, both by [23] and by us (below). We remark that also in these details,
our algorithm is different from [23] (our analysis is different from [23] as well).
This is not surprising: shooting for a smaller running time while working with
a larger-complexity decomposition is challenging, and prevents directly reusing
ideas from [23].1

1 For completeness, let us mention that we slightly differ from [23] already in the
generic description of the events: [23] inserts AddRectangleEvents into the other
sweeps when processing CellEvents; because we have too many cells, we cannot do
it, and instead insert AddRectangleEvents when processing ObstacleEvents.



658 V. Polishchuk and M. Sysikaski

In particular, a standard way to avoid reilluminating the same cell at too
many steps is to declare labeled cells as obstacles. We cannot afford this because
updating the sweep plane status at one ObstacleEvent may take as much as
O(n log n) time — and we might declare all our O(n2) cells as obstacles. (Note
that handling ClearRect events—part of the sweep plane status updates—is
the bottleneck in the O(n2.5 log n) algorithm of [23].) So we approach limiting
the number of status updates from the other end: instead of trying to decrease
directly the number of rectangles deleted from the status, we restrict the number
of rectangles that are ever added. See Section 2.1 for the details.

To bound the number of AddRectangleEvents processed by the algorithm, we
would like to have “nice” rectangles; unfortunately, the rectangles generated
as described above are somewhat arbitrary. One nice set of rectangles is as
follows: take the cross-section of P by the horizontal plane supporting an obstacle
rectangle, and decompose the cross-section (which is a 2D rectilinear domain)
into O(n) rectangles by extending maximal free-space segments parallel to x
trough vertices of the domain (this is the standard trapezoidal decomposition
of a 2D rectilinear domain; we use it e.g., in Section 3). To enforce that the
AddRectangleEvents deal only with such nice rectangles, at every ObstacleEvent
we filter out the added rectangles locally, keeping for each sweep direction only
those rectangles that are not “dominated” by larger rectangles going in the same
direction and are not “annihilated” by rectangles going in the opposite direction.
Section 2.2 presents the details.

2.1 Avoiding Reillumination

We only describe how we add xz- and yz-rectangles, generated during the +z
sweep; the other sweeps are identical. Call such rectangles displays.

The purpose of displays is to emit light into dark volumes; thus it makes
sense to keep only those displays that have a potential to shine into previously
unilluminated space. Any cell σ with label k − 3 or less gets fully illuminated
by step k − 1. Hence after step k, everything visible from σ will be illuminated.
Therefore any display R′ that touches only cells with labels k − 3 or less can
be safely discarded (i.e., not added as an AddRectangleEvent): nothing new gets
illuminated by shining light from R′.

To determine whether a given display R′ intersects any “new” cell (cell with
label k−2, k−1 or k) we maintain an auxiliary 2D segment tree storing projection
of the new cells onto the xy plane; the tree is updated on every CellEvent and
ObstacleEvent, and also cleared of old cells when k increases. (Note that directly
testing R′ for intersection with every new cell would be too inefficient because
R′ may in principle intersect Ω(n) cells). The query for R′ reduces then to the
simple test of whether the projection of R′ on the horizontal plane intersects
rectangles stored in the auxiliary tree.

2.2 Filtering

Again, we only describe what we do during the +z sweep when generating dis-
plays (which are the potential AddRectangleEvents for the sweeps in ±x and ±y



Faster Algorithms for Minimum-Link Paths with Restricted Orientations 659

directions). Recall that on an ObstacleEvent we remove an obstacle rectangle Ro

from the sweep plane status 2D segment tree, i.e., we clear all subtrees rooted
at canonical nodes of Ro; to clear a subtree, we visit all canonical nodes of the
rectangles in the subtree, and at every canonical node R generate 4 displays as
specified in the description of the ObstacleEvent.

For our analysis of the number of AddRectangleEvents (Lemma 3) it will be
important that each rectangle in the decomposition of a cross-section of P by
maximal free-space horizontal segments is charged to exactly one display. To
enforce this, we do the following operations after generating the displays, before
moving to the next event in the +z sweep:

– Find all pairs of displays with the same positions but opposite directions
(Fig. 1(a), top). If the z-ranges of the displays are the same, remove both of
them. Otherwise remove the one with smaller z-range, i.e., the one with the
higher zR.

– Merge aligned displays with the same z-range into bigger displays (Fig. 1(a),
bottom).

Figure 1 illustrates the events that are generated initially and the remaining
events after the filtering.

Fig. 1. Filtering the displays during an ObstacleEvent. We generate displays in all 4
directions for every canonical node cleared from the segment tree (Fig. 1(c)). After the
filtering, the displays are maximal in x- and y-directions (Fig. 1(d)).

2.3 Analysis

Let σ be a cell of the decomposition, and let Ro be an obstacle rectangle.

Lemma 1. CellEvents containing σ are generated on at most 9 steps of the
illumination.

Proof. Assume that σ is first discovered on step k. Then no later than on step
k + 2 any point inside σ is illuminated, and on step k + 3 we discover the set S
of all points visible from σ. After step k + 6 we have discovered every point that
might share a common AddRectangleEvent with a point in S so after step k + 8
we can no longer generate AddRectangleEvents that would reach σ. ��



660 V. Polishchuk and M. Sysikaski

Lemma 2. At most 9 ObstacleEvents containing Ro are generated over the
course of the illumination.

Proof. Similarly to Lemma 1, after discovering Ro on step k we discover every
point that can see Ro no later than on step k + 3, so again no sweep can reach
Ro after step k + 8. ��

Lemma 3. The number of AddRectangleEvents is O(n2).

Proof. The boundaries of illuminated area are always aligned with obstacle faces.
Hence any AddRectangleEvent belongs to the supporting plane of some obstacle
face. We will consider only the AddRectangleEvents processed in the +z sweep;
the other directions are identical.

Let Ro be some horizontal obstacle rectangle, and let Ho be the supporting
plane of Ro. We will bound the number of AddRectangleEvents happening in Ho.
We assume that the plane Ho is unique to Ro. That is, even if another obstacle
rectangle R′

o has the supporting plane H ′
o = Ho (because Ro and R′

o belong to
the same obstacle face), we will treat the AddRectangleEvents for Ho and H ′

o

separately. This way we may only overcount the number of AddRectangleEvents.
Let Po be the cross-section of P by Ho. Let Dx be the trapezoidal (in fact,

rectangular) decomposition of Po obtained by extending maximal free-space seg-
ments parallel to x through vertices of Po; define Dy similarly. Consider finding
a minimum-link path in Po from some arbitrary set of maximal (either in x or
in y or both) rectangles lying in Po. The staged illumination from the rectan-
gles proceeds in Po by lighting up rectangles from Dx ∪Dy (this is the classical
process central to the study of 2D minimum-link paths).

Now look at our staged illumination of the 3D domain P , and consider the
“cross-section of the illumination” by Ho; i.e., look at when and how the light
from the 3D illumination intersects Po. The crucial observation is the follow-
ing: after the 3D illumination has reached Ho, the cross-section of the illumi-
nation is exactly the 2D staged illumination in Po. In particular, at most 2
AddRectangleEvents will happen in each rectangle from Dx ∪Dy.

Indeed, the 3D illumination arriving at Ho can be viewed as “piercing” Po

with rectangular “pillars of light”; the cross-section of the pillars by Ho is a set
of rectangles – not necessarily maximal (yet). However, already on the next step,
when the light is shone in x- and y-directions from the rectangles, the lit area
of Po is a set of maximal rectangles, and the illumination from the set proceeds
along Dx ∪Dy.

Thus, the number of AddRectangleEvents happening at Ho is the sum of 2
parts: (1) the total number of rectangles added immediately after the piercing,
and (2) the complexity of Dx, Dy. The events in (1) are defined by those rect-
angles from the xz- and yz- sweep planes segment trees, that are intersected by
Ho: the number of the events is the number of the rectangles in the trees that are
intersected by Ho. But the number of rectangles in a segment tree intersected
by any line is O(n); thus the number of type-(1) events is O(n). The complexity
of Dx, Dy is also linear; hence the total number of AddRectangleEvents on Ho is
linear.



Faster Algorithms for Minimum-Link Paths with Restricted Orientations 661

To finish the proof, recall that Ho is the supporting plane of an obstacle
rectangle; the number of such planes is O(n). ��

Theorem 1. Minimum-link path can be computed in time O(n2 log2 n) using
O(n2) space.

Proof. The time in the algorithm is spent in creating the decomposition, main-
taining event queues and handling events, of which the event handling is the
dominating component. Each CellEvent and AddRectangleEvent is handled in
O(log2 n) time using standard segment tree operations, and the number of such
events is O(n2) by Lemmas 1 and 3. Clearing a rectangle in an ObstacleEvent can
be performed in O(n log n + ρ) time, where ρ is the number of the tree nodes to
remove (and to generate AddRectangleEvents for); the O(ρ)-part can be charged
to the earlier events that created the nodes. Together with Lemma 2 this gives an
O(n2 log n) time bound for handling the ObstacleEvents. Thus in total handling
the events takes O(n2 log2 n) time.

The size of the decomposition as well as the number of events and the size of
a segment tree are all O(n2) so the space used is O(n2). ��

To build the shortest path map we use a persistent version of the segment tree
and store with each cell the snapshots of the sweepline status from the times
when a sweep reached the cell.

3 C-oriented Paths in the Plane

In this section P is a C-oriented n-vertex polygonal domain in the plane, and
we want to build the C-oriented link distance map from a given point s ∈ P .

3.1 Overview

As in [1], we build C trapezoidations of P ; the trapezoids in the trapezoida-
tion c ∈ C are obtained by extending maximal free c-oriented segments through
vertices of P . We label the trapezoids with link distance from s; the labeling
proceeds in n steps, with label-k trapezoids receiving their label at step k. Any
label-k trapezoid must be intersected by a label-(k − 1) trapezoid of a differ-
ent orientation; hence, step k boils down to detecting all unlabeled trapezoids
intersected by label-(k − 1) trapezoids.

Some trapezoids may get labeled only partially during a step k; in the final link
distance map, such trapezoids are split into subtrapezoids. The partial labeling
and splitting are due to the possibility that two different-orientation trapezoids
do not “straddle” each other; instead they both may be “flush” with an obstacle
edge whose orientation is different from the orientations of both trapezoids. Such
flushness can be read off easily from lists of incident trapezoids stored with every
edge of P .

After the partially labeled trapezoids are processed, we are left with discover-
ing unlabeled trapezoids “fully straddled” by trapezoids labeled at the previous



662 V. Polishchuk and M. Sysikaski

step. We clip the latter trapezoids into parallelograms, with the new sides par-
allel to the sweepline, and finish the step with C(C − 1) sweeps—one per pair
of orientations.

The main difference of our algorithm from that of [1] is the separate treatment
of flush and straddling trapezoids. It allows us to use only elementary data
structures and improve the time-space bounds to O(C2n log n) and O(Cn).

3.2 Definitions and Notation

Any trapezoid T will have two opposite edges belonging to the boundary of P ;
these edges are sides of T . The other two edges are T ’s bases ; the bases are
parallel segments whose orientation belongs to C. For an orientation c ∈ C, a
c-segment is a segment with orientation c. A c-trapezoid has c-segments as bases.

A c-path is a path (starting from s) whose last link is a c-segment. A point
p ∈ P is at c-distance k from s if p can be reached by a k-link c-path (but
not faster). The c-distance equivalence decomposition of P (the c-map) is the
partition of P into c-trapezoids such that the c-distance to any point within a
cell is the same. If the c-distance to points in a c-trapezoid of the c-map is k,
then the c-trapezoid has label k. Using the illumination analogy we also say that
the trapezoid is lit at step k; unlit trapezoids are dark. We denote the set of
c-trapezoids lit at step k by Sk

c .
In our algorithm, finding Sk

c is completely identical to (and independent from)
finding Sk

c∗ for any c∗ ∈ C \ c; in what follows we focus on finding Sk
c . Where

it creates no confusion, we omit the subscript c and the prefix c-. E.g., “path
to trapezoid in Sk−1” means “c-path to c-trapezoid in Sk−1

c ”, etc. We let C∗

denote C \ c, and use c∗ for a generic orientation from C∗. Assume w.l.o.g. that
c is horizontal.

Denote by Dk the “at-most-k-links map”, i.e., the trapezoidation whose trape-
zoids are of k + 1 types—dark trapezoids, and trapezoids lit at steps 1 . . . k; in
particular, Dn is the c-map. Let T ′ be a dark trapezoid from Dk−1. The crucial
(albeit obvious) observation about minlink paths is that there exists a k-link
path to a point p ∈ T ′ if and only if there exists a (k − 1)-link c∗-path π∗ to
some point q ∈ T ′ that has the same y-coordinate as p. Restated in our terms,
this means that a dark trapezoid T ′ ∈ Dk−1 gets fully or partially lit at step k
if and only if it is intersected by some trapezoid T ∗ ∈ Sk−1

c∗ lit at step k− 1. We
distinguish between two types of trapezoids intersection (Fig. 2):

Definition 1. T ′, T ∗ are flush if a side of T ′ overlaps with a side of T ∗; we say
that T ′ is (fully or partially) flush-lit by T ∗. T ′, T ∗ straddle each other if both
bases of T ′ intersect both bases of T ∗ (in particular, if a side of T ∗ overlaps with
a base of T ′ or vice versa, then T ′, T ∗ are counted as straddling, not as flush);
we say that T ′ is (fully) straddle-lit by T ∗.

Note that flushness and straddling are the only possible ways for two trapezoids
from Dk−1

c , Dk−1
c∗ to intersect.

With Definition 1, step k of the algorithm can be completed as follows: Find
dark c-trapezoids flush with trapezoids from Sk−1

c∗ , and (fully or partially) light



Faster Algorithms for Minimum-Link Paths with Restricted Orientations 663

T ∗

T ′
aa

T ′
bb

T ∗
2

T ∗
1

T ′
1

T ∗
2

T ∗
1

T ′
1

T ′
2

Fig. 2. Intersection types. Left: T ∗ is flush with the light blue trapezoids. T ′
b will be

split in Dk unless more of it is lit by another trapezoid. Ta will be the pot for the
parallelogram cut out of T ∗ by the c-segment through a. Right: T ∗

1 , T ∗
2 straddle T ′

1.
The parallelogram cut out of T ∗

1 is planted into T ′
1; the pot for the parallelogram cut

out of T ∗
2 is a trapezoid T ′

2 flush with T ∗
2 .

them. After this has been done for all c∗ ∈ C∗, i.e., after all flush trapezoids
are processed, any dark trapezoid will either fully remain dark in Dk or will
be fully straddle-lit (i.e., there will be no more partial lighting and splitting).
To straddle-light c-trapezoids, we clip each c∗-trapezoid T ∗ ∈ Sk−1

c∗ to a (c, c∗)-
parallelogram P ∗, using c-segments going through vertices of T ∗. We then do a
sweep in the direction perpendicular to c. The clipping and sweeping is repeated
for each c∗ ∈ C∗, i.e., overall, to straddle-light the c-trapezoids in Sk

c , we perform
C − 1 sweeps—one per c∗ ∈ C∗.

We proceed to a detailed description of the flush- and straddle-lighting.

3.3 Flush-Lighting

Sides of trapezoids belong to edges of P ; we say that an edge e supports a
trapezoid if one of its sides belongs to e. We maintain the ordered list Lc(e)
of c-trapezoids supported by e. The flush-lighting is done as follows: For every
c∗-trapezoid T ∗ ∈ Sk−1

c∗ and each edge e that supports T ∗, locate the vertices
a, b of T ∗ (lying on e) in the list Lc(e). All (dark) trapezoids lying between a
and b are labeled k. One of the trapezoids T ′

a, T ′
b containing a, b in the interior

of the side is marked to be split, at the end of flush-lighting, by horizontal cut
through a or b—unless more of the trapezoid is flush-lit by another trapezoid.
Refer to Fig. 2, left.

3.4 Straddle-Lighting

Clip each c∗-trapezoid T ∗ ∈ Sk−1
c∗ to the parallelogram P ∗ using horizontal lines

through vertices of T ∗; denote the set of the obtained parallelograms by S�.
Any c-trapezoid straddled by T ∗ is also straddled by P ∗, and thus straddle-
lighting with c∗-trapezoids is equivalent to finding dark trapezoids intersected
by parallelograms from S�. This can be accomplished with a sweep, called



664 V. Polishchuk and M. Sysikaski

(c, c∗)-sweep, which discovers the trapezoids from Sk
c in the order of increasing

y-coordinate of the lower bases, by sweeping upwards a horizontal line. The
sweepline status will be the intersection of the sweepline with the (interiors of)
parallelograms from Sk−1

c∗ ; the status thus is a set of disjoint (open) intervals.
The status changes at parallelogram events when the sweepline reaches horizontal
sides of parallelograms. Because the intervals in the status are disjoint, we can
keep them in any ordered structure, e.g., a balanced binary search tree indexed
by left endpoints of the intervals. Clearly, the tree handles any of the following
three operations in O(log n) time: (1) adding an interval, (2) removing part of an
interval that hits an obstacle edge, and (3) checking whether any of the intervals
overlaps with a given query interval. In the last operation, the query interval is
a trapezoid lower base; we need it for the trapezoid events, described next.

The main events in the sweep are trapezoid events that occur when the
sweepline reaches a lower base of a trapezoid (some of the trapezoid events hap-
pen simultaneously with parallelogram events; in this case parallelogram events
take priority). Suppose that a trapezoid T is the event. We check whether the
lower base of T is intersected by the intervals in the sweepline status. If yes, we
insert T ’s upper neighbors into the event queue. In addition, if T is unlabeled,
we label it with k.

To initialize the sweep, we “plant” each parallelogram into a “pot” trapezoid;
the pots are initially inserted into the event queue. Say that a parallelogram
P ∗ ∈ Sk−1

c∗ is planted into a trapezoid T if the lower side of P ∗ belongs to T ; say
also that T is the pot of P ∗ (Fig. 2). Each parallelogram is planted into exactly
one pot (even though a pot may have many parallelograms planted side-by-side
into it). Now, some c∗-trapezoids from Sk−1

c∗ (such as, e.g., trapezoid T ∗
1 from

Fig. 2, right) have lower bases supported by c-edges of P—the pots for such
parallelograms are read off directly from trapezoidation Dc and the lists Lc∗(e).
The rest of the trapezoids from Sk−1

c∗ (such as, e.g., trapezoid T ∗
2 from Fig. 2,

right, or T ∗ from Fig. 2, left) are flush with trapezoids from Dk−1
c . The pot T ′

for the parallelogram P ∗ cut out from such a trapezoid T ∗ can be determined
from the list Lc(e), where e is the edge supporting T ∗ and T ′: all that is needed
is to locate in which trapezoid from the list the vertex of T ∗ lands.

We emphasize that clipping by the c-segments is done only to find c-trapezoids
straddle-lit by c∗-trapezoids; after the (c, c∗)-sweep completes, the c∗-trapezoids
are “unclipped” back to what they were (and in general, during an (a, b)-sweep,
b-trapezoids lit at the previous step are only temporarily clipped into (a, b)-
parallelograms using a-segments through the vertices).

3.5 Analysis

Flush-lighting takes overall O(C2n log n) time: For every trapezoid T ∗ that flush-
lights c-trapezoids through an edge e, it takes O(log n) time to locate the vertices
a, b of T ∗ (lying on e) in the list Lc(e). Overall there are O(Cn) trapezoids T ∗,
and for each we have to locate the vertices a, b in the C − 1 lists Lc(e); thus
the locating takes overall O(C2n log n) time. After the vertices a, b have been
located, it takes O(ne) time to label each (dark) trapezoid T ′ supported by e,



Faster Algorithms for Minimum-Link Paths with Restricted Orientations 665

where ne is the number of the trapezoids that are flush with T ∗. Again, overall
there are O(Cn) trapezoids T ′, and each can be flush-lit from at most C − 1
directions; thus the total time spent in the labeling (not counting the time spent
in locating the vertices a, b) is O(C2n).

As for straddle-lighting, any trapezoid has O(1) neighbors (assume no two
edges of P are supported by the same line); thus, processing an event during any
of the sweeps involves a constant number of the priority queue and/or interval
tree operations, i.e., O(log n) time per event. To bound the number of events,
observe that any trapezoid inserted in the event queue at step k is either itself
intersected by a parallelogram form S�, or has a lower neighbor intersected by
a parallelogram from S�; thus any trapezoid enters the event queue on at most
7 consecutive steps. At any step k, a c-trapezoid may appear in the event queue
during each of the C−1 (c, c∗)-sweeps. Thus, as there are O(Cn) trapezoids, we
have O(C2n) events, and the total running time of O(C2n logn).

As for the space, the dominating factor is storing the C trapezoidations.

Acknowledgments. We thank anonymous reviewers for helpful comments. VP
is funded by the Academy of Finland grant 138520.

References

1. Adegeest, J., Overmars, M.H., Snoeyink, J.: Minimum-link c-oriented paths:
Single-source queries. IJCGA 4(1), 39–51 (1994)

2. Das, G., Narasimhan, G.: Geometric searching and link distance. In: Dehne, F.,
Sack, J.-R., Santoro, N. (eds.) WADS 1991. LNCS, vol. 519. Springer, Heidelberg
(1991)

3. de Berg, M.: On rectilinear link distance. CGTA 1, 13–34 (1991)

4. de Berg, M., van Kreveld, M.J., Nilsson, B.J., Overmars, M.H.: Shortest path
queries in rectilinear worlds. IJCGA 2(3), 287–309 (1992)

5. Dumitrescu, A., Mitchell, J.S.B., Sharir, M.: Binary space partitions for axis-
parallel segments, rectangles, and hyperrectangles. DCG 31(2), 207–227 (2004)

6. Fitch, R., Butler, Z., Rus, D.: 3d rectilinear motion planning with minimum bend
paths. In: International Conference on Intelligent Robots and Systems (2001)

7. Goodman, J.E., O’Rourke, J.: Handbook of disc. and comp. geom. CRC Press
series on discrete mathematics and its applications. Chapman & Hall/CRC (2004)

8. Güting, R.: Conquering Contours: Efficient Algorithms for Computational Geom-
etry. PhD thesis, Fachbereich Informatik. Universität Dortmund (1983)

9. Güting, R.H., Ottmann, T.: New algorithms for special cases of the hidden line
elimination problem. Comp. Vis., Graph., Image Proc. 40(2), 188–204 (1987)

10. Hershberger, J., Snoeyink, J.: Computing minimum length paths of a given homo-
topy class. CGTA 4, 63–97 (1994)

11. Hershberger, J., Suri, S.: BSP for 3d subdivisions. In: SODA 2003 (2003)

12. Imai, H., Asano, T.: Efficient algorithms for geometric graph search problems.
SIAM J. Comput. 15(2), 478–494 (1986)

13. Imai, H., Asano, T.: Dynamic orthogonal segment intersection search. J. Algo-
rithms 8(1), 1–18 (1987)



666 V. Polishchuk and M. Sysikaski

14. Lee, D.T., Yang, C.D., Wong, C.K.: Rectilinear paths among rectilinear obstacles.
Discrete Appl. Math. 70, 185–215 (1996)

15. Lingas, A., Maheshwari, A., Sack, J.-R.: Optimal parallel algorithms for rectilinear
link-distance problems. Algorithmica 14(3), 261–289 (1995)

16. Maheshwari, A., Sack, J.-R., Djidjev, D.: Link distance problems. In: Sack, J.-R.,
Urrutia, J. (eds.) Handbook of Comp. Geom., pp. 519–558. Elsevier, Amsterdam
(2000)

17. Mikami, K., Tabuchi, K.: A computer program for optimal routing of printed circuit
conductors. In: Int. Federation Inf. Proc. Congress, pp. 1475–1478 (1968)

18. Neyer, G.: Line simplification with restricted orientations. In: Dehne, F., Gupta,
A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 13–24.
Springer, Heidelberg (1999)

19. Ohtsuki, T.: Gridless routers - new wire routing algorithm based on computational
geometry. In: Internat. Conf. on Circuits and Systems, China (1985)

20. Paterson, M., Yao, F.F.: Optimal binary space partitions for orthogonal objects.
J. Algorithms 13(1), 99–113 (1992)

21. Rawlins, G.J.E., Wood, D.: Optimal computation of finitely oriented convex hulls.
Inf. Comput. 72(2), 150–166 (1987)

22. Sato, M., Sakanaka, J., Ohtsuki, T.: A fast line-search method based on a tile
plane. In: Proc. IEE ISCAS, pp. 588–591 (1987)

23. Wagner, D.P., Drysdale, R.L.S., Stein, C.: An O(n2.5 log n) algorithm for the recti-
linear minimum link-distance problem in three dimensions. CGTA 42(5), 376–387
(2009)

24. Widmayer, P., Wu, Y.-F., Wong, C.K.: On some distance problems in fixed orien-
tations. SIAM J. Comput. 16(4), 728–746 (1987)

25. Yang, C.D., Lee, D.T., Wong, C.K.: On bends and lengths of rectilinear paths: a
graph theoretic approach. IJCGA 2(1), 61–74 (1992)

26. Yang, C.D., Lee, D.T., Wong, C.K.: On bends and distances of paths among ob-
stacles in 2-layer interconnection model. IEEE Tran. Comp. 43(6), 711–724 (1994)

27. Yang, C.D., Lee, D.T., Wong, C.K.: Rectilinear paths problems among rectilinear
obstacles revisited. SIAM J. Comput. 24, 457–472 (1995)



Streaming Algorithms for 2-Coloring Uniform

Hypergraphs

Jaikumar Radhakrishnan and Saswata Shannigrahi

Tata Institute of Fundamental Research, Mumbai, India
{jaikumar,saswata}@tifr.res.in

Abstract. We consider the problem of two-coloring n-uniform hyper-
graphs. It is known that any such hypergraph with at most 1

10

√
n

lnn
2n

hyperedges can be two-colored [7]. In fact, there is an efficient (requir-
ing polynomial time in the size of the input) randomized algorithm that
produces such a coloring. As stated [7], this algorithm requires random
access to the hyperedge set of the input hypergraph. In this paper, we
show that a variant of this algorithm can be implemented in the stream-
ing model (with just one pass over the input), using space O(|V |B),
where V is the vertex set of the hypergraph and each vertex is repre-
sented by B bits. (Note that the number of hyperedges in the hypergraph
can be superpolynomial in |V |, and it is not feasible to store the entire
hypergraph in memory.)

We also consider the question of the minimum number of hyperedges
in non-two-colorable n-uniform hypergraphs. Erdős showed that there ex-
ist non-2-colorable n-uniform hypegraphs with O(n22n) hyperedges and
Θ(n2) vertices. We show that the choice Θ(n2) for the number of ver-

tices in Erdös’s construction is crucial: any hypergraph with at most 2n2

t

vertices and 2n exp( t
8
) hyperedges is 2-colorable. (We present a simple

randomized streaming algorithm to construct the two-coloring.) Thus,
for example, if the number of vertices is at most n1.5, then any non-2-
colorable hypergraph must have at least 2n exp(

√
n

8
)� n22n hyperedges.

We observe that the exponential dependence on t in our result is optimal
up to constant factors.

Keywords: Property B, hypergraph coloring, streaming algorithm, ran-
domized algorithm.

1 Introduction

Two colorability of uniform hypergraphs, also called Property B, is a well-studied
problem in hypergraph theory. A hypergraph is called two colorable if all its ver-
tices can be colored by either red or blue colors such that each hyperedge contains
vertices of either colors. Erdős [4] first showed by a simple probabilistic argument
that any n-uniform hypergraph with fewer than 2n−1 hyperedges is 2-colorable.
Beck [3] used an algorithm of recoloring the vertices and improved this result
to show that any n-uniform hypergraph with at most n1/3−o(1)2n−1 hyperedges
is 2-colorable. Radhakrishnan and Srinivasan [7] improved on Beck’s recoloring

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 667–678, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



668 J. Radhakrishnan and S. Shannigrahi

algorithm and obtained the currently best known result on this problem. They
proved that any n-uniform hypergraph with at most 1

10

√
n

lnn2n hyperedges can
be 2-colored. They also provided a randomized polynomial time algorithm that
2-colors any such hypergraph with high probability. An event happens with high
probability if for given any constant δ > 0, the probability of its happening is at
least 1− δ. In Section 2, we describe this algorithm which we refer to as delayed
recoloring algorithm throughout the rest of this paper.

The delayed recoloring algorithm assumes that all vertices and hyperedges of
the hypergraph can be stored in the random-access memory (RAM). A processor
can access RAM much faster than an external memory, and therefore it is ideal
if we can store the entire hypergraph in RAM. Unfortunately, the number of
hyperedges can be much larger than what the RAM can afford to store. For
example, the number of hyperedges can be as high as Ω(2n) when the size of
the vertex set is just O(n). This gives rise to the following question. If the
RAM has just about enough space to store the vertices, can we still obtain the
same coloring that the delayed recoloring algorithm obtains for any n-uniform
hypergraph having at most 1

10

√
n

lnn2n hyperedges?
Before answering this question, let us first decide how we are going to store a

hypergraph in the external memory. Note that each hyperedge is a collection of n
vertices. If each vertex is represented by a B-bit long string, each hyperedge can
be stored as a sequence of nB bits. We store the hyperedges one after another
in the external memory, and store a terminal symbol when there are no more
hyperedges. The vertices can be explicitly stored before the hyperedges, but
we prefer that they are extracted while reading the hyperedges. This way, a
coloring algorithm can start working as soon as the first hyperedge is stored in
the external memory.

The algorithms that deal with limited RAM space are known as streaming al-
gorithms in the literature. This algorithmic paradigm has of late become impor-
tant, especially in the context of large data sets. It is motivated by the fact that
the RAM of a computer is limited, and the size of the data set is often much larger
than the size of the RAM. The data set can arrive as a continuous data stream or
be stored in an external memory, in which case it is sequentially accessible over
one or a small number of passes. However, only a minor fraction of the data along
with some local variables can be stored in the RAM at any instant.

The challenge for any streaming algorithm is to minimize the following three
parameters: the number of passes over the data, maximum RAM requirement
at any instant and maximum processing time for any data item. On receiving
the complete data set, the algorithm should decide as fast as possible either
to start another pass or output an (approximately) accurate answer with high
probability. A number of important algorithms have been developed in streaming
model of computation, e.g., estimating frequency moments [1] and heavy hitters
[8] of a data stream. These algorithms find applications in the context of network
routing, where large amount of data flows through any router but each of them
have limited memory to process the data. In Section 3, we develop the following
streaming algorithm for hypergraph coloring.



Streaming Algorithms for 2-Coloring Uniform Hypergraphs 669

Result 1. We provide a randomized one-pass streaming algorithm to 2-color
with high probability any n-uniform hypergraph that has at most 1

10

√
n

lnn2n

hyperedges. This algorithm requires O(|V |B) RAM space at any instant and
O(nB|V |) processing time after reading each hyperedge. On reading the ter-
minal symbol, the algorithm spends O(nB|V |) time and then outputs a valid
2-coloring or declares failure.

Note that if the number of edges is much smaller than 2n, then a random 2-
coloring will with high probability be a proper coloring. In that case, we have a
trivial streaming algorithm by choosing the coloring first, and verifying that it
does properly color all the edges in just one pass.

We next consider the question of the minimum number of hyperedges in a non-
2-colorable n-uniform hypergraph. Erdős [5] showed that there is an n-uniform
hypergraph with Θ(n22n) hyperedges that is not 2-colorable. This construction
uses Θ(n2) vertices. Erdős and Lovász [6] conjectured that any n-uniform hy-
pergraph with fewer than n2n hyperedges may be 2-colorable. We study if con-
structing a counter-example to this conjecture is possible with o(n2) vertices.
Our result in Section 4 shows that with significantly fewer than n2 vertices, we
cannot construct a non-two-colorable hypergraph with fewer than n2n hyper-
edges.

Result 2. For any n-uniform hypergraph with |V | ≤ n2

4 ln 2n and |E| < n2n,
we provide a randomized one-pass streaming algorithm that outputs a 2-
coloring with high probability. This algorithm requires O( n

2

lnn
) RAM space

at any instant and O(n) processing time after reading each hyperedge. On
reading the terminal symbol, the algorithm spends O(1) time and then out-
puts a valid 2-coloring or declares failure.

Let us elaborate on the last sentences in each of the results above. When the
algorithms terminate, we expect them to produce correct outputs with proba-
bility at least 1 − δ for any given constant δ > 0. Moreover, we insist that the
algorithms produce one-sided errors, i.e., they either produce correct colorings
or do not output any colorings. The motivation for insisting this is the following.
Both of our algorithms execute O(log 1

δ ) processes in parallel, where each process
has a small but constant probability of success. The probability that at least one
of these processes is successful then becomes at least 1− δ. To find out the one
that is successful, we must examine the correctness of the output of a process
after its termination. In each algorithm, we output a coloring if and only if we
find a successful process.

Result 1 is obtained by modifying the delayed recoloring algorithm to a
streaming version, and then showing that this modification results in the same
coloring as before. Result 2 is obtained by a simple application of the union
bound in probabilistic method.

1.1 Open Questions

We point out two interesting questions that should be settled using existing
techniques.



670 J. Radhakrishnan and S. Shannigrahi

– Can we show that no deterministic algorithm can match the performance
of our randomized algorithms? In particular, can we show that there are
two-colorable hypergraphs with (say) n2 vertices and (say) 2n edges such
that every deterministic one-pass streaming algorithm that is guaranteed to
two-color them requires superpolynomial (in n) RAM space?

– Our result on hypergraphs with O(n
2

t ) vertices does not improve on the
bound provided via the delayed recoloring algorithm when it t is small, say,
O(log n). We believe, it should be possible to combine our argument and
the delayed recoloring algorithm to show that if the number of vertices is
o(n2) then we can two-color hypegraphs with strictly more than 1

10

√
n

lnn
2n

hyperedges. We do not have such a result.

2 The Delayed Recoloring Algorithm

We will present the delayed recoloring coloring algorithm in this section. The
analysis of the algorithm can be found in Section 2 of [7].

We start by recalling our assumption that the vertices of the hypergraphs
are not explicitly stored in the external memory. With this assumption, the
delayed recoloring algorithm proceeds as follows. The I/O processor first reads
and stores all the hyperedges in RAM, and then extract the vertices from them.
Next, one of the |V |! permutations of the vertices is selected uniformly at random.
The algorithm then starts with a initial random coloring χ0(V ) of the vertices,
and attempts to flip the color of each vertex once in the order defined by the
permutation. A randomly generated boolean vector b(V ) is used to indicate
whether the color of a vertex is allowed to be flipped (b(v) = 1) or not (b(v) = 0).
If allowed, the color of a vertex is flipped if and only if it belongs to an initially
monochromatic hyperedge that continues to be monochromatic till this vertex
in considered. Let us now describe the algorithm in detail.

I/O (read). Read all the hyperedges and store them in RAM.
Step 1. Extract the vertices from these hyperedges.
Step 2. Select one of the |V |! permutations of the vertices uniformly at random.
Denote this permutation by P (V ) = [v1, v2, . . . v|V |].

Step 3. Color each vertex v ∈ V red or blue independently with probability 1
2 .

Denote this coloring by χ0(V ).
Step 4. Set b(v) = 1 with probability p (to be specified below) and b(v) = 0
with probability 1− p, independently for each vertex v ∈ V . Denote this vector
by b(V ).
Step 5. Recolor the vertices in |V | steps as follows.

Step 5(1).If v1 is contained in a hyperedge that is monochromatic in χ0(V ),
then flip the color of v1 if and only if b(v1) = 1. Denote this coloring by
χ1(V ).

. . .



Streaming Algorithms for 2-Coloring Uniform Hypergraphs 671

Step 5(i). If vi is contained in a hyperedge that is monochromatic in χ0(V )
and continues to be monochromatic in χi−1(V ), then flip the color of vi if
and only if b(vi) = 1. Denote this coloring by χi(V ).

I/O (write). Write the coloring χ|V |(V ) in external memory if and only if it is
a valid 2-coloring of the hypergraph.

Let χ(V ) = χ|V |(V ). It has been shown in [7] that if |E| ≤ 1
10

√
n

lnn
2n, then

1. Pr[there exists a monochromatic hyperedge in χ0(V ) that remains monochro-
matic in χ(V )] ≤ 2

10

√
n

lnn
(1− p)n.

2. Pr[there exists a non-monochromatic hyperedge in χ0(V ) which became blue
in χ(V )] ≤ Pr[there exists a non-monochromatic hyperedge in χ0(V ) whose red
vertices became blue in χ(V )] ≤ 2np

100 lnn
.

3. Pr[there exists a non-monochromatic hyperedge in χ0(V ) which became red
in χ(V )] ≤ Pr[there exists a non-monochromatic hyperedge in χ0(V ) whose blue
vertices became red in χ(V )] ≤ 2np

100 lnn
.

Note that the above three events are the only bad events which can make the
2-coloring χ(V ) of a hypergraph invalid. The probability that any of these bad
events happens is at most 2

10

√
n

lnn (1− p)n + 4np
100 lnn . If p = lnn

2n , this probability

is at most 2
10

√
1

lnn
+ 2

100
. For any n ≥ 2, this quantity is less than ( 2

10

√
1

ln 2
+

2
100 ) < 1

2 . This means that the above algorithm produces a valid 2-coloring with
probability at least 1

2 .
To improve this success probability to at least 1 − δ for any given constant

δ > 0, we need to execute steps 2− 5 of the algorithm O(log 1
δ ) times in parallel.

It can be seen that the probability that at least one of these parallel processes
succeeds in producing a valid coloring is at least 1 − δ. It takes O(n|E|B|V |)
time to check whether a coloring is valid. We choose any one of the successful
processes (if one exists) and write the coloring produced by it in the external
memory.

Let us verify that the delayed recoloring algorithm can be executed in
O(nB|V ||E|) time. Step 1 requires O(nB|V ||E|) time to identify all distinct
vertices and store them in a sequence Q. Step 2 can be implemented in O(B|V |2)
time as follows.

Initialize P (V ) to the permutation in which the vertices appear in Q. For each
1 ≤ i ≤ |V |, do the following three operations. First, generate a random number
j from [1, i]. Then, place the i-th vertex of Q at j-th position of permutation
P (V ). Vertices that used to appear on or after j-th position in P (V ) are now
shifted one place each to produce a modified P (V ).

Steps 3− 4 can be implemented by creating bit-vectors for the set of vertices,
and therefore require O(|V |) time each. The k-th position in these bit-vectors
corresponds to the k-th position in the permutation P (V ). Finally, step 5(i)
requires O(nB|E|) time for any i, which implies that the total running time for
step 5 is O(nB|V ||E|).

Note that the I/O(read) step is the reason we require high RAM space require-
ment in this implementation of the delayed recoloring algorithm. However, this
algorithm can be implemented by just storing the vertices and the hyperedges



672 J. Radhakrishnan and S. Shannigrahi

that are monochromatic after the first random coloring, and therefore requires
O(|V |B + nB

√
n

lnn ) RAM space at any instant with high probability. This im-
plementation, however, does not verify that the coloring is proper, and might
output invalid colorings. The algorithm in the next section is guaranteed never
to do this.

3 An Efficient Streaming Algorithm

In this section, we present a modified algorithm that uses O(|V |B) RAM space
to store the vertices at any instant, but the total processing time remains asymp-
totically the same.

Assume that the hyperedges are stored in the external memory in the order
h1, h2, . . . , h|E|. The I/O processor reads the hyperedges from left to right and
stores only the current hyperedge in RAM. New vertices, if any, are extracted
form a hyperedge once it is read and stored in the RAM, along with previously
extracted vertices. The set of vertices after hyperedge hi is read is denoted by Vi.
Once hyperedge hi is read, the algorithm first assigns initial colors χ0 to vertices
belonging to Vi \Vi−1, and then attempts to recolor the vertices belonging to hi
in the order defined by a uniformly random permutation P (Vi) of the vertices
extracted so far. As before, a randomly generated boolean vector b(Vi) is used to
indicate whether the color of a vertex is allowed to be flipped (b(u) = 1) or not
(b(u) = 0). A vertex is recolored at most once. Let us now describe the modified
algorithm in detail.

Initialize V0 = ∅. For 1 ≤ i ≤ |E|, do each of the following steps.

I/O (read). Read the hyperedge hi and store it in RAM. Delete hi−1 from
RAM.

Step 1(i). Extract and add new vertices of hi to Vi−1, the set of vertices
currently stored in RAM. Denote this modified set of vertices by Vi. Note
that V|E| = V .

Step 2(i). Sequentially insert each vertex of Vi \ Vi−1 uniformly at random
into the existing random permutation P (Vi−1) of the vertices belonging to
Vi−1. If |Vi| = j, denote this permutation by P (Vi) = [v1, v2, . . . , vj ].

Step 3(i). For each vertex u ∈ Vi \ Vi−1, set χ0(u) to red or blue indepen-
dently with probability 1

2 . Keep χ0(u) unchanged for each vertex u ∈ Vi−1.

Step 4(i). Set b(u) = 1 with probability p′ (to be chosen later) and b(u) = 0
with probability 1 − p′, independently for each vertex u ∈ Vi \ Vi−1. Keep
b(u) unchanged for each vertex u ∈ Vi−1.

Step 5(i). If hi is monochromatic in χ0(Vi), find the first (in permutation
P (Vi)) vertex u ∈ hi with b(u) = 1. Flip the color of u if and only if it has
not been flipped before. Keep the colors of the vertices belonging to Vi \ {u}
unchanged. Denote the new coloring of the vertices by χ

′
i(Vi).



Streaming Algorithms for 2-Coloring Uniform Hypergraphs 673

I/O (write). Write the coloring χ
′
|E|(V ) in external memory if and only if it is

a valid 2-coloring of the hypergraph.

Let χ′(V ) = χ
′
|E|(V ). Recall that the original delayed recoloring algorithm

produces a coloring χ(V ) at its termination. We show below that χ′(V ) is the
same as χ(V ) for any given χ0(V ), P (V ) and b(V ).

Lemma 1. For each v ∈ V , χ′(v) = χ(v) for any given χ0, P and b.

Proof. First, let us assume to the contrary that there exists a vertex u with
χ0(u) = χ′(u) �= χ(u). Let us also assume that h is a hyperedge that necessi-
tated u’s recoloring in the original algorithm. In other words, h was one of the
monochromatic hyperedges in χ0(V ) that remained monochromatic till u was
considered in one of the sub-steps of step 5. This must have happened due to the
fact that the vertices of h that appeared before u in P (V ) had their correspond-
ing b bits set to 0. Therefore, when h is considered in the modified algorithm,
u must be its first vertex (in permutation P (V )) with b(u) = 1. The color of u
is flipped in this step of the algorithm, if not already flipped in a previous step.
Thus, χ(u) �= χ

′
(u). This contradicts the assumption above.

On the other hand, let us assume to the contrary that there exists a vertex
u′ with χ0(u′) = χ(u′) �= χ′(u′). Let h′ be the hyperedge that necessitated
the recoloring of u′ in the current algorithm. This means that all vertices (of
h′) before u′ (in permutation P (V )) had their b bits set at 0. This implies
that u′ must have been recolored in χ(V ), because h′ would have remained
monochromatic till u′-th recoloring sub-step of step 5. Thus, χ(u′) �= χ

′
(u′).

Again, this contradicts the above assumption. ��

This lemma implies upper bounds on the probabilities of the following three bad
events:
1. Pr[there exists a monochromatic hyperedge in χ0(V ) that remains monochro-
matic in χ

′
(V )] ≤ 2

10

√
n

lnn
(1− p′)n.

2. Pr[there exists a non-monochromatic hyperedge in χ0(V ) whose red vertices
became blue in χ

′
(V )] ≤ 2np′

100 lnn
.

3. Pr[there exists a non-monochromatic hyperedge in χ0(V ) whose blue vertices
became red in χ

′
(V )] ≤ 2np′

100 lnn .
Note that if none of the above events takes place, the algorithm produces a

proper 2-coloring χ′(V ). It can be easily seen that the RAM requirement at any
instant is only O(|V |B). Note, however, that the above analysis does not have
the desirable property that it outputs only valid colorings. A straight-forward
check does not seem possible using O(|V |B) RAM space. We show below that
with carefully storing some vertices of a few hyperedges, we can in fact achieve
this using only O(nB) RAM space.

Checking whether a coloring is proper using O(nB) RAM space

In order to check whether the first event takes place for a hyperedge h, it is
sufficient to look into the corresponding χ0 and b bits as soon as the hyperedge



674 J. Radhakrishnan and S. Shannigrahi

is read. The first event takes place for h if and only if it is monochromatic in
χ0 and all its b bits are set at 0. However, it is not immediately possible to
determine after reading h whether the second (similarly, the third) event takes
place because of it. Therefore, we mark h as a potentially blue hyperedge if all its
red vertices have their corresponding b bits set at 1. In h is such a hyperedge, we
store this subset Rh of red vertices in memory. At the end of |E|-th recoloring
step, we can check whether all red vertices of h flipped their colors or not. Note
that hyperedges those are not potentially blue cannot cause the second event.
Similarly, we can mark a hyperedge as potentially red and store its subset Bh

of blue vertices. For any given h, let us now calculate the expected number of
vertices in Rh.

E[|Rh|] =
n∑

i=1

i ·
(

n

i

)

· 2−n(p′)i = np′2−n
n∑

i=1

(
n− 1
i− 1

)

(p′)i−1 ≤ np′2−nep
′n.

Therefore, the expected total number of vertices in Rh’s of all potentially blue
hyperedges is at most 1

10 ·
√

n
lnn · np′ · ep′n. By Markov’s inequality,

Pr[total number of vertices in Rh’s of all potentially blue hyperedges ≥ 100
10 ·√

n
lnn · np′ · ep′n] ≤ 1

100 .

Similarly, we can bound by 1
100

the probability of the bad event that the
total number of vertices in Bh’s of all potentially red hyperedges is more than
100
10 ·

√
n

lnn · np′ · ep′n. As a result, the probability that any one of the bad
events takes place is at most 2

100 + 2
10

√
n

lnn (1− p′)n + 4np′
100 lnn . If p′ = lnn

2n , the
probability of success is still at least 1

2 as in Section 2. However, the total number
of vertices in Rh’s of all potentially blue hyperedges is at most 10

√
n

lnn ·
lnn
2 ·
√

n =
O(n
√

lnn). To get the claimed bound on RAM space, we need to choose p′ more
carefully. In particular, we slightly reduce the value of p′.

If p′ = lnn
2n
− ln lnn

2n
, the probability that one of the bad events happens is

at most 2
100 + 2

10 + 2
100 . This means the the success probability is at least 76

100 .
With this value of p′, the total number of vertices in Rh’s of all potentially blue
hyperedges is at most 10

√
n

lnn
· lnn

2
·
√

n
lnn

= O(n). Each vertex takes B bits
to store, and so total RAM space required to store all Rh’s and Rb’s is at most
O(nB). This implies that the total RAM space required for the algorithm is
O(|V |B + nB) = O(|V |B).

For any given constant δ > 0, we can repeat steps 1(i) to 5(i) of the algorithm
O(log 1

δ
) times in parallel to improve the probability of success to at least 1− δ.

The RAM requirement for this algorithm then becomes O(|V |B log 1
δ ).

It can be easily checked that the processing time for steps 1(i) to 5(i) is
O(nB|V |) for each 1 ≤ i ≤ |E|. This implies a total of O(nB|V ||E|) processing
time for the entire algorithm. On reading the terminal symbol, the algorithm
requires to look at the colors of O(n) vertices belonging to Rh’s and Rb’s to
determine the validity of the coloring, and O(nB|V |) processing time is required
for this purpose. This completes the proof of Result 1.



Streaming Algorithms for 2-Coloring Uniform Hypergraphs 675

4 Coloring Uniform Hypergraphs with O( n2

ln n
) Vertices

In this section, we first show that any hypergraph with at most n2

4 ln 2n vertices
and fewer than n2n hyperedges can be two colored. Erdős [5] constructed a
random n-uniform hypergraph with Θ(n2) vertices and n22n hyperedges that
is not 2-colorable [2]). Erdős and Lovász [6] conjectured that any n-uniform
hypergraph with fewer than n2n hyperedges may be 2-colorable. The following
lemma proves that constructing any counterexample to the conjecture of Erdős
and Lovász [6] requires more than n2

4 ln 2n vertices.

Lemma 2. Any n-uniform hypergraph with fewer than n2n hyperedges and at
most n2

4 ln 2n
vertices can be 2-colored.

Proof. Let us assume that the hypergraph has 2Cn vertices (C is a function of
n). We partition the vertex set randomly into two parts and color each vertex in
one of them by red and the other by blue. Let us calculate the probability that
a hyperedge e is monochromatic in this coloring χ(V ). Let p be the probability
that e is monochromatic in χ(V ).

p =

(
2Cn−n
Cn

)

(
2Cn
Cn

) =
Cn · (Cn− 1) · (Cn− 2) · · · (Cn− n + 1)

2Cn · (2Cn− 1) · (2Cn− 2) · · · (2Cn− n + 1)

≤ 2−n · (1− 1
4C − 1

)
n
2 ≤ 2−n · e

−n
8C−2 .

If C ≤ n
8 ln 2n , it follows that p is strictly less than 1

2n2n . Therefore, the prob-
ability that at least one edge is monochromatic in the coloring χ(V ) is at most
|E| · 1

2n2n < 1
2 . This implies that there is a proper 2-coloring of the hypergraph.

��

Note that the above proof suggests the following result. If C = n
t

for a parameter
t, then there is a 2-coloring of a hypergraph with at most 2n exp( t

8
) hyperedges.

This hypergraph has 2Cn = 2n2

t
vertices. We show below by an argument similar

to the one used by Erdős [5] that if t = o(n), there exists a hypergraph with 2n2

t

vertices and O(n
2

t
· 2n exp( t

2
)) hyperedges that is not 2-colorable.

Consider a 2-coloring of the vertex set, whose size is 2n2

t . Pick a random
hyperedge of size n. The probability that this hyperedge is monochromatic is at
least

p =

(n2
t
n

)

( 2n2
t
n

) ≥
(

n2

t − n
2n2

t − n

)n

≈ 2−n
(

1− t

2n

)n
≈ 2−n exp(

−t

2
).

Let S1, S2, . . . , Sr be uniformly and independently chosen hyperedges. The
probability that none of these hyperedges is monochromatic is at most
(
1− 2−n exp(−t

2
)
)r 2

2n2
t . If

(
1− 2−n exp(−t

2
)
)r 2

2n2
t < 1, there exists a hyper-

graph with r hyperedges that is not 2-colorable. Since (1−x)r ≤ exp(−xr), this
inequality is satisfied when r ≥ 2n2

t · 2n exp( t2 ) · ln 2.



676 J. Radhakrishnan and S. Shannigrahi

Lemma 2 can be extended for k-coloring of n-uniform hypergraphs with vertex
set size O( n

2

lnn
) but having fewer than nkn hyperedges.

Lemma 3. Any n-uniform hypergraph with fewer than nkn hyperedges drawn
from a set of at most (k−1)n2

4 ln 2n
vertices can be k-colored.

Proof. As before, let us assume that the hypergraph has kCn vertices. We par-
tition the vertex set randomly into k parts and color them by k different colors.
Let us calculate the probability that a hyperedge e is monochromatic in this
coloring χ(V ). Let p be the probability that e is monochromatic in χ(V ).

p =

(
kCn−n
Cn−n

)
·
(
(k−1)·Cn

Cn

)
· · ·

(
Cn
Cn

)

(
kCn
Cn

)
·
(
(k−1)·Cn

Cn

)
· · ·

(
Cn
Cn

) ≤ k−n · (1− k − 1
2kC − 1

)
n
2 ≤ k−n · e

−n(k−1)
4Ck−2 .

If C ≤ (k−1)n
4k ln 2n

, it follows that p is strictly less than 1
2nkn . Therefore, the

probability that at least one hyperedge is monochromatic in the coloring χ is
at most |E| · 1

2nkn < 1
2 . This implies that there is a proper k-coloring of the

hypergraph. ��

The above two lemmas also show that there exists an equitable k-coloring of a hy-
pergraph with fewer than nkn hyperedges if it has O( n

2

lnn
) vertices. In fact, both

these proofs can easily be transformed into randomized streaming algorithms to
find such colorings. At the beginning, we store the colors of the vertices (half
red and remaining half blue) in a bitvector of size O( n

2

lnn ). With the arrival of
each hyperedge, we just need to check whether it is monochromatic by checking
the corresponding bits. If there are fewer than nkn hyperedges, the probability
of success (no hyperedge is monochromatic) is at least 1

2 . By repeating this al-
gorithm log 1

δ
times in parallel, we can improve the probability of success to at

least 1− δ. The memory space requirement for this algorithm is O( n
2

lnn log 1
δ ).

In the following, we derandomize this algorithm to k-color any hypergraph
with at most (k−1)n2

4 ln 2n
vertices and fewer than nkn hyperedges. We derandomize

using conditional expectations, in a way it is used to derandomize the algorithm
to find a large cut in a graph [10]. We first provide the algorithm for k = 2.
Let us assume that |V | is even and the vertices are v1, v2, . . . , v|V |. The order of
vertices in which they are colored will be denoted by u1, u2, . . . , u|V |.

Step 1: Color v1 by red, and call this vertex u1.
Step 2: For j = 2 to n, calculate the expected number of monochromatic

hyperedges conditioned on coloring vj by red. Select the vertex that gives the
lowest expectation and color it by red. Call this vertex u2.

Step i ≤ |V |
2 : After the (i − 1)-th step, the colors of u1, u2, . . . , ui−1 are red.

For j = i to n, calculate the expected number of monochromatic hyperedges
conditioned on coloring vi by red. Select the i-th red vertex as the one that gives
the lowest expectation and call it ui.

Step |V |
2 + 1: Color all the remaining vertices by blue.



Streaming Algorithms for 2-Coloring Uniform Hypergraphs 677

It can be easily seen that such an algorithm produces a deterministic 2-coloring
in time O(|V |2|E|). The space requirement, however, becomes O(|E|B).

A similar deterministic algorithm exists for k-coloring as well. We first find
the vertices with color1, followed by color2, . . ., colork.

5 Streaming and the Lovász Local Lemma

Radhakrishnan and Srinivasan [7] considered the local version of the problem of
2-coloring. In this section, we mention a streaming algorithm for this version.
In particular, we observe from the parallel version of the algorithm of Moser
and Tardos [11] that for any given constant ε > 0, there exists an O(log |V |)-
pass streaming algorithm to 2-color any n-uniform hypergraph none of whose
hyperedges intersects more than (1−ε)2n−1

e
− 1 other hyperedges. This algorithm

requires O(|V |B) memory space. For such hypergraphs, it is an interesting open
problem to find an O(1)-pass streaming algorithm that uses asymptotically just
enough RAM space to store the vertices.

Moser and Tardos [11] recently proposed a parallel algorithm for Lovász Local
Lemma, which we describe below. Let X be a finite set of events determined by a
finite set P of mutually independent random variables, such that each event of X
is determined by a subset of the variables in P . Let GX denote the dependency
graph of the events, i.e., two events A and B are connected by an edge if and
only if they share common variables. For any event A ∈ X , we denote by N(A)
the events which are neighbors of A in GX . An assignment or evaluation of the
variables violates an event A if it makes A happen. With these notations, we
explain their algorithm:

Step 1. Evaluate each variable in P independently at random.
Step 2. If there exists at least one violated event in X , construct a maximal

independent set M of the sub-graph (of GX ) induced by the violated events in
X . Independently perform random re-evaluation of each variable that belongs
to one of the events of M .

Step 3. If there are no violated events, output the current evaluation of the
variables. Otherwise, go to Step 2.

If a local condition is assumed to hold for each of the events, the following the-
orem bounds the expected number of times Step 2 of the algorithm is executed.

Theorem 1. [11] If ε > 0 and there exists real number assignments x : X →
(0, 1) such that

∀A ∈ X : Pr[A] ≤ (1− ε)x(A)
∏

B∈N(A)

(1− x(B)), (1)

then the algorithm executes step 2 an expected O(1
ε
log

∑
A∈X

x(A)
1−x(A)

) number of
times before it finds an evaluation of P violating no event in X.

For each hyperedge h of a hypergraph H, let Xh denote the event that h is
monochromatic in a 2-coloring of H and let X = {Xh : h ∈ H}. Therefore,



678 J. Radhakrishnan and S. Shannigrahi

Pr[Xh] = 21−n. If each hyperedge of H intersects at most (1−ε)2n−1

e − 1 other
hyperedges, we can assign x(Hh) = e

(1−ε)2n−1 to satisfy Equation 1 for all Xh ∈
X . (We use (1− 1

r+1)r ≥ e−1 for any r ≥ 1.)
In our streaming algorithm, we start with a uniformly random coloring of

the vertices. Thereafter, Step 2 of the algorithm can be executed once in each
pass as follows. Whenever an hyperedge arrives, we mark and store its vertices in
memory if and only if it is monochromatic in the current coloring and does not in-
tersect with any of the previously marked hyperedges. Since at most |V |

n
disjoint

hyperedges can be marked in one pass, only O(|V |B) memory space is required
to store all their vertices. At the end of each pass, we randomly re-evaluate the
colors of each of the marked vertices and return to the beginning of the sec-
ondary memory. The algorithm stops if and only if there are no monochromatic
hyperedges in the current coloring. By Theorem 1, this algorithm terminates
after O(log |E|

2n−1 ) = O(log |V |) expected number of passes.

References

1. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the fre-
quency moments. In: Proceedings of the ACM Symposium on Theory of Computing
(STOC), pp. 20–29 (1996)

2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series. John
Wiley and Sons, Inc., New York (1992)

3. Beck, J.: On 3-chromatic hypergraphs. Discrete Mathematics 24, 127–137 (1978)
4. Erdős, P.: On a combinatorial problem. Nordisk Mat. Tidsskr 11, 5–10 (1963)
5. Erdős, P.: On a combinatorial problem, II. Acta Mathematica of the Academy of

Sciences 15, 445–447 (1964)
6. Erdős, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some

related questions. Colloq. Math. Soc. Janos Bolyai 10, 609–627
7. Radhakrishnan, J., Srinivasan, A.: Improved bounds and algorithms for hypergraph

2-coloring. Random Structures Algorithms 16(1), 4–32 (2000); (also in FOCS 1998)
8. Karp, R.M., Papadimitriou, C.H., Shenker, S.: A simple algorithm for finding fre-

quent elements in streams and bags. ACM Transactions on Database Systems 28,
51–55 (2003)

9. Kostochka, A.: Coloring uniform hypergraphs with few colors. Random Structures
Algorithms 24(1), 1–10 (2004)

10. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

11. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma.
Journal of the ACM 57(2), 1–15 (2010)

12. Yuster, R.: Equitable coloring of k-uniform hypergraphs. SIAM Journal on Discrete
Mathematics 16(4), 524–532 (2003)



Density-Constrained Graph Clustering�

Robert Görke, Andrea Schumm, and Dorothea Wagner

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Germany

Abstract. Clusterings of graphs are often constructed and evaluated
with the aid of a quality measure. Numerous such measures exist, some of
which adapt an established measure for graph cuts to clusterings. In this
work we pursue the problem of finding clusterings which simultaneously
feature guaranteed intra- and good intercluster quality. To this end we
systematically assemble a range of cut-based bicriteria measures and,
after showing NP-hardness for some, focus on the classic heuristic of
constrained greedy agglomeration. We identify key behavioral traits of
a measure, (dis-)prove them for each one proposed and show how these
translate to algorithmic efficiency.

1 Introduction

The guiding intuition in the field of graph clustering is “intracluster density
vs. intercluster sparsity”. Mathematical formalizations thereof abound, most of
which, however, incorporate both aspects into a single criterion, which then
serves as a quality measure for graph clusterings. Balance between the two as-
pects is a fine line and treating them separately allows to adjust their tradeoff
as to fit given desiderata. While the recent literature on graph clustering (we
recommend [10,7] for an overview) has mainly been focusing on large data sets
and on single criteria such as Modularity [12], Kannan et al. [11] propose to min-
imize the cut between, subject to a guaranteed conductance within the clusters
and show that this approach avoids the drawbacks of many simpler measures.
This stepping stone in bicriterial graph clustering inspired Flake et al. [6], who
give an algorithm with provable, but interdependent bounds on both intra- and
a variant intercluster expansion. Brandes et al. [3] were the first to use a notion
of intercluster conductance to experimentally evaluate clustering algorithms.

Together with sparsity, expansion and conductance are well-known and in-
disputable measures for quantifying the clarity of a cut, and each one suggests
adaptions to measuring clusterings with respect to both aspects. However, only
very few have so far been coined and used. We systematically assemble such
measures and set our main focus on scrutinizing their behavior in the light of
the question which combinations enable efficient greedy agglomeration, putting
aside other algorithmic approaches [7]. This classic hierarchical technique used
for clustering [7,2,5] starts with singletons and iteratively merges clusters, usu-
ally driven by some objective function, until a stopping criterion is met. We

� This work was partially supported by the DFG under grant WA 654/19-1.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 679–690, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



680 R. Görke, A. Schumm, and D. Wagner

show that algorithmic efficiency and behavior strongly depends on three traits
of a measure, roughly described as the range of feasible merges in terms of con-
nectedness, the robustness of comparisons between merges and the monotonicity
of a measure. For each established measure we prove or disprove these traits,
leading both to qualitative insights and assertions on time and space complexity.
We further motivate the use of a greedy heuristic by showing NP-hardness for
some of our problem statements and give a brief discussion how the constraints
and objectives we use can be cast into integer linear programs. Systematic ex-
periments evaluating how well these measures conform to human intuition and
how well the proposed algorithms discover existing clusterings are beyond the
scope of this work. Many proofs and details are deferred to the full version [9].

Notation and Preliminaries. Let G = (V, E) be an undirected, unweighted,
and simple graph1. We set |V | =: n, |E| =: m and C = {C1, . . . , Ck} to be a
partition of V . We call C a clustering of G and sets Ci clusters. Note that we
restrict ourselves to disjoint clusters in this work. The cluster containing vertex
v is C(v). A clustering is trivial if either k = 1 (all-clustering), or each cluster
contains only one element (singletons).

(C
2

)
denotes the set of all unordered pairs

of clusters. We identify cluster C with the set of nodes it constitutes and with its
vertex-induced subgraph of G. Then E(C) :=

⋃
C∈C E(C) are called intracluster

edges and E \E(C) intercluster edges. For two subsets A and B of V , mA,B :=
|{{u, v} ∈ E | u ∈ A, v ∈ B}| is the number of edges between A and B, nA := |A|
is the number of vertices in A, mA := |E(A)| is its number of intracluster edges
and xA := mA,V \A the number of intercluster edges incident to A. Further, the
volume vA of A is defined as vA :=

∑
v∈A deg(v). For A �= B ∈ C, we call {A, B}

a merge and abbreviate AB := A∪B. Then, C{A,B} := C \ {A, B}∪{AB} is the
result of this merge. A clustering measure is a function that maps clusterings to
real numbers, thereby assessing the quality of a clustering. We define high quality
to correspond to high (low) values of intracluster (intercluster) measures.

2 Quality Measures for Clusterings

The bicriteria measures we construct and use in this work build upon conduc-
tance, expansion and density. The conductance of a cut (S, T ) measures the
bottleneck between S and T , defined as mS,T

min{vS ,vT } ; expansion substitutes vol-
ume by cardinality: mS,T

min{nS,nT } . The density (or sparsity) of a cut is mS,T

nSnT
, which

equals the uniform minimum-ratio cut ; the density of a graph is m
0.5n(n−1)

, and
the conductance of a graph is minS⊆V

mS,V \S

min{vS ,vV \S} (expansion is analogous).
Intracluster measures quantify how well the vertices within a cluster are inter-
connected. For intercluster measures, we distinguish two ways of measuring cuts:
between pairs of clusters (pairwise), or cutting off a cluster (isolating). Hereby,
isolated measures assess how well a cluster is separated from the remainder of
the graph and pairwise measures how well the clusters are separated from one
1 A simple graph in this work is both loopless and has no parallel edges.



Density-Constrained Graph Clustering 681

another. To have these quantities express the quality of an entire clustering, we
can either construct a worst-case measure (minimum/maximum) or an average
measure. Density works analogously, however, it also lends itself to the natural
idea of adding up all values before normalization (global). A simple alternative
is globally counting intercluster edges. For convenience we list the measures thus
constructed in Tables 1 and 2 and henceforth use their abbreviations.

Table 1. Density and counting

intracluster density

global gid
∑

C∈C mC
∑

C∈C (nC
2 )

minimum mid min
C∈C

mC

(nC
2 )

average aid 1
|C|

∑

C∈C
mC

(nC
2 )

intercluster density

global gxd
∑

A�=B∈C mA,B
∑

A �=B∈C nAnB

max. pw. mpxd max
A�=B∈C

mA,B

nAnB

max. is. mixd max
C∈C

xC
nCnV \C

av. pw. apxd
(|C|

2

)−1∑

{A,B}∈(C2)

mA,B

nAnB

av. is. aixd 1
|C|

∑

C∈C
xC

nC nV \C

intercluster edges

global nxe
∑

{A,B}∈(C2)
mA,B

The very evaluation of both the conductance
and the expansion of a graph is NP-hard ([1]
and [8] respectively).While there are many ways
to deal with this, it generally discourages the
use of these functions as intracluster measures.2

Density, by contrast, is well suited, yielding gid,
mid and aid; we refer to a cluster C’s contri-
bution as id(C) = 2mC

nC(nC−1) . Intercluster cuts,
in turn, are efficiently computable. Thus, in ac-
cordance with the above classification, we define
all twelve resulting intercluster measures (Ta-
bles 1 and 2), plus the two measures with a
global nature: gxd and nxe. Adhering to our ab-
breviations, we denote individual clusters’ con-
tributions by ixd(C) := xC

nCnV \C
, ixc(C) :=

xC

min{vC ,vV \C} and pxd({C, D}) := mC,D

nCnD
, further-

more we call the number of intracluster edges
nie := n − nxe. We generally define the intr-
acluster density of a singleton to be 1, and,
analogously, the intercluster quality of the all-
clustering to be maximal. Any other choice is
counterintuitive on trivial examples such as a clique or a clique plus an isolated
vertex.

Table 2. Intracluster measures based on conductance and expansion

intercluster conductance intercluster expansion

maximum pairwise mpxc maxA�=B∈C
mA,B

min{vA,vB} mpxe maxA �=B∈C
mA,B

min{nA,nB}

maximum isolated mixc max
C∈C

mC,V \C

min{vC ,vC\S} mixe max
C∈C

mC,V \C

min{nC ,nC\S}

average pairwise apxc 1

(|C|
2 )

∑

{A,B}∈(C2)

mA,B

min{vA,vB} apxe 1

(|C|
2 )

∑

{A,B}∈(C2)

mA,B

min{nA,nB}

average isolated aixc 1
|C|

∑

C∈C

mC,V \C

min{vC ,vV \C} aixe 1
|C|

∑

C∈C

mC,V \C

min{nC ,nV \C}

Qualitative Observations. While all proposed intra- and intercluster mea-
sures are based on the same intuition, there are fundamental differences in the
2 Note that a bottom-up approach cannot use the approximation results used in [11].



682 R. Görke, A. Schumm, and D. Wagner

way they assess particular clusterings. One important point is whether balanced
clusterings, i.e., homogeneous cluster sizes, are rewarded or penalized. As an
example aid has a tendency to favor unbalanced clusterings, as singletons de-
generatively yield optimum values and it is easy to compensate the existence
of a large cluster with poor intracluster density with an appropriate number
of singletons. In contrast to that, mid rewards balanced clusterings, as clusters
that are larger than the average are more likely to have low intracluster density
and thus to be the qualitative bottleneck. Gid ranges somewhere between these
extremes. Using the number of intercluster edges to measure intercluster quality
clearly favors unbalanced clusterings, as cutting off small portions of the vertex
set from the remainder of the graph usually cuts far fewer edges than partition-
ing the graphs in two blocks of roughly equal size. To some extent this effect can
be compensated by combining nxe with an appropriate intracluster measure.

In the context of intercluster measures, another interesting aspect is how
vertices that are only loosely connected to the remainder of the graph are han-
dled. For example, singletons with degree one have a low intercluster density
of 1/(|V | − 1) but maximum intercluster conductance of one. Thus, algorithms
minimizing intercluster conductance are prone to put “outsiders” in the clusters
of their neighbors, while algorithms minimizing intercluster density will tend to
consider these vertices as singletons. Both views can be motivated, depending
on the desiderata: If a vertex is linked to just a single vertex of a larger group,
it can be hardly considered as an integral part of this group and should thus be
treated separately. On the other hand, this vertex has no links to other groups
and thus, from its point of view, it has a strong affiliation to its neighbor’s group.

2.1 Problem Statement

In the following we narrow down the myriad formalizations for combining intra-
and intercluster quality and state the problem we focus on. Not only do these
two aspects capture different properties of a clustering, they even tend to oppose
each other: Fine clusterings easily achieve high intracluster density but poor
intercluster quality, while the converse is true for coarse clusterings. In the light
of a bottom-up strategy, intercluster density aspires a coarse clustering and starts
out poorly, which suggests using it as the driving objective function. By contrast,
intracluster density starts out with optimum quality, which, on the one hand,
discourages using it as the driving force, but, on the other hand, suggests it as
a suitable constraint. We thus formalize our problem statement as follows, an
exemplary instance and its solution are given in Fig. 1.

Problem (Density-Constrained Clustering). Given a graph G = (V, E),
among all clusterings with an intracluster density of no less than α, find a clus-
tering C with optimum intercluster quality.

2.2 Complexity

An exhaustive study of hardness results for all combinations of intra- and in-
tercluster measures is beyond the scope of this work. We exemplarily show



Density-Constrained Graph Clustering 683

Fig. 1. Zachary’s karate club [13] represents a social network and is traditionally used
for a test of feasibility in the graph clustering literature. Groups represent the split of
the network in reality, fill colors depict the optimal solution to our problem statement
using nxe constrained by mid with α = 0.25. Reviewing an optimal solution (see full
version [9]) helps judging this measure’s usefulness independently of an algorithmic
approach. For comparison, border colors indicate a Modularity-optimal clustering [12].
By contrast, aid yields the all-clustering with the exception of one singleton vertex (12),
pointing out its undesirable tendency to allow degeneratively imbalanced clusterings.

NP-hardness for Density-Constrained Clustering combining mid, aid or
gid with nxe, but conjecture NP-hardness for all remaining combinations. We
use that, if we set α = 1, the decision variant is equivalent to the following
problem.

Problem (Min-Cut Clique Partition). Given a graph G = (V, E), is there a
partition C of V into cliques such that nie(C) is at least k?

This problem is similar to both the classic problem Partition into Cliques [8],
which instead minimizes the number of cliques and the edge-maximizing variant
of the Kr-Packing Problem [4], which differs in that it only allows cliques
with bounded size. To the best of our knowledge, Min-Cut Clique Partition
has not yet been investigated. We reduce from Exact Cover by 3-Sets [8].

Problem (Exact Cover by 3-Sets, X3C). Given set X with |X | = 3q and
collection S of 3-element subsets of X . Does S contain an exact cover for X , i.e.,
a subcollection S′ ⊆ S such that every x ∈ X occurs in exactly one S ∈ S′?

...

Kn

...

Kn

S1

Sm

VX

vx1

vxn

Fig. 2. Sketch of reduction

We transform an instance I = (X ,S) of X3C with
|X | =: n into a graph G(I) as follows. For each
x ∈ X we add a vertex vx, and interconnect the
resulting set VX into an n-clique. Then, we map
each set S ∈ S to an n-clique Kn(S). For x ∈ S,
we link vx with each vertex in Kn(S). A sketch
of this polynomial reduction is given in Fig. 2.
For a proof of the following lemma see the full
version [9].

Lemma 1. Let I = (X ,S) be an instance of X3C. Then, I is solvable iff there
exists a partition C of G(I) into cliques such that ixc(C) is at least |S|·

(
n
2

)
+n2+n.



684 R. Görke, A. Schumm, and D. Wagner

Corollary 2. Min-Cut Clique Partitioning is NP-hard.

Algorithm 1. Generic Greedy Agglomeration

Input : graph G = (V,E), function objective, (constraint-) predicate allowed
Output: clustering C of G
C ← singletons
A ← {{A,B} ∈ (C

2

) | allowed(CA,B) and objective(CA,B) ≤ objective(C)}
while |C| > 1 and A �= ∅ do

M ← arg min
M∈A

{objective(CM)}
C ← CM

A ← {{A,B} ∈ (C
2

) | allowed(CA,B) and objective(CA,B) ≤ objective(C)}
return C

3 Generic Greedy Agglomeration

The general structure of a greedy merge algorithm based on an objective function
is given in Alg. 1. The idea is to choose from a constrained set of allowed merges
the one that improves (w.l.o.g. minimizes) the objective function the most. The
Modularity-based approach [5] fits into this concept if we set the objective func-
tion to be negative Modularity and use no constraint. Recalling our problem
statement, our objective is to minimize intercluster density, subject to the re-
striction that no merge decreases intracluster density below a given threshold
α ≤ 1. If allowed(CA,B) only depends on A and B, in each step of Alg. 1 at most
2n−3 elements are deleted from and at most n−2 new elements are inserted into
A. Together with the condition that elements can be compared in constant time
and that A can be maintained in a heap, using benefits as keys, the time com-
plexity of Alg. 1 is in O(n2 log n). Before we detail this observation (Sect. 3.2),
we first determine whether intercluster measures as objectives efficiently drive
greedy agglomeration, in that they iteratively suggest eligible merges.

3.1 Merge Behavior

An objective function f is said to have unbounded merge behavior if for any
clustering C with at least two clusters, there exist clusters A, B ∈ C, such that
merge {A, B} does not increase f . We elucidate the merge behavior of each
proposed intercluster measure, either by proving its unboundedness or by giving
an example instance which poses a local minimum. We defer the proofs of all
affirmative observations to the full version [9], and summarize them as follows.

Proposition 3. The intercluster measures nxe, gxd, mixc, mixe, aixc, aixe, mixd
and mpxd exhibit unbounded merge behavior.

Roughly speaking, the ingredient common to all proofs on maximum mea-
sures is the fact that, by investigating the adjacencies of the worst cluster B,
we can always identify some worst contributor to B’s value as an eligible partner



Density-Constrained Graph Clustering 685

(a) mpxc, mpxe (b) apxd, apxc, apxe

4 4

4
4

19

(c) aixd (edges are summarized)

Fig. 3. These instances illustrate bounded merge behavior. Given clustering C (grey),
no further merge is non-increasing for the measures pointed out.

for a merge. Likewise, aixc (aixe) allows us to find one or more clusters with
a detrimental contribution, and then identify those adjacent clusters which are
mainly liable for this as candidates for an improving merge. All the proofs are
constructive in that they point out how to find a non-increasing merge.

Bounded Merge Behavior. From our set of fourteen objective functions,
the remaining six do not have unbounded merge behavior, but can instead get
stuck in local minima, such that no further merge is non-increasing. Thus, even
without a constraint, the all-clustering cannot be reached. In Fig. 3 we give
specific instances which are local minima of mpxc and mpxe (a), apxd, apxc and
apxe (b), and of aixd (c). The common intuition for average measures is that
a merge must not reduce the number of beneficial clusters (or pairs thereof)
too dearly. Mpxc and mpxe are prone to local minima near balanced clusterings.
Roughly speaking, this is due to the case distinction in the denominator of their
base measures ruining arguments analogous to those usable for mpxd [9].

3.2 Impact of Clustering Measures on Running Times

We already gave conditions under which Alg. 1 can be implemented with a time
complexity in O(n2 log n). Here, we first review the constraints’ impact, and then
examine how the stated conditions can be relaxed without losing efficiency.

A

B

Fig. 4.

Intra-Density. Using constraints potentially impedes quick
agglomeration, as it does not suffice to determine the merge
that improves the objective function the most. The good news
is that if we use mid as a constraint, the feasibility of a merge
only depends on the density of the merged cluster, which is
clearly independent of the remainder of the clustering, and
thus need only be checked once, incurring no penalty in running time. However,
for gid and aid, this does not hold, as the status of a merge can change from
allowed to disallowed and back again. In Fig. 4, starting from the gray clustering,
merging the path to the left is not allowed if the constraint gid(C) ≥ 0.7 is
used. If singletons A and B are merged, this is allowed again, as the number of
intracluster pairs increases. A similar example for aid can be found in [9].

As a heuristic approach, if it is possible to store all merges in a binary search
tree, sorted by their benefit to the objective function, this tree can be traversed



686 R. Görke, A. Schumm, and D. Wagner

until we find a feasible merge. This might be more efficient than just searching
through all possible merges, as the number of disallowed merges we encounter
is limited to the number of more beneficial ones. However, in the worst case,
it yields no improvement. We therefore focus our analysis on using mid as the
constraint, supported by its good behavior in preliminary experiments, and leave
a more efficient treatment of gid and aid open.

Locality. Independent of issues concerning the handling of constraints, in the
following we resolve which properties an objective function f has to fulfill such
that a set of feasible merges can efficiently be maintained in a heap. Intuitively, f
should allow us to decide, without knowledge about the remainder of the cluster-
ing, which of two given merges is more beneficial to it. If the benefit exclusively
depends on the participating clusters, as for nxe alone, this is immediate and
decisions never change. For maximum isolated measures, by contrast, a merge
can be non-improving at some point of the algorithm and then become improv-
ing again. The intuition is to require the existence of a relation ≤f that almost
behaves like ordering the set of merges by their benefit for the objective func-
tion but allows for clever tie-breaking. To serve as a comparator in a priority
queue, ≤f should closely resemble a total quasiorder on the set of all possible
merges.3 Informally, we call an objective function local, if it allows for such a
relation. More formally, we get the following definition. Let us denote the set of
all possible merges, i.e., the set of all unordered pairs of subsets of V , asM.

Definition 4. An objective function f on clusterings is local, if there exists a
relation ≤f on M×M such that for any clustering C and for all M1, M2, M3

in M with M1 ∪M2 ∪M3 ⊆ C, the following holds:

M1 ≤f M2 or M2 ≤f M1 ≈ totality
M1 ≤f M2 ∧M2 ≤f M3 =⇒M1 ≤f M3 ≈ transitivity
M1 ≤f M2 =⇒ f(CM1) ≤ f(CM2) consistency with f

Based on the above considerations, we will now state sufficient conditions for
both non-locality (Lemma 5) and locality (Lemmas 6,8), thereby resolving lo-
cality for all our objective functions. We exemplarily state the short proof of
Lemma 8, but defer all other proofs to the full version [9].

Lemma 5. Let f be a clustering measure. If there exists a graph with two clus-
terings C and D both containing two merges M1 and M2 such that f(CM1) <
f(CM2) and f(DM1) > f (DM2), then f is not local.

For mpxd, apxd, mpxc, mpxe and gxd, Figure 5 shows examples where the pre-
conditions of Lemma 5 hold, implying that these measures are not local. The
rough idea behind the examples in Figs. 5a-5c is that a low pairwise intercluster
quality between two clusters can be improved by merging one of the partners
with a third cluster. Figure 5d exploits that merging large clusters becomes
3 We do not need a proper total quasiorder as we never have to compare pairs of merges

that cannot coexist in a clustering, e.g., because the clusters considered intersect.



Density-Constrained Graph Clustering 687

A B C D

(a) mpxd, apxd

A B

C

D

(b) mpxc

A

B

C

D

(c) mpxe

A C

B

D

(d) gxd

Fig. 5. Locality counterexamples: The base clustering consists of the gray clusters.
In (a) and (c), if the blue, dashed merge is performed, merge {C,D} is better, if the
red, dotted merge is performed, {A,B} is better. In (b) and (d), in the base clustering,
{C,D} is better than {A,B}, if the red, dotted merge is performed, the opposite holds.

more attractive if the global intercluster density is low. An instance proving the
nonlocality of apxe and apxc is given in the full version [9].

Lemma 6. Let f be an objective function such that f(C) can be expressed as
f(C) = max

C∈C
f ′(C), with f ′(C) solely depending on C. Then, f is local.

Proof sketch. Let C be a clustering and D = {D1, . . . , Dk} ⊆ C. Then we define
L(D) := (f ′(Di1) ≥ . . . ≥ f ′(Dik)) to be the non-increasing sequence of function
values of all Di ∈ D. Let ≤� be the lexicographical order on sequences of real
numbers. The proof relies on the observation that for arbitrary merges M1 =
{A, B} and M2 = {C, D} ⊆ C, L(CM1) ≤� L(CM2) implies f(CM1) ≤ f(CM2). We
show that L(CM1) ≤� L(CM2) is equivalent to L({f ′(A ∪ B), f ′(C), f ′(D)}) ≤�
L({f ′(C ∪D), f ′(A), f ′(B)}) and that the latter relation satisfies locality.

Corollary 7. Mixd, mixc and mixe are local.

Lemma 8. Let f be an objective function such that f(C) can be expressed as
f(C) = 1

|C|
∑

C∈C f ′(C), with f ′(C) solely depending on C. Then, f is local.

Proof. Let C be an arbitrary clustering containing four clusters A, B, C and D.
Then, f(CA,B) ≤ f(CC,D) implies that

f ′(A ∪B)− f ′(C)− f ′(D)
︸ ︷︷ ︸

:=kA,B

≤ f ′(C ∪D)− f ′(C)− f ′(D)
︸ ︷︷ ︸

:=kC,D

As for each cluster, f ′ is independent of the remainder of C, this inequation
shows that ≤f := {

(
{A, B}, {C, D}

)
| kA,B ≤ kC,D} is a quasiorder on M×M

such that {A, B} ≤f {C, D} implies f(CA,B) ≤ f(CC,D). Thus, f is local. ��

Corollary 9. Aixd, aixc and aixe are local.

For nxe, it is easy to see that choosing ≤f such that {A, B} ≤f {C, D} is
equivalent to mA,B ≥ mC,D satisfies the definition of locality. We have now
proven or disproven the locality of all intercluster measures (for a summary see
the full version [9]). Note that all proofs of locality are constructive in that
they induce comparators which can be used to efficiently maintain the set of



688 R. Görke, A. Schumm, and D. Wagner

all possible merges considered by Alg. 1 in a priority queue. For the maximum
functions, triples of real numbers can be used as keys, compared as described
in the proof of Lemma 6. Using average functions, it suffices to store the values
kA,B defined in the proof of Lemma 8. All keys as well as the density of a new
cluster can be computed and compared in constant time if, for any two clusters
A and B, the values vA, xA, nA and mA,B are maintained. Summarizing, we
obtain the following corollary.

Corollary 10. Algorithm 1 combining mid with mixd, mixc, mixe, aixd, aixc,
aixe or nxe can be implemented with a running time in O(n2 log n).

Disconnected Merges. Whenever no single edge links two clusters, intuitively,
merging them should not be beneficial to the clustering, or at least, such a merge
should not be the best option. In the light of our bicriterial approach, an objective
function which does encourage such a disconnected merge is naturally opposed by
the separate mechanism of a constraint on the intracluster density. Superficially,
this resolves the issue for non-degenerate instances; however, a more accurate
assertion is algorithmically relevant: If we can rule out disconnected merges, it
suffices to maintain only the set of connected merges in the heap (see Alg. 1), of
which there are at most m (instead of Ω(n2)). This implies linear space and—
given locality—O(md log n) time complexity, where d denotes the height of the
dendrogram.4 For sparse graphs (m ∈ O(n)), this bound can be an improve-
ment, since d usually approaches log n (but never exceeds n). This analysis has
initially been observed for Modularity [5], which enforces connected merges. It
uses that, for each level of the dendrogram, only O(m) heap entries are updated.
In the following we resolve the question whether our objective functions enforce
connected merges.

We say an objective function f enforces connected merges if for any pair of
clusters C �= D ∈ C with mC,D = 0 and f(C)− f(C{C,D}) > 0 (i.e., an improv-
ing, disconnected merge), there exist clusters A �= B ∈ C such that mA,B > 0
and f(C{C,D}) > f(C{A,B}) (i.e., a better, connected merge). In fact, only nxe
and gxd enforce connected merges in general. Both measures never even benefit
at all from disconnected merges: The former does not change, and the latter
even deteriorates. The circumstances under which all other measures potentially
encourage disconnected merges are intuitively illustrated in Fig. 6. If most clus-
ters are reasonable, merging two clusters with a particularly ill contribution to
the measure can be the best option (Fig. 6a). For all pairwise measures, this is
immediate, and it is also not hard to see for all average measures, as, roughly
speaking, the number of bad contributors decreases. While the above arguments
fail for mixc, mixe and mixd, a disconnected merge of a bad cluster with a very
good one can be the best option for them (see, e.g., Fig. 6b and [9]). Note that
it is always possible to artificially restrict the set of allowed merges to connected
ones, yielding a modified greedy algorithm. Evaluating the practical impact of
such a restriction shall be subject to an experimental study; in our preliminary
4 A dendrogram is a binary forest with singletons as leaves, and inner vertices repre-

senting the merge operations of an agglomerative process.



Density-Constrained Graph Clustering 689

v1 v2

(a) apxc, apxe, apxd, aixc, aixe, aixd, mpxc,
mpxe, mpxd

B

DC

A

(b) mixc, mixe

Fig. 6. Given the gray clusterings, disconnected merges (red, dotted) yield the highest
improvement for the objective functions pointed out. Thus, all objective functions,
except nxe and gxd, potentially favor disconnected merges (for mixd, see [9]).

experiments, we observed none. We summarize our positive observations in the
following corollary, which can be extended to also apply to any local objective
function if we restrict ourselves to connected merges.

Corollary 11. Algorithm 1 combining mid with nxe can be implemented with a
running time in O(md log n) and linear space complexity.

4 Concluding Remarks

Established measures for graph cuts lend themselves well for precisely express-
ing desiderata on graph clusterings. Despite the scarce attention this approach
has received from the graph clustering literature so far, existing studies did
indicate its appropriateness. With a focus on finding graph clusterings that fea-
ture guaranteed intra- and high intercluster quality, we revived this ansatz and
systematically formalized bicriteria quality measures based on expansion, con-
ductance and sparsity. The classification of these measures with respect to their
behavior in the context of greedy agglomeration yields conditions that render
this widespread heuristic efficient, namely the locality and the connectedness of
a measure, which we observed to coincide with common intuition about what is
a good cut-based clustering measure. On top of that, we showed that a guaran-
teed density inside each cluster is especially suited to constrain agglomeration
and that most definitions of intercluster quality do not suffer from local min-
ima. We complemented our findings by exemplarily showing NP-hardness for
some variants of our problem statement. An experimental evaluation of density-
constrained graph clustering and the adaption to local greedy optimization and
to weighted graphs shall be subject to future work. We illustrate the outcome
of greedy agglomeration combining guaranteed intracluster density with high
average isolated intercluster conductance in Fig. 7.



690 R. Görke, A. Schumm, and D. Wagner

Fig. 7. This graph is a three-month snapshot of the email traffic at KIT’s CS depart-
ment, groups represent chairs, which serve as a ground truth (vertices are scaled by
degree, n = 472, m = 2845). We ran Alg.1 using mid with α = 0.25 and aixc to arrive
at the color-clustering. Border colors indicate a Modularity-based clustering [5].

References

1. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A.:
Complexity and Approximation - Combinatorial Optimization Problems and Their
Approximability Properties, 2nd edn. Springer, Heidelberg (2002)

2. Berkhin, P.: A Survey of Clustering Data Mining Techniques. In: Grouping Multi-
dimensional Data: Recent Advances in Clustering, pp. 25–71. Springer, Heidelberg
(2006)

3. Brandes, U., Gaertler, M., Wagner, D.: Engineering Graph Clustering: Models and
Experimental Evaluation. ACM J. of Exp. Algorithmics 12(1.1), 1–26 (2007)

4. Chataigner, F., Manic, G., Wakabayashi, Y., Yuster, R.: Approximation algorithms
and hardness results for the clique packing problem. Electronic Notes in Discrete
Mathematics 29, 397–401 (2007)

5. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Physical Review E 70(066111) (2004)

6. Flake, G.W., Tarjan, R.E., Tsioutsiouliklis, K.: Graph Clustering and Minimum
Cut Trees. Internet Mathematics 1(4), 385–408 (2004)

7. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3-5), 75–174 (2009)
8. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory

of NP-Completeness. W. H. Freeman and Company, New York (1979)
9. Görke, R., Schumm, A., Wagner, D.: Density-Constrained Graph Clustering. Tech-

nical report, ITI Wagner, Department of Informatics, Karlsruhe Institute of Tech-
nology (KIT), Karlsruhe Reports in Informatics 2011-2017 (2011)

10. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice Hall, Englewood
Cliffs (1988)

11. Kannan, R., Vempala, S., Vetta, A.: On Clusterings - Good, Bad and Spectral. In:
Proc. of FOCS 2000, pp. 367–378 (2000)

12. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Physical Review E 69(026113) (2004)

13. Zachary, W.W.: An Information Flow Model for Conflict and Fission in Small
Groups. Journal of Anthropological Research 33, 452–473 (1977)



The MST of Symmetric Disk Graphs

(in Arbitrary Metric Spaces) is Light

Shay Solomon�

Department of Computer Science, Ben-Gurion University of the Negev,
POB 653, Beer-Sheva 84105, Israel

shayso@cs.bgu.ac.il

Abstract. Consider an n-point metric space M = (V, δ), and a trans-
mission range assignment r : V → R

+ that maps each point v ∈ V to
the disk of radius r(v) around it. The symmetric disk graph (henceforth,
SDG) that corresponds to M and r is the undirected graph over V whose
edge set includes an edge (u, v) if both r(u) and r(v) are no smaller than
δ(u, v). SDGs are often used to model wireless communication networks.

Abu-Affash, Aschner, Carmi and Katz (SWAT 2010, [1]) showed that
for any n-point 2-dimensional Euclidean space M , the weight of the
MST of every connected SDG for M is O(log n) ·w(MST (M)), and that
this bound is tight. However, the upper bound proof of [1] relies heavily
on basic geometric properties of constant-dimensional Euclidean spaces,
and does not extend to Euclidean spaces of super-constant dimension.
A natural question that arises is whether this surprising upper bound of
[1] can be generalized for wider families of metric spaces, such as high-
dimensional Euclidean spaces.

In this paper we generalize the upper bound of Abu-Affash et al. [1]
for Euclidean spaces of any dimension. Furthermore, our upper bound
extends to arbitrary metric spaces and, in particular, it applies to any of
the normed spaces �p. Specifically, we demonstrate that for any n-point
metric space M , the weight of the MST of every connected SDG for M
is O(log n) · w(MST (M)).

1 Introduction

1.1 The MST of Symmetric Disk Graphs

Consider a network that is represented as an (undirected) weighted graph G =
(V, E, w), and assume that we want to compute a spanning tree for G of small
weight, i.e., of weight w(G) that is close to the weight w(MST (G)) of the min-
imum spanning tree (MST) MST (G) of G. (The weight of a graph G, denoted
w(G), is defined as the sum of all edge weights in it.) However, due to some
physical constraints (e.g., network faults) we are only given a connected span-
ning subgraph G′ of G, rather than G itself. In this situation it is natural to use
� This research has been supported by the Clore Fellowship grant No. 81265410, by

the BSF grant No. 2008430, and by the Lynn and William Frankel Center for CS.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 691–702, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



692 S. Solomon

the MST MST (G′) of the given subgraph G′. The weight-coefficient of G′ with
respect to G is defined as the ratio between w(MST (G′)) and w(MST (G)). If
the weight-coefficient of G′ is small enough, we can use MST (G′) as a spanning
tree for G of small weight.

The problem of computing spanning trees of small weight (especially the MST)
is a fundamental one in Computer Science [19,17,7,26,13,10], and the above sce-
nario arises naturally in many practical contexts (see, e.g., [30,12,35,23,24,25,11]).
In particular, this scenario is motivated by wireless network design.

In this paper we focus on the symmetric disk graph model in wireless com-
munication networks, which has been subject to considerable research. (See
[16,14,15,31,5,33,1,22], and the references therein.) Let M = (V, δ) be an n-
point metric space that is represented as a complete weighted graph G(M) =
(V,
(
V
2

)
, w) in which the weight w(e) of each edge e = (u, v) is equal to δ(u, v).

Also, let r : V → R
+ be a transmission range assignment that maps each point

v ∈ V to the disk of radius r(v) around it. The symmetric disk graph (henceforth,
SDG) that corresponds to M and r, denoted SDG(M, r),1 is the undirected
spanning subgraph of G(M) whose edge set includes an edge e = (u, v) if both
r(u) and r(v) are no smaller than w(e). Under the symmetric disk graph model
we cannot use all the edges of G(M), but rather only those that are present in
SDG(M, r). Clearly, if r(v) ≥ diam(M),2 for each point v ∈ V , then SDG(M, r)
is simply the complete graph G(M). However, the transmission ranges are usu-
ally significantly shorter than diam(M), and many edges that belong to G(M)
may not be present in SDG(M, r). Therefore, it is generally impossible to use
the MST of M under the symmetric disk graph model, simply because some
of the edges of MST (M) are not present in SDG(M, r) and thus cannot be
accessed. Instead, assuming the weight-coefficient of SDG(M, r) with respect to
M is small enough, we can use MST (SDG(M, r)) as a spanning tree for M of
small weight.

Abu-Affash et al. [1] showed that for any n-point 2-dimensional Euclidean
space M , the weight of the MST of every connected SDG for M is O(log n) ·
w(MST (M)). In other words, they proved that for any n-point 2-dimensional
Euclidean space, the weight-coefficient of every connected SDG is O(log n). In
addition, Abu-Affash et al. [1] provided a matching lower bound of Ω(log n) on
the weight-coefficient of connected SDGs that applies to a basic 1-dimensional
Euclidean space. Notably, the upper bound proof of [1] relies heavily on basic
geometric properties of constant-dimensional Euclidean spaces, and does not
extend to Euclidean spaces of super-constant dimension. A natural question that
arises is whether this surprising upper bound of [1] on the weight-coefficient of

1 The definition of symmetric disk graph can be generalized in the obvious way for any
(undirected) weighted graph. Specifically, the symmetric disk graph SDG(G, r) that
corresponds to a weighted graph G = (V,E,w) and a transmission range assignment
r : V → R

+ is the undirected spanning subgraph of G whose edge set includes an
edge e = (u, v) ∈ E if both r(u) and r(v) are no smaller than w(e).

2 The diameter of a metric space M , denoted diam(M), is defined as the largest
pairwise distance in M .



The MST of Symmetric Disk Graphs (in Arbitrary Metric Spaces) is Light 693

connected SDGs can be generalized for wider families of metric spaces, such as
high-dimensional Euclidean spaces.

In this paper we generalize the upper bound of Abu-Affash et al. [1] for Eu-
clidean spaces of any dimension. Furthermore, our upper bound extends to ar-
bitrary metric spaces and, in particular, it applies to any of the normed spaces
�p. Specifically, we demonstrate that for any n-point metric space M , every con-
nected SDG has weight-coefficient O(log n). In fact, our upper bound is even
more general, applying to disconnected SDGs as well. That is, we show that the
weight of the minimum spanning forest3 (MSF) of every (possibly disconnected)
SDG for M is O(log n) ·w(MST (M)).

1.2 The Range Assignment Problem

Given a network G = (V, E, w), a (transmission) range assignment for G is
an assignment of transmission ranges to each of the vertices of G. A range
assignment is called complete if the induced (directed) communication graph is
strongly connected. In the range assignment problem the objective is to find a
complete range assignment for which the total power consumption (henceforth,
cost) is minimized. The power consumed by a vertex v ∈ V is r(v)α, where
r(v) > 0 is the range assigned to v and α ≥ 1 is some constant. Thus the cost
of the range assignment is given by

∑
v∈V r(v)α. The range assignment problem

was first studied by Kirousis et al. [18], who proved that the problem is NP-
hard in 3-dimensional Euclidean spaces, assuming α = 2, and also presented
a 2-approximation algorithm. Subsequently, Clementi et al. [9] proved that the
problem remains NP-hard in 2-dimensional Euclidean spaces.

We believe that it is more realistic to study the range assignment problem
under the symmetric disk graph model. Specifically, the potential transmission
range of a vertex v is bounded by some maximum range r′(v), and any two ver-
tices u, v can directly communicate with each other if and only if v lies within the
range assigned to u and vice versa. Blough et al. [3] showed that this version of the
range assignment problem is also NP-hard in 2-dimensional and 3-dimensional
Euclidean spaces. Also, Calinescu et al. [4] devised a (1+ 1

2
ln 3+ε)-approximation

scheme and a more practical ( 15
8 )-approximation algorithm. Abu-Affash et al.

[1] showed that, assuming α = 1, the cost of an optimal range assignment with
bounds on the ranges is greater by at most a logarithmic factor than the cost of
an optimal range assignment without such bounds. This result of Abu-Affash et
al. [1] is a simple corollary of their upper bound on the weight-coefficient of SDGs
for 2-dimensional Euclidean spaces. Consequently, this result of [1] for the range
assignment problem holds only in 2-dimensional Euclidean spaces. By applying
our generalized upper bound on the weight-coefficient of SDGs, we extend this
result of Abu-Affash et al. [1] to arbitrary metric spaces.

3 The minimum spanning forest of a (possibly disconnected) weighted graph G is the
union of the MSTs for its connected components. In other words, it is the maximal
cycle-free spanning subgraph of G of minimum weight.



694 S. Solomon

1.3 Proof Overview

As was mentioned above, the upper bound proof of [1] is very specific, and relies
heavily on basic geometric properties of constant-dimensional Euclidean spaces.
Hence, it does not apply to Euclidean spaces of super-constant dimension, let
alone to arbitrary metric spaces. Our upper bound proof is based on completely
different principles. In particular, it is independent of the geometry of the metric
space and applies to every complete graph whose weight function satisfies the
triangle inequality. In fact, at the heart of our proof is a lemma that applies
to an even wider family of graphs, namely, the family of all traceable4 weighted
graphs. Specifically, let S and H be an SDG and a minimum-weight Hamiltonian
path of some traceable weighted n-vertex graph G, respectively, and let F be
the MSF of S. Our lemma states that there is a set Ẽ of edges in F of weight at
most w(H), such that the graph F \ Ẽ obtained by removing all edges of Ẽ from
F contains at least 1

5
· n isolated vertices. The proof of this lemma is based on

a delicate combinatorial argument that does not assume either that the graph
G is complete or that its weight function satisfies the triangle inequality. We
believe that this lemma is of independent interest. (See Lemma 1 in Sect. 2.)
By employing this lemma inductively, we are able to show that the weight of
F is bounded above by log 5

4
n · w(H), which, by the triangle inequality, yields

an upper bound of 2 · log 5
4

n on the weight-coefficient of S with respect to G.
Interestingly, our upper bound of 2 · log 5

4
n on the weight-coefficient of SDGs for

arbitrary metric spaces improves the corresponding upper bound of Abu-Affash
et al. [1] (namely, 90 · log 5

4
n + 1), which holds only in 2-dimensional Euclidean

spaces, by a multiplicative factor of 45.

1.4 Related Work on Disk Graphs

The symmetric disk graph model is a generalization of the extremely well-studied
unit disk graph model (see, e.g., [8,23,20,25,21]). The unit disk graph of a metric
space M , denoted UDG(M), is the symmetric disk graph corresponding to M
and the range assignment r ≡ 1 that maps each point to the unit disk around
it. (It is usually assumed that M is a 2-dimensional Euclidean space.) Observe
that in the case when UDG(M) is connected, all edges of MST (M) belong to
UDG(M), and so MST (UDG(M)) = MST (M). Hence the weight-coefficient of
connected unit disk graphs for arbitrary metric spaces is equal to 1. In the general
case, it is easy to see that all edges of MSF (UDG(M)) belong to MST (M), and
so the weight-coefficient of (possibly disconnected) unit disk graphs for arbitrary
metric spaces is at most 1.

Another model that has received much attention in the literature is the asym-
metric disk graph model (see, e.g., [20,32,28,29,1]). The asymmetric disk graph
corresponding to a metric space M = (V, δ) and a range assignment r : V → R

+

is the directed graph over V , where there is an arc (u, v) of weight δ(u, v) from
u to v if r(u) ≥ δ(u, v). On the negative side, Abu-Affash et al. [1] provided a
lower bound of Ω(n) on the weight-coefficient of strongly connected asymmetric
4 A graph is called traceable if it contains a Hamiltonian path.



The MST of Symmetric Disk Graphs (in Arbitrary Metric Spaces) is Light 695

disk graphs that applies to an n-point 2-dimensional Euclidean space. However,
asymmetric communication models are generally considered to be impractical,
because in such models many communication primitives become unacceptably
complicated [27,34]. In particular, the asymmetric disk graph model is often
viewed as less realistic than the symmetric disk graph model, where, as was
mentioned above, we obtain a logarithmic upper bound on the weight-coefficient
for arbitrary metric spaces.

1.5 Structure of the Paper

In Sect. 2 we obtain a logarithmic upper bound on the weight-coefficient of
SDGs for arbitrary metric spaces. An application of this upper bound to the
range assignment problem is given in Sect. 3.

1.6 Preliminaries

Given a (possibly weighted) graph G, its vertex set (respectively, edge set) is
denoted by V (G) (resp., E(G)). For an edge set E′ ⊆ E(G), we denote by G\E′

the graph obtained by removing all edges of E′ from G. Also, for an edge set E′′

over the vertex set V (G), we denote by G ∪ E′′ the graph obtained by adding
all edges of E′′ to G. The weight of an edge e in G is denoted by w(e). For an
edge set E ⊆ E(G), its weight w(E) is defined as the sum of all edge weights in
it, i.e., w(E) =

∑
e∈E w(e). The weight of G is defined as the weight of its edge

set E(G), namely, w(G) = w(E(G)). Finally, for a positive integer n, we denote
the set {1, 2, . . . , n} by [n].

2 The MST of SDGs is Light

In this section we prove that the weight-coefficient of SDGs for arbitrary n-point
metric spaces is O(log n).

We will use the following well-known fact in the sequel.

Fact 1. Let G be a weighted graph in which ell edge weights are distinct. Then
G has a unique MSF, and the edge of maximum weight in every cycle of G does
not belong to the MSF of G.

In what follows we assume for simplicity that all the distances in any metric
space are distinct. This assumption does not lose generality, since any ties can
be broken using, e.g., lexicographic rules. Given this assumption, Fact 1 implies
that there is a unique MST for any metric space, and a unique MSF for every
SDG of any metric space.

The following lemma is central in our upper bound proof.

Lemma 1. Let M = (V, δ) be an n-point metric space and let r : V → R
+ be

a range assignment. Also, let F = (V, EF ) be the MSF of the symmetric disk
graph S = SDG(M, r) and let H = (V, EH) be a minimum-weight Hamiltonian
path of M . Then there is an edge set Ẽ ⊆ EF of weight at most w(H), such that
the graph F \ Ẽ contains at least 1

5 · n isolated vertices.



696 S. Solomon

Remark: This statement remains valid if instead of the metric space M we take
an arbitrary traceable weighted graph.

Proof. First, we construct a bijection f : E → Ẽ, where E ⊆ EH and Ẽ ⊆ EF ,
that satisfies that w(f(e)) ≤ w(e), for each edge e ∈ E. This would imply that
w(Ẽ) ≤ w(E) ≤ w(H). We then show that the graph F \ Ẽ contains at least
1
5 · n isolated vertices, which concludes the proof of the lemma.

The edge set E (respectively, Ẽ) is defined as the union of three disjoint edge
sets to be specified later, denoted E′

1, E
′
2 and E′′

3 (resp., Ẽ1, Ẽ2 and Ẽ3); thus
E = E′

1 ∪ E′
2 ∪ E′′

3 and Ẽ = Ẽ1 ∪ Ẽ2 ∪ Ẽ3. We will construct three bijections
f1 : E′

1 → Ẽ1, f2 : E′
2 → Ẽ2 and f3 : E′′

3 → Ẽ3. The bijection f will be obtained
as the extension of these functions to the domain E, that is, for an edge e ∈ E,

f(e) =

⎧
⎪⎨

⎪⎩

f1(e), if e ∈ E′
1;

f2(e), if e ∈ E′
2;

f3(e), if e ∈ E′′
3 .

In other words, the function f1 (respectively, f2; resp., f3) defines the restriction
of the function f to the domain E′

1 (resp., E′
2; resp., E′′

3 ).
Denote by E′ the set of all edges in H that belong to the SDG S, i.e., E′ =

EH ∩ E(S), and let E′′ = EH \ E′ be the complementary edge set of E′ in
EH . We define E′

1 as the set of all edges in E′ that belong to the MSF F , i.e.,
E′

1 = E′ ∩ EF , and E′
2 = E′ \ E′

1 as the complementary edge set of E′
1 in E′.

Note that (1) E′ ⊆ E(S), (2) E′′∩E(S) = ∅, (3) E′
1 ⊆ EF , and (4) E′

2∩EF = ∅.
Also, observe that, by definition, the edge set E contains the entire edge set
E′ = E′

1∪E′
2 and only a subset E′′

3 of E′′; thus E = E′
1∪E′

2∪E′′
3 ⊆ E′∪E′′ = EH .

The function f1 is defined as the identity map, namely, for each edge e ∈ E′
1,

we define f1(e) = e. Also, define Ẽ1 = E′
1. Observe that Ẽ1 ⊆ EF , and f1 is a

bijection from E′
1 to Ẽ1.

We proceed with constructing the function f2.
Write k = |E′

2|, and let e′1, e
′
2, . . . , e

′
k denote the edges of E′

2 by increasing order
of weight. Next, we compute k = |E′

2| spanning forests F1, F2, . . . , Fk of S,
where each forest Fi contains a unique edge ẽi in EF \ EH that satisfies that
w(ẽi) ≤ w(e′i); thus we can define f2(e′i) = ẽi. The first forest F1 is simply a copy
of F . The rest of the forests F2, F3, . . . , Fk are computed iteratively as follows.
For each index i = 1, 2, . . . , k, the graph Fi ∪ {e′i} obtained from Fi by adding
to it the edge e′i contains a unique cycle Ci. Since H is cycle-free, at least one
edge of Ci does not belong to H; take ẽi to be an arbitrary such edge and define
f2(e′i) = ẽi. Finally, denote by Fi+1 = Fi∪{e′i}\{f2(e′i)} the graph obtained from
Fi by adding to it the edge e′i and removing the edge f2(e′i), for each i ∈ [k− 1].
Define Ẽ2 = {f2(e′i) | i ∈ [k]}. Observe that f2 is a bijection from E′

2 to Ẽ2.

Claim. (1) Ẽ2 ⊆ EF \ Ẽ1. (2) For each index i ∈ [k], w(f2(e′i)) ≤ w(e′i).

Proof. Fix an arbitrary index i ∈ [k], and define E′
(i) = {e′1, . . . , e′i}.

Note that the cycle Ci that is identified during the ith iteration of the above
process is a subgraph of S. Moreover, E(Ci) ⊆ EF ∪ E′

2. Since E′
2 ⊆ EH and



The MST of Symmetric Disk Graphs (in Arbitrary Metric Spaces) is Light 697

f2(e′i) is an edge of Ci that does not belong to H , it follows that f2(e′i) ∈ EF \EH .
This argument holds for any index i ∈ [k], and so Ẽ2 = {f2(e′i) | i ∈ [k]} ⊆ EF \
EH ⊆ EF \ Ẽ1. (The last inequality follows from the fact that Ẽ1 = E′

1 ⊆ EH .)
To prove the second assertion of the claim, notice that each edge of Ci that

do not belong to F must belong to E′
(i), i.e., E(Ci) \ EF ⊆ E′

(i). Fact 1 implies
that the edge of maximum weight in Ci, denoted e∗i , does not belong to F , hence
e∗i ∈ E′

(i). Since e′i is the edge of maximum weight in E′
(i), it follows that w(e∗i ) ≤

w(e′i). Also, as f2(e′i) belongs to Ci, we have by definition w(f2(e′i)) ≤ w(e∗i ).
Consequently, w(f2(e′i)) ≤ w(e∗i ) ≤ w(e′i), and we are done. ��

Next, we construct the function f3.
Denote by H ′′ = H \ (E′

1 ∪E′
2) and F ′′ = F \ (Ẽ1 ∪ Ẽ2) the graphs obtained

from H and F by removing all edges of E′ = E′
1∪E′

2 and Ẽ1∪Ẽ2, respectively. By
definition, E(H ′′) = E′′. For an edge e = (u, v), denote by min(e) the endpoint of
e with smaller radius, i.e., min(e) = u if r(u) < r(v), and min(e) = v otherwise.
The construction of the function f3 is done in parallel to the computation of its
domain E′′

3 ; recall that E′′
3 is the set of all edges in E′′ that belong to E.

We start with initializing E′′
3 = ∅. Then we examine the edges of E′′ one after

another in an arbitrary order. For each edge e′′ ∈ E′′, we check whether the
vertex min(e′′) is isolated in F ′′ or not. If min(e′′) is isolated in F ′′, we leave
H ′′, F ′′ and E′′

3 intact. Otherwise, at least one edge is incident to min(e′′) in F ′′.
Let ẽ be an arbitrary such edge, and define f3(e′′) = ẽ. We remove the edge e′′

from the graph H ′′ and add it to the edge set E′′
3 , and also remove the edge f3(e′′)

from the graph F ′′. This process is repeated iteratively until all edges of E′′ have
been examined. Define Ẽ3 = {f3(e′′) | e′′ ∈ E′′

3 }. At the end of this process, it
holds that H ′′ = H \E = H \(E′

1∪E′
2∪E′′

3 ) and F ′′ = F \Ẽ = F \(Ẽ1∪Ẽ2∪Ẽ3).
Observe that Ẽ3 ⊆ EF \ (Ẽ1 ∪ Ẽ2), and f3 is a bijection from E′′

3 to Ẽ3.

Claim. For each edge e′′ ∈ E′′
3 , w(f3(e′′)) ≤ w(e′′).

Proof. Consider an arbitrary edge e′′ ∈ E′′
3 and the graph F ′′ just before the

edge e′′ was examined. Since no edge of E′′
3 belongs to the SDG S, we have by

definition r(min(e′′)) < w(e′′). Also, since the graph F ′′ is a subgraph of S, the
weight of every edge that is incident to min(e′′) in F ′′, including f3(e′′) = ẽ, is
no greater than r(min(e′′)). Hence, w(f3(e′′)) ≤ r(min(e′′)) < w(e′′). ��

We showed that the functions f1 : E′
1 → Ẽ1, f2 : E′

2 → Ẽ2 and f3 : E′′
3 → Ẽ3 are

bijective, and that for each edge e ∈ E′
1 (respectively, e ∈ E′

2; resp., e ∈ E′′
3 ),

it holds that w(f1(e)) ≤ w(e) (resp., w(f2(e)) ≤ w(e); resp., w(f3(e)) ≤ w(e)).
Furthermore, the domains E′

1, E
′
2, E

′′
3 (respectively, images Ẽ1, Ẽ2, Ẽ3) of these

functions are pairwise disjoint subsets of EH (resp., EF ). Hence, the extension
f of these functions to the domain E is a bijection from E = E′

1∪E′
2∪E′′

3 ⊆ EH
to Ẽ = Ẽ1 ∪ Ẽ2 ∪ Ẽ3 ⊆ EF , such that w(f(e)) ≤ w(e), for each edge e ∈ E. It
follows that

w(Ẽ) =
∑

e∈Ẽ
w(e) =

∑

e∈E
w(f(e)) ≤

∑

e∈E
w(e) = w(E) ≤ w(H).



698 S. Solomon

To complete the proof of Lemma 1, we show that the graph F ′′ = F \ Ẽ
contains at least 1

5 · n isolated vertices. Denote by mH (respectively, mF ) the
number |E(H ′′)| (resp., |E(F ′′)|) of edges in the graph H ′′ (resp., F ′′).

Suppose first that mF < 2
5
· n. Observe that in any n-vertex graph with m

edges there are at least n − 2m isolated vertices. Thus, the number of isolated
vertices in F ′′ is bounded below by n− 2mF > n− 4

5 · n = 1
5 · n, as required.

We henceforth assume that mF ≥ 2
5
· n.

Since H ′′ = H\E and E ⊆ EH , it holds that |E(H ′′)| = |EH |−|E|. Similarly,
we get that |E(F ′′)| = |EF | − |Ẽ|. Also, observe that |EH | = n− 1 ≥ |EF | and
|E| = |Ẽ|. Therefore,

mH = |E(H ′′)| = |EH | − |E| ≥ |EF | − |Ẽ| = |E(F ′′)| = mF . (1)

LetM′′ be a maximal independent edge set (i.e., a maximal set of pairwise non-
adjacent edges) in H ′′. Since H ′′ is a subgraph of the Hamiltonian path H, we
conclude that at least half of the edges of H ′′ must belong toM′′. Consequently,

|M′′| ≥ 1
2
· |E(H ′′)| =

1
2
·mH ≥

1
2
·mF ≥

1
5
· n.

(The second inequality follows from (1) whereas the third inequality follows
from the above assumption.) By definition, for any pair e, e′ of edges in M′′,
min(e) = min(e′), hence the size of the vertex set I′′ = {min(e′′) | e′′ ∈ M′′}
satisfies |I′′| = |M′′| ≥ 1

5 ·n. By construction, for each edge e′′ in H ′′, the vertex
min(e′′) is isolated in F ′′. In particular, all the vertices of I ′′ are isolated in F ′′.
Thus, the number of isolated vertices in F ′′ is bounded below by |I ′′| ≥ 1

5
· n.

Lemma 1 follows. ��

Next, we employ Lemma 1 inductively to upper bound the weight of SDGs
in terms of the weight of a minimum-weight Hamiltonian path of the metric
space. The desired upper bound of O(log n) on the weight-coefficient of SDGs
for arbitrary n-point metric spaces would immediately follow.

Lemma 2. Let M = (V, δ) be an n-point metric space and let r : V → R
+ be

a range assignment. Also, let F = (V, EF ) be the MSF of the symmetric disk
graph S = SDG(M, r) and let H = (V, EH) be a minimum-weight Hamiltonian
path of M . Then w(F ) ≤ log 5

4
n ·w(H).

Proof. The proof is by induction on the number n of points in V .
Basis: n ≤ 4. The case n = 1 is trivial. Suppose next that 2 ≤ n ≤ 4. In this
case log 5

4
n ≥ log 5

4
2 > 3. Also, the MSF F of S contains at most 3 edges. By the

triangle inequality, the weight of each edge of F is bounded above by the weight
w(H) of the Hamiltonian path H. Hence, w(F ) ≤ 3 · w(H) < log 5

4
n · w(H).

Induction step: We assume that the statement holds for all smaller values of n,
n ≥ 5, and prove it for n. By Lemma 1, there is an edge set Ẽ ⊆ EF of weight at
most w(H), such that the set I of isolated vertices in the graph F \ Ẽ satisfies
|I| ≥ 1

5
· n. Consider the complementary edge set Ê = EF \ Ẽ of edges in F .

Observe that no edge of Ê is incident to a vertex of I. Let M̂ be the sub-metric



The MST of Symmetric Disk Graphs (in Arbitrary Metric Spaces) is Light 699

of M induced by the point set of V̂ = V \ I, and let r̂ be the restriction of the
range assignment r to V̂ . Also, let Ŝ = SDG(M̂, r̂) be the SDG corresponding
to M̂ and r̂, and let F̂ = (V̂ , EF̂ ) be the MSF of Ŝ. Notice that the induced
subgraph of S over the vertex set V̂ is equal to Ŝ, implying that all edges of Ê
belong to Ŝ. Thus, since F̂ is a spanning forest of Ŝ, replacing the edge set Ê of
F by the edge set EF̂ does not affect the connectivity of the graph, i.e., the graph
F̄ = F \ Ê∪EF̂ that is obtained from F by removing the edge set Ê and adding
the edge set EF̂ has exactly the same connected components as F . Consequently,
by breaking all cycles in the graph F̄ , we get a spanning forest of S. The weight
of this spanning forest is bounded above by the weight w(F̄ ) = w

(
F \ Ê ∪EF̂

)

of F̄ , and is bounded below by the weight w(F ) of the MSF F of S. Hence
w(F ) ≤ w

(
F \ Ê ∪ EF̂

)
, which implies that w(Ê) ≤ w(EF̂ ) = w(F̂ ). Write

n̂ = |V̂ |, and let Ĥ = (V̂ , EĤ) be a minimum-weight Hamiltonian path of M̂ .
Since |I| ≥ 1

5 · n, we have

n̂ = |V̂ | = |V \ I| ≤ 4
5
· n ≤ n− 1.

(The last inequality holds for n ≥ 5.) By the induction hypothesis for n̂, w(F̂ ) ≤
log 5

4
n̂ ·w(Ĥ). Also, the triangle inequality implies that w(Ĥ) ≤ w(H). Hence,

w(Ê) ≤ w(F̂ ) ≤ log 5
4

n̂ · w(Ĥ) ≤ log 5
4

(
4
5
· n
)

· w(H)

= log 5
4

n · w(H)− w(H).

We conclude that

w(F ) = w(EF ) = w(Ẽ) + w(EF \ Ẽ) = w(Ẽ) + w(Ê)
≤ w(H) + log 5

4
n · w(H)− w(H) = log 5

4
n · w(H). ��

By the triangle inequality, the weight of a minimum-weight Hamiltonian path
of any metric space is at most twice greater than the weight of the MST of that
metric. We derive the main result of this paper as a corollary of Lemma 2.

Theorem 1. For any n-point metric space M = (V, δ) and any range assign-
ment r : V → R

+, w(MSF (SDG(M, r))) = O(log n) ·w(MST (M)).

3 The Range Assignment Problem

In this section we demonstrate that for any metric space, the cost of an optimal
range assignment with bounds on the ranges is greater by at most a logarithmic
factor than the cost of an optimal range assignment without such bounds. This
result follows as a simple corollary of the upper bound given in Theorem 1.

Let M = (V, δ) be an n-point metric space, and assume that the n points of
V , denoted by v1, v2, . . . , vn, represent transceivers. Also, let r′ : V → R

+ be



700 S. Solomon

a bounding range assignment for V , i.e., a function that provides a maximum
transmission range for each of the points of V , such that the SDG SDG(M, r′)
corresponding to M and r′ is connected. In the bounded range assignment prob-
lem the objective is to compute a range assignment r : V → R

+, such that (i)
for each point vi ∈ V , r(vi) ≤ r′(vi), (ii) the induced SDG (using the ranges
r(v1), r(v2), . . . , r(vn)), namely SDG(M, r), is connected, and (iii)

∑n
i=1 r(vi) is

minimized. The sum
∑n
i=1 r(vi) is called the cost of the range assignment r. In

the unbounded range assignment problem the maximum transmission range for
each of the points of V is unbounded; that is, the unbounded range assignment
problem is a special case of the bounded range assignment problem, where the
bounding range assignment r′ satisfies r′(vi) = diam(M), for each point vi ∈ V .

Fix an arbitrary bounding range assignment r′ : V → R
+. Denote by

OPT (M, r′) the cost of an optimal solution for the bounded range assign-
ment problem corresponding to M and r′. Also, denote by OPT (M) the cost
of an optimal solution for the unbounded range assignment problem corre-
sponding to M . Notice that OPT (M) ≤ OPT (M, r′). Next, we show that
OPT (M, r′) = O(log n) ·OPT (M).

Let SDG(M, r′) be the SDG corresponding to M and r′, and let T be the MST
of SDG(M, r′). We define r to be the range assignment that assigns r(vi) with the
weight of the heaviest edge incident to vi in T , for each point vi ∈ V . By construc-
tion, r(vi) ≤ r′(vi), for each point vi ∈ V . Also, notice that the SDG correspond-
ing to M and r, namely SDG(M, r), contains T and in thus connected. Hence,
the range assignment r provides a feasible solution for the bounded range assign-
ment problem corresponding to M and r′, yielding OPT (M, r′) ≤

∑n
i=1 r(vi).

By a double counting argument, we get that
∑n

i=1 r(vi) ≤ 2 · w(T ). Also, by
Theorem 1, w(T ) = w(MST (SDG(M, r′))) = O(log n) · w(MST (M)). Finally,
it is easy to verify that w(MST (M)) ≤ OPT (M). Altogether,

OPT (M, r′) ≤
n∑

i=1

r(vi) ≤ 2 · w(T ) = 2 · w(MST (SDG(M, r′)))

= O(log n) · w(MST (M)) = O(log n) ·OPT (M).

Theorem 2. For any n-point metric space M = (V, δ) and any bounding range
assignment r′ : V → R

+, OPT (M, r′) = O(log n) ·OPT (M).

Acknowledgments

The author thanks Rom Aschner, Michael Elkin and Matya Katz for helpful
discussions.

References

1. Abu-Affash, A.K., Aschner, R., Carmi, P., Katz, M.J.: The MST of Symmetric Disk
Graphs Is Light. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 236–247.
Springer, Heidelberg (2010)



The MST of Symmetric Disk Graphs (in Arbitrary Metric Spaces) is Light 701

2. Althöfer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of
weighted graphs. Discrete & Computational Geometry 9, 81–100 (1993)

3. Blough, D.M., Leoncini, M., Resta, G., Santi, P.: On the symmetric range assign-
ment problem in wireless ad hoc networks. In: Proc. of the IFIP 17th World Com-
puter Congress TC1 Stream / 2nd IFIP International Conference on Theoretical
Computer Science (TCS), pp. 71–82 (2002)

4. Calinescu, G., Mandoiu, I.I., Zelikovsky, A.: Symmetric connectivity with minimum
power consumption in radio networks. In: Proc. of the IFIP 17th World Computer
Congress TC1 Stream / 2nd IFIP International Conference on Theoretical Com-
puter Science (TCS), pp. 119–130 (2002)

5. Caragiannis, I., Fishkin, A.V., Kaklamanis, C., Papaioannou, E.: A tight bound
for online colouring of disk graphs. Theor. Comput. Sci. 384(2-3), 152–160 (2007)

6. Chandra, B., Das, G., Narasimhan, G., Soares, J.: New sparseness results on graph
spanners. Int. J. Comput. Geometry Appl. 5, 125–144 (1995)

7. Chazelle, B.: A minimum spanning tree algorithm with inverse-Ackermann type
complexity. J. ACM 47(6), 1028–1047 (2000)

8. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Mathemat-
ics 86(1-3), 165–177 (1990)

9. Clementi, A.E.F., Penna, P., Silvestri, R.: Hardness results for the power range
assignment problem in packet radio networks. In: Hochbaum, D.S., Jansen, K.,
Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS,
vol. 1671, pp. 197–208. Springer, Heidelberg (1999)

10. Czumaj, A., Sohler, C.: Estimating the Weight of Metric Minimum Spanning Trees
in Sublinear Time. SIAM J. Comput. 39(3), 904–922 (2009)

11. Damian, M., Pandit, S., Pemmaraju, S.V.: Distributed Spanner Construction
in Doubling Metric Spaces. In: Shvartsman, A.A. (ed.) OPODIS 2006. LNCS,
vol. 4305, pp. 157–171. Springer, Heidelberg (2006)

12. Das, S.K., Ferragina, P.: An o(n) Work EREW Parallel Algorithm for Updating
MST. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 331–342. Springer,
Heidelberg (1994)

13. Elkin, M.: An Unconditional Lower Bound on the Time-Approximation Trade-off
for the Distributed Minimum Spanning Tree Problem. SIAM J. Comput. 36(2),
433–456 (2006)

14. Erlebach, T., Jansen, K., Seidel, E.: Polynomial-time approximation schemes for
geometric graphs. In: Proc. of 12th SODA, pp. 671–679 (2001)

15. Fiala, J., Fishkin, A.V., Fomin, F.V.: On distance constrained labeling of disk
graphs. Theor. Comput. Sci. 326(1-3), 261–292 (2004)

16. Hliněný, P., Kratochv́ıl, J.: Representing graphs by disks and balls. Discrete Math-
ematics 229(1-3), 101–124 (2001)

17. Karger, D.R., Klein, P.N., Tarjan, R.E.: A Randomized Linear-Time Algorithm to
Find Minimum Spanning Trees. J. ACM 42(2), 321–328 (1995)

18. Kirousis, L., Kranakis, E., Krizanc, D., Pelc, A.: Power consumption in packet
radio networks. Theoretical Computer Science 243(1-2), 289–305 (2000)

19. Khuller, S., Raghavachari, B., Young, N.E.: Low degree spanning trees of small
weight. In: Proc. of 26th STOC, pp. 412–421 (1994)

20. Kumar, V.S.A., Marathe, M.V., Parthasarathy, S., Srinivasan, A.: End-to-end
packet-scheduling in wireless ad-hoc networks. In: Proc. of 15th SODA, pp. 1021–
1030 (2004)

21. van Leeuwen, E.J.: Approximation Algorithms for Unit Disk Graphs. In: Kratsch,
D. (ed.) WG 2005. LNCS, vol. 3787, pp. 351–361. Springer, Heidelberg (2005)



702 S. Solomon

22. van Leeuwen, E.J., van Leeuwen, J.: On the Representation of Disk Graphs. Tech-
nical report UU-CS-2006-037, Utrecht University (2006)

23. Li, X.-Y.: Approximate MST for UDG Locally. In: Warnow, T., Zhu, B. (eds.)
COCOON 2003. LNCS, vol. 2697, pp. 364–373. Springer, Heidelberg (2003)

24. Li, X.-Y., Wang, Y., Wan, P.-J., Frieder, O.: Localized Low Weight Graph and Its
Applications in Wireless Ad Hoc Networks. In: Proc. of 23rd INFOCOM (2004)

25. Li, X.-Y., Wang, Y., Song, W.-Z.: Applications of k-Local MST for Topology Con-
trol and Broadcasting in Wireless Ad Hoc Networks. IEEE Trans. Parallel Distrib.
Syst. 15(12), 1057–1069 (2004)

26. Pettie, P., Ramachandran, V.: An optimal minimum spanning tree algorithm. J.
ACM 49(1), 16–34 (2002)

27. Prakash, R.: Unidirectional links prove costly in wireless ad hoc networks. In: Proc.
of 3rd DIAL-M, pp. 15–22 (1999)

28. Peleg, D., Roditty, L.: Localized spanner construction for ad hoc networks with
variable transmission range. ACM Trans. on Sensor Net. 7(3), Article 25 (2010)

29. Peleg, D., Roditty, L.: Relaxed Spanners for Directed Disk Graphs. In: Proc. of
27th STACS, pp. 609–620 (2010)

30. Salowe, J.S.: Construction of Multidimensional Spanner Graphs, with Applications
to Minimum Spanning Trees. In: Proc. of 7th SoCG, pp. 256–261 (1991)

31. Thai, M.T., Du, D.-Z.: Connected Dominating Sets in Disk Graphs with Bidirec-
tional Links. IEEE Communications Letters 10(3), 138–140 (2006)

32. Thai, M.T., Tiwari, R., Du, D.-Z.: On Construction of Virtual Backbone in Wireless
Ad Hoc Networks with Unidirectional Links. IEEE Trans. Mob. Comput. 7(9),
1098–1109 (2008)

33. Thai, M.T., Wang, F., Liu, D., Zhu, S., Du, D.-Z.: Connected Dominating Sets in
Wireless Networks with Different Transmission Ranges. IEEE Trans. Mob. Com-
put. 6(7), 721–730 (2007)

34. Wattenhofer, R.: Algorithms for ad hoc and sensor networks. Computer Commu-
nications 28(13), 1498–1504 (2005)

35. Zhou, H., Shenoy, N.V., Nicholls, W.: Efficient minimum spanning tree construction
without Delaunay triangulation. Inf. Process. Lett. 81(5), 271–276 (2002)



Theory vs. Practice in the Design and
Analysis of Algorithms

Robert E. Tarjan

Department of Computer Science, Princeton University and HP Labs

Abstract. In this talk I’ll explore gaps between the theoretical study of algo-
rithms and the use of algorithms in practice. Examples will be drawn from my
own experiences in industry and academia, and will include data structures and
network algorithms. Based on these examples I’ll try to draw conclusions to help
guide the work of theoreticians and experimentalists, in an effort to make this
work more relevant to the needs of practitioners.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, p. 703, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



A Fully Polynomial Approximation Scheme for a

Knapsack Problem with a Minimum Filling
Constraint�

(Extended Abstract)

Zhou Xu�� and Xiaofan Lai

Dept. of Logistics and Maritime Studies,
Faculty of Business, The Hong Kong Polytechnic University

{lgtzx,10901006r}@polyu.edu.hk

Abstract. We study a variant of the knapsack problem, where a mini-
mum filling constraint is imposed such that the total weight of selected
items cannot be less than a given threshold. We consider the case when
the ratio of the threshold to the capacity equals a given constant α with
0 ≤ α < 1. For any such constant α, since finding an optimal solution is
NP-hard, we develop the first FPTAS for the problem, which has a time
complexity polynomial in 1/(1− α).

Keywords: approximation algorithm, FPTAS, knapsack problem, min-
imum filling constraint.

1 Introduction

The knapsack problem is a well-studied combinatorial optimization problem.
Given a capacity c, and given a set J = {1, 2, ..., n} of n items, where each item
has a weight wj and a profit pj , where 0 < wj ≤ c and pj ≥ 0, the problem is
to select a subset of J such that the total profit of selected items is maximized
and the total weight does not exceed the capacity c. The knapsack problem is
NP-hard, and has a fully polynomial approximation scheme (FPTAS) which can
deliver a feasible solution with a total profit not less than (1− ε) times the total
profit of an optimal solution [9], and with a time complexity polynomial in n
and 1/ε, for any 0 < ε ≤ 1.

We study a variant of the knapsack problem, where a minimum filling con-
straint is imposed, such that the total weight of selected items cannot be less
than a given threshold d where 0 ≤ d ≤ c. We call this the knapsack problem
with a minimum filling constraint (KPMFC). Using binary decision variables xj
for j ∈ J , the problem can be formulated as an integer programming model.

max
∑

j∈J
pjxj

� This work was partially supported by a Niche Areas Grant (J-BB7C) of the Hong
Kong Polytechnic University.

�� Corresponding author.

F. Dehne, J. Iacono, and J.-R. Sack (Eds.): WADS 2011, LNCS 6844, pp. 704–715, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



A Fully Polynomial Approximation Scheme for a Knapsack Problem 705

s.t. d ≤
∑

j∈J
wjxj ≤ c,

xj ∈ {0, 1}, for j ∈ J .

If the problem has a feasible solution, let {x∗
j : j ∈ J} denote an optimal solution.

Problem KPMFC has several applications in business. For instance when a
shipping company operates a ship with a capacity, and makes decisions on ac-
ceptance or rejection of cargos for sailing, the minimum filling constraint is often
imposed, to avoid the total weight of cargos accepted being too light to cause
an unbalancing problem of the ship. Another typical application occurs when
a buyer with a budget limit (denoted by c) selects items to purchase from a
seller. The seller often offers rewards, such as free delivery or coupons, to the
buyer if the total value of the purchased items exceeds a threshold, or in other
words, satisfies a minimum filling constraint with wj representing the unit price
of item j. This type of reward schemes is a common practice in buying services
from logistics service providers, and buying products from online retailers in e-
Commerce [5]. With pj denoting her perceived value of item j, the buyer aims to
maximize the total perceived values of items purchased and of rewards granted.

Finding an optimal solution to problem KPMFC is NP-hard, since it contains
the knapsack problem as a special case with d = 0. Moreover, finding a feasible
solution to problem KPMFC is still NP-hard, since it contains the partition
problem [3], which is a well-known NP-complete problem, as a special case with
d = c =

∑n
j=1 wj/2. This implies that problem KPMFC is more challenging

than the knapsack problem, because the latter problem not only always has a
feasible solution with xj = 0 for all j ∈ J , but also has an FPTAS.

One may notice that the transformation mentioned above, which reduces the
partition problem to problem KPMFC, assigns the same value to the threshold d
and the capacity c. However, in many situations, including those for applications
mentioned before, the value of d is strictly less than c. For example, any buyer
who orders books from Powell’s Books will be provided free shipping if the order
has a total value above 50 USD, which is often strictly less than the buyer’s
budget limit.

Therefore, it is natural to study problem KPMFC under the assumption that
the ratio of d to c equals a constant α ∈ [0, 1) that does not belong to the problem
instance and is fixed from outside. By a reduction from the knapsack problem,
one can see that even under this assumption, finding an optimal solution to
problem KPMFC is NP-hard for any constant α ∈ [0, 1). This leads to the
following research question: does problem KPMFC have an FPTAS with a time
complexity polynomial in 1/(1− α)? In this paper, we give a positive answer to
this question by developing such an FPTAS.

1.1 Related Works

While the knapsack problem has received wide attention in the literature, to
our knowledge only two papers considered the minimum filling constraint in
problems related to KPMFC. Bettinelli et al. [1] developed a branch-and-price



706 Z. Xu and X. Lai

algorithm for a bin packing problem with the minimum filling constraint, where
for each bin used, the total weight of items packed in it cannot be less than a
threshold. Cappanera and Trubian [2] developed a local-search-based heuristic
for a variant of the multidimensional knapsack problem, where each item j has
an m-dimensional weight, and for each i where 1 ≤ i ≤ m, the total weight in
the i-th dimension of select items needs to satisfy a capacity constraint and a
minimum filling constraint. Since both problems contain problem KPMFC as a
special case, finding a feasible solution to them is NP-hard.

The knapsack problem is one of the earliest combinatorial optimization prob-
lems discovered to admit an FPTAS. Its first FPTAS was proposed by Ibarra and
Kim [4], and later on improved by Lawler [10], and Kellerer and Pferschy [6, 7].
All these schemes are converted from a dynamic programming by profits, which
is a pseudo-polynomial time algorithm to reach every possible total profit value
with a subset of items having a smallest total weight. Clearly, the largest total
profit value, which can be reached by a subset of items having a total weight
not greater than the capacity c, is an optimal solution to the knapsack problem.
To convert this dynamic programming to an FPTAS, it requires to scale profit
values pj to p̂j = �pj/δp� where δp is an appropriate scaling parameter to ensure
that the resulting algorithm has an approximation ratio of (1 − ε) and a time
complexity polynomial in n and 1/ε. For this purpose, δp is often determined
by a lower bound L on the optimal solution, where the ratio of the optimal
solution to L must be polynomial in n and 1/ε. For the knapsack problem, such
a lower bound can be easily obtained by setting L = max{pj : j ∈ J} because
wj ≤ c for all j ∈ J and the total profit of an optimal solution does not exceed
n max{pj : j ∈ J}. With advanced refinements of the scaling technique and other
careful tuning of the algorithm, the FPTAS proposed by Kellerer and Pferschy [7]
has achieved the current best time complexity of O(n log(1/ε) + 1/ε3 log2(1/ε)),
assuming that n is not in O(1/ε log(1/ε)). Besides, with similar techniques and
some algorithmic extensions, a number of FPTAS have been developed for vari-
ous variants of the knapsack problem [9].

Unfortunately, the approach based on dynamic programming by profits is not
applicable for problem KPMFC, mainly due to the following two facts: (1) the
subset of items, which has the smallest total weight among those with the same
total profit as the optimal solution, may not satisfy the minimal filling constraint;
(2) the traditional way to compute the lower bound on the optimal solution is
not valid for problem KPMFC, because selecting only the largest profitable item
may not satisfy the minimal filling constraint. Therefore, to develop an FPTAS
for problem KPMFC, one needs to resolve these challenges raised by the minimal
filling constraint.

It is worthy to be mentioned that if the threshold d is a constant that does not
belong to the problem instance, problem KPMFC would become a lot easier, and
one can obtain an FPTAS for this special case by simply modifying the approach
based on dynamic programming by profits. Moreover, Kellerer and Strusevich
[8] recently proposed an FPTAS for a symmetric quadratic knapsack problem,
which aims to minimize the total of costs associated with linear terms xj and



A Fully Polynomial Approximation Scheme for a Knapsack Problem 707

(1 − xj), and costs associated with quadratic terms xjxi and (1 − xj)(1 − xi).
Their FPTAS is converted from a dynamic programming by costs and weights,
which is different from the traditional approach, and has enlightened us on the
development of an FPTAS in this paper for problem KPMFC.

1.2 Our Results, Techniques, and Paper Outline

Consider problem KPMFC with the ratio of d to c equal to a constant α ∈
[0, 1). We develop the first FPTAS for this problem which returns “infeasible” if
the problem has no feasible solution, and otherwise, delivers a feasible solution
{xj : j ∈ J} with

∑
j∈J pjxj ≤ (1 − ε)

∑
j∈J pjx

∗
j for any ε > 0, where the

time complexity is O(n log(n) + [n + K(n)]/[ε(1 − α)3]), and K(n) is the time
complexity of an existing FPTAS for the knapsack problem.

The main idea behind our algorithm is as follows. We first separate items by
weights, where items with wj ≥ (1 − α)c are considered “big”, and those with
wj < (1−α)c are considered “small”. We use S and B to denote the set of small
items and the set of big items of J . Accordingly, at most 1/(1−α) big items can
be selected in any feasible solution. Consider any subset of at most 1/(1−α) big
items with a total weight value denoted by WB . It can be seen that if problem
KPMFC on J has a feasible solution {xj : j ∈ J} with

∑
j∈B wjxj = WB ,

then the values of xj for small items j ∈ S form a feasible solution to problem
KPMFC with c−WB as the capacity and d−WB as the threshold. We prove in
Section 2 that this problem KPMFC on small items is equivalent to a knapsack
problem with c−WB as the capacity, and therefore, the existing FPTAS for the
latter is applicable to the former. This suggests the following way to develop an
approximation algorithm for problem KPMFC on J . Firstly, we search possible
values of WB with corresponding values of xj for big items j ∈ B that lead to∑

j∈B wjxj = WB . Secondly, for each WB , we apply the existing FPTAS on the
knapsack problem on small items in S with c−WB as the capacity and d−WB

as the threshold, and then, combine the values of xj obtained for j ∈ S with
the values of xj for j ∈ B to form a feasible solution to problem KPMFC on
J . Lastly, among all feasible solutions obtained, we return the one that has the
largest total profit.

To ensure a time complexity polynomial in 1/(1 − α), we cannot enumerate
all possible values of WB for big items. Therefore, we develop a partial search
procedure in Section 3 to explore part of them. To further ensure an approx-
imation ratio of (1 − ε) for any 0 < ε ≤ 1, for each WB explored, the partial
search procedure reaches all possible values of total scaled profit of a subset of
big items with a total weight equal to WB . This is different from the traditional
approach for the knapsack problem based on dynamic programming by profits.

Like those existing FPTAS for the knapsack problem, to choose an appropriate
value of the scaling parameter for profits, the partial search procedure needs a
lower bound L on the total profit of big items in an optimal solution. As we have
explained earlier, the traditional methods to compute L are not applicable for
problem KPMFC. Therefore, we revise the partial search procedure to develop
an algorithm in Section 4 to compute L.



708 Z. Xu and X. Lai

Finally, we present the implementation details of the FPTAS for problem
KPMFC, and prove the correctness and time complexity in Section 5. One pos-
sible direction of the future work is to apply the results presented in this paper in
developing approximation algorithms for other variants of the knapsack problem
with the minimum filling constraint.

2 Separations of Items

Consider the set of big items B ⊆ J . Note that each item in B has a weight
greater than or equal to (1−α)c. Thus, for each {xj : j ∈ J} with

∑
j∈J wjxj ≤ c,

we have
∑

j∈B
xj ≤ c/[(1− α)c] = 1/(1− α). (1)

Consider the set of small items S ⊆ J . Note that each item in S has a weight
less than (1 − α)c. We can prove the following statement, which implies that
problem KPMFC on S is equivalent to a knapsack problem.

Lemma 1. Consider the small item set S. Given any d′ and c′ with c′ − d′ =
(1 − α)c, if

∑
j∈S wj ≥ d′, then each {x′

j : j ∈ S} with x′
j ∈ {0, 1} for j ∈ S

and
∑

j∈S wjx
′
j ≤ c′ can be transformed in O(|S|) time to {xj : j ∈ S} such that

xj ≥ x′
j and xj ∈ {0, 1} for j ∈ S, and that d′ ≤

∑
j∈S wjxj ≤ c′.

Proof. The proof is omitted due to space limitations. �	

Lemma 1 suggests the following way to develop an approximation algorithm for
problem KPMFC. We can first search possible pairs of the total profit value
and the total weight value of a subset of big items in B. For each of such pairs
denoted by (PB , WB), let xj for j ∈ B denote the corresponding values of decision
variables for big items that lead to

∑
j∈B pjxj = PB and

∑
j∈B wjxj = WB . We

then apply an existing FPTAS on the knapsack problem on small items in S with
c−WB as the capacity, the solution of which can be transformed, according to
Lemma 1, to values of xj for small items j ∈ S to satisfy d−WB ≤

∑
j∈S wjxj ≤

c−WB. By combining {xj : j ∈ B} and {xj : j ∈ S}, we obtain a feasible solution
to problem KPMFC. Among all feasible solutions obtained, we can return the
one that has the largest total profit.

3 Partial Search Procedure

To follow the way suggested by Lemma 1, we need to search possible pairs of
the total profit value and the total weight value of a subset of big items in B.
However, to keep a polynomial time complexity, we can search only part of them
by the following partial search procedure on items with scaled profits.

Consider the big item set B. For the ease of presentation, assume that items
in J are relabeled such that B = {1, 2, ..., nB}. Consider three parameters, L,



A Fully Polynomial Approximation Scheme for a Knapsack Problem 709

U , and N , which will be determined in Section 4, where N > 0 and U ≥ L ≥ 0.
For each j ∈ B, let p̂j = �pj/δp� denote the scaled value of pj , where the scaling
parameter δp = εL/N , and define p̂j = 0 when δp = 0.

Our partial search procedure, as shown in Algorithm 1, scans decision vari-
ables in the order of their indices, and assigns each variable either the value of 0
or 1. Suppose that values have been assigned to x1, x2, ..., xj , where 0 ≤ j ≤ nB.
The procedure deals with partial solutions associated with states of the form
(j, Pj , Wj), where j is the number of assigned variables, Pj =

∑j
i=1 p̂jxj is the

current total scaled profit, and Wj =
∑j

i=1 wjxj is the current total weight.
Starting with the initial state (0, P0, W0) = (0, 0, 0), the procedure in Algo-
rithm 1 creates new states of the form (j +1, Pj+1, Wj+1) from each stored state
of the form (j, Pj , Wj), for each iteration j where 0 ≤ j ≤ nB − 1, by using the
following relation:

Pj+1 = Pj + p̂j+1xj+1, and Wj+1 = Wj + wj+1xj+1. (2)

Then, among all states (j +1, Pj+1, Wj+1) with the same value of Pj+1 and with
Wj+1 belonging to the same sub-intervals of range δw (defined in Step 1), where
δw = (c − d)/2, the procedure only stores at most two of them in Step 2(b) for
further search, so as to save the running time. Finally, all the stored states of
the form (j, Pj , Wj) for 0 ≤ j ≤ nB are returned in Step 3.

Algorithm 1 (Procedure PS on (L, U, N))

1. Relabel items in J such that the big item set B = {1, 2, ..., nB}, where nB
denotes the number of big items in B. Set δp = εL/N , and δw = (c− d)/2 =
(1−α)c/2. Split the interval [0, (
c/δw�+ 1)δw] into 
c/δw�+ 1 subintervals
Ir of range δw, where

Ir = [(r − 1)δw, rδw), for 1 ≤ r ≤ 
c/δw�+ 1.

2. Store the initial state (0, P0, W0) = (0, 0, 0). For all j from 0 to nB − 1 do:
(a) For each stored state of the form (j, Pj , Wj), and for xj+1 = 0 and 1,

move (j, Pj , Wj) to a state of the form (j + 1, Pj+1, Wj+1) using the
relation (2), where Pj+1 is less than or equal to U/δp, and Wj+1 is less
than or equal to c + δw.

(b) For each selection of the states obtained in Step 2(a) with the same
value of Pj+1 and with Wj+1 belonging to the same subinterval Ir for
1 ≤ r ≤ 
c/δw� + 1, determine the value Wmax

j+1 as the largest of Wj+1

that belongs to Ir, and determine the value Wmin
j+1 as the smallest of

Wj+1 that belongs to Ir. If these values exist, then out of all states
(j+1, Pj+1, Wj+1) with the same value of Pj+1 and with Wj+1 belonging
to the same subinterval Ir for Wmin

j+1 ≤ Wj+1 ≤ Wmax
j+1 , store only the

states (j + 1, Pj+1, W
max
j+1 ) and (j + 1, Pj+1, W

min
j+1 ).

3. Return all states of the form (j, Pj , Wj) for 0 ≤ j ≤ nB stored in Step 2. �	

Consider all states of the form (j, Pj , Wj) for 0 ≤ j ≤ nB , explored in Step 2 of
Procedure PS. There are at most 
c/δw�+ 1 different intervals Ir that values of



710 Z. Xu and X. Lai

Wj belong to. If L > 0, there are at most �U/δp�+ 1 different values of Pj , and
otherwise, L = 0, which implies δp = 0 and that Pj always equals 0. Thus, the
time complexity of Procedure PS is O(N(U/L)nB/[ε(1 − α)]) if L > 0, and is
O(nB/(1− α)) otherwise.

From each stored state of the form (nB , PnB , WnB ) returned by Procedure
PS, we can perform a backtracking to find the corresponding values of decision
variables xj for 1 ≤ j ≤ nB. Thus, the following statement holds.

Lemma 2. Suppose B = {1, 2, ..., nB}. For each stored state (nB, PnB , WnB )
returned by Procedure PS on (L, U, N), the corresponding values of decision
variables xj for 1 ≤ j ≤ nB, obtained by backtracking from (nB, PnB , WnB ),
satisfy

nB∑

j=1

pjxj ≥ δp

nB∑

j=1

p̂jxj = δpPnB , and
nB∑

j=1

wjxj = WnB .

Proof. Suppose that the backtracking from (nB, PnB , WnB) finds a chain of
states (0, P0, W0), (1, P1, W1), ..., (nB, PnB , WnB ). It is easy to show

∑j
i=1 wixi =

Wj and
∑j
i=1 p̂ixi = Pj by an induction for j = 0, 1, ..., nB. Moreover,∑nB

j=1 pjxj ≥ δp
∑nB

j=1 p̂jxj because pj ≥ δpp̂j. �	

The following statements study the behavior of Step 2 of Procedure PS.

Lemma 3. Suppose B = {1, 2, ..., nB}. Assume that problem KPMFC has a
feasible solution. Consider the optimal solution {x∗

j : j ∈ J} in the optimal
solution. If

∑nB

j=1 pjx
∗
j ≤ U , then

1. for each j with 0 ≤ j ≤ nB, Step 2 of Procedure PS on (L, U, N) stores two
states (j, P ′

j , W
′
j) and (j, P ′′

j , W ′′
j ) such that

j∑

i=1

pix
∗
i ≥ δp max{P ′

j , P
′′
j } ≥ δp min{P ′

j , P
′′
j } ≥

j∑

i=1

pix
∗
i − δp(

j∑

i=1

x∗
i ),(3)

j∑

i=1

wix
∗
i − δw ≤W ′

j ≤
j∑

i=1

wix
∗
i ≤W ′′

j ≤
j∑

i=1

wix
∗
i + δw; (4)

2. if
∑nB

j=1 x∗
j ≤ N , L ≤

∑nB

j=1 pjx
∗
j , and d′ ≤

∑nB

j=1 wjx
∗
j ≤ c′, where c′ and

d′ are any non-negative numbers with d′ + (1 − α)c ≤ c′ ≤ c, then Step 2 of
Procedure PS on (L, U, N) stores a state (nB , P̃nB , W̃nB ), such that

d′ ≤ W̃nB ≤ c′, (5)

δpP̃nB ≥ (1 − ε)
nB∑

j=1

pjx
∗
j . (6)

Proof. The proof is omitted due to space limitations. �	



A Fully Polynomial Approximation Scheme for a Knapsack Problem 711

4 Computing L and U

Our FPTAS for problem KPMFC is based on Procedure PS, by exploiting the
properties shown in Lemma 2 and Lemma 3. Thus, we need to determine values
of parameters, N , L and U , for Procedure PS to satisfy the conditions specified
in Lemma 3. Since (1) implies that setting N = 1/(1−α) satisfies

∑
j∈B x∗

j ≤ N ,
we devote the remainder of this section to the computation of L and U such that
L ≤

∑
j∈B wjx

∗
j ≤ U and U/L ≤ 1/(1− α).

Consider the big item set B. If problem KPMFC has a feasible solution, we
define π(B) as the largest value of max{pjxj : j ∈ B} over all feasible solutions
{xj : j ∈ J} to problem KPMFC, and define π(B) = 0 when B is empty. If
problem KPMFC has no feasible solution, we define π(B) = −∞. The following
statement holds for π(B), suggesting some feasible values for L and U .

Lemma 4. If π(B) ≥ 0, setting L = π(B) and U = π(B)/(1 − α) satisfies that
L ≤

∑
j∈B pjx

∗
j ≤ U and U/L = 1/(1− α).

Proof. If π(B) ≥ 0, then by definition, there exists a feasible solution {xj : j ∈ J}
and an item i ∈ B with pixi = π(B), which implies that

∑
j∈B pjx

∗
j ≥ pixi =

L. Moreover, for each i′ ∈ B with x∗
i′ = 1, we know that pi′ ≤ π(B). Thus,∑

j∈B pjx
∗
j ≤ π(B)

∑
j∈B x∗

j . This, together with (1), implies that
∑
j∈B pjx

∗
j ≤

π(B)/(1 − α) = U , which completes the proof. �	
The value of π(B) can be computed as follows. Suppose items in J are relabeled
such that B = {n−nB+1, n−nB+2, ..., n} and pj ≤ pj+1 for n−nB +1 ≤ j ≤
n − 1. Define a state of the form (j, γj , Wj), where 1 ≤ j ≤ n, γj ∈ {0, 1}, and
Wj ≥ 0, to indicate that there exist values of xi for 1 ≤ i ≤ j with xj = γj and
∑j

i=1 wixi = Wj . Algorithm 2 follows an approach similarly to Procedure PS to
search states (j, γj , Wj), from which the value of π(B) can be determined.

Algorithm 2 (Computing π(B))

1. Relabel items in J and sort items in B, so that B = {n− nB + 1, n− nB +
2, ..., n} and pj ≤ pj+1 for n − nB + 1 ≤ j ≤ n − 1. Similarly to Step 1
of Procedure PS, set δw = (c − d)/2 = (1 − α)c/2, and split the interval
[0, (
c/δw�+ 1)δw] into subintervals Ir for 1 ≤ r ≤ 
c/δw�+ 1 of range δw.

2. Store the initial state (0, γ0, W0) = (0, 0, 0). For all j from 0 to n− 1 do:
(a) Similarly to Step 2(a) of Procedure PS, for each stored state of the form

(j, γj , Wj), and for xj+1 = 0 and 1, move (j, γj , Wj) to a state of the form
(j +1, γj+1, Wj+1), by setting Wj+1 = Wj +wj+1xj+1 and γj+1 = xj+1.

(b) Similarly to Step 2(b) of Procedure PS, for each selection of the states
obtained in Step 2(a) with the same value of γj+1 and with Wj+1 be-
longing to the same subinterval Ir for 1 ≤ r ≤ 
c/δw� + 1, determine
the value Wmax

j+1 as the largest of Wj+1 that belongs to Ir , and deter-
mine the value Wmin

j+1 as the smallest of Wj+1 that belongs to Ir. If these
values exist, then out of all states (j + 1, γj+1, Wj+1) with the same
value of γj+1 and with Wj+1 belonging to the same subinterval Ir for
Wmin
j+1 ≤ Wj+1 ≤ Wmax

j+1 , store only the states (j + 1, γj+1, W
max
j+1 ) and

(j + 1, γj+1, W
min
j+1 ).



712 Z. Xu and X. Lai

3. Among all states of the form (j, γj , Wj) stored in Step 2, if no state satisfies
d ≤ Wj ≤ c, then return −∞. Otherwise, if B is empty, then return 0, and
otherwise, among all states with d ≤ Wj ≤ c and j ∈ B, identify the state
with the largest pjγj , and then return pjγj of this state. �	

Accordingly, the following statement holds for Algorithm 2.

Theorem 1. Algorithm 2 returns π(B) in O(n log(n) + n/(1− α)) time.

Proof. Step 1 of Algorithm 2 takes O(n log(n)) time, and Step 2 takes O(n
c/δw�)
time. Since δw = (1−α)c/2, the time complexity of Algorithm 2 is O(n log(n)+
n/(1− α)).

We are next going to prove that Algorithm 2 returns the value of π(B). If
there exists a state (j, γj , Wj) with d ≤Wj ≤ c stored in Step 2 of Algorithm 2,
then by following an argument similarly to the proof of Lemma 2, we can obtain
that the corresponding values of xi for 1 ≤ i ≤ j, obtained by backtracking from
(j, γj , Wj), satisfy d ≤

∑j
i=1 wixi = Wj ≤ c and xj = γj . Therefore, combining

{xi : 1 ≤ i ≤ j} and xi = 0 for j +1 ≤ i ≤ n forms a feasible solution to problem
KPMFC with xj = γj .

Thus, if problem KPMFC has no feasible solution, no state (j, γj , Wj) with
d ≤ Wj ≤ c can be stored in Step 2 of Algorithm 2. Thus, according to Step 3,
Algorithm 2 returns −∞, which is equal to π(B). Moreover, if problem KPMFC
has a feasible solution and B is empty, according to Step 3, Algorithm 2 returns
0, which is also equal to π(B).

Finally, consider the case when problem KPMFC has a feasible solution and
B is not empty. Note that after Step 1 of Algorithm 2, B = {n − nB + 1, n −
nB + 2, ..., n} and pj ≤ pj+1 for n − nB + 1 ≤ j ≤ n − 1. Thus, no state
(j, γj , Wj) with j ∈ B, d ≤ Wj ≤ c, and pjγj > π(B) can be stored in Step 2
of Algorithm 2, because otherwise, as we have shown earlier, there must exist
a feasible solution {xj : j ∈ J} to problem KPMFC with xj = γj for j ∈ B,
implying that pjxj > π(B), which contradicts the definition of π(B).

Therefore, to prove that Algorithm 2 returns the value of π(B), we only need
to show that it stores in Step 2 a state (y, γ̃y, W̃y) with y ∈ B, d ≤ W̃y ≤ c, and
pyγ̃y = π(B). To prove this, define y ∈ B as the item for which there exists a
feasible solution {xj : j ∈ J} to problem KPMFC with pyxy = π(B), breaking
ties by selecting larger y. Thus, for all y + 1 ≤ i ≤ n, since pi ≥ py and i ∈ B,
by the definition of π(B) and y, we have xi = 0, which implies

d ≤
y∑

i=1

wixi =
∑

i∈J
wixi ≤ c. (7)

By following an induction similarly to the proof of statement 1 of Lemma 3,
we can show that for j = 0, 1, ..., n, Step 2 of Algorithm 2 stores two states
(j, γ′

j , W
′
j) and (j, γ′′

j , W ′′
j ) such that (4) holds for W ′

j and W ′′
j , and that

γ′
j = γ′′

j = xj .

From this, by following an argument similarly to the proof of statement 2 of
Lemma 3, and noting that d ≤

∑y
i=1 wixi ≤ c by (7), we can obtain that



A Fully Polynomial Approximation Scheme for a Knapsack Problem 713

Algorithm 2 stores a state (y, γ̃y, W̃y) with d ≤ W̃y ≤ c and γ̃y = xy, which
together with pyxy = π(B), implies py γ̃y = pyxy = π(B). Therefore, the value
returned by Algorithm 2 must be equal to π(B). �	

5 FPTAS

By Lemma 4 and Theorem 1, we can determine L and U such that L ≤∑
j∈B wjx

∗
j ≤ U and U/L = 1/(1 − α). This, together with N = 1/(1 − α),

allows us to apply Procedure PS on big items in B to obtain stored states of the
form (nB , PnB , WnB ) which hold properties specified in Lemma 2 and Lemma 3.
With such states, we can follow the idea suggested by Lemma 1 to develop an
approximation algorithm for problem KPMFC, which is shown in Algorithm 3.

Algorithm 3 (FPTAS)

1. Apply Algorithm 2 to compute π(B). If π(B) equals −∞, then return “in-
feasible”.

2. Apply Procedure PS on (L, U, N), where L = π(B), U = π(B)/(1− α), and
N = 1/(1− α).

3. For each stored state of the form (nB , PnB , WnB ), returned by Procedure PS
in Step 2, do the followings:
(a) Backtrack from the state (nB, PnB , WnB ) to obtain values of xj for j ∈ B.
(b) If

∑
j∈S wj ≥ d−WnB then

i. Apply an existing FPTAS on a knapsack problem on small items in
S with c−WnB as the capacity. Let {x′

j : j ∈ S} denote the solution
returned.

ii. Transform {x′
j : j ∈ S} to {xj : j ∈ S}, according to Lemma 1, such

that xj ≥ x′
j , xj ∈ {0, 1}, and d−WnB ≤

∑
j∈S wjxj ≤ c−WnB ;

iii. Combine values of xj for j ∈ B obtained in Step 3(a), and values of
xj for j ∈ S obtained in Step 3(b).ii, to obtain {xj : j ∈ J}.

4. Among all {xj : j ∈ J} obtained in Step 3(b).iii, return the one that has the
largest value of

∑
j∈J pjxj . �	

The following statement studies the behavior of Step 2 of Algorithm 3.

Lemma 5. Assume that problem KPMFC has a feasible solution. Consider the
optimal solution {x∗

j : j ∈ J}. Then, Procedure PS in Step 2 of Algorithm 3
returns at least one stored state (nB, P̃nB , W̃nB ) such that

d ≤ W̃nB +
∑

j∈S
wjx

∗
j ≤ c, and δpP̃nB ≥ (1− ε)

∑

j∈B
pjx

∗
j .

Proof. According to Lemma 4, setting L = π(B) and U = π(B)/(1−α) satisfies
that L ≤

∑
j∈B pjx

∗
j ≤ U . Since

∑
j∈B x∗

j ≤ 1/(1−α) by (1), due to statement 2
of Lemma 3, we obtain that applying Procedure PS on (L, U, N), where L =
π(B), U = π(B)/(1 − α), and N = 1/(1− α), returns at least one stored state
(nB, P̃nB , W̃nB ) with d −

∑
j∈S wjx

∗
j ≤ W̃nB ≤ c −

∑
j∈S wjx

∗
j and δpP̃nB ≥

(1− ε)
∑

j∈B pjx
∗
j , which completes the proof. �	



714 Z. Xu and X. Lai

Finally, we can establish the following theorem for Algorithm 3.

Theorem 2. Algorithm 3 is an FPTAS for problem KPMFC, and has a time
complexity of O(n log(n)+ [n+K(n)]/[ε(1−α)3]), where K(n) is the time com-
plexity of an existing FPTAS for the knapsack problem.

Proof. If problem KPMFC has no feasible solution, by Lemma 4, we obtain that
π(B) returned by Step 1 of Algorithm 3 equals −∞. Thus, Algorithm 3 returns
“infeasible”.

Otherwise, problem KPMFC has a feasible solution. For each (nB, PnB , WnB )
returned by Procedure PS in Step 2, if

∑
j∈S wj ≥ d−WnB , then according to

Lemma 2 and Lemma 1, values of xj for 1 ≤ j ≤ n stored in Step 3(b).iii form
a feasible solution to problem KPMFC.

Moreover, according to Lemma 5 and Lemma 2, there exists a stored state
(nB, P̃nB , W̃nB ) with the corresponding values of xj for j ∈ B satisfying

∑

j∈B
pjxj ≥ δpP̃nB ≥ (1− ε)

∑

j∈B
pjx

∗
j , (8)

and d−
∑

j∈S wjx
∗
j ≤

∑
j∈B wjxj = W̃nB ≤ c−

∑
j∈S wjx

∗
j , which implies

d− W̃nB ≤
∑

j∈S
wjx

∗
j ≤ c− W̃nB . (9)

Thus, {x∗
j : j ∈ S} is a feasible solution to a knapsack problem on small items

in S with c − W̃nB as the capacity. By (9) and
∑

j∈S wjx
∗
j ≤

∑
j∈S wj , we

have d − W̃nB ≤
∑

j∈S wj , which implies that Step 3(b).i of Algorithm 3 has
applied an existing FPTAS on this knapsack problem on S. Consider the solution
{x′

j : j ∈ S} returned in Step 3(b).i for this knapsack problem on S, which is
transformed in Step 3(b).ii to {xj : j ∈ S} such that xj ≥ x′

j , xj ∈ {0, 1}, and
d− W̃nB ≤

∑
j∈S wjxj ≤ c− W̃nB . We have

d ≤
∑

j∈S
wjxj +

∑

j∈B
wjxj ≤ c, (10)

∑

j∈S
pjxj ≥

∑

j∈S
pjx

′
j ≥ (1− ε)

∑

j∈S
pjx

∗
j . (11)

By (10), {xj : j ∈ J} is a feasible solution to problem KPMFC on J . Thus, Step 4
of Algorithm 3 must return a feasible solution with the total profit greater than
or equal to

∑
j∈J pjxj , which is greater than or equal to (1 − ε)

∑
j∈J pjx

∗
j due

to (8) and (11).
Finally, due to Theorem 1, Step 1 of Algorithm 3 takes O(n log(n)+n/(1−α))

time. Since U/L = 1/(1− α) when L > 0 and N = 1/(1− α), Procedure PS in
Step 2 of Algorithm 3 takes O(n/[ε(1−α)3]) time. Note that the number of stored
states of the form (nB , PnB , WnB ) obtained in Step 2 is in O(N(U/L)/[ε(1−α)])
if L > 0, and in O(1/(1 − α)) otherwise. The time complexity of Step 3 is
O(K(n)/[ε(1− α)3]). Thus, Algorithm 3 has a time complexity of O(n log(n) +
[n + K(n)]/[ε(1− α)3]), and is an FPTAS. �	



A Fully Polynomial Approximation Scheme for a Knapsack Problem 715

Note that K(n) can be O(n log(1/ε) + log2(1/ε)/ε3) according to Kellerer and
Pferschy [7]. Thus, by Theorem 2, the FPTAS developed in this paper for prob-
lem KPMFC can achieve a time complexity of O(n log(n) + n log(1/ε)/[ε(1 −
α)3] + log2(1/ε)/[ε4(1− α)3]).

References

[1] Bettinelli, A., Ceselli, A., Righini, G.: A branch-and-price algorithm for the vari-
able size bin packing problem with minimum filling constraint. Annals of Opera-
tions Research (2010) (forthcoming)

[2] Cappanera, P., Trubian, M.: A local-search-based heuristic for the demand-
constrained multidimensional knapsack problem. INFORMS Journal on Comput-
ing 17(1), 82–98 (2005)

[3] Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory
of NP-completeness. WH Freeman & Co., New York (1979)

[4] Ibarra, O.H., Kim, C.E.: Fast approximation algorithms for the knapsack and sum
of subset problems. Journal of the ACM (JACM) 22(4), 463–468 (1975)

[5] Kameshwaran, S., Benyoucef, L.: Optimal buying from online retailers offering to-
tal value discounts. In: Proceedings of 10th International Conference on Electronic
Commerce, Innsbruck, Austria (2008)

[6] Kellerer, H., Pferschy, U.: A new fully polynomial time approximation scheme for
the knapsack problem. Journal of Combinatorial Optimization 3(1), 59–71 (1999)

[7] Kellerer, H., Pferschy, U.: Improved dynamic programming in connection with an
fptas for the knapsack problem. Journal of Combinatorial Optimization 8(1), 5–11
(2004)

[8] Kellerer, H., Strusevich, V.A.: Fully polynomial approximation schemes for a
symmetric quadratic knapsack problem and its scheduling applications. Algorith-
mica 57(4), 769–795 (2010)

[9] Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack problems. Springer, Heidelberg
(2004)

[10] Lawler, E.L.: Fast approximation algorithms for knapsack problems. Mathematics
of Operations Research 4(4), 339–356 (1979)





Author Index

Abam, Mohammad Ali 1
Adiga, Abhijin 13
Angelini, Patrizio 25
Angelopoulos, Spyros 37
Arkin, Esther M. 49
Aronov, Boris 61, 73

Babu, Jasine 13
Berg, Mark de 1, 302
Biedl, Therese 86, 98
Bläser, Markus 110
Bonsma, Paul 122
Bose, Prosenjit 134
Brodal, Gerth Stølting 290
Bruckdorfer, Till 25
Buchbinder, Niv 147
Buchin, Kevin 159

Calinescu, Gruia 171
Carmi, Paz 134
Chambers, Erin Wolf 183
Chan, Timothy M. 195, 548
Chandran, L. Sunil 13
Chen, Danny Z. 207
Chen, Jianer 219
Chiesa, Marco 25
Christ, Tobias 231
Christiano, Paul 243
Cicalese, Ferdinando 255
Cook IV, Atlas F. 267

Damaschke, Peter 279
Damian, Mirela 134
Davoodi, Pooya 290
Demaine, Erik D. 243, 314
Devanur, Nikhil R. 326
Dieckmann, Claudia 49
Doll, Christof 338
Driemel, Anne 267, 350
Dulieu, Muriel 61, 73
Durocher, Stephane 86

Eisenstat, Sarah 314
Engelbeen, Céline 86
Eppstein, David 159, 362

Fan, Jia-Hao 219
Feige, Uriel 326
Fekete, Sándor P. 183
Feldman, Moran 147
Fiorini, Samuel 86
Fischer, Johannes 374
Flatland, Robin 134
Fletcher, P. Thomas 386
Fomin, Fedor V. 399
Fox, Kyle 411
Frati, Fabrizio 25
Fredman, Michael L. 423

Gao, Jie 438
Gemsa, Andreas 451
Gfeller, Beat 463
Ghosh, Arpita 147
Goodrich, Michael T. 362
Görke, Robert 679

Har-Peled, Sariel 267
Harren, Rolf 475
Hartmann, Tanja 338
Haverkort, Herman 350
He, Jing 488
He, Meng 500
Heeringa, Brent 512
Heggernes, Pinar 399
Hoffmann, Hella-Franziska 183
Hoffmann, Michael 524
Hurtado, Ferran 73

Iordan, Marius Cătălin 512

Jacobs, Tobias 255
Jain, Bharat 595
Jansen, Klaus 475
Jørgensen, Allan 536

Kamousi, Pegah 548
Kanj, Iyad A. 219
Katz, Matthew J. 134
Kaufmann, Michael 25
Khosravi, Amirali 1, 302
Kirkpatrick, David 560
Kishore, Shaunak 243



718 Author Index

Klein, Philip N. 571
Knauer, Christian 49
Kranakis, Evangelos 583
Kratsch, Dieter 399

Laber, Eduardo 255
Lai, Xiaofan 704
Li, Minming 171
Liang, Hongyu 488
Lin, Yaw-Ling 595
Liu, Yang 219
Löffler, Maarten 159, 350, 362, 536
Lokshtanov, Daniel 122
López-Ortiz, Alejandro 37

Maheshwari, Anil 134
Manthey, Bodo 110
Marinakis, Dimitri 183
Mitchell, Joseph S.B. 49, 183
Moeller, John 386
Molokov, Leonid 279
Morales Ponce, Oscar 583
Mozes, Shay 571
Munro, J. Ian 500

Naor, Joseph (Seffi) 147
Nekrich, Yakov 607
Neuburger, Shoshana 619
Nöllenburg, Martin 159, 451
Nonner, Tim 631
Nussbaum, Yahav 642

Pach, János 654
Panagiotou, Konstantinos 37
Papadopoulos, Charis 399
Pathak, Vinayak 195
Phillips, Jeff M. 386, 536
Polishchuk, Valentin 49, 655
Prädel, Lars 475

Radhakrishnan, Jaikumar 667
Rao, B.V. Raghavendra 110
Ruiz Velázquez, Lesvia Elena 98
Rutter, Ignaz 451

Satti, Srinivasa Rao 290
Schlipf, Lena 49
Schumm, Andrea 679
Shannigrahi, Saswata 667
Sharir, Micha 524
Sheffer, Adam 524
Sherette, Jessica 267
Silveira, Rodrigo I. 159, 350
Skiena, Steven 595
Sokol, Dina 619
Solomon, Shay 691
Squarcella, Claudio 25
Srinivasan, Venkatesh 183
Stege, Ulrike 183
Suomela, Jukka 583
Suri, Subhash 548
Sysikaski, Mikko 655

Tardos, Gábor 654
Tarjan, Robert E. 703
Theran, Louis 512
Tóth, Csaba D. 524

Valentim, Caio 255
van Stee, Rob 475
Venkatasubramanian, Suresh 386
Verdonschot, Sander 302
Villanger, Yngve 399

Wagner, Dorothea 338, 679
Wang, Haitao 207
Ward, Charles 595
Weele, Vincent van der 302
Welzl, Emo 524
Wenk, Carola 267
Whitesides, Sue 183

Xu, Zhou 704

Yang, Guang 488
Yang, Shang 49
Young, Maxwell 86

Zhang, Fenghui 219
Zhou, Dengpan 438
Zilles, Sandra 560


	Cover
	Lecture Notes in Computer Science 6844
	Algorithmsand Data Structures
	ISBN 9783642222993
	Preface
	Organization
	Table of Contents
	Piecewise-Linear Approximations of Uncertain Functions
	Introduction
	The min-$k$ Problem
	The min-ε Problem
	References

	A Constant Factor Approximation Algorithm for Boxicity of Circular Arc Graphs
	Introduction
	Preliminaries
	Notations
	A Vertex Numbering Scheme for Circular Arc Graphs

	Computing the Boxicity of Co-bipartite CA Graphs in Polynomial Time
	Reducing the Time Complexity of Computing the Boxicity of Co-bipartite CA Graphs
	Constant Factor Approximation for the Boxicity of CA Graphs
	Additive 2-Factor Approximation for the Boxicity of Normal CA Graphs
	References

	On the Area Requirements of Euclidean Minimum Spanning Trees
	Introduction
	Preliminaries
	Geometric Lemmata
	Angles and Edge Lengths in MST Embeddings
	The Proof of the Area Bound
	Conclusions
	References

	Multi-target Ray Searching Problems
	Introduction
	Ray Search in the Full-Information Model
	Ray-Search in the Partial-Information Model
	Intrinsic Cost of Multi-target Search
	 A $O(log m)$-Competitive Algorithm
	An Asymptotically Optimal Multi-target Search Algorithm

	Conclusions
	References

	Convex Transversals
	Introduction
	Hardness Results
	Stabbing Segments in the Plane is NP-Hard
	Extensions

	Stabbing Disjoint Segments and Convex Pseudodisks
	Convexification

	Stabbing with Vertices of a Regular Polygon
	Polynomial-Time Algorithm
	Optimization Problem: Symmetry with Imprecision

	References

	How to Cover a Point Set with a V-Shape of Minimum Width
	Introduction
	Reduction to Canonical V-Shapes
	Computing a Canonical Minimum-Width V-Shape
	A 13-Approximation Algorithm
	Minimum-Width V-Shape for Points on Two Lines

	A (1 + ε)-Approximation Algorithm
	Concluding Remarks
	References

	Witness Rectangle Graphs
	Introduction
	Structure of Witness Rectangle Graphs
	Two Connected Components
	What Are Staircase Graphs, Really?
	How to Stab Rectangles, Thriftily
	References

	Faster Optimal Algorithms for Segment Minimization with Small Maximal Value
	Introduction
	Single-Row Segmentation
	Full-Matrix Segmentation
	Segmenting a Row under Constraints
	Full-Matrix
	Further Improvements of the Complexity
	Solving the Lex-Min Problem

	The Special Case of $H$ = 2
	Single Row for $H$ = 2
	Full Matrix Segmentation for $H$ = 2

	Conclusion
	References

	Orthogonal Cartograms with Few Corners Per Face
	Introduction
	Background and Preliminaries
	Dart-Shaped Graphs
	Algorithm for Orthogonal Cartograms
	T-Staircases
	Decomposing T-Staircases
	Pinning Dart-Shaped Graphs to T-Staircases

	Remarks
	References

	Smoothed Analysis of Partitioning Algorithms for Euclidean Functionals
	Introduction
	Preliminaries
	Euclidean Functionals
	Smoothed Analysis

	Framework
	Smoothed Running-Time
	Smoothed Approximation Ratio

	Matching
	Smoothed Running-Time
	Smoothed Approximation Ratio

	Karp's Partitioning Scheme for Euclidean TSP
	Euclidean Steiner Trees
	Degree-Bounded Minimum Spanning Tree
	Concluding Remarks
	References

	Feedback Vertex Set in Mixed Graphs
	Introduction
	Preliminaries
	Outline of the Algorithm
	An Algorithm for FVS/UMC: Reduction to Skew Separator
	An Algorithm for S-Disjoint FVS: Contracting Paths
	Discussion
	References

	Switching to Directional Antennas with Constant Increase in Radius and Hop Distance
	Introduction
	α ≤ π/3
	α = π/3
	PointsalongaPath
	References

	Frequency Capping in Online Advertising (Extended Abstract)
	Introduction
	Related Work

	Preliminaries
	Identical Valuations
	Equal Demand Case
	General Case

	Equal Demands/Arbitrary Valuations
	Arbitrary Valuations
	A Primal-Dual Algorithm

	Further Directions
	References

	Adjacency-Preserving Spatial Treemaps
	Introduction
	Preliminaries
	Preserving Orientations
	Given the Global Layout
	Unconstrained Global Layout

	Without Preserving Orientations
	References

	Register Loading via Linear Programming
	Introduction
	Reduction
	1-BSIM
	LP Rounding

	$k$-BSIM
	Conclusion
	References

	Connecting a Set of Circles with Minimum Sum of Radii
	Introduction
	CRA for a Given Connectivity Tree
	Range Assignment for Bounded Radii
	Solutions with a Bounded Number of Circles
	Polynomial-Time Approximation Schemes
	Unbounded Radii
	Bounded Radii

	Experimental Results
	Conclusion
	References

	Streaming and Dynamic Algorithms for Minimum Enclosing Balls in High Dimensions
	Introduction
	Streaming MEB
	Preliminaries and Agarwal and Sharathkumar's Algorithm
	An Improved Analysis
	Proof of Factor 4/3
	Proof of Factor 16/13
	Proof of Factor 1.22

	Dynamic MEB
	Preliminaries and a Dynamic Coreset Technique
	A New Dynamic Algorithm

	Final Remarks
	References

	New Algorithms for 1-D Facility Location and Path Equipartition Problems
	Introduction
	Related Work

	The Problem Modeling of the Facility Location
	The $k$-Median Problem
	The Infinity $k$-Coverage Problem
	The Linear Model
	The Path Equipartition Problems
	References

	Multicut in Trees Viewed through the Eyes of Vertex Cover
	Introduction
	Preliminaries
	The Kernel
	The Algorithm
	References

	Beyond Triangulation: Covering Polygons with Triangles
	Introduction
	NP-Hardness of the Triangle Cover Problem
	Inapproximability
	Covering without Steiner Points
	Covering the Boundary
	References

	Lossless Fault-Tolerant Data Structures with Additive Overhead
	Introduction
	Fundamental Techniques
	Blocked Fault-Tolerant Data Structures
	Fault-Resistant Operations
	Fault-Tolerant Operations
	Fault-Tolerant Memory

	Fault-Tolerant Predecessor
	Suffix Trees
	Fault-Resistant Tries
	Fault-Tolerant Suffix Trees

	Interval Trees
	References

	Binary Identification Problems for Weighted Trees
	Introduction
	Proofs of Strong NP-Hardness
	A Polynomial Time Algorithm for Diameter 5 Instances
	A Quadratic Time Algorithm for Path Instances
	An $o(logn)$ Approximation Algorithm
	References

	Computing the Fr´echet Distance between Folded Polygons
	Introduction
	Preliminaries
	Simple Polygons Algorithm Summary 
	Shortest Path Edge Sequences 
	Diagonal Monotonicity Test and Untangleability 

	Fixed-Parameter Tractable Algorithm
	Untangleability Space
	Fixed-Parameter Tractable Algorithm

	Constant Factor Approximation Algorithm
	Axis-Parallel Folds and L∞ Distance 
	Future Work
	References

	Parameterized Reductions and Algorithms for Another Vertex Cover Generalization
	Introduction
	Some Equivalent Parameterized Graph Editing Problems
	Solving Star Editing Faster than 3-Hitting Set
	Open Questions
	References

	Path Minima Queries in Dynamic Weighted Trees
	Introduction
	Previous Work
	Our Results
	Preliminaries

	Data Structures for Dynamic Weights
	Comparison-Based Data Structure
	RAM Structure

	Data Structures for Dynamic Leaves
	Optimal Semigroup Structure
	RAM Structure

	Lower Bounds
	References

	On Rectilinear Partitions with Minimum Stabbing Number
	Introduction
	Finding Optimal Rectilinear r-Partitions Is NP-Hard
	Polynomial Time Algorithms for Constant r
	Arbitrary versus Disjoint Rectilinear r-Partitions 
	Experimental Results
	Results of the Comparisons

	Conclusion
	References

	Flattening Fixed-Angle Chains Is Strongly NP-Hard
	Introduction
	Definitions
	Linkages
	Rectilinear Planar Monotone 3-SAT

	Flattening Semi-rigid Chains
	Flattening Fixed-Angle Chains and Trees
	Flat Span
	References

	An $O(n log n)$ Algorithm for a Load Balancing Problem on Paths
	Introduction
	Preliminaries
	Hydraulic Apparatus

	An $O(n logn n)$ Algorithm
	Conclusion and Open Problems
	References

	Fully-Dynamic Hierarchical Graph Clustering Using Cut Trees
	Introduction
	Preliminaries and Notation
	The Static Hierarchical Clustering Algorithm
	Update Algorithm for Dynamic Clustering Hierarchies
	Conclusion
	References

	Flow Computations on Imprecise Terrains
	Introduction
	NP-Hardness in the Surface Model
	Watersheds in the Network Model
	Potential Watersheds
	Core Watersheds
	Persistent Watersheds – An Alternative Definition
	Potential Downstream Areas

	Conclusions
	References

	Tracking Moving Objects with Few Handovers
	Introduction
	Problem Statement and Notation
	Offline Tracking
	Online Tracking
	Lower Bounds
	Trilateration
	Conclusions
	References

	Inducing the LCP-Array
	Introduction
	Previous Work and Concepts
	Suffix- and LCP-Arrays
	Constructing Suffix Arrays by Induced Sorting

	Inducing the LCP-Array
	Basic Algorithm
	Finding Minima
	Computing LCP-Values of S*-Suffixes
	Computing LCP-Values at the L/S-Seam

	Experimental Results
	Conclusions and Outlook
	References

	Horoball Hulls and Extents in Positive Definite Space
	Introduction
	Hulls and Convexity: From $R^d to P(n)$
	Technical Overview
	Related Work

	Preliminaries
	Busemann Functions and Horoballs

	Ball Hulls
	The ε -Ball Hull

	Constructing the ε -Ball Hull
	Decomposing P($n$) into Flats
	A Lipschitz Bound in P(2)
	Generalizing to P($n$)
	Algorithm

	References

	Enumerating Minimal Subset Feedback Vertex Sets
	Introduction
	Preliminaries
	Enumeration of All Minimal Subset Feedback Vertex Sets
	Running Time
	Concluding Remarks
	References

	Upper Bounds for Maximally Greedy Binary Search Trees
	Introduction
	A Geometric View
	Being Greedy
	Our Contributions
	A Note on Independent Work

	Arboral and Geometric Models of BSTs
	The Arboral Model
	The Geometric Model

	GreedyFuture
	An Access Lemma and Its Corollaries
	Potentials and Neighborhoods
	Immediate Consequences
	Telescoping Rank Changes
	Counting Stubborn Elements
	Finishing the Proof

	A Sequential Access Theorem
	Closing Remarks
	References

	On the Matter of Dynamic Optimality in an Extended Model for Tree Access Operations
	Introduction
	Technical Development
	Outline
	Existence of the Permutation π
	Linear Off-Line Implementation

	Some Remarks
	References

	Resilient and Low Stretch Routing through Embedding into Tree Metrics
	Introduction
	Preliminaries
	Constant Distortion Routing Using Two HSTs
	Resilience to Node Failures Using Two HSTs
	Simulations
	References

	Consistent Labeling of Rotating Maps
	Introduction
	Model
	Properties of Consistent Labelings
	Complexity
	Basic Building Blocks
	Gadgets of the Reduction

	Approximation Algorithms
	A 1/4-Approximation for MaxTotal
	An Efficient Polynomial-Time Approximation Scheme for MaxTotal

	References

	Finding Longest Approximate Periodic Patterns
	Introduction and Related Work
	Optimal Algorithm for Absolute Error Periodic Patterns
	Algorithms for Relative Error Periodic Patterns
	An Exact Algorithm
	A Basic Approximate Algorithm
	An Approximate $O(n1+γ)$ Time Algorithm

	Solving Approximate 3SUM in $O(n^1+γ+T_sort(n))$ Time
	References

	A (5/3 + ε)-Approximation for Strip Packing
	Introduction
	Overview of the Algorithm
	Item of Height Greater than 1/3
	One Special Big Item in $P$
	Overview of the Cases
	References

	Reversing Longest Previous Factor Tables is Hard
	Introduction
	Preliminaries
	Notations and Definitions
	Simple Properties of LPF Tables

	Reduction from 3-SAT
	Variable Section
	Assignment Section
	Checking Section

	LPF Tables with 0-1 Entries
	References

	Space Efficient Data Structures for Dynamic Orthogonal Range Counting
	Introduction
	Our Results

	Data Structures for Range Sum
	Range Sum in a Small Two-Dimensional Array
	Range Sum in a Narrow Two-Dimensional Array

	Range Counting in Integer Sequences
	Sequences of Small Integers
	General Integer Sequences

	Range Counting in Planar Point Sets
	Range Counting on a U × U Grid
	Range Counting for General Point Sets

	Concluding Remarks
	References

	Searching in Dynamic Tree-Like Partial Orders
	Introduction
	Models and Definitions
	Line-Leaf Tree Construction and Analysis
	Operations
	Empirical Results
	References

	Counting Plane Graphs: Flippability and Its Applications
	Introduction
	Applications of Ps-Flippable Edges
	The Ratio between the Number of Crossing-Free Straight-Edge Graphs and the Number of Triangulations
	The Number of Spanning Trees and Forests
	The Number of Crossing-Free Straight-Edge Graphs with a Bounded Number of Edges

	Conclusion
	References

	Geometric Computations on Indecisive Points
	Introduction
	Exact Computations on Indecisive Point Sets
	Polynomial Time Algorithms
	Hardness Results

	Approximate Computations on Uncertain Points
	References

	Closest Pair and the Post Office Problem for Stochastic Points
	Introduction
	The Stochastic Closest Pair Problem
	Counting Vertex Covers in Unit Disk Graphs
	Bichromatic Unit Disk Graphs
	Complexity of the Stochastic Closest Pair Problem

	Linearly Separable Point Sets under the $L∞$ Norm
	Stochastic Approximate Nearest Neighbor Queries
	Approximation via a Modified Distance Function $^~l$
	The Data Structure: A BBD Tree
	An Exact Query Algorithm for $^~l$

	References

	Competitive Search in Symmetric Trees
	Introduction
	Symmetric Tree Traversal

	The Case Where All Goals Are Known to Lie at the Same Level
	Worst-Case Probe Cost
	Average and Expected-Case Probe Cost
	Taking Full Search Cost into Consideration

	The Case Where Goals May Appear on Many Different Levels
	General Symmetric Trees
	References

	Multiple-Source Single-Sink Maximum Flow in Directed Planar Graphs in $O$(diameter · $n log n$) Time
	Introduction
	Applications
	Related Work

	Preliminaries
	Flow
	Quasi-Feasible Flows and Negative-Length Dual Cycles

	The Algorithm
	Correctness and Analysis
	References

	Planar Subgraphs without Low-Degree Nodes
	Introduction
	Orientation Problem on Planar Circuit Networks
	Degree One
	Degree Two
	Degree Three
	Augmenting with Bounded Length Edges
	Conclusions
	References

	Constructing Orthogonal de Bruijn Sequences
	Introduction
	Preliminaries
	Kautz Graphs

	Analytical Results
	Special Orthogonal Families
	Counting Eulerians

	Heuristic Construction of Orthogonal Sequences
	Open Problems
	References

	A Fast Algorithm for Three-Dimensional Layers of Maxima Problem
	Introduction
	Sweep Plane Algorithm
	Fast Queries, Slow Updates
	Additional Staircases
	Efficient Algorithms for the Layers-of-Maxima Problem
	References

	Succinct 2D Dictionary Matching with No Slowdown
	Introduction
	Overview
	Preliminaries
	The Algorithm
	Pattern Preprocessing
	Text Scanning

	Conclusion
	References

	PTAS for Densest $k$-Subgraph in Interval Graphs
	Introduction
	Preliminaries
	Sequence Representations
	Simple Sequence Representations
	Dynamic Programming
	References

	Improved Distance Queries in Planar Graphs
	Introduction
	Preliminaries
	Decomposition
	The Dense Distance Graph
	The Monge Property

	Linear-Space Data Structure
	Improved Preprocessing Time for $S ∈ [n4/3, n2]$
	Improved Query Time for $S ∈ [n4/3, n2]$
	The Preprocessing Algorithm
	The Query Algorithm

	References

	Piercing Quasi-Rectangles: On a Problem of Danzer and Rogers
	Faster Algorithms for Minimum-Link Paths with Restricted Orientations
	Introduction
	3D Rectilinear Paths
	$C$-oriented Paths in the Plane
	Contributions

	Rectilinear Paths Amidst Rectilinear Obstacles in $R^3$
	Avoiding Reillumination
	Filtering
	Analysis

	$C$-oriented Paths in the Plane
	Overview
	Definitions and Notation
	Flush-Lighting
	Straddle-Lighting
	Analysis

	References

	Streaming Algorithms for 2-Coloring Uniform Hypergraphs
	Introduction
	Open Questions

	The Delayed Recoloring Algorithm
	An Efficient Streaming Algorithm
	Coloring Uniform Hypergraphs with $O( n2lnn)$ Vertices
	Streaming and the Lovász Local Lemma
	References

	Density-Constrained Graph Clustering
	Introduction
	Quality Measures for Clusterings
	Problem Statement
	Complexity

	Generic Greedy Agglomeration
	Merge Behavior
	Impact of Clustering Measures on Running Times

	Concluding Remarks
	References

	The MST of Symmetric Disk Graphs (in Arbitrary Metric Spaces) is Light
	Introduction
	The MST of Symmetric Disk Graphs
	The Range Assignment Problem
	Proof Overview
	Related Work on Disk Graphs
	Structure of the Paper
	Preliminaries

	The MST of SDGs is Light
	The Range Assignment Problem
	References

	Theory vs. Practice in the Design and Analysis of Algorithms
	A Fully Polynomial Approximation Scheme for a Knapsack Problem with a Minimum Filling
	Introduction
	Related Works
	Our Results, Techniques, and Paper Outline

	Separations of Items
	Partial Search Procedure
	Computing $L$ and $U$
	FPTAS
	References

	Author Index

