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Preface

This volume contains the Proceedings of the 2nd International Workshop on
Information Processing in Sensor Networks (IPSN 2003). The workshop was
held at the Palo Alto Research Center (PARC), Palo Alto, California, on April
22–23, 2003.

Information processing in sensor networks is an interdisciplinary research area
with deep connections to signal processing, networking and protocols, databases
and information management, as well as distributed algorithms. Because of ad-
vances in MEMS microsensors, wireless networking, and embedded processing,
ad hoc networks of sensors are becoming increasingly available for commercial
and military applications such as environmental monitoring (e.g., traffic, habitat,
security), industrial sensing and diagnostics (e.g., factories, appliances), infra-
structure maintenance (e.g., power grids, water distribution, waste disposal),
and battlefield awareness (e.g., multitarget tracking).

From the engineering and computing point of view, sensor networks have
become a rich source of problems in communication protocols, sensor tasking
and control, sensor fusion, distributed databases and algorithms, probabilistic
reasoning, system/software architecture, design methodologies, and evaluation
metrics. This workshop took a systemic approach to address crosslayer issues,
from the physical sensor layer to the sensor signal processing and networking
levels and then all the way to the applications.

Following the successful 1st Workshop on Collaborative Signal and Infor-
mation Processing in Sensor Networks at PARC in 2001, this new workshop
brought together researchers from academia, industry, and government to pre-
sent and discuss recent work concerning various aspects of sensor networks such
as information organization, querying, routing, and self-organization, with an
emphasis on the high-level information processing tasks that these networks are
designed to perform.

Seventy-three papers were submitted to the workshop, of which 23 were ac-
cepted for oral presentation and 21 for presentation by poster. Each paper was
reviewed by approximately four reviewers. The reviewing process was handled
electronically, using CyberChair software. The program chairs are indebted to
the Technical Program Committee members for their efforts in putting together
an outstanding technical program.

We wish to acknowledge the generous support from the US National Science
Foundation (NSF) and the Defense Advanced Research Projects Agency
(DARPA), through Dr. Mari Maeda and Dr. Sri Kumar. We also wish to thank
many individuals who helped to make this workshop possible: Dr. Ying Zhang
of PARC for putting together this proceedings volume, Jaewon Shin of Stanford
for all his assistance with the paper – handling software and related matters,
Jim Reich and Markus Fromherz of PARC for all the local arrangements, Jesse
Durham of Strategic Analysis Inc. for conference management, Prof. Jennifer
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Hou of UIUC for handling financial support for student and speaker travel, and
PARC for providing organizational and logistical support for the entire workshop
through its Communications and Facilities Departments.

April 2003 Leonidas J. Guibas
Feng Zhao
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On the Many-to-One Transport Capacity of a
Dense Wireless Sensor Network and the

Compressibility of Its Data�

Daniel Marco, Enrique J. Duarte-Melo, Mingyan Liu, and David L. Neuhoff

University of Michigan, Ann Arbor, MI 48109-2122, USA
{idaniel, ejd, mingyan, neuhoff}@eecs.umich.edu

Abstract. In this paper we investigate the capability of large-scale sen-
sor networks to measure and transport a two-dimensional field. We con-
sider a data-gathering wireless sensor network in which densely deployed
sensors take periodic samples of the sensed field, and then scalar quan-
tize, encode and transmit them to a single receiver/central controller
where snapshot images of the sensed field are reconstructed. The quality
of the reconstructed field is limited by the ability of the encoder to com-
press the data to a rate less than the single-receiver transport capacity of
the network. Subject to a constraint on the quality of the reconstructed
field, we are interested in how fast data can be collected (or equivalently
how closely in time these snapshots can be taken) due to the limitation
just mentioned. As the sensor density increases to infinity, more sensors
send data to the central controller. However, the data is more correlated,
and the encoder can do more compression. The question is: Can the en-
coder compress sufficiently to meet the limit imposed by the transport
capacity? Alternatively, how long does it take to transport one snap-
shot? We show that as the density increases to infinity, the total number
of bits required to attain a given quality also increases to infinity under
any compression scheme. At the same time, the single-receiver transport
capacity of the network remains constant as the density increases. We
therefore conclude that for the given scenario, even though the corre-
lation between sensor data increases as the density increases, any data
compression scheme is insufficient to transport the required amount of
data for the given quality. Equivalently, the amount of time it takes to
transport one snapshot goes to infinity.

1 Introduction

In this paper we investigate the ability of a dense wireless sensor network to
measure and transport independent snapshots of a two-dimensional field to a
central location, i.e. a collector, where reconstructions of these field snapshots
are formed.

More specifically, N sensors are uniformly spaced over some finite geograph-
ical region. At regular time intervals, each sensor measures the field value at its
� This work is supported by NSF ITR grant number ANI-0112801.

F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 1–16, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



2 D. Marco et al.

location; then quantizes its value and losslessly encodes it with bits. The wireless
network, which has a transceiver at each sensor, operates in slotted time steps
to transport the bits generated by the sensor encoders to the central collector.
Multiple hops may be required. There is a number W such that each sensor can
transmit or receive at most W bits in one slot. Note that because a sensor value
is known only at its own location, the quantization and encoding must be done
independently at each sensor location.

When the central collector has received from each sensor the encoded quan-
tized value corresponding to a particular sampling time, i.e. corresponding to
one complete snapshot, it forms a reconstruction of that snapshot. The sam-
pling and data transport are pipelined in the sense that further snapshots may
be taken by the sensors and their transport may begin before the network has
finished transporting prior snapshots to the collector.

The principal question to be addressed is how frequently can a new snapshot
be taken and transported successfully to the collector. If new snapshots can be
received by the collector every u slots, then we say the network has throughput
1/u snapshots per slot. Clearly, large throughput is desired. Alternatively, one
may ask how many network slots are needed (i.e. how many times the network
must be used) to transport a snapshot. If new snapshots can be received by
the collector every u slots, then we say the network has usage rate u slots per
snapshot, which is the inverse of the throughput. Clearly, small usage rate is
desired.

One might also ask how much time must transpire between the time the
snapshot is taken by the sensors and the time the collector has the data needed
for its reconstruction. This delay will not be discussed here, except to say that
due to pipelining the usage rate is at most as large as the delay, and usually
substantially smaller.

We are particularly interested in how the network throughput and usage
rate vary as N , the number of sensors, increases. Of course, the sensor spacing
decreases with N , and the sensor density increases with N . Must the usage rate
(i.e. the number of slots/snapshot) increase with N? If so, does it saturate at
some finite value? Or does it increase without bound?

To answer these questions, one must answer a compressibility question and
a capacity question: How many bits must be generated by each sensor’s quan-
tizer/encoder per snapshot? And how many bits can be transported on the
average by the network to the collector per sensor per slot? (Here, we only count
new bits generated at the sensors – not bits relayed by the sensors.) Suppose the
answer to the compressibility question is bN , i.e. bN is the minimum number of
bits per sensor per snapshot that must be generated for a network of size N , and
suppose the answer to the capacity question is cN , i.e. cN is the maximum aver-
age number of bits that can be transported to the collector per sensor per slot.
(cN is less than W – usually much less.) Then the smallest possible usage rate
is uN = bN/cN slots/snapshot. Equivalently, the maximum possible throughput
is tN = cN/bN snapshots/slot.
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To answer the capacity question, we adopt a transmission and interference
model similar to that of Gupta and Kumar [1], and we show in Section 3 that

cN = Θ

(
1
N

)
bits/sensor/slot , (1)

where Θ( 1
N ) means there exist constants a1 and a2 such that a1

N ≤ cN ≤ a2
N for

sufficiently large N . That is, cN , which may be considered to be the many-to-one
capacity of the network, is bounded. This is essentially due to the fact that the
number of bits per slot that the collector can receive is bounded by W . As a
result, there is a bottleneck at the collector. In comparison, Gupta and Kumar [1]
found the peer-to-peer capacity of a similar network to be cN = Θ

(
1√

N log N

)
.

On the other hand, the compressibility question is not well posed until one
specifies a model for the two-dimensional field being measured and the criteria
with which the fidelity of the reconstructed snapshots are judged. These are
described in the next two paragraphs.

The model for the field is a stationary two-dimensional, random field X(u, v).
That is, X(u, v) is a real-valued random variable representing the field value
at Euclidean coordinates (u, v), where u and v vary continuously. We make
only benign assumptions about the random field. We make no assumption as
to whether the random field is bandlimited or not (bandlimited refers to spatial
frequency content). A principal characteristic of the random field is its autocor-
relation function R(τ1, τ2), which indicates the correlation between values of X
separated horizontally and vertically by distances τ1 and τ2, respectively. For
example, R(τ1, τ2) = exp

{
−

√
τ2
1 + τ2

2

}
is an example of an isotropic autocor-

relation function that decays exponentially with Euclidean distance. We require
that the autocorrelation function not be a constant, i.e. the field cannot be spa-
tially constant, even if the constant is random. Finally, we assume that successive
snapshots are independent. That is, each snapshot is modeled as a random field
that is independent of the random fields modeling other snapshots.

In effect, the sensors take samples of the random field at locations denoted
(u1, v1), (u2, v2), ..., (uN , vN ). It is these samples that are quantized, encoded
and transported to the collector. The collector creates a reproduction X̂(u, v),
(u, v) ∈ G as a reproduction of the original snapshot X(u, v), (u, v) ∈ G, where
G denotes the geographic region of interest over which the sensors are dispersed.
This obviously involves interpolation. We quantify the fidelity of the X̂ repro-
duction with mean squared error:

MSE =
1

|G|
∫

G

E
(
X(u, v) − X̂(u, v)

)2
du dv , (2)

where E denotes expected value with respect to the random field, the integral is
taken over the region G, and |G| denotes its area. Note that due to interpolation
and quantization errors, it is not possible to have MSE = 0. Therefore, the sensor
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network performs, in effect, lossy, rather than lossless coding of the random
field. (Sampling, followed by scalar quantization and lossless binary encoding
is a common method of lossy coding.) When N is large and, consequently, the
sensors are closely spaced, the component of MSE due to interpolation error
is negligible, and the MSE is well approximated simply by the average MSE
between the N sensor samples and their reconstructions. That is,

MSE ∼= 1
N

N∑
i=1

E
(
X(ui, vi) − X̂(ui, vi)

)2
. (3)

From now on, we will fix a positive number D, and assume throughout the
paper that the goal of the sensor network is to sample, quantize, encode and
transport snapshots of the field with a mean squared error of D or less, as given
by (2) or (3).

We will assume also that the quantizers used by the various sensors are
identical. Every such quantizer maps a sensor value X(ui, vi) to an integer that
indexes the possible quantization cells/bins. This index is then encoded in some
lossless fashion. Though only the X’s at the sensor locations will be quantized,
we nevertheless need to assume that the random field and quantizer are such
that the probability that each X(u, v) in the entire region of interest G would
quantize to the same integer is less than one. (Equivalently, the probability that
all X(u, v)’s are in the same quantization cell is less than one.) This is another
benign assumption, because if it does not hold, i.e. if with probability one all
X’s lies in the same quantization cell, then clearly the quantizer is too coarse to
be of use.

We can now pose the compressibility question. With the above models for
the random field and the fidelity measure, and with a fixed MSE target D, then
as discussed in Section 2, one may show that bN −→ 0 as N −→ ∞, where bN

is the minimum number of encoded bits per sensor per snapshot that must be
transported to the collector to attain MSE less than or equal to D. The idea
is that as N increases, the sensors become increasingly close, the correlation
between the values produced by nearby sensors increases, and it is possible to
exploit this correlation using schemes such as conditional coding or Slepian-Wolf
distributed lossless coding1 on the quantizer outputs to make bN −→ 0. On the
other hand, although bN −→ 0, we also show in Section 2 that no matter how
the lossless coding is done, bN does not decrease as rapidly as 1/N . That is,

NbN −→ ∞ as N −→ ∞ . (4)

1 Slepian-Wolf coding is a remarkable method that permits lossless coders to inde-
pendently encode the data from correlated sources (such as the data produced by
neighboring sensors) as efficiently as if each encoder could see the values produced by
the other data sources. Also, note that Slepian-Wolf coding entails the simultaneous
encoding of a block of successive outputs from the quantizer of a given sensor.
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Note that NbN is the total number of bits coming from the quantizer/encoders
from all sensors. Note also that the above result is quite general and not limited
to a particular lossless coding scheme.

Combining (4) with the many-to-one capacity result (1), we find that the
smallest usage rate for which the mean squared error can be D or less is

U(N, D) =
bN

cN
=

NbN

NcN
−→ ∞ as N −→ ∞ . (5)

This indicates that to obtain a given MSE D, the number of slots per snapshot
must grow without bound as N increases.

It must be said that this is somewhat disappointing, as it had been hoped that
as N increases, the inter-sensor correlation would increase sufficiently rapidly
to make NbN (and U(N, D)) saturate at a finite value, rather than approach
infinity. Note, however, that this result does not say that sensor networks cannot
do the desired job of measuring and transporting a two-dimensional field. Rather
it says that the efficiency with which it does so, as expressed by the usage or
throughput, degrades as the density of the sensors becomes very large.

It should be noted that the efficiency also degrades when N becomes too
small. Specifically, there is some threshold value No such that for N < No, the
interpolation error by itself exceeds D. Thus, there is no quantization-encoding-
transport scheme that attains MSE D. Moreover, as N approach No from above,
the quantizer must have increasingly fine resolution, which causes bN −→ ∞.
And since in this case N > No, we also have NbN −→ ∞. Thus as in (5),
U(N, D) −→ ∞ as N ↘ No. We conclude that given a target MSE D and a
random field model, there is an optimum value of N . This is the value for which
NbN is smallest. This conclusion applies to bandlimited and non-bandlimited
fields alike. For bandlimited fields the optimum value of N is not necessarily the
value that leads to Nyquist sampling.

Based on the above analysis, an alternative strategy, to be pursued in future
work, is to fix the number of sensors at the value of N that minimizes NbN ,
and then to permit there to be an additional set of transceivers at locations
between the sensors. This is equivalent to having a network of N ′ > N sensors,
and putting all but N of them to sleep, while keeping all transceivers active.

We assert that the result in (4) is not at all obvious. Indeed, the limiting
behavior of NbN has been a long standing question in the theory of sampling
and quantization, which has only recently been resolved in [2]. The discussion
we give in Section 2 is for one-dimensional random processes, but clearly extends
to two-dimensional random fields as well. To see just how delicate the question
is, in Section 2, we discuss how the rate-distortion theory branch of information
theory shows that if ideal lossy coding were used instead of scalar quantization
plus binary lossless coding, then NbN would not increase to infinity. However,
the sensor network requires that coding be done independently at each sensor.
This is why we use scalar quantization, rather than say vector or predictive
quantization. On the other hand, it can be shown that even if one were allowed
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to use vector quantization, unless the dimension of the quantizer increases with
N , NbN would still grow without bound.

Having shown that NbN grows to infinity, the question arises as to how fast it
grows. In Section 2, we find the rate with which NbN increases for the special case
of Gaussian random fields and a particular form of Slepian-Wolf coding. This also
leads to a result on how fast U(N, D) grows in this special case. Specifically, for
a one-dimensional Gaussian field with exponential autocorrelation, it is shown
that U(N, D) −→ ∞ at rate Θ(

√
N log N).

In addition to the many-to-one capacity, we also consider the many-to-many
capacity, which is the maximum average number of bits per sensor per slot that
can be transported from each sensor to every other sensor. Section 3 shows that
the many-to-many capacity is:

cN = Θ

(
1
N

)
bits/sensor/slot . (6)

This is the same as the many-to-one capacity. Thus the behavior of a network
operating in many-to-many fashion, e.g. the asymptotic usage rate U(N, D) is
the same as the behavior of a network operating in many-to-one fashion.

We conclude this introduction with a comment on the results of a recent
paper by Scaglione and Servetto [3]. The latter appears to claim that as N
increases, the capability of the dense sensor network and the correlation structure
of a typical random field are sufficient to permit any node to obtain the two-
dimensional field quantized to within any prescribed distortion value. (It focuses
on the many-to-many scenario.) If by such sufficiency the paper means to say
that this can happen with bounded network usage (i.e., the number of slots per
snapshot does not go to infinity), then our results show otherwise. That is, the
number of slots needed between successive snapshots does indeed grows without
bound. If such sufficiency does not involve any notion of time, then it is not clear
to us what the claim means. The paper’s intermediate results seem to indicate
that a network can transport the field in Θ(

√
N) slots, which is unbounded.

Therefore its overall claim of sufficiency does not appear to match this result.
Furthermore, the Θ(

√
N) result (Equation (1) in [3]) is based on the assumption

that the information theoretic rate-distortion function is attainable. However, in
a sensor network, quantization must be done independently at each node, and
our results show that in this case the ratio of the number of required encoded
bits to the rate-distortion function approaches infinity. Therefore, the Θ(

√
N)

result is also in doubt.
The remainder of the paper is organized as follows. The next section presents

the results on the number of bits bN resulting from quantizing and encoding the
sensor samples. Section 3 derives the many-to-one and many-to-many transport
capacity of the sensor network when N is large. Section 4 summarizes and con-
cludes.
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2 The Compressibility of Sensor Data

We need to assess the minimum number of bits that an encoder could produce
when encoding a quantized sensor value, when sensors are densely placed, and
consequently, their values are highly correlated. We will summarize and use the
recent results of [2].

As stated in the introduction, we view the sensors as taking uniformly spaced
samples of a stationary two-dimensional random field over a finite geographical
region. The collection of all samples taken at one time instance form a snapshot.
Successive snapshots are assumed to be independent.

Though the field is two-dimensional, the basic ideas are more readily apparent
and simpler to describe in one dimension. Therefore, we will focus on the case
that N sensors are uniformly spaced on a straight line of length L < ∞. In this
case, let X(s), 0 ≤ s ≤ L denote the field value at location s. X(s) is assumed to
be a continuous parameter stationary random process. Let (X1, . . . , XN ) denote
the N sensor values taken at a spacing of d = L/N . Let (I1, . . . , IN ) denote the
integers resulting from quantizing (X1, . . . , XN ) with some fixed quantizer.

2.1 bN −→ 0

From basic information theory we know that no lossless compression technique
could compress the output of the quantizer with fewer than

H(I1, . . . , IN ) bits. (7)

Equivalently, it requires on average at least

1
N

H(I1, . . . , IN ) bits per sample (8)

to losslessly encode each quantized sensor value.
The lower bound in (7) can in fact be attained using Slepian-Wolf distributed

lossless coding. This requires every sensor to simultaneously encode a block of,
say, M successive outputs from its quantizer. Observe that the block of outputs is
a temporal block rather than a spatial one. Temporal blocks are needed in order
for the encoder, at each sensor, to operate at rate close to some conditional
entropy value (these conditional entropies will be stated shortly). Spatial blocks,
however, are not used since every sensor knows only its own values and so the
quantization and encoding must be done independently at each sensor.

The lower bound in (7) is attained in the following way. Let all sensors
quantize their values independently. Let sensor 1 losslessly encode its block of M
successive quantizer outputs into approximately MH(I1) bits using conventional
block lossless coding2, where H(I1) denotes the entropy of one of its quantizer
2 This and subsequent similar approximations can be made arbitrarily tight by choos-

ing M large. Moreover, this and subsequent block encodings are nearly rather than
perfectly lossless, meaning that there is a nonzero probability that the decoder out-
put does not match the encoder input. However, such decoding error probabilities
can be made arbitrarily small by choosing M large, thereby having negligible effect
on the overall MSE.
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outputs, and where the independence of successive outputs has been used. Let
sensor 2 encode its values using Slepian-Wolf style coding with respect to sensor
1. Then, it losslessly encodes its block of M successive quantizer outputs into
approximately MH(I2|I1) bits, where H(I2|I1) denotes the conditional entropy
of an output of sensor 2 given an output of sensor 1 in the same snapshot. (The
decoder will already have decoded the I1’s, before decoding the I2’s.) Similarly,
sensor 3 uses Slepian-Wolf coding with respect to sensors 1 and 2, thus mapping
its M quantizer outputs into approximately MH(I3|I2, I1) bits. And so on. It
follows that for the kth sensor, the number of bits per snapshot generated by its
quantizer/encoder is approximately bN (k) = H(Ik|I1, . . . , Ik−1). It is well known
that bN (k) decreases monotonically with k. Thus, for large N , most of the bN (k)’s
are approximately the same. That is, there is a value bN such that bN (k) ∼= bN

for most k. It is this value to which Section 1 refers when prescribing the number
of bits per sensor per slot produced by each sensor’s quantizer/encoder.

It also follows that the total number of bits BN produced by all the sensors
is given by:

BN =
N∑

k=1

bN (k)

= H(I1) + H(I2|I1) + . . . + H(IN |IN−1, IN−2, . . . , I1)
= H(I1, . . . , IN ) , (9)

where the last equality is an elementary property of entropy. This shows that
the Slepian-Wolf approach does indeed attain the lower bound in (7).

We now show bN −→ 0 as N −→ ∞. Using elementary information theory
relations,

bN =
N∑

k=1

bN (k)

=
1
N

N∑
k=1

H(Ik|Ik−1, Ik−2, . . . , I1)

≤ 1
N

N∑
k=1

H(Ik|Ik−1)

=
H(I1)

N
+

(N − 1)
N

H(I2|I1)

−→ H(I2|I1) as N −→ ∞ . (10)

As N increases the sensors become closer and closer. Consequently their corre-
lation increases. Specifically, as N −→ ∞, the distance between sensors 1 and 2
goes to zero. Thus their sample values become essentially identical resulting in
H(I2|I1) −→ 0, which in turn implies that bN −→ 0.
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2.2 NbN −→ ∞
It has recently been shown [2] that H(I1, . . . , IN ) −→ ∞ as N −→ ∞. The
following briefly sketches the basic idea. Let To denote a quantization threshold
that X(s) crosses with probability one in the interval [0, L]. Let So denote the
location of the first crossing of this threshold. The assumptions in Section 1
about the random field and quantizer insure the existence of To. Furthermore,
they imply that So is a continuous random variable, thus having infinite entropy.
When N is large and consequently the sample spacing d is small, from the
quantizer outputs (I1, . . . , IN ), one can immediately and easily determine in
which time interval of length d the first threshold crossing occurs. Thus one
obtains an estimate Ŝo of So that is accurate to within d. Since d −→ 0 as N −→
∞ and since So has infinite entropy, it follows from elementary information
theory that the entropy H(Ŝo) tends to infinity. Finally, since Ŝo is a function
of (I1, . . . , IN ),

H(I1, . . . , IN ) ≥ H(Ŝo) −→ ∞ . (11)

Since from (7) BN = NbN can be no smaller than H(I1, . . . , IN ), we see that
NbN −→ ∞.

This argument can be generalized to the case of a two-dimensional field. We
note also that if the snapshots of the field were dependent, it can be shown that
using an encoding scheme that encodes based on previous snapshots will do no
better.

2.3 The Growth of Rate for a Gaussian Random Field

As mentioned, although the encoding of the sensor value Xi must be done with-
out knowledge of the other sensor values with which it is correlated, one could
nevertheless losslessly encode it with approximately bN = 1

N H(I1, . . . , IN ) bits,
provided Slepian-Wolf distributed coding is used [4]. A suboptimal but easier to
analyze case is where Slepian-Wolf coding is used to encode each sensor value
with approximately bN = H(I2|I1) bits. For this situation, it has been shown
in [2] that when X(s) is a stationary Gaussian random process and the scalar
quantizer is uniform with step size ∆ and an infinite number of levels, then

lim
ρ→1

H(I2|I1)
−

√
1 − ρ2 log

√
1 − ρ2 Mσ,∆

= 1 (12)

where ρ is the correlation coefficient of X1, X2 and Mσ,∆ is a constant that
depends on the variance σ2 of X(s) and the quantization step size ∆.

Let us consider now, as examples, two autocorrelation functions for the ran-
dom process X(s). To keep notation simple, let the process X(s) have unit
variance.

1. RX(s) = e−|s|: The correlation coefficient in this case is ρ = e−d, recall-
ing that d = L/N is the spacing between adjacent sensors. It follows from
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the usual expansion of the exponential that
√

1 − ρ2 −→ √
2d as d −→ 0.

Therefore, (12) can be rewritten as follows:

lim
d→0

H(I2|I1)
−√

2d log
√

2d M1,∆

= 1 . (13)

Consequently for large N ,

BN ≈ −N
√

2d M1,∆ log
√

2d =
√

2L M1,∆

√
N log

√
N

2L
−→ ∞ as N −→ ∞ .

(14)

In this case, BN increases as
√

N log N .
2. RX(s) = e−s2

: The correlation coefficient in this case is ρ = e−d2
. It follows

from the usual expansion of the exponential that
√

1 − ρ2 −→ √
2d as d −→

0. Therefore, (12) can be rewritten as follows:

lim
d→0

H(I2|I1)
−√

2d log
√

2d M1,∆

= 1 . (15)

Consequently for large N ,

BN ≈ −N
√

2d M1,∆ log(
√

2d) =
√

2L M1,∆

(
log

N√
2L

)
−→ ∞ as N −→ ∞ .

(16)

In this case BN increases as log N .

In light of the previous discussion that the total number of bits must increase
to infinity as N increases, it should not be surprising that (14) and (16) increase
without bound as N −→ ∞. Note that in these examples the number of bits per
sensor bN = BN/N goes to 0.

On the other hand, suppose that instead of independently scalar quantizing
each sensor value, a hypothetical omniscient encoder could jointly quantize a
block of, say, KN adjacent sensor values from the same snapshot. Then if KN

is permitted to grow with N , information theoretic rate-distortion theory can
be used to show that BN , the number of bits per snapshot required to attain
a target MSE D, will remain bounded rather than grow to infinity. However, if
KN is not permitted to grow with N , then an argument like that used above for
scalar quantization shows that BN must again go to infinity. This indicates the
criticality of the independent quantization/encoding requirement. Moreover, it
indicates that even if the latter were not required, it would still be very difficult
to have BN remain bounded.

3 Transport Capacity

In this section we analyze the transport capacity of a network where communi-
cation is of a many-to-one fashion (or more specifically all-to-one in this case).
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This follows from the motivating application illustrated in Section 1 whereby
all sensors send sampled data to a single collector/receiver. We will extend this
analysis to discuss the capacity when the communication is of a many-to-many
fashion as well. We present two types of results in this section. The first type of
result is in the form of an upper bound, i.e., a level that the transport capacity
cannot possibly exceed given our assumptions. The second type is in the form of
a constructive lower bound, i.e., the transport capacity that is achievable via a
particular construction of routing and scheduling mechanisms. These two results
serve different purposes in this paper. The upper bound is used jointly with Sec-
tions 2.1 and 2.2 to show that the number of slots required per snapshot grows
without bound. The lower bound is used jointly with Section 2.3 to characterize
the usage rate in the special case of a Gaussian random field with known autocor-
relation functions. Capacity of wireless networks has attracted much attention in
recent studies with the assumption that source traffic is uncorrelated. The sem-
inal work by Gupta and Kumar [1] first developed the transport capacity of a
wireless network where sources and destinations are randomly chosen. The main
results of [1] state that the total transport capacity of a network of N nodes is
Θ(

√
N√

log N
). Equivalently, the per source transport capacity is Θ( 1√

N log N
). Both

are throughput capacities in amount of data transported end-to-end per unit of
time. The main difference of the scenario studied in this section is that there is
a single receiver.

Throughout this section the transport capacity is defined in two ways, the
total transport capacity, which is the total rate at which the network transports
data to the single receiver, and the per-node transport capacity, which is the rate
at which each sensor transports to the single receiver. When each sensor has
equal amount of data to send these two definitions become equivalent. We will
use terms collector, sink, and receiver interchangeably, and use terms sensor,
node, and source interchangeably.

We assume that the network used for our calculations is deployed following
a uniform distribution over a field of area A. For simplicity we also assume that
this field has a circular shape and that the collector is located at the center
of the field. We assume that the collector cannot simultaneously receive from
multiple sensors. The sensors are stationary once deployed and cannot transmit
and receive simultaneously. As mentioned before, time is slotted, and all nodes
share a channel with capacity of W bits per slot. We assume nodes use omni-
directional antennas, and use a fixed transmission power and achieve a fixed
transmission range, denoted by r. We use transmission and interference models
similar to those used in [1]. Let Xi and Xj be two sources with distance di,j

between them. Then the transmission from Xi to Xj will be successful if and
only if

di,j ≤ r and dk,j > r + δ, δ ≥ 0 (17)

for any other source Xk that is simultaneously transmitting. Here δ denotes the
interference range. We assume that the transmission range r is sufficiently large
to guarantee connectivity with high probability.
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3.1 Capacity Upper Bound

We first consider an obvious upper bound on the total transport capacity in the
case of a single receiver. From the collector’s point of view, the maximum rate
of transport is achieved when it is receiving 100% of the time. Since W is the
transmission capacity of the shared channel, it follows that the collector cannot
receive at rate faster than W . We thus have the following result:

Theorem 1. The total transport capacity in a wireless network featuring many-
to-one communications is upper bounded by W .

Equivalently, if each sensor sends an equal amount then the per-node transport
capacity is upper bounded by W

N .
Note that this result is independent of the assumption of the shape of the

field, the location of the collector and the interference model. It also is not an
asymptotic result so it can be applied to networks with finite N . It is simply
a (direct) consequence of the assumption that the collector cannot receive si-
multaneously from multiple sensors. In [5] we show that this upper bound is in
general not achievable with high probability as the number of sensors increases
to infinity.

We now extend the above result to the many-to-many case. More specifically
we consider the all-to-all broadcast scenario where data generated at each sensor
is to be delivered to all other sensors in the network. Note in this case there is
not a single collector, but rather that every sensor is a collector. Again we note
that receiving at a rate of W for a given sensor can only be achieved when the
sensor is continuously receiving. This is clearly infeasible since each sensor also
needs to transmit its own data. Thus in this case the total transport capacity
is also upper bounded by W bits per slot. Here the transport capacity refers to
the number of distinct bits delivered per slot, thus a bit that reaches multiple
destinations (since each bit has a destination of all other sensors in the network)
is not counted multiple times.

3.2 Achievable Capacity

In this subsection we show constructively that a transport capacity on the
order of W (but less than W ) can be achieved. Here we will explicitly as-
sume that all nodes need to transmit the same number of bits, or need to
achieve a same rate. This assumption coincides with the suboptimal encoding
scheme in subsection 2.3 where each sensor value is encoded using approximately
bN = H(Ii|Ii−1) = H(I2|I1) bits. Consequently we will determine the achievable
per-node capacity or per-node throughput, denoted by λ, and then multiply this
result by N to obtain the total transport capacity instead of considering the total
transport capacity directly. The result here is obtained with high probability in
the asymptotic regime as N goes to infinity. We assume that the area A contains
at least a circular area of radius 2r + δ. This is not an unreasonable assumption
since the range r required to maintain connectivity decreases as N −→ ∞. We
begin with the following lemma.
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Denote by AR the area of a circle of radius R, i.e., AR = πR2. Let random
variable VR denote the number of nodes within an area of size AR. We then have
the following lemma.

Lemma 1. In a randomly deployed network with N nodes,

Prob
(

NAR

A
−

√
αNN ≤ VR ≤ NAR

A
+

√
αNN

)
−→ 1 as N −→ ∞, (18)

where the sequence {αN} is such that limN→∞ αN

N = ε, ε positive but arbitrarily
small.

This result can be easily shown using Chebychev’s inequality and noting that
the mean of VR is NAR

A and the variance σ2 is NAR

A (1 − AR

A ):

Prob
(

NAR

A
− √

αNN ≤ VR ≤ NAR

A
+

√
αNN

)
≥ 1 − σ2

αNN
= 1 −

AR
A

(1 − AR
A

)
αN

.

(19)

The second term on the right hand side of (19) goes to zero since αN −→ ∞ as
N −→ ∞.

This lemma shows that the number of nodes in a fixed area is bounded within√
αNN of the mean where αN goes to infinity as N −→ ∞ but limN→∞ αN

N is
arbitrarily small.

Using this lemma, the following theorem constructs capacity that can be
achieved with high probability as N −→ ∞ in the many-to-one case. Note that
our result is as a function of the transmission range r and we have assumed
that r is sufficiently large to guarantee connectivity. We construct this bound
assuming that the routing and relaying scheme is such that each of the nodes one
hop away from the sink carries an equal share of the total traffic. This is feasible
given that the collector is at the center, the nodes are uniformly distributed and
each sensor generates the same amount of bits.

Theorem 2. A uniformly deployed network using multi-hop transmission for
many-to-one communication can achieve per-node throughput
λ ≥ W

N
πr2−√

ε
4πr2+4πrδ+πδ2+

√
ε

with high probability as N → ∞, where ε is as given in
Lemma 1.

To see this, consider a source that is at least 2r + δ away from the closest
border of the network. The area of interference is thus a circle of radius r

′
= 2r+δ

centered at this source. Using Lemma 1, with high probability the number of
interfering neighbors including the source, k1, is

NAr′

A
−

√
αNN ≤ k1 ≤ NAr′

A
+

√
αNN. (20)

Consider the entire network represented as a connected graph G(V,E), with
edges connecting nodes that are within each other’s interference range. Then the
highest degree of this graph is k1 −1, since k1 is the number of nodes within any
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interference area. Using the known result from graph theory, see for example
[6,7], that the chromaticity of such a graph is upper bounded by the highest
degree plus one, i.e., k1 − 1 + 1 = k1 in this case, there exists a schedule of
length at most l ≤ k1 slots that would allow all nodes to transmit at least once
during this schedule. The nodes one hop away from the sink carry the traffic of
the entire network. Denote the number of these one hop nodes by k2, there thus
exists a schedule of length l such that N

k2
λ = W

l . Note that k2 is bounded with
high probability by Lemma 1: NAr

A − √
αNN ≤ k2 ≤ NAr

A +
√

αNN . Therefore
we have

N
NAr

A − √
αNN

λ ≥ N

k2
λ =

W

l
≥ W

k1
≥ W

NA
r

′
A +

√
αNN

1
Ar

A − √
αN/N

λ ≥ W
NA

r
′

A +
√

αNN

as N −→ ∞, λ ≥ W

N
·

Ar

A − √
ε

A
r

′
A +

√
ε

=
W

N
· πr2 − √

ε

4πr2 + 4πrδ + πδ2 +
√

ε

(since
√

ε arbitrarily close to 0) ≈ W

4N
(
1 + δ

( 1
r + δ

4r2

)) . (21)

Since there are N nodes transmitting with λ ≥ W
N

πr2−√
ε

4πr2+4πrδ+πδ2+
√

ε
, and

considering the result of Section 3.1 the achievable total transport capacity of
the network is Θ (1).

We now briefly discuss the many-to-many case. Consider a node at any lo-
cation in the network. When it first transmits its data, the data reaches every
node within a distance r from the this node. Nodes on the edge of this area
then retransmit the data to other nodes which were not reached in the first
transmission. Because the size of the field is finite, it takes a finite number of
transmissions k to cover the whole field. Once the whole field is covered, all in-
tended destinations must have received the data. Consider a network where each
node transmits its data this way, one starting as soon as the previous one has
just finished. Under such a construction it would take at most Nk transmissions
to transmit data from every node to every other nodes in the network. Therefore

λ ≥ W

kN
. (22)

Since there are N nodes in the network, each with λ ≥ W
kN , the total transport

capacity of the network will again be Θ (1).
Note that the parameter k does not depend on N since an increase in N only

means an increase in density when the size of the field is fixed. An increase in
density means that every transmission reaches more nodes, but does not affect
the number of transmissions needed to cover the field. An increase in the field
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size or a decrease in r will increase k, but as long as r > 0 and the field size is
finite, k will be finite.

To summarize we have shown in this section that overall the total transport
capacity of the network is Θ (1) in both the many-to-one and the many-to-many
cases. Equivalently the per-node capacity is Θ( 1

N ). The key is that the total
capacity does not grow as the size of the network increases. This is a major
difference from what was derived in [1] for the peer-to-peer case. At the same
time, the per-node throughput decays as fast as 1

N as N increases.

4 Conclusion

In this paper we characterized the amount of data required to sample, quantize,
and encode a field densely deployed with wireless sensors, and the amount of
data that can be transported by the wireless sensor network, motivated by an
imaging application where there is a single receiver/collector. We showed that as
the number of sensors increases to infinity, the total amount of data generated
for every snapshot also goes to infinity. At the same time, while the number of
bits generated per sensor per snapshot may go zero, it can only do so at a rate
strictly less than 1

N . On the other hand, as the size grows, the total transport
capacity of the network remains constant on the order of 1, and the transport
capacity per node is on the order of 1

N . Therefore the amount of data required for
a fixed MSE cannot be transported within finite network usage. We would like
to emphasize that this result holds for both a bandlimited and non-bandlimited
random field, regardless of the encoding scheme used.

We showed that in the special case of a one-dimensional Gaussian random
field with two example autocorrelation functions, there exists a coding scheme
with which the number of bits per sensor per snapshot is on the order of log N√

N
and

log N
N . We also constructively showed that the achievable per node capacity is on

the order of 1
N . Therefore in this special case the network usage is Θ(

√
N log N)

and Θ(log N), respectively.
We also discussed that since the number of slots per snapshot increases with

the number of sensors, there should exist an optimal number of sensors that
minimizes the number of slots per snapshot. We do not know what this optimum
is, but if we did, it would place a limit on how densely sensors should be deployed,
beyond which one should suppress sensors, e.g. put sensors to sleep, to prevent
over-sampling.
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Abstract. We address the problem of deterministic oversampling of
bandlimited sensor fields in a distributed communication-constrained
processing environment, where it is desired for a central intelligent unit
to reconstruct the sensor field to maximum pointwise accuracy. We show,
using a dither-based sampling scheme, that is is possible to accomplish
this using minimal inter-sensor communication with the aid of a mul-
titude of low-precision sensors. Furthermore, we show the feasibility of
having a flexible tradeoff between the average oversampling rate and
the Analog to Digital (A/D) quantization precision per sensor sample
with respect to achieving exponential accuracy in the number of bits
per Nyquist-period, thereby exposing a key underpinning “conserva-
tion of bits” principle. That is, we can distribute the bit budget per
Nyquist-period along the amplitude-axis (precision of A/D converter)
and space (or time or space-time) using oversampling in an almost ar-
bitrary discrete-valued manner, while retaining the same reconstruction
error decay profile. Interestingly this oversampling is possible in a highly
localized communication setting, with only nearest-neighbor communi-
cation, making it very attractive for dense sensor networks operating
under stringent inter-node communication constraints. Finally we show
how our scheme incorporates security as a by-product due to the presence
of an underlying dither signal which can be used as a natural encryp-
tion device for security. The choice of the dither function enhances the
security of the network.

1 Introduction

Remote sensing of bandlimited physical phenomena of interest using a network
of sensors is directly related to the classical sampling problem, a mature topic
in signal processing [1]. The sensor network setting however has a unique set of
attributes that impose challenging constraints on the sampling paradigm. First,
individual sensors are low-power devices with limited processing capability. Sec-
ond, inter-node communication costs are prohibitive leading to the constraint of
only highly local inter-node communication (e.g., nearest-neighbor, see Figure 1).
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good

BAD

good

Fig. 1. Sensor networks typically have coarse resolution, high spatial density, and high
inter-sensor communication costs.

This paper is accordingly motivated at addressing the question of determin-
istic sampling of bandlimited signals under these distributed or localized com-
munication constraints. Consider the scenario where a large number of sensors
are deployed over a region of interest in order to collect and return sensor mea-
surements to a central processing unit (CPU). We use the term CPU to refer to
any point of data collection and/or processing. The CPU need not be a remote
entity that is associated with high communication costs. For instance, the nodes
of the network can be dynamically organized into clusters and different nodes in
each cluster can assume the role of the CPU at different times [2]. Many physi-
cal signals are approximately bandlimited and can be reconstructed in a stable
manner from samples taken slightly above the Nyquist-rate on a uniform lattice.
In practice, however, the samples of the signal are quantized due to the finite
precision of A/D converters, leading to unavoidable signal reconstruction errors.

When signals are uniformly sampled at the critical Nyquist-rate, which we
will refer to as the Pulse Code Modulation (PCM) style sampling setup, the
worst case pointwise reconstruction error decays exponentially with the bit rate
(measured in number of bits per Nyquist-interval) of the A/D converters [3].
However, high-precision A/D operations are expensive (this is true even outside
the sensor network world). This leads to the following question: is it possible
to trade-off A/D converter resolution in terms of bits per sample for (average)
oversampling rate (attained through denser oversampling) while maintaining the
same worst-case pointwise reconstruction error performance as a function of the
number of bits per Nyquist-interval? In the sequel we answer this question in
the affirmative, and show how it is possible to compensate for lack of precision
in the A/D elements via spatial oversampling without compromising accuracy.

Our main result is the uncovering of an underpinning “conservation of bits”
principle that can be useful in guiding the analysis and design of distributed
sensor nodes including such questions as what tradeoffs in sampling density and
A/D precision are needed to attain a desired worst-case pointwise reconstruc-
tion accuracy. A direct outcome of this framework is the ability to do spatially
adaptive sampling: we can have critically sampled PCM-style sampling using
higher resolution A/D converters when the sampling density is light (i.e. near
the Nyquist-rate), and use proportionately lower resolution sensors when the
sampling density is high. The bit-conservation principle also implies a certain
degree of robustness to node failures. Node failures reduce the average sampling
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density and have the same effect as loss of amplitude resolution. This leads to a
graceful degradation of reconstruction quality with node failures. This also has
direct bearing on A/D precision versus inter-sensor communication cost trade-
offs. Densely spaced low-resolution sensors would need to communicate fewer bits
while sparsely spaced high-resolution sensors need to to communicate more bits.
However, the total number of bits exchanged in a Nyquist-interval (bit-meters)
would be about the same.

An interesting and useful by-product of the proposed sampling framework is
its measure of security to eavesdropping that comes “for free” due to the use
of dither functions underlying the approach, with the added flexibility of using
different covert dither functions over different spatio-temporal Nyquist-regions.
In this paper we address only deterministic aspects of distributed sampling,
and the (worst-case) analysis is done in the context of sampling 1-D (spatially)
bandlimited fields1.

Extensions to more general spatio-temporal models are part of our ongoing
and future studies, as also generalizations from the deterministic to the stochastic
setting.

2
accuracy

similar

t t
0 T0T 2T

K bits/sample, T

2T

1 bit/sample, T
k

Fig. 2. Illustrating the “conservation of bits” principle. On the left, a bandlimited
signal is sampled at near-Nyquist-rate T using k-bit A/D converters in a PCM-style
sampling framework. On the right, the same signal is oversampled at 2k times the
Nyquist-rate using 1-bit A/D converters under a dither-based sampling framework (see
Section 2.2). Both schemes use the same total number of bits in a Nyquist-interval.
If the oversampling is done appropriately, using a suitable dither function, the two
schemes achieve similar exponential decay in reconstruction error with bitrate.

2 Sampling Bandlimited Signals

2.1 PCM-Style Sampling at Near-Nyquist-Rates

For the rest of this paper, f(t) is a bandlimited signal with bounded dynamic
range. We assume, without loss of generality, that the spectral support and
1 Actually, one could construe the scope of this paper to apply to spatio-temporal

sampling of bandlimited signals, where the results of this paper apply to the 1-
D spatial dimension corresponding to a “frozen” time instant, assuming the time-
dimension has been sampled at the temporal Nyquist-rate.
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dynamic range of f(t) are respectively normalized to the intervals [−π, π] and
[−1, 1]. The Nyquist sampling period for f(t) is TNQ = 1 and classical sam-
pling theory tells us that f(t) can be perfectly reconstructed from the samples
{f(n)}n∈Z according to the well known interpolation formula [1]:

f(t) =
∞∑

n=−∞
f(n)sinc(t− n), ∀t ∈ R, (1)

where sinc(t) := sin(πt)
πt for t �= 0 and one otherwise. In practice, however, the

reconstruction (1) is not stable to bounded perturbations in the sample values
due to the poor decay properties of the sinc interpolation kernel, i.e., the series
in (1) is not absolutely convergent. All practical A/D converters have finite
precision and the sampling process is invariably accompanied by ambient noise.
The instability in the reconstruction implies that the quantization noise can
potentially build up and lead to unbounded reconstruction errors in parts of
the signal. The instability can, however, be happily overcome by taking samples
slightly above the Nyquist-rate:

Proposition 1. [4] For each λ > TNQ = 1, there exists a kernel φλ(t) bandlim-
ited to [−π, π] such that Cλ := supt∈R

(∑
n |φλ

(
t− n

λ

) |) < ∞ and

f(t) =
1
λ

∑

n∈Z

f
(n
λ

)
φλ

(
t− n

λ

)
, ∀t ∈ R. (2)

The finiteness of Cλ ensures that the reconstruction series (2) is absolutely con-
vergent. The interpolation kernel φλ(t) in fact decays faster than cn

tn for all
positive integers n and some constant cn. If Qk(·) denotes a k-bit quantization
operation, we have

∣∣∣f
(n
λ

)
−Qk

(
f

(n
λ

))∣∣∣ ≤ 2−k, ∀n ∈ Z

and the worst-case pointwise reconstruction error can be bounded as

sup
t∈R

∣∣∣∣∣f(t) − 1
λ

∑

n∈Z

Qk

(
f

(n
λ

))
φ

(
t− n

λ

)∣∣∣∣∣ ≤ Cλ

λ
· 2−k

=
Cλ

λ
· 2−R/λ, (3)

where R = k
(1/λ) is the bitrate in bits per sampling period used to quantize the

signal. For a fixed oversampling rate λ, (3) reveals that the reconstruction error
decays exponentially in rate R, however, since R ∝ k in the PCM-style sampling
framework, the quality of reconstruction can be improved only by using higher
resolution A/D converters.

The near-Nyquist stable sampling rate λ > 1 will be held fixed for the rest of
this paper and the term oversampling will be used to refer to uniform sampling at
rate strictly greater than the stable sampling rate λ. We shall also use the term
’Nyquist-interval’ to refer to any stable sampling interval of the form

(
n
λ ,

n+1
λ

)
.
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2.2 1-Bit A/D Dithered Oversampling

Recently, a dither-based, single-bit, oversampled A/D scheme was proposed in
[5,6] with a worst-case reconstruction error that decays exponentially in the
bitrate as in (3). However, unlike in PCM-style sampling where the bit budget
for each Nyquist-interval is exhausted at a single high-resolution sampling point,
the dither-based approach “spreads” the bit-budget over many single-bit A/D
converters in a Nyquist-interval. The key component of dither-based sampling
schemes is the dither function that has the following properties:

1. |d (
n
λ

) | > 1,∀n ∈ Z;
2. sgn

[
d

(
n
λ

)]
= −sgn

[
d

(
n+1

λ

)]
, ∀n ∈ Z;

3. d(t) is differentiable and ∆ := supt∈R
|d′(t)| < ∞;

For example, d(t) = γ cos(λπt) with |γ| > 1 is a valid dither function. The
third property of dither functions implies that d(t) is continuous. A bandlimited
function is also continuous ⇒ the dithered signal f(t) + d(t) is continuous. This
together with the first two properties of the dither function guarantees (by the
intermediate value theorem for continuous functions [7]) that f(t) + d(t) will
have a zero-crossing in every Nyquist-interval

(
n
λ ,

n+1
λ

)
. Let 2k 1-bit A/D con-

verters be placed uniformly in every Nyquist-interval to record the sign of the
dithered signal f(t) + d(t), i.e., sensors are placed at the locations {mτk}m∈Z

where τk := (1/λ)
2k is the uniform oversampling period. To avoid clutter, we

shall henceforth drop the subscript k in τk. Let mn ∈ {
0, . . . , 2k − 1

}
be the

smallest index for which [f + d]
(

n
λ +mnτ

)
and [f + d]

(
n
λ + (mn + 1)τ

)
have

opposite signs in
[

n
λ ,

n+1
λ

]
. It follows from the intermediate value theorem that

f(zn) + d(zn) = 0 at some point zn ∈ (
n
λ +mnτ,

n
λ + (mn + 1)τ

)
. Bandlim-

ited functions have bounded derivatives. Specifically, according to Bernstein’s
inequality for bandlimited signals [8],

|f ′(t)| ≤ π sup
t∈R

|f(t)| ≤ π. (4)

The third condition on the dither function ensures that f(t)+d(t) is differentiable
and has a derivative bounded by π +∆. From Lagrange’s mean value theorem
[7] applied to the points xn =

(
mn + 1

2

)
and zn it easily follows that

∣∣∣[f + d](zn) − [f + d]
(n
λ

+ xnτ
)∣∣∣ ≤ (π +∆)

∣∣∣zn − n

λ
− xnτ

∣∣∣ ,

i.e.,
∣∣∣f

(n
λ

+ xnτ
)

−
(
−d

(n
λ

+ xnτ
))∣∣∣ ≤ (π +∆)τ

2
=

(π +∆)
2λ

2−k.

Thus uniform oversampling of the dithered signal using 1-bit A/D converters
give samples of f with linear precision in τ at the nonuniformly spaced points{

n
λ +

(
mn + 1

2

)
τ
}
. There are 2k = 1

τλ oversampling positions in a stable sam-
pling period 1

λ . Hence, it requires k bits to specify the identity of the the 1-bit
sensor just following the location of the first zero-crossing of the dithered sig-
nal in each Nyquist-interval, i.e., the bit rate required is R = kλ bits/interval.
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The worst case sample error is no more than π+∆
2λ 2− R

λ . The decay of the
worst-case pointwise reconstruction error will have a similar behavior only if{(

n
λ +

(
mn + 1

2

)
τ
)}

n∈Z
constitutes a stable sampling set for the bandlimited

function f . The following proposition proved in [5] shows that this is indeed the
case if the sampling positions do not get too close to each other and at the same
time they do not stray too far away from the stable Nyquist points.

Proposition 2. [5] If infj,l∈Z,j�=l |tj−tl| > 0 and supn∈Z
|tn− n

λ | < ∞ then there
exist interpolating functions ψn(t) with C ′ := supt∈R

[∑
n∈Z

|ψn(t− tn)|] < ∞
such that for any function f(t) with spectral support contained in [−π, π],

f(t) =
∑

n

f(tn)ψn(t− tn).

Using the above proposition with tn = n
λ +

(
mn + 1

2

)
τ it follows that the

worst-case pointwise reconstruction error is bounded by

|f(t) − f̂D(t)| ≤ C ′(π +∆)
2λ

2− R
λ , where (5)

f̂D(t) :=
∑

n∈Z

(
−d

(n
λ

+ xnτ
))

ψn

(
t− n

λ
− xnτ

)

is the dither-based reconstruction of f(t) and the constant C ′ does not depend
on f(t). Observe that the reconstruction accuracy, in terms of bitrate, is similar
to the PCM-style sampling scheme, i.e., it is exponentially decaying in rate with
the same exponent. The reconstruction accuracy can be improved by reducing
τ , i.e., by packing more sensors inside each Nyquist-interval. Unlike the PCM-
style sampling scheme, there is no need to use higher precision A/D converters.
However, determining the location of the first zero-crossing would require local
communication among sensors in each Nyquist-interval. For example each sensor
can send one bit to its right neighbor if it has not detected a crossing. The local
communication cost is therefore limited to one bit per Nyquist-interval.

3 Tradeoffs in Amplitude and Spatial Resolution

In PCM-style sampling, signals are sampled at low, near-Nyquist-rates. The en-
tire bit-budget of k bits per Nyquist-interval is spent in recording the signal am-
plitude at a single high precision (k-bit) sensor. The 1-bit dither-based sampling
scheme on the other hand spends all available bits into specifying a spatial event
in the form of zero-crossings by using many (2k) poor-precision (1-bit) sensors
in each Nyquist-interval. These sampling schemes represent two extreme scenar-
ios. This section explains how k-bit PCM-style reconstruction accuracy can be
achieved using b-bit A/D converters and an appropriate dither-based oversam-
pling scheme for any 1 < b < k. This leads to a “bit-conservation principle”–
a trade-off between the oversampling factor and A/D precision for “similar” re-
construction accuracy. To the best of our knowledge this tradeoff has not been
discussed before in the deterministic sampling literature.
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3.1 Oversampling Factor versus A/D Precision

PCM-style sampling uses only one k-bit A/D converter per Nyquist-interval of
length 1/λ. The 1-bit dithered sampling scheme uses 2k, 1-bit A/D converters
uniformly distributed over the same interval, i.e., the A/D converters are placed
at intervals of length τ = 1/(λ2k). For definiteness, assume that the sensors are
placed at the beginning of every τ -length interval, i.e., at locations {mτ}m∈Z.
Now consider the scenario where b-bit A/D converters (1 ≤ b ≤ k) are uniformly
placed at intervals of length τ . Notice that, 1-bit A/D converters only detect
one level crossing (the 0 level), 2-bit A/D converters can detect 3 distinct level
crossings, and in general, b-bit A/D converters can detect 2b − 1 distinct level
crossings given by

{
0,± 1

2b−1 , . . . ,±
(
1 − 1

2b−1

)}
. Hence, it requires log2(2b−1) <

b bits to index a level crossing. We shall presently show how to design a dither
function db(t) so that f(t) + db(t) always crosses some level in every interval of
the form [An, Bn] :=

[
n
λ ,

n
λ +

(
2k−b+1 − 1

)
τ
] ⊂ [

n
λ ,

n+1
λ

]
which covers 2k−b+1

b-bit A/D converters. It would require only log2(2k−b+1 − 1) < k− b+1 bits per
Nyquist-interval to specify the location of the sensor just following the location
of the first level crossing of [f + db](t). Hence the total number of bits required
with this sampling method would be not more than (k − b+ 1) + b = k + 1 bits
(or R = λ(k + 1) bits per interval) which, ignoring the additional 1 bit, is the
same as that needed for the k-bit PCM-style sampling and the 1-bit dither based
sampling schemes. (The source of this additional bit can be explained as follows:
In 1-bit dithered sampling, the A/D converters do not need to explicitly specify
which level was crossed since there is only one level; only zero-crossing locations
need to be described. In the k-bit PCM-style sampling, the locations of the A/D
converters need not be explicitly specified since they are known; however, the
sensors need to specify the quantization interval in which the signal sample lies.
Note: specifying the quantization interval needs k bits unlike log2(2k − 1) bits
needed to specify a level crossing). We shall further show that the approximation
accuracy achieved by this approach is (as in the 1-bit dithered sampling scheme)
of the order of τ . Since τ and k are related through τ = 1

λ2k , it follows that
the worst-case sample approximation error is of the order of 2−( R

λ −1) in the rate
(bits per interval).

The proposed sampling and quantization scheme (illustrated in Figure 3) can
be summarized as follows:

– For 1 < b < k let db(t) be an appropriate dither function (see Section 3.2).
– b-bit A/D converters per Nyquist-interval are placed at locations {n

λ +mτ}
for m = 0, . . . , 2k−b+1 − 1, n ∈ Z.

– Each b-bit A/D adds dither db(t) to the signal f(t) and determines the
quantization interval in which the resulting sum lies.

– The number of bits required for specifying the location of the sensor just
following the first level crossing is not more than (k − b+ 1).

– The number of bits required for specifying the level crossed is not more than
b.

– The total number of bits needed per Nyquist-interval is not more than (k+1).
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– The worst-case pointwise reconstruction error is proportional to τ with the
result that the error profile decays exponentially in R = λ(k + 1) bits per
meter.

For the described sampling scheme, the reconstruction accuracy can be im-
proved either by improving the precision of available sensors or equivalently by
using more sensors of the same precision in every Nyquist-interval. This leads to
the following principle.
“Conservation of bits” principle: Let k be the number of bits available per
Nyquist interval. For each 1 ≤ b ≤ k there exists a (dither-based) sampling
scheme with not more than 2k−b+1, b-bit A/D converters per Nyquist-interval
achieving a worst-case pointwise reconstruction accuracy of the order of 2−k.

3.2 Dither Function Design

We now investigate conditions on db(t) under which f(t) + db(t) will cross a
quantization level in [An, Bn]. Let M := 2b then Bn − An = 2

Mλ > 0. From
Bernstein’s inequality (4) and the mean value theorem, we have:

f(Bn) ≤ f(An) + π(Bn −An) = f(An) +
2π
Mλ

. (6)

We assume that db(t) is continuous in each [An, Bn]. This implies that [f+db](t)
is also continuous and the intermediate value theorem can be used, whenever
applicable, to deduce the existence of a level crossings. For i = 0, . . . , M−2

2
consider the following scenarios:

1. f(An) ∈
[

2i
M , 2(i+1)

M

)
; The upper level 2(i+1)

M in this quantization interval is

just outside the dynamic range of the A/D converter when i = M−2
2 . Hence

we shall derive conditions under which f(t)+db(t) crosses the lower level 2i
M

in [An, Bn]. Without loss of generality we can assume that the level crossing
is from above to below, i.e.,

2i
M

< f(An) + db(An), (7)

f(Bn) + db(Bn) <
2i
M
. (8)

The first condition (7) is satisfied if

0 < db(An). (9)

From (6) and the fact that f(An) < 2(i+1)
M it follows that f(Bn) − 2i

M ≤
2π
Mλ + 2

M . Hence, the second condition (8) will be satisfied if

0 <
2
M

+
2π
Mλ

< −db(Bn). (10)

Note that the sufficient condition (10) implies that db(Bn) is negative.
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Fig. 3. Illustrating amplitude precision and oversampling rate tradeoffs in conven-
tional and dither-based sampling frameworks. The top figure depicts conventional
PCM-style sampling using 3-bit A/D converters placed at (near) Nyquist sampling
locations {n

λ
}n∈Z. The entire budget of 3 bits is exhausted at a single sample point

in any Nyquist-interval. The middle figure shows a dither-based sampling scheme that
uses eight, 1-bit A/D converters uniformly distributed over a Nyquist-interval to locate
the zero crossing of the dithered signal. The bottom figure shows how to achieve a flex-
ible tradeoff between these extremes. Four, 2-bit A/D converters uniformly distributed
over half the Nyquist-period detect level crossings at 0 and ± 1

2 . All three schemes have
similar exponential error accuracy in bitrate.
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2. f(An) ∈
(
− 2(i+1)

M ,− 2i
M

]
; the lower level −2(i+1)

M in this quantization interval

is just outside the dynamic range of the A/D converter when i = M−2
2 . Hence

we shall derive conditions under which f(t) + db(t) crosses the upper level
− 2i

M in [An, Bn]. Since db(An) > 0, we see that we no longer have a choice
in the direction of the level crossing. To avoid conflicting requirements on
db(An), the level crossing must be from above to below, i.e.,

− 2i
M

< f(An) + db(An), (11)

f(Bn) + db(Bn) < − 2i
M
. (12)

Since, − 2i
M − f(An) < 2

M , condition (11) is satisfied if

2
M

< db(An). (13)

Again, from (6) and the fact that f(An) ≤ − 2i
M it follows that f(Bn)+ 2i

M ≤
2π
Mλ . Hence, condition (12) will be satisfied if

0 <
2π
Mλ

< −db(Bn). (14)

Hence, the level crossing requirements on db(t) are given by (9), (10), (13), and
(14). These conditions can be summarized as

1
2b−1 < db(An),

0 <
1

2b−1 +
π

λ2b−1 < −db(Bn).

Let αb :=
( 1

2b−1 + π
λ2b−1

)
and note that αb >

1
2b−1 . If db(t) is any function with

the following properties:

1. |db(An)| = |db(Bn)| > αb for all n ∈ Z;
2. sgn [db(An)] = −sgn [db(Bn)] for all n ∈ Z;
3. db(t) is differentiable in every [An, Bn] and ∆b := supt∈∩n(An,Bn) |d′

b(t)| <∞;

then it is straightforward to verify that db(t) meets all the level-crossing require-
ments. For instance, let d(t) be any dither function used by the 1-bit dithered
sampling scheme of Section 2.2 with derivative bounded by ∆. A valid b-bit
dither function can be defined in terms of d(t) as follows:

db(t) = αb

∑

n∈Z

d

(
2b−1t

1 − 2−(k−b+1) +
n

λ

(
1 +

1
1 − 2−(b−1)

))
1[n

λ , n+1
λ )(t),

where 1S(t) is the indicator function of set S. Note that the amplitude constraint
on db(t) is smaller (by a factor of around 2b−1) than that on d(t). However, db(t)
is also required to swing between positive and negative extremes over an interval
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that is shorter (by a factor of around 2b−1) than that for d(t). Hence, with respect
to the derivative, these effects approximately cancel. If db(t) is expressed in terms
of d(t) as above, ∆b = ∆(1 + π

λ ) 1
1−2−(k−b+1) .

Let mn ∈ {0, . . . , 2k−b+1 − 2} be the smallest index2 for which [f + db](An +
mnτ) and [f + db](An + (mn + 1)τ) are on opposite sides of some level ln ∈{
0,± 1

2b−1 , . . . ,±
(
1 − 1

2b−1

)}
and let zn ∈ (An + mnτ, An + (mn + 1)τ) be the

actual point of level crossing, i.e., f(zn) + db(zn) = ln. From the mean value
theorem applied to [f + db](t) for the end-points xn = mn + 1

2 and zn we obtain

|[f + db] (zn) − [f + db] (An + xnτ)| ≤ sup
t∈(An,Bn)

|[f ′ + d′
b] (t)| |zn −An − xnτ | ,

⇒
∣∣∣f

(n
λ

+ xnτ
)

−
(
ln − db

(n
λ

+ xnτ
))∣∣∣ ≤

(
π +∆b

2

)
τ. (15)

This shows that the accuracy of the nonuniform samples {f (
n
λ +

(
mn + 1

2

)
τ
)}

is still linear in τ , independent of the resolution of the A/D converters. As was
pointed out earlier, only b bits are needed to specify the quantization level crossed
and only k − b+ 1 bits are needed to specify the first location of level crossing.
The total number of bits needed is therefore (k + 1) bits per 1

λ or R = λ(k + 1)
bits/interval. Hence, τ = 2

λ2− R
λ and the worst-case sample error (15) is no more

than
1
λ

[π +∆b] 2− R
λ .

Using Proposition 2 with tn = n
λ +xnτ it is easy to confirm that

{(
n
λ + xnτ

)}
n∈Z

forms a set of stable sampling points for functions bandlimited to [−π, π]. Hence,
the worst-case pointwise reconstruction error is bounded by

|f(t) − f̂Db
(t)| ≤ C ′

λ
[π +∆b] 2− R

λ ,

where
f̂Db

(t) :=
∑

n∈Z

(
−db

(n
λ

+ xnτ
))

ψn

(
t− n

λ
− xnτ

)

is the b-bit dither-based reconstruction of f(t) and the constant C ′ does not
depend on f(t). Observe that the reconstruction accuracy, in terms of bitrate, is
similar to the PCM-style sampling scheme, i.e., it is exponentially decaying in
rate R with the same exponent.
PCM as a special case: We would like to note that the PCM-style sampling
scheme is also subsumed by the proposed generalized dithered sampling frame-
work. Indeed, for b = k, the described framework suggests using two, k-bit A/D
converters at locations n

λ and n
λ + τ . However, the dithered signal is guaranteed

to have a level crossing in
[

n
λ ,

n
λ + τ

]
. Hence, the second sensor is redundant

and there is no need for the first sensor to add a dither value (except maybe for
security reasons).
2 The design of the dither function db(t) ensures that a level crossing of [f +db](t) will

always occur in [An, Bn] which covers 2k−b+1 sensors.
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Number of sensors vs A/D precision: For the b-bit case, we need 2k−b+1

sensors per Nyquist interval, which means the number of sensors is less by a
factor of 2b−1 compared to the 1-bit case. Thus, there is considerable flexibility
in designing a sensor network. The number of sensors can be traded off with the
precision of sensors. Note: throughout our analysis, the number of sensors has
been a power two. However, this is only for the ease of illustration and is not a
restrictive assumption.

4 Distributed Sampling in Sensor Networks

We have so far described, in an application-independent context, how it is pos-
sible to have a bit-conservation oversampling principle which allows for fairly
flexible tradeoffs in A/D quantizer resolution versus the oversampling rate. In
this section, we show how our proposed framework is particularly germane to
the sensor network application as motivated in the introduction. Recall the key
relevant features of (a) high spatial density (corresponding to oversampling),
and (b) high inter-sensor communication costs (corresponding to local commu-
nication constraints – see Figure 1). In this context, it is better to have a dense
set of low-precision sensors that have minimal-rate inter-node communication
(nearest-neighbor only), as well as limited node-to-central-unit communication
over the baseline case of coarse (Nyquist-rate) sensor density and potentially
high node-to-central-unit communication cost. The dither-based oversampling
method associated with the bit-conservation principle is particularly attractive
in this application context, and offers a flexible array of tradeoffs between the
precision of the sensors and the number of sensors.

Consider the following simple protocol that is friendly to the distributed
sensor network application:

– Assume that sensors are placed uniformly at every τ = 1
λ2k in [n

λ ,
n
λ +

(2k−b+1 − 1)τ ]. The sensors at n
λ are starting nodes.

– Each starting node passes a message to its neighbor (say its right neighbor),
indicating the level-crossing index of f(t) + db(t) at its location.

– Only the sensor(s) observing a level mismatch between what the neighbor re-
ports and its own reading communicates with the base station, and indicates
the level-crossing value (in the binary case, the level is always a zero-crossing
and need not be sent).

A simple protocol like this provides accuracy through the A/D converter
precision as well as the sampling separation τ . As we increase the A/D precision
(b increases), we can get a reduction in the number of sensors according to
the “conservation of bits” principle (the number of sensors needed is 2k−b+1).
How about the maximum pointwise reconstruction error? The sensors which
broadcast their level-crossing to the central processor indicate their level-crossing
index as well as their ID or address, requiring (k + 1) bits. The reconstruction
error is uniformly bounded by τ upto a proportionality constant. Hence, the
overall accuracy is exponential in “bit rate to the central processor”.
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Local inter-sensor communication cost: For a reconstruction accuracy of
the order of 2−k, b-bit precision sensors, and the above local communication
protocol, each sensor transmits b-bits to its right neighbor over a distance of τ .
Since there are no more than 2k−b+1 sensors needed for the target reconstruction
accuracy, b bits travel no more than (2k−b+1 − 1)τ meters in each sampling
interval. Hence, the local communication cost is no more than b

λ2b−1 < 1
λ bit-

meters or 1 bit per Nyquist-interval. Thus, with limited local communication
cost, the sampling task can be nicely distributed among the sensors.
Sensor distribution: Sensors need to be placed only in intervals of the form[

n
λ ,

n
λ + (2k−b+1 − 1)τ

]
. This leaves intervals over which there is no need to sam-

ple the signal at all. Hence for a given reconstruction quality (determined by the
parameter k) the number of sensing units goes down exponentially with b: 1-bit
dithered sampling needs 2k sensors, b-bit dithered sampling needs 2k−b+1 sen-
sors, and PCM-style sampling needs only one sensor per Nyquist-interval. Since
the scheme naturally allows “inactive” regions in oversampling, we can have
bunched irregular sampling using sensors. A direct advantage of this is that it
allows for design flexibility in sensor deployment (e.g. in rugged terrain or in the
presence of occluding obstacles, etc.).

In some cases the central unit can estimate the location of the sensor which
is transmitting by the use of directional antennas and beamforming techniques.
In this case, the sensors detecting the first level crossing need not identify them-
selves. This can provide significant savings in communication cost because the
sensors need to send only the level crossing information. The dither-based over-
sampling method also offers robustness to node failures in terms of a graceful
degradation of reconstruction error. For example, if every alternate node fails,
the effective inter-node separation would increase to 2τ . This has the same effect
as halving the resolution of the A/D converters by the bit-conservation princi-
ple. The same dither function will continue to work because it was designed for
a higher spatial density. The worst-case local communication cost in bit-meters
will also remain the same but the sensors would need to use more power to ensure
that their message gets across a distance of 2τ as opposed to τ when all nodes
were functioning. If we assume that temporal variation is uniform over a Nyquist
interval (recall that we are considering an arbitrarily “frozen” time-instant in our
analysis here), each sensor has an equal opportunity/load of communicating to
the central unit, allowing for natural load-balancing.
Security: The design of the underlying dither function db(t) can be chosen
arbitrarily (within the constraints of the dither function properties). This al-
lows for a secure sampling by selecting a covert dither function. The dither can
be implementation-specific, and furthermore, can be different for each Nyquist-
interval. However, the choice of the dither function also affects the reconstruction
accuracy (through the slope of the dither function). Hence, a larger distortion
for the eavesdropper’s will also imply a larger reconstruction error in general.
Quantifying the tradeoff between reconstruction error and security is part of our
ongoing work.
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5 Future Research Directions

We have addressed the problem of deterministic oversampling of bandlimited
sensor fields. We have shown how, using a dither-based sampling scheme, it is
possible to do this using only local inter-sensor communication and a multitude
of low-precision sensors. More importantly, we have shown the feasibility of hav-
ing a flexible tradeoff between the average oversampling rate and the Analog to
Digital (A/D) quantization precision per sensor sample with respect to achiev-
ing exponential accuracy in the number of bits per Nyquist-interval, thereby
exposing a key underpinning “conservation of bits” principle. This allows one to
arbitrarily distribute the per-Nyquist-interval bit budget between the quantizer
resolution and the spatial sampling resolution. Interestingly, this is possible us-
ing only neighbor-to-neighbor single-hop communication, making it attractive
for sensor networks. Finally we pointed out how one can get security as a side-
benefit due to the choice of the underlying dither function.

This paper is but the first step towards understanding the fundamentals
of distributed sampling theory. The setup of a bandlimited 1-D deterministic
signal model is somewhat simplistic but a necessary first step in probing further.
The range of topics for future work is vast. There is a large body of literature
on DPCM, delta-modulation, and sigma-delta modulation which needs to be
revisited. The latter has been used in audio consumer electronic equipment for
many years. Extensions to 2-D spatio-temporal sampling would be the next
logical step for the work presented here. Other directions include incorporation of
non-bandlimited signal models with “finite rate of innovation” that has recently
been developed in [9] but with a distributed mindset. We would also like to
explore connections to the seminal work on the throughput of ad-hoc networks
in [10]. Finally, in contrast to the deterministic analysis of this work, extensions
to sampling of bandlimited stochastic processes that incorporate the appropriate
statistical signal and noise models is of great interest, and will be part of our
future study.
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Abstract. We study the tradeoffs involved in the energy-efficient local-
ization and tracking of mobile targets by a wireless sensor network. Our
work focuses on building a framework for evaluating the fundamental
performance of tracking strategies in which only a small portion of the
network is activated at any point in time. We first compare naive net-
work operation with random activation and selective activation. In these
strategies the gains in energy-savings come at the expense of increased
uncertainty in the location of the target, resulting in reduced quality of
tracking. We show that selective activation with a good prediction algo-
rithm is a dominating strategy that can yield orders-of-magnitude energy
savings with negligible difference in tracking quality. We then consider
duty-cycled activation and show that it offers a flexible and dynamic
tradeoff between energy expenditure and tracking error when used in
conjunction with selective activation.

1 Introduction

There is an emerging trend towards the use of sophisticated wireless networks
of unattended sensor devices for intelligence gathering and environmental mon-
itoring [1] -[6]. One canonical application of sensor networks that has received
considerable attention in the literature is the tracking of a mobile target (point
source) by the network.

In a tracking scenario, information obtained from nodes far away from the
region of activity is of little or no use. For a typical sensor network with a large
number of nodes, a major portion of these falls in the above category. In addition,
if the nodes are densely deployed, information obtained from some sensors close
to the region of activity might be redundant. An obvious way to save energy is
to switch on only a subset of the sensor nodes. We discuss in this paper various
possible activation strategies: (1) naive activation, (2) randomized activation (3)
selective activation based on trajectory prediction and (4) duty-cycled activation.

In these sensor activation strategies, energy savings come at the expense of a
reduction in the quality of tracking. In other words, relying on the information
provided by a small subset of the sensor nodes results in an increased uncertainty
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in the sensed location of the mobile. In this paper we study the energy-quality
tradeoffs involved by building a model to quantify both the energy expenditure
and the quality of tracking. Also for a particular strategy, we study the impact of
the following: a) deployed/activated density of sensors b) their sensing range c)
capabilities of activated and un-activated nodes d) the target’s mobility model.

Our efforts are not directed per se at proposing new techniques for mobile
tracking. Rather the focus is on the evaluation and analysis of general strategies
which may be incorporated into a real system. We start with a simple model
for tracking and substantiate the intuition that it is possible to obtain orders
of magnitude savings in energy while keeping the uncertainty within acceptable
limits. We also discuss the extensions of the model to relate closely with real life
scenarios. The results in this work are a first step in our attempt to understand
the fundamental bounds on the the tracking quality that can be obtained under
various energy constraints and sensor models.

The rest of the paper is organized as follows. In section 2, we discuss related
work from the existing literature, presenting the context for our work. We de-
scribe our basic model, assumptions and evaluation metrics for target tracking
in section 3. The general tracking strategies that we investigate are detailed in
section 4. Section 5 contains the description of our experiments to evaluate the
performance of these strategies, and an analysis of the results presented. Finally,
we present concluding comments in section 6.

2 Related Work

Target tracking is considered a canonical application for wireless sensor networks,
and work in this area has been motivated in large part by DARPA programs
such as SensIT [18].

Zhao et al. present the information driven sensor querying (IDSQ) mechanism
in [8], [7]. IDSQ is a sensor-to-sensor leader handoff based scheme in which at any
given time there is a leader sensor node which makes the decisions about which
sensors should be selectively turned on in order to obtain the best information
about the target. A combined cost function which gives weight to both energy
expenditure and information gain is considered. The generic selective activation
strategy which we describe in this paper is closest in spirit to IDSQ. As our focus
in this paper is to evaluate general strategies, our findings regarding selective
activation are applicable to the performance of intelligent tracking strategies such
as IDSQ. Liu et al. develop a dual-space approach to tracking targets which also
enables selective activation of sensors based on which nodes the target is likely
to approach next.

Along these lines, Ramanathan, Brooks, et al. advocate a location-centric ap-
proach to performing collaborative sensing and target tracking in [13], [14]. The
idea is to develop programming abstractions that provide addressing and com-
munication between localized geographic regions within the network rather than
individual nodes. This makes localized selective-activation strategies simpler to
implement.
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Brooks et al. present self-organized distributed target tracking techniques
with prediction based on Pheromones, Bayesian, and Extended Kalman Filter
techniques [21], [22]. The implementation and testing of a real distributed sensor
network collaborative tracking algorithm in a military context is described in
[23].

A number of recent papers have focused on the question of deploying sen-
sors to ensure adequate coverage of moving targets. Megerian, Meguerdichian,
Potkonjak, et al. [20], [19], investigate the question of the minimum exposure
path that a target can take in a given sensor field - which is a worst-case metric
to evaluate the tracking quality that can be obtained for a given deployment.
Clouquer et al. [16] use a related metric to evaluate sensor deployment strategies
that enhance the worst-case probability of target detection, taking into account
factors such as equipment and deployment costs. Chakrabarty, Iyengar et al. dis-
cuss the problem of tolerating faults while ensuring sensor coverage of an area to
ensure that the target moving through the area can be tracked at all times [10].
Jung and Sukhatme examine target tracking by a mobile robotic sensor network
in [12].

The problem of multiple targets has also attracted some attention. Bejar, Kr-
ishnamachari, et al. formulate a sensor tracking problem as that of distributed
constraint satisfaction. They show that there is a critical combination of sens-
ing and communication needed to ensure that multiple targets can be tracked
satisfactorily by a sensor network. In [15], Li, Wong et al. tackle the problem
of distinguishing between multiple targets, describing and developing several
target classification mechanisms. Fang, Zhao and Guibas describe a distributed
mechanism for counting the number of targets in a given field in [9].

In the context of these related works, we should emphasize that our atten-
tion is primarily focused on single-target tracking. Our interest is in analyzing
and evaluating the fundamental energy-quality tradeoffs involved in tracking
with different generic tracking strategies, rather than designing/advocating yet
another tracking protocol.

3 Model and Metrics

We now describe the models, assumptions and metrics used in our work.

3.1 Basic Model

We consider a sensor network consisting of N nodes deployed in some operational
area, operating for a total time duration T . There is a single target moving
through the area. We assume that all sensors in the network are binary detectors
with a fixed sensing range S. In other words, at each instant, each sensor returns a
’1’ if the target is present within a distance S of that sensor, and a ’0’ otherwise.
Given this simple sensor model, we take the centroid of the locations of all
detecting sensors as an estimate of the target’s location at any given time t. Say
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there are k sensors at locations Xi = (xi, yi), i = 1 . . . k, detecting the target at
time t. Then the estimated location of target Xs(t) = (xs(t), ys(t)), where

xs(t) =
Σkxi

k
(1)

ys(t) =
Σkyi

k
(2)

We assume two different modes of operation for each node:
1) A high power tracking mode : Nodes in this mode use a higher power H,

which depends on their sensing capabilities. A node in this mode is capable of
both sensing a target and also communicating with neighbor nodes.

2) A low power communication mode : Nodes in this mode use a lower power
L, which is an indicator of the farthest distance they can communicate. A node
in this mode can only communicate with neighbor nodes.

3.2 Quality Metric: Tracking Error

The two performance measures of interest to us in evaluating different tracking
strategies are the average total energy expenditure P (averaged over a period
of time T ), and some measure of the tracking quality, which reflects the un-
certainty in the target’s location. We use the Euclidean distance between the
estimated and actual locations of the target to measure the tracking error. If
Xa(t) = (xa(t), ya(t)) is the actual position of the target at time t, we denote
the instantaneous tracking error metric as q(t):

q(t) = d(Xs(t), Xa(t)) =
√

(xs(t) − xa(t))2 + (ys(t) − ya(t))2 (3)

For the time T spent by a target in the area of interest, the time average
error, which we denote as Q is given as

Q =
1
T

T∫

0

q(t)dt (4)

We note that one drawback of the tracking error metric Q is that it is de-
pendent on the target’s specific trajectory1 Xa(t), t = 0 : T . An alternative
trajectory-independent metric can be obtained by assuming that the target’s
movement is an Ergodic random process, and that its location probability distri-
bution is independent of time. (A random process is ergodic if the time average
of any instantiation of the process converges to the mathematical expectation.)
Then we can use an alternative tracking error metric Q′, the expected distance
between the estimated and actual positions of the target:

Q′ = E[q(t)] = E[
√

(xs(t) − xa(t))2 + (ys(t) − ya(t))2] (5)
1 Note that in our model, once the location of all N nodes in the network is fixed, and

assuming the nodes that are sensing at each time is known, the estimated trajectory
Xs(t) can be determined from the actual trajectory Xa(t).
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Note that this tracking error metric Q′ depends not on a time-dependent tra-
jectory, but rather the probability distribution of the target’s location in the
operational area.

3.3 Energy Metric: Tracking Energy

For a given tracking strategy, let ns denote the number of nodes that are in
tracking/sensing mode and nc = N − ns the number of nodes that are in com-
munication mode. The average energy expenditure for a network of N nodes is
then

P = (nsH + ncL) = P = (nsH + (N − ns)L) (6)

To simplify our analysis, we assume that the cost of communication is com-
parable across the different tracking strategies2. We therefore compare strategies
primarily on the basis of their respective energy expenditure for tracking. To the
first order, one can consider the sensing power expenditure as being a power law
function of the sensing range S of the nodes: H(S) = H0S

α, where α could be
considered the decay exponent for the sensed signal and would depend upon the
sensor modality and deployment factors such as terrain characteristics. Normal-
izing H0 = 1, we get the following energy metric useful for evaluating a tracking
strategy:

Pt = nsH = nsS
α (7)

4 Tracking Strategies

We now describe some general tracking strategies:

– Naive activation (NA): In naive activation, all nodes in the network are
in tracking mode all the time. While clearly this strategy offers the worst
energy efficiency, it is a useful baseline for comparison because it provides
the best possible quality of tracking. For this strategy, we have that

ns,NA = N (8)
Pt,NA = NSα (9)

– Randomized activation (RA): In this strategy, each node is on with a
probability p. On average a fraction p of all the nodes will be on and in
tracking mode. In this case,

ns,RA = pN (10)
Pt,RA = pNSα (11)

2 This is a reasonably valid assumption particularly when one takes into account recent
studies suggesting that reception power for wireless sensor nodes can be comparable
to the transmission power.
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Fig. 1. Tracking Error versus Sensing Range for Naive Activation

– Selective activation based on prediction (SA): In this strategy, only a
small subset of all the nodes are in tracking mode at any given point of time.
They also predict the “next” position of the target and hand over tracking
to nodes best placed to track the target in the “next” position. The rest of
the nodes are in communication mode and can switch to tracking mode on
being alerted by signals from tracking nodes.
Let Xa be the actual position of the target, and Xb = Xs the belief position
of target as before; define Xp as the predicted target position. The idea of
selective activation is to use prior history of Xb to determine Xp for the
next step. (For example, if we discretize time, knowing sensors could use a
simple linear predictor to predict the next location of the target Xp(t + 1),
using the two latest previous belief positions to estimate the target velocity
and assuming that it will continue to move in a straight line). All the sensors
within a circle of radius Sp around Xp(t + 1) are then alerted to start sensing.
Only the sensors within the sensing range S of the actual position Xa(t + 1)
can possibly sense the target. Hence, the sensors lying in the overlap of the
two circles sense the target and the new belief location Xb(t + 1) is obtained
by finding the centroid of the positions of these sensors. This is illustrated
in figure 3. With selective activation based on prediction, only the sensors
within a radius Sp around Xp are in tracking mode at any point of time. If
ρ is the density of deployment, we get

ns,SA = πS2
pρ (12)
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Fig. 2. Tracking Error versus Sensing Range for Random Activation

Pt,SA = πSp
2ρSα (13)

– Duty-cycled Activation (DA): In duty-cycled activation, the entire sen-
sor network periodically turns off and on with a regular duty cycle. One key
feature of duty-cycled activation is that it can actually be used in conjunc-
tion with any other activation strategy for target tracking (including NA,
RA and SA). Let TD be the period of the cycle, tON the on-time, and ns,U be
the average number of tracking sensors in the underlying activation strategy
U. Then

ns,DA =
ns,U tON

TD
(14)

Pt,DA =
Pt,U tON

TD
=

ns,USαtON

TD
(15)

5 Experiments and Results

In the previous two sections we have developed useful common metrics for energy
and tracking quality based on our sensor network model, described the tracking
strategies we will consider, and their energy expenditure model. In order to
compare these strategies, we now turn to simulation experiments.
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Fig. 3. Illustration of Selective Activation (note: Xb = Xs, the believed position)

We simulated a virtual large scale sensor network on a 200 unit x 200 unit area
with random placement of sensors and density of deployment ρ= 1 sensor/unit
area (i.e. a total of 40000 nodes). Linear, sinusoidal and other reasonable trajec-
tories for the target motion were considered. To avoid edge effects in estimating
uncertainty, our calculations are for trajectories in which the target stays away
from the boundaries of the region. In the results presented, the target is assumed
to follow a representative trajectory of the form y(t) = AxB(t)+CsinDx(t)+E.

5.1 Performance of Naive Activation, Random Activation, and
Selective Activation

Since we are using the centroid of the sensors tracking at any point of time
as the sensed position, this estimate can be improved by considering a larger
number of sensors. One way of achieving this is to increase the sensing range
S. Figure 1 shows how tracking error decreases with S for naive activation.
Similarly, figure 2 shows the performance of randomized activation for different
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Fig. 4. Tracking Error versus Sensing Range for Selective Activation

values of p. It can be seen that the tracking quality of network-wide randomized
activation deteriorates significantly as p is decreased. We also observe that while
increasing S does result in a decrease in the tracking error, the decrease is not
very substantial and diminishes with increasing S. This evidence of diminishing
returns on quality leads us to conclude that it is best not to set the sensing range
within the network too high.

Figure 4 compares the performance of selective activation with different set-
tings of Sp. Naive activation is also plotted in the same figure as a baseline.
It can be seen that the tracking error is quite high when Sp = S. In predictive
selective-activation, as the intersection area of the two circles (the circle of radius
S around the actual position and the circle of radius Sp around the belief posi-
tion) becomes larger, sensors closer to the target’s actual position are activated.
This can be achieved by increasing Sp. For the particular trajectory considered,
we find that selective activation with Sp = 1.5S performs nearly as well as a
naive network.

Figure 5 shows the energy-quality tradeoff between the NA, RA and SA
strategies. It is a plot of the tracking error vs log(Pt) for these strategies, with
respect to the energy metric in log scale (as defined in section 3). In this figure,
data points to the bottom left represent dominating, Pareto-optimal strategies,
since they represent low tracking error (hence high tracking quality) as well as
low energy expenditure. It is clear from the figure that selective activation with
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Fig. 5. Energy-Quality Tradeoff for Basic Activation Strategies: NA, RA, SA

reasonably high Sp is a dominating strategy. It provides overall significantly
reduced traffic error for low energy expenditure.

Clearly, selective activation can provide a dominating design in terms of the
energy-quality tradeoffs considered. Figure 5 shows that selective activation with
optimal settings can offer 4 orders of magnitude savings in energy (corresponding
to the size of the network) compared to NA or RA, for essentially the same
tracking quality. Also, the sensing range should be chosen carefully and kept to
a minimum based on the desired quality in order to effect the best tradeoff. For
selective activation, the results suggest using the lowest feasible value of S and
corresponding Sp. In general, the feasible values of S and Sp would depend on
the mobility model of the target. The average speed of the target can provide a
good indicator for determining these parameters. We found that the results do
not vary much with trajectory for comparable values of target speed.

5.2 Performance of Duty-Cycled Activation

Let us now turn to the final strategy: duty-cycled activation. Let us understand
the functioning of this scheme. If we consider a particular time period TD, the
instantaneous tracking error during time tON would be the same as for the
network without duty-cycling (let’s call this qU (t)). However, once the network
is shut down, the tracking error increase with time until the next time period
starts - this is due to the drift between the estimated target location and the
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Fig. 6. Instantaneous Tracking Error versus Time for Selective Activation with Duty
Cycling

actual target movement during the off-time. For the time period TD, if v is the
mean target speed, the tracking error at time t is

q(t) �
{

qU (t) , 0 < t < tON
qU (t) + v(t − tON ) , tON < t < TD

(16)

Hence the average tracking error for duty-cycled activation QDA can be ap-
proximated as

QDA � QU + 0.5v(1 − tON

TD
)2TD (17)

As we noted before, DA can be used in conjunction with other underlying
strategies. Since our previous results have shown that selective activation is a
dominating strategy, we focus on this combination: duty-cycled selective activa-
tion. Figure 6 shows a sample run illustrating how instantaneous tracking error
varies with time for selective activation with duty-cycling. Figure 7 shows (as
suggested by equation (17)) that for the same ratio tON/TD, the average tracking
error Q increases with the period TD. Given an acceptable value for the tracking
error and the mobility model of the target (v), the above approximation can
help us arrive at the feasible values of TD (tON should be kept to the minimum
possible value, which might depend on the time-constants associated with device
start-up and shut-down).



Energy-Quality Tradeoffs for Target Tracking in Wireless Sensor Networks 43

Fig. 7. Tracking Error versus Cycle Time for Selective Activation with Duty Cycling

Figure 8 shows the tracking error varies with energy usage when choosing
different values of TD and tON . The figure shows that duty-cycled activation
is a flexible and efficient mechanism for tuning the energy-quality tradeoff of
tracking.

6 Conclusions

The following is a summary of the main contributions of this paper:

– We identified four generic sensor activation strategies for target tracking
that can be used to provide different energy-quality tradeoffs: naive activa-
tion, random activation, selective activation with prediction and duty-cycled
activation.

– We developed simple metrics to evaluate the performance of these strategies
with respect to energy usage and tracking quality.

– We examined how tracking performance for the basic strategies (NA, RA,
SA) varies with sensor range, showing that there are diminishing returns in
terms of tracking quality. This suggests that sensor range settings should be
carefully chosen and kept to a minimum with these strategies.

– We showed that with the right parameters selective activation can provide
orders of magnitude improvements in energy usage with near-optimal track-
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Fig. 8. Energy-Quality Tradeoff for Selective Activation with Duty Cycling

ing quality. With respect to random and naive activation, SA is a dominating
strategy with Pareto-optimal points on an energy-quality plot.

– We then examined duty-cycled activation. Our analysis showed that for best
energy performance the ratio tON/TD should be kept as small as possible,
while minimizing TD improves the tracking quality. This allows us to use
tON and TD as tuning knobs to effect a flexible tradeoff between energy and
tracking quality in conjunction with other base strategies such as selective
activation.

Although we have taken a significant step in this direction, as future work, we
would like to extend the mathematical treatment of the energy-quality tradeoffs
involved in tracking. This will require the use of more tractable assumptions
about the target mobility model. We would also like to consider richer sensor
models and energy cost models to validate the generality of our findings.
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Abstract. In-network query processing is critical for reducing network
traffic when accessing and manipulating sensor data. It requires plac-
ing a tree of query operators such as filters and aggregations but also
correlations onto sensor nodes in order to minimize the amount of data
transmitted in the network. In this paper, we show that this problem
is a variant of the task assignment problem for which polynomial algo-
rithms have been developed. These algorithms are however centralized
and cannot be used in a sensor network. We describe an adaptive and
decentralized algorithm that progressively refines the placement of op-
erators by walking through neighbor nodes. Simulation results illustrate
the potential benefits of our approach. They also show that our place-
ment strategy can achieve near optimal placement onto various graph
topologies despite the risks of local minima.

1 Introduction

Sensor networks are a promising platform for a new generation of monitoring
applications [4]. In the recent years, research has shown that clusters of densely
deployed sensor nodes arranged in a multi-hop network allow for improved sens-
ing (via collaborative signal processing [17]) and improved energy efficiency [14].
Because data transmission is orders of magnitude more costly than processing
on a sensor node [14], data processing should be pushed inside the sensor net-
work whenever it reduces the amount of data to be transmitted [7]. The term
in-network processing has been tossed to denote data processing that takes place
inside the network [6].

It is now generally admitted that access to data in a sensor network should
be declarative [5]: Users formulate queries to access the data they are interested
in. The exact definition of these queries is an open issue. We take a database
perspective and consider that a query is a tree of operators that aggregate,
correlate or filter data streams [2,3,16]. In this paper we tackle the issue of
operator placement for in-network query processing, i.e., on which sensor nodes
should query operators be placed?

We give an example to illustrate the importance of operator placement. A
user is correlating detections obtained from two distinct regions (in the context
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of animal monitoring or vehicle observation): The user should be notified when-
ever similar targets are detected in the two distinct regions within a given time
window. For the sake of simplicity we consider that one node generates detec-
tions in each region1. A correlation operator is pushed inside the network. This
operator takes as input the detections from the two regions and generates an
output whenever a similar target has been detected in the two regions within a
given time window. A gateway node is the sink that consumes the data generated
by the correlation operator.

Let us now discuss the ideal placement for the correlation operator, i.e. the
operator placement that minimizes the amount of data transmitted in the net-
work. Consider that initially both regions produce detections that are not corre-
lated and that one region produces more detections than the other. The correla-
tion operator is very reductive (it does not output data). Intuitively, its optimal
placement is on the shortest path between the two nodes that generate detec-
tions, and closer to the node that produce more data (see Figure 1(a)). The
exact position of the correlation operator depends (i) on the rate at which data
is produced by the operator and both sources, as well as (ii) on the path length
between the sources, the operators and the sink. In a second configuration, the
detections are somewhat correlated. As a result, the correlation operator pro-
duces more data and its optimal placement is closer to the sink (see Figure 1(b)).

correlation

sink

Region A

Region B

(a) Inequal number of detections
in each region – Low correlation

Region B

sink

correlation

Region A

(b) Equal number of detections
in each region – Low correlation

Fig. 1. Examples of Operator Placements

The optimal placement of the correlation operator corresponds to the solution
of a task assignment problem: The problem is to find the mapping of operators
to sensor nodes that minimizes the amount of data transferred over the network.

1 Possibly, a collaborative signal processing algorithm generates detections and elects
a representative node in each region. At different points in time, different nodes
might be elected to produce the detections.



Adaptive and Decentralized Operator Placement 49

We give a more formal problem definition in Section 2. Even though polynomial
algorithms exists for some versions of the task assignment problem, they cannot
be used for our purpose because:

1. We do not assume global knowledge about the sensor network. The algo-
rithms that solve the task assignment problem are centralized and require
complete topological information [1]. It would be expensive in terms of data
transfer and quite inaccurate for a central site to maintain this information.
In addition, the amount of information maintained on each node should be
minimal because of memory limitation, In order to limit maintenance over-
head, this information should be local - each node should only maintain
information about close-by nodes. As a result, we need to devise a decentral-
ized solution where each node maintains local information.

2. The placement of an operator needs to be recomputed as the conditions in
the network change. In our example, the optimal placement of the correla-
tion operator changes as the correlation between the detection evolves, but
also as the number of detections produced in each region changes. It would
be inefficient to place an operator on a sensor node once and for all. In our
example, if the correlation operator is permanently placed at the sink node
while the detections from both regions are not correlated, then data is trans-
mitted all the way to the sink for no result. It would have been more efficient
to compute the correlation as close to the sources as possible. Our solution
must thus be adaptive.

In this paper, we propose a decentralized and adaptive solution to the op-
erator placement problem. In our solution, sensor nodes continously refine the
placement of operators in order to minimize the amount of data transferred over
the network. While one node is active executing an operator, a set of candidate
nodes, that we denote tentative nodes, estimate the cost of running this operator
(the cost is a function of the amount of data received and produced by a node).
At regular intervals estimated costs are compared with the actual cost measured
on the active node and execution is transferred to the node with the lowest cost.

We first give a formal problem definition and then we detail our contributions:

– We define neighbor exploration: a decentralized exploration strategy that
continously refine the placement of operators towards the nodes with mini-
mal costs.

– We describe a decentralized and adaptive algorithm that implements the
neighbor exploration strategy based on the notions of active and tentative
nodes.

– We present simultation results that illustrate the potential benefits of our
approach.

Our simulation results show that our approach is viable. However, they do
not allow us to lead a complete study. A key question that we do not tackle in this
paper concerns the overhead generated by our decentralized algorithm - in terms
of messages exchanged. Another interesting question concerns the reactivity of
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our approach (how fast it can adapt to changing conditions – e.g., data rate, data
correlation). In order to study these issues, we have implemented our solution
on top of directed diffusion [6]. We are currently running experiments using NS.
Our initial results are very promising.

2 Problem Statement

Before we proceed to the formal problem definition, let us state our assumptions:

1. Queries are long-running: They are submitted to the system and run until
the user decides to interrupt query execution. In our work, we assume that
the (collaborative) signal processing algorithms that produce sensor data are
implemented and deployed separately from the queries formulated by users
to access these data.

2. We define a query as a tree of operators2. The leaves of the trees correspond
to the source nodes, i.e., the nodes that return data on behalf of the (collabo-
rative) signal processing algorithms that produce data streams. The internal
nodes of the trees are correlation, filtering, aggregation, or duplicate elimi-
nation operators that take as input one or several data streams and output
another data stream. The root of the query tree is an operator that takes one
data stream as input and forwards it; typically this root operator is placed
on a gateway node that we denote sink in the rest of the paper. Note that
we assume that there is one fixed sink per query. Relaxing this assumption
is an interesting topic for future work.

Let us now proceed to the formal problem definition. We aim at placing
operators on sensor nodes in order to minimize data transfer in the network. We
consider a sensor network to be a directed graph where vertices represent sensor
nodes and where edges represent communication links, and a query as a tree of
operators. We define:

1. An oriented sensor network graph (SNG) as
a) ζ - a set of sensor nodes. In the rest, p and q are elements of ζ.
b) π - a set of communication links connecting the nodes in ζ. We denote

(p, q), the link between nodes p and q, an element of π.
c) wpq - a weight is a positive integer associated with the link (p, q) of π

2. An oriented query tree (QT) as
a) η - a set of operators. In the rest, operators i and j are elements of η.
b) λ - a set of communication dependencies connecting the operators. We

denote (i, j), the link between operators i and j, an element of λ. We
denote i as the child and j as the parent in this communication link.
Because QT is an oriented query tree, each operator has zero, one or
more children and at most one parent.

c) dij - a weight associated with the link (i, j) of λ

2 Possibly such a tree of operators is generated from a declarative query language [2,
16]
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wpq denotes the unit cost of communicating data through the link (p, q).
This cost might for example vary with the battery power of the sensor node.
We define the cost of a path P = {(p, x), · · · , (y, q)} between node p and q as
Cp(P ) =

∑
e∈P we – note that x and y are nodes in ζ. We denote the cheapest

path between p and q by Pmin(p, q).
dij denotes the rate at which data is transmitted between operator i and j.

Because queries are long-running, the rate at which an operator produces data
might vary in time (e.g., more detections are produced or a correlation operator
produces more data as its input become more correlated).

The transfer cost of sending data between operator i on node p and opera-
tor q on node j may be denoted by a function Spq(dij) defined by Spq(dij) =
Cp(Pmin(p, q)) · dij , i.e., the transfer cost is a function of the path cost and the
amount of data sent through the path.

A placement of a query tree onto a sensor network graph may be expressed
as a mapping, i.e., a set M = {(i, p), ...} where every operator i ∈ η is assigned
to a node p ∈ ζ.

The placement problem can now be stated as the assignment of operators
onto nodes that minimizes the following global cost:

∑

(i,j)∈λ

xipxjqSpq(dij) (1)

subject to
∑

p∈ζ

xip = 1, ∀i ∈ η,∀p ∈ π : xip ∈ {0, 1} (2)

where xip = 1, if operator i is assigned to node p, and xip = 0, otherwise.
Equation (2) ensures that each operator is assigned to exactly one node of the
network.

This problem of operator placement is an instance of the task assignment
problem. The task assignment problem considers the problem of assigning a set
of tasks onto a network of processors. The general task assignment problem is
known to be NP-complete. Bokhari [1] has devised an O(mn2) algorithm for the
case where the set of tasks is tree-structured, which is the case of our query tree
(m denotes the number of taks and n the number of processors in the network).
This algorithm is centralized; as a consequence it cannot be used in a sensor
network.

3 Placement Strategy

We aim at defining a decentralized and adaptive algorithm for the placement
of a query tree onto a sensor network. More precisely, our objective could be
stated as follows: Given an initial arbitrary placement of operators, our goal
is to define a decentralized algorithm that progressively refine the placement of
operators towards an optimal placement.
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It can be shown that the optimal placement of a query tree is composed of
local optimal placements for each operator in the query tree. By local optimal
placement we mean an assignment of operator i on node p that minimizes the
amount of data that i receives from its children and transmits to its parent3. We
omit the proof of this result because of lack of space.

This notion of local optimal placement constitutes an objective for the place-
ment of individual operators. Now the question is: How can a decentralized
algorithm move individual operators to their local optimal placement? Before
we detail our algorithm in the next section, we give here the intuition behind
our placement strategy.

If we disregard the limitations imposed by the sensor network topology in
terms of operator placement and shortest paths, we may imagine that operators
could be placed anywhere in a euclidean space. Data could be transferred along
straight lines between operators. Transfer cost would be proportional to the
distance between operators (multiplied by the transfer rate).

We could then view the transfer cost between two operators as a force pulling
the operator towards one another. From the laws of physics we know that the
equilibrium is the center of gravity of n particles. The net force determining the
direction of the movement is the sum of the individual force vectors acting on the
body. As the body moves in the direction dictated by the net force it reaches the
optimal position through the shortest path (a straight line). The net force (and
cost) will decrease monotonically along this path. In the equilibrium the net force
acting on the body is zero and the cost is minimal. This equilibrium constitutes
the local optimal operator placement. This analogy with forces has previously
been used by Heiss and Schmitz [8] to develop a decentralized algorithm that
achieves dynamic load balancing in a multicomputer system.

To understand the usefulness of these observations we now restrict operator
positioning and possible paths between operators to those of a Manhattan graph
(Figure 4(a)). Such a graph is a simplified but useful idealization of a wireless
ad-hoc sensor network and is often used in analytic models (e.g. [15]). Possible
operator positions are confined to the vertices of the graph. Assuming equal
weights on links and equal data rates, the cheapest paths between operators
corresponds to the path with the minimal Manhattan distance.

If an operator is not in the optimal position, there will exist a cheapest path
between the operator and its local optimal position along which operator place-
ment becomes progressively cheaper. An operator can reach its local optimal
placement by walking this cheapest path. In a Manhattan graph, an operator
initially placed on an arbitrary node will thus progressively reach its local opti-
mal placement by greedily moving to the neighbor with lowest estimated cost.
We call this placement strategy neighbor exploration.

We use the neighbor exploration as the placement strategy for the decentral-
ized algorithm that we present in the next section. Note that in a sensor network
with an arbitrary graph topology, the neighbor exploration policy might reach

3 Recall that we denote i as the child and j as the parent in any communication link
between operators (i, j) ∈ λ
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local minima different from a global optimum. We present simulation results in
Section 5 that show that our algorithm performs well in sensor networks with
various graph topologies despite the potential pitfall of local minima.

4 Adaptative and Decentralized Operator Placement

Let us assume that an operator assignment has been defined for a given oper-
ator. We denote the node on which the operator is placed and executed, the
active node. The sink and the sources constitute special active nodes. They run
operators that respectively consume and produce data, they are involved in the
algorithm and their placement is fixed.

As we have seen in the introduction, any assignment may become subopti-
mal. In order to adapt to changing conditions (e.g., data rate, data correlation),
our decentralized algorithm implements the neighbor exploration strategy: It (i)
evaluates the cost incurred by the execution of the operator at the active node,
(ii) estimates the cost for alternative assignments of the operator, (iii) compares
the cost on the active node and on alternative nodes, and (iv) transfers the
operator to the node with lowest cost that thus becomes the new active node.

4.1 Decentralized Cost Computation

We define the cost of an operator j assigned to node q as:

Co(j, q) =
∑

(i,j)∈λ

(Co(i, p) + Spq(dij)) (3)

where variables and functions are as defined in Section 2.
Since equation (3) is recursive, the cost of an operator includes the accumu-

lated cost of all operators delivering data for the operator. The cost of the query
tree – defined in equation (1) - is the cost of the root operator.

A node needs the cost of the child operators in order to evaluate the cost of
an operator. As a consequence child operators send cost messages to their parent
operator along the data path. The term Spq(dij) represents the cost of sending
data between the child and parent operator. This cost may be accumulated while
the cost message travels the path between node p and q if we assume (i) that
the cost wxy of sending data to a neighbor y is available at every node x and (ii)
that we include the data rate dij with each cost message. The following equation
states that the cost may be calculated by summing the product of the data rate
with the link cost of each hop in the path4:

Spq(dij) = Cp(Pmin(p, q)) · dij =
( ∑

e∈Pmin

we

)

· dij =
∑

e∈Pmin

(we · dij) (4)

4 Note that though equation (3) refers to node mappings for technical reasons, in-
formation about the actual mapping on the child operator is not necessary for the
parent to perform the cost calculation.
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As a matter of fact the accumulated cost may simply be added to the cost
of the child operator as the cost message travels to the parent operator, since
the parent operator is only interested in the total sum. Cost messages flowing
from each child to parent operator contain the accumulated cost and the data
rate, e.g., the message sent by node i on node p to operator j on node q is:
(Co(i, p), dij). Any operator in the query tree will have information about the
cost attributed by each of its sub-trees and will be able to calculate and forward
its own cost.

4.2 Exploration

Exact data rates are necessary to calculate cost. The data rate of a given operator
does not depend on its placement (but on the rate of the input data streams
and on their contents). As a consequence the data rate calculated by operators
on active nodes may be used for calculating costs on alternative nodes5

The idea is simply to have the active operators communicate their data rates
to alternative nodes so that cost can be computed. Since there is a set of al-
ternative nodes associated to each active node that only serve to probe the
solution space for better alternatives we shall term them tentative nodes. These
tentative nodes execute tentative operators responsible for the cost calculation.
Cost is computed in the same way as for the active node. Cost messages flow
from children (both active and tentative) to parents (both active and tentative)
operators, while data flows from active children to active parent operators.

To explore the space of tentative nodes, we need to define:

1. An exploration policy for choosing what nodes should be elected tentative
nodes. The sheer complexity of the solution space prohibits considering more
than a tiny fraction, so the policy must choose the tentative nodes based on
heuristics that will increase the probability of including an optimal, or at
least better assignment in the face of data rate variations. Following our
neighbor exploration strategy, only immediate neighbors of an active node
are considered as its associated tentative nodes.

2. We also need an adaptation policy for choosing a new active node among the
tentative nodes explored. We only consider two possible actions: either to
continue query execution using the active node or switching to a new active
node. Following our neighbor exploration strategy, the adaptation policy sim-
ply greedily picks the cheaper tentative node as the new active position since
this would be closer to the optimal position than more expensive neighbors.

The close proximity of tentative nodes means that the communication over-
head incurred by the transmission of data rates between the active and tentative
nodes will be minimal. No tentative node is more than one hop away so multi-
hop path establishment will not be necessary. If the MAC layer supports message
5 Alternative methods would consist in executing several instances of the same opera-

tor, which would be costly if complete data streams were duplicated, and inaccurate
if cost was estimated using a non-representative fraction of a data stream.
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multicasting all tentative nodes may receive information from the active node
using only one transmission.

The cost of an operator relative to its neighbors depends on the incoming as
well as outgoing transfer cost. Since the outgoing transfer cost is not available
until the transfer has actually been made through a path between the operator
and its parent, it is natural to have the parent operator make decisions on active
child operator assignments, i.e. the adaptation policy is executed by the active
parent nodes.

correlation

Tentative node

Active node

Routing nodesink

aggraggr

Data

Cost msgsarea of exploration

area of exploration

area of exploration

Fig. 2. Tentative and active Nodes

Figure 2 illustrates the flow of cost messages and data between active and
tentative operators in the context of a complex query tree composed of an op-
erator correlating the output of two aggregation operators.

4.3 Node Switching

At any point in time, there is only one active instance of each operator. The
cost information received by the active parent operator allows it to implement
the adaptation policy. When a tentative child operator instance has a lower
estimated cost than the active child, the active operator may initiate a node
switch. This switch consists of recursive signaling down two subtrees. Active
operators in the active subtree must be informed that data flow is to cease. The



56 B.J. Bonfils and P. Bonnet

cheaper tentative operator, on the other hand, must be informed that active
dataflow is to start. The cheaper tentative operator will propagate this signal to
its cheapest child instances. When the signal reaches the leaves, the leaf operators
then begin to send data through the new active path. We shall term the two
signal types activation and deactivation respectively.

There is one more issue to active plan switching: we need to support operator
state transfer. Long-running operators on continuous data streams often need
historic or accumulated information for their operation. Aggregation operators
may keep a sliding window of values [13,16] and correlation operators usually
store two sets of tuples that are probed and updated when new tuples arrive [2].
For the transition to be seamless such information must be transferred between
the old and new active operators. Since we have already assumed that data rates
can be communicated from the active operator to tentative operators, the same
channel may be used for operator state transfer6.

Operator state transfer could also be used to replicate the state of the active
operator so that tentative nodes could take over in case the active node fails or
runs out of energy. Designing an efficient fault tolerant placement of operators
is a topic for future work.

4.4 Summary

Our algorithm, based on the exchange of cost messages and data between active
and tentative operators, is adaptive and decentralized. It is adaptive because the
placement of active operators is continuously refined depending on the estimated
cost on their associated tentative nodes. It is decentralized because decisions are
taken at the level of each operator. The information maintained on each node
is local: active nodes merely maintain information about their children. Cost
messages are transmitted in the network in addition to the data streams. The
frequency at which cost messages are exchanged is a parameter of our algorithm
(resulting in a trade-off between the responsivity of operator placement and the
transmission overhead).

Note that our algorithm does not dictate how data should be routed between
operators. We can thus use any routing protocol that relies on logical naming
of nodes; we are currently implementing our algorithm on top of directed diffu-
sion [6], using the filter mechanism to implement cost computation.

Figure 3 summarizes the exchanges between active and tentative operators
(both parents and children) in our neighbor exploration policy:

– An active operator is defined as the instance of an operator which is actually
executed; it receives input data streams, process them and generates an
output data stream. An active operator is located on an active node.

6 The design of efficient mobile operators is beyond the scope of this paper. Topics for
future work include the design of operators requiring minimal internal states, and
the design of efficient mechanisms supporting the marshalling/unmarshalling of the
internal state and ensuring the continuity of execution while an operator is being
moved from one node to another.
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Fig. 3. Illustration of the communications between active and tentative operators

– A tentative operator is associated to an active operator in order to explore
the cost of execution on alternative nodes (called tentative nodes). A ten-
tative operator computes cost messages and transmits them to its parent.
In order to compute cost, tentative operators receive data rate from their
associated active node.

– Given the cost obtained from its children (both tentative and active), an
active parent operator can decide to switch execution to a new active child
operator. It then sends a deactivation message to the current active child
operator and an activation message to the newly chosen active child operator.
The current active child operator transfers its state to the new chosen active
child operator.

5 Simulation Results

Our objective was to verify that the neighbor exploration strategy for operator
placement is viable in sensor networks with various topologies. We focus on the
placement of a single operator towards its local optimal placement, which is the
basis of the neighbor exploration strategy.

The results we present in this section are essentially a proof-of-concept. We
have now implemented our decentralized and adaptive algorithm on top of di-
rected diffusion in order to measure the overhead incurred by our approach.
This implementation allows us to experiment with the placement of complex
query trees (with several operators) and with the adaption of the placement
to changing conditions in the sensor network. Initial results confirm the good
performances suggested by the simulations.

5.1 Simulation Framework

Topologies. Three types of basic network topologies were used in the simu-
lations: (i) the maximal planar graph (MPG), (ii) the Manhattan graph (MG)
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and (iii) controlled random graphs (CRG)7. These graphs represent both ab-
stract and realistic sensor network topologies.

The topologies were gradually degraded in terms of connectivity. This was
done in one of two ways: (i) for the MPG and MG by removing a percentage of
the nodes at random and (ii) for CRG by increasing the area in which a number
of nodes were deployed thereby reducing the number of reachable neighbors
gradually (fig.4). The CRG was produced by spreading a fixed number of nodes
across a square area at random. When placing a node we try to ensure that the
distance to any other node is at least half of the reach of the node. This is to
avoid unrealistically close nodes. If we don’t succeed in a few attempts we place
the node anywhere. The x and y dimensions of the area is calculated as:

√
n · R · f

where R is the reach of node radios and f is a factor varied between 0.55 and
0.90. A number of topologies where the area is gradually increased this way
produce quite realistic random networks with decreasing density (10 to <3.8
neighbors) (fig.4). At higher values of f connected networks becomes harder to
generate and less realistic.

(a) Manhat-
tan graph
with 25%
holes

(b) Generated
random graph
dense (f=0.60)

(c) Generated
random graph
less dense
(f=0.90)

Fig. 4. Network Topologies

Query Plan. The query plan used for the simulations consists of two fixed
sources, a correlation operator and a fixed sink at which the result is delivered.
The two sources are equally productive and the correlation operator half as
productive as the sources. We consider this to be slightly more challenging than
having different rates of the source operators because the equal pull from the
sources may get the operator stuck in a local optima, i.e., the operator could be
stuck on one side of a hole in topologies with a source on either side of the hole.
7 We term these graphs controlled random because we tried to avoid unrealistically

close nodes during generation.
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Simulator. For each type of topology and density, we generated 30 network
instances with 225 nodes each. We ran 100 simulations on each network instance
with random initial placements of the fixed sources and sink.

In order not to favor our scheme we have disregarded “easy” adaptation
scenarios where the optimal assignment was less than 4 hops away from the
initial operator assignment. In particular this does away with the trivial case
where the operator is already in the optimal position.

For each run the cost of the optimal assignment, the assignment achieved
through adaptation as well as the cost of data extraction was calculated. By
data extraction we denote the case without in-network processing: each source
sends the data it produces to the sink and data is processed outside the sensor
network. These results were averaged for each topology type and density type
and used for depicting the cost development of a topology as density decreases.
This should provide a good statistical picture of the adaptation behaviour for a
given topology and density.

The optimal assignment of the operator was found by performing an ex-
haustive search for cheapest position. Doing so was feasible because only one
operator was at play. With complex query trees the mapping complexity would
have required a more efficient method like that of Bokhari [1].

5.2 Results

Quality of Operator Placement. Figure 5(a) shows the cost of data extrac-
tion and the cost of optimal assignment together with the cost of the assignment
achieved through neighbor exploration.

At high densities perfect or near-perfect adaptation is achieved. The dense
random graphs are very likely to have Manhattan subgraphs explaining the
initial coinciding graphs of optimal and adapted assignment costs.

The somewhat surprising findings are that our simple scheme does very well
even in the least dense topologies. In no case is the average cost deviation greater
than 10% of the optimal cost.

The slightly increasing tendency of the curves is caused by longer average
inter-operator shortest paths as the networks get less connected. I.e. the direct
way to a neighbor operator becomes less direct. These longer paths result in
higher data transfer costs.

Since average measures says little about worst-cases, we also depict the con-
stituents of the cost achieved through adaptation grouped by percentual devia-
tion from the optimal cost on Figure 5(b)).

Even for the topologies of lowest density more than 70 % of the cost is
attributed by adaptations deviating less than 10 % from the optimal assignment.
We obtained equally good results with MG and MPG topologies but we omit
the figures because of space constraints.

In our simulations the extraction cost was approximately twice the optimal
cost due to the network size, the specific number of operators, their produc-
tivity and selectivity. We have been conservative with these parameters not to
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favor our approach unreasonably. Still our results indicate that in-network query
processing is very promising.

6 Related Work

The notion of in-network processing in a sensor network was first introduced in
order to opportunistically eliminate duplicates in the context of directed diffu-
sion [6]. Intanagonwiwat et al. [11] extended this work by constructing a routing
tree where paths are shared as much as possible to increase the possibilities of
eliminating duplicates. The potential benefits of in-network duplicate elimina-
tion have also been studied from a theoretical perspective [12]. By comparison,
we consider queries that embed richer application-level data processing (corre-
lations, filters, aggregates). Those query trees are fixed a priori, which imposes
a strong constraint on the routing tree. Also the cost function that we consider
for operator placement includes the rate at which data is transmitted across
operators in addition to the length of the path between those operators.

Madden et al. [13] were the first to study in-network query processing. They
focused on simple aggregation queries, whose execution can be distributed over
an arbitrarily large set of operators. They defined both (i) aggregate operators
adapted to motes with limited ressources running tinyOS, and (ii) a routing
strategy that imposes a spanning tree onto the network: data is aggregated at
every internal node in the routing tree. Note that they assume that queries
are submitted in a declarative, SQL-like form. The placement of the query tree
is constrained by the characteristics of the routing tree. We have taken the
alternative approach where the routing tree is constrained by the query tree and
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where data is processed only at a few nodes. Our approach is particularly relevant
when the query contains holistic aggregates such as correlations or median [13]
or materialization operators such as storage points [9].

Recently, Yao and Gehrke [16] have devised a general framework for in-
network query processing. Each query is decomposed into flow blocks determining
a set of sensor nodes that elect a leader on which a query fragment is executed.
They applied this strategy to queries complex aggregates (with group by clauses)
as well as joins (similar to our correlation operator). Our approaches are very
much complementary in the sense that they defined a general framework for the
optimization of declarative queries into query trees that could be a way to gen-
erate our query tree. Also, our algorithm could be seen as an election protocol,
particularly well-suited for the adaptive placement of flow block leaders.

7 Conclusion

The problem of operator placement is crucial for in-network query processing.
We showed that it was a variant of the task assignment problem and we described
an adaptive and decentralized algorithm based on the neighbor exploration strat-
egy: the placement of operators is progressively refined from neighbor node to
neighbor node until a local optimal placement is reached. Simulation results
stress the potential benefits of in-network query processing. They also show that
neighbor exploration can achieve near optimal placement of a single operator
with various graph topologies, despite the risks of local minima.

Future work includes a complete performance study of our algorithm. We
have implemented it on top of directed diffusion and we have started to run
experiments using NS. These experiments include a measure of the communica-
tion overhead introduced by our algorithm, as well as measures of the quality
of adaptation with changing network conditions for single operators as well as
complex query trees.

Other topics for future work are the design of query operators that can be
moved from node to node with minimal overhead as well as the design of fault
tolerant operator placement algorithms.

Acknowledgements. We would like to thank Mads Dydensborg, Stefan Røpke,
Jacob Simonsen and Christian Stefansen for their help debugging this paper as
well as Pawel Winter and Sam Madden for interesting discussions.
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Abstract. High-level query languages are an attractive interface for sensor net-
works, potentially relieving application programmers from the burdens of dis-
tributed, embedded programming. In research to date, however, the proposed ap-
plications of such interfaces have been limited to simple data collection and ag-
gregation schemes. In this paper, we present initial results that extend the TinyDB
sensornet query engine to support more sophisticated data analyses, focusing on
three applications: topographic mapping, wavelet-based compression, and vehicle
tracking. We use these examples to motivate the feasibility of implementing so-
phisticated sensing applications in a query-based system, and present some initial
results and research questions raised by this agenda.

1 Introduction

Sensor networks present daunting challenges to potential application developers. Sen-
sornet programming mixes the complexities of both distributed and embedded systems
design, and these are often amplified by unreliable network connections and extremely
limited physical resources. Moreover, many sensor network applications are expected
to run unattended for months at a time. These challenges have motivated research into
higher-level programming interfaces and execution environments, which try to relieve
programmers from many of the burdens of distributed and embedded programming
(e.g. [10,22]). In our own work, we have designed a framework called TAG [14] for
sensornet data aggregation via an SQL-like language. More recently we have imple-
mented the TAG framework in a system called TinyDB [15] that runs in networks of
TinyOS-based Berkeley motes [8].

We have received initial feedback indicating that TinyDB’s SQL-based interface is
very attractive to a number of users interested in distributed sensing. However, we have
also heard concerns about apparent limits to the functionality of simple SQL queries. This
feedback resulted in part from our early work, which performed fairly traditional SQL
queries for relatively simple tasks: periodically collecting raw readings, and computing
simple summarizations like averages and counts.

In this paper, we present a status report on our efforts to do deploy more complex
sensing tasks in TinyDB. Our intention is both to illustrate TinyDB’s potential as a
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vehicle for complex sensing algorithms, and to highlight some of the unique features
and constraints of embedding these sensing algorithms in an extensible, declarative query
framework.

In the paper we review and extend the TAG framework [14], and show how it can
be used to implement three sensing applications that are relatively distant from vanilla
database queries:

1. Distributed Mapping: One commonly cited [4] application for sensor networks is
to produce contour maps based on sensor readings. We present simple topographic
extensions to the declarative query interface of TAG that allow it to efficiently
build maps of sensor-value distributions in space. Our approach is based on finding
isobars: contiguous regions with approximately the same sensor value.We show how
such maps can be built using very small amounts of RAM and radio bandwidth,
remaining useful in the face of significant amounts of missing information (e.g.
dropped data or regions without sensor nodes.) Results from an initial simulation
are included.

2. Multiresolution Compression and Summarization: Traditional SQL supports only
simple aggregates for summarizing data distributions. We develop a more sophisti-
cated wavelet-based aggregation scheme for compressing and summarizing a set of
readings. Our technique also has the ability to produce results of increasing resolu-
tion over time. We describe a hierarchical wavelet encoding scheme that integrates
naturally into the standard TAG framework, and is tuned to low-function devices
like Berkeley motes. We also discuss a number of open research questions that arise
in this context.

3. Vehicle Tracking: Several research papers have investigated distributed sensornet
algorithms that track moving objects [2]. We show how a declarative, event-based
query infrastructure can serve as a framework for such algorithms, and discuss how
the TAG approach can be extended to allow sensor nodes to remain idle unless
vehicles are near to them. This is work in progress: we have yet to instantiate this
infrastructure with a sophisticated tracking algorithm, but hope that this framework
will seed future efforts to combine intelligent tracking with the other ad-hoc query
facilities afforded by a full-function sensornet query process like TinyDB.

The remainder of this paper is organized as follows: after a brief summary of TAG in
Section 2, we present some new language features needed for these advanced applications
in Section 3. The remaining sections then discuss each of these applications in turn as
well a discussion of related work and future directions.

2 Background

In this section, we describe the declarative, SQL-like language we have developed for
querying sensor networks, which is an extension of the simple language presented in
TAG [14] and has been implemented in TinyDB [15]. We present a basic overview of
the scheme here. In TinyDB, queries are posed at a powered basestation, typically a
PC, where they are parsed into a simple binary representation, which is then flooded to
sensors in the network. As the query is flooded through the network, sensors organize
into a routing tree that allows the basestation to collect query results. The flooding works
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as follows: the basestation injects a query request at the root sensor, which broadcasts
the query on its radio; all child nodes that hear the query process it and re-broadcast it
on to their children, and so on, until the entire network has heard the query

Each request contains a hop-count (or level), indicating the distance from the broad-
caster to the root. To determine their own level, nodes pick a parent node that is (by
definition) one level closer to the root than they are. This parent will be responsible
for forwarding the node’s query results (and its children’s results, recursively) to the
basestation.

Queries in TinyDB have the following basic structure:
SELECT expr1, expr2, ...
FROM sensors
WHERE pred1 [AND | OR] pred2 ...
GROUP BY groupExpr1, groupExpr2, ...
SAMPLE PERIOD t

The SELECT clause lists the fields (or attributes) to retrieve from the sensors; exprn spec-
ifies a transform on a single field. Each transform may be a simple arithmetic expression,
such as light + 10, or an aggregate function, which specifies a way in which readings
should be combined across nodes or over time (aggregation is discussed in more detail
in the following section.) As in standard SQL, aggregates and non-aggregates may not
appear together in the SELECT clause unless the non-aggregate fields also appear in the
GROUP BY clause.

The FROM clause specifies the table from which data will be retrieved; in the language
presented in [14], there is only one table, sensors, which contains one attribute for each
of the types of sensors available to the devices in the network (e.g. light, acceleration,
or temperature). Each device has a small catalog which it uses to determine which
attributes are locally available; the catalog also includes cost information and other
metadata associated with accessing the attribute, and a pointer to a function that allows
TinyDB to retrieve the value of the attribute.

The (optional) WHERE clause filters out readings that do not satisfy the boolean com-
bination of predicates. Predicates in TinyDB are currently restricted to simple boolean
and arithmetic operations over a single attribute, such as light / 10 > 25.

The (optional) GROUP BY clause is used in conjunction with aggregate expressions.
It specifies a partitioning of the input records before aggregation, with aggregates in
the SELECT clause being computed on each partition. In the absence of a GROUP BY
aggregates are computed over the entire set of sensors; a GROUP BY partitions the sensors
into groups whose group expressions each have the same value. For example, the query
fragment:

SELECT roomNumber, AVG(light)
GROUP BY roomNumber
...

partitions sensors into groups according to the value of the roomNumber attribute, and
computes the average light reading within each group.

Finally, the SAMPLE PERIOD clause specifies the time between successive samples
or epochs. Each node samples its sensors once per epoch and applies its query processing
operators to that sensor.
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2.1 Aggregation in Sensor Networks

Given this basic description of the query language, we now discuss how TinyDB pro-
cesses queries, focusing on how aggregate queries are handled.

Structure of Aggregates. Recall that an aggregation expression may be specified in
the SELECT clause of a query. In standard SQL, that expression contains one of a few
basic aggregation functions: MIN, MAX, AVERAGE, COUNT, or SUM. As in TAG, TinyDB
provides an extensible mechanism for registering new aggregates, derived from literature
on extensible database languages. In TinyDB, aggregates are implemented via three
functions: a merging functionf , an initializer i, and an evaluator, e. In general, f has the
following structure:

< z >= f(< x >, < y >)

where < x > and < y > are multi-valued partial state records (PSRs), computed
over one or more sensor values, representing the intermediate state of the aggregation
processing based on those values. < z > is the partial-state record resulting from the
application of function f to < x > and < y >. For example, if f is the merging function
for AVERAGE, each partial state record will consist of a pair of values: SUM and COUNT,
and f is specified as follows, given two state records < S1, C1 > and < S2, C2 >:

f(< S1, C1 >, < S2, C2 >) =< S1 + S2, C1 + C2 >

The initializer i is needed to specify how to instantiate a state record for a single sensor
value; for an AVERAGE over a sensor value of x, the initializer i(x) returns the tuple
< x, 1 >. Finally, the evaluator e takes a partial state record and computes the actual
value of the aggregate. For AVERAGE, the evaluator e(< S, C >) simply returns S/C.

Processing Aggregate Queries. Aggregate queries produce one result per group per
epoch. Once a query has been disseminated as described above, each leaf node in the
routing tree produces a single tuple of sensor readings each epoch, applies the initializa-
tion function to the appropriate column, and forwards the initialized result to its parent.
On the next epoch, the parent merges its own PSR from the previous epoch with PSRs
from its children in the previous epoch, and forwards that result on to its parent. Results
propagate up the tree, epoch-by-epoch, until a complete PSR from d epochs ago arrives
at the root of the routing tree (where d is the depth of the tree). Once a result has arrived
at the root, the basestation applies the evaluation function to it to produce a complete
aggregate record and outputs the result to the user. Depending on the sample period,
there may be enough time in each epoch to send aggregates up multiple levels of the
routing tree, resulting in a delay of less than d epochs; see TAG and the complimentary
workshop submission [14,16] for more information, and also for a discussion of other
aspects of aggregate processing, such as handling GROUP BY queries.

Temporal Aggregates. All the aggregates that we described above aggregate sensor
values sampled from multiple nodes at the same epoch. We have extended this frame-
work to support temporal aggregates which aggregate sensors values across multiple
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consecutive epochs from the same or different nodes. Temporal aggregates typically
take two extra arguments: window size and sliding distance. Window size specifies the
number of consecutive epochs the temporal aggregate operates on, and the sliding dis-
tance specifies the number of epochs to skip over for the next window of samples.
One frequently used temporal aggregates in TinyDB is the running average aggregate
winavg(window size, sliding dist, arg). It is typically used to reduce noise in
sensor signals. For example, winavg(10, 1, light) computes the 10-sample run-
ning average of light sensor readings. It accumulates light readings from 10 consecutive
epochs, averages them, then replaces the oldest value in the average window with the
latest light sensor reading and keeps on computing averages over the window of sam-
ples. In addition to winavg, TinyDB also supports similar temporal aggregates such as
winmin, winmax, winsum, etc. More sophisticated custom temporal aggregates such as
one that computes the trajectory of a moving vehicle can be developed using the same
extensible aggregate framework described above.

3 New Language Features

The query language described above provides a foundation for many kinds of sim-
ple monitoring queries. However, as sensor networks become more autonomous, the
language needs to move beyond passive querying: rather than simply monitoring the
environment and relaying results, the sensors will need to detect and initiate automatic
responses to nearby events. Furthermore, sensor networks will need to collect and store
information locally, since it is not always possible or advantageous to get data out of
the network to a powered, storage-rich PC. We introduce two extensions to our query
language to handle these situations.

3.1 Events

Events provide a mechanism for initiating data collection in response to some external
stimulus. Events are generated explicitly, either by another query, by software in the
operating system, or by specialized hardware on the node that triggers the operating
system. Consider the following query for monitoring the occupancy of bird nests:

ON EVENT bird-detect(loc):
SELECT AVG(light), AVG(temp)
FROM sensors AS s
WHERE dist(s.loc, event.loc) < 10m
SAMPLE INTERVAL 2 s FOR 30 s

When a bird is detected in a nest (e.g. via a pressure switch in the nest), this query is
executed to collect the average light and temperature level from sensors near the nest,
and send these results to the root of a network. (Alternatively, the results could be stored
locally at the detecting node, using the storage point mechanism described in the next
section.) The semantics of this query are as follows: when a bird-detect event occurs,
the query is issued from the detecting node and the average light and temperature are
collected from nearby nodes (those nodes that are 10 or less meters from the collecting
node) every 2 seconds for 30 seconds.
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3.2 Storage Points

Storage points accumulate a small buffer of data that may be referenced in other queries.
Consider, as an example:

CREATE
STORAGE POINT recentlight SIZE 5s
AS (SELECT nodeid, light
FROM sensors
SAMPLE INTERVAL 1s)

This STORAGE POINT command provides a shared global location to store a streaming
view of recent data, similar to materialized views in conventional databases. Note that
this data structure is accessible for read or write from any node in the network; its exact
location within the network is not fixed – that is, it can be moved as an optimization.
Typically, these storage points are partitioned by nodeid, so that each sensor stores its
own values locally. The specific example here stores the previous five seconds worth of
light readings (taken once per second) from all of the nodes in the network.

In this paper, we use storage points as a mechanism for storage and offline delivery of
query results. Queries that select all of the results from a storage point, or that compute
an aggregate of a storage point, are allowed; consider, for example:

SELECT MAX(light)
FROM recentLight

This query selects the maximum light reading from the recentLight storage point
defined above. The storage point is continually updated; this query returns the maximum
of the values at the time the query is posed.

4 Isobar Mapping

In this section, we explore the problem of building a topographic (contour) map of a
space populated by sensors. Such maps provide an important way to visualize sensor
fields, and have applications in a variety of biological and environmental monitoring
scenarios [4]. We show how TinyDB’s aggregation framework can be leveraged to build
such maps. Conceptually, the problem is similar to that of computing a GROUP BY over
both space and quantized sensor readings – that is, our algorithms partition sensors into
isobars that are contiguous in space and approximately equal in sensor value. Using in-
network aggregation, the storage and communication costs for producing a topographic
map are substantially less than the cost of collecting individual sensor readings and
building the map centrally. We discuss three algorithms for map-building: a centralized,
naive approach, an exact, in-network approach, and an approximate, lossy approach.
The general process to build a topological map is as follows: each sensor builds a small
representation of its local area, and sends that map to its parent, where it is combined
with the maps from neighbors and ancestors and eventually becomes part of a complete
map of the space at the root of the tree. To support topographic operations on sensors, we
require a few (very) simple geometric operators and primitives. To determine adjacency
in our maps, we impose a rectangular grid onto the sensors, and assign every sensor into
a cell in that grid. Our goal is to construct isobars, which are orthogonal polygons with
holes; we need basic operations to determine if two such polygons overlap and to find
their union. Such operations can be performed on any polygon in nlog(n) time (where
n is the number of edges in the polygon) using the Leonov-Nitkin algorithm [13]. There
are a number of free libraries which implement such functionality.
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(a) Lossless Isobars (b) Lossy Isobars (c) Missing Information

Fig. 1. Screenshots of a visualization of isobars imposed on a grid of sensors. Each cell represents a
sensor, the intensity of the background color indicates sensor value, and black lines frame isobars.
See text for a description of the individual figures.

We begin with a discussion of the three algorithms, assuming that every cell in the
grid is occupied. We return to mapping sparse grids in Section 4.4.

4.1 Naive Algorithm

In the naive algorithm, we run an aggregate-free query which returns the location and
attribute value of all of the sensors in the network; these results are combined via code
outside the network to produce a map. We implemented this approach in a simulation
and visualization, as shown in figure Figure 1(a). In this first simulation, sensors were
arranged in a grid, and could communicate losslessly with their immediate neighbors.
The isobars were aggregated by the node at the center of the network. The network
consisted of 400 nodes in a depth 10 routing tree. In the screenshot, the saturation of
each grid cell indicates the sensor value, and the thick black lines show isobars.

4.2 In-Network Algorithm

In the in-network approach, we define an aggregate, called contour-map where each
partial state record is a set of isobars, and each isobar is a container polygon (with holes,
possibly) and an attribute value, which is the same for all sensors in the isobar. The
structure of an isobar query is thus:

SELECT contour-map(xloc,yloc,floor(attr/k))
FROM sensors

where k defines the width (in attribute-space) of each of the isobars. We can then define
the three aggregation functions, i, f , and e, as follows:

– i: The initialization function takes an xloc, yloc, and attr, and generates as a
partial state record the singleton set containing an isobar with the specified attr
value and a container polygon corresponding to the grid cell of the sensor.

– f : The merging function combines two sets of isobars, I1 and I2 into a new isobar
set, I3, where each element of I3 is a disjoint polygon that is the union of one
or more polygons from I1 and I2. This new set may have several non-contiguous
isobars with the same attribute value. Conversely, merging can cause such disjoint
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isobars in I1 to be joined when an isobar from I2 connects them (and vice-versa.)
Figure 2 shows an example of this happening as two isobar sets are merged together.

– e: The evaluation function generates a topographic map of contiguous isobars, each
labeled with their attribute value.

4.3 Lossy Algorithm

The lossy algorithm works similarly to the in-network algorithm, except that the number
of vertices v used to define the bounding polygon of each isobar is limited by a parameter
of the aggregate. This reduces the communication cost of the approach, but makes it
possible for isobars to overlap, as they will no longer perfectly trace out the edges of the
contours.

In the lossy algorithm, i is the same as in

Fig. 2. Two isobar sets, I1 (with two el-
ements) and I2 (with one element) being
merged into a new isobar set, I3 (also with
one element).

the in-network case. For f , we compute I3 as
above, but we do not use it as the partial state
record. Instead, for the containing polygon
p in each set of I3, we compute a bound-
ing box, b, and then take from b a number of
maximally sized rectangular “cuts” that do
not overlap p. We continue taking cuts until
either b contains v vertices, or the next cut
produces a polygon with more than v ver-
tices. We omit the details of how we compute

maximal cuts; because our polygons are orthogonal, this can be done via a scan of the
vertices of p. We use these cut-bounding-boxes as approximations of the containing
polygons in the isobars of the PSRs resulting from our merge function. Figure 3 shows
a containing polygon approximated by a bounding rectangle with a single cut.

In the lossy evaluation function e, one or more isobars in the final aggregate state
record may overlap, and so some policy is needed to choose which isobar to assign
to a particular cell. We use a simple “containment” principle: if one isobar completely
contains another, we assume the true value of the cell is that specified by the innermost
isobar. When the containment principle does not apply, we assign grid cells to the nearest
isobar (in terms of number of grid cells), breaking ties randomly.

We simulated this lossy algorithm for the

Fig. 3. A lossy approximation of a con-
taining polygon (I3) as a bounding box
with a single cut (PSR).

same sensor value distribution as was shown in
Figure 1(a), using a maximum of 4 “cuts” per
isobar. The results are shown in Figure 1(b);
notice that the shape of the isobars is preserved.

We compared the total amount of data
transmitted by our simulation of the lossy, in-
network, and naive algorithms for the isobars
shown in Figure 1(a) and 1(b), and found that
the naive algorithms algorithm used a factor of
four more communication than the lossy algo-
rithm and about 40% more communication than
the in-network algorithm.
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4.4 Sparse Grids

Finally, we consider the case of sparse grids, where sensors do not exist at every cell in the
grid. In sparse grids, the lossy algorithm described above can be used to infer an isobar
for missing points. Since the merging function no longer tracks exact contours but uses
bounding boxes, cells without sensors will often end up as a part of an isobar. Cells that
aren’t assigned an isobar as a part of merging can be assigned using the nearest-isobar
method described in the lossy algorithm.

A similar situation arises in dense topologies with network loss, when some sen-
sor values are not be reported during a particular epoch. We implemented this sparse
grid approach and used it to visualize isobars with a high-loss radio model, where the
probability that two sensors can communicate with each other falls off with the distance
between the sensors. For adjacent sensors, loss rates are about 5%; for sensors that are
three cells away (the maximum communication range), loss rates are about 20%. The
result is shown in Figure 1(c), with black circles on the nodes whose values were lost
during the epoch being visualized. Notice that, despite the large number of losses, the
shape of the isobars is largely preserved.

5 Wavelet Histograms via Hierarchical Aggregation

SQL’s built-in aggregates provide some basic statistical information about the distribu-
tion of a set of readings. But in many cases it is useful to get a richer synopsis of the
distribution for further data analysis. Histograms are a form of synopsis that are familiar
and intuitive. However, due to bandwidth constraints in sensor nets, we would like to
have a multiresolution histogram, which can optionally provide additional resolution of
“buckets” at the expense of additional communication. To that end, we explore using
wavelet histograms. Wavelets are one of the best-known and most effective multires-
olution coding techniques, and unlike traditional histograms are applicable for coding
either sets or arrays (uni- or multi-dimensional). Wavelets have been widely applied for
approximate querying and data mining settings ([12] provides a tutorial), and it is natural
to revisit them in the sensor query context.

In this section, we sketch a TAG aggregate function for encoding a set of readings
in a sensor network using Haar wavelets, the simplest and most widely-used wavelet
encoding1. Our discussion here focuses on wavelet histograms [18], which capture infor-
mation about the statistical distribution of sensor values, without placing significance on
any ordering of the values. We drop coefficients with low absolute values (“threshhold-
ing”) to keep the communication costs down, but always retain the value of coefficient
0; in Haar wavelets, the 0th coefficient represents the average of the values, and hence
is often of interest to users.

Our wavelet compression setting here is somewhat unique. First, recall that ag-
gregates in TinyDB must be computed by merging partial state records passed up the
network communication tree. We present a new distributed wavelet encoding technique
that works in this fashion, combining pairs of smaller wavelets without decoding and

1 In the interest of brevity, we do not overview wavelets here; the interested reader is referred
to [21] for a good practical overview of wavelets, or to [18] for a simple introduction to Haar
wavelets.
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recoding. Second, our processors do not have floating-point arithmetic and are generally
rather slow, so we will use integer wavelets [1] , and do as much as possible in place
to minimize copies. Finally, since we are constrained in both memory and bandwidth,
we will be dropping low coefficients, and using a sparse array representation for the
coefficients we keep.

The core of our logic is in the merging function f , which takes the PSRs from two
subtrees (which are themselves wavelets) and combines them into a new PSR (another
wavelet). Our wavelet PSR will be a sparse array represented by 2N + 2 short integers.
In order to maintain wavelet properties, N must be a power of 2 (N = 8 in our current
implementation.) The first 2N values capture the non-zero elements of the sparse array:
N array offsets, and N data values of the coefficients at those offsets. The next short
integer is the count, which tracks the number of actual sensor readings rolled up into
this wavelet. One additional short, called loglen, represents the log2 of the number of
array entries in the (possibly zero-padded) wavelet.

The merging function considers 4 cases for merging two state records, r1 and r2:2

1. r1.count + r2.count < N : In this case, we do not compress, but simply store
all the values. We concatenate the values from r2.data to the end of r1.data, and
update the offsets and count of r1 accordingly. The loglen variable remains at
the initialization value of log2 N .

2. r1.count < N and r2.count < N , but their sum is > N : In this case we need to
compress the output. Conceptually, we think of the two input arrays as one array of
length 2loglen+1, and use the lifting scheme [20] to wavelet-compress the double-
length array in place. We then keep only the top N coefficients by overwriting r1’s
data andoffsetsfields appropriately.We addr2.count to the value inr1.count,
and increment the r1.loglen variable to reflect the effective doubling of the array.

3. Both inputs have count > N : In this case, we need to merge two wavelets.
Our merge technique will assume that both inputs have the same loglen. If one
input has a smaller loglen than the other, we need to zero-pad the smaller to match
the larger. For example, if r1.loglen < r2.loglen, we zero-pad r1 until it is of
equal length. Pseudocode for efficiently doubling a Haar wavelet with 0’s is given
in Figure 4.
Once both wavelets have the same loglen, we need to merge r2 into r1 to form
a wavelet with twice as many coefficients. We then run the pseudocode given in
Figure 5 to merge r2 into r1without decoding and re-encoding. Finally we copy the
top N coefficients of the result into r1.data, update r1’s offsets appropriately,
add r2.count to r1.count, and increment r1.loglen to reflect the doubling of
the array.

4. Exactly one input has count larger than N : In this case, we zero-pad the smaller
array to be size N , convert it to a wavelet of N coefficients, and invoke Case 3.

At the top of the aggregation tree, this technique produces a wavelet that lossily
represents the concatenation of all the readings in the network, along with a large number
of padded 0’s. Given the count and loglen variables, a PC at the root of the network

2 Note that the choice of ordering r1 before r2 is rather arbitrary: for now, we assume that the
network topology and scheduling determines which input is first, and which is second.
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// for all coefficients i except 0th, bump up offsets carefully
for i from 1 to N-1

offsets[i] += 2ˆ(floor(log_2(offsets[i])));
// keep track of min coefficient, too
if (abs(data[i]) < min) then { min = abs(data[i]); minpos = i; }

// New 1st coefficient is 0 - (old 0th coefficient).
// If it’s in the top N, make room for it in data and offsets arrays
if (abs(data[0]) > min)

move offsets[1] through offsets[minpos-1] one position rightward;
move data[1] through data[minpos-1] one position rightward;
offsets[1] = 1; data[1] = 0 - data[0];

// overall average is halved, reflecting the 0-padding.
data[0] >>= 2; // i.e. data[0] = floor(data[0] / 2);
loglen++; // we doubled the size

Fig. 4. Double a Haar wavelet of N coefficients by zero-padding in place, without decod-
ing/recoding. The result should have N + 1 coefficients; we drop the lowest of these other than
the 0th coefficient, which we always keep in position 0 in the arrays.

// Double r1 and r2, but bump r2 rightward by an extra factor of 2.
for i from 1 to N-1

r1.offsets[i] += 2ˆ(floor(log_2(r1.offsets[i])));
r2.offsets[i] += 2ˆ(floor(log_2(r2.offsets[i])) + 1);

// merge r1’s {offsets,data} pairs with r2’s, sorted by offset
cursor1 = 1; cursor2 = 1;
for k from 2 to (N*2) - 1

if (cursor1 < N && r1.offsets[cursor1] <= r2.offsets[cursor2])
{ smaller = r1; curs = cursor1; }

else { smaller = r2; curs = cursor2; }
wtmp.offsets[k] = smaller.offsets[curs];
wtmp.data[k] = smaller.data[curs];
curs++;

// 0th coefficient of wtmp is avg of old 0-coefs, 1st is diff
wtmp.offsets[0] = 0; wtmp.offsets[1] = 1;
wtmp.data[0] = floor((r1.data[0] + r2.data[0])/2);
wtmp.data[1] = r1.data[0] - r2.data[0];
// pack top N coefficients of wtmp into first N slots
// of wtmp.data, update wtmp.offsets appropriately,
topN_coeffs(wtmp);
copy N wtmp.{data,offsets} into r1.{data,offsets}
r1.count += r2.count; r1.loglen++;

Fig. 5. Given two Haar wavelets r1 and r2 of N non-zero coefficients, merge them without
decoding/recoding.

can discard the extraneous 0’s, and perform the appropriate normalization to recreate
both the overall average, and somewhat finer approximations of the densities of values.

Note that the coefficients produced by the recursive application of the merge proce-
dure are not the top N coefficients of a Haar wavelet on the full array of readings. In
particular, the N +1’st coefficient of one network subtree will be discarded even though
it may be much larger than the top N coefficients of another subtree. The effect of such
an error may be spread across higher-order coefficients as further merges happen. We
are investigating heuristics for improving this situation, including probabilistic updating
schemes from [18] and coefficient confidence intervals based on [6].

5.1 MultiResolution Snapshots, Temporal Queries

In the spirit of image coding and online aggregation in databases [7], we might want
the answer to a snapshot query to improve with additional rounds of communication.
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In order to achieve this, we can augment the logic above so that at the lowest point in
the tree where the merge function would have dropped coefficients, it sends the second
highest set of N coefficients on round 2. At the top of the tree, the second round of
coefficients needs to be merged into the previous coefficients from right to left in order
to spread the updates correctly. This process can be repeated for additional rounds. In
this scheme, the low valued coefficients can either be stored, or can be recommunicated
and recomputed from the base snapshot readings. Given the relative costs of storage
and communication in modern sensor networks, we expect to store the coefficients – in
practice, storage limitations will bound the number of rounds we can support.

Multiresolution snapshot queries are complicated when we consider change in the
time dimension. Online aggregation as described in [7] is targeted at traditional databases,
where snapshot semantics are guaranteed via transactional mechanisms. Since online
aggregation requires multiple rounds, it is quite possible that the sensor readings will
change before much data can be propagated to the output.

Continuous queries with time-varying results are supported in TinyDB by buffering
the state of aggregates from multiple epochs within the network, and delivering better
estimations for prior epochs alongside new estimations [14]. However, this increases the
storage overhead in the network by a factor of the depth of the network.

We are exploring ideas for intelligently managing the total storage across both time
and space. The mix of multiresolution results and time-varying data raises a number
of questions with respect to both the encoding (which may be analogous to work on
video), and to human-computer issues and performance metrics. A driving question for
performance metrics may be to consider different possible interfaces for users to specify
their desires by fixing resources in one or both dimensions. Of course, in principle there
is some pareto-optimal set of strategies across these dimensions, but naive users are
unlikely to be able to reason in that fashion. One can imagine fairly natural temporal
controls like “animation speed” sliders and spatial controls in terms of visual selection,
zoom, or foveation. One can also imagine that the dependency across dimensions could
be demonstrated by having adjustments in one dimension be reflected in the controls of
the other dimension. We hope to explore these inter-disciplinary issues in future work.

6 Vehicle Tracking

In this section, we provide a rough illustration of TinyDB’s support for a vehicle tracking
application, where a fixed field of nodes detects the magnetic field, sound, or vibration
of a vehicle moving through them. We choose the tracking application because it is a
representative Collaborative Signal Processing (CSP) application for sensor networks
and because it demonstrates the relative ease with which such applications can be ex-
pressed in TinyDB. As will become clear, our focus to date has not been on sophisticated
algorithms for tracking, but rather on extending our platform to work reasonably nat-
urally for collaborative signal processing applications. Target tracking via a wireless
sensor network is a well-researched area [2]. There are different versions of the tracking
problem with varying degrees of complexities. For ease of illustration, in our discussion
we only deal with a very simple version of the tracking problem, based on the following
assumptions and constraints:

– There is only a single target to track.
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– The target is detected when the running average of the magnetometer sensor readings
go over a pre-defined threshold.

– The target location at any point in time is reported as the node location with the
largest running average of the sensor reading at that time.

– The application expects to receive a time series of target locations from the sensor
network once a target is detected.

We believe that more sophisticated versions of tracking can also be supported in TinyDB,
using more sophisticated signal processing logic for dynamic threshold adjustment,
signal strength based localization, multiple targets, etc.

There are some clear advantages to implementing tracking applications on top of
TinyDB. First, TinyDB’s generic query language is available as a resource, allowing
applications to mix and match existing spatial-temporal aggregates and filters in a query.
Applications can also run multiple queries in the sensor network at the same time,
for example one tracking query and one network health monitoring query. Second,
TinyDB takes care of many of sensor-network systems programming issues such as
multi-hop routing, coordination of node sleeping, query and event dissemination, etc.
Third, by registering tracking subroutines as user-defined aggregates in TinyDB, they
become reusable in other TinyDB queries in a natural way. Fourth, we are optimistic that
TinyDB’s query optimization techniques [14] can benefit tracking queries. For example,
each node can “snoop” the messages from its neighboring nodes and suppress its output
if any neighbor has detected a stronger sensor signal.

We will describe below how two versions of the tracking application could be imple-
mented in TinyDB with increasing levels of query complexity for better energy efficiency.
We describe these implementations in TinyDB’s SQL-like query language, though some
off the language features used in this section are not available in the current TinyDB
release. In all the TinyDB SQL statements, mag is a TinyDB attribute for the magne-
tometer reading, time is an attribute that returns the current timestamp as an integer. We
assume the sensor nodes are time synchronized within 1 millisecond using protocols like
[3]. nodeid is a TinyDB attribute for the unique identifier of each node. We assume the
target is detected when the magnetometer reading goes over a constant value, threshold.
winavg(10, 1, mag) is for the 10-sample running average for the magnetometer read-
ings. max2(arg1, arg2) is another TinyDB aggregate that returns the value of arg2
corresponding to the maximum value of arg1. max2(avgmag, nodeid) is used in our
implementations to find the nodeid with the largest average magnetometer reading. As
mentioned above, we use this to represent the location of our target and assume that the
basestation is capable of mapping nodeid to some spatial coordinate. max2 is really a
place holder that can be replaced with much more sophisticated target localization ag-
gregates. In both implementations, we need to apply max2 to group of values with the
same timestamp. Values are grouped by time/10 to accommodate minor time variations
between nodes.

6.1 The Naive Implementation

Figure 6 shows the TinyDB queries that implement our initial tracking application. In
this implementation, each sensor node samples the magnetometer every 100 millisec-
onds and computes the 10-sample running average of the magnetometer readings. If the
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running average of magnetometer readings is over the detection threshold, the current
time, nodeid and average value of the magnetometer are inserted into the storage point
running avg sp.

Recall that storage points in TinyDB provide temporary in-network storage for query
results and facilitate applications to issue nested queries. The second query in Figure 6
is a query that runs over the storage point running avg sp every second and computes
the target locations using the max2 aggregate.

6.2 The Query-Handoff Implementation

The problem with the naive implementation is that all sensor nodes must wake up and
sample the magnetometer every 100 milliseconds. This is extremely power-inefficient
because at any point in time, the target can only be detected by a small number of nodes
assuming the sensor nodes are spread over a wide area. Thus, for a large percentage of
nodes, the energy spent on waking up and sampling the magnetometer is wasted.

Ideally, we would like to only start the target tracking query on a node when the
target is near it and stop the query when the target moves away. TinyDB will put a
mote to sleep when there are no queries running. This means that we need a TinyDB
event to trigger the tracking query. The query-handoff implementation that we are about
to describe requires some special standalone hardware such as a motion detector that
detects the possible presence of the target, interrupts the mote processor, and pulls it
out of sleep mode. target detected is the TinyDB event corresponding to this external
interrupt. It is unrealistic to require this special hardware be installed with every node.
However it might be feasible to only install them on a small number nodes near the
possible entry points for the target to enter the sensor field (e.g. endpoints of a line of
sensors along a road). These nodes will be woken up by the target detected event and
start sampling the magnetometer to determine the current target locations. At the same
time, they also try to predict the possible locations the target may move to next via
a custom aggregate next location and signal a remote event target approaching on
nodes at these locations to alert them to start sampling their magnetometers and tracking
the incoming target. Nodes that receive the target approaching event will wake up
and basically do the same. The target approaching event relies on the functionality of
remotely waking up a neighboring node via a special radio signal. Such functionality
is available on the Berkeley Rene motes (TinyOS 0.6) or the PicoRadios described in
[11]. The TinyDB queries for this implementation is shown in Figure 6.2. We call this
the query-handoff implementation because the node hands the tracking queries off from
one set of nodes to another set of nodes following the target movement.

Query handoff is probably the most unique query processing feature required by
tracking applications, and one that at first we expected to provide via low-level network
routing infrastructure. However, we were pleased to realize that event-based queries and
storage points allow handoff to be expressed reasonably simply at the query language
level. This bodes well for prototyping other application-specific communication patterns
as simple queries.An ongoing question in such work will be to decide when these patterns
are deserving of a more efficient, low-level implementation inside of TinyDB.
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// Create storage point holding
// 1 second worth of running
// avg. of magnetometer readings
// with a sample period of 100 ms
// and filter the running
// average with the target
// detection threshold.
CREATE STORAGE POINT running_avg
SIZE 1s AS

(SELECT time,
nodeid,
winavg(10,1,mag) AS avgm

FROM sensors
GROUP BY nodeid
HAVING avgm > threshold
SAMPLE PERIOD 100ms);

// Query the storage point every
// second to compute target
// location for each timestamp.
SELECT time, max2(avgm,nodeid)
FROM running_avg
GROUP BY time/10
SAMPLE PERIOD 1s;

Fig. 6. Naive Implementation

// Create an empty storage point
CREATE STORAGE POINT running_avg_sp
SIZE 1s (time, nodeid, avgm);

// When the target is detected,
// run query to compute running
// average.
ON EVENT target_detected DO
SELECT time, nodeid, winavg(10,1,mag) AS avgm
INTO running_avg_sp
FROM sensors GROUP BY nodeid
HAVING avgm > threshold
SAMPLE PERIOD 100ms
UNTIL avgm <= threshold;

// Query the storage point every
// sec. to compute target location;
// send result to base and signal
// target_approaching to the possible
// places the target may move next.
SELECT time, max2(avgm, nodeid)
FROM running_avg_sp GROUP BY time/10
SAMPLE PERIOD 1s
OUTPUT ACTION SIGNAL EVENT target_approaching
WHERE location IN
(SELECT next_location(time,nodeid,avgm)
FROM running_avg_sp ONCE);

// When target_approaching event is
// signaled, start sampling &
// inserting into storage point
ON EVENT target_approaching DO
SELECT time, nodeid, winavg(8,1,mag) AS avgm
INTO running_avg_sp
FROM sensors GROUP BY nodeid
HAVING avgm > threshold UNTIL avgm <= threshold
SAMPLE PERIOD 100ms;

Fig. 7. Handoff Implementation

7 Related Work

Several groups have proposed high-level or declarative interfaces for sensor-networks
[22,14,10]. There has also been some work on aggregation-like operations in sensor
networks, such as [23,9]. Neither of these bodies of work specifically addresses any of
the more sophisticated types of aggregates or queries we discuss in this paper. Building
contour maps is a frequently mentioned target application for sensor networks; see,
for example, [4], though, to our knowledge, no one has previously described a viable
algorithm for constructing such maps using sensor networks. There is a large body of
work on building contour maps in the image processing and segmentation literature –
see [17] for an excellent overview of the state of the art in image processing. These
computer vision algorithms are substantially more sophisticated than those presented
here, but assume a global view where the entire image is at hand.

Wavelets have myriad applications in data compression and analysis; a practical in-
troduction is given in [21]. Wavelet histograms have been proposed for summarizing
database tables in a number of publications, e.g. [18,6]. In the sensor network environ-
ment, a recent short position paper proposed using wavelets for in-network storage and
summarization [5]. This work is related to ours in spirit, but different in focus at both
the system architecture and coding level. It sketches a routing-level approach for rela-
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tively power-rich devices, focused on encoding regularly-gridded, spatial wavelets over
timeseries. By contrast, we focus on highly-constrained devices, and integrate with the
multi-purpose TinyDB query execution framework. We also provide efficient algorithms
for hierarchically encoding Haar wavelets, with a focus on wavelet histograms.

The query handoff implementation for the tracking application in Section 6 is based
on the single-target tracking problem discussed in [2]. The tracking algorithms described
in [2] is implemented on top of UW-API [19] which is a location-centric API for de-
veloping collaborative signal processing applications in sensor networks. UW-API is
implemented on top of Directed Diffusion [10] focusing on routing of data and oper-
ations based on dynamically created geographical regions. While TinyDB can shield
application developers from the complexities of using such a lower level API, it can
potentially leverage this work to do location-based event and query dissemination.

8 Future Work and Conclusions

Many potential users of sensor networks are not computer scientists. In order for these
users to develop new applications on sensor networks, high-level languages and corre-
sponding execution environments are desirable. We are optimistic that a query-based
approach can be a good general-purpose platform for application development. The
work described here attempts to justify this optimism with some non-trivial applications
outside the realm of traditional SQL queries. All three of these applications have been
partially implemented in TinyDB, though preliminary evaluations have only been done
of the isobar application. In addition to evaluating and pursuing the work here further,
we also hope to continue this thrust by collaborating with domain experts in the devel-
opment of new applications; this includes both application experts outside computing,
and experts in other aspects of computing including collaborative signal processing and
robotics. Our intent is for TinyDB to serve as an infrastructure that allows these ex-
perts to focus on issues within their expertise, leaving problems of data collection and
movement in the hands of TinyDB’s adaptive query engine. As with traditional database
systems, we do not expect a TinyDB-based implementation to always be as efficient as
a hand-coded implementation, but we hope the ease of use and additional functionality
of TinyDB will justify any modest performance overheads.

Acknowledgments. We thank Kannan Ramchandran and Michael Franklin for helpful
discussions.
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Abstract. Sensor networks have emerged as a fundamentally new tool
for monitoring spatially distributed phenomena. This paper investigates
a strategy by which sensor nodes detect and estimate non-localized phe-
nomena such as “boundaries” and “edges”(e.g., temperature gradients,
variations in illumination or contamination levels). A general class of
boundaries, with mild regularity assumptions, is considered, and theo-
retical bounds on the achievable performance of sensor network based
boundary estimation are established. A hierarchical boundary estima-
tion algorithm is proposed that achieves a near-optimal balance between
mean-squared error and energy consumption.

1 Introduction

Sensor networks have emerged as a fundamentally new tool for monitoring inac-
cessible environments such as non-destructive evaluation of buildings and struc-
tures; contaminant tracking in the environment; habitat monitoring in the jungle;
and surveillance in military zones. These ad hoc networks are envisioned to be a
collection of embedded sensors, actuators and processors. We shall assume that
communication between sensors is done in a wireless fashion. Sensor networks
are distinguished from more classical networks due to strict limitations on en-
ergy consumption, the density of nodes, the simplicity of the processing power of
nodes and possibly high environmental dynamics. An important problem in sen-
sor networking applications is boundary estimation. Consider a network sensing
a field composed of two or more regions of distinct behavior (e.g., differing mean
values for the sensor measurements). An example of such a field is depicted in
Figure 1(a). Boundary estimation is the process of determining the delineation
between homogeneous regions.

There are two fundamental limitations in the boundary estimation problem.
First, the accuracy of a boundary estimate is limited by the spatial density of
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sensors in the network and by the amount of noise associated with the mea-
surement process. Second, energy constraints may limit the complexity of the
boundary estimate that is ultimately transmitted to a desired destination. The
trade-off between accuracy and energy consumption can be characterized as fol-
lows. Assume that n sensor nodes are arranged on an

√
n × √

n square lattice
(assuming a planar, square sensor field). Suppose that the field being sensed
consists of two homogeneous regions separated by a one-dimensional boundary
(like the case depicted in Figure 1(a)). A broad class of boundaries is consid-
ered in this paper. Specifically, we only assume that the boundary is a Lipschitz
function[6,3] or, more generally, has a box-counting dimension of one [9]. This
class includes linear boundaries and other parametric curves, but also includes
boundaries that cannot be described parametrically.

Each sensor node makes a (noisy) measurement of the field. Under these
assumptions, there will be O(

√
n) nodes lying on the boundary. The boundary

nodes provide a description of the boundary to within a resolution of 1/
√

n. Noise
present in the measurements limits the achievable accuracy of a boundary esti-
mate. It is known that, under the assumptions on the class of boundaries above,
the mean-square error (MSE) cannot, in general, decay faster than O(1/

√
n) [6,

3]. That is, no estimator (based on centralized or distributed processing) can
exceed this convergence speed-limit. It is important to point out that if one
restricts the class of boundaries, then faster decay rates are certainly possible.
For example, if one assumes that the boundary is a line, then the problem is a
parametric estimation problem and the rate of decay is O(1/n). Assuming a line
or parametric curve is, of course, very restrictive (and probably unreasonable for
natural phenomena), and therefore this paper focuses on a much more general
class of boundaries.

To quantify the total energy required to transmit a boundary estimate of
this accuracy, note that each boundary node must send one message to the
desired destination (indicating that it is on the boundary). Thus, the total energy
required to transmit the boundary description is O(

√
n). Combining these results

yields a fundamental trade-off between accuracy and energy of the form

MSE ∼ 1
Energy

.

This tradeoff does not take into consideration the additional energy required to
determine whether a sensor is in fact a boundary. It is important to note that
this relation should not be interpreted to mean that a fixed number of sensor
nodes using more energy can provide more accuracy. Rather, both the MSE and
the energy consumption are functions of the number of sensor nodes, and the
above relation indicates how the accuracy and energy consumption behave as
the density of nodes increases. Also, note that if a boundary can be described
parametrically, then the energy required to transmit the description is propor-
tional to the number of parameters, and does not depend on n. However, as
discussed above, the aim here is to avoid such restrictive parametric assump-
tions. The boundaries of interest may not admit exact parametric descriptions,
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and therefore the accuracy of the boundary description and transmission cost
both grow as density of nodes increases.

This paper explores the basic trade-off between MSE and energy consump-
tion, as functions of node density. We propose and develop a boundary estimation
algorithm based on multiscale partitioning methods. The algorithm is quite prac-
tical and maps nicely onto a sensor network architecture. Moreover, we demon-
strate theoretically that our method nearly achieves the optimal MSE/Energy
trade-off discussed above. The theory hinges on an application of our exten-
sion [5] of the Li-Barron bound for complexity regularized model selection [8]
to bound the MSE and on a recent concentration inequality for chi-squared
distributions to bound the expected energy consumption [7]. Since our method
(nearly) achieves the optimal trade-off above, no other scheme can be devised
that will (asymptotically) perform significantly better. Simulation experiments
verify the predicted theoretical performance of our method.

1.1 Related Work

Due to the nascence of sensor network research, there is a limited literature
concerning boundary estimation for such networks. At first glance, boundary
estimation (or boundary detection) has goals that are similar to that of edge
detection in image processing. However, a major distinction exists. Due to en-
ergy constraints, processing the entire “image” simultaneously is impractical,
and hence a single node does not have access to all of the sensor measurements.
In [2], several techniques based on averaging and thresholds are developed and
compared for boundary detection. All of the techniques rely on the collection of
measurements from sensor neighbors within a probing radius, R. The authors
note that the performance of their methods will improve as the probing radius
increases at the expense of communication cost. To contrast with our approach,
we systematically increase the probing radius, however our communication cost
does not increase as O(R2) due to the fact that lower dimensional statistics
(versus all measurements) are passed to nodes within the sensor network hierar-
chy; and, furthermore, messages are only passed to clusterheads rather than all
nodes.

The data collection algorithm in [4] shares many features with our proposed
boundary estimation method. A hierarchical compression scheme is considered
where clusterheads aggregate measurements from children nodes and then pass
signal estimates to the next layer in the hieararchy. Our objective, herein, is to
analytically determine the estimation capability of a tree-based boundary es-
timation scheme which is penalized by communication costs. We note that the
scheme of [4] does not explicitly optimze the description of the phenomena being
encoded (in our case, a boundary) and thus suffers in terms of the error between
the estimated boundary and the true boundary; however, the communication
cost is lessened. With our scheme, we can systematically tradeoff between com-
munication cost and reconstruction error by increasing the penalty associated
with communication.
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(a) (b) (c) (d)

Fig. 1. Sensing an inhomogeneous field. (a) Points are sensor locations. The environ-
ment has two conditions indicated by the gray and white regions of the square. (b) the
sensor network domain is partitioned into square cells. (c) Sensors within the network
operate collaboratively to determine a pruned partition that matches the boundary.
(d) Final approximation to the boundary between the two regions which is transmitted
to a remote point.

2 Problem Formulation and Approach

The basic problem is illustrated in Figure 1. Our objective is to consider mea-
surements from a collection of sensors and determine the boundary between two
fields of relatively homogeneous measurements.

We presume a hierarchical structure of “clusterheads” (see e.g. [4]) which
manage measurements from nodes below them in the hierarchy. Thus, the nodes
in each square of the partition communicate their measurements to a clusterhead
in the square. Index the squares at the finest scale by row and column (i, j).
The clusterhead in square (i, j) computes the average of these measurements to
obtain a value xi,j ∼ N

(
µi,j ,

σ2

mi,j

)
, where µi,j is the mean value, σ2 is the noise

variance for each sensor measurement, and mi,j is the number of nodes in square
(i, j). Thus we assume sensor measurements that have a Gaussian distribution.
For simplicity, we assume mi,j = 1. The random distribution is to account for
noise in the system as well as for the small probability of node failure (outlier
measurements).

Our approach to the boundary estimation problem is to devise a hierarchi-
cal processing strategy that enables the nodes to collaboratively determine a
non-uniform rectangular partition of the sensor domain that is adapted to the
boundaries. Specifically, the desired partition will have high, fine resolution along
the boundary, and low, coarse resolution in homogeneous regions of the field, as
depicted in Figure 1. The partition effectively provides a “staircase”-like ap-
proximation to the boundary. Similar strategies have been recently investigated
to handle edges in images [3,10] and decision boundaries in classification prob-
lems [9]. The advantage of our approach is that, under mild conditions on the
smoothness of the boundary curve, we can establish upper bounds on the MSE of
the estimator using theoretical tools we have developed in previous work. These
upper bounds can be used to tune the trade-off between data fitting and the
complexity of the boundary estimate. The complexity of the boundary estimate
relates directly to energy consumption in the network.
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Our approach is as follows. Let us take the sensor domain to be the unit
square [0, 1]2. Partition the domain into n sub-squares of sidelength 1√

n
, as shown

in Figure 1(b). The sidelength 1√
n

is the finest resolution of our analysis. In
principle, this initial partition can be generated by a a recursive dyadic partition
(RDP). First divide the domain into four sub-squares of equal size. Repeat this
process again on each sub-square. Repeat this 1/2 log2 n = J times. This gives
rise to a complete RDP of resolution 1√

n
(the rectangular partition of the sensing

domain shown above in Figure 1(b)). The RDP process can represented with a
quadtree structure. The quadtree can be pruned back to produce an RDP with
non-uniform resolution as shown in Figure 1(c). The key issues are: (1) How to
implement the pruning process in the sensor network; (2) How to determine the
best pruned tree. Here, we discuss the first issue, and the second issue will be
investigated in later sections of the paper.

Let Pn denote the set of all RDPs, including the initial complete RDP and
all possible prunings. For each RDP P ∈ Pn, there is an associated quadtree
structure (generally of non-uniform depth corresponding to the non-uniform
resolution of most RDPs). The leafs of each quadtree represent dyadic (side-
length equal to a negative power of 2) square regions of the associated partition.
For a given RDP and quadtree, each sensor node belongs to a certain dyadic
square. We consider these squares “clusters” and assume that one of the nodes
in each square serves as a “clusterhead,” which will assimilate information from
the other nodes in the square. Notice that if one considers all RDPs in Pn,
then each sensor node actually belongs to a nested hierarchy of 1/2 log2 n dyadic
squares of sidelengths 1√

n
, 2√

n
, 4√

n
, . . . , 1, respectively. Thus, we have a hierarchy

of clusters and clusterheads.
Consider a certain RDP P ∈ Pn. Define the estimator of the field as follows.

On each square of the partition, average the measurements from the sensors in
that square and set the estimate of the field to that average value. This results
in a piecewise constant estimate, denoted by θ, of the field. This estimator will
be compared with the data x = {xi,j}. The data themselves are undesirable for
two reasons. First, they are noisy and averaging over larger regions will reduce
the noise. Second, the unprocessed data x will require the maximum amount of
energy to transmit to the destination. Our empirical measure of performance is
the sum-of-squared errors between θ = θ(P ) and the data x = {xi,j}.

R(θ, x) =

√
n∑

i,j=1

(θ(i, j) − xi,j)
2
, (1)

Define the complexity penalized estimator

θ̂n = arg min
θ(P ):P∈Pn

R(θ(P ), x) + 2σ2p(n)|θ(P )|, (2)

where σ2 is the noise variance, |θ(P )| denotes the total number of squares in the
partition P , and p(n) is a certain monotonically increasing function of n that
discourages unnecessarily high resolution partitions (appropriate choices of p(n)
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will be discussed in the sequel). It is well known that the optimization in (2)
can be solved using a bottom-up tree pruning algorithm in O(n) operations [1,
3,10]. This is possible because both the sum-of-squared errors and the penalty
are additive functions, and therefore the squared error plus penalty cost can be
separated into terms associated with each individual square of the partition θ.
The hierarchy of clusterheads facilitates this process in the sensor network. At
each level of the hierarchy, the clusterhead receives the best sub-partition/sub-
tree estimates from the four clusterheads below it, and compares the total cost
of these estimates with the cost of the estimate equal to the average of all sensors
in that cluster.

3 Upper Bounds on Achievable Accuracy

We begin by recalling a fundamental upper bound on expected error of complex-
ity penalized estimators, like that in (2). This particular bound was originally
developed for mixture density modeling [8], and we later extended it to more
general settings [5]. Here we state a specialized version of the bound, tailored to
the estimator proposed in (2).

Let Θn denote the set of all possible models of the field. This set contains
piecewise constant models (constant on the dyadic squares corresponding to one
of the partitions in Pn). The constant values are in a prescribed range [−R, R],
and are quantized to k bits. The range corresponds to the upper and lower limits
of the amplitude range of the sensors. The set Θn consists of a finite number
of models (a bound on the number of partitions is derived in the Appendix).
Assume that p(n) satisfies the summability condition (Kraft inequality)

∑
θ∈Θn

e−p(n)|θ| ≤ 1 , (3)

where again |θ| denotes the number of squares (alternatively we shall call this the
number of leafs in the pruned tree description of the boundary) in the partition
θ. It is shown in the Appendix that p(n) ≤ γ log n satisfies (3). Let θ̂n denote
the solution to

θ̂n = arg min
θ∈Θn

R(θ, x) + 2σ2p(n)|θ|, (4)

where, as before, x denotes the array of measurements at the finest scale {xi,j},
and |θ| denotes the number of squares in the partition associated with θ. This
is essentially the same estimator as defined in (2) except that the values of the
estimate are quantized in this case.

Let θ∗
n denote the true value of the field at resolution 1/

√
n (i.e., θ∗

n(i, j) =
E[xi,j ]). Then, applying Theorem 7 in [5], the MSE of the estimator θ̂n is
bounded above according to
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1
n

√
n∑

i,j=1

E

[(
θ̂n(i, j) − θ∗

n(i, j)
)2
]

≤

min
θ∈Θn

1
n



2

√
n∑

i,j=1

(θ(i, j) − θ∗
n(i, j))2 + 8σ2p(n)|θ|



 (5)

The upper bound involves two terms. The first term, 2
∑√

n
i,j=1 (θ(i, j) − θ∗

n(i, j))2,
is a bound on the bias or approximation error. The second term, 8σ2p(n)|θ|, is
a bound on the variance or estimation error. The bias term, which measures the
squared error between the best possible model in our class and the true field, is
generally unknown. However, if we make certain assumptions on the smoothness
of the boundary, then the rate at which this term decays as function of the
partition size |θ| can be determined.

Assume that the field being sensed is composed of homogeneous regions sepa-
rated by a one-dimensional boundary. If the boundary is a Lipschitz function [3,
10] or more generally has a box-counting dimension (closely related to Hausdorf
dimension) of 1, then by carefully calibrating quantization and penalization as
discussed in the Appendix (taking k ∼ 1/4 log n and setting p(n) = 2/3 log n) it
follows that

1
n

√
n∑

i,j=1

E

[(
θ̂n(i, j) − θ∗

n(i, j)
)2
]

≤ O

(√
log n

n

)
. (6)

This result shows that the MSE decays to zero at a rate of
√

log n/n. This rate
cannot be significantly improved by any estimator. From [3,6] we know that
for Lipschitz boundaries, the minimax rate is O(1/

√
n), which shows that our

estimator is within a square-root of a logarithmic factor of the best possible
convergence rate. The minimax rate is the fastest rate of convergence achiev-
able with any estimator (“min”) for the most challenging (“max”) Lipschitz
boundary. Faster rates of decay are theoretically possible if one assumes that
the boundary is even smoother. As an extreme case, suppose the boundary can
be exactly described parametrically (e.g., a line). Then the boundary problem is
one of parameter estimation and the rate of convergence is O(1/n). Extensions
of our approach are possible which can take advantage of smoother boundaries,
which may provide convergence rates approaching the parametric rate. These
extensions are part of our ongoing work and will be discussed in Section 6.

4 Accuracy-Energy Trade-Off

A key characteristic of our proposed method is the explicit consideration of the
cost of communication in the construction of the tree describing the boundary.
Energy consumption is defined by two communication costs: the cost of com-
munication due to the construction of the tree (in-network cost) and the cost of
communicating the final boundary estimate (out-of-network cost). We will show



Boundary Estimation in Sensor Networks: Theory and Methods 87

that the expected number of leafs produced by our algorithm is O(
√

n), and that
the in-network and out-of-network energy consumption is proportional to this
number. Recall that the rate of decay for the MSE is MSE ∼√log n/n. There-
fore, ignoring the logarithmic factor, the accuracy-energy trade-off required to
achieve this optimal MSE is roughly MSE ∼ 1/Energy. Contrast this trade-
off with that of a naive approach in which each of the n sensors transmits its
data, directly or by multiple hops, to an external point. In this case, the in-
network and out-of-network energy costs are O(n), which lead to the trade-off
MSE ∼ 1/

√
Energy, since we know that no estimator exists that can result in

an MSE decaying faster than O(1/
√

n). Thus, our proposed hierarchical bound-
ary estimation method offers substantial savings over the naive approach while
optimizing the tradeoff between accuracy and complexity of the estimate.

4.1 Out-of-Network Communication Cost

It is clear that the out-of-network communication cost is proportional to the final
description of the boundary, thus it is of interest to compute the expected size of
the tree, or E[|θ̂|]. Each decision in the pruning process is based on comparing
the complexity and fitness of an average value to the data in a certain dyadic
square to that of the best subpartition model for that square (passed up from
the bottom).

An upper bound on E[|θ̂|] is derived in the Appendix. The upper bound is
based on the probability of pruning or not pruning at each node for our hierarchi-
cal algorithm. If no boundary is present, then the probability of pruning at each
node can be bounded from above by the tail probability of a certain chi-square
distribution. The chi-square distribution arises from the assumed Gaussian ob-
servation model and the sum-of-squared errors criterion used in pruning. Using
another upper bound for the tail probability, we show in the Appendix that if
no boundary is present in the square under consideration, and with a penalty
p(n) = 2/3 log n, the probability of not pruning tends to zero as n increases. This
implies that E[|θ̂|] → 1 as n → ∞. Thus, for large sensor networks, the expected
number of leafs (partition pieces) in the case where there is no boundary (simply
a homogeneous field) is one.

To consider the inhomogeneous case where a boundary does exist, if the
boundary is a Lipschitz function or has a box counting dimension of 1, there
exists a pruned RDP with at most C ′√n squares (leafs) that includes the O(

√
n)

squares of sidelength 1/
√

n that the boundary passes through (see the Appendix
for a fuller discussion of this property). Thus an upper bound on the number of
leafs required to describe the boundary in the noiseless case is given by C ′√n.
In the presence of noise, we can use the results above for the homogeneous case
to bound the number of spurious leafs due to noise (zero as n grows); as a
result, for large sensor networks, we can expect at most C ′√n leafs in total.
Thus, the expected energy required to transmit the final boundary description
is Energy = O(

√
n).
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Fig. 2. (a)Estimation accuracy as a function of the total number of nodes. (b) In-
network communication cost as a function of the total number of nodes. (c) Out-of-
network communication cost, E[|θ̂|], as a function of the total number of nodes.

4.2 In-Network Communication Cost

The in-network communication cost is intimately tied to the expected size of
the final tree, as this value determines how much pruning will occur. We have
seen above that the out-of-network cost is proportional to

√
n and herein we

shall show that the in-network communication cost is also O(
√

n). At each scale
2j/

√
n, j = 0, . . . , 1/2 log2 n − 1, the hierarchical algorithm passes a certain

number of data or averages, nj , corresponding to the number of squares in the
best partition (up to that scale), up the tree to the next scale. We assume that
a constant number of bits k, is transmitted per measurement. These k nj bits
must be transmitted approximately 2j/

√
n meters (assuming the sensor domain

is normalized to 1 square meter). Thus, the total in-network communication
energy in bit-meters is:

E = k

1/2 log2 n−1∑
j=0

nj2j/
√

n.

In the naive approach, nj = n for all j, and therefore E ≈ kn. In the hierarchical
approach, first consider the case when there is no boundary. We have already seen
that in such cases the tree will be pruned at each stage with high probability.
Therefore, nj = n/4j and E ≈ 2k

√
n. Now if a boundary of length C

√
n is

present, then nj ≤ n/4j + C
√

n. This produces E ≤ k(C + 2)
√

n. Thus, we see
that our hierarchical algorithm results in E = O(

√
n).

5 Simulations

We next present representative simulation results on the efficacy of the proposed
boundary estimation algorithm. We considered a host of sensor network densities
observing the same phenomenon. Sensor networks of size 4k for k = 2, · · · , 8
distributed over a square meter were considered. The sensors operated in an
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Est., p = 2/3 log(65536)

Est., p = 2/3 log(1024)

Est., p = 2/3 log(256)

65536 Observations

1024 Observations

256 Observations

Partition, |θ | = 1111

Partition, |θ | = 172

Partition, |θ | = 70

Fig. 3. Effect of sensor network density (resolution) on boundary estimation. Column
1 is the noisy set of measurements, Column 2 is the estimated boundary, and Column
3 is the associated partition.

environment with three different noise levels (σ2 = 1, 10, 100). In Figure 2 (a),
we see the mean-squared error (MSE) as a function of the network size (which
relates directly to density). The MSE is averaged over 50 realizations of the noise.
As predicted by the theoretical results, we see the expected decay in MSE. The
in-network communication cost as scaled by the distance traveled is provided
in Figure 2(b). As predicted, this cost is proportional to

√
n. Figure 2(c) shows

the average size of the boundary estimate (number of leafs) as a function of
the network size and a line fit to the data. This plot corresponds to the out-of-
network communication costs. We see that the predicted bounds for both costs
are in fact conservative, and in practice the constant in O(

√
n) is quite modest

(here it is 4 − 6). The final partition size (and hence the communication cost)
decreases as the noise variance increases due to the fact that the overall penalty
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is a function of the noise variance. Thus as the noise variance increases, it is
more likely that pruning will occur.

Figure 3 shows single realizations of the boundary estimation process for
three resolutions/sensor network densities. The penalty function employed was
that derived in the Appendix and we see that the resultant boundary estimates
offer the desired tradeoff between accuracy and energy consumption.

6 Conclusions and Ongoing Work

In this work, we have proposed a method for boundary estimation in sensor
networks. The boundary estimate is determined via complexity regularization
of a hiearchical tree-based estimation method. We demonstrated theoretically
that our method nearly achieves the optimal trade-off MSE ∼ 1/Energy,
which shows that no other scheme can be devised that will (asymptotically)
perform significantly better. Simulation experiments agreed very well with the
theoretical predictions. In future work we plan to investigate more sophisticated
boundary estimation techniques based on “wedgelets” [3] and “platelets” [10].
These methodologies are also based on hierarchical partitions and trees, but
have additional flexibility which allows for a more parsimonious description
of smooth boundaries and smooth variations in the mean of homogeneous
regions. We are also currently incorporating the effects of imperfect wireless
signaling into our theoretical framework and simulation studies. Finally, we are
investigating the issue of tracking a slowly time-varying boundary.

Acknowledgments. The authors wish to thank Ms. Rebecca Willett for devel-
oping the simulation code for the proposed boundary estimator and for helpful
comments on the manuscript, and thank Mr. Rui Castro for his careful reading
of the proofs.
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7 Appendix

7.1 Number of RDPs in P

Recall the class P of RDPs under consideration (all RDPs resulting from pruning
PJ , the uniform partition of the unit square into n squares of sidelength 1√

n
). In

order to ensure that the Kraft inequality (3) is satisfied, we need to determine
how many RDPs there are in P. More specifically, we will need to know how
many partitions there are with exactly � squares/leafs. Notice that since the
RDP is based on recursive splits into four, the number of leafs in every partition
in P is of the form � = 3m+1, for some integer 0 ≤ m ≤ (n−1)/3. The integer m
corresponds to the number of recursive splits. For each RDP having 3m+1 leafs
there is a corresponding partially ordered sequence of m split points (at dyadic
positions in the plane). In general, there are

(
n
m

) ≡ n!
(n−m)!m! possible selections

of m points from n (n corresponding to the vertices of the finest resolution
partition, PJ). This number is an upper bound on the number of partitions in
P with � = 3m + 1 leafs (since RDPs can only have dyadic split points).

7.2 Kraft Inequality

Here we show that with k (recall that k is the number of bits employed per
transmission) and p(n) properly calibrated, we have

∑
θ∈Θn

e−p(n)|θ| ≤ 1 . (7)

Let Θ
(m)
n denote the subset of Θn consisting of models based on � = 3m + 1 leaf

partitions. Begin by writing
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∑
θ∈Θn

e−p(n)|θ| =
(n−1)/3∑

m=0

∑

θ∈Θ
(m)
n

e−(3m+1)p(n)

≤
(n−1)/3∑

m=0

(
n

m

)
(2k)3m+1e−(3m+1)p(n)

≤
(n−1)/3∑

m=0

nm

m!
(2k)3m+1e−(3m+1)p(n)

=
(n−1)/3∑

m=0

1
m!

e[m log n+(3m+1) log(2k)−(3m+1)p(n)] .

If A ≡ m log n + (3m + 1) log(2k) − (3m + 1)p(n) < −1 (then eA < e−1) , then
we have

∑
θ∈Θn

e−p(n)|θ| ≤ 1/e

(n−1)/3∑
m=0

1
m!

≤ 1 .

To guarantee A < −1, we must have p(n) growing at least like log n. Therefore,
set p(n) = γ log n, for some γ > 0. Also, as we will see later in the next section,
to guarantee that the quantization of our models is sufficiently fine to contribute
a negligible amount to the overall error we must select 2k ∼ n1/4. With these
calibrations we have

A = [(7/4 − 3γ)m + (1/4 − γ)] log n

In order to guarantee that the MSE converges to zero, we will see in the next
section that m must be a monotonically increasing function of n. Therefore, for
n sufficiently large, the term involving

( 1
4 − γ

)
is negligible, and the condition

A < −1 is satisfied by γ > 7/12. We take γ = 2/3 in practice.

7.3 Rate of MSE Decay

Consider a complete RDP with m2 squares of sidelength 1/m. It is known that
if the boundary is a Lipschitz function, or more generally has a box counting
dimension of 1, then the boundary passes through � ≤ Cm of the squares, for
some constant C > 0 [3,10,9]. Furthermore, there exists a pruned RDP with
at most C ′m leafs, where C ′ = 8(C + 2), that includes the above � squares of
sidelength 1/m that contain the boundary [3,9].

Now consider the upper bound (5), which as stated earlier follows as from
an application of Theorem 7 in [5].
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1
n

√
n∑

i,j=1

E

[(
θ̂n(i, j) − θ∗

n(i, j)
)2
]

≤ min
θ∈Θn

1
n



2

√
n∑

i,j=1

(θ(i, j) − θ∗
n(i, j))2 + 8p(n)|θ|





≤ 2
∫

[0,1]2
(θ − θ∗)2 + 8

7
12

log n

n
C ′m ,

where the discretized squared error is bounded by the corresponding continuous
counterpart. The squared error

∫
[0,1]2(θ−θ∗)2 ∼ K1

m + K2√
n
, where the first term is

due to the error between the 1/m resolution partition along the boundary, and
the 1/

√
n term is due to the quantization error overall. Thus, the MSE behaves

like

MSE ∼ O(1/m) + O(1/
√

n) + O

(
m

log n

n

)
.

Taking m ∼
√

n
log n produces the desired result: MSE ∼ O(

√
log n/n).

7.4 Expected Tree Size for Homogeneous Field

We construct an upperbound for E[|θ̂|] under the assumption of a homogeneous
field with no boundary. Let P denote the tree-structured partition associated
with θ̂. Note that because P is an RDP it can have d + 1 leafs (pieces in the
partition), where d = 3m, m = 0, . . . , (n−1)/3. Therefore, the expected number
of leafs is given by

E[|θ̂|] =
(n−1)/3∑

m=0

(3m + 1) Pr
(
|θ̂| = 3m + 1

)
.

The probability Pr
(
|θ̂| = 3m + 1

)
can be bounded from above by the probability

that one of the possible partitions with 3m + 1 leafs, m > 0, is chosen in favor
of the trivial partition with just a single leaf. That is, the event that one of the
partitions with 3m + 1 leafs is selected implies that partitions of all other sizes
were not selected, including the trivial partition, from which the upper bound
follows. This upper bound allows us to bound the expected number of leafs as
follows.

E[|θ̂|] ≤
(n−1)/3∑

m=0

(3m + 1) #m pm,

where #m denotes the number of different (3m + 1)-leaf partitions, and pm

denotes the probability that a particular (3m+1)-leaf partition is chosen in favor
of the trivial partition (under the homogeneous assumption). The number #m

can be bounded above by
(

n
m

)
, just as in the verification of the Kraft inequality.
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The probability pm can be bounded as follows. Note this is the probability
of a particular outcome of a comparison of two models. The comparison is made
between their respective sum-of-squared errors plus complexity penalty, as given
by (2). The single leaf model has a single degree of freedom (mean value of the
entire region), and the alternate model, based on the (3m+1)-leaf has 3m+1 de-
grees of freedom. Thus, under the assumption that the data are i.i.d. zero-mean
Gaussian distributed with variance σ2, it is easy to verify that the difference be-
tween the sum-of-squared errors of the models (single-leaf model sum-of-squares
minus (3m+1)-leaf model sum-of-squares) is distributed as σ2W3m, where W3m

is a chi-square distributed random variable with 3m degrees of freedom (precisely
the difference between the degrees of freedom in the two models). This follows
from the fact that the difference of the sum-of-squared errors is equal to the
sum-of-squares of an orthogonal projection of the data onto a 3m dimensional
subspace.

The single-leaf model is rejected if σ2W3m is greater than the difference
between the complexity penalties associated with the two models; that is, if

σ2W3m > (3m + 1)2σ2p(n) − 2σ2p(n) = 6mσ2p(n),

where 2σ2p(n) is the penalty associated with each additional leaf in P . According
to the MSE analysis in the previous section, we require p(n) = γ log n, with
γ > 7/12. To be concrete, take γ = 2/3, in which case the rejection of the single-
leaf model is equivalent to W3m > 4m log n. The probability of this condition,
pm = Pr(W3m > 4m log n), is bounded from above using Lemma 1 of Laurent
and Massart [7]: If Wd is chi-square distributed with d degrees of freedom, then
for s > 0

Pr(Wd ≥ d + s
√

2d + s2) ≤ e−s2/2.

Making the identification d + s
√

2d + s2 = 4m log n produces the bound

pm = Pr(W3m > 4m log n) ≤ e−2m log n+m
√

3/2(4 log n−3/2).

Combining the upper bounds above, we have

E[|θ̂|] ≤
(n−1)/3∑

m=0

(3m + 1)
(

n

m

)
e−2m log n+m

√
3/2(4 log n−3/2),

=
(n−1)/3∑

m=0

(3m + 1)
(

n

m

)
n−m e−m log n+m

√
3/2(4 log n−3/2).

For n ≥ 270 the exponent − log n +
√

3/2(4 log n − 3/2) < 0 and therefore
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E[|θ̂|] ≤
(n−1)/3∑

m=0

(3m + 1)
(

n

m

)
n−m,

≤
(n−1)/3∑

m=0

(3m + 1)
nm

m!
n−m,

≤
(n−1)/3∑

m=0

(3m + 1)/m! < 11.

Furthermore, note that as n → ∞ the exponent − log n+
√

3/2(4 log n − 3/2) →
−∞. This fact implies that the factor e−m log n+m

√
3/2(4 log n−3/2) tends to zero

when m > 0. Therefore, the expected number of leafs E[|θ̂|] → 1 as n → ∞.
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Abstract. This paper describes an information-theoretic approach to decen-
tralised and coordinated control of multi-robot sensor systems. It builds on tech-
niques long established for the related problem of Decentralised Data Fusion
(DDF). The DDF architecture uses information measures to communicate state
estimates in a network of sensors. For coordinated control of robot sensors, the
control objective becomes maximisation of these information measures. A decen-
tralised coordinated control architecture is presented. The approach taken seeks to
achieve scalable solutions that maintain consistent probabalistic sensor fusion and
payoff formulations. It inherits the many benefits of the DDF method including
scalability, seamless handling of sub-system activation and deactivation, and inter-
operability among heterogeneous units. These features are demonstrated through
application to practical multi-feature localisation problems on a team of indoor
robots equipped with laser range finders.

1 Introduction

This paper addresses the problem of coordinating a group of mobile robots, equipped
with sensors, engaged in a task of information acquisition. Several common mobile
robot tasks may be formulated as problems of information acquisition, including target
tracking, feature localisation, area search and exploration. The advantage of focusing on
information acquisition problems is that the control objective is well defined and many
tools exist for fusion of information in decentralised networks.

Figure 1 illustrates the operation of an active decentralised sensor network including:
the representation, prediction and update of knowledge; placing value on the information
gain achieved through sensing; choosing actions in order to maximise the expected value.
In this light, approaches to active sensing can generally be categorised by three choices:

Sensor Fusion Algorithm – Combining multiple sensor observations to estimate
the state of the world. Options include Bayesian estimators (e.g. Kalman or Particle
filters) and non-probabilistic methods.
Payoff – Utility, cost or reward associated with the outcome of decisions. Most
approaches are either heuristic or related to the information in the fusion process.
Control Solution – A decision rule or policy chosen to maximise the payoff. Meth-
ods differ in the use of discrete or parametric representations of the system states
and actions.

F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 96–112, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Fig. 1. Information flow in an active multi-sensor system. Models of vehicles, sensors and the
environment provide means to capture and predict a priori the expected utility associated with a
sequence of actions. Choosing appropriate actions requires solution to an optimal control problem.
Fusing observed and communicated information updates the knowledge on which subsequent
actions are selected.

The approach taken in this work seeks to achieve scalable solutions that maintain con-
sistent probabilistic sensor fusion and payoff formulations. Sensor fusion is performed
by the Decentralised Data Fusion (DDF) method [1] reviewed briefly in Appendix A.
Only node-to-node communication and only local system knowledge are permitted in
this method. This approach results in remarkably simple nodal algorithms with no cen-
tral processing or communication facilities. The scalable coordinated control policies
developed in this paper rely on this mechanism.

Existing approaches differ from that presented here in one or more aspects. Prob-
abilistic approaches are distinguished by the choice of utility formulation and the esti-
mation method. Zhao [2], Spletzer [3] and Burgard [4] apply probabilistic estimation
techniques which are more flexible than the Kalman filter, but at the expense of compu-
tational effort, scalability and algorithm decentralisation.

Zhao [2] compares various information related utility formulations. Heuristic ap-
proaches such as Pirjanian [5] and Parker [6] are attractive because of their scalability
and relatively low computational effort. Structure is imposed on the solution though
geometric utility functions or low level controllers that relate to desirable steady state
sensor configurations. But the system performance may suffer as they do not explicitly
value prior knowledge, sensor characteristics and the evolution of uncertainty over time.

The rest of this paper is organised as follows. Section 2 describes the coordinated
control architecture including formulation of the payoff and control solution along with a
discussion of desirable characteristics. Section 3 outlines practical issues including hard-
ware and software implementation. Simulation and experimental results are presented
in Section 4.
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2 Decentralised Multi-sensor Coordinated Control

In developing a decentralised control architecture, a distinction is made between coordi-
nated and cooperative solutions. A cooperative solution is considered to be a predictive
optimal negotiated group decision in the sense of a Nash equilibrium. In coordinated
solutions there is no mechanism for this negotiated outcome. Decision makers act lo-
cally but exchange information that may influence each others subsequent decisions. A
coordinated solution architecture is presented along with descriptions of the information-
theoretic payoff used and control solution procedure. A negotiated cooperative solution
in which decision makers are aware of and account for the cumulative expected obser-
vation information is detailed in [7].

2.1 Payoff for Information Gathering Tasks

Kalman filter algorithms generate an estimate of the state x̂(t) together with an uncer-
tainty measure, typically represented as a covariance matrix P(t). In DDF methods,
these are replaced by the mathematically equivalent information filters which generate
estimates of the information state ŷ(t) and the corresponding Fisher Information matrix
Y(t) which are related to the state and covariance as:

Y(t) = P−1(t), ŷ(t) = Y(t)x̂(t) (1)

The evolution of Fisher information in continuous linearised filtering is given by a Ricatti
equation describing the information form of the Kalman filter

Ẏ(t)
︸ ︷︷ ︸

=− F(t)Y(t) − FT (t)Y(t)
︸ ︷︷ ︸

− Y(t)Q(t)Y(t)
︸ ︷︷ ︸

+
n

∑

i=1

HT
i (t)R−1

i (t)Hi(t)

︸ ︷︷ ︸

.

Information Loss or Gain Through Loss Through Gain Through
Rate Process Dynamics Process Noise Observations

(2)
Equation 2 describes how the system dynamics F, process noise Q and observations
Ii(t) = HT

i (t)R−1(t)Hi(t) affect the probability distributions involved in the fusion
process. The matricesF,Q,R andHi are all potentially functions of the estimate x̂ of the
environment, sensor platform and sensor states and the control inputs u to the vehicle
and sensor systems. Entropy or Shannon information provides a natural quantitative
measure of information in terms of the compactness of the probability distributions.
For the n-dimensional Gaussian distributions considered, entropy provides a volumetric
measure of information related to the determinant of the Fisher information matrix by

i(x(k)) =
1
2

log[(2πe)n| Y(k | k) |]. (3)

Most importantly, the probabilistic modelling allows a priori prediction of the expected
information outcome associated with a sequence of actions. For an action sequence u
over N prediction and update stages, the change in entropy or mutual information gain
provides a measure of the expected utility

J(u) =
1
2

log
[ | Y(k +N | {u, k − 1}) |

| Y(k | k − 1) |
]
. (4)
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Fig. 2. Dependence of expected posterior information and information gain on prior information
and relative location for a bearings-only sensor.

Example: Payoff for a Bearings-Only Sensor
Figure 2 shows a visual interpretation of the mutual information gain performance metric
for the case of a sensor platform making bearings-only observations of a point feature.

Given the sensor platform heading angle ψ(k) at time k, the observation model for
a bearings measurement β(k) = h(x(k)) is

z(k) = β(k) + ν(k) = θ̂(k) − ψ(k) + ν(k), θ̂(k) = arctan
[

ŷf (k)−ys(k)
x̂f (k)−xs(k)

]
(5)

The Jacobian of the observation model with respect to the feature state estimate is

H(k) = ∇x̂h(x̂(k | k − 1),xs)

= 1/r̂(k)
[
− sin θ̂(k), cos θ̂(k)

]
.

The expected observation Fisher information is

Iβ(k) = HT (k)R−1H(k)

=
1

σβ
2r̂2(k)

[
sin2 θ̂(k) − sin θ̂(k) cos θ̂(k)

− sin θ̂(k) cos θ̂(k) cos2 θ̂(k)

]
(6)

The observation information depends on the relative range and bearing to the feature.
The value of the sensing configuration and prior information is captured by the sensor
model and the expected utility measure of Equation 4.

2.2 Coordinated Control

Local decision making builds upon the decentralised data fusion algorithm. This control
algorithm predicts and maximises the expected information gain from local sensors
without any knowledge of the choices made by other decision makers. The information on
which the action selection is based is coupled through a static information structure. The
DDF process propagates the current or delayed observation information throughout the
network. This is fused with local information altering the prior on which subsequent local
decisions are made. Consequently, by simply activating DDF network with independent
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Fig. 3. Multi-platform coordinated decision making with a static information structure. The infor-
mation structure is formed through a network interface at each decision maker. This allows the
individual decision maker to incorporate the influence of other team members’ observations over
time, and inform the team of their own observations.

control rules at each node, leads to a coordinated control solution. The procedure is
illustrated in Figure 3. It should be emphasised that this solution approach is fully
decentralised. The static information structure consists of a communication network, a
communication protocol and interface at each decision maker. The decision making and
communication management mechanisms are internal to each system node. The only
component external to the decision-making nodes is the medium and protocol through
which they communicate.

2.3 Control Solution

The motion of platforms and sensors is subject to constrained dynamics. Modelling of
platforms, sensors and environment as a set of continuous states, together with the use of
information as payoff, allows the information acquisition problem to be formulated as a
standard optimal control problem. For a system described by a set of ODEs, subject to
constraints c(x(t),u(t)) = 0, g(x(t),u(t)) ≤ 0, find the optimal control u∗(t) such
that

ẋ(t) = f(x(t),u(t)) t ∈ [t0 tf ] (7)
find u∗(t) = arg max

u∈U
J(x(t),u(t)) (8)

The control vector parameterisation described by Goh [8] is used to determine a direct
numerical solution on a receding time horizon.

2.4 Features of This Approach

Information-theoretic models offer a mathematically rigorous method of modelling
large-scale sensor systems. Decentralised methods allow information gathering and de-
cision making systems to be described in a modular and endogeneous manner. The global
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system can be considered as a system of interacting systems. Transparent handling of
system heterogeneity, dynamic (re)configureability and scalability are particularly de-
sirable characteristics of this approach.

Achieving Scalability
Inter-dependencies among the states of components of a network of sensors and actua-
tors can lead to situations where the complexity of the estimation and control problem
grows with the number of nodes. These dependencies arise when the sensor states,
state estimates and observations are functionally dependent or statistically correlated.
Fortunately, a broadly applicable class of practically useful situations exist where such
dependencies either don”t exist, can be safely ignored or conservatively accounted for.
In these cases the inter-nodal communication and nodal computational requirements are
independent of the number of system nodes. A specific situation of interest where this
occurs is when sensor platforms with known state observe an unknown environment. In
this case the complexity of the estimation and control problem at each node is determined
only by the dimension of the environment representation.

Handling Sensor and Sensor Platform Heterogeneity
This sensor fusion and control architecture requires explicit modelling of each compo-
nent sensor and sensor platform. This modelling provides allows for specific sensor and
platform details to be abstracted away at the information level. Observed and commu-
nicated information is propagated throughout the sensing and control network without
knowledge of the nature of its source. The abstraction provided by the sensor observation
model is illustrated by considering observation of a point feature by a heterogeneous
sensor team composed of range-only and bearing-only sensors. For a range-only sensor
the expected observation Fisher information is

Ir(k) =
1
σr

2

[
cos2 θ̂(k) sin θ̂(k) cos θ̂(k)

sin θ̂(k) cos θ̂(k) sin2 θ̂(k)

]
(9)

The expected observation for a bearing only sensor is given by Equation 6. Data fusion
amounts to communicating and summing the sensor information matrices I(·)(k) and
vectors i(·)(k) (seeAppendixA).The details only relevant to the individual sensors, in this
case the sensor type, accuracy and relative distance to the feature are not communicated.

Heterogeneity of system components may be advantageous and is often required
or unavoidable. It does not alter the algorithms and architecture fundamental to fusion,
control and communication in distributed sensing.

Dynamic (Re)Configureability
Channel filters at each node manage inter-nodal connections and communication. These
connections can be established dynamically allowing online addition of newly activated
systems and recovery from system deactivation. An interface to the communications
protocol in information form is all that is required to allow incorporation of an additional
system into this architecture. Reconfiguration simply amounts to connecting or removing
components having this decentralised interface. Particularly desirable from a systems
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engineering viewpoint is that implementing this on a new subsystem allows its use in the
network without modification to existing systems. Enabling larger systems composed
from decentralised sensing and control nodes to effortlessly acquire their complementary
or redundant capabilities.

3 Implementation

This section focuses on practical aspects of the decentralised control architecture in-
cluding hardware and software implementation. Section 3 focuses on the inter-node
organisation while Section 3.1 provides details of the structure on the network level.
Section 3.3 describes the details of applying the decentralised control architecture to a
team of indoor robots.
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Fig. 4. Structure of a coordinated sensing node.

3.1 Node Architecture

A schematic of the inter-node architecture is shown in Figure 4. The DDF node is
represented by the dashed frame in the centre. A bank of sensor preprocessing units
connects the node to a set of sensors. Similarly, a bank of channel filters connects the node
to a set of its neighbours in the DDF network. The control block calculates the control
vector which maximises the expected payoff over the chosen time horizon. Notice that
the shown configuration implements a controller which is centralised within the DDF
node and is, therefore, a special case of a more general, fully decentralised, arrangement.
The trade-offs inherent in this design decision are currently under investigation.

3.2 Network Architecture

A schematic of the DDF network is shown in Figure 5. Any number of nodes may be
attached to a single platform. A static tree architecture was selected due to its simplicity
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and availability of theoretical results. Despite the pre-assigned connectivity structure,
this network architecture is truly decentralised as no node needs to know the global
topology in order to implement the DDF algorithm. According to the algorithm, the
neighbouring nodes exchange new information in the form of∆ŷij and∆Yij as described
in Appendix A.

3.3 Application to an Indoor Robot Team

The benefits of the decentralised control architecture are demonstrated on a team of in-
door robots performing an information gathering task.A team of Pioneer robots equipped
with laser range finders was used in the experiments. The bearing-only feature locali-
sation was implemented by disregarding the range information available from the laser
sensors. Experiments with other sensors, such as video cameras, are under way.

The property of DDF to abstract away the observation models of the individual
sensors was complemented by a hardware abstraction layer provided by Player – an
open-source robot server developed at USC [9].

The performance validation task for a large and complex system such as a sensor
network is time consuming due to the statistical nature of performance metrics. In this
situation, a realistic environment simulator is an invaluable tool. Stage [10] provides
realistic 2-D simulation of indoor environment for the Pioneer family of robots and a set
of common sensors. It also provides a maximum degree of code reuse in the transition
from simulation to experiment.

Figure 6 illustrates the relationship between simulation, experiments, and the abstract
notion of a DDF network. In this experiment, three Pioneer robots are performing the task
of localising a set of stationary point features present in the environment. The features
are marked with light-reflecting strips placed on the walls and free-standing poles. The
robots in simulation and in the experiments are placed in the same positions relative
to the features. Platform pose information is provided by the simulation engine in the
former case and by a beacon localisation system in the latter.

The graphical user interface (GUI) developed for monitoring and interacting with
the decentralised sensing and control network is shown in Figure 6(c). The topology
of the DDF network is shown with dashed lines connecting the platforms into a star
network with a centre at platform P1. One of the network branches connects platform



104 B. Grocholsky et al.
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Fig. 6. Three Figures displaying a feature localisation problem (a) in Stage simulation environ-
ment, (b) the experimental setup using Pioneer robots, SICK laser scanning sensors and lasers
beacons, and (c) on the GUI developed for monitoring and interacting with the decentralised
sensing and control network.

P1 with the GUI node. Since the GUI node is an ordinary DDF node, it is exposed to the
same information flow as the rest of the nodes and it can be attached at any point in the
network. Furthermore, several GUI nodes with different purposes and capabilities may
be present in the same network at the same time.

In one respect a GUI node is different from the rest of the network. It may be capable
of accumulating non-local information about the network itself, such as the global topol-
ogy shown in Figure 6(c). This information is used purely for visualisation purposes and,
therefore, does not undermine the decentralised nature of the DDF approach.

The known features and their position uncertainty is shown with relatively small
ellipses. Large ellipses represent the uncertainty of the latest observations made by plat-
form P1. The difference in the size of the ellipses is due to the information accumulation
inherent in the data fusion process.

Despite the intuitive representation of uncertainty currently present in the estimate of
the feature locations, it is important to appreciate the abstract nature of the view provided
by the GUI. Indeed, neither the individual nodes (including the GUI node), nor the DDF
network in general, nor the controllers on the platforms are aware of the nature of the
information source which led to the overall picture.
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4 Results in Multi-platform Multi-feature Localisation

The use of information measures as a performance index in control problems is best
illustrated through a motivational example. The bearings-only feature localisation prob-
lem is considered. Studies such as that by Oshman and Davidson [11] consider the single
platform problem from an optimal control perspective. The vehicle control action and
trajectory is sought that minimises the determinant of the feature error covariance at a
fixed terminal time tf . This is equivalent to maximising final information or information
gain. This example is extended to multiple vehicles to demonstrate coordinated control
architecture from Section 2.
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Fig. 7. 2D Multi-Vehicle Multi-Feature Localisation Problem

4.1 Problem Formulation

The problem consists of n sensor platforms i = 1, . . . , n, localising m point features
j = 1, . . . ,m. Each platform is moving in the xy plane with constant velocity Vi. The
vehicle’s location and heading at time t is captured in the state xs,i(t). The single control
variable ui(t) for each platform is the heading rate.

xs,i(t) =


 x(t)
yi(t)
ψi(t)


 , ẋs,i(t) =


Vi cosψi(t)
Vi sinψi(t)

ui(t)


 (10)

The features are modelled as stationary points on the xy plane modelled by two Gaussian
random variables representing feature location xf,j = [xf,j , yf,j ]

T . Each feature loca-
tion is estimated by the conditional mean x̂f,j(k | k) = E{xf,j(k) | Zk} . The feature
location uncertainty is captured by the covariance of the two dimensional Gaussian dis-
tribution Pf,j(k | k) = E{(xf,j − x̂f,j(k | k))T (xf,j − x̂f,j(k | k)) | Zk} . In the in-
formation filter this is represented by the inverse covariance Yf,j(k | k) = P−1

f,j(k | k).
The feature state is not influenced by control input and has no process noise.
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The global system equations are composed from these individual models. The global
state consists of the current sensor platform locations and headings, feature location
estimates and feature error covariance. Each vehicle maintains a local estimate of the
feature states and a map of the feature information given by

x̂f (k | k) =




x̂f,1(k | k)
...

x̂f,m(k | k)


 = Y−1

f (k | k)ŷf (k | k) (11)

Yf (k | k) =




Yf,1(k | k) 0 . . . 0

0 Yf,2(k | k) ...
...

. . . 0
0 . . . 0 Yf,m(k | k)


 (12)

The local Fisher information prediction is simply

Yf,j(l + 1 | {u, k − 1}) = Yf,j(l | {u, k − 1}) + Ij(l | u), (13)

for l = k, ..., k+N−1. The state vector of interest to each sensor platform is the vehicle
state combined with predicted feature Fisher information. The vehicle state is stacked
with the 3 distinct elements of each 2x2 symmetric matrix.

xi(k) =




xs,i(k)
xf,1(k)

...
xf,m(k)


 , where xf,j(k) =


 Yx,j(k)

Yxy,j(k)
Yy,j(k)


 . (14)

Maximising the mutual information gain is equivalent to maximising the log of the de-
terminant of the predicted Fisher information. The expected utility used for this problem
is

Ji(u) = log | Yf (k +N | {u, k − 1}) |
=

∑m
j=1 log | Yf,j(k +N | {u, k − 1}) | (15)

4.2 A Special Control Case: Zero Look-Ahead

Planning with zero look ahead provides a special case in coordinated multi vehicle
control. This can be used to form simple approximate solutions where the sensor plat-
forms are directed by the dynamics of the mutual information rate gradient field.The
Fisher information evolution in continuous linearised filtering is given by Equation 2.
Using matrix calculus identities, the instantaneous rate of change of entropy, or mutual
information rate is

I(t) =
1
2

d
dt

log | Y(t) | =
1
2
trace

(
Y−1(t)Ẏ(t)

)
. (16)

Equation 16 represents a time varying vector field. It shows that the mutual information
rate is determined by the current Fisher information and Equation 2. Equation 16 relates
the sensor system state and control to the instantaneous rate of change of entropic
information. Its gradient relates changes in the system state and control to changes in
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the rate of change of entropic information. Since Y(t) is not an explicit function of x
or u; the gradient field is given by

∇xI(t) =
1
2
trace

(
Y−1(t)∇xẎ(t)

)
(17)

This allows evaluation of the gradient field in terms of the current Fisher information and
the partial derivatives of Equation 2. Control actions can be scheduled according to the
direction and magnitude of the local gradient field. In this example, the sensor platform
motion is governed by the constant velocity vehicle model Equation 10. In order to
maximise the information rate Equation 16, the platform should head in the direction of
the gradient vector of information rate with respect to the vehicle state {x, y}

ψ�(t) = arctan
(∇yI(t)

∇xI(t)

)
. (18)

A simple approximate control solution is implemented by tracking ψ�(t) with a con-
strained heading-rate controller, avoiding the multi-stage optimisation problem in Equa-
tion 8.

4.3 Results

Two solutions are presented to demonstrate the characteristics of this coordinated sensing
and control framework. The first situation illustrates coordination resulting from the
information shared though the DDF network. A second multi-feature, multi-vehicle
example indicates transparent inter-operation among heterogeneous sensor systems.

Demonstrating Coordination: Point Feature Localisation by Two Sensor Platforms
A situation where two bearings-only sensor platforms localise a single point feature is
considered in order to investigate the effect of the DDF process on the sensor platform
trajectories.Two solutions are presented and discussed in Figure 8.Trajectories are shown
for the same local controllers with and without the underlying DDF process activated. The
comparative solutions demonstrate that coordinated control can be achieved simply by
employing the DDF algorithm in the network of decision makers with local information
seeking controllers.

Controlling Networks of Heterogeneous sensors
The second example demonstrates the transparent handling of system heterogeneity

by this architecture. It involves localisation of multiple point features by a team of
robots equipped with different sensors; a fixed range-only sensor, a bearing-only sensor
platform and a platform equipped with both range and bearing sensors. Details of an
example solution are presented in Figure 9. The nodes influence the value of each others
available actions through the propagation of their observation information. Selecting
local actions that maximise information gain leads to platform motions that improve
quality of the estimate of the environment derived from the system sensors.

4.4 Discussion

The platform trajectories in Figures 8 and 9 are a trade-off between range and bearing
changes relative to the features that is affected by the existence and actions of other
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Fig. 8. Illustration of coordinated control arising through decentralised data fusion (DDF). Fea-
ture information over time is shown along with five snapshots of the locally optimal trajectories,
with and without DDF active. Both vehicles implement local control laws which maximise their
individual information gain from bearings-only observations given local prior knowledge. Coor-
dination results from the DDF process updating local prior knowledge from which the optimal
action is generated. There is no change in the control laws between cases.

sensors through the exchange of information over the DDF network.An isolated bearing-
only vehicle tends to perform a pursuit curve to the nearest feature. Vehicles head more
directly to features as prior information increases. Pairs of vehicles with bearings sensors
tend to approach features at right-angles. These characteristics are not designed into low
level controllers. They are artifacts of the “information seeking” control objective and
the sensor, vehicle and feature modelling that agree with human intuition.

This framework provides three ingredients essential in constructing coordinated sen-
sor networks:

Analytic: – Decentralised and information-theoretic methods provide an opportu-
nity to analyse and reason about a system and its information gathering or decision
making role. In particular, the process of local information formation, communica-
tion and assimilation, and decision making are well formulated.
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Fig. 9. Five snapshots of a coordinated feature localisation solution by decentralised heteroge-
neous sensor systems. The sensing system is composed from a fixed range-only sensor node, a
bearing-only sensor platform node and a platform node equipped with both range and bearing sen-
sors. Observations are transformed into information form and propagated throughout the sensing
network. This anonymous information is assimilated influencing the future sensing and control
actions. The system heterogeneity has implications for the capabilities and performance of the
system as a whole but is not relevant to the nodal architecture and algorithms.
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Composable and dynamically configurable: – Decentralised methods also provide
an ability to compose mathematical descriptions of larger systems from descriptions
of component sub-systems. The information filter formulation provides scalable
and transparent sub-system inter-operation. Sensor, vehicle and task specific details
irrelevant to the estimation task are abstracted away. Because of this, heterogeneity
is handled transparently. Anonymous information is passed between system nodes
which may be dynamically added or removed.
Predictive: – Information-theoretic methods provide a natural and powerful ability
to predict expected “information” rewards associated with an action sequence. The
system configuration is determined by coupling in the information seeking control
objective rather than the interaction between characteristics embedded in low-level
controllers or behaviours.

Only linearized Gaussian representations of uncertainty are considered in this anal-
ysis. This parameterization allows the formulation of a remarkably simple decentralized
active sensing algorithm. A significant reduction in computation, storage and commu-
nication requirements is achieved at the expense of limiting the applicability of this
framework to situations where this modeling is appropriate.

5 Conclusion

This paper presents a consistent decentralised and scalable system architecture for sensor
planning. A control scheme was implemented that accomplishes coordinated execution
of sensing tasks with efficient use of computational and communication resources. De-
centralised coordinated control among heterogeneous sensor systems was demonstrated.
Dynamic coordinated adjustment of the sensor platform spatial configuration to improve
the estimate obtained from the system is the result of interaction among local information
maximising controllers through the decentralised data fusion network.
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A The Decentralised Data Fusion Architecture

A key tool in decentralised sensor fusion systems is the information filter. A reformu-
lation of the Kalman filter enabling scalable decentralised multi-sensor estimation. The
information filter equations are stated briefly here. A full derivation can be found in [1].
Consider a system described in standard linear form

x(k) = F(k)x(k − 1) + G(k)w(k), (19)
where x(j) is the n dimensional state vector of interest at time j, F(k) is the state
transition matrix from time k − 1 to k, and G(k) the noise input transition matrix,
and where w(k) is the associated process noise input modelled as an uncorrelated white
sequence withE{w(i)wT (j)} = δijQ(i).The system is observed by a sensor according
to the non-linear observation model

z(k) = h(k,x(k)) + v(k) (20)
where z(k) is the vector of observations made at time k, and where v(k) is the associated
observation noise modelled as an uncorrelated white sequence with E{v(i)vT (j)} =
δijR(i). The information form of the Kalman filter is obtained by replacing the repre-
sentation of the state estimate x̂ and covariance P with the information state ŷ and Fisher
information Y. Notation (i | j) is introduced to indicate a value at time i, conditional on
observation information obtained up to time j. The information state and information
matrix are defined as

ŷ(i | j) �
= P−1(i | j)x̂(i | j),

Y(i | j) �
= P−1(i | j), (21)

and the information associated with an observation in the form

i(k)
�
= HT (k)R−1(k)(z(k) − h(x̂(k | k − 1)) + H(k)x̂(k | k − 1),

I(k)
�
= HT (k)R−1(k)H(k). (22)

Where HT (·) is the Jacobian ∇xh(·). With these definitions, the information filter can
be summarised in two stages as:
Prediction:

Y(k | k − 1) =
[
F(k)Y−1(k − 1 | k − 1)FT (k) + Q(k)

]−1
,

ŷ(k | k − 1) = Y(k | k − 1)F(k)Y−1(k − 1 | k − 1)ŷ(k − 1 | k − 1). (23)
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Estimation:
Y(k | k) = Y(k | k − 1) +

∑N
i=1Ii(k),

ŷ(k | k) = ŷ(k | k − 1) +
∑N

i=1ii(k). (24)

Where Ii(k) and ii(k) are the information matrix and information state contributions of
the sensors i = 1, . . . , N . The posterior state estimate may be obtained from

x̂(k | k) = Y−1(k | k)ŷ(k | k). (25)

The information-filter form has the advantage that the update Equations 24 for the esti-
mator are computationally simpler than the equations for the Kalman Filter, at the cost of
increased complexity in prediction. The additive and associative property of information
in the estimation stage is the key to scalable, decentralised data fusion. All system nodes
can be made aware of global information through propagation of inter-node informa-
tion differences through a communication network. This is studied in detail by Grime
[12]. A channel filter at each fusion node manages the accumulation and communica-
tion of information. The inter-node communications requirement for this architecture is
independent of the number of fusion nodes.

The algorithm is described graphically in Figure 4. Essentially, local estimates are
first generated at each node by fusing (adding) locally available observation information
ii(k) with locally available prior information ŷi(k | k − 1). This yields a local infor-
mation estimate ỹi(k | k). The difference between this local estimate and prediction
(corresponding to new information gained) is then transmitted to other nodes in the
network. In a fully connected or broadcast network, this results in every sensing node
getting all new information. Communicated information is then assimilated simply by
summing with the local information. An important point to note is that, after this step,
the locally available estimates are exactly the same as if the data fusion problem had been
solved on a single central processor using a monolithic formulation of the conventional
Kalman filter.
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Abstract. The tradeoff between performance and scalability is a funda-
mental issue in distributed sensor networks. In this paper, we propose a
novel scheme to efficiently organize and utilize network resources for tar-
get localization. Motivated by the essential role of geographic proximity
in sensing, sensors are organized into geographically local collaborative
groups. In a target tracking context, we present a dynamic group man-
agement method to initiate and maintain multiple tracks in a distributed
manner. Collaborative groups are formed, each responsible for tracking
a single target. The sensor nodes within a group coordinate their be-
havior using geographically-limited message passing. Mechanisms such
as these for managing local collaborations are essential building blocks
for scalable sensor network applications.

1 Introduction

The study of distributed sensor networks is emerging as an exciting interdis-
ciplinary research area, including aspects of signal processing, networking, dis-
tributed algorithms, and MEMS sensor technology. A wireless sensor network can
be easily deployed in places where there is no a priori sensing infrastructure. This
flexibility has led to an increasing interest in using these networks for large-scale
applications such as environmental monitoring, security surveillance, and bat-
tlefield awareness. In contrast to traditional centralized sensor array processing
where all processing occurs on a central processor, sensor networks distribute
the computation among sensor units. Each sensor unit acquires local, partial,
and relatively crude information from its surroundings. By exploiting the sensor
network’s spatial coverage and multiplicity of sensing modalities, the network
can arrive at a good global estimate.

A key issue in distributed sensor networks is scalability, in both energy and
spatial dimensions. Desirably, sensor networks must simultaneously track mul-
tiple phenomena, working within tight communication bandwidth, energy, and
processing speed limits. Thus, it is critical to distribute the workload in an equi-
table way across only the “relevant” sensors, and leave other sensors available for
other tasks. In this paper, we focus on target tracking applications, and present
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a scalable track initiation and maintenance scheme based on collaboration be-
tween sensors in local groups. The scheme is built on the basis of our previous
work [1,2] on single target tracking. To set up the proper context, we first briefly
introduce the tracking problem.

1.1 Target Tracking Using Distributed Sensor Networks

Tracking is one of the major uses of sensor networks, essential in many commer-
cial and military applications, such as traffic monitoring, facility security, and
battlefield situational awareness. Assume a two-dimensional sensor field and a
point target moving in it. The goal of a tracking system is to estimate the target
location x(t) based on sensor measurements.

Each sensor node has a local measurement of the target over time. To be able
to incorporate measurements from heterogeneous sensors, we use a statistical
fusion method, where all sensor measurements are combined probabilistically
in a common state space, based on the observational likelihood p(z(t)|x(t)). For
sensor i, z(t)

i = {z
(0)
i , z

(1)
i , · · · , z(t)

i } represents its local measurements, where the
superscript indexes time. Let z(t) = {z(t)

1 , z(t)
2 , · · · , z(t)

n }, where n is the number of
nodes. The sensor network collectively computes the posterior belief p(x(t)|z(t))
through Bayesian inference.

Noticing that the majority of the sensor measurements has little contribution
to the global estimation of the target trajectory, we designed in [1] a leader-based
tracking scheme to minimize resource usage. At any time instant t, there is only
one leader k, which takes a new measurement z

(t)
k and updates its estimate of

the target location using sequential Bayesian filtering [3]. Based on this updated
belief, the leader selects the most “informative” sensor (according to some cri-
terion measuring information gain) from its neighborhood, and passes it the
updated belief p(x(t)|z(t)). This new sensor becomes the next leader at time t+δ
(where δ is the communication delay), the previous leader returns to an idle
state, and the process of sensing, estimation, and leader selection repeats. We
call this approach information-driven sensor query (IDSQ).

1.2 Organization of This Paper

In theory, the IDSQ algorithm is scalable since all sensors except one (the leader)
are in the idle state, freeing them to track other targets or perform other tasks.
Thus, the number of active nodes is proportional only to the number of targets,
and is independent of the size of the sensor network. However, without proper
ways of initiating new target tracks and maintaining local collaboration groups,
scalability cannot be achieved in practice. We need a mechanism to decide who
is responsible for initialization and how to handle contention between multiple
sensors detecting the same target. Furthermore, the co-existence of multiple
tracks leads to the problem of track maintenance. Special care must be taken
when two targets come into the vicinity of each other.
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This paper establishes our solution to track initiation and maintenance prob-
lems in the following steps. Sec. 2 motivates the idea of organizing sensors into
geographically-based local collaborative groups. Collectively, a group is respon-
sible for the initiation and maintenance of one track (presumably corresponding
to a single target). Sec. 3 describes in detail how a track is initiated, including
detection and an efficient leader election scheme. Sec. 4 describes the algorithm
for track maintenance, handling situations such as merging and splitting tracks.
Overall, sensor nodes within the group coordinate their behavior by passing
messages. Sec. 5 covers an implementation of the algorithms and an experiment
on target tracking. Finally, we discuss in Sec. 6 the implications of distributed
group management for more general sensor network applications.

2 Motivating Geographically-Based Group Management

A fundamental problem in sensor network design is the tradeoff between per-
formance and scalability. Traditional centralized schemes move all sensor data
to a central site and process it. While this is provably optimal in estimation
performance, it exhibits poor scalability. The complexity of computation and
communication grows rapidly with the total number of sensors, making these
schemes impractical for sensor-rich systems. An interesting idea for balancing
performance and scalability is to organize sensors into collaborative groups. Take
tracking of some physical phenomena as an example. Sensors which jointly pro-
vide the best information about a phenomenon should form a group. Sensors
which are less informative, or whose data are redundant, could be left out. By
limiting the collaboration to a small number of sensors in a limited area, commu-
nication and computation are made independent of the size of network. Since the
group contains the most informative sensors, impact on the tracking performance
will be limited.

In practical sensor network applications, the effects of physical phenom-
ena usually attenuate with distance, producing a decreasing signal-to-noise
ratio (SNR) and lower-quality observations. This points toward the idea of
geographically-based collaborative groups. In the target tracking problem, for
example, we can organize the sensor network into geographical regions, as il-
lustrated in Fig. 1. Sensors in the region around target A are responsible for
tracking A, and the region around B handles B. Partitioning the network into
local regions assigns network resources according to the potential contributions
of individual sensors.

Furthermore, the physical phenomena being sensed change over time. This
implies that the collaborative groups also need to be dynamic. As the target
moves, the local region must move with it. Sensor nodes that were previously
outside of the group may join the group, and current members may drop out.
This requires some method for managing group membership dynamically.

Geographically-based group initiation and management have to be achieved
by a light-weight protocol distributed on all sensor nodes. The protocol needs to
be powerful enough to handle complex situations such as those where data from



116 J. Liu et al.

region A

target A target B

region B

Fig. 1. Geographically-based collaborative groups. The small circles are sensor nodes.
The nodes inside a specified geographical region (e.g., region A or B) form a collabo-
rative group.

multiple leaders are contending for processing resources, and be robust enough
to tolerate poor communication qualities such as out-of-order delivery and lost
or delayed packets. In addition, the propagation region of group management
messages should be restrained to only the relevant nodes without flooding the
entire network. This is not trivial considering that the group membership is
dynamic as the targets move, and that the network is formed in an ad hoc way
such that no nodes have the knowledge of the global network topology. The
difficulties are tackled in our approach by taking advantages of two facts: 1)
a leader-based tracking algorithm where at any time each group has a unique
leader who knows the geographical region of the collaboration; and 2) recent
advances in geographical-based network routing [4,5] that do not require the
leader to know the exact members of its group.

3 Distributed Detection and Track Initiation

Consider a distributed sensor network monitoring a large field. When there is
no target in the field, the sensor nodes should be in an energy-saving mode.
They should watch for possible targets using only low-cost computation and a
minimal amount of communication. When a target enters the sensor field, the
nodes need to select a leader and give it an initial belief state p(x(0)|z(0)). In this
section, we describe an efficient geographically-based group formation scheme to
accomplish this task. The algorithm is sketched out below, with more details in
Secs. 3.1 — 3.4:

1. Each individual sensor performs a stand-alone detection by comparing the
measurement with a precomputed threshold corresponding to the likelihood
ratio test (LRT) described in Sec. 3.1.

2. Nodes with detections form a collaborative group and elect a single leader.
3. The leader suppresses all nodes in the collaborative group from further de-

tection in order to prevent creation of multiple tracks for the same target.
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4. The leader initializes the belief state p(x(0)|z(0)) and starts the tracking
algorithm.

Throughout the algorithm’s development, we assume that the nodes are globally
time-synchronized up to some reasonable (e.g., sub-second) accuracy and com-
munication between nodes are relatively reliable, though the group management
scheme is designed with some robustness against occasional packet losses. We
also assume nodes are aware of their one-hop neighborhood.

3.1 Target Detection on Individual Nodes

In many practical applications, activity within the network is sparse, and most
of the sensor nodes spend the majority of their time in low-duty-cycle detection
modes. Only when a target enters the region does the sensor field become actively
involved in tracking. Since detection is the most frequent mode, the detection
algorithm must be light-weight in terms of computation and communication.
This helps maintain the longevity and stealth of the sensor network.

In distributed sensor networks, one can combine the measurements of mul-
tiple sensors to reach a detection decision, as done in [6], but such approaches
require communication between multiple sensor nodes. The communication cost
is significant because of the frequency of the detection operation. Here we take
a simple standalone target detection approach, where each individual sensor
detects independently of the others. The group collaboration scheme takes ef-
fects only after interesting phenomena have been detected. Much of the benefit
of multi-node detections can also be realized by a two-stage detection process,
with the first stage being single-node detections set conservatively to minimize
missed targets, and the second stage verifying these detections using a multi-
node process to minimize false alarms.

In single node detection, each node needs a decision rule to decide whether a
target is present within some pre-specified detection range Rdetect of itself. For
this task, a common approach is LRT, which compares two hypotheses:

H0: target not present, or outside of the detection range, i.e.,
d(x, Lsensor) ≥ Rdetect, where x is the target location, Lsensor is
the sensor location, and d(·, ·) measures the Euclidean distance. The
possibility of target not present is equivalent to d(x, Lsensor) = ∞,
hence is included in this hypothesis.

H1: target present in the detection range, i.e., d(x, Lsensor) < Rdetect.

Assuming the two hypotheses are equally probable (i.e., no prior knowledge
about whether the target is present or not), the decision rule takes the form:

p(z|H0)
H0

≷
H1

p(z|H1), (1)

i.e., detection is declared if the presence hypothesis is more likely than the ab-
sence hypothesis. This decision rule guarantees the smallest probability of error.
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Besides the standard LRT, other decision rules are also applicable and have
similar forms. Depending on the application requirements, one might use the
Neyman-Pearson rule [7], which maximizes the detection probability while keep-
ing the false alarm probability below a specified value, or the minimax decision
rule [7], which is more conservative and optimizes for worst case scenarios.

Let us illustrate a LRT using a sensing model similar to that in [1]. Assume
a sensor network consists of microphone-based acoustic sensors. The sound wave
received at the microphone takes the form:

f(t) =
S(t − τ)

d(x, Lsensor)
+ n(t). (2)

where t indexes time, S(t) is the wave emitted by the target, τ is the wave
propagation delay, and n(t) is the measurement noise. The model is justifiable
from the physics of wave propagation, assuming it is lossless and isotropic [8].
We further assume that signal and noise are statistically independent. The signal
has energy denoted as Es, and the noise sequence n(t) is white with zero mean
and some known variance σ2

n.
Acoustic energy sensors compute the sound energy z = 1

N

∑N
t=1 |f(t)|2, where

N is the buffer size. Based on z, the sensor decides whether a target is present.
Under the sensing model described above, by the Central Limit Theorem [3], the
observation p(z|x) is approximately Gaussian with parameters:

– mean= Es/d2 + σ2
n.

– variance = 2σ4
n/N + 4 · (Es/d2) · σ2

n/N .

Under this observational model, the decision rule (1) boils down to a simple
comparison of z to a decision threshold τ : if z > τ , the sensor declares a target
detection; otherwise no detection. The decision rule formalizes the intuition that
when the perceived sound is loud enough, there is probably a target nearby.

The threshold τ is the dividing point which satisfies

p(τ |H0) = p(τ |H1). (3)

It is computed numerically. From p(z|x), one can compute the likelihoods p(z|H0)
and p(z|H1) by numerical integration. Fig. 2 plots the likelihoods. It can be
shown that p(z|H0) and p(z|H1) intersect at only one point, which is τ . Although
the computation of τ is nontrivial, it only needs to be computed infrequently – at
deployment time if the observation model is stationary, or during idle periods for
background noise levels which change slowly. During detection, each sensor node
periodically checks for detection simply by taking a measurement and comparing
to the precomputed τ .

3.2 Group Formation and Leader Election

The single node detection scheme described above ignores the correlation be-
tween sensor measurements. It is very likely that multiple nodes simultaneously
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Fig. 2. Single node LRT. The horizontal axis is the energy measurement z, and the
vertical axis is the value of the hypothesis likelihood functions p(z|H0) (the solid curve)
and p(z|H1) (the dashed curve).

detect a single target. However, the leader-based tracking algorithm suggests
that a single leader should be sufficient for the tracking of any individual target.
Multiple sensor nodes with detections cause contention for leadership. In this
section, we describe a geographically-based group management scheme which
resolves contention and elects a single leader via message exchange.

First consider the ideal initialization condition: we have a sensor network cov-
ering a field in which the target has never appeared before. If sound propagates
isotropically and attenuates monotonically with distance, the sensors physically
closer to the target are more likely to detect than the sensors far away. One can
compute an “alarm region”, similar to a 3-σ region of a Gaussian distribution,
such that most (e.g., 99%) of sensors with detections fall in the region. This is
illustrated in Fig. 3. Sensor nodes are marked with small circles; the dark ones
have detected a target. Assume the target is located at x (marked with a “+” in
the figure), the alarm region is a disk centered at x with some radius R, where
R is determined by the observation model. In practice, we use Rdetect plus some
moderate margin (to account for target motion during the sample period) as our
choice of R.

Ideally, nodes in the alarm region should collaborate together to resolve their
contention and elect a single leader from the region. However, the exact location
of the alarm region is unknown since the target position x is unknown. Each
node with a detection only knows that the target is within R distance of it, and
a possible competitor could be another distance R from the target. Thus, in the
absence of a “message center”, a node notifies all nodes within a radius 2R of
itself, which are potential “competitors” for leadership, of its detection.

Upon detection, each node broadcasts a DETECTION message to all nodes
in this alarm region containing a time stamp recording when the detection is
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Fig. 3. Detection and collaborative regions

declared, and the likelihood ratio p(z|H1)/p(z|H0). The higher this ratio, the
more confident the detecting node is of its detection. We rely on the routing
mechanisms to effectively limit the propagation of the detection messages to
the specified region, a capability of critical importance for the algorithm to be
scalable.

After sending out its own detection message, the node checks all detection
packets received within an interval of tcomm. The value of tcomm should be long
enough for all messages to reach their destination, yet not too long so that
the target can be considered approximately stationary. These messages are then
compared with the node’s own detection. The node winning this election then
becomes leader immediately, with no need for further confirmation. The election
procedure is as follows:

– If none of the messages are timestamped earlier than the node’s own detec-
tion, the node declares itself leader.

– If there are one or more messages with an earlier time stamp, the node knows
that it is not the leader.

– If none of the messages contains earlier timestamps, but some message con-
tains a time stamp identical to the node’s detection time, the node compares
the likelihood ratio. If the node’s likelihood ratio is higher, the node becomes
the leader.

Ideally, this algorithm will elect only one leader per target. In real networks,
this algorithm is imperfect, and in some circumstances, multiple leaders may be
elected. For example, if the DETECTION packet with the earliest detection time
stamp fails to reach all the destination nodes, multiple nodes may find that they
are the “earliest” detection and each may initiate a track. Since these tracks
correspond to the same target, it is likely that they will collide with each other
in the near future. This calls for methods to merge redundant tracks. Merging
tracks is handled by the track maintenance scheme discussed in Sec. 4.



Distributed Group Management for Track Initiation and Maintenance 121

Leader at t Leader at t+1

unsuppression
region

region
new suppression

old suppression
region

Fig. 4. Suppression and unsuppression regions.

3.3 Suppression within the Collaborative Group

Once the leader is elected, it initializes a belief state p(x(0)|z(0)) as a uniform
disk of radius R centered at its own location. The disk contains the true tar-
get location with high probability. This belief provides a starting point for the
tracking algorithm.

The leader plays a key role in maintaining the collaborative group. As the
target moves, the sensors which did not previously detect may begin detecting.
These sensors are potential sources of contention. The system uses SUPPRESSION
messages to minimize this. Basically, a SUPPRESSION message is a claim of group
membership. The leader sends out SUPPRESSION messages to notify the recipient
nodes to abandon detection and join the group. The message goes out to a
region known as the suppression region, which should contain potential sources
of contention. Assuming the actual target position is contained in the belief state,
the suppression region should cover all locations within R distance to the belief
state. The actual implementation of this may depend on the belief representation
used. In the case of the grid-based nonparametric representation used in [1], this
region was found by starting with the bounding box containing all probability
grids above a preset threshold level and adding margins of size R to all sides.
Alternatively, one could identify a region containing the target with a specified
probability and add margins of size R to that. The key factor is that the region
must contain, with high probability, all nodes which might detect the target.
In the special case of the original detection, as discussed in Sec. 3.2, the initial
belief is a radius R disk centered at the leader, hence the suppression region is
initially a concentric disk of radius 2R.

As leadership moves in the network and the belief state is refined by successive
measurements, the suppression region changes, and the group membership needs
to be updated. Fig. 4 shows the two suppression regions at time t and t+1. The
two regions are not identical, but overlap. We can further reduce network traffic
by only notifying the delta regions, that is, the regions containing nodes which
are added to or removed from the group. Three geographical regions need to be
handled separately:
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Fig. 5. Finite state machine on nodes

– The unsuppression region which contains nodes who are suppressed at t but
not t + 1. This is pictured in Fig. 4 as the crescent-shaped region on the left
hand side. The leader sends to this region an UNSUPPRESSION message which
basically reverses the effect of the SUPPRESSION message, equivalent to a
dismissal from the collaborative group. Nodes receiving the UNSUPPRESSION
message are freed, and go back to detection.

– The new suppression region which contains nodes who were not suppressed
at t but suppressed at t+1. This is pictured in Fig. 4 as the crescent-shaped
region on the right hand side. The leader sends SUPPRESSION message to
claim membership.

– The region which sees no changes in group membership. No messages need
to be sent to this region. The nodes in this region remain suppressed.

3.4 Group Management Process on Nodes

The protocol described in Secs. 3.2 and 3.3 can be implemented on each sensor
node using a finite state machine. Fig. 5 shows the group management process
on each node. The actual implementation was more complicated in order to be
robust against packet loss and out-of-sequence message arrivals.

The node has four states:

– Detecting: the node is not in any collaborative group, and periodically mon-
itors its measurement for detection of possible targets.
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– Leader: the node takes measurements, updates the track and the collabora-
tive group.

– Idle: the node belongs to a collaborative group, and is passively waiting for
a handoff from the leader.

– Waiting-for-time-out: intermediate states waiting for potential detections to
arrive from other nodes.

There are four types of messages in the process. In addition to DETECTION,
SUPPRESSION, and UNSUPPRESSION messages described in previous sections,
HANDOFF messages carry the belief state used in tracking. They contain a time
stamp, a belief state, the sender and the receiver’s IDs, and a flag indicating if the
track is successful or lost. A track is considered successful if the uncertainty of
the track is under some specified tolerance level, and lost if otherwise. All nodes
in the collaborative group corresponding to a lost track dismiss their membership
and restart detection immediately.

4 Distributed Track Maintenance

With collaborative group management, each group associated with tracking of a
single target. The co-existence of multiple tracks in the network can be readily
handled as long as the the tracks are far apart and the collaborative regions are
non-overlapping.

In practice, however, collisions between tracks are possible. For example, as
briefly discussed in Sec. 3.2, redundant tracks corresponding to the same tar-
get are very likely to collide as the tracking algorithm advances. In tracking of
multiple targets, targets crossing each other’s path will cause the collaborative
regions to collide. In these cases, nodes in the overlapped collaborative regions
need to resolve the ambiguity of which leader to follow, especially when the mul-
tiple leaders dictate conflicting actions. There are numerous ways collisions can
be handled. Here we describe a simple method for maintenance and management
of multiple tracks.

First, in order for the tracks to be distinguishable, each track is assigned a
unique ID. A simple choice is the time stamp (in microseconds) when the track
was initiated. This choice does not require global knowledge shared throughout
the network beyond rough time synchronization. The chance of multiple tracks
being assigned the same ID is very small. The ID is carried along with the track
and shared among the nodes in the collaborative group. All messages originating
from the group are tagged with it. When a node receives a message, by examining
the ID, it knows which group (and hence which track) the message refers to.

Now consider a node which belongs to multiple collaborative groups. Each
node keeps track of its multiple membership based on the received SUPPRESSION
and UNSUPPRESSION messages. A non-leader node (“follower” in the group) can
be suppressed by any leader, but freeing it requires UNSUPPRESSION messages
from all the local leaders. In other words, a node is free only when no leader
claims ownership over it.
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Fig. 6. Track merging and splitting when multiple targets cross over. The collaborative
groups are plotted as circles or ellipsoids. The labels t1, t2, and t3 are track IDs.

For a leader node, a received SUPPRESSION message with a different ID than
its own is a clear indication of multiple groups colliding. Without the help of a
suitable target classification method, the nodes cannot tell whether the collision
is due to multiple targets crossing over, or redundant tracks for the same target
merging. Furthermore, the maintenance of overlapping tracks requires source
separation and data association, which are in general notorious inverse problems
and hard to implement in distributed networks. In view of the difficulties, we
propose a simple track merging approach: One of the tracks survives; others are
dropped. The collaborative groups merge together into a single group.

To decide which track to retain, each leader compares the ID of the incoming
SUPPRESSION message, tsuppression, with its own, tleader. We refer to the track
corresponding to the incoming SUPPRESSION message as the incoming track.
Between the incoming track and the track the leader currently has, the older
one is retained. This is based on the intuition that an older track has already
incorporated many measurements, hence is in general more accurate and reliable.
The leader performs a comparison:

– If tsuppression < tleader, i.e., the incoming track is older, the leader drops its
own track, and relays the incoming SUPPRESSION message to its collabora-
tive group, then gives up leadership. By this message, the two collaborative
groups merge into one, obeying the leader of the incoming track.

– If tsuppression ≥ tleader, the leader’s track survives. The leader sends a
SUPPRESSION message to the leader of the incoming track.

This mechanism works well in merging multiple tracks corresponding to a sin-
gle target. In the case where two (or more) targets approach each other closely,
it basically tracks the superposition of the two targets as if the two targets could
be regarded as a single “virtual” target. Without an accurate source separation
scheme in place, the tracking algorithm is unable to tell the two targets apart.
Once the targets separate, the second target will be re-detected as a new target.
Fig. 6 illustrates this merging and splitting of tracks. As targets A and B ap-
proach each other, their groups merge, and then separate again. This example
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Fig. 7. Sensor network layout. The solid line plots the service road. The sensor nodes
are marked with small squares. Labels with a “D” are DOA sensors. The dashed lines
picture the connectivity between nodes.

shows that track merging and splitting enables the tracking of multiple targets,
but cannot maintain the identities of either targets.

Alternatively, we can assign a new group ID when multiple groups merge into
one. A time-contiguous series of location estimates with a consistent identity is
considered as a “tracklet”. For example, Fig. 6c contains four tracklets, two
before the merging and two after. We can reacquire the target identity of each
tracklet using classification schemes, and assemble tracklets into complete tracks.

The distributed track initiation and management scheme, combined with
the leader-based tracking algorithm described in [1], forms a scalable system.
The system works well in tracking multiple targets when the targets are not
interfering (i.e., far apart), and can recover from inter-target interference once
the targets move apart.

5 Experiment

We built a sensor network for multi-target tracking using the group management
scheme. The sensor nodes in the experiment consists of 17 WINSNG 2.0 sensor
nodes designed and manufactured by Sensoria Corp. Each node is essentially a
Hitachi SH-4 based Linux PC with acoustic sensor inputs. Two type of sensors
are used:

– Acoustic energy sensors. These output sound energy over a 256-sample win-
dow and estimate target distance based on the physics of sound attenuation.

– Direction-of-arrival (DOA) sensors. They are arrays of 4 microphones at-
tached to a single node, and use beamforming techniques [9] to determine
the bearing to the target.

The nodes in our experiment included 6 DOA sensors and 11 energy sensors.
This diversity in sensing modality helps to balance the systematic biases of
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Fig. 8. Snapshots of tracking. The rectangular boxes correspond to the collaborative
regions. Nodes in red are leaders.

individual sensors to obtain accurate target location. The nodes are placed along
a service road outside the PARC building, as plotted in Fig. 7. Neighboring nodes
talk to each other via 802.11b-based wireless links.

The geographically-based group management is built on top of the directed
diffusion [10] network protocol. To avoid unnecessary flooding of network pack-
ets, we use the GEAR (Geographic and Energy Aware Routing) protocol, which
is an implementation of geo-routing [4] in directed diffusion. The protocol allows
data to be sent to a specified geographic region, and limits message propagation
outside of the destination region by optimizing the routes to gradually approach
the region. Only the destination region is flooded with data. To cope with the
constraint in GEAR that the geographic regions has to be specified as rectangles,
we use the rectangular bounding boxes. In our experiment, the leader-election
time-out tcomm is set to 1 second, and the detect range R = 45 feet.

The tracking and group management algorithms run on the node in real
time. Each node runs a process similar to that described in Sec. 3.4 to decide
which sensing mode to use. Two non-interfering targets are tracked. One is
a military truck, and the other is a speaker playing a recorded sound of an
amphibious assault vehicle (AAV). The ground truth of target locations was
measured using differential GPS, which reports an average accuracy of 6 — 10
feet. To measure the tracking performance, we have computed the displacement
between the location estimates produced by the tracker and the GPS-measured
ground truth. The standard deviation averaged over a complete run is about 19
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feet. Given that GPS measurement error and tracking error are independent,
the tracking accuracy of our system is actually better than the reported 19 feet.

Fig. 8 shows a few snapshots of the tracking result. The belief states are
pictured using greyscales. A bright cell indicates that a target is very likely
to be on the cell location, and a dark cell suggests otherwise. In Fig. 8a, the
first target is detected as it enters the sensor field from the parking lot. The
second target has not appeared yet. The rectangular box enclosing the belief
state represents the suppression region. The nodes inside the region (nodes 12
— 16) form a collaborative group, led by node 14. The rest of the network is
doing standalone detection.

Fig. 8b tracks the first target as it moves along the road (south bound) to
the alcove end. Its collaborative region contains nodes 1 – 5. The second target
has just been detected. Nodes 11 – 14, 16, and 17 form a collaborative group.

Fig. 8c and d tracks two targets simultaneously. The respective collaborative
regions are plotted. The sensors are organized into independently coordinated
groups, which enables the co-existence of multiple tracks and the simultaneous
tracking of multiple targets.

Tracking of two targets which are occasionally interfering has also been tested
in our experiment. The tracking system can successfully recover from mutual
interference via track merging and splitting.

6 Discussion

The paper focuses on the group management method for track initiation and
maintenance in target tracking applications. While we have experimentally vali-
dated the basic structure of the group management algorithm, through extensive
simulations and field experiments on sensor nodes, a number of important theo-
retical and experimental characterizations remain as immediate future research
tasks. For example, we have not characterized how the performance of the al-
gorithm, measured as the frequency of spurious track initiation or track loss,
varies as target speed increases or parameters such as tcomm changes. The cur-
rent implementation is also limited in its capability to maintain information
about multiple targets once they closely approach each other. It might, however,
be viewed as a key stepping-stone towards future systems with these capabili-
ties. Modules to perform data association, classification, and source separation
may be added, and different sensor selection approaches may be chosen, but the
concept of organizing sensors in local collaborative groups to control information
propagation is essential to each of these modules, and hence fundamental to the
scalability of the entire system.

Collaboration between sensors is especially important in cases where indi-
vidual sensors are of limited capability, for example, on the Berkeley motes.
Individually motes can only perform simple tasks, and only through collabora-
tion can more sophisticated sensing tasks be accomplished.

A similar group management method is described in [11], where a group is
defined as those nodes that satisfy a membership predicate conveyed by mes-
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sage passing among neighbors. Using a target counting problem as an example,
sensors in a network attempts to determine the number of distinct targets (i.e.,
sources of signals) in an area using strictly local measurements. The collabora-
tive groups correspond to local regions dominated by energy peaks induced by
the target sources, and the groups are formed based on local communication and
simple detection amplitude comparison. The interesting feature of this method
is that the geographic groups are only implicitly defined, i.e., no geographic
regions need to be specified, and a geographic group is self-organized as a re-
sult of the underlying signal field the network is sampling. An interesting future
research direction is to generalize the geo-specified and physics-specified group
management methods to the more generic attribute-based group management
protocols.
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Abstract. In this paper, we explore a novel avenue of saving power in
sensor networks based on predictable mobility of the observer (or data
sink). Predictable mobility is a good model for public transportation ve-
hicles (buses, shuttles and trains), which can act as mobile observers in
wide area sensor networks. To understand the gains due to predictable
mobility, we model the data collection process as a queuing system, where
random arrivals model randomness in the spatial distribution of sensors.
Using the queuing model, we analyze the success in data collection, and
quantify the power consumption of the network. Even though the mod-
eling is performed for a network which uses only single hop communi-
cation, we show that the power savings over a static sensor network are
significant. Finally, we present a simple observer-driven communication
protocol, which follows naturally from the problem formulation and can
be used to achieve the predicted power savings.

1 Introduction

One of the major challenges in designing sensor networks is maximizing the useful
network lifetime. Since many sensor networks deploy sensor nodes which are
battery powered and which can possibly scavenge only a small amount of energy
from their surroundings, limited battery is one of the major hurdles in achieving
desired longevity of network operation. Reducing power consumption in sensing
and subsequent data collection has been a topic of extensive study [1, 2, 3, 4, 5].
It has also been observed that communication power (which includes channel
monitoring) is usually a significant component of the total power consumed in a
sensor network [1,6]. In this paper, we explore the impact of predictable observer
mobility in reducing communication power consumption in a sensor network.

Our contributions in this paper are two-fold. First, we propose a queuing
formulation to accurately model data collection by the mobile observer over the
region of interest. The queuing formulation captures the randomness due to ran-
dom placement of sensors in the region. To achieve a pre-specified outage, defined
as the fraction of nodes which fail to send their data, we show that predictability
of the observer’s motion can lead to large power savings over a network with no
mobility. Second, we propose a simple observer-driven communication protocol
which achieves a significant portion of the predicted gains. As the observer in
our model is assumed to traverse the same path repeatedly, the data is pulled by
the observer by waking up the nodes when it is close to them. Since the sensor
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nodes only transmit when the observer is close to them, the power requirements
are significantly reduced.

Many strategies for reducing power consumption in sensor networks have
been explored. In [6], many of the important avenues were identified, such as,
increasing the number of sensors to reduce transmission range, reducing the
standby power through suitable protocol design, and energy-efficient hardware
implementation. Power efficient topologies for situations where sensor locations
can be precisely specified were explored in [3]. In [7, 8, 9] some communication
issues such as modulation, coding and multiple-access were studied in the con-
text of sensor networks and power-saving solutions were proposed. In a different
direction, it was shown in [10] that mobility of nodes can increase the capac-
ity of ad hoc networks for applications with loose delay constraints. None of
the above work, however, looked at the special case of exploiting predictable
observer mobility to save power in a sensor network.

Our work is particularly motivated by the fact that a prototype of this pro-
posed model is currently being built at Rice University where university shuttle
buses will carry mobile observers and sensors will be deployed on buildings. Since
these carriers, such as buses, usually have a source of power that is more than
sufficient for communicating, storing and processing data, the observer is not
power constrained like the sensor nodes. Furthermore, the shuttle buses have
fixed and predictable routes.

The rest of the paper is organized as follows. In Section 2, we describe the
proposed model. Section 3 explains the process of data collection by the mobile
observer. In Section 4, we provide a power comparison between the proposed
sensor network model and two static sensor network models. A protocol suitable
for our paradigm is proposed in Section 5. Finally, we conclude in Section 6.

2 Proposed Model

The sensor network consists of N sensor nodes distributed over an area A (see
Fig. 1). Two node distribution models are studied in this paper. In the first
model, nodes are assumed to be independently and uniformly scattered over the
area A. Random scattering is a good model for cases where cheap sensor nodes
are dropped with no particular plan, for rapid deployment. In the second model,
we assume that the sensors are placed such that no two sensors are less than d
meters apart, and the network is laid out to perform an efficient spatial sampling
of the terrain.

The observer O moves repeatedly along a deterministic route inside A. When
the observer has moved over the entire area A once and returned to the point
from which it started, we say that it has completed a cycle. The speed of the
observer is v. We assume that the path of the observer can be approximated
by a straight line over distances of the order of the communication range of a
sensor. We also assume that the observer is not power-constrained.

The sensors are all identical. Every sensor has the same kind of battery, uses
the same communication range Rmax and uses the same data rate to transmit
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information to the observer when it is within range. The rate at which sensors
collect data about the phenomenon being monitored is also same for all nodes.

Each sensor needs time T to send all its data to the observer. The observer
must be within range for the entire interval T , for if the observer moved out
of range before T , communication would be unsuccessful resulting in a failure
that we call outage. Communication takes place at constant rate and over a
continuous time interval T . Communication between sensors and the observer is
always single-user and over a single hop. There is no relaying, multiple-access or
multicasting.

For single hop communication, the observer should come within communica-
ble range of every sensor inside the given area A from some point on its fixed
path. Let R be the distance for which every sensor node lies within a distance R
from some point on the path of the observer. Note that R and the range Rmax
are different. Every sensor node comes within a distance R from the path of
the observer. But for successful communication it is not simply enough that the
observer should come within Rmax of the sensor. It must remain within range
for a period of T or more. The communication range Rmax is chosen to satisfy

Rmax ≥
√

R2 + (vT/2)2 . (1)

in order to ensure that every node remains within range for at least T seconds
(this uses the straight-line path assumption). The relation between R and Rmax
is explained in Fig. 2.

Fig. 1. Diagram of the Sensor Network

3 Process of Data Collection

As mentioned earlier, two node distribution models are studied in this paper. In
the first model, nodes are assumed to be independently and uniformly scattered
over the area A. In the second model, we assume that sensors are randomly
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Fig. 2. Relation between R and Rmax

distributed subject to the constraint that no two sensors are less than d meters
apart.

In the first model, we shall analyze the tradeoff between communication
power and expected outage during data collection using a queuing formulation.
In the second model, we shall show that it is possible to guarantee zero outage
if the sensor separation is above a threshold.

3.1 Independently and Uniformly Distributed Nodes

Sensors are independently and uniformly scattered over the given area. Once
they have been scattered, their locations are fixed. Thus, the distribution that
we are referring to is the a priori distribution of sensors. The results we will obtain
from the analysis below will indicate average performance over all possible sets
of node positions.

Under this distribution, it may not be possible to collect data from all sensors.
This is because random scattering introduces the possibility of several nodes
being located close together, all trying to send data and the observer not being
able to receive data from all of them. The presence of redundant nodes alleviates
this problem to some extent. However, performance does get affected when the
fraction of nodes unable to transmit is above a certain threshold. The fraction
of nodes in outage may be reduced below this threshold by either increasing the
transmission range Rmax or by increasing the data rate. Note that increasing
the transmission range and the data rate both involve increasing transmission
power. The important questions to answer in this context are:

1. What is the minimum power with which we can collect data from the spec-
ified fraction of nodes?

2. What combination of Rmax and T achieves this?

As the observer moves, new sensors come within range and ones that were
within range go out of range. We now provide a suitable mathematical formula-
tion for this process.

In a time interval of length t, the observer moves a distance vt. Nodes in an
area 2Rvt, which were previously out of range, come within range. The observer
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may be busy when a new node comes within range, in which case, the node has
to wait in order to send its data. If the observer is not busy, the sensor can start
sending its data immediately. Once the observer has started communicating with
this node, it will not listen to any other node that may come within range. This is
analogous to a queue where sensors arrive according to a certain random process
and the observer listens to them one by one.

An important point is that it is futile to start communicating with a sensor
node that will not stay within range long enough. For each sensor there is a
maximum waiting time, which is a function of its distance from the path of the
observer. If the observer does not start communicating with the node before this
time, it will be impossible for the sensor to send all its data, resulting in outage.
This is depicted in Fig. 3.

Fig. 3. Relation between Waiting Time and Outage

If N nodes are independently and uniformly distributed over area A, then
the interarrival times may be modeled using the following pdf (see Appendix A)

parrival(t) =
2RvN(A − 2Rvt)N−1

AN
; 0 ≤ t ≤ A

2Rv
(2)

Also, the distance d shown in Fig. 3 is uniformly distributed from 0 to R
in magnitude as a consequence of the independent and uniform distribution of
nodes. Based on this, the pdf of waiting times (see Appendix B) is

pw(W )=
v2(W + T )

4R
√

R2
max − v2(W + T )2/4

;
2
√

R2
max − R2

v
− T ≤ W ≤ 2Rmax

v
− T

(3)

A cycle, during which the observer moves through the entire area A once,
can be simulated like a queue using these two distributions. For purposes of the
simulation, it has been assumed that the observer has exact knowledge of the
waiting time of each sensor that comes within range (as if aided by an oracle),
which allows it to perform optimal scheduling. In practice, a protocol may be
designed to ascertain the waiting times through exchange of information between
the sensor and the observer (see Sect. 5).
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Numerical Results. Increasing the value of Rmax reduces outage and keeps the
observer busy more often. When we increase the range, we increase the waiting
times. As a consequence, sensors can wait longer for their turn before they finally
go out of range resulting in outage. It is as if we have increased the size of the
input buffer of a queue to smooth out burstiness in the input.

This improvement in performance comes at a price. Increasing the communi-
cation range while keeping the data rate same involves spending more power. For
doubling Rmax, while keeping the worst case SNR same, one needs to increase
transmission power at least four times (actually 2γ times where γ is the path
attenuation constant).

Performance is also seen to improve when T is reduced while keeping Rmax
fixed. As in the case of increasing Rmax, decreasing T also involves more power.

Fig. 4 and Fig. 5 show the pattern of changes in outage and the percent of
time the observer is receiving information with changes in T and Rmax respec-
tively. These observations suggest that there may be multiple combinations of
the parameters Rmax and T that can be used to achieve outage below a specified
limit. The designer must pick the one that consumes minimum energy in order
to maximize network life.

We chalk out the procedure for power-optimization with the aid of an exam-
ple. Table 1 contains a list of the system parameters used for simulations.

Table 1. List of System Parameters

Parameter Value

Maximum allowable outage 20%
γ = Path attenuation of wireless channel 2

R 80 m
A = Area covered by the sensor network 100 sq km

v = Observer velocity 15 m/sec
N = Number of nodes 3000

Rsens = Rate at which a sensor collects data 160 bps
B = Bandwidth of the system 100 kHz

N0 = Noise power spectral density 10−19 Watt/Hz
Tcycle = Time needed to complete one cycle ∼ A/(2Rv)

Dcycle = Data collected by a node in one cycle Rsens * Tcycle

For different values of T , the minimum value of Rmax is found (through
simulation) for which the expected outage is not in excess of the specified 20%.
The power P is calculated using Shannon’s expression for channel capacity and
equating it to the data rate Dcycle/T , i.e.,

P = BN0R
γ(2Dcycle/TB − 1) , (4)

and the energy consumed by a node per cycle for the purpose of transmission
is calculated by multiplying this power by the time T . The power and energy
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Fig. 4. Effect of T on performance

Fig. 5. Effect of Rmax on performance

obtained for different T are plotted in Fig. 6 from which it can be seen that there
exists a certain point where the energy consumed is minimized. Fig. 7 shows the
different values of Rmax that were found to ensure less than 20% outage. It is
important to note that the energy spent varies significantly depending on the
choices of T and Rmax, thus reiterating the fact that a suitable choice of the
system parameters is crucial for power efficiency.

Comment on the Choice of Velocity. We have carried out all our analysis
assuming that the observer moves at a fixed speed v. In practice, the velocity
of the observer has a certain probability distribution and the outage that we
measure depends on this distribution. Moreover, this distribution may not be
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Fig. 6. Power and Energy Optimization

Fig. 7. Values of Rmax to ensure outage < 20%

stationary. The question is: which velocity should we consider as v for designing
the system so that the specified maximum outage is not exceeded?

In most scenarios, we would recommend either the maximum speed, or a
speed that is very rarely exceeded, as the choice for v. Note here that the worst
outage results when the observer is moving fast, not when it is static or moving
slowly. Choosing the average speed as v could be potentially harmful due to the
non-stationary nature of the distribution of velocities. For example, the average
speed of a bus could be 30 mph, but the bus might consistently travel at 40 mph
on some roads, so that if v were chosen to be 30 mph, it would result in high
outage near those roads thereby impairing the ability of the sensor network to
gather data from there.
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3.2 Randomly Distributed Nodes with Minimum Separation
Constraint

In sensor networks where nodes are randomly distributed subject to the con-
straint that no two nodes can be closer than d (minimum separation), zero
outage can be guaranteed by an appropriate choice of parameters. This is signif-
icant because outage is not acceptable in many applications and yet unavoidable
if we allow the nodes to be randomly scattered without additional constraints.

It can be shown that the condition

d ≥
√

(2R)2 + (vT )2 . (5)

is sufficient for guaranteeing zero outage (see Appendix C). This condition en-
sures that the time gap between one sensor entering within the range of the
observer and the next sensor is at least T . This condition can be met by reduc-
ing T if the sensors are positioned to satisfy

d > 2R . (6)

4 Power Comparison with Sensor Networks Having
Static Observers

To quantify the power savings afforded by observer mobility, we compare our
sensor network model with static sensor network models covering an area A
that is circular in shape with one observer at the center of the circle. The sensor
network has N sensors in all cases. These sensors are uniformly distributed over
the entire area. The three cases that we compare are shown in Fig. 8. Case 1
corresponds to our proposed model. In case 2, the observer is static and each
sensor node transmits its data directly to the observer over a single hop. In case
3, each sensor node sends its data to the observer over multiple hops.

Fig. 8. Sensor Network Models
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For purposes of comparison, we consider an area of 100 sq km. Each sensor
measures data at a rate of 1kbps. The remaining parameters have values provided
in Table 1 unless mentioned otherwise.

4.1 Case 1: Mobile Observer

We choose R = 500m (this seems to be a reasonable distance for citywide public
transport systems). The communication bandwidth available is 1MHz. In the
proposed model, the energy consumed by a single sensor per cycle was found to
be around 0.3 microjoule using the technique outlined in section 3.1. In general
(see Table 1),

Energy consumed per sensor = TBN0R
γ(2Dcycle/TB − 1) Joule/cycle . (7)

4.2 Case 2: Static Observer – Single Hop Communication

In this case, different sensors need to have different communication ranges in
order to send their data to the observer. We assume that each sensor transmits
at the same power. As a result, the sensors that are farther away from the
observer will be able to transmit at a slower data rate and their communication
will take more time. We would like to find how much power P each sensor needs
to have so that the rate at which the network collects data can be matched by
the rate at which data is communicated to the observer. For fair comparison,
we assume that 20% nodes do not send anything as in case 1. Since a node at a
distance r from the observer transmits at a data rate of

D(r) = B log2(1 +
P

BN0rγ
) bps (8)

over a cycle period of Tcycle , the node collects Dcycle bits of data (see Table
1). The time taken to communicate this to the observer is Dcycle/D(r). This
quantity, summed over all nodes should equal Tcycle. The value of P , for which
this equality occurs, is the transmission power required by every node. This
value of P was calculated to be about 6.44 microwatts (for uniformly distributed
sensors) from which the average energy spent per node per cycle was calculated
to be 111.8 microjoules. This is over 300 times the average energy consumption
per node per cycle in case 1.

4.3 Case 3: Static Observer – Multi Hop Communication

The power consumption in this case is difficult to calculate. It depends on the
actual routes chosen for communication between different nodes and the sensor,
which in turn depend on the locations of nodes. To simplify the situation, we
consider an optimistic scenario where sensors are located in a uniform triangular
lattice as shown in Fig. 9. As earlier, here also, for the sake of fair comparison,
we assume that 20% of the nodes do not send data to the observer.
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Fig. 9. Arrangement where sensors lie on the vertices of equilateral triangles

If N nodes were placed in this fashion over an area A, then the separation
between neighboring nodes would be approximately

d =
√

2A/
√

3N . (9)

In such a situation, a node, which is at a distance r from the observer, would
have to send its data over at least �r/d� hops, each of length d. The value of d
is calculated to be 196.2 m in our case.

Over a cycle period of Tcycle, a node at a distance r from the observer collects
Dcycle bits of data (see Table 1). This data has to travel over �r/d� hops, each of
length d. Here again, we assume that the nodes are identical, they use the same
transmission power and have a transmission range of d (they need no more).
Since, we have also assumed that the observer can receive only from one sensor
at a time, it follows that a single link should be able to transmit at the rate at
which the network collects information. From this it follows that the transmission
power over a single hop will be

P ′ = BN0d
γ(20.8NRsens/B − 1) . (10)

Over a cycle period of Tcycle , a single node collects Dcycle bits of data (see
Table 1). If this information is transmitted at a rate of 0.8NRsens, the time taken
will be Dcycle/(0.8NRsens) = Tcycle/(0.8N) secs. The energy consumed to send
a single sensor’s information over a single hop per cycle is then TcycleP

′/(0.8N)
Joule. Multiplying this by the average number of hops over which data travels
gives us the average energy consumed per sensor. The average number of hops
is almost equal to (2

√
A)/(3

√
πd). Thus, on average, (2

√
ATcycleP

′)/(2.4
√

πNd)
Joule will be expended per sensor per cycle. For our system, this is 0.88 mi-
crojoule, which is about thrice the energy expended by a sensor per cycle in
case 1.

5 Communication Protocol

The protocol for communication between nodes and the observer needs to be
designed in such a way that individual sensors have very little responsibility
apart from that of collecting data and communicating when requested. Medium
access control, resolving contention, dealing with collisions and various kinds of
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failures will be handled by the observer since, by our assumption, it is not power
constrained.

The life of a sensor network may be loosely divided into three phases- startup,
steady state and failure [11]. We will describe briefly, the tasks to be performed
by the protocol at each stage.

5.1 Startup Phase

Sensor nodes boot up individually. Each sensor has a unique address. At this
time, the observer knows nothing about the positions of individual sensors. Nei-
ther do sensors know anything about the path of the observer. During the startup
phase, the observer and the sensors exchange information that helps them to
acquire such knowledge about each other. The startup phase consists of two
different cycles.

Cycle 1. Sensors listen to the channel periodically at quick intervals to check
if there is an observer within range. The observer, in this phase, goes on its
regular path while continuously broadcasting a beacon signal. The strength of
this beacon is same as the strength at which sensor nodes will typically transmit
in the steady phase. Each sensor is able to measure:

1. How often the observer comes within range?
2. How long it stays within range?

Wireless channels are time varying and to obtain reliable estimates of these
parameters, this cycle should be repeated a stipulated number of times.

Cycle 2. Here, the observer travels on its regular path broadcasting a beacon.
When a sensor hears the observer, it responds with an RTS (Request To Send)
packet containing its address. A collision-resolution strategy, based on random
backoff (similar to 802.11), is used to resolve collisions among RTS packets sent
by different sensors. When the observer hears an RTS from a particular sensor,
it stops broadcasting the beacon, sends a CTS (Clear To Send) addressed to
the sensor, and then the sensor node sends a small packet, which contains in-
formation about the parameters measured in cycle 1. This information will help
the observer to decide priority when there are multiple sensor nodes in range
waiting to transfer data (during the steady phase). The observer sends an ACK
(ACKnowledgement) to the sensor node after it has received this packet.

Since there is the possibility of packet loss, this cycle should also be repeated
several times. When cycle 2 is repeated, the only sensors that respond to the
observer’s beacon are those that have not received an ACK. The information
exchanged in this cycle is crucial for efficient steady phase operation and all
sensors should be able to send their packets to the observer.
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5.2 Steady Phase

The observer has accurate knowledge about the positions of different sensor
nodes. Using this information, and using the knowledge of its own position, the
observer initiates communication, using a wake signal, with sensors that it knows
to be within range. When there are several sensors within range, the observer
initiates communication with that node which will go out of range first. In a
sense, the observer assigns higher priority to sensors that can wait less.

In the steady phase, sensor nodes predict when the observer is likely to
come close based on the information gathered during startup. They monitor the
channel only when the observer is expected to be nearby. In [6], it has been
indicated that the power consumed in channel monitoring can be a major chunk
of the total power consumption of a sensor node. By reducing channel monitoring
time, the life of a sensor node is increased significantly.

This protocol should perform well for sensor networks with static nodes.
If the nodes are mobile and move by distances of the order of the separation
between sensors or more in a relatively short time period, then it is difficult
to do efficient scheduling. In certain cases, it may help to keep updating the
information collected during the startup phase every cycle or once in every few
cycles.

5.3 Failure Detection

The observer can detect node failures through their consistent inability to re-
spond to wake calls and suitably reschedule the remaining nodes. When a signif-
icant number of nodes have failed, the network will no longer be able to gather
sufficient data.

6 Conclusions

We showed that predictable mobility can be used to significantly reduce commu-
nication power in sensor networks. There are several advantages that predictabil-
ity has over random mobility. One of them is boundedness of the transmission
delay. Determinism of the path also makes it possible to predict the point where
the observer and the mobile should communicate to save maximum power.

Much work on exploiting mobility remains to be done. Our future work will
focus on, among other issues, combining relaying with predictable mobility to
yield even higher power savings over multi-hop static sensor networks. For ap-
plications with loose performance requirements, random mobility can also be
exploited.

References

1. R. Min and A. Chandrakasan, Energy-efficient communication for ad-hoc wireless
sensor networks. In: Conference Record of the Thirty-Fifth Asilomar Conference
on Signals, Systems and Computers. Volume 1. (2001) 139–143



142 A. Chakrabarti, A. Sabharwal, and B. Aazhang

2. G. J. Pottie, Wireless sensor networks. In: Information Theory Workshop (1998)
139–140

3. A. Salhieh, J. Weinmann, M. Kochha, and L. Schwiebert, Power efficient topologies
for wireless sensor networks. In: International Conference on Parallel Processing.
(2001) 156–163

4. R. Min, M. Bhardwaj, S.-H. Cho, A. Sinha, E. Shih, A. Wang, and A. Chan-
drakasan, An architecture for a power-aware distributed microsensor node. In:
IEEE Workshop on Signal Processing Systems. (2000) 581–590

5. D. Estrin, Wireless sensor networks: Application driver for low power distributed
systems. In: International Symposium on Low Power Electronics and Design.
(2001) 194

6. J. M. Rabaey, J. Ammer, T. Karalar, S. Li, B. Otis, M. Sheets, and T. Tuan,
Picoradios for wireless sensor networks: the next challenge in ultra-low power de-
sign. In: Digest of Technical Papers. ISSCC. IEEE International. Volume 2. (2001)
156–445

7. C.-H. Liu and H. Asada, A source coding and modulation method for power saving
and interference reduction in ds-cdma sensor network systems. In Proceedings of
the American Control Conference. Volume 4 (2002) 3003–3008

8. G. Pei and C. Chien, Low power tdma in large wireless sensor networks. In Military
Communications Conference. Volume 1 (2001) 347–351

9. C. Chien, I. Elgorriaga, and C. McConaghy, Low-power direct-sequence spread-
spectrum modem architecture for distributed wireless sensor networks. In: Inter-
national Symposium on Low Power Electronics and Design. (2001) 251–254

10. M. Grossglauser and D. Tse, Mobility increases the capacity of ad hoc wireless
networks. In: INFOCOM. Proceedings. IEEE. Volume 3 (2001) 1360–1369

11. K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, Protocols for self-organization
of a wireless sensor network. IEEE Personal Communications 7 (2000) 16–27

A Distribution of Interarrival Times

The pdf of interarrival times may be derived as follows.
In a time period t, the observer travels a distance vt. Nodes within an area

2Rvt that were previously out of range now come within range. If p(t) were the
interarrival pdf then1:∫ t

0 p(x)dx
= Probability that at least one node enters within range in time t
= 1 - (Probability that no node enters within range in time t)
= 1 - (A−2Rvt

A )N

Taking the derivative on both sides with respect to t yields Eqn. 2,which is
the pdf of interarrival times.

1 This follows from the fact that nodes are independently and uniformly distributed
and the probability for any single node to be outside the area 2Rvt equals (A −
2Rvt)/A. Note that the time t cannot exceed (A/2Rv) because in this time the
observer’s range covers an area A i.e. the entire area.
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B Distribution of Waiting Times

The pdf of maximum waiting times may be derived as follows. The concept of
maximum waiting time is explained in Fig. 3. The maximum waiting time for a
sensor node that is at a distance r from the path of the observer is

W (r) = (2
√

R2
max − r2 − vT )/v . (11)

Note that r is uniformly distributed from 0 to R. Hence the pdf of waiting
times may be obtained by transforming this uniform pdf

pw(W ) =
pr(r)

|dW (r)
dr |

(12)

which yields the pdf given in Eqn. 3.

Fig. 10.

C Condition for Guaranteeing Zero Outage

The sufficient condition for ensuring zero outage with minimum separation of
nodes d is derived as follows( see Fig. 10(a)). Data transfer from a node to the
observer takes time T . If we can ensure that the entry of two nodes into the
range of the observer is spaced in time by T , then outage will not occur. Thus, if
a sensor node is placed anywhere on the arc AB (see Fig. 10(a)), then no other
node can lie within the shaded region ABCD. This implies that the minimum
separation d must be greater than or equal to the distance from any point on
arc AB to any other point on the boundary of ABCD i.e.

d ≥ max(|x − y|); x ∈ AB, y ∈ ABCD . (13)

Let x = U and y = V be the pair for which |x − y| is maximized.
Proposition: U = A and V = C (or U = B and V = D) are the pair that
maximizes |x − y|. This is proved as follows:
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Claim 1: Choose and fix an arbitrary point x = P ∈ AB. Then, the
point y = Q ∈ ABCD, for which |P − y| is maximized does not lie on the line
segments BC or AD except possibly that Q is one of the end points A,B,C or D.

Proof: Assume, for a contradiction that Q ∈ BC Q �= B, C (sim-
ilar proof if Q ∈ AD). Then max(∠PQB,∠PQC) ≥ 90o. Thus,
max(|P − B|, |P − C|) > |P − Q|. Hence, we have a contradiction to the
fact that y = Q maximizes |P − y|.

Corollary 1: Since this claim holds for arbitrary x, it must hold for x = U , the
point which achieves the overall maximum. Therefore, V ∈ {AB, CD}.

Claim 2: Choose and fix an arbitrary point x = P ∈ AB. Suppose that the
point y = Q ∈ ABCD is the point for which |P − y| is maximized. Then, unless
P is one of the end points of AB, |P −Q| < |U −V |. In other words, U ∈ {A, B}.

Proof: This is similar to the previous proof. Since max(∠QPB, ∠QPA) > 90o,
therefore max(|A − Q|, |B − Q|) > |P − Q| which means |P − Q| < |U − V |.

Corollary 2: V lies on CD for if V were to lie on AB, by moving hori-
zontally to the corresponding point on CD, one could show that this point is
farther from U than V is.

The problem has therefore reduced to that of finding V from the set of points
on CD. U has been ascertained to be either A or B (which one we choose makes
no difference). Consider the line passing through A and O′. This line cuts the
arc CD if and only if

(2R)2 + (vT )2 > (2R2
max) (14)

which is in direct contradiction to Eqn. 1. The case of interest is when the line
passing through A and O′ does not cut CD. This happens when A is a point
that lies within the circle centered at O′ and having radius Rmax. We propose
the following theorem for this situation.
Theorem: When the line passing through A and O′ does not cut CD,

|A − C| = max(|x − y|); x ∈ AB, y ∈ ABCD . (15)

Proof: If A were to lie on the circumference of the circle centered at O′ having
radius Rmax, and F were an arbitrary point on arc CD, then ∠AFC would have
been 90o. Now as A is moved along a straight line towards D, so that it enters
within the circle, ∠AFC increases monotonically. The important point is that
∠AFC > 90o. As a consequence, |A − C| > |A − F | for all choices of F .

This is the result using which we obtain a meaningful relationship between
the minimum separation d and our system parameters. Since

|A − C| = |B − D| =
√

(2R)2 + (vT )2 , (16)

we conclude that
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d ≥
√

(2R)2 + (vT )2 (17)

is a sufficient condition to guarantee zero outage.
An interesting point to note is that the above condition is also necessary to

guarantee zero outage, meaning that if this condition is not satisfied, then it is
possible to arrange sensors in a bad way, so that outage occurs. Fig. 10(b) shows
one such arrangement of sensors where outage is unavoidable with

d <
√

(2R)2 + (vT )2 . (18)
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Abstract. We consider the problem of communication in a general
multi-terminal network where each node of the network is a potential
sender or receiver (or both) but it cannot do both functions together.
The motivation for this assumption comes from the fact that current
radios in sensor nodes operate in TDD mode when the transmitting and
receiving frequencies are the same. We label such a radio as a cheap radio
and the corresponding node of the network as a cheap node.
We derive bounds on the achievable rates in a general multi-terminal
network with finite number of states. The derived bounds coincide with
the known cut-set bound [11] of network information theory if the net-
work has just one state. Also, the bounds trivially hold in the network
with cheap nodes because such a network operates in a finite number of
states when the number of nodes is finite. As an example, application of
these bounds in the multi-hop network and the relay channel with cheap
nodes is presented. In both of these cases, the bounds are tight enough to
provide converses for the coding theorems [16], and thus their respective
capacities are derived.

1 Introduction

Network information theory in general deals with the problem of communica-
tion and information transfer between intended subsets of the nodes in a multi-
terminal network of senders and receivers. Current results in network information
theory are mainly a collection of results for special network topologies or chan-
nel models, like: two-way channel, interference channel, multiple access channel,
and broadcast channel, and relay channel. The development of multiple user
information theory started with the definition of various types of multiple user
channels and attempt to find the corresponding capacity regions. Among the
investigated channels there are a few channels for which the exact capacity has
been derived, and usually the capacity is not known in general.

In this introduction we first give a brief history of the known results in
network information theory, which starts with the introduction of various spacial
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multiple user channels. Then, we will consider more general results on the multi-
terminal network information theory. After that, a short overview of the recent
works on characterizing the capacity of wireless network is given, and finally, we
summarize the results of this paper.

1.1 Known Results in Network Information Theory

The definition of the two-way channel by Shannon in one of his pioneering papers
in 1961 [22] might be considered as the first work on multiple user information
theory. It is quite interesting that in different parts of his paper, Shannon also
considered two other types of multiple user channels that almost a decade later
developed into the multiple access channel and interference channel.

Shannon did not find the capacity result for the general two-way channel
(and it is still not known), but in his paper [22], Shannon informally defined a
channel (which has later been called as multiple access channel) and mentioned
that “a complete and simple solution of the capacity region” for this channel has
been found. He never published this result on the multiple access channel, and
almost a decade later, in 1971, Ahlswede presented a simple characterization of
the multiple access channel [1].

Shannon also considered a ‘restricted’ two-way channel where sender and
receiver points at each end are in different places with no direct cross communi-
cation. This channel later defined in terms of two pairs of sender-receiver where
the transmission of information from each sender to its corresponding receiver
interferes with the communications between other sender-receiver pairs [7,6].

The broadcast channel was also introduced in the same decade. In 1972,
Cover first introduced the broadcast channel which involves sending different
pieces of information from a single source to several destination [9].

The relay channel was first defined and studied by Van der Mullen [19] for
the case of three terminals (or nodes) and later considered by Cover [10]. Cover’s
results on the relay channel are still the most comprehensive in terms of achiev-
ability and capacity bounds (converse). Although in the relay problem there is
just one sender and receiver, it is considered in the domain of network informa-
tion theory due to the presence of relay node (or nodes).

The aforementioned works were first steps in finding better achievable rates
or capacities. Although not many capacity results have been derived, these efforts
usually have resulted in derivation of better achievable rates, consideration of
special cases and special constraint, investigation of the corresponding channel
with continuous alphabet (usually as AWGN channel), and exploration of the
effect of feedback.

1.2 Multi-terminal Network Information Theory

In the aforementioned multiple user channels and in general in network informa-
tion theory new elements such as interference, cooperation, and feedback make
the problem of reliable communications more challenging. Due to the difficulty
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of the problem, capacity results are only known for very limited cases with spe-
cial constraints. In most of the cases where the capacity results are known, they
coincide with the cut-set bound on the achievable rates in a network [11]. The
bounds have nice and simple max-flow min-cut representation: The rate of flow
of information across any boundary is less than or at most equal to the mu-
tual information between the inputs on one side of the boundary (senders’ side)
and the output on the other side (receivers’ side) conditioned on the inputs on
receiver’s side.

The cut-set theorem is one of the most general results in network information
theory. Although the converse (if it exists) to the coding theorem for different
channels has been proved independently, in most of the cases it corresponds
to a simple representation of the cut-set bounds. For example, the capacity
region of multiple access channel is known due to the fact that the discovered
achievable region for this channel is large enough to coincide with the cut-set
bound. Another example is the relay channel for which an achievable rate was
derived by Cover [10]. This achievable rate simply coincides with the cut-set
bound for the degraded relay channel, and so the capacity of degraded relay
channel is known, while the bound of non-degraded relay channel is higher and
is still not shown to be achievable.

On the other hand, there are some cases where an upper bound on the ca-
pacity has been derived which is tighter than direct application of the cut-set
theorem. For example, the capacity region of general broadcast channel is still
not known because either the outer bounds are not tight enough or the achiev-
able rate region is not large enough. But recently, the sum capacity of Gaussian
vector broadcast channel (GVBC) has been considered and derived [5,23,27,24],
which is lower than the corresponding suggested cut-set bound on the sum rate.
The outer bound on this sum rate capacity is derived based on the work of Sato
[21] and the achievablility part is based on Costa’s precoding [8] or Marton’s
achievable region for the general broadcast channel [18].

Some recent works on network information theory have considered the prob-
lem of multi-casting in the networks which can be regarded as the network in-
formation flow. Ahlswede et al. [2,3] introduced a new class of multiuser source
coding problems inspired by network communications, and proposed the use of
coding in the network for the purpose of multi-casting. This work can be regarded
as the max-flow min-cut theorem for the network information flow. Meanwhile,
this work reveals that in general coding at the nodes (network coding) is re-
quired to achieve the best rates and the information should not be treated as
a ‘fluid’ which can simply be routed and replicated at the nodes. Li and Yeung
[17] presented a linear code for multi-casting from a single-source which is an
example of such a network code. Borade applied the cut-set theorem [11] to the
problem of the network information flow and derived an information theoretic
upper bound on the information flow in discrete memoryless networks [4].
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1.3 Information Theory of the Wireless Networks

Since information theoretic analysis of capacity and achievable rates in the net-
work is complicated, it might not give much intuition on construction and limits
of practical communication systems. Gupta and Kumar presented another look
at the capacity of large networks and characterized the achievable throughput of
the nodes [14]. The assumption of point-to-point coding in their work precludes
any kind of cooperation and network coding which is possible for example in
broadcast or multiple access channels.

New interest in sensor networks and network information theory has sparkled
new research into the relay channel. Subsequent work by Gupta and Kumar [15]
on an extension of the relay channel shows that using more sophisticated mul-
tiuser coding schemes can provide sizable gains in terms of transport capacity.
Also a follow-up paper by Xie and Kumar [26] established an explicit achiev-
able rate expression for the degraded Gaussian channel with multiple relays and
characterized the bounds on transport capacity. Reznik et al. [20] considered
Gaussian physically degraded relay channels and extended the results for multi-
ple relay stages with a total average power constraint.

Gasper and Vetterli [12] derived a lower bound on the capacity of the relay
channel by allowing arbitrarily complex network coding. Also, they considered
upper bounds from the cut-set theorem [11] and showed that these upper and
lower bounds meet asymptotically as the number of relay nodes goes to infinity.
This result again shows that network coding is essential.

1.4 In This Paper

As we discussed, there are many new elements in network information theory
and especially sensor networks that should be considered in the communica-
tion problem, such as: interference, feedback, and cooperation. Feedback and
cooperation have received most of the attention so far, in order to derive better
achievable rates or increase the network capacity in different scenarios, while
the effect of interference even in the relay case can be quite capacity limiting
and it has not received enough attention. On the other hand another limiting
property is the fact that most of the current radios in sensor nodes operate in
TDD mode when the transmitting and receiving frequencies are the same. Thus,
sensor nodes cannot transmit and receive at the same time, and as a result the
achievable rate in the network is lower.

This practical constraint will force us to use the nodes of the network as
either a sender or receiver at any given time, which can be interpreted as having
more than one mode of operation in the network. Each mode of operation in
the network corresponds to the valid partitioning of the nodes into two disjoint
subsets of sender and receiver nodes such that there is no node in the sender
nodes set which is going to communicate with another node in that subset.

The motivation for the current work comes from the aforementioned practical
constraint. We consider a more general case of the problem where the network
has a finite number of states and derive some upper bounds on the achievable
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information rate in such a network. The derived bounds coincide with the known
cut-set bound in network information theory [11] when the network has just
one state. On the other hand, the bounds trivially hold for the network with
the mentioned practical constraint if modes are considered as states, and the
number of nodes in the network is finite. Later, we will give two applications of
the derived bound which provides a tight upper bound where the cut-set bound
[11] is unable to provide such bounds. In these two specific examples, we show
that the derived bounds are tight enough to characterize the capacity.

Channels with finite number of states have been considered first in the context
of compound channels [25], and the capacity expression for discrete memoryless
channels with different cases of channel state information at the receiver and the
transmitter have been derived. Extension of the results for the AWGN channel
with infinite number of states (fading) can also be found in [13]. In the compound
channel, besides the fact that knowledge of the channel state information may
or may not be available at the sender or receiver, the state is considered to
be varying stochastically. Throughout this paper, we assume that the network
state information is known to all sender and receiver nodes, and in Corollaries
1, 2 we even let the nodes choose the state of the channel in order to optimize
the intended achievable communication rates. As another direct application of
the derived bound, Theorem 1 also provides a tight bound for the capacity of
the compound channel with the known channel state information both at the
transmitter and receiver [Theorem 4.6.1 in [25]].

2 Problem Formulation

We consider a general multi-terminal network of senders and receivers. The net-
work can be considered as a directed graph where each node of the network
represents a potential sender or receiver (or both), and each link represents ex-
istence of a (one-way) channel between two nodes. Most radios operate in TDD
mode when the transmitting and receiving frequencies are the same. Thus, they
can either send or receive at a given time or use of the network. We label such
a radio as a cheap radio and the corresponding node of the network as a cheap
node.

In accordance with the term of channel use in a single discrete memoryless
channel we define network use which corresponds to the simultaneous one time
use of each existing nodes of the network either as a sender or receiver. Also in
each network use, set of active links is defined as all links which are departing
from the set of sender nodes. With this definition, the mentioned practical con-
straint translates to the fact that in each network use there is no active link that
arrives at a sender node.

We define operating mode of the network (or state of the network) as a valid
partitioning of the nodes of the network into two sets of ‘sender nodes’ and
‘receiver nodes’ such that there is no active link that arrives at a sender node. It
is obvious that if the number of nodes in the network is finite then the number
of operating modes of the network of cheap nodes are finite.
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In the following discussion we consider the network with finite states in gen-
eral, where the network state is known to all nodes at each time and it is prede-
fined. In other words sequence of the network states is a deterministic function
or we can choose it in advance in order to maximize the throughput or optimize
other network characteristics.

Results of this section are easily applicable to the network with cheap nodes
where operating mode of the network is considered as the state of the network.
Thus, although most of the discussion in the rest of paper applies to the network
with cheap nodes, it is not limited to such a network. In other words state of the
network in this section is not necessarily derived from the mentioned practical
constraint.

Assume that there are N nodes and for every node i, X(i) is the transmitted
variable, Y (i) is the received variable , and R(ij) represents the rate in which
node i transmits information to node j. We assume that all intended messages
W (ij) from node i to the node j are independent and uniformly distributed over
their respective ranges {1, 2, 3, ..., 2nR(ij)}

Considering the network of discrete memoryless channels (DMC) with finite
number of states and following the notation of [25] , the channel transition func-
tion or channel probability function (c.p.f.) is defined as: P (y(1), y(2), . . . , y(N)|
x(1), x(2), . . . , x(N)|m) where m is the state of the network. Each network use
corresponds to the use of all present channels one time in a specific state. For
example in the mentioned network with cheap nodes existing channels in each
state is the set of active links or active channels. For every transmitter-receiver
node pair (i, j) there is an intended message W (ij)ε{1, 2, 3, ..., 2nR(ij)} to be
transmitted from node i to node j in n network uses. The input symbol X

(i)
k

which is the transmitted signal from node i in time k (or k’th channel use) de-
pends on W (ij) ∀jε{1, 2, . . . , N}, and also the past values of the received signal
Y (i), i.e. Y

(i)
1 , Y

(i)
2 , . . . , Y

(i)
k−1. Thus, the encoding and decoding functions of block

length n code for node i have the following structure and properties:

Encoder: X
(i)
k (W (i1), W (i2), . . . , W (iN), Y

(i)
1 , Y

(i)
2 , . . . , Y

(i)
k−1) for any

network use kε{1, 2, . . . , N}

Decoder: Ŵ (ij)(Y (j)
1 , Y

(j)
2 , . . . , Y

(j)
N , W (j1), W (j2), . . . , W (jN) for all

values of j, iε{1, 2, . . . , N} which is estimate of the receiver of node i
at node j based on the received signal of node j for the whole block of
transmission (from 1, to n) and its own transmitted information for the
other nodes.

The probability of error for each decoder is defined as: P
(n)(ij)
e = Pr(Ŵ (ij) �=

W (ij)) which is defined based on the assumption that the messages are indepen-
dent and uniformly distributed over their respective ranges.

A set of rates {R(ij)} is said to be achievable if there exist an encoding and
decoding function with block length n such that P

(n)(ij)
e −→ 0 when n −→ ∞

for all j, iε{1, 2, . . . , N}
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Now suppose that state of the network is a deterministic function for every
network use k as mk, mkε{1, 2, . . . , M}, where M is the number of possible states
assuming finite number of states. For any state m define nm(k) as the number of
states which is equal to m in the first k network uses. Let tm = limk−→0 nm(k)/k
define the portion of the time that network have been used in state m as the
total number of network use goes to infinity.

For any cut-set which partitions set of all the nodes into two disjoint set S, Sc

we will drive a bound on the information flow from one side to the other side, i.e
from sender nodes in the set S to the receiver nodes in the set Sc As Theorem
1 states the bound is not function of the choices of deterministic function mk

directly rather it depends only on the asymptotic values t1, t2, ...tM . In fact this
theorem bounds the achievable rate of the transmission across a cut-set with
the best choice of the deterministic function mk with the fixed asymptotical
properties, i.e. fixed ti, iε{1, 2, . . . , M}

Theorem 1. Consider a general network with finite number of states, M, for
which the sequence mk of the states of the network is fixed and is known to all
nodes. If the information rates {R(ij)} are achievable then there exist some joint
probability distribution p(x(1), x(2), . . . , x(N)|m) such that

∑

iεS,jεS(c)

R(ij) ≤
M∑

m=1

tmI(XS
(m), Y

Sc

(m)|XSc

(m)) (1)

for all S ⊂ {1, 2, . . . , N}

Proof See appendix I.

Theorem 1 provides a bound on the information flow across any cut-set of the
network when the sequence of channel states is a known deterministic function.
Thus, considering all possible sequence of Network states the bound across each
cut-set would be the supremum of the achievable bounds in Theorem 1 for all
choices of deterministic function mk. Specifically we have the following corollary.

Corollary 1. Consider a general network with finite states, M, for which the
sequence mk of the states of the network is known to all nodes. Maximum achiev-
able information rates {R(ij)} across the cut-set S ⊂ {1, 2, . . . , N} for the proper
choice of network state sequence mk is bounded by:

∑

iεS,jεS(c)

R(ij) ≤ sup
tm

M∑

m=1

tmI(XS
(m), Y

Sc

(m)|XSc

(m)) = sup
m

I(XS
(m), Y

Sc

(m)|XSc

(m)) (2)

for some joint probability distribution p(x(1), x(2), . . . , x(N)|m) where
∑M

i=1 tm =
1 .
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Thus, in order to maximize the sum rate of the information transfer across
a cut-set the above result suggests using the network in a fixed state m which
allows for the maximum mutual information I(XS

(m), Y
Sc

(m)|XSc

(m)).
We can also consider an upper bound for the achievable rate of the informa-

tion flow between two disjoint subsets of the nodes {S1, S2}. This upper bound
proves useful when we just try to maximize the rate of information transfer from
a given subset of the nodes to the other disjoint subset of the nodes without
any interest in other communications in the network. For example this situa-
tion happens in the relay problem when a sender node (or set of sender nodes)
transmits information to a destination node (or set of destination nodes) by the
help of some intermediate relay node (or relay nodes). In this case, the aim is to
maximize the rate from sender to destination.

A simple observation suggest that the sum of information rates from the set
S1 to the set S2 is bounded by the sum of the rates across all the cut-set S such
that S ⊂ {1, 2, . . . , N}, S ∩ S1 = S1, S ∩ S2 = φ which is given by corollary 1.
Thus, we have:

∑

iεS1,jεS2

R(ij) ≤ min
S

sup
m

I(XS
(m), Y

Sc

(m)|XSc

(m)) (3)

for some joint probability distribution p(x(1), x(2), . . . , x(N)|m).

We can further elaborate result of theorem 1 directly to find better upper
bound for the achievable rate of the information flow between to disjoint subsets
of the nodes {S1, S2}.

Theorem 2. Consider a general network with finite states, M, for which the
sequence mk of the states of the network is fixed and known to all nodes. If the
information rates {R(ij)} are achievable then there exist some joint probability
distribution p(x(1), x(2), . . . , x(N)|m) such that sum rate of information transfer
from a node set S1 to a disjoint node set S2, S1, S2 ⊂ {1, 2, . . . , N}, is bounded
by:

∑

iεS1,jεS2

R(ij) ≤ min
S

M∑

m=1

tmI(XS
(m), Y

Sc

(m)|XSc

(m)) (4)

when the minimization is taken over all set S ⊂ {1, 2, . . . , N} subject to S∩S1 =
S1, S ∩ S2 = φ.

Proof Direct application of the Theorem 1 and considering the fact that the
sequence of channel state is fixed results in the mentioned bound.�

Again, considering all possible sequence of channel states, the bound of the
achievable rate of information transfer from a node set S1 to a disjoint node
set S2, S1, S2 ⊂ {1, 2, . . . , N}, is bounded by the supremum of the achievable
bounds in theorem 2 for all choices of deterministic function mk.
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Corollary 2. Consider a general network with finite states, M, for which the
sequence mk of the states of the network is known to all nodes. Maximum achiev-
able information rates {R(ij)} from a node set S1 to a disjoint node set S2,
S1, S2 ⊂ {1, 2, . . . , N} for the proper choice of network state sequence mk is
bounded by:

∑

iεS1,jεS2

R(ij) ≤ sup
tm

min
S

M∑

m=1

tmI(XS
(m), Y

Sc

(m)|XSc

(m)) (5)

for some joint probability distribution p(x(1), x(2), . . . , x(N)|m) when the mini-
mization is taken over all set S ⊂ {1, 2, . . . , N} subject to S∩S1 = S1, S∩S2 = φ

and the supremum is over all the non-negative tm subject to
∑M

i=1 tm = 1.

In the next section we will consider some specific examples of the networks
and application of this bound on the achievable rates of communication in such
networks.

3 Application of the New Bounds

Theorem 1 provides general bounds on the achievable information rates across
any cut-set in the network and these bounds are not necessarily tight. For ex-
ample, for the networks with just one state of operation, it coincides with the
known cut-set bounds [11] which provide tight enough bounds to find the capac-
ity region or capacity rate in some cases like discrete memoryless multiple access
channel, degraded discrete memoryless relay channel, or arbitrary discrete mem-
oryless relay channel with feedback [10]. On the other hand, the cut-set bounds
[11] for even some other simple examples, such as general (non-degraded) broad-
cast channel do not provide a tight bound and thus the capacity region is not
yet known.

Although having more than one state of operation in the network seems to
increase degrees of freedom and thus the achievable rates in the network, but it is
not always true. For example in the problem of communication in a network with
cheap nodes, having more than one state is a result of imposing the condition
that each node cannot transmit and receive at the same time. It is somehow
trivial that posing this condition will not increase any sets of achievable rates in
the network in comparison to the same network without this constraint (which
has obviously just one state of operation but all of the links or channels between
the nodes can be used at the same time).

In this section, we will give applications of derived bounds in the previous
section in cascaded channels (multi-hop network) and relay channel with cheap
nodes. In both of the examples, achievable rate of information transmission is
considerably lower than the rate of the same network topology without the
mentioned practical constraint. Thus, the known cut-set theorem of network
information theory is unable to provide tight enough bounds. On the other hand,
the derived bounds in this paper prove to be most effective in these cases and they
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capture the effect of the introduced practical constraint on the network nodes
to the extent that we can actually drive the capacity in both of the examples.

Ci+1 
Ci 

R1 Ri Ri+1 RLR2

0 2 i i+1 L1

Fig. 1. Cascaded Discrete Memoryless Channels

3.1 Cascaded Channels (Multi-hop Network)

Consider L discrete memoryless channel in cascade, Figure 1, and index each
channel from left to right as i = 1, 2, . . . , L, and each node from left to right as
0, 1, 2, . . . , L in which we are interested in transmitting information from node
0 to node L. Thus node i receives Yi which is the output of the channel i and
transmit its information, Xi+1 via channel i + 1 which is the input to this chan-
nel. Since we have assumed that channels are cascaded and there are no other
connection between the nodes other than stated, the channel output Yi just de-
pends on the input Xi but no other transmitted signals. For each channel i,
iε{1, 2, . . . , L} define capacity of each individual link as Ri := max I(Xi, Yi)
where maximization is taken over all possible distributions of Xi.

It has been known that the capacity of such cascaded system without the
mentioned practical limitation on transmission and reception at the same time is
the minimum of the individual rates of the channels C1 = min{R1, R2, . . . , , RL}.
Since each channel can transmit information at least with the rate of C1 without
any restriction on receiving data from previous node, achievablity of this mini-
mum rate is immediate. Also, the known cut-set bound of network information
theory states that no higher rate is achievable.

On the other hand, imposing the mentioned practical limitation will decrease
the achievable rate in this cascaded channel and the mentioned known cut-set
bound is no longer tight. In this case, by using the results of Corollary 2 we have:

R � R(0L) ≤ sup
tm

min
i

{(
M∑

m=1

tm ∗ δim) Ri} (6)

when the minimization is taken over i, iε{1, 2, . . . , L} and the supremum is over
all the non-negative tm subject to

∑M
i=1 tm = 1. In the above expression δim = 1

iff link i is used in state m of the network, otherwise δim = 0.
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It is also possible to prove that the above bound is actually achievable. The
proof is based on the fact that for any given sets of {t1, t2, . . . , , tM} associated
with the states 1, 2, . . . , M satisfying

∑M
i=1 tm = 1, the rate of mini{(

∑M
m=1 tm ∗

δim) Ri} is achievable with arbitrarily small probability of error [16]. Thus, the
above rate suptm

mini{(
∑M

m=1 tm ∗ δim) Ri} is the capacity of the network of
the cascaded channels with cheap nodes.

Furthermore, we have proved that the above expression can be simplified to
the following form:

R = R∗ := min{ R1R2

R1 + R2
,

R2R3

R2 + R3
, . . . ,

RL−1RL

RL−1 + RL
} (7)

For each iε{1, 2, . . . , �L − 1}, consider two cut-set Ci, Ci+1. since for each i, m

we have δim ∗ δ(i+1)m = 0 it can easily be verified that R ≤ RiRi+1
Ri+Ri+1

and thus
R ≤ R∗. On the other hand it is possible to show that states 1, 2, . . . , M and
their associated set of {t1, t2, . . . , , tM} exist such that the rate R∗ is achievable,
and thus R = R∗ [16].

3.2 Relay Channel

Consider discrete memoryless relay channel of Figure 2, in which source node
S is willing to transmit information to the destination node D by using direct
link between the node pair (S, D) as well as help of another relay node R (if it
improves the achievable rate of transmission) by using link pairs (S, R) and (R,
D). Furthermore assume that relay node R is a cheap node and thus it cannot
transmit and receive at the same time.

C2 C1 

X1

S

R

D

X2

Y1

Y

Fig. 2. Discrete Memoryless Relay Channel

With this assumption there are two possible states of operation in the net-
work. In the state m1 relay node R acts as a receiver and thus channel probability
function is given by: p(y, y1|x1|m1), while in the state m2 relay node functions
as a transmitter and the channel probability function is given by:p(y|x1, x2|m2).

From Corollary 2, an upper bound for the information transfer rate R from
source node S to the destination node D would be:
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R ≤ sup
t, 0≤t≤1

min{t I(X1; Y, Y1|m1) + (1 − t) I(X1; Y |X2, m2),

t I(X1; Y |m1) + (1 − t) I(X1, X2; Y |m2)} (8)

For every t, 0 ≤ t ≤ 1, it is possible to show that the rate R∗ is achievable
where R∗ is given by:

R∗ � min{t I(X1; Y1|m1) + (1 − t) I(X1; Y |X2, m2),
t I(X1; Y |m1) + (1 − t) I(X1, X2; Y |m2)} (9)

Thus, if in the state m1 the received signal y at the destination node D is
degraded form of the received signal y1 at the relay node then the the bound
of (8) would coincide with this achievable rate for some value of t. Hence, the
bound derived in Corollary 2 provides the converse for the capacity theorem of
degraded cheap relay channel, and the capacity is given by C = R∗ defined in
(9).

4 Concluding Remarks

Theorems 1, 2, (and Corollary 1, 2) establish general bounds on the achievable
information rates in the network with finite number of states. While these bounds
are not necessarily tight in general, they provide tight enough bounds for the
network of cascaded channels with cheap nodes and also cheap relay network
which results in derivation of the capacity in these cases. The derived Bounds
coincide with the known cut-set Bounds [11] of network information theory if
the network has just one state. In addition, Theorem 1 provides a tight bound
for the capacity of the compound channel (which is a multiple state channel)
with the known channel state information both at the transmitter and receiver
[Theorem 4.6.1 in [25]].
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Appendix I: Proof of Theorem 1

Let T = {(i, j) : iεS, jεSc} be the set of all links that cross from node set S
to the node set Sc and T c be all the other links in the network. Based on the
definition of W (ij) such that they are independent and uniformly distributed
over their range and also following the definitions and conditions of Section 2,
we have:

∑

iεS,jεS(c)

R(ij)

=
∑

iεS,jεS(c)

H(W (ij)) (10)

= H(WT ) (11)
= H(WT |WT c

) (12)

= I(WT , Y
(Sc)
1 , Y

(Sc)
2 , . . . , Y

(Sc)
N |W (T c))

+H(WT |Y (Sc)
1 , Y

(Sc)
2 , . . . , Y

(Sc)
N , W (T c)) (13)

≤ I(WT , Y
(Sc)
1 , Y

(Sc)
2 , . . . , Y

(Sc)
N |W (T c)) + nεn (14)

=
N∑

k=1

I(WT , Y
(Sc)
k |Y (Sc)

1 , Y
(Sc)
2 , . . . , Y

(Sc)
k−1 , W (T c)) + nεn (15)

=
N∑

k=1

{H(Y (Sc)
k |Y (Sc)

1 , Y
(Sc)
2 , . . . , Y

(Sc)
k−1 , W (T c))

−H(Y (Sc)
k |Y (Sc)

1 , Y
(Sc)
2 , . . . , Y

(Sc)
k−1 , W (T c), WT )} + nεn (16)

≤
N∑

k=1

{H(Y (Sc)
k |Y (Sc)

1 , Y
(Sc)
2 , . . . , Y

(Sc)
k−1 , W (T c), X

(Sc)
k )

−H(Y (Sc)
k |Y (Sc)

1 , Y
(Sc)
2 , . . . , Y

(Sc)
k−1 , W (T c), WT , X

(Sc)
k , X

(S)
k )} + nεn (17)

≤
N∑

k=1

{H(Y (Sc)
k |X(Sc)

k ) − H(Y (Sc)
k |X(Sc)

k , X
(S)
k )} + nεn (18)

=
N∑

k=1

I(X(S)
k , Y

(Sc)
k |X(Sc)

k ) + nεn (19)

=
N∑

k=1

I(X(S)
Qm(k)

, Y
(Sc)
Qm(k)

|X(Sc)
Qm(k)

, Qm(k) = k) + nεn (20)

=
M∑

m=1

nm(n)I(X(S)
Qm

, Y
(Sc)
Qm

|X(Sc)
Qm

, Qm) + nεn (21)
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=
M∑

m=1

nm(n){H(Y (Sc)
Qm

|X(Sc)
Qm

, Qm) − H(Y (Sc)
Qm

|X(Sc)
Qm

, X
(S)
Qm

, Qm)} + nεn(22)

≤
M∑

m=1

nm(n){H(Y (Sc)
Qm

|X(Sc)
Qm

) − H(Y (Sc)
Qm

|X(Sc)
Qm

, X
(S)
Qm

)} + nεn (23)

=
M∑

m=1

nm(n)I(X(S)
Qm

, Y
(Sc)
Qm

|X(Sc)
Qm

) + nεn (24)

where

(10) follows from the assumption that W (ij)’s are distributed uniformly
over their respective ranges {1, 2, 3, ..., 2nR(ij)},
(11) follows from the assumption that W (ij)’s are independent and also
definition W (T ) = {W (ij) : iεS, jεSc},
(12) follows from the independence of W (T ), W (T c),
(13) follows from the definition of the mutual information,
(14) follows from the Fano’s inequality, because message W (T ) can be decoded
from Y (S) and W (T c). (Since we have assumed that the set of rates {R(ij)} are
achievable; and also note that εn −→ 0 as n −→ ∞),
(15) follows from the chain rule,
(16) follows from the definition of the mutual information,
(17) follows from the fact that first term has been changed due to the definition
of X

(Sc)
k which is function of the past received symbols Y (Sc) and the message

W (T c). Also the second term has not been increased since conditioning can only
reduce the entropy,
(18) follows from the fact that Y

(Sc)
k only depends on the current input symbols

X
(Sc)
k , X

(S)
k . (Note that although Y

(Sc)
k depends on the state mk but it is

deterministic and predefined before transmission for all the nodes),
(19) follows from the definition of the mutual information,
(20) follows from introducing time sharing random variables Q1, Q2, . . . , QM

for each state of the network, where each state m, Qm is uniformly distributed
over all values of the time index k, kε{1, 2, 3, ..., N}, for which mk = m,
(21) follows from rearranging the summation and using definition of the average
mutual information,
(22) follows from the definition of the mutual information,
(23) follows from the fact that conditioning cannot increase the entropy for
the first term and the fact that second term has not been changed since Y

(Sc)
Qm

only depends on the current input symbols X
(Sc)
Qm

, X
(S)
Qm

and conditionally is
independent of Qm,
(24) follows from the definition of the mutual information.
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Thus, by dividing both sides of inequality (24) by n and finding the limit as
n −→ ∞ we have:

∑

iεS,jεS(c)

R(ij) ≤
M∑

m=1

nm(n)
n

I(X(S)
Qm

, Y
(Sc)
Qm

|X(Sc)
Qm

) + εn (25)

and as n −→ ∞ we have:

∑

iεS,jεS(c)

R(ij) ≤
M∑

m=1

tmI(X(S)
Qm

, Y
(Sc)
Qm

|X(Sc)
Qm

) (26)

and it completes the proof.�
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Abstract. Sensors acquire data, and communicate this to an interested
party. The arising coding problem is often split into two parts: First, the
sensors compress their respective acquired signals, potentially applying
the concepts of distributed source coding. Then, they communicate the
compressed version to the interested party, the goal being not to make
any errors. This coding paradigm is inspired by Shannon’s separation
theorem for point-to-point communication, but it leads to suboptimal
performance in general network topologies. The optimal performance for
the general case is not known.
In this paper, we propose an alternative coding paradigm based on joint
source-channel coding. This coding paradigm permits to determine the
optimal performance for a class of sensor networks, and shows how to
achieve it. For sensor networks outside this class, we argue that the
goal of the coding system could be to approach our condition for op-
timal performance as closely as possible. This is supported by examples
for which our coding paradigm significantly outperforms the traditional
separation-based coding paradigm. In particular, for a Gaussian exam-
ple considered in this paper, the distortion of the best coding scheme
according to the separation paradigm decreases like 1/ log M , while for
our coding paradigm, it decreases like 1/M , where M is the total number
of sensors.

1 Introduction

In a sensor network, the goal is typically to reconstruct the measured physical
phenomenon to within some prescribed distortion level, and this at the small-
est possible cost on the communication link. What coding strategy should the
sensors use? For the case of a single sensor, i.e., for the ergodic point-to-point
communication scenario, Shannon proved that separate source and channel code
design is an optimal strategy (asymptotically as the delay and the complex-
ity become unconstrained [12]). This fact, known as the separation principle,
is both conceptually and practically appealing. Therefore, it is also a tempt-
ing coding paradigm in a network context: each sensor compresses its measure-
ments using the best possible distributed coding techniques, see e.g. [1,13,15];
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the resulting source codewords are then transmitted across the channel using
capacity-achieving codes, see e.g. [4, Ch. 14]. It is well known that in spite of
its elegance, this coding paradigm does not lead to optimal performance in net-
works, see e.g. [4, p. 449], [7]. In other words, the concepts of capacity and rate-
distortion do not characterize the best achievable performance. Rather, joint
source-channel coding techniques can significantly outperform the separation-
based coding paradigm in these cases.

In this paper, we propose an alternative coding paradigm based on recent re-
sults on the source-channel communication problem in the point-to-point case [5,
6,7]. We investigate a particular sensor network topology, which is defined in de-
tail in Section 2. M separate sensors observe each a different noisy version of a
physical phenomenon S. The sensors communicate over a multi-access channel
to a central observer who wishes to produce an estimate Ŝ of the physical phe-
nomenon in such a way as to minimize the distortion. The precise shape of the
distortion measure d(s, ŝ) depends on the problem at hand.

In Section 3, we evaluate the performance achievable by the separation-based
coding paradigm in our sensor network topology. Results are given in particular
for a Gaussian example, for which we prove that the achievable distortion decays
like 1/ log M , where M is the number of sensors.

In Section 4, we develop a simple joint source-channel coding strategy for
the same Gaussian example. We establish two key facts for our strategy: First,
we determine that the distortion decays like 1/M , where M is the number of
sensors, thus considerably outperforming the separation-based coding paradigm.
Second, we prove that as M tends to infinity, our strategy achieves the smallest
possible distortion.

Thereafter, we extend our results beyond the Gaussian example, establishing
a general joint source-channel coding paradigm for the considered sensor network
topology, using the arguments of [5,6,7]. We show that it sometimes leads to
provably optimum performance, but even when it does not, we illustrate that it
can considerably outperform the separation-based coding paradigm.

In Section 5, we outline the extension of our basic sensor network topology
to include communication between the sensors. In particular, we find for a class
of sensor networks that this additional degree of freedom does not enhance the
asymptotic performance (as the number of sensors M tends to infinity).

2 The Considered Sensor Network

Consider the sensor network shown in Figure 1: The physical phenomenon is
characterized by the sequence of random vectors

{S[n]}n∈Z = {(S1[n], S2[n], . . . , SL[n])}n∈Z . (1)

To simplify the notation in the rest of the paper, we denote sequences as

Sn def
= {S[n]}n∈Z . (2)
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Source
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...
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F1 �X1
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F2 �X2

...

�UM
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�XM

Multi-

access

channel
�Y

G

�Ŝ1

�Ŝ2

...

�ŜL

Fig. 1. The sensor network topology considered in this paper.

We use the upper case S to denote the random variable, and the lower case s
to denote its realization. The distribution of S is denoted by PS(s). To simplify
notation, we will also use the shorthand P (s) when the subscript is just the
capitalized version of the argument in the parentheses. The random vector S[n]
is not directly observed by the sensors. Rather, sensor k observes a sequence
Un

k = {Uk[n]}n∈Z which depends on the physical phenomenon according to a
conditional probability distribution, which we denote by

P (uk|s1, . . . , sL). (3)

Based on the observations Uk[n], sensor k transmits a signal

Xn
k = Fk (Un

k ) (4)

on the multi-access channel. The transmitted signals satisfy a power, or more
generally, a cost constraint of the form

Eρ(Xn
1 , Xn

2 , . . . , Xn
M ) ≤ Γ. (5)

This is a generalization of the sum power constraint for all the sensors together.
In some variations of our problem, it is also interesting to consider a family of
simultaneous constraints, with cost functions ρi(·) and maximum expected cost
Γi. This is a generalization of the individual power constraints for each sensor.

The final destination uses the output of the multi-access channel to construct
estimates

Ŝn = (Ŝn
1 , Ŝn

2 , . . . , Ŝn
L). (6)

For a fixed code, composed of the encoders F1, F2, . . . , FM at the sensors and
the decoder G, the achieved distortion ∆ is computed as follows:

∆ = Ed
(
Sn, Ŝn

)
. (7)
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For a particular coding scheme (F1, F2, . . . , FM , G), the performance is deter-
mined by the required cost Γ and the incurred distortion ∆. The goal of the
analysis is to determine the set of optimal trade-offs (Γ, ∆), where optimal is to
be understood in an information-theoretic sense, i.e., irrespective of delay and
complexity.

Example 1 (Gaussian case). An important special case of the sensor network
topology of Figure 1 is illustrated in Figure 2: In this case, L = 1, and

Source
S

� �U1��
W1

� �U2��
W2

� �UM��
WM

F1
X1

�
�
�
�
�
���

F2
X2

�
�

���
...

FM

XM �
�
�
�
�
���

��

Z

�Y
G �Ŝ

Fig. 2. The Gaussian example.

Uk[n] = S[n] + Wk[n], (8)

where {S[n]}n is a sequence of independent and identically distributed (iid)
Gaussian random variables of variance σ2

S , and {Wk[n]}n is a sequence (in n,
for n = 1, 2, 3, . . .) of iid Gaussian random variables of mean zero and variance
σ2

W . Moreover, for the sake of the example, we also assume that Wk and Wl

are independent for all k �= l. The constraint on the signals transmitted by the
sensors is a sum power constraint, i.e.,

M∑
k=1

E|Xk|2 ≤ MP. (9)

The final destination receives

Y [n] =
M∑

k=1

Xk[n] + Z[n], (10)
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where Z[n] is iid Gaussian noise of variance σ2
Z . The distortion measure in this

example is the mean-squared error, i.e.,

D =
n∑

j=1

E|S[n] − Ŝ[n]|2. (11)

The goal of the analysis is to determine the best power-distortion trade-off.
More precisely, we want to determine the minimum distortion for a fixed power
MP . The performance of a communication scheme employing source-channel
separation is analyzed in two steps: the rate-distortion and the capacity-cost
problem.

3 Separate Source and Channel Coding

In extension of the point-to-point case (summarized in Appendix A), a general
coding paradigm for sensor networks can again be formulated as the combination
of source coding and channel coding. In this section, we outline the performance
that can be achieved using a separation-based coding strategy. Then, we provide
an explicit answer for a simple Gaussian sensor network with a topology accord-
ing to Figure 1. Note that it is well-known that this coding paradigm does not
lead to optimal network designs in general, see e.g. [4, p. 449].

3.1 Distributed Source Coding

The particular source coding problem corresponding to Figure 1 is known as the
CEO problem, proposed and partially solved in [2]. More precisely, the problem
for sensor k is to encode its observations into a bit stream of Rk bits per sample.
The determination of the set of the smallest (R1, R2, . . . , RM ) that permit the
source decoder to reconstruct S1, . . . , SL at a specified fidelity ∆ (as in Equa-
tion (7)) is an open problem in general. We call this the rate-distortion region,
denoted by R(∆).

Example 2 (Gaussian case). For the Gaussian sensor network of Example 1, the
particular problem of encoding Uk as in Figure 2 into bits and reconstructing S
from these bits, has been studied in the shape of the so-called quadratic Gaussian
CEO problem in the literature [11,14]. The distortion DCEO depends on the total
rate used by the sensors, Rtot = R1 + R2 + . . . + RM as

DCEO =
σ2

W

2Rtot
, (12)

when the total rate Rtot is large. More precise results for small Rtot can be found
in [11].
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3.2 Multi-access with Dependent Messages

For the multi-access problem in Figure 1, the goal is to determine the set of all
achievable rate pairs (R1, R2) when the channel inputs satisfy the cost constraint
Γ (as in Equation (5)), i.e., the capacity region C(Γ ). When the messages of the
different users are independent from each other, the capacity region is known, see
e.g. [4]. However, in a sensor network situation, the messages of the sensors may
typically be correlated since the underlying signals are. The capacity region for
the case where the messages are potentially correlated is only partially known [3].

Example 3 (Gaussian case). For the Gaussian sensor network of Example 1, the
goal is to determine the capacity region for the additive white Gaussian multiple-
access channel with inputs X1, X2, . . . , XM and output Y . When the messages
may be dependent, the maximum sum rate Rtot can be upper bounded by

Rtot ≤ 1
2

log2

(
1 +

M2P

σ2
Z

)
. (13)

This bound follows by allowing arbitrary dependence between the inputs of the
multi-access channel. However, in the Gaussian sensor network of Example 1,
since the encoders are separate, the messages cannot be arbitrarily dependent;
rather, their dependence follows from the source structure. For this reason, the
bound should not be expected to be tight, but rather too optimistic.

3.3 Achievable Cost-Distortion Trade-Offs

For separate source and channel coding, a cost-distortion trade-off (Γ, ∆) is
achievable only if

R(∆) ∩ C(Γ ) �= ∅. (14)

This follows immediately from the definition of the rate-distortion and the
capacity-cost regions. In other words, if the two regions do not intersect, it is
not possible to achieve the trade-off (Γ, ∆) by a strategy composed of optimal
source compression followed by capacity-approaching channel coding.

Remark 1. Condition (14) is only achievable if each sensor is allowed to observe
the entire sequence Un

k before deciding what Xn
k to transmit.

Example 4 (Gaussian case). For the Gaussian sensor network of Example 1, the
optimum power-distortion trade-offs that can be achieved by separate source
and channel coding can be determined by combining the results of Examples 2
and 3. For a fixed total sensor power MP , the smallest achievable distortion is
bounded by inserting the upper bound to the total rate Rtot on the multi-access
channel (from Equation (13)) in the minimum distortion for the CEO problem
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(Equation (12)). Hence, the distortion achieved by the separation-based scheme
behaves at best like

Dsep(MP ) ≥ σ2
W

log2

(
1 + M2P

σ2
Z

) , (15)

when the number of sensors M is large. Here, σ2
W is the variance of the obser-

vation noise and also the variance of the noise in the multi-access channel, and
MP is the total sensor transmit power.

4 Joint Source-Channel Coding

Since it is well-known that the separation-based coding paradigm does not lead
to optimal system designs in general, we now develop an alternative coding
paradigm for our sensor network topology, illustrated in Figure 1. This is moti-
vated by a particular feature of the Gaussian example discussed above. Therefore,
we first study an alternative coding scheme for the Gaussian case that outper-
forms separation-based strategies considerably. Thereafter, we extend this insight
into a general coding paradigm, using an approach reminiscent of [5,6,7].

4.1 The Gaussian Case

An Achievable Distortion. For the point-to-point transmission of an iid
Gaussian source across an additive white Gaussian channel, it is well-known
that uncoded transmission is optimal [10], see also [5,6,7]. For the Gaussian
example illustrated in Figure 2 and defined in Example 1, it is therefore intu-
itive to study the strategy of uncoded forwarding by the sensors. The following
power-distortion trade-off is achieved by this strategy.

Theorem 1. For the Gaussian sensor network defined in Example 1, with
source variance σ2

S, observation noise variance σ2
W , and total transmit power

at the sensors of MP , the following distortion is achievable:

D1(MP ) =
σ2

Sσ2
W

M2

M+(σ2
Z

/σ2
W

)(σ2
S
+σ2

W
)/P

σ2
S + σ2

W

. (16)

Proof. Suppose the sensors apply uncoded transmission. More precisely, sensor
k scales Uk[n] to meet its power constraint P ,

Xk[n] =

√
P

σ2
S + σ2

W

Uk[n]. (17)

Recalling that Uk[n] = S[n]+Wk[n], the received signal for the uncoded strategy
is

Y [n] =

√
P

σ2
S + σ2

W

(
MS[n] +

M∑
k=1

Wk[n]

)
+ Z[n]. (18)
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It remains to specify the decoder. Since the encoding operation is memoryless,
the optimum decoder (or estimator) G is also memoryless: there is no benefit
from considering multiple symbols jointly. The optimum decoder G is then sim-
ply the minimum mean-squared error estimator of S[n], given by the standard
formula:

Ŝ[n] =
E [SY ]
E [Y 2]

Y [n] =

√
P

σ2
S
+σ2

W

Mσ2
S

P
σ2

S
+σ2

W

(M2σ2
S + Mσ2

W ) + σ2
Z

Y [n]. (19)

The resulting distortion is evaluates to

D1(MP ) = σ2
S −

P
σ2

S
+σ2

W

M2σ4
S

P
σ2

S
+σ2

W

(M2σ2
S + Mσ2

W ) + σ2
Z

=
σ2

Sσ2
W

M2

M+(σ2
Z

/σ2
W

)(σ2
S
+σ2

W
)/P

σ2
S + σ2

W

. (20)

��
The main result of Theorem 1 follows from the comparison of (16) with (15): The
separation-based scheme is clearly suboptimal in our example. More precisely,
the decreasing behavior of the distortion as a function of the number of sensors
M is fundamentally different for the two schemes: The separation-based scheme
achieves at best a decreasing behavior of 1/ log M , while Theorem 1 establishes
an achievable decreasing behavior of 1/M .

Asymptotic Optimality. In this paragraph, we first derive a lower bound to
the minimum achievable distortion Dmin(MP ) at total sensor power MP . We
then establish that this lower bound coincides with D1(MP ) in the limit as the
number of sensors becomes large. This proves that asymptotically in M , the
strategy of Theorem 1 performs optimally.

The lower bound is found by analyzing the system in which the sensors are
ideally linked to the destination. This system can be interpreted as a point-to-
point multi-antenna system, where the sender has one antenna with output S
and the receiver has M antennas with inputs U1, U2, . . . , UM . The minimum dis-
tortion achievable in this system cannot be larger than the minimum distortion
achievable in our sensor network. The lower bound can stated as follows:
Theorem 2. For the Gaussian sensor network defined in Example 1, with
source variance σ2

S, observation noise variance σ2
W , and total transmit power at

the sensors of MP , the minimum achievable distortion satisfies Dmin(MP ) ≥
Dlower(MP ), where

Dlower(MP ) =
σ2

Sσ2
W

Mσ2
S + σ2

W

. (21)

Proof. The lower bound is found by idealization: The receiver is ideally linked
to the sensors, and we suppose that the physical phenomenon S[n] itself uses
optimal coding.
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The smallest distortion achievable in this idealized system obviously cannot
be larger than the smallest distortion achievable in the original system.

The idealized system is an ergodic point-to-point source-channel communi-
cation system; the separation theorem applies. The capacity of the idealized
channel is simply the capacity of the multi-antenna channel with one transmit
antenna (the source itself) and M receive antennae (the M sensors, now ideally
linked to the destination). The capacity of such a system is well-known:

C =
1
2

log2

(
1 +

Mσ2
S

σ2
W

)
. (22)

By the separation theorem, the minimum (mean-squared error) distortion that
can be achieved for a Gaussian source across this channel is

DN (C) =
σ2

Sσ2
W

Mσ2
S + σ2

W

, (23)

where DN (·) denotes the distortion-rate function of the iid Gaussian source of
variance σ2

S . This concludes the proof. ��
In the limit as M → ∞, the upper and lower bounds of this paper coincide,

establishing the following result on the optimal power-distortion trade-off in the
Gaussian sensor network of Example 1.

Theorem 3. For the Gaussian sensor network defined in Example 1, with
source variance σ2

S, observation noise variance σ2
W , and a total transmit power

at the sensors of MP ,

lim
M→∞

Dlower(MP )
D1(MP )

= 1, (24)

hence,

Dmin(MP ) =
σ2

Sσ2
W

Mσ2
S + σ2

W

, (25)

and the minimum is achieved when the sensors use a simple scaling, Xk[n] =
γkUk[n], and the final destination uses X̂[n] = γY [n].

Proof. The theorem follows directly by combining Theorems 1 and 2. ��

Remark 2. In the limiting case as M → ∞, the minimum distortion D(MP )
does not depend on P and σ2

Z . Note however that the result does depend on
the fact that the total available power at the sensor increases linearly with the
number of sensors M . This can be extended to cases where the total sensor
power behaves according to a different law along the lines of the analysis in [8,
9].
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Remark 3 (real-time processing). There is no causality or real-time constraint
on the encoding and decoding functions in the setup of Example 1; in fact, the
scheme discussed in Section 3 does not satisfy any such constraint. In contrast to
this, Theorem 3 shows that the globally optimum trade-off (in the limit M → ∞)
can be achieved by a causal and real-time system in the sense that Xk[n] can be
generated without waiting for future source outputs Uk[n + j], j = 1, 2, . . ..

The Gaussian example can be extended using concepts similar to [5,6,7]. This
is the issue of the next section.

4.2 Generalization of the Gaussian Case

The Gaussian case discussed above can be summarized by two key insights:

1. Uncoded transmission (at the sensors) considerably outperforms any ap-
proach based on the separation paradigm (even for a relatively small number
of sensors M).

2. In the limit as M → ∞, uncoded transmission performs optimally.

In this section, both of these features are extended beyond the Gaussian case.
We first establish a general sufficient condition for a given sensor coding system
(F1, F2, . . . , FM , G) to perform optimally, thus extending the second feature of
the Gaussian case. Thereafter, we extend the first feature of the Gaussian case by
suggesting a general coding paradigm as an alternative to the separation-based
coding paradigm. We show that for a class of sensor networks that includes the
Gaussian case, our coding paradigm, while not necessarily optimal, considerably
outperforms the separation-based paradigm.

Optimal Performance. We now establish a general sufficient condition for the
optimality of a sensor network with a topology according to Figure 1. It can be
stated as follows.

Theorem 4. If in the sensor network of Figure 1, the code (F1, F2, . . . , FM , G)
satisfies the cost constraint Eρ(X1, X2, . . . , XM ) ≤ Γ , and

d(s, ŝ) = −c2 log2 P (s|ŝ) + d0(s) (26)
I(S; U1, U2, . . . , UM ) = I(S; Ŝ), (27)

then it performs optimally.

Proof. The proof works by idealizing the sensor network of Figure 1 by a
point-to-point communication system. In particular, we consider the commu-
nication system where the final destination has direct access to the observations
U1, . . . , UM . If the code (F1, F2, . . . , FM , G) achieves optimal performance in this
point-to-point communication system, then it must achieve optimal performance
in the original sensor network of Figure 1.
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The conditions for optimality for the idealized point-to-point source-channel
communication system can be stated as follows (see Appendix A and [5,6,7]):
The point-to-point communication system is optimal if

ρ(s) = c1D(pU1,U2,...,UM |s||pU1,U2,...,UM
) + ρ0 (28)

d(s, ŝ) = −c2 log2 P (s|ŝ) + d0(s) (29)
I(S; Ŝ) = I(S; U1, U2, . . . , UM ), (30)

where D(·||·) denotes the Kullback-Leibler distance, see e.g. [4]. If the sensor
network satisfies these conditions, it must perform optimally. However, in our
problem, there is no cost constraint on the source signal S. In other words,
ρ(s) can always be chosen appropriately. Hence, the condition on ρ(s) can be
removed, which completes the proof. ��

The conditions of Theorem 4 are sufficient for optimality, but they are only
achievable for a particular class of sensor networks; in the general case of Figure
1, they cannot be met. The goal of the following discussion is to illustrate the
special class for which the conditions of Theorem 4 can be satisfied. We first
illustrate these two issues for the Gaussian example studied above.
Example 5 (Gaussian case). Let us study conditions (26) and (27) for the Gaus-
sian example. Consider first condition (26). Since S[n] and Ŝ[n] are jointly Gaus-
sian, we can write S[n] in terms of Ŝ[n] as follows:

S[n] =
E
[
SŜ
]

E
[
Ŝ2
] Ŝ[n] + W ′[n], (31)

where W ′[n] is additive white Gaussian noise. Since Ŝ is the minimum mean-
squared error estimate of S, we find that E[SŜ]/E[Ŝ2] = 1, and hence S[n] =
Ŝ[n] + W ′[n]. This immediately reveals that P (s|ŝ) is given by the distribution
of W ′[n]. Since it is Gaussian, we find

− log2 P (s|ŝ) = d1(s − ŝ)2 + d0(s), (32)

i.e., mean-squared error distortion. The variance of the noise W ′[n] is irrelevant
for this argument; it only influences the constant d1. This means that even for
finite M , condition (26) is satisfied by the Gaussian example.

For condition (27) in our Gaussian example, equality is only achieved asymp-
totically as the number of sensors tends to infinity. We now analyze this in detail.
From (19), Ŝ can be rewritten as

Ŝ[n] =
P

σ2
S
+σ2

W

Mσ2
S

P
σ2

S
+σ2

W

(M2σ2
S + Mσ2

W ) + σ2
Z

(
MS[n] +

M∑
i=1

Wk[n] +

√
σ2

S + σ2
W

P
Z[n]

)
.

It follows immediately that

I(S; U1, U2, . . . , UM ) = I(S; Ŝ, U1, U2, . . . , UM )

= I(S; Ŝ) +
M∑

k=1

I(S; Uk|Ŝ, U1, . . . , Uk−1). (33)
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The next goal is to determine the first term in the sum, i.e., I(S; U1|Ŝ). This
term is easily calculated by first replacing Ŝ by a scaled version Ŝ′ = MS[n] +∑M

k=1 Wk[n] +
√

(σ2
S + σ2

W )/PZ[n]. Using the shorthand

β =
σ2

S + σ2
W

P

σ2
Z

σ2
W

, (34)

we can evaluate

I(S;U1|Ŝ) = I(S; U1|Ŝ′)

=
1
2

log
(M + β)σ2

Sσ2
W

(
(σ2

S + σ2
W )(M2σ2

S + (M + β)σ2
W ) − (Mσ2

S + σ2
W )2

)
(M + β − 1)σ2

Sσ4
W (M2σ2

S + (M + β)σ2
W )

=
1
2

log
(M + β)σ2

Sσ2
W ((M2 − M + β)σ2

Sσ2
W + Mσ4

W )
(M + β − 1)σ2

Sσ4
W (M2σ2

S + (M + β)σ2
W )

=
1
2

log
M3σ2

S + M2((β − 1)σ2
S + σ2

W ) + M((β − 1)σ2
S + βσ2

W ) + β2σ2
S

M3σ2
S + M2((β − 1)σ2

S + σ2
W ) + M(2β − 1)σ2

W + β(β − 1)σ2
W

, (35)

and hence, as M → ∞,

I(S; U1|Ŝ) → 0. (36)

Note that this convergence is very rapid: the coefficients of both M3 and M2 are
the same in the numerator and the denominator. A similar argument establishes
that

I(S;Uk|Ŝ, U1, U2, . . . , Uk−1) → 0, (37)

as M → ∞, hence

I(S; U1, U2, . . . , UM ) → I(S; Ŝ), (38)

hence condition (27) is satisfied in the limit as M → ∞.

This short argument immediately reveals a class of extensions of the Gaussian
example for which the conditions of Theorem 4 are also achievable, as follows:

Example 6 (Simple extension of Gaussian case). Suppose that the source S in
Figure 2 is still Gaussian, that the observation noises Wk satisfy

M∑
k=1

Wk ∼ N (0, Mσ2
W ), (39)

i.e., the sum of the observation noises is Gaussian and its variance grows linearly
in the number of sensors M , and finally that the variance of W (see Figure 2)
vanishes in comparison to the signal. Then, the same asymptotic behavior is
observed.

Remark 4. This example is particularly interesting because only the sum of the
observation noises has to be Gaussian: by the central limit theorem, this con-
dition is satisfied in many practical cases as the number of sensors becomes
large.
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General Coding Paradigm. In the Gaussian case, the performance of the
scheme of Theorem 1 cannot be argued to be optimal. Nevertheless, it is con-
siderably superior to the performance of separate source and channel coding: In
the latter, the distortion (as a function of the number of sensors) only decays
like 1/ log M , while in the former, it decays like 1/M . Hence, even at relatively
small M , the joint source-channel coding approach of Theorem 1 outperforms
the separate source and channel coding.

This behavior can also be observed in terms of the conditions of Theorem 4:
For the Gaussian case, condition (26), i.e.,

− log2 P (s|ŝ) = d1(s − ŝ)2 + d0(s), (40)

was shown to be satisfied (for any M), while condition (27) was evaluated in
(35) to be

I(S; U1, U2, . . . , UM )

= I(S; Ŝ) +
1
2

log
M3σ2

S + M2 . . .

M3σ2
S + M2 . . .

+ . . . . (41)

This converges rapidly as M tends to infinity, and condition (27) is asymptoti-
cally satisfied.

These observations propose an alternative coding paradigm for sensor
networks with a topology according to Figure 1, namely to code in such a way
as to approach the conditions of Theorem 4 as closely as possible:

Coding Paradigm. The goal of the coding scheme for sensor networks
with a topology according to Figure 1 is to approach

d(s, ŝ) = −c2 log2 P (s|ŝ) + d0(s) (42)
I(S; U1, U2, . . . , UM ) = I(S; Ŝ), (43)

as closely as possible.

Remark 5. Note that neither the above coding paradigm nor the separation-
based coding paradigm can be shown to lead to optimal performance in general
sensor networks with a topology according to Figure 1. Recall that the optimal
performance for the general case of Figure 1 is not known to date.

In our coding paradigm, the precise meaning of approaching the formulae
of Theorem 4 “as closely as possible” is currently under investigation. For the
Gaussian case studied in this paper, one such approaching behavior is achieved
by the strategy of Theorem 1, as shown in Equation (41).

5 Communication between the Sensors

In the sensor network topology of Figure 1, the sensors can only communicate to
the destination; they cannot communicate with each other. An interesting vari-
ation on the consideration of this paper is to allow the sensors to communicate
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with each other. Our arguments can be used to obtain directly the following
statement:

Theorem 5 (communication between the sensors). Consider the sensor
network of Figure 1, but allow now for communication between the sensors. If
in this revised sensor network, the code (F1, F2, . . . , FM , G) satisfies the cost
constraint Eρ(X1, X2, . . . , XM ) ≤ Γ , and

d(s, ŝ) = −c2 log2 P (s|ŝ) + d0(s) (44)
I(S; U1, U2, . . . , UM ) = I(S; Ŝ), (45)

then it performs optimally.

Proof. This follows again by the idealization used to prove Theorem 4: This
idealization does include communication between the sensors. ��

Remark 6. For the general case involving communication between the sensors,
we cannot compare to the separation-based code design: Its performance it un-
known to date. However, it must be expected to perform suboptimally, in line
with the arguments discussed above.

Remark 7. While in general, the possibility of the sensors to communicate with
each other may be expected to enhance the performance, Theorem 5 establishes
that for all sensor networks that satisfy Theorem 4, communication between
the sensors does not improve the performance. This includes in particular our
Gaussian example (Example 1). To emphasize the point, suppose that in the
Gaussian example, each sensor is linked to every other sensor by an ideal cable.
Then, not only can the sensors apply a much more efficient compression, but
they can also act like a multiple-antenna transmitter, thus harvesting gains in
capacity. Do we get a better performance than without the ideal cables between
the sensors? Theorem 5 establishes that the answer is negative (asymptotically as
the number of sensors M → ∞): The uncoded transmission scheme of Theorem
1 achieves just the same performance. In other words, in this case, there is no
penalty for the fact that the sensors are distributed, rather than joint.

6 Conclusions

In this paper, we analyzed a particular sensor network topology. We first derived
the performance of a coding scheme designed according to the source-channel
separation principle. For the considered Gaussian example, for instance, it was
shown that the distortion decays like 1/ log M , where M is the total number
of sensors. Thereafter, we considered joint source-channel coding. The optimal
performance and coding scheme is not known in general. We proposed an alter-
native coding paradigm and derived a class of sensor networks for which codes
designed according to our paradigm achieve optimal performance. For the con-
sidered Gaussian example, it was shown that the distortion for a code according
to our paradigm decays like 1/M , i.e., considerably better than the separation-
based scheme.
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A Review: Point-to-Point Source-Channel
Communication

In this section, we provide a brief review of the information-theoretic results for
the point-to-point source-channel communication system, illustrated in Figure
3. The source is defined by a source distribution PS(s) and a distortion measure
d(s, ŝ). The channel is defined by a conditional distribution PY |X(y|x) and an
input cost function ρ(x). For the purpose of this brief review, we suppose that
the encoder F maps a sequence of n source symbols onto a sequence of n chan-
nel input symbols. We also suppose that the decoder is synchronized with the
encoder, and maps a sequence of n channel output symbols onto a sequence of
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Source �S
F �X

Channel �Y
G �Ŝ

Destination

Fig. 3. The general point-to-point source-channel communication problem.

n source reconstruction symbols. The goal of the code (F, G) is to produce a
minimum distortion,

∆ = Ed
(
Sn, Ŝn

)
, (46)

using, simultaneously, a minimum power (or more generally, cost) on the channel,

Γ = Eρ(Xn). (47)

The key problem of source-channel communication is to determine the opti-
mal cost-distortion pairs (Γ, ∆). We consider this problem in the information-
theoretic sense, i.e., we are interested in the optimum irrespective of the coding
complexity and delay.

Shannon’s separation theorem determines the optimal trade-off between cost
and distortion by the condition

R(∆) = C(Γ ). (48)

For a more detailed treatment, see e.g. [5, Ch. 1]. By the operational meaning
of the rate-distortion and capacity-cost function, this simultaneously furnishes a
coding paradigm, i.e., a way to implement the optimal coding (F, G). Hence, the
communication system is optimal if it satisfies a rate-matching condition: the
minimum rate for the source compression (the rate-distortion function) must be
equal to the maximum rate for the channel code (the capacity-cost function).

Recently, an alternative perspective has been presented [5,6,7]. The optimal
trade-off satisfies

ρ(xn) = c1D(PY n|xn ||PY n) + ρ0 (49)
d(sn, ŝn) = −c2 log2 PSn|Ŝn + d0(sn) (50)

I(Sn; Ŝn) = I(Xn; Y n), (51)

where c1 ≥ 0, c2 ≥ 0 and ρ0 are constants, d0(s) is an arbitrary function of
s, and D(·||·) denotes the Kullback-Leibler distance, see e.g. [4]. Hence, the
communication system is optimal if it satisfies a measure-matching condition: the
probability measures of the source and the channel and the cost and distortion
measure must be matched in the right way by the coding system.

In this paper, we extend both these perspectives to the case of the con-
sidered sensor network. Previously, we have also applied our measure-matching
perspective to obtain capacity results for relay networks [9,8].



On Rate-Constrained Estimation in Unreliable
Sensor Networks�

Prakash Ishwar1, Rohit Puri1, S. Sandeep Pradhan2, and
Kannan Ramchandran1

1 Department of Electrical Engineering and Computer Sciences,
University of California, Berkeley, CA 94720, USA.
{ishwar, rpuri, kannanr}@eecs.berkeley.edu

2 Department of Electrical Engineering and Computer Science,
University of Michigan, Ann Arbor, MI 48103, USA.

pradhanv@eecs.umich.edu

Abstract. We study a network of non-collaborating sensors that make
noisy measurements of some physical process X and communicate their
readings to a central processing unit. Limited power resources of the
sensors severely restrict communication rates. Sensors and their com-
munication links are both subject to failure; however, the central unit
is guaranteed to receive data from a minimum fraction of the sensors,
say k out of n sensors. The goal of the central unit is to optimally es-
timate X from the received transmissions under a specified distortion
metric. In this work, we derive an information-theoretically achievable
rate-distortion region for this network under symmetric sensor measure-
ment statistics.
When all processes are jointly Gaussian and independent, and we have a
squared-error distortion metric, the proposed distributed encoding and
estimation framework has the following interesting optimality property:
when any k out of n rate-R bits/sec sensor transmissions are received,
the central unit’s estimation quality matches the best estimation quality
that can be achieved from a completely reliable network of k sensors, each
transmitting at rate R. Furthermore, when more than k out of the n sen-
sor transmissions are received, the estimation quality strictly improves.
When the network has clusters of collaborating sensors should clusters
compress their raw measurements or should they first try to estimate
the source from their measurements and compress the estimates instead.
For some interesting cases, we show that there is no loss of performance
in the distributed compression of local estimates over the distributed
compression of raw data in a rate-distortion sense, i.e., encoding the
local sufficient statistics is good enough.
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has arisen the need to develop a fundamental understanding of the performance
bounds for different signal processing tasks (such as estimation, detection, and
classification) under a distributed regime for sensing, communicating, and pro-
cessing. More specifically, while the classical signal processing literature has a
mature knowledge-base on the problems of estimation and detection [1], the
distributed dense sensor network setting imposes additional constraints. These
include (i) bandwidth (due to low power requirements), (ii) distributed process-
ing (due to prohibitive inter-sensor communication costs), and (iii) robustness
requirements (due to the wireless transmission channel).

This paper addresses the estimation problem under these relevant con-
straints with the goal of providing fundamental information-theoretic perfor-
mance bounds for an important class of estimation problems. In our problem
formulation, we translate the three sensor network requirements listed above
into the specific constraints of (i) bit-rate, (ii) fully distributed processing of the
sensors, and (iii) a packet-erasure communication model respectively.

Figure 1 depicts a mathematical abstraction of a sensor network consisting
of individual sensors that make synchronous, correlated, noisy measurements of
some physical process X (e.g., temperature). Individual sensors are typically
lightweight devices that have very limited battery power. Inter-sensor communi-
cation has heavy power and protocol overhead that strongly discourages informa-
tion exchange between sensors. The goal is to communicate sensor measurements
to a central query in a manner that allows the central unit to form the best pos-
sible estimate of the physical process with respect to a specified (distortion)
metric of estimation quality. Note that the central unit is only a logical entity
and can also be one of the other sensors which acts as a “cluster-head” with
different sensors taking turns.

The wireless communication links from the sensors to the central processing
unit are often through multiple hops that are time-varying and characterized
by deep fades. Furthermore, the availability of only limited transmission power
severely constrains sensor communication rates. Motivated by this, in this work,
the effective communication links from individual sensors to the central unit are
modeled as independent, discrete, rate-constrained channels that are subject to
erasures. The erasure pattern is assumed to remain fixed over some large block
length of sensor measurements. We invoke a rate-constrained communication
model in keeping with the existing base of digital communication architectures1.

Prior work on information-theoretic aspects of this sensor network has fo-
cused exclusively on the case when all sensors and their effective communication
links to the central decoding unit are functional [3]. In [3], Oohama provides
a complete characterization of the rate-distortion region when all sensors and
their communication links are reliable, and when the source and measurement

1 Note that in some scenarios where multihop communication is not needed, and when
the physical process, the communication channel, and the distortion measure are sta-
tistically “matched” to one another [2] then an uncoded “analog” transmission might
be desirable if distributed synchronization of these sensor signals can be orchestrated
at the physical layer.
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processes are independent across sensors and time and are Gaussian distributed.
However, in most practical scenarios, the sensor nodes and their communication
links are subject to failure.

In Section 2, we present an achievable rate-distortion region for the sensor
network when, out of a total of n rate-R sensor transmissions, at least some
k are guaranteed to successfully arrive at the decoding unit while the remain-
ing transmissions are “erased”. Our analysis assumes symmetric sensor mea-
surement noise statistics, i.e., the measurements of all sensors are statistically
indistinguishable. This assumption is motivated by the consideration that in
practice, due to lack of information exchange between sensors, it will be dif-
ficult to estimate the relative measurement noise power of individual sensors.
With this assumption, the reconstruction quality depends only on the number
of sensor transmissions received, and not on which specific subset of sensors
measurements is received. We would like to note, however, that the presented
results and methods of analysis can be extended to handle asymmetric sensor
noise as well. As discussed above, transmission power and bandwidth limitations
impose severe communication rate restrictions on the sensors: it is assumed that
each sensor cannot use more than R bits per noisy sample of the physical pro-
cess being measured. We present an information-theoretic code construction that
enables reconstruction of X with a quality that is commensurate with a total
network rate of kR bits per source sample when some k out of n encoded sensor
transmissions are received. The estimation quality strictly improves when more
transmissions are received.
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Fig. 1. An unreliable sensor network. A noisy version of source X is observed at each
of the n sensors. The noisy observations Y1, ..., Yn, which are statistically indistinguish-
able, are encoded and the encoded indices I1, ..., In transmitted. The network delivers
some m ≥ k indices. The decoder obtains the best possible reconstruction of X from
the received indices.
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There are two important aspects associated with the sensor network of Fig-
ure 1. First, the sensor measurements are correlated, and the power and proto-
col overhead of inter-sensor communication precludes any collaboration between
sensors. Since both the transmission power and bandwidth are at a premium, ef-
ficient compression is a necessity. This motivates the development of algorithms
that provide efficient distributed compression. The problem of distributed com-
pression was first studied within an information-theoretic framework by Slepian
and Wolf for lossless distributed compression [4]. The second important aspect
associated with the sensor network is that only some k out of the n sensor read-
ings are guaranteed to be received by the central unit. This implies an inherent
uncertainty at the sensor encoders as to which measurements will be received by
the central unit. The decoder, however, knows which sensor transmissions were
successfully received and which got “erased”. This can be interpreted as side
information known only to the decoder but not to the encoders. The encoders,
however, do know the network reliability in terms of the number of transmis-
sions that are guaranteed to reach the decoder. Thus the encoders have access
to the “statistics” of the side information process but not its particular realiza-
tion. This observation provides a link to the theory of source coding with side
information at the decoder studied by Wyner and Ziv in [5] where the statistics
of the side information is available to the source encoder but the actual real-
ization is not. In some interesting cases (e.g., for jointly Gaussian statistics),
there is no loss of performance if the side-information is available at only one
end (the receiver). Constructive algorithms using error control codes, inspired
by information-theoretic random binning (hashing) ideas in [4,5], have been de-
veloped recently in [6,7].

Central to the problems of distributed compression of correlated sources and
source coding with side information at the decoder is the notion of random
binning [4,5]. The concept of random binning involves each encoder sending
an index for a list of messages (a bin) rather than a unique index for each
message. This reduces the rate of transmission. If the bin size is small enough, it
is possible to construct message lists for each encoder in a manner that allows the
decoder to disambiguate the transmitted messages from the list using the side
information available to it. The construction of these bins relies only on the joint
statistics of the correlated messages that the encoders need to communicate to
the central decoding unit. To further develop intuition for the problem at hand,
suppose that the encoder alphabet sizes are all finite, the sensor measurements
are symmetrically correlated, and the total rate available to the network as a
whole equals the joint entropy [8] of any k noisy observations. In this case,
a straightforward application of the Slepian-Wolf coding theorem for multiple
sources [8] shows that if the total rate is split equally amongst all n sensors,
then with the reception of any k transmissions, the decoder can reconstruct the
corresponding noisy observations perfectly (also see [9]). This shows that it is
possible to achieve the same performance in the unreliable case as when the
encoders know in advance which specific k sensor transmissions will reach the
decoder.



182 P. Ishwar et al.

In Section 3 we specialize the achievability results of Section 2 to the Gaussian
setting. This reveals an interesting optimality property of the proposed robust,
distributed encoding and estimation framework: When any k out of n unreliable
sensor transmissions are received, the central observer’s estimation quality can
be as good as the best reconstruction quality that can be achieved by deploying
only k reliable sensors and the central decoding unit is able to receive the encoded
noisy observations from all k sensors. Furthermore, when more than k out of the
n sensor transmissions are received, the estimation quality strictly improves.

Section 4 discusses an important question associated with distributed, rate-
constrained estimation: if sensors could collaborate in small local clusters, should
they compress their raw measurements or should they first try to estimate the
source from their measurements and compress the estimates instead. We show,
under suitable conditions, that distributed compression of local estimates is op-
timal.

2 Problem Set-Up and Main Result

Random quantities are denoted by capital letters while their specific realiza-
tions are denoted by small letters. Let {X(t)}∞

t=1 be an i.i.d. sequence of source
symbols and Y1(t), ..., Yn(t) the noisy measurements of the n sensors at time
t. The noisy sensor measurements take values in a common finite alphabet Y
and are assumed to be symmetrically correlated conditioned on the source val-
ues2. Let {Y(t)}∞

t=1 be an i.i.d. sequence of noisy sensor measurements where
Y(t) := (Y1(t), ..., Yn(t)). Let

F
(l)
i : Y l −→ I2lR ,

be the rate-R encoding function for the ith sensor (i = 1, . . . , n) for block-length
l, where Im := {1, ..., m} and Y l is the l-fold Cartesian product of the observation
alphabet Y. In other words, sensor observations are encoded in blocks of length
l at a time by each sensor. Every block of observations is mapped to an index in
the set {1, . . . , 2lR}. The encoding rate is therefore R bits per sample. Let X̂ be
the reconstruction alphabet and let

G(l)
m : Im

2lR −→ X̂ l

be the decoding function when measurements from m ≥ k sensors are received
by the central observer. Here, X̂(l) := X̂(1), ..., X̂(l). In other words, the decoder
at the central unit maps a set of m ≥ k indices it receives to a reconstruction
vector of length l. Let d : X × X̂ −→ IR+ be a bounded distortion metric (i.e.,
d(x, x̂) ≤ dmax < ∞ for all (x, x̂) ∈ X × X̂ ). The distortion metric on X l × X̂ l is
defined as d(l)(x(l), x̂(l)) := 1

l

∑l
t=1 d(x(t), x̂(t)).

2 All subsets of random variables of the same cardinality have the same joint condi-
tional mass function.
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Definition 1. A rate-distortion tuple (R, Dk, ..., Dn) is said to be achievable
if for every ε > 0 there exists a sufficiently long block length l(ε) and rate-R
encoders {F

(l)
i }n

i=1 and decoders {G
(l)
m }n

m=k such that

E
[

d(l)
(

X(l), G(l)
m

(

F
(l)
i1

(Y (l)
i1

), ..., F (l)
im

(Y (l)
im

)
))]

≤ Dm + ε,

for all k ≤ m ≤ n.

Here, E denotes the expectation operator. The expected distortion depends only
on m, and not on the specific values of i1, ..., im due to symmetric observation
statistics. In plain words, a rate-distortion tuple is achievable if for arbitrarily
stringent tolerance specifications ε there exist rate-R encoders and decoders for
which the expected estimation quality at the reception of m sensor readings is
within ε of Dm, for all m = k, . . . , n.

Conditioned on Y, let U1, ..., Un be independent random variables taking
values in a common finite alphabet U with

pU|Y(u1, ..., un|y1, ..., yn) :=
n∏

i=1

pU |Y (ui|yi), (1)

where U := (U1, ..., Un). The random variables Ui may be thought of as arising
from a rate-distortion quantization of Yi. Define

R∗
k(pU|Y) :=

1
k

[

H(U1, ..., Uk) −
k∑

i=1

H(Ui|Yi)

]

, (2)

gm : Um −→ X̂ , k ≤ m ≤ n, and

D∗
m(pU|Y, gm) := E [d(X, gm(Ui1 , ..., Uim))] . (3)

Due to the symmetry of the underlying probability distributions, H(Ui|Yi) is the
same for all i and the expected distortion in (3) only depends on m, gm, and
pU|Y and not on the specific values of i1, ..., im. The main result of this paper is
contained in the following theorem whose proof is outlined in Section 4.

Theorem 1. If R > R∗
k(pU|Y) and Dm ≥ D∗

m(pU|Y, gm) for all m ≥ k then
the rate distortion tuple (R, Dk, ..., Dn) is achievable.

The above theorem describes the estimation quality that can be achieved at
the central processing unit for a given bit budget. In the above description,
the dependence of estimation quality on the bit-budget is expressed in terms
of the quantization strategy (governed by pU|Y) and the estimation algorithm
governed by {gm}n

m=k. By varying the quantization and estimation strategies,
one can trade off the required rate R and estimation quality {Dm}n

m=k.
Figure 2 shows the detailed structure of sensor encoders and the central

decoder that can asymptotically achieve the rate-distortion region of Theorem 1
for long block lengths. The encoders have two parts. The first stage is a rate R′,
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block-length l, rate-distortion quantizer matched to the statistics of the sensor
measurements. The second stage involves a random binning that exploits the
correlation between the quantized observations across different sensors to get a
rebate of R′ − R bits per sample. The decoder first reconstructs the quantized
sensor observations from the bin indices of different sensors and then forms the
best estimate of the physical process of interest.
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Fig. 2. Structure of sensor encoders: (a) and the central observer decoder: (b) that
can achieve the rate-distortion performance of Theorem 1. The encoder of each sen-
sor consists of a rate R

′
quantizer, for block length l, followed by a rate R random

binning function. The central observer first decodes the received indices to intermedi-
ate representations, of length l, and then forms the best estimate of the source. Here,
m ≥ k.

3 The Gaussian Sensor Network

The result of the previous section can be extended to continuous alphabet sources
– with differential entropy [8] replacing discrete entropy in all expressions –
using techniques similar to those used in [10]. In this section, we specialize our
results to the setting described in [3]: {X(t)}∞

t=1 ∼ N (0, σ2
X) is an i.i.d. Gaussian

source and Yi(t) = X(t) + Ni(t), ∀i ∈ In. The observation noise processes Ni(t)
are independent of each other and the source process. Across time, the noise
processes are i.i.d., zero-mean, and Gaussian distributed with variance σ2

N . With
this setup note that the noisy sensor observations are conditionally independent
and symmetrically correlated given the source samples. Estimation quality is
measured by mean squared error, i.e., d(x, x̂) = (x − x̂)2. Our problem differs
from the one considered by Oohama in [3] in the following important aspect: In
[3], the transmissions from all sensors are assumed to be available to the central
observer; in our problem only some k out of n transmissions are guaranteed to
be available.

Let Ui(t) := Yi(t) + qi(t) for each sensor i and time t where {qi(t)}∞
t=1 is

a zero-mean, i.i.d. Gaussian quantization noise process for sensor i with com-
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mon variance σ2
q . Hence (we refer the reader to [8] for expressions of joint and

conditional differential entropies of Gaussian random variables),

k∑

i=1

h(Ui|Yi) =
k

2
log2(2πe σ2

N DNR), (4)

where DNR is the Distortion to Noise Ratio given by σ2
q/σ2

N . The eigenvalues of
the correlation matrix of U1, . . . , Uk can be shown to be σ2

N (1+DNR+ k ·SNR)
with multiplicity 1 and σ2

N (1 + DNR) with multiplicity (k − 1), where σ2
X/σ2

N is
the Signal to Noise Ratio (SNR). Hence,

h(U1, . . . , Uk) =
k

2
log2

[

2πe σ2
N

(

1 +
k · SNR
1 + DNR

) 1
k

(

1 +
1

DNR

)]

.

Using these expressions in (2), yields

R∗
k =

1
2

log2

[(

1 +
k · SNR
1 + DNR

) 1
k

(

1 +
1

DNR

)]

. (5)

On the reception of any m ≥ k transmissions, the central observer first decodes
the appropriate set of quantized sensor observations u

(l)
i1

...u
(l)
im

and then com-
putes the minimum mean squared error (MMSE) estimate of X(l). The MMSE
estimate is the conditional mean of the posterior distribution of X(l) given the
quantized observations [1]. Since the source, observation noise, and quantization
noise processes are independent and Gaussian, the MMSE estimate is a linear
function of the quantized observations [1]:

x̂(l)
m =

SNR
1 + DNR + m · SNR

m∑

j=1

u
(l)
ij

.

The optimal mean square error for this estimate is given by

D∗
m =

σ2
X(1 + DNR)

1 + DNR + m · SNR
. (6)

Suppose that k = nα and m = nβ where 0 < α ≤ β ≤ 1. Here, α and β
respectively represent the fraction of guaranteed and the fraction of received
sensor measurements. For fixed α and β as n −→ ∞, the asymptotic rate reduces
to 1

2 log2
(
1 + 1

DNR

)
. The distortion with the reception of a fraction β of the

sensor observations decays as σ2
X(1+DNR)

nβ which is similar, up to proportionality
constants, to the decay of distortion when the central decoder has direct access
to all the uncoded sensor measurements.

In [3] Oohama proves the following result: if there are there exactly k sensors,
all their transmissions reach the central unit, and the total rate available to the
k-sensor network is kR∗

k (given by (5)), then the best estimation quality that can
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be achieved is D∗
k (given by (6)) under the Gaussian statistics assumptions of this

section. However, R∗
k and D∗

k are respectively the rate and distortion achievable
when n ≥ k sensors are used and it is not a priori known exactly which of
the k sensor readings will be available to the central unit. Hence, regardless
of which k sensor observations reach the decoding unit, the performance is as
good as that of k completely reliable transmissions. Thus we get robustness to
erasures without any loss in performance. Furthermore, the estimation quality
strictly improves with the reception of more sensor observations: D∗

m is a strictly
decreasing function of m; see (6). The source of this optimality property can be
traced to the structure of the encoders in [3]. The encoder and decoder structures
are further elaborated in Section 6.1.

4 Compressing Raw Data versus Local Estimates

In some scenarios, small clusters of sensors have the communication resources
to locally collaborate. In other situations, a sensor node may consist of a sensor-
array or sensors with multiple modalities (acoustic, seismic, infra red, etc.). Both
these scenarios can be captured by allowing vector-valued sensor data {Yi}n

i=1 in
the model of Figure 1 (also see Figure 3) . Individual components of the vector-
valued observations would then represent the scalar measurements of collabo-
rating sensors in each cluster or the component measurements in sensor-arrays
or the measurements corresponding to different modalities in multi-modal sen-
sors. A natural question that arises in this context is: how should these vec-
tor measurements be processed and encoded by the sensor-clusters/multi-modal
sensors to be rate-distortion optimal. The approach in the scalar case would
suggest doing a rate-distortion quantization of the vector measurements fol-
lowed by random binning that exploits the correlation between measurements
across sensor-clusters. When all associated processes are jointly Gaussian, rate-
distortion quantization amounts to doing a reverse water-filling on the locally
decorrelated components of the measurements, i.e., a Karhunen-Loève transform
followed by reverse water-pouring [8].

A different approach would be to first form local estimates Ti(Yi) of X at
each cluster and then compress the estimates in a distributed manner. Under
what conditions will there be no loss in (rate-distortion) performance? There
are two possible sources of loss. First, compression of {Ti}n

i=1 might be sub-
optimal even when infinite rate is available, i.e., the best estimate of X based
on {Ti(Yi)}n

i=1 is not the same as the best estimate based on {Yi}n
i=1. The

availability of finite rate is another potential source of loss. However,

Proposition 1. For MSE as the distortion metric, if there is no performance
loss in encoding local statistics at high (infinite) rates, i.e., if

Z := E [X|Y1, . . . ,Yn] = h (T1(Y1), . . . , Tn(Yn)) , (7)

for some function h() of local statistics, then there will be no performance loss
for any finite rate R.
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Proposition 1, proved in the Appendix, is a generalization of a result due to
Sakrison in [11], where it was shown that for a point-to-point communication
scenario, i.e., when there is only one sensor, estimation (forming T1(Y1) :=
E[X|Y1]) followed by quantization is optimal in a rate-distortion sense. This is
a consequence of the orthogonality principle3 and the structure of optimal, fixed-
rate, vector quantizers. Note that (7) and the orthogonality principle together
imply that h(T1, . . . , Tn) = E [X|T1(Y1), . . . , Tn(Yn)] (cf. Appendix for details).
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Fig. 3. Distributed compression of raw data (left) versus distributed compression of
local estimates (right).

Thus, under the assumption of no performance loss at high rates given by
(7) the problem of compressing correlated, vector-valued observations reduces to
a problem of compressing local, scalar-valued statistics Ti. These ideas can be
illustrated by considering a simple vector-version of the Gaussian CEO problem
studied by Oohama in [3]. Here, the source X is a discrete, zero-mean, Gaus-
sian random process. The noise processes are assumed to be i.i.d., zero-mean,
and Gaussian across all sensor-clusters and across all components in each clus-
ter. The local and global observation statistics in this example have the same
structure. Hence, intuitively, it is clear that the form of the local and global
MMSE estimators will also be the same. In fact, all (local as well as global)
MMSE estimators in this example will compute the simple average of the con-
stituent observations followed by scaling. From this it follows that the global
MMSE estimate can be expressed as a function of local MMSE estimates so that
condition (7) holds. Hence, there will be no loss in rate-distortion performance
in first forming local averages at each sensor-cluster. The vector-version of the
CEO problem is thereby reduced to the regular scalar Gaussian CEO problem
for which the optimal distributed compression encoder structure is known (see
Section 6.1 and [3]). In general, we have the following result which is proved in
the Appendix.

Proposition 2. If (X,Y1, . . . ,Yn) are jointly Gaussian and Y1, . . . ,Yn are
conditionally independent given X then (7) holds with Ti(Yi) := E[X|Yi], ∀i.
3 The MMSE estimation error (X−E[X|data]) is orthogonal to any measurable statis-

tic of the data [1].
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Thus, there will be no loss in compressing local estimates even when clusters
have arbitrary local noise correlation structure as long as the noise processes are
independent across clusters and everything is jointly Gaussian.

How do things change if condition (7) does not hold? In other words, what
if the clusters went ahead and formed local estimates even when doing so is not
optimal? Clearly, there would be additional distortion due to the fact that the
best MMSE estimate of X based on all data is not the same as the best estimate
based on local statistics. The process of forming local estimates looses some
information that is useful for estimating X. However, will there be additional
rate-dependent performance loss due to (finite-rate) compression? Intuitively,
although the process of compression looses information with respect to the esti-
mation of source X, the local estimates should be easier to encode for the same
rate provided that the statistics are “well-behaved”. The local estimates are in
some sense “less random” than the raw data and should be easier to compress.
Hence, we strongly believe that finite-rate compression would not introduce any
more performance loss than that at high (infinite) rates, for well-behaved local
estimates, i.e., there will be no rate-dependent excess loss. For jointly Gaussian
statistics, and linear local estimators, this result can be shown to be true. The
proof is similar to that of Proposition 1 with the additional observation that
both the global MMSE estimate based on raw data and the global MMSE es-
timate based on local linear estimates are Gaussian and the latter is easier to
compress because it has smaller variance. Whenever there is no rate-dependent
excess loss, the task of designing distributed estimation algorithms for sensor net-
works with finite rate constraints can be decoupled into two tasks: (i) designing
good distributed estimation algorithms assuming infinite rates and (ii) designing
good distributed compression algorithms. The decoupling is in the sense that the
second task will not introduce any rate-dependent excess distortion.

5 Concluding Remarks

This work represents a step towards developing a fundamental understanding
of the performance limits for estimation in a distributed, rate-constrained, un-
reliable environment. We have provided an information-theoretically achievable
rate-distortion region for the sensor network setup of Figure 1. For a Gaussian
sensor network, we have shown how robustness can be incorporated without
sacrificing rate-distortion performance. Our ongoing work includes evaluating
fundamental estimation performance limits for increasingly complex source and
sensor statistics and channel models. More realistic models for sensor networks
should incorporate correlation between sensor noise processes and also have the
ability to deal with a vector-valued source process having general spatio-temporal
dependencies. We are also looking at practical code constructions to be used in
sensor networks for robust, distributed estimation. This involves constructing
quantizers for capturing independent signal components to mimic the perfor-
mance of independent random codes. This can be done using quantizers that are
shifted versions of one another (see [7] for details). A structured way of realizing
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independent binning of multiple codebooks presented in this paper is by using
algebraic trellis and lattice codes along the lines of [7,12]. The key idea is to
construct “linearly independent” partitions of different codebooks under consid-
eration. The algebraic structure of trellis and lattice codes is amenable to such
partitions. Ongoing work involves finding computationally efficient constructions
for such partitions, and fast algorithms for doing index assignment.
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6 Appendix

6.1 Proof of Theorem 1

We now present the key ideas in the proof of the theorem. For clarity, we shall
only present a sketch of the proof and omit technical details. Consider a sym-
metric distribution pU|Y of the form given by (1) and decoders {gm}n

m=k. Let
R′ ≥ R.
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for sensor i
Bin 1 Bin 2 2lR

lblock length = 

Random code . . . Bin 

2l(R − R)

codewords2lR’

’ codewords in each bin

Fig. 4. Random code construction: n independent random codebooks of block length l
are constructed each containing 2lR′

codewords. Each codebook is randomly partitioned
into 2lR bins each with approximately 2l(R′−R) codewords.

Random Coding: For each sensor i ∈ In, generate a codebook Ci containing
2lR′

codewords of blocklength l. The codewords of Ci are generated by draw-
ing i.i.d. symbols from the marginal distribution pUi The rate R′ has to be
large enough to ensure that there exists at least one codeword in Ci that is
jointly (strongly) typical [8,13] with the sensor observation y

(l)
i Using proper-

ties of strongly typical sequences, the probability that there exists a codeword
which is jointly typical with y

(l)
i , to the first order with respect to l in the ex-

ponent, is 2−lI(Yi;Ui) = 2lH(Yi,Ui)

2lH(Yi)2lH(Ui)
. Intuitively, the desired probability will be

close to one if the expected number of jointly typical codewords: 2lR′
2−lI(Yi;Ui)

is exponentially large. This can be ensured if

R′ > I(Yi; Ui). (8)

Note: since distributions are symmetric,

R′ > I(Yi;Ui) =
1
k

k∑

j=1

I(Yj ; Uj) =
1
k

k∑

j=1

[H(Uj) − H(Uj |Yj)] , (9)

for all i = 1, . . . , n.
Random Binning: For each sensor, construct 2lR bins, each having approxi-
mately 2l(R′−R) codewords (see Figure 4). The codewords are drawn indepen-
dently, uniformly and with replacement from the corresponding codebook. Ran-
dom binning is a technique that enables each encoder to transmit data at the
reduced rate R by leveraging the fact that the quantized noisy observations of
all sensors are correlated and the decoder will have access to k − 1 additional
correlated sensor observations.
Encoding: Given a noisy sensor observation y

(l)
i find a codeword u

(l)
i from Ci

that is jointly typical with it. If (8) is satisfied, there exists at least one such
codeword. The index Ii of the bin containing the codeword u

(l)
i is transmitted.

Decoding: Let the decoder receive some k bin indices Ii1 , ..., Iik
. The decoder

searches through the corresponding bins to identify a k tuple of codewords that
is jointly typical. If (8) holds, there is at least one such k tuple, namely the one
that was transmitted. The size of each bin should be small enough so that the
probability of finding another jointly typical k tuple is very small. There are
2kl(R′−R) combinations of k-tuples of codewords from k bins. The probability
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that a random k tuple of codewords is jointly typical is, to the first order in
the exponent w.r.t. l, given by p ≈ 2lH(U1,...,Uk)

2lH(U1)2lH(U2)...2lH(Uk) . Intuitively, the desired
probability goes to zero if the expected number of jointly typical k-tuples: p ·
2kl(R′−R) is exponentially small. This can be ensured if the exponent satisfies

k(R′ − R) <
k∑

i=1

H(Ui) − H(U1, . . . , Uk). (10)

Combining (9) and (10) we get the desired result: R > R∗
k (cf. (2)). With these

conditions, the decoder successfully recovers the quantized noisy observations
u

(l)
i1

...u
(l)
ik

with high probability and can optimally estimate the source from them.
If m > k indices are received, the above decoding procedure can be repeat-

edly used on subsets of k indices at a time to recover all m quantized noisy
observations with high probability.

6.2 Proof of Proposition 1

First note that the both X − Z and Z − E[Z|T1, . . . , Tn] are orthogonal to
{Ti}n

i=1. Hence, X − E[Z|T1, . . . , Tn] is also orthogonal to the local statistics
and E[X|T1, . . . , Tn] = E[Z|T1, . . . , Tn] = h(T1, . . . , Tn), where the last equality
follows from (7).

Let X take values in R, Yi take values in Yi and consider l i.i.d. realiza-
tions of the tuple (X,Y1, . . . ,Yn) denoted by X(l), and Y(l)

i for i = 1, . . . , n.
Let Ti : Yi :→ R, i = 1, . . . , n be some measurable maps for which (7) holds.
Let T

(l)
i (Y(l)

i ) denote (Ti(Yi(1)), . . . , Ti(Yi(l)))T . Since the realizations are in-
dependent and (7) holds, we have

Z(l) := E
[

X(l)|Y(l)
1 , . . . ,Y(l)

n

]

= h(l)
(

X(l)|T (l)
1 , . . . , T (l)

n

)

,

where in fact,

Z(l)(j) = E[X(j)|Y1(j), . . . ,Yn(j)] = h(T1(Y1(j)), . . . , Tn(Yn(j))),

for all j = 1, . . . , l. Now consider a set of n rate-R encoders and decoders (dis-
tributed vector-quantizers) of block-length l:

fi : Y l
i −→ I2lR , i = 1, . . . , n,

g : (I2lR)n −→ R
l.

Let the set of reconstruction vectors in R
l be denoted by {v1, . . . ,v2nlR}. We

shall show that if the {fi}’s and g are optimized for yielding the smallest MSE,
then it is necessary that for each sensor i, observations Y(l)

i which map to the
same value of the statistic T

(l)
i , should have the same encoding index. By the

orthogonality principle,

E
∣
∣
∣

∣
∣
∣X(l) − g(F1, . . . , Fn)

∣
∣
∣

∣
∣
∣

2
= E

∣
∣
∣

∣
∣
∣X(l) − Z(l)

∣
∣
∣

∣
∣
∣

2
+ E

∣
∣
∣

∣
∣
∣Z(l) − g(F1, . . . , Fn)

∣
∣
∣

∣
∣
∣

2
.
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The first term on the right-hand side of the last equation does not depend on
the encoders and decoder used. The second term is of the form

E
∣
∣
∣

∣
∣
∣h(l)

(

T
(l)
1 , . . . , T (l)

n

)

− g (F1, . . . , Fn)
∣
∣
∣

∣
∣
∣

2
.

If g is optimal, the reconstruction vectors in {vj}2nlR

j=1 must be all distinct other-
wise one could use additional reconstruction vectors to reduce the MSE without
increasing the rate. Now,

E
∣
∣
∣

∣
∣
∣h(l)

(

T
(l)
1 , . . . , T (l)

n

)

− g (F1, . . . , Fn)
∣
∣
∣

∣
∣
∣

2
=

E

[

E

[∣
∣
∣

∣
∣
∣h(l)

(

T
(l)
1 , . . . , T (l)

n

)

− g (F1, . . . , Fn)
∣
∣
∣

∣
∣
∣

2
∣
∣
∣
∣ T

(l)
1 = t1, . . . , T

(l)
n = tn

]]

.

Let

v(t1, . . . , tn) := arg min
v∈{v1,...,v2nlR }

∣
∣
∣
∣

∣
∣
∣
∣ h(l)(t1, . . . , tn) − v

∣
∣
∣
∣

∣
∣
∣
∣ .

Then it is clear that over the region of space
⊗n

i=1 Y(l)
i where T

(l)
i = ti, i =

1 . . . , n, we must have g(F1, . . . , Fn) = v(t1 . . . , tn) otherwise the MSE will be
larger. Since different indices map to different reconstruction vectors, it follows
that all points of

⊗n
i=1 Y(l)

i for which T
(l)
i (Y(l)

i ) = ti, i = 1 . . . , n, have the same
the n-tuple of encoding indices as was claimed.

6.3 Proof of Proposition 2

First note that E[Yi|X] = E[XYi]
E[X2] . From the conditional independence assump-

tion we have

E[YiYT
j ] = E[E[YiYT

j ]|X] = E[E[Yi|X]E[YT
j |X]] =

E[XYi]E[XYT
j ]

E[X2]
.

The MMSE estimator of X based on all observations has the form
∑n

i=1 aT
i Yi.

The local MMSE estimator of X based on Yi is given by E[X|Yi] =
E[XYT

i ]K−1
i Yi, where Ki := E[YiYT

i ]. From the orthogonality principle and
the conditional independence assumption we obtain for j = 1, . . . , n,

E[XYT
j ] = aT

j Kj +
∑

i�=j

aT
i E[YiYT

j ],

= aT
j Kj + βjE[XYT

j ],

where βj :=
∑

i�=j aT
i E[XYi]/E[X2]. This shows that

aT
j Yj = (1 − βj)E[XYT

j ]K−1
j Yj = (1 − βj)E[X|Yj ]

for all j. Hence, the global MMSE estimate has the form
∑

i(1 − βi)E[X|Yi]
which conforms to (7) as claimed.
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Abstract. Sensor networks provide virtual snapshots of the physical
world via distributed wireless nodes that can sense in different modalities,
such as acoustic and seismic. Classification of objects moving through
the sensor field is an important application that requires collaborative
signal processing (CSP) between nodes. Given the limited resources of
nodes, a key constraint is to exchange the least amount of information
between them to achieve desired performance. Two main forms of CSP
are possible. Data fusion – exchange of low dimensional feature vectors –
is needed between correlated nodes, in general, for optimal performance.
Decision fusion – exchange of likelihood values – is sufficient between in-
dependent nodes. Decision fusion is generally preferable due to its lower
communication and computational burden. We study CSP of multiple
node measurements for classification, each measurement modeled as a
Gaussian (target) signal vector corrupted by additive white Gaussian
noise. The measurements are partitioned into groups. The signal com-
ponents within each group are perfectly correlated whereas they vary
independently between groups. Three classifiers are compared: the opti-
mal maximum-likelihood classifier, a data-averaging classifier that treats
all measurements as correlated, and a decision-fusion classifier that treats
them all as independent. Analytical and numerical results based on real
data are provided to compare the performance of the three CSP classi-
fiers. Our results indicate that the sub-optimal decision fusion classifier,
that is most attractive in the context of sensor networks, is also a robust
choice from a decision-theoretic viewpoint.

1 Introduction

Wireless sensor networks are an emerging technology for monitoring the phys-
ical world with a densely distributed network of wireless nodes [1]. Each node
has limited communication and computation ability and can sense the environ-
ment in a variety of modalities, such as acoustic, seismic, and infra red [1,2,
3]. A wide variety of applications are being envisioned for sensor networks, in-
cluding disaster relief, border monitoring, condition-based machine monitoring,
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and surveillance in battlefield scenarios. Detection and classification of objects
moving through the sensor field is an important task in many envisioned appli-
cations. Exchange of sensor information between different nodes in the vicinity
of the object is necessary for reliable execution of such tasks due to a variety of
reasons, including limited (local) information gathered by each node, variability
in operating conditions, and node failure. Consequently, development of theory
and methods for collaborative signal processing (CSP) of the data collected by
different nodes is a key research area for realizing the vision of sensor networks.

The CSP algorithms have to be developed under the constraints imposed by
the limited communication and computational abilities of the nodes as well as
their finite battery life. A key goal of CSP algorithms in sensor networks is to
exchange the least amount of data between nodes to attain a desired level of
performance. In this paper, with the above goal in mind, we investigate CSP
algorithms for single-target classification based on multiple acoustic measure-
ments at different nodes. The numerical results presented here are based on real
data collected in the DARPA SensIT program.

Some form of region-based processing is attractive in sensor networks in order
to facilitate CSP between nodes and also for efficient routing of information in
applications involving tracking of moving targets [3]. Typically, the nodes in
the network are partitioned into a number of regions and a manager node is
designated within each region to facilitate CSP between the nodes in the region
and for communication of information from one region to another. Single target
classification and tracking generally involves the following steps [3]:

1. Target detection and data collection. A target is detected in a particular
region which becomes the active region. The nodes that detect the target
also collect time series data that may be communicated to the manager node
for classification purposes.

2. Target localization. Target detection information (for example, the time of
closest point of approach and energy detector outputs) from different nodes
is used by the manager node to estimate the location of the target.

3. Target location prediction. Location estimates over a period of time are
used by the manager node to predict target location at future time instants.

4. Creation of new potential active regions. When the target gets close
to exiting the current region, the estimates of predicted target location are
used to put new regions on alert.

5. Determination of new active region. Once the target is detected in
a new region it becomes the new active region. The above four steps are
repeated for target tracking through the sensor field.

In this paper, we are primarily concerned with CSP techniques for combining
the data collected by different nodes for single-target classification within a par-
ticular active region. However, the basic principles apply to distributed decision
making in sensor networks in general.

There are two main forms of information exchange between nodes dictated
by the statistics of measured signals. If two nodes yield correlated measurements,
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data fusion is needed, in general, for optimal performance – exchange of (low-
dimensional) feature vectors that yield sufficient information for desired classi-
fication performance. On the other hand, if two nodes yield independent mea-
surements, decision fusion is sufficient – exchange of likelihood values (scalars)
computed from individual measurements. In general, the measurements would
exhibit a mixture of correlated and independent components and would require a
combination of data and decision fusion between nodes. In the context of sensor
networks, decision fusion is clearly the more attractive choice. First, it imposes
a significantly lower communication burden on the network, compared to data
fusion, since only scalars are transmitted to the manager node [3]. Second, it
also imposes a lower computational burden compared to data fusion since lower
dimensional data has to be jointly processed at the manager node.

In this paper, we investigate the design of CSP classifiers and assess their per-
formance in an idealized abstraction of measurements from multiple nodes. We
consider K = GnG measurements corresponding to a particular event. The K
measurements are split into G groups with nG measurements in each group. The
signal component in the nG measurements in a particular group is identical (per-
fectly correlated), but it varies independently from group to group. We compare
the performance of three classifiers: 1) the optimal maximum-likelihood (ML)
classifier, 2) a sub-optimal (decision-fusion) classifier that treats all the mea-
surements as independent, and 3) a sub-optimal (data-averaging) classifier that
treats all the measurements as perfectly correlated. Our results indicate that the
decision-fusion classifier is remarkably robust to the true statistical correlation
between measurements. Thus, the decision-fusion classifier, that is the most at-
tractive choice in view of the computational and communication constraints, is
also a robust choice from a decision-theoretic viewpoint.

2 CSP Classifiers for Multiple Measurements

We consider Gaussian classifiers which assume that the underlying data has
complex circular Gaussian statistics. The notation x ∼ CN (µ,Σ) means that
E[x] = µ and E[xxH ] = Σ and E[xxT ] = 0 (circular assumption). We first
discuss the classifier structure for a single measurement and then generalize it
to multiple measurements.

2.1 Single Measurement Classifier

Consider M target classes. Let x denote a complex-valued N -dimensional fea-
ture vector corresponding to a detected event. Under hypothesis j = 1, · · · , M
(corresponding to j-th target class), x is modeled as

Hj : x = s + n , j = 1, · · · , M, (1)

where s ∼ CN (µj , Σj) denotes the Gaussian signal component corresponding
to the j-th class, and n ∼ CN (0, I) denotes additive white Gaussian noise. A
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classifier C maps the event feature vector x to one of the target classes. We
assume that all classes are equally likely. Thus, the optimal classifier is the
maximum-likelihood (ML) classifier which takes the form [4]

C(x) = arg max
j∈{1,··· ,M}

pj(x) (2)

where pj(x) denotes the likelihood function for j-th class which takes the fol-
lowing form under the complex Gaussian assumption

pj(x) =
1

πN |Σj + I|e
−(x−µj)H(Σj+I)−1(x−µj). (3)

In this paper, we assume zero-mean signals so that µj = 0 for all j and, thus,
all information about the targets is contained in the covariance matrices Σj . In
practice, Σj has to be estimated from available training data. We assume that
tr(Σj) (signal energy) is the same for all j.

2.2 Multiple Measurement Classifier

Suppose that we have K measurements (in a given modality), {x1, · · · , xK},
from different nodes available to us. We are interested in combining these mea-
surements to achieve improved classification performance. Consider the concate-
nated NK-dimensional feature vector

xcT = [xT
1 , xT

2 , · · · , xT
K ] (4)

which has the same form as (1) under different hypotheses except for the larger
number of dimensions. The noise is still white but the signal correlation matrix
under Hj can be partitioned as

Σc
j =




Σj,11 Σj,12 · · · Σj,1K

Σj,21 Σj,22 · · · Σj,2K

...
. . .

...
...

Σj,K1 Σj,K2 · · · Σj,KK


 (5)

where Σj,kk′ = E[xkxH
k′ ] denotes the cross-covariance between the k-th and k′-

th measurements. The optimal classifier operates on xc and takes the form (2)
with pj(xc) given by (3) by replacing x with xc and Σj with Σc

j .

2.3 A Simple Measurement Model

We now present a model for measurements that is used throughout the paper.
Let K = GnG. Suppose that the signal component of xc can be partitioned into
G groups of nG measurements each as

scT = [sT
1 , · · · , sT

1 , sT
2 , · · · , sT

2 , · · · , sT
G, · · · , sT

G] (6)
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where the signal component of the nG measurements in each group is identical
and it varies independently from group to group. That is, {s1, · · · , sG} are i.i.d.
according to CN (0, Σj) under Hj . The noise measurements, on the other hand,
are independent across all measurements. The above signal model can capture
a range of correlation between measurements. For K = G (nG = 1), all the
measurements have independent signal components (no correlation), whereas
for K = nG (G = 1), all the measurements have identical signal components
(maximum correlation). We consider three classifiers based on the above model.

Optimum Classifier. There are two sources of classification error: background
noise and the inherent statistical variability in the signals captured by Σj ’s. The
optimal classifier performs signal averaging within each group to reduce the noise
variance and statistical averaging over the groups to reduce the inherent signal
variations. The optimum classifier operates on the NG dimensional vector

y =




y1
...

yG


 =




s1
...

sG


+




w1
...

wG


 = s + w (7)

where yi are obtained by averaging the measurements in each group

yi =
1

nG

nG∑
j=1

x(i−1)G+j = si + wi , i = 1, · · · , G. (8)

Note that wi are i.i.d. CN (0, I/nG) due to signal averaging and si are i.i.d.
CN (0, Σj) under Hj . It can be shown that the optimal classifier takes the form

Copt(y1, · · · , yG) = arg min
j=1,··· ,M

lopt,j(y1, · · · , yG) (9)

where the (negative) log-likelihood function lopt,j(y) is given by

lopt,j(y) = log |Σj + I/nG| +
1
G

G∑
i=1

yH
i (Σj + I/nG)−1yi

= log |Σj + I/nG| + tr((Σj + I/nG)−1Σ̂y) (10)

and Σ̂y = 1
G

∑G
i=1 yiy

H
i is the estimated data correlation matrix of {yi}.

It is insightful to consider two limiting cases. First, suppose that K = nG

(G = 1 – perfectly correlated measurements). In the limit of large K

lim
K→∞

lopt,j(y) = log |Σj | + yH
1 Σ−1

j y1 (11)

which shows that noise is completely eliminated and the only remaining source
of error is the inherent statistical variation in the signal. Now, suppose that
K = G (nG = 1 – independent measurements). In the limit of large K

lim
K→∞

lopt,j(y) = log |Σj + I| + tr((Σj + I)−1Σy) (12)
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where Σy = Σm +I under Hm. In this case, all statistical variation in the signal
is removed due to ensemble averaging. However, there is a bias in the estimated
data correlation (relative to Σj) due to noise. Both data averaging (correlated
measurements) and ensemble averaging (uncorrelated measurements) contribute
to improved classifier performance. However, as we will see, ensemble averaging
is more critical in the case of stochastic signals.

Decision-Fusion Classifier. The sub-optimal decision-fusion classifier treats
all measurements as independent:

Cdf (x1, · · · , xK) = arg min
j=1,··· ,M

ldf,j(x1, · · · ,xK)

ldf,j(x) = log |Σj + I| +
1
K

K∑
i=1

xH
i (Σj + I)−1xi

= log |Σj + I| + tr((Σj + I)−1Σ̂x) (13)

where Σ̂x = 1
K

∑K
i=1 xix

H
i is the estimated data correlation matrix of {xi}.

Note that Copt and Cdf are identical for K = G in the measurement model. Note
also from (13) that the M scalars {xH

i (Σj + I)−1xi} for j = 1, · · · , M need to
be transmitted from the K nodes to the manager node. Thus, Cdf imposes a
much smaller communication (and computational) burden on the network since
M � N in general. We consider only soft decision fusion in this paper. Several
other forms, including hard decision fusion, are also possible [5].

Data-Averaging Classifier. The data-averaging classifier treats all measure-
ments as correlated. It operates on the average of all measurements

yda =
1
K

K∑
i=1

xi =
1
G

G∑
i=1

yi = sda + wda (14)

where sda ∼ CN (0,Σj/G) under Hj and wda ∼ CN (0, I/K) in the measure-
ment model. The data-averaging classifier takes the form

Cda(yda) = arg min
j=1,··· ,M

lda,j(yda)

lda,j(yda) = log |Σj + I/K| + yH
da(Σj + I/K)−1yda. (15)

Note that Copt and Cda are identical for K = nG. All K measurements {xi}
have to be communicated to the manager node for the computation of Copt and
Cda. However, the computational burden of Cda is lower than that of Copt.

3 Performance Analysis of the Three Classifiers

We analyze the performance of the three classifiers for M = 2 classes. The analy-
sis for M > 2 is more involved and is the beyond the scope of this paper. Simple
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union bounds can be obtained for M > 2 via the M = 2 analysis presented
here. We also analyze the asymptotic performance in the limit of large number
of independent measurements and also provide an entropy comparison between
data and decision fusion.

We assess the performance in terms of the average probability of (correct)
detection (PD)

PDj = P (lj < lm , ∀m �= j|Hj) , PD =
1
M

M∑
j=1

PDj (16)

and the average probability of false alarm (PFA)

PFAj =
1

M − 1

M∑
k=1,k�=j

P (lj < lm, ∀m �= j|Hk) , PFA =
1
M

M∑
j=1

PFAj . (17)

For M = 2 the above expressions simplify to

PD1 = P (l1 < l2|H1) = 1 − PFA2 , PD2 = P (l2 < l1|H2) = 1 − PFA1(18)
PD = 1 − PFA. (19)

Our analysis is based on a signal model in which the covariance matrices of
different targets are simultaneously diagonalizable. This model is motivated in
the next section and it also simplifies the exposition to gain insight into the
performance of the classifiers.

3.1 Simultaneously Diagonalizable Classes

We assume that all the covariance matrices share the same eigenfunctions

Σj = UΛjU
H , j = 1, · · · , M (20)

where U represents the matrix of common (orthonormal) eigenvectors for all
the classes – the different classes are characterized by the diagonal matrix of
eigenvalues Λj = diag(λj [1], · · · , λj [N ]). One scenario in which this assumption
is approximately valid is when the source signals for different targets can be
modeled as stationary processes over the duration of the detected event. In such
a case, choosing U as a discrete Fourier transform (DFT) matrix would serve as
an approximate set of eigenfunctions [6]. The eigenvalues will then correspond
to samples of the associated power spectral densities (PSD’s). The numerical
results in Section 4 are based on this assumption and rely on experimental data
collected in the SensIT program. Note that given the knowledge of Λj in the
measurement model of Section 2.3, a realization for the signal in the i-th group,
from the j-th class, can be generated as

si = UΛ
1/2
j zi , zi ∼ CN (0, I) , i = 1, · · · , G. (21)

The same zi realization is used in the i-th group and it changes independently
from group to group. We assume the above signal model and analyze the classi-
fiers in the eigen (Fourier) domain so that {Σj} are replaced with {Λj}.
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3.2 Optimal Classifier

The test statistic for the optimal classifier takes the form

lopt,j(y1, · · · , yG) = log |Λ̃j | +
1
G

G∑
i=1

yH
i Λ̃

−1
j yi , Λ̃j = Λj + I/nG (22)

where yi are i.i.d. according to CN (0, Λ̃j). Thus, yi can be representated as

yi = Λ̃
1/2
j zi where {zi} are i.i.d. CN (0, I). Consider the computation of PD1

first. It can be readily shown that under H1

lopt,1 = log |Λ̃1| +
1
G

G∑
i=1

‖zi‖2 , lopt,2 = log |Λ̃2| +
1
G

G∑
i=1

zH
i Λ̃1Λ̃

−1
2 zi. (23)

Thus,

PD1 = P

(
1
G

G∑
i=1

zH
i

[
I − Λ̃1Λ̃

−1
2

]
zi < log |Λ̃2| − log |Λ̃1|

)
(24)

where the quadratic form

1
G

G∑
i=1

zH
i

[
I − Λ̃1Λ̃

−1
2

]
zi =

1
G

G∑
i=1

N∑
n=1

|zi[n]|2
(

λ2[n] − λ1[n]
λ2[n] + 1/nG

)
(25)

is a weighted sum of NG χ2
2 random variables ({|zi[n]|2}) whose density and

distribution functions can be analytically computed but are tedious [7]. Similarly,
under H2

PD2 = P

(
1
G

G∑
i=1

zH
i

[
I − Λ̃2Λ̃

−1
1

]
zi < log |Λ̃1| − log |Λ̃2|

)
. (26)

We note that the PD can be computed in closed form for M = 2, as indicated
above, but we do not provide the explicit expression since it is rather tedious.

3.3 Decision-Fusion Classifier

The test statistic for the decision-fusion classifier takes the form

ldf,j(x1, · · · , xK) = log |Λ̂j | +
1
K

K∑
i=1

xH
i Λ̂

−1
j xi , Λ̂j = Λj + I. (27)

The quadratic form in the test statistic can be expanded as
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1
K

K∑
i=1

xH
i Λ̂

−1
j xi =

1
GnG

G∑
i=1

nG∑
k=1

(si + n(i−1)G+k)HΛ̂
−1
j (si + n(i−1)G+k)

=
1
G

G∑
i=1

[
sH

i Λ̂
−1
j si + 2Re

[
sH

i Λ̂
−1
j wi

]

+
1

nG

nG∑
k=1

nH
(i−1)G+kΛ̂

−1
j n(i−1)G+k

]
(28)

where si and wi are defined in (8) and (21). The density for the above quadratic
form can be computed exactly but here we provide a simple approximation that
yields fairly accurate (but conservative) PD estimates and relates ldf,j to lopt,j .
We make two approximations. First, we replace the wi ∼ CN (0, I/nG) in (28)

with wi ∼ CN (0, I). Second, we replace 1
nG

∑nG

k=1 nH
(i−1)G+kΛ̂

−1
j n(i−1)G+k with

wiΛ̂
−1
j wi, wi ∼ CN (0, I). With the above approximations we have

1
K

K∑
i=1

xH
i Λ̂

−1
j xi ≈ 1

G

G∑
i=1

ŷH
i Λ̂

−1
j ŷi (29)

where ŷi are i.i.d. CN (0, Λ̂j) under Hj . Thus, the PD1 and PD2 for the decision
fusion classifier can be approximated by those of the optimal classifier given in
(24) and (26) by replacing Λ̃j with Λ̂j . In particular, the quadratic form for
PD1 is given by

1
G

G∑
i=1

zH
i

[
I − Λ̂1Λ̂

−1
2

]
zi =

1
G

G∑
i=1

N∑
n=1

|zi[n]|2
(

λ2[n] − λ1[n]
λ2[n] + 1

)
(30)

which is a weighted sum of NG χ2
2 random variables ({|zi[n]|2}), as for Copt.

However, the weights are different and essentially amount to a loss in SNR by
a factor of nG compared to Copt since Cdf does not do signal averaging within
each group. The above conservative analysis shows that Cdf fully exploits the
independent observations across different groups, as Copt, but incurs an effective
loss in SNR compared to Copt.

3.4 Data-Averaging Classifier

The test statistic for the data-averaging classifier takes the form

lda,j(yda) = log |Λ̌j | + yH
daΛ̌

−1
j yda , Λ̌j = Λj + I/K (31)

where yda ∼ CN (0, Λ̆j), Λ̆j = Λj/G + I/K under Hj . Thus, yda can be rep-

resented as yda = Λ̆
1/2
j z where z ∼ CN (0, I). Proceeding similarly as above, it

can be shown that

PD1 = P
(
zHΛ̆1

[
Λ̌

−1
1 − Λ̌

−1
2

]
z < log |Λ̌2| − log |Λ̌1|

)
(32)

where the quadratic form can be expressed as
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zHΛ̆1

[
Λ̌

−1
1 − Λ̌

−1
2

]
z =

N∑
n=1

|z[n]|2
(

λ1[n]
G

+
1
K

)

(
λ2[n] − λ1[n]

(λ1[n] + 1/K)(λ2[n] + 1/K)

)
(33)

which is a weighted sum of N χ2
2 random variables ({|z[n]|2}). Similarly,

PD1 = P
(
zHΛ̆2

[
Λ̌

−1
2 − Λ̌

−1
1

]
z < log |Λ̌1| − log |Λ̌2|

)
. (34)

The density and distribution function of the quadratic form in (33) can be com-
puted in closed form [7] and thus the PD of the data-averaging classifier can
also be computed in closed form.

The data-averaging classifier provides maximum immunity against noise by
averaging over all measurements. However, it does not exploit the independent
signal components in different groups to reduce the inherent variations in the
signal. Thus, in the limit of large number of uncorrelated measurements, we
expect both Copt and Cdf to exhibit improved performance (perfect classification
under certain conditions), but the performance of Cda will always be limited.

3.5 Asymptotic Performance

We now analyze classifier performance in the limit of large G (and K) for fixed
nG. In this analysis, we consider arbitrary M > 2. According to the analysis
above, the only effect of nG is to alter the effective SNR in the case of Copt and
Cdf . First, consider the optimal classifier. Note that

lopt,j(y1, · · · , yG) = − log pj(y1, · · · , yG)/G = − 1
G

G∑
i=1

log pj(yi) (35)

since yi are i.i.d. CN (0, Λ̃m) under Hm. Thus, under Hm, it is well-known that
by the law of large numbers [8]

lim
G→∞

lopt,j(y1, · · · ,yG) = −Em[log pj(Y )] = D(pm‖pj) + hm(Y ) (36)

where Em[·] denotes expectation under Hm, D(pm‖pj) is the Kullback-Leibler
distance between pj and pm [8]

D(pm‖pj) = Em [log(pm(Y )/pj(Y ))]

= log
(
|Λ̃j |/|Λ̃m|

)
+ tr

(
Λ̃

−1
j Λ̃m − I

)
(37)

and hm(Y ) is the differential entropy (in bits) of yi under Hm [8]

hm(Y ) = −Em[log pm(Y )] = log
(
(πe)N |Λ̃m|

)
. (38)
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From (36), we note that under Hm the different test statistics (for j = 1, · · · , M)
differ only in the term D(pm‖pj) ≥ 0 which is identically zero for j = m. Thus,
perfect classification (PD = 1, PFA = 0) is attained in the limit of large G if

D(pm‖pj) > 0 ∀j, m, j �= m (39)

which would be true in general for any given SNR (and any fixed nG).
Now consider the decision-fusion classifier. Recall from (27) and (29) that

the test statistics can be conservatively approximated as

ldf,j(ŷ1, · · · , ŷG) ≈ − log p̂j(ŷ1, · · · , ŷG)/G =
1
G

G∑
i=1

− log p̂j(ŷi) (40)

since ŷi are i.i.d. CN (0, Λ̂m) under Hm and p̂j denotes the density of CN (0, Λ̂j).
Thus, in the limit of large G (under Hm)

lim
G→∞

ldf,j(ŷ1, · · · , ŷG) = −Em[log p̂j(Ŷ )] = D(p̂m‖p̂j) + hm(Ŷ ) (41)

where D(p̂m‖p̂j) and hm(Ŷ ) are defined similar to (37) and (38). Consequently,
in the limit of large G we expect perfect classification if

D(p̂m‖p̂j) > 0 ∀j, m, j �= m (42)

which would also be true in general for any given SNR (and any fixed nG).
Finally, consider the data-averaging classifier whose test statistics are given

in (31) where yda ∼ CN (0, Λ̆m) under Hm. Recall that Λ̌j = Λj + I/K and
Λ̆j = Λj/G + I/K. As G(K) → ∞, Λ̌j → Λj and Λ̆j → 0. Consequently,

lim
G→∞

lda,j(yda) = log |Λj | (43)

independent of the true underlying hypothesis. Thus, in the limit of large G (K),
the data-averaging classifier assigns every event to the class with the smallest
value of log |Λj | and results in worst performance (PD = PFA = 1/M).

3.6 Entropy Comparison between Data and Decision Fusion

The above analysis indicates that Cdf approximates the performance of Copt ex-
cept for an SNR loss depending on the fraction of correlated measurements nG.
The numerical results in the next section confirm the analysis. However, the at-
tractiveness of Cdf is also implicitly based on the assumption that communicating
the likelihoods from the K nodes to the manager node puts a smaller commu-
nication burden on the network compared to communicating the N -dimensional
feature vectors in the case of Copt.

Recall from (13) that in Cdf the M quadratic forms {xH
i (Σj + I)−1xi , j =

1, · · · , M} are communicated from the i-th node to the manager node for
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i = 1, · · · , K. In Copt, on the other hand, the N -dimensional vectors xi are com-
municated from the K nodes to the manager node. Thus, we need to compare
the cost of communicating M quadratic forms (scalars) to that of communicat-
ing an N -dimensional Gaussian vector from each node to the manager node. We
compare the communication cost in terms of differential entropy [8].1

The differential entropy of x ∼ CN (0,Σm + I) is

hm(X) = −E[log pm(X)] = log
(
(πe)N |Σm + I|) = log

(
(πe)N |Λm + I|) (44)

and quantifies the information content of any xi from m-th class.
Now consider the differential entropy of the quadratic forms used by Cdf . Let

qjm denote the quadratic form associated with ldf,j under Hm

qjm = xH(Σj + I)−1x = zHΛjmz (45)

where x ∼ CN (0, Σm + I) and the second equality is based on the eigen-
decomposition

(Σm + I)1/2(Σj + I)−1(Σm + I)1/2 = UΛjmUH (46)

which uses the representation x = (Σm+I)1/2z, z ∼ CN (0, I). Note that under
the simultaneously diagonalizable signal model we have

Λjm = Λ̂mΛ̂
−1
j , Λ̂j = Λj + I. (47)

We want to compute the entropy of the quadratic form random variable Qjm

for all j, m. We first compute the worst case (highest) entropy by assuming that
Qjm is Gaussian. Using the fact that x is Gaussian, it can be readily shown that

E[Qjm] = Em[xH(Σj + I)−1x] = tr (Λjm) , var(Qjm) = tr
(
Λ2

jm

)
. (48)

Thus, the worst-case entropy of Qjm is given by [8]

h(Qjm) =
1
2

log
(
2πe tr

(
Λ2

jm

))
. (49)

Note from (47) that Λjm = I for j = m. Thus, h(Qjj) is the same for all j. For
j = m, the true entropy can also be easily computed since qjj = ‖z‖2 from (45).
Now, q = ‖z‖2 ∼ χ2

2N with density given by [7]

pQ(q) =
1

(N − 1)!
qN−1e−q , q ≥ 0 (50)

and thus
1 We note differential entropy can be a bit misleading since it can be negative. However,

a comparison of the difference in differential entropies is still valid – a quantity with
higher entropy would require more bits to encode. A more intuitive interpretation
of differential entropy is based on the fact that the entropy of an n-bit quantization
of continuous random variable X is approximately h(X) + n [8].
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h(Q) = −E[log pQ(Q)] = log(N − 1)! − N − (N − 1)
∫ ∞

0
pQ(q) log(q)dq . (51)

We note that the true entropy of qjm, for j �= m, can also be computed in
closed-form but it is a bit more involved. Furthermore, as our numerical results
indicate, h(Q) is a good estimate for the entropy of qjm for all j, m.

4 Simulation Results Based on Real Data

We now present numerical results based on real data collected in the SensIT
program. We consider the problem of classifying a single vehicle. We consider
M = 2 classes: Amphibious Assault Vehicle (AAV; tracked vehicle) and Dragon
Wagon (DW; wheeled vehicle). We simulated N = 25 dimensional acoustic mea-
surements from K = GnG = 10 nodes according to the model in Section 2.3. The
eigenvalues (PSD samples) for the two vehicles were estimated from experimental
data. The measurements at different nodes were generated using (21). The PD
and PFA were estimated using Monte Carlo simulation over 5000 independent
events. For x ∼ CN (0, Λ + I), SNR = tr(Λ)/tr(I).
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Fig. 1. Comparison between differential entropies of N = 25 dimensional Gaussian
vectors used by lopt and those of the quadratic forms used by ldf . The entropies for
a white vector and two correlated vectors (AAV and DW) are plotted. The worst-
case entropies for quadratic forms, assuming Gaussian statistics, are plotted. The true
entropy of the quadratic forms, under the correct hypothesis, is also plotted. The
entropy gains of decision fusion over data fusion are evident.

Figure 1 compares the differential entropy of Gaussian data in (44) with that
of the quadratic forms in (49) and (51). The entropies for three data vectors
are plotted: white data (maximum entropy), AAV data, and DW data. The
worst-case entropy in (49) of the quadratic forms used by Cdf are also plotted
for all j, m (they are nearly identical). It can be seen that for SNR above 5dB,
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the worst-case entropy of Qjm is lower than that of data. The true entropy
of Qjj , given in (51), is also plotted for comparison. The true entropy of Qjj

is seen to be substantially lower compared to that of data for the entire SNR
range considered. This indicates the significant potential gains of Cdf over Copt

in terms of the communication burden.
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Fig. 2. PD of the three classifiers versus SNR. (a) K = nG = 10 (perfectly correlated
measurements). (b) G = 2 and nG = 5. (c) G = 5 and nG = 2. (d) K = G = 10
(independent measurements).

Figure 2 plots the PD as a function of SNR for the three classifiers for K = 10
and different combinations of G and nG. The PFA is simply given by 1 − PD
for M = 2. As expected, Copt and Cda perform identically for K = nG (per-
fectly correlated case; Figure 2(a)), whereas Copt and Cdf perform identically
for K = G (independent case; Figure 2(d)). Note that Cdf incurs a small loss
in performance in the perfectly correlated (worst) case which diminishes at high
SNRs. The performance loss in Cda in the independent (worst) case is very sig-
nificant and does not improve with SNR. This is consistent with our analysis. At
high SNR, all events are classified as DW by Cda since log |ΛDW | < log |ΛAAV |
due to the peakier eigenvalue distribution for DW, as evident from Figure 3(a).
Figure 3(b) compares the PD of the three classifiers for an intermediate case
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(G = nG = 2) with K = 4, N = 15-dimensional measurements. Analytically
computed PD for Copt and Cda and the conservative approximation for PD of
Cdf are also plotted and agree well with the simulation results.
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Fig. 3. (a) Covariance matrix eigenvalues (PSD estimates) for AAV and DW. (b)
Comparison of simulated and analytical PD for K = 4, G = 2, nG = 2 and N = 15.

Figure 4 plots the PD for the three classifiers as function of G (K = 10) for
two different SNRs. It is evident that Cdf closely approximates Copt whereas Cda

incurs a large loss when K �= nG. It is worth noting that for SNR=-5dB, the
performance of Copt and Cdf first improves slightly with G and then gets worse
again. This is consistent with the observation, in non-coherent communication
over fading channels, that there is an optimal level of diversity (G) for a given
SNR – increasing G beyond that level results in a loss in performance [7].
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Fig. 4. Comparison of PD of the three classifiers for varying values of G (K = 10).
(a) SNR = -5 dB. (b) SNR = 0 dB.
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5 Conclusions

We have taken a first step in addressing the problem of how much information
should be exchanged between nodes for distributed decision making in sensor
networks. Our analysis is based on modeling the source signal as a stationary
Gaussian process. In general, measurements from multiple nodes will provide
a mixture of correlated and uncorrelated information about the source signal.
The optimal classifier exploits the correlated measurements to improve the SNR
and the independent measurements to stablize the inherent statistical variabil-
ity in the signal. Both effects are important for improving classifier performance.
However, for stochastic signals, the fusion of independent measurements is most
significant. In this context, our results demonstrate that the simple sub-optimal
decision-fusion classifier, that treats all measurements as independent, is not only
an attractive choice given the computational and communication constraints in
a sensor network, but is also a robust choice from a decision theoretic viewpoint.
The decision-fusion classifier fully exploits the independent measurements and
only incurs an effective SNR loss compared to the optimal classifier depending on
the fraction of correlated measurements. However, if the source signal exhibits a
non-zero mean or fewer degrees of freedom (lower-rank covariance matrix), data
averaging to improve SNR might become more important. We note that exploit-
ing a non-zero mean is difficult in practice due to various sources of measurement
error. Directions for future research include hard decision fusion, quantized mea-
surements, and multiple-target classification.
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Abstract. This paper presents a sensor management scheme based on
maximizing the expected Rényi Information Divergence at each sam-
ple, applied to the problem of tracking multiple targets. The underlying
tracking methodology is a multiple target tracking scheme based on re-
cursive estimation of a Joint Multitarget Probability Density (JMPD),
which is implemented using particle filtering methods. This Bayesian
method for tracking multiple targets allows nonlinear, non-Gaussian
target motion and measurement-to-state coupling. Our implementation
of JMPD eliminates the need for a regular grid as required for finite
element-based schemes, yielding several computational advantages. The
sensor management scheme is predicated on maximizing the expected
Rényi Information Divergence between the current JMPD and the JMPD
after a measurement has been made. The Rényi Information Divergence,
a generalization of the Kullback-Leibler Distance, provides a way to mea-
sure the dissimilarity between two densities. We evaluate the expected
information gain for each of the possible measurement decisions, and se-
lect the measurement that maximizes the expected information gain for
each sample.

1 Introduction

The problem of sensor management is to determine the best way to task a sensor
where the sensor may have many modes and may be pointed in many directions.
This problem has recently enjoyed a great deal of interest [9]. A typical applica-
tion, and one that we focus on in our model problem, is to direct an electronically
scanned aperture (ESA) radar [2]. An ESA provides great flexibility in pointing
and mode selection. For example, the beam can be redirected in a few microsec-
onds, enabling targets to be illuminated at will.
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One way of designing a sensor management system is by optimizing informa-
tion flow. This is analogous to designing a communications system to maximize
the channel capacity. Past work in this area has been based on maximizing
Kullback-Leibler (KL) divergence. In this work, we use a more general infor-
mation measure called the Rényi Information Divergence (also known as the
α-divergence) [8], which reduces to the KL divergence under a certain limit. The
Rényi divergence has additional flexibility in that in allows for emphasis to be
placed on specific portions of the information.

We propose here an algorithm for sensor tasking that is motivated by in-
formation theory. First, we utilize a target tracking algorithm that recursively
estimates the joint multitarget probability density for the set of targets under
surveillance. We then strive to task the sensor in such a way that the sensing
action it makes results in the maximum amount of information gain. To that
end, we employ the Rényi information divergence as a measure of distance be-
tween two densities. The decision as to how to use a sensor then becomes one of
determining which sensing action will maximize the expected information gain
between the current joint multitarget probability density and the joint multitar-
get probability density after a measurement has been made. This methodology
is similar in spirit to that of [10], although our application is quite different. In
addition, [11] considers the sensor management as one of maximizing expected
information and examines a variety of information driven criteria, including the
Kullback-Leibler distance.

The paper is organized as follows. In Section 2, we present the target tracking
algorithm that is central to our sensor management scheme. Specifically, we
give the details of the JMPD and examine the numerical difficulties involved in
directly implementing JMPD on a grid. In Section 3, we present a particle filter
(PF) based implementation of JMPD. We see that this implementation provides
for computationally tractable implementation, allowing realistic simulations to
be made. A sensor management scheme, based on calculating the expected Rényi
Information Divergence is given in Section 4. A comparison of the performance
of the tracker using sensor management to the tracker using a non-managed
scheme on a model problem is given in Section 5. We furthermore include some
comments and results as the α parameter in the Rényi Divergence is varied. We
conclude with some thoughts on future direction in Section 6.

2 The Joint Multitarget Probability Density (JMPD)

In this section, we provide the details of using the Joint Multitarget Probability
Density (JMPD) for target tracking. The concept of JMPD was first discussed by
Kastella in [1], where an association free method of tracking multiple targets that
moved between discrete cells on a line based on a set of sensor measurements was
presented. We generalize that discussion here to deal with targets that have N -
dimensional continuous valued state vectors. In the model problem considered
herein, we are interested in tracking the position (x, y) and velocity (ẋ, ẏ) of
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multiple targets and so we describe targets by the four dimensional state vector
[x, ẋ, y, ẏ]′.

JMPD provides a means for tracking an unknown number of targets in a
Bayesian setting. The statistics model uses the joint multitarget conditional
probability density p(xk

1 ,xk
2 , ...xk

T−1,x
k
T |Zk) as the probability density for ex-

actly T targets with states xk
1 ,xk

2 , ...xk
T−1,x

k
T at time k based on a set of obser-

vations Zk . The number of targets T is a variable to be estimated simultaneously
with the states of the T targets. The observation set Zk refers to the collection
of measurements up to and including time k, i.e. Zk = {z1, z2, ...zk}, where each
of the zi may be a single measurement or a vector of measurements made at
time i.

Each of the state vectors xi in the density p(xk
1 ,xk

2 , ...xk
T−1,x

k
T |Zk) is a vector

quantity and may (for example) be of the form [x, ẋ, y, ẏ]′. We refer to each
of the T target state vectors xk

1 ,xk
2 , ...xk

T−1,x
k
T as a partition of the state X.

For convenience, the density will be written more compactly in the traditional
manner as

p(Xk|Zk) (1)

With the understanding that the state-vector X represents a variable num-
ber of targets each possessing their own state vector. As an illustration, some
examples illustrating the sample space of p are

p(∅|Z), the posterior likelihood for no targets in the surveillance volume
p(x1|Z), the posterior likelihood for one target in state x1

p(x1,x2|Z), the posterior likelihood for two targets in states x1 and x2
p(x1,x2,x3|Z), the posterior likelihood for three targets in states x1,x2 and x3

The temporal update of the posterior likelihood on this density proceeds
according to the usual rules of Bayesian filtering. Given a model of target kine-
matics p(Xk|Xk−1), we may compute the time-updated or prediction density
via

p(Xk|Zk−1) =
∫

dXk−1p(Xk|Xk−1)p(Xk−1|Zk−1) (2)

Bayes rule enables us to update the posterior density as new measurements
zk arrive as

p(Xk|Zk) =
p(zk|Xk)p(Xk|Zk−1)

p(zk|Zk−1)
(3)

In practice, the sample space of Xk is very large. It contains all possible
configurations of state vectors xi for all possible values of T . The original formu-
lation of JMPD given in [1] approximated the density by discretizing on a grid.
It was immediately found that the computational burden in this scenario makes
evaluating realistic problems intractable, even when using the simple model of
targets moving between discrete locations in one-dimension. In fact, the number
grid cells needed grows as LocationsTargets, where Locations is the number of
discrete locations the targets may occupy and Targets is the number of targets.
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Thus, we need a method for approximating the JMPD that leads to more
tractable computational burden. In the next section, we show that the Monte
Carlo methods collectively known as particle filtering break this logjam.

3 Particle Filter Implementation of JMPD

We expect that a particle filter based implementation of JMPD will break the
computational logjam and allow us to investigate more realistic problems. To
implement JMPD via a particle filter (PF), we first approximate the joint
multitarget probability density p(X|Z) by a set of Npart weighted samples,
Xp, (p = 1...Npart):

p(X|Z) ≈
Npart∑
p=1

wpδ(X − Xp) (4)

Here we have suppressed the time superscript k everywhere for notational
simplicity. We will do this whenever time is not relevant to the discussion at
hand.

Recall from Section 2 that our multitarget state vector X has T partitions,
each corresponding to a target:

X = [x1, x2, ..., xT−1, xT ] (5)

Furthermore, the joint multitarget probability density p(X|Z) is defined for
T = 0...∞. Each of the particles Xp , p = 1...Npart is a sample drawn from
p(X|Z). Therefore, a particle Xp may have 0, 1, ...∞ partitions, each partition
corresponding to a different target. We will denote the number of partitions in
particle Xp by np, where np may be different for different Xp. Since a partition
corresponds to a target, the number of partitions that a particle has is that
particle’s estimate of the number of targets in the surveillance area.

To make our notation more concrete, assume that each target is modeled
using the state vector x = [x, ẋ, y, ẏ]′. Then a particular Xp, which is tracking
np targets, will be given as

Xp = [xp,1, xp,2, . . . xp,np ] =




xp,1 xp,2 . . . xp,np

ẋp,1 ẋp,2 . . . ẋp,np

yp,1 yp,2 . . . yp,np

ẏp,1 ẏp,2 . . . ẏp,np


 (6)

Where here we expand the notation a bit and use xp,1 to denote the x position
estimate that particle p has of target 1.

Notice that this method differs from traditional particle filter tracking al-
gorithms where a single particle corresponds to a single target. We find that
when each particle is attached to a single target, some targets become particle
starved over time. All of the particles tend to attach to the target receiving the
best measurements. Our method explicitly enforces the multitarget nature of the
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problem by encoding in each particle the estimate of the number of targets and
the states of those targets. This helps top alleviate the particle starvation issue.

Note there is a permutation symmetry inherent in JMPD, i.e. p(x1,x2|Z) =
p(x2,x1|Z). This is particularly relevant when targets are near each other and
particle partitions begin to swap allegiances. We will have more to say about
this issue in Section 3.5.

In the following subsections, we detail the particle filter implementation of
JMPD.

3.1 Initialization

As this is primarily a target tracking application, we typically assume that an
estimate of the actual ground truth is available at time 0. To this end, we typi-
cally initialize a small set of particles (e.g. 10%) to contain the true target states
at time 0 and randomly assign values (both target states and number of targets)
to the rest of the particles.

Alternatively, we have successfully employed the following detection scheme.
All particles are initialized to believing there are 0 targets. For the first t time
steps the algorithm is in detection mode and the sensor is scheduled to period-
ically scan the surveillance area. As targets are detected, particles are mutated
to be consistent with the detection.

3.2 Particle Proposal

Several methods of particle proposal have been investigated. The standard
method used, which will be referred to as sampling from the kinematic prior,
proposes new particles at time k, Xk

p, according to the traditional Sampling-
Importance Resampling (SIR) method. For each particle at time k − 1, Xk−1

p , a
new particle Xk

p is generated using the kinematic prior p(Xk|Xk−1). In the case
where the targets are indistinguishable and move independently, each target in
Xk−1

p behaves according to the same motion model and is proposed indepen-
dently of the other targets.

In addition, we have investigated three alternate particle proposal techniques,
all of which are developed as a means of biasing the proposal process towards
the measurements.

First, the multi-particle proposal method proposes a set of M distinct parti-
cles, Xk

p(m), m = 1...M , for each particle at time k − 1. The proposed particles
Xk

p(m) are then given weights according to the likelihood and a single represen-
tative is selected as Xk

p based on the weights.
Second, the multi-partition proposal method proposes M possible realizations

for each partition of a particle Xk
p,j(m). In this notation Xk

p,j(m) refers to the
mth proposal for the jth partition of the pth particle at time k. See (6) for a
concrete example of a particle and its partitions. The proposed partitions are
then given weights according to the likelihood and a new particle Xk

p is chosen
by selecting a representative from each of the proposed partition sets.
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Third, the independent-partition method proposed by [7] proposes new par-
titions and weights each partition independently. Particles at time k, Xk

p, are
formed by selecting partitions from the set of weighted proposed partitions from
the particles at time k − 1. This method assumes that the targets states are
independent, which is not the case when targets cross.

Finally, in any of these methods, target birth and death may be accounted for
by modifying the proposal density to incorporate a probability that the proposed
particle Xk

p has either fewer or more targets then Xk−1
p . For example, with some

birth rate probability α we propose a particle with np + 1 targets at time k + 1
starting from a particle with only np targets at time k. Similarly, we may propose
a particle with fewer targets according to some target death rate. In practice,
targets enter and leave only along the boundaries of the surveillance area and
so this must be taken into account as well.

3.3 Measurement Update

Each proposed particle is given a weight according to its agreement with the
measurements, the kinematic model, and the importance density [4]. Since we
are proposing particles based on p(Xk|Xk−1), it can be shown that the proper
weighting is given by

wp ∝ p(z|Xk
p) (7)

where the density p comes from the sensor model and incorporates both target
detection and false alarm rates.

Recall that each particle Xk
p simultaneously postulates that a specific number

of targets exist in the surveillance region (np) and that the target states are given
by [x1,x2, ...,xnp−1 ,xnp ]. In the case where the measurement set is made up of
a scan i cells (e.g. measurements taken on a XY grid) where the measurement
in each cell is independent of the measurements in the other cells, we compute
the weight as

wp ∝
∏

i

p(zi|Xp) (8)

where in this notation zi refers to the measurement made in cell i. A particular
particle Xp will postulate that there are targets in some cells ix (not
necessarily distinct):

ix = i1, i2, ...inp (9)

We denote the measurement density when there are 0 targets present as p0,
and simplify the weight equation as

wp ∝
∏
i/∈ix

p0(zi)
∏
i∈ix

p(zi|Xp) (10)

wp ∝
∏

i

p0(zi)
∏
i∈ix

p(zi|Xp)
p0(zi)

(11)
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wp ∝
∏
i∈ix

p(zi|Xp)
p0(zi)

(12)

If we let Oi,p (the occupation number) denote the number of targets that a
particle p postulates exist in cell i, then we write the weight as

wp ∝
∏
i∈ix

p(zi|Oi,p)
p0(zi)

(13)

Notice that there is no association of measurement to tracks as is done in
conventional multi-target trackers. Each particle Xp is an estimate of the system
state (both number of targets and their states) and has its weight wp computed
based on agreement with the measurements.

3.4 Resampling

As noted by [4], over time the variance of the weights wp can only increase. If
left unchecked, eventually all of the particles except one have near zero weight.
To remedy this situation a resampling step is added. When the variance of
the weights becomes too high, a new set of Npart particles is selected from the
existing set with replacement based on the weights wp. We then have a collection
of Npart particles with uniform weight that approximate the density p(X|Z). At
this step, particles that do not correspond to measurements are not retained –
in particular, particles that have an np that is unsupported by measurements
are not retained.

The particular resampling that we have implemented is called systematic
resampling [4]. We like this scheme because it is easy to implement, runs in
O(N), is unbiased, and minimizes Monte Carlo variance. In addition, we favor
resampling only when necessary as advocated by [6]. This saves time as well
as reduces the variance of the estimate. Many other resampling schemes and
modifications are presented in the literature [5]. Of these methods, we have
found that adaptive resampling [6] and Markov Chain Monte Carlo (MCMC)
moves using a Metropolis-Hasting scheme [5] lead to improved performance over
straightforward resampling in our application.

3.5 Estimation

Estimates of various interesting quantities may be easily made using the par-
ticles. Estimation is best performed before resampling, as resampling has been
shown to only increase the variance of the estimate.

To compute the probability that there are exactly n targets in the surveillance
volume, first define the indicator variable

Ip =
{

1 if np = n
0 otherwise (14)

Then the probability of n targets in the surveillance volume, p(n|Z), is given by
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p(n|Z) =
Npart∑
p=1

Ipwp (15)

So to estimate the probability of n targets in the surveillance volume, we
sum up the weights of the particles that have n partitions.

To compute the estimated state and covariance of target i, we first define
a second indicator variable Ĩp that indicates if particle p has a partition corre-
sponding to target i:

Ĩp =
{

1 if np ≥ n
0 otherwise (16)

Furthermore, we define the normalized weights to be

ŵp =
wpĨp∑Npart

l=1 Ĩlwl

(17)

So ŵp is the relative weight of particle p, with respect to all particles tracking
target i. Then the estimate of the state of target i is given by

X̂(i) = E[X(i)] =
Npart∑
p=1

ĨpŵpXp,i (18)

Which is simply the weighted summation of the position estimates from those
particles that are tracking target i. The covariance is given by

Λ̂(i) =
Npart∑
p=1

Ĩpŵp(Xp,i − ˆX(i))(Xp,i − ˆX(i))′ (19)

The indicator function Ĩp causes the summations in (18) and (19) to be taken
over only those particles that are tracking target i. The permutation symmetry
issue mentioned in Section 3 comes to the forefront here. Notice that it is not
necessarily true that partition i of particle j is tracking the same target that
partition i of particle j + 1 is tracking. Therefore, before evaluation of (18) or
(19) can be made, we must ensure that partition i, (i = 1...T ), corresponds to
the same target in each particle. In our work, this is accomplished by taking care
to retain the ordering during the particle proposal process.

4 Rényi Information Divergence for Sensor Management

Our paradigm for tasking the sensor is to choose the sensing action (i.e. sensing
modality or sensor pointing direction) that maximizes the expected information
gain. To that end, we introduce the Rényi information divergence (20), also
known as the α-divergence, between two densities f1 and f0:

Dα(f1||f0) =
1

α − 1
ln

∫
fα
1 (x)f1−α

0 (x)dx (20)
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The function Dα gives a measure of the distance between the two densities f0
and f1. In our application, we are interested in computing the divergence between
the predicted density p(X|Zk−1) and the updated density after a measurement
is made, p(X|Zk).

Dα(p(X|Zk)||p(X|Zk−1)) =
1

α − 1
ln

∑
X

p(X|Zk)αp(X|Zk−1)1−α (21)

The integral in (20) reduces to a summation since any discrete approximation
of p(X|Zk−1) only has nonzero probability at a finite number of target states.
After some algebra and the incorporation of Bayes rule (3), one finds that this
quantity can be simplified to

Dα(p(X|Zk)||p(X|Zk−1)) =
1

α − 1
ln

1
p(z|Zk−1)α

∑
X

p(X|Zk−1)p(z|X)α (22)

Our particle filter approximation of the density reduces (22) to

Dα(p(X|Zk)||p(X|Zk−1)) =
1

α − 1
ln

1
p(z)α

Npart∑
p=1

wpp(z|Xp)α (23)

where

p(z) =
Npart∑
p=1

wpp(z|Xp) (24)

We would like to make the divergence between the current density and the
density after a new measurement has been made as large as possible. This indi-
cates that the sensing action has maximally increased the information content of
the measurement updated density, p(X|Zk) , with respect to the density before
a measurement was made, p(X|Zk−1).

Of course, we cannot calculate (23) exactly until after the measurement at
time k has been made. However, we can calculate the expected value of this quan-
tity for different sensing actions. We propose as a method of sensor management,
then, calculating the expected value of (23) for each of the m, (m = 1...M) pos-
sible sensing actions and choosing the action that maximizes the expectation.
In this notation m refers to any possible sensing action under consideration,
including but not limited to sensor mode and sensor beam positioning. In this
manner, we say that we are making the measurement that maximizes expected
information gain. Notice that this is a greedy scheme, which chooses to make
the measurement that optimizes information gain for the next time step.

The expected value of (23) may be written as an integral over all possible
outcomes zm when performing sensing action m:

< Dα >m=
∫

dzmp(zm|Zk−1)Dα(p(X|Zk)||p(X|Zk−1)) (25)
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In the special case where measurements are thresholded and are therefore
either detections or no-detections, this integral reduces to

< Dα >m= p(z = 0|Zk−1)Dα|m,z=0 + p(z = 1|Zk−1)Dα|m,z=1 (26)

Which, using (23) results in

< Dα >m=
1

α − 1

1∑
z=0

p(z)ln
1

p(z)α

Npart∑
p=1

wpp(z|Xp)α (27)

Implementationally, the value of equation (27) can be calculated for a host
of possible actions using only a single loop through the particles.

In summary, our sensor management algorithm is a recursive algorithm that
proceeds as follows. At each occasion where a sensing action is to be made,
we evaluate the expected information gain as given by (27) for each possible
sensing action m. We then select and make the sensing action that gives maximal
expected information gain.

We note here that the α parameter may be used to adjust how heavily one
emphasizes the tails of the two distributions. In the limiting case of α → 1 the
Rényi divergence becomes the more commonly known Kullback-Leibler (KL)
discrimination (28).

lim
α→1

Dα(f1||f0) =
∫

f0(x)ln
f0(x)
f1(x)

dx (28)

5 Simulation Results

We test the performance of the sensor management scheme by considering the
following model problem. We have three targets moving on a 12x12 sensor grid.
Each target is modeled using the four-dimensional state vector [x, ẋ, y, ẏ]′ . Tar-
get motion is simulated using a constant-velocity (CV) model with a (relatively)
large diffusive component. The trajectories have been shifted and time delayed
so that there are two times during the simulation where targets cross paths.

The target kinematics assumed by the filter (2) are CV as in the simulation.
At each time step, a set of L (not necessarily distinct) cells are measured. The
sensor is at a fixed location above the targets and all cells are always visible to the
sensor. When measuring a cell, the imager returns either a 0 (no detection) or a 1
(detection) governed by Pd, Pf , and SNR. This model is known by the filter and
used to evaluate (3). In this illustration, we take Pd = 0.5, and Pf = P

(1+SNR)
d ,

which is a standard model for thresholded detection of Rayleigh returns.
We contrast in this section the performance of the tracker when the sensor

uses a non-managed (periodic) scheme versus the performance when the sensor
uses the management scheme presented in Section 4. The periodic scheme mea-
sures each cell in sequence. At time 1, cells 1...L are measured. At time 2, cells
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L + 1...2L are measured. This sequence continues until all cells have been mea-
sured, at which time the scheme resets. The managed scheme uses the expected
information divergence to calculate the best L cells to measure at each time.

For the simulations that follow, we have taken α in (27) near 1. However, we
still use the Rényi formulation of (20) rather than the KL formulation of (28)
because the Rényi formulation provides some computational advantages.

In Fig. 1, we give a single-time snapshot, which graphically illustrates the
difference between the two schemes. On the left, we show the managed scheme
and on the right the periodic scheme. In both panes, the three targets are marked
with an asterisk, the covariance ellipses of the estimated target position are
shown, and we use grayscale to indicate the number of times each cell has been
measured at this time step.

Fig. 1. A Comparison of Non-Managed and Managed Tracking. (L) Using Sensor Man-
agement, and (R) Using a Periodic Scheme. With Sensor Management, Dwells are Only
Used in Areas that Contain Targets and the Covariance Ellipses are Much Tighter.

Qualitatively, in the managed scenario the measurements are focused in or
near the cells that the targets are in. Furthermore, the covariance ellipses, which
reflect the current state of knowledge of the tracker conditioned on all previous
measurements, are much tighter. In fact, the non-managed scenario has confusion
about which tracks correspond to which target as the covariance ellipses overlap.

A more detailed is provided in the Monte Carlo simulation results of Figure
2. The sensor management algorithm was run with L = 24 (i.e. was able to scan
24 cells at each time step) and is compared to the non-managed scheme with 24
to 312 looks. The unmanaged scenario needs approximately 312 looks to equal
the performance of the managed algorithm in terms of RMSE error. We say
that the sensor manager is approximately 13 times as efficient as allocating the
sensors without management.
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Fig. 2. Median and Mean Error vs. Signal To Noise Ratio (SNR). Managed Perfor-
mance With 24 Looks is Similar to Unmanaged Performance With 312 Looks.

In addition, we have investigated the performance of the sensor management
algorithm with different values of α in (27) under the same set of simulation
parameters. As shown in 3, it appears that in the case under consideration that
the technique is rather insensitive to the choice of α. We anticipate that values
of α that deviate from unity may be useful in the case of model mismatch.

6 Conclusion

In this paper, we have proposed an algorithm for multiple target tracking and
sensor management. The central element of interest in both the target track-
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Fig. 3. Performance of the Sensor Management Technique for Different α.

ing and sensor management schemes is the posterior density p(X|Z), which is
approximated using particle filtering methods.

The particle filter implementation we have proposed has three main benefits.
First, by nature of being a particle filter implementation, it allows for non-linear
measurement to state coupling, non-linear state evolution (target motion), and
non-Gaussian densities. Second, the formulation explicitly enforces the multi-
target nature of the problem. Each particle simultaneously postulates both the
number of targets and their states, both of which are unknown. Finally, the
particle filter implementation breaks the computational logjam that grid-based
techniques have presented in the past. This makes this technique applicable to
larger scale problems.

The information-based sensor management scheme presented in this paper
is based on computing the expected information gain for each sensor tasking
under consideration. The sensor management algorithm is integrated with the
target tracking algorithm in that it too uses the posterior density p(X|Z). In
this case, the posterior is used in conjunction with target kinematic models and
sensor models to predict which measurements will provide the most information
gain. In simulated scenarios, we find that the tracker with sensor management
gives similar performance to the tracker without sensor management while using
a factor of 13 fewer sensor dwells.

There are two interesting directions in which we see this work evolving. First,
this method is amenable to incorporating auxiliary information such as ground
elevation maps and sensor trajectories. For example, if the appropriate auxiliary
information were incorporated, this method would clearly never choose to make
a measurement in a region that was not visible to the sensor due to hill regions
between the sensor and the desired look location. Second, the current algorithm
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is a greedy algorithm, choosing to make the measurement that is best at the
current time step. It would be beneficial to extend the methodology to plan
several time instances in the future.
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Abstract. This paper presents a scalable distributed algorithm for com-
puting and maintaining multi-target identity information. The algorithm
builds on a novel representational framework, Identity-Mass Flow, to
overcome the problem of exponential computational complexity in man-
aging multi-target identity explicitly. The algorithm uses local informa-
tion to efficiently update the global multi-target identity information
represented as a doubly stochastic matrix, and can be efficiently mapped
to nodes in a wireless ad hoc sensor network. The paper describes a dis-
tributed implementation of the algorithm in sensor networks. Simulation
results have validated the Identity-Mass Flow framework and demon-
strated the feasibility of the algorithm.

1 Introduction

A wireless ad-hoc sensor network (WASN) is a network of sensor nodes with lim-
ited on-node sensing, processing, and communication capabilities. At the heart
of many WASN applications such as object tracking and environmental monitor-
ing is the problem of estimating non-local parameters or states of the physical
phenomenon being observed using only local information available to each node.
This problem poses unique challenges that are not addressed in a centralized
setting or fixed network:

– Scalable distributed information fusion: The global parameters or states of
interest must be estimated, updated, and maintained using only local infor-
mation.

– Sensor tasking: A sensor node may be tasked to compute or store state
information based on its relevance and utility to the current task, as well as
cost constraints.

F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 223–238, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



224 J. Shin, L.J. Guibas, and F. Zhao

In this paper, we study the problem of distributed multi-target identity man-
agement in WASN. The goal is to maintain information about who is who over
time given targets’ position estimates. In addition to its central importance in
many of the monitoring and surveillance applications, the problem highlights
the need for distributed information fusion and sensor tasking. The study of this
problem is an important step towards establishing a general methodology for
the design of scalable WASN algorithms.

Multi-target identity management is closely related to the multi-target track-
ing problem. The main difficulty in both problems is the exponential complex-
ity in associating target position estimates with target identities. In the past
three decades, a number of approaches have been developed for the multi-target
tracking problem, mostly for centralized computational platforms. MHT ([2])
explicitly maintains associations, or hypotheses, over time and prunes the asso-
ciations using a rank function. JPDA ([4]) computes an association matrix at
each time and updates it with a combination of all new measurements weighted
by their marginal probabilities. While widely used in practice, both MHT and
JPDA algorithms still suffer from their computational complexity, in the worst
case exponential in the number of targets or time steps. Moreover, for WASN
applications, a significant challenge lies in distributing the information and com-
putation to each node.

This paper develops an efficient distributed approach to computing and ud-
pating multi-target identity information. The main contribution of this work
is twofold. First, it introduces a new distributed representation called identity
belief matrix, a doubly stochastic matrix, that describes how identity informa-
tion of each target is distributedly represented (a row in the matrix). The key
advantage of this representation is that when the matrix is mapped to a set
of nodes in a WASN, a node could efficiently maintain possible identifies of a
target it is tracking (a column in the matrix), using its local evidence only.
Second, the paper develops a distributed algorithm for computing and updating
the cross-node identity belief matrix in a WASN. The algorithm exploits doubly-
stochasticity of the matrix to renormalize identity probability masses stored on
different WASN nodes. As soon as a piece of local/marginal evidence is available
to a node, the local belief of target identity is updated, and the information is
propagated through the network to other nodes. The computational complex-
ity of our algorithm is O(N2), where N is the number of targets, a significant
advantage over the exponential complexity of MHT and JPDA.

The rest of the paper is organized as follows. Section 2 introduces identity-
mass flow (IMF) framework to represent multi-target identity information. To
ease the introduction of mathematical materials and focus on key representa-
tional issues, the identify representation is first developed in a centralized set-
ting. Sections 3 and 4 develop algorithms to distribute the computation and map
the algorithm to WASN nodes. Section 3 describes an algorithm for updating
global identity information using local identity information. Section 4 maps the
identity representation and algorithm to a set of WASN nodes. Finally, Section
5 describes an implementation of the algorithm, and presents simulation results
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that validate the correctness of the representational framework and the basic
structure of the algorithm.

2 Multiple Identity Management: A Mathematical
Framework

Consider the following problem. There are N targets moving in the region of
interest and their position-estimates are reported periodically. Assuming the
initial identities are known, the goal of the multiple identity management is
to maintain and update the identity information of all the targets as they are
moving.

Apparently, the dynamics of the target - how they are moving - seems to be
the only information available to do the job. Unlike the radar system, however,
the subset of the nodes in the sensor network are very close to the targets and
are able to sense more than position-estimate - the target signature information.
This signature information is clear and dependable in the sparse target configu-
ration, but is not informative when the targets are close to one another. Figure
1 illustrates the two target configurations, which are named as configuration of
high uncertainty(COHU) and configuration of low uncertainty(COLU), respec-
tively. The actions/decisions based on the information in COHU could be false
and it would be nice to have a representational framework that could fix the
poor actions/decisions in COHU using the better information in COLU. This
is the main motivation behind our mathematical formulation in the upcoming
subsections.

A

B

COLU COLUCOHU

: sensor

: target

Fig. 1. Sparse(COLU) and crowded(COHU) target configurations

2.1 Formulation

In this section, we formulate the problem of multiple identity management as
identity-mass distribution problem. The identity set I = {1, · · · , N} is a set of
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identities of all the targets and the position-estimates of N targets at time k
is X(k) = {xi(k) ∈ R2|i = 1, · · · , N}.1 The identity management algorithm
is supposed to compute the correct permutation of I given X(k). The natural
approach to this is to maintain all the possible permutations2 at each time,
although the number of possible permutations increases exponentially. Even with
good rank functions and pruning heuristics, the number of possible permutations
can easily go unmanageably large in a very short period of time.

To overcome the above combinatorial complexity and maintain the compu-
tational complexity as constant over time, we propose the idea of Identity-Mass
Flow(IMF) to approximately represent all the possible permutations. Figure 2
(a) shows the basic idea behind our approach; Initially, a unit mass is assigned to
each identity. Whenever the new position-estimate X(k) is available, the whole
or partial masses from X(k − 1) flow into X(k) and the identities are mixed in
this way. There, however, need to be constraints regarding how masses flow to
make the resulting mixed identities physically meaningful. Figure 2 (b) and (c)
explain the two constraints. (b) says no mass can be created or destroyed during
the Identity-Mass Flow and (c) says the sum of all the masses arriving at xi(k)
is one.

new measurement

current state

new measurement

current state

X X
t = k+1

t = k

t = k+1

t = k

new measurement

current state

X X
t = k+1

t = k

new measurement

current state

X
t = k+1

t = k

(b) (c)

current state

t = k+1

t = k

P 1-P

current state

t = k+1

t = k

b a

a+b = 1

(a)

Fig. 2. Identity Mass Flow

To formulate the above idea, we define the identity belief matrix B(k) and
the mixing matrix M(k).

1 xi(k) and xi(k + 1) are not related. i’s are just random labels that come with the
position estimate.

2 In multi-target tracking community, this is also called an association.
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Definition 1. The identity belief matrix B(k) is a N × N doubly-stochastic
matrix3, whose entry bij(k) represents the amount of identity mass from i ∈ I
that arrives at xj(k). The jth column bj(k) of B(k) is called the identity belief
vector of xj(k).

B(k) =
[
b1(k) b2(k) · · · bN(k)

] ∈ [0, 1]N×N

where

bi(k) =







p(xi(k)’s ID is 1)
p(xi(k)’s ID is 2)

...
p(xi(k)’s ID is N)







∈ [0, 1]N×1

Definition 2. The mixing matrix M(k) is a N × N doubly-stochastic matri-
ces, whose entry mij(k) represents the probability of xj(k) being originated from
xi(k − 1), and is statistically independent with M(l) for all l �= k.

Given the definition of M(k) and B(k), the following theorem presents the
basic equation relating the two quantities.

Theorem 1. Let B(k) and M(k) be the identity belief matrix and the mixing
matrix at time k as defined above, then the following is true.

B(k + 1) = B(k)M(k + 1)

Proof. From the above definitions, the identity belief of xj(k + 1) is computed
as follows

bj(k + 1) =
N∑

l=1

mlj(k + 1)bl(k) = B(k)mj(k + 1)

where mj(k + 1) is the jth column of M(k + 1). Therefore,

B(k + 1) = B(k)M(k + 1)

and this concludes the proof.

The above theorem shows that we can recursively compute the identity in-
formation B(k) by computing M(k) from X(k) and X(k − 1) and is illustrated
in Figure 3. The details on how to compute M(k) is investigated in the next
section.

The following lemma explains how the uncertainty in the system changes
over time in this formulation.

Lemma 1. Let πB(k) ∈ [0 1]N !×1 be the probability mass function over all the
possible identity association in B(k), then

H(πB(k)) ≥ H(πB(k−1))

where H(·) is the statistical entropy of a probability mass function.
3 The doubly-stochastic matrix is a N × N non-negative matrix, whose rows and

columns sum to one.
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Proof. The mixing matrix M(k) can represented as a convex sum of permutation
matrices as follows

M(k) =
N !∑

i=1

αiΦi

where
∑

i αi = 1 and Φi is the ith N × N permutation matrix. Then,

H(πB(k)) = H(πB(k−1)M(k))

= H(
N !∑

i=1

αiπB(k−1)Φi)

≥
N !∑

i=1

αiH(πB(k−1)Φi)

=
N !∑

i=1

αiH(πB(k−1))

= H(πB(k−1))

where the inequality comes from the strict concavity of the entropy function.
This concludes the proof.

The statistical entropy is a quantitative measure of uncertainty in the prob-
ability distribution and the above lemma shows the uncertainty on the possible
identity associations does not decrease over time. Therefore, the uncertainty will
grow until every identity association becomes equally like without any additional
information available. As we have mentioned in section 2, the target identity in-
formation is more likely to be available in COLU and the proper use of this
local information could make the uncertainty decrease in IMF formulation. The
details on how to exploit the local identity information is investigated in sec-
tion 3.
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2.2 Computing Mixing Matrix M(k)

The mixing matrix M(k) is a collection of marginal association probabilities and
can be computed from the joint association probability4 in theory. Computing
the joint association probabilities is very expensive and should be avoided in
practice. In this paper, we propose a simple heuristic with O(N2) empirical
complexity that only requires the information on how fast the targets are moving.
Let’s assume that the speed information is given as a probability density function
p(s(k)), where s(k) is |x(k) − x(k − 1)|/∆T .5 Then, we compute a non-negative
matrix L(k) ∈ RN×N , whose (i, j) entry is lij(k) = p(s(k) = |xj(k) − xi(k −
1)|/∆T ). In general, L(k) is not doubly-stochastic and an optimization need to
be done to transform this into a doubly-stochastic matrix. We use the Iterative
Scaling algorithm to transform L(k) into a doubly-stochastic matrix. The details
on the Iterative Scaling algorithm are explained in section 3.2.

3 Multi-target Identity Update Using Local Information

In WASN, the ability to use local information efficiently is critical for distributed
algorithms since non-local information only comes at the cost of communication.
The IMF approach in multi-target identity management does provide a natural
setting for exploiting local evidences. Figure 4 illustrate this in a simple two
targets crossover scenario. Two targets are moving cross each other and their
identity masses are mixed at the intersection of the two tracks. After the mixing,
the identity belief matrix B(k) becomes un-informative - each association is
almost equally likely. When the two targets are well-separated, i.e., in COLU, one
of the nodes near the bottom target observes a local evidence6 that the bottom
target is more likely to be yellow7 . This observation increases the yellow-mass
of the bottom target byellow,bottom(k) and the rest of the elements in B(k) can be
updated from the doubly-stochasticity of B(k). Therefore, the local information
about the bottom target directly leads to the information about the top target
in a unique way.

From the above example, only a local evidence seems to be enough to update
the whole identity belief B(k) uniquely. For the general N target case, however,
the doubly-stochasticity of B(k) is not enough to guarantee a unique solution
since there are more unknowns (N2) than the number of constraints (N). There-
fore, we need more constraints or optimizations to compute a unique B(k) given
a local evidence. The upcoming sub-sections deal with this problem of comput-
ing B(k) given a local evidence in a centralized setting. Section 4 discusses the
distributed implementation of the algorithm for WASN.

4 Probabilities of permutations/associations, i.e., how likely each permutation is.
5 p(s(k)) is usually stationary, i.e., does not depend on k.
6 A local evidence is the information enough to determine the whole or partial entries

in bi(k). The simple example is “xi(k) is of ID j”.
7 Lighter color in a black and white printout
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Fig. 4. Example of using local evidence: The top left ID is colored as blue and the
bottom left ID is yellow. The blue and yellow look dark and lighter grey, respectively,
in a black and white printout.

3.1 Bayesian Normalization

Before we introduce a practical solution to compute unique B(k) given a local
evidence, we study the desirable properties of the perfect solution by computing
B(k) as a Bayesian posterior belief distribution given a local evidence, assuming
the whole history of the mixing events are known. In this case, we assume that
the joint probability distribution π(k) ∈ {Z ∈ RN !×1|∑i zi = 1, zi ≥ 0} over
all the possible N ! associations at time k, from which M(k) can be derived, is
available for all k. Note that, for some k’s, π(k)’s are deterministic and their
associated M(k) are permutation matrices. These π(k) do not contribute in
computing the B(k) and its posterior. To consider only those random mixing
events, we define K ⊂ {0, 1, · · · , N} be the set of time indices associated with
|π(ki)| > 2, where ki is the ith element in K and | · | represents the cardinality
of a set. We also introduce a sequence of random variables Ri associated with
π(ki), which takes values j ∈ {1, · · · , |π(ki)|} with probability of πj(ki), i.e., jth

value in π(ki).
Figure 5 illustrates the above formulation, where each box can be considered

as a probabilistic switch governed by Ri, i.e., a specific permutation is chosen
according to the value of Ri with some probability. Then, a single identity associ-
ation at time k is a point ε in the joint event space S = {(R1, R2, · · · , R|K|)|Ri ∈
[1 |π(ui)|]} with |S| =

∏
i |π(ui)| and the probability of this event can be easily

computed due to the statistical independence assumption in section 2.1.

p((R1, · · · , R|K|) = ε)) = p(R1 = ε1) · · · p(R|K| = ε|K|))
= πε1(u1) · · · πε|K|(u|K|)

Using the above equation, we can compute the posterior B(k) given a local
evidence L, which is a set of events in S satisfying the local observation, say,
ID(xi(k)) = j, using the following theorem.
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Theorem 2. Let Eij(k) be the subset of S satisfying ID(xj(k)) = i and L be
the subset of S satisfying the local observation, then

p(bij(k)|L) = p(Eij |L) =

∑
εl∈Eij∪L p(εl)
∑

εl∈L p(εl)

Proof. The proof is trivial using the Bayes’ rule.

Now that we know how to update B(k) given a local evidence L, but the
effect of the evidence to the other columns is not obvious from the equation.
The following lemma describes how the local evidence effect the uncertainty of
the other columns.

Lemma 2. The local observation L does not increase the entropies of the
columns, i.e.

H(bi(k)|L) ≤ H(bi(k))

Proof. See [6] for the proof.

The lemma says that the local evidence does not increase the entropy of the
other columns on the average.

The ideal solution obtained in the above theorem exhibits one very interesting
characteristic, in which there are some elements in B(k) - in addition to the
zero elements in B(k) - that are not affected by the local evidence. This can
potentially save huge amount of communication energy in practice. The following
theorem formally presents the property of the Bayesian solution.

Theorem 3. Let bpq(k) be the entry that becomes 1 from the local evidence L,
then the columns with zero at pth entry and the rows with zero at qth entry do
not change.
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Proof. Let’s first prove that the columns with zero at pth entry do not change. If
bi(k) is such a column, then there does not exist any event in S that guarantees
a path from xp(0) to xi(k), i.e., no path originated from xp(0) reaches xi(k). The
local evidence L defines a subset of S, which guarantees the existence of at least
one path between xp(0) and xq(k). None of these paths between xp(0) and xq(k),
however, affect the paths arriving at xi(k). Due to the statistical independence
assumption on the mixing events, bi(k) does not change given the local evidence
L. The row case can be proved in the same way. This concludes the proof.

The above theorem reduces the number of variables to be updated in B(k)
given a local evidence. In addition to that, this can help the number of com-
munications required to update B(k) given a local evidence assuming that each
column bi(k) is maintained by a node in the sensor network. The details on the
distributed computation is discussed in section 4.

In addition to these rows and columns, the zero elements in B(k) do not
change given a local evidence L.

3.2 Iterative Scaling

In practice, the Bayesian formulation in the previous section is infeasible due to
its exponential complexity. This section presents the practical alternative called
the Iterative scaling. First, we present a version of the Iterative Scaling algorithm
to achieve a doubly-stochastic matrix A given a N × N non-negative matrix B.

B := A;
B_old := A;
for k = 1 to maximum_number_of_iteration

for i = 1 to number_of_row
row_sum := 0;
for k = 1 to number_of_column

row_sum := row_sum + B(i,k);
end
for j = 1 to number_of_column

B(i,j) := B(i,j)/row_sum;
end

end
for i = 1 to number_of_column

column_sum := 0;
for k = 1 to number_of_row

column_sum := column_sum + B(i,k);
end
for j = 1 to number_of_row

B(j,i) := B(j,i)/column_sum;
end

end
if |B - B_old| < error
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terminate;
end
B_old := B;

end

Basically, the algorithm divides each element in ith row(column) by the sum
of the ith row(column) and repeats the normalization until the error margin is
small. The following observations are made from the numerical simulations and
we list them here without proofs.

– The algorithm converges to a unique doubly-stochastic matrix given an ini-
tial matrix.

– The ordering of row/column normalization does not affect the convergence.
– The total number of iteration is not affected by the size of the matrix.
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Fig. 6. Typical convergence of iterative scaling: The flat part of the plots are due to
the Matlab precision limit.

From these observations, the Iterative Scaling algorithm scales as O(N2). The
proof of the complexity result remains as an immediate task for future research.
Figure 6 shows an example of the convergence behavior of the algorithm. Three
different sizes of matrices (10×10, 100×100, 1000×1000) are generated randomly
using Matlab rand(·) function, in which each entry is generated according to
the uniform probability density over [0 1]. The plot shows that the Iterative
Scaling method has fast convergence and the size of a matrix does not affect the
convergence ratio. What seems to affect the convergence rate is how different
the (scaled) initial matrix from being the doubly-stochastic matrix, although we
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do not have a proper quantitative measure for this at this point. This is why
the larger matrices in the above figure converges a little faster than the smaller
ones, since all the row/column sums of the larger matrices are close to 0.5N due
to the Law of Large Numbers and effectively close to a doubly-stochastic matrix
after scaling.

To benefit from the theorem 3, the Iterative scaling algorithm should be able
to deal with the non-square matrix with the fixed row/column sums. Let r and
c be N × 1 vector of row and column sum satisfying

∑
i ci =

∑
j rj , then we can

modify the above pseudo code as follows.

B(i,j) = B(i,j)/row_sum*r(i);
......
B(j,i) = B(j,i)/column_sum*c(i);

4 Distributed Implementation in WASN

The basic quantity to be distributed is B(k), the belief matrix. One way of dis-
tributing B(k) is to let each node in the sensor network maintain its own version
of B(k). This method is very robust and fault-tolerant due to the information
redundancy in the system. However, this idealistic distribution is infeasible and
non-scalable for the following the reason. To update the information, each node
need to compute its version of M(k), which requires information from at least
one of the other nodes. This is exactly the scenario in the landmark paper [14],
where per-node throughput goes to zero as the number of nodes goes to infinity
even under optimal routing and power control scheme. Therefore, the idealistic
distribution of each node maintaining B(k) is impossible and this argument is
true for all the algorithms of sensor networks that estimates the global quantity.

To overcome this problem, we adopt and extend the approach in [16] and
[17], where a leader-based single target tracking in WASN is introduced. The
basic idea is that, only a small number of nodes called leaders are active and
responsible for maintaining/updating the information of interest. When the lead-
ers are no longer the good subset of nodes for the information, they handoff the
information to the other nodes based on a utility function and the nodes receiv-
ing the information become the new leaders. In this approach, whereabout of
the information is easily maintained at the risk of the reduced robustness and
fault-tolerance.

Applying the leader-based approach to our algorithm, each column bi(k)
of B(k) and its position estimate xi(k) is maintained by each leader. When
the mixing happens, the local version of M(k)8 can be easily computed by the
leader. When a leader node observes a local evidence about the ID of its target,
say ID(xi(k)) = j, then the leader needs to talk to some of the other leaders, who
also think what they are tracking can be of the same ID. This type of multi-cast
communication in network is usually dealt by a group management protocol,
8 In the two target mixing, only non-zero entries in the ith and jth columns of M(k)

are required to update bi and bj and they are locally computable.
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Fig. 7. Flowchart of the distributed algorithm for the multi-target identity manage-
ment

which maintains and updates the different groups in the network according to a
predefined membership. In our case, the ith group is the set of the leader that
have non-zero probability at ith entry of their b(k) and we assume there exists a
good (or optimal) group management protocol for our purpose. Figure 7 shows
the main procedures and their relations of the distributed algorithm that each
node is running.

5 Experimental Results

We make the following assumptions for the simulation.

– Each node can sense the positions of the targets within its sensing range.
– Each node can talk to all the nodes within its communication range.
– Initially, the number of the targets are known to the initial leaders.
– Each node has a signal processing module for the signal classification and

the module performs better in COLU.
– Each node knows the relative positions of all the nodes in the communication

range.

The initial leaders are manually selected for the simulation, although it’s
possible to detect them as long as their initial positions are well separated. Each
leader updates its belief vector bi(k) using the local version of M(k) and handoffs
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the information to the next leader, which is selected based on its geographical
location. The signal classification module of the leaders will keep collecting the
information and initiates the identity normalization process by talking to the
other leaders that are in the same group when the identity information from the
signal classification is better than bi(k) and some threshold.

(a)  t=0 (b)  t=7 (c)  t=10

Fig. 8. Simulation Example

Figure 8 shows the three screen shots from the simulation of the algorithm.
Four targets - one tank and three dots - are moving along the straight lines for 10
seconds. The tank signature is much different from those of the other three, so it
can be identified with high probability in COLU. This local identity information
about the tank is the only available information and used to normalize the
belief bi(k) of the other leaders. The four leaders are colored differently and
their corresponding beliefs are displayed with the same color. Figure 8 (a) is
the initial configuration of the targets and their associated leaders. (b) shows
that the belief bi(k) of each leader gets uncertain after some number of mixing
events at t = 7 and the leaders are no longer sure of the identities of the targets.
(c), however, shows the beliefs get much better after the normalization using
Iterative Scaling algorithm given local identity information.

In figure 9, how the identity uncertainty of each target evolves during the
simulation is depicted using the entropy of each identity belief bi . The increases
in the uncertainty are due to the mixing events and the decreases are by the
local evidences. The two pieces of the local evidence on target 1 have reduced
the uncertainties of all the other targets in this example, since the identity mass
from the target 1 is mixed with all the other identities during the mixing events.

6 Summary and Future Work

We have developed a scalable distributed algorithm for the multi-target identity
management problem, first presented as a mathematical framework for a cen-
tralized setting, and then mapped to a distributed WASN. Simulation results
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Fig. 9. An example of how uncertainty of each belief changes. The target numbers
correspond to the track numbers in the previous figure.

have demonstrated the effectiveness of the framework and the efficiency of the
algorithm.

Since the target identity computation is at the heart of many WASN track-
ing and classification applications, the work presented here is an important step
towards building a comprehensive system for distributed inference in sensor net-
works. As our future work, we plan to relax some of the assumptions and models
used in our framework. For example, we may exploit a signal processing model
for target source separation, localization, and signature classification to obtain
additional target identity information when targets are in close proximity of each
other, and incorporate the ability to handle dynamic addition and deletion of
targets. A more theoretical task is the convergence proof for the normalization
step given multiple local evidences regardless of their chronological order.
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Abstract. The issue of data association arises frequently in sensor net-
works; whenever multiple sensors and sources are present, it may be
necessary to determine which observations from different sensors corre-
spond to the same target. In highly uncertain environments, one may
need to determine this correspondence without the benefit of an a priori
known joint signal/sensor model. This paper examines the data associa-
tion problem as the more general hypothesis test between factorizations
of a single, learned distribution. The optimal test between known dis-
tributions may be decomposed into model-dependent and statistical de-
pendence terms, quantifying the cost incurred by model estimation from
measurements compared to a test between known models. We demon-
strate how one might evaluate a two-signal association test efficiently
using kernel density estimation methods to model a wide class of possi-
ble distributions, and show the resulting algorithm’s ability to determine
correspondence in uncertain conditions through a series of synthetic ex-
amples. We then describe an extension of this technique to multi-signal
association which can be used to determine correspondence while avoid-
ing the computationally prohibitive task of evaluating all hypotheses.
Empirical results of the approximate approach are presented.

1 Introduction

Data association describes the problem of partitioning observations into like sets.
This is a common problem in networks of sensors – multiple signals are received
by several sensors, and one must determine which signals at different sensors
correspond to the same source.

In many collaborative sensing scenarios, the signal models are assumed to be
known and fully specified a priori. With such models, it is possible to formu-
late and use optimal hypothesis tests for data association. However, real-world
uncertainty often precludes strong modelling assumptions. For example, it is dif-
ficult to analytically quantify dependence between data of different modalities.
Additionally, nonlinear effects and inhomogenous media create complex interac-
tions and uncertainty. When applicable, a learning/estimation based approach is
appealing, but in the online case requires that one learn the signal distributions
while simultaneously performing the test. For example, this is possible for data
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association because it is a test described in terms of the distribution form, in
particular as a test over factorization and independence.

We show that the optimal likelihood test between two factorizations of a
density learned from the data can be expressed in terms of mutual information.
Furthermore, the analysis results in a clear decomposition of terms related to
statistical dependence (i.e. factorization) and those related to modelling assump-
tions. We propose the use of kernel density methods to estimate the distributions
and mutual information from data. In the case of high-dimensional data, where
learning a distribution is impractical, this can be done efficiently by finding
statistics which capture its interaction. Furthermore, the criterion for learning
these statistics is also expressed in terms of mutual information. The estimated
mutual information of these statistics can be used as an approximation to the
optimal likelihood ratio test, by training the statistics to minimize a bound on
the approximation error.

We will begin by describing a data association example between a pair of
sensors, each observing two targets. We show first how the optimal hypothesis
test changes in the absence of a known signal model and express the resulting
test in terms of information. We then discuss how one may use summarizing
features to estimate the mutual information efficiently and robustly using kernel
methods. This can yield a tractable estimate of the hypothesis test when direct
estimation of the observations’ distribution is infeasible. Finally, we present an
algorithmic extension of these ideas to the multiple target case.

2 An Information-Theoretic Interpretation of Data
Association

Data association can be cast as a hypothesis test between density factorizations
over measurements. As we will show, there is a natural information-theoretic
interpretation of this hypothesis test, which decomposes the test into terms
related to statistical dependency and terms related to modelling assumptions.
Consequently, one can quantify the contribution of prior knowledge as it relates
to a known model; but more importantly, in the absence of a prior model one can
still achieve a degree of separability between hypotheses by estimating statistical
dependency only. Furthermore, as we show, one can do so in a low-dimensional
feature space so long as one is careful about preserving information related to
the underlying hypothesis.

Consider the following example problem, which illustrates an application of
data association within tracking problems. Suppose we have a pair of widely
spaced acoustic sensors, where each sensor is a small array of many elements.
Each sensor produces an observation of the source and an estimate of bearing,
which in itself is insufficient to localize the source. However, triangulation of
bearing measurements from multiple sensors can be used to estimate the tar-
get location. For a single target, a pair of sensors is sufficient to perform this
triangulation.
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Fig. 1. The data association problem: two pairs of measurements results in estimated
targets at either the circles or the squares; but which remains ambiguous.

However, complications arise when there are multiple targets within a pair
of sensors’ fields of view. Each sensor determines two bearings; but this yields
four possible locations for only two targets, as depicted in Figure 1. With only
bearing information, there is no way to know which one of these target pairs is
real, and which is the artifact. We will show that it is possible to address this
ambiguity under the assumption that the sources are statistically independent,
without requiring a prior model of the relationship between observations across
sensors.

2.1 Mutual Information

Mutual information is a quantity characterizing the statistical dependence be-
tween two random variables. Although most widely known for its application to
communications (see e.g. [1]), here it arises in the context of discrimination and
hypothesis testing [2].

Correlation is equivalent to mutual information only for jointly Gaussian
random variables. The common assumption of Gaussian distributions and its
computational efficiency have given it wide applicability to association prob-
lems. However, there are many forms of dependency which are not captured by
correlation.

For example, Figure 2(a-c) shows three non-Gaussian joint distributions char-
acterized by a single parameter θ, indicating an angle of rotation with respect
to the random variables x, y. Although the correlation between x and y is zero
for all θ, the plot of mutual information as a function of θ (Figure 2(d)) demon-
strates that for many θ, x and y are far from independent. This illustrates how
mutual information as a measure of dependence differs from correlation.

2.2 Data Association as a Hypothesis Test

Let us assume that we receive N i.i.d. observations of each source at each of
the two sensors. When a full distribution is specified for the observed signals, we
have a hypothesis test over known, factorized models
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Fig. 2. Two variables x, y with joint distributions (a-c) are uncorrelated but not
necessarily independent – (d) shows mutual information as a function of the angle of
rotation θ.

H1 : [A1, B1, A2, B2]k ∼ pH1(A1, B1)pH1(A2, B2)
H2 : [A1, B1, A2, B2]k ∼ pH2(A1, B2)pH2(A2, B1)

for k ∈ [1 : N ]
(1)

with corresponding (normalized) log-likelihood ratio

1
N

log L =
1
N

N∑

k=1

[
log

pH1([A1, B1]k)pH1([A2, B2]k)
pH2([A1, B2]k)pH2([A2, B1]k)

]
(2)

As N grows large, the (normalized) log-likelihood approaches its expected value,
which can be expressed in terms of mutual information (MI) and Kullback-
Leibler (KL) divergence. Under H1 this value is

EH1 [log L] =IH1(A1; B1) + IH1(A2; B2) +
D(pH1(A1, . . . , B2)‖pH2(A1, . . . , B2))

(3)

and similarly when H2 is true:

EH2 [log L] = − IH2(A1;B2) − IH2(A1;B2) −
D(pH2(A1, . . . , B2)‖pH1(A1, . . . , B2))

(4)

The expected value of Equation (3) can be grouped in two parts – an information
part (the two MI terms) measuring statistical dependency across sensors, and
a model mismatch term (the KL-divergence) measuring difference between the
two models. We begin by examining the large-sample limits of the likelihood
ratio test, expressed in terms of its expected value; when this likelihood ratio
is not available we see that another estimator for the same quantity may be
substituted.

Often the true distributions pHi are unknown, e.g. due to uncertainty in the
source densities or the medium of signal propagation. Consider what might be
done with estimates of the densities based on the empirical data to be tested.
Note that this allows us to learn densities without requiring multiple trials un-
der similar conditions. We can construct estimates assuming the factorization
under either hypothesis, but because observations are only available for the true
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hypothesis our estimates of the other will necessarily be incorrect. Specifically,
let p̂Hi(·) be a consistent estimate of the joint distribution assuming the factor-
ization under Hi and let p̃Hi(·) denote its limit; then we have

if H1 is true,
p̂H1 → p̃H1 = pH1(A1, B1)pH1(A2, B2)
p̂H2 → p̃H2 = pH1(A1)pH1(B1)pH1(A2)pH1(B2)

if H2 is true,
p̂H1 → p̃H1 = pH2(A1)pH2(B1)pH2(A2)pH2(B2)
p̂H2 → p̃H2 = pH2(A1, B2)pH2(A2, B1)

(5)

Thus when p̂Hi assumes the correct hypothesis we converge to the correct dis-
tribution, while assuming the incorrect hypothesis leads to a fully factored dis-
tribution. This is similar to issues arising in generalized likelihood ratio (GLR)
tests [3].

We proceed assuming that our estimates have negligible error, and analyze
the behavior of their limit p̃(·); we will examine the effect of error inherent in
finite estimates p̂(·) later. Now the expectation of the log-likelihood ratio can be
expressed solely in terms of the mutual information between the observations.
Under H1 this is

EH1 [log L̃] = EH1

[
log

p̃H1(A1, B1)p̃H1(A2, B2)
p̃H2(A1, B2)p̃H2(A2, B1)

]

= I(A1; B1) + I(A2; B2)

and similarly under H2,

EH2 [log L̃] = −I(A1; B2) − I(A2; B1)

Notice in particular that the KL-divergence terms stemming from model mis-
match in Equation (3) have vanished. This is due to the fact that both models are
estimated from the same data, and quantifies the increased difficulty of discrimi-
nation when the models are unknown. We can write the expectation independent
of which hypothesis is true as

E[log L̃] = I(A1; B1) + I(A2; B2) − I(A1; B2) − I(A2; B1) (6)

since for either hypothesis, the other two terms above will be zero; this casts the
average log-likelihood ratio as an estimator of mutual information.

We have not assumed that the true distributions p(·) have any particular
form, and therefore might consider using nonparametric methods to ensure that
our estimates converge under a wide variety of true distributions. However, if the
observations are high-dimensional such methods require an impractical number
of samples in order to obtain accurate estimates. In particular, this means that
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the true likelihood ratio cannot be easily calculated, since it involves estimation
and evaluation of high-dimensional densities. However, the log-likelihood ratio is
acting as an estimator of the mutual information, and we may instead substitute
another, more tractable estimate of mutual information if available.

Direct estimation of the MI terms above using kernel methods also involves
estimating high-dimensional distributions, but one can express it succinctly using
features which summarize the data interaction. We explore ways of learning such
features, and shall see that the quality criterion for summarization is expressed as
the mutual information between features estimated in a low-dimensional space.

Let us suppose initially that we possess low-dimensional sufficient statistics
for the data. Although finding them may be difficult, we know that for the
data association problem sufficient statistics should exist, since the true variable
of interest, correspondence, is summarized by a single scalar likelihood. More
precisely, let f

Aj

i be a low-dimensional feature of Aj and f̄
Aj

i its complement,
such that there is a bijective transformation between Aj and [fAj

i , f̄
Aj

i ] (and
similarly for Bk). If the following relation holds,

pHi(Aj , Bk) = pHi(f
Aj

i , f̄
Aj

i , fBk
i , f̄Bk

i )

= pHi(f
Aj

i , fBk
i )pHi(f̄

Aj

i |fAj

i )pHi(f̄
Bk
i |fBk

i )
(7)

then the log-likelihood ratio of Equation (6) can be written exactly as

E[log L̃] = I(fA1
1 ; fB1

1 ) + I(fA2
1 ; fB2

1 ) − I(fA1
2 ; fB2

2 ) − I(fA2
2 ; fB1

2 ) (8)

Although sufficient statistics are likely to exist, it may be difficult or im-
possible to find them exactly. If the features f

Aj

i and fBk
i are not sufficient,

several divergence terms must be added to Equation (8). For any set of features
satisfying pHi(Aj , Bk) = pHi(f

Aj

i , f̄
Aj

i , fBk
i , f̄Bk

i ), we can write

E[log L̃] = I1;1
1 + I2;2

1 − I1;2
2 − I2;1

2 + D1;1
1 + D2;2

1 − D1;2
2 − D2;1

2 (9)

where for brevity we have used the notation

Ij;k
i = I(fAj

i ; fBk
i )

Dj,k
i = D(p̃(Aj , Bk)‖p̃(fAj

i , fBk
i )p̃(f̄Aj

i |fAj

i )p̃(f̄Bk
i |fBk

i ))

The data likelihood of Equation (9) contains a difference of the divergence
terms from each hypothesis. Notice, however, that only the divergence terms
involve high-dimensional data; the mutual information is calculated between
low-dimensional features. Thus if we discard the divergence terms we can avoid
all calculations on the high-dimensional compliment features f̄ . We would like to
minimize the effect on our estimate of the likelihood ratio, but cannot estimate
the terms directly without evaluating high-dimensional densities. However, by
nonnegativity of the KL-divergence we can bound the difference by the sum of
the divergences:

∣∣∣D1;1
1 + D2;2

1 − D1;2
2 − D2;1

2

∣∣∣ ≤ D1;1
1 + D2;2

1 + D1;2
2 + D2;1

2 (10)
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We then minimize this bound by minimizing the individual terms, or equiv-
alently maximizing each mutual information term (which can be done in the
low-dimensional feature space). Note that these four optimizations are decou-
pled from each other.

Finally, it is unlikely that with finite data our estimates p̂(·) will have con-
verged to the limit p̃(·). Thus we will also have divergence terms from errors in
the density estimates:

E[log L̃] =Î1;1
1 + Î2;2

1 − Î1;2
2 − Î2;1

2

+ D(p̃H1‖p̂H1) − D(p̃H2‖p̂H2)
(11)

where the Î indicate the mutual information of the density estimates. Once again
we see a difference in divergence terms; in this case minimization of the bound
means choosing density estimates which converge to the true underlying distri-
butions as quickly as possible. Note that if p̂H1(·) is not a consistent estimator
for the distribution p̃Hi(·), the individual divergence terms above will never be
exactly zero.

Thus we have an estimate of the true log-likelihood ratio between factoriza-
tions of a learned distribution, computed over a low-dimensional space:

E[log L̃] =Î(fA1
1 ; fB1

1 ) + Î(fA2
1 ; fB2

1 ) − Î(fA1
2 ; fB2

2 )

− Î(fA2
2 ; fB1

2 ) + divergence terms
(12)

where maximizing the Î with regard to the features f
Xj

i minimizes a bound
on the ignored divergence terms. We can therefore use estimates of the mutual
information over learned features as an estimate of the true log-likelihood ratio
for hypothesis testing.

3 Algorithmic Details

The derivations above give general principles by which one may design an algo-
rithm for data association using low-dimensional sufficient statistics. Two pri-
mary elements are necessary:

1. a means of estimating entropy, and by extension mutual information, over
samples, and

2. a means of optimizing that estimate over the parameters of the sufficient
statistic.

We shall address each of these issues in turn.

3.1 Estimating Mutual Information

In estimating mutual information, we wish to avoid strong prior modelling as-
sumptions, i.e. jointly Gaussian measurements. There has been considerable re-
search into useful nonparametric methods for estimating information-theoretic
quantities; for an overview, see e.g. [4].
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Kernel density estimation methods are often used as an appealing alterna-
tive when no prior knowledge of the distribution is available. Similarly, these
kernel-based methods can be used to estimate mutual information effectively.
Using estimates with smooth, differentiable kernel shapes will also yield simple
calculations of a gradient for mutual information, which will prove to be useful in
learning. An issue one must consider is that the quality of the estimate degrades
as the dimensionality grows; thus we perform the estimate in a low-dimensional
space.

To use kernel methods for density estimation requires two basic choices, a
kernel shape and a bandwidth or smoothing parameter. For the former, we use
Gaussian kernel functions Kσ(x) = (2πσ2)− 1

2 exp{−x2/2σ2}, where σ controls
the bandwidth. This ensures that our estimate is smooth and differentiable ev-
erywhere. There are a number of ways to choose kernel bandwidth automatically
(see e.g. [5]). Because we intend to use these density estimates for likelihood eval-
uation and maximization, it is sensible to make this the criterion for bandwidth
as well; we therefore make use of a leave-one-out maximum likelihood bandwidth,
given by

arg max
σ



− 1
N

∑

j

log



 1
N − 1

∑

i�=j

Kσ(xj − xi)







 (13)

Because our variables of interest are continuous, it is convenient to write the
mutual information in terms of joint and marginal entropy, as:

I(fAj

i ; fBk
i ) = H(fAj

i ) + H(fBk
i ) − H(fAj

i , fBk
i ) (14)

There are a number of possible kernel-based estimates of entropy available [4].
In practice we use either a leave-one-out resubstitution estimate:

ĤRS(x) = − 1
N

∑

j

log



 1
N − 1

∑

i�=j

Kσ(xj − xi)



 (15)

or an integrated squared error estimate from [6]:

ĤISE =H(1) − 1
2

∫
(1 − p̂(x))2 dx (16)

where 1 is the uniform density on a fixed range, and

p̂(x) =
1
N

∑

j

Kσ(x − xj)

These methods have different interpretations – the former is a stochastic estimate
of the true entropy, while the latter can be considered an exact calculation of an
entropy approximation. In practice both of these estimates produce similar re-
sults. Both estimates may also be differentiated with respect to their arguments,
yielding tractable gradient estimates useful in learning.
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3.2 Learning Sufficient Statistics

In order to learn sufficient or relatively sufficient statistics, we must define a
function from our high-dimensional observation space to the low-dimensional
space over which we are able to calculate mutual information. By choosing a
function which admits a simple gradient-based update of the parameter values,
we can use gradient ascent to train our function towards a local information
maximum [7,8].

Often, quite simple statistic forms will suffice. For example, all of the ex-
amples below were performed using a simple linear combination of the input
variables, passed through a hyperbolic tangent function to threshold the output
range:

f(x = [x1 . . . xd]) = tanh(
∑

i

wix
i) (17)

That is, using the method of [7,8] we apply gradient ascent of mutual information
between the associated features with respect to the weight parameters wi.

However, the methods are applicable to any function which can be trained
with gradient estimates, allowing extension to much more complex functional
forms. In particular, multiple layer perceptrons are a generalization of the above
form which, allowed sufficient complexity, can act as a universal function ap-
proximator [9].

We may also wish to impose a capacity control or complexity penalty on the
model (e.g. regularization). In practice, we put a penalty on the absolute sum
of the linear weights (adding to the gradient a constant bias towards zero) to
encourage sparse values.

4 Data Association of Two Sources

We illustrate the technique above with two examples on synthetic data. The
first is a simulation of dispersive media – an all-pass filter with nonlinear phase
characteristics controlled by an adjustable parameter α. The phase response
for three example values of α are given in Figure 3(a). Sensor A observes two
independent signals of bandpassed i.i.d. Gaussian noise, while sensor B observes
the allpass-filtered versions of A.

If the filter characteristics are known, the optimal correspondence test is
given by applying the inverse filter to B followed by finding its correlation with
A. However when the filter is not known, estimating the inverse filter becomes
a source reconstruction problem. Simple correlation of A and B begins to fail as
the phase becomes increasingly nonlinear over the bandwidth of the sources. The
upper curve of Figure 3(b) shows the maximum correlation coefficient between
correct pairings of A and B over all time shifts, averaged over 100 trials. Dotted
lines indicate the coefficient’s standard deviation over the trials. To determine
significance, we compare this to a baseline of the maximum correlation coefficient
between incorrect pairings. The region of overlap indicates nonlinear phases for
which correlation cannot reliably determine correspondence.
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Fig. 3. Data association across a nonlinear phase all-pass filter: tunable filter (a) yields
correlations (b) and mutual information (c).

Figure 3(c) shows an estimate of mutual information between the Fourier
spectra of A and B, constructed in the manner outlined above. As α increases,
the mutual information estimate assumes a steady-state value which remains
separated from the baseline estimate and can accurately determine association.

The second example relates observations of non-overlapping Fourier spectra.
Suppose that we observe a time series and would like to determine whether
some higher-frequency observations are unrelated, or are a result of observing
some nonlinear function (and thus harmonics) of the original measurements.
We simulate this situation by creating two independent signals, passing them
through a nonlinearity, and relating high-passed and low-passed observations.
Sensor A observes the signals’ lower half spectrum, and sensor B their upper
half.

Synthetic data illustrating this can be seen in Figures 4-5. For Figure 4 we
create a narrowband signal whose center frequency is modulated at one of two
different rates, and pass it through a cubic nonlinearity. In the resulting filtered
spectra (shown in Figure 4(a-d)), the correct pairing is clear by inspection. Scat-
terplots of the trained features (see Figure 4(e-h)) show that indeed, features of
the correct pairings have high mutual information while incorrect pairings have
nearly independent features.

Figure 5 shows the same test repeated with wideband data – Gaussian noise
is passed through a cubic nonlinearity, and the resulting signal is separated
into high- and low-frequency observations, shown in Figure 5(a-d). The resulting
structure is less obvious, both visually and to our estimates of mutual informa-
tion (Figure 5(e-h)), but the correct pairing is still found.

5 Extension to Many Sources

For the problem described above, the presence of only two targets means the
data association problem can be expressed as a test between two hypotheses.
However, as the number of targets is increased, the combinatorial nature of
the hypothesis test makes evaluation of each hypothesis infeasible. Approximate
methods which determine a correspondence without this computational burden
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(a) A1 (b) A2 (e) A1 ↔ B1 (f) A1 ↔ B2

(c) B1 (d) B2 (g) A2 ↔ B1 (h) A2 ↔ B2

Fig. 4. Associating non-overlapping harmonic spectra: the correct pairing of data sets
(a-d) is easy to spot; the learned features yield MI estimates which are high for correct
pairings (e,h) and low for incorrect pairings (f,g).

offer an alternative which may be particularly attractive in the context of sen-
sor networks. We describe an extension of the above method to perform data
association between many targets without requiring evaluation of all hypotheses.

Let us re-examine the problem of Section 2, but allow both sensors to receive
separate observations from M independent targets, denoted A1, . . . , AM and
B1, . . . , BM . One may still apply estimates of MI to approximate the hypothesis
test as described in Section 2.2, but direct application will require that mutual
information be estimated for each of the M2 data pairs – a potentially costly
operation.

However, we suggest an approximate means of evaluating the same test which
does not compute each MI estimate. We can solve the data association problem
by finding features which summarize all the signals received at a particular
sensor. A test can then be performed on the learned feature coefficients directly,
rather than computing all individual pairwise likelihoods.

Let us denote the concatenation of all signals from sensor A by [A1, . . . , AM ].
One can learn features which maximize mutual information between this con-
catenated vector and a particular signal Bj ; we denote the feature of Bj by f

Bj

A ,
and the feature of [A1, . . . , AM ] by f

[A1,... ,AM ]
j .

Again, let us consider the linear statistics of Section 3.2:

f
Bj

A = tanh(
∑

i

wiB
i
j) (18)

f
[A1,... ,AM ]
j = tanh(

∑

i,k

wi,Ak
Ai

k) (19)

where Ai
k (Bi

j) indicates the ith dimension of the signal Ak (Bj).
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(a) A1 (b) A2 (e) A1 ↔ B1 (f) A1 ↔ B2

(c) B1 (d) B2 (g) A2 ↔ B1 (h) A2 ↔ B2

Fig. 5. Associating non-overlapping wideband harmonic spectra: though the correct
pairing is harder to see than Figure 4, the estimated MI is still higher for the correct
hypothesis (e,h).

We now consider tests based on the absolute deviation of the feature coeffi-
cients for each signal Ak:

∑

i

|wi,Ak
|

Under the assumption of independent sources, mutual information exists only
between the correctly associated signals; i.e. if As and Bt represent a correct
association, we have

I(As; Bt) = I([A1, . . . , AM ]; Bt)
= I(As; [B1, . . . , BM ])

We may then analyze the mutual information of a particular feature

I(f [A1,... ,AM ]
t ; fBt

A ) = I(tanh(
∑

i,k

wi,Ak
Ai

k); fBt

A )

= I(
∑

i,k

wi,Ak
Ai

k; fBt

A )

=
∑

k

I(
∑

i

wi,Ak
Ai

k; fBt

A )

= I(
∑

i

wi,AsA
i
s; f

Bt

A )

Thus, for k �= s the weights wi,Ak
have no contribution to the mutual informa-

tion. This tells us that among all features with maximal MI, the one with mini-
mum absolute deviation

∑
i,k |wi,Ak

| has support only on As. Whether distribu-
tions exist such that no linear feature captures dependence (i.e. I(fA

t ; fBt

A ) = 0
for all linear f) is an open question.
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As a means of exploiting this property, we impose a regularization penalty
on the feature coefficients during learning. In particular, we augment the infor-
mation gradient on the concatenated vector feature with a sparsity term, giving

∂I(f [A1,... ,AM ]
j ; fBj

A )
∂wi0,Ak0

− α max
i,k

|wi,Ak �=k0
| (20)

where the parameter α controls the strength of the regularization. This imposes
a penalty on the absolute deviation of the weights which is proportional to the
maximum weight from a different signal, giving sparse selection of signals –
if only one of the M signals has nonzero coefficients, it has no regularization
penalty imposed.

A decision can be reached more efficiently using the coefficient deviations,
since only a few (O(M)) statistics must be learned; a simple method such as
greedy selection or the auction algorithm may be applied to determine the final
association.

In the following example, we show the application of this technique to as-
sociating harmonics of wideband data passed through a nonlinearity; each of
four signals is created in the same manner as those of the final example in
Section 4. The signals’ Fourier coefficients are shown in Figure 6; sensor A ob-
serves the lower half-spectrum and sensor B the upper. For demonstration pur-
poses, we calculate statistics both for each Bk with [A1, . . . , AM ], and each Ak

with [B1, . . . , BM ]. Again, we use the ISE approximation of Equation (16) to
calculate the information gradient.

Statistics trained in this way are shown in the upper half of Figure 7. To see
how one would use these statistics to determine association, we can write the
total absolute deviation of the statistic coefficients grouped by observation, and
normalize by its maximum. This gives us the pairwise values shown in the lower
part of Figure 7. In this example, a greedy method on either set of statistics
is sufficient to determine the correct associations. More sophisticated methods
might compute and incorporate both sets into a decision.

6 Discussion

We have seen that the data association problem may be characterized as a hy-
pothesis test between factorizations of a distribution. An information-theoretic
analysis led to a natural decomposition of the hypothesis test into terms related
to prior modelling assumptions and terms related to statistical dependence. Fur-
thermore, this analysis yielded insight into how one might perform data associa-
tion in a principled way in the absence of a prior model. The approach described
is similar to a nonparametric generalized likelihood ratio test.

In addition, we have presented an algorithm which utilizes these principles
for the purposes of performing data association. This allows us to perform cor-
respondence tests even when the source densities are unknown or there is un-
certainty in the signals’ propagation by learning statistics which summarize the
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A1: B1:

A2: B2:

A3: B3:

A4:
�

� �
�

��
�

� B4:

Fig. 6. Associating many signal pairs: a naive approach to finding the association
above would require 42 estimates of mutual information.

[ B1 B2 B3 B4 ] [ A1 A2 A3 A4 ]

A1: B1:

A2: B2:

A3: B3:

A4: B4:

0.097 0.202 0.144 1.000 0.058 1.000 0.029 0.041
1.000 0.029 0.013 0.040 0.084 0.001 0.016 1.000
0.005 0.094 1.000 0.033 0.000 1.000 0.666 0.185
0.746 1.000 0.000 0.131 1.000 0.629 0.000 0.758

Fig. 7. Statistics learned on concatenated signals (above); each feature’s region of
support indicates probable associations. The row-normalized absolute sum (L1 norm)
of the statistics subdivided by signal index (below) may be used to determine corre-
spondence; bold type indicates the correct association

mutual information between observed data vectors in a compact form. This was
equivalent to approximating the likelihood ratio test with mutual information
estimates in a low-dimensional space.

We have also suggested an approximate method of determining correspon-
dence between larger signal sets based on the same techniques. Although this
does not correspond directly to the optimal hypothesis test, it has the advantage
that it does not require that mutual information be estimated for all M2 signal
pairs. Finally, we demonstrated the efficacy of this method with experiments on
synthetic data.
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Target Detection, Tracking, and Geolocation
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Abstract. While unattended ground sensors have traditionally relied
upon acoustic, seismic, magnetic and non-imaging IR sensing modal-
ities to perform detection, tracking, and recognition, imagery has the
potential to greatly improve performance by introducing a rich feature
set in the form of length, color, and shape metrics. This paper summa-
rizes recent work in collaborative processing exploiting two extremes of
sensor complexity: single-element acoustic sensors and panoramic image
sensors. For the case of acoustic sensing, acoustic features from multi-
ple nodes are combined to establish bearing to target bearing via time-
difference of arrival algorithms. Multiple bearing estimates from different
node clusters are combined to geolocate targets. We also present re-
cent work in multi-node target tracking using panoramic imagers, where
bearing estimates are derived by detecting and tracking moving objects
within the panoramic image. Performance of both acoustic and image
sensing modalities is illustrated using field data. We show that adoption
of imagers is feasible in terms of size, weight, energy consumption, and
bandwidth usage, and discuss the advantages and disadvantages relative
to traditional unattended sensors.

1 Introduction

Until recently, research in unattended ground sensors for target detection and
tracking was evolving toward ever more capable sensors in the form of imagers,
range finders, and arrays of high-sensitivity microphones for coherent beamform-
ing [1,2,3]. However, these large, high performance sensors are power-hungry, and
have not proven affordable for remote surveillance over wide areas. Recently, re-
searchers have been exploring low-cost distributed sensors as a means to lower
deployed system cost and energy usage, while improving coverage, data quality
and timeliness through proliferation of short-range, collaborative sensors [4].

Acoustic sensors spring quickly to mind as inexpensive, low power nodes.
Indeed, acoustic sensors have been the focus of a number of recent collaborative
sensing research efforts. Acoustics can certainly provide approximate locations
of targets, as well as a reasonably accurate classification of each target, and
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can do so with low power usage. However, the performance of acoustic sensors
degrades significantly when tracking or classifying multiple targets, or targets
not in the pre-defined classification library. Acoustic sensor performance also
degrades severely in the presence of wind or multipath environments.

Furthermore, while acoustic sensors may correctly determine the class of
vehicular target, other important features such as markings, occupants, and
armament cannot be ascertained from acoustic data. In order to support com-
prehensive surveillance and situational awareness, it is clear that imagers must
be involved in some form. However, since imagers consume much more power
than acoustic sensors, it is inefficient if not impractical for them to operate con-
tinuously. Therefore, acoustic or another low-power sensing modality must be
used for cueing the image sensors.

This paper describes a distributed acoustic bearing estimation system as
well as a panoramic imager system. The acoustic bearing estimation system can
serve as the low-power cueing system for the imager, which can perform more
sophisticated and accurate tracking and classification of targets.

2 Acoustic Time-Difference of Arrival

Historically, applications involving acoustic unattended ground sensors are char-
acterized by isolated sensor nodes, possibly with a small coherent array, that
report results to human operators over ranges of a few kilometers or more [3].
In contrast, the distributed sensing community is exploring the utility of sensor
platforms consisting of many small, low-cost sensors employing low-power, omni-
directional sensors (e.g., acoustic and seismic). Such sensors are effective in clas-
sifying targets according to signature, but, due to the lack of directionality, the
sensors do not individually provide target geolocation or bearing information.
Furthermore, the energy constraints imposed by the small sensor size require
hardware and algorithm design that minimize energy utilization in processing
and communication, and also minimize required inter-sensor communication.

In terms of collaborative bearing estimation, researchers have investigated
the possibility of algorithms such as “blind” beamforming, which adapt tradi-
tional coherent direction-finding algorithms to cross-platform operation [5]. Such
algorithms exemplify what we call collaborative signal processing (CSP). That
is, since each sensor node has limited capability, information from multiple sen-
sor nodes is combined to enhance overall performance. However, beamforming
algorithms require a great deal of communication bandwidth, which increases
energy consumption and is counter to the goal of small, low-cost, close-range
sensing.

Acoustic time-difference of arrival (TDOA) is a technique for target local-
ization that can be adapted to resource-constrained, omnidirectional acoustic
nodes, with sufficiently low communication bandwidth requirements to be feasi-
ble in long-term deployments. This section provides a brief summary of one such
algorithm. For a more detailed discussion, see [6] and [7].
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2.1 Power Considerations

Since the cost, logistics, support, and covertness of a deployable sensor is pro-
portional to its size and weight, power conservation is of the utmost importance.
With current technology, rules of thumb for energy consumption vary between
picojoules to nanojoules per instruction for processing, while communication
consumes microjoules to millijoules per bit, depending on desired range and
link geometry. This creates a strong argument for the use of local processing of
sensor data to extract only essential information and thus minimize communi-
cation. Minimizing communication among nodes is particularly important when
communicating at low elevation angles near the ground, where R−4 spreading
losses occur [8]. This increases the energy cost of communication and reduces
the achievable distance of radio transmission.

These observations lead us to limit collaborative processing to local clusters of
sensors, and to avoid transmitting raw data between nodes in order to minimize
bits communicated and commensurate energy expended.

2.2 TDOA Motivation

Single-element acoustic sensors are among the smallest and lowest power sensors
available. However, to obtain useful directional information, a single sensor is in-
sufficient. Instead, a network of individual sensor nodes is used, and the data is
combined using some type of CSP algorithm. Coherent processing [1,2] is the-
oretically possible, but performance is limited by sensor location uncertainties,
problems related to the long baselines, and errors in time synchronization. Clos-
est point of approach (CPA) [9,10] has also been proposed, but is complicated by
multi-target scenarios and by complex target motion. Furthermore, CPA is of no
value in geolocating targets which lie outside the convex hull of a collaborative
sensor cluster.

The TDOA method described in this paper shares some of the advantages of
these two techniques. Instead of using phase difference information, as coherent
beamforming does, TDOA techniques compare the travel time of sound through
the air over much larger baselines. In order to avoid transmitting time-series
data from one node to another, the relative time-difference of arrival of a signal
is estimated using the dominant frequency of the acoustic spectrum as a feature.
From this measurement, bearing or geolocation estimates can be calculated.
The range is much greater than that allowed by CPA, while TDOA is much
more tolerant to the uncertainties in location and time which plague coherent
approaches.

2.3 Algorithm Summary

The block diagram shown in Fig. 1 illustrates the basic structure of the TDOA
algorithm. Each node extracts the dominant frequency from its local acoustic
data using an adaptive filter. This dominant frequency is used as a feature for



Energy-Constrained Collaborative Processing 257

Collaborating Node

Collaborating Node

Initiating Node

Frequency

Frequency

Frequency

Estimator

EstimatorEstimator

Estimator

Estimator
Data

Data

Data

Reduction

Reduction

Reduction

Time Delay

Time Delay

Bearing
SolverBroadcast

Fig. 1. Block diagram of TDOA bearing estimation algorithm. The dashed boxes in-
dicate the physical node on which each block is run

matching acoustic signals between multiple sensors. Because the dominant fre-
quency changes relatively slowly, the data rate is significantly less than the raw
time series.

A single node initiates the bearing estimation procedure by sharing this fre-
quency estimate with surrounding nodes. Each of these surrounding nodes then
estimates the time delay between the local and remote frequency estimates using
an approach similar to correlation over small blocks of data. This time delay esti-
mate is returned to the initiating node. Finally, the initiating node can compute
a bearing estimate from the estimated time delays.

2.4 TDOA Experimental Results

The DARPA SensIT program developed wireless sensor nodes and associated
networking and collaborative processing algorithms for ad hoc networks of
energy-constrained sensors [11]. In August 2000, a data collection experiment
called SITEX00 was run at Twentynine Palms, CA, with the cooperation of the
USMC. A total of 37 nodes were placed in three clusters along the roads at the
test site. Each node was configured with acoustic, seismic, and non-imaging IR
sensors, and the location of each node was determined using GPS. Over a period
of two weeks, numerous collection runs were made on various military vehicles,
with GPS receivers providing vehicle ground truth.

To validate performance of the distributed TDOA algorithms, six nodes near
the intersection of the roads were chosen to form a cluster. Only the acoustic
data from these nodes was used for this experiment. The acoustic data was low-
pass filtered and sampled at 256 Hz by the sensor. The frequency estimates were
shared from central node out to the other five nodes, and each of those five nodes
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compared the received estimate with its own local frequency estimate, producing
the TDOA estimates which are shown in Fig. 2.

The delay estimates were collected back at the central node, and bearing es-
timates were formed. These bearing estimates are shown in Fig. 3, superimposed
on the GPS ground truth bearing-to-target.

2.5 CPU Complexity and Bandwidth Analysis

The frequency estimation stage requires very few CPU cycles, since it uses an
extremely efficient adaptive filter structure. The most demanding computation is
the delay estimation, but even this stage has modest requirements. For example,
at the 256 Hz acoustic sampling rate, 10× decimation of the frequency estimate,
and 5 second frames, the correlation is performed using approximately 12.8 Kop
(kilo-operations) per frame. At a rate of 2 estimates per second, 24 Kop per
second are required.

The most stressing communication requirements occur when transmitting the
frequency estimate from the initiating node to the collaborating nodes. Depend-
ing on exact system parameters, as few as 400 bits/second could be required,
with no compression beyond performed simple decimation. This requirement is
low enough to admit the possibility of non-RF communication, such as non-line-
of-sight UV communication [12].

Compare these numbers to an estimate of those required for distributed co-
herent beamforming. Using the Remote Sentry system [1] as a reference, beam-
forming would require approximately 500 Kop/s of processing, and 32 kbps of
bandwidth [6].

Finally, given inter-node spacings of 100m, the algorithm can tolerate node
position uncertainties of 5-10m, and time synchronization errors of up to a few
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Fig. 4. Example of a panoramic image, taken using a zenith-looking fisheye lens

milliseconds. Accuracies in these ranges are achievable without specialized hard-
ware or surveying of node locations.

3 Panoramic Imagers

In order to airdrop or otherwise remotely deploy an imaging sensor, a means for
pointing the imager must be provided. Either a motorized pan/tilt system must
be used to point the imager at the scene of interest, or some type of panoramic
imager must be used. Combined with a one-shot mechanical deployment device,
the camera can right itself. Since a panoramic camera has a 360◦ azimuthal field
of view, no panning is necessary. This 360◦ field of view can be produced from a
fisheye lens, a mirror assembly, or an array of imagers. Fig. 4 shows an example
of a panoramic image obtained, in this case, with a fisheye lens.

3.1 Prototype Panoramic Vision Node

In order to demonstrate the utility of panoramic imagery in a distributed sensor
network, and to provide a source of data for algorithm development and per-
formance evaluation, several prototype image nodes were built from commercial
off-the-shelf (COTS) hardware (See Fig. 5). The emphasis in the implementa-
tion of these prototype nodes was to provide a flexible platform for algorithm
implementation and assessment, and to avoid the need for any custom hardware
development. Size and power were not a concern in this COTS implementation.
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Fig. 5. Prototype panoramic imager node

Each node is based on a PC-104 form factor, used for industrial embedded
computing [13]. PC-104 modules are approximately 10cm × 10cm, and are stack-
able. Each node contains a main CPU board with Pentium-III class CPU, a 2.5”
laptop hard drive, a digital frame grabber, and a power supply. This embedded
computer runs Linux and is fully controllable via remote network.

The imager component is a 1 Megapixel, 12 bit color CCD with digital out-
put, and a full hemisphere panoramic lens. The field of view extends from −5◦

to 90◦ in elevation and 0◦ to 360◦ in azimuth.

3.2 Video Motion Tracking

The lowest level of processing is performed on the raw panoramic images, and
is presently limited to the detection and tracking of moving objects within the
image. Motion detection is performed using adaptive background subtraction.
However, motion tracking algorithms need also take into account distracters
(blowing leaves, clouds), noisy pixels, uneven lighting, and long-term motion
(objects becoming background and reverse). This section details the algorithms
used in detecting and tracking motion. A block diagram of the algorithms is
shown in Fig. 6.

Raw Data Dead Zones
Adaptive

Background
Frame

Differencing

Morphology
Target

Locations
Distracter

Calculations

Fig. 6. Video processing block diagram
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Fig. 7. Dead zones and pixel activity metric. The solid gray areas are a priori declared
uninteresting. The bright white region is high pixel activity

This set of algorithms is by no means intended to be the final version for all
future use. It does, however, provide a starting point for future development of
motion tracking algorithms.

Dead Zones. In many cases scenes contain dead zones, or “regions of disin-
terest”, known a priori. For example, when the panoramic imager is pointing
skyward and attempting to track targets on the ground, the entire center of the
image is unnecessary, and may distract the algorithms. At the least, processing
time can be saved by setting up these dead zones. The four corners of the square
focal plane are truly dead, as the panoramic lens produces a round image.

In addition, when the imagers are hand-emplaced, it is possible to specify a
region of interest in azimuth, depending on deployment.

Dead zones are implemented simply as a pixel map. See Fig. 7 for an illus-
tration of dead zones.

Adaptive Background Calculation. The background of a scene is by no
means static. Lighting changes frequently (especially outdoors), and non-fixed
stationary objects in the scene may be moved, for example. One way to deal
with the constant background variation is to use a decaying average scheme.
Each pixel pij is combined with its weighted average bij using bijt = αpij + (1 −
α)bijt−1 . In this equation, α determines the decay rate of the background, or
how quickly old features fade from importance. To aid in the tracking stage, two



262 P.W. Boettcher and G.A. Shaw

different backgrounds are maintained: a long-term background and a short-term
background.

Future work in this area will include incorporation of more sophisticated
adaptive background techniques, such as Bayesian approaches [14] and Gaussian
mixture models [15].

Frame differencing. Each pixel in a newly captured image is compared with
the two background planes. Those pixels which have an absolute difference
greater than some threshold are motion pixels. Morphological processing is then
used to de-noise the motion pixels. That is, blocks of 8 × 8 pixels are declared
motion blocks if they contain a certain number of motion pixels.

Objects entering background. Objects may enter the scene, then become
part of the background. For instance, a car may enter, then park. After a short
time, the parked car should no longer be detected as motion, but should become
part of the background. A higher-level tracker can maintain state information
about this potential target.

In this case, the short-term background fairly quickly adapts to include the
parked car. Therefore, the pixels on the car will not register a difference with
the short-term background, so it is not detected as motion.

Objects leaving background. Continuing with the previous example, the
parked car may then continue on its way. Not only will the car be detected as
motion, but the place formerly occupied by the car (the hole) will be detected
as well. To avoid this, the pixels in the image are compared with the long-term
background as well. Since the long-term background adapts very slowly, the
pixels in the hole may not yet have adapted, and the hole will immediately be
recognized as such and ignored. If an object has been in the scene too long, it will
have been fully adapted into both backgrounds, and the hole will be detected as
motion for a few seconds. At this point, the short-term background will quickly
adapt, and the hole will be ignored.

Distracter pixels. Especially in an outdoor environment, some parts of the
scene are constantly in motion, and thus would always register as motion pixels.
Blowing leaves, artificial noise from saturated pixels, and clouds are all exam-
ples of phenomena that would create distracter pixels. To avoid confusing the
tracking algorithms, these pixels are ignored using a motion map. As each pixel
is classified as either moving or non-moving (using thresholded absolute differ-
ence), the corresponding entry in the motion map is respectively incremented or
decremented. The end result is that the motion map adapts to ignore regions
of continuous motion. Fig. 7 shows a region with a high level of pixel activity,
which is ignored during tracking. The entire gray-shaded region, as well as the
small, light region, is ignored during processing.
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Fig. 8. Perspective-corrected image chip, extracted from a zenith-looking fisheye lens

Target reports. Two different versions of the prototype software use differ-
ent methods to produce target location estimates. One system simply finds the
centroid of the motion blocks remaining after this processing, assuming single-
target scenes. When the scene truly is single-target, this simple approach pro-
duces reliable results that assists in development of other parts of the system.
A developmental version of the software uses connected components to isolate
disjoint objects. This version is easily confused by gaps in detected objects, but
more sophisticated target tracking could do a much better job in tracking mul-
tiple targets. Approaches such as Kalman filtering and K-means clustering have
been used with success [15,16].

The tracking stage outputs bearing and elevation to the target (or to multiple
targets, in the multitarget case). These outputs are used as inputs to the fusion
stage and to the perspective-corrected image extraction stage.

3.3 Perspective Corrected Image Extraction

One of the most useful features of panoramic imagery is the ability to use virtual
pan, tilt, and zoom to extract arbitrary views (See Fig. 8). One can imagine a
transparent viewplane placed somewhere inside the panoramic hemisphere view.
This viewplane can be placed at any angle or distance from the origin, and the
value of each pixel on the viewplane can be calculated by projecting through
the plane and onto the panoramic image. The end result is a perspective view
at any angle and zoom. Of course, since there are no moving parts, any number
of perspective views can be calculated from the same panoramic source.

These perspective views can be highly compressed and communicated via
network or communication link. Even video-rate extraction is possible, if the
link can support that bandwidth.
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Fig. 9. Generic unattended remote sensor block diagram

3.4 Fusion

Once several imagers have independently estimated bearing-to-target, only the
bearings need be sent to a fusion node for an estimate of position. This requires
almost no bandwidth, and allows target location reports to be efficiently sent
via long-haul communication link.

In the multitarget case, a more sophisticated tracker must be used at this
stage, in order to disambiguate bearing and elevation information from multiple
imager nodes, Kalman filters are one possibility [15,16]; another is Bayesian
object matching [17,18].

4 Power Utilization Analysis

The prototype vision nodes described in Sec. 3.1 consume 10-25 W of power.
They are intended for research purposes only, and are not feasible for a field-
able unit. However, with current technology one could envision a deployable
panoramic vision node with a lifetime of a month or more.

4.1 System Energy Balance

In terms of energy consumption, long-haul communication is usually the domi-
nant subsystem for an unattended ground sensor, or network of sensors. If one
can balance the energy consumption of the various subsystems of a sensor (see
Fig. 9), overall performance and longevity will be improved.

Table 1. Typical sensor energy costs

Node Types Power (mW) Rate (kHz) nJ/sample
Acoustic .06 4 0.15
Seismic .02 1 0.2
Visible Imager (APS) 30 12550 2.5
IR Imager (Microbolometer[19]) 1200 7300 164

Table 1 shows the state-of-the-art energy usage of low-power sensors, in terms
of energy per sample. Note that visible image acquisition requires approximately
10× more energy per sample than acoustic or seismic sensors. Uncooled infrared
imagers require almost 1000× more energy per sample.
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Table 2. Typical radio energy costs

Radio Type Approx. Range Power (W) Energy (nJ/bit)
WaveLAN (S) 150m 1.4 125
SINCGARS (VHF) 8km 4 >350K
Freewave (L) 80km 6 50K
Iridium (L) >780km 0.85 355K
Orbcom (VHF) >800km 6 2,500K

Table 2 is a similar illustration of the energy usage of various commercial
and military radios. Note that all the long-range radios require 4–5 orders of
magnitude more energy per bit than the data acquisition.

Local processing is essential to extract information from the raw signal, ef-
fectively providing data compression at the sensor. Without reference to any
particular processor, we note that the state-of-the-art in commercially available
processing is about 1 mW/MIP, or effectively 1 nJ per instruction. This energy
number for a single instruction is consistent with the cost of acquiring the signal,
but the number of instructions per sample for typical signal processing operations
can vary from hundreds to thousands of operations per sample. If communication
required no energy, it would not be cost effective, from an energy perspective,
to perform local processing. However, because the energy cost of both local and
long-haul communication is high, processing to identify significant events and
compress the data is essential.

4.2 Concept Low-Power Panoramic Imager

The fisheye lens of the prototype node is the heaviest, bulkiest, most fragile, and
most expensive piece of entire system. Obviously a different solution is needed
if a low-cost deployable imager node is desired. Instead of using a monolithic
panoramic image, one could use an array of narrow field-of-view cameras, digi-
tally calibrated and stitched. One such commercially available camera [20] mea-
sures less than 1

3cm3 in volume, and has built in lens, active pixel focal plane,
and digital read-out, all at a cost of around 40 USD.

Each of these cameras has a field of view of 55◦, so an octagonal array would
cover the full 360◦ scene, with 10◦ of overlap between each view. The entire array
assembly would be less than 2.5cm in diameter. Each of these cameras would
feed into the processor, which could either sample all 8 simultaneously, or in
sequence, or only 2 cameras based on a priori knowledge.

The cameras and processor would be kept in sleep mode until cued by an
extremely low-power acoustic sensor.

4.3 Energy Utilization Example

In order to arrive at an estimate for long-term energy consumption of an unat-
tended ground sensor, one must consider a specific scenario for use of the sensor.
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Fig. 10. Sample image, dimensions
270 × 120

Fig. 11. Same image, compressed to 10
kilobits using JPEG2000

In this case, the hypothetical scenario under consideration involves surveillance
in a rural environment. Specifically, the mission of the sensor field is to search
vehicular traffic in an intersection, in order to ID tanks and heavy trucks. Spot
reports of any positive IDs are exfiltrated via long-haul RF link.

It is assumed that a vigilant acoustic sensor cues the imager for further
processing. The imager responds by powering up, taking approximately 20 frames
of video, processing the video, and exfiltrating if necessary.

The traffic model assumed for the intersection is:

– Day: 200 vehicles/hour; 20 heavy trucks/hour
– Night: 30 vehicles/hour; 5 heavy trucks/hour

If the acoustic sensor has a 50% false alarm rate, then the imager will be
turned on 30 times per hour, during the day. This duty cycle assumption is
equivalent to 150s of active processing per hour, and assuming 250 operations
per pixel and 1 nJ per operation, the image processing would likely require 5mW
average power during the day.

Assuming 200 bits for a report of a confirmed detection, average power can
be computed. In addition, a highly compressed still image of the target might
require 10 kbits (See Figs. 10 and 11 for an example of high compression).
These image chips would be exfiltrated only on request from a remote user. An
Iridium-class link is assumed for the long-haul communication. Table 3 shows the
estimated energy consumption of each of these subsystems of the hypothetical
system.

Table 3. Energy consumption of hypothetical panoramic node

Avg. Daytime Pwr. Energy/day
Data Acquisition 350 µW 20 J
Image Processing 5 mW 300 J
Comms (Target Reports) 360 µW 23 J
Comms (Image Chips) 3 J/target

Finally, by assuming state-of-the-art battery density of 1J/mm3 and a 9V
form factor battery, an estimate of deployed longevity is 65 days continuous



Energy-Constrained Collaborative Processing 267

operation, if no image chips are exfiltrated. If 100 images per day are requested
and transmitted, lifetime drops to 34 days. These energy use estimates do not
account for link acquisition or other types of processing tasks, and are therefore
best case.

5 Conclusions

The TDOA algorithm presented here represents an example of a collabora-
tive processing algorithm for distributed sensors. The algorithm architecture
and implementation is driven by consideration of bandwidth and energy con-
straints, and uncertainties in node location and calibration. The algorithm pro-
vides bearing-to-target and geolocation estimates in a distributed sensor network
where coherent processing is impractical. The bearing estimates provide useful
tracking information at ranges far beyond those possible with closest point of
approach based algorithms, but the algorithm still has quite modest process-
ing and bandwidth requirements. Algorithm performance was illustrated using
distributed sensor data collected at the recent SensIT SITEX00 experiment.

The prototype panoramic imager system provides a platform for more accu-
rate tracking and classification of targets. Although an imager system consumes
more power than an acoustic system, images carry much higher value in terms of
providing comprehensive surveillance and actionable information. Furthermore,
by intelligent cueing, the incremental energy cost of the imager can be mini-
mized. The energy analysis of off-the-shelf hardware demonstrates the feasibility
of building a deployable panoramic imager system. When coupled with an acous-
tic cueing system, several months of continuous operation is a reasonable goal
for such a system.
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Abstract. We propose to use the Approximate Maximum-Likelihood
(AML) method to estimate the direction-of-arrival (DOA) of multiple
targets from various spatially distributed sub-arrays, with each sub-array
having multiple acoustical/seismic sensors. Localization of the targets
can with possibly some ambiguity be obtained from the cross bearings
of the sub-arrays. Spectra from the AML-DOA estimation of the target
can be used for classification as well as possibly to resolve the ambi-
guity in the localization process. We use the Support Vector Machine
(SVM) supervised learning method to perform the target classification
based on the estimated target spectra. The SVM method extends in a
robust manner to the nonseparable data case. In the learning phase, clas-
sifier hyperplanes are generated off-line via a primal-dual interior point
method using the training data of each target spectra obtained from a
single acoustical/seismic sensor. In the application phase, the classifica-
tion process can be performed in real-time involving only a simple inner
product of the classifier hyperplane with the AML-DOA estimated tar-
get spectra vector. Analysis based on Cramér-Rao bound (CRB) and
simulated and measured data is used to illustrate the effectiveness of
AML and SVM algorithms for wideband acoustical/seismic target DOA,
localization, and classification.

1 Introduction

Recent developments in integrated circuits have allowed the construction of low-
cost small sensor nodes with signal processing and wireless communication capa-
bilities that can form distributed wireless sensor network systems. These systems
can be used in diverse military, industrial, scientific, office, and home applica-
tions [1], [2]. One of the central tasks of these systems is to localize the target of
interest by collaborative processing of the received sensing data. In this paper,
we consider source localization by cross bearing from different subarrays. In this
approach, processing of the data is performed locally within each subarray and
no data communication is needed among the subarrays.

Source localization and DOA estimation using sensor arrays have received
much attention in the array signal processing field for decades. Many high resolu-
tion algorithms such as Multiple Signal Classification(MUSIC)[3] and Maximum
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Likelihood(ML)[4], [5] have been proposed for narrow band DOA estimation.
Recently there has been an interest in locating wideband sources, for example,
the tracking of multiple acoustic sources using a microphone array. The algo-
rithm development in wideband source localization can be categorized into two
classes. The first class of algorithms involves two steps: estimation of the time
difference of arrivals(TDOAs) among the sensors followed by a least square(LS)
fit to obtain the source location [6]. However, this class of methods is usually
for a single source only. The second class of algorithms uses a ML parameter
estimation method [7] to perform DOA estimation of the sources for far-field
scenarios, which is capable of estimating multiple source DOAs. The Approx-
imated ML(AML) algorithm discussed in this paper processes the data in the
frequency domain as this may be more attractive for acoustic signals due to their
wideband nature. Moreover, the estimated source spectrum can be obtained as
a byproduct of the source angle estimation algorithm , and this spectrum can
then be used for source identification and source classification.

We propose the use of the support vector machine (SVM) to perform the
source classification from the estimated source spectra. The SVM is a supervised
learning algorithm which attempts to linearly separate labeled training data by
a hyperplane. Since its introduction by Vapnik in 1992 [14], it has received
considerable attention and is widely used in a variety of applications [12]. The
SVM method not only includes the simple linearly separable training data case,
but extends in a robust manner to the nonseparable data case. In the learning
phase, classifier hyperplanes are generated off-line via a primal-dual interior point
method using the training data of each target spectra obtained from a single
acoustical/seismic sensor. In the application phase, the classification process can
be performed in real-time involving only a simple inner product of the classifier
hyperplane with the AML beamforming estimated target spectra vector obtained
from a sub-array.

Besides the development of different estimation and classification algorithms
using a sensor array, we also derive the theoretical Cramer-Rao bound(CRB)
for both performance comparison and basic understanding purposes. The CRB
provides a common tool for all unbiased estimators. It has been shown that the
CRB can be asymptotically approached by an ML estimator when SNR and
sampling data length are sufficiently large [8]. The first explicit formula for the
CRB on the covariance matix appeared in [8]. However, it was only restricted to
the narrowband DOA estimation case. In [9], a CRB for a single source case was
given for both wideband source localization and DOA estimation. In this paper,
we extend the result in [9] to a multiple sources case. The resulting formula shows
that the CRB for a particular source DOA is increased due to interference from
the other sources. Most of the CRB derivations were focused on the received noise
at each sensor. However, the time synchronization among each sensor is crucial
for coherent type array signal processing and this error should be minimized to
obtain good performance. However, analysis of this kind of error is rare in the
array signal processing literature. In this paper, we derive a CRB equation for
theoretical analysis of the time-synchronization error.
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In section 2, we derive the theoretical Cramer-Rao bound for multiple source
DOA estimation. The AML method for DOA estimation is described in section
3. In section 4, we review the formulation of the SVM as a quadratic pro-
gramming (QP) problem and describe a primal-dual interior-point method for
solving it. We present experimental results in section 5, and finally, we draw
some conclusions in section 6.

2 CRB Analysis for Multiple Source DOA Estimation

2.1 Array Data Model for DOA Estimation

When the source is in the far-field of the array, wavefront arriving at the array
is assumed to be planer and only the angle of arrival can be estimated. For
simplicity, we assume both the source and sensor array lie in the same plane(a
2-D scenario). Let there be M wideband sources, each at an angle θm from
the array. The sensor array consists of P randomly distributed sensors, each at
position rp = [xp, yp]T . The sensors are assumed to be omni-directional and have
identical response. The array centroid position is given by rc = 1

P

∑P
p=1 rp =

[xc, yc]T . We use the array centroid as the reference point and define a signal
model based on the relative time-delays from this position. The relative time-
delay of the mth source is given by t

(m)
cp = t

(m)
c − t

(m)
p = [(xc −xp) sin θm +(yc −

yp) cos θm]/v, in where t
(m)
c and t

(m)
p are the absolute time-delays from the mth

source to the centroid and to the pth sensor, respectively, and v is the speed
of propagation. In a polar coordinate system, the above relative time delay can
also be expressed as:t(m)

cp = rp cos(θm − φp)/v, where rp and φp are the range
and angle of the p sensor with respect to the array centroid. The data received
by the pth sensor at time n is then xp(n) = ΣM

m=1S
(m)
c (n − t

(m)
cp ) + wp(n), for

n = 0, ..., N − 1, p = 1, ..., P , and m = 1, ..., M , where S
(m)
c is the mth source

signal arriving at the array centroid position, t
(m)
cp is allowed to be any real-valued

number, and wp is the zero mean white Gaussian noise with variance σ2.
For the ease of derivation and analysis, the received wideband signal can

be transformed into the frequency domain via the DFT, where a narrowband
model can be given for each frequency bin. However, the circular shift property
of the DFT has an edge effect problem for the actual linear time shift. These
finite effects become negligible for sufficiently long data. Here, we assume the
data length N is large enough to ignore the artifact caused by the finite data
length. For N -point DFT transformation, the array data model in the frequency
domain is given by

X(k) = D(k)Sc(k) + η(k), (1)

for k = 0, ..., N−1, where the array data spectrum is X(k) = [X1(k), ..., XP (k)]T ,
the steering matrix D(k) = [d(1)(k), ...,d(M)(k)], the steering vector is given by
d(m)(k) = [d(m)

1 (k), ..., d(m)
P (k)]T , d

(m)
p = e−j2πkt(m)

cp /N , and the source spec-
trum is given by Sc(k) = [S(1)

c (k), ..., S(m)
c (k)]T . The noise spectrum vector
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η(k) is zero mean complex white Gaussian distributed with variance Nσ2. Note,
due to the transformation to the frequency domain, η(k) asymptotically ap-
proaches a Gaussian distribution by the central limit theorem even if the ac-
tual time-domain noise has an arbitrary i.i.d. distribution (with bounded vari-
ance). This asymptotic property in the frequency-domain provides a more reli-
able noise model than the time-domain model in some practical cases. A more
compact expression of (2) can be formed by stacking up the N/2 positive fre-
quency bins of X(k) into a single column, that is X = G(Θ) + ξ, where
X = [X(1)T , ...,X(N/2)T ]T , G(Θ) = [S(1)T , ...,S(N/2)T ]T , S(k) = D(k)Sc(k),
and Rξ = E[ξξH ] = Nσ2INP/2. Throughout this paper, we denote superscript
T as the transpose, and H as the complex conjugate transpose.

2.2 CRB Derivation for Multiple Source DOA Estimation

The CRB for any unbiased estimator of parameters Θ with an arbitrary distribu-
tion is in general given by the inverse of the Fisher Information matrix[10], that
is CRB(θi) = F−1[Θ]ii. In the white Gaussian noise case, the Fisher information
matrix is given by

F = 2Re[HHR−1
ξ H] = (2/Nσ2)Re[HHH], (2)

where H = ∂G
∂(Θ)T . We first assume the source signals are known and the unknown

parameter is Θ = [θ1, ..., θM ]. Applying (2), the element of Fisher Information
matrix can be shown to be

Fii =
2

Nσ2

∑

p

∑

k

a2
ip(

2πkrp

v
)2 sin2(θi − φp)|S(i)

c (k)|2 (3)

Fij =
2

Nσ2

∑

p

∑

k

aipajp(
2πkrp

v
)2 exp(−j

2πkrp[cos(θi − φp) − cos(θj − φp]
v

)

sin(θi − φp) sin(θj − φp)S(i)∗
c (k)S(j)

c (k) (4)

The Fisher Information matrix is a M × M Hermitian with real diagonal ele-
ments. The CRB can be obtained by the inverse of F. In order to make compar-
ison of the single source formula, assume the matrix F has the format of

F =
[
F11 F1x

Fx1 Fxx

]

, (5)

where F11 is the scaler which is the same as the single source case, and x �= 1.
By applying the block matrix inverse lemma, the CRB of the source 1 angle is
given by[F−1]11 = (F11 − F1xF−1

xx Fx1)−1. The penalty term F1xF−1
xx Fx1 is due

to the interference from the other sources. It can be shown that this term is
always nonnegative, therefore, the CRB of DOA of source 1 in a single source
case is always less than the multiple source case.
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In practice, the source signals are usually unknown. In this case, the unknown
parameter for estimation is [Θ,ST

c ]. The H matrix is given by H = [ ∂G
∂ΘT , ∂G

∂ST
c

].
The Fisher information matrix can be shown as

F =
[
FΘ B
BT C

]

, (6)

where B = 2
Nσ2 ( ∂G

∂ΘT )H ∂G
∂ST

c
, C = 2

Nσ2 ( ∂G
∂ST

c
)H ∂G

∂ST
c

. By the block matrix inversion

lemma, the inverse of the upper left M×M submatrix is given by [F−1
Θ,Sc

]M×M =
(F−1

Θ −ZSc)
−1, where ZSc = BT C−1B. It can be shown that the penalty matrix

ZSc
due to unknown source signal is non-negative definite. Therefore, the DOA

estimation error of the unknown signal case is always larger than that of the
known case.

2.3 CRB Derivation for the Time Synchronization Error

In this subsection, we evaluate the theoretical performance of DOA estimation
for the far-field case by CRB analysis. For clear illustration of the effect of the
time synchronization error, we only consider the case of a single source here. From
the data model of the far-field DOA case, when only the time synchronization
error is considered, the received waveform of the pth sensor at the k frequency
bin is given by

Xp(k) = Sc(k) exp
[−j2πk(tp − τp)

N

]

, (7)

where Sc(k) is the received signal spectrum at the reference sensor, tp is the
relative time delay from the pth sensor to the reference sensor. For the far-field
case, tp = rp cos(θs−φp)

v . τp is the time synchronization error and assumed to be
IID white Gaussian with zero mean and variance σ2

r . Taking natural logarithm
of both sides of (7), and rearranging terms, we obtain

Zp(k) = fk − rp cos(θs − φp)
v

+ τp, (8)

for k = 1, . . . , K and p = 1, . . . , P , where Zp(k) = N
2πk�{ln(Xp(k))}, fk =

N
2πk�{ln(Sc(k))}, and �{} represents the imaginary part of a complex value. At
the frequency bin k, the P equations are stacked up to form a complete matrix.
We have the following real-valued white Gaussian data model X = G(Θ) + τ,
where Θ is the unknown parameter that we need to estimate, Θ = [θs, fk] in
our case, i.e., the source angle and the source spectrum, τ = [τ1 . . . τP ]T and

G(Θ) = fk[1 . . . 1]T −
[

r1 cos(θs−φ1)
v . . . rP cos(θs−φP )

v

]T

. From (2), the Fisher in-
formation matrix of this white Gaussian model is given by

F =
1
σ2

τ

[∑P
p=1

r2
p sin2(θs−φp)

v2

∑P
p=1

rp sin(θs−φp)
v∑P

p=1
rp sin(θs−φp)

v P

]

. (9)
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The CRB for the source angle can then be given by the first diagonal element
of the inverse of the Fisher information matrix, which is given by

CRB =
σ2

τ

∑P
p=1

r2
p sin2(θs−φp)

v2 − 1
P

(∑P
p=1

rp sin(θs−φp)
v

)2 . (10)

Some observation can be made from the CRB formula 10. First, the numerator
of the CRB only depends on the variance of the time-synchronization error; while
the denominator of the CRB depends on the array geometry and source angle.
Therefore, the CRB is proportional to the time synchronization error. Further-
more, the array geometry also has effect on the CRB. Poor array geometry may
lead to a smaller denominator, which results in a larger estimation variance. It
is interesting to note that the geometric factor is the same as the CRB formula
for additive Gaussian noise at [9], which means the array geometry produces the
same effects on both kinds of errors. Second, although the derivation is limited
to one frequency bin, the resulting CRB formula is independent of that partic-
ular frequency bin. Therefore, unlike the CRB of AWGN, the CRB can not be
reduced by increasing the number of frequency bins. In other words, the time
synchronization error can not be reduced by increasing the data length of the
received signal.

2.4 Variance Lower Bound for Time Synchronization Error and
AWGN

By considering time synchronization error and AWGN together, the received
signal spectrum at the k frequency bin and the pth sensor, will be

Xp(k) = Sc(k) exp
[−j2πk(tp − τp)

N

]

+ ηp(k), (11)

where the first term is the same as (7), ηpk is the complex white Gaussian with
zero mean and Nσ2

n is the variance. Exact CRB requires the derivation of the
probability density function (pdf) of the above data model, which may be a
formidable task.

Here, we provide a variance bound based on the independence assumption of
τp and ηpk. With this condition, the variance of the estimator will be the sum
of the variance induced by these errors independently. By using var(θ; τ, η) =
var(θ; τ)+var(θ; η), CRB(θ; τ) ≤ var(θ; τ) and CRB(θ; η) ≤ var(θ; η), we obtain

var(θ; τ, η) ≥ CRB(θ; τ) + CRB(θ; η). (12)

The CRB induced by AWGN is given by

CRB =
1

ς

[
∑P

p=1
r2

p sin2(θs−φp)
v2 − 1

P

(∑P
p=1

rp sin(θs−φp)
v

)2
] , (13)
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where ς = 2
Nσ2V 2

∑N/2
k=1

(
2πkSc(k)

N

)2
and the geometric factor is the same as the

time synchronization error. Although the variance bound may not be as tight
as the CRB, it can be shown to match well with the root-mean-square (RMS)
error of the simulation of AML algorithm. Furthermore, it offers a much simpler
and more efficient way to evaluate the variance lower bound.

3 AML Method for DOA Estimation

3.1 Derivation of the AML Algorithm

In contrast to the TDOA-CLS method where the data is processed in the time
domain, the AML estimator does the data processing in the frequency domain.
The ML metric results in a coherent combination of each subband. Therefore, the
AML approach can gain advantage where the signal is wideband, for example, the
acoustic signal. By assuming both the source angles and spectrums are unknown,
the array signal model defined in section 2.1 is given by X = G(Θ,Sc) + ξ,
and Rξ = E[ξξH ] = Nσ2INR/2. The log-likelihood of this complex Gaussian
noise vector ξ, after ignoring irrelevant constant terms, is given by L(Θ,S) =
−||X−G(Θ,S)||2. The maximum-likelihood estimation of the source DOA and
source signals is given by the following optimization criterion

max
Θ,S

L(Θ,S) = min
Θ,S

N/2∑

k=1

||X(k) − D(k)S(k)||2, (14)

which is equivalent to a nonlinear least square problem. Using the technique of
separating variable[5], the AML DOA estimate can be obtained by solving the
following likelihood function

max
Θ

J(Θ) = max
Θ

N/2∑

k=1

||P(k,Θ)X(k)||2 = max
Θ

N/2∑

k=1

tr(P(k,Θ)R(k)), (15)

where P(k,Θ) = D(k)D†(k), D† = (D(k)HD(k))−1D(k)H is the pseudo-inverse
of the steering matrix D(k) and R(k) = X(k)X(k)H is the one snapshot co-
variance matrix. Once the AML estimate of Θ is found, the estimated source
spectrum can be given by Ŝc

ML
(k) = D†(k, Θ̂ML)X(k). The AML algorithm

in effect performs signal separation by utilizing the physical separation of the
sources, and for each source signal, the SINR is maximized in the ML sense.

3.2 Multiple Snapshot Implementation of AML

In the previous formulation, we derive the AML algorithm using only a single
block data. A variant of the AML solution using multiple snapshots can also
be formed. In this approach, a block of N data samples are divided into Ns

snapshots, each snapshot contains Nt samples, i.e. N = Ns × Nt. The sample



276 L. Yip et al.

covariance matrix R can then be obtained by averaging the Ns time snapshots
R = 1

Ns

∑Ns

t=1 X(k)X(k)H . Since the multiple snapshots approach uses less sam-
ple data to perform FFT, the edge effect becomes more severe that the single
snapshot approach. Appropriate zero padding is necessary to reduce this artifact.

3.3 Alternating Projection of Multiple Source DOA Estimation

In the multiple source case, the computational complexity of the AML algorithm
requires multi-dimensional search, which is much higher than the MUSIC type
algorithm that requires only 1-D search. The alternating projection technique
breaks the multi-dimensional search into a sequence of 1-D search, and reduced
the computational burden greatly. The following describes the alternating
projection algorithm for the case of M sources.

Step 1: Solve the problem for a single source, θ̂
(0)
1 = arg maxθ1 J(θ1).

Step 2: Solve the second source θ̂2
(0)

= arg maxθ2 J(θ̂(0)
1 , θ2). by assuming

the first source is at θ1. Continuing in this fashion until all the initial values

θ̂1
(0)

, ..., θ̂
(0)
M are computed.

For k=1,..., repeat Step 3 until it converges.
Step 3: At every iteration a maximization is performed with respect to a
single parameter while all the other parameter are held fixed. Therefore,
at (k + 1) iteration, θ̂

(k+1)
i = arg maxθi J(Θ̂(k)

(i) , θi), where Θ̂(k)
(i) denotes

the (M − 1) × 1 vector of the computed parameters at (k) iteration, i.e.
Θ̂(k)

(i) = [θ̂(k)
1 , ..., θ̂

(k)
i−1, θ̂

(k)
i+1, ..., θ̂

(k)
M ].

3.4 Source Localization by Cross Bearing

When two or more subarrays simultaneously detect the same source, the crossing
of the bearing lines can be used to estimate the source location. Without loss of
generality, let the centroid of the first subarray be the origin of the coordinate
system. Denote rck = [xck, yck]T as the centroid position of the kth subarray,
for k = 1, ..., K. Denote θk as the DOA estimate (with respect to north) of
the kth subarray. From simple geometric relationship, we have Ay = b, where

A =






cos(θ1) − sin(θ1)
...

...
cos(θK) − sin(θK)




, y =

[
xs

ys

]

, and b =






xc1 cos(θ1) − yc1 sin(θ1)
...

xcK cos(θK) − ycK sin(θK)




.

The source location estimate can be given by the least square (LS) solution of
the above equation using normal equation pseudo-inverse ŷ = (AT A)−1AT b,
or Moore-Penrose pseudo-inverse. The residual of the LS solution can also be
given by res = ‖Aŷ−b‖. In the multiple sources case, two or more DOA can be
estimated from each subarray. For example, there are eight permutations in the
case where three subarrays uield six DOA estimates (assuming each subarray
yield two DOA estimates). The two source location estimates can be chosen by
the two lowest residuals of the LS solutions.
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4 Support Vector Machine

4.1 Standard QP Formulation

Suppose we are given training data in the form of N vectors xi ∈ Rn and
N binary labels yi ∈ {−1, 1}. A support vector classifier is based on an affine
decision function aT x − b, where a ∈ Rn and b ∈ R are the solution of the
following quadratic program

minimize (1/2)‖a‖2
2 + γ1T u,

subject to Y (Xa − 1b) ≥ 1 − u,
u ≥ 0.

(16)

The variables are a ∈ Rn, b ∈ R, and u ∈ RN . The matrix X ∈ RN×n has rows
xT

i , Y = diag(y1, . . . , yN ), and 1 denotes a vector in RN with all its components
equal to one. The coefficient γ > 0 is a parameter set by the user.

The constraints in (16) have the following interpretation. The training vector
xi is considered correctly classified by the decision function f(x) = aT x − b, if
aT xi −b ≥ 1, if yi = 1, or aT xi −b ≤ −1, if yi = −1. The variable u is the slack
vector in these inequalities, i.e., measures the amount of constraint violation:
ui = 0 if the point is correctly classified and ui > 0, otherwise.

The cost function is a weighted sum of two objectives. The second term 1T u
is the total slack, i.e., total constraint violation. The first term penalizes large
a, and has a very intuitive geometrical meaning. It can be shown that 2/‖a‖2
is the distance between the hyperplanes aT x − b = 1 and aT x − b = −1. This
distance is a good measure of the robustness of the classifier. By minimizing
‖a‖2 we maximize the margin between the two hyperplanes. In the QP (16), we
control the trade-off between classification error (as measured by the total slack
violation) and robustness (inversely proportional to the ‖a‖2) by the parameter
γ.

We can also use the QP formulation (16) to solve nonlinear classification
problems. We define a nonlinear decision function f : Rp → R of the form
f(v) = aT F (v) − b, where F : Rp → Rn consists of a set of specified basis
functions (e.g., all monomials of a certain maximum degree). Given a set of
N training points vi ∈ Rp, yi ∈ {−1, 1}, we can then define xi = F (vi), and
compute a and b by solving (16).

4.2 Solution via Primal-Dual Interior Point Method

Most SVM training methods solve the QP (16) via the dual problem

maximize −(1/2)zT Qz + 1T z,
subject to 0 ≤ z ≤ γ1,

yT z = 0,
(17)

where the variable is z ∈ RN , and the matrix Q is defined as Q = Y XXT Y, i.e.,
Qij = yiyjx

T
i xj , i, j = 1, . . . , N . The dual problem has fewer variables (i.e., N)
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than the primal problem (which has n+1+N variables). In nonlinear separation
problems we usually have n � N , and the large dimension n affects the dual
problem only through the length of the inner products Qij = yiyjF (vi)T F (vj).
While a naive implementation would require O(n) operations per inner product,
for many common basis functions F the inner products can be computed much
more efficiently, in O(p) operations. This is referred to as the kernel trick in the
SVM literature. Most SVM implementations therefore solve the dual problem
using general-purpose interior-point solvers (such as LOQO [13] or MOSEK [11]).

However, similar savings can be achieved in any primal or primal-dual
interior-point method directly applied to (16). We will explain this for Mehrotra’s
primal-dual predictor-corrector method, one of the most popular and efficient
interior-point algorithms.

Skipping details, each iteration of the primal-dual method requires the solu-
tion of a set of linear equations











diag(z) diag(s) 0 0 0 0
0 0 diag(u) 0 0 diag(λ)

−I 0 0 Y X −y I
0 I I 0 0 0
0 yT 0 0 0 0
0 XT Y 0 −I 0 0





















∆s
∆z
∆λ
∆a
∆b
∆u











=











r1
r2
r3
r4
r5
r6











. (18)

where s = Y (Xa −1b) + u −1, λ = γ1− z, and a, b, u, z are the current primal
and dual iterates. These equations are obtained by linearizing the optimality
conditions (KKT conditions)

zisi = 0, uiλi = 0 i = 1, . . . , N,
Y (Xa − 1b) − 1 + u − s = 0, u ≥ 0, s ≥ 0,

γ1 − z = λ, yT z = 0, z ≥ 0, λ ≥ 0,
a = XT Y z,

(19)

and provide search directions ∆a, ∆b, ∆u, ∆z for the primal and dual updates.
An efficient implementation of the primal-dual method requires solving the

equation (18) fast. A first key observation is that if the starting values of a and
z satisfy a = XT Y z, then r6 = 0 in the righthand side of (18). Therefore, the
steps ∆a and ∆z satisfy ∆a = XT Y ∆z, and the inequality a = XT Y z holds
throughout the algorithm. As a result, the large-dimensional variable a or its
update ∆a is never needed. Instead, they are defined implicitly by the smaller
dimensional variables z and ∆z.

A second important observation is that by straightforward elimination of
∆a, ∆s, ∆u, and ∆λ, we obtain an equivalent system

[
Q + D −y

yT 0

] [
∆z
∆b

]

=
[

r7
r5

]

, (20)

where D is a positive diagonal matrix and r7 is computed from the righthand
sides of (18). The coefficient matrix of (20) can be constructed by adding a
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diagonal matrix to Q (evaluated efficiently via the kernel trick). The solution
is obtained from the Cholesky factorization of Q + D. Given ∆z and ∆b, the
remaining search directions readily follow from (18). Additional savings are pos-
sible by using approximate search directions obtained by replacing Q with an
approximation (e.g., diagonal plus low rank), or solving (20) iteratively.

5 Simulation and Experiment Results

5.1 Simulation Examples of CRB Analysis

In this subsection, we compare the derived CRB of DOA estimation with the
RMS error of AML in several simulations. In the first simulation, multiple CRB of
is calculated in a two-source scenario. The two far-field sources are located at 45◦

and 60◦ from the sensor array. The sensor array configuration is a uniform square
with four acoustic sensors, each spacing 0.305 meter apart. The two sources are
a prerecorded motorcycle and a car signal respectively. The sampling frequency
is set to be 5KHz and the speed of propagation is 345m/sec. The RMS error of
AML is computed via 100 Monte Carlo runs. Figure 1 shows the resulting RMS
error of the first source as a function of the SNR. It can be seen that both the
AML estimation error and CRB decrease as the SNR increases. The saturation
behavior of the AML RMS error may be due to the quantization error of the
angle sampling.

In the second simulation, we consider the time synchronization effect on the
AML DOA estimation. The derived variance bound of (12) is compared with
the RMS error of AML. Only a single source arrive to the sensor array from
45◦ in this case. The RMS error of AML and the derived variance bound are
plotted as a function of SNR for various σ2

t . It can be seen that the performance
of AML matches well with the variance bound. Furthermore, the performance
of AML is limited even in the high SNR region for fixed σ2

t as shown in figure
2. This is due to the time synchronization error becoming dominant at that
region, which results in a error floor effect. The above theoretical as well as
simulation analysis of the time synchronization error shows that it is crucial
to obtain accurate time synchronization among sensors in order to yield good
performance of the coherent array signal processing.

5.2 Experiment Results of Source Localization by Cross Bearing

Several acoustic experiments were conducted in PARC, Palo Alto, CA. In the
first outdoor experiment (outside of the Xerox PARC building), three widely
separated linear subarrays, each with four microphones, were used. A white
Gaussian signal was played through the loud speaker placed at the two locations
shown in figure 3. In this case, each subarray estimated the DOA of the source
independently using the AML method, and the bearing crossing from the three
subarrays provided an estimate of the source location. An RMS error of 32cm
was reported for the first location, and an RMS error of 97cm was reported for
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Fig. 1. RMS error comparison of CRB and AML as a function of SNR.

Fig. 2. RMS error comparison of variance bound and AML.

the second location. This shows the AML crossing bearing method can locate
the wideband source effectively.

In a different outdoor configuration, two linear subarrays of four microphones
were placed at the opposite sides of the road and two omni-directional loud
speakers were placed between them, as depicted in figure 4. The two loud
speakers play two independent pre-recorded sounds of light wheeled vehicles of
different kinds. By using the alternating projection steps on the AML metric,
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the DOA’s of the two sources were jointly estimated for each subarray under
11dB SNR (with respect to the bottom array). Then, the crossing yielded the
location estimates of the two sources. An RMS error of 37cm was observed for
the source 1 and an RMS error of 45cm was observed for source 2. We note,
the AML DOA subarray angular resolution for multiple targets is significantly
better than the classical Fourier limited resolution of the same subarray. This
advantage is similar to the so-called “superresolution” effect of various paramet-
ric spectral estimators (e.g., MUSIC; subspaced-based method) as compared to
classical DFT Fourier limited spectral estimator.
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Fig. 3. Source localization of white Gaussian signal using AML DOA cross bearing in
an outdoor environment.

5.3 Simulation Results of SVM Classification

We attempt to discriminate between two sources (a Harley motorcycle and a car
from microphone data collected by BAE, Austin, TX, in Oct. 2002) based on
the magnitude spectrum of their acoustic signals. A total of 382 training vectors
were acquired. For each time signal, sampled at 5 kHz, we used a window of
1000 samples and moved the window by 100 samples until the end of the signal
was reached. For each time window, we took the magnitude of the FFT, saving
only the first 200 frequency bins to make up each training vector.

Shown in figure (5) is the solution of (16) for various γs. We see that for
sufficiently large γ, the margin becomes small enough such that 1T u is reduced
to 0, i.e., the training vectors are separable.

Figure (6) shows the result of testing our SVM classifier on source spectra
estimated via the AML algorithm. The plot shows the fraction of misclassified
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Fig. 4. Two-source localization using AML DOA cross bearing with alternating pro-
jection in an outdoor environment.
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Fig. 5. Tradeoff curve between ‖a‖2 and 1T u.

testing vectors as a function of the source SNR for γ set to 1,10, and 100. As
expected, we see that for the larger values of γ, which corresponds to larger
‖a‖ and hence smaller margin width, the classifier performs slightly worse at
low SNRs and slightly better at high SNRs. This phenomenon illustrates the
tradeoff between robustness and misclassification.
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Fig. 6. Fraction of misclassified testing vectors from estimated source spectra as a
function of SNR.

6 Conclusions

In this paper, an AML algorithm is derived for multiple sources DOA and spec-
tra estimation. The source location can then be obtained via cross bearing from
several widely separated arrays. Furthermore, the proposed SVM algorithm can
be applied to the target classification based on the estimated source spectra.
Theoretical analysis based on the CRB formula is also derived. Simulation and
experimental results demonstrated the effectiveness of the AML and SVM algo-
rithms.
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Abstract. A novel source localization approach using acoustic energy
measurements from the individual sensors in the sensor field is presented.
This new approach is based on the acoustic energy decay model that
acoustic energy decays inverse of distance square under the conditions
that the sound propagates in the free and homogenous space and the
targets are pre-detected to be in a certain region of the sensor field. This
new approach is power efficient and needs low communication band-
width and therefore, is suitable for the source localization in the dis-
tributed sensor network system. Maximum Likelihood (ML) estimation
with Expectation Maximization (EM ) solution and projection solution
are proposed to solve this energy based source location (EBL) problem.
Cramer-Rao Bound (CRB) is derived and used for the sensor deploy-
ment analysis. Experiments and simulations are conducted to evaluate
ML algorithm with different solutions and to compare it with the Non-
linear Least Square (NLS) algorithm using energy ratio function that
we proposed previously. Results show that energy based acoustic source
localization algorithms are accurate and robust.

1 Introduction

Efficient collaborative signal processing algorithms that consume less energy for
computation and communication are important in wireless distributed sensor
network communication system [1]. An important collaborative signal processing
task is source localization. The objective is to estimate the positions of the
moving targets within a sensor field that is monitored by a sensor network.
In this paper, our focus will be on collaborative source localization based on
acoustic signatures.

Most localization methods depend on three types of physical variables mea-
sured by or derived from sensor readings for localization: time delay of arrival
(TDOA), direction of arrival (DOA) and received sensor signal strength or power.
DOA can be estimated by exploiting the phase difference measured at receiving
sensors [2], [3], [4], [5],[6] and is applicable in the case of a coherent, narrow
band source. TDOA is suitable for broadband source and has been extensively
� This project is supported by DARPA under grant no. F 30602-00-2-0555
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investigated [7], [8] [9], [10], [11], [12]. In practice, DOA measurements typically
require costly antenna array on each node. The TDOA techniques require a high
demand on the accurate measurement or estimation of time delay. In contrast,
received sensor signal strength is comparatively much easier and less costly to
obtain from the time series recordings from each sensor.

In [13], we show that, for single target at noiseless situation, each energy ratio
dictates that the potential target location must be on a hyper-sphere within
the sensor field. With noise taken into account, the target location is solved as
the position that is closest to all the hyper-spheres formed by all energy ratios
in the least square sense. Using this energy ratio function, the source energy is
eliminated, the task of source localization estimation can be simplified by solving
a Nonlinear Least Square (NLS ) problem. Yet, this method can only be used for
single target localization.

In this paper, we presented a novel approach to estimate the source location
based on acoustic energy measured at individual sensors in the sensor field. We
set up an acoustic energy decay model in the free and homogenous (no gusty
wind) space under the conditions that the acoustic sources are not far away from
the sensors and also not too close to the sensors so that they can be treated as
omni-directional points.

Based on this acoustic energy decay model, we presented a new approach us-
ing acoustic energy measurements from the individual sensors in the sensor field
to locate the targets in the region. Maximum Likelihood (ML) estimation with
Expectation Maximization (EM ) solution and project solution using Exhaustive
Search (ES) and Multi-Resolution (MR) search are proposed to solve this EBL
problem. Cramer-Rao Bound (CRB) is derived and used to analyze the sensor
deployment to improve the performance of EBL algorithms.

Experiments and simulations were conducted to verify the energy decay
model and to evaluate different algorithms and solutions of this EBL problem.
Results show that energy based localization with ML estimation using projection
solution outperforms other method by the cost of heavy computation burden.
Projection solution with MR search reduces the computation burden a lot with
the cost of reducing the performance a little bit.

Performance variation of ML estimation when targets have different energy
intensity is also analyzed. It shows that, when the two targets have significant
difference of energy source, the target with smaller energy becomes more ambigu-
ous, and therefore, we get less accurate localization estimation for that target.

This paper is organized as follows: In section2, we formulate the acoustic
energy decay model in the sensor network system when certain conditions are
satisfied. Based on this energy decay model, we derive ML estimation and its
EM solution and projection solution with MR and exhaustive search to solve this
EBL problem. In section 3, we derive the CRB for this EBL problem. The effect
of sensor deployment to the CRB is also analyzed in this section. Experiments
and simulations are provided in section 4 to evaluate and compare different
algorithms and solutions for solving the EBL problems. Conclusion and future
work are given in section 5.
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2 Energy-Based Source Localization

Energy-based source localization is motivated by a simple observation that the
sound level decreases when the distance between sound source and the listener
becomes large. By modelling the relation between sound level (energy) and dis-
tance from the sound source, one may estimate the source location using multiple
energy reading at different, known sensor locations.

2.1 An Acoustic Energy Decay Model

The way sound propagates with the distance from the source is dependent on the
size and shape of the source, the surrounding environment, prevailing air currents
and the frequencies of the propagating sound. Other factors that may affect
sound propagation may include wind direction, strength of wind, vegetation
such as forest and other obstructions.

To simplify the problem, we make some assumptions in developing the energy
decay model for energy based source localization in the wireless sensor network
system. These assumptions are normally satisfied in certain sensor network sys-
tems. The assumptions we made are:

1. Sound propagates in the free air,
2. Target is pre-detected to be in a particular region of a sensor field. The

region size is not very big so that targets are not far from the sensors. (For
example, in our experiment, the region size is about 100 ∗ 100M2)

3. Sound source can still be treated as an omni-directional point. (We can
assume the dimension of the engine of the vehicle is relative small compared
with the distance between the sensor and the vehicle).

4. The propagation medium (air) is roughly homogenous ( i.e. no gusty wind)
and there is no sound reverberation.

In such environment, the acoustic intensity attenuated at a rate that is in-
versely proportional to the distance between source and the sensor [14]. Since
sound waveform is additive, the acoustic wave intensity signature received by
each sensor is:

xi(n) = si(n) + νi(n) (1)

Where: si(n) = γi

∑K
k=1

ak(n−tki)
‖ρk(n−tki)−ri‖ and i = 1, 2, ...N

In the above equation, xi(n) is the nth acoustic signature sampled on the
ith sensor over a time interval [1/fs] by a matched filter, fs is the sampling fre-
quency; νi(n) is the zero-mean additive white Gaussian noise (AWGN) on the
nth time interval; K is the number of targets; N is the number of the sensors
of the particular region in the sensor field; ak(n − tki) is a scalar denoting the
acoustic source intensity emitted by the kth target; tki is the propagation delay
from the kth source to the ith sensor; ρk is the p × 1 vector denoting the coor-
dinates of the kth target; ri is a p × 1 vector denoting the Cartesian coordinates
of the ith stationary sensor; p is the dimension of location; γi is a scaling factor
corresponding to the sensor gain of the ith acoustic sensor.
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Assume si(n) and vi(n) are uncorrelated, ak1 and ak2 are uncorrelated for
k1 �= k2, E[vi(n)] = 0, and E[ak(n)] = 0, we get:

E
[
x2

i (n)
]

= E
[
s2

i (n)
]

+ E
[
ν2

i (n)
]

(2)

where E
[
s2

i (n)
]

= gi

∑K
k=1

Sk(n−tki)
|ρk(n−tki)−ri|2

In above, gi = γ2
i and Sk(n − tki) = E

[
a2

k(n − tki)
]
.

Since we assume that the targets are pre-detected to be in a particular region
of a sensor field and the region size is not big, we can assume that the targets
are not far from the sensors in the region. Therefore, the propagation delay tki

is small enough that we can assume: a(n − tki) ≈ a(n) and ρ(n − tki) ≈ ρ(n).
The expectation of energy is calculated by averaging over a time window

T = M/fs, where M is the number of sample points we used for averaging the
energy, fs is the sampling frequency. Denote E

[
x2

i (n)
]

as yi(t), E
[
a2

k(n)
]

as
ys(t) and E

[
ν2

i (n)
]

as εi(t), we get the energy decay model as:

yi(t) = ys(t) + εi(t) = gi

K∑

j=1

Sj(t)
‖ ρj(t) − ri ‖2 + εi(t) (3)

Where t = T
2 , 3T

2 , 5T
2 , ...

Background noise νi(n) is independent zero mean AWGN with variance σ2
n,

ν2
i (n) is independent χ2 distributed with mean σ2

n and variance 2σ4
n

M . If M is suffi-
ciently large (practically M > 30), by central limit theorem, εi is approximately
normal: ε ∼ N(σ2

n,
2σ4

n

M ).

2.2 Maximum Likelihood Estimation for EBL Problem

To simplify our notation, in the following parts, we will not denote time t explic-
itly in our equation. All parameters refer to the same time window automatically,
i.e., we denote yi for yi(t).

Following we will introduce the ML estimation with different solutions to
estimate the source location. Note that the estimation is based on single frame of
energy readings from different individual sensors. Estimation based on sequential
energy readings are under developing.

Define

Z =
[ y1−µ1

σ1

y2−µ2
σ2

. . . yN −µN

σN

]Γ
(4)

Equation (3) can be simplified as:

Z = GDS+ξ = HS+ξ (5)

Where:

S =
[
S1 S2 · · ·SK

]Γ (6)
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H = GD (7)

G = diag
[ g1

σ1

g2
σ2

. . . gn

σN

]
(8)

D =









1
d2
11

1
d2
12

. . . 1
d2
1K

1
d2
21

1
d2
22

. . . 1
d2
2K

...
...

. . .
...

1
d2

n1

1
d2

n2
. . . 1

d2
NK









(9)

dij = |ρj − ri| is the Euclidean distance between the ith sensor and the jth

source.
Then, ξi = (εi−µi)

σi
∼ N (0, 1), zi = yi−µi

σi
∼ N

(
gi

σi

∑K
j=1

Sj

d2
ij

, 1
)

The unknown parameters θ in the above function is:

θ =
[
ρT

1 ρT
2 · · · ρT

K S1 S2 · · · SK

]T

The log-likelihood function of equation (5) is:

�(θ) ∼ −1
2

N∑

i=1

‖ zi − gi

σi

K∑

j=1

Sj

d2
ij

‖2=
−1
2

‖ Z − GDS ‖2 (10)

ML estimate of the parameters θ is the values that maximize �(θ), or equiv-
alently, minimize

�L(θ) =‖ Z − GDS ‖2 (11)

Equation (11) has K(p + 1) unknown parameters, there must be at least
K(p + 1) or more sensors reporting acoustic energy readings to yield an unique
solution to this nonlinear least square problem.

Expectation Maximization Solution. Define pseudoinverse of H as H†,
perform reduced SVD of H, and setting ∂L

∂S to be zero, we get:

S = H†Z (12)

Where:

H = GD = UHΣHVT
H (13)

H† =
(
HT H

)−1
HT (14)

Now, set the gradient of L with respect to ρj to zero, we get:

∇ρj
L = 2sj

N∑

i=1

gi

σi

(
ρj − ri

d4
ij

)(

zi − gi

σi

K∑

m=1

sm

d2
im

)

= 0 (15)

Where the relation
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∇ρj

(
1

d2
im

)

=

{ ρm−ri

−d4
im

, j = m

0, j �= m

is used. Solving equation (15) for j, we have

ρj =

∑N
i=1

gi

σi

(
1

d4
ij

)(
zi − gi

σi

∑K
m=1

sm

d2
im

)
ri

∑N
i=1

gi

σi

(
1

d4
ij

)(
zi − gi

σi

∑K
m=1

sm

d2
im

) (16)

Equation (16) represents Kp nonlinear constraints on the target location
coordinates {ρj , 1 ≤ j ≤ K}. Note that ρj appears on both sides of equation
(16) because dij contains ρj implicitly. ρj can’t be solved explicitly. Yet, we
can solve it by iterative procedure, a special case of Expectation Maximization
(EM ) algorithm [15]. In [16], it is proved that such special case of EM algorithm
is guaranteed to be convergence (in fact, all EM algorithms are guaranteed to
be convergence). Besides, it avoids the complexities of non-linear optimization
algorithms. The procedure of this algorithm is as follows:

EM Algorithm
Initialization: Initial estimates of {ρj , 1 ≤ j ≤ K}
Repeat until convergence

Expectation Step. Estimate S using equation (12), update S.
Maximization Step. Substitute S into equation (16), update ρj

Projection Solution with (MR) Search. Insert (12) into the cost function
(11), we get modified cost function as follows:

arg{ρ1,ρ2,...ρk} minL = arg{ρ1,ρ2,...ρk} min
(
ZT (I − PH)T (I − PH)Z

)

= arg{ρ1,ρ2,...ρk} max
(
ZT PT

HZ
)

= arg{ρ1,ρ2,...ρk} maxZT UHUT
HZ (17)

Where

PH = H(HTH)−1HT = UH UT
H (18)

is the projection matrix of H.
For single source, j = 1,

H =
[

g1

σ1 d2
1
,

g2

σ2 d2
2
, · · · , gn

σn d2
n

]T

, UH =
H

‖ H ‖
Exhaustive search can be used to get the source location to maximize function

(17). However, the computation complexity is very high. For example, suppose
our detected search region is 128× 128, if we use exhaustive search using the grid
size of 8×8, we need 256K times of search for every estimation point, where K is
the number of the targets. Rather, we can use MR search to reduce the number
of search times. For example, we can use the initial search grid size 16 × 16
followed by the fine search grid size 8 × 8, then, the number of search times is
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reduced to 64K +4K . For two targets, it needs 4112 search times using MR search
with this search strategy and 2562 search times using exhaustive search to get
one estimation. We can further reduce the number of search times by reducing
our search region based on the previous location estimation, the time interval
between two localization operation, possible vehicle speed and estimation error.
In our simulation, all these conditions are used. The search area we used for the
projection solution is (xi − 32, xi + 32) × (yi − 32, yi + 32), where (xi, yi) is the
previous estimation location of the ith target. Therefore, for single target, we
need only 20 search; for two targets, we need 272 search for every localization
estimation, which is feasible for our distributed wireless networking system.

3 Cramer-Rao Bounds and Sensor Deployment Analysis

Cramer-Rao Bound (CRB) is a theoretical lower bound of the variance that we
can reach for the unbiased estimation. It is useful to indicate the performance
bounds of a particular algorithm. CRB also facilitates analysis of factors that
impact most on the performance of an algorithm. CRB is defined as the inverse
of the Fisher Matrix :

J = −E

(
∂

∂θ

[
∂

∂θ
ln fθ(Z)

])

For the problem with log-likelihood function described as equation (10),
Fisher matrix is:

J =
∂ (DS)T

∂θ
GTG

∂ (DS)
∂θT

(19)

∂DS
∂θT

=
[

∂DS
∂ρT

1

∂DS
∂ρT

2
. . . ∂DS

∂ρT
K

∂DS
∂ST

]
(20)

∂DS
∂ST

= D (21)

Bj =
∂DS
∂ρj

T

=
[ −2Sj

d3
1j

b1j
−2Sj

d3
2j

b2j . . .
−2Sj

d3
Nj

bNj

]T
(22)

In above equation, bij is the unit vector from source j to sensor i, which can
be expressed as:

bij =
∂dij

∂ρj

=
ρj − ri

dij

Define:

B =
[
B1 B2 · · · BK

]
(23)
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We get the Fisher Matrix J as follows:

J =
[
BT

DT

]

GTG
[
B D

]
(24)

Note that in the above equations, J is (p + 1)K × (p + 1)K matrix, Bj is
N × p matrix, B is n × Kp, D is N × K matrix, G is N × N matrix and bij is
p × 1 vector

The CRB is:

J−1 =
([

BT

DT

]

GTG
[
B D

]
)−1

(25)

For single target, the formula is reduced to:

J =
[
J11 J12
J21 J22

]

(26)

Where:

J11 =
n∑

i=1

4s2g2
i

σ2
i d6

i

bibT
i (27)

JT
21 = J12 = −2s

n∑

i=1

g2
i

σ2
i d5

i

bi (28)

J22 =
n∑

i=1

g2
i

σ2
i d4

i

(29)

The variance of the unknown parameter estimation is bounded by the CRB,
i.e.

var
(
ρ̂ij

) ≥ (J−1)
(i−1)p+j,(i−1)p+j

{i = 1 · · · K, j = 1 · · · p}
Where var

(
ρ̂ij

)
is the variance of the estimation location for ith source (ρi),

at jth coordinate direction.
From above CRB equation, we know that CRB is sensitive to the overall

weighted
(

gi

σi

)
distance from the targets to the sensors. The longer the distance,

the bigger CRB could be. When the sensors are deployed close to the road, the
weighted overall distance from the targets to the sensors is reduced. Therefore,
we can get smaller CRB. When the sensors are dense, there are more sensors
close to the targets, therefore, smaller CRB we can approach. By Chebyshev ’s
inequality, we know that the probability of estimation error is less than the ratio
of the variance of that random variable and the square of that estimation error,
i.e.

P (| X − E (X) |≥ a) ≤ Var(X)
a2
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Since the variance is lower bounded by the CRB and for ML estimation,
variance asymptotically approaches its CRB, the bigger the CRB, the higher
probability of the estimation error we might get. Using dense sensors that are
close to the road gives smaller CRB, and therefore, improves the performance in
the sense that, {∀a > 0, P (|X̂ − X| > a)} is smaller.

Simulations of different sensor deployment with two targets producing similar
acoustic energy moving in opposite direction are conducted to check the relation
between CRB and the sensor deployment. The results are shown in Fig.1 and
Fig.2. These results are consistent to our theoretical analysis. Note that when
two targets are close to each other, we have more ambiguity, and therefore, the
CRB increases abruptly at the middle part in Fig. 2.
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Fig. 1. Sensor Deployment, (a) dense sensor, (b) dense sensor close to road, (c) loose
sensor located at one side, (d) loose sensor located at two side.

4 Experiments and Simulations

4.1 Experiments

Sensor Network System. The raw signals were recorded by 29 sensor nodes
deployed along the road in the sensor field, CA in November 2001, sponsored by
the DARPA ITO SensIT project. The data we used to evaluate EBL algorithms
were taken from 15 acoustic sensors recording the signatures of AAV vehicle
going from east to west during a time period of ∼ 2 minutes. Figure 3 shows
the road coordinates and sensor node positions, both supplied by the global
positioning system (GPS). The sensor field is divided into two regions as shown in
the above figure. Region 1 is composed of node 1, 41, 42, 46, 48, 49, 50, 51. Region
2 is composed of node 52, 53, 54, 55, 56, 58, 59. In region 1, node 1 is chosen as
manager node, others are detection node. In region 2, node 58 is chosen as
manager node, others are detection node.



294 X. Sheng and Y.-H. Hu

Fig. 2. CRB for different sensor deployment shown as Fig. 1, (a) CRB for target 1,
(b) CRB for target 2.

−200 −150 −100 −50 0 50 100 150
−200

−150

−100

−50

0

50

100

41

42

47
48

49

50
51

52
53 54

55

5658
591

region 1

region 2

Node  1 is the manager node for region 1

Node 58 is the manager node for region 2

the detection node for region 1 are 41 42 51 54 55 56 59

the detection node for region 2 are 47 48 49 50 52 53

X coordinates

Y
 c

oo
rd

in
at

es

sensor deployment, road location and region specification for real experiment

sensor location
road location

Fig. 3. Sensor deployment, road coordinate and region specification for experiments

The region is activated by our tracking algorithm implemented by Kalman
filter. When the region is activated, multi-modality node detection and region
detection are performed. Once region detection announces the detection of the
target, EBL localization algorithm is activated and performed to locate the tar-
gets using the most recent reported acoustic energy, noise mean and variance
from its detection nodes. The sampling frequency is fs = 4960Hz. The energy is
computed by averaging the T=0.75sec non-overlapping data segment (3720 data
points).

Fig. 4(a) shows the AAV ground truth and the localization results based on
the ML algorithm with projection solution and NLS algorithm. MR search is
used to estimate the location. The grid size we chose is: 4*4, 2*2, 1*1. Note that
the missing ground-truth points in this figure are the miss-detection points by
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our multi-modality detector and therefore, there is no localization operation at
these points.

To evaluate ML algorithm and compare it with NLS we proposed in [13] for
EBL problem, we first compute the localization errors defined as the Euclidian
distance between the location estimates and the true target locations for the time
when region detection is announced. The true target location can be determined
since they must be positioned on the target trajectory which can be extracted
from GPS log. These localization errors are then grouped into different error
range, i.e., 0 ∼ 10, 10 ∼ 20, ...40 ∼ 50, ≥ 50. We call it as error histogram of our
localization algorithm. Fig. 4(b) shows this localization error histogram for AAV
localization.
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Fig. 4. AAV ground truth, localization estimation results and estimation error his-
togram based on ML algorithm with projection solution and NLS algorithm (MR
search is used, grid size is 4*4, 2*2 and 1*1. Estimation results look bias from the
ground-truth, see discussion for reasoning)

From experiment, we can see that, overall, both ML and NLS algorithms
perform well estimations of target location. It verifies that inverse distance square
acoustic energy decay model is suitable in the free space in normal situation. ML
algorithm with projection solution outperforms to NLS algorithm in the sense
that it has less estimation error. Besides, there are some points having estimation
error bigger than 30 meters using NLS estimation. This says that NLS is not as
stable as ML estimation with projection solution. However, NLS algorithm needs
less bandwidth. This is because NLS doesn’t use noise variance for its estimation
while ML algorithm does need it. So, for NLS algorithm, we save about 1/4
bandwidth. (For ML estimation, detection nodes need to report acoustic energy,
noise mean, noise variance and multi-modality binary node detection results in
every 0.75 second).
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Fig. 4 shows that the localization estimation results look bias from the real
ground-truth. This can be caused by inaccurate GPS measurement. It can be
seen that ground truth also looks bias from the road while in the experiment,
vehicle moved along the road. We can also see that estimation results are closer
and less biased to the road than to the ground-truth. In our works on parameter
sensitivity analysis, we found that EBL algorithms are sensitive to the sensor
gain, sharp background noise or sensor faults. Inaccurate measurement or esti-
mation of these parameters can cause the estimation bias.

4.2 Simulations

Simulations for ML Estimation with EM Solution and Projection So-
lution for Multi-Target Localization. The simulation parameters were de-
signed according to the experiment data described previously. From the exper-
iment, we know that, for AAV vehicle, the maximum average energy (ymax)
received by the acoustic sensor is around ymax = 1.324e11/230 when the sensors
are deployed as Fig. 3. Note that with this sensor deployment, the closest dis-
tance from the sensor to the road is about 15 meters. Using energy decay model,
we know that AAV acoustic source energy is about S = 2.78e4. Noise mean µ
detected by our CFAR detector is from 0.01ymax to 0.04ymax. Noise variance is
in the range of (1 ∼ 2)µ. So, the maximum SNR received by the acoustic sensor
for AAV is around 14db to 20db.

Follow the experiment data, we designed a sensor field with twenty-one sen-
sors scattering along the two sides of the road. The size of sensor field is 200×80
meter2. Simulations were conducted by moving two-targets in opposite direction
in the above sensor field. Fig. 5 shows the sensor deployment for this sensor field
and the ground truth of the two targets.

−200 −150 −100 −50 0 50 100 150
−10

0

10

20

30

40

50

60

Y
 c

oo
rd

in
at

es
 fo

r 
th

e 
se

ns
or

 g
ro

up

X coordinates for the sensor group

(a) sensor deployment and road
coordinate for simulations

−150 −100 −50 0 50 100 150
0

10

20

30

40

50

60

70

80

T
im

e 

X coordinates, (Y coordinates is on the road)

target 1
target 2

(b) Ground truth for two tar-
gets moving in the opposite di-
rection

Fig. 5. Sensor deployment, road coordinate and ground truth of the two targets for
the simulation



Energy Based Acoustic Source Localization 297

Two cases were run in the simulation. For case 1, the source energy of the
two targets are similar, i.e., S1 = S = 2.78e4, S2 = 1.2S1. For case 2, the source
energy of the two targets have significant difference, i.e., S1 = S, S2 = 3S1. For
each simulation case, we assume the acoustic source energy, S1 and S2, keep
constant in the simulation time.

Background noise εi was generated by matlab noise generator. It is gaussian
distributed with mean uniformly distributed on (0.01 ∼ 0.04)ymax and variance
uniformly distributed on (1 ∼ 2)µ.

Using ML estimation algorithm with projection solution and EM solution,
we can solve the location of the two targets at every time period. For projection
solution, grid size we used for the exhaustive search is 8 ∗ 8. The grid size of MR
search is 16 ∗ 16, 8 ∗ 8. Direct Monte Carlo simulations were performed with 100
trials for each simulation case.

To evaluate the ML algorithm with projection solution and EM solution for
energy based multi-target source localization problem, we calculate the localiza-
tion error which is defined as the distance error between the target ground-truth
and the mean of estimation of 100 trials of the Direct Monte Carlo simulation at
each target ground-truth. We also calculate the estimation standard deviation
(std), and compare the std with the root of CRB. Fig.6 and Fig.7 show the
estimation error and std of case 1.
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(a) estimation error for target 1
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Fig. 6. Estimation errors for projection solution using MR search, projection solution
using exhaustive search and EM solution.(a) target 1, (b) target 2 (sensor deployment
and ground truth for the two targets are shown in Fig. 5; Noise is uniformly distributed
from 0.01ymax to 0.04ymax, S1 = ymax, S2 = 1.2S1).

To evaluate the effects of different target energy ratio (S2/S1) on our algo-
rithm, we calculate the estimation error difference for the two cases at every
estimation point. The result was shown in Fig. 8.

From Fig.6 and Fig.7, we know that, for projection solution, exhaustive search
has better performance than MR search since MR search is just approximate
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ML estimation. Yet, the degradation using MR search is small for most of time.
Performance of EM solution is much worse than that of the projection solution.
This is because EM solution is easy to track into the local minimum. Besides,
EM solution is sensitive to the initial condition. The advantage of EM solution
is that it has much less computation complexity. For most of time, it can get
results within 6 or 7 iteration and so, it has less computation complexity while
exhaustive search and MR search for the projection solution need to search in
the entire effective sensor region. Fig.7 shows that the estimation variance of
ML estimation with projection solution approaches its CRB. It concludes that
ML estimation with projection solution is the optimum solution for the EBL
problem when the prior probability of target location is unknown.

From Fig.8, we know that estimation error decreases for the target with
higher acoustic energy. For the target with lower acoustic energy, estimation
error increases, especially at the area where the two targets are close to each
other or at the boundary of the sensor field. This is because the target with low
energy is more ambiguous when the source of other target is much stronger.
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The above multi-target localization is based on the assumption that we al-
ready detect the active region where the target is inside by our region detect
algorithm and we know the number of targets in that active region. The region
detection has been developed by the combination of CFAR detector, classifica-
tion, data fusion and decision fusion. The number of multi-targets can be deter-
mined by multi-modality detection we have developed and space-time analysis
of the energy sequences that we are developing recently.

5 Conclusion and Future Work

Collaborative energy-based acoustic source localization method has been pre-
sented. This method is based on the inverse distance square acoustic energy
decay model under certain conditions. ML algorithm with different solutions is
proposed to estimate multi-target source location. CRB is derived and be used
for sensor deployment analysis. Experiments and simulations were conducted
to evaluate the ML algorithm with different solutions and to compare the ML
algorithm with NLS algorithm. Results show that energy based ML estimation
using projection solution and MR search is robust, accurate, efficient.

Overall, EBL algorithms need low communication bandwidth since each sen-
sor only reports energy reading, noise mean and variance (NLS doesn’t need
variance), and detection binary results to the manager node at every time pe-
riod rather than at every time instant. Besides, it is power efficient. For detec-
tion node, it only calculates the average energy in the time period and performs
energy-based CFAR detector (simple algorithm). For manager node, it performs
simple voting algorithm and decision fusion algorithm. Manager node performs
localization algorithm only if the region detection announces the targets. ML
estimation with projection solution and MR search under the reduced search
region saves the computation burden and so, saves the manager node battery
further more. Detection node energy computation requires averaging of instan-
taneous power over a pre-defined time interval. Hence it is less susceptible to
parameter perturbations, and so, the algorithm is robust.

From CRB analysis, we know that the performance of our localizer is related
to the sensor deployment. The performance of the region detection is also re-
lated to the sensor deployment. Besides, our initial research on target number
prediction based on the space-time analysis also shows the importance of the
sensor deployment. In addition, sensor deployment also affects the sensitivity of
the parameter perturbation. Therefore, the sensor deployment is very important
in our sensor network communication. The optimum sensor deployment based
on all these consideration will be conducted as our future work.
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Abstract. Numerous factors contribute to errors in sensor measure-
ments. In order to be useful, any sensor device must be calibrated
to adjust its accuracy against the expected measurement scale. In
large-scale sensor networks, calibration will be an exceptionally difficult
task since sensor nodes are often not easily accessible and manual
device-by-device calibration is intractable. In this paper, we present a
two-phase post-deployment calibration technique for large-scale, dense
sensor deployments. In its first phase, the algorithm derives relative
calibration relationships between pairs of co-located sensors, while in the
second phase, it maximizes the consistency of the pair-wise calibration
functions among groups of sensor nodes. The key idea in the first
phase is to use temporal correlation of signals received at neighboring
sensors when the signals are highly correlated (i.e. sensors are observing
the same phenomenon) to derive the function relating their bias in
amplitude. We formulate the second phase as an optimization problem
and present an algorithm suitable for localized implementation. We
evaluate the performance of the first phase of the algorithm using
empirical and simulated data.

Keywords: Sensor calibration, distributed calibration, consistency max-
imization, sensor networks, distributed algorithms, in-network process-
ing, calibration routing

1 Introduction

The recent advent of sensor networks as enablers for completely new classes of
applications, has not only captured the imagination of many a scientist and en-
gineer in many a domain, but has also sparked the recognition of new classes
of problems for the developers of sensor network systems and technology. Data
inaccuracy and imprecision are two examples of inevitable challenges when deal-
ing with the measurement of physical phenomena. These errors must be dealt
with properly if sensor data are to be useful. Furthermore, these errors must
ultimately be dealt with in the network to enable collaborative signal process-
ing. Calibration traditionally refers to the process of correcting systematic errors
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(biases) in sensor readings. The term has also often been used in reference to the
procedure by which the raw outputs of sensors are mapped to standardized units.
Traditional single-sensor calibration often relies on providing a specific stimulus
with a known result, thus creating a direct mapping between sensor outputs
and expected values. Consequently, such calibration for a sensor is often sub-
ject to specific ranges and operating condition restrictions, which are reported
in the manufacturer specifications of the sensor. This type of calibration can be
performed at the factory, during the production stage, and/or manually in the
field. In addition to component level calibrations, sensors usually must be cali-
brated at the device level when used as part of a measurement system. Moreover,
re-calibration is usually required in order to ensure proper operation of a mea-
surement device, as ageing and other factors impact sensors and measurement
hardware over time.

However, with large scale sensor networks, manual, single-sensor calibration
schemes will not work well. In addition to the obvious scaling issues, the following
are examples of factors that will also hinder such methods:

– Limited access to the sensors in the field
– Complex dynamic environmental effects on the sensors
– Sensor drift (age, decay, damage, etc)
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Fig. 1. Distribution of the noise in measured values reported by three light sensors
measuring the same source

Consider the three histograms shown in figure 1 which correspond to the raw
outputs of three photovoltaic elements connected to an analog to digital con-
version circuit. Photovoltaic elements are small electronic devices that produce
a voltage at their output pins based on the amount of incident light on their
surface. This specific component is readily available in electronic supply stores
and is quite inexpensive. It produces roughly 500mV in an average well-lit office
space. The histograms correspond to the outputs of three individual sensors of
this same type, each measuring the same light source under controlled condi-
tions. The mean of the time-series data has been subtracted so that only the
noise component in the measurement remains. The horizontal axis represents
raw, uncalibrated values and thus, does not have a standard unit associated
with it.
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In the light-sensor example above, the errors in the measurements can be
classified into 2 major categories as abstracted in figure 2. The vertical axis
in the figure represents the probability and the horizontal axis represents the
amplitude of a sensor output (i.e. the reported value). Note that figure 2 is
only meant as an illustrative diagram and does not necessarily represent the
exact characteristics of any specific sensor device. The two major classification
of sensor errors are:

Measured Value
xtrue

ErrorNoise

xix

Bias

P(
x)

Fig. 2. Sensor measurement error terminology

– Systematic Errors (Bias): The bias is an offset in the mean amplitude of
sensor readings x from the true value xtrue. The bias may depend on time,
the sensed phenomena, the environment, or other factors.

– Random Errors (Noise): This random component in the error may be due
to external events that influence sensor readings, hardware noise, or other
difficult-to-predict transient events. In some cases, the noise in measurements
may be modeled using a specific distribution (such as Gaussian).

Throughout our discussions, we assume that the output characteristics of
sensors are of this general type. For a given measurement (at a given time), the
error is the difference from the reported value of the sensor and the true value,
which we refer to as ground truth. The goal of calibration in general, and our
collaborative calibration in particular, is to determine and correct systematic
biases in sensor readings. In case of a light sensor, the bias can be due to the
sensor or supporting hardware, or external factors such as dust particles on the
protective lens of the sensor. In our subsequent discussions, when we refer to
sensor “readings” we assume that the measurement noise has been filtered out,
for example by using averaging over time, but that the systematic bias remains.

The main challenge in detecting the systematic errors autonomously is the
lack of known stimuli against which sensor measurements can be calibrated. In
this paper, we present a collaborative calibration scheme that addresses this
problem. The scheme exploits the redundancies in sensor measurements under
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dense deployment scenarios and dynamically and autonomously derives calibra-
tion functions relating the biases of pairs of sensors. This scheme is in essence
different than traditional calibration since it calibrates sensor outputs against
the outputs of other sensors, utilizing redundancy. To achieve true calibrated
results, one must have a reference point to the ground truth. In typical systems,
this can be achieved by manually calibrating a subset of the sensors in the sys-
tem, and allowing the calibration to adjust the remaining sensors based on the
calibrated subset. Clearly the final calibration accuracy with respect to the real
ground truth will also depend on the number and distribution of such reference
points. However, in this paper, we focus our attention on the relative calibration
errors between sensors.

1.1 Paper Organization

In the next section, we present the related work followed by the technical prelim-
inaries section including several assumptions and definitions used in subsequent
discussions. Section 4 contains the details of our two-phase calibration algorithm.
Phase 1 is the main highlight of this paper which proposes an algorithm for de-
riving calibration relationships between pairs of co-located sensors. In phase 2,
the goal is to improve the results of the first phase at a local level (including
several nodes) since errors in measurements and inaccuracies in results will often
yield inconsistent pair-wise relationships between different sensors. Results using
both measured and simulated data are presented and discussed in section 5.2.

2 Related Work

The topic of sensor calibration is as old as sensors themselves. It is impractical
to list all of the work that has been done in this area over centuries of human
science. Thus, we focus on calibration techniques proposed for sensor networks

In [1] authors address calibration of transmission power in the context of
a signal strength based localization system. Even though a radio transceiver is
not usually considered a sensor per se, the technique described in that paper
can, potentially, be applied to more traditional sensors. The approach described
in [1] formulates signal strength calibration as a global optimization problem
and as written was not intended for distributed on-line deployment. Sensor
fault-tolerance is an issue that is closely related to sensor calibration. In [2]
the author suggests a methodology for the design of a fault-tolerant sensor. The
author advocates increasing the reliability of a virtual sensor through the use of
appropriate models of the phenomenon and replication of physical sensors. Our
approach is similar to [2] in that it assumes particular models for sensor failures
and phenomena. However, we focus on calibration of a network of physically
distributed sensors as opposed to the fault-tolerance of a single sensor.

A significant amount of calibration research work has been done in the con-
text of array signal processing[3]. This research focuses on acoustic and radio
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signals. Receiver equalization is defined as the calibration of the frequency re-
sponse of a device. Issues such as time synchronization also come up in practice.
Our approach is similar to blind equalization; it does not rely on known calibra-
tion sources. However, unlike blind equalization, our method does not assume
any large-scale propagation models. Our method only requires understanding
of the sensed phenomenon at a small scale, because sensors are assumed to be
densely deployed.

The field of robotics has also contributed to in-place sensor calibration. Some
of these calibration techniques take advantage of intrinsic sensor mobility. In [4],
the authors suggest an approach to calibrating the perceived map of the world
based on the data received from an inaccurate odometric sensor. Even though
their work is drastically different for ours in its applications, the overall philoso-
phy of the approaches is similar. The authors of [4] propose to derive the initial
map of the world (a set of calibration functions in our case) based on the current
information from a sensor. The inconsistencies of this map are later “relaxed”
through a global optimization procedure.

3 Technical Preliminaries

We make the following assumptions about our target sensor systems

– Phenomenon
• Known and limited spatial frequency (Nyquist)
• High temporal frequency

– Sensors
• Dense deployment: This indicates that we have multiple neighboring

sensors sensing the same phenomenon and that calibration partitions do
not occur.

• Sensing is slow and has no drift within a calibration epoch with respect
to the calibration process.

• No angle-dependent gains in sensor measurements.
• Due to time-synchronized nature of our calibration process, we assume

there is no hysteresis or delay in sensor response.

Throughout this paper, we use the set S to denote the set of sensor nodes
being considered. We denote the measurement reported by sensor si ∈ S at time
instance t as si(t). We assume all reported measurements are real valued scalars.

Definition: A calibration function (CF), denoted as Fi,j(x) is a real-
valued function mapping the output x of sensor si to sensor sj . For the sake of
simplicity, we often omit the parameter x. Each function Fi,j can also have an
associated confidence weight 0 ≤ wi,j ≤ 1.

Definition: A calibration matrix (CM), denoted as F, is a 2 dimensional
|S| × |S| matrix such that each element Fi,j ∈ F is the calibration function
mapping the output of sensors si ∈ S to sj ∈ S.
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4 Calibration Algorithm

4.1 Overview

Our calibration algorithm consists of two phases. In its first phase, the algo-
rithm derives relative calibration relationships between pairs of co-located sen-
sors, while in the second phase, it maximizes the consistency of the pair-wise
functions among groups of sensor nodes. The key idea in the first phase is to use
temporal correlation of signals received at neighboring sensors when the signals
are highly correlated (i.e. sensors are observing the same phenomenon) to derive
the function relating their bias in amplitude. We formulate the second phase as
an optimization problem.

4.2 Phase 1: Pair-Wise Calibration Functions

In the first phase of our algorithm we rely on a pairwise approach because of its
scaling properties. This phase of the algorithm will perform well for any number
and densities of sensors under the assumptions stated in section (sect. 3). Since
all the computation here is based on only local data, scalability is unbounded.
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Fig. 3. Time-series data produced by a pair of uncalibrated sensors. Y -axis represents
sensor values, X-axis depicts time at which a sample was taken.

Our algorithm consists of the following steps:

1. Collect time-series data in a synchronized manner.
2. Weight each potential data point.
3. Filter out irrelevant data points.
4. Fit a calibration function to the filtered data set.

Time synchronization of sampling is critical because we use temporal cor-
relation to detect periods of time when sensors are observing the same event.
A pair of values collected at exactly the same time by two sensors, i and j,
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Fig. 4. Scatter plot of time synchronized signals. A data point on this plot is pair
of data values taken by the two sensors at exactly the same instant in time. Y -axis
corresponds to a value reported by the first sensor; X-axis corresponds to the value
reported the second sensor.
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Fig. 5. Sliding window correlation of raw data as a function window time. Y -axis
corresponds to the correlation value; X-axis corresponds to the window offset(time).

represents a potential data point of a calibration function Fi,j between these sen-
sors. It is potential because it may correspond to the same external stimulus.
Fig. 3 shows two raw data streams aligned in time. If this pair of sensors had
been observing the same phenomenon over the course of the whole experiment,
we would be able to establish a relationship between them by fitting a line1

through points on a scatter plot, Fig. 4. Uncorrelated events make it impossible
to establish a relation from this data directly. For this reason, our algorithm
filters out data points corresponding to periods of time when sensors observed
uncorrelated phenomena.

1 In general, a relationship between sensors can be represented by an arbitrary func-
tion. However, a line seems to be a good approximation for the class of sensor that
we have used.
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Fig. 6. 3D scatter plot. (x, y) value of each point of a surface corresponds to two sensor
values taken at the same time. z-value of each point corresponds to the weight of the
point derived through sliding window correlation.
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Fig. 7. Filtered scatter plot. It contains only the points believed to be relevant to the
calibration relationship.

We use linear correlation to identify periods of time when co-located sensors
observe the same phenomena. Our sensor devices exhibited linear behavior in the
range of data values collected in the experiments2. High sensor density allows us
to assume that neighboring sensors are likely to observe the same amplitude of
the phenomenon. Fig. 5 shows a sliding window correlation of the same two sen-
sors as a function of window offset. The size of the correlation window depends
on the temporal frequency of the phenomenon. If correlated events come and go
very quickly, large window size will fail to identify short periods of correlation.
Small windows, on the other hand, may render the results of correlation insignif-
icant from the statistical point of view. In our experiments we had the luxury
of controlling the rate of change of the phenomenon; therefore, the window size
was based on the known duration of correlation periods. A systematic method
2 The ratio of the variances of the linear fit to a quadratic fit was around 2, whereas

the ratios of quadratic to cubic and cubic to the forth power fit were close to 1
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for deriving the correlation window size for different sensing applications is an
open problem and is a subject of future work.

Based on the result of the sliding window correlation we establish weights of
all potential data points. Initially weights of all potential data points are set to
zero. Then, for all positions of a sliding window that produce a positive corre-
lation coefficient we evaluate all potential data points included. If a point had
positively contributed to the correlation of the current window, we increment its
weight by the correlation coefficient of the window. The result of this procedure
can be visualized as a 3D version of the scatter plot (see Fig. 6), where the height
of each point determines its final weight.

The above heuristic provides means to rank potential data points according
to their relevance to the relationship between the sensors. This allows us to filter
out irrelevant points by picking potential data points with top ranks3, the top
set. The level of confidence in Fi,j derived from this set can be related to the
distribution of ranks in the top set. Choosing an appropriate size of the top
set is not straight forward. Small set size may result in large error in the final
relationship, due to filtering out of relevant data points. Large sets, on the other
hand, are bound to contain more irrelevant data points, and thus may be noisy.
In this study we have picked an arbitrary set size of 20 points. A systematic
method for deriving a set size that maximizes “correctness” of the relationship
is a subject of the future work.

After we have computed the top set, we proceed to fitting the calibration
function, Fi,j . This procedure is similar to in-factory sensor calibration, but the
stimuli are unknown. The nature of the calibration function depends on the
type of sensors used4. For example, if the linear error in substrate doping in
a semiconductor sensor are known to result in second order changes to sensor
sensitivity, the calibration function for sensors of this type is very likely to be
quadratic. For the purposes of this study we have assumed a linear calibration
function. The result of fitting a line to the top set is shown in Fig. 7.5

4.3 Phase 2: Localized Consistency Maximization

Due to errors, the pair-wise calibration functions Fi,j between pair of different
nodes si and sj , derived in the first phase of the algorithm, will not be globally
consistent. More specifically, traversing the CFs along different paths will yield
different calibrated results for a given node. In order to illustrate this problem,
3 Direct thresholding may also be used. However, in some cases, the procedure may

fail to establish the relationship due to the lack of potential data points above the
threshold.

4 If the difference in coupling of sensor to the environment needs to be accounted for,
the relationship function should include corresponding terms.

5 The pair-wise calibration algorithm described here does not limit the choice of cal-
ibration relationship. However, the use of linear correlation assumes that the inter-
sensor relationship can be approximated by a linear transformation within the cor-
relation window. In cases where this is not acceptable, it may be possible to use
Spearman (rank) correlation instead of linear correlation.
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Fig. 8. An example of a calibration graph (CG)

consider the calibration graph (CG) depicted in figure 8. A CG in essence is
the graphical representation of a calibration matrix. Each vertex in the CG
represents a sensor node and each edge represents the corresponding CF Fi,j .
The figure shows two possible calibration cycles C1 and C2 for the node s1.
For the sake of simplicity, we only show the CFs in one direction and omit the
reverse mappings in the figure.

For a measured sensor value s1:

C1 : s′
1 = F5,1(F3,5(F2,3(F1,2(s1)))) (1)

C2 : s′′
1 = F5,1(F4,5(F2,4(F1,2(s1)))) (2)

and in general, due to errors, s1 �= s′
1 �= s′′

1 .
Our goal here is, given a calibration matrix F, to compute a new calibration

matrix F’ such that consistency is maximized. In order to formally discuss this
problem, we must first establish our definition of consistency followed by an
objective function which quantifies the consistency for F.

As mentioned above, traversing different paths in the CG can result in incon-
sistent calibrated values for a node. Furthermore, the number of such paths in a
CG will often grow exponentially with the size of the CG. We should also note
here that for linear calibration functions, traversing two consecutive edges of the
CG results in a quadratic relationship, while for quadratic calibration functions,
traversing two consecutive edges will result in a 4th-degree polynomial. It is easy
to see that even for relatively simple calibration functions in low order polyno-
mial form, even short CG path traversals results in very high-degree polynomials
quickly. For example, consider the following CF:

Fi,j(x) = ai,j · x + bi,j (3)
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Traversing a path from nodes s1 to s2 to s3 we have:

F2,3(F1,2(x)) = a2,3 · (a1,2 · x + b1,2) + b2,3 (4)
= a2,3 · a1,2 · x + a2,3 · b1,2 + b2,3 (5)

which is quadratic in terms of the coefficients ai,j and bi,j . However, we make
two observations:

1) Since calibration relationships are inherently derived using local informa-
tion, we should focus more on achieving consistency at a local level, i.e. consider
paths in the CG of relatively short lengths.

2) Since each path in the CG is comprised of traversing CFs with different
confidence levels, we should expect higher consistency levels from higher
confidence traversals.

Definition: The calibration-matrix consistency objective function CMCOF
for a calibration matrix F, denoted as Γ (F), is a real-valued function such that
if α1 = Γ (F1) and α2 = Γ (F2), then F1 is more consistent than F2 if and only
if α1 > α2.

The exact choice of the appropriate CMCOF depends in large part on the
nature and types of errors of the sensors, the environment, and also on how the
sensor results will be used. We have relied on the standard L1, L2, and L∞ norms
of the discrepancies resulting from different paths in the CG as candidates for
experimentation. However, the exact choice of a CMCOF function will depend
on the application at hand, as well as analysis of experimental data from sensors
under real-life conditions. The data from our experiments which have been of
relatively small size with a small number of nodes, have not provided convincing
indications for us regarding which function performs better. In general, in a
laboratory setting, creating experiments which can truly capture the full effects
of the real errors on sensors is in itself a difficult undertaking.

4.4 Consistency Optimization Algorithm

Solving the non-linear programming problem which results by trying to maxi-
mize a general CMCOF, directly, under the constraints of given pairwise relation
functions is computationally intractable. In the next subsection we present our
heuristic-based algorithm that attempts to improve the consistency of the cal-
ibration functions on a local scale, subject to the computational and storage
limitations of typical sensor nodes. In addition, in order to be practical, our
goal has been to create an algorithm which lends itself well to localized and
distributed implementation in sensor networks.

The algorithm generates a set of data-point values for each sensor based on
the derived calibration functions in phase 1. Each value is obtained by picking
a starting value, and calculating the weighted averages of the result produced
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by traversing different paths in the CG. The weights correspond to combined
confidence levels of each traversal and is obtained by multiplying the confidence
values along each segment of a path. Thus, higher confidence traversals have a
higher weight in the averaging process. The resulting data-points are used to
derive a new pair-wise calibration matrix.

Enumerate calibration paths P given the CM F
Step 1: Pick a random starting value x

For every node si ∈ S, s′
i = 0 and countsi = 0

For every path pi ∈ P {
sprev = first node in pi

CurrentV alue = x, α = 1
While cycle not done {

scurr = next node in pi

CurrentV alue = Fsprev,scurr (CurrentV alue)
α = α x the confidence of Fsprev,scurr

s′
curr = s′

curr + α · CurrentV alue
countscurr + +
sprev = scurr

}
}
For every node si ∈ S, s′

i = s′
i/countsi

Repeat step 1 n times to get n "data points" for each sensor
Step 2: Compute new CM F′ using the data-points

Fig. 9. Pseudo-code for localized calibration matrix consistency optimiztion

The algorithm is presented as pseudo-code in figure 9. The initial part of the
algorithm enumerates the calibration paths which will be used in the rest of the
algorithm. A user specified parameter is used to indicate the maximum length of
paths which we consider. We enumerate the paths by exhaustively searching the
CG graph using breadth-first-search, starting from each node. We discard paths
whose confidence levels are below a user-specified threshold. Note that due to the
sparsity of the F matrix, and these threshold values, the number of paths that
are enumerated can be kept to manageable levels (dictated by available memory,
speed of processing, and allotted runtime), given the strict resource constraints
of the sensor nodes.

After the data points (n) have been generated by the averaging process, the
calibration matrix F is recalculated by fitting pairwise relationship functions
based on the new data points, similar to the corresponding step in phase 1.
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5 Experiments

We ran our algorithms on temperature data collected using a set of uncali-
brated sensors. Because an important contributor to sensor error may be the
differences in electronics supporting the sensing components, we used a COTS
wireless sensor node system as our experimental uncalibrated sensor node. Co-
located calibrated sensor components directly wired to a data aquisition system
were used to collect ground truth data. The experimental setup and results are
described below.

5.1 Experimental Setup

We chose to use real wireless sensor nodes (MICA motes [5]) to collect the raw
data from uncalibrated sensors. This decision is motivated by our plans to run
distributed versions of our algorithms on these nodes in future deployments. The
heart of the mote is an Atmel [6] ATMEGA103L micro-controller. This chip has
a builtin analog to digital converter and can be connected to a resistive sensor
through a voltage divider. We have used a YSI44006 [7] precision thermistor to
perform our measurements. This is a very stable sensor, but it is not factory
calibrated. The observed calibration error was as high as 10%. The ATMEGA
103L is also equipped with 4KB of EEPROM, which we used to store data
collected during the experiments.

In order to verify the quality of the calibration algorithms, we collected the
ground truth measurements using an industrial quality data acquisition sys-
tem(DAQ) from National Instruments [8]. We used the SCXI-1001 chassis with
SCXI-1102 module for analog input. Type J thermocouples were used as tem-
perature sensors.

Since the pair-wise algorithm (sect. 4.2) uses temporal correlation of the
sensed data, we had to synchronize all sampling. In order to synchronize motes
among themselves, we implemented the Reference Broadcast Synchronization
algorithm [9]. We also implemented time routing to make sampling requests
more robust to packet loss and enable synchronized sampling across multiple
broadcast domains. We synchronized mote sampling with the DAQ by using one
of the DAQ’s input channels to trigger the sampling. This channel was controlled
by flipping a GPIO pin on the mote.

The experiment was conducted on a flat surface of a table indoors. Separation
between the mote’s thermistor and the DAQ’s ground truth sensor was less then
5mm for all sensor nodes. 9 sensor nodes were placed on the flat surface in a 3×3
square grid. Each square of this grid had dimensions of 5cm×5cm. The ambient
temperature in the lab during the experiment was approximately 26◦ Celsius.
The sampling rate was set to 2 samples/sec.

We used a commercial hand-held hair dryer as a heat source. This heat source
was positioned 10-20cm above the surface of the table. During the experiment
the nozzle of the hair dryer was directed towards the sensors. In order to create
temperature variations we moved the heat source over the sensor grid in a ran-
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dom fashion at a velocity no greater than 1cm/sec. We limited the velocity of
heat source to avoid undersampling.

5.2 Experimental Results

After collecting the data as described above, we analyzed it in the following way.
We derived the relationships between all uncalibrated sensor using the pairwise
algorithm described in Sect. 4.2. We also mapped each uncalibrated sensor onto
its corresponding ground truth sensor6. In order to verify the quality of the
calibration relationships we calculated the difference between a value derived
though direct translation and a value derived through the ground truth.

The result of the above procedure is shown in Fig. 10. The vertical axis corre-
sponds to percentage of the conversions. The horizontal axis corresponds to the
difference between a value derived directly through the calibration relationship
and a value derived through the ground truth sensor. In our experiment 0 80%
of the translations were off by less than 5◦C.
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Fig. 10. Calibration error CDFs for two experiments. Y -axis is a fraction(percentage)
of inter-sensor translations. X-axis is a error in the translation in degrees C.

6 For the purposes for this study we neglected the difference among the calibrated
sensors since we measured it previously to be less than 1.0◦C.
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5.3 Discussion and Future Work

While this scheme requires significant development and study before it will be-
come deployable in the field, the results are promising. The distribution of cali-
bration error is such that in 70% of the cases we were able to derive calibration
relationships for the sensors with less 5◦C. It is important to note that our
algorithm does not make any assumptions about initial sensor calibration.

However, more than 10% of all translations were greater than 10◦C. We have
identified several potential sources of error, each of which will be investigated in
future work:

– A possible reason for these errors is undersampling of the phenomenon. The
velocity of the heat source may have been too high at times resulting in
undersampling of the signal and associated aliasing. This, in turn, would
have resulted in additional, possibly correlated, noise in the scatter diagram.

– Another source of error may come from our inability to determine the correct
ground truth value. In particular, type J thermocouples have much higher
mass than precision thermistors; therefore, thermocouples have slower re-
sponse to changes in temperature. This may have invalidated ground truth
data collected during the periods of high variability of the phenomenon.

As mentioned above, a systematic method for deriving the correlation window
as well as choosing an appropriate size of the ”top” set in the correlation process
are subjects of future research. In addition, our future work also aims to address
the applicability of these techniques to higher frequency phenomena such as light,
acoustic, and seismic, where our assumption about neighboring sensors sensing
the same phenomena and no angle-dependent gains may not hold. In such cases,
we believe insights about the nature of the phenomena, the environment, and
sensor response characteristics will help in building the appropriate calibration
models.

Development of evaluation metrics for calibration quality is another impor-
tant issue. Different applications may have different requirements. For example,
an isotherm finding application may not be concerned with the RMS calibra-
tion error. For this application one can define a utility function in terms of the
overlap between the isotherm based on the ground truth data and a measured
isotherm. We are currently developing this and other methods for calibration
quality evaluation.

6 Conclusions

We presented a method that can be used to address the difficult problem of
sensor calibration in large-scale autonomous sensor networks. The scheme relies
on redundancy in senor measurements due to overdeployment, and assumptions
about the nature of the phenomena being sensed, to derive functions relating
the output discrepancies (biases) of neighboring sensors. Due to inaccuracies and
processing based on purely local information, the pairwise relationship functions
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will be inconsistent in the network. In the second phase, new pairwise rela-
tionships are derived by a heuristic method that is designed to increase the
consistency in the system. Early experimental results indicate that the pairwise
relative calibration scheme is promising. However, significant experimentation
with relatively larger scale sensor networks are required to determine the true
performance, especially for the second phase of the algorithm.
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Abstract. Ad-hoc localization in multihop setups is a vital component
of numerous sensor network applications. Although considerable effort
has been invested in the development of multihop localization protocols,
to the best of our knowledge the sensitivity of localization to its different
setup parameters (network density, ranging system measurement error
and beacon density) that are usually known prior to deployment has
not been systematically studied. In an effort to reveal the trends and to
gain better understanding of the error behavior in various deployment
patterns, in this paper we study the Cramer Rao Bound behavior in
carefully controlled scenarios. This analysis has a dual purpose. First, to
provide valuable design time suggestions by revealing the error trends
associated with deployment and second to provide a benchmark for the
performance evaluation of existing localization algorithms.

1 Introduction

Ad-hoc node localization is widely recognized to be an integral component for a
diverse set of applications in wireless sensor networks and ubiquitous computing.
Although several ad-hoc localization approaches have been recently proposed in
the literature [2,4,5,6,7], the trends in localization error behavior in multihop se-
tups have not been studied in a systematic manner. The majority of previously
proposed localization approaches evaluate the ‘goodness’ of their solution with
randomly generated scenarios and comparison of the computed results to ground
truth. While this is a good starting point, it does not provide an intimate un-
derstanding of the different error components that come into play in multi-hop
localization systems.

Ideally, node localization would result in error-free position estimates if sen-
sor measurements were to be perfect, and the algorithms were not to make any
approximations such as operating on partial information and ignoring finite-
precision arithmetic effects. In reality however, sensor measurements are noisy
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and produce noisy location estimates. Zooming into the origins of these errors
we observe that measurement errors consist two main components, intrinsic and
extrinsic. The intrinsic component is caused by imperfections in the sensor hard-
ware or software. The extrinsic component is more complex and it is attributed
to the physical effects on the measurement channel such as obstructions or fad-
ing that vary significantly according to the deployment environment. Although,
the first type of error can be easily characterized in a lab setup, it is important
to note that it also induces additional error that affect both the network setup
aspects as well the choice of localization algorithms used.

This paper investigates the different aspects of the error induced by the in-
trinsic measurement error component in multihop localization setups. To explore
the different aspects of error trends we study the Cramér-Rao Lower Bound
(CRLB) behavior of carefully controlled deployment scenarios under different
configuration parameters. In particular, we study the effect of network density,
pre-characterized measurement accuracy, beacon (or other landmark density)
and network size. The analysis presented here serves a dual purpose. First, to
provide algorithm-independent design time insight in to the error trends as-
sociated with the different network setup parameters. This can help optimize
the multihop localization performance prior to deployment. Second, the CRLB
results can be used as an evaluation benchmark for multihop localization algo-
rithms.

The remainder of this paper is organized as follows. The next section mo-
tivates our work by providing an overview of the sources of error in multihop
localization systems. Section 3 provides the formulation of CRLB for multihop
localization and explains the scenario structures used in this evaluation. Section
4 presents our simulation results. Section 5 discusses the evaluation of existing
localization algorithms and section 6 concludes the paper.

2 Sources of Error in Multihop Localization Systems

2.1 Multihop Localization Problem Statement

Assume we have a set of A sensors in a plane, each with unknown loca-
tion {ri = (xi, yi)}A

i=1. In addition, a set of B beacon with known locations
ri = (xi, yi)0i=−B+1 are placed in the plane. Each beacon node advertises its
location and this information is forwarded to the other nodes in the network.
Furthermore, each sensor node and beacon node emits some known signals that
allow neighboring nodes to estimate their distance from the emitting node.

The distance measurements contain measurement error. We denote the error
as eij , where

d̂ij = dij + eij (1)

dij = ‖ri − rj‖ =
√

(xi − xj)2 + (yi − yj)2 (2)

and where dij is the true distance between nodes i and j.
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In this paper we assume the measurement errors are independent Gaussian
random variables with zero mean and known variance σ2. Although this White-
Gaussian measurement error does not capture all practical cases, it is a good
starting point for exposing some of the error trends in multihop networks. More
general cases are considered in [9]. We denote the availability of a measurement
using the indicator function Iij where Iij = 1 if node j receives a calibration
signal from node i, and Iij = 0 otherwise.

The general localization problem statement is as follows: Given noisy mea-
surements of d̂ij and known locations ri for i = −B + 1, . . . , 0, estimate the
locations r̂i for i = 1, . . . , A.

2.2 A Classification of Error Components

As a first step in understanding the different sources of errors in multihop local-
ization systems we categorize them in three broad classes setup error, channel
error and algorithmic error.

Setup error is induced by intrinsic measurement error and it is reflected in
the network configuration parameters such as network density, concentration of
beacons (or other landmarks), network size and measurement error characteris-
tics known prior to deployment. For the purposes of our discussion, we assume
that intrinsic measurement error can be characterized in a lab setup to provide
an indication of the measurement accuracy of a particular ranging technology.
Table 1 lists the measurement accuracies of four different ranging systems, an
ultrasonic ranging system used in the AHLoS project [6], an ultra wide band
(UWB) system [3], and RF Time-of-Flight system from Bluesoft [1] and a SICK
laser range finder [10].

Table 1. Accuracy of different measurement technologies

Technology System Measurement Accuracy Range
Ultrasound AHLoS 2cm 3m

Ultra Wide Band PAL UWB 1.5m N/A
RF Time of Flight Bluesoft 0.5 m 100m

Laser Time of Flight Laser range finder 1cm 75m

Channel error is a result of the extrinsic measurement error and represents
the physical channel effects on sensor measurements. Multipath and shadowing,
multiple access interference, the presence of obstructions that results in unpre-
dictable non-line of sight components, and fluctuations in the signal propagation
speeds are just a few of these effects that can introduce error into the computa-
tion of locations. The magnitude of these effects on the distance measurement
process is typically specific to the particular measurement technology and the
environment in which they operate; hence different considerations should be ap-
plied for each technology.
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Finally, the multihop nature of the problem and the different operational
requirements introduce another level of complexity and subsequently more er-
ror. Many settings that require the random deployment of low cost resource
constrained sensor nodes, call for fully distributed operation that has limited
power consumption overhead. Such requirements may lead in approximate lo-
calization algorithms that have some additional error associated with them. The
distributed computation model of collaborative multilateration described in [7]
is an example of such an algorithm. In this case, the proposed fully distributed
algorithm is an approximation of a centralized algorithm that conserves com-
putation and communication energy. This design choice however introduces a
small, yet tolerable error. We refer to this error as algorithmic error.

Although the goal of our research is to explore all aspects of error by building
an operational ad-hoc localization system1, in this paper we focus on setup er-
ror. The analysis presented here examines the setup error behavior inside specific
segments within a sensor network. These segments are comprised of a small num-
ber of beacon nodes surrounding a large number of sensor nodes with unknown
locations as shown in figure 1. These sensor nodes are expected to estimate their
locations by combining their inter-node distance measurements and beacon loca-
tions. We evaluate the error trends in such setups using the Cramér-Rao Bound
(CRB).

Beacon

Unkown Location

Randomly Deployed Sensor Network

Fig. 1. Typical in network localization region

1 We refer the reader to our project website http://nesl.ee.ucla.edu/projects/ahlos
for the details specific to our implementation including all released hardware and
software
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3 Localization Bounds in a Multihop Setup

3.1 The Cramér-Rao Bound

The accuracy for mean square location estimate can be evaluated using Cramér
Rao bound (CRB) [9]. The CRB is a classical result from statistics that gives a
lower bound on the error covariance matrix for an unbiased estimate of parameter
θ (see, eg, [11]). The lower bound is given in terms of Fisher Information Matrix
J(θ). Let θ̂ be any unbiased estimate of parameter θ based on observation vector
X having a pdf of fX(x). The error covariance matrix is defined as

C = E{(θ̂ − θ)(θ̂ − θ)T } (3)

This error covariance matrix is bounded below by the CR bound, which is given
by

CRB = [J(θ)]−1 (4)

where the matrix J(θ) has elements given by

[J(θ)]mn = E

{[
∂ ln(fX(X))

∂θm

] [
∂ ln(fX(X))

∂θn

]}
(5)

The matrix J(θ) is called the Fisher Information Matrix (FIM).

3.2 Obtaining the CRB for Multihop Topologies

In the multihop problem, the parameter vector θ of interest is the 2A × 1 vector

θ = [x1, y1, x2, y2, . . . , xA, yA]T (6)

The measurement vector X is a vector formed by stacking the distance mea-
surements d̂ij . Since it is assumed that the measurement is white Gaussian, the
measurement pdf is the vector Gaussian pdf

fX(x; θ) = N (µ(θ), Σ) =
1

(2π)2A|Σ| 1
2

exp
{

−1
2
[X − µ(θ)]T Σ−1[X − µ(θ)]

}

(7)
where the mean vector µ(θ) is a vector of true distances whose elements are
given by equation 2. The covariance matrix in equation 7 is given by

Σ = σ2I (8)

where I is the 2A × 2A identity matrix and where σ2 is the variance of each
measurement error eij in 1. Note that for this application the pdf depends on θ
only through its mean value.

The vector X contains measurements of distances d̂ij stacked in some order,
and µ(θ) is a vector of dij distances stacked in the same order. Let M denote
the total number of d̂ij measurements.
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The CRB can be computed from the Fisher Information Matrix (FIM) of θ
from equation 5. The Fisher Information Matrix is given by

Jθ = E
{

[∇θ ln fX(X; θ)] [∇θ ln fX(X; θ)]T
}

The partial derivatives are readily computed from equations (2), (6), and (7);
we find that

Jθ =
1
σ2 [G′(θ)]T [G′(θ)] (9)

where G′(θ) is the M × 2A matrix whose mnth element is ∂µm(θ)/∂θn. Each
element of G′(θ) is readily computed from equation 2. Let the mth element of
µ(θ) be dij for some corresponding values of i and j, and note that θn is either
xi′ or yi′ for some corresponding i′. Then from equation 2,

G′(θ)mn =





0 if i′ �= i and i′ �= j
xi−xj

dij
if θn = xi

xj−xi

dij
if θn = xj

yi−yj

dij
if θn = yi

yj−yi

dij
if θn = yj

(10)

The CRB is then given by the inverse of the FIM as in 4.

3.3 Scenario Setup

To evaluate the effects of density variation and measurement error on the overall
localization result, we generated a set of scenarios for which density and therefore
node connectivity can be controlled. For the purposes of our experiments we
define node density D to be the number of nodes per unit area. For N nodes
deployed on a circular area A, D = N

A . Given this we can control the radius L
of a circular field to be

L =

√
A

π
=

√
N

Dπ
(11)

In a circular field, the probability of a node having d neighbors can be ex-
pressed as

P (d) =
(

N − 1
d

)
P d

R(1 − PR)N−d−1 (12)

where PR is the probability that a node is within transmission range R from
another node

PR =
πR2

A
=

DπR2

N
(13)

As N goes to infinity, the binomial distribution in equation 12 converges to
a Poisson distribution (equation 14) with λ = NPR

P (d) =
λd

d!
e−λ (14)
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Fig. 2. Probability of n or more neighbors at different densities

Also from this the probability of a node having n or more neighbors is

P (d ≥ n) = 1 −
n−1∑
i=0

P (i)

In our simulation experiments sensor nodes have a 10-meter range. For this
range the corresponding probabilities of having n or more neighbors and for
different network densities are shown in figure 2. The scenarios used in this
study are generated on a circular plane following the above analysis. To ensure
even distribution of nodes per unit area, we divide the circle into rings of width

1
π

√
D

. In each ring we generate node positions in polar coordinates by generating
a radius r and an angle θ for each node. The number of nodes in each ring is
proportional to the area of the circle covered by the ring.

As it will be shown in section 4.1, this scenario pattern generation method
was chosen to isolate error incurred from bad geometry setups. These effects
arise when angles between beacons (or other anchor nodes) as seen by the node
trying to determine their location are very small. This effect can be prevented
when nodes are deployed using the circular pattern described above.

4 Simulation Results

Using the CRLB bounds derived in the previous section, we try to answer some
fundamental questions related to setup error. This evaluation is performed by
computing the Cramer-Rao bound on a comprehensive set of approximately
2,000 scenarios generated using the algorithm described in the previous section.

4.1 How Does Deployment Geometry Affect the Solution?

Geometry setup alone can affect localization accuracy. This is a known effect fre-
quently referred to as geometric dilution of precision (GDOP). The same effects
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come into play in a multihop setup where neighboring nodes with unknown posi-
tions help other nodes to estimate their locations by acting as anchor points. In
both cases, the best estimates can be obtained when the nodes are placed within
the convex hull of the beacons. These effects are demonstrated on a small set
of simple scenarios. Figures 3 to 7 show the CLRB bound on a 10 × 10 grid. In
figure 3, four beacons are deployed on the vertices of a 8×8 square. The error is
maximum outside the square, and behind the beacons where the angles between
diagonally adjacent beacons is very small or zero. Figure 5 shows how the error
behaves if the beacon square is shrunk to 2 × 2. By scaling the beacon square
from 2 × 2 to 8 × 8 we note that the variance in the bounds at different points
on the grid changes significantly. This effect can be seen by comparing figures 3
and 5. This also explains or choice of scenario generation algorithms. By keeping
the beacons on the perimeter of the network we ensure that for the rest of our
experiments, we operate in the places where the variance of the bounds is more
uniform (i.e. similar to the flat region within the beacon square in figure 3.

Figures 6 and 7 show the error bounds when three beacons are used in a
triangular configuration. In the first case the beacons are found at locations
B1 = 3, 3, B2 = 3, 8, B3 = 5.5, 5.5. In the second case the beacons are placed
at locations B1 = 3, 3, B2 = 3, 4, B3 = 3.2, 5.5. These two cases show the effect
of geometry then the angles between each of the beacons as seen by a sensor
node change. The largest error occurs when the angles to each beacon are very
small. Furthermore, we note that the ratio between the incidence angles to each
of the beacons is also important. This is illustrated in figure 4, which follows the
8 × 8m beacon pattern as the one in figure 3 with the beacon node at position
(8, 8) removed.
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Fig. 3. Effects of geometry on 8 × 8m square beacon pattern
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Fig. 4. Effect of removing 1 beacon from the 8 × 8m square beacon pattern

4.2 How Does Network Density Affect Localization Accuracy?

Intuitively, one would expect that localization accuracy would improve as the
network density increases. This is because increasing network density, and sub-
sequently the number of neighbors for each node with unknown location adds
more constraints to the optimization problem. After some critical density, the
effect of density on location accuracy becomes less apparent. Our simulation
results in figure 8 verify this expectation. The critical point occurs in the case
where the majority of the nodes have at least 6 neighbors. For the particular
range used in our experiments, this takes place at a density of 0.35 nodes/m2.
This result is consistent for a test suite of more than 1,000 scenarios at different
ranging accuracies as shown in the figure.
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Fig. 7. Effects of geometry on a flat triangle

Furthermore, we note that the different CRLB plots for different values of
ranging error σ2 are scaled versions of one another. In figure 8 and in figures
from subsequent sections, our plots show the bounds at different ranging errors
to allow the user to associate these results to specific ranging technologies such
as the ones listed in table 1.

4.3 What Is the Best Solution One Can Achieve with a Given
Measurement Technology?

This question can be answered by observing the bounds on the same set of
scenarios as the previous subsection. In general based on our simulations we
not that if the network density is sufficient (6 or more neighbors per node), the
bound predicts that the localization error will be close to (slightly lower) than
the ranging error. The trend lines for different levels of ranging error are shown
in figure 9.
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4.4 How Does Error Behave as the Network Scales?

If the density is kept fixed, the error bound degrades very showly as the network
scales. A representative result from our experiments for different measurement
accuracies is shown in figure 10. In this experiment, the network size is varied
from 40 nodes to 200 nodes while the network density is kept constant at 6
neighbors per node, and 10% beacons.

4.5 What Is the Effect of Beacon Density on the Computed
Solution?

To test the effect of beacon density on the localization bounds we used a set of
scenarios with fixed density (0.45) and fixed number of nodes (100 nodes). The
percentage of beacons was varied from 4% to 20%. The results are (shown in
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Fig. 11. The effect of beacon density on localization, 100 nodes, 4-20% beacons

figure 11) indicate that increasing the number of beacon nodes does not dramat-
ically reduce the localization bound. This is more profound when the ranging
error is very small. As shown in the figure, at a range error variance of 0.02m, us-
ing 4 beacon nodes on a 100 node network performs just as well as 20 beacons.
Also for higher levels of ranging error, adding more beacons yields a modest
improvement.

5 A Case Study on Algorithmic Error: Collaborative
Multilateration

In this section we present a comparison of a specific multihop localization algo-
rithm, collaborative multilateration, and corresponding the Cramér-Rao bound.
The measurement error characteristics used for this evaluation are drawn from
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the lab characterization of the ultrasonic distance measurement system described
in [6].

5.1 Collaborative Multilateration Overview

Collaborative multilateration is a method for performing node localization in
multihop setups. The algorithm, which is described in detail in [7] relies on a
small set of beacon nodes and inter-node distance measurements to estimate node
locations in multihop setups while trying to prevent error accumulation inside
the network. Collaborative multilateration supports two computation models,
centralized and distributed. The centralized model estimates node locations at
a central point in the network that has a global vantage point. All the inter-
node distance measurements and beacons locations are used to set up a global
non-linear optimization problem, which is solved using least squares.

Even though the centralized computation model can yield high quality esti-
mates, it is not always suitable for sensor networks. First, it requires significant
computation, which would require more processing and memory resources than
what low cost sensor nodes can accommodate. Second, a centralized approach
exposes a single point of failure in the network. Third, a centralized approach
also requires some routing protocol support to propagate measurements and lo-
cations to the central computation point (and sometimes to also propagate the
position estimates back to the nodes).

To address the issues of the centralized computation model, the distributed
collaborative multilateration computation model was designed to operate in a
fully distributed fashion. In this model, each node in the network is responsible
for estimating its own location using distance measurements and location infor-
mation from its one-hop neighbors. To compute an estimate of its location each
node uses its neighbors as anchors. If these neighbors do not have a final estimate
of their location, then an intermediate rough estimate of the node locations is
used. All nodes compute an updated estimate of their locations and they pass
it to their neighbors, which in turn use this information to update their own
location estimate. The process continues until a certain tolerance is met. In this
computation model, the estimate updates at each node happen in a consistent
sequence that is repeated until the convergence criteria are met. This forms a
gradient with respect to the global topology constraints that allows the nodes
in the network to estimate their location with respect to the global constraint
while computing their estimate locally.

The distributed computation mode of collaborative multilateration is an ap-
proximation of the centralized model that is designed to meet some of the opera-
tional requirements of a practical setup. This design decision however introduces
some algorithmic error in the location estimates. In the next subsection we com-
pare the error from the two approaches to the bounds.
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5.2 Comparison to the Bounds

To evaluate the quality of location estimates of the two computation models
of collaborative multilateration, we compare the two computation models to
the CRLB bounds, using the same scenarios as the ones used in section 4.1.
For these scenarios the ranging error variance was set to 0.02m to match the
characteristics of the ultrasonic ranging system described in [6]. The results from
this comparison are shown in figure 12. The results shown here are averages from
10 different scenarios for each density.
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Fig. 12. Algorithmic error in centralized and distributed collaborative multilateration
computation models

From this comparison both computation models follow a similar trend to the
CRLB bound but we also note some differences, which we classify as part of the
algorithmic error. The critical density point has moved from 0.03 nodes/m2 to
0.035 nodes/m2. This corresponds to the point where the majority of nodes have
8 neighbors instead of 6 as predicted by the bound. We also note the discrepancy
in the results of the distributed computation model. Although in most cases, the
location estimates provided by distributed collaborative multilateration are al-
most identical to its centralized counterpart, for some cases the averages shown
in figure 12 suggest that the position estimates are sometimes significantly differ-
ent. A closer examination of the simulation data has shown that this discrepancy
arises from very few isolated scenarios where the distributed process does not
converge. Repeating the experiments has shown that this discrepancy can be
prevented if some consistency checks are added to detect divergence. The dis-
tributed computation can converge it a different starting node is selected. This
choice however would also incur increased algorithm complexity. At densities of
12 or more neighbors, the results of the two computation models are consistent.
We attribute this to the fact that increased densities offer significantly more
constraints that keep the process from diverging.
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6 Conclusions

In this paper we explored some of the trends in localization error for multihop lo-
calization scenarios. Our simulation experiments have shown how intrinsic error
from the sensor measurements incurs additional error with respect to different
network parameters. This contributes some insight on what the deployment pa-
rameters should be for a multihop localization process to be successful. The
beacon nodes should be deployed on the perimeter of the network to ensure that
localization algorithms operate in the region where variance on the bounds is
minimal. We also noted that there is a critical density after which localization
improvement is much more gradual. By comparing this to collaborative multi-
lateration we concluded that algorithmic error should also considered prior to
deployment and deployment decisions should be more conservative than the ones
predicted by the bounds. Furthermore, the study of the bounds has shown that
multiple localization approaches are scalable and the position of a large number
of nodes can be determined with a very small number of beacons that are found
multiple hops away. As part of our future work, we plan to investigate the effects
of the extrinsic measurement error on location estimates and how can this be
handled at the network level by utilizing network redundancy and the trends
exposed in this paper.
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Abstract. We demonstrate that it is possible to achieve accurate lo-
calization and tracking of a target in a randomly placed wireless sensor
network composed of inexpensive components of limited accuracy. The
crucial enabler for this is a reasonably accurate local coordinate system
aligned with the global coordinates. We present an algorithm for creat-
ing such a coordinate system without the use of global control, globally
accessible beacon signals, or accurate estimates of inter-sensor distances.
The coordinate system is robust and automatically adapts to the fail-
ure or addition of sensors. Extensive theoretical analysis and simulation
results are presented. Two key theoretical results are: there is a critical
minimum average neighborhood size of 15 for good accuracy and there
is a fundamental limit on the resolution of any coordinate system deter-
mined strictly from local communication. Our simulation results show
that we can achieve position accuracy to within 20% of the radio range
even when there is variation of up to 10% in the signal strength of the
radios. The algorithm improves with finer quantizations of inter-sensor
distance estimates: with 6 levels of quantization position errors better
than 10% are achieved. Finally we show how the algorithm gracefully
generalizes to target tracking tasks.

1 Introduction

Advances in technology have made it possible to build ad hoc sensor networks
using inexpensive nodes consisting of a low power processor, a modest amount
of memory, a wireless network transceiver and a sensor board; a typical node is
comparable in size to 2 AA batteries [5]. Many novel applications are emerging:
habitat monitoring, smart building reporting failures, target tracking, etc. In
these applications it is necessary to accurately orient the nodes with respect to
the global coordinate system. Ad hoc sensor networks present novel tradeoffs in
system design. On the one hand, the low cost of the nodes facilitates massive
scale and highly parallel computation. On the other hand, each node is likely
to have limited power, limited reliability, and only local communication with a
modest number of neighbors. The application context and massive scale make
it unrealistic to rely on careful placement or uniform arrangement of sensors.

F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 333–348, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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Rather than use globally accessible beacons or expensive GPS to localize each
sensor, we would like the sensors to be able to self-organize a coordinate system.

In this paper, we present an algorithm that exploits the characteristics of
ad hoc wireless sensor networks to discover position information even when the
elements have literally been sprinkled over the terrain. The algorithm exploits
two principles: (1) the communication hops between two sensors can give us an
easily obtainable and reasonably accurate distance estimate and (2) by using
imperfect distance estimates from many sources we can minimize position error.
Both of these steps can easily be computed locally by a sensor, without assuming
sophisticated radio capabilities. We can theoretically bound the error in the
distance estimates, allowing us to predict the localization accuracy. The resulting
coordinate system automatically adapts to failures and the addition of sensors.

There are many different localization systems that depend on having direct
distance estimates to globally accessible beacons such as the Global Positioning
System [6], indoor localization [1] [14], and cell phone location determination [3].
Recently there has been some research in localization in the context of wireless
sensor networks where globally accessible beacons are not available. Doherty
et al [4] present a technique based on constraint satisfaction using inter-sensor
distance estimates (and a percentage of known sensor positions). This method
critically depends on the availability of inter-sensor distance measurements and
requires expensive centralized computation. Savvides et al [15] describe a dis-
tributed localization algorithm that recursively infers the positions of sensors
with unknown position from the current set of sensors with known positions,
using inter-sensor distance estimates. However, there is no analysis of how the
error accumulates with each inference and what parameters affect the error. By
contrast, our algorithm does not rely on inter-sensor distance estimates, is fully
distributed, and we can theoretically characterize how the density of the sensors
affects the error. Our algorithm is based on a simpler method introduced by one
of the authors in [11] but also independently suggested in [9].

Section 2 presents the algorithm for organizing the global coordinate sys-
tem from local information. We present a theoretical analysis of the accuracy
of the coordinate system along with simulation results is presented in section 3.
Section 4 reports simulation results that generalize the basic algorithm to in-
clude more accurate distance information based on signal strength. Section 5
investigates the robustness of the algorithm to variations in communication ra-
dius as well as sensor failures. Section 6 introduces a variation of the coordinate
estimation algorithm that tracks moving targets.

2 Coordinate System Formation Algorithm

In this section we describe our algorithm for organizing a global coordinate sys-
tem from local information. Our model of an ad hoc sensor network is randomly
distributed sensors on a two dimensional plane. Sensors do not have global knowl-
edge of the topology or their physical location. Each sensor communicates with
physically nearby sensors within a fixed distance r, where r is much smaller than
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the dimensions of the plane. All sensors within the distance r of a sensor are
called its communication neighborhood. In the first pass we assume that all sen-
sors have the same communication radius and that signal strength is not used
to determine relative position of neighbors within a neighborhood. Later in sec-
tions 4 and 5 we relax both of these constraints. We also assume that some set
of sensors are “seed” sensors - they are identical to other sensors in capabilities,
except that they are preprogrammed with their global position. This may be
either through GPS or manual programming of position. The main point is for
the seeds to be similar in cost to the sensors, and for it to be easy to add and
discard seeds.

The algorithm is based on the fact that the position of a point on a two
dimensional plane can be uniquely described by its distance from at least three
non-collinear reference points. The basic algorithm consists of two parts: (1)
each seed produces a locally propagating gradient that allows other sensors to
estimate their distance from the seed and (2) each sensor uses a multilateration
procedure to combine the distance estimates from all the seeds to produce its
own position. The following subsections describe both parts of the algorithm in
more detail.

2.1 Gradient Algorithm

A seed sensor initiates a gradient by sending its neighbors a message with its
location and a count set to one. Each recipient remembers the value of the
count and forwards the message to its neighbors with the count incremented by
one. Hence a wave of messages propagates outwards from the seed. Each sensor
maintains the minimum counter value received and ignores messages containing
larger values, which prevents the wave from traveling backwards. If two sensors
can communicate with each other directly (i.e. without forwarding the message
through other sensors) then they are considered to be within one communication
hop of each other. The minimum hop count value, hi, that a sensor i maintains
will eventually be the length of the shortest path to the seed in communication
hops. Hence a gradient is essentially a breadth-first-search tree [8].

In our ad hoc sensor network, a communication hop has a maximum physical
distance of r associated with it. This implies that a sensor i is at most distance
hir from the seed. However as the average density of sensors increases, sensors
with the same hop count tend to form concentric circular rings, of width approx-
imately r, around the seed sensor. Figure 1 shows a gradient originating from a
seed with sensors colored based on their hop count. At these densities the hop
count gives an estimate of the straight line distance which is then improved by
sensors computing a local average of their neighbors’ hop counts.

2.2 Multilateration Algorithm

After receiving at least three gradient values, sensors combine the distances from
the seeds to estimate their position relative to the positions of the seed sensors.
In particular, each sensor estimates its coordinates by finding coordinates that
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Fig. 1. Gradients propagating from a seed. Each dot represents a sensor. Sensors are
colored based on their gradient value.

minimize the total squared error between calculated distances and estimated
distances. Sensor j’s calculated distance to seed i is:

dji =
√

(xi − xj)2 + (yi − yj)2 (1)

and sensor j’s total error is:

Ej =
n∑

i=1

(dji − d̂ji)2 (2)

where n is the number of seed sensors and d̂ji is the estimated distance computed
through gradient propagation. The coordinates that minimize least squared error
can be found iteratively using gradient descent. More precisely, the coordinate
estimate starts with the last estimate if it is available and otherwise with the
location of the seed with the minimum estimated distance. The coordinates are
then incrementally updated in proportion to the gradient of the total error with
respect to that coordinate. The partial derivatives are:

∂Ej

∂xj
=

n∑
i=1

(xj − xi)(1 − dji

d̂ji

) and
∂Ej

∂yj
=

n∑
i=1

(yj − yi)(1 − dji

d̂ji

) (3)

and incremental coordinate updates are:

∆xj = −α
∂Ej

∂xj
and ∆yj = −α

∂Ej

∂yj
(4)

where 0 < α << 1.

3 Analysis

In this section we analyze the accuracy of the coordinate system produced by
this algorithm. In particular we are interested in the effect of the random dis-
tribution of sensors and the average local neighborhood size on the accuracy of
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the position estimates. Accuracy is measured by computing the average absolute
error (distance) between the actual physical location and the logical position.
The error comes from two sources: (1) errors in the distance estimates produced
by gradients and (2) errors produced by combining the distance estimates using
multilateration.

For the purpose of analysis, the sensors are assumed to be distributed inde-
pendently and randomly on a unit square plane. This means that for each sensor
we choose a random x coordinate and random y coordinate on the unit square,
independently of all other sensors. The probability that there are k sensors in a
given area a can be described by a Poisson distribution [10].

Pr(k sensors in area a) =
(ρa)k

k!
e−ρa

From this formula, we can derive the expected number of sensors in area a
to be ρa. ρ is equal to N

S where N is the total number of sensors and S is the
total surface area. The value that we are interested in is the expected number of
sensors in a local neighborhood, which we will call nlocal. A sensor communicates
with all other sensors within the communication radius r. Thus the expected
local neighborhood nlocal is ρπr2. In reality the sensors are randomly distributed
but would probably not arbitrarily overlap, which reduces the variance in local
neighborhood sizes. This random distribution represents a worst case analysis
where sensors may overlap arbitrarily.

3.1 Error in Distance Estimate

The first source of error in distance estimate arises from the discrete distribu-
tion of sensors. A gradient computes the shortest communication path from the
source to any sensor. Let the gradient value of sensor i be hi, then the distance
between sensor i and the source is at least hi × r. In the ideal case the gradient
value is equal to the straight-line distance, which would imply that with each
communication hop one moved a distance r closer to the source. However given
any two sensors, there may not be enough intermediate nodes for the shortest
communication path to lie along the straight-line path between the source and
destination. In that case, the gradient value overestimates the actual distance
between the sensor and the source. Intuitively this is related to the density of
sensors within a local neighborhood.

We can characterize the effect of density on the error using results derived in
the context of random plane graphs and packet radio networks. In these models,
receivers are spatially distributed (usually randomly) and each receiver com-
municates via broadcast with all neighbors within a fixed radius. The goal is
usually to guarantee connectivity and optimize network throughput. Shivendra
et al showed that the theoretical expected local neighborhood nlocal to ensure
connectedness is between 2.195 and 10.526 and simulation experiments suggest
at least 5 [13]. Silvester and Kleinrock proved that nlocal = 6 produces optimal
network throughput for randomly distributed receivers [7]. In the process they
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Fig. 2. Theoretical and experimental values for the average distance covered in one
communication hop dhop, for different expected local neighborhoods nlocal. There is
significant improvement below nlocal = 15, after which increasing the neighborhood
size has diminishing returns.

derived a formula for how the expected distance covered in one communication
hop is affected by the parameters of the random distribution. The expected dis-
tance covered per communication hop, dhop, is the physical distance between a
pair of sensors divided by the expected number of hops in the shortest commu-
nication path. Kleinrock and Silvester [7] showed that dhop depends only on the
expected local neighborhood nlocal, not the total number of sensors.1

dhop = r(1 + e−nlocal −
∫ 1

−1
e− nlocal

π (arccos t−t
√

1−t2)dt) (5)

In Figure 2, we numerically compute and plot dhop for different nlocal using
this formula. From this graph we can see that when the expected number of
local neighbors is small, the distance covered per communication hop is small
and the percentage of disconnected sensors is large. But as the expected local
neighborhood increases, the probability of nodes along the straight-line path
increases rapidly until nlocal = 15, when further increases in local sensor density
has diminishing returns. Hence the analysis suggests nlocal of 15 to be a critical
threshold for achieving low errors in the distance estimates.
1 Since nlocal is proportional to N/S where N is the total number of sensors, it would

seem odd to say that the formula does not depend on the total number of sensors.
However if nlocal is kept constant and N is increased (which implies the total area
S must increase), then N has no effect. Hence it is appropriate to say that dhop

depends on only nlocal.
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In Figure 2, we also show the measured value of the average distance covered
per hop for different nlocal, averaged over several simulations of a gradient from
a random source. We also show the percentage of unconnected sensors. The
result confirms that the average distance covered per hop does vary as predicted
by Kleinrock and Silvester. The formula slightly under-predicts dhop due to an
approximation made in the proof when the source and destination are close. Also,
the simulation results suggest nlocal of at least 10 is necessary to significantly
reduce the probability of isolated sensors.

Improving the Distance Estimate through Smoothing. Even in the ideal
case of infinite density, the distance estimates produced are still integral multiples
of the communication radius r. This low resolution adds an average error of
approximately 0.5 r to the distance estimates. Therefore we expect the error to
asymptote around 0.5 r.

The gradient distance estimate is improved by using local averaging. Each
sensor collects its neighboring gradient values and computes an average of itself
and neighbor values.

si =

∑
j∈nbrs(i) hj + hi

|nbrs(i)| + 1
− 0.5 (6)

where hi is the gradient value at sensor i (in other words, the integral distance
estimate in units of r). nbrs(i) are all the sensors within the communication
radius r of sensor i.

Intuitively, sensors can determine if they are on the edge of the band by
noticing that a large fraction of their neighbors have an integral distance estimate
one lower or one higher than their own. The larger the fraction, the closer they
are to the edge. The formula is derived from the effect of smoothing a gradient
on a linear array of evenly spaced sensors where it produces the perfect distance
(formal derivation in [11]). However in our model the sensors are not evenly
spaced and there are variations in density even within a neighborhood. The
variations in density are the main source of error in the smoothing process.

Simulation Results on Distance Error. Figure 3 shows results from sim-
ulation experiments that calculate the average absolute error in the integral
distance estimates for different values of nlocal. To vary nlocal, the total number
of sensors N is changed while keeping S and r constant. This keeps the physical
diameter of the network (in units of r) constant across all simulations, so that
all experiments are equally affected by any errors correlated with distance. In
each simulation a gradient is produced by a randomly chosen sensor in the lower
left corner. The data point for each value of nlocal is averaged over 10 simula-
tions. The absolute error for a sensor i is computed as errori = hidhop − di,
where hi is the gradient value, di is the Euclidean distance between sensor i and
the source, and dhop is the expected distance covered per hop calculated using
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Fig. 3. Average error in gradient distance estimates for different nlocal. Significant
improvements are seen in the integral distance estimates for nlocal < 15. Beyond 15
there is improvement when the distance estimates are smoothed.

formula 5. This takes into account the fact that dhop represents the expected
distance traveled in one hop for a given sensor density.

The results confirm our earlier analysis. As the value of nlocal increases the
accuracy of the distance estimate improves, with both the average and standard
deviations in error decreasing dramatically. However past nlocal = 15 the error
before smoothing asymptotes at 0.4r due to the limited resolution. Further anal-
ysis of these simulations shows that the error does not increase significantly with
distance from the source because the majority of the per hop error is removed
by using Kleinrock and Silvester’s formula (5). The error is also not correlated
with orientation about the source which is an interesting side-effect of choos-
ing a random distribution versus a rectangular or hexagonal grid where there is
anisotropy.

For each of the experiments done for integral gradient values, we also cal-
culated the error in the smoothed gradient value for each sensor. The average
error results are also plotted in the same figure. The simulation experiments
show that for nlocal > 15 smoothing significantly reduces the average error in
the gradient value. Before that the error is dominated by the integral distance
error. At nlocal = 40 the average error is as low as 0.2 r. However the error is
never reduced to zero due to the uneven distribution of sensors.

3.2 Accuracy of Multilateration

The distance estimates from each of the seeds has a small expected error. We
combine these distance estimates by minimizing the squared error from each
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Fig. 4. Error in position relative to two seeds can be approximated as a parallelogram.
The area of this parallelogram depends on the angle θ. When θ is 90 degrees the error
is minimized, however in certain regions θ is very small resulting in very large error.

of the seeds using a multilateration formula. Multilateration is a well-studied
technique that computes the maximum likelihood position estimation. We use
gradient descent to compute the multilateration incrementally.

The seed placement has a significant effect on the amount of error in the po-
sition of a sensor. The error in the distance estimate from a single seed is radially
symmetric. However, when the distances from multiple seeds are combined, the
error varies depending on the position of the sensor relative to the seeds. In Fig-
ure 4 the concentric bands around each seed represents the uncertainty of the
distance estimate from that seed; the width of the band is the expected error in
the distance estimate. The intersection region of the two bands represents the
region within which a sensor ”may” exist — the larger the region, the larger
the uncertainty in the position of the sensor. Hence the error in position of a
sensor depends not only on the error in the distance estimates, but also in the
position of the sensor relative to the two sources. Let ε be the expected error
in the distance estimates from a seed, and θ be the angle � ASB. The overlap
region between two bands can be approximated as a parallelogram.
Theorem 1: The expected error in the position of a sensor S relative to two
point sources A and B is determined by the area of the parallelogram with per-
pendiculars of length 2ε and internal angle θ. The area is (2ε)2

sin θ .
The area of the parallelogram is minimized when θ is 90 degrees (square)

and when θ is very large or very small the bands appear to be parallel to each
other resulting in very large overlaps and hence large uncertainty.

As we add more seeds, the areas of uncertainty will decrease because there
will be more bands intersecting. If placed correctly the intersecting regions can
be kept small in all regions. This analysis suggests first placing seeds along the
perimeter to avoid the large overlaps regions behind seeds. However if seeds are
inexpensive then another possibility is simply to place them randomly.
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Fig. 5. Graph of position error versus number of seeds for two different seed placement
strategies. Position error for smoothed hop count and 6 level radio strength distance
estimates are shown.

Simulation results on Position Error. The simulations presented here are
motivated by an actual scenario of 200 sensors distributed randomly over a
square region 6r×6r. This gives a local neighborhood size of roughly 20, which we
know from our previous analysis to give good distance estimates. We investigate
two seed placement methods: (1) all seeds are randomly placed and (2) four are
hand placed at the corners and the rest are randomly placed. Figure 5 shows the
location estimation accuracy averaged over 100 runs with increasing numbers of
seeds.

We can see that location accuracy is reasonably high even in the worst case
scenario with all randomly placed seeds. Accuracy improves with the hand place-
ment of a few. However, the accuracy of both strategies converge as the number
of seeds increases and the improvement levels off at about ten seeds. These re-
sults suggest that reasonable accuracy can be achieved by carefully placing a
small number of seeds when possible or using a large number of seeds when you
are unable to control seed placement.

3.3 Theoretical Limit on Resolution

There is, in fact, a fundamental limit to the accuracy of any coordinate system
developed strictly from the topology of the sensor graph. We can think of each
sensor as a node in a graph, such that two nodes are connected by an edge if
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A(z)

z

r

Fig. 6. A sensor can move a distance z without changing the connectivity if there are
no sensors in the shaded area.

and only if the sensors can communicate in one hop, i.e. they are less than r
distance apart. It is possible to physically move a sensor a non-zero distance
without changing the set of sensors it communicates with, and thus without
changing any position estimate that is based strictly on communication. The
old and new locations of the sensor are indistinguishable from the point of view
of the gradient. The average distance a sensor can move without changing the
connectivity of the sensor graph gives a lower bound on the expected resolution
achievable.

Theorem 2: The expected distance a sensor can move without changing the
connectivity of the sensor graph on an amorphous computer is ( π

4nlocal
)r.

Proof: Let Z be a continuous random variable representing the maximum dis-
tance a sensor p can be moved without changing the neighborhood. The proba-
bility that Z is less than some real value z is:

F (z) = Pr(Z ≤ z) = 1 − e−ρA(z)

which is the probability that there is at least one sensor in the shaded area A(z)
(Figure 6). The area A(z) can be approximated as 4rz when z is small compared
to r and we expect z to be small for reasonable densities of sensors. The expected
value of Z is:

E(Z) =
∫ ∞

0
zḞ (z)dz (7)

=
∫ ∞

0
ρ4rze−ρ4rzdz (8)

= −ze−ρ4rz

∣∣∣∣
∞
0 + (− 1

ρ4r
)e−ρ4rz

∣∣∣∣
∞
0 (9)

= −(z +
1

ρ4r
)e−ρ4rz

∣∣∣∣
∞
0 (10)

= r(
π

4nlocal
) q.e.d (11)

where Equation 9 is by the product rule.
Hence, we do not expect to achieve resolutions smaller than π

4nlocal
of the local

communication radius, r, on an amorphous computer. Whether such a resolution
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Fig. 7. Graph of the effect of 0-10% communication radius variation and different levels
of signal strength quantization on location estimation accuracy.

is achievable is a different question. For nlocal=15. this implies a resolution limit
of .05r, which is far below that achieved by the gradients.

4 Improving Estimates Using Inter-sensor Distance
Measurements

One virtue of our algorithm is that it can function in the absence of direct dis-
tance measurements. At the same time, our algorithm can be easily generalized
to incorporate direct distance measurements if available. For example, suppose
that sensors are able to estimate the distance of neighboring sensors through
radio strength, then these estimates can easily be used in place of r, or one hop.

In the signal strength simulation experiments, we show the error in position
estimates as we allow multiple levels of quantization. What that means is, for a
sensor i with 2 levels of quantization, it can tell whether its neighbor is within
1 mini hop or two mini hops. Figure 5 shows the position error for the case of
six radio levels in the randomly placed and 4 seeds hand placed seed placement
regimes for increasing numbers of seeds. First, we can see that six levels of quan-
tization information gives much improved accuracy over smoothed hop count
information. Second, like for hop count, the accuracy improves with increased
numbers of seeds tapering off at 10 seeds.

Figure 7 shows the effect of different amounts of signal strength information
on location estimation accuracy for eight seeds. We see that position accuracy
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increases with increased levels of quantization. Beyond 7 levels there are di-
minishing returns. Our original position estimates based on hop count with no
quantization yield a position accuracy between 2 and 3 levels of quantizations.
This is because we us local averaging to improve the distance estimates. It un-
clear how smoothing could be used in conjunction with quantization which we
plan to investigate in the future.

We get very high position accuracy with six levels of quantization: error less
than 10%. At this level of accuracy with a radius of 20 feet, we could discern
locations within 2 feet, which is comparable to commercial GPS. Furthermore,
we have found experimentally that this is an achievable level of quantization on
the Berkeley mica mote [5] hardware.

5 Robustness

Up to this point we have assumed that each of our sensors had the same commu-
nication radius r. In a real-world application we would expect to see variations
in radio range from sensor to sensor. Our algorithm can also tolerate variations
in communication radius. In Figure 7 we show the error in distance estimate
and position estimates when we allow up to 10% random variation in the com-
munication radius. As we can see, the position estimates are reasonably robust
to variation in sensor communication radius, tolerating up to 10% variation in
range with little degradation.

The algorithm can also adapt automatically to the death and addition of sen-
sors and seeds. If sensors are added, they can locally query neighbors for gradient
values and broadcast their value. If this causes any of their neighbors distances
estimates to change then those changes will ripple through the network. As a
sensor receives new gradient values it can just factor that into the multilater-
ation process. New seeds simply initiate gradients and any sensor that hears a
new seed can then incorporate that seed value into the multilateration process.
Prior location estimates will serve as good initial locations for multilateration
ensuring fast convergence.

If we assume that sensors randomly fail, then the accuracy is not affected
unless the average density falls below 15. If sensors in a region die then this
affects the distance estimates because the information will travel around the
hole and not represent the true distance. However regional failures can be easily
corrected by randomly sprinkling new sensors in that area.

The effect of seed failure depends on their placement strategy. Random place-
ment would be more statistically robust in the face of seed failure. Other place-
ment strategies would be more fragile. In these regimes, sensors have to recognize
that seeds have failed to then exclude them from multilateration 2.

Our algorithm can tolerate a certain amount of random radio failure, because
there are multiple redundant paths from seeds to sensors and therefore distance
estimates are repeated many times. In general, the error caused by occasional
2 perhaps using active monitoring of neighbors’ aliveness to produce active gradients.
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message loss is unlikely to be anywhere close to the error caused by the random
distribution of sensors.

6 Application to Tracking

Once a coordinate system is established it is then possible to provide a variety
of location based services, two of which we briefly describe here. The first is the
position service, in which a new (and possibly mobile) member of the ensemble
is informed of its own location. The second is tracking in which the ensemble
members collectively track the position of a mobile (and possibly uncooperative)
object based on sensor data.

The position service is a simple application of the multilateration framework.
When a sensor broadcasts a position service request, every element of the en-
semble within the radio range of the sender responds by sending back its own
computed location. The requester then captures the location of each replying
element and also estimates the distance to that element using radio strength.
Since the requester now knows the estimated position and distance to several
other elements in the ensemble, it can use multilateration to compute its own
position.

The tracking algorithm employs the multilateration framework in conjunc-
tion with ad hoc group formation. We describe an algorithm capable of tracking
a single target. We assume that each element of the ensemble is equipped with a
sensor that can detect and estimate the distance to the target. Each sensor only
attends to targets that are no further away than half a radio range; as a result
all sensors that sense a target are within one radio range of one another and
may therefore communicate with each other using only local broadcast which we
use to mean that an element transmits a message over its radio, expecting it to
be heard by all elements within its radio range and no others.

The elements that can sense the target form an ad hoc tracking group; each
member of the group sends to the leader its own position and its estimate of the
distance between itself and the target. The group leader then employs multilater-
ation to calculate the estimated position of the target. As the target moves, each
group member sends updated estimates of distance to the group leader which
then re-estimates the position of the target (using the previous estimate as a
seed). The target will initially be roughly at the center of the tracking group,
surrounded by the group members. Group members drop out of the group when
they cease to be able to sense the target.

Forming the group: Group formation is based on the leader election al-
gorithm presented in [12]. This is a randomized greedy election algorithm that
establishes which sensors are follower members of the tracking group and which
unique sensor is the group leader. Initially, all sensors are neither members nor
leaders. When a sensor first senses the target it picks a random number (bounded
above by the neighborhood size) and begins counting down to 0. If the sensor
counts down to 0 without receiving a recruit message from another, it then
becomes the group leader and immediately locally broadcasts a recruit message
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containing its own identity. If, however, a sensor receives a recruit message before
it has counted down to zero, it becomes a follower group member.

Estimating Target Position: When recruited, a follower locally broadcasts
a joining group message containing its position and its estimate of the distance
to the target. Whenever a follower sensor senses a change in the distance to the
target it locally broadcasts a position update message. The leader captures these
distance estimates and periodically uses multilateration to estimate the position
of the target.

When a follower sensor notices that it can no longer sense the target it
locally broadcasts a member bailout message. The group leader then removes
this element from the vector of estimated positions and distances. When the
group leader notices that it can no longer sense the target, it locally broadcasts
a leader bailout message. This message contains the identify of that member of
the group that the leader estimates is closest to the target. Group members
respond to receipt of a leader bailout message in two ways: If the group member
is the element named in the bailout message, it immediately becomes the new
group leader by locally broadcasts a recruit message. Every other group member,
acts as if it had just sensed the target for the first time and begins the countdown
of the leader election algorithm. Normally, the follower sensors are recruited by
the new leader and the group is reconstituted. However, even if the designated
new leader for some reason fails to assume group leadership (for example, the
bailout message was garbled in transmission), one of the other sensors will claim
leadership and recruit the rest.

We have studied the tracking algorithm by simulating a moving target
traversing a path between a series of way points at constant speed. Preliminary
results show that the algorithm has positional accuracy comparable to that of
the multilateration method used to induce the coordinate system. It also main-
tains contact with the target quite well, losing the target for about 1% of the
cycles.

7 Conclusions and Future Work

In this paper, we present an algorithm to self-organize a global coordinate sys-
tem on an ad hoc wireless sensor network. Our algorithm relies on distributed
simple computation and local communication only, features that an ad hoc sen-
sor network can provide in abundance. At the same time it is able to achieve
very reasonable accuracy and the error is theoretically analyzable. The algorithm
gracefully adapts to take advantage of any improved sensor capabilities or avail-
ability of additional seeds. Given that so much can be achieved from so little, an
interesting question is whether more complicated computation is worth it. We
are in the process of realizing this algorithm on the Berkeley mote platform [5]
towards a implementation of tracking a rover in a field populated by sensors.
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Abstract. This paper evaluates the performance of INSENS, an INtru-
sion-tolerant routing protocol for wireless SEnsor Networks. Security in
sensor networks is important in battlefield monitoring and home security
applications to prevent intruders from eavesdropping, from tampering
with sensor data, and from launching denial-of-service (DOS) attacks
against the entire network. The resilience of INSENS’s multipath perfor-
mance against various forms of communication-based attacks by intrud-
ers is evaluated in simulation. Within the context of INSENS, the paper
evaluates implementations on the motes of the RC5 and AES encryp-
tion standards, an RC5-based scheme to generate message authentica-
tion codes (MACs), and an RC5-based generation of one-way sequence
numbers.

1 Introduction

Wireless sensor networks (WSNs) are rapidly emerging as an important new area
in the research community. Applications of WSNs are numerous and growing,
and range from indoor deployment scenarios in the home and office to outdoor
deployment scenarios in natural, military and embedded settings. For military
settings, dispersal of WSNs into an adversary’s territory enables the detection
and tracking of enemy soldiers and vehicles. For home/office environments, in-
door sensor networks offer the ability to monitor the health of the elderly and to
detect intruders via a wireless home security system. In each of these scenarios,
lives and livelihoods may depend on the timeliness and correctness of the sensor
data obtained from dispersed sensor nodes. As a result, such WSNs must be
secured to prevent an intruder from obstructing the delivery of correct sensor
data and from forging sensor data [1] [2] [3]. To address these issues, this paper
develops a secure routing system that is resilient to attempts to obstruct data
delivery, and in so doing also develops end-to-end data integrity checksums and
authentication schemes that can be used to detect tampering with sensor data.

The design and implementation of secure routing in WSNs must simultane-
ously address three difficult research challenges. First, wireless communication
among the sensor nodes increases the vulnerability of the network to eavesdrop-
ping, unauthorized access, spoofing, replay and denial-of-service(DOS) attacks.
Second, the sensor nodes themselves are highly resource-constrained in terms of
limited memory, CPU, communication bandwidth, and especially battery life.
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Fig. 1. Sample asymmetric WSN topology rooted at the base station. Triangle node
is a malicious node. Black nodes are its downstream nodes. Intrusion-tolerant routing
is assisted by multiple paths; downstream nodes can still communicate with the base
station.

These resource constraints limit the degree of encryption, decryption, and au-
thentication that can be implemented on individual sensor nodes, and call into
question the suitability of traditional security mechanisms such as compute-
intensive public-key cryptography. Third, WSNs face the added physical secu-
rity risk of being deployed in the field, so that individual sensor nodes can be
obtained and subject to attacks from a potentially well-equipped intruder in or-
der to compromise a single resource-poor node. Following a successful attack, a
compromised sensor node could then be used to instigate such malicious activi-
ties as advertising false routing information, possibly unbeknownst to the sensor
network, and launching DOS attacks from within the sensor network.

Given these threats and resource constraints, our approach for securing WSNs
concedes that a well-equipped intruder can compromise individual sensor nodes,
but that the overall design of our secure routing system should tolerate these
intrusions such that the network as a whole remains functioning. We assume that
the base station has considerably more resources to defend itself against attacks,
and therefore concentrate on securing the system against attacks on the weakest
links, namely the resource-poor sensor nodes. We have designed and implemented
an INtrusion-tolerant routing protocol for wireless SEnsor NetworkS(INSENS)
[14] that has the property that a single compromised node can only disrupt
a localized portion of the network, and cannot bring down the entire sensor
network.

The INSENS secure routing system adheres to the following design principles.
First, to prevent DOS-style flooding attacks, individual nodes are not allowed
to broadcast to the entire network. Only the base station shown in Figure 1 is
allowed to broadcast. The base station acts as a gateway to the wired world, e.g.
a satellite uplink connecting to terrestrial networks. The base station is loosely
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authenticated via a one-way sequence number, so that individual nodes cannot
arbitrarily spoof the base station and thereby flood the network. Sensor nodes are
restricted to only unicasting a packet, and then only to the base station, thereby
preventing DOS/DDOS broadcast attacks. Peer-to-peer sensor communication
is not directly supported, though tunneling through the base station permits in-
direct sensor-to-sensor communication. Second, to prevent advertisement of false
routing data, control routing information must be authenticated. A key conse-
quence of this approach is that the base station always receives knowledge of the
topology that is correct, though it may only represent a partial picture due to
malicious packet dropping. Third, to address resource constraints, 1) symmetric
key cryptography is chosen for confidentiality and authentication between the
base station and each resource-constrained sensor node, since it is considerably
less compute-intensive than public key cryptography, and 2) the resource-rich
base station is chosen as the central point for computation and dissemination of
the routing tables. Fourth, to address the notion of compromised nodes, redun-
dant multipath routing is built into INSENS to achieve secure routing, as shown
in Figure 1. The goal is to have disjoint paths so that even if an intruder takes
down a single node or path, secondary paths will exist to forward the packet to
the correct destination.

In the remainder of the paper, we provide an overview of the INSENS sys-
tem in Section 2, present simulation results in Section 3, an implementation of
INSENS in Section 4, and address related work in Section 5.

2 Protocol Description

In this section, we provide a brief overview of INSENS. For a more detailed
description, see [14]. INSENS is comprised of a route discovery phase and a
data forwarding phase. The route discovery phase ascertains the topology of the
sensor network and builds appropriate forwarding tables at various nodes. Route
discovery is subdivided into three rounds. In the first round, the base station
floods (limited flooding) a request message to all the reachable sensor nodes in the
network. In the second round, each sensor node send its neighborhood topology
information back to the base station using a feedback message. In the third
round, the base station authenticates the neighborhood information, constructs
a topological picture of the network, computes the forwarding tables for each
sensor node, and sends the tables to the respective nodes using a routing update
message. The data forwarding phase enables forwarding of data from each sensor
node to the base station, and vice versa. A symmetric communication channel
is assumed, i.e. if node a can hear a message from node b, then a can send a
message to b.

Each node has a shared symmetric key with base station. Every node also
possesses a globally known one-way function F and initial sequence number
K0. F and K0 are used together to loosely authenticate messages from the base
station, as explained next. All three pieces of information, namely F , K0, and the
shared symmetric key, are distributed in advance, i.e. they are preprogrammed
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into each sensor node before deployment. We envision that military applications
will for example permit secret keys to be preprogrammed into sensor nodes before
deployment.

2.1 Route Discovery: Route Request

The base station initiates the first round whenever it needs to construct the
forwarding tables of all sensor nodes. The base station broadcasts a request
message that is received by all of its neighbors. A request message broadcast
by a node x includes a path from the base station to x. When a node receives
a request message for the first time, it forwards (broadcasts) this message after
appending its identity in the path. It also records the identity of the sender
of this message in its neighbor set. When a node receives a duplicate request
message, the identity of the sender is added to its neighbor set, but the request
is not rebroadcast.

A malicious node in the network can attempt to launch several attacks in
this round. First, it can attempt to spoof the base station by sending a spurious
request message. Second, it can include a fake path in the request message it
forwards. Third, it may not forward a request message, or launch a DOS at-
tack by repeatedly sending several request messages. We use two mechanisms
to counter these attacks. Both of these mechanisms require sensor nodes to be
pre-configured with appropriate values.

First, the base station uses a one-way cryptographic hash function F to gen-
erate a sequence of numbers K0, K1, . . . , Kn, such that Ki = F (Ki+1), where
0 ≤ i < n. Initially, every node knows F and K0. In the first route discovery
phase, the base station includes K1 in the request message that it broadcasts. In
general, the base station uses Ki in the ith route discovery phase. Each node can
verify that the sequence number did indeed originate from the base station by
computing Ki = F (Ki+1). An attacker who compromised a sensor node would
be unable to guess the next one-way sequence number given the most recent
sequence number, i.e. given F , K0, and the most recent sequence Ki, the at-
tacker cannot invert F to generate the next sequence number Ki+1. As a result,
a compromised node cannot spoof the base station by generating new sequence
numbers. However, a compromised node could repeat the current sequence num-
ber in a request message to its downstream nodes, who would then believe that
the compromised node is the base station. The damage in this case is localized to
the compromised node, which was our design objective. The rest of the network
will receive the authentic base station’s route request first, and will therefore
ignore the compromised node’s route request. Our usage of one-way functions
leverages the approach taken by the µTESLA protocol [10], but differs in the
sense that the numbers in the one-way chain are sequence numbers rather than
symmetric keys.

The second mechanism that we use is a keyed MAC algorithm. Each sensor
node is configured with a separate secret key that is shared only with the base
station. When a node x receives a request message for the first time, it appends
its identity to the path list, and then generates a MAC of the complete new
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path with its key. This MAC is also appended to the request message, before the
modified request message is forwarded downstream. This MAC will eventually
be used by the base station to verify the integrity of the path contained in the
packet. Also, when a node is compromised, only one secret key is revealed, so an
attacker cannot compromised the entire network.

The overall effect of these security mechanisms is that a malicious node can
attack in the first round only by localized flooding, by not forwarding a request
message, and by sending fake path in the request which is later on detected
in the second round. The latter two attacks will result in some of the nodes
downstream from the malicious node not getting a request message or not being
able to forward their feedback message to the base station in the second round.

2.2 Route Discovery: Route Feedback

In the second round, each sensor node sends its local connectivity information (a
set of identities of its neighbor nodes as well as the path to itself from the base
station) back to the base station using a feedback message. After a node x has
forwarded its request message in round one, it waits for a certain timeout interval
before generating a feedback message. During this time interval, it listens to the
local broadcasts from neighboring nodes forwarding the same request message,
and stores the neighbor’s identity and the neighbor’s MAC embedded within the
request message. After the timeout, the sensor node will send its list of neighbors
(upstream, peer, and downstream) back to the base station, where each neighbor
is identified by the neighbor’s identity and the neighbor’s MAC. The sensor node
applies its keyed MAC to the topology data, i.e. the list of neighbors, to further
protect the integrity of the feedback message. The messages that reach the base
station are guaranteed after verification to be correct and secure from tampering.

Routing of the feedback message from a node x to the base station follows the
reverse path taken by the request message that initiated the feedback response.
To ensure that malicious nodes do not generate false paths while forwarding a
feedback message, a node places its parent identification information along with
its parent’s MAC, that it received in the first request message. Each node will
choose one legitimate upstream parent, forming a parental chain of nodes back
to the base station. A compromised node will at most be able to flood each of
its parents’ chains back to the base stations, but no other nodes. This localizes
the effect of an attack. To further restrict attacks, rate control is applied at each
node; regardless of the incoming traffic rate, the outgoing traffic rate of each
node is restricted to some maximum rate, thereby preventing flooding. Also,
each node encrypts appropriate information in the feedback message it sends to
provide confidentiality against eavesdropping by a malicious node.

The overall effect of these security mechanisms is that a malicious node is
limited in the damage it can inflict, whether attacking by DOS attack, by not
forwarding a feedback message or by modifying the neighborhood information
of nodes, which can be detected at the base station. These attacks will result
in some of the nodes down-stream from the malicious node not being able to
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provide their correct connectivity information to the base station. Though a ma-
licious node could launch a battery-drain attack by persistently sending spurious
feedback messages at the rate-controlled limit, such an attack would still affect
only a limited number of upstream nodes.

2.3 Route Discovery: Computing and Propagating Multipath
Routing Tables

After sending its request message in the first round, the base station waits for
a certain period of time to collect all the connectivity information received via
feedback messages. Each node returns an authenticated list of its neighboring
nodes. As a result, the base station is able to verify the neighbor information
and detect tampering with feedback messages. The base station constructs a
topology of the network from these authenticated feedback messages, though this
picture of the network may be incomplete due to dropped feedback messages.
From this connectivity information, the base station computes the forwarding
tables of each node in the network.

INSENS incorporates redundancy in routing by building multiple redundant
paths to bypass intruders while routing messages, as shown in Figure 1. These
paths are independent of one another in the sense that they share as few com-
mon nodes/links as possible; ideally, only the source and the destination nodes
are shared among paths. The presence of one or more intruders along some of
these paths can jeopardize the delivery of some of the copies of a message. How-
ever, as long as there is at least one path that is not affected by an intruder,
the destination will receive at least one copy of the message that has not been
tampered with.

While INSENS is largely agnostic to the particular criteria for choosing mul-
tiple paths, we chose the following multipath heuristic in order to proceed with
our implementation of INSENS. For a sensor node A, the first path from A to
the base station is chosen using Dijkstra’s shortest path algorithm. To determine
the second path, three sets of nodes, S1, S2, and S3 are first constructed. S1 is
the set of nodes belonging to the first path, S2 is the set of nodes belonging to S1
and any neighbor nodes of the nodes in S1, and S3 is the set of nodes belonging
S2 and any neighbor nodes of the nodes in S2. All three sets exclude A or the
base station. The second path is then computed as follows:

1. Remove all nodes in S3 from the network, and find the shortest path from
A to the base station. If such a path is found, terminate the computation.
The path found is the second path.

2. Otherwise, remove all nodes in S2 from the original network. Find the short-
est path from A to the base station. If such a path is found, terminate the
computation. The path found is the second path.

3. Remove all nodes in S1 from the original network. Find the shortest path
from A to the base station. If such a path is found, it is the second path.
Otherwise, there is no second path from A to the base station.
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Notice that depending on the network topology, it is possible that no second
path is found. In that case, the current implementation of INSENS maintains
only a single path. Finding a better algorithm to compute multiple paths in
INSENS is part of our future work.

After computing the redundant paths for each node, the base station com-
putes the forwarding tables of each node. These forwarding tables are propagated
to the respective nodes in a breadth-first manner. The base station first sends
the forwarding tables of all nodes that are its immediate neighbors. It then
sends the forwarding tables of nodes that are at a distance of two hops from it,
and so on. This mechanism cleverly uses the redundant routing mechanism just
built to distribute the forwarding tables. Standard security techniques such as
those proposed in [10] can be used to preserve the authentication, integrity, and
confidentiality of the forwarding tables.

2.4 Data Forwarding

A node maintains a forwarding table that has several entries, one for each route to
which the node belongs. Each entry is a 3-tuple: <destination, source, immediate
sender>. Destination is the node id of the destination node to which a data
packet is sent, source is the node id of the node that created this data packet,
and immediate sender is the node id of the node that just forwarded this packet.
For example, given a route from node S to D: S → a → b → c → D, the
forwarding table of node a will contain an entry < D, S, S >, forwarding table of
b will contain an entry < D, S, a >, and the forwarding table of c will contain an
entry < D, S, b >. With forwarding tables constructed in this way, forwarding
data packets is quite simple. On receiving a data packet, a node searches for a
matching entry <destination, source, immediate sender> in its forwarding table.
If it finds a match, it forwards (broadcasts) the data packet.

3 Simulation

We have simulated INSENS on nsclick [16], a network simulation tool that com-
bines the ns-2 network simulator with the Click Modular Router. We imple-
mented our own Click element to simulate the behavior of INSENS on sensor
nodes and the base station. Ns-2 was used to simulate the wireless network en-
vironment, including the MAC (Medium Access Control) protocol and the lower
layers of the wireless network, as well as the geographic distribution of nodes.

3.1 Malicious Attack during Data Forwarding

INSENS builds two paths to bypass malicious nodes. With two independent
routes available between every node and the base station, our protocol’s goal is to
route messages correctly in the presence of a single malicious node. Interestingly,
our protocol deals quite well with multiple malicious nodes as well. We have
performed a set of experiments to measure the number of nodes that can be
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blocked when a set of multiple nodes turn malicious and drop data packets.
Figure 2 shows the average number of nodes that can be blocked as a function
of the number of malicious nodes. For comparison, we have also calculated this
number when a single-path routing algorithm is used instead.

These results are based on a network of 100 nodes and 200 nodes randomly
distributed over a 1500×1500m2 space. The numbers reported in this figure are
averaged over 50 different combinations of nodes randomly selected to be mali-
cious. For example, for 10 malicious nodes, we measured the number of blocked
nodes for 50 different combinations selected randomly of 10 nodes turning ma-
licious. For each test, 20 random topologies were chosen.

Fig. 2. Multi-node attack on a sensor network that has secure single path and multipath
routing. Left graph shows 100 nodes, and right graph shows 200 nodes. X axis: #of
attacking nodes. Y axis: #of blocked nodes unable to send packets.

3.2 DOS Attacks

We have performed a set of experiments to analyze the effect of DOS attacks
that a malicious node may launch. The DOS attack we have simulated in these
experiments is comprised of repeatedly sending data packets to the base station
to block the wireless medium and not allow other nodes to send their data
packets. DOS attacks are difficult to address completely at the network level. In
our opinion, these attacks must be addressed at multiple levels. In our analysis,
we have assumed the following: (1) Sensor nodes use an appropriate rate-based
control mechanism while forwarding data packets. This implies that a malicious
node that repeatedly sends data packets will be able to block its neighbors, but
not other (upstream) nodes. (2) The base station has sufficiently large bandwidth
available so that a malicious sensor node in its vicinity cannot block the base
station by using a DOS attack.

Figure 3 shows the damage a malicious node may cause by launching a DOS
attack. The damage caused by a DOS attack depends on the effectiveness of
multi-path routing, the density of interconnection of the sensor network, and
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the topology of the graph. In this experiment, two network densities (sparse and
dense) and two topologies (random and grid) are tested. In random generated
topologies, the position of each node is randomly selected, and the base station is
positioned in the center. The total number of nodes for each random topology is
200. In the grid topology, each node is placed on a square grid. To accommodate
the simulator, it was necessary to perturb each position to a small region around
each vertex in a square grid graph. In this way, random topologies could be
generated even for a nearly uniform square grid. The grid is a 14 × 14 square.

Fig. 3. Histograms of simulated DOS attacks for sparse and dense random and grid
topologies.

Figure 3 reveals the performance of INSENS against a single node launching
a DOS attack. For either uniform grids or random positioning, we first generate
a given topology of scattered nodes. For this topology, we let each node at a time
become a DOS intruder and measure the number of blocked nodes downstream
affected by the DOS intruder. This generates a histogram per topology. The x-
axis records the percentage of nodes that may be blocked by a single-node DOS
attack, and the y-axis records the percentage of such nodes in the topology who,
if they turned malicious, would have the power to block the number of nodes
listed in the x-axis. For clarity, we have grouped the x-axis into bins of 0-5 %,
6-10 %, etc. For both random and grid topologies, we generate 50 such topologies
and plot the averaged histogram shown above.
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From this figure, we can see that the protection against DOS attacks varies
significantly across different network densities and different topologies. As ex-
pected, in all cases, the multi-path algorithm provides better protection against
DOS attacks than the single path approach. The multi-path approach performs
far better for the grid topology, because the grid nearly always offers a valid
redundant second path. The best performance of the multi-path approach is
obtained for sparse grids (upper right graph), where 85% of intruder nodes are
limited to blocking five or fewer nodes. The sparseness limits an intruder to
blocking only a few nodes, while the grid almost always offers the sender a valid
secondary path. The worst performance of the multi-path approach is obtained
for sparse random topologies (upper left graph), in which nodes have few neigh-
bors and few alternate paths (usually only one path) to the base station. In
this case, the multi-path approach performs only slightly better than single path
routing.

As the network becomes denser, moving from the top row of graphs to the
bottom row in Figure 3, attackers are able to block increasing numbers of nodes,
and the histograms shift to the right. This is true for both random and grid
topologies.

While the figures measure the average response of INSENS, an attacker would
benefit by exploiting the topology’s structure and identifying the weakest nodes
that would partition the graph. Such a partitioning attack would be largely
ineffective in grids and/or dense topologies, because such topologies do not easily
partition because of alternate paths. Partitioning is a more effective attack for
topologies that are both random and sparse. We have not specifically measured
INSENS’s performance against such a partitioning attack.

4 Implementation

In our implementation, we use UC Berkeley MICA sensor motes [13] as the sen-
sor nodes. The program runs on Atmel Atmega128 microcontroller. The motes
support a 4MHZ processor with 128K Bytes code memory and 4K Bytes internal
data memory, and an RFM Monolithics TR 1000 radio at 19.2Kbps. INSENS
is running on TinyOS 1.0, which is a small, open source, event-driven, energy
efficient operating system developed for sensor networks at UC Berkeley.

4.1 Cryptographic Algorithm

To implement INSENS on motes, we need to choose a secure, efficient crypto-
graphic algorithm that can operate correctly, given the resource constraints of
motes. To save memory, we should reuse a single cryptographic algorithm for
data encryption, MAC generation, and one-way sequence number, as long as
their implementations are secure. We chose RC4, RC5, and Rijndael (AES) as
candidates. RC5’s implementation varies according to the number of rounds.
More rounds result in higher security, but require more resources. We imple-
mented RC5 with 5 rounds and 12 rounds. The output of 5 rounds is statis-
tically no different from a random number, and 12 rounds is recommended by
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Rivest [17]. We tested the performance of a stream cipher RC4 to compare its
performance with block cipher algorithms. RC4 is a very fast stream cipher, but
has some weaknesses when used in wireless networks. [18] We also implemented
Rijndael on the motes and compared its performance with RC5. We used a stan-
dard version of Rijndael [19]. It uses about 1KB memory. There is a fast version
that uses about 4KB lookup tables, but that exceeds the memory capabilities of
the mote.

To measure performance, we implemented RC4, RC5, and Rijndael on motes
to encrypt 200×128 bits of data with CBC mode. To measure the speed of these
algorithms on motes, we let the base station send a “begin” signal to a mote.
On receiving this signal, a mote begins its computation, and after completing
the computation, it sends back the result to the base station. The base station
records the time interval between when it sent the signal and when it got the
data back, verifies the result, subtracts the round-trip time (which is measured in
the same way without the mote doing any encryption), and gets the computing
time. For each algorithm, we tested it for 20 times. Table 1 shows the calculated
average time for computing 128 bits of data for each algorithm.

From Table 1 we see that: 1) RC5 is a good candidate for motes. It uses less
memory (both in code size and data size), and it is very efficient. 2) Compared
with RC5, Rijndael is very slow. Based on our result, to encrypt a 30Bytes
packet, it would spend about 0.2 seconds. However, we believe that in the near
future, as sensor nodes become faster and acquire more memory, Rijndael will
become a good candidate for cryptographic algorithm on sensor networks. In
our implementation, we used RC5 with 5 rounds. We think it is good enough for
sensor networks. We can also use RC5 with 12 rounds.

Table 1. Cryptographic Algorithm Overhead

RC4 RC5 AES
5 Rounds 12 Rounds

Speed (128bits/ms) 1.299 5.471 12.475 102.483
Data Size (B) 258 68 124 1165
Code Size (B) 580 1436 1436 9492

We have also implemented RSA public key cryptography on the mote plat-
form and report the following preliminary results. We decrypted 64 bytes of data
on the mote with a 1024-bit RSA public key. We found that the measured de-
lay for decryption was approximately 15 seconds. This suggests that public key
cryptography could be used in a limited way, e.g. for symmetric key exchange,
for certain sensor networks. We also attempted to implement encryption with an
RSA private key on the mote, but found that the encryption code died during
execution. We hypothesize that encryption exceeded the mote’s memory capac-
ity, since RSA encryption consumes more memory than decryption, though more
tests are needed to confirm this hypothesis.
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Message Authentication Code generation. MAC plays a critical role in
INSENS. It is used to authenticate each node, its path, and its neighbor infor-
mation. We use standard CBC mode to generate MAC with block cipher RC5
[20].

Fig. 4. CBC-based MAC generation

One-way sequence number generation. The one-way sequence number is
used to loosely authenticate the base station. To generate the one-way sequence
number, we need a secure one-way function. Our approach is based on the follow-
ing criteria: By knowing a plaintext and the corresponding ciphertext computed
using a block cipher algorithm, such as RC5, we cannot know the key that
was used to generate the ciphertext. Our one-way sequence number generator is
shown in Figure 4(b). The base station chooses a random key Kn and uses it to
encrypt a well-known plaintext and gets a cipher. This cipher is Kn−1 and the
base station uses it as a key to encrypt the same known plaintext. This process
continues until we get K0.

4.2 Implementation Issues

Base Station and Node. We implemented base station in Java. The base sta-
tion gets information from the mote on the programming board and processes
the information, and sends routing tables back to each mote. In our implemen-
tation, we used the same strategy described in [14] to find two paths for each
node. But we choose BFS (Breadth First Search) algorithm instead of Dijkstra
because we assume the cost of each link is same. We implemented INSENS on
TinyOS 1.0 with NesC. All of our computing intensive functions are written as
tasks, to prevent them from blocking packets or timer interrupts.

Feedback Message Segmentation. On the current TinyOS, the default
packet size is 30 bytes, though this can be modified. However the feedback mes-
sage of INSENS can be far longer, because it contains an authenticated list of
neighbors. In our implementation, we segment one feedback message into mul-
tiples of 30 byte feedback packets. We add two constraints for feedback packet
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segmentation to make it work with INSENS and prevent possible attacks. 1)
Every segment packet has a sequence number. Any node must forward lower
sequence packet before forwarding a higher sequence packet. When a node gets
a higher sequence packet while it hasn’t got a lower sequence packet, it must
drop that packet. 2) The whole path information must be put in the first packet.
Upstream nodes need it to forward packets. That limits the longest path at 9.
This is suitable for a moderately sized network. Because every feedback message
contains a MAC number, which is generated by CBC mode, the malicious node
cannot change the sequence of segment packet, or replace a segment packet. The
base station can verify the integrity of feedback message sequence packets with
the MAC.

Packet Loss. During our experiments, we found that there were many packet
losses. The reasons for this may be: 1) The MAC (media access control) layer
of TinyOS cannot deal with loss of packets, and INSENS needs to send lots of
packets. 2) The packet sending/receiving components of TinyOS cannot receive
packets in time.

We employed the following methods to alleviate packet loss. First, random
delay is introduced in each mote before forwarding to reduce collisions. Second,
when a mote gets a packet, it copies the packet to its frame variable immedi-
ately. With these mechanisms, the packet loss was significantly reduced. We note
improved MAC protocols [15] could be adopted in the future.

4.3 Performance Evaluation

We have implemented INSENS on motes to build 3-node, 6-node and 10-node
networks. Figure 5(a) shows the network topology setup by INSENS for a net-
work of 6 nodes. Every node has its own routing table to route packets. We see
that the node 5 has two paths to base station, the first goes through node 6, the
second traverses nodes 4 and 1. Because of packet losses, the base station cannot
obtain complete network topology information, yet it can still build part of the
network based on the request and feed-back messages that do arrive. This is an
important feature of INSENS. We measured the memory usage of INSENS and
total time to setup the whole network with INSENS, to assess the practicality
of INSENS.

Memory Usage of INSENS on Motes. Table 2 shows the memory usage of
INSENS. “Feedback” is for saving the whole feedback message before segment-
ing it. “Packet” is for saving the incoming packets. In our implementation, we
didn’t focus on saving memory space, but the result shows that the memory
requirements of INSENS can be easily satisfied by the constraints of current
mote-based sensor networks. Additional memory savings could be achieved. For
example, with a good packet processing mechanism, we don’t need “packet”
space, and with a better packet segmentation implementation, we don’t need
“feedback”.
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Table 2. Memory Consumption of INSENS (Unit:byte)

code total data Crypto neighbor info msg & MAC feedback packet OS and others
19000 1200 68 105 105 200 360 360

Network Setup Time. In our implementation, the base station broadcasts
a request message, receives all feedback messages, and computes the routing
tables. It sends each node’s routing table, and waits for a “routing table received”
message from every node. We measure the time interval between the time the
base station broadcasts its request message and the time it gets all “routing
table received” messages. We set the network as a dense network, so every node
has several neighbors. As the number of nodes increased, we experienced more
packet losses. But because of the redundancy in neighbor information, the base
station was usually able to setup the network based on the limited number of
feedback messages that did arrive.

There are several factors affecting the setup time: 1) execution time of cryp-
tographic algorithm, 2) execution time of packet processing, such as sending,
receiving, copying, and routing, and 3) waiting time in INSENS, that includes
random delay, feedback message waiting time, and the base station waiting time.
The base station waits at most 500 ms after receiving a feedback packet. This
wait time is reset with each new feedback message. Eventually, no more feedback
messages will arrive and the base station will timeout and move on to comput-
ing the routing tables. Each sensor node also waits at most 500 ms for neighbor
information to be collected. We also tested 700 ms timeouts for the sensor nodes
only (not base station). The base station unicast a custom routing table to each
mote, and waits 100 ms between sending each routing table. We found that the
total network setup time is dominated by the waiting time of the sensor nodes.
In comparison, the computation time of RC5-based cryptographic algorithms is
relatively short. Figure 5(b) shows our aggregate test results.

Fig. 5. (a) Routing tables built by INSENS (b) Network setup time
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5 Related Work

Sensor network security is a critical issue in sensor network research [4]. Ganesan
et al propose a redundant “multipath” routing approach for a sensor network
[5] in order to provide fault tolerance and reliable data dissemination. INSENS
is largely agnostic to the particular multipath approach employed.

In the field of ad hoc wireless networking, previous work on secure routing
employs public key cryptography to perform authentication [6] [4] [7] [8] [9].
Unfortunately, resource constraints in sensor network limit the applicability of
these current public/asymmetric key standards.

SPINS [10] addresses secure communication in resource-constrained sensor
networks, introducing two low-level secure building blocks, SNEP and µTESLA.
Our work uses ideas from SNEP and µTESLA to build INSENS. Like µTESLA,
we employ one-way functions, but differ in the sense that the numbers in the
one-way chain are sequence numbers rather than symmetric keys. In addition,
we are not constrained by time synchronization or a delayed release schedule.

SEADS [11] and Ariadne [12] use symmetric cryptography, a one-way hash
function, TESLA, and MACs to build secure wireless network routing. INSENS
differs in that it focuses on an asymmetric or hierarchical architecture with a
base station and sensors, rather than on peer-to-peer routing.

Staddon et al [21] proposes an efficient algorithm to trace failed nodes in
sensor network. Their work also puts intensive computing on the base station,
and employs route discovery in a manner similar to our first two rounds. The
paper does not address the issue of compromised nodes.

6 Conclusions

In this paper, we have provided an experimental evaluation of INSENS, which is
an intrusion-tolerant routing protocol for wireless sensor networks. The resilience
of INSENS’s multipath performance against various forms of communication-
based attacks by intruders is evaluated in simulation. The paper describes prac-
tical experiences with implementations of RC5 and AES encryption standards on
motes, an RC5-based scheme to generate message authentication codes (MACs),
and an RC5-based generation of one-way sequence numbers.
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Abstract. A network of embedded devices needs to be able to execute queries
for dynamically changing content. Even in a completely reliable network, this is
a formidable task because of the enormous scale of the networks, severely lim-
ited resources of individual devices (bandwidth and battery power) and the het-
erogeneity of resources being managed. In this work we introduce a novel in-
formation query methodology for designing online solutions for heterogeneous
sensor networks with  various resources (e.g., battery, bandwidth, CPU). This
provides a route selection and query management mechanism that will enable a
sensor network to find sensor level information without a routing algorithm
specialized for the particular form of information. In order to execute such a
methodology in a scalable, limited resource environment such as sensor net-
works we employ a novel lattice data structure, which is basically a combina-
tion of trees with small overlap that provably enables extension of any routing
or directory infrastructure to an arbitrary scale, with only small overhead.  We
show how to use such data structures (lattices) that will enable scaling to mil-
lions of devices with an overhead that only grows logarithmically in the number
of network nodes and with provably small distortion of paths. Moreover, we
show a completely distributed implementation of such structures, that creates
minimal overload on the client sensors.

1   Introduction

Content addressable routing, namely routing towards the location storing certain data
is quite appropriate for embedded networks of many small devices. Instead of ad-
dressing a specific device, one needs to route a query to a device that has specific in-
formation, e.g. a sensor on (some) bridge. Notice, that content addressable routing
greatly increases the scale of the problem (the number of queries is much larger than
the number of nodes). In some way, since contents is variable, content addressable
routing is equivalent to routing in a network where nodal names are changing arbi-
trarily (based on the contents).
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The sheer scale of embedded and sensor networks appears to force a decision based
on local information, since the overhead of obtaining the global information may
overwhelm the benefit of using it. There is an analogy between routing, content re-
trieval, and maintenance of local databases of topology and resource depletion infor-
mation. This analogy is expressed in trade-offs between different generic approaches.

Flooding each piece of information through the network is one extreme. This guar-
antees the highest quality of information and in a sense simulates global decision
making, which results in efficient queries of content or routing of a message. How-
ever, the overhead of maintenance is prohibitive and overwhelms the benefits of ob-
taining the information.

Another extreme is on-demand DSR routing [5] which proceeds by flooding a
routing (or information) query upon each request. While this is very expensive opera-
tion, it may be meaningful for content-addressable routing, e.g. “connect to the sensor
near a human”, where there is simply too much content to keep track of.

The above arguments indicate an inherent trade-off between overhead in lookup
and overhead in maintenance of data structures. This trade-off has been considered in
a number of different papers. Sophisticated methods to examine various trade-offs in
matching the sources of queries with sources of content such as directed diffusion
[12] illustrate this approach. There is also work  on aggregating data from different
sources via distributed approximate set cover algorithms [11].

One attempt to avoid this trade-off is geographic “Location aided routing” [18]
where the routing request is indicative of the position of the destination; e.g. its GPS
coordinates; routing proceeds by making incremental steps toward the destination.
This certainly does not work for dynamic content-addressable routing.

Note the assumption that addresses of routing destinations are bound to their geo-
graphic location, which inherently assumes that both naming and geography are static.
The major (and not so obvious) fallacy of such an approach is the assumption that
greedy progress in terms of geographic proximity to the destination is the right strat-
egy. Such a strategy may work well assuming uniform distribution of devices in each
geographic region, as well as completely uniform traffic distribution. However, it is
easy to see that in fact traffic distribution is highly non-uniform (e.g. few producers
and consumers of information). In this case, this strategy may deplete batteries of
nodes along the geographically shortest paths, and shut these nodes off. This invali-
dates the “uniform geographic distribution’’ assumption, as well as the binding be-
tween names and geography leading to potentially catastrophic consequences, since
geography is assumed to be static.

Attempts have been made to combine geography with battery utilization, such as
GEAR [17] (geographical and energy aware routing); yet there is no rigorous mathe-
matical argument for this strategy being close to optimal. Obviously, the geographic
approach is not applicable in this case since the name has nothing to do with the un-
derlying geography.

We address this tradeoff between content dissemination costs and query costs with
a general routing algorithm and distributed data-structure that balances the costs while
requiring very small storage at each node and small communication over each link.

In the rest of this paper we present this routing algorithm and it’s properties in sev-
eral stages. First, in Section 2 we discuss the core idea in the context of a basic dis-
tributed tree. We then present the lattice based algorithm, that resolves the limitations
of the tree-based one in Section 3. Section 4 discusses the related work and Section 5
presents our conclusions.
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2   Tree-Based Routing

Imagine that our communication network was a tree, and that the costs of communi-
cation over edges of the tree would increase exponentially with the distance from the
leaves; we will call such a network a “fat tree’’. Imagine that all the content is stored
at the leaves of the tree, also called clients, and all the control information is stored at
the internal nodes. The internal nodes may be separate embedded “server” devices
which have additional memory and energy, or they may be a subset of the sensor de-
vices. Since the internal nodes do work, by storing aggregated content and handling
routing messages for other nodes they will use up resources faster then the leaf nodes
(pure sensors). Thus, the actual devices acting as internal nodes will either need addi-
tional resources, or will have to be rotated in and out of providing those services to
maximize the lifetime of the nodes. We will discuss later, when the distributed algo-
rithm is presented how these trees can be dynamically modified and maintained in the
context of these type of heterogeneous nodes.

2.1   Our Approach – Tree Version

We can aggregate information and accomplish content addressable routing, as well as
dissemination of resource utilization information on such fat tree as follows.

Content, originating at a leaf sensor, is registered at all levels of its tree ancestors.
This is easily accomplished by climbing up the hierarchy. A query climbs up the hier-
archy to locate the lowest common ancestor storing the content, and then descends
down the hierarchy to the location of the contents.

Once this hierarchical structure has been created, it can also be used to aggregate
the resource costs in a scalable way. The cost information is fairly simple data to ag-
gregate because different costs can simply be added together to reach a combined
cost. As long as all the costs have been calculated as opportunity costs, the sum of
them, say from one cluster of nodes in the network, represents the aggregate opportu-
nity cost of  traversing that cluster of nodes.

Servers on level n can aggregate the resource costs reported by the level n-1 nodes
(servers or sensors), and forward them further as a single value, usually the summa-
tion of the costs received. By doing this the cost updates only need to be sent locally
among the sensors local level 1 cluster, then the controller (or server) of that cluster
will incorporate that cost into the aggregate cluster cost and only send that cluster cost
to other level 1 neighboring clusters and to the parent level 2 cluster leader. By using
this aggregated cost information a controller at the n-th level of hierarchy can avoid a
congested n-1 area as a whole, without knowing resource costs of each individual
sensor.

2.2   Simple Distributed Implementation

We could try in principle to implement such a data structure in an embedded network.
In order to do this we need to accomplish three tasks: decide which nodes should play
a role at each level of the tree; build the tree; and specify the algorithm for routing
within the tree.
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For the first task of determining which nodes should participate at each level of the
tree, we want to create the tree such that a nodes who are have a “small” communica-
tion cost between them are close together in the tree. We do not want to only consider
physical or network distance because other factors such as bandwidth and battery life
can substantially change the effective cost of traversing nodes – even if the nodes are
physically close. The distance metric used for this purpose is derived from the op-
portunity cost framework [2] which allows one to incorporate and aggregate a multi-
tude of incomparable parameters such as battery life, reliability and security level,
bandwidth, etc.

For example, to construct the lowest level of the hierarchy, let us pick the closest
node acting as a server for each client. To construct the next levels, we can select next
level servers probabilistically by say flipping coins with probability 1/2, and repeating
the process. If a server’s coin comes up heads, then it will act as server also for the
next level of the hierarchy, if it is tails then it is finished and will not acquire any
more roles. Thus each round of coin flipping involves fewer and fewer of the potential
servers. This defines a hierarchy of partitions which are very refined close the leaves
and quite coarse close to the tree. Each server node acts as a server for at least level 1,
and may act as a server for levels 2-k where k is the highest level the server reached
in the coin flipping rounds. (We comment that [8] considers a similar setting where
servers get chosen probabilistically on a rotating basis.)

To build the tree, each server selected at each level simply floods the message to
determine which nodes will enter its tree. Flooding will establish an uplink pointer at
each intermediate node eventually leading to the root of each tree. Each server node
will rerun the flooding algorithm periodically for the clusters that they are responsible
for. This is required to deal with moving sensors and servers, to adapt to changing re-
source costs (a node may have its battery drained and so the trees should change), and
to detect new sensors. The frequency of these floods is a tradeoff between the over-
head of flooding and the quality of routes. Although a fixed frequency is simple, since
each server conducts their own flood, the frequency can be adjusted separately and
dynamically by each server.

Third, the routing algorithm consists of two operations – routing upstream towards
the root of the tree, and routing downstream towards a leaf node. The messages being
routed can either be content generated by the leaf sensors, or queries that originate at
any node (leaf or internal) in the system.

Upstream routing: In order for a node to reach its parent on the hierarchy, it simply
sends the message on its uplink, and each intermediate node relays the message on its
own uplink.

Downstream routing: It is more difficult for nodes to relay messages downstream,
since intermediate tree nodes cannot keep downlinks for each possible child (this is
too expensive for sensors). We consider now the problem of routing from root of a
cluster to any other node in that cluster, and solve this problem recursively. Namely,
we assume we can use similar procedure at one level below as a sub-routine.

The data structure needed for the purpose of downstream routing consists of

1. A collection of lateral “bridges’’ connecting  clusters to sibling clusters, as well as
2. A “sibling routing’’ table indicating which cluster is the next sibling cluster to be

traversed on the way to destination sibling cluster.
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This data structure is constructed in a preprocessing stage as follows. Bridges are
detected upon termination of flooding process as edges whose end-points were ‘‘con-
quered’’ by different flood-ID’s.  Sibling routing tables are built by having each
cluster flood a message with its ID thru the whole parent cluster. Upon receipt of such
flooded message over a bridge from another cluster, that bridge is designated locally
as a preferred gateway en route to the destination cluster, and notification to that ef-
fect is sent to the root. The root may receive messages from a number of potential
gateway nodes for a particular sibling cluster. In that case it randomly picks one of
them. Flooding needs to be performed upon introducing new sibling to the cluster.
The total cost of all flooding procedures, in terms of message traffic per edge,  is up-
per-bounded by a term proportional to the product of the number of levels of the re-
cursion, and the degree of tree,  i.e., maximal number of sub-cluster in a given cluster.

Finally, we describe how the downstream routing actually works.

C0
C2

C1

u1

C0 u0

v1

v2
u2

v2 C3

C4

C5

P

Fig. 1. Downstream and Lateral Routing

In order for a node to reach its child on the hierarchy, it proceeds recursively. Sup-
pose a low-level server C0, selected as high-level server P, wishes to reach, say, C3
who is a child of P. Let C1, C2…Cn also be children of P. The path from C0 to C3
starts at the territory of cluster of C0 and proceeds through the territory of clusters for
C1, C2, etc. until reaching cluster of C3. Let bridge (u0-v1) be the edge emanating
from cluster of C0 into cluster of C1 on that shortest path. Then, it is enough to send
message from C0 to u0 inside lower level cluster of C0, and instruct it to cross the
bridge (u0,v1). This can be handled recursively since this is taking place on the terri-
tory of the lower-level cluster. After crossing the bridge, the message will go to the
root of C1 and find out about next bridge (u1,v2) into territory of C2, etc. The process
will continue till we reach lowest level of the hierarchy (see Figure 1).

With these two routing primitives ready, we can describe the whole process.

1. Registration of content by climbing the hierarchy: content generated by a client
“climbs the hierarchy” by registering at the parent of that client, and then proceed-
ing to grandparent, etc. This process simply involves forwarding all the informa-
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tion received from children and aggregating information at the servers of given
level before continuing to the next level.

2. Query for contents by climbing the hierarchy: Query generated at a client climbs
the hierarchy exactly like the content registration process. This process simply in-
volves forwarding all the queries received from children. Upon reaching a server
on a given level, the query is successful at that level if the content is locally avail-
able; otherwise the query is a failure at this level. In the former case the query is
stored at a buffer together with the name of the lower-level server who originated
it, and is forwarded on an uplink to the next level up, until is eventually succeeds
or fails at the top level.

3. Query for contents by descending the hierarchy: Once a query succeeds at some
level j, it means that that server keeps the desired content, as well as location of
lower level child who reported it. The query proceeds downstream recursively,
using downstream routing above.

2.3   Extensions to Battery-Sensitive Routing

The above algorithm classifies nodes into just two levels of computing power: servers
and clients. In the case of heterogeneous devices with highly different capabilities, it
is obvious that higher level servers need to chosen among stronger devices (ones with
higher battery life, higher bandwidth, higher CPU. It is quite possible, however, that
servers themselves are not much more powerful than the sensors. In the extreme case,
we may consider a completely symmetric peer-to-peer situation where the collectors
are the sensors themselves, i.e. clients are no different than servers.

What this means is that clients need to emulate servers. Because of limited battery,
and the concentration of traffic at different levels of the hierarchy, the nodes selected
to be servers at a given level will quickly run out of battery. This means that their
weight will dramatically increase, and the radius of their flooding will be decreased
dramatically.

Effectively, this means that the clients they used to be parents of will be re-
conquered by others floods emanating from higher-battery nodes. This will automati-
cally lead to rotation between different nodes for the role of servers of a given level. If
this rotation is accompanied by occasional energy refueling, then the system can keep
working indefinitely.

This method applies to a more general setting (with multi-hop connectivity) than
the method in [8]. We can prove that our method provides a very precise mathematic
guarantees on its performance. As we will see below, this is a serious issue.

2.4   Performance Analysis

The efficiency of the above query publishing and processing can be evaluated by con-
sidering the cost of retrieving the content through the hierarchy versus the optimum
cost of the retrieval.

Consider for example a segment of length n with a hierarchy in the form of a per-
fect binary tree. Namely, this segment is broken into two segments of length n/2, each
corresponding to lower level clusters. Consider now a bridge edge from one cluster to
another. Note that a query emanating from one endpoint of that edge may traverse the
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whole tree to find a common ancestor with the other endpoint. Thus, the distance
distortion exhibited by such a hierarchy grows linearly with the number of nodes.

It is highly unsettling that by managing to reduce the space overhead through ag-
gregation, from linear to constant, we actually damage our routing efficiency by a lin-
ear factor. In a sense, this indicates that we have not dealt with the issue of scalability
in a satisfactory manner.

3   Lattices versus Trees

This paper suggests a universal mathematical framework for handling the issue of
scalability, that we refer to as Hierarchical Redundant Aggregation.  The essence of
the framework is that it enables one to represent complex structures such as networks
with heterogeneous  and arbitrarily connected components in a relatively simple for-
mat, which is called  a “distance preserving lattice’’.

In a hierarchical distance preserving lattice, we have levels of hierarchy imposed
on the network, where all nodes belong to the lower level of the hierarchy, and just a
handful of nodes belong to the top level. Each node has a handful of parents on the
next level of the lattice; for simplicity imagine each node has just two parents. One
can easily imagine that if each node has two parents, it may have four grand-parents,
16 grand grand-parents, etc. However, a lattice is constructed in such a way that each
node has handful ancestors at each level of the lattice hierarchy. Figure 2 shows an
example of a zone of sensors of which some have two parents in order to provide re-
lay service for messages from sensors who do not have their server.

Since the tree contains less edges than the cycle, we can say that the tree is an “ag-
gregation’’ of the cycle. The “distortion’’ of the aggregate structure is the worst case
distance deterioration of the original graph. The above discussion indicate that aggre-
gating a cycle into a tree exhibits distortion whose quality degrades linearly with the
size of the network, and thus such aggregation will be considered of “poor quality’’
for large size networks. One can easily see that any tree will be a poor quality aggre-
gation for very simple graphs, such as, for example a grid graph.

The difference between a tree and a lattice is manifested exactly in that in a tree,
each node has a single parent in the next layer, and each node has a single ancestor at
each level. This difference is crucial in that a lattice is immensely superior to a tree in
terms of the ability to capture distances, without the need to introduce exorbitant
overhead. In some sense, a lattice can be viewed as a number of trees super-imposed
on each other. Observe that two trees can faithfully capture distance on a circle, while
it is impossible to achieve this effect with a single tree. Indeed, each tree will fail to
contain some edge; and the path on the tree connecting endpoints of that edge is line-
arly longer than the direct connection. In the next section we provide specific lattice
constructions based on the work by Awerbuch and Peleg [1] (we comment that this is
the theoretically best data structure for distributed routing).
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Fig. 2.  Sensors with two Controllers and Lattice

3.1   Our Approach – Lattice Version

As we have indicated earlier, it is easy to implement a hierarchy where each node en-
ters the next level with small probability, and partition the graph with spanning trees
where each node has a single uplink. This is a very scalable data structure, but as we
pointed out it cannot possibly be accurate in representing the metric space.

If we are talking about representation of a regular graph, such a heuristic can work.
However, even in a regular deployment of sensors, the distance/cost graph will not
remain regular for long because due to factors such as battery depletion, any effective
embedded sensor system will have to distort a regular graph into an irregular arbitrary
structure.

The idea is that adding a couple more uplinks to nodes (which does not really hurt
scalability) will have a crucial impact on the distance distortion, reducing the maximal
possible distortion from linear to logarithmic. We rigorously support the claim in a
form of a concrete algorithm, a theorem, and a mathematical proof of performance
guarantees.

The algorithm to construct one level of the hierarchy is very simple. Select a de-
sired range, say r. Our goal is to construct a collection of clusters each one around a
single client (who will now be called a server), and a spanning tree for each cluster
such that the following properties hold.

Lattice Properties
1. Any two clients at distance r from each other will be spanned by a common tree

(and thus will be able to locate each other).
2. The tree overlap is at most logarithmic.
3. The radius of each tree is at most logarithmically larger than r.
The lattice algorithm: The algorithm consists of logarithmic number of iterations.



Scalable Decentralized Control for Sensor Networks via Distributed Lattices 373

In each iteration, each node selects a random integer, from 1 to log n, with expo-
nentially decreasing probability (next integer half as likely as the current), and floods
its ID to radius limited by “distance to live” which is the product of the random value
and r. Each node propagates the flood if “distance to live” is positive and the ID of
this flood is higher than the highest previously seen ID.  In this case, it remembers the
node from which it receives this flood as an uplink on the link to the corresponding
ID, subtracts its (opportunity) cost from “distance-to-live” and broadcasts the new ID
to the neighbors. The set of recorded uplinks forms the desired lattice, which is sim-
ply the collection of trees rooted at winning ID’s.
Distributed Lattice Construction Theorem:  For every network of size n nodes, an
arbitrary set of clients, and every value of radius r, with overwhelming probability,
the following properties hold:

1. Lattice properties above are met
2. Each edge is traversed by logarithmic number of messages

Proof:  The radius of each tree is at most logarithmically larger than r by construc-
tion; thus 3) holds.

Tree overlap is the expected number of maxima in random sequence; the probabil-
ity of j’s member to be maximum is 1/j and summation of 1/j is approximately the
logarithm of the number of nodes, proving 2). To prove 1), consider two such nodes x
and y at distance r at most. The highest ID that have been seen by x was not seen by y
or vice versa. Notice that exponential probability is memoryless, thus with probability
0.5  the highest ID flood that reaches x will also reach y, in which case x and y cannot
have different parents, QED.

4   Related Work

Some ideas related to imposing hierarchy on top of uniform network of sensors were
presented in [8] where the LEACH protocol chooses cluster heads probabilistically on
a rotating basis. LEACH assumes that all nodes have the ability to communicate with
the final destination, but must pay a higher energy cost to do so. Our cost-benefit
method can provide the same advantages as LEACH at the lowest levels of the hierar-
chy where all the nodes are within maximum range of each other, and can also pro-
vide the more general multi-hop capabilities by using minimum cost forwarding at
higher levels of the hierarchy.

Heterogeneous resource routing has also being described in GEAR project by Es-
trin et al [GEAR]. We now describe the Geographical and Energy Aware Rout-
ing(GEAR) algorithm. GEAR uses a geographical and energy aware neighbor  selec-
tion heuristic to route the packet towards the target region. At least from the
algorithmic point of view, we believe that we should be able to greatly improve on the
performance of such solution by using a cost-benefit framework which will unify
bandwidth-based and energy-based optimization in a provable manner.

Also utilizing geographic information, but for a different purpose, GAF described
in [17] is built using a different methodology of evaluating power usage. The paper
offers evidence that the power consumed while idle/listening is significant in com-
parison to that consumed while transmitting or receiving, and in the low traffic case
dominates the power consumption of the network. This results in an accounting meth-
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odology that does not ignore idle/listening power consumption and a strategy of util-
izing the sleep capabilities of wireless transceivers in order to save some of the power
used while nodes are idle. GAF uses location information and a virtual grid in order to
approximate a maximal independent set of nodes that must stay awake. Because this
approach relies on finding sets of nodes that are all interchangeable, it only provides
savings for the most trivial cases, and isn’t robust in the case of complex radio propa-
gation phenomenon. The opportunity-cost framework provides an alternative strategy
where the cost of keeping a node awake can be compared with the benefit it provides
to the network. This analysis can be used to select a randomized duty cycle appropri-
ate for each node.

5   Conclusion

We have presented a general-purpose highly, scalable distributed algorithm for con-
tent and query routing on heterogeneous sensor networks. This algorithm has prova-
bly strong bounds on the distance distortion it produces, and provides logarithmic
message costs for both content distribution and query routing. We believe the lattice
routing architecture offers substantial potential for providing a general-purpose rout-
ing architecture that can incorporate much of the research on sensor network routing
(by choosing different cost metrics, the lattices formed will adapt to many different
researchers specific algorithms).
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Abstract. We consider the problem of coverage and exploration of an
unknown dynamic environment using a mobile robot(s). The environ-
ment is assumed to be large enough such that constant motion by the
robot(s) is needed to cover the environment. We present an efficient min-
imalist algorithm which assumes that global information is not available
(neither a map, nor GPS). Our algorithm deploys a network of radio
beacons which assists the robot(s) in coverage. This network is also used
for navigation. The deployed network can also be used for applications
other than coverage. Simulation experiments are presented which show
the collaboration between the deployed network and mobile robot(s) for
the tasks of coverage/exploration, network deployment and maintenance
(repair), and mobile robot(s) recovery (homing behavior). We present a
theoretical basis for our algorithm on graphs and show the results of the
simulated scenario experiments.

1 Introduction

We consider two problems from traditionally different backgrounds. The first is
the exploration and coverage of a space by a mobile robot. The coverage
problem has been defined [1] as the maximization of the total area covered by
robot’s sensors. There are many applications of coverage such as tracking un-
friendly targets (e.g military operations), demining or monitoring (e.g. security),
and urban search and rescue (USAR) in the aftermath of a natural or man-made
disaster (e.g. building rubble due to an earthquake or other causes). We require
the robot to cover all areas of the space, and to occasionally navigate to a desig-
nated target location in the -space. The second problem is the deployment of
a sensor and communication network into an environment. Such a network
may be used for monitoring, or as an ad-hoc communication infrastructure. Our
claim is that these two problems are best solved together i.e. a combined solu-
tion exists which satisfies both objectives. The basic idea is simple - the robot
deploys the network into the environment as it explores, and the network guides
future robot exploration.

Coverage can be considered as a static or more generally as a dynamic prob-
lem. The static coverage problem is addressed by algorithms [2,3,4]. The goal of
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these algorithms is to converge to a static configuration (an equilibrium state),
such that every point in the environment is under the robots’ sensor shadow (i.e.
covered) at every instant of time. For complete static coverage of an environment
the robot team should have a certain critical number of robots (depending on
environment size, complexity, and robot sensor ranges). Determining the criti-
cal number is difficult or impossible [2] if the environment is unknown a priori.
Dynamic coverage, on the other hand, is addressed by algorithms which explore
and hence ‘cover’ the environment with constant motion and neither settle to a
particular configuration [5], nor necessarily to a particular pattern of traversal.
Coverage of the environment can be accomplished over time with any number
of robots.

In this paper we consider the case of a single robot in an environment that
is large enough that complete static coverage of the environment is not possible.
The robot must thus continually move in order to observe all points in the
environment frequently. In other words, we study the dynamic coverage problem
with a single robot. We briefly discuss various multi-robot extensions at the end
of the paper.

Single robot exploration of unknown environments has been studied before [6,
7,8]. The frontier-based approach [6,7] incrementally constructs a global occu-
pancy map of the environment. The map is analyzed to locate the ‘frontiers’
between the free and unknown space. Exploration proceeds in the direction of
the closest ‘frontier’. The multi-robot version of the same problem was addressed
in [9]. The problem of coverage was considered from the graph theoretic view-
point in [10,11]. In both cases the authors study the problem of dynamic single
robot coverage on an environment consisting of nodes and edges (a graph). The
key result was that the ability to tag a limited number of nodes (in some cases
only one node) with unique markers dramatically improved the cover time. It
may be noted that both papers consider the coverage problem, but in the process
also created topological maps of the environment graph being explored.

The algorithm we propose (a variation of more general Node Counting and
Edge Counting algorithms discussed in detail in [12,13]) differs from the above
mentioned approaches in a number of ways. We use neither a map, nor localiza-
tion in a shared frame of reference. Our algorithm is based on the deployment of
a set of static nodes into the environment by the robot. The nodes form a com-
munication network. We term every node in the network a marker. The markers
we use act as a support infrastructure, which the mobile robot uses to solve the
coverage problem efficiently. The robot explores the environment, and based on
certain local criteria, drops a marker into the environment, from time to time.
Each marker is equipped with a small processor and a radio of limited range.
Our algorithm performs the coverage task successfully using only local sensing
and local interactions between the robot and markers. The approach builds on
our prior work [5], and strives to maintain connectivity in the network.

We thus propose an algorithm for robot exploration and coverage that relies
on the deployment of a communication network. Once deployed the network is
used by the robot for efficient exploration and navigation. We note that our
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(a) (b) (c) (d)

Fig. 1. A schematic of a) Initial Environment (before the experiment); b) Environ-
ment after changes with deployed network(beginning of experiment); c) Some of the
nodes require replacement (malfunctioned, damaged, etc.); d) Another alteration to
environment and a robot that has to return to marker H;

approach for navigation is similar to [14], which needs potential fields whereas
we use value iteration.

Analysis of the deployed network as a graph shows that our algorithm is
complete i.e. it covers every vertex of the graph and efficient (cover time linear
in the size of the network graph).

We discuss data from one long term continuous experiment which includes
a dynamic environment and exhibits the major functionalities of our approach:
the ability to provide full coverage/exploration of the environment, robustness
to changes in the environment, ability to replace damaged markers, navigation
and extensions to multi-robot applications utilizing the deployed network.

2 Experimental Scenario

Imagine a scenario where the environment changes dramatically in a short time-
span; for example a collapsing building. In such a situation a mobile robot, or a
group of robots, could be sent into the building to search for people. Our system
allows a mobile robot to explore (and completely cover) the environment without
access to a prior map, by deploying markers into the environment. Subsequently,
the robot is able to ‘home’ to a given location using the same set of markers.

Figure 1a shows the floor plan of the environment prior to changes. Con-
ventional approaches to covering this environment and exploring it, could use a
map-based technique (such as the ones in [6,7]). Suppose however that due to a
catastrophic event (e.g. earthquake, fire) debris is introduced into the environ-
ment, thereby altering it (Figure 1b). Even though the map of the environment
might be available initially, an altered environment would be difficult or impos-
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Fig. 2. a) System Architecture showing Robot Behaviors; b) Beacon Architecture

sible to cover and explore, with approaches relying on metric/topological map
usage. The experimental work reported in this paper starts at this point. A robot
is introduced into the environment of Figure 1b. The robot explores the envi-
ronment by populating it with markers that form a network. Figure 1c shows
the network with some of the nodes removed (malfunctioned, destroyed, etc.).
Using our algorithm, the robot repairs the gap in the network by deploying new
nodes. The last step of the scenario is depicted in Figure 1d. The environment
was altered again so that extra space in the environment is uncovered. The robot
is now required to explore and cover the extra space by deploying markers. In
addition, the robot is required to use deployed network for homing - returning
to a special marker (H on Figure 1d).

3 Architecture

Our algorithm uses two entities: the markers and the mobile robot. The task
of each marker is to recommend a locally preferred direction of movement for
the robot within its communication range. Thus each marker acts as a local
signpost telling the robot which direction to explore next. The robot treats this
information as a recommendation, and combines it with local range sensing (to
avoid obstacles) to make a decision about which direction to actually pursue.

As shown in Figure 2(b), each marker has a state associated with four cardinal
directions (South, East, North, West). The choice of four directions is arbitrary.
It implies that each marker is equipped with a 2 bit compass. For each direction,
the marker maintains a binary state (T ), a counter (C) and block E which
might be used for additional information. The state T can be either OPEN or
EXPLORED, signifying whether the particular direction was explored by the robot
previously. The counter C associated with each direction stores the time since
that particular direction was last explored.
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When deployed, a marker emits two data packets with different signal
strengths. The packet with the lower signal strength is called the MIN -packet
and the one with the higher signal strength is called the MAX -packet. The
MAX -packet is used for data propagation within the deployed network. We dis-
cuss it in section 5.2. The MIN -packet contains two pieces of information: a)
the suggested direction the robot should take for coverage/exploration and b)
the suggested direction the robot should take for homing. This implies that the
robot’s compass and the marker’s compass agree locally on their measurement
of direction. Given the coarse coding of direction we have chosen, this is not a
problem in realistic settings. The algorithm used by the markers to compute the
suggested direction for exploration/coverage is a ‘least recently visited direction’
policy. All OPEN directions are recommended first (in order from South to West),
followed by the EXPLORED directions with largest last update value (largest value
of C). Note that this algorithm does not use inter-marker communication. The
computation of the suggested direction for homing is discussed in a later section
(section 5.1).

The robot uses a behavior-based approach [15] with arbitration [16] for be-
havior coordination. Priorities are assigned to every behavior a priori. As shown
in Figure 2(a), the robot executes four behaviors: ObstacleAvoidance, AtBeacon,
DeployBeacon and SearchBeacon. In addition to priority, every behavior has an
activation level, which decides, given the sensory input, whether the behavior
should be in an active or passive state (1 or 0 respectively). Each behavior com-
putes the product of its activation level and corresponding priority and sends
the result to the Controller, which picks the maximum value, and assigns the
corresponding behavior to command the Motor Controller for the next command
cycle.

During motion, the robot maintains the notion of a current marker (Fig-
ure 3a). This is the node whose MIN -packets are received by the robot most
frequently. When the robot moves to the vicinity of a new marker, the AtBeacon
behavior is triggered and the robot’s current marker is updated (Figure 3b). At-
Beacon analyzes the MIN -packets received from the current marker and orients
the robot along the suggested direction contained in those packets. In addi-
tion, the robot sends an update message to the marker telling it to mark the
direction from which the robot approached it as EXPLORED. This ensures that
the direction of recent approach will not be recommended soon. We term this
the last-neighbor-update. After the robot has been oriented in a new direction,
it checks its range sensor for obstacles. If the scan does not return any obsta-
cles, the robot proceeds in the suggested direction (Figure 3c), while sending a
message to its current marker updating the state of the suggested direction to
EXPLORED (the marker also resets the corresponding C value). If, however, the
suggested direction is obstructed, the AtBeacon behavior updates the marker
with this information and requests a new suggested direction (Figure 3d). The
Obstacle Avoidance behavior is triggered if an obstacle is detected in front of
the robot, in which case an avoidance maneuver takes place.
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Fig. 3. Behavior Switching. a) The robot is executing SearchBeacon behavior travers-
ing suggested direction; b) The robot is executing AtBeacon behavior, analyzing sensor
readings; c) The robot is executing SearchBeacon behavior, supposing the beacon sug-
gests direction UP and there are no obstacles detected in the sensor data; d) The robot
is executing SearchBeacon behavior traversing in direction, not originally suggested by
the marker.

Once the robot is oriented in a new direction (whether as a result of taking
the advice of the marker, or as a result of avoiding an obstacle), the SearchBeacon
behavior is triggered. SearchBeacon causes the robot to travel a predetermined
distance without a change in heading (assuming there are no obstacles in the
way). The DeployBeacon behavior is triggered if the robot does not receive a
MIN -packet from any marker after a certain timeout value. In this case the robot
deploys a new marker into the environment.

During its exploration of the environment, the robot builds a transition
graph. We call this deployed network graph. The vertices of the graph rep-
resent the deployed markers. A directed edge from vertex A to B is labeled with
the probability of arriving at node B from node A by proceeding in a particular
direction. In section 5 we discuss the use of this graph for computing probabilis-
tic paths through the environment between any two nodes, and thus, using the
marker network for probabilistic navigation.

4 Graph Model

For purposes of analysis, consider an open environment (no obstacles). Given our
marker deployment strategy described in the previous section, we can model the
steady state spatial configuration of the markers as a regular square lattice. In
fact, the analysis applies to any graph of degree 4 isomorphic to a regular lattice.
Without loss of generality we ignore the boundary of the graph in the analysis.
In the general case the deployed network graph would be a regular graph of
degree 4. The cover time [17], is the time it takes a robot to cover (visit) every
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node in the graph and can be computed as the number of actions taken by the
robot to visit every node of the graph. The problem of coverage on the graph is
to minimize the average cover time, considering every vertex of the graph as a
starting point.

We assert that our algorithm covers the environment completely i.e. the robot
visits every node of the graph. In the most simple case where the environment is
unknown, and localization cannot be used, and there are no markers available,
the problem of coverage can be solved by a random walk (RW). It has been
shown [17] that the cover time of a random walk on a regular graph of n nodes
is bounded below by n lnn and above by 2n2. If we assume that passive markers
can be used, and the graph G = (V, E) is known (a topological map is available)
and the robot has markers of three independent colors, then the problem of
coverage can be solved optimally by applying depth first search (DFS) which
is linear in n. DFS assumes that all resources are available - markers, map,
localization and perfect navigation.

We conducted experiments running RW, DFS and our algorithm on graphs
with n = 25, 49 and 100 nodes. For every experiment each grid point was tried
as the starting point. We conducted 50 experiments per starting point, such
that as soon as robot covers all nodes, the nodes become uncovered and the
coverage task starts from the node where the robot finished its last coverage.
Then the next starting point is considered and so on. The average cover time
over all experiments was computed. The results of this experiment are shown in
Figure 4; our algorithm and DFS both perform asymptotically better than the
RW.

Note that in order to determine the color of neighboring vertices and navigate
from one vertex to another, DFS assumes that the map of the environment is
available and the robot is localized. Our algorithm, on the other hand, does not
have access to global information and the robot does not localize itself. The
markers used in our algorithm are more complicated than those used in DFS,
and the cover times are asymptotically somewhat larger than the cover times of
DFS.
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Fig. 5. An example of a discrete probability distribution of vertex (marker) k for
direction (action) ”East”(i.e. right).

5 Connectivity Map and Probabilistic Navigation

In order for the robot to be able to navigate through the environment from point
A to point B, assuming neither map nor GPS are available, the robot should be
able to recognize that it has arrived at the goal (B), be able to measure progress
and be able to choose an action that maximizes its chances of getting to its goal.

5.1 Value Iteration

We assume finite set of vertices S in the deployed network graph and a finite
set of actions A the robot can take at each node (marker). Given a subset of
actions A(s) ⊆ A, for every two vertices in the deployed network graph s, s′ ∈ S
and a ∈ A(s) the robot should determine the transitional probability P (s′|s, a)
(probability of arriving at vertex s′ given that the robot started at vertex s and
commanded an action a). In our algorithm four actions are possible at every
vertex (marker) - East, West, South and North. Thus, for every action ai at
a given vertex s ∈ S and all other vertices s′ ∈ S − s the robot computes the
probability P (s′|s, ai) as the ratio of the number of transitions from s to s′ with
action ai to the number of times ai was commanded at vertex s. This ratio is
normalized to ensure that

∑
ai

P (s′|s, ai) = 1. Figure 5 shows a typical discrete
probability distribution for a vertex (marker) per action (direction). Note that
in practice the probability mass is distributed around neighboring nodes and
zero otherwise.

Our model for the proposed system is Markovian - the state the robot tran-
sitions to depends only on the current state and action. We simply model the
navigation problem as a Markov Decision Process [18]. To compute the best
action at a given vertex we use the Value Iteration [19] algorithm on the set
of vertices S − sg, where sg is the goal state. The general idea behind Value
Iteration is to compute the utilities for every state and then pick the actions
that yield a path towards the goal with maximum expected utility. The utility
is incrementally computed:

Ut+1(s) = C(s, a) + max
a∈A(s)

∑

s′∈S−s

P (s′|s, a) × Ut(s′) (1)
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where C(s, a) is the cost associated with moving to the next vertex. Usually the
cost is chosen to be a negative number which is smaller than −1/k where k is
the number of vertices. The rationale is that the robot should ‘pay’ for taking
an action (otherwise any path that the robot might take would have the same
utility), however, the cost should not be to big (otherwise the robot might prefer
to stay at the same state).

Initially the utility of the goal state is set to 1 and of the other states to 0.
Given the utilities, an action policy is computed for every state s as follows:

P (s) = arg max
a∈A(s)

∑

s′∈S−s

P (s′|s, a) × U(s′); (2)

The robot maintains a probabilistic transition model for the deployed network
graph, and can compute the action policy at each node for any destination point.
In practice however, this is limiting, since it requires the robot to traverse the
network many times over to learn the transition model. Further, another robot
deployed into the same environment would need to first traverse the deployed
network before it can navigate between any two points optimally.

One solution is for the robot to compute the action policy as above, and
while traversing the network record the optimal action for the current marker
as it passes by. Each marker can store this action and can emit it as part of the
direction suggestion packet (see Section 3). This would help other robots (which
may not yet have explored the entire space) use the information for navigation.
However, this solution is inefficient, since it is slow to adapt if the navigation
goal is changed.

5.2 Distributed Computation and In-Network Processing

A much more attractive solution is to compute the action policy distributively
in the deployed network. The idea is that every node in the network updates its
utility and computes the optimal navigation action (for a robot in its vicinity)
on its own. While traversing the deployed network the robot stores the transition
probabilities P (s′|s, a) on the corresponding markers. Then, if a robot wants to
navigate to a point in the environment it injects a Start Computation packet
into the network containing the target marker’s id. Every marker redirects this
packet to its neighbors using flooding. Markers that receive the Start Compu-
tation packet initialize utilities and the cost values depending on whether this
particular marker specified as a target or not. Every marker updates the utili-
ties according to equation 5.1. Note that the utilities of neighboring markers are
needed as well, hence, the marker queries its neighbors for corresponding utili-
ties. Since computation of some markers can proceed faster than of the others,
every marker stores computed utilities in a list, so that even if it’s being queried
by its neighbors for a utility several steps prior to the current one, the list is
accessed and the corresponding utility is sent.

After the utilities are computed, every marker computes an optimal policy
for itself according to equation 5.1. Neighboring markers are queried once again
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for the final utility values. The computed optimal action is stored at each marker
and is emitted as part of the MIN-packet (refer to section 3) for homing to the
goal.

This technique allows the robot to navigate through the environment between
any two nodes of the deployed network. Note that the action policy computation
is done only once, and does not need to be recomputed, unless the goal changes.
Also, note that utility update equations have to be executed until the desired
accuracy is achieved. For practical reasons the accuracy in our algorithm is set
to 10−3, which requires a reasonable number of executions of the utility update
equation per state and thus, the list of utilities that every marker needs to store is
small. Since the computation and memory requirements are small it is possible
to implement this approach on the real marker device that we are using (the
Mote [20]).

6 Simulation Experiment

We conducted a continuous experiment that would test the algorithm for reli-
ability and robustness to environmental changes, problems in the network and
would show the ability to deploy and maintain a network and use it for cover-
age/exploration and navigation. Thus, the scenario consists of four phases. In
Phase 1 the robot’s task is to deploy a network and cover/explore the environ-
ment completely. In Phase 2 we assume that certain nodes in the network failed
and require replacement, thus, the goal of the algorithm is to find the gap in the
network and replace the damaged nodes, while covering the environment. Phase
3 distorts the environment further, by introducing an extra space - a ”hidden
room” which also has to be covered. Then, the robot computes the transition
probabilities and stores the appropriate constants at every marker. In Phase 4,
we assume that another robot appears on the scene, which does not have any
prior knowledge about environment and the deployed sensor network. It executes
the same algorithm as the robot-deployer, but in this case the part of data packet
containing action policy for homing is preferred and used as a suggested direc-
tion of the marker. Note that even though the algorithm is robust against loss
of some data packets or imprecise compass readings, in simulations we assume
that the compass and radio properties are ideal.

6.1 First Phase

As shown in Figure 1b, the environment has been altered so that an initial map
of the environment would not be useful in coverage. Assuming that a mobile
robot with a set of markers have been introduced into the environment (thrown
in, dropped by an air vehicle, etc.). The robot starts deployment and cover-
age/exploration process at the same time. While deploying markers, the robot
updates its connectivity map. The deployment of the sensor network for this
stage of the scenario is presented on Figure 6 in sequence.
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(a) (b) (c) (d)

Fig. 6. Sequential deployment of network.

As shown on the above figure, the robot deployed the network over the whole
environment, while at the same time accomplishing coverage. Figure 9 represents
coverage values over the first three phases of the experiment.

6.2 Second Phase

As shown in Figure 7a, several nodes of the sensor network were removed (nodes
in the upper part of the figure are assumed to be malfunctioned or damaged). As
seen in the Figure 7, the gap in the network has been detected by the robot and
repaired. Note that the robot continued coverage of the environment(Figure 9)
and was not affected by the problems in the network.

6.3 Third Phase

In this phase of the experiment, we assume that certain perturbations occurred
in the environment so that the robot starts with the environment shown in
Figure 8a. Figure 8bc show expansion of the network by deployment of additional
markers into new open space by the robot. Note, that the problem of coverage
was not abandoned by the robot under the circumstances depicted in last three
phases. A unified view of cover time for three phases is shown in Figure 9. In
addition, the robot injects a Start Computation packet and the navigation field
is computed.

6.4 Fourth Phase

In the fourth, last phase, the trapped robot discovered a deployed sensor network.
The task is to use the navigational constant and to drive to the home area marked
with H (Figure 10a). Figure 10b shows the navigational field that was produced
by distributive computation of the optimal policy by the deployed network. The
path that the robot traverses is shown on Figure 10c.
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(a) (b) (c)

Fig. 7. Network repair. NR - area requiring repair

(a) (b) (c)

Fig. 8. Deployment of additional markers into the discovered open space.

7 Multi-robot Extensions

In this paper we presented an approach with several different capabilities and ap-
plications. The system has potential for the multi-robot domain (robot-deployer
and robot-navigator is one example). The ability of the deployed network to
respond to queries of different robots (with distinguishing tasks) in a different
manner and thus, serving as a multi purpose infrastructure, enables, for exam-
ple, solutions to problems requiring heterogeneous groups of robots. Imagine a
scenario of a construction site which requires cooperation of two distinguishing
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Fig. 10. Robot navigation through the environment

groups of robots - transporters and builders. Transporters concentrate on deliv-
ering the materials to several piles while builders choose the type of material
they need at the moment from a corresponding pile and continue construction.
Thus, the query of a transporter robot leads to a shortest path towards the ma-
terial storage or towards the pile that requires certain material the most. While
the builder robot would be directed towards a pile with required material or
towards another builder needing assistance. In other words, the network can be
used as a distributed multi functional manager, which can also be used for task
coordination.

Another path for multi-robot extensions of the proposed approach is that
the network can be used as an intermediate storage of local data. For example,
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Fig. 11. Screen shots of a preliminary physical experiment.

a group of robots might be working on coverage or mapping in local sub areas.
Robots then can exchange information about their local discoveries through the
deployed network.

8 Conclusions and Future Work

We presented an algorithm for coverage and exploration through the utilization
of a deployed network. Several capabilities of the algorithm were demonstrated
- network deployment and repair, probabilistic navigation, coverage and explo-
ration, and robustness to environmental and network changes. An experimental
scenario was executed which tested the above mentioned capabilities. Through-
out the execution of the scenario cover time was measured. The cover time shows
that despite perturbations to the environment and network, the robot was able
to maintain coverage. As mentioned in the previous section, the presented ap-
proach is extendable to multi-robot applications, in which the network can be
thought of as a multi-purpose task manager.

A scheme for probabilistic navigation is also presented, however, not exten-
sively tested. In this instance, the network assists the robot in the navigation
by the fact that the robot is always localized within the sensor network, and
therefore there is no need for feature detection or prior knowledge of a map.
Note, however, that the probabilistic navigation was not incorporated to assist
the coverage task itself. A clear extension is to navigate from an explored subset
of nodes to an unexplored subset, which would essentially reduce the problem
of coverage to that of search.

The proposed probabilistic navigation scheme is distributed, which improves
performance and allows robots that do not have prior information about the
deployed network to navigate between any two markers in the environment.

One of the major ideas behind our approach is that the deployed network can
be used in collaboration with mobile robots. This allows us to design a minimalist
algorithm which does not require a map of the environment or GPS. In addition,
metric localization does not take place. The tradeoff is the assumption that the
number of available markers is infinite and that markers are not a scarce resource,
which is a reasonable assumption nowadays [20].
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The results presented in this work were conducted in simulation. Figure 11
shows some of the screen shots of a preliminary experiment using hardware.
Experiments are in progress using a Pioneer 2DX mobile robot equipped with
180◦ laser range finder, compass and wireless ethernet and a set of Motes (as
markers) equipped with CPU, RAM and radio of adjustable signal strength. The
experiments suggest that the proposed approach is valid.
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Abstract. Target classification fusion problem in a distributed, wireless
sensor network is investigated. We propose a distance-based decision fu-
sion scheme exploiting the relationship between sensor to target distance,
signal to noise ratio and classification rate, which requires less communi-
cation while achieving higher region classification rate when compared to
conventional majority-vote based fusion schemes. Several different meth-
ods are tested, and very encouraging simulation results using real world
experimental data samples are also observed.

1 Introduction

It will soon become feasible to deploy massive amount of low-cost miniature sen-
sors to monitor large regions over ground surface, underwater, or atmosphere.
These sensor nodes will be integrated with miniature power supply, sensors, on-
board processors, and wireless radio communication modules, capable of form-
ing a large-scale ad hoc wireless network [3]. Common signal processing tasks
performed in a sensor system include event detection, and parameter estima-
tion. While these detection, classification, and tracking algorithms have been
well developed for conventional centralized signal processing systems, much less
is known for a distributed wireless sensor network system. A distinct feature
of such a system is that it contains multiple, physically scattered sensing and
processing modules that must collaborate with each other to achieve high per-
formance. Conventional centralized information and data fusion techniques are
unsuited for such an application because too much data must be communicated
from individual sensors to a centralized fusion center. Instead, a family of novel
distributed, localized, and location centric signal processing and information fu-
sion algorithms must be developed to meet this demand.

In this paper, we propose a distance-based decision fusion method for the
collaborative target classification of moving vehicles using acoustic spectral fea-
tures. A key innovation of this approach is to use the distance between the target
and the sensor as a parameter to select sensors that give reliable classification
result to participate decision fusion. Intuitively, sensors that are far from the
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target will have lower probability of making correct classification decisions. This
intuitive concept is verified using real world experimental data recorded at a
military training ground using a prototype wireless sensor network. In the rest
of this paper, the background of wireless sensor network architecture will be in-
troduced in section 2.1. The sensor network signal processing algorithms will be
surveyed in section 2.2 with special attention to the task of target classification
and its performance with respect to sensor-target distance. The distance-based
classification fusion method will be discussed in section 3, completed with sim-
ulation results using real world experimental data.

2 Distributed Wireless Sensor Network Signal Processing

2.1 Wireless Sensor Nodes and Network

We assume that a number of sensor nodes are deployed in an outdoor sensor field.
Each sensor node consists of an on-board computer, power source (battery), one
or more sensors with different modalities, and wireless transceivers. Depicted
in Figure 1(a) is a prototype sensor node used in the DARPA SensIT project,
manufactured by Sensoria, Inc. With this sensor node, there are three sensing
modalities: acoustic (microphone), seismic (geophone), and infrared (polarized
IR sensor). The acoustic signal is sampled at 5 kHz at 12 bit resolution. The on-
board computer is a 32-bit RISC processor running the Linux operating system.

Fig. 1. (a) A Sensoria sensor node, (b) sensor field layout

The sensor field (c.f. Figure 1(b)) is an area of approximately 900 × 300 me-
ters in a California Marine training ground. The sensors, denoted by dots of
different colors in Figure 1(b) are layout along side the road. The separation of
adjacent sensors ranges from 20-40 meters. We partition the sensors into three
geographically local regions. Sensors within each region will be able to commu-
nicate freely. One sensor within each region is designated as a manager node.
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The manager node will be given the authority to communicate with manager
nodes of surrounding regions. This hierarchy of communication ensures that only
local wireless traffic will be engaged, and hence contributes to the goal of energy
conservation.

Military vehicles, including the Assault Amphibian Vehicle (AAV), the
Dragon Wagon (DW), the High Mobility Multipurpose Wheeled Vehicle
(HMMWV), and others are driving passing through the roads. The objective
is to detect the vehicles when they pass through each region. The type of the
passing vehicle then will be identified, and the accurate location of that vehicle
will be estimated using an energy-based localization algorithm. In the following
discussion, we will assume there is at most one vehicle in each region. During
the experimentation in November 2001, multi-gigabyte data samples have been
recorded and are used in this paper. We will call these data Sitex02 data set.

2.2 Sensor Network Signal Processing Tasks

In a distributed wireless sensor network, the bulk of signal processing tasks
are distributed over individual nodes. In particular, at each sensor node, the
on-board computer will process the sensed acoustic, seismic and PIR data to
detect the presence of a potential target, and to classify the type of vehicle that
is detected. In this paper, we will focus on the processing of acoustic sensing
channel only.

CFAR Target Detection. For each of the 0.75 second duration, the energy of
the acoustic signal will be computed. This single energy reading then will be fed
into a constant false alarm rate (CFAR) energy detector [6] to determine whether
the current energy reading has a magnitude that exceeds a computed threshold.
If so, a node-detection event will be declared for this duration. Otherwise, the
energy reading is considered as contributions from the background noise.

Fig. 2. Illustration of CFAR detection. The upper line is the threshold. Vertical axis
is energy. When the energy exceeds the threshold, detection is made
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In Figure 2, a sample energy time series is plotted for a period of 500 sec-
onds. The two horizontal lines represent the threshold with two different false
alarm rates. These thresholds vary with time as they are updated by the energy
readings that do not exceed the thresholds.

From Figure 2, it is clear that when the background noise energy increases,
the threshold increases as well. If the signal energy distribution, which is assumed
to be unknown in the CFAR detection, remains unchanged, the probability of
miss will increase. Furthermore, in this out-door, unrestricted environment, we
observe that when the wind-gusts blow directly into the microphone, it often
create a surge of false detection events. These anomalies are likely to cause
performance degradation.

Target Classification. Once a positive target-detection decision has been
made, a pattern classifier using Maximum likelihood pattern classifier [6] is in-
voked. The acoustic signal is recording usinga sampling frequency of 4960 Hz.
We use a 50 dimensional feature vector based on the Fourier power spectrum
of the corresponding acoustic time series within the 0.75-second duration. This
feature is created by averaging by pairs the first 100 points of the 512-point FFT,
which are then normalized; the resolution of the frequency spectrum sampling is
19.375 Hz due to the averaging. Some typical features can be seen in Figure 3.

Fig. 3. Figure of typical normalized acoustic features for different vehicle classes.

Since the original acoustic time series contains both the acoustic signal sensed
from the moving vehicle as well as background noise, the probability of correct
classification may vary as the signal to noise ratio changes. It is intuitive to pre-



396 M. Duarte and Y.-H. Hu

dict that if a sensor node is far away from the target vehicle, its SNR is lower, and
hence the probability of correct classification will be lower. This is particularly
easy to explain based on the maximum likelihood classifier architecture. In the
ML classifier, we assume that the feature vector x is drawn from a conditional
probability (likelihood function):

P (x|k) ∼ exp
{−1

2
(x − xk)T Σ−1

k (x − xk)
}

. (1)

where x|k is the mean feature vector of kth type of vehicle and Σk is the co-
variance matrix estimated from the training data samples. The ML classifier
determines that x belongs to the k∗ class of vehicle if P (x|k∗) > P (x|k) for any
k �= k∗. As x is perturbed with higher background noise, it is more likely that
the margin

P (x|k∗) − max
k�=k∗

(P (x|k)) . (2)

will shrink. As such, the probability of misclassification will increase. The level of
noise can be determined calculating the signal to noise ratio SNRdB, and should
be inversely proportional to the distance between the node and the vehicle. To
validate this conclusion, we conducted an experiment using a portion of the
Sitex02 data set that was recorded when a vehicle is cruising across the east-
west segment of the road in the sensor field. With the ground-truth data, we
calculate the relative average distance between each sensor to the vehicle as well
as the SNRdB for each node during each 0.75-second interval. We also perform
target classification using the FFT spectrum of the acoustic signal during that
interval, and record the classification result based on Distance and SNRdB.

Then, we collect such results for all the nodes in both regions that cover the
road segment and compiled them into a histogram as shown in Figure 4. It is
quite clear that as the target-sensor distance increases and the signal to noise
ratio decreases, the probability of correct target classification decreases. In fact,
this probability dropped below 0.5 when the target-sensor distance is greater
than 100 meters. This empirically derived probability of correct classification
will offer great information to facilitate the development of a distance-based,
region-wide classification fusion method to be discussed in a moment.

Region-Based Information Fusion. Within a short message submitted by
individual sensor nodes to the manager node of the region, information is sent
on the corresponding energy reading (a non-negative number), CFAR detection
result (yes/no), classification result (one integer k), and detection results of PIR
and seismic channels. Hence, its length is less than 30 bytes and would take little
energy and bandwidth to transmit via the wireless channel.

At the region manager node, information fusion tasks will be performed.
First, a region-wide detection decision will be made by majority votes from
all sensor nodes that reported detection at any of the three sensing modality
channels. If the sum of all these votes exceeds a preset threshold, it is deemed
that there is indeed a vehicle present within the region. This will then trigger
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an energy-based target localization algorithm [5] to yield an estimate of the
vehicle location. The location information then will be sent to a Kalman filter
based tracking algorithm to facilitate data association, track filtering and track
prediction. Details of these tasks will be reported in the near future.

3 Distance Based Classification Fusion

Apart from the localization and tracking of the target, it is also necessary to clas-
sify the type of vehicle within the region based on target classification results
reported from member sensor nodes. Note that in our current system archi-
tecture, the target localization may be performed prior to region-wide target
classification. Hence, if the target position is relatively accurate, it is possible to
use the estimated target location and known sensor coordinates to calculate the
target-sensor distance. Then, one may estimate the empirically derived proba-
bility of correct classification at a particular sensor node based on the distance
information as described in section 3.

3.1 Data Fusion

Statistically speaking, data fusion [2] is the process of estimating the joint pos-
terior probability (likelihood function in the uninformed prior case) based on
estimates of the marginal posterior probability. Let x(i) denote the feature vec-
tor observed at the ith sensor node within the region, Ck denotes the kth type
of vehicle, the goal is to identify a function f(·) such that

P (x ∈ Ck|x(1), . . . , x(N))
�
= P (x ∈ Ck|x).
≈ f(g(P (x ∈ Ck|x(i))), 1 ≤ i ≤ N) . (3)

In our current work, we let the maximum function g(zk) = 1 if zk > zj , k �= j,
and g(zk) = 0 otherwise. Hence, our approach is known as decision fusion. Con-
ventionally, there are two basic forms of the fusion function f .

Multiplicative Form. If we assume that x(i) and x(j) are statistically inde-
pendent feature vectors, then

P (x ∈ Ck|x) =
N∏

i=1

P (x ∈ Ck|x(i)) . (4)

This approach is not realistic in the sensor network application and cannot
be easily adapted to a decision fusion framework.
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Additive Form. The fusion function is represented as a weighted sum of the
marginal posterior probability or local decisions:

∧
P (x ∈ Ck) =

N∑
i=1

wigi(P (x ∈ Ck|x(i))) . (5)

A baseline approach of region-based decision fusion would be simply choose
wi = 1 for 1 ≤ i ≤ N . This would be called the simple voting fusion method.

3.2 Maximum A Posterior Decision Fusion

With distance-based decision fusion, we make each of the weighting factors wi in
equation 4 a function of distance and signal to noise ratio, that is wi = h(di, si)
where di is the distance between the ith sensor and the target and si is the signal
to noise ratio defined as

SNRdB = 10 · log10

(
Es − En

En

)
. (6)

where Es is the signal energy and En is the noise mean energy, both determined
by the CFAR detection algorithm. We can use then the characterization gathered
from the experiment referred in section 2 to formulate a Maximum A Posterior
(MAP) Probability Gating network, using the Bayesian estimation

∧
P (x ∈ Ck) = P (x ∈ Ck|x, di, si) · P (x|di, si) · P (di, si) . (7)

The prior probability P (di, si) is the probability that the target is at the dis-
tance range di, and the acoustic signal SNRdB is at the si range, and can be esti-
mated empirically from the experiments. The conditional probability P (x|di, si)
is also available from the empirically gathered data. With these, we may simply
assign the following weights in eq. 5:

wi = P (x|di, si) · P (di, si) . (8)

In other words, if a particular sensor’s classification result is deemed as less
likely to be correct, it will be excluded from the classification fusion.

We now have another possible choice of wi. That is,

wi =
{

1 di < dj , j �= i
0 otherwise . (9)

This choice of weights represents a nearest neighbor approach, where the
result of the closest node to the target is assumed to be the region result.

We can use other choices that are functions only of distance. In this work,
we use a simple threshold function:

wi =
{

1 di ≤ dmax

0 otherwise . (10)
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We compare these three different methods of choosing wi to the baseline
method of setting wi = 1 for all i, and test them using seven different experiments
in the Sitex02 data set, using one out of n training and testing. Our metrics are
the classification rate and the rejection rate.

The classification rate is the ratio between the number of correctly classified
samples and the total numbered of samples classified as vehicles. The rejection
rate is the rate between the number of samples rejected by the classifier and the
total number of samples ran through the classification algorithm. Consequen-
tially, the acceptance rate is the complement of the rejection rate.

There are two rejection scenarios with our current classifier scheme; one is
at the node level, where one of the classes characterized during training collects
typical samples of events with high energy that do not correspond to vehicles.
These events are incorrectly detected and include such noises as wind, radio
chatter and speech. The other is at the region level, where the region fusion
algorithm does not specify satisfactorily a region classification result, i.e. no
nodes were closer than dmax to the vehicle for the distance-based region fusion
algorithm.

It is desired to obtain high classification rates while preserving low rejection
rates. The results are listed in Tables 1 and 2. To analyze the impact of local-
ization errors in the different methods, errors were injected to the ground truth
coordinates following a zero-mean Gaussian distribution with several standard
deviations. The results are shown in Tables 3 to 8.

Table 1. Classification rate fusion results using 4 methods

Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 77.19% 80.82% 83.55% 75.58%
AAV3 33.87% 50.79% 73.33% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 90.63% 84.31% 91.84%
DW3 80.00% 83.78% 85.71% 82.50%
DW6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 75.00% 75.86% 63.33%
DW12 70.00% 65.52% 65.63% 64.29%

3.3 Results and Analysis

For Tables 1 to 8, the cells that give the highest classification rate are highlighted,
including tied cases. It is seen that Nearest Neighbor method yields out the best
results consistently when the error is low or nonexistent - in 9 out of 14 cases. The
distance-based and MAP-based methods give comparable results in cases where
the error is larger (each method has the highest rate in 4 to 6 cases out of 14).
However, the rejection rates are unacceptable for the distance-based method,
even with nonexistent error, with an average of 35%.
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Table 2. Rejection rate fusion results using 4 methods

Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 9.53% 21.56% 7.40% 10.40%
AAV3 3.13% 1.56% 6.25% 7.81%
AAV6 4.29% 27.14% 2.86% 7.14%
AAV9 3.92% 37.25% 0.00% 3.92%
DW3 4.76% 11.90% 0.00% 4.76%
DW6 6.06% 9.09% 0.00% 0.00%
DW9 14.29% 31.43% 17.14% 14.29%
DW12 30.23% 32.56% 25.58% 34.86%

Table 3. Classification rate fusion results using 4 methods, and error injection with
σ = 12.5 m

Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 77.14% 80.51% 81.89% 75.58%
AAV3 32.79% 56.45% 67.21% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 93.88% 90.63% 84.31% 91.84%
DW3 80.00% 81.08% 83.33% 82.50%
DW6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 78.26% 75.86% 63.33%
DW12 66.67% 57.14% 62.50% 64.29%

Table 4. Rejection rate fusion results using 4 methods, and error injection with σ =
12.5 m

Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 9.75% 22.32% 7.40% 10.40%
AAV3 4.69% 3.13% 6.25% 7.81%
AAV6 4.29% 25.71% 2.86% 7.14%
AAV9 3.92% 37.25% 0.00% 3.92%
DW3 4.76% 11.90% 0.00% 4.76%
DW6 6.06% 9.09% 0.00% 0.00%
DW9 14.29% 34.29% 17.14% 14.29%
DW12 30.23% 34.88% 25.58% 34.86%

Figure 6 shows the average performance of the different methods for all the
error injection scenarios. The results of the error impact experiments show that
the MAP-based classification fusion is not heavily affected by the error injection;
the change for the classification rate is less than 0.1% in average for an error
injection up to σ = 50 m and the rejection rate increases 0.1% in average. The
effects on the other methods are more pronounced, with a change of 3% in
average in classification rate for the Nearest Neighbor method and an increase
of 24% in the rejection rate of the distance-based method.
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Table 5. Classification rate fusion results using 4 methods, and error injection with
σ = 25 m

Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 77.74% 79.42% 79.29% 75.56%
AAV3 37.70% 54.39% 55.36% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 100.00% 88.24% 91.84%
DW3 80.00% 82.86% 80.95% 82.50%
DW6 100.00% 100.00% 100.00% 100.00%
DW9 66.67% 72.00% 72.41% 63.33%
DW12 70.00% 46.67% 58.06% 64.29%

Table 6. Rejection rate fusion results using 4 methods, and error injection with σ = 25
m

Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 9.75% 24.78% 8.63% 10.40%
AAV3 4.69% 10.94% 12.50% 7.81%
AAV6 4.29% 30.00% 2.86% 7.14%
AAV9 3.92% 50.98% 0.00% 3.92%
DW3 4.76% 16.67% 0.00% 4.76%
DW6 6.06% 6.06% 0.00% 0.00%
DW9 14.29% 28.57% 17.14% 14.29%
DW12 30.23% 30.23% 27.91% 34.88%

Table 7. Classification rate fusion results using 4 methods, and error injection with
σ = 50 m

Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 77.74% 80.48% 76.72% 75.58%
AAV3 37.70% 51.28% 39.29% 27.12%
AAV6 100.00% 100.00% 100.00% 100.00%
AAV9 89.80% 95.00% 86.27% 91.84%
DW3 80.00% 84.62% 78.57% 82.50%
DW6 100.00% 95.24% 96.97% 100.00%
DW9 66.67% 72.22% 71.43% 63.33%
DW12 70.00% 65.00% 64.52% 64.29%

These experiments show higher classification rates for the MAP and Near-
est Neighbor approaches compared to the baseline majority voting approach,
while maintaining comparable acceptance rates. Further research is needed on
additional considerations to avoid transmission of node classifications that have
low probability of being correct; it is expected that both the Nearest Neigh-
bor method and an adapted minimum-threshold MAP-based method will easily
allow for these additions.



Distance Based Decision Fusion in a Distributed Wireless Sensor Network 403

Table 8. Rejection rate fusion results using 4 methods, and error injection with σ = 50
m

Fusion MAP Bayesian dmax = 50 m Nearest Neighbor Majority Voting
Method 9.95% 46.01% 9.24% 10.40%
AAV3 4.69% 39.06% 12.50% 7.81%
AAV6 5.71% 45.71% 4.29% 7.14%
AAV9 3.92% 60.78% 0.00% 3.92%
DW3 4.76% 38.10% 0.00% 4.76%
DW6 6.06% 36.36% 0.00% 0.00%
DW9 14.29% 48.57% 20.00% 14.29%
DW12 30.23% 53.49% 27.91% 34.88%
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Abstract. In this paper we study a dynamic sensor selection method
for Bayesian filtering problems. In particular we consider the distributed
Bayesian Filtering strategy given in [1] and show that the principle of mu-
tual information maximization follows naturally from the expected un-
certainty minimization criterion in a Bayesian filtering framework. This
equivalence results in a computationally feasible approach to state esti-
mation in sensor networks. We illustrate the application of the proposed
dynamic sensor selection method to both discrete and linear Gaussian
models for distributed tracking as well as to stationary target localization
using acoustic arrays.

1 Introduction

There has been renewed interest in the notion of deploying large numbers of
networked sensors for applications ranging from environmental monitoring to
surveillance to “intelligent” rooms(c.f. [2]). Envisioned are smart sensor nodes
with on-board sensing, computation, storage and communication capability.
Such sensor networks simultaneously present unprecedented opportunities and
unique challenges in collaborative signal processing. A particular challenge in
the wireless sensor network setting is the need for distributed estimation al-
gorithms which balance the limited energy resources at a node with costs of
communication and sensing.

If one considers the distributed tracking problem, for example, it is not hard
to imagine that one need not incorporate every sensor measurement in order to
compute a reliable, if not optimal, estimate of the state of an object (or more
properly the posterior distribution thereof). This is particularly true in the case
where sensors have a limited field of regard with limited overlap between sen-
sors. Distributed processing strategies that use a subset of sensor measurements
directly mitigate the volume of inter-node communication thereby conserving
power. The challenge is to decide in an intelligent manner which sensor mea-
surements to use.

In the context of just such a scenario, Zhao et al. [1] recently suggested a
novel approach, the Information-Driven Sensor Querying (IDSQ) algorithm, as
a means of selecting the “best” sensor measurement for updating the posterior

F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 405–416, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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belief of an object’s state. In that work, a utility measure of a node measurement
was proposed based on an estimate of the expected posterior state distribution
conditioned on the, as yet unobserved, measurement at that node. This led to a
direct method of selecting which node to query.

In this paper we further investigate aspects of one of the information utility
functions suggested in [1,3], specifically state uncertainty as quantified by con-
ditional entropy. We begin by formulating the problem in a Bayesian estimation
framework (as is commonly done) and decomposing state estimation into predic-
tion (prior belief) and update (posterior belief) steps. We first show that, not sur-
prisingly, functions which attempt to select the next sensor measurement based
on expected posterior belief do nothing more than exploit information already
contained in the prior belief as both are the same prior to taking a measurement.
Consequently, utility functions based on expected posterior beliefs are more prop-
erly cast as utility functions on the prior belief (i.e. the belief over the current
set of measurements). Next we consider the expected posterior uncertainty as
quantified by conditional entropy (conditioned on previous measurements and a
single new measurement) indexed by sensors. We show that this utility function
simplifies to selecting the sensor measurement which has maximum mutual infor-
mation with the object state at the next time step. The primary consequence of
this analysis is that the utility function can be computed in a lower-dimensional
space and, importantly, in a computationally feasible manner.

We present three experimental examples. The first example uses a simple
discrete model to illustrate the maximum mutual information principle. The
second example discusses the application of the maximum mutual information
based sensor selection method to linear Gaussian Models. The third example is
a simulation study of a stationary target localization problem using an acoustic
array.

2 Bayesian Filtering with Dynamic Sensor Selection

We adopt a probabilistic state space model for the tracking problem. The state
of the target at time step (t) is denoted by x(t). In this paper we will assume
that the state space for the tracking problem can be approximated with a finite
state space {xi}N

i=1. The sensor network consists of M sensors. Each sensor can
be queried to provide a noisy measurements z

(t)
j of the state of the target. The

state transition and observation model is given as:

x(t+1) = F (x(t), v(t))
⇒ q(x(t+1)|x(t)) (1)

z
(t)
j = Hj(x(t), w(t))

⇒ fj(z
(t)
j |xj) (2)

where F and Hj are arbitrary functions of the state and unknown disturbance
variables v(t) and w(t). The state space model suggests a conditional probability
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distribution q(x(t+1)|x(t)) for the target state at time (t + 1) and a conditional
probability density fj(z

(t)
j |xj) for the j’th sensors measurement.

The Bayesian filtering solution recursively calculates degree of belief in a
state x(t+1), given the sensor measurements. The prediction step computes the
prior belief in state x(t+1) before a measurement is taken at (t + 1):

p(x(t+1)|z(t)) =
∑

i

q(x(t+1)|x(t)
i )p(x(t)

i |z(t)) . (3)

The update step computes the posterior belief in state x(t+1) after the measure-
ment at (t + 1):

p(x(t+1)|z(t+1)) =
fj(z(t+1)|x(t+1))p(x(t+1)|z(t))

gj(z(t+1)|z(t))
, (4)

where z(t) denotes the measurements {z(1), z(2), . . . , z(t)} up to time (t). The
normalization constant gj(z(t+1)|z(t)) can be computed using:

gj(z(t+1)|z(t)) =
∑

i

fj(z(t+1)|xi)p(xi|z(t+1)) . (5)

Zhao et al. [1] describes a strategy for tracking problems to implement
Bayesian Filtering in a distributed setting. At each time step one sensor node la-
beled as the leader makes a measurement and computes the belief p(x(t+1)|z(t)).
Then it select a sensor node to lead the tracking effort and passes the current
belief to the chosen leader node. The next sensor to lead the tracking algorithm
can be chosen to maximize a utility function of the form:

U(z(t) ∪ z
(t+1)
j ) = −H[p(x(t+1)|z(t) ∪ z

(t+1)
j )]

=
∑

i

p(x(t+1)
i |z(t) ∪ z

(t+1)
j ) log p(x(t+1)

i |z(t) ∪ z
(t+1)
j ) ,

where U(z(t) ∪ zt
j) is the utility received from decreased uncertainty in the state

of the target, which is measured as the entropy of the conditional probability
density of x(t+1) given the sensor measurements up to time (t + 1). This utility
function can be augmented with the communication cost of relaying the current
belief from the current leader to the next. For example, the communication cost
component of the utility can encompass the bandwidth utilization, transmission
and reception power costs.

In this paper we focus on estimable measures of information utility, but a
suitable communication cost can easily be integrated with our approach. Typ-
ically the measurement for the next sensor is unknown at (t + 1). Further, the
expectation of the posterior belief p(x(t+1)|z(t) ∪ zt

j) is equal to the predicted

belief p(x(t+1)|z(t))).

E[p(x(t+1)|z(t) ∪ z
(t+1)
j )|z(t)]
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= E

[
fj(z

(t+1)
j |x(t+1))p(x(t+1)|z(t))

gj(z
(t+1)
j |z(t))

∣∣∣z(t)

]

= p(x(t+1)|z(t))E

[
fj(z

(t+1)
j |x(t+1))

gj(z
(t+1)
j |z(t))

∣∣∣z(t)

]

= p(x(t+1)|z(t))
∫

z∈Zj

fj(z|x(t+1))

gj(z|z(t))
gj(z|z(t))dz

= p(x(t+1)|z(t))
∫

z∈Zj

fj(z|x(t+1))dz

= p(x(t+1)|z(t)) .

Zhao et al. [1] compute a proxy p̂((x(t+1)|z(t) ∪ z
(t+1)
j ) to the expected pos-

terior belief by averaging fj(z
(t+1)
j |x(t+1)) over estimated measurement values

using predicted belief. Although, this approximation to the expected posterior
belief will not be equal to the predicted belief, the above result indicates that
any utility measure based on expected posterior belief will be of limited use for
sensor selection. Instead we employ an expected posterior uncertainty measure
for sensor selection. In particular, we consider the expected posterior entropy,
one of the information measures suggested in [3]:

ĵ = arg max
j∈V

E
[
−H(p(x(t+1)|z(t) ∪ zt

j))|z(t)
]

.

In other words the sensor which will result in the smallest expected posterior un-
certainty of the target state will be chosen to be the leader node of the tracking
algorithm. In general, a direct computation of the expected posterior entropy
is computationally infeasible. It requires computing the posterior belief for each
possible measurement value and then averaging the entropy of the computed
posterior belief over all possible measurement values. Even if the measurement
space is discretized it requires computationally expensive calculations in the high
dimensional state space. In the following, we show that maximizing the mutual
information between the sensor output and target state is equivalent to mini-
mizing expected posterior uncertainty. This observation yields a computationally
feasible sensor selection method based on a maximum mutual information prin-
ciple. The expected entropy of the posterior density can be evaluated using 3
and 4.

E
[
−H(p(x(t+1)|z(t) ∪ zt

j))|z(t)
]

=
∫

z∈Zj

(
∑

i

p(x(t+1)
i |z(t) ∪ {z}) log p(x(t+1)

i |z(t) ∪ {z})

)
qj(z|z(t))dz

=
∫

z∈Zj

∑

i

fj(z|x(t+1)
i )p(x(t+1)

i |z(t)) log
fj(z|x(t+1)

i )p(x(t+1)
i |z(t))

gj(z|z(t))
dz



Maximum Mutual Information Principle 409

=
∑

i

(∫

z∈Zj

fj(z|x(t+1)
i ) log fj(z|x(t+1)

i )dz

)
p(x(t+1)

i |z(t))

−
∫

z∈Zj

gj(z|z(t)) log gj(z|z(t))dz

+
∑

i

p(x(t+1)
i |z(t)) log p(x(t+1)

i |z(t))

= −H(Z(t+1)
j |X(t+1)) + H(Z(t+1)

j ) − H(X(t+1))

= I(Z(t+1)
j ; X(t+1)) − H(X(t+1))

We note that the second term does not depend on the sensor measurement at
(t+1). Hence, in a Bayesian Filtering framework minimizing the expected uncer-
tainty in the posterior belief is equivalent to maximizing the mutual information
between the state X(t+1) and measurement vector Z

(t+1)
j .

3 Applications

3.1 Example 1: Discrete Observations

We consider a simple two state, two sensor problem to illustrate the concepts
presented in Section 2. There are two possible states for the target x(t) ∈ {−1, 1}.
The state transition model is given by:

x(t+1) = F (x(t), v(t)) = x(t)v(t) . (6)

where v(t) is a binary random variable which takes values {−1, 1} with probabil-
ity q and 1 − q respectively. The observation model for the two sensors is given
by.

z
(t)
1 = H1(x(t), w(t)) = sgn(x(t) + w

(t)
1 ) (7)

z
(t)
2 = H2(x(t), w(t)) = sgn(x(t) − w

(t)
2 ) (8)

The state space model suggests the following conditional probability distri-
butions for state x(t+1) and sensor measurement zj(t).

p(x(t+1) = 1|x(t)) = 1 − p(x(t+1) = −1|x(t)) =
{

1 − q if x(t) = 1
q if x(t) = −1

f1(z
(t)
1 = 1|x(t)) = 1 − f1(z

(t)
1 = −1|x(t)) =

{
1 if x(t) = 1
r if x(t) = −1

f2(z
(t)
2 = −1|x(t)) = 1 − f2(z

(t)
2 = 1|x(t)) =

{
r if x(t) = 1
1 if x(t) = −1

i.e., sensor 1 makes an erroneous measurement with probability r if the state
is −1, and sensor 2 makes an erroneous measurement with probability r if the
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state is 1. For this simple model we can parametrize the prior and posterior
belief using a scalar variable:

p(t+1)|(t) def= p(x(t+1) = 1|z(t)) (9)

p(t+1)|(t+1) def= p(x(t+1) = 1|z(t+1)) (10)

We can verify that the expected posterior belief E[p(t+1)|(t+1)|z(t)] is equal to
the prior belief p(t+1)|(t) irrespective of the sensor choice at time (t+1). If sensor
1 is queried at time (t + 1),

E[p(t+1)|(t+1)|z(t)]

= p(x(t+1) = 1|z(t) ∪ {z(t+1)
1 = 1})p(z(t+1)

1 = 1|z(t))

+p(x(t+1) = 1|z(t) ∪ {z(t+1)
1 = −1})p(z(t+1)

1 = −1|z(t))

=
p(t+1)|(t) · 1

p(t+1)|(t) · 1 + (1 − p(t+1)|(t)) · r
(p(t+1)|(t) · 1 + (1 − p(t+1)|(t)) · r)

+
p(t+1)|(t) · 0

p(t+1)|(t) · 0+(1 − p(t+1)|(t)) · (1 − r)
(p(t+1)|(t) · 0+(1 − p(t+1)|(t)) · (1 − r))

= p(t+1)|(t) .

Similarly if sensor 2 is queried at time (t + 1),

E[p(t+1)|(t+1)|z(t)]

= p(x(t+1) = 1|z(t) ∪ {z
(t+1)
2 = 1})p(z(t+1)

2 = 1|z(t))

+p(x(t+1) = 1|z(t) ∪ {z
(t+1)
2 = −1})p(z(t+1)

2 = −1|z(t))

=
p(t+1)|(t) · (1 − r)

p(t+1)|(t) · (1 − r)1+(1 − p(t+1)|(t)) · 0
(p(t+1)|(t) · (1 − r)+(1 − p(t+1)|(t)) · 0)

+
p(t+1)|(t) · r

p(t+1)|(t) · r + (1 − p(t+1)|(t)) · 1
(p(t+1)|(t) · r + (1 − p(t+1)|(t)) · 1)

= p(t+1)|(t) .

The mutual information between state at time (t + 1) and sensor j’s output
is given by:

I(Z(t+1)
1 ; X(t+1)) = H(Z(t+1)

1 ) − H(Z(t+1)
1 |X(t+1))

= H((1 − p(t+1)|(t))(1 − r)) − (1 − p(t+1)|(t))H((1 − r))

I(Z(t+1)
2 ; X(t+1)) = H(Z(t+1)

2 ) − H(Z(t+1)
2 |X(t+1))

= H(p(t+1)|(t)(1 − r)) − p(t+1)|(t)H((1 − r)) ,

where the function H is defined as H(x) = −x log(x) − (1 − x) log(1 − x). It is
easy to verify that I(Z(t+1)

1 ;X(t+1)) > I(Z(t+1)
2 ;X(t+1)) for p(t+1)|(t) > 0.5. For
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this example minimizing the expected entropy of posterior belief is equivalent to
choosing the sensor that is ideal for the most likely state.

3.2 Example 2: Linear Gaussian Model

In this section we consider the sensor selection for the Bayesian filtering problem
with linear Gaussian models. We assume the following linear state space model:

x(t+1) = Fx(t) + v(t) (11)

z
(t)
j = Hjx

(t) + w(t) (12)

We assume the disturbances v(t), w(t) are zero mean Gaussian processes with
covariances Σv and Σw respectively. For a linear Gaussian model and Gaus-
sian prior belief p(x(t)|z(t)), it can be proved that both p(x(t+1)|z(t)) and
p(x(t+1)|z(t+1)) are also Gaussian [4]. The mean and covariance for p(x(t+1)|z(t))
and p(x(t+1)|z(t+1)) can be computed using the mean and covariance of
p(x(t)|z(t)) and the measurement z(t+1) through Kalman filter recursions.

The observation model in 12 suggests a normal conditional distribution for
z
(t+1)
j :

fj(z
(t+1)
j |x(t+1)) = N (z(t+1)

j ; Hjx
(t+1), Σw) , (13)

where N (y; µ, Σ) denotes the Gaussian distribution with mean µ and Σ:

N (y; µ, Σ) def= ((2π)n|Σ|)−0.5 exp
(−(y − µ)T Σ−1(y − µ)

)
.

Given the predicted belief p(x(t+1)|z(t)) = N (x(t+1); µ(t+1)|(t+1), Σ(t+1)|(t+1)) we
can derive the distribution for j’th sensors measurement at time (t + 1) as:

gj(z
(t+1)
j |z(t)) =

∫
fj(z

(t+1)
j |x(t+1))p(x(t+1)|z(t))dx(t+1)

=
∫

N (z(t+1)
j ; Hjx

(t+1), Σw)N (x(t+1);µ(t+1)|(t+1), Σ(t+1)|(t+1))dx(t+1)

= N (z(t+1)
j ;Hjµ

(t+1)|(t+1), Σw + HjΣ
(t+1)|(t+1)HT

j ) . (14)

The mutual information between the sensor measurement and target state at
time (t + 1) can be calculated using 13,14

I(Z(t+1)
j ;X(t+1)

= H(Z(t+1)
1 ) − H(Z(t+1)

1 |X(t+1))

= H[N (z(t+1)
j ; Hjµ

(t+1)|(t+1), Σw + HjΣ
(t+1)|(t+1)HT

j )]

−
∫

H[N (z(t+1)
j ; Hjx

(t+1), Σw)]p(x(t+1)|z(t))dx(t+1)

= c log |Σw + HjΣ
(t+1)|(t+1)HT

j | −
∫

c log |Σw|p(x(t+1)|z(t))dx(t+1)

= c log
|Σw + HjΣ

(t+1)|(t+1)HT
j |

|Σw|
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To summarize the sensor selection rule for minimizing the expected posterior
entropy is given as:

ĵ = arg max
j∈V

|Σw + HjΣ
(t+1)|(t+1)HT

j |
|Σw| .

Since the posterior density is Gaussian, this sensor selection rule minimizes the
covariance determinant for the posterior belief. We should note that since the
covariance (or equivalently the entropy) of the updated belief p(x(t+1)|z(t+1))
does not depend on the measurement value z

(t+1)
j , sensor selection for the linear

Gaussian model is straightforward.

3.3 Example 3: Acoustic Array

In this section we consider the distributed localization of a single target using
an acoustic sensor network. We assume a single target is present in a square 1
km × 1km region, which is divided into 50m × 50m cells. We assume the target
is stationary:

x(t+1) = F (x(t), v(t)) = x(t)

There are five microphones (range sensors) randomly placed in the region. Each
sensor makes a time of arrival measurement (TOA) from an acoustic emission
of the target. The sensor measurement model is given as:

zj =
‖x − yj‖

c
+ nj .

where x denotes the target location and yj denotes the location of the j’th sensor.
The speed of sound is given by c and the disturbances nj ’s are Gaussian random
variables with variance σj . The error variance of the maximum likelihood TOA
detector is inversely proportional to the signal to noise ratio, which in general
depends on the distance of the target to the sensor location [5,6]. In part A
below, we assume constant noise variance for all the sensors and in part B,
we consider the general case where the noise variance increases with increasing
distance to the target. We assume each sensor can be interrogated only once.
We also assume that the sensor locations and target emission time are known.
A self localization method for microphone arrays is given in [7].
Part A:
In this case we assume the noise variance σj = σ0 = 50msec is constant for all
five sensors. For this case the mutual information between the state X(t+1) and
measurement vector Zj is given by

I(Z(t+1)
j ;X(t+1)) = H(Z(t+1)

j ) − H((Z(t+1)
j |X(t+1)) ,

where:

H(Z(t+1)
j ) = −

∫ ∑

xi

N (z,
‖xi − yj‖

c
, σ2

0)p(xi|z(t))
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× log

(
∑

xi

N (z,
‖xi − yj‖

c
, σ2

0)p(xi|z(t))

)
dz

H(Z(t+1)
j |X) =

1
2

log
(
2πeσ2

0
)

.

We note that for constant noise variance, maximizing mutual information
I(Z(t+1)

j ;X(t+1)) is equivalent to maximizing the entropy of the Gaussian mix-

ture H(Z(t+1)
j ). The entropy of the Gaussian mixture can be calculated using nu-

merical integration. Alternatively, we can obtain an approximation to H(Z(t+1)
j )

by fitting a single Gaussian to the mixture distribution.

H(Z(t+1)
j ) ≈ 1

2
log
(
2πeσ2

Zj

)
,

where

σ2
Zj

=
∑

xi

p(xi|z(t))
(

(
‖xi − yj‖

c
)2 + σ2

0

)
−
(
∑

xi

p(xi|z(t))
‖xi − yj‖

c

)2

.

In our simulations we observed virtually no difference in sensor selection perfor-
mance between actual H(Z(t+1)

j ) and its approximation.
We used 500 monte carlo simulations, for three methods of sensor selection:

Random sensor selection, Maximum Mutual Information based sensor selection
and Mahalanobis distance based sensor selection discussed in [3]. The results are
given in Figure 1. We consider root mean square error as a measure of target
localization performance. For this experiment Maximum Mutual Information
based sensor selection results in the best localization performance, followed by
Mahalanobis distance based method.
Part B:
In this case we assume the noise variance is dependent on the target distance

σj = σ(r) = (
r

r0
)α/2σ0

In general the value of alpha depends on temperature and wind conditions and
can be anisotropic. For this experiment we used α = 2, r0 = 0.5km, and σ0 =
30msec. For the distance dependent noise model, the mutual information between
the state X(t+1) and measurement vector Zj is given by

I(Z(t+1)
j ;X(t+1)) = H(Z(t+1)

j ) − H((Z(t+1)
j |X(t+1)) ,

where:

H(Z(t+1)
j ) = −

∫ ∑

xi

N (z,
‖xi − yj‖

c
, σ(‖xi − yj‖)2)p(xi|z(t))

× log

(
∑

xi

N (z,
‖xi − yj‖

c
, σ(‖xi − yj‖)2)p(xi|z(t))

)
dz

H(Zj |X) =
∑

xi

1
2

log
(
2πeσ(‖xi − yj‖)2

)
p(xi|z(t)) .
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Fig. 1. Performance of the Sensor Selection Methods for constant noise variance. (Solid:
Mutual Information, Dashed: Mahalanobis Distance Based Method, Dotted:Random)

Again if the distribution of Zj can be approximated with a Gaussian we can

approximate H(Z(t+1)
j ) ≈ 1

2 log
(
2πeσ2

Zj

)
, where

σ2
Zj

=
∑

xi

p(xi|z(t))((
‖xi − yj‖

c
)2+σ(‖xi−yj‖)2)−

(
∑

xi

p(xi|z(t))
‖xi − yj‖

c

)2

.

We used 500 monte carlo simulations for the range dependent noise case. The
results are given in Figure 2. We consider root mean square error as a measure
of target localization performance. For this experiment Maximum Mutual Infor-
mation and Mahalanobis distance based methods are very close in performance.
The advantage of dynamic sensor selection over random sensor selection is again
evident from the simulation results.

4 Conclusions

Motivated by the work of Zhao et al. [1] we have presented an extension to the
problem of distributed tracking in sensor networks. Specifically, we considered
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Fig. 2. Performance of the Sensor Selection Methods for range dependent noise vari-
ance. (Solid: Mutual Information, Dashed: Mahalanobis Distance Based Method, Dot-
ted:Random)

the expected posterior uncertainty, quantified by conditional entropy as the util-
ity function for choosing the next measurement node in a distributed Bayesian
sequential estimation framework. The demonstrated equivalence of expected con-
ditional entropy (over measurements) to the mutual information between future
state and the node measurements led to a computationally feasible method for
employing the suggested utility function.

Additionally we presented three example problems for which the method
could be used along with empirical results. The results indicate that maximum
mutual information principle presents a computationally attractive method for
dynamic sensor selection problems.

Some interesting questions arise in the context of sensor networks which moti-
vate future research. For example, how does additional attribution of object state
(e.g., class) complicate the analysis? How might one incorporate these ideas into
heterogeneous networks where measurement models are less well understood?
It is unlikely that such modifications will lead to such tractable measurement
models; however, it is also the case that estimation of statistical dependence
(i.e., mutual information) remains tractable in lower dimensional spaces.
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Abstract. For Rayleigh fading channels, there exists an interesting sim-
ilarity between resistive circuits and time and path diversity mechanisms
in multihop wireless sensor networks. A resistor-like circuit element, the
erristor, representing the normalized noise-to-signal ratio, is introduced.
Given an end-to-end packet delivery probability (as a QoS requirement),
the nonlinear mapping from link reception probabilities to erristor values
greatly simplifies the problems of power allocation and the selection of
time and path diversity schemes. Thanks to its simplicity, the formal-
ism that is developed also provides valuable insight into the benefits of
diversity mechanisms, which is illustrated by a number of examples.

1 Introduction

The lifetime of wireless sensor network is crucial, since autonomous operation
must be guaranteed over an extended period [1,2]. Energy and interference con-
siderations often necessitate multihop routing, where sensor nodes also act as
routers, forwarding other nodes’ packets [3]. Routing schemes that were devel-
oped for wired networks will perform suboptimally since they are based on virtu-
ally error-free point-to-point links, thereby ignoring two fundamental properties
of the wireless link: 1) the fragility of the channel due to fading and interfer-
ence [4, 5] and 2) the inherent broadcast property of wireless transmissions1.
Whereas the first property is adverse, the second one can be exploited by trans-
mission schemes that are based on the principle of cooperative diversity [6], where
nodes coordinate both direct and relayed transmissions. Cooperative diversity
is a form of spatial diversity, which, in the case of static single-antenna nodes,
reduces to path diversity. The other promising strategy (in the case of narrow-
band channels) against fading is time diversity, which, for slow fading channels
and relatively short packets, is mainly exploited in the form of retransmissions.

In this paper, we present a simple but powerful formalism that allows an effi-
cient analysis and design of time and path diversity strategies for Rayleigh fading
channels. In the analysis, the transmit power levels are given and the end-to-
end reliability pEE is to be determined, whereas in the (more interesting) design
1 We assume that omnidirectional antennas are employed.

F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 417–431, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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problem, we assume that the application dictates a certain end-to-end reliability
pD, and the question is how to choose the transmit powers, the relays (paths),
and the number of transmissions over each link in order to minimize energy
consumption and/or maximize network lifetime under the constraint pEE � pD.

0 1 2

p
01

p
12,1

p
12,2

Fig. 1. A two-hop con-
nection with two trans-
missions over the second
hop.

Example 1. Consider the simple example in Fig. 1.
A packet is transmitted with reception probability
p01 over the first hop and transmitted twice over
the second hop, with probabilities p12,1 and p12,2, re-
spectively. The end-to-end reliability of the connec-
tion is pEE = p01 · (

1 − (1 − p12,1)(1 − p12,2)
)
. Let

pD = 90%. What combination(s) of transmit powers
satisfy pEE � pD, and which one is energy-optimal? �

2 The Link Model

We assume a narrowband multipath wireless channel,
modeled as a slow Rayleigh fading channel [7] with an additive noise process
z. The received signal at time k is yk = ak xk + zk , where ak is the large-scale
path loss multiplied by the fading coefficient. The variance of the noise process
is denoted by σ2

Z .
The transmission from node i to node j is successful if the signal-to-noise-and-

interference ratio (SINR) γ is above a certain threshold Θ that is determined
by the communication hardware and the modulation and coding scheme [5].
With the assumptions above, γ is a discrete random process with exponential
distribution pγ(x) = 1/γ̄ e−x/γ̄ with mean

γ̄ =
P̄

σ2
Z + σ2

I

. (1)

P̄ denotes the average received signal power over a distance d = ‖xi − xj‖2:
P̄ = P0d

−α, where P0 is proportional to the transmit power2, and the path loss
exponent is 2 � α � 5. σ2

I is the interference power affecting the transmission.
It is the sum of the received power of all the undesired transmitters.

The following theorem shows that for Rayleigh fading networks, it is possible
to analyze noise and interference separately.

Theorem 1. In a Rayleigh fading network, the reception probability P[γ � Θ]
can be factorized into the reception probability of a zero-noise network and the
reception probability of a zero-interference network.

2 This equation does not hold for very small distances. So, a more accurate model
would be P̄ = P ′

0 · (d/d0)−α, valid for d � d0, with P ′
0 as the average value at

the reference point d0, which should be in the far field of the transmit antenna. At
916MHz, for example, the near field may extend up to 3-4ft (several wavelengths).
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Proof: The probability that the SINR is bigger than a given threshold Θ
follows from the cumulative distribution fγ(x) = 1 − e−x/γ̄ :

P[γ � Θ] =e−Θ/γ̄ = e− Θ
P̄

(σ2
Z+σ2

I )

=e− Θσ2
Z

P̄ · e− Θσ2
I

P̄ = P[γZ � Θ] · P[γI � Θ] , (2)

where γZ := P/σ2
Z denotes the signal-to-noise ratio (SNR) and γI := P/σ2

I

denotes the signal-to-interference ratio (SIR). The first factor is the reception
probability in a zero-interference network as it depends only on the noise, and the
second factor is the reception probability in a zero-noise network, as it depends
only on the interference. It follows from (2) that γ̄ = (γ̄Z γ̄I)/(γ̄Z + γ̄I).

This allows an independent analysis of the effect caused by noise and the effect
caused by interference. The focus of this paper is put on the noise, i.e., on the first
factor in (2). If the load is light (low interference probability), then SIR�SNR,
and the noise analysis alone provides accurate results. For high load, a separate
interference analysis3 has to be carried out, as in [9]. Most energy-constrained
sensor networks aim at minimizing the communication, which justifies the focus
on noise.

In a zero-interference network, the reception probability over a link of dis-
tance d at a transmit power P0, is given by

pr := P[γZ � Θ] = e
− Θσ2

Z
P0 d−α . (3)

Solving for P0, we get for the necessary transmit power to achieve pr:

P0 =
dαΘσ2

Z

− ln pr
. (4)

3 The Erristor Representation

3.1 Connections without Retransmission

Assume a n-hop connection from node 0 to node n in a wireless sensor network.
The desired end-to-end reliability is pD. The reception probability over a chain
of n nodes is

pEE = e
−Θ

∑n
i=1

1
γ̄i (5)

where γ̄i denotes the mean SNR at receiver i. Let R denote the normalized
average noise-to-signal ratio (NSR) at the receiver, i.e., R := Θ/γ̄. We get

− ln pEE =
n∑

i=1

Ri = Rtot . (6)

3 Note that power scaling, i.e., scaling the transmit powers of all the nodes by the
same factor, does not change the SIR, but (slightly) increases the SINR. This has
been pointed out also in [8]
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Hence the condition pEE � pD translates into the condition that the sum or
the series connection4 of the NSR values Ri is at most RD := − ln pD. So, the
individual Ri’s can be replaced by an equivalent Rtot. For a single link, we have

R = − ln pr ⇐⇒ pr = e−R . (7)

For probabilities close to 1 (or R � 1), the following first-order approximations
are accurate:

R̂ := 1 − pr � R ⇐⇒ p̂r := 1 − R � pr (8)

This approximation shows that for small values, the NSR can be considered
equivalent to the packet error probability. To emphasize this fact and the resistor-
like series connection property of the NSR, we denote R as an “erristor” and its
value as its “erristance”.

Eq. (8) shows that, when determining the erristance from a given probability,
the approximated value will be on the safe side, and from (6), we see that over
a multihop connection, the noise accumulates and the error probabilities simply
add up.

The relationship between the transmit power and R is

P0 = dαγ̄σ2
Z =

dαΘσ2
Z

R
. (9)

Henceforth, P := dα/R denotes the normalized (by Θσ2
Z) transmit power.

Example 2. Fig. 2 (left) shows an example with three links and their reception
probabilities. From (6) we know that a series of hops translates into a series
connection of erristors, hence we find the corresponding erristor network in Fig. 2
(right). For pD = 90%, for example, the value of R1 + R2 + R3 must be at most
− ln pD ≈ 0.105. If all the power levels are equal, this can be achieved by setting
R1 = R2 = R3 = 0.105/3 = 0.035. A possible solution with unequal power
is R1 = R2 = 0.05 and R3 = 0.005. Here, the probability after two links is
e−0.05e−0.05 ≈ 90.5%, which is already close to 90%. Consequently, a lot of of
energy is consumed at the third link to ensure packet reception with the required
probability e−0.005 = 99.5%.

p
1

p
2

p
3

0 321 0 1 2 3

R1 R2 R3

Fig. 2. A three-hop connection with link reception probabilities p1, p2, and p3 (left)
and the erristor circuit (right). The erristor values are the normalized noise-to-signal
ratios R1, R2, and R3. Ri = − ln pi.

4 In terms of the SNR values, this corresponds to a parallel connection, which was
pointed out in [10].
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If the internode distances di (between node i−1 and node i) are given, a
solution can be determined that ensures that all the transmit power levels have
the same value P . From (dα

1 + dα
2 + dα

3 )/P � − ln pD, we get

P � dα
1 + dα

2 + dα
3

− ln pD
. (10)

For di = i, α = 2, and pD = 90%, for example, we get P ≈ 14 · 9.5 ≈ 133 and
R1 ≈ 0.0075, R2 ≈ 0.03, and R3 ≈ 0.0677. �

3.2 Connections with Time Diversity (Retransmissions)

Coming back to example 1 (Fig. 1), the question is how to incorporate retrans-
missions into the erristor formalism. Considering the second link, we found that
p12 = 1 − (1 − p12,1)(1 − p12,2), which is equivalent to

p12 = 1 − (
1 − e−R12,1

)(
1 − e−R12,2

)
. (11)

In general, for n transmissions over one link at NSR levels Ri, we have

pn = 1 −
n∏

i=1

(1 − e−Ri) . (12)

To derive a general rule for the simplification of these expressions, we apply the
following theorem.

Theorem 2.
For (x1, x2, . . . , xn) ∈ (R+

0 )n,

1 −
n∏

i=1

(1 − e−xi) � e− ∏n
i=1 xi . (13)

The identity holds if and only if
∏n

i=1 xi = 0.

R12,1
R01 20 1

R12,2

Fig. 3. The erristor cir-
cuit of Fig. 1.

The proof is presented in the Appendix.

Example 1 (cont.). So, in example 1, e−R12,1R12,2 is a
lower bound for p12, and for R1 � 1 and R2 � 1, the
bound is tight. Thus we may replace the erristors R21
and R22 by an erristor R2 = R21R22. In the erristor
diagram, the two transmissions are illustrated by a
parallel connection (see Fig. 3). So, erristors connected
in series behave like regular resistors, whereas the
values of erristors connected in parallel have to be multiplied. Due to the bound
derived above, the resultant end-to-end reliability will be slightly higher than
the one required. �
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Fig. 4. The difference between the exact probability and the lower bound for n =
2, 4, 6, 8, 10 transmissions with equal erristance R.

For n transmissions with the same power level R, the difference between the
precise probability value 1 − (1 − e−R)n and the lower bound e−Rn

is plotted
in Fig. 4. The erristance threshold where the bound is within 1% is R = 0.236
for n = 2 and R = 0.375 for n = 4. Thus for R < 1/4 (p > 78%), the bound is
sufficiently tight for all practical purposes.

For values R � 1, the bound is loose, and the multiplication does not make
sense, since the overall erristance increases, although, of course, even a retrans-
mission with low power still leads to an improvement in the total link reception
probability. However, for R � 1/2, a single transmission outperforms splitting
the power into two transmissions: For two transmissions at NSR 2R, the recep-
tion probability is pr = 1 − (1 − e−2R)2, whereas for a single transmission at
NSR R, we get p′

r = e−R. The two probabilities are equal for

R = ln 2 − ln(
√

5 − 1) ≈ 0.48. (14)

So, for R � 1/2, the reception probability is higher for a single transmission
at NSR R.

Note that a peak transmit power constraint P < Pmax translates into the
minimum resistor value that can be used. Over a link of distance d, the minimum
erristor value is Rmin = dα/Pmax.

4 Path Diversity

4.1 Transmissions over Independent Paths

The analysis in the previous Section is valid if retransmissions have independent
reception probabilities. This is not guaranteed if the channel’s coherence time is
substantially larger than a packet transmission time or if shadowing is the cause
for packet loss, in which case a form of path diversity is required.
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Example 3. Fig. 5 displays an example of a network where path independence is
guaranteed even when the channels have a long coherence time. By conventional
analysis, the end-to-end reception probability is

pEE =
(
1 − (1 − e−R01e−R12)(1 − e−R02)

) ×
(
1 − (1 − e−R23e−R34)(1 − e−R24)

)
. (15)

How to choose the Rij ’s to guarantee pEE � pD = 95%? This is a non-trivial
question that can easily be answered using the erristor formalism. The equivalent
erristor (see Fig. 5 (right)) is

Rtot = (R01 + R12)R02 + (R23 + R34)R24 , (16)

and pEE = e−Rtot . For a desired pD = 95%, we have Rtot ≈ 0.05. Thanks to the

p p p

0 321

01 12

p

p

02

23 34

p
24

4

R02 R24

10 2 3 4R01 12R R23 34R

Fig. 5. A network that exploits path diversity (left) and its erristor circuit (right).

symmetry, (R01+R12)R02 = (R23+R34)R24 = 0.025 is a solution; hence we may
set nearest-neighbor hops to Ri−1,i = 0.05 and R02 = R24 = 0.25. Note that the
value for the two longer hops is 5 times bigger, which means that the necessary
transmit powers are comparable if the nodes have equal distances and the path
loss exponent is between 2 and 3. So, using the erristor formalism, the diversity
scheme and power allocation should guarantee pEE = e−0.05 ≈ 95.1% > pD. The
conventional analysis (15) yields pEE ≈ 95.8% which is, as expected, slightly
bigger than the one from the erristor analysis. The formalism also permits a
rapid reallocation of resources, if necessary. Assume node 3 runs out of energy.
With R34 → ∞, we see immediately that R23 becomes useless, and the only
path in the lower half of the diagram will be the one with R24. What value
does R24 need to have to ensure pD? Without changing the other erristances,
we immediately find R24 = 0.025. �

The total energy consumption (per packet) at each node can easily be deter-
mined:

Ei =
m∑

j=1

dα
ij

Rij
, (17)

where m is the number of outgoing paths from node i.
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4.2 Implicit Transmissions

In the first example (Fig. 1), if node 2 listens to the transmission from node 0
to node 1, then this implicit transmission has to be modeled by an additional
erristor for an accurate analysis. This implicit erristor is free in terms of transmit
power (but still requires power to receive the packet)5.

Assume pD = 99%, so Rtot ≈ 0.01. This is achieved by setting R01 = 0.005
and R12,1 = R12,2 = 0.07. However, since there is an implicit transmission
from 0 to 2, there is a erristor in parallel with a value of Ri

02 = R01(d02/d01)α

(the superscript i indicates an implicit transmission). Assuming d02 = 2d01 and
α = 3, we get Ri

02 = 0.04, Rtot = 0.01 · 0.04 and pEE ≈ 99.96%, which is much
better than the target of 99%. So we can reduce R01 to a value that guarantees
(R01 + 0.005) R01 · 88 = 0.01. Solving the resulting quadratic equation yields
R01 ≈ 1/30, which corresponds to less than 1/6 of the original power.

For large path loss exponents and smaller transmit powers, the benefit to
listeners that are farther away than the intended receiver becomes small, since
the implicit erristances will be close to one or even above However, if the implicit
receiver is closer than the intended one or if the transmit power is relatively high,
it is worthwile having the nodes awake and listening.

12R

R02

R34

R240 2 4

01 23R

R23R01

Ri i

1 3

Fig. 6. The erristor circuit for
Fig. 5 including implicit transmis-
sions. Implicit erristors are gray-
shaded.

Example 3 (cont.). In example 3 (Fig. 5), there
is an implicit transmission from node 2 to node
3 when node 2 is transmitting to node 4. If node
3 ignores this transmission, then the analysis in
the previous Subsection was correct. If it takes
advantage of that information, we have to add
another erristor, as shown in Fig. 6.

Assuming equal distances between neigh-
boring nodes, Ri

01 = 2−αR02 and Ri
23 =

2−αR24. For α = 2 and using the same val-
ues as before, Ri,i−1 = 0.05 and R02 = R24 = 0.25, we find Ri

01 = Ri
23 = 0.0625

and

Rtot = 2
( 1

20
· 1
16

+
1
20

)
· 1
4

≈ 0.027 , (18)

resulting in pEE ≈ 97.3%, which is larger than the target of 95%. Considering
that 1/16 � 1, we may try to omit the explicit transmission completely, which
results in Rtot = (1/16 + 1/20)/2 ≈ 0.056 and pEE = 94.4%. A slight decrease
of R02 and R24 by 10% each brings pEE to 95.2%.

In general, we can say that whenever there are two erristors in series with
one significantly smaller than the other one, the power is better distributed
differently. �
5 This advantage of omnidirectional transmission is often denoted as the wireless mul-

ticast advantage [11, 5].
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Example 4. A simple cooperative scheme. In Fig. 7, a situation is shown where
node 0 wants to transmit to node 1, and the cooperative node C may help as a
relay. From the erristor circuit it can be seen that there is no explicit transmission
from 0 to C. The goal is to determine which transmission strategy minimizes the
total transmit energy Etot given a certain total erristance Rtot.

Let D :=
(

d
2

)α
. With Rtot = R01(Ri

0C + RC1) and Ri
0C = DR01, we get

Rtot = R01(R01D + RC1) and Etot = 2αR01 + dαRC1 = 2α(R01 + DRC1).

0

0C
p

p
C1

1

1 1

d
d

φ

01
p

C

R01

R
0C
i RC1C

0 1

Fig. 7. A simple cooperative scheme (left) and the corresponding erristor circuit (right).
Node C is relaying a packet from node 0 to assist node 0. The distancees 0C and C1
are d = 1/ cos φ.

Strategy A: Equal received power. A possible strategy is to have C transmit
at a power level that makes the received power at node 1 equal to that from the
direct transmission 01, i.e., RC1 = R01 =: R. Rtot simplifies to Rtot = R2(1+D),

and thus R =
√

Rtot
1+D . Inserting this expression into the transmit energy Etot =

2α

R (1 + D) yields

EA
tot =

2α(1 + D)3/2
√

Rtot
. (19)

Strategy B: Equal transmit power. Here, we assume that both node 0 and
C use the same transmit power. With R := R01 and RC1 = Ri

0C = RD we

have Rtot = 2DR2 and R =
√

Rtot
2D . The total energy consumption is simply

Etot = 2 · 2α/R, or, as a function of Rtot,

EB
tot = 2α+1

√
2D

Rtot
. (20)

The energy consumption ratio of strategies A and B is

ρ :=
EB

tot

EA
tot

=
2
√

2D

(1 + D)3/2 . (21)

ρ = 1 for D = 1 and D =
√

5 − 2 ≈ 0.236. For
√

5 − 2 < D < 1, strategy A is
preferable (ρ > 1). The maximum ρ, however, is only 4

9

√
6 ≈ 1.089, occurring at

D = 1
2 . So, strategy A is at most 8.9% better.
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To get a complete view, we also discuss the case of a direct one-hop trans-
mission and an explicit two-hop scheme without a direct path from 0 to 1. For
the one-hop case, we have Eone

tot = 2α/Rtot, and for the two hop case (assuming
equal transmit powers), there are two erristors in series with value Rtot/2 and
thus Etwo

tot = 4dα/Rtot = 4DEone
tot .

one−hop

B

5−2

B
A

1

8

6

4

2

Rtot

D

D/8

0

1090%

88%

85%

78%

60%

pEE
−1

(1+D)
3

Fig. 8. Visualization of the regions in the
(D, R−1

tot) plane where the different strategies
are optimum. Note that the curves D/8 and
(1+D)3 intersect at the points (

√
5−2, (

√
5−

1)3) and (1, 8). Values Rtot > 1/2 are not
practical, since the corresponding probabil-
ity is less than 60%.

The one-hop strategy is better if
4D � 1, or, in terms of the actual
distance d, d > 21−2/α. So, for α = 2
and for d � 2, one-hop is always bet-
ter, even for α → ∞, which is easily
explained, since node C is then not
closer than node 1. As a function of
the angle φ = arccos(1/d), the con-
dition for one-hop to be better is ex-
pressed as φ � arccos(22/α−1). For
α → ∞, the critical angle is φ = π/3
(corresponding to an equilateral tri-
angle 0C1), as expected.

The last step is the comparison
of these simple schemes with the co-
operative strategies A and B. First
we note that B always outperforms
the two-hop scheme, since it exploits
“free” information that is transmit-
ted over the direct path. The tournament between A and one-hop is won by A if
Rtot < (1+D)−3, and B wins against one-hop if Rtot < 8

D . The resulting division
of the (D, R−1

tot)-plane in the different strategies is shown in Fig. 8. The erristor
formalism transforms complex logarithmic relationships into simple polynomial
ones, which permits the analytical derivation of these boundaries. �

Example 5. Virtual antenna arrays. Several nodes that are close may cooperate
and act as a virtual antenna array, exploiting spatial diversity. The performance
of such arrays was analyzed in [12] from an information-theoretic perspective.
Here, we are using the erristor formalism to compare these schemes with conven-
tional multihop routing. Fig. 9 shows the erristor diagram of a simple scenario
with two nodes assisting each other at the source, in the middle, and at the
destination. So, instead of individual nodes, we have clusters of two nodes at po-
sitions 0, 1, and 2. It is assumed that the intracluster distances are much smaller
than the intercluster distances d/2. When the source node in cluster 0 is trans-
mitting to cluster 1, his peer will receive that packet with probability (almost)
one since Ri

00 � R01. In the next time slot, this peer node will transmit the same
packet to cluster 0. Hence, the same packet is delivered over four different paths.
Similarly, cluster 1 relays the packet to cluster 2 over four paths. In the case
that the actual destination node itself in cluster 2 does not correctly receive the
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packet, an additional short intracluster transmission is required, whose energy
is neglected in the following analysis.

p01 p
12

d/2 d/2

0 1 2

0

01

R01

R01

R01

R

R

00

00

i

i

R

R

R

i

i

R R12

12

11

11

12

12

R

R

21

Fig. 9. A virtual antenna scheme and its erristor circuit.

We assume R01 = R12 := R. For the diversity scheme, with Ri
00 � R, we get

Rtot = 2R4 and

Etot = 4
(d/2)α

R
= 4

(d

2

)α( 2
Rtot

) 1
4

. (22)

For comparison, for a 4-hop connection with hops of length d/4, we have Rtot =
4R′ and

E′
tot = 4

(d

4

)α 4
Rtot

= 24−α
(d

2

)α

R−1
tot . (23)

The ratio between the two energies is

Etot

E′
tot

= R3
tot2

4α−7 . (24)

Hence the diversity scheme is more efficient for

Rtot < 2
4α−7

3 or pD > exp
(
−2

4α−7
3

)
. (25)

This curve is plotted in Fig. 10 (left). Substantial energy gains are possible for
high pD (see Fig. 10 (right)). When the path loss exponent increases by one, the
energy gain decreases by a factor of 24/3 ≈ 4dB.

This diversity scheme can be generalized to clusters of size m that transmit
over n hops. In this case, Rtot = nRm2

and

Etot = mn
( d

n

)α( n

Rtot

) 1
m2

. (26)

For the multihop scheme with mn hops6, Rtot = mnR′ and

E′
tot = mn

( d

mn

)α mn

Rtot
. (27)

6 This comparison is fair both in terms of the number of nodes involved and in the
delay, since the total number of transmissions is mn for both schemes.



428 M. Haenggi

2 2.5 3 3.5 4 4.5 5
0.4

0.5

0.6

0.7

0.8

0.9

1

α

   
   

p D

Diversity scheme
is more efficient. 

0.8 0.85 0.9 0.95 1
−5

0

5

10

15

20

α=5

α=2

p
D

E
ne

rg
y 

ga
in

 [d
B

]

Fig. 10. Left: The region in the (α, pD) plane where the diversity scheme outperforms
conventional multihop routing. Right: The energy gain as a function of the end-to-end
probability.

The ratio is

Etot

E′
tot

= R
1− 1

m2
tot n

1
m2 −1 mα−1 , (28)

from which we see that the energy gain is maximized for m = 2 (except for
α = 2, where m = 3 performs slightly better) and increases almost linearly in
n. We conclude that for high pD and smaller α, the diversity scheme clearly
outperforms conventional multihop routing. �

5 Concluding Remarks

The erristor formalism permits the mapping of unhandy probability expressions
into a simple circuit-like framework, which greatly simplifies the analysis and
design of transmit schemes that are based on time diversity, path diversity, or a
combination thereof. The erristor circuit is topologically equivalent to the net-
work graph and can therefore be drawn in a straightforward manner. Resource
allocation and reallocation problems can effortlessly be solved by simple arith-
metic, which makes a real-time implementation readily feasible. Further, the
formalism may prove useful for educational purposes, since the multiplication
property of parallel erristors impressively demonstrates the benefits of diversity
schemes, and the series connection shows how the noise and, in turn, the error
probability accumulates over multiple hops.

While this work is mainly focused on noise-limited networks, it seems possible
to include the interference in the same framework, since SNR and SIR exhibit
a parallel combination property similar to the SNR values of subsequent links
(see Theorem 1). This will be part of future investigations.
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Appendix: Proof of Theorem 2

From the inequality (see (13))

1 −
n∏

i=1

(1 − e−xi) � e− ∏n
i=1 xi (29)
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it is easy to see that both expressions are equal (to 1) if one of the xi is zero. It
remains to show that f(·) : R

n → R

fn(x1, x2, . . . , xn) = 1 −
n∏

i=1

(1 − e−xi) − e− ∏n
i=1 xi . (30)

is positive if all xi are positive. We note that f goes to zero if ∀i, xi → ∞. Hence
f is positive for positive xi if its partial derivatives ∂f/∂xi are positive at 0 and
have at most one zero for positive xi. Since the function is symmetric in all xi,
it is sufficient to consider only one partial derivative. An inductive technique is
employed, discussing the case n = 2 first.

Consider

g2(x) := f2(x, y) = e−x + e−y − e−x−y − e−xy (31)

for a fixed y � 0. For y = 0, g2(x) ≡ 0, and for y > 0, we note that g(0) = 0 and
limx→∞ g(x) = e−y > 0. Since

g′(x) =
dg

dx
= e−x

(−1 + e−y + yex(1−y)) , (32)

there exists a single local extremum x̄ for y > 0 at

x̄ =
1

y − 1
ln

( y

1 − e−y

)
. (33)

As y > (1 − e−y) for y > 0, we find x̄ > 0 for y > 1 and x̄ < 0 for 0 < y < 1. For
y = 1, no solution exists, and for y = 0, g′(x) ≡ 0. Since g′(0) = −1+e−y+y > 0,
it is clear that the extremum is a maximum. So, we have g(0) = 0, and for 0 <
y � 1, g(x) is monotonically increasing, whereas for y > 1, it is monotonically
increasing up to x̄ and then monotonically decreasing to e−y > 0. Hence g(x) > 0
for x > 0, and we have proven the theorem for n = 2.

Now, assuming it is true for n − 1, we show that it holds for n.
For the general function gn(x) := f(x, x2, . . . , xn) with fixed xi � 0 for i > 1,

we note that gn(0) = 0 and

lim
x→∞ = 1 −

n∏

i=2

(1 − e−xi) � 0 . (34)

With Q :=
∏n

i=2 xi, we get

g′
n(x) = e−x

(
−

n∏

i=2

(1 − e−xi) + Qex(1−Q)
)

. (35)
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Evaluation at x = 0 yields

g′(0) =Q −
n∏

i=2

(1 − e−xi)

�1 − e−Q −
n∏

i=2

(1 − e−xi)

=fn−1(x2, x3, . . . , xn)
�0 (36)

where we have made use of the induction. Again, equality holds for Q = 0 only.
Solving g′

n(x̄) = 0 yields the single extremum

x̄ =
1

Q − 1
ln

( Q
∏n

i=2(1 − e−xi)

)
. (37)

We already established in (36) that the numerator is greater than (or equal to)
the denominator in logarithm, so, analogously to (33), we find that x̄ < 0 for
0 < Q < 1 and x̄ > 0 for Q > 1. Again, no solution for Q = 1 and g′(x) ≡ 0 for
Q = 0. This completes the proof.
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Abstract. This paper proposes a sensor placement method for three-
dimensional point source localization using multiple sensors. An observation
model of multiple sensors and one source of unknown position is introduced.
Given that model, the minimum number of sensors needed to localize the
source is determined, and an optimal sensor placement is derived. The place-
ment is optimal in the sense that it minimizes the effect of the measurement er-
ror on the localization error bound. The proposed placement is also shown to
simplify the computational complexity. The theoretical results are experimen-
tally evaluated through simulation. The simulation results reveal that the pro-
posed placement significantly reduces the relative localization error.

1   Introduction and Related Work

Although source localization is a very active area of research, the literature seems to
be rather scarce on sensor placement in the context of point source localization using
multiple point sensors. Hence, in this paper we introduce a sensor placement tech-
nique for a three-dimensional source localization problem.

Source localization using distributed sensor networks has been an active area of re-
search for many years [1], [2]. The application domain of source localization includes
intrusion detection in a surveillance system, contamination source detection in space
shuttles, fault detection, and object identification and tracking in military combats.
Special attention has been paid to wide-band and acoustic sources, using maximum-
likelihood estimators. For example, the authors of [3] derive the maximum-likelihood
location estimator based on the Cramér–Rao bound for wideband sources in the near
field of the sensor array.

On the other hand, although a lot of work has been done for sensor placement
problems, it seems that relatively less work has been done on sensor placement for
point source localization using multiple sensors (in comparison with the amount of
work done for source localization problem itself). The most relevant published works
are presented in [4] and [5]. The author of [4] studied the problem of placing sensors
for minimizing the variance of passive position estimates. A simple method was de-
veloped for optimally placing the sensors subject to constraints on their positions. The
problem of placing sensors constrained to a line segment (originally studied in [6])
was used as an example. In [5], the authors studied three different methods for identi-
fying the location of an impulsive source via point sensor measurements for systems
described by partial differential equations (PDE). The authors analyze the minimum



Sensor Placement for Isotropic Source Localization        433

number of sensors and “appropriate” sensor locations for each method based on the
PDE model.

In this paper, we propose a sensor placement method for the source localization
problem driven by the goal of minimizing the localization error bound in a linear-
algebraic framework. Further, the minimum number of sensors needed to localize the
source is determined. To evaluate the proposed method, a set of simulation experi-
ments is conducted. The experimental results show that the proposed placement
greatly reduces the localization error.

The paper is organized as follows: Section 2 introduces the observation model and
states the problem addressed in this paper. A solution model and a derivation of the
proposed sensor placement are given in Section 3. The proposed placement is evalu-
ated in Section 4. Finally, Section 5 concludes the paper.

2   Observation Model and Problem Statement

The observation model and the problem statement are introduced in Section 2.1 and
Section 2.2 respectively.

2.1   Observation Model

The observation model includes one isotropic radiation point source whose intensity
is known but its position vector sp  is unknown. Since the source is isotropic, the en-

ergy flows equally in all directions out of the source. Hence, the intensity of the

source observed at a distance d  from the source is inversely proportional to 2d . This
is known as the inverse square law [7]. This model applies to a wide variety of
sources including light, magnetic, and electric charge sources.

The model includes a set of N  sensors { }10 −≤≤ Nisi , where the position ip  of

each sensor is  is known. Based on the discussion given above, the signal iû  picked

from the sensor is  is given by

i

si

iii e
k

euu +
−

=+=
2

ˆ
pp

(1)

where ie  is the measurement error, due to calibration error, noise, etc. The source

signal is assumed to propagate at a large enough speed so that we can ignore propa-
gation delays.

2.2   Problem Statement

The end goal of a general source localization problem is to find the position of the
source, given the measurements of the sensors. The main objectives to be addressed in
this paper are (1) to derive a sensor placement configuration that will minimize the ef-
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fect of the error component ie  of the sensor measurement on the localization error,

and (2) to minimize the number of the sensors required to localize the source.

3   Error-Bound Driven Sensor Placement

This section presents the proposed approach. Section 3.1 derives the solution model
for the problem and, as a byproduct, answers the question of “what is the minimum
number of sensors needed to find the source location?” Section 3.2 proposes a sensor
placement configuration for minimizing the effect of the measurement error on the
relative error of the source localization.

3.1   Solution Model

In the case of error-free measurement, Equation (1) can be rewritten as

0   ;
2 ==− i

i
si e

u

k
pp (2)

This means that if the sensor signal is error-free, we can determine that the source
is on a spherical locus (or a circle in the case of two-dimensional localization) whose
center is the sensor location ip  and whose radius is iuk . Equation (3) can be ex-

panded as follows

i
sisi u

k=⋅−+ pppp 2
22

(3)

where “.” indicates scalar product. A similar equation can be obtained for each sensor.
As a result, to find the location of the source, we need to solve multiple sphere equa-
tions. To make the equations linear, consider the sphere equation obtained for the sen-
sor ms

m
smsm u

k=⋅−+ pppp 2
22

(4)

Subtracting (5) from (4) and rearranging, we obtain the following linear equation,
which represents the common chord of the two spheres described by (4) and (5)

( ) ( )2211
2 mi

mi
smi uu

k ppppp −−





−=⋅−− (5)
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To localize a source in three dimensions, we need at least three linear equations of
the form (6). To obtain three linearly-independent equations of the form (6), we need
a set of four sensors { }30 ≤≤ isi .

Without loss of generality, 0s is placed at the origin of the system of coordinates.

The three linearly-independent equations can then be obtained by repeating Equation
(6) three times. m will be fixed to zero, while i  will vary from 1 to 3. Thus, the sys-
tem of linear equations can be written as bAp =s where
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The matrix A is a 3× 3 coefficient matrix expressed in terms of the sensor posi-
tions. b is the vector of constants for the system of equations.

3.2   Sensor Placement

The system of linear equations derived in the last section can be solved as bAp 1−=s .

Note that this is the error-free solution. Now, let us introduce the error into the com-
putation.

The measurement error only affects the vector b , while A  remains unchanged be-
cause its elements depend only on the sensor positions, and hence it is always fixed
for a given sensor placement. After introducing the error, the system of linear equa-
tions becomes

( ) �b�pA +=+ ss
(7)

where s� is the localization error and � is the error that occurs in the constant

vector due to the measurements error. We assume that the error ie  is bounded, other-

wise arbitrary, i.e. ε≤ie , where ε  is a small positive real number. Furthermore, we

assume that 1<<iuε . This can be achieved by imposing the following constraint

which is derived by combining 1<<iuε  and Equation (1).
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ε
ε k

k si
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−
pp

pp
1

2

(8)

The physical implication of this constraint is that the less the measurement error
bound, the further the source can be from the sensors without introducing a significant
localization error. With this in mind, it can be shown (using the binomial expansion
with negative powers) that the norm of the error vector � is bounded according to
the following inequality.
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Now, the localization error bound can be expressed as follows [8]

( )
b

�
A

p

�
κ≤

s

s
(10)

where ( )Aκ  is the condition number of A , which is the ratio between the largest sin-

gular value to the smallest singular value of A  in the singular value decomposition
(SVD) of A , given by

TVUA   = (11)

where U and V are orthogonal matrices (note that A  is a real matrix) and is a di-
agonal matrix whose diagonal  elements are the singular values of A  [9].

From the definition of the condition number, it is clear that the “best-conditioned”
matrix has a condition number of 1. This is achieved by having equal singular values,
i.e. I  α= , where I  is the identity matrix, and α is a real number that is equal to all
the singular values of A . Thus, having I  α=  corresponds to the optimal placement
of the sensors in the sense of minimizing the condition number of A .

If U and V are chosen to be any arbitrary orthogonal matrices, the resulting
placement is a rotated version of the placement shown in Fig. 1. If we choose U and
V so that each of them is equal to the identity matrix, as a special case, this will lead
to the placement shown in Fig. 1. In this case, we have IA   α= . Not only does this
placement minimize the localization error bound by minimizing the condition number
of A , but it also eliminates the need to invert the matrix A , which in turn simplifies
the computations and eliminates the effect of the round off error due to the inversion
process. We call this placement “best-conditioned aligned pyramid” (BCAP). The



Sensor Placement for Isotropic Source Localization         437

placement is identified as a pyramid since the sensors are on the vertices of a 4-vertex
symmetric pyramid whose base is the triangle 1s 2s 3s , and whose top is 0s . The

pyramid is described as “aligned” to indicate that its edges are aligned with the coor-
dinate axes.

The solution to the system of equations in this case is given as follows. As men-
tioned above no matrix inversion is required.



























−





−

−





−

−





−

−=

uu

k

uu

k

uu

k

s

03

02

01

ˆ
1

ˆ
1

ˆ
1

ˆ
1

ˆ
1

ˆ
1

2

1
p̂ (12)

Fig. 1. Sensor placement that minimizes the coefficient matrix condition number

4   Experimental Evaluation

To verify the theoretical results obtained in the previous section, a set of simulation
experiments are conducted where the source is moving slowly along a helical path as
shown in Fig. 2. The experiments are performed for three different sensor placements.
The first placement is the BCAP placement with 100 =α . The second placement cor-
responds to a matrix A that is “badly-conditioned”, with a condition number of 106.
The third placement results in a coefficient matrix with a condition number of 103.
Note that the condition number only depends on the sensor positions and does not de-
pend on the source position. Fig. 3 depicts the second placement used in the experi-
ments.
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Fig. 2. The source moves along a helical path

Fig. 3. Sensor configuration that leads to a badly-conditioned matrix: s
0
 at (0, 0, 0)T, s

1
 at (1.55,

1.87, 2.61)T, s
2
 at (36.31, 43.08, 57.92)T,  and s

2 
 at (26.47, 31.39, 42.11)T

To conduct the simulation, the path is sampled into a number sample points. At
each sample point, the location of the source is estimated according to the solution
model derived in the previous section. The simulation is conducted for different
measurement relative error bounds iuε . For each bound and for each placement the

absolute value of the relative root mean square (RMS) error is computed along the
path. Fig. 4 shows a plot of the results for the different placements on a log scale.
Thus, each point on the x-axis corresponds to a complete experiment for the source
moving along the path with a measurement relative error bound equal to the value on
the x-axis at that point. The proposed BCAP placement consistently results in less
RMS relative localization errors.

Fig. 5 shows an example of the estimated path using the BCAP placement versus
the placement that corresponds to the condition number of 103 for the cases where the
bound of the relative measurement error is 1% and 0.1%. The case of the “1e3 condi-
tioned” placement with 1% error results in so  huge localization error that the actual
path and the estimated path cannot be shown on the same scale (hence, will not be

s0

s1

s2s3

y

z

x
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Fig. 4. A plot of the path RMS error vs. the relative measurement error

shown in the figure), whereas the corresponding BCAP case shows that the estimated
path is still close to the actual path (Fig. 5a). In the case of 0.1% relative error bound,
the estimated path using BCAP follows the actual path to a great precision (Fig. 5c),
while the localization error of the “1e3 conditioned” is so high (Fig. 5b) that the esti-
mated path is useless in the sense that it does not provide any good estimation of the
actual path.

5   Conclusion

In this paper we present a three-dimensional observation model for a source localiza-
tion problem. Based on the model, we impose two questions: (1) “What is the mini-
mum number of sensors needed to find the location of the source?” and (2) “What is
the optimal sensor placement that minimizes the localization error?” We formulate the
problem in a linear-algebraic framework, which directly answers the first question.
Then, we use the formulation to derive an error bound for the localization error, based
on which, we derive a sensor placement configuration that minimizes the error bound
of the localization error and eliminates the round-off error due to inversion. To verify
the theoretical results, a set of simulations are conducted. The experimental results re-
veal that the proposed placement outperforms other placements in terms of the local-
ization error.

Thus, the contribution of this paper is (1) formulating the source localization
problem for the given model in a linear-algebraic framework for the goal of obtaining
an optimal sensor placement, and (2) the proposed sensor placement (BCAP) that is
optimal in the sense that it minimizes the effect of the measurement error on the lo-
calization error.
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(a)

(b)

(c)
Fig. 5. The estimated path shown vs. the actual path for (a) BCAP and relative measurement er-
ror of 1%, (b) a badly-conditioned placement and relative measurement error of 0.1%, and (c)
BCAP and relative measurement error of 0.1%
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Abstract. This paper is concerned with coordinated delivery of mes-
sages in sensor networks. The notion of multicast is re-examined in light
of a new set of requirements that are specific to such networks. The
result of this investigation is a new concept called mobicast. It entails
the delivery of messages to large sets of nodes in a manner that sat-
isfies a potentially dynamic set of spatiotemporal constraints. In order
to demonstrate the feasibility of mobicast, we present a novel topology-
aware protocol for sensor networks. Worst-case analysis shows that the
protocol provides strong spatial and temporal delivery guarantees under
a set of reasonable assumptions about the network. The design of the
protocol relies on new notions of compactness for spatially distributed
networks. By explicitly addressing the temporal domain associated with
message delivery, mobicast is more general than geocast and makes it
possible to save precious resources in sensor networks by exploiting its
inherent just-in-time delivery semantics.

1 Introduction

Large-scale wireless sensor networks will be deployed in various physical envi-
ronments to support a broad range of applications such as precision agriculture,
smart highway, security, emergency response and disaster recovery systems [1].
These applications need to collect data from sensor networks, aggregate data
from multiple sensors inside the network, and communicate aggregated informa-
tion to end users over multi-hop ad hoc networks. Due to the need for high data
fidelity and the severe energy constraint in sensor networks, in-network data ag-
gregation has recently received significant attention [2,3,4]. While some forms of
data aggregation can be performed on the end-to-end route from the source to
the base station [2,4], explicit group coordination among sensors in the locality
of a monitored physical entity (e.g., an intruder) are needed by many applica-
tions. In the latter case, a group management protocol maintains a sensor group
in the vicinity of a physical entity, and a multicast or unicast protocol provides
the communication mechanism for data aggregation inside the group.

Local coordination is often subject to spatiotemporal constraints due to mo-
bility in the physical environment. Environmental mobility, i.e., the movement
of monitored physical entities, is common to many sensor network applications
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(e.g., personnel tracking in emergency sites, mobile robots in factories, and habi-
tat monitoring of wildlife). To illustrate the kind of spatiotemporal constraints
likely to be encountered in such applications, let us consider the deployment of
acoustic sensors in a security area designed to track intruders. When there are
no intruders, most sensors sleep and only periodically wake up to check for in-
teresting events. A small number of sensors remain active to provide continuous
vigilance and to activate other sensors when necessary. To track an intruder, sen-
sors in its vicinity form a group to share their data and determine the location
of the intruder through triangulation. Only the sensors within the vicinity of an
intruder should contribute data for the triangulation operation. It is unnecessary
and even incorrect to aggregate the data from sensors that are far away from the
intruder because their data may have no correlation with the intruder’s actual
location. Hence the group is subject to a spatial constraint that requires it to
be composed of sensors within a zone surrounding the moving intruder (e.g., a
circle centered at the estimated location of the intruder). Meanwhile, the group
is also subject to a timing constraint that requires it to move at the same speed
as the intruder with sensors dynamically joining and leaving the group. Thus,
sensors in the group must actively multicast the location of the intruder to other
sensors that are likely to meet the moving zone within a certain deadline. The
set of sensors to be notified depends on the moving speed of the intruder and
the time it takes for a sensor to wake up and get ready to join the group. In
addition, in order to conserve energy and maintain spatial locality as related to
data aggregation, nodes should receive the multicast message as late as possible.
We call this property “just-in-time” delivery.

We propose a novel class of multicast mechanisms that exhibit “just-in-time”
temporal delivery semantics for disseminating data spatially in sensor networks.
The distinctive trait of this new form of multicast, called mobicast, is the delivery
of all nodes that happen to be in a prescribed region of space at a particular point
of time. Spatial constraints are combined with temporal constraints by offering
the application the ability to request the routing of a message to all points inside
a delivery zone while allowing the latter to be defined as a function of time, thus
having a continuously changing configuration. The first major challenge derives
from the fact that early delivery may not be desirable as it leads to unnecessary
energy consumption as the sensors become ready too far in advance relative to
the required delivery time. It is the energy minimization constraint that rules out
trivial solutions such as full network flooding. The second challenge arises from
the fact that any protocol likely to succeed must factor in network topology and
geometry. The strong “just-in-time” spatial delivery guarantee can be provided
only if the protocol takes into account the spatial distribution of the sensors
across the network. Sophisticated analysis will be required to ensure that the
demanded guarantees are actually met. The use of spatiotemporal constraints
in the specification, the focus on energy minimization, and the reliance on novel
geometric analysis are the defining features of this research.

While mobicast is conceptually powerful, its implementation on sensor net-
works is fraught with difficulties. Key among them is the ability to ensure just-
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in-time delivery guarantees over a wide range of network topologies. The paper
introduces two topological compactness metrics for spatially distributed net-
works designed to facilitate the analysis of information propagation behaviors
across networks, and presents a protocol that uses these topological values for
the network to meet the strong just-in-time delivery requirement of mobicast.

The remainder of the paper is organized as follows. We specify mobicast for-
mally in Section 2. A protocol to achieve reliable mobicast in sensor networks is
described in Section 3. An analysis of the protocol follows in Section 4. Discus-
sion, related work and conclusions appear in sections 5, 6 and 7, respectively.

Fig. 1. Sample mobicast delivery zones

2 Problem Definition

The ultimate goal of mobicast is to achieve just-in-time information dissemi-
nation to all nodes in some prescribed spatial area in the network. We use a
“delivery zone,” denoted as Z[t], to represent the area where information D
should be delivered at time t. As the mobicast delivery zone Z[t] evolves over
time, the set of recipients for D changes as well. Accordingly, we characterize a
mobicast by the information D to be delivered and its associated delivery zone
Z[t] whose coverage changes over a period of time T :

〈D, Z[t], T 〉 (1)

Fig. 1 shows two examples of mobicast with different kinds of delivery zones.
Fig. 1(a) depicts a rectangle-shaped zone (shaded) that moves from the source
located at the bottom of the figure to the top. As the delivery zone moves, some
nodes enter the zone and some others leave the zone. Mobicast may require that
a node be delivered the message D at the time it gets in the zone, or before
the time it moves out of the zone. Note that the shape and motion of a delivery
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zone are defined/specified by mobicast users (for their spatiotemporal delivery
requirement of information D). A mobicast protocol then needs to achieve this
spatiotemporal delivery requirements efficiently in various network topologies.
Fig. 1(b) shows a more general example where the delivery zone assumes an
arbitrary shape, with both its shape and location evolving over time. This may
be the case when the delivery requirements change in response to unexpected
developments in the delivery zone.

The complexity of a mobicast protocol in general depends on the level of
the delivery guarantee it wants to achieve. In this paper, we first consider the
following strong delivery guarantee: once a node α is in a delivery zone Z[t], it
should receive the information D immediately. Let Ω be the set of all nodes in
space, let r(j) be the location of node j, and let D[j, t] denote the fact that j
has been delivered the information D at time t. Let the time when the mobicast
is initiated be zero. This mobicast delivery property can be formally stated as

〈∀j, t : j ∈ Ω ∧ 0 ≤ t ≤ T :: r(j) ∈ Z[t] =⇒ D[j, t]〉1 (2)

This statement can be interpreted as “During the mobicast session, all nodes
inside zone Z at time t should have information D.”

Unfortunately, delivery property (2) is practically impossible to realize in
most wireless ad hoc networks. The reasons include:

– First, communication latency is often not negligible in wireless ad hoc net-
works. This is especially true in wireless sensor networks where sensor nodes
might have a sleeping schedule in order to save energy. Note that (2) implies
instantaneous delivery to all nodes at the initial delivery zone Z[0]. If Z[0]
contains a node other than the sender node, it is impossible for the node to
receive information D instantly at time 0 when considering the communica-
tion latency.

– Second, a wireless ad hoc network may be partitioned. A delivery zone,
specified by some geometric property alone, might cover nodes in multiple
network partitions, which in turn renders the delivery impossible.

– Third, we did not put any restrictions on the evolving behavior of the delivery
zone. One can imagine cases where a user-specified delivery zone evolves too
fast such that its speed of change over space is faster than the maximum
delivery speed a network can support.

As such, we are forced to weaken the ideal mobicast delivery property in the
following practically-minded manner: mobicast satisfies property (2) only after
some initialization time tinit on a connected network. That is

〈∀j, t : j ∈ Ω ∧ tinit < t ≤ T :: r(j) ∈ Z[t] =⇒ D[j, t]〉 (3)

Thus, each mobicast session has two phases. The first, from time 0 to tinit, is
an initialization phase in which no delivery guarantee is specified. The second
phase, from time tinit to T , is a stable phase in which the strong spatiotemporal
guarantee is required.
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2.1 Three Optimization Concerns

Note that, because communication latency is a random variable, it is impossible
for one to schedule the delivery of a message to a node at an exact time. In order
to achieve the delivery property (3), one has to consider the worst case scenario
and schedule the delivery of mobicast message ahead of time. Let tr(j) denote
the time a node j first receives the mobicast message, tin(j) be the first instant
of time j enters the delivery zone. We call the time difference tin(j) − tr(j) the
“slack time” of message delivery. Note that specification (3) implies that tin is
the deadline of message delivery, and the slack time measures how early the
message is delivered to a node comparing to its deadline to be there.

One optimization concern for any mobicast protocol is to reduce the overall
time interval between the reception of a message and its required delivery to the
application, i.e., the slack time. Minimizing the average slack time tslack for all
nodes that were ever in the delivery zone leads to less energy consumption and
better locality in spatial data aggregation.

Another optimization dimension for mobicast is to reduce the total number
of retransmissions needed for each mobicast session while delivering the spatial
and temporal guarantees. This direction is similar to that of all broadcast and
multicast protocols for ad hoc networks.

The third optimization concern is to make the initialization phase as short
as possible. In general, the length of the initialization time depends on the size
of the delivery zone, the network connectivity pattern within the region, and the
protocol execution behavior. While a mobicast protocol has no control over the
former two factors, it can try to make tinit as short as possible by optimizing its
execution strategy.

Next we consider the domain of sensor networks and present a mobicast
protocol that satisfies property (3) in an efficient way.

3 Description of a Mobicast Protocol

As a proof of concept, we present a mobicast protocol for the case when the de-
livery zone is a convex polygon P that moves through space at constant velocity
v for a duration T . For simplicity, we use an example where the convex polygon
is a rectangle and whose shape does not change over time. While conceptually
simple, this mobicast protocol is useful for coordination scenarios where the mo-
bile event does not change its velocity and spatial confinement very often, and
is very challenging to implement. Our effort in deriving the protocol yields a few
insights and new concepts useful for the study of spatiotemporal information
dissemination strategies in sensor networks. We will also discuss the potential
implications of entertaining more general cases in later sections. Before present-
ing the protocol, we first describe its key assumptions regarding the network.
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3.1 Sensor Network Model

The sensor network model for our protocol is as follows. The network does not
have any partition, and all nodes are location-aware, i.e., they know their loca-
tion r in space with reasonable accuracy. The maximum clock-drift among the
sensors in the system is small enough to be negligible. All nodes support wire-
less communication and are able to act as routers for other nodes. Local wireless
broadcast is reliable, i.e., once a local broadcast is executed, it will be heard by
all its neighbors within latency τ1.

3.2 A Mobicast Protocol

In order to describe the mobicast protocol more concisely, we introduce some
terminology. The reader is reminded that the delivery zone is an area where
the delivery of messages to the application takes place and is specified by the
application itself. Our protocol also uses a “forwarding zone” F [t] that is mov-
ing at some distance ahead of the delivery zone, as shown in Fig. 2. We call
the distance between the forwarding zone and its associated delivery zone the
“headway distance” (of the forwarding zone). The shape of the forwarding zone
is related to the shape of the delivery zone, and the topology of the underlying
network. The choice of the headway distance and the size of the forwarding zone
is such that it guarantees that all nodes entering the delivery zone will have
received the mobicast message in advance, even if some of them are not directly
connected (1-hop) to any nodes already in the delivery zone. In the meantime,
the forwarding zone also serves to limit the retransmission to a bounded space
while ensuring that all nodes that need to get the message will get it. We will
discuss how the forwarding zone is determined in the next section. While nodes
in a forwarding zone retransmit the mobicast message as soon as they receive
it, the nodes in front of the forwarding zone enter a “hold-and-forward” state
if they receive the mobicast message. They do not retransmit the message until
becoming members of the forwarding zone. It is the action of the nodes in the
hold-and-forward zone that ensures the “just-in-time” feature of the mobicast
delivery policy while keeping the average slack time tslack small. This behavior
results in a virtual “hold-and-forward zone” in front of the forwarding zone, as
also indicated in Fig. 2.

When a request 〈D, Z[t], T 〉 is presented to the mobicast service at time t0,
it constructs and broadcasts a mobicast message to all the neighbors. A mobi-
cast packet m̃ contains the following information: a unique message identifier, a
delivery zone descriptor, a forwarding zone descriptor, the session start time t0,
the session lifetime T , and the message data D. The unique message identifier
is created from the combination of the location of the source and the time t0
of the request. The delivery zone descriptor encodes the original location, the
shape of the zone, and its velocity. The forwarding zone descriptor encodes the
shape and the original location of the forwarding zone, which is computed using
some knowledge about the network and the shape of the delivery zone. We will
discuss in detail the computation of the forwarding zone in later sections.
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Fig. 2. Mobicast example

The mobicast protocol is described in Fig. 3. While not explicitly shown in
the code, this mobicast protocol exhibits two phases in its spatial and temporal
behavior. The first is an initialization phase, in which the nodes are trying to
“catch-up” with the spatial and temporal demands of the mobicast . When a
node in the path of the forwarding zone receives a message for the first time, it
rebroadcasts the message as soon as possible. This phase continues until a stable
forwarding zone that travels at a certain distance ds ahead of the delivery zone
is created.

The second phase is a cruising phase in which the forwarding zone moves
at the same velocity as the delivery zone. The protocol enters this phase after
the delivery zone and the forwarding zone reach the stable headway distance
ds. This cruising effect is achieved by having the nodes at the moving front
of the forwarding zone retransmit the mobicast message in a controlled “hold-
and-forward” fashion to make the forwarding zone move at the velocity v. The
initialization and the cruising phases together establish mobicast property (3)
with tinit being the time required by the initialization phase.

In the next section we turn our attention to: how the forwarding zone and its
stable headway distance are computed; what is the value of tinit given a specific
mobicast request and the spatial properties of the underlying network; and how
the protocol delivers on its guarantees.

4 Analysis

A key element in the mobicast protocol (Fig. 3) is the forwarding zone. As we
mentioned earlier, the purpose of the forwarding zone is to ensure that all the
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Upon hearing a mobicast message m̃ at time t.
——————————

1.if (m̃ ) is new and t < t0 + T
2. if (I am in F[t]) then
3. broadcast m̃ immediately ; // fast forward
4. if (I am in Z[t]) then
5. deliver the message data D to the application layer;
6. else
7. compute the earliest time tin for me to enter the delivery zone;
8. if tin exists and tin < t0 + T
9. schedule delivery of data D to the application layer at tin;
10. end if
11. end if
12. else
13. compute the earliest time t′ for me to enter the forwarding zone;
14. if t′ exists
15. if t0 ≤ t′ ≤ t
16. broadcast m̃ immediately ; // catch-up!
17. else if t < t′ < t0 + T
18. schedule a broadcast of m̃ at t′; //hold and forward
19. end if
20. end if
21. end if
22. end if

Fig. 3. A mobicast protocol

nodes in a delivery zone receive the mobicast message, and that they receive the
message before entering the delivery zone. The latter is guaranteed by sustaining
a headway distance ds between the forwarding zone and the delivery zone. The
shape of a forwarding zone depends on the following three factors: the shape of
the delivery zone, the spatial distribution of the network nodes, and the topology
of the network. Fig. 4 shows a rectangle mobicast example to illustrate why this
is the case. The source node S initiates a mobicast. For node A to be able to
deliver the message when it becomes a member of the delivery zone, it should
have received the message by that time. In scenario Fig. 4(a), this means the
message should have gone through G (in order for it to reach A). This implies
that A and G should be in the forwarding zone together at some point in time
before A can receive the message. On the other hand, if the network connectivity
is “denser”, as in Fig. 4(b), it is obvious that the width of the forwarding zone can
be relatively smaller. Furthermore, in Fig. 4(a) the height of the forwarding zone
has to be bigger than the height of the delivery zone to include D. Without being
so, nodes A, B, C would be effectively partitioned from the rest of the nodes in
the network, as node D would not participate in forwarding (retransmission) as
it was not in the forwarding zone. This is just one special example with an ad
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Fig. 4. Effect of network topology on the size of forwarding zone

hoc choice of forwarding zone. The question we would like to answer is, in an
arbitrary sensor network, how do we determine the forwarding zone for a specific
delivery zone?

In the rest of this section we first discuss how to compute the forwarding zone,
then show what headway distance is needed for ensuring the delivery guarantee.
Finally, we show that our protocol provides the desired spatiotemporal guaran-
tees given a proper choice for the forwarding zone and the headway distance.

4.1 Computing the Forwarding Zone

In order to compute the size of the forwarding zone for a specific delivery zone on
an arbitrary network, we first introduce a compactness measure for the network,
called “∆-compactness.”

∆-Compactness. Given a geometric graph/network G(V, E), ∆-compactness
seeks to quantify the relation between the Euclidean distance and the network
spatial distance among network nodes. The network spatial distance d̃(i, j) be-
tween two nodes i and j is defined in the following manner. Let d(e) denote the
Euclidean distance of a network edge e. If a network path l contains an edge
e, we say e is in l. We define the “edge-length” of path l to be the sum of the
physical distances along its edges:

L(l) =
∑

e in l

d(e) (4)
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Let M(i, j) be the set of shortest network paths between nodes i and j. The
network spatial distance d̃(i, j) is

d̃(i, j) = min
l∈M(i,j)

L(l) (5)

The ∆-compactness of a geometric graph G(V, E) is defined as the smallest
Euclidean distance to network spatial distance ratio among the nodes:

δ = min
i,j∈V

d(i, j)
d̃(i, j)

(6)

Theorem 1. Let i, j be any two nodes in a network with ∆-compactness value
δ. Let E(i, j, δ) be an ellipse using i, j as two foci and with eccentricity δ. There
is at least one shortest path between i and j inside the ellipse E(i, j, δ).

Proof: (We can prove this theorem by contradiction. Proof omitted due to page
limit. Reader can find a proof of this theorem and other theorems presented in
this paper in [5]. )

This theorem is very useful for limiting the flooding region while guaranteeing
fastest point to point message delivery in a geometric network. In our case, this
metric helps us to decide the size of the forwarding zone.

δ-Cover. We also introduce a notion called the “δ-cover” of a polygon to sim-
plify the mathematical description of the forwarding zone. The δ-cover of a
convex polygon P is defined as the locus of all points p in the plane such that
there exists two points q and r in the polygon P that satisfy the constraints

d(p, q) + d(p, r) ≤ 1
δ
d(q, r) (7)

where d(x, y) is the distance between points x and y.

Theorem 2. Let i, j be two nodes in a network with ∆-compactness value δ. If
i, j are inside a convex polygon P , then the δ-cover of P contains at least one
shortest path between i and j.

Given this theorem, we now have a way to determine the size of the forwarding
zone for any convex-shaped delivery zone.

The Forwarding Zone. Given a mobicast delivery zone of convex shape P ,
if the mobicast is executed on a network with ∆-compactness value δ, then we
choose the shape of the forwarding zone to be the δ-cover of P . We call the area
of P in the forwarding zone the “core” of the forwarding zone. One may easily
see the following corollary.

Corollary 1. Let i, j be two nodes in the core of a forwarding zone in a network
of ∆-compactness δ. Then the forwarding zone contains at least one shortest path
between i and j.
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Note that this corollary provides the following guarantee: inside the δ-cover of
a delivery zone, there is a shortest network path between any two nodes in the
delivery zone. This also means that if one node in the delivery zone has a message
for all other nodes in the delivery zone, it can choose only to flood the δ-cover
of a delivery zone, i.e., forwarding zone, to ensure that they all get the message,
with an additional property: the message is delivered through shortest paths.

Note also that, so far we are only concerned with guaranteed spatial delivery.
In order for all nodes in the delivery zone to receive the multicast message on
time, we need to have the forwarding zone moving ahead of the delivery zone.

4.2 Computing the Stable Headway Distance

The headway distance of the forwarding zone is a way to tell the protocol how far
ahead to prepare the message delivery in order not to miss the delivery deadline
due to some unexpected “twists and turns” on the related network path. One
may imagine that networks with more “curved” network paths require longer
headway distances than those that are more “direct.” In order to capture this
notion more precisely, we introduce another compactness metric for the network,
called “Γ -compactness.”

Γ -compactness. Γ -compactness quantifies the relation between the network
distance (in terms of hops) and the Euclidean distance among the nodes in a
geometric network. Let h(i, j) be the minimum number of network hops between
nodes i and j, and d(i, j) be the Euclidean distance between them. We define
the Γ -compactness of a geometric graph G(V, E) to be the minimum ratio of the
Euclidean distance to the network hop distance between any two nodes, i.e.,

γ = min
i,j∈V

d(i, j)
h(i, j)

(8)

Intuitively, if a network’s Γ -compactness value is γ, then any two nodes in the
network separated by a distance d must have a shortest path between them no
greater than d/γ hops.

Theorem 3. Let N be a network with a Γ -compactness value γ, and let τ1 be
its maximum 1-hop communication latency. The lower bound of the maximum
message delivery speed over the space of N is γ

τ1
.

This theorem tells us that given a geometric network with Γ -compactness value
γ, the delivery zone cannot move at a higher velocity than γ

τ1
if one wants

delivery guarantee in all cases.

The Headway Distance. The stable headway distance ds must be large
enough to ensure that when the delivery zone reaches the current location of
the core of the forwarding zone, all the nodes in the core have received the
message, i.e., tin > tr is achieved for all nodes.
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Theorem 4. Let Sd be the maximum distance between the boundary points of
the delivery zone, let v be the speed of the delivery zone, let τ1 be the 1-hop
maximum network latency of the network and let γ be its Γ -compactness. If we
select ds = vτ1�Sd

γ 	, then all nodes in the core of the forwarding zone will have
received the mobicast message when the delivery zone reaches them, assuming at
least one node in the core has received the message.

Given the headway distance d and the shape F of the forwarding zone, a node
can easily determine the current location of the forwarding zone using velocity
v, current time t, sending time t0 and the source location r0. Note that t0 and
r0 can be obtained from the mobicast protocol message ID.

4.3 Length of the Initialization Phase

As we pointed out earlier, it is in the cruising phase that the mobicast protocol
guarantees on-time delivery. In the initialization phase, the timing constraint of
mobicast is realized in a best-effort way. It is possible that during the initializa-
tion phase, some nodes do not get the messages on-time. In general, the shorter
the initialization phase, the more deliveries are on-time. The initialization phase
continues until one node inside the core of the forwarding zone that is ds ahead
of the delivery zone receives the mobicast message. From discussions in the last
section, we know that after this, the timing constraints of mobicast are always
satisfied.

The time (tinit) taken by the mobicast protocol to enter the cruising phase
is related to the stable headway distance needed, the delivery zone speed, and
the maximum admissible spatial information propagation speed of the network.
The upper bound of tinit that our mobicast protocol achieves is addressed by
the following theorem.

Theorem 5. Let ds be the required headway stable distance between the forward-
ing zone and the delivery zone. Let w be the width of the delivery zone. Let v be
the speed of the delivery zone and u be lower bound of the maximum message de-
livery speed achievable on the network. The mobicast protocol initialization time
tinit is no greater than (ds+w)

u−v

The Spatiotemporal Guarantees of the Protocol. The spatiotemporal
guarantee of the presented mobicast protocol is addressed by the following the-
orem:

Theorem 6. If at any instant of time in a mobicast session, its (user-defined)
delivery zone covers at least one node in the network, our mobicast protocol
delivers property (3).

We provide only a sketch of the proof of this theorem here.
Proof: If a delivery zone covers at least one node in the network at any instant
of time, then whenever the last node in a delivery zone is leaving a delivery
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zone, there must be another node entering it. The same is true for the core of
the forwarding zone, because it is of the same shape as the delivery zone and
moves on the same path. So that if at one point in time, a node in the core of
the forwarding zone has received the mobicast message, it will always be able to
pass on to all others nodes on its path, because of theorem (4). From theorem
(5), it is easy to see property (3) is satisfied. 
�

Note that if the network has a big “hole” such that the delivery zone may fall
into it at some instant of time, i.e., the delivery zone covers no network node,
then, our protocol does not provide the guaranteed spatiotemporal delivery. That
is why theorem (6) requires the condition “at any instant of time in a mobicast
session, its user defined delivery zone covers at least one node in the network”.

5 Discussion

In the last section we introduced two network compactness metrics to help us
choose the right forwarding zone and its headway distance from the delivery
zone to achieve the mobicast delivery guarantee without unnecessary flooding.
The higher the compactness, the smaller the forwarding zone and its headway
distance. These compactness values must to be computed for supporting mo-
bicast. Calculating them involves computing the shortest path and Euclidean
distances of each pair of nodes in a given network. The all-pair shortest path
of a graph G(V, E) can be computed in O(V E log V ) time by using Johnson’s
algorithm [6]. All-pair distance can be computed in O(V 2) time. So we can com-
pute the the Γ -compactness of the graph in O(V E log V ) time. ∆-compactness
can also be computed in O(V E log V ) time. Thus it is not feasible for individ-
ual sensor nodes to compute these values in a large network. In practice, one
may have a central server collect all the location and connectivity information,
do the computation and use one broadcast to inform all the nodes this value.
Note that the compactness metrics are defined for the whole network. Differ-
ent areas in the network could have their regional compactness values. When
those values are available to the corresponding nodes, the size of the forwarding
zone can change from one area to another in the network. We expect that this
adaptive behavior will reduce the overall retransmission overhead. Computing
only regional compactness also is computationally less intensive. The tradeoff
for doing this is one may not be able to support reliable mobicast with delivery
zones larger than the size of the region used for the compactness computation.
Note also that these compactness metrics are geared for worst-case analysis of a
“communication unfriendly” network topology in any area of the network. They
are chosen in this manner because the mobicast property as specified by (3) is
an absolute guarantee. If one prefers a weaker, probabilistic delivery guarantee,
weaker (e.g., average) compactness measures would be more appropriate.

For simplicity, our protocol carries out an “as soon as possible” flooding in-
side the forwarding zone. If nodes have accurate pictures regarding the locations
of their one hop or two hop neighbors, one can reduce the number of neces-
sary re-transmissions in a manner similar to techniques proposed for improving
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broadcast efficiency [7,8]. In a probabilistic guarantee scenario, one may also use
probabilistic retransmission-reduction techniques such as the one described in
[9]. A review of these and other related methods can be found in [10].

Furthermore, in order to focus on the essential characteristics of mobicast,
we assume that the local broadcast is reliable, i.e., any message broadcast by
a node is to be heard by its neighbors in τ1 time. Because of the possibility
of “hidden nodes” and the high cost of coordination mechanisms to solve the
hidden nodes problem, a more realistic choice would be to relax the reliability
assumption about local broadcast and, in turn, weaken the delivery guarantee
to a probabilistic one.

Finally, while the mobicast protocol we presented applies to cases where the
delivery zone is a convex polygon P that moves through the space at constant
velocity v for a duration T , mobicast in general applies to a much wider set of
spatiotemporal constraints. The delivery zone can exhibit any evolving charac-
teristics as long as it is sustainable by the underlying system. While they may
all require similar ideas of forwarding zone and headway distance to maintain
the spatiotemporal properties inherent in mobicast, a different type of delivery
zone may require different protocol handling details. Classification of a useful
set of mobicast delivery zone scenarios and design of the corresponding mobicast
protocols are part of our plans for future work.

6 Related Work

Mobicast is a multicast mechanism that involves both the spatial and the tem-
poral domains. The idea of disseminating information to nodes in a geographic
area is not new. Navas and Imielinski proposed geographic multicast address-
ing and routing [11,12], dubbed as “geocast,” for the Internet. They argued that
geocast was a more natural and economic alternative for building geographic ser-
vice applications than the conventional IP address-based multicast addressing
and routing. In a geocast protocol, the multicast group members are determined
by their locations. The initiator of a geocast specifies an area for a message to
be delivered, and the geocast protocol tries to deliver the message only to the
nodes in that area. Ko and Vaidya investigated the problem of geocast in mo-
bile ad hoc networks [13] and proposed to use a “forwarding zone” to decrease
delivery overhead of geocast packets. Various other mechanisms [14,15,16] have
been proposed to improve geocast efficiency and delivery accuracy in mobile ad
hoc networks. Zhou and Singh proposed a content-based multicast [17] in which
sensor event information is delivered to nodes in some geographic area that is de-
termined by the velocity and type of the detected events. While different in style
and approach, all these techniques assume the delivery zone to be fixed. They
also assume the same information delivery semantics along the temporal domain,
i.e., information is to be delivered “as soon as possible”. However, local coordi-
nation often requires just-in-time delivery in sensor networks. Data aggregation
is an important information processing step in sensor networks. Several tech-
niques have been proposed to support data aggregation in sensor networks. For
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example, both directed diffusion [2,18] and TAG [4] allow data to be aggregated
on their route from the sources to a base station. No explicit local coordination
is supported by these techniques. LEACH [3] organizes sensors into local clusters
where each cluster head is responsible for aggregating the data from the whole
cluster. However, there is no notion of mobility and the clusters do not move in
space following a physical entity. In contrast, supporting local coordination for
mobile physical entities is a primary goal of mobicast. Perhaps the EnviroTrack
project [19] is closest in spirit to our work. EnviroTrack can dynamically create
and maintain a group that tracks mobile entities in the environment. A transport
layer protocol maintains connections between mobile groups. However, both En-
virotrack and the other aforementioned projects do not provide any guarantees
regarding spatiotemporal constraints.

7 Conclusion

In this paper we have presented the basic idea of mobicast, a new multicast
paradigm for disseminating information to a set of nodes in a sensor network
under spatiotemporal constraints. To demonstrate the feasibility of mobicast,
we designed a protocol and explored its ability to deliver strong spatiotempo-
ral guarantees. The key element in the protocol is a dynamic forwarding zone
moving ahead of the delivery zone. Furthermore, we introduced two new notions
of network compactness and proved several related theorems useful in the anal-
ysis of the information propagation over sensor networks. Using these results
we were able to determine the shape of the forwarding zone and the headway
distance needed for our protocol to ensure strong multicast delivery guarantees
in space and time while keeping retransmission overhead and average slack time
small. The powerful just-in-time spatial delivery semantics of mobicast serves to
optimize resource utilization for multicast tasks in sensor networks and enables
application programmers to address both spatial and temporal perspectives of
communication and coordination explicitly, in a manner atypical of current mul-
ticast models.

References

1. D. Estrin, e.a.: Embedded everywhere: A research agenda for networked systems
of embedded computers. National Academy Press (2001) Computer Science and
Telecommunications Board (CSTB) Report.

2. Intanagonwiwat, C., Govindan, R., Estrin, D.: Directed diffusion: a scalable and
robust communication paradigm for sensor networks. In: Mobile Computing and
Networking. (2000) 56–67

3. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient commu-
nication protocol for wireless microsensor networks. In: HICSS. (2000)

4. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: Tag: a tiny aggregation service
for ad-hoc sensor networks. (OSDI 2002, Boston MA)



Mobicast: Just-in-Time Multicast for Sensor Networks 457

5. Huang, Q., Lu, C., Roman, G.C.: Mobicast: Just-in-time multicast for sensor
networks under spatiotemporal constraints. WUCS 42, Washington University in
Saint Louis (2002)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The
MIT Press (1999)

7. Peng, W., Lu, X.: On the reduction of broadcast redundancy in mobile ad hoc
networks. In: Proceedings of the ACM Symposium on Mobile Ad Hoc Networking
and Computing (MOBIHOC). (2000)

8. Qayyum, A., Viennot, L., Laouiti, A.: Multipoint relaying: An efficient technique
for flooding in mobile wireless networks. Technical Report Research Report RR-
3898, INRIA (2000)

9. Ni, S.Y., Tseng, Y.C., Chen, Y.S., Sheu, J.P.: The broadcast storm problem in a
mobile ad hoc network. In: Proceedings of the Fifth Annual ACM/IEEE Interna-
tional Conference on Mobile Computing and Networking. (1999) 152–162

10. Williams, B., Camp, T.: Comparison of broadcasting techniques for mobile ad hoc
networks. In: Proceedings of the ACM International Symposium on Mobile Ad
Hoc Networking and Computing (MOBIHOC). (2002) 194–205

11. Imielinski, T., Navas, J.C.: Gps-based addressing and routing. RFC2009, Computer
Sciece, Rutgers University (1996)

12. Navas, J.C., Imielinski, T.: Geocast – geographic addressing and routing. In:
Proceedings of the Third Annual International Conference on Mobile Computing
and Networking (MobiCom ’97). (1997) 66–76

13. Ko, Y., Vaidya, N.: Geocasting in mobile ad hoc networks: Location-based multi-
cast algorithms (1998)

14. Stojmenovic, I.: Voronoi diagram and convex hull based geocasting and routing in
wireless networks. TR TR-99-11, University of Ottawa (1999)

15. Liao, W.H., Tseng, Y.C., Lo, K.L., Sheu, J.P.: Geogrid: A geocasting protocol for
mobile ad hoc networks based on grid. Journal of Internet Technology 1 (2000)
23–32

16. Boleng, J., Camp, T., Tolety, V.: Mesh-based geocast routing protocols in an ad
hoc network. In: Proceedings of the IEEE International Workshop on Parallel
and Distributed Computing Issues in Wireless Networks and Mobile Computing
(IPDPS). (2001) 184–193

17. Zhou, H., Singh, S.: Content based multicast (cbm) for ad hoc networks. Mobihoc
2000, Boston, MA (2000)

18. Intanagonwiwat, C., Estrin, D., Govindan, R., Heidemann, J.: Impact of network
density on data aggregation in wireless sensor networks. International Conference
on Distributed Computing Systems (ICDCS-22) (2001)

19. Blum, B., Nagaraddi, P., Wood, A., Abdelzaher, T., Son, S., Stankovic, J.: An
entity maintenance and connection service for sensor networks. (The First Inter-
national Conference on Mobile Systems, Applications, and Services (MobiSys), San
Francisco, CA, May 2003)



Sentry-Based Power Management in Wireless
Sensor Networks

Jonathan Hui, Zhiyuan Ren, and Bruce H. Krogh

Carnegie Mellon University, Dept. of Electrical and Computer Engineering
5000 Forbes Avenue, Pittsburgh PA 15213-3890, USA

{jhui@andrew|zren@andrew|krogh@ece}.cmu.edu

Abstract. This paper presents a sentry-based approach to power
management in wireless sensor networks for applications such as in-
truder detection and tracking. To minimize average power consumption
while maintaining sufficient node density for coarse sensing, nodes are
partitioned dynamically into two sets: sentries and non-sentries. Sentry
nodes provide sufficient coverage for continuous monitoring and basic
communication services. Non-sentry nodes sleep for designated periods
of time to conserve power, and switch to full power only when needed
to provide more refined sensing for tracking. Non-sentry nodes check for
beacons from sentry nodes to determine when they should remain on.
Experimental results are presented demonstrating trade-offs between
power savings and tracking performance for a network of seventeen
nodes using the first implementation of a basic sentry-based power
management scheme. The paper concludes with a brief description
of a full set of power-management services being implemented as
middle-ware for general wireless sensor applications.

Keywords. Power management, wireless sensor networks, tracking

1 Introduction

This paper introduces a sentry-based approach to power management in wireless
sensor networks. Nodes are classified dynamically into two categories, sentries
and non-sentries. Sentries operate in full power mode, providing a backbone
communication network and basic application functionality. Non-sentries oper-
ate in a low-power dormant state whenever they are not required to help with
the sensing tasks. Sentries wake up the non-sentries when they are needed, as
determined by the current operating context for the network.

We present the concepts of sentry-based power management (SBPM) in the
context of intruder detection and tracking as a target application. Wireless sensor
nodes form a large-scale, ad-hoc network. For object tracking, the network must
respond quickly with respect to the object. This implies that the network must
be optimized for low latency and high throughput communications. On the other
hand, it is common for nodes to exhibit long periods of inactivity whenever there
is no activity within the ranges of their sensors. Therefore, power can be saved
by turning off nodes when they are not needed for the tracking task.

F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 458–472, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



Sentry-Based Power Management in Wireless Sensor Networks 459

Power management should achieve a good trade-off between these objectives.
It should allow as many nodes to turn off at any time, while leaving enough nodes
on to maintain a multi-hop path between any two nodes. This implies that a
coarse network of nodes must remain on to form a connected backbone. Also,
the nodes that remain on need to be sufficient to perform the task, at least in a
coarse mode. In particular, the nodes that are on need to be sufficient to sense
the presence of an intruder in areas where most nodes are turned off. The SBPM
approach presented in this paper is designed to fulfill the above requirements.

2 Related Work

The recent SPAN [1] scheme of Chen et al. has similar goals to those of SBPM.
In SPAN, a sparse network of coordinators is created. This approach is similar
to our sentry-based approach where the sentries can be considered coordinators.
However, SPAN attempts to create a network of coordinators with minimal loss
of network capacity throughout the entire network. When dealing with object
tracking, it is often the case that network capacity is not an issue in areas far
away from the object.

In AFECA [2], each node maintains a count of the all their neighboring
nodes within radio range by listening to broadcast signals. A node transitions
between power-down and power-on states by randomly sleeping for a specific
amount of time proportional to the number of nearby nodes. The general effect
is that the number of nodes remains roughly constant. As the density increases,
the amount of power savings increases. However, AFECA’s decisions on sleeping
time are fairly conservative to ensure that there is a high probability of creating
a fully connected graph among nodes to allow an ad hoc network to form. SBPM
differs from AFECA in that a node is not left on unless it is absolutely necessary.
Also in SBPM, always-on nodes are chosen so that a fully connected graph is
virtually ensured.

In GAF [3], the nodes make use of their geographical location information
to divide up all nodes into fixed square grids. The size of these squares stays
constant regardless of node density. Nodes within a grid power-down and wake-
up with the guarantee that at least one node per square is on at all times to
maintain a backbone network amongst all nodes. SBPM differs from GAF in
that groups are formed dynamically with nearby neighbors rather than specific
geographic coordinates.

Other papers on power management focus on taking advantage of multi-
ple levels of power consumption that are available in wireless sensor nodes.
Minimum-energy routing [4] minimizes energy consumption by varying the trans-
mission power. Chang and Tassiulas [5] enhanced this method to allow for more
uniform power dissipation across all nodes by varying the transmission power
across all nodes fairly. In this method, nodes adjust their transmission power
by choosing routes that minimize energy consumption. DPM [6] saves power
by taking advantage of multiple power states. Individual components are shut
down when not needed and are woken up when necessary. The net effect is a
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set of power states to which a node can transition. The sleep states differ by
the amount of power consumed, the time to transition in and out of the states,
and what services they provide. DPM does not make use of sentries to coarsely
monitor and maintain the network. Another approach is taken by LEACH [7].
This protocol selects multiple coordinators to aggregate data and send the data
to a base station. These techniques for exploiting multiple power states, varying
transmission power, and data aggregation complement the issues addressed by
SBPM. They can be applied to any system where powered on nodes form a fully
connected network. Thus, these methods could potentially be combined with
SBPM.

3 SBPM Design

There are several characteristics of wireless sensor nodes that limit their func-
tionality. Wireless sensors often have limited energy due to the use of batteries.
They also use unsophisticated wireless links that limit the range, reliability, and
throughput of communication between nodes. This implies that total network
capacity is limited. SBPM attempts to minimize the total power usage over all
nodes, maximize the network capacity utilization, and maintain full connectivity
among all nodes. For this approach, we must assume that there exists a multi-
hop path between any two nodes when all nodes are powered on. We also assume
that the nodes have at least three power states. In the power-on state, all of the
node’s components required for the application are powered on. In the power-off
state, the microprocessor is placed in a low-power state while the rest of the
components are turned off. In the checking state, a node is only providing power
to the microprocessor and radio transceiver.

3.1 Sentries and Non-sentries

To initialize SBPM, a subset of nodes in the network are selected as sentries.
In our current implementation, the set of sentries forms a spanning tree, that
is, each sentry is able to communicate with at least one other sentry. The re-
maining non-sentry nodes are partitioned into groups assigned to each sentry
so that every non-sentry is able to communicate with any other node though
one or more sentries. Thus, the sentries provide a backbone network that allows
communication between any two nodes in the network.

Sentries must also be chosen so that the sensing task can still be performed
in at least a preliminary or degraded manner. For object tracking, each sentry
provides coarse tracking information by detecting the presence of an intruder in
its sensor range. Thus, the second criterion for the selection of sentries is that
they provide complete coverage with respect to sensing. With coarse sensing, the
intruder can be detected and surrounding non-sentries can be then be turned on
to enable higher-resolution tracking.

Sentries are also responsible for waking up nodes that are in the power-off
state. The non-sentries notify their sentries when they transition to the power-off
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state, and declare when they will check for a beacon to see if they need to return
to the power-on state.

Since sentries persist in the power-on state, their power consumption is signif-
icantly higher than the non-sentry power consumption. While the sensor network
is active, the sentry assignments can be rotated to share this power burden. This
rotation is achieved by weighting the costs of assigning sentries according the the
available remaining energy at each node. We are currently working on efficient
procedures to solve the problem of optimal dynamic sentry assignment.

Figure 1 shows the state transition diagram of a node. The main purpose of
the non-sentries is to provide more detailed information about the environment
when it is needed. In the power-on state, they continuously monitor the area
using onboard sensors. Non-sentries differ from sentries in that they are allowed
to enter the power-off state when their contribution is not necessary for accurate
object tracking. Non-sentries stay in the power-off state for a specific amount of
time. When that time expires, the non-sentry enters the checking state to check
if it is necessary to completely power on. If the node is not needed, it returns to
the power-off state.

 

Sentry Non-Sentry 
Power-On 

Non-Sentry 
Power-Off 

Non-Sentry 
Checking 

Sentry Rotation/ 
Relinquish Duties 

Sentry Rotation/ 
Acquire Duties 

Power-On Msg 
From Sentry 

No Power-On 
Msg From Sentry 

Power-Off Time 
Expires 

Fig. 1. Node state transition diagram.

The amount of time a non-sentry stays in the power-off state before entering
the checking state can be determined right before the non-sentry enters the
power-off state. Picking this time correctly is not trivial. A power-off time that
is too short does not optimize the amount of energy savings. However, choosing
a time that is too long may harm the performance of the sensor network. A node
that transitions to a power-off state for a long time may not check to enter the
power-on state in time to provide adequate timely information for the task at
hand. Section 5 presents results of experiments to study the trade-offs among
these considerations for our current implementation.
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3.2 Implementation Details

Figure 2 shows where SBPM fits as a service within the overall communication
architecture for each node. SBPM communicates directly with both the routing
layer and the MAC/physical layer. In our current implementation of SBPM, the
routing layer is not notified when nodes transition between the power-on and
power-off states. Although optimizations can be made to the routing layer when
SBPM provides such notifications, it adds complexity to the integration of the
two modules.

Most routing implementations attempt to be fault-tolerant. If a node fails,
all paths through that node will be rerouted through other nodes. Due to this
feature, we leave the responsibilities of route reconfiguration to the routing layer.
Thus, messages can be communicated across any nodes that are powered on.
However, when all but a few non-sentries are in the power-down state, the sentries
provide a minimal network that can be used to send messages between any two
nodes in the power-on state. Although the routing layer plays a passive role, an
implementation of SBPM that provides callbacks can be fairly trivial. Since the
non-sentry entering the power-off state must send a message to its sentry, this
message can be turned into a broadcast, which also notifies neighboring motes of
its transition. Our current implementation does not include this callback feature.

SBPM is implemented as two modules as shown in Figure 2. One module
provides the services for power management while the other provides the services
for sentry management.

SentryGroupManagement. This module provides a generic interface that al-
lows the use of sentries in an application. This module provides the necessary
functionality for sentry selection and group management. A group is defined as
a sentry and all of the non-sentries that report to it. As shown in Figure 3,
the SentryGroupManagement module uses both the routing layer and the power
management module. The routing layer is necessary to negotiate with surround-
ing nodes when selecting sentries and maintaining groups. Also, the PowerMan-
agement module can be helpful during the sentry selection process. Sentries use
significantly more power since they generally need to handle more tasks than
non-sentries. As a result, selecting a node that has more remaining energy al-
lows for more uniform energy dissipation across all nodes. If such a feature is not
requested, the PowerManagement interface should be implemented such that it
always returns the same value when sampling a nodes remaining energy. The
commands in the SentryGroupMgmnt interface provide the functionality that
an application might need when requiring the use of sentries.

PowerManagement. This module provides a generic interface for use of a
power management scheme, including the necessary functionality for a node to
transition between power states. As shown in Figure 4, the PowerManagement
module makes use of both the routing layer and the SentryManagement module.
The routing layer is required so that a sentry and its non-sentries can com-
municate with each other whenever a transition between power states occurs.
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Management
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Module
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Fig. 2. SBPM is a protocol that uses both the MAC/Physical Layer and the Routing
Layer. SBPM is split up into three different modules.

Since SBPM requires the use of sentries, the SentryGroupManagement module
is required. This module is needed so that non-sentries can obtain the address
of their sentries. The module is also useful when the PowerManagement module
requests for a sentry to pass its duties along to another node. The PowerManage-
ment module does not provide the decision making process of when nodes should
transition between power states. The PowerMgmntAlgorithm module makes this
decision. Having the decision making process as a separate module makes it pos-
sible to quickly change between different decision algorithms.

4 Experiment: Intruder Detection and Tracking

Out test bed to implement and study the performance of sentry-based power
management is based on a network of motes, wireless sensor nodes designed
at UC Berkeley and produced at Crossbow Technologies [8]. Each mote has a
transceiver, a micro-controller, and a sensor board that includes a photo sensor,
temperature sensor, magnetometer, accelerometer, speaker, and microphone. In
our experiment, a photo sensor is used to demonstrate intruder detection and
tracking. In a real system, sound, sonar, or some other sensor would be used.
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module SentryGroupManagement {
provides {

interface SentryGroupMgmnt;
}
uses {

interface ReceiveMsg as RxMsg;
interface SendMsg as TxMsg;
interface PowerMangement;

}
}

interface SentryGroupMgmnt {
command result t startSentryGroupMgmnt(void);
command result t stopSentryGroupMgmnt(void);
command result t isOn(void);
command result t changeSentries(void);
command addr t getMySentry(void);
command result t getNumNonsentries(void);
command result t isSentry(void);
command result t isNonsentry(void);
command result t isBase(void);
command result t declareBase(void);
command result t undeclareBase(void);

}

Fig. 3. SentryGroupMgmnt module interface and commands.

SBPM is implemented on top of TinyOS [8], a minimal operating system devel-
oped for the motes.

Figure 5 shows our experimental setup, which was inspired by the experi-
mental setup described in [9]. Eighteen motes are mounted on a vertical board
in a skewed array, as shown in Figure 5. One of the motes is tagged as a base
mote and is directly connected to a computer though a serial connection. The
base mote does not participate in sensing. In our system, a computer is directly
connected to a projector that shines an image on the sensor array. In this experi-
ment, as shown in Figure 5, the ”intruder” is a dark circle with a radial gradient.
The radial gradient allows a mote to measure its distance from the intruder by
measuring the light intensity. The intruder has a radius equal to the distance
between any two motes in the system. This forces the intruder to cover at least
three motes at any time while inside the sensor array. The motes can then use
triangulation to an estimate the position of the intruder.

In our initial implementation we pre-select four motes from the sensor array
to act as sentries. The rest of the motes act as non-sentries while the base station
serves as a link between the sensor array and the computer. In order to execute
the experiment, a simple static routing layer was developed. Due to the static
nature of the routes, each non-sentry is assigned a sentry and sends all messages
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module PowerManagement {
provides {

interface PowerMgmnt;
}
uses {

interface ReceiveMsg as RxMsg;
interface SendMsg as TxMsg;
interface SentryGroupMgmnt;
interface PowerMgmntAlgorithm;

}
}

interface PowerMgmnt {
command result t startPowerMgmnt(void);
command result t stopPowerMgmnt(boolean
stop sentry mgmnt);
command result t pausePowerMgmnt(void);
command result t isOn(void);
command result t updateIdletime(uint16 t idle time);
command result t currentEnergyLevel(void);

}

Fig. 4. PowerMgmnt module interface and commands.

Fig. 5. Setup for light-based intruder detection and tracking experiments. The intruder
is the dark circle with a radial gradient.

to that sentry. The sentries act as a backbone network forwarding all messages
towards the base mote. This allows all non-sentries to power-down and maintain
communication throughout the sensor array without changing any of the routing
parameters.
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Due to variance in ambient light depending on where the experiment is set
up and the projector used for the experiment, the sensor array is calibrated
whenever the sensor array is first turned on. To calibrate every mote efficiently,
we make use of the computer to create an automated calibration process. For
simplicity, we have divided the range of light intensity into a fixed number of
levels. During calibration, the computer shines a specific light intensity level on
every mote and sends a message to the sensor array informing them which light
intensity level is currently being projected. Every mote replies upon successful
calibration.

Our initial implementation takes a centralized approach to object tracking.
Whenever a mote senses a change in light intensity, it sends a message to the
computer through the sensor array. The computer takes the data points and
triangulates an estimated position of the intruder. A data validation scheme has
also been implemented to keep erroneous data from affecting the estimation. In
this scheme the computer chooses data points in which the most motes agree. In
situations where an equal number of motes agree on different data points, then
the motes reporting a stronger presence of the object are chosen for triangulation.

The power management scheme is also centralized in our initial implementa-
tion. The computer turns a group of non-sentries off if the intruder is more than
one hop away from any of the motes in the sensor array. We consider one hop
as a movement from one triangle to another, where lines between neighboring
motes define the triangles.

When a non-sentry receives a message commanding it to enter the power-off
state, it goes into the power-off state for a set amount of time. This amount
of time is constant throughout the operation of the sensor network. Part of the
experiment includes the affect of this time on tracking performance and energy
consumption. While in the sleep state, power to the transceiver and sensor board
is turned off. Also, the micro-controller is placed into a low power mode that
preserves the contents of registers and allows a wake-up interrupt. A non-sentry
periodically enters the checking state and remains in that state long enough to
determine whether or not its sentry is commanding it to enter the power-on
state. If there is no beacon from the sentry, it returns to the power-off state.

5 Results

We present results from experiments performed to evaluate the effects of varying
several of the design parameters. All experimental results in this section are
single-run results. The path of the intruder through the sensor array was fixed
to the path shown in Figure 6.

Figure 7 displays the amount of energy consumed with respect to the object
movement speed. One curve shows the total energy consumed without power
management and another curve shows the total energy consumed with power
management. As can be seen in Figure 7, there is a fairly consistent energy
savings of about 30% with power management on. This percentage is biased
to the low end since the size of the object is large relative to the sensor array.
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Expanding the sensor array would decrease the ratio of motes in the power-on
state to those in the power-down state.
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Fig. 6. The path of the intruder through the sensor array used to gather results.
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Fig. 7. Energy consumption vs. object movement speed.
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For the sentry assignment scheme in our current experimental setup, the
ratio of sentries to non-sentries would approach 1/4 as the number of nodes
increases. Also, for our current implementation, motes in the power-down state
are actually on about 20% of the time (4 seconds sleeping, 1 second checking for
power-on message). Thus with a large sensor array, there is a theoretical energy
reduction of 60% in our current setup.

We varied the object movement speed while keeping the power-down duration
constant. To evaluate the effects of objected movement speed on tracking error,
we repeated the experiment for several intruder speeds with power management
on and once with power management off. As can be seen in Figure 8, the average
tracking error at slow object speeds is roughly equivalent to the quantization
error due to the limited light intensity levels. However, as object movement
speed increases the amount of tracking error increases in both cases of power
management on and off. Due to the limited size of the sensor array, the tracking
error is limited to the size of the sensor array. The increase in tracking error
can be attributed to the limited network capacity and centralized approach of
processing data. As a result of the centralized data processing, this rate increases
with the speed of the object for two of reasons. When the object moves more
quickly, the motes send messages at a quicker rate because they sense changes
in light intensity more often. The increase in number of messages increases the
number of collisions, thus increasing the number of retries. The number of retries
delays a mote’s ability to send a message. As the mote is trying to send a message
successfully, the object moves on, which in turn induces even more motes to begin
sending messages.

The difference in tracking error when power management is on and power
management is off is negligible at slow object movement speeds. When the sensor
array can react to the object’s motion, all sensors around the object are in the
power-on state and provide enough information for accurate estimations. How-
ever, at high object movement speeds the tracking error with power management
is significantly larger than without power management. Two factors cause this
characteristic. When the object is moving quickly, it is more difficult to make
correct power management decisions due to the increase in tracking error. Also,
if the object moves faster than the sensor array can respond, motes around the
object may not be in the power-on state and cannot contribute data that would
provide a more accurate estimate.

We also varied the power-down duration while keeping the object movement
speed constant. Figure 9 illustrates the relationship between tracking error and
power-down duration while keeping the object movement speed constant. The
power-down duration directly affects the sensor array’s ability to react to object
movements. As can be seen by Figure 9, at small values of the predetermined
power-down duration, the tracking error remains somewhat constant. When the
power-down duration is small enough, the sensor array can react quickly enough
to ensure that all nodes around the object are in the power-on state. However,
as the predetermined power-down duration increases, there is an increase in
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Fig. 8. Tracking error vs. object movement speed with power management on and
power management off.

tracking error. This is caused by the sensor array’s inability to react quickly
enough to ensure that all motes around the object are in the power-on state.

Figure 10 illustrates the relationship between energy consumption and power-
down duration while keeping the object movement speed constant. Increasing the
power-down duration decreases the frequency at which a mote needs to power on
and check whether it needs to switch into the power-on state. As can be seen by
Figure 10, there is a small but noticeable decrease in total energy consumption
as the power-down duration increases. The small magnitude in difference is due
to the fact that the initial power savings is relatively small as explained above.

6 Conclusions

This paper presents SBPM, a sentry-based power management scheme in wireless
sensor networks. SBPM makes use of sentries to define a coarse network of
nodes that are necessary to perform the task and turn on non-sentry motes
when necessary. Our initial implementation demonstrates the feasibility of such
a sentry-based approach. Significant issues remain to be explored.

A dynamic sentry selection algorithm would allow for sentry rotation and
fault tolerance. In our initial implementation, sentries were pre-selected and
fixed. Fixed sentries are not amenable to optimal power savings. Sentries must
remain in the power-on state at all times and are burdened with the need to
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Fig. 9. Tracking error vs. power-down duration.

send messages when non-sentries are in the power-down state. Thus, sentries
consume energy much faster. For optimal performance, we would ideally like to
have an even rate of energy consumption across all nodes. Fixed sentries also
cause problems when dealing with fault tolerance. In our setup, sentries are
critical to maintaining both a coarse network and waking up non-sentry motes.
Without the ability to dynamically choose sentries, we are assuming that the
chosen sentries will never fail.

A distributed object tracking algorithm could minimize messages across the
network and ultimately minimizes tracking error. In our current initial implemen-
tation, all data is sent to the computer for processing. However, if the processing
can be done on the motes themselves, then only one message needs to be sent to
the computer. Also, the data can instantly be broadcasted to neighboring motes
for other purposes, rather than having the results being sent back out by the
computer.

A distributed stochastic-based power management decision algorithm would
allow for far less total energy consumption across all nodes. By making power
management decisions directly on the motes, the sensor array can react much
quicker and require less messages being sent. Our initial implementation also
turns whole groups on and off. The nodes in the power-down state also sleep
for a fixed amount of time before checking whether to power-on. Varying the
amount of time to sleep will allow us to find the optimal point between tracking
error and energy savings.



Sentry-Based Power Management in Wireless Sensor Networks 471

400

420

440

460

480

500

520

0 1 2 3 4 5 6 7 8 9

Sleep Time

T
o

ta
l E

n
er

g
y 

C
o

n
su

m
ed

Fig. 10. Energy consumption vs. power-down duration.

As shown by our experiments, the first steps have been taken successfully in
implementing a sentry-based object tracking and power management approach
for wireless networks. Even in our initial implementation, we have experimentally
shown that significant energy can be saved.
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Abstract. In a sensor network where every node has a limited energy supply,
one of the primary concerns is to maximize the network lifetime through
energy-efficient routing. We present an energy efficient, scalable and distributed
multipath routing protocol that achieves a substantial improvement in the overall
network lifetime. Most of the existing sensor network routing protocols are based
on single or shortest path routing. This accelerates the failure of nodes lying
along the often used optimal paths, thus adversely affecting the connectivity and
hence life of the network. Our scheme is based on a novel deterministic traffic
scheduling algorithm that balances the load over multiple paths between source
and destination, in proportion to their residual energy. Our protocol focuses on
uniformly utilizing the resources of the network, rather than on optimality of
routes. With our approach, we are able to minimize the communication and
computational overheads involved in dynamically adapting the traffic flow to the
energy level of the nodes.

Keywords. Multipath Routing, Energy Awareness, Network Lifetime.

1 Introduction

Wireless sensor networks consist of a large number of tiny, low power devices or nodes
equipped with programmable computing, multiple sensing and communication capabil-
ity. They operate in a dynamic environment to perform distributed sensing tasks. They
may be deployed in remote terrains to sense certain attributes of their environment and
provide useful information to user queries. The nodes in a sensor network are practically
static, forming a large and dense mutihop network, where every node is a router. We refer
to the node at which the query is injected in the network as the sink, and the node which
responds to this query as the source, as described in the directed diffusion paradigm [1]
by Estrin et. al. There could be several potential sources for a single sink. The source on
receiving the query from the sink, generates query responses for a duration specified in
the query and routes them to the sink node. These query responses constitute a majority
of the traffic in the network.
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The sensor nodes usually operate on a non-replaceable battery. A large proportion of
a node’s limited energy resource is consumed in forwarding data [14]. A major design
challenge in sensor networks is to increase the operational lifetime of the network as
much as possible by employing energy efficient routing. An intuitive approach would be
to reduce the number of data transmissions by minimizing the number of hops required
for data to reach its destination. Although shortest path routing gives high throughput
with minimum response time, nodes lying on this path are drained out of their energy.
Therefore, when the offered load on the network increases, packets have to be routed via
longer alternate route or they are dropped due to disconnected routes. A wide disparity
in the energy levels of the different sensor nodes in the network degrades network
performance in the long run. This is because although most of the nodes in the network
have plenty of energy, they are no longer connected with each other due to random
concentration of dead nodes (with zero battery power) in the network.

The motivation of this work is to improve the network lifetime by avoiding congestion
and the consequent partitioning of the network, where we assume the network life to
be the time at which the first node in the network is depleted of its energy. Chang and
Tassiulas have proved [3] that to improve the overall lifetime of the network, where
every node has a limited lifetime, the objective of the protocol should be to maximize
the residual energy of every node while routing, rather than minimizing the total energy
consumed in routing. In our proposed routing protocol we spread the traffic over the
nodes lying on different possible paths connecting the source to the sink, in proportion
to their residual energy. The rationale behind traffic spreading is that for a given total
energy consumption in the network, at each moment every node should have spent the
same amount of energy. To achieve traffic spreading in the sensor network, we make use
of multipath routing.

The organization of the paper is as follows: In section 2, we briefly describe the
need for multipath routing. This is followed by a discussion on related work in multipath
routing for sensor networks in section 3. Section 4 illustrates the details of the proposed
protocol, and includes the formulation of the optimal load assignment problem to achieve
uniform load distribution. Finally, in section 5 we present the performance evaluation of
our scheme under different traffic conditions for regular as well as random deployment
of nodes in the field.

2 Multipath Routing

Classical multipath routing has been used extensively in the literature to achieve load
balancing and fault tolerance in computer networks, for example in high speed networks
[6], and ATM networks [5]. Fault tolerance or robustness is an inherent feature of
multipath routing. Robustness is the likelihood that alternate paths can be substituted
between the source and the sink when the primary path fails. Load balancing splits the
traffic among the multiple paths connecting the source to the sink. The objective is to
assign more load to under-utilized paths and less load to over-committed paths to ensure
uniform resource utilization of all available paths. In this paper we focus on the load
balancing property of multipath routing to improve the lifetime of the network.
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There is a need to adapt multipath routing to the design constraints of a sensor
network. An important design consideration that drives the design of sensor networks is
scalability [1] of the routing protocol. Computation of all possible paths between a source
and a sink might be computationally exhaustive. Besides, updating the source about the
availability of these paths at any given time might involve considerable communication
overhead. The routing algorithm must depend only on the local information [2] or the
information piggy-backed with data packets, as global exchange of information is too
energy expensive due to large number of nodes. Our algorithm implements multipath
routing in a completely distributed manner using localized techniques.

3 Related Work

There has been considerable research in wireless network routing exploiting geographic
location information by Karp et. al. [17], Ko et. al. [16] etc. Motivated by the fact that
sensor network queries may often be geographical, Govindan et. al. proposed GEAR
(Geographic and Energy Aware Routing Algorithm) [15] for single path routing. GEAR
complements the data-centric protocol directed diffusion [1] eliminating the overhead
of initial and periodic interest and low rate data flooding throughout the network by
providing geographic routing support. Instead of using the classical greedy geographic
forwarding, GEAR uses an energy aware metric in the estimated cost function to balance
energy consumption among neighbors lying in the direction of the sink. Although this
delays node failure of nodes lying on the shortest geographic route to the sink, there
is limited load balancing as traffic splitting is restricted to immediate neighbors of any
node.

More work has been reported on single path routing as compared to multipath routing
in wireless ad hoc networks. Some applications of multipath routing for ad hoc networks
have been considered by Das and Nasipuri [7], Hass et. al. [8], Park et. al. [9]. Multipath
routing specifically for sensor networks has been explored by Tassiulas and Chang [4],
Ganesan et. al. [11], Servetto et. al. [13], Srivastava et. al. [10], etc.

Ganesan et. al. [11] have proposed a multipath scheme to achieve high resilience
to node failure with low maintenance overhead. In their scheme, the source periodically
floods low rate data over all alternate paths in the mutipath in order to keep those
paths alive. The frequency of these low rate data events determines how quickly their
mechanism recovers from failures on the primary path.

Shah et. al. [12] have modified the directed diffusion protocol to improve the overall
network lifetime. Instead of reinforcing a single optimal or shortest path for routing, the
alternate good paths discovered by the route discovery phase of the directed diffusion
are also cached and one of them is chosen for routing in a probabilistic fashion.

Servetto et. al. [13] have also implemented multipath routing using random walks
between a source and sink, to avoid the overhead of caching paths. They assume the
nodes to be powered by a renewable source of energy, hence node failure is temporary.
But their assumption of random failure of nodes is not realistic because usually the
failure of a node depends on how frequently it is utilized for routing.
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4 The Proposed Routing Protocol

The proposed protocol spreads the traffic generated by a query in a geographical area
that is symmetric with respect to the location of the source and the sink, which are
situated at the opposite ends of the diameter of this symmetric geographical area. The
objective is to derive the sequence of path utilization to reduce the disparity in the energy
levels of nodes lying in this geographical area bounded by the source and the sink. Our
routing protocol can be easily explained by assuming a regular topology of sensor nodes,
although in reality the sensor nodes are randomly dispersed in the field. As shown in
Fig. 1, the sensor nodes are regularly placed in a two dimensional grid, representing the
entire sensor network. Any node in this topology is capable of directly communicating
with its eight one-hop neighbors.

We have simulation results in section 5 to prove that our scheme also works for a
random deployment of sensor nodes. We now list some of the other basic assumptions
that drive the design of our protocol.

4.1 Assumptions

1. All nodes and queries are equally critical.
2. The sink is aware of the geographical location of the source of the query.
3. The query packet contains the rate at which responses are to be generated, and the

duration for which the source generates query responses.
4. Every node in the network knows its coordinates in the field and keeps updating its

utilization represented by a variable called the local access count. We assume uti-
lization or local access count to be the total number of packets a node has transmitted
or received at any time since the beginning of the network-cycle.

5. Every node knows the location of all its neighbors and it is periodically updated
about the local access count of its neighbors with the aid of beacon signals.

Let us consider a case where a single query q is injected at a sink node P and received
by the source node Q in the network, as shown in Fig. 1(a). Let us call the square PQRS
bounded by the source R, and the sink P as the query region PQRS. The source R on
receiving the query q generates the query responses.

In Fig. 1(a), we observe that the shortest straight-line path, i.e., the diagonal joining
the source to the sink PR has the minimum number of hops. Let us refer to the diagonal
PR as d1, and the diagonal QS of the query region PQRS as d2. Repeated use of the
shortest path d1 for routing packets will quickly deplete the energy of the nodes on the
diagonal d1 and partition the network along d1.

Let us construct diagonals parallel to d2, as shown in Fig. 1(a). Every time a packet
travels from the source to the sink or vice versa, the next-hop node lies on one of these
diagonals. When the packet begins its journey, it selects a next-hop lying on a diagonal
with more number of nodes, till it reaches the next-hop lying on the diagonal d2 with
maximum number of nodes. Thereafter it selects a next-hop lying on diagonals with
decreasing number of nodes, till it reaches the destination. Our objective is to split
the load uniformly across all these diagonals, unlike minimum energy routing which
successively depletes the energy of the node in the center of these diagonals (path d1
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shown in Fig. 1(a)). We establish multiple paths between the source and the sink, such
that there is equal load distribution on every diagonal in the query region. These multiple
paths resemble the edges of an expanding rhombus, with one pair of its vertices fixed at
the source P and the sink R, and diagonal d2 as the locus of the other pair of vertices as
shown in Fig. 1(e).

We observe that most of the available paths are not disjoint.When the traffic originates
at the source, it can split in only three directions for the given topology. But as it moves
across diagonals of increasing length, the same traffic is split among greater number
of nodes. The number of nodes on diagonal d2 determine the upper bound on the load
splitting for a given traffic. Let us refer to these nodes as the midhops, and the area in
proximity of d2, where these midhops exist as the midband. The midband neatly divides
the network into two sections which we refer to as the upper diagonal region (bounded
by the midhops and the sink) and the lower diagonal region (bounded by the source and
the midhops) respectively, as shown in Fig. 1(a).

An optimal traffic-scheduling algorithm should distribute load equally on all midhops
in a query region to ensure an equal load on nodes lying in the query region. When the
traffic moves towards the midband, it diverges with respect to the source along the edges
of the rhombus. When the traffic reaches the midband, it starts converging towards the
sink. Here, we observe that nodes close to the sink obtain traffic from multiple directions.
Therefore, although a uniform load distribution is achieved in the entire query region
which in this case is the entire network, nodes in the immediate proximity of the source
and the sink have to relay more packets and consequently have a higher utilization than
the rest of the query region PQRS.

4.2 Formulation of Traffic Scheduling Algorithm

Let us consider the source sink pair as shown in Fig. 1(b). The query injected at the sink is
geographically forwarded (to the neighbor closest to the source) to avoid latency. When
the query reaches a midhop in the query region, while traveling towards the source, it
generates an inquiry packet. This inquiry packet is broadcast along the midband such that
it is received by all the potential midhops. On receiving the inquiry packets, the midhops
generate inquiry responses containing their current utilization information (local access
count). These inquiry responses are also geographically forwarded to the source as shown
in Fig. 1(c). The source first receives the query and subsequently receives the inquiry
responses from the midhops. It waits for the responses to pour in from all the midhops,
for a time that is proportional to the distance between the source and the sink, and stores
the local access count corresponding to every midhop that responded in a table. When
the inquiry response timer at the source expires, it sorts this table in the ascending order
of the local access count of each midhop. The source then computes the total number of
responses or the load P that it has to generate.

Our traffic scheduling algorithm computes the distribution of the total load P, among
the possible midhops, and the order in which they should be utilized for routing.

We represent the problem of optimal assignment of load to each path as follows:
Let the number of midhops or available alternate routes be n. Let u1, u2, u3, ...., un

represent the local access count of the n midhops . Let p1, p2, ..., pn represent the load
that will be assigned to the n midhops.
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Fig. 1. The different stages of routing. Part (a) shows the general notation used to represent the
query region. Part (b) shows query injection at the sink P, and subsequent propagation of the query
towards the source R, using the shortest available path d1. Inquiry packets initiated by the query,
are broadcast along the diagonal d2 (QS). Part (c) shows the inquiry responses reaching the source
from every midhop on d2. The source transmits the query responses along the multiple paths as
shown in part (d) in the order determined by the traffic schedule. These multiple paths resemble
the sides of an expanding rhombus as shown in part (e), with one set of vertices fixed at source R,
and sink P, and the other pair of vertices expanding along d2.

To distribute the load P evenly on every midhop in the network, the sum of the current
utilization and the load to be assigned to each path should be the same.

u1 + p1 = u2 + p2 = ... = un + pn = k (1)
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According to the above equation, midhops with lower current utilization are assigned
more load than nodes with high current utilization so as to achieve a good load balancing.

Let duration of the query be t. Let r be the rate at which responses have to be generated
and P, the total load generated at the source. We know utilization, ui for all midhops,
where 1≤i≤n. Let us try to determine the value of k in Equation (1).

P = t × r (2)

From Equation (1)

i=n∑

i=1

(ui + pi) = nk

⇒ ∑i=n
i=1 ui +

∑i=n
i=1 pi = nk

⇒ nk =
∑i=n

i=1 ui + P

or,⇒ k =
∑i=n

i=1
ui+P

n (3)

We can now determine p1, p2, ..., pn by substituting for k and ui in Equation (1).

p1 = k − u1, p2 = k − u2, ...., pn = k − un (4)

Its possible that there is a wide disparity in the utilization of the midhops, and P
may not be enough to smooth out the difference in the utilization of all the midhops.
In this case, the assigned load pi might be negative for midhops with very high utiliza-
tion with respect to the rest of the nodes. The paths represented by these over-utilized
midhops must be avoided, and the load P should be redistributed among the rest of the
midhops. We sort the available paths in the decreasing order of their utilization, such
that un<un−1<. . . <ui<. . . <u1. We keep eliminating un−i, where 0≤i≤n-1, until we
obtain pn−i>0 i.e.,

un−i <

∑n−i
j=0 uj + P

n − i
(5)

Let um be the first node that satisfies the constraint (4), such that m≤n, we distribute
the load P among these m midhops after rejecting the midhops undesirable for routing
where pi for 1≤i≤m, is the load assigned to the ith midhop.

As and when a response packet is routed through a given midhop, the load assigned
to that midhop is updated in the table at the source. The source transmits the response
packet through the midhop that has the maximum number of packets remaining to be
routed at that time. This ensures that at any time, we use the path that has the minimum
local access for its midhop to route data.

In order to make sure that the incoming query traffic adapts to the existing query
traffic in the network, we introduce acknowledgment packets to reserve the midhops for
forwarding the number of packets assigned to them. These acknowledgment packets are
nothing but the first m response packets of the total load P, routed through each of the
m midhops once. The midhops create a reservation count for the query on receiving the
acknowledgment packet to store the value of the load p assigned by the traffic scheduling
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algorithm. The midhops thus update their current utilization to the sum of its local access
count and the reservation count. As and when the midhop routes the query response to
the sink, it decrements the reservation count for that query at the midhop. This can be
better illustrated from the behavior of the protocol in presence of multiple source sink
pairs and is discussed next.

4.3 Routing in Presence of Multiple Source Sink Pairs

Let us consider the example in Fig. 2 with two source sink pairs. Suppose at time t1,
query q1 was injected in the network at Sink1, for the source at Source1. At time t2 (later
than t1), query q2 is injected in the network at Sink2, meant for Source2. We also assume
that the nodes in the query region 1 and 2 are not serving any other query besides q1 and
q2. We realize that some midhops for q2 are same as those for q1. When source2 receives
the inquiry responses from the midhops of query region Q2, the midhops common to q1
and q2, will have a higher local access count, and will have a finite reservation count
unlike the rest of the midhops. Therefore, depending on the sum of the local access count
and the reservation count of all midhops, the total load P is distributed such that nodes
already in use or reserved for future use are successfully avoided. The nodes in the upper
and lower diagonal region also keep updating their local access count as and when they
are used for routing.

Source

Source 

Sink

Sink

1

2

1

2

Fig. 2. Queries q1 and q2 injected at Sink1 and Sink2 respectively such that the query region Q1

is a subset of the query region Q2. the dashed arrows and the solid arrows show the multiple paths
taken by Source1 and Source2 to route the query responses to Sink1 and Sink2 respectively.
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The order of injection of the queries affects the ability of our protocol to adapt the
incoming traffic to the existing traffic in the network. As long as the query region of any
query q1, already existing in the network is a subset of the query region of any freshly
injected query q2, our protocol reroutes the traffic of the incoming query q2 along the
multiple paths available to q2, but not common with the multiple paths available to q1.
We are investigating the development of a feedback mechanism in the present scheme
to achieve load distribution in the network irrespective of the order in which the queries
are injected.

Even though we make sure that different midhops are used for routing at different
times, there is no guarantee that load is evenly distributed among nodes belonging to the
upper and lower diagonal region, primarily because all available paths are not disjoint.
We therefore use local energy awareness to route query responses in the upper and
lower triangle region. Local energy awareness is same as the energy metric used in
protocol GEAR [15] where an intermediate node forwards the packet to the neighbor
with least local access count (maximum residual energy) to ensure even load distribution
in a neighborhood. Forwarding the packet to the neighboring node that is closer to the
destination than itself, ensures that loops are not formed in the network.

4.4 Salient Features of the Protocol

– We successfully eliminate the route discovery phase which involves flooding of the
entire network.

– We eliminate the maintenance overhead of exchanging periodic updates to know the
availability of the alternate paths, hence the temporal accuracy of the multiple paths
is independent of the frequency of the updates exchanged.

– We use limited caching as we do not store the entire sequence of nodes present on
each alternate path. Besides the list of midhops representing the multiple paths is
present only at the source, and not at every intermediate node on the multiple routes.

5 Performance Evaluation

We have simulated a sensor network with utilization as a non-decreasing function of
the traffic load. The simulations are carried out using the NS-2 network simulator. We
simulate a network of 289 nodes in a square area of 500m x 500m, where the transmission
range of a sensor node is 40m. We used the 802.11 medium access layer to conduct
our simulations. We use the fact that energy consumption of a node is proportional
to the number of packets transmitted or received by it, in choosing node utilization
as our primary metric to evaluate the performance of the proposed protocol. For all
the experiments we have assumed that a node runs out of its battery after 10000 data
transmissions or receptions unless otherwise specified.

We compare the performance of our protocol with the minimum energy or the shortest
path protocol under two deployment strategies for the placement of sensor nodes in the
sensor field; the regular grid deployment and uniformly distributed random deployment
of nodes.
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5.1 Regular Grid Deployment

Here the nodes are placed in a two dimensional grid of size 500m x 500m. Any node can
wirelessly communicate with its eight one-hop neighbors. We have separately evaluated
the performance of the proposed routing protocol in presence of a single query traffic
and in presence of traffic generated by multiple queries. In both the cases, the nature of
traffic is non uniform.
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Fig. 3. Comparison of load distribution obtained by (a) Minimum Energy Routing with that ob-
tained by (b) Multipath Routing. 5000 query response packets were generated at the Source node
[462,14] and routed to the Sink node [14,462] in the network of size 500m X 500m where the total
number of nodes are 289. A node’s location node [i,j] in the two dimensional sensor network grid
is plotted as a point in the x-y plane. The vertical axes represents the number of packets carried
by node [i,j].

Single Query Traffic. Fig. 3 shows the comparison of load distribution achieved by
the proposed multipath routing protocol with that achieved by minimum energy routing
protocol in presence of a single query in the network. A single query is injected at the
sink located at one corner of the entire sensor network grid, and the query responses
are repeatedly generated by a source situated on the diagonally opposite corner of the
grid with respect to the sink as shown in Fig. 3. The effective query region for this
case is the entire sensor network. The traffic is non uniform in this case because its
not originating equally in all parts of the network. Fig. 3 shows that minimum energy
routing always selects the nodes lying on the shortest path connecting the source to the
sink, hence we observe peaks along the diagonal connecting the source to the sink and
the rest of the network remains unutilized. A high utilization of nodes on the shortest
path will eventually deplete their energy, partitioning the network along the diagonal.
On the other hand, multipath routing shows that most of the nodes in the network share
equal routing load. Nodes closer to the source and the sink carry more packets than the
rest of the nodes due to reasons explained before in Section 4.1 .



Energy Aware Multi-path Routing for Uniform Resource Utilization 483

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6
x 10

4 Comparison of Connection Lifetime

Connection Number

S
im

u
la

ti
o
n
 T

im
e

Minimum Energy Routing
Proposed Multipath Routing

1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

800

900
Comparison of Packets received per Connection

Connection Number

N
u

m
b

e
r 

o
f 

p
a

c
k
e

ts
 r

e
c
e

iv
e

d

Minimum Energy Routing
Proposed Multipath Routing

(a) (b)

Fig. 4. The above figure shows the improvement in the connection life time and number of packets
delivered by eight random connections in the network obtained by the proposed multipath routing
over minimum energy routing. The bar graph on connection lifetime (a) shows the time at which
the last packet has been received by each of eight connections before the connections expired. The
bar graph (b) shows the total number of packets received by a connection before it expires.

Multiple Query Traffic. In this section we discuss the simulation results obtained for
random traffic conditions created by multiple queries. We have simulated eight random
connections (source sink pairs) in the network which generate traffic for random du-
rations. For this experiment we assumed that a node dies after carrying out 500 data
transmissions or receptions. The bar graph on connection lifetime in Fig. 4(a) shows
that our scheme improves the lifetime of every individual connection in the network. The
total number of packets delivered by any connection before it fails in case of multipath
routing are also more or comparable to those delivered by the same connection when
minimum energy routing is simulated. This is evident from the bar graph on packets
received per connection in Fig. 4(b).

We observe from Fig. 4(b) that some connections in the network are not able to
deliver even a single packet in case of minimum energy routing. This is because the
shortest path route of those connections was overlapping with the existing connections
in the network. Thus, most of the nodes lying on those connections have already been
drained out of their energy, causing disconnectivity in the network. On the other hand,
we do observe some finite throughput for every connection when multipath routing is
used, because we have successfully delayed node failure, improving the overall capacity
of the network to route packets.

For the same simulation environment we found out the improvement in overall
network life time achieved by multipath routing over minimum energy routing.We varied
the location of the source sink pairs in the network, the amount of traffic generated by
each source and the time at which a connection became active. We have assumed the
lifetime of the network to be the time at which the first node in the network dies due to
battery outage. It was found that on an average, a 50% improvement in network lifetime
was obtained by the proposed multipath routing over minimum energy routing for the
traffic conditions described above.
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Fig. 5. Comparison of load distribution obtained by (a) Minimum Energy Routing with that ob-
tained by (b) Multipath Routing in presence of three connections. The query responses at Source1

meant for Sink1 are generated first, followed by the query responses generated by Source2 for
Sink2, and finally by Source3, for Sink3 respectively. A node’s location node[i,j] in the two di-
mensional sensor network grid is plotted as a point in the x-y plane representing a network of size
500m X 500m. The vertical axes represents the number of packets carried by node[i,j].

Fig. 5 shows simulation results for three connections in the network such that all
the three source sink pairs are situated on one of the diagonals of the entire grid. The
objective is to show that our traffic scheduling algorithm effectively redistributes the
traffic when the query regions belonging to different queries overlap, such that some or
all of their midhops are common with each other, as shown in the diagram in Fig. 2.

When the query q1 is injected at Sink1, its load is evenly distributed on all nodes in
its query region. Later when q2 is injected in the network at sink2, some of its midhops
are already serving q1, therefore the rest of the midhops are assigned most of the load.
Similarly q3 assigns load to its midhops in such a way that it adapts to the existing traffic
generated by q1 and q2.

In Fig. 5(a) we observe that we are able to split the traffic belonging to the three
overlapping queries such that the utilization of all the nodes can be as uniform as possible.
Although ulitilization of every node in the network is not exactly the same at any time, we
have belts or regions in the network with almost the same utilization, helping the network
to collapse gracefully. Fig. 5(b) showing higher peaks or utilization for nodes common
to more than one connection when minimum energy routing is simulated. This leads to
faster energy depletion of nodes common to the multiple connections. The failure of the
nodes in the center of the network limits the life of the network.

5.2 Random Deployment of Nodes

In this section we show simulation results for a random deployment of nodes where the
nodes are dispersed with a uniform distribution within the field. There are a total number
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Fig. 6. Load distribution obtained in a network with random distribution of nodes by using the
proposed multipath routing is shown in (a). A point in the x-y plane represents the location of a
node [i,j] in a sensor field of area 500m X 500m. The total number of nodes is 289. The vertical
axis represents the number of packets carried by a node [i,j]. 5000 query response packets were
generated at the Source node [342,320] and routed to the Sink node [12,6], where the Source
and the Sink are separated by a distance equal to the network diameter. The histogram (b) shows
the node utilization obtained by simulating minimum energy routing where most of the nodes
are unutilized and the rest of the nodes have very high utilization of the order of 5000 packets.
Histogram (c) shows the node utilization obtained by simulating the proposed multipath routing.
Here most of the nodes transmit 200 to 600 packets, and there are very few nodes with zero load
or very high load.

of 289 nodes in an area of 500m x 500m. We have generated a single query traffic such
that the source and the sink are separated by a distance equal to the network diameter as
shown in Fig. 6(a).
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In such a topology, the number of neighbors of any node is not fixed, therefore the
degree of load splitting at every node is different. Unlike a regular topology of nodes, the
midhops are not equally spaced out in a random topology of nodes. Both these factors
make it infeasible to have equal load assignment to every part of the query region.
Fig. 6(a) shows that we are able to assign load to majority of the nodes in the network,
spreading the traffic over approximately the entire sensor network area, with nodes closer
to source and the sink being utilized more.

In [10], Srivastava et. al. describe the desirable energy histogram as the one, where
nodes burn their energy in a more equitable way for the same total energy consumption in
the network. The node utilization histogram in Fig. 6(b) shows that our scheme not only
distributes the traffic over more number of nodes, the total number of packets carried
by these nodes at any time is also similar. Whereas the histogram for minimum energy
routing Fig. 6(c) shows wide disparity in the utilization of the various nodes. Most of
the nodes are not utilized at all while the rest of the nodes are almost depleted of their
energy.

6 Conclusion

We use a localized algorithm with low computational and communication overhead
for the construction of alternate paths in our proposed multipath routing protocol. Our
protocol ensures that the energy of the nodes is consumed in proportion to their available
energy. Besides having a longer lifetime for individual node, we also achieve almost
uniform energy depletion by achieving even loading of nodes lying on the possible
routes connecting the source to the sink. But, we cannot guarantee the lowest response
time by our protocol as we do not control the optimality of the individual path selected
for routing.

At present, in our protocol the traffic generated by the queries that are injected later in
the network is steered along paths that balance the load on nodes already being used for
routing. For future work we would like to enhance our protocol by rerouting the existing
traffic to accommodate the freshly generated traffic in the network, in cases where it is
not feasible for the incoming traffic to adapt to the current utilization of nodes. Also for
this work we assume all queries are equally critical, but in future we plan to extend this
work to provide higher priority to queries which may be more time critical than the rest
of the queries in the network.
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Abstract. We consider a canonical task in wireless sensor networks –
the extraction of information about environmental features – and propose
a multi-step solution that is fault-tolerant, self-organizing and energy-
efficient. We explicitly take into account the possibility of sensor mea-
surement faults and study a distributed algorithm for detecting and cor-
recting such faults, showing through theoretical analysis and simulation
results that 85-95% of faults can be corrected using this algorithm even
when as many as 10% of the nodes are faulty. We present a self-organizing
algorithm which combines shortest-path routing mechanisms with leader-
election to permit nodes within each feature region to self-organize into
routing clusters. These clusters are used in data aggregation schemes
that we propose for feature extraction. We show that the best such ag-
gregation scheme can result in an order-of-magnitude improvement in
energy savings.

1 Introduction

In general sensor networks can be tasked to answer any number of queries about
the environment [24]. We focus on one particular class of queries: determining
regions in the environment with a distinguishable, “feature” characteristic. As an
example, consider a network of devices that are capable of sensing concentrations
of some chemical X; an important query in this situation could be “Which regions
in the environment have a chemical concentration greater than λ units?” We will
refer to the process of getting answers to this type of query as feature extraction.

Feature extraction can be considered a canonical task in a sensor network.
While feature extraction is useful for static sensor networks, it should be pointed
out that it can also be used as a mechanism for non-uniform sensor deployment.
Information about the location of feature regions can be used to move or deploy
additional sensors to these regions in order to get finer-grained information.

Wireless sensor networks are often unattended, autonomous systems with
severe energy constraints and low-end individual nodes with limited reliability.
In such conditions, self-organizing, energy-efficient, fault-tolerant algorithms are
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required for network operation. These design themes will guide the multi-step
solution proposed in this paper to the problem of feature extraction.

It is helpful to treat the trivial centralized solution to the feature recognition
problem first in order to understand the shortcomings of such an approach. We
could have all nodes report their individual sensor measurements, along with
their geographical location directly to a central monitoring node. The process-
ing to determine the feature regions can then be performed centrally. While
conceptually simple, this scheme does not scale well with the size of the network
due to the communication bottlenecks and energy expenses associated with such
a centralized scheme. Hence, we would like a solution in which the nodes in a
feature region organize themselves and perform localized, in-network processing
to determine the extent of the region. This is the approach we will take.

We can decompose the process of extracting features in a sensor network into
multiple steps, as follows:

1. Determining feature readings: The sensors need to know what measure-
ment constitutes a feature. Although some work has been done on systems that
learn the normal conditions over time so that they can recognize unusual feature
readings [33], we consider this issue beyond the scope of this paper. We will
instead make the reasonable assumption that a threshold that enables nodes to
determine whether their reading corresponds to a feature has been specified with
the query, or otherwise made available to the nodes during deployment.

2. Disambiguating “features” from faulty sensor readings: A challenging task
is to disambiguate features from faults in the sensor readings, since an unusually
high reading could potentially correspond to both. Conversely, a faulty node
may report a low measurement even though it is in a feature region. We will
present in section 2 a probabilistic decoding mechanism that exploits the fact
that sensor faults are likely to be stochastically uncorrelated, while features are
likely to be spatially correlated. In analyzing these schemes, we will show that
the impact of faults can be reduced by as much as 85-95% even for reasonably
high fault rates.

3. Feature clustering: Once the sensors have determined that they do indeed
belong to the feature region, we would like to have them self-organize into a
cluster. In section 3 we propose a clustering algorithm that develops intra-cluster
routing paths and elects a cluster head that would be responsible for collecting
the data for the feature region and routing it to the central data sink.

4. Aggregation/Compression of feature information: Finally, a useful addi-
tional step would be to aggregate the data by compressing it in some manner.
Sending such a compressed version would save energy resources. We discuss this
issue in section 4. We will show that the best scheme, stepwise rectangular ap-
proximate aggregation (SRA), can result in order-of-magnitude energy savings.

We present the context for our results through a discussion of related work
in section 5. Finally, we will present our conclusions in section 6.
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2 Fault-Feature Disambiguation

Let the real situation at the sensor node be modelled by a binary variable Ti.
This variable Ti = 0 if the ground truth is that the node is a normal region, and
Ti = 1 if the ground truth is that the node is in a “feature” region. We map
the real output of the sensor into an abstract binary variable Si. This variable
Si = 0 if the sensor measurement indicates a normal value, and a Si = 1 if it
measures an unusual value.

There are thus four possible scenarios: Si = 0, Ti = 0 (sensor correctly reports
a normal reading), Si = 0, Ti = 1 (sensor faultily reports a normal reading),
Si = 1, Ti = 1 (sensor correctly reports an unusual/feature reading), and Si =
1, Ti = 0 (sensor faultily reports an unusual reading). While each node is aware
of the value of Si, in the presence of a significant probability of a faulty reading,
it can happen that Si �= Ti. We describe below a Bayesian fault-recognition
algorithm to determine an estimate Ri of the true reading Ti after obtaining
information about the sensor readings of neighboring sensors.

We make one simplifying assumption: the sensor fault probability p is uncor-
related and symmetric. We also wish to model the spatial correlation of feature
values. Let each node i have N neighbors (excluding itself). Let’s say the evi-
dence Ei(a, k) is that k of the neighboring sensors report the same binary reading
a as node i , while N − k of them report the reading ¬a, then we can decode
according to the following model for using the evidence, giving equal weight to
the evidence from each neighbor : P (Ri = a|Ei(a, k)) = k

N .
Now, the task for each sensor is to determine a value for Ri given information

about its own sensor reading Si and the evidence Ei(a, k) regarding the readings
of its neighbors. The following Bayesian calculations provide the answer:

Paak = P (Ri = a|Si = b, Ei(a, k))

=
P (Ri = a, Si = b|Ei(a, k))

P (Si = b|Ei(a, k))

=
P (Si = b|Ri = a)P (Ri = a|Ei(a, k))

P (Si = b|Ri = a)P (Ri = a|Ei(a, k)) + P (Si = b|Ri = ¬a)P (Ri = ¬a|Ei(a, k))

≈ P (Si = b|Ti = a)P (Ri = a|Ei(a, k))
P (Si = b|Ti = a)P (Ri = a|Ei(a, k)) + P (Si = b|Ti = ¬a)P (Ri = ¬a|Ei(a, k))

=
(1 − p)k

(1 − p)k + p(N − k)
(1)

Where the approximation follows from the fact that Ri is meant to be an estimate
of Ti. Equation (1) shows the statistic with which the sensor node can now
make a decision about whether or not to disregard its own sensor reading Si

in the face of the evidence Ei(a, k) from its neighbors. Each node can then use
a threshold decision scheme, which uses a threshold 0 < Θ < 1 as follows: if
P (Ri = a|Si = a, Ei(a, k)) > Θ, then Ri is set to a, and the sensor believes that
its sensor reading is correct. If the metric is less than the threshold, then node
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i decides that its sensor reading is faulty and sets Ri to ¬a. It can be shown
that the optimal threshold Θ = 1 − p corresponds to a median filter (i.e. a node
assumes its reading is correct if and only if at least half of its neighbors also
have the same value). Equation (1) can be used to obtain analytical expressions
for the performance of this fault reduction mechanism.

In order to simplify the analysis of the Bayesian fault-recognition mecha-
nisms, we will make the assumption that for all N neighbors of node i, the
ground truth is the same. In other words, if node i is in a feature region, so
are all its neighbors; and if i is not in a feature region, neither are any of its
neighbors. This assumption is valid everywhere except at nodes which lie on the
boundary of a feature region. For sensor networks with high density, this is a
reasonable assumption as the number of such boundary nodes will be relatively
small. We will first present results for the randomized decision scheme.

Let gk be the probability that exactly k of node i’s N neighbors are not
faulty. This probability is the same irrespective of the value of Ti. This can be
readily verified:

gk =
(

N

k

)
P (Si = 0|Ti = 0)kP (Si = 1|Ti = 0)(N−k)

=
(

N

k

)
P (Si = 1|Ti = 1)kP (Si = 0|Ti = 0)(N−k)

=
(

N

k

)
(1 − p)kp(N−k) (2)

For the optimal decision threshold scheme it can be shown (details omitted
for brevity) that

P (Ri = a|Si = a, Ti = a) =
N∑

k=kmin

gk (3)

P (Ri = ¬a|Si = ¬a, Ti = a) =
N∑

k=kmin

gN−k (4)

The average number of errors after decoding α can then be described by the
following expression:

α = (1 −
N∑

k=0.5N

(gk − gN−k))n (5)

The best policy for each node (in terms of minimizing α, the average number
of errors after decoding) is to accept its own sensor reading if and only if at
least half of its neighbors have the same reading. This is an intuitive result,
following from the equal-weight evidence model that we are using (equation
(2)). This means that the sensor nodes can perform an optimal decision without
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Fig. 1. Normalized reduction in average number of sensor faults for the optimal thresh-
old decision scheme

even having to estimate the value of p. This makes the optimal-threshold decision
scheme a very feasible mechanism for minimizing the effect of uncorrelated sensor
faults. Figure 1 shows how the optimal threshold scheme results in a significant
reduction in the average number of sensor faults. It shows that the impact of
faults can be reduced by as much as 85-95% even for fault rates of 10%.

3 Feature Cluster Formation

Once the feature nodes have been identified by the fault-recognition algorithm,
we would like to have these nodes self-organize into clusters and elect clus-
ter heads to enable local information processing. We propose to achieve this
by combining a distributed election leader algorithm [5] with a distance-vector
routing [6] mechanism. The combination is an algorithm in which the immediate
neighbors of the leader get the correct information first, then the neighbors of
these neighbors, and so on until all nodes within the cluster obtain a path to the
same cluster leader. We now give details of this clustering algorithm.

Only nodes which have a feature reading participate in this mechanism. As
with most leader election algorithms, it is assumed that each node i within the
cluster has a unique ID value IDi that can be used to determine the cluster head
(typically the lowest ID number node is elected, though this can be modified for
some other metric easily). One useful way in which unique ID’s can be chosen
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is to base their value on the geographical location of the nodes, particularly
on their distance to the central monitoring node. This is likely to result in the
cluster head being close to the data sink.

Each node i maintains a 3-tuple (LIDi, Ki, NHi). The field LIDi is the
lowest ID number seen to date by node i; Ki is the number of hops from i to
the node with lowest ID; and NHi is the next hop from i towards the lowest ID
node. Initially, for all i, LIDi = IDi, Ki = 0 and the NHi field is left blank.
As the algorithm proceeds, messages are exchanged with nearest neighbors -
each node updates its information to reflect the lowest ID number seen to date,
the number of hops to that node (which is one plus the value in the received
message), and the next hop node (which is the node that delivers the message
causing the update. This is similar to the the minimum spanning tree algorithm,
and the basic distance vector algorithm used for building routing tables. The
algorithm can be performed in a semi-synchronous manner. A node only sends
messages when it has updated its own information previously.

If all nodes are at most distance D from the leader node l, all nodes will have
their entries frozen in at most D steps, at which point the algorithm terminates.
Further, since each node only issues at most one message in each round, no node
issues more than D messages.

At the conclusion of this cluster formation mechanism we have a spanning
tree incorporating all participating nodes whereby each node can pass infor-
mation on to the leader/cluster head (the node with the lowest ID). Figure 2
shows a snapshot from the simulator depicting the intra-cluster spanning tree
and election of cluster head in the feature region for our sample scenario.

Note the distributed, self-organizing, nature of the entire process - no central
commands need to be issued to determine the cluster head for each region and
to perform the intra-cluster routing setup. The entire process can be triggered
automatically when the feature readings are determined. The algorithm is highly
robust to the addition of new nodes to the feature region: any new node i initially
advertises its tuple to be (i, 0, -), and the neighbors of this node which are in the
feature region would respond by with their current values. If the new node is not
going to be the new cluster leader (because its ID number is not low enough),
then no additional messages need to be exchanged. If the new node should be the
cluster leader, then the clustering algorithm starts afresh in the entire region. It
is assumed that complete node failures are rare in the network, but it should be
noted that some form of refresh mechanism is required to ensure that the intra-
cluster routing information does not become stale. Another approach could be
the use of link reversal mechanisms to deal with such failures in the presence
of extreme dynamics [34]. Finally, we note that the clustering algorithm can
be conducted in parallel throughout the network, resulting in the formation of
multiple independent clusters simultaneously in separate feature regions.
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Fig. 2. A simulator snapshot depicting the intra-cluster routing tree within the fea-
ture region along with the elected cluster head. The dashed rectangle on the bottom
represents the rectangular approximation of the feature region that can be represented
compactly. Note that the rectangular approximation is highly robust to faults and
decoding errors of nodes on the border of the feature region.
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4 Compact Feature Extraction

The central monitoring node may query for the location of the critical event
feature region(s), the readings of each individual node in the feature region, or the
min/max/average reading in the feature region. Different forms of aggregation
may be suitable depending on the query. We focus on the location query. This
query says “describe the location of the feature region.” The first thing to note
is that this is a query that lends itself to both exact and inexact answers. On the
one hand we can report the full detailed information of the locations of the nodes
in the feature region; on the other hand we can give an approximate parametric
description that loosely describes a geometric shape containing all nodes in the
feature region.

Let us assume that each node knows the x and y-coordinates for its own
location. We also assume that all packets have a fixed header size H, and use B
bits to represent each coordinate of a location. Let k refer to the total number of
sources, i.e. nodes in the feature region, d the distance in hops from the cluster-
head to the sink, and di, the shortest distance between the cluster-head and the
ith node in the feature region. The following are some aggregation options that
can be pursued:

No Aggregation (NA): If no aggregation mechanism is employed, the
energy cost of this scheme in terms of the total number of bits transmitted in
this case will be λNA = (2B + H)(kd +

∑
di).

Header Aggregation (HA): In this scheme, all nodes in the feature region
send their location information in separate packets through the intra-cluster
routing tree to the cluster-head which then combines these without modification
into one large packet. The number of bits transmitted, λHA = 2B(kd +

∑
di) +

H(d +
∑

di).
Header Aggregation with Lossless Compression (HAC): An addi-

tional level of savings can be obtained in the header aggregation scheme, if the
cluster-head compresses the information it obtains from all nodes in the feature
region by a factor of ρ ≤ 1 before sending it on. The number of bits transmitted,
λHAC = 2B(kdρ +

∑
di) + H(d +

∑
di).

Rectangular Approximate Aggregation (RA): If it suffices to know
the approximate location and extent of the feature region, significant reduction
can be obtained by combining the information into a geometric shape such as
the rectangle which contains the nodes in the feature region. The cluster-head
collects (x,y) coordinates for all such nodes, and sends the 3-tuple
[XMIN, Y MIN, DIAG] (which suffices to reconstruct the enclosing rectangle)
on to the central monitoring node. The number of bits transmitted, λRA =
2B

∑
di + 3Bd + H(d +

∑
di).

Circular Approximate Aggregation (CA): This scheme is similar to
the rectangular approximate aggregation, except that the cluster-head instead
computes the center and radius of the smallest circle which encloses all nodes in
the feature region, represented as the 3-tuple [XMID, Y MID, RADIUS]. The
number of bits transmitted, λCA = 2B

∑
di + 3Bd + H(d +

∑
di).
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Step-wise Rectangular Aggregation (SRA): If we permit each node
within the cluster to aggregate the information coming from all downstream
nodes, we can get further gains with the rectangular aggregation scheme. The
number of bits transmitted, λSRA = 3B(k+d−1)+H(d+

∑
di). It is important

to note that the final information obtained by the central monitoring node is the
same in the case of RA as well as SRA aggregation schemes – the coordinates
of the smallest rectangle enclosing the feature nodes.

Step-wise Circular Aggregation (SCA): This scheme is similar to the
SRA. Each node sends the 3-tuple [XMID, Y MID, RADIUS] upstream. This
tuple is used to describe the center and radius of the smallest circular region
that includes the intersection of the circular regions of its descendant nodes as
well as its own location. The number of bits transmitted, λSCA = 3B(k + d −
1) + H(d +

∑
di).

Table 1. Comparison of various aggregation schemes for sample simulated scenario

Scheme Bits Used Savings Response Quality
No aggregation (NA) 221544 0% Exact

Header Aggregation (HA) 117544 46.9 % Exact
HA with Compression (HAC) 100648 54.6 % Exact
Rectangular Aggregation (RA) 34984 84.2 % Tight rect. approximation

Circular Aggregation (CA) 34984 84.2% Tight circ. approximation
Stepwise Rect. Aggregation (SRA) 9240 95.8% Tight rect. approximation
Stepwise Circ. Aggregation (SCA) 9240 95.8% Loose circ. approximation

Table 1 shows a comparison of the above schemes on a sample simulation
scenario. In this simulation the values for the size parameters were H = 40 and
B = 16. For HAC, the compression ratio was set to a typical value of ρ = 0.8.
The number of nodes in the cluster is k = 66, the distance between the cluster-
head and the central monitoring node is d = 40, and the sum of the intra-cluster
distances was evaluated to be

∑
di = 437. We can see that since the header

size is comparable to the size of the data contents, even header aggregation
can reduce the energy costs by nearly half in this case. As noted before, the first
three schemes all provide exact information about the location of each individual
node, while the remaining schemes provide some form of approximation. Both
the RA and CA schemes result in nearly 85% energy savings in this scenario,
the additional gains coming chiefly due to the reduction of data being sent from
from the cluster-head to the central monitoring node. Both approximations are
tight, in the sense that they provide the coordinates of the minimum enclosing
rectangle and circle respectively. For applications where the feature is likely to
be approximately circular in shape (for example if the chemical concentrations in
the environment diffuse uniformly in all directions), the circular approximation
may be closer to the real situation. However, when we consider the two step-
wise approximate aggregation schemes, the SRA scheme is better since it still
provides the minimal enclosing rectangle with significant savings (95% in this
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scenario), whereas the SCA scheme (which incurs the same costs) can result
in a loose overestimate of the region containing all the nodes. Overall, we can
conclude the SRA scheme is a robust, reasonably tight approximate aggregation
algorithm which provides the most energy gains for this application.

It’s also insightful to look at the limiting behavior of the energy gains. An
upper-bound on the energy gains is obtained if we let d tend to infinity (when
the feature region is really far away from the central monitoring node).

Theorem 1. If max(di) and k are fixed then

lim
d→∞

1 − λSRA

λNA
= 1 − (3B + H)

(2B + H)k
(6)

Proof: From the expressions for costs of NA and SRA schemes, we get that

λSRA

λNA
=

3B(k + d − 1) + H(d +
∑

di)
(2B + H)(kd +

∑
di)

(7)

⇒ lim
d→∞

λSRA

λNA
=

(3B + H)d + 3B(k − 1) + H
∑

di

(2B + H)kd + (2B + H)
∑

di
(8)

⇒ lim
d→∞

λSRA

λNA
=

(3B + H)d + o(1)
(2B + H)kd + o(1)

(9)

⇒ lim
d→∞

1 − λSRA

λNA
= 1 − (3B + H)

(2B + H)k
(10)

�

Theorem 1 represents an upper bound on the gains that can be obtained
with SRA. For the sample scenario that we studied, if we let d → ∞, we get a
gain of (1 − 88/(72 · 66))100 = 98.2%, which is close to the 95.8% achieved in
the simulation for d = 40.

The above schemes can be generalized for other queries sent to the feature
nodes. For detailed and exact information such as IDs or readings of all nodes
in the feature region, approximate schemes are invalid. Thus the HA and HAC
schemes are the most appropiate. For queries which require a single number to
be sent back, such as query asking for the min/max/average feature reading, a
suitable approach is to perform in-cluster aggregation. The information could
either be aggregated at the cluster-head after receiving all inputs directly from
each node in the cluster, or in a stepwise manner throughout the cluster. The
cluster-head then sends this single number on to the central monitoring node.
The energy gains through these schemes would be quite comparable to those
obtained for the feature-location query with the RA and SRA schemes, respec-
tively.
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5 Related Work

Self-configuration and self-organizing mechanisms are needed in sensor networks
because of the requirement of unattended operation in uncertain, dynamic en-
vironments. Some attention has been given to developing localized, distributed,
self-configuration mechanisms in sensor networks [9], [21] and studying condi-
tions under which they are feasible [25].

Sensor networks are characterized by severe energy constraints because the
nodes will often operate with finite battery resources and limited recharging. The
energy concerns can be addressed by engineering design at all layers. Some of the
energy concerns are being addressed at the hardware and architecture level [14],
[22], [26]. At the physical layer, there is now a significant body of work on min-
imizing energy costs by adjusting the transmit powers of nodes while achieving
global network properties such as connectivity [27], [28]. At the link layer, some
of the work has focused on energy-efficient medium access schemes suitable for
sensor networks [10], [16], [31]. At the networking layer, meta-naming of data and
data-aggregation during routing has been proposed and analyzed as a significant
means for energy savings [1], [7], [8], [12], [13]. At the application layer, it has
been recognized that energy savings can be obtained by pushing computation
within the network in the form of localized and distributed algorithms [2], [23],
[24].

One of the main advantages of the distributed computing paradigm is that it
adds a new dimension of robustness and reliability to computing. Computations
done by clusters of independent processors need not be sensitive to the failure
of a small portion of the network. Wireless sensor networks are an example of
large scale distributed computing systems where fault-tolerance is important.
For large scale sensor networks to be economically feasible, the individual nodes
necessarily have to be low-end inexpensive devices. Such devices are likely to
exhibit unreliable behavior. Therefore it’s important to guarantee that faulty
behavior of individual components does not affect the overall system behavior.
Some of the early work in the area of distributed sensor networks focuses on
reliable routing with arbitrary network topologies [18], [19], characterizing sensor
fault modalities [3], [4], tolerating faults while performing sensor integration
[20], and tolerating faults while ensuring sensor coverage [17]. A mechanism for
detecting crash faults in wireless sensor networks is described in [29]. There has
been little prior work in the literature on detecting and correcting faults in sensor
measurements in an application-specific context.

6 Conclusions

With recent advances in technology it has become feasible to consider the de-
ployment of large-scale wireless sensor networks that can provide high-quality
environmental monitoring for a range of applications. In this paper we developed
a multi-stage solution to a canonical task in such networks – the extraction of
information about regions in the environment with identifiable features.
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In such networks involving thousands of unattended, low-cost, low-capability
devices, reliability, self-organization, and energy-efficiency are paramount con-
cerns. Our solution addresses all these concerns, and illustrates design principles
for this emerging space of application-specific networks.

One of the most difficult challenge is that of distinguishing between faulty
sensor measurements and unusual environmental conditions. To our knowledge,
this is the first paper to propose a solution to the fault-feature disambiguation
problem in sensor networks. Our proposed solution, in the form of a Bayesian
fault-recognition algorithm, exploits the notion that measurement errors due to
faulty equipment are likely to be uncorrelated, while environmental conditions
are spatially correlated.

We presented the Bayesian threshold decision scheme and showed an ana-
lytical expressions for its performance. Our analysis showed that the threshold
decision scheme has good performance in terms of the minimization of errors. The
proposed algorithm has the additional advantage of being completely distributed
and localized - each node only needs to obtain information from neighboring sen-
sors in order to make its decisions. The theoretical and simulation results show
that with the optimal threshold decision scheme, faults can be reduced by as
much as 85 to 95% for fault rates as high as 10%.

We then presented a distributed mechanism for nodes in a feature region
to self-organize into a cluster. The proposed mechanism combines shortest-path
routing techniques with a leader-election mechanism. The final result of the
clustering algorithm is the election of a cluster-head and the formation of a
minimum spanning tree connecting all the other nodes to the cluster-head.

This cluster is then used as a precursor for in-network processing when infor-
mation about the feature region is extracted back to the central monitoring node.
We presented and analyzed a number of distinct data-aggregation mechanisms
that provide energy savings by the elimination of redundant information. We
showed that one of these, the stepwise rectangular approximation scheme (SRA)
has the advantage of being robust to boundary-errors in the fault recognition
algorithm, providing a tight approximation of the feature region, and resulting
in order-of-magnitude savings in energy costs. For the simulated scenario, for
example, this saving was over 95%.

There are a number of directions in which this work can be extended. The
most promising is the extension of our work on fault-recognition and fault-
tolerance in sensor networks. We have dealt with a binary fault-feature disam-
biguation problem here. This could be generalized to the correction of real-valued
sensor measurement errors: nodes in a sensor network should be able to exploit
the spatial correlation of environmental readings to correct for the noise in their
readings. Another related direction is to consider dynamic sensor faults where
the same nodes need not always be faulty. Much of the work presented here can
also be easily extended to dynamic feature recognition to deal with environmen-
tal phenomena that change location or shape over time. We would also like to
see the algorithms proposed in this paper implemented and validated on real
sensor network hardware in the near future.
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Abstract. This paper presents the Real-Time Event Detection Ser-
vice which is a component of the Data Service Middleware (DSWare).
DSWare provides data-centric and group-based services for sensor net-
works. The real-time event service includes unreliability of individual sen-
sor reports, correlation among different sensor observations, and inherent
real-time characteristics of events. The event service supports confidence
functions which are designed based on data semantics, including relative
importance of sub-events and historical patterns. When the failure rate
is high, the event service enables partial detection of critical events to
be reported in a timely manner. It can also be applied to differentiate
between the occurrences of events and false alarms.

1 Introduction

Sensor networks are large-scale wireless networks that consist of numerous sen-
sor and actuator nodes used to monitor and interact with physical environ-
ments [11][14]. From one perspective sensor networks are similar to distributed
database systems. They store environmental data on distributed nodes and re-
spond to aperiodic and long-lived periodic queries [7][15][20]. Data interest can
be pre-registered to the sensor network so that the corresponding data is col-
lected and transmitted only when needed. These specified interests are similar
to views in traditional databases because they filter the data according to the
application’s data semantics and shield the overwhelming volume of raw data
from applications [8][26].

Sensor networks also have inherent real-time properties. The environment
that sensor networks interact with is usually dynamic and volatile. The sensor
data usually has an absolute validity interval of time after which the data values
may not be consistent with the real environment. Transmitting and processing
“stale” data wastes communication resources and can result in wrong decisions
based on the reported out-of-date data. Besides data freshness, often the data
must also be sent to the destination by a deadline. To date, not much research
has been performed on real-time data services in sensor networks.

Despite their similarity to conventional distributed real-time databases, sen-
sor networks differ in the following important ways. First, individual sensors are
small in size and have limited computing resources. They also must operate for
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long periods of time in an unattended fashion. This makes power conservation
an important concern in prolonging the lifetime of the system. In current sensor
networks, the major source of power consumption is communication. To reduce
unnecessary data transmission from each node, data collection and transmission
in sensor networks are always initiated by subscriptions or queries. Second, any
individual sensor is not reliable. Sensors can be damaged or die after consum-
ing the battery. The wireless communication medium is also unreliable. Packets
can collide or be lost. Because of these issues we must build trust on a group
of sensor nodes instead of any single node. Previous research emphasizes reli-
able transmission of important data or control packets at the lower levels, but
less emphasis is on the reliability on data semantics at the higher level [23].
Third, the large amount of sensed data produced in sensor networks necessitates
in-network processing. If all raw data is sent to base stations for further pro-
cessing, the volume and burstiness of the traffic may cause many collisions and
contribute to significant power loss. To minimize unnecessary data transmission,
intermediate nodes or nearby nodes work together to filter and aggregate data
before the data arrives at the destination. Fourth, sensor networks can interact
with the environment by both sensing and actuating. When certain conditions
are met, actuators can initiate an action on the environment. Since such actions
are difficult to undo, reducing false alarms is crucial in certain applications.

The remainder of this paper is organized as follows: In section 2, we present
related work. In section 3, we present the design of Data Service Middleware
(DSWare) and some major components of DSWare. DSWare is a specialized
layer that integrates various real-time data services for sensor networks and
provides a database-like abstraction to applications. In section 4 we then present
a detailed description of the event detection mechanism. Event detection is one
of the most important data services in sensor networks because it is a way
to “dig” meaningful information out of the huge volume of data produced. It
aims to find the “right data” at the “right place” and ensure the data is sent
at the “right time”. Event Detection Services in DSWare associate a confidence
value with each decision it makes based on a pre-specified confidence function. It
incorporates the unreliability of sensor behavior, the correlation among different
factors, and reduces false alarms by utilizing data semantics. Section 5 presents
the preliminary evaluation of the event detection mechanism. We conclude the
paper in Section 6.

2 Related Work

There are many ongoing middleware research projects in the area of sensor
networks, such as Cougar, Rutgers Dataman, SINA, SCADDS, Smart-msgs, and
some virtual-machine-like designs [1][2][3][4][8][12][17][26]. COUGER and SINA
are two typical data-centric middleware designs which have goals that are similar
to our design goal of providing data services. In COUGER, sensor data is viewed
as tables and query execution plans are developed and possibly optimized in this
middleware. Our work on DSWare is more tailored to sensor networks, including
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supporting group-based decision, reliable data-centric storage, and implementing
other approaches to improve the performance of real-time execution, reliability
of aggregated results and reduction of communication. SINA is a cluster-based
middleware design which focuses on the cooperation among sensors to conduct
a task. Its extensive SQL-like primitives can be used to issue queries in sensor
networks. However, it does not provide schemes to hide the faulty nature of both
sensor operations and wireless communication. In SINA it is the application layer
that must provide robustness and reliability for data services. In DSWare, the
real-time scheduling component and built-in real-time features of other service
components make DSWare more suitable than SINA for real-time applications
in ad hoc wireless sensor networks.

Multisensor data fusion research focuses on solutions that fuse data from
multiple sensors to provide more accurate estimation of the environment [16][22].
In mobile-agent-based data fusion approaches, software that aggregates sensor
information are packed and dispatched as mobile agents to “hot” areas (e.g.,
the area where an event occurred) and work independently there. The software
migrates among sensors in a cluster, collects observations, then infers the real
situation [22]. This approach and our group-based approach both make use of
consensus among a number of nearby sensors of the same type to increase the
reliability of a single observation. The mobile-agent-based approach, however,
leverages on the migration traffic of mobile agents and their appropriate pro-
cessing at each sensor node in its routes. For instance, if a node in the route
inserts wrong data or refuses to forward the mobile agents, the aggregation and
subsequent analysis are untrustful. Our approach does not have such limitations:
malfunctioning of individual nodes does not infect the entire group.

A fuzzy modelling approach is sometimes used for data fusion in sensor net-
works. It is used to model the uncertainty in sensor failures and faulty obser-
vations [25]. This approach is useful in modelling the sensor error rates due to
equipment wear and aggregating local decisions from multiple sensors that mea-
sure the same type of data. Some optimal decision schemes focus on the fusion of
asynchronously arriving decisions [10][24]. E. Bosse et. al. presented a modelling
and simulation approach for a real-time algorithm in multi-source data fusion
systems [9]. These data fusion schemes are suitable for increasing the accuracy
of decisions, but require extensive computing resources. In our approach to event
detection, the computation in fusion nodes is small.

Dempster-Shafer evidential theory is also applied to incorporate uncertainty
into decisions in some sensor fusion research [21]. This scheme uses Belief and
Plausibility functions to describe the reliability feature of each source and uses
a normalized Dempster’s combination rule to integrate decisions from different
sources. Our confidence function is similar to Dempster-Shafer method except
that we place the evidence in both temporal and spatial spectrums to take data
real-time validity intervals and possible contexts into consideration.
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3 Data Service Middleware (DSWare)

A data services middleware can avoid re-implementing the common data service
part of various applications. We develop a Data Service Middleware (DSWare)
Layer that exists between the application layer and the network layer. This mid-
dleware provides data service abstraction to applications, as depicted in Fig. 1.
In this architecture, routing is separated from both DSWare and the network
layer since the group management and scheduling components in DSWare can
be used to enhance the power-awareness and real-time-awareness of routing pro-
tocols. Fig. 2 demonstrates the architecture of DSWare.

Network Layer

Application Layer

DSWare Layer

Routing

MAC Layer

Fig. 1. Software Architecture in Sensor Networks

Event Detection

Data Storage

Data
Subscription

Group
Management

Data Caching

Scheduling

Fig. 2. Framework of DSWare

3.1 Data Storage

Data-centric storage is an implementation of a data storage service [23]. Data
that describes different occurrences of some type of activity can be mapped to
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certain locations so that future queries for this type of data do not require being
flooded to the whole network. The Data Storage Component in DSWare provides
similar mechanisms to store information according to its semantics with efficient
data lookup and supports more robustness during node failures. Correlated data
can be stored in geographically adjacent regions to enable possible aggregation
and in-network processing.

– Data Lookup
We use two levels of hashing functions to map data to physical storage nodes.
Each type of data has its unique identifier (e.g, the activity name string and
the object’s privilege profile) and it is used as key for the first level hashing
function. The first level hash function maps the key to a logical storage node
in the overlay network. At this level, storage nodes establish a hierarchy.
In DSWare, we have one more hashing procedure to map a single logical
node to multiple physical nodes. When a base station sends queries for this
data, the information is fetched from one of these physical locations. Future
designs need to consider how to map related data to geographically adjacent
locations to promote data aggregation and in-network processing.

– Robustness
Data stored in an individual node can be lost due to disaster, node damages,
energy shortage, and other reasons. If we map a certain type of data to an
individual node, when this activity occurs, lots of event data is sent to this
node during a short period. The burst of traffic will lead to high collision
and power consumption in the storage vicinity and indirectly decrease the
reliability and availability of the storage node. In DSWare, data is replicated
in multiple physical nodes that can be mapped to a single logical node.
Queries are directed to any of these nodes to avoid high traffic collision and
heavy load pushed on a single storage node. Load is balanced among the set
of physical nodes and the lifetime of an individual node is prolonged. The
consistency among these nodes is a key issue for a data storage component.
To avoid peak time traffic, we choose “weak consistency” among the nodes.
Most of the data on these nodes are identical except a small portion of the
newest data. This new data is eventually propagated to the other peer nodes.
The size of the portion of data that is inconsistent is bounded and nodes do
the replication when their own work load is low.

3.2 Data Caching

The Data Caching Service provides multiple copies of the data most requested.
This data is spread out over the routing path to reduce communication, increase
availability and accelerate query execution [5]. It uses a simplified feedback con-
trol scheme to dynamically decide whether to place copies of the data around
the frequently queried nodes.

There is a tradeoff between the query response time and maintenance over-
head of data copies. A node can use the total number of queries routed through
itself, the proportion of periodic queries, average response time from the data
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source, the number of copies that already exist in the neighborhood and other
observations as inputs to the controller at a node and the controller determines
whether to keep a copy. The data caching service in DSWare monitors current
usages of the copies and determines whether to increase or reduce the number
of copies and whether to move some copies to another location by exchanging
information in the neighborhood.

3.3 Group Management

The Group Management component provides localized cooperation among sen-
sor nodes to accomplish a more global objective. There are several reasons why
group management is important. First, normally functioning sensors within a
geographic area provide similar sensor values. A value that most nodes in a
group agree on should have higher confidence, than a value that is in dispute
or varies widely. Second, based on the similar observations by nearby sensors in
a sufficiently dense area, we can recognize the nodes that keep reporting erro-
neous results. We may discard the suspicious nodes in later coordination and
computations to provide more reliable measurement. Third, some tasks require
cooperation of multiple sensors. Movement and speed approximations require
more than one sensor to combine their observations to calculate the direction
and velocity. Finally, when a region has adequate density of sensors, a portion
of them can be put into sleep mode to save energy.

Based on the different reasons discussed above, there are different ways to
formulate a group. For most tasks, groups are formed as the query is sent out
and dissolved when the query is expired or the task is accomplished. In this
case, the group formulation criterion is sent to the queried area first. Nodes
decide whether to join this group by checking whether they match the criterion.
Some groups are relatively stable after formulation, such as those measuring
temperature. Some groups are more dynamic, such as the groups tracking the
movement of a vehicle [6]. For a dynamic group, changed criterion is broadcast
persistently in a small area whose center is the current group. Hence, nodes
can join and leave the group when the target moves. There are other groups
designed for geographically stable goals. These groups are not sensitive to tasks,
so they can be formulated during system deployment or when explicitly specified
by the applications. These groups are not necessary for the accomplishment of
a task, but they have significant effects in reliability and reduction of energy
consumption and communication.

3.4 Event Detection

In the event detection service, events are pre-registered according to the spe-
cific application. Event detection is a common and important service in sensor
networks. We present a detailed protocol for event detection in section 4.
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3.5 Data Subscription

As a type of data dissemination service, Data Subscription queries are very com-
mon in sensor networks. These queries have their own characteristics, including
relatively fixed data feeding paths, stable traffic loads for nodes on the paths,
and possible merges of multiple data feeding paths. For example, a base station
embedded in a policeman’s PDA sends a subscription request to the sensor net-
work : “Show me the traffic status at the crossing of Ivy Road and Alderman
Road and keep providing the traffic information every 3 minutes for the next two
hours (query duration).” In this case, the base station subscribes to the data of
node A for duration D (two hours) and rate R (1 per 3 minutes). When several
base stations subscribe for the data from the same node at different rates, the
Data Subscription Service places copies of the data at some intermediate nodes
to minimize the total amount of communication. It changes the data feeding
paths when necessary, as shown in Fig. 3.

0

1

2
3

4 5

0

1

2
3

4 5

Fig. 3. When there are multiple subscribers (node 1 and node 2) for the data at node
0, the Data Subscription Service detects the proximity of the two paths and merges
these two paths by placing a copy of the data at node 5 and lets node 5 send data to
the two subscribers during each requesting interval.

3.6 Scheduling

The Scheduling component is a special component because it provides the
scheduling service for all components in DSWare. Two most important schedul-
ing options are energy-aware and real-time scheduling. By default, we apply a
real-time scheduling mechanism (EDF, EDDF, with or without admission con-
trol) as the main scheduling scheme because most queries in sensor networks are
inherently real-time tasks. We can also apply the energy-aware mechanism when
we have already met the requirements of real-time scheduling. Applications can
specify the actual scheduling schema in the sensor networks based on the most
important concerns.

4 Event Detection Services

In this section, we present the event detection services of DSWare. We first
discuss some of the key concepts of the event detection services, including event
hierarchy, confidence, and time semantics, followed by implementation issues.
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4.1 Event Hierarchy

An observation is the low-level output of a sensing device during a sensing inter-
val. It is a measurement of the environment. An event is an activity that can be
monitored or detected in the environment and is of interest to the application.

We group events into two different types: atomic events and compound events.
An atomic event refers to an event that can be determined merely based on an
observation of a sensor. Suppose we have registered the following events:

High temperature event represents the observation that the temperature is
higher than a specified threshold.

Light event represents an occurrence of a sharp change in the light intensity.
Acoustic event represents the occurrence of an unusual sound matching a cer-

tain signature.
Explosion event might be defined as the three events above are reported in

the same region within a specified time interval.

In this example, whether a high temperature event occurs or not can be
determined from an observation of a single temperature sensor. Such event is an
atomic event.

A compound event can not be detected directly from observations; instead,
it must be inferred from detections of other atomic or compound events(i.e. sub-
events of this compound event). In the example above, the explosion event is a
compound event. High temperature, light and acoustic events are sub-events of
the explosion event.

4.2 Confidence, Confidence Function, and Phase

When a compound event occurs, it is possible that not all sub-events are de-
tected. For example, when an explosion actually occurs, only two atomic sub-
events – the high temperature and the light sub-events – could be detected, if
the sensors that detect the acoustic signals are damaged in the explosion. We
use the notion of confidence to address this problem.

A confidence function takes whether the sub-events have been reported or
not as boolean parameters and produces a numeric value of output based on the
event’s semantics. The confidence is the return value of the confidence function
specified in event registration. An event with a confidence higher than 1.0 is
regarded as “confirmed”, i.e., the sensor network is highly confident that the
event actually occurred.

A confidence function specifies the relationships among sub-events of a com-
pound event with other factors that affect the decision such as relative im-
portance, sensing reliability, historic data, statistical model, fitness of a known
pattern and proximity of detections. The information is derived from event se-
mantics in real life. A confidence function can be a simple linear equation or
a complex statistical model. For example, if the temperature has been continu-
ously going up for a period of time, combined with light sub-event, then a report
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of fire event carries a higher confidence compared to the report that is based on
the observations only on temperatures going up and down rapidly in a short
period of time.

In reality, an event always has its meaningful contexts, which can be modelled
using a Finite State Machine (FSM). For example, in a residential monitoring
system, morning, afternoon, and evening can be the states of this system. We
call these states phases. In each phase, there is a set of events that are likely
to occur with meaningful context, while other events are less likely to occur
[27]. Consider a chemical factory. Dissemination of a chemical might not happen
except during a specific production phase. If all sub-events of this chemical event
are detected during a phase in which the event is very unlikely to happen, the
system could either give this event detection a low confidence or report the
possible malfunction of the sensors. Using phases in this manner not only saves
power in monitoring and event detection, but also increases the reliability of
event detection.

4.3 Real-Time Semantics

Each sub-event has an absolute validity interval (avi) associated with it. The
avi depicts the temporal consistency between the environment and its observed
measurement. Continuing the explosion example, the temperature sub-event can
have a longer avi because high temperature usually will last for a while, while
the light sub-event may not last long because in an explosion, a sharp increase
in the intensity of light would happen only for a short period of time. It is
the responsibility of the application developer to determine the appropriate avi
values.

When an event consists of more than one sub-event, the time an aggregating
node should wait for the arrivals of all these sub-events becomes an important
issue. The delay of a sub-event’s detection varies according to sensors’ sampling
period and communication delay. We should preserve a time window to allow all
possible reports of sub-events to arrive to the aggregating node. Wireless media
and unpredictable environment in which a sensor network exists make both the
loss of messages and failures of nodes common. For this reason, we can’t risk
reporting an urgent event late. If before the timer expires the confidence value
has reached 1, the event is reported to registrants without waiting any more. If
the confidence value exceeds the min confidence value specified in sub-event list
when the timer expires, the event is reported to registrants with this confidence
value. If the confidence value hasn’t reached the min confidence value when the
timer expires, the event is not reported.

After an event is detected, it should be sent to the registrants before the
reporting deadline. For example, we can use the Velocity Monotonic Scheduling
or SPEED protocol [13][18].
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4.4 Registration and Cancellation

To register an event of interest, an application submits a request in the following
SQL-like statement:

INSERT INTO EVENT_LIST
(EVENT_ID, RANGE_TYPE, DETECTING_RANGE,
SUBEVENT_SET, REGISTRANT_SET, REPORT_DEADLINE,
DETECTION_DURATION [, SPATIAL_RESOLUTION ]
[, ACTIONS])

VALUES ()

Range Type and Detecting Range together specify a set of sensor nodes that
should be responsible for detecting this event. The Range Type can be GROUP
or AREA. The Detecting Range is the group’s description (e.g., Group ID) or the
area’s coordinates’ range. If an application specifies an area in its registration
request, one or more groups will be established in this area. Because of the
limited space, we cannot describe different options of group formulations and
their contexts in this paper. It will be covered in a separate paper. When an
event is detected, it will be reported before the Report Deadline to every node
in the Registrant Set. If an application receives an event detection report with
a expired Report Deadline, it can decide whether to ignore this “stale” report,
or take it and reduce its associated confidence. Detection Duration denotes the
ending time for this event detection task. After the duration time, the event’s
information is void and nodes stop detecting this event. Event information will
be deleted from this group or area. Temporary groups built for this event are
dissolved. The Spatial Resolution defines the geographical granularity for the
event’s detection. The Subevent Set defines a set of sub-events and their timing
constraints. Here we give its definition:

Subevent_Set { Time_window,
Phase_set,
Confidence_function,
Min_confidence,
(sub-event_1, avi1),
[(sub-event_2, avi2),...]}

The Time window specifies the time interval during which the sub-events
reports are collected. The Phase set identifies the phase to which the event be-
longs. The Confidence function and Min confidence represent the function to
be used for computing the confidence and the minimum confidence required to
report the occurrence of the sub-event, respectively.

Let P denote the current Phase in the group or area and S denote the set of
sub-events for event E, i.e., S = (sub − event1, sub − event2...).

E is detected when the following are true:
1) P belongs to Phase set of E.
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2) For every s in S, calculate B(s): B(s) = 1 when s has been detected and
(current time - detected time) ≤ avi of s; B(s) = 0 otherwise.

3) Calculate confidence = f(B(s1), B(s2), ..., ), where f is the confidence
function.

4) When Time window expires: if (confidence ≥ min confidence) report the
event with confidence value.

Registered events can be cancelled even before the Detection duration is
terminated by submitting a cancellation request. Event cancellation is similar
to event detection. The difference is that it only needs to specify the event’s id
instead of describing an event’s criteria.

DELETE FROM EVENT_LIST
WHERE EVENT_ID = event_id

After an event is cancelled, the event’s information is void and nodes stop
detecting the event. Event information is deleted from the group or area. Any
groups assembled for this event are dissolved.

4.5 Discussion

In the current version of the prototype, we made some simplifications to demon-
strate the main ideas on data semantics, real-time constraints, and reliability of
decisions. We understand the complexity and various choices on issues including
the formats for registration and cancellation, group formations, confidence func-
tion, and spatial/temporal resolutions. In this part, we provide some discussion
on important issues in event detection services.

SQL-like Language in Event Detection: As presented in Section 4.4, we
use SQL-like statements for the registration and cancellation of an event. This
approach provides a simple interface for applications [8][19]. The syntax of the
statements is the same as standard SQL statements. So the application can insert
events to a traditional database or a sensor network without any changes in the
code. This is effective for applications that need event detection services, without
paying any special attention to the actual type of the database and data service
middleware that is providing the service.

In some cases, this approach is unsuitable because of its parsing overhead.
After an SQL-like statement is issued, DSWare parses it, generates an execution
plan, and calls the corresponding methods to execute the registration, execution,
and cancellation. Parsing consumes memory and processing power. For sensor
networks in which sensors are very limited in processing and memory capacities,
it might be better to provide method signatures to applications instead of stan-
dard SQL. However, we believe that the SQL-like approach is the right one, since
it provides the flexibility and expressiveness of SQL to cover a large number of
possible event specifications. This is the main reason why we include an optional
SQL-parser module in our DSWare.
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Spatial and Temporal Resolutions: Spatial resolution indicates the possible
detection radius of an event. If the size of a detection group is too small compared
to this event, there might be several groups in this event’s coverage that report
this event. The Event Detection component should be able to tell whether these
are different occurrences or just repeated reports of a same event.

Temporal resolution has a similar property to spatial resolution, except that
it specifies the detection granularity in the time dimension. Some events last
much longer than the sensing interval of a sensor. It is unnecessary for some ap-
plications to report a single occurrence repetitively. For example, an application
sets the temporal resolution of a fire event as 10 minutes. At the beginning of
the fire, the group that detects the fire reports the fire event to the registrants.
Assume that there is some mechanism to guarantee that the registrants have
received the report, this group can ignore any subsequent occurrence of this
event’s sub-events within 10 minutes, because that is possibly the same event.
The temporal resolution is not required for every application because some ap-
plications require the sensors to report an event’s existence no matter whether
it is a new one or not.

5 Evaluation of Real-Time Event Detection Services

For the preliminary evaluation, we have implemented the real-time event detec-
tion services in GloMoSim[29]. Within a terrain of 2000 ∗ 2000m2, which is uni-
formly divided into 16 groups, we place 100 sensor nodes to sense temperature,
light or acoustics. The simulator simulates the detection of an Explosion(E) event
that consists of a high temperature atomic event(T), a light atomic event(L) and
an acoustic atomic event(A). T and A are modelled as circles whose coverage
radius expands over time, denoting the actual energy expansion in a real system
[28]. L is modelled as spatially distributed events that occur repetitively during
explosions with a very short lifetime.

To simulate the error distribution around a hazard event as an explosion,
the failure rate of sensors decreases quadratically with the distance between a
sensor and the center of explosion. The Explosion event is registered by node 1
(at upper-left corner of the terrain) to the entire network. In our simulation, we
assume high temperature is a more consistent indicator of an explosion among
the three sub-events and temperature sensing devices are more robust in the
physical environment. Accordingly, we specify a simplistic confidence function
as follows:

ConfidenceE := 0.6 ∗ B(T ) + 0.3 ∗ B(L) + 0.3 ∗ B(A). (1)

B(x)=1 if x is detected within time window of 3 seconds; 0 otherwise.
The weights of sub-events are consistent with our application and experimen-

tal settings. The min confidence is set as 0.9, which means an explosion event
will be reported if the Confidence E is not less than 0.9.
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5.1 Performance in Reduction of Communication

Previous work [11] uses group coordination or in-network processing to reduce
the number of reports generated from a group. In the best case, only one report
of a environment property is generated from a group during each sensing interval.
However, for correlated events, such an algorithm has to detect the events sep-
arately, send all reports (at least one for each atomic event) to an outside node
and the entire analysis will be done there. We use this algorithm as our Baseline
in the experiments. Fig 4 is the comparison between real-time event services
(denoted by the DSWare curve in the figure) and the Baseline on the number of
messages transmitted in the network and the explosion reports received by the
registrant. In this experiment, explosion events appear randomly with an initial
radius of 300m. The figure demonstrates that an event detection scheme which
is established upon data and application semantics can further process and ag-
gregate data and thus reducing unnecessary communication without sacrificing
real-time constraints.
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Fig. 4. Comparison between DSWare and Baseline in Communication

5.2 Performance in Differentiating Events and Event-Like Factors

One of the key features of the real-time event services is that it can be used to
differentiate between events and pseudo events (event-like factors [28]) happening
in physical environment to avoid false alarms.

In this experiment, we place an explosion event with initial radius of 300m
at (1000.0, 1000.0) in each run. We place High Temperature events with initial
radius of 150m randomly in the network and plot the number of reports sent to
the registrant in Fig 5. The figure indicates that with time windows and a care-
fully designed confidence function, our approach can achieve a performance close
to ideal detection (no false alarms). The slight difference between the DSWare
reports and the ideal case reports is due to the randomness of sensor types in
the explosion event area.
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Fig. 5. Performance in Differentiating Events and Event-like Factors

6 Conclusions

A sensor network should be able to provide the abstraction of data services to
applications. However, because of the lack of basic data-centric services in sensor
networks, current applications need to implement the entire stack of application-
specific data services including group management, query optimization, local
data processing, and event detection. Such a tight coupling of data services and
application logic has several disadvantages and increases the complexity of apply-
ing sensor networks as databases in a large software system. We have developed
a data-centric service middleware in sensor networks called DSWare. DSWare
is a flexible middleware designed to hide unattractive characteristics of sensor
networks including the unreliability of individual sensing and communication,
complexity and necessity of group coordination, and large volume of dynamic
data distributed all over the networks, to present a more general data service
interface to applications. Applications are freed from complicated low level op-
erations of sensor networks and are able to retrieve data from sensor networks
using similar interfaces as conventional databases.

Event detection is a one of the services that is most widely used in sensor net-
work applications. Instead of providing only simple detection of atomic events,
we have developed a middleware architecture that accommodates the data se-
mantics of real-life compound events and tolerates the uncertainty and faultiness
in sensor networks.

The current version of DSWare including the event detection services is the
first step to deliver a flexible and efficient data service middleware for sensor
networks. Our future work includes extending the event detection services to
support applications for mobile event tracking and implementing other services
in DSWare.
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Abstract. Over half of California’s water supply comes from high elevations in
the snowmelt-dominated Sierra Nevada. Natural climate fluctuations, global
warming, and the growing needs of water consumers demand intelligent
management of this water resource. This requires a comprehensive monitoring
system across and within the Sierra Nevada. Unfortunately, because of severe
terrain and limited access, few measurements exist. Thus, meteorological and
hydrologic processes are not well understood at high altitudes. However, new
sensor and wireless communication technologies are beginning to provide
sensor packages designed for low maintenance operation, low power con-
sumption and unobtrusive footprints. A prototype network of meteorological
and hydrological sensors has been deployed in Yosemite National Park,
traversing elevation zones from 1,200 to 3,700 m. Communication techniques
must be tailored to suit each location, resulting in a hybrid network of radio,
cell-phone, land-line, and satellite transmissions. Results are showing how, in
some years, snowmelt may occur quite uniformly over the Sierra, while in
others it varies with elevation.

1   Introduction

California’s water resources depend vitally upon runoff from its high elevations,
particularly the snowmelt-dominated Sierra Nevada. In addition to providing over half
of the state’s water supply, rivers and river basins in the Sierra Nevada carry
sediment, nutrients and pollutants and act as vital arteries in the regional airshed.
Climate variability in the region is high, and annual precipitation and runoff fluctuate
from under 50% to over 200% of climatological averages. In recent decades,
streamflow records from watersheds in western North America, collected at relatively
low elevation gages, suggest that an alarming change toward earlier snowmelt and
snowmelt runoff has been occurring (Cayan et al 2001, Stewart et al 2002, Dettinger
and Cayan 1995). Whether this reflects a natural climate variation or an early
symptom of anthropogenic climate warming is not known. In the long run, it is
estimated that, in response to projected global warming of 3 degrees C, the spring-
summer snowmelt would be diminished by one third to one half (Roos 1987).
Additionally, virtually all modern climate models suggest there will be higher annual
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evaporative demands as climate warming develops, and some models have predicted
substantial changes in the State’s precipitation.  However, the data necessary to detect
and understand these changes, and provide ground truth for numerical models is
sparse, to the point that many of the variations and processes involved are ill-known
and can only be inferred.

Much of the problem arises from our historic monitoring system. Currently, most
meteorological observations are collected near highly populated, low elevation
regions (Figure 1), while many of the important hydrologic processes occur in
unpopulated wilderness areas, often in rugged terrain and high elevations. For
example, snowmelt processes are spatially complex and thus difficult to forecast and
incorporate in large-scale hydrologic and atmospheric models.  Much of the difficulty
arises because snow occurs in patches of nonuniform depth and density, particularly
in mountainous regions. In situ measurements of the snowpack are both difficult to
make and not necessarily representative of region-wide characteristics. Satellite
images and geographical information systems have increased spatial coverage, but
this data, which is often infrequent in time, is still difficult to relate to the actual river
discharge originating from a basin. Apparently simple characteristics, such as the
distribution and timing of snow accumulation, snowmelt, and runoff into rivers with
elevation, are not routinely quantified.

Fig. 1. Number of long-term climate stations in each 100 m elevation band in California. Only
two stations, operated by the White Mountain Research Center, exist above 3000 m

Data collection in high elevation wilderness areas historically has been difficult
and expensive because of the extra costs and logistics required to visit snowy sites
and preserve their undisturbed character.  Many such regions are designated as
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Fig. 2. Map of sensor locations in Yosemite National Park, as of September 2002. Sensors
include water level and temperature (circles), stream chemistry (crosses), air pressure
(squares), air temperature and humidity (diamonds), and air temperature alone (triangles).
Circled stations have been approved by the National Park Service for telemetry

national parks and wilderness, requiring special permission for instrument installation
and access. However, new sensor and wireless communication technologies designed
for low maintenance operation, low power consumption and small, unobtrusive
footprints are providing new opportunities to monitor mountainous watersheds. Such
technologies will allow a significant expansion of data collection vital for
understanding, predicting and informing about the variability of climate and water
resources in the State and the Nation.

2   Sensor Network: Yosemite National Park

For high altitude monitoring, the most immediate concerns are access – both in terms
of transportation to the monitoring sites and in terms of permission to use the given
sites – and scientific merit.  With these factors in mind, the Merced and Tuolumne
Rivers in Yosemite National Park, which drain the western slope of the Southern
Sierra from a range of snowmelt-contributing elevations from 1,200 to 3,700 m, have
been chosen as test basins.  One of the greatest assets of this region is the Tioga Road
(Highway 120), which crosses the range at elevations from 1,200 to 3,050 m. This is
one of only five highways transecting the Sierra Nevada, and of the five, it has the
highest summit. The river basins have been protected by the National Park Service for
over 100 years. Not only does this make the region an excellent laboratory for
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Fig. 3. A weighted average of mean temperatures at Nevada City, Tahoe City, Sacramento, and
Hetch Hetchy (line, right axis) from 1992 to 1999 shows that, on average, temperature
increases smoothly through the spring.  Average days of maximum snow accumulation (circles,
left axis) at 44 CDWR snowpillows over the same period show that higher elevations start
melting later in the season, on average

natural, unimpaired processes, but it provides an important opportunity for designing
instruments for wilderness areas.

Scientifically, the Merced River gage at Happy Isles has a long daily record (1916-
present) of unimpaired flows, and a spatially-distributed USGS watershed model is
available for testing hypotheses. Several studies (Cayan et al 2001, Peterson et al
2000) have shown that the Merced’s flow characteristics are representative of basins
throughout the Western United States. Since 1999, instruments measuring hourly
water levels, conductivities, and temperatures have been installed at Pohono Bridge,
on Tenaya Creek, and at Happy Isles on the Merced River. Starting in summer 2000,
hourly measurements of snow depth and downward shortwave radiation have been
added to augment measurements of air temperature, humidity, precipitation, and snow
liquid water content measurements at five California Department of Water Resources
(CDWR) telemetered snow pillow stations at elevations ranging from 2,000 to
3,000 m.

In summer 2001, in consultation with Park planners and scientists, the USGS, and
the CDWR, we obtained necessary research permits and began installing a river
monitoring network in the high country of Yosemite National Park. As a result,
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Fig. 4. Spring runoff began simultaneously in ten instrumented sub-basins of the Tuolumne
River in Yosemite Natrional Park in spring 2002

twenty instruments recording hourly water level and temperature were installed in the
upper reaches of the Merced and Tuolumne Rivers (Figure 2) to provide information
about how and when different subbasins contribute to the river’s flow. Sensor
locations were selected to monitor subbasins with a variety of topographic
characteristics. For example, some drain primarily north-facing slopes, and some
drain primarily south-facing slopes. These measurements will be combined with
remote-sensing and models to understand where and when snowmelt occurs and how
it moves through these basins. Four water conductivity sensors were also deployed to
make hourly measurements in the Merced and Tuolumne Basins. In summer 2002,
stream chemistry measurements were made by NPS personnel at various points along
both watersheds to measure water quality and composition throughout the summer.
At the same time, discharge measurements were made at each station to establish
curves relating discharge rates to water levels.

Along Highway 120, during Summer 2002, we also began to establish a set of
meteorological stations (Figure 2) that augment the snow/meteorological stations
operated by the CDWR Snow Surveys. Presently, our stations consist of
approximately 25 internally-recording temperature/relative humidity sensors,
stationed along Highway 120, along the west slope of the Sierra up to the crest of
Tioga Pass, and down to the Mono Basin at Lee Vining. This array will monitor
weather systems and air masses as they sweep across the Sierra from the Pacific, or
occasionally, from the Western Great Basin.  We have plans to expand the sensor
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suite at several of these stations to include other elements such as wind and solar
radiation. We also expect to install a webcam at Tioga Pass to view snow in
surrounding alpine areas. In addition to our stream and atmospheric temper-
ature/humidity gages, we are collaborating with Frank Gehrke of CDWR to install a
full snow/meteorological station at Merced Lake, in the Upper Merced River
drainage, complete with GOES satellite telemetry.

Fig. 5. The dates of maximum snow accumulation (shown here) and snowmelt initiation at 44
snow pillows in the Central Sierra were remarkably similar from elevation to elevation in
spring 2002 (triangles). Similarly, in 2000 (crosses) and 2001 (circles), snow at most
elevations began melting at the same time (before day 80, March 21st), but several stations at
higher altitudes waited until weeks later

3   Preliminary Results

Because of the scarcity of high elevation data, our first year’s  measurements already
provide interesting new insights into how snow melts and spring runoff begins at
different altitudes in the Sierra. Common experience and intuition suggest that snow
at lower elevations melts first. The standard atmospheric lapse rate describes a
decrease in temperature of 6.5°C per 1000 m elevation gain. Reece and Aguado
(1992) studied snow pillow stations in the Truckee River Basin and found an
approximate 4-day delay in the start of the snowmelt season for each 100 m increase
in altitude. Averaged over many years (Figure 3), these results are typical. Sierra
Nevada temperature (Figure 3, right axis) increases steadily through the spring.
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Fig. 6. Average temperatures (a) and snowmelt rates (b) by elevation for 44 snow pillows in the
Central Sierra. In each graph, the top curve is the lowest elevation bin (1524–1839 m, 5000–
6000 ft) and the lowest curve is the highest elevation bin (2743–3048 m, 9000–10000 ft)

Because temperatures decrease with increasing elevation, the average day of
maximum snow accumulation, which we are using as an index of snowmelt initiation
(Figure 3, dots, left axis), is later in the season for higher elevation snow pillow
stations. However, what happens in a given year, as exemplified by spring 2002, may
vary widely from the average values.

In Spring 2002, ten water-pressure sensors measured the onset of spring runoff in
subbasins of the Tuolumne River in Yosemite National Park, California. Subbasin
areas ranged from 6 km2

 to 775 km2, and measurement elevations ranged from 1200 m
(3,800 ft) at Hetch Hetchy to 2900 m (9,600 ft) at Gaylor Creek. Some were
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Fig. 7. Average maximum temperatures (a) and minimum temperatures (b) in Yosemite Valley,
1916-2000, for the 15 days before and after the start of spring runoff in the Merced River at
Happy Isles

northfacing and some were south-facing. Estimated mean April radiation varied from
552 W/m2

 in Budd Creek Basin to 635 W/m2
 in Gaylor Creek Basin. Despite these

differences, streamflow rose simultaneously, just before April 1st, at all gages (Figure
4). The date of maximum snow accumulation and initiation of spring melt also was
remarkably uniform from elevation to elevation (Figure 5). Using the same stations,
mean temperature and melt rates were calculated in five elevation bands. In 2002, two
large increases in temperature preceded spring snowmelt (Figure 6a). After the first, a
small amount of melting occurred at all elevations (Figure 6b) so that, during the
second temperature increase, melting began in earnest everywhere. Notice that stream
runoff only began in earnest after minimum temperatures exceeded 0°C at most
elevations.

 The rapid and simultaneous initiation of snowmelt and runoff at all elevations in
2002 shows that the onset of spring can differ greatly from the long-term average
conditions. How common are sudden springs compared to gradual ones? The 85 years
of Yosemite Valley temperature and Merced River discharge data suggest that spring
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Fig. 8. View of interior of data logger being developed by Douglas Alden. Battery pack (to the
left) provides power for data storage and transmission (electronics on right)

most often occurs suddenly. Averaging the temperatures before and after the day the
river started rising (spring pulse days, as described in Cayan et al. 2001) reveals that
maximum temperatures (Figure 7a) rise about 8°C and minimum temperatures
(Figure 7b) rise about 5°C during the weeks surrounding the spring pulse. Out of 85
years, only 8 years had rapid flow increases that were not accompanied by dramatic
temperature rises. This suggests that spring runoff is closely tied to large-scale
atmospheric circulation patterns, and further study may reveal ways to use this link to
improve forecasts of water supply and timing. However, before forecasts can
improve, real-time data is essential.

4   Communications Issues

Communications in the Park are difficult because of the high relief. Conditions are
especially challenging in river valleys, which are crucial to our study but are typically
isolated by surrounding topography. We are exploring potential wireless
communications options that include digital cellular, satellite, and land line (phone
line) links to the Internet. At several sites (circled sites on map, Figure 2), we have
obtained or requested Park approval to install communications equipment. There is
tension between the resource-management interests of the Park, which seek more
environmental information, and the wilderness-preservation interests, which seek to
protect wilderness values from instrument installations. Seeking to balance these
interests, our communications will depend on site location and will likely include
radio, cell phone and satellite transmissions. The equipment will need to interface
with the variety of existing and new sensors and data loggers used by the agencies
working in this area. Implementing workable communications solutions in Yosemite
will serve as a prototype for other instrumental nodes and networks that will need to
be developed to serve California’s increasingly multifaceted environmental
monitoring needs.

Because access is often difficult in these remote and snowy settings, power
consumption and long-term backups of data collected are important design
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considerations. Thus, SIO Development Engineer Douglas Alden is building a low
cost, low power data logger (Figure 8) that will log, record and wirelessly transmit
data from several meteorological and hydrological sensors. The logger is designed for
wilderness applications and will accommodate several standard meteorological and
hydrological sensors. The current version will be powered by a small battery pack,
and its 32MB of memory is adequate to store several months of data (while logging
measurements at three-minute intervals).

Installing and monitoring a high density of sensors in Yosemite will reveal the
spatial variability of meteorological properties at high altitudes. Data intercomparison
within the region will also help identify sensors that may not be properly calibrated or
indicative of region characteristics, prompting timely repairs and replacements.
Connecting the instruments to the internet will eliminate the limitations of data
storage and will minimize the travel costs involved in data retrieval. However, battery
power will continue to be a limiting factor. Solar panels, in conjunction with 12-volt
batteries, are currently used at the CDWR snow pillows, but the large visible panels
are not unobtrusive enough for protected wilderness areas. Further technological
advances in power generation and consumption are desirable.

5   Future Directions

High altitude observations are necessary to improve understanding of mountain
snowpacks, a crucial resource that provides over half of California’s water supply.
Because the settings are in remote, protected areas, instruments must be designed for
low maintenance operation, low power consumption and small, unobtrusive
packaging. The technology also must perform despite the lack of traditional cell
phone coverage in these regions and the isolated nature of river valleys surrounded by
steep terrain. Fortunately, the demand for these measurements is such that any
communications advances will be quickly incorporated, and more real-time
highaltitude measurements will become available online in the future.
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Abstract. The study of collaborative, distributed, real-time sensor networks is
an emerging research area. Such networks are expected to play an essential role
in a number of applications such as, surveillance and tracking of vehicles in the
battlefield of the future. This paper proposes an approach to detect and classify
multiple targets, and collaboratively track their position and velocity utilizing
video cameras. Arbitrarily placed cameras collaboratively perform self-
calibration and provide complete battlefield coverage. If some of the cameras
are equipped with a GPS system, they are able to metrically reconstruct the
scene and determine the absolute coordinates of the tracked targets.  A
background subtraction scheme combined with a Markov random field based
approach is used to detect the target even when it becomes stationary. Targets
are continuously tracked using a distributed Kalman filter approach. As the
targets move the coverage is handed over to the "best" neighboring cluster of
sensors.  This paper demonstrates the potential for the development of
distributed optical sensor networks and addresses problems and tradeoffs
associated with this particular implementation.

1 Introduction

In the past few decades, we have seen many advances in wireless communication
techniques and in microsensor technology.  These advances combined with growing
interest in both the military and the civilian domain in using sensor networks for
remote monitoring applications have led to the concept of a wireless sensor network.
A wireless sensor network can consist of a densely distributed set of sensors of
various modalities (e.g., acoustic, seismic, infrared, imaging) that gather data from the
physical environment and then process the data collaboratively to obtain a coherent
high level description of the current state of the system.

Due to their low production costs and low energy consumption, acoustic and
seismic sensors are among the most commonly studied types of wireless microsensors
for battlefield surveillance. However, these sensors have some weaknesses. Since
acoustic sensors depend on the acoustic signature of the target, they will not be able to
detect a vehicle when it becomes stationary with its engines off. They can also be
distracted by acoustic changes caused by gearshifts as well as accelerations and
decelerations of a vehicle. Also, these sensors can be affected by acoustic noise
caused by wind.  Similar problems exist with seismic sensors.
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We propose the use of multiple video sensors to enhance the capabilities of a
wireless sensor network.  Video sensors can track accelerating or decelerating targets
with relative ease.  They continue to “see” targets that become stationary even if the
targets are completely silent.  Also, video sensors can obtain unique attributes of a
target such as its shape, color, and texture that can be used for classification as well as
for pose estimation.

Automatic video-based vehicle surveillance has been studied mainly in the context
of traffic monitoring applications.  We can identify three main approaches that have
been used with some success in these applications.

One approach uses three-dimensional models in order to classify a vehicle as well
as to identify its position and orientation [1,2,3].  In this method, a sample taken from
a database of geometrical wireframe models of possible vehicle shapes is projected on
to the image plane and then compared with the object seen in the image.  The main
advantage of this method is that the vehicle can be classified as a part of the detection
process. A disadvantage is that detailed geometrical models of vehicles must be
available. Also, this approach can be very computationally intensive.

The second approach uses a contour of the motion-segmented image (i.e., pixels
belonging to moving vehicle) to track the dynamics of the vehicle [4][5][8].  The
weakness inherent to this method is that if multiple vehicles are in the field of view of
the camera, and some vehicles are partially occluded by others as they are initially
detected, then the vehicle contours cannot be correctly initialized.

The third approach, which is the one explored in this paper, simply tracks specific
features within the vehicle instead of tracking the entire object.  An example of a
feature-based vehicle tracking system is presented in [6]. An advantage of this method
is that some features of an object will still be visible even under partial occlusion.

The first phase or our system requires the detection of the moving target in each
camera image.  This can be achieved through background subtraction. An early
approach to background subtraction was to assume that changes in intensity of a pixel
that does not belong to a moving object can only occur due to camera noise and to
model each pixel in the background to have a Gaussian intensity distribution.  Then,
for each pixel in a new frame, a significance test could be used to determine whether
it belonged to the background model, or not [7].  However, this method assumes that
the background image is completely static, which is not true for outdoor scenes
involving foliage, or dust.  One approach to deal with this problem has been to model
each pixel with a mixture of Gaussians instead of as a single mode distribution [8].  In
[9], a non-parametric approach is used to model the statistics of the background.  In
this case, one does not assume that the shape of the pdf of the pixel intensity is
known, but instead, one assumes that the pixel intensities obtained from actual
measurements represent samples taken from the pdf of the distribution.  In this paper,
we have used a simplified version of the approach proposed in [9] with a few
modifications.

The next phase of our system is to compute matching feature points from images of
the target taken by two cameras and by each camera at different points in time. Due to
its key applications in the self-calibration of cameras and in object motion tracking,
feature point correspondence is an area that has received much attention in the field of
computer vision.  The proposed methods can be placed in two broad categories based
on the applications for which they are used.

The first category of methods can be used for applications in which the cameras are
set up with a short baseline (the baseline is the distance between the centers of
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projection of each camera) relative to the viewing distance of the object from each
camera.  In this case, the appearance of the images will be more or less uniform in the
two cameras, and matching feature points will be within a searchable local area of the
image.

In our application, however, the baseline between the cameras is unlikely to be
small compared to the distance from each camera to the target vehicle.  The main
difference in a wide baseline setup is that different cameras will have significantly
different viewpoints of the scene. Therefore, the image of an object will undergo a
perspective transformation when it is viewed from a different camera.  In this case, a
direct correlation of the pixel intensity neighborhood will not provide a correct
measure of the similarity between features. Also, feature detection itself becomes a
much harder problem in a wide baseline setup because it is not guaranteed that
different cameras will detect the same points of the object as feature points.

In [10] and [11], a scale space approach is used to detect scale invariant feature
points in images.  Typically, the points that can be detected consistently in images
from different viewpoints are the points of the object that cause the local pixel
intensities in the image to vary two-dimensionally. Such points are generally referred
to as corners and a measure based on the horizontal and vertical image gradients can
be used as a measure of their “cornerness” [12].

Even if the same feature points are detected from images in both cameras, the
matching task is still difficult due to the significant differences in viewpoint between
the two images.  In [13], the concept of affine Gaussian scale space is introduced
whereby image neighborhoods are smoothed using non-symmetric Gaussians in order
to make them invariant to affine transformations.  It is shown in [14] that affine scale
space methods can be used for feature matching in wide baseline applications.

The feature point correspondences are used for camera calibration.  There are two
main approaches to camera calibration: (i) Calibration using a calibration object,
usually a grid with features of known dimensions [15], and (ii) Self-calibration, which
exploits the constraints contained in the images themselves (epipolar, image of the
absolute conic) [16]. Due to the nature of our problem we must use a self-calibration
technique since it does not require the placement of any foreign object in the scene.

2 Problem Formulation

We consider a scenario in which an approaching vehicle must be continuously
detected and its position and velocity tracked by a set of video sensors located in the
field.  We assume the sensors have been placed arbitrarily in the field and that they
are not calibrated.  We also assume that the sensors are able to communicate with
each other and that they are capable of using GPS or some other method to determine
their position.  We do not assume that the target movement is constrained in anyway
other than that it will be moving on the ground plane.
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While the basic goal of the system is to simply detect and track any target vehicle
that enters the sensor field, we must also consider the issue of power efficiency in the
system.  Wireless sensor nodes have access to a limited power supply, and therefore,
we must utilize the available power in a way that would maximize the lifetime of the
network.  Since video sensors require a relatively large amount of processing, our
system should be such that a video sensor is used only when a target is approaching
the field of view of the sensor. Other less power-consuming sensors such as passive
infrared sensors can be used as tripwires to turn on the video cameras in the perimeter
of the sensor field. Also, due to the large energy cost associated with data
transmission, we must avoid transmitting raw video data, and instead, transmit higher-
level information generated at each sensor node whenever it is possible to do so.

The system we propose performs two main functions.  The first is to automatically
calibrate the video cameras in the sensor network based on point correspondences
obtained from the moving target. The other is to use feature point correspondences
obtained from subsequent frames in the video sequence combined with the camera
calibration parameters, to detect the exact position of the target in the field.  Then, we
use this information to track the target over time and determine its velocity and
predict its future state. A general block diagram of the proposed system is given in
figure 1.

If any uncalibrated
cameras in cluster

Target detected by low-
level sensor

Activate camera cluster within range

Return sensor to
sleep mode

Collaboratively assign leader
node

Calibrate cameras Track Target

Segment target region in
image of each camera

Target
Detected?

No Yes

Detect corresponding feature
points in target

Fig. 1. Block diagram of system.
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3 Background Subtraction

In our method, an initial estimate of the moving target region is obtained using a non-
parametric model for the background — a method originally proposed in [9]. Then,
this estimate is refined using spatial and temporal constraints within a Markov
random field framework that has previously been used for image and video
segmentation applications [17,18].

We can identify a few main requirements for the background subtraction
algorithm.  They are:

1. Adaptability to gradual changes in illumination
As the time of day or weather conditions change, the lighting conditions of

the system will also change.  Therefore, it is essential that the background model
be updated temporally based on the current lighting conditions of the scene.

2. Robustness to vacillations in background
In outdoor scenes, trees waving in the wind can cause a particular pixel in the

image frame to be a projection of a part of a leaf (green), a branch of the tree
(brown), or the sky (blue).  In all these cases, the particular pixel should be labeled
as background although its intensity may differ significantly between successive
frames.

3. Small training period
Due to energy considerations in a wireless sensor network, the camera should

not be expected to be on at all times. Therefore, the background subtraction
algorithm needs to initialize and generate a background model within a few
seconds.

4. Maintaining detection of objects that become stationary
In our application, it is important to continue to detect a target vehicle for as

long as possible even if it comes to a complete stop.

An approach based on the kernel density estimation technique presented in [9] can
satisfy most of the requirements specified above. The basic idea behind this technique
is that the underlying pdf of any distribution can be approximated by a weighted
average of a set of kernel functions defined around sample data points taken from the
distribution.

In this technique, we let xs(q) be an intensity value at location q, and time s, that
takes values from the set {0,…,255}. Then, we can estimate the probability that a new
pixel at time t, has intensity )(qtx  if it belongs to the background (B) by,
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where SN is a set of N time instances prior to the current time t. Note that the pixel
location q is omitted for clarity. Here, the kernel function is assumed to be a Gaussian
with width σ . A suitable kernel width can be estimated from the sample data in the
background pixels [9].

If the estimated probability is greater than a threshold, then the pixel can be
labeled as a background pixel. Otherwise, it can be assumed that it belongs to a
moving target.

3.1   Spatial and Temporal Constraints

We use a three-dimensional Markov random field (or equivalently, Gibbs random
field) approach, previously used in image segmentation [17,18], to further refine the
foreground segmentation.  In this approach, each pixel in the image is modeled as
belonging to two regions- background ( BX t = ) and foreground ( BX t ′= ).  Then,

by Bayes theorem, the a posteriori probability density that a given pixel, tX , is in the
background can be expressed using the a priori density of the background process as:

)()|()|( ttttt XpXxpxXp ⋅∝ (2)

where tx  is the intensity of the pixel.  We have already shown how the density

)|( BXxp tt =  can be found using kernel density estimation.  The a priori density,

)( tXp , can be found by modeling the background region using a 3D Gibbs random

field.  This is done by assuming that the region process satisfies the Markov property.
That is, if )(sN t  is the spatio-temporal neighborhood of a pixel in location s at time t,

then
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If this property is satisfied, the Gibbs density for the process can be expressed as
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where Z is a normalizing constant, and )( tc XV  is the clique potential for a given
clique C.  We only use two-point cliques (spatial and temporal) and assume that all

Spatial Temporal

Fig. 2. Spatial and temporal clique shapes



Detection, Classification, and Collaborative Tracking of Multiple Targets          535

one-point cliques have an equal potential of zero.  The clique shapes are shown in
figure 2. This amounts to an assumption that the probability of classification of the
pixel depends only on the immediate (3x3 pixel) spatial neighborhood of the pixel,
and temporally only on the previous and next pixel at the same location.

The two-point spatial and temporal clique potentials are defined such that for any
two points s and q in a clique C, and for 0>β ,
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3.2   Implementation

An important step in the model generation process is that of updating the background
model. In our application, we wished to continue to detect a target even when it
becomes stationary. We solve that problem by only updating the background pixels
that do not belong to the detected foreground object.

Fig. 3. Some results of background subtraction algorithm.  Vehicle traveling at 20mph.

Before After Before After

Fig. 4. Sequence of background frames before and after applying MRF
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As input to the algorithm, we use the previously classified frame (background and
foreground) and obtain the new classifications for the current and future frame based
on the non-parametric model without GRF constraints. Then, a new classification for
the current and future frame is found by adding spatial and temporal constraints as
specified above. This is iterated until the number of pixels whose classification is
changed over a new iteration is below a given threshold. The newly classified frame is
now fixed and is used as input for the next iteration of the algorithm.

Figures 3 and 4 show some results of the background subtraction algorithm.  In
figure 4, we show the improvements made by including spatial and temporal
constraints based on Markov random fields.

4 Feature Point Detection and Matching

This method uses a Harris detector [12] for the initial detection of affine invariant
feature points.  The Harris feature point detector attempts to detect points of interest
within the image around which the image intensities change two-dimensionally.  The
image intensity variation is represented by the second moment matrix, , which is

calculated using image gradient statistics over a neighborhood of each point.

qqqqxx
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where ()g  is a Gaussian window with a scale of sσ , I is the image intensity

function, and 

)(*)(),( qLq dd g σσ =∇ (7)

where )( dg σ  is a Gaussian and L(q) is the image gradient function evaluated at q.

The Gaussian function is used to smooth the noise in the original image.
It has been shown in [12] that we can define a corner strength measure, C(x),

which represents a point whose neighborhood exhibits significant intensity variations
in both dimensions as,

))(())(det()( 2 xxx tracekC ⋅−= (8)

where k is an empirically determined constant.  Points with corner strengths above a
given threshold could be considered to be interest points.

We can determine the best feature points in the image by choosing the points that
give the maximum corner strength according to the Harris measure over all
integration and derivation scales.  However, since the error in the localization of a
feature point is increased with increasing scale, we localize the detected interest point
in the smallest scale using a method similar to that proposed in [19].
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4.1   Affine Gaussian Scale Space

Affine Gaussian scale space is presented in [14], as a framework within which to
solve the wide baseline correspondence problem.  An important assumption in using
this method is that locally smooth regions of the image of an object will only undergo
an affine transformation when viewed from different viewpoints.

The difference between affine Gaussian and linear scale space is that in the former,
the Gaussian functions used for convolution of the image prior to finding the second
moment matrix will not be rotationally symmetric.  Therefore, the scale parameter for
an affine Gaussian window will be a covariance matrix instead of a scalar variance.

Then, the second moment matrix of a point in affine Gaussian scale space is,

qqqqxx
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where, d , and s are the covariance matrices associated with the scales of

derivation and integration.
Assume that the second moment matrix in affine Gaussian scale space of a given

image L, is shown to be LM , and

1
LLd, M−= t and 1

Ls,L M−= s (10)

Then, if Rq  is a point in a transformed image, R, such that LR Aqq =  and,

RR M= , it can be shown [13] that,

1
RR, M −= td , and 1

RR, M −= ss
(11)

Therefore, the fixed point conditions are preserved under linear transformations.
Moreover, it is shown in [14] that if we define L′  to be a square root transformed

image of L, such that x)L(M(x)L 2

1

L ⋅=′
−

, then

II)Iq( LL =′′ st ,; (12)

Since the same would be true for images R and R′ , and assuming that the affine
transformation from L′  to R′  can be written as A′ , we get,

IAAAI)Iq(AII)Iq( T
RR

T
LL =′′=′′′′==′′ stst ,;,; (13)

Therefore, A′  is a rotation matrix.  This implies that, if we are given two images
where one is a linear transformation of the other, and we can find the fixed points for
each image, then the square root transformed versions of the two images will be
related by a simple rotation.

In the wide baseline matching application, we can obtain the local neighborhoods
of points detected by the multi-scale Harris feature detector, and find their
corresponding square root transformed image neighborhoods.  Then, we can use
conventional rotation invariant descriptors to represent the transformed images and
match them using the minimum distance between such descriptors.
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4.2   Implementation

In our implementation, we calculated the corner strength of each point in the image at
multiple values of sσ  and dσ .  The values of dσ  were kept proportional to sσ , and

sσ  was chosen to be in the range [2.0, 16.0].  The points with the maximum corner

strengths across all possible scales were considered to be feature points of the image.
Then, the goal was to transform the local neighborhood, L, around each feature

point, x, to a fixed point and to find its square root form.  This transformation, A, is
accomplished by iterating through the following basic steps.

1) Set IA =)0( .

2) Set q)L(A(q)L ⋅=′ )(k .

3) Find ),; II(xL st′  where t,s are kept constant and equal to the characteristic

scales found by the multi-scale Harris detector.
4) Normalize L′  to have a unit determinant.

5) If IL ≠′ , then set )()1( kk A)(A 2

1

L ⋅′=
−+ .

6) Normalize )(kA  by its largest eigenvalue.
7) If IL =′ , then stop.  Otherwise, return to step 2.

The normalization of the second moment matrix in step 2 amounts to a rescaling of
the local intensity values in the neighborhood of the pixel and the normalization of the
transformation matrix in step 6 will ensure that the original image will not be under-
sampled.

4.3   Feature Point Correspondence

Before matching the transformed image neighborhoods around the feature points
obtained using the above method, they need to be made invariant to changes in
intensity since they are viewed by different cameras from different viewpoints.  We
have used a simple approach, which consists of normalizing each pixel in the feature
neighborhood by the maximum intensity value for the neighborhood.

Then, since the images obtained from the two viewpoints will be similar only up to
a rotation, the next step is to obtain rotation invariant feature descriptors for each of
the images. The descriptors we use are based on a method suggested in [14] and
consist of a vector of 15 elements, which correspond to higher order derivatives of the
image.

Once the descriptors are obtained we match them using the minimum Mahalanobis
distance between each two descriptors taken from different viewpoints.  If a point in
one image is close to multiple points in another image with a larger spatial variance,
then we discard the point since the matching is too ambiguous.  Also, if a point does
not have any points in the other image which are within a threshold distance, that
point is discarded since it may not exist at all in the other image.
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4.4   Results

The feature point matching algorithm is successful if the difference in viewpoint
between two images is within reasonable limits. For example, the matching algorithm
detected 20 corresponding points between figure 5(a) and figure 5(b).  Of them, 17
were correct matches.  However, of the 17 detected correspondences between 5(a)

and 5(c), only 9 were correct matches. This shows that, in order to be used for self-
calibration, we will need to take images of the target from cameras that have
relatively similar viewpoints. On the other hand, if the cameras are already calibrated,
then we can use the epipolar constraint to find better correspondences, and a relatively
low number of correct correspondences will be sufficient to perform feature point
based tracking.

5 Camera Calibration

The sensors need to be calibrated for their intrinsic and extrinsic parameters. Intrinsic
camera parameters describe image formation, and they are focal length, aspect ratio,
principal point and skew. Extrinsic camera parameters describe position and
orientation of the cameras relative to some reference frame and they are described in
terms of translation and rotation.

We assume that the relationship between the world coordinates, [x y z], and the
pixel coordinates, [u v], is linear projective. This allows for use of projective
geometry, which greatly simplifies mathematical representation. In the new
generation of cameras distortion is reasonably small, and this model is a good
approximation.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Results of corner detection.  White crosses indicate position of detected corners.



540         P.V. Pahalawatta et al.

[ ] [ ]′=′ 1zyxsvu P , [ ]t|RAP = (14)

Here A is the intrinsic parameter matrix and R, t, describe the rotation and translation
parameters.

In addition, we can use several more simplifying assumptions about the camera
model that will ease our calibration task and will not seriously degrade the accuracy
of reconstruction. Skew can be assumed to be equal to zero, θ=π/2, (reasonable for
new generations of cameras), and the principal point, [u0,v0], can be assumed to be at
the center of the image. It is well known that variation in location of the principal
point of several pixels does not affect the reconstruction in a great manner [15].
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If aspect ratio is known in advance (from manufacturers specifications,) and if we
have a good guess for the focal lengths of each camera, we are then able to
reconstruct the scene from one snapshot of the stereo pair.

Scene reconstruction involves obtaining pixel correspondences between a pair of
images, which are used to estimate the fundamental matrix, F [20]. The fundamental
matrix defines an epipolar constraint between images in terms of pixels. Since the
estimation of the fundamental matrix is very sensitive to errors in feature point
correspondences, and our Harris feature based matcher can produce some false
matches, we use the random sample and consensus algorithm (RANSAC) [21] using
the epipolar constraint as a criterion to detect false matches and eliminate outliers.
For corresponding points m2 and m1 in two images, the epipolar constraint is
expressed as,

0=1
T
2 Fmm (16)

F is calculated using a normalized eight-point algorithm [22].
Knowing the intrinsic parameters and the fundamental matrix we can calculate the

essential matrix, which can further be decomposed into rotational and translational
components to obtain initial guesses for the extrinsic parameters [23]. We then
optimize the results in terms of the discrepancy from the epipolar constraint by
solving a nonlinear least squares problem [15].
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Here T is a skew symmetric matrix made from the translation vector, A2, and A1 are
the intrinsic matrices of the two cameras, and m2, m1 are corresponding points.
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If we do not have an accurate guess for the focal lengths, we can obtain them by
self-calibrating the cameras. Since we have only one unknown intrinsic parameter for
each camera, we need only one synchronized snapshot from each camera to be able to
solve for the focal lengths. To self-calibrate cameras, we need to solve the set of
Kruppa equations.  Kruppa equations require the fundamental matrix to be known and
they relate the correspondence of epipolar lines tangent to a dual image of the
absolute conic [24].

In the more general case, if we do not know the aspect ratio in advance, then we
can still self-calibrate the cameras by using two snapshots of a moving target taken
from each camera.  Then, if we only obtain correspondence points detected within the
target, we can equate the motion of the target to a motion of the stereo rig.  It has been
shown in [25] that this provides enough additional constraints to solve for the
unknown intrinsic parameters.

Since with this approach we can only reconstruct the scene up to an unknown scale
factor, we need some external information to perform the metric reconstruction. For
example, if the cameras are equipped with GPS device, then we can obtain the scale
factor by calculating the baseline distance between the cameras. Figure 6 shows
results of the camera calibration algorithm and metric reconstruction procedure.

6 Tracking Results

For the tracking experiment, we used a sequence of images taken from two cameras in
a wide baseline setup.  The images were taken with a resolution of 1024x768 pixels
and they consisted of two moving objects in an indoor environment.  We assumed that
the focal lengths of the cameras were known and that aspect ratios were equal to one.

Fig.6. Original images and reconstructed scene using two cameras
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After the cameras were calibrated, the detected feature points on the target were
tracked over the entire sequence.  The tracking was performed using a Kalman filter.
We assume a linear constant velocity dynamic model for the Kalman filter.  Figure 7
shows an example of a tracked point as the object moves in the field of view of both
cameras.

The position and velocity plots of the point are shown in figure 8.  The position of
the point is shown relative to the XZ plane in the camera coordinate system. This
corresponds to viewing the trajectory of the point from above. There are some
missing points in the position plot that correspond to frames in which the feature
points could not be extracted with sufficient certainty. There are also a couple of
outliers that are caused by false point correspondences between the images. The
velocity plot shows some deviation from the ground truth due to errors in the metric
reconstruction.

7 Conclusions

We have concluded that computer vision based target tracking is a viable approach for
a wide-baseline configuration involving multiple cameras. Feature point based
tracking algorithms enable real time operation, and also reduce communication
requirements between sensors. The main difficulty in this approach is establishing
wide-baseline feature point correspondences from uncalibrated camera views for the
purpose of camera calibration.  We plan to further investigate this topic in the future.

Fig. 7. Tracked Feature Point. Top: right camera view, bottom: left camera view
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Fig. 8. Position and velocity estimates of tracked point.
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Abstract. This paper presents real time results of a decentralised air-
borne data fusion system tracking multiple ground based targets. These
target estimates are then used to construct a map of the environment.
A decentralised communication strategy is employed which is robust to
communication latencies and dropouts and results in each sensing node
having a local estimate using global information.
In addition, this paper describes both hardware and algorithms used to
deploy two sensor nodes for such a task. Two sensor types will be dis-
cussed, vision and mm wave radar. The problems introduced by locating
the sensors on air vehicles are both interesting and challenging. A total
of four unmanned air vehicles will be employed to carry node payloads.
Weight and power restrictions of the payloads coupled with the vehicle
dynamics make the task of processing and fusing vision and radar based
data a challenging problem indeed. This paper aims to highlight many of
the problems that have been encountered in developing both hardware
and software to operate under such constraints.

1 Introduction

The primary objective of this research is the implementation of Decentralised
Data Fusion (DDF) algorithms. The algorithms are applied to a tracking problem
and are demonstrated in real time on multiple Unmanned Air Vehicles (UAVs).
This implementation environment is arguably the most difficult arena in which to
demonstrate this research due to the dynamics and complexity of flight vehicles.

The tracking problem formulated in this research involves multiple aircraft
flying over some region and estimating the position and velocity of ground based
targets. These tracks are then used to form a map of all targets in the area.
When using multiple aircraft in the decentralised framework, each aircraft has
a local target estimate using global information. The decentralised architecture
therefore gives each aircraft more information, which in turn results in a more
accurate state estimate. For this reason, there has been a great deal of research
in the area over recent years[3,6,13].

F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 545–565, 2003.
c© Springer-Verlag Berlin Heidelberg 2003
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The flight vehicle is the Brumby MKIII UAV, capable of carrying a 45kg
payload. Each is equipped with GPS and inertial sensors and carries two terrain
payloads; a vision system and either a mm-wave radar or laser sensor. Each
payload incorporates it’s own modular, fully decentralised processing hardware.
On-board, the payloads communicate with each other using a CAN bus. Inter-
vehicle communication is via radio Ethernet. Each payload processor implements
a fully decentralised data fusion algorithm. Payloads communicate with each
other directly in terms of terrain information; all data fusion and assimilation
occurs at the payload site. There is no separate fusion centre on any flight
platform and no fusion centre elsewhere on the ground. The architecture is thus
decentralised, fully modular and scalable.

2 Decentralised Data Fusion

A decentralised data fusion system is comprised of a network of independent
nodes which include a sensor with some processing and communication hard-
ware attached. Each node then uses this hardware to run its own local estimation
algorithm and to communicate its results to other nodes. This communication
results in a decentralised network where each node has a local estimate of global
information without the need for any central processing or communication facil-
ity.

A general decentralised data fusion system can be characterised by three
basic constraints [7]:

1. There is no single central fusion centre and no node should be central to the
operation of the network.

2. There is no common communications facility - communications must be kept
on a strictly node-to-node basis.

3. Each node has knowledge only of its immediate neighbours - there is no
global knowledge of the network topology.

These constraints combine to ensure that there is no single element that
is critical to the operation of the network. If any node or communication link
should fail, the result is a gradual degradation in network performance rather
than catastrophic failure. The results presented in this paper were obtained
using a DDF network which satisfied these constraints using a peer to peer
communication topology.

3 Problem Formulation

Consider a system given by the discrete model

x(k) = Fkx(k − 1) + Bku(k) + Gkv(k), (1)

where x(k) is the state of interest, u(k) is the control input vector and v(k) a
zero mean, white noise sequence with variance Qk. The matrices Fk, Bk and Gk
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define the propagation of the state, control and noise inputs respectively over the
period tk−1 to tk. To simplify notation, the time index k− 1 is used to represent
tk−1 and k to represent tk. The system is observed by a sensor according to the
linear equation

z(k) = Hkx(k) + v(k) (2)

where z(k) is the vector of observations made at time k, Hk the observation
model, and v(k) is the associated observation noise modeled as an uncorrelated
white sequence with E{v(i)vT (j)} = δijR(i). The Kalman filter algorithm gen-
erates estimates for the state x̂(k | k) at a time k given all observations up to
time k, together with a corresponding estimate covariance P(k | k).

The information form of the Kalman filter is obtained by re-writing the state
estimate and covariance in terms of two new variables

ŷ(i | j) �
= P−1(i | j)x̂(i | j), Y(i | j) �

= P−1(i | j), (3)

These are known as the information vector and information matrix respectively.
The prediction of these quantities is done using

Y(k | k−1) = Mk − MkGkΣ−1
k GT

kMk

ŷ(k | k−1) =
[
1−MkGkΣ−1

k GT
k

]
F−T
k ŷ(k − 1 | k − 1) + Y(k | k−1)Bk−1u(k),

where

Σk = GT
kMkGk + Q−1

k (4)

Mk = F−T
k Y(k − 1 | k − 1)F−1

k , (5)

When an observation is made, the information it contains is calculated using

i(k)
�
= HT (k)R−1(k)z(k), I(k)

�
= HT (k)R−1(k)H(k) (6)

With these definitions, the information filter update equations are written

ŷ(k | k) = ŷ(k | k − 1) + i(k) (7)
Y(k | k) = Y(k | k − 1) + I(k) (8)

For a complete derivation of the information filter, the reader is referred to
Maybeck [11] and Manyika [10]. The former of these derives the filter equations
from the well known Kalman filter, while the latter derives the information filter
directly from Bayes Theorem.

The information form of the Kalman filter, while widely known, is not com-
monly used because the update terms are of dimension of the state, whereas in
the distributed Kalman filter updates are of dimension of the observation. For
single sensor estimation problems, this argues for the use of the Kalman filter
over the information filter. However, in multiple sensor problems, the opposite
is true. The reason is that with multiple sensor observations

zi(k) = Hi(k)x(k) + vi(k), i = 1, · · · , N
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the estimate can not be constructed from a simple linear combination of contri-
butions from individual sensors

x̂(k | k) �= x̂(k | k − 1) +
N∑

i=1

Wi(k) [zi(k) − Hi(k)x̂(k | k − 1)] ,

as the innovation zi(k) − Hi(k)x̂(k | k − 1) generated from each sensor is
correlated because they share common information through the prediction
x̂(k | k − 1). However, in information form, estimates can be constructed from
linear combinations of observation information

ŷ(k | k) = ŷ(k | k − 1) +
N∑

i=1

ii(k),

as the information terms ii(k) from each sensor i are uncorrelated. Once the
update equations have been written in this simple additive form, it is straight-
forward to distribute the data fusion problem (unlike for a Kalman filter); each
sensor node simply generates the information terms ii(k), and these are summed
at the fusion centre to produce a global information estimate.

Fig. 1. Structure of a decentralised node.

To decentralise the information filter all that is necessary is to replicate the
central fusion algorithm (summation) at each sensor node and simplify the result.
This yields a surprisingly simple nodal fusion algorithm. The algorithm is de-
scribed graphically in Figure 1. Essentially, local estimates are first generated at
each node by fusing (adding) locally available observation information ii(k) with
locally available prior information ŷi(k | k − 1). This yields a local information
estimate ỹi(k | k). This complete information state estimate is then transmitted
to other nodes, where the difference between it and previously communicated
information is calculated. This difference is the increment of new information
that can then be fused with the local information state estimate using the ad-
ditive update equations. The algorithm that calculates the difference is known
as the channel filter as it resides on a communication channel and keeps track
of what any connected nodes have in common. An important point to note is
that, after this, the locally available estimates are exactly the same as if the data
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fusion problem had been solved on a single central processor using a monolithic
formulation of the conventional Kalman filter.

One of the most important properties of this decentralised architecture is that
it is completely robust to communication failure. If any transmissions are lost
or corrupted, the information they contained is implicitly contained in all future
messages as each node always sends its complete information state estimate.
Thus, when communication is re-established, the first message which is received
automatically updates the receiving node with any information that may have
been lost in earlier messages.

3.1 Target Model

The state vector is is defined as:

x(k) = [x(k), ẋ(k), y(k), ẏ(k), z(k)]T (9)

It does not include a vertical velocity as the assumption is that ground based
targets will never have significant vertical motion.

The target x and y position and velocity are modeled as an Integrated
Ornstein-Uhlenbeck (IOU) process [14]. This process has a Brownian velocity
which can be bounded by appropriate choice of the model parameter γ. The z
position is modeled as a simple Brownian process. The IOU process model was
selected because of the velocity bounding property, which can be used to prevent
a Brownian velocity uncertainty from increasing beyond reasonable values. For
example, if tracking a wheeled land vehicle then the upper bound on the velocity
uncertainty is the maximum speed of the vehicle.

The state transition matrix for this process model is given by Equation 10
below.

Fk =









1 ∆T 0 0 0
0 Fv 0 0 0
0 0 1 ∆T 0
0 0 0 Fv 0
0 0 0 0 1









(10)

where
Fv = e−∆Tγ (11)

The process noise is written as GkQkGT
k where

Qk =




qx 0 0
0 qy 0
0 0 qz



 (12)

and

Gk =








0 0 0√
∆T (1 − Fv) 0 0

0 0 0
0

√
∆T (1 − Fv) 0

0 0 1








(13)
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As the targets in this implementation where known to be stationary, the IOU
process was tuned to decay velocity to zero.

4 Sensors

The task of each sensor node is to assimilate both the navigation solution and raw
sensor data into the information matrix and vector I and i respectively. Sensor
control is also required in some implementations (radar) as sensor repositioning
may be required to compensate for platform orientation.

Sensor Node
Navigation
Computer

Hardware
Sensor

Sensor Nodes
Other

Raw Sensor Data Sensor Control

I , i

InformationNavigation Solution

Fig. 2. Flow of data in and out of a sensor node.

Observations are made from a moving platform. These observations must take
into account the relative position and orientation (pose) of the vehicle, location
of sensor payload relative to the vehicle and sensor model characteristics. The
observation is transform to Cartesian space in the sensor frame of reference with
the use of Equation 14. 1

zst =




rst cos θst cosψst
rst cos θst sinψst

rst sin θst



 (14)

Figure 3 depicts the result of this operation for a vision sensor. Translation
and rotation operations bring this observation into earth coordinates. Accounting
for body pose and sensor pose (relative to body) results in:

zet = xeb + Ce
bx
b
s + Ce

bC
b
sz
s
t (15)

The associated uncertainty of the observation is required in the form of the
covariance matrix R. An approximation converted to Cartesian space relative
to the axis defined by the observation itself is:

Rt
t =




σ2
r 0 0
0 r2σ2

ψ 0
0 0 r2σ2

θ



 (16)

1 The scripting of the rotation matrices and vectors defines what particular frame
(body,earth,sensor,target) they refer to. For example Ce

b defines the rotation matrix
between earth and vehicle body coordinate frames.
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Figure 3 shows more explicitly how this approximation relates geometrically
in 2D to the world and sensor axes. The total error in the observation due to
the properties of the sensor are:

Re
t (sensor) = [Ce

bC
b
sC

s
t ]Rt

t[Ce
bC

b
sC

s
t ]
T (17)

Addition errors induced by the uncertainty in the vehicle body location,
roll, pitch and yaw must also be accounted for. Following flight tests it became
apparent that these errors are the major contributors to the uncertainty of the
observation. The total observation error in earth coordinates is therefore:

Re
t = Re

t (sensor) + Re
b(body) + Re

t (roll) + Re
t (pitch) + Re

t (yaw) (18)
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Fig. 3. Principal point, Image and Sensor axes (left). Observation axis relative to sensor
and world axis (right).

4.1 Radar Payload

It is important for decentralised data fusion and control amongst multiple plat-
forms that at least one carries a sensor which returns Range, Bearing and Ele-
vation (RBE) of the ground targets [4][12].

The MMW radar described has been built in house and mounted on a spe-
cially designed attitude stabilising gimbal with a scanning mirror. The whole
radar unit is compact and light enough to be mounted into the nose of the
Brumby Mark-III UAV as shown in Figure 4.

Overview. The MMW radar presented in this paper uses frequency modulated
continuous-wave (FMCW) principles for range measurement [1][2]. The FMCW
radar front end transmits a linear frequency chirp∆f of duration Td. The radiated
electromagnetic waves propagate along the beam axis and reflect back from the
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Fig. 4. 77GHz MMW radar on attitude-stabiliser gimbal mechanism with scanning
mirror is mounted in the nose cone of Brumby Mark-III UAV. The vision camera is
located under the fuselage.

target in a round trip time of Tp. The received signal, which is shifted in frequency
proportional to the round-trip time, is mixed with transmitted signal. The result
of this mixing is the frequency difference which is known as the intermediate
frequency (IF) or beat frequency fb. This is a measure of the range.

600MHz

1ms
Time

Frequency

Tx

Rx

Tp Td

fbS
f

Fig. 5. In FMCW radar, range is calculated from the difference between transmitted
and received signal frequencies.

The range resolution depends on the sweep bandwidth ∆f and the linear-
ity of the sweep. For a sweep bandwidth of ∆f=600MHz and sweep duration
of Td=1ms the theoretical range resolution from Equation 19 is obtained as
δRchrip = 0.25m. Where c is the velocity of propagation.

δRchrip =
c

2∆f
(19)
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Linearity of the sweep, Lin is defined in Equation 20 where S=δf/δt is the
chirp slope in Hz/s as shown in Figure 5.

Lin =
Smax − Smin

Smin
(20)

Nominal linearity of the radar chirp is about 0.1%. From Equation 21, the
resolution for a target at R=500m is obtained as δRlin=0.5m.

δRlin = R Lin (21)

The final system range resolution δR, can be determined from Equation 22
which resolves as δR=0.56m.

δR =
√
δR2

chrip + δR2
lin (22)

Hardware. The transmitter and receiver in the MMW radar front end are
configured to operate at 77GHz with a transmit power of 10mW.

The MMW radar front end is connected to a high speed 12 bit Analogue to
Digital Converter (ADC) unit. Digitised data is stored on a 4096 word buffer
and then transferred to the DSP memory.

The Digital Signal Processing (DSP) unit applies a hamming window to the
digitised signal to limit the effect of probable discontinuities at the start and
end of the sampling period, which contribute to range side-lobes. This improves
signal integrity at the expense of slightly poorer range resolution. After the
window operation, digitised data is subjected to the Fast Fourier Transform
(FFT) operation.

As the UAV manoeuvres during the flight, it’s attitude angles (ie. roll and
pitch) change continuously. The MMW radar sensor is mounted on a 2 degree of
freedom attitude-stabilising gimbal which is controlled to keep the grazing angle
of the MMW radar fixed. The shaped scanning mirror rotating at a frequency of
2.5Hz above the gimbal reflects the signal radiated from the horn-lens antenna.
A simplified scan pattern is shown in Figure 6.

The DSP unit passes the result of the FFT analysis (ie. measured target
ranges), to the control computer. The control computer combines the range data
with the gimbal and scanning mirror positions acquired from the servo controllers
to form RBE observations The control computer receives aircraft attitude data
from the navigation computer. This data is then used to command the servo
controllers.

4.2 Vision Payload

During the flight trials, over 150 visual beacons were laid on the ground in
surveyed locations. The flight area consisted of relatively featureless farmland.
The beacons were 0.9m x 0.9m square plastic sheets and appeared quite clearly in
the captured images as can be seen in Figure 7. An algorithm had to be developed
to reliably extract these features with minimal use of processing resources.
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beam is fixed. Analysis of the FFT power spectrum reveals the target range.

Hardware. A PC104 embedded computer operating at 266MHz, equipped with
a framegrabber provides low cost vision capability. Initial flights of the UAVs en-
abled several minutes of flight video to be recorded from a low cost monochrome
camera. As the PAL imaging system is interlaced each captured images is effec-
tively two separate images taken 20ms apart. An image stream of size 384x288 @
50Hz was obtained by extracting the odd and even fields of an interlaced stream
of size 384x576 @ 25Hz.

Sensor Model. The camera was calibrated with methods similar to that de-
scribed in [8] with a readily available tool-box. The calibration procedure pro-
vides the principal point (u0, v0) and focal lengths fu, fv (in pixels) for each axis
and the expected error in the pinhole model. From this model a mapping from
sensor coordinates (x, y, z) to image coordinates (u, v) can be defined as:

[
u
v

]
=

[
yfu

x
zfv

x

]
+

[
u0
v0

]
(23)

Parameters for image distortion compensation are also supplied. However,
the computational expense of a fifth order polynomial, and the fact that the
particular lens used had minimal distortion allowed the step to be omitted.

The inverse mapping is unable to recover the loss of range information. How-
ever, a direction to the feature can be recovered. It is convenient to define this
information in a similar form to the Euler angles defining the current vehicle
state.
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ψ = arctan((u− u0)fu) (24)
θ′ = arctan((v − v0)fv) (25)

θ = − arctan(tan(θ′) cos(ψ)) (26)

Feature Extraction. Due to the modest processing resources being available,
a simple but fast method of point based feature extraction is employed. The
algorithm operates as follows:

– Statistics of the image intensities are gathered to determine a suitable inten-
sity threshold.

– All pixels above this threshold are converted into line segments.
– A range gate performs data association on these segments to establish clus-

ters of pixels.
– The mass and centre of mass of each pixel cluster is obtained.
– Aspect ratio and density of the cluster of pixels is also obtained.

Fig. 7. Image showing artificial feature. Road and fencelines are clearly visible

Although the inverse mapping equations do not provide any range informa-
tion it is possible to recover some range information due to the fact that the
beacons are of a known size. Utilising Equation 23 and assuming the beacon is
parallel to the image plane, the height hv , width wu and corresponding area
(in pixels) Auv of an object can be defined. Where Ayz is the beacon area, hz
height and wy width in the sensor axes.

wu =
wyfu
x

(27)
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hv =
hzfv
x

(28)

Auv ≈ fufvAyz
x2 (29)

Re-arranging Equation 29 provides an expression for an estimate of the per-
pendicular height (x) above the beacon. The area being expressed in terms of
effective side length in pixels(p). Differentiating with respect to p provides an
expression for the error in the height estimate. Where σp2 is the variance in the
pixels. The range estimate is then obtained by correcting the height estimate
with the direction to the target.

x =

√
fufvAyz

p2 (30)

σx =
fufvAyz
xp3 σp (31)

r =
x

cos(θ) cos(ψ)
(32)

5 Postprocessed Flight Data

The DDF algorithm was initially run offline using real logged flight data. A
single 15 minute flight was spliced into four separate 3 minute segments such
that no segments were overlapping. These were then used to simulate four sep-
arate aircraft. The aircraft pose was obtained by fusing the logged GPS/IMU
information[9], and tracking information was obtained using vision sensor which
logged frames at 50Hz. Artificial vision targets (0.9mx0.9m white plastic sheets)
were deployed at surveyed locations in order to allow the camera to track known
objects.

The data sets were used initially with all four aircraft acting independently
and not sharing any information. The entire process was then repeated with the
aircraft configured in a DDF network in the topology illustrated in Figure 8.
All data association was done using the information gate [5], which is the infor-
mation form of the state space innovation gate. Results of running in these two
configurations are presented in Section 5.1.

5.1 Postprocessed Results

When the platforms operated independently, they each generated target tracks
using only the information from their locally attached sensor. The maps of 50
targets generated by each aircraft under these conditions are plotted in Figure 9.
Each of these maps is completely independent as they were generated without
any sharing of information. An inspection of the plots confirms that each aircraft
tracked their own group of 50 targets and that the maps are quite different.

The result of processing the same data sets for the scenario where the four
aircraft operated in a DDF network is shown in Figure 10. This illustrates the
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Aircraft 1

Aircraft 2

Aircraft 3

Aircraft 4

Fig. 8. The topology of the 4 aircraft DDF network when post processing the flight
data.

target map generated on aircraft 1, and includes a zoomed in section of one
part of the map. As a result of the communication of information in the DDF
network, the maps on all aircraft are identical to that presented here and are
therefore omitted for brevity.

6 Real Time Implementation

Results are now presented of a real time demonstration of the algorithm. The
system consisted of two aircraft equipped with vision payloads and two ground
nodes with no sensor attached. The topology of this DDF network is illustrated in
Figure 11. As the ground nodes have no sensor attached, they do not contribute
any information to the network. They simply receive DDF information from the
aircraft they are connected to and use it to construct their own estimates. Thus,
the ground nodes will replicate the estimates on the aircraft even though they
do not have any sensors attached. The system was implemented in this way for
two reasons:

1. To make the network more complex than just the two aircraft nodes.
2. As the ground nodes replicate the estimates on each aircraft, they are able

to provide target information for a GUI without the need for the aircraft to
communicate anything other than DDF information.

When running the DDF tracking system in real time, the vision system was
operating at 25Hz or half its maximum rate. This was necessary as the decen-
tralised tracker and the image processing software shared the same processor. In
order to limit the maximum processing requirements of the tracking software,
it was limited to a maximum of 17 targets. This number could be increased
on future flights, but was initially set to a conservative figure to ensure system
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Fig. 9. A map of the 50 targets that aircraft 1,2,3 and 4 generated when operating
independently. Note that the maps are different as there was no sharing of information.

stability. Artificial vision targets were again deployed at surveyed locations to
allow the system to track known objects. All data association was done in real
time using the information gate. If there was any ambiguity in the association,
the observation was discarded.



Decentralised Ground Target Tracking with Heterogeneous Sensing Nodes 559

−800 −600 −400 −200 0 200 400 600
−800

−700

−600

−500

−400

−300

−200

−100

0

100

200

X Position [m]

Y
 P

os
iti

on
 [m

]

Complete Map − Aircraft 1 DDF Network

Flightpath
True Target Location
Estimated Target Location
2 Sigma Ellipse

−20 0 20 40 60 80 100

−180

−160

−140

−120

−100

−80

X Position [m]

Y
 P

os
iti

on
 [m

]

Complete Map − Aircraft 1 DDF Network

Flightpath
True Target Location
Estimated Target Location
2 Sigma Ellipse

Fig. 10. When operating in a DDF network, all aircraft communicated target infor-
mation between themselves in order to build a single common map. As the map is the
same on all nodes, only that from aircraft 1 is illustrated.

6.1 Real Time Vision Sensor Results

The most recent flight saw the vision algorithms operating in real-time. The
results from this flight for a single target are shown in Figure 12. Observations
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Fig. 11. The topology of the 4 node DDF network when demonstrating the DDF
algorithm in real time. While the aircraft nodes are each connected to a camera, the
ground nodes have no local sensor at all.

from two distinct aircraft are present. The raw observations (in two axes) and
errors in three axes are shown. Range was typically underestimated. This is most
likely due to saturation induced leakage of the image sensors elements.

A side effect of this underestimation is that additional errors may be in-
duced in both Northing and Easting when transformation to Cartesian space
is performed. This is clearly visible in the Northing error plot (Figure 12) as
consecutive measurements drift linearly as the air vehicle passes over the target.
The overall effect of this is minimal however as the full covariance of the ob-
servation (expressed as the information matrix) combined with the information
filtering stage serves to eliminate the majority of this error as results in Section
6.2 show.

6.2 Real Time DDF Results

The results of running the DDF tracking algorithm in real time are presented in
Figures 13 and 14. Figure 13 presents the complete map of targets from aircraft
1, along with the true target locations and the flight path of the aircraft. The
area containing the 17 targets has been enlarged in the lower plot. Similarly,
Figure 14 contains the same information from the second aircraft. The results
generated by the ground nodes are identical to those of their corresponding
aircraft as expected and are omitted for brevity.

An inspection of the results illustrates that the maps on aircraft 1 and ground
node 1 are both identical, as are the maps on aircraft 2 and ground node 2. This
is the expected result as the DDF information from the respective aircraft was
the only source on information for each of the ground nodes. However, there
is a slight difference between the maps on the two aircraft. While the majority
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Fig. 12. Clockwise from top left: Raw observations of sample target, errors in Northing,
Elevation and Easting.

of targets in the maps are common, there are a small number of targets that
aircraft 1 tracks that 2 does not, and vise versa. This result is also expected in
a real system, and occurs due to the delay in transmitting target information
between nodes. Each node will track the first 17 targets it encounters, whether
they be targets the node observes directly or tracks received from other nodes
via DDF information.

What tends to occur in practice is that each of the nodes observes targets
directly and initiates tracks, then communicates these tracks to neighbouring
nodes at the next communication step. If the neighbouring nodes have unused
tracking filters they then allocate one of these and maintain a track estimate.
This process works up until the point where each of the nodes has only a small
number of filters free. When this happens, it is not unusual for each node to
allocate its last remaining filters to targets it directly observes. If all nodes do
this, there are no spare filters to use to allocate to new tracks communicated
from another node. This gives the result illustrated in this implementation where
although the majority of targets are common between nodes, there are a small
number that are different.

As the target estimates are generated relative to the aircraft pose, an error
in the location of the vehicle will result in a corresponding error in the target
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Fig. 13. The map generated by aircraft 1 is shown with the true target locations and
the vehicle flightpath. Note the jumps in the flightpath which are a result of poor GPS
coverage during the flight.

location. Over multiple passes of a target this error is assumed to be zero mean.
However, as the real time flight was only of a relatively short duration and
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Fig. 14. The map generated by aircraft 2 differs from that on aircraft 1 for only a few
targets. This is an expected result which occurs due to limiting the number of tracks
that a node can maintain.

not all targets were observed on each circuit, the errors in the vehicle location
did result in an offset from the true target location. This can be seen in the
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results as the 2σ ellipses do not always encapsulate the true target locations.
This effect was amplified during the flight as there was poor GPS coverage at
the time, which degraded the estimate of vehicle pose significantly. This can be
seen by viewing the flightpath of aircraft 1, and noting the jumps of up to 10m
which occur periodically. The errors in the height of the vehicle were significantly
worse than this, and were often in the region of 10 − 20m. As a result, there
are some estimates which sit midway between two real targets as the vehicle
uncertainty was sufficiently large to allow two different targets to be associated
with a single track. This issue has been addressed for future flights by improving
the GPS/IMU navigation loop, decreasing the target density and by making the
data association more stringent. Notwithstanding these problems, the majority
of estimates were still within 10m of the true location.

As the focus of this demonstration was on the DDF architecture, there was no
track to track fusion implemented. This can be seen in the results from aircraft
1 as there are two tracks for one of the targets. While this does result in a
poor allocation of resources, it does not hinder the demonstration of the DDF
technology. As the ANSER project evolves, the inclusion of a track to track
fusion algorithm will occur.

7 Conclusion

This paper has presented results of tracking multiple ground targets from air-
craft using a decentralised algorithm. Initial results of post processed flight data
were included to illustrate the advantages of the DDF architecture under con-
trolled conditions. Results of a real time demonstration using two aircraft are
also shown.

The DDF algorithms allowed multiple aircraft to share information. This
results in each node in the DDF system having global information which in turn
ensures that the estimates are the same on every vehicle. In the tracking and
map building problem presented in this research it results each aircraft having
the same target map.

The extra information available to node in a DDF network improves the
estimate of the all nodes. Furthermore, the fact that the information is shared
makes the system extremely robust. For example, if one of the aircraft in this
research had of been destroyed for some reason, the information it gathered was
already contained in the estimates on every other node. If the aircraft had been
operating independently and a vehicle was destroyed, the information it had
gathered would be lost.

In implementing the DDF algorithms on aircraft operating in six degrees
of freedom at speeds of approximately 180km/h, they have been operating in
arguably the most difficult of environments. While some issues such as track to
track fusion and an improved vehicle localisation filter still need to be addressed,
the results do indicate the DDF architecture performs very well.
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localisation and map building. In G.T. McKee and P.S. Schenker, editors, Sensor
Fusion and Decentralised Control in Robotic Stystems III, volume 4196, pages 337–
347, Bellingham, 2000.

13. D. Nicholson, C. Lloyd, S. Julier, and J. Uhlmann. Scalable distributed data
fusion. In Proceedings of the Fifth International Conference on Information Fusion,
volume 1, pages 630–635, Sunnyvale, 2002.

14. Lawrence D. Stone, Carl A. Barlow, and Thomas L. Corwin. Bayesian Multiple
Target Tracking. Artech House, 1999.



F. Zhao and L. Guibas (Eds.): IPSN 2003, LNCS 2634, pp. 566–581, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Power-Aware Acoustic Processing1

Ronald Riley1, Brian Schott 1, Joseph Czarnaski1, and Sohil Thakkar2

1 USC Information Sciences Institute, 3811 N. Fairfax Dr., Suite 200
Arlington VA 22203-1707

{RRiley, BSchott, JCzarn}@isi.edu
http://www.east.isi.edu

2 University of Maryland
College Park, MD 20742
sohil@Glue.umd.edu

Abstract. We investigated tradeoffs between accuracy and battery-energy lon-
gevity of acoustic beamforming on disposable sensor nodes subject to varying
key parameters: number of microphones, duration of sampling, number of
search angles, and CPU clock. Beyond finding the most energy efficient imple-
mentation of the beamforming algorithm at a specified accuracy, we enable ap-
plication-level selection of accuracy based on the energy required to achieve this
accuracy. We measured the energy consumed by the HiDRA node, provided by
Rockwell Science Center, employing a 133-MHz StrongARM processor. We
compared the accuracy and energy of our time-domain beamformer to a Fourier-
domain algorithm provided by the Army Research Laboratory (ARL). With sta-
tistically identical accuracy, we measured a 300x improvement in energy effi-
ciency of the CPU relative to this baseline.  We present other algorithms under
development that combine results from multiple nodes to provide more accurate
line-of-bearing estimates despite wind and target elevation.

1   Introduction

Our objective is to develop software and hardware that support dynamic control of the
use of energy and computational resources at various levels according to the need for
precision and the readiness to expend the required resources. We envision sensor
nodes lying almost dormant for months before a sound emitting target comes within
range. During this long quiescent period, the nodes must remain active enough to

1 This work was sponsored by the Defense Advanced Research Projects Agency and Air Force
Research Laboratory, Air Force Materiel Command, USAF, under agreement number
F30602-99-1-0529. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright annotation thereon. The views and
conclusions contained herein are those of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements, either expressed or implied, of the
Defense Advanced Research Projects Agency, the Air Force Research Laboratory, or the U.S.
Government.
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detect the incursion of an emitter and remain in contact with neighboring nodes to
alert them of the detection.  At this stage there is no need to determine the direction to
an emitter with any accuracy, it is sufficient to detect it as a “tripwire.”

Once detected, application level algorithms will determine how often the line of
bearing (LOB) is needed and the accuracy required to identify and to track the emitter.
These decisions will depend on the perceived importance of the emitter and the avail-
able energy resources.  This paper summarizes our efforts to find the key parameters
in acoustic beamforming and determine their relative contributions to the accuracy and
energy consumption.

2   Beamforming Algorithms

Acoustic beamforming
algorithms estimate the
LOB to distant acoustic
emitters by time-
shifting signals from
microphones at known
relative locations to
form beams from se-
lected directions. The
two beamforming algo-
rithms compared in this
paper differ primarily in
how they implement
time-shifting the sig-
nals.  The LOB can be thought of as a by-product of the optimal reconstruction of the
signal from an emitter by shifting and adding the signals from a number of micro-
phones [1].

As illustrated in Fig. 1, sound from a distant emitter arrives at two microphones at

1x
�

 and 2x
�

 with a relative delay

( )[ ] ( )[ ] ,sincos 2,12,12,12,12,1 βθαθτ dd −= (1)

where 122,1 xxd
�� −≡  is the distance between the microphones, 1,2 is the direction

of the separation vector between the microphones, ����� E)/c, ����� E)/c, E is the
LOB of the emitter, and c~332 m/s is the speed of sound in air.

If the microphones rigidly placed or calibrated after deployment, and the speed of
sound is adjusted to the local climate, the LOB to the emitter, relative to the micro-
phone separation vector, can be calculated from an estimate of this delay as

( ),/cos 2,12,1
1

2,1 dcE τθθ −±=− (2)

where the sign ambiguity is due to taking the inverse of the cosine, an even function.
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Fig. 1.  Beamforming Geometry.
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The delays can be estimated by minimizing the differences between signals S1 and
S2 recorded at microphones 1 and 2,

( ) ( ),2,1
21 τ−= tgStS (3)

where g is the relative gain between the two signals.  The search for the best delay is
limited by (1) to � 1,2| < d1,2/c.  Once the shift has been determined, the signals from
the microphones can be shifted and added to provide an enhanced estimate of the
signal from the emitter.  The background noise and sounds from other emitters will be
reduced in proportion to the number of microphones.

Methods for determining the LOB based on reconstructing the emitted signal, as in
(3), from an acoustic array with M microphones can distinguish at most M-1 emitters.
The additional uncertainty of the position of the emitters results in an underdetermined
system of linear equations if we try to resolve M emitters.  Resolving more emitters
requires additional constraints such as knowing the power-spectrum of the emitters.
Algorithms, such as MUSIC[2] and ESPRIT[3], which do not attempt to reconstruct
the emitted signals can resolve, at most, M emitters from an array of M microphones.
They perform eigenvector decomposition of the MxM covariance matrix of the signals
from the M microphones and so do not lend themselves to efficient implementation in
integer-math oriented processors in sensor nodes.

Beamforming is accom-
plished by time-shifting the
signals from an array of mi-
crophones to a common posi-
tion with time delays pre-
scribed by (1), for an assumed
LOB. Beams are formed for a
number of LOB search an-
gles. As the search angle
approaches the correct LOB
of the emitter, the signals
constructively interfere as in
(3). As shown in Fig.2, the
search angle with the maxi-
mum power in the delay-
summed signal is selected as the estimated LOB. This LOB estimate is refined by
parabolic interpolation of the power over the adjacent search angles.

The two algorithms compared in this paper differ primarily in how they shift the
signals.  The baseline algorithm from the Army Research Laboratory (ARL) performs
a floating-point Fourier transform on each signal then shifts, sums, and computes the
beam power in the Fourier domain.  Our beamformer performs all of these operations
in the time domain in integer math.

We implemented shifting signals by a fraction of the time between samples by lin-
ear interpolation of samples. Interpolative shifting introduces a small error in higher
frequency components of signals. These artifacts are mitigated by oversampling the
signal and filtering out the highest frequency components.

Fig. 2. Beam power at 18 search angles.
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Our beamformer assumes a single target and employs common integer code to re-
port the LOB as the direction with the delay-summed combined signal of loudest total
acoustic energy. These results do not include code for false alarm rejection such as
Harmonic Line Analysis. We will add these capabilities into future implementations.

Our algorithm is 300x more efficient in CPU time and energy than the baseline al-
gorithms provided by ARL. The largest contribution (~20x) is due to developing our
algorithm in integer math and avoiding floating-point emulation on the StrongARM
processor. Operating in the time domain enables the next most significant contribution
(~10x) by providing a more continuous range of time and energy requirements based
on varying the number of samples. Fast Fourier transforms operate on signals con-
taining integer powers of 2 samples (S=2n). Collecting fewer samples and padding
with zeros before taking the transform would reduce the accuracy and provide little or
no benefit to the execution time and energy of Fourier-domain algorithms. For this
reason, we did not modify the baseline algorithm to vary the number of samples from
its hard-coded value of S=1024. Avoiding Fourier transforms by using interpolative
shifts in the time-domain provided the final contribution of (~3/2x).

3   Line of Bearing (LOB) Beyond Beamforming

The algorithms discussed in this section are under development and optimization for
sensor nodes. We anticipate that these will lead to significant improvements over
beamforming in accuracy/noise insensitivity, false-alarm rejection, and an extended
range in tradeoffs between accuracy and energy.

Beamforming makes a number of limiting assumptions 1) that the microphones are
fixed on a rigid plane, 2) that the emitter lies on the same plane, and 3) that there is
little or no wind. While beamforming uses (1) to construct a set of delays correspond-
ing to various search angles and selects the “best”, the LOB can also be estimated
directly from (1) based on the time shifts between pairs of microphones. Given a set of
M>2 microphones with synchronized sampling, we can select up to M! / [2 (M-2)!]
pairs.  For example, three microphones provide three pairs.  Assuming that the ge-
ometry of the M microphones has been calibrated, (1) provides a system of
M! / [2 (M-2)!] equations in two unknowns (  and ,) the sine and cosine of the LOB
divided by the speed of sound.  For more than two pairs, the over-determined system
of equations can be solved by standard weighted least-squares methods. Increasing the
number of microphones and pairs should improve the accuracy.

The LOB and speed of sound are extracted with the integer math CORDIC[4] as

[ ],,tan 1 βαθ −=E (4)

and

[ ] .
2/122 −+= βαc (5)
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Fig. 3. Uncertainty in LOB of tracked vehicle.

When noise results in nonphysical estimates of the apparent speed of sound, the LOB
estimated in (4) can be iteratively refined based on small angle corrections with the
speed of sound held to the predicted constant in (1) as

( ){ } ( ){ }.cossin 2,12,12,12,12,1 θθτδθθθ −−=− EEE dcd (6)

The RMS error of the system of equations defined by (6), or (1), provides a meas-
ure of the angular uncertainty of the LOB estimate.  If some pairs of microphones
produce multiple delays due to multiple targets, this error and the apparent speed of
sound provided by (5) could be used to select delays into sets for each target.

Fig. 3 shows a plot of this uncertainty for a tracked vehicle driving around an oval
track. The vehicle is farthest from the sensor node (~600 m) when it is 280° counter-
clockwise from east (~south). These results are based on data we collected at the Ab-
erdeen Proving Grounds with Highly Deployable Remote Access Network Sensors &
Systems (HiDRA) sensor nodes, described in section 6, using three microphones de-
ployed on an equilateral triangle with a 7-foot separation.

3.1   Emitter Elevation

If the emitter is elevated above the plane on which the microphones are distributed, as
shown in Fig. 4, this decreases the delays between signals and increases the apparent
speed of sound estimated by (5) as

( ),cos/0 Ecc φ= (7)

where E is the elevation angle of the emitter.  As the emitter moves directly above the
microphones, the apparent speed would tend toward infinity as all of the time shifts
approach zero.  The elevation angle of the emitter could be estimated by generalizing
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our analysis to 3D and elevating one or more microphones above a plane containing
three or more microphones[5]. If we can segregate the contribution due to elevation
from other effects, such as wind, by collaboration between sensor nodes, each with
three or more microphones, we could estimate the elevation angle from (7).

3.2   Wind-Speed Vector Effects

As illustrated in Fig. 5, the average wind speed W between the emitter and the micro-
phones will add as a vector to the sound radiating from the emitter at speed c0 resulting
in an apparent speed of sound of

( )[ ] ( ),sincos 222
0 WEWE WWcc θθθθ −+−+= (8)

where W is the direction that the wind is from.  The LOB would also be shifted by

( ) ( )[ ].sin,costan 0
1

WEWEE WWc θθθθδθ −−+= − (9)

Assuming that the wind speed is small compared to that of sound we can approximate

( ) ( ) ( ) ( ){ } ( ) ( ){ } ,sinsincoscoscos~0 WEWEWE WWWcc θθθθθθ +=−− (10)

and

( ) ( ).tan~ 0
WEE c

cc θθδθ −
−

(11)

A wind speed of 14 mph orthogonal to the LOB would result in a 1º LOB error.
The deviation from the expected sound speed is plotted in Fig. 6 for a tracked vehi-

cle driven several orbits around an oval track. These preliminary estimates of the ap-
parent sound speed are based on delays of maximum correlation (13), described in the
next section.  These points are compared to the continuous curve of expected deviation
based on (10) for a wind speed of W=30 mph, from the north-east ( W~50º.) This is
somewhat larger than the 10-mph average wind speed measured near the ground dur-
ing data collection.  The wind direction, taken from the ground truth, agrees well with
the estimated deviations in sound speed.

f
E

c
0

Fig. 4.  Elevation angle of emitter.

W

c

c0

Fig. 5.  Wind speed geometry.
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Given an estimate of the wind direction, we can estimate and correct the offset in
the LOB from (11) based on the apparent speed of sound, if we can assume that there
are no other contributions such as elevation of the emitter above the sensor plane.
If we combine the apparent sound speed and estimated LOB from two or more sensor
nodes with enough separation transverse to the LOB of the emitter such that they pro-
vide significantly different estimated LOBs, and assume that the wind is roughly the
same for all sensor nodes, we can solve the resulting system of linear equations given
by (10) for the wind vector components.  The wind direction can be computed using
the CORDIC algorithm as

( ) ( )[ ],sin,costan 1
WWW WW θθθ −= (12)

and the result can be used in (11) to infer the offset of the LOB’s due to the wind.
The LOB and apparent speed of sound from three or more nodes can be combined to
solve for the wind and elevation simultaneously by combining (7) and (10) as

( ) ( ) ( ){ } ( ) ( ){ }.sinsincoscos
cos

~ 0
WEWE

E

WW
c

c θθθθ
ϕ

++








(13)

This assumes that all of the nodes have the same emitter elevation, which could be
satisfied if all of the nodes are at the same elevation and roughly the same distance
from the emitter. We would have to constrain the added unknown such that the in-
ferred cosine is in the assumed range (0, 1) and would interpret the elevation angle to
be positive, forcing the object to lie above the sensor plane.

3.3   Signal-Pair Delay Estimation

All of this analysis is based on the ability to estimate the delay between signals col-
lected by a pair of microphones. One estimate of the delays can be obtained by finding
the shift between the signals that produces a peak in correlation between the signals
from microphone 1 (S1) and 2 (S2)
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Fig. 6.  Deviation of sound speed vs. angle.
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( ) ( ) ( )∑ −=
t

tStSC .2,1
21

2,1
2,1 ττ (14)

This estimate is best suited to emissions of short duration, such as gunfire or explo-
sions, and is sufficient for cases with high signal to noise and broad band signals.

Much of the recent work in noise-tolerant LOB estimates are based on the fact that
many targets of interest, such as vehicles, emit sound in a number of narrow acoustic
bands[6], as shown by the acoustic power spectrum of a tracked vehicle shown in Fig.
7. Power spectrums are plotted in relative units since the absolute magnitude is of less
interest than the relative magnitudes of the spectral peaks and background.  If multiple
targets emit primarily in different narrow frequency ranges, their LOBs could be de-
termined by a single sensor node with as few as three microphones.

The LOB of frequencies from 32 to 128 Hz are plotted as points in Fig. 8 for a sen-
sor node with three microphones and two tracked vehicles. The average power spec-
trum of the three microphones is also plotted as a continuous curve in relative units.
The LOBs cluster around 240° and 77° corresponding to the two vehicles.  The LOB
is plotted as zero for frequencies where it is undefined. Once the LOBs of the two
vehicles are estimated, it is straight forward to separate their line-spectra as a basis for
target classification.

For each spectral component, the LOB of is based on time shifts of microphone
pairs estimated as

( ) ( )[ ] ( )[ ]{ }
,

221

2,1 ω
πωϕωϕωτ nSS +−= (15)

where the phase of the Fourier component of the signal 	
1� �� can be computed
with the CORDIC algorithm and the time shift is limited to the range [-d1,2/c, d1,2/c].
For higher frequencies (f>c/(2d1,2)), there can be more than one solution to (15). This
degeneracy can be resolved by selecting the solution that is most consistent with lower
frequency components or is most consistent with the expected speed of sound and
error of fit based on the solution to (1). This ambiguity can be avoided by restricting
microphone separations to d<c/(2f), where f is the highest frequency of interest in the
emitters spectrum.

0 32 64 96 128 160 192 224 256
Freq (Hz)

Fig. 7.  Power spectrum of tracked vehicle.
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Fig. 8.  LOB of spectral components

Our current implementation of the acoustic beamformer operates in the time rather
than the frequency domain to reduce CPU time and energy requirements.  We will
also implement algorithms in the frequency domain, such as described in this section,
for those rare occasions when we are required to discriminate a greater number of
targets than available microphones.

4   Algorithmic “Knobs”

The accuracy and energy requirements of acoustic beamforming depend on a number
of parameters, as suggested by Fig. 9. Some are largely dictated by the application.
We have chosen as our set of independent variables: 1) number of microphones M, 2)
number of acoustic samples S, 3) number of beams B, and 4) CPU clock speed fCPU.
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Fig. 9.  Beamforming Algorithmic Knobs.
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4.1   Number of Microphones (M)

The number and placement of microphones is principally a hardware design parameter
but can also be used as an algorithmic parameter by selecting a subset of the signals
collected. We will show that the system energy required for beamforming is propor-
tional to the number of microphones, but there are negligible improvements in accu-
racy due to adding more microphones beyond the number of emitters.

We limit our analysis to nodes supporting at least two microphones. Although sin-
gle-microphone nodes could collaborate to determine the direction to an emitter, we
exclude this case due to the requirements of a large amount of energy to move raw
data between nodes, of 10-us synchronization between nodes, and of 5-mm accuracy
in relative positioning of microphones.  Although the ambiguities resulting from two-
microphone beamforming would require collaboration, only a trivial amount of data
need be exchanged.  Synchronization to a fraction of a second is sufficient, and the
required accuracy of relative positioning is similarly relaxed.

4.2   Number of Acoustic Samples (S)

For a fixed sampling rate, in our case 1024 Hz, the system energy required for
beamforming is proportional to the number of samples simultaneously collected from
each microphone. The number of samples collected per second for each microphone is
typically selected to be 1 kHz for acoustic tracking of vehicles to facilitate
beamforming with the spectrum above 250 Hz attenuated to filter out wind noise. We
implemented this as analog anti-aliasing filtering.

4.3   Number of Beams (B)

The beam power is computed at a number of evenly spaced search angles, and inter-
polated by a parabolic fit to estimate the angle with maximum power.  The number of
beams only affects the execution speed of the algorithm, not data acquisition. The
system energy for beamforming depends linearly with the number of beams searched.

4.4   CPU Clock Speed (fCPU)

The sensor node used supports software-control of the clock speed of the CPU over
the range 59-133 MHz.  Although running at a lower speed should enable reducing the
voltage, voltage scaling is not supported. Clock scaling alone changes how long the
algorithms run without changing the energy requirements. However, the power con-
sumed by other components in the system during execution of the algorithm and the
power consumed by the CPU during data collection give this parameter utility in re-
ducing system energy required for beamforming.



576 R. Riley et al.

5   System Power Equation for HiDRA Sensor Node

The energy consumed by the Highly Deployable Remote Access Network Sensors &
Systems (HiDRA) provided by Rockwell Science Center (RSC)[7][8][9], see Fig. 10,
to capture data and compute the LOB is modeled by
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where fCPU is the clock rate of the StrongARM CPU and f133 = 133 MHz is the maxi-
mum clock rate.

This equation reflects that
the power required by the
A/D board, PAD, is only con-
sumed during the data acqui-
sition time which is the num-
ber of samples acquired, S,
divided by the sampling rate
fS=1024 Hz. Also implicit in
this equation is that, for the
HiDRA node, the CPU and
memory consume power,
PCPU, while the samples are
acquired, but the algorithm
does not begin to run, for a
period TAlg, until after data
collection is complete. There
is also a significant overhead
power, POvr, consumed by
other supporting components such as the radio.

The CPU power and execution time of the algorithm are proportional and inversely
proportional, respectively, to the CPU clock rate, fCPU.  The clock rate resulting in the
minimal energy consumption can be found by setting the derivative of (16) with re-
spect to fCPU to zero, resulting in

,/lg133 CPUADAOvrCPU PTTPff = (17)

where TAlg is the execution time of the algorithm and PCPU is the CPU power at the CPU
clock rate of 133 MHz.

When the CPU and overhead power components are roughly equal and the execu-
tion time at 133 MHz is a small fraction of the sampling window, as with our algo-
rithm, the minimum available CPU clock rate of 59 MHz provides the best efficiency.
When the algorithm runs longer than the sampling window, as with the ARL algo-
rithm, the maximum available CPU clock rate of 133 MHz gives the best results.

Fig. 10.  RSC HiDRA sensor node stack.
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6   Power Measurements on the HiDRA Node

The power measurement test setup consisted of the HiDRA sensor node and a current
sensing resistor placed inline with the input voltage connector. The voltage drop
across this resistor was measured using a National Instruments data acquisition card
and triggered from the node’s CPU module.  The HiDRA node, as shown in Fig. 10,
contains the following modules:

1) Processor/Memory: StrongARM 1100 CPU board running at 59-133 MHz.,
with 4 MB of ROM (flash memory), 1 MB of RAM, input voltage 3.3V I/O, and 1.5V
core.

2) DC/DC: Our test measurements were taken with a 12-V DC input.  This module
supplies voltages 3.3V and 1.5V for the I/O lines and processor core respectively and
separate analog voltage lines for the A/D and Radio modules.

3) Radio: A 900 MHz Rockwell proprietary radio.
4) A/D: 5 channels, 3 Multiplexed with variable gains of 1x, 2x, 5.02x, 10.09x,

20.12x and 2 individual inputs with variable gains of 10x, 43.32x, 30x, 36.68x, 49.98x.
The selectable gains are tuned to specific sensors that RSC uses for this platform.  The
acoustic data was captured using only the multiplexed sensor input to keep the gains
equivalent across all channels. Low-pass anti-aliasing filters with a cutoff frequency of
3 kHz were also added to the inputs of each of these channels to reduce cross-talk
between the channels.

The current measurements were taken at the full clock rate of 133 MHz, which is
the optimal operating frequency for the HiDRA node, and at various increments down
to 59 MHz.  Other power measurements were taken for the different operating modes
required to form a single LOB. These modes include acquiring the data from the input
microphones, executing the algorithms, and putting the processor in sleep mode.  The
individual power consumption of each module was measured by removing boards
from the stack and calculating the difference in current through the sensing resistor.

7   Results

We evaluated the two algorithms on a test set of acoustic data collected by ARL col-
lected at their Aberdeen Proving Grounds. The data was synchronously collected from
six microphones uniformly distributed on a 4-foot radius circle, and a seventh micro-
phone in the center. A single military vehicle was driven by this acoustic array with
GPS to provide ground-truth position at 1-second intervals. The signals were collected
continuously on a seven-channel digitizer at 12-bits per channel at 1024 samples per
second.

For our tests, we broke the acoustic data up into 1-second records associated with
the available position ground truth. For each 1-second record, we computed the LOB
with both algorithms and measured their errors relative to the ground truth. The results
presented are of the Root-Mean-Square of these errors over all of the records in the
set.
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                         Fig. 11. Error vs. Mikes.                           Fig. 12. Error vs. Samples.

In addition to validating that our algorithm provided results statistically identical to
those of the baseline, we investigated the effect of the various knobs on the accuracy
of both algorithms.

As illustrated in Fig. 11, increasing the number of microphones on a circle above
the minimum of three provides little, if any, improvement in the accuracy of the LOB
estimate.  Doubling the number of microphones from 3 to 6 reduces the RMS error
only by 12% for this single emitter.  From the errors plotted in Fig. 12, we can see that
32 is the minimum number of samples for which the algorithms can provide a useful
result. However, using more than 128 samples provides only modest improvements in
accuracy.

As shown in Fig. 13, the error grows rapidly for fewer than eight beams, but im-
proves only slightly for more than sixteen beams. These results depend on the domi-
nant frequency of the acoustic spectra emitted by the target and the “knee” of the
curve is likely to shift for other vehicles.

We optimized the execution time of our code using the web-based JouleTrack[10]
emulator before porting it to
the HiDRA. Although Joule-
Track did not provide identical
results to what we measured
directly from the hardware, it
was useful guide in modifying
the code to reduce execution
time and energy use.

We electronically measured
the power consumed by each
component of the node during
various modes of operation and
we measured the execution
time of the two algo- Fig. 13.  Error vs. number of beams.
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rithms at the maximum and minimum clock rates, as shown in Fig. 14. The results of
these measurements are summarized in Table 1.

Assuming three microphones (M=3), twelve beams (B=12), and a full second of
data (S=1024), applying the values in this table to (16) results in a total system energy
of 1614 mJ for the baseline algorithm and 746 mJ for the ISI algorithm, as shown in
Fig. 15. Despite a 250x reduction in CPU energy and execution time for the same
clock rate, our algorithm results in a modest 2x reduction in overall system energy
required to acquire the data and process it to produce a single LOB. By virtually
eliminating the energy consumed by the CPU board, the system energy is now domi-
nated by data collection.

Under similar conditions, but with only 0.125 sec sampling window (S=128), the
system energy for the baseline would be 816 mJ and the system energy for the ISI
algorithm would be 93 mJ. Our algorithm would provide a 9x reduction in system
energy over the baseline algorithm under these conditions.

8   Conclusions

We have demonstrated the ability to perform acoustic beamforming over a range of
accuracy requiring a corresponding range of energy by introducing a number of
“knobs” into the basic algorithm.  This analysis led us to develop an algorithm that is
roughly 300x more efficient than the baseline algorithms in CPU energy. More im-
portantly, our algorithm provides 9x overall system energy savings when LOB esti-
mates of slightly lower accuracy are sufficient. We have reduced CPU energy con-
sumption to the point where the system energy is dominated by data collection.

We found that adjusting the number of microphones M offered the largest im-
provements to energy efficiency with the least impact on accuracy of the LOB for a
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Table 1.  Power Measurements for the HiDRA node with M, B, and S Knobs.

POvr mW PAD mW fCPU MHz PCPU fCPU/f133 mW TAlg f133/fCPU �
ISI 274 252 59 132 M B S   0.0555

ARL 358 252 133 302 M B     14300

small number of targets. However, this parameter can only be effectively adjusted
during the design of the sensor node. It is difficult to construct a board capable of
collecting a large number of synchronized signals but only capture a selected subset
without paying much of the power penalty of sampling all of the signals. We deter-
mined that three microphones are the minimum required to perform beamforming
without collaboration with other nodes.

The number of samples collected, S, for each microphone offers comparable im-
provements to system energy efficiency with slightly larger impact on accuracy.
However, this parameter can be adjusted over a wide range, 32-1024, resulting in a
16x range of system energy requirements.  The memory requirements of future nodes
could be reduced by reducing the sampling window and by using our integer algorithm
rather than the floating-point baseline.

The number of beams formed in the software, B, only modulates the algorithm exe-
cution time which is only a fraction of the sampling window. So this parameter has
only a minor effect on the energy efficiency of the whole system.

The clock speed of a CPU, fCPU, typically has a limited range of values, in the case
of the HiDRA node 59-133 MHz. We have shown that a faster than real-time algo-
rithm will be most efficient at the lowest available clock speed.  This will be even
more the case for more power-aware sensor nodes being designed that will be capable
of voltage scaling and of computing the algorithm during data collection.

Increased algorithm efficiency will provide a greater impact on total system energy
in future generations of sensor nodes by adding the capability to 1) turn off more com-
ponents when not in use to reduce the overhead power, 2) processing of data during
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data collection to determine when enough data has been collected, and 3) voltage
scaling of the CPU.  We are developing a next generation of sensor nodes incorporat-
ing these and other power saving features.
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Abstract. We present a distributed algorithm for environmental mon-
itoring of a scalar field (such as temperature, intensity of light, atmo-
spheric pressure, etc.) using a random sensor network. We derive an error
estimate, discuss the average complexity of the algorithm, and present
some simulation results.

Introduction

We present a distributed algorithm for estimating the gradient of a scalar field
(such as temperature, intensity of light, atmospheric pressure, etc.) using a ran-
dom wireless sensor network. Environmental monitoring is one of the main appli-
cations of the emerging technology of wireless sensor networks. Our algorithm has
potential applications in preventing forest fires, energy conservation, oceanog-
raphy, building science, etc. We envision using a large number of sensor nodes
to automatically detect the emergence of critical points (such as heat sources in
the context of forest fires) and notifying the base station which can then take
further action.

This work is mainly motivated by the Sensorwebs and Smart Dust [KKP]
projects at UC Berkeley, whose aim is to develop a unified framework for dis-
tributed sensor networks. Some previous theoretical work on environmental mon-
itoring using random sensor networks was done in [Doh00]. For a study of wire-
less sensor networks in real-world habitat monitoring, see [MPS+02]. We also
mention [MEM01], which deals with gradient estimation from scattered data in
geology.

Due to high long range communication costs, low battery power, and need
for robustness to node failures, it is natural to seek decentralized, distributed
algorithms for sensor networks. This means that instead of relaying data to a
central location which does all the computing, the nodes process information in
a collaborative, distributed way. For instance, they can form computational clus-
ters, based on their distance from each other. The outcome of these distributed,
local computations is stored in local memory and can, when necessary, be relayed
to a base station.
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The basic idea of our algorithm is the following. Each node communicates
with its neighbors and computes the maximal difference quotient of the sensed
scalar field. The estimate of the gradient at each node is taken to be the vector
in the corresponding direction with norm equal to the maximal difference quo-
tient. The algorithm is not new or sophisticated; however it has two redeeming
features: (1) it is sufficiently simple and computationally non-intensive to be
implementable on the current sensor network platform [Cul]; (2) it allows us to
compute error estimates. We are able to prove that, in a probabilistic sense, the
algorithm converges (i.e., as the number of nodes goes to infinity, the probability
that the error is as small as we want converges to one), and to answer questions
like “What should the number of nodes be so that the probability that the error
is less than some ε, is greater than 1 − η?”

We believe that in the sensor network literature, there is a need for a more
precise theoretical analysis of known problems and proposed solutions. We there-
fore emphasize that the main purpose of this paper is to rigorously analyze the
accuracy and complexity of the proposed algorithm from a probabilistic point
of view, not to discuss any implementation issues, which will be dealt with in
future work.

The paper is organized as follows. In Section 1, we introduce the terminology,
notation, and the environmental monitoring problem. Section 2 describes the
algorithm. In Section 3, we derive error estimates; Section 4 discusses average
complexity, followed by simulation results in Section 5. The paper concludes with
a summary of results and discussion of future work.

1 Preliminaries

In this section we introduce the basic mathematical framework and formulate
the problem.

Assume that a random sensor network consisting of N nodes S1, . . . , SN is
deployed in some region D ⊂ R

2. The number i will be called the ID of the node
Si. We make the following simplifying assumptions:

– Every node is aware of its own position pi in some fixed coordinate system
in D. That is, the network is assumed to have performed node localization
(see, e.g., our earlier work [SS02]).

– Each node Si measures some environmental scalar field V such as temper-
ature, pressure, or the amount of light at its own location. We assume that
its measurement vi is exact, i.e., vi = V (pi).

– Each node has a maximal isotropic RF communication range R, i.e., two
nodes can communicate if they are less then R meters apart. For every
0 < r ≤ R, each node can adjust it signal strength to achieve communication
range r. In this case, two nodes whose distance is ≤ r are called r-neighbors.

Our goal is:

Using only local information, design a distributed algorithm for estimating
the gradient of V at p1, . . . , pN , and find its error.
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We make the following assumptions on D, V , and the network.

– D has unit area and is homeomorphic to the closed unit disk in R
2;

– V : W → R is a function of class C2, i.e., twice continuously differentiable,
where W is some neighborhood of D in R

2.
– Random variables p1, . . . , pN are independent and uniformly distributed in

D.

This problem formulation has clear limitations. For instance, it does not
consider node failures and noise, and the scalar field is deterministic. The simple
setting we chose, however, admits hands-on error and complexity analysis and
should be taken as the first step towards more exact understanding of the
problem of environmental monitoring.

Notation. Throughout this paper, · will denote the standard dot product on
R

2. The corresponding 2-norm of a vector v ∈ R
2 is |v| =

√
v · v. For a matrix

A ∈ R
2×2, ‖A‖ will denote its operator norm relative to | |,

‖A‖ = sup{|Av| : v ∈ R
2, |v| = 1}.

We write ∇V for the gradient of V and denote the second derivative of V (the
usual matrix of second partials of V ) by D2V .

For a, b ∈ D, a �= b, denote the difference quotient of V at a relative to b by

Q(a, b) =
V (b) − V (a)

|b − a| .

Finally, let

G(a, b) = Q(a, b)
b − a

|b − a| .

2 The Algorithm

Let S = Si, for some 1 ≤ i ≤ N , be a node with position p = pi. Assume
the signal strength of all the nodes has been adjusted to achieve maximum
communication range of r meters.

We now state our algorithm for estimating ∇V (p), called GRADS(r).

Step 1: INITIALIZE variables: q(S) = 0, n(S) = i.
Step 2: COLLECT IDs, positions, and measurements from all r-neighbors.

Each r-neighbor Sν contributes (ν, pν , vν), where ν is its ID, pν its position,
and vν its measurement of V at pν .

Step 3: For each r-neighbor Sν , COMPUTE Q(p, pν).
If Q(p, pν) > q(S) then
n(S) = ν, q(S) = Q(p, pν).

Step 4: STOP when all data have been processed. The estimate of ∇V (p) is

Grad(p) = G(p, pn(S)).
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Note that vν = V (pν); q(S) is the current value of the maximal difference
quotient, and n(S) is the ID of the corresponding node.

Remark. The algorithm maximizes the difference quotient Q(p, pν) over all
neighbors Sν of S. Grad(p) is the vector parallel to pn(S)−p of length Q(p, pn(S)).
Observe that the algorithm is distributed over the nodes of the network. The
number of operations it executes is a constant multiple of the number of r-
neighbors of S. The only operations a node needs to be able to perform are the
four elementary arithmetic operations, squaring, square root, and comparisons.

Presently, we assume that in Step 2 we use one of the existing data fusion
algorithms. We refer the reader to some of the relevant data fusion literature such
as [KM94,QWIC01,IJ01,GDW94]. We are currently investigating this problem in
the context of environmental monitoring, but for reasons of space, we postpone
its discussion to future work.

3 Error Estimates for GRADS(r)

In this section we estimate the error of the proposed algorithm. The proofs of
all statements are elementary and are therefore included, but can be skipped in
first reading.

We will need the following estimate. Here ∠(u, v) will denote the angle be-
tween vectors u, v ∈ R

2, and

H = sup
p∈D

‖D2V (p)‖.

Proposition 1 For all p, q ∈ D, p �= q,

|G(p, q) − ∇V (p)| ≤ |∇V (p)| sin |∠(∇V (p), q − p)| +
1
2
H|q − p|.

Proof. By the Fundamental Theorem of Calculus,

V (q) − V (p) = ∇V (p) · (q − p) +
1
2
D2V (ξ)(q − p) · (q − p),

for some ξ lying on the segment connecting p and q. Therefore,

|G(p, q) − ∇V (p)| =
∣
∣
∣
∣

V (q) − V (p)
|q − p|2 (q − p) − ∇V (p)

∣
∣
∣
∣

≤
∣
∣
∣
∣

∇V (p) · (q − p)
|q − p|2 (q − p) − ∇V (p)

∣
∣
∣
∣

(1)

+
1
2

∣
∣
∣
∣

D2V (ξ)(q − p) · (q − p)
|q − p|2 (q − p)

∣
∣
∣
∣

= I + II.

Consider first
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I =
|[∇V (p) · (q − p)](q − p) − |q − p|2∇V (p)|

|q − p|2 . (2)

Letting v = ∇V (p) and x = q − p, by elementary linear algebra we obtain that
the numerator of (2) is

|(v · x)x − |x|2v| = {[(v · x)x − |x|2v] · [(v · x)x − |x|2v]}1/2

= |x|2|v| sin |∠(v, x)|.

Thus,
I = |∇V (p)| sin |∠(∇V (p), q − p)|.

It is not hard to see that
II ≤ 1

2
H|q − p|.

This completes the proof of the Proposition.

For every 1 ≤ i ≤ N , denote by θi the angle between ∇V (pi) and the vector
pn(Si) − pi (Fig. 1).

D

pi

pn(Si)
θi

∇V (pi)

Fig. 1. The angle θi.

Corollary 1 For every 1 ≤ i ≤ N ,

|Grad(pi) − ∇V (pi)| ≤ |∇V (pi)| sin |θi| +
1
2
H|pn(Si) − pi|.

The following lemma says that if we are sufficiently close to a node, it is the
direction that matters in estimating the gradient.

Lemma 1 Let q, q1, . . . , qK ∈ D be distinct points and let

αi = |∠(∇V (q), qi − q)|.
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There exist ρ > 0 such that for all qi, qj with |qi−q|, |qj−q| < ρ and αi, αj < π/2,
the following holds:

αi < αj ⇒ Q(q, qi) > Q(q, qj).

In other words, in a sufficiently small polar coordinate neighborhood of q, qi 
→
Q(q, qi) is a decreasing function of αi.

Therefore, if qi’s are sufficiently close to q and the angles ∠(∇V (q), qi − q) are
not too big, then the difference quotient Q(q, qi) increases as the vector qi − q
becomes more parallel to ∇V (q). Note that the lemma is still correct though
vacuous if there are no points qi ρ-close to q. However, in our situation, the
probability of that happening is close to zero for large enough K.

Proof. Let A = |∇V (q)| and

c = min{| cos αm − cos αn| : αm �= αn, αm, αn < π/2, 1 ≤ m, n ≤ K}.

If H = 0, then V is an affine (linear + a constant) function, and the statement
of the lemma follows easily. So assume H > 0. Since c > 0, we can choose ρ > 0
so that

ρ <
Ac

H
.

Assume |qi − q|, |qj − q| < ρ, αi, αj < π/2, and αi < αj . Then

Q(q, qi) − Q(q, qj) =
{

∇V (q)
qi − q

|qi − q| +
1
2
D2V (ξi)(qi − q) · qi − q

|qi − q|
}

−
{

∇V (q)
qj − q

|qj − q| +
1
2
D2V (ξj)(qj − q) · qj − q

|qj − q|
}

= |∇V (q)|(cos αi − cos αj)

+
1
2

{
D2V (ξi)(qi − q) · qi − q

|qi − q| − D2V (ξj)(qj − q) · qj − q

|qj − q|
}

,

= I + II,

where ξi is a point on the segment connecting q and qi, and similarly for ξj .
Further, since cos αi − cos αj > 0, we get I ≥ Ac. Also, |II| ≤ ρH. Therefore,

I + II ≥ I − |II| ≥ Ac − ρH > 0,

implying Q(q, qi) > Q(q, qj).

Denote by P(A|B) and E(A|B) the conditional probability and expectation
of A given B [GS97]. Let ∂D be the boundary of D, and d(x, ∂D) the distance
from x to ∂D. Also, set

Ai = |∇V (pi)|.
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Proposition 2 For all 1 ≤ i ≤ N and ε > 0 small enough,

P(|Grad(pi) − ∇V (pi)| < ε | d(pi, ∂D) ≥ r) ≥ 1 − [1 − µi(ε)]N−1,

where
µi(ε) = max{u2

2 sin−1 u1 : Aiu1 +
1
2
Hu2 = ε, u1, u2 > 0}.

In particular, if pi is an equilibrium of ∇V , then

P(|Grad(pi)| < ε | d(pi, ∂D) ≥ r) ≥ 1 −
(

1 − 4πε2

H2

)N−1

.

Proof. Let Ci(u1, u2) (Fig. 2) be the circular sector at pi of radius u2 > 0, angular
width sin−1 u1 (u1 > 0), and axis of symmetry ∇V (pi). Assume Aiu1+ 1

2Hu2 < ε
and d(pi, ∂D) ≥ r. If pn(Si), the node which realizes the maximal difference
quotient among the neighbors of Si, belongs to Ci(u1, u2), then by Corollary 1,
|Grad(pi) − ∇V (pi)| ≤ Aiu1 + 1

2Hu2 < ε. Therefore,

P(|Grad(pi)−∇V (pi)| <ε|d(pi, ∂D) ≥ r)≥P(pn(Si) ∈ Ci(u1, u2)| d(pi, ∂D)≥ r).

pi

u2

sin−1 u1

∇V (pi)

Fig. 2. The circular sector Ci(u1, u2).

For ε small enough, Ci(u1, u2) ∩ D = Ci(u1, u2); its area is

α(u1, u2) = u2
2 sin−1 u1.

If ε is sufficiently small, then by Lemma 1, pj 
→Q(pi, pj) is a decreasing func-
tion of |∠(∇V (pi), pj − pi)| on Ci(u1, u2). Therefore, if at least one node is in
Ci(u1, u2), then pn(Si) ∈ Ci(u1, u2); the converse is clear enough. Hence the
probability that pn(Si) ∈ Ci(u1, u2) (given d(pi, ∂D) ≥ r) equals the probability
that at least one node different from Si lands in Ci(u1, u2). Furthermore, note
that the conditional probability that exactly k nodes different from Si lie in
Ci(u1, u2), given that d(pi, ∂D) ≥ r, is

(
N − 1

k

)

α(u1, u2)k[1 − α(u1, u2)]N−1−k.

Therefore,
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P(pn(Si) ∈ Ci(u1, u2) | d(pi, ∂D) ≥ r) (3)

=
N−1∑

k=1

(
N − 1

k

)

α(u1, u2)k[1 − α(u1, u2)]N−1−k

= 1 − [1 − α(u1, u2)]N−1.

Since this is true for any pair (u1, u2) with the above properties, it follows that

P(|Grad(pi) − ∇V (pi)| < ε | d(pi, ∂D) ≥ r) ≥ 1 − [1 − max
u1,u2

α(u1, u2)]N−1

= 1 − [1 − µi(ε)]N−1.

If pi is an equilibrium of ∇V , then Ai = 0. By Corollary 1, |Grad(pi)| < ε if
|pn(Si) − pi| < 2ε/H, so P(|Grad(pi)| < ε| d(pi, ∂D) ≥ r) is not less than the
area of the disk centered at pi of radius 2ε/H, proving the second part of the
Proposition.

Corollary 2 For every 1 ≤ i ≤ N and ε > 0,

lim
N→∞

P(|Grad(pi) − ∇V (pi)| < ε | d(pi, ∂D) ≥ r) = 1.

Therefore, the algorithm, in the sense specified by the Corollary, “converges in
probability”.

Proposition 3 Suppose pi is an equilibrium of ∇V and 0 < η < 1. If

N ≥ N(ε, η) = 2 +
log η

log
(

1 − 4πε2

H2

) , (4)

then
P(|Grad(pi)| < ε | d(pi, ∂D) ≥ r) > 1 − η.

Proof. Follows directly from Proposition 2. Observe that as ε, η → 0, N(ε, η) is
of the order O

(
1
ε log 1

η

)

.

4 Average Complexity

One way to measure the average complexity of GRADS(r) is to require that the
probability that |Grad| < ε be greater than 1 − η, and then count the average
number of computations and communication steps the algorithm has to perform.
The random variable crucial in this count is the number Xr of r-neighbors of a
randomly picked but fixed node Si. If the position of Si is pi, it is not difficult
to show that

E(Xr | d(pi, ∂D) ≥ r) = (N − 1)πr2. (5)
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Proposition 4 If ∇V (pi) = 0 and N ≥ N(ε, η), guaranteeing that

P(|Grad(pi)| < ε | d(pi, ∂D) ≥ r) > 1 − η,

than on average, the number of computations GRADS(r) performs is of the order
O

(
1
ε log 1

η

)

, as ε, η → 0.

Proof. The number of computational steps S performs in GRADS(r) is pro-
portional to the number of its r-neighbors, that is, on average, of the order
O(E(Xr | d(pi, ∂D) ≥ r)) = O(N). The statement then follows from (5) and
Proposition 3, since N has to be chosen of the order O

(
1
ε log 1

η

)

.

Remark. The average communication complexity of the algorithm depends on
the data fusion algorithm chosen in Step 2.

5 Simulation Results

Let F = ∇V . If p is not an equilibrium of F , then in a neighborhood of p, F looks
essentially like a constant vector field, up to a smooth change of coordinates.
This is known as the Flow Box Theorem in dynamical systems. If F (p) = 0,
then the picture can be much more complicated. However, if A = DF (p) has
no eigenvalues on the imaginary axis, then in a neighborhood of p, F looks
essentially like A, or, more precisely, up to a continuous coordinate change near
p, the flow of F is the same as the flow of A. This is known as the Hartman-
Grobman theorem. Observe that the condition “DF (p) has no eigenvalues on
the imaginary axis” is generic, i.e., it is satisfied by almost all F . Furthermore,
it is well known that, generically (when D2V is nonsingular), the equilibria of
∇V can only be saddles and stable or unstable nodes.

Therefore, it is sufficient to test our algorithm in three cases: near a nonequi-
librium point for ∇V , near a saddle for ∇V , and near an unstable node for ∇V .
Consequently, we present three examples: in the first one, V is a linear function
(Fig. 3); in the second one, V is quadratic and ∇V has a saddle at (10, 10)
(Fig. 4); in the last one, V is quadratic, but ∇V has an unstable node at (10, 10)
(Fig. 5). In all cases, the algorithm gives good results away from the boundary
of D = [0, 20]× [0, 20]. Observe that if we excluded the edge effects from the cal-
culation of the average relative error (i.e., average absolute error divided by the
norm of the gradient at the corresponding point), the accuracy would improve.

6 Conclusion

We presented a distributed algorithm which estimates the gradient of a smooth
function using a random sensor network. The method amounts to approximate
differentiation of the function given its value on a set of random points. We
estimated the probability that the error is small and showed that it converges
to one, as the number of nodes goes to infinity.



Distributed Environmental Monitoring Using Random Sensor Networks 591

0 5 10 15 20 25
0

5

10

15

20

25
Estimate of the gradient of V(x,y) = x + y, with N = 300 , s = 20 , r = 5 , avg. rel. error = 0.08598
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Estimate of the gradient of V(x,y) = x + y, with N = 500 , s = 20 , r = 5 , avg. rel. error = 0.068191

Fig. 3. V (x, y) = x + y, D = [0, 20] × [0, 20].
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Estimate of the gradient of V(x,y) = (x−10)2 − (y−10)2, with N = 200 , s = 20 , r = 5 , avg. rel. error = 0.074508
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Estimate of the gradient of V(x,y) = (x−10)2 − (y−10)2, with N = 500 , s = 20 , r = 5 , avg. rel. error = 0.068774

Fig. 4. V (x, y) = (x − 10)2 − (y − 10)2, D = [0, 20] × [0, 20].
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Estimate of the gradient of V(x,y) = (x−10)2 + (y−10)2, with N = 200 , s = 20 , r = 5 , avg. rel. error = 0.057327
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Estimate of the gradient of V(x,y) = (x−10)2 + (y−10)2, with N = 500 , s = 20 , r = 5 , avg. rel. error = 0.065583

Fig. 5. V (x, y) = (x − 10)2 + (y − 10)2, D = [0, 20] × [0, 20].

It would be useful to estimate the expected value of the error and investigate
robustness of the algorithm to noise and node failures. Further, it would be
interesting to compare this with other algorithms, e.g., the one in [MEM01],
which is also sufficiently simple to be implementable on the current platform for
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sensor network. As the the computers on-board sensor motes get progressively
more powerful, it will become possible to use more sophisticated algorithms such
as least squares. We plan to do this in future work.
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Abstract. One task in which inaccurate measurements are often used
is location discovery, a process where the nodes in a network determine
their locations. We have focused on location discovery as the primary
target of our study since many sensor network tasks are dependent on
location information. We demonstrate the benefits of location error anal-
ysis for system software and applications in wireless sensor networks. The
technical highlight of our work is a statistically validated parameterized
model of location errors that can be used to evaluate the impact of a
location discovery algorithm on subsequent tasks. We prove that the dis-
tribution of location error can be approximated with a family of Weibull
distributions. Then, we show that while performing the location discov-
ery task, the nodes in a network can estimate the parameters of the
distribution. Finally, we describe how applications can use the estimated
statistical parameters to: (i) estimate the confidence intervals for their
results, (ii) organize resource consumption to achieve optimal results in
presence of estimated magnitude of error.

1 Introduction

Wireless embedded ad-hoc sensor networks (WEASNs) are distributed systems
that consist of sensor nodes each equipped with a number of sensors (such as
temperature, light, acoustic, seismic, and acceleration), wireless communication
systems, storage, processing resources, and in some cases, actuators. One can en-
vision numerous consumer, business, environmental, and scientific applications
of WEASNs, ranging from early forest fire detection, indoor energy consumption
monitoring, environmental monitoring, target tracking (such as on the battle-
fields), and earthquake monitoring [6]. Wireless sensor networks monitor the
physical world measuring physical phenomena. These measurements and the
results computed from them are often inaccurate. In environments where inac-
curate measurements are the rule rather than the exception, the ability to detect
inaccurate data and to estimate the accuracy of the results must be an intrinsic
part of applications and system tasks. Some examples where information about
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errors could be used in WEASNs are the development of objective functions,
optimization algorithms, and measures of confidence for application results.

Information about the locations of sensor nodes is of particular importance
for many potential applications of WEASNs. Location information is, however,
prone to inaccuracies, since the accuracy of distance measurements, which are
essential for all location discovery algorithms, varies widely with the hardware
technology and environmental conditions. In this paper, we demonstrate the
importance of the estimation of the location errors. The goals and the main
contributions of our work presented in this paper are:

1. Examination of impact of the location discovery process parameters on the
properties of the distribution of location error.

2. Determination of statistical parameters of the location error at different
stages of the location discovery process.

3. Estimation of application performance based on the statistical properties of
location error.

We examine the distribution of the location error on different stages of the lo-
cation discovery process, and we show how we can improve the accuracy of
location discovery using the estimates of location errors in different stages of
the process. Furthermore, the applications can also benefit from information
about the location error distribution. For example, correct predictions of appli-
cation performance with the presence of error in locations can improve resource
management in WEASNs. In some instances, if the estimate of location error is
above a certain threshold, applications can determine that the processing based
on given locations can create practically useless results. One additional benefit of
location error analysis is that accurate modeling of location error can speed up
sensor network simulations by generating the locations with appropriate error
distributions without running a location discovery algorithm.

The rest of this section contains an example that demonstrates importance of
information about the distribution of location error. The notation and statistical
methodologies used in this work are presented in Section 2. Section 3 describes
distance error models, while Section 4 contains related work. Location errors in
the atomic multilateration procedure are examined in Section 5. In Section 6,
we determine the properties of location error for the location discovery algo-
rithm, and describe how to determine these parameters. The impact of error on
applications is the topic of Section 7. Section 8 concludes the paper.

1.1 Motivation

To better demonstrate the practical importance of estimation of the parameters
of the location error distribution, let us consider an application where the goal
is to acquire photos of birds, similar to [4]. A camera on a sensor node should be
triggered at the moment when a bird is at a particular location. Depending on the
accuracy of the locations of sensor nodes and birds, available resources including
memory, processing, and power can be dedicated to covering larger or smaller
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areas in order to have a bird in a picture with a certain probability. Without any
information about location error, one can make an educated guess and assume
that the average error with which a bird is located is µ, and that the error
distribution can be approximated with the Rayleigh distribution, similar to the
location error in GPS. Figure 1 shows the distribution of location error for data
acquired through simulations, with the average location error of µ = 43 cm, and
the Rayleigh distribution with the same average location error. The simulations
are performed using error models and the algorithms described in this paper.
The Rayleigh distribution tells us that in order to take a picture of at least
99% of the birds coming to the area, it is sufficient to cover a 1 m circle, while to
photograph 80% of the birds, the covered area should be a 50 cm circle around the
estimate of the bird’s location. However, the experimental distribution indicates
that for a 99% success rate, it is necessary to cover a 4 m circle, while for an 80%
success rate it is sufficient to cover a 15 cm circle. In this case, information about
the location error distribution would significantly reduce resource consumption,
while ensuring that the required success rate is achieved.

0 0.5 1 1.5 2 2.5 3 3.5 4

Experimental data
Rayleigh distribution
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>80% >99%

Rayleigh 0.5 m 1 m

Experimental 0.15 m 4 m

Fig. 1. Comparison of the Rayleigh distribution and experimental data, when the av-
erage location error is same

2 Preliminaries

In this section, we describe the notation used throughout the paper, the basics of
the location discovery process, as well as the statistical methodology for testing
the hypotheses and for parameter estimations. We use the following notation for
actual locations and distances and their estimates:

(xi, yi) Actual location of the sensor node i
(xs

i , y
s
i ) Estimated location of the node i in the solution s

Es(xi, yi) Location error for the node i ; distance between (xi, yi) and (xs
i , y

s
i )

dij Measured distance between the nodes i and j

The basic step of location discovery procedure is atomic multilateration. Node
N0 acquires location estimates (xs

i , y
s
i ) for k of its neighbors, the nodes within
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its transmission range. The node N0 also acquires the distance estimates di0.
For each location (x, y), which the node N0 may choose as an estimate of its
location, we can define the values of residuals:

Ri(x, y) =
∣
∣
∣
∣

√

(xs
i − xi)2 + (ys

i − yi)2 − di0

∣
∣
∣
∣
.

The location that is chosen as the estimate of the location of N0 is the one for
which the extreme value of an objective function is achieved. In this work, we
use three objective functions:

PDFmax(x, y) =
n∏

i=1

P (Ri), (1)

L2(x, y) =
n∑

i=1

(Ri)2, (2)

L∞(x, y) = max
i=1..N

Ri

di0
. (3)

The objective function (1) assumes the complete knowledge of the underlying
distance measurement model. For each residual Ri(x, y), the value P (Ri(x, y))
corresponds to the probability density function for the distance error Ri, ac-
cording to a distance error model. The product of these values defines the value
of the objective function PDFmax at (x, y). The location with the largest value
of the objective function (1) is selected. The function (3) uses the knowledge
that for all error models in our simulations the error increases with distance. If
L∞ is used, the selected point is the one with the lowest value of L∞. L2 is the
standard RMS (root mean square) function of the residuals. A global location
discovery algorithm starts from a certain number of nodes that initially have
their location estimates. These nodes serve as references for initial atomic mul-
tilaterations. After the node N0 acquires its location, it is used as a reference
point for other nodes.

The location error distributions for atomic multilateration and for global lo-
cation discovery algorithms are acquired through simulations of both procedures.
After that, we test two different types of hypotheses. The first type determines
whether the error distribution can be approximated with some of the theoreti-
cal distributions. We selected four theoretical continuous distributions that cover
the interval [0,∞]: Rayleigh, Weibull [23], Gamma, and exponential distribution.
The parameters of the theoretical distributions are determined using maximum
likelihood estimates of the distribution parameters [7] for the given experimental
data. In the next step, using the given parameters, random samples are gener-
ated for each of the four standard distributions. Finally, we use the Kolmogorov-
Smirnov [10] test to compare the random samples for the four distributions and
the experimental location error distribution. The Kolomogorov-Smirnov (KS)
test tests the hypothesis that the samples are drawn from the same continuous
distribution. The hypothesis is accepted or rejected depending on the maximum
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difference of the cumulative distribution functions (CDF) of the samples. The
second type of tests examines whether two different location error distributions
are statistically different. Again, the KS test is used to test whether the hypoth-
esis should be rejected. The significance level for all tests is 0.05.

3 Error Models

Distance measurements, and in some cases GPS-generated location estimates,
are the input parameters of the location discovery process. They are also main
sources of errors in results of location discovery algorithms. Modeling of errors in
input parameters, therefore, is of great significance for simulations of algorithms
and applications in WEASNs. As wireless sensor networks are intended to be
used, among other environments, in remote and inhospitable areas, where the
error characteristics of distance measurements cannot be examined in advance,
prediction of the performance of the network greatly depends on simulations
with carefully chosen error models.

The distance estimates in WEASN are susceptible to different sources of er-
ror, including obstacles, interference, and multipath effects. The impact of these
sources of error depends on the hardware technology used for measurements.
There are three most frequently proposed distance measuring technologies: Re-
ceived Signal Strength Indicator (RSSI), Time Difference of Arrival (TDoA)
combining radio and acoustic signal, and acoustic-based ranging. Each of the
given technologies has different error characteristics. However, currently there
are not enough published data to precisely characterize the given technologies.
We opted for three error models that correspond to each of the hardware tech-
nologies. The first error model, mainly intended to capture properties of distance
measurement error for RSSI, is based on the path loss models from [17]. The
main source of error in RSSI-based distance measurements is the complexity of
modeling of environmental effects in the propagation model. Reflection, scatter-
ing, and diffraction, as well as the antenna gains, produce significantly different
path losses for equal distances. From [17] (pg. 104), the distribution of measured
distances d̂ is given as

10n log(
d̂

d0
) − 10n log(

d

d0
) = Xσ[dB], (4)

where d is the measured distance, and Xσ is a zero-mean Gaussian random
variable with standard deviation σ, both in dB. From (4):

d̂ = d + d(10
Xσ
10n − 1). (5)

The second term in (5) represents the distance dependent error. The second
error model is based on Gaussian distribution. The distance estimate d̂ is given
as d̂ = d+d∗G(0, σ), where G(0, σ) is a white Gaussian noise with the standard
deviation σ.
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Modeling of the acoustic ranging error is based on the research reported in [8].
There are three important sources of error in acoustic ranging that cannot be
eliminated by averaging distance measurements over time [8]:

1. Non-line-of-sight (NLOS) error: This error occurs when there is an obstacle
between nodes. We model it as a distance dependent, uniformly distributed,
positive error Un(0, NLOS ERRORmax(d)).

2. Speed of sound error: Atmospheric changes in the environment, as well as
different atmospheric conditions in various parts of the network impact the
speed of sound. We model this as a distance dependent Gaussian noise
G1(0, σ(d)).

3. Orientation error: The emitter and the sound sensor may not be aimed to-
wards each other, which creates an error that depends on the angle between
them. We model this error as the angle-dependent Gaussian noise αG2(0, σ),
where α a is the angle between the emitter and the sound sensor.

Thus, the acoustic distance measurement between the nodes i and j is simulated
as:

d̂ = d + d(Un + G1) + αG2. (6)

4 Related Work

Availability of low-cost wireless sensor nodes, and their capability to form dis-
tributed network systems is a result of the advances in various scientific disci-
plines. The research in signal processing [5,21], operating systems [9], low-power
design [16], and robotics [20] laid foundation for applications described in [6,
14]. Since the localization is an essential task in WEASNs, and in other wire-
less systems, there is a large number of research projects related to localization
in wireless networks. In [15], a mobile device listens to the available beacons,
and can detect its location as well as its orientation within a building with the
centimeter-level accuracy. The systems in [15,22] require dedicated infrastruc-
ture, while [2] depends only on already existing LAN infrastructure. However,
the issue of accuracy of the localization results has not been discussed, except
in [19]. A similar problem, the accuracy of the localization of a stationary and a
moving target, is examined in [25].

The process of localization in WEASNs is based on two stages. The first
stage includes measuring the distance or the angle between two entities in the
network. The possibility of using RSSI measurements for distance estimates in
WEASNs is discussed in [3]. In [18], the combination of acoustic and radio signal
is chosen as a better alternative. The distance is estimated from the difference
in time of flight of simultaneously transmitted acoustic and radio signal. The
significant difference in speed of these two signals allows the radio signal to be
used as a synchronization signal, while the distance is basically derived from the
time of travel of the acoustic signal. At the same time, [18] demonstrates un-
predictability of RSSI-based distance measurements. Further simulation results
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in the same paper show that using the given distance measurements, the esti-
mates of locations of the sensor nodes are within 20 cm of the actual locations.
The third technology used for distance measurements in WEASNs is acoustic-
based [8]. The method is based on measuring the time of travel of the sound
between two synchronized nodes.

The examples of the second stage of localization procedure, where the lo-
cation estimates are distributed through the network to be used for further lo-
calization, can be found in several papers [1,13,18]. In the algorithms described
in these papers, the location of nodes are determined as soon as the required
information is available, without estimating possible errors involved in the given
information. In [12], the nodes that receive consistent information from various
neighbors determine their locations first. Another localization system where a
significant amount of attention is given to error measuring and control is de-
scribed in [24]. The authors determined certain sources of error in TDoA dis-
tance measurements, and they minimized the effect of those error sources by
calibrating parameters of the devices.

5 Location Error Distribution for Atomic Multilateration

In this section, we determine characteristics of the location error distribution
for the atomic multilateration. The goal of the simulations presented here is
to determine the impact of the parameters of the atomic multilateration on
the location error distribution. The first parameter that we vary is the atomic
multilateration objective function. The second parameter is the percentage of the
results of the multilateration that are rejected on the basis of their probability
to be inaccurate. That probability is estimated using two tests described in this
section. Additionally, in this section we compare the error location distributions
for the distance error models from Section 3.

First, we show how the choice of an atomic multilateration objective func-
tion, among the ones listed in Section 2, affects the location error distribution.
The most frequently used atomic multilateration objective function is L2 [1,18].
However, the error models used in [1,18], and in most of other simulation-based
location discovery projects, is a zero-mean white Gaussian noise. Here, we pro-
pose distance dependent error models. The other two objective function that
we use, PDFmax and L∞, are tailored to those specific error models. In this
experiment, we perform 2000 multilaterations for each error model. The ranging
errors are drawn from a distribution corresponding to an error model with the
average distance error of 1%. Four nodes are randomly positioned into an area
15x15 m. Three nodes are beacons, while the fourth node determines its loca-
tion. For each of the 2000 multilaterations, we collect the location errors, and
determine cumulative distribution functions (CDF) for each error model. The
graphical comparison between the results achieved using different objective func-
tions, for the Gaussian error model, can be seen in Fig. 2. There is no statistically
significant difference between the location error distributions for three objective
functions according to the KS test with the significance level of 5%. The KS
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test for the other two error models confirms that there is no difference between
the three objective functions for any of the proposed error models. Also, for the
average error of 10%, there were no statistically significant difference between
the distributions for different error models and objective functions.
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Fig. 2. CDFs of the distribution of the location error for three proposed objective
functions

There are two tests that we use to detect the multilateration location esti-
mates that have a high probability of error. The first test is based on the value of
the sum of residuals for a particular location. From the correlation between the
sum of residuals and location error, displayed in Fig. 3, we can see that a small
value of the sum of residuals does not indicate a small value of location error.
However, if the residuals sum is above a certain threshold, the distances involved
in multilateration are likely to be inaccurate. Thus, a point where the distance
measurements can be consistent cannot be found. For the Gaussian error model
and an average distance error of 1%, the sums of residuals above 10 cm mostly
represent the locations with location error of more than 25 cm.

The second test involves the topology of the referent beacons. If the beacons
are almost collinear, or in other words, if the triangle created from the locations
of the beacons has an obtuse angle above a certain threshold, a small error in
distance measurements can create a small sum of residuals, but a large real
location error. In Fig. 3, such locations are the ones along the y-axis, with small
sum of residuals, but large location error. If the angle threshold for a largest angle
in the triangle increases, the average location error decreases until the point of
saturation is reached where the average location error does not change anymore.
However, the number of rejected locations also increases. In our simulations, we
set the angle limit at 3π/4, where the number of rejected locations due to a large
angle in the triangle hits 40%, but the point of saturation is reached close to
π/2. This issue is certainly important and deserves a further research.

In the next experiment, we improve the accuracy of the multilateration pro-
cedure by rejecting all locations where the residuals or the beacons topology do
not satisfy two tests defined above. The improved accuracy is achieved at the
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cost of rejecting around 50% of the locations generated during the simulation.
The average location error achieved in this experiment is 10 cm, which is an
improvement of more than 75% compared to the average value of location error
of 43 cm, for experiments when the two tests are not used. Figure 4 shows the
distribution for the experimental data and the theoretical distributions with the
best-fit parameters.
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Fig. 3. Correlation between the sum of
residuals and the location error
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Fig. 4. CDF of the experimental data
and theoretical distributions

For this value of the average location error, we can see from Fig. 4 that
the experimental data distribution is closest to the Weibull and the Gamma
distribution. In order to statistically compare the experimental data distribution
and the theoretical distributions, we generated 100 random samples of each of
the distributions, and compared them with the experimental data using KS test.
The results of the test for the Gaussian error model are given in Table 1. For
94% of the random samples generated using the MLE parameters for the Gamma
distribution, the hypothesis H0 about the same underlying distributions could
not be rejected, while the percentage for the Weibull distribution is 54%.

Table 1. Percentage of cases where the hypothesis H0: “the experimental data and
the random sample are from the same distribution” cannot be rejected

Weibull Rayleigh Exponential Gamma

54% 0% 0% 94%

To further confirm that the location error distribution can be approximated
with the Gamma distribution, when the average error is below the certain limit,
we generated location error distributions with different values of the average
location error. We create the distributions with different values of the average
location error by changing the parameters of the two tests. For the average
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location error of less than 17 cm, the acceptance rate, measured in number of
random samples statistically not different from the experimental data, does not
fall below 90%, while for larger errors the acceptance rate never reaches 90%.
Finally, we describe the effects of different error models on the multilateration
location error. We give only the corresponding tables to show that the Gamma
distribution is still an adequate choice to approximate the experimental data.
Table 2 shows that the Gamma distribution represents a good approximation of
the location error distribution for the multilateration procedure with the average
location error of 10 cm, if the RSSI and the acoustic error model are used.

Table 2. Percentage of cases where the hypothesis H0: “the experimental data and
the random sample are from the same distribution” cannot be rejected, for RSSI and
acoustic distance error models

Error model Weibull Rayleigh Exponential Gamma

RSSI 36% 0% 0% 90%

acoustic 59% 0% 0% 92%

The distributions for the three error models are tested against each other. KS
test could not reject the hypothesis that all three location error distributions are
samples of the same underlying distribution. The results from the experiments
indicate that the distribution based on the atomic multilateration, using the L2
objective function and the Gaussian model for the distance measurement error,
can be accepted as approximation of the distribution if other objective functions
from Section 2 and the error models from Section 3 are used. Therefore, we can
test the properties of location error in location discovery algorithms with only
the Gaussian error model and L2 objective function without loss of generality.

6 Estimation of Error Distribution Parameters

In this section, we examine the distribution of error amplitudes in nodes’ lo-
cations determined by the location discovery algorithm. We demonstrate that,
for the average location error below a certain threshold, the distribution of loca-
tion error can be approximated with the Weibull distribution. Then, we describe
how the average location error in a network can be estimated using residuals.
Finally, we show that there is a correlation between the average location error
and the shape parameter of the Weibull distribution, which allows us to estimate
parameters of the actual location error distribution.

We perform experiments on networks with 100 nodes positioned in an area
50x50 m. As presented in Section 5, we have found out that the choice of the
objective function for the atomic multilateration procedure or the underlying
error model does not impact the results, so in this set of experiments we use
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L2 as the objective function and the RSSI model for the distance measurement
error. The number of the nodes with initial location information is 15%, while
the transmission range is 10 m for all nodes. The details of the location discovery
algorithm are described in [12].

First, we examine the possibility to approximate the location error distribu-
tion with the Gamma or the Weibull distribution. We compare results for 20
networks with different values of the average location error. For each network,
we execute the location discovery algorithm and determine the distribution of
error amplitudes from the resulting location estimates. Then, we determine the
parameters of the Gamma and the Weibull distribution that are the best fit
for the experimental results. Finally, we generate 100 random samples with the
best-fit parameters for each of the two standard distributions. Each generated
sample is then tested, using the KS test, against the corresponding experimental
distribution to determine whether the two distributions are statistically differ-
ent. The results of the tests are given in Fig. 5. The figure shows the percentage
of samples from the Gamma and the Weibull distributions that are not statis-
tically different from the the experimental data at the significance level of 0.05.
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Fig. 5. The percentage of the Gamma and Weibull sample distributions that are sta-
tistically not different from the experimental distribution of the location error

We can notice in Fig. 5 that, even with the rejection in the atomic multi-
lateration procedure, there are cases where the average location error reaches
1.8 m, which is large considering the average distance error of 1% of a measured
distance. There are still cases where a large error occurs at the beginning of
the location discovery process, and then propagates through the network. The
second observation is that the acceptance rate for the Weibull and the Gamma
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distribution sharply increases for the networks with the average location rate
lower than 20 cm, where 75% of the networks belong. Finally, for each of the
networks, samples from the Weibull distribution achieve better acceptance rate
than samples from the Gamma distribution. Consequently, we accepted the for-
mer as the better approximation of the location error distribution.

6.1 Average Location Error Estimates

One of the steps in the process of estimating the properties of error in the loca-
tion discovery procedure is to estimate the average value of location error. While
performing a location discovery process, an algorithm deals with a set of initial
measurements and intermediate results from which a solution for localization
problem is to be found. As we described earlier, initial measurements are often
inaccurate, and a solution in which distances between the estimates of nodes’
locations are consistent with the initial measurements of the corresponding dis-
tances may not be possible. Therefore, solutions always contain a certain level
of inconsistencies (residuals) between the initial measurements and the accepted
locations: rij = ds

ij − dij . We use residuals as the base for a simple, but effective
solution for the estimation of the average location error. We calculate the sum
of all available residuals in the network and we use to estimate the average value
of the location error:

S =
N∑

i=1

i−1∑

j=1

|rij | (7)

The effectiveness of the given function in estimating the average location error
is presented in Fig. 6. We simulated the location discovery algorithm on 70
networks with the average location error below 20 cm, and then we grouped the
networks according to their sums of residuals. One group contains all networks
with the sum of residuals belonging to one of the noted 5 m intervals, given as
the x-axis in Fig. 6.
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For each group we calculated the average location error. Figure 6 shows
the relationship between such calculated values. The relationship depends on
the size of the networks, connectivity, distance measurement error model, and
other parameters. In a practical implementation, these parameters are known
or can be modeled in advance, and once the relationship is determined, it can
be used to determine the average location error in a real network. After we
determined that we can approximate the location error distribution with the
Weibull distribution, we need an approach to estimate the parameters of the
Weibull distribution. The correlation between the average location error and the
shape parameter β, is given in Fig. 7. The results include 70 networks with the
average location error below 0.2 m.
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Fig. 7. Correlation between the average location error for the whole network and the
shape parameter of the Weibull distribution

It is important to emphasize here is that for one mean value of the Weibull
distribution, many different Weibull distributions can be generated, with varying
two parameters of the Weibull distribution: the shape parameter β and the
scale parameter η. However, in the case of the location error distribution, the
range of the shape parameter β is correlated with the average location error,
which means that the location error can be described with a limited subset of
Weibull distributions, which we consider the most important contribution of this
research. At the range of values of the parameter β given in Fig. 7, the parameter
η impacts the shape of the distribution significantly less than β.
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7 Applications

This section deals with the effect of inaccurate locations on the application in
WEASNs. First, we describe two applications with different expected impacts of
the error on their performance, and then we present the results. The goal of this
experiment is to determine how well we can predict the accuracy of the results
of different applications. The first application calculates the shortest paths for
each pair of nodes in the network, based on their estimated locations. The most
important property of this application is that the locations of all nodes are taken
into account in every network where this application is executed. Therefore, if
the location error distribution is similar for two networks, which happens when
the average errors are close, the impact of location error on the application is
similar too. We measure the impact of the location error through the percentage
of shortest paths that change, if the estimated locations of the nodes are replaced
with the actual locations. For this experiment, we have run the application on 20
different networks, with the locations acquired through the location discovery
procedure. We have also run the application on the same networks using the
actual locations of the nodes. Then, we compare the results and calculate the
percentage of shortest paths that differ. From Fig. 8, we can see that networks
with the close values of the average location error experience similar percentage
of changed paths, as expected. Networks with the average error below 4 cm have
less than 3% different paths, while networks with the average error between 6 cm
and 10 cm have between 3% and 8% of different paths.

The second application belongs to a different class of applications, where the
impact of the nodes’ locations is not uniformly distributed across the network.
The application calculates the path on which the exposure from the nodes in
the network is minimal. The exposure from one node is inversely proportional
to the square of the distance between the node and the point for which the
exposure is calculated. The exposure on a path is the integral of the exposures
of its points [11]. The nodes that are far from the path has much less impact
on the exposure, therefore the impact of error in their locations is also smaller.
Since the location error is distributed according to the Weibull distribution, there
are always some nodes with larger error. However, in different networks these
nodes are closer or further from the minimal exposure path. Fig. 9 displays the
difference in the distribution of errors for two set of networks, with networks in
one set having similar average location error. The error for this application is
defined as the difference between exposure that an object expect to experience
along the path calculated using the estimated locations and the real exposure,
calculated using the actual locations, along the same path. The networks with
the average location error from 1 cm to 3 cm are compared to the networks with
the average location error from 8 cm to 12 cm. From Fig. 9, we can predict what
is the probability for a network with the average location error, estimated as
shown in Section 6.1 to report a result with a certain magnitude of error after
running the minimal exposure path application.
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8 Conclusion

The main goal of this paper has been to analyze location error in WEASNs and to
demonstrate the practical use of the results of the analysis. We described here the
impact that certain design decisions have on the magnitude and the distribution
of location error for atomic multilateration and for location discovery algorithms.
We examined the conditions under which location error in atomic multilateration
and location discovery algorithms can be approximated with the Gamma and
the Weibull distribution, respectively. We determined that the distribution of
location error can be approximated well with the Weibull distribution, and that
the parameters of the distribution can be unequivocally determined from the
inconsistencies in locations and the distance measurements. Knowledge of the
error distribution allows us to use the resources for the tasks that can achieve
the required results in the presence of error, while the tasks that require higher
accuracy can be adapted or canceled. Additional benefit of the results of the
location error analysis is that the results of the location discovery process can
be simulated accurately without the need for running the location discovery
algorithm.
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Abstract. In this paper we present a distributed, application-morphable,
algorithm for waking up appropriate sensor nodes in a heterogeneous sensor
network. We assume a sensor field consisting of a large number of low power,
limited functionality, tripwire nodes and a smaller number of powerful, energy-
hungry, tracker nodes. Our problem is that when an event is detected by a set of
tripwire nodes a specific number of appropriate tracker nodes needs to be
woken up. These tracker nodes will subsequently collaborate to perform the
sensing task required by the application. Waking up non-suitable tracker nodes
or employing more trackers than necessary for a specific task, can lead to
significant waste of network resources (e.g. energy). The application indicates
the number of nodes that are needed for a sensing task, as well as an
optimization function to be used by the algorithm. Therefore, our algorithm is
isolated from most application details and is simple and general enough to
accommodate a wide range of sensing applications. We prove that our
algorithm converges to a uniform optimal global decision for specific classes of
optimization functions. Furthermore, we show that it is fast enough (<100ms) to
be practical for most sensing applications and exhibits good performance in
terms of total messages exchanged. Finally, we demonstrate that our algorithm
is very robust, managing to retain its correct and efficient behavior for a wide
range of scenarios, even under hostile environmental conditions (e.g. link loss
probabilities up to 35%).

1 Introduction

Continuous advances in low power electronics and processor technology have
enabled the design of inexpensive sensor nodes capable of performing significant
computation and wireless communication. A potentially very large number of such
nodes can be deployed either manually or automatically [1] in a field, building or any
other area of interest and self-organize into a network to perform a specific
application. Various sensor applications have been proposed, ranging from real-time
tracking of one or more targets [2] to environmental monitoring [3].

                                                          
1 This work is supported by the DARPA Power Aware Computing and Communication

Program under contract no. F33615-C-00-1633.



610         A. Spyropoulos, C.S. Raghavendra, and V.K. Prasanna

A considerable amount of research effort has been devoted during the past couple
of years in the area of sensor networks. However, most of the related work adopts a
homogeneous sensor network model consisting of a single type of sensor nodes that
collaborate to perform a specific sensing task [13] [14] [15]. It has recently been
identified [4] [5] [16] that having different classes of sensor nodes may be beneficent
to many sensor applications. These classes may be differentiated in terms of
processing capabilities, sensing modalities, communication capabilities and size or
cost. Specifically, it is envisioned that a large number of inexpensive, low energy,
tripwire nodes are going to be deployed along with a smaller number of more
powerful, specialized, nodes. These specialized nodes will be capable of performing
computation-intensive functions (e.g. ranging, tracking, etc.) or communication-
specific functions like routing or long-range communication to base station(s).

In this paper, we assume, without loss of generality, that only one such type of
specialized nodes is deployed, which we’re going to be referring to as tracker nodes,
hereafter. It is anticipated that tracker nodes are going to be dissipating one to two
orders of magnitude more power than tripwire nodes when all their subsystems (i.e.
CPU, radio and sensor) are on [16]. Therefore, tracker nodes will have to be “off”
most of the time, when no events occur2, in order to maximize the operational lifetime
of the network. On the other hand, tripwire nodes run with low power and may even
be self-sufficient by scavenging energy from the environment [6]. However, they only
have limited processing and communication capabilities. Their functionality is
expected to be that of detecting events, using some simple threshold detection
scheme, and waking up appropriate tracker nodes to perform the sensing task.

Our problem is that when an event is detected by a set of tripwire nodes, a specific
number of appropriate tracker nodes need to be woken up, that will subsequently
collaborate to perform the sensing task required by the application. Waking up more
nodes than necessary could result in considerable waste of resources. For example, it
has been shown that performing line of bearing (LOB) calculation can be achieved
with only three tracking nodes with acceptable accuracy. The extra energy consumed
by utilizing more tracker nodes for that purpose is not justified by the potential extra
accuracy achieved. In addition to that, different sets of chosen tracker nodes may
result in considerably different performance, in terms of accuracy, energy-efficiency,
etc. Therefore, it is evident that some coordination scheme is needed among the
tripwire nodes to wake up an appropriately sized set of tracker nodes that are optimal
in respect to the sensor application’s specific goal(s).

In this work, we propose a general, efficient and robust distributed algorithm for
the tripwires to collaboratively choose a set of specialized nodes for a specific
application. In our algorithm, each tripwire node re-evaluates its local decision on the
optimal set of tracker nodes to be woken up, whenever it receives a decision update
packet from a neighboring tripwire. If it learns of or can construct a superior set of
tracker nodes, it informs its neighborhood about it. A tripwire terminates its local run
of the algorithm if it does not receive any decision update packet within a specified
time interval. It assumes that a global resolution has been achieved and proceeds with
waking up the tracker nodes.  The algorithm takes as input from the application the
number of nodes that need to be woken up for a sensing task, as well as an
optimization function to be used by the algorithm, in order to evaluate the
“appropriateness” of a chosen set. This way, the algorithm is isolated from many
                                                          
2 Typical sensor applications duty cycles may be as low as 5%
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application details. Its interface is kept simple and general enough to accommodate a
wide range of sensing applications and adapt to each application’s specific
optimization goals. In this respect, our algorithm is application-morphable. Our
scheme makes only a minimum number of “helpful” assumptions, in order to be in
accordance with typical sensor network operational requirements, which may not hold
in other wireless environments (e.g. cellular, ad hoc networks). Specifically, tripwire
nodes are not required to have any ids and only single-hop broadcast messages are
used for all tripwire communications. Only tracker nodes are assumed to have some
kind of local or global id.

We use both analysis and simulations to evaluate the performance of our
algorithm. We prove that our algorithm always converges to the optimal set of tracker
nodes, for a specific class of optimization functions and show that it does so quickly
enough (in less than 100ms) to be of practical value in sensor applications with real-
time requirements. We further show that the total number of messages transmitted by
all tripwires until the algorithm finished is close to an optimal (but not practical)
approach. Finally, we demonstrate that our algorithm is very robust, managing to
retain its correct and efficient behavior for a wide range of scenarios, even under
hostile environmental conditions (e.g. link loss probabilities up to 35%).

In the next section, we identify the sensor network specific operational
requirements and formulate the problem. In section 3, we provide a brief description
of the range of approaches that can be taken to solve the basic problem posed in this
paper and present our proposed solution. Performance results for our distributed
algorithm are given in section 4. Finally, in section 5, we conclude the paper and
discuss directions for future work.

2 Problem Formulation and Considerations

We assume that a large number of tripwire nodes are deployed along with a smaller
number of tracker nodes in a field of interest. When no event is detected, all tracker
nodes are off, performing no sensing, computation or communication. We assume
that the tracker node radio either wakes up periodically and listens for incoming
messages or has a low-power paging channel that is constantly on, listening for
incoming “wake-up” messages. Tripwires are sensing for events at all times, but may
keep their processor and radio off, while no event is sensed. When an event occurs, a
number of tripwire nodes, say N, detect this event (e.g. receiving signal power
exceeded some threshold). Note that N is not fixed, but depends on the strength and
type of signal emitted by the event as well as the tripwire node topology and
surrounding environment. For example, an acoustic signal can propagate further than
a seismic signal and would therefore result in more tripwire nodes (i.e. larger N)
detecting the event. In this work, we assume that these N tripwires are close-by and
form a connected network. The issues of how to design and deploy the sensor
network, in order to guarantee connectivity or full coverage of the field, with a very
high probability, have been dealt with elsewhere [17] [18].

Each tripwire is initially associated with zero or more tracker nodes, by means of
existing paths/gradients [7], established during some initialization phase, or simply by
direct communication. Let M be the total number of trackers that are associated with
at least one of the N tripwires (M < N). Any tracker j is characterized by a set Aj of
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attributes, like location, energy level, etc. Tripwire nodes learn about those attributes
initially during association and subsequently by handshake, when waking up a
tracker. Tripwires are not required to have a consistent view of trackers attributes.
This may result because of different tripwires inquiring about the same tracker’s
attributes at different times. However, it is required that at least one tripwire has the
correct (most recent) value for the attributes of interest for each of the M trackers.

The problem is to choose a set of K tracker nodes among the M possible ones that
is optimal in regards to some optimization function F. Both K and F are application-
dependent and are regarded as input parameters to the algorithm. F is an appropriate
function of some or all tracker attributes, for the trackers belonging in a specific set of
size K. If define as AR the range of all allowable values for an attribute set Aj then:
F:ARK  R or F = f(A1, A2, …, AK). It captures the application-specific optimization
goal(s). For example, if the application’s goal is to choose the K trackers that have the
maximum amount of remaining battery level, the following function F could be used:
F = E1 + E2 + … + EK, where Ej is the battery level of tracker j in the chosen set of
trackers. As another example, the application may wish to wake-up the tightest cluster
of K trackers. In this case the application’s optimization goal could be captured by
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optimization function is required to be simple enough to be calculated efficiently by
the limited processing resources of the tripwire node.

Any algorithm devised for this problem should have the following goals:
� Correctness: Each tripwire should come up with the same “good” set of trackers.
� Convergence Speed: Sensor applications usually have hard real-time requirements

(e.g. tracking of moving target). Therefore, all tripwire nodes should converge
quickly enough to allow the tracking nodes time to meet those requirements.

� Message efficiency: The total number of messages exchanged throughout the
decision process is a direct indicator of the total energy spent in the network for
communication. Consequently, it should be kept low.

� Fault-tolerance and Robustness: Many sensor applications are mission critical.
Consequently, it is necessary that the algorithm remains efficient even when a
number of failures occur (e.g. node failures, link losses, collisions, etc.)

In addition to these goals, any solution to this problem as well as to many other
sensor-related problems must take into account a number of salient features of sensor
networks that are not common in other wireless contexts. Many proposed schemes for
sensor network problems have been directly transported from the related discipline of
wireless ad-hoc networks or other related areas and adapted for the case of sensor
networks. However, specific assumptions have been carried along in some cases with
these schemes that do not necessarily hold for wireless sensor networks. Failure to
take into account the following idiosyncrasies of sensor networks can lead into
impractical and inefficient approaches to solving sensor network specific problems.

Sensor applications are most often data-centric [8]. Additionally, sensor nodes are
expected to be mass produced and deployed in a dense fashion to achieve high
redundancy and fault-tolerance. Hence, it may be impractical or unnecessary to assign
each sensor node a unique global id. Furthermore, the environment under which a
sensor network is going to operate is expected to be very harsh. Shadowing and
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fading effects, inadvertent interference or jamming as well as adverse ground
reflection effects, due to very low antenna heights, result in frequent and random link
losses. Consequently, one should not assume “clean” models (e.g. cells, circles, etc.)
for the effective communication range for a sensor node’s radio and design protocols
that are able to cope with the harsh propagation phenomena in a sensor network.
Finally, despite the improvement in hardware and electronics technologies,
computational power, memory, communication bandwidth and energy are still
expensive and limited resources for wireless sensor nodes, even more than they are
for wireless PDAs or laptops.

3 Distributed Wake-up Algorithm

In this section we will present our proposed solution to the problem, which is a
fusion-based distributed algorithm. However, we first present the two different edges
in the continuum of approaches that can be taken to tackle the basic problem and
highlight their advantages and disadvantages, in respect to the 4 goals defined in
Sec.2. We do so, in order to provide necessary intuition and justify the decisions we
made in our design.

3.1 A Baseline Distributed Approach

A lot of work has been done in the past on a number of different issues related to
distributed algorithms and their performance and limitations (see Chandy and Misra
[19]). Here we describe a common, simple, approach, which is to have each node
acquire global information and individually make a local decision. This way, if all
nodes perform the same decision algorithm on the same global set of data, they all
will come up with the same set of optimal nodes. In our general application model,
this would mean that all N tripwires will need to acquire the necessary data for each
of the M trackers, in order to locally choose the optimal set of K trackers, based on F.
A general way to reach this state of global knowledge is to have each node flood each
local view throughout the network. This exchange of information can be performed
either in proactive (e.g. periodical) or reactive (e.g. event-triggered) manner.

An important concern when running any flooding-based algorithm in a wireless,
shared media, network is the potential collisions of different update packets
transmitted by neighboring nodes at about the same time. One way to deal with this
problem would be to use some collision avoidance protocol, like 802.11 [9], which
reserves the media before the actual data transmission. The use of the 802.11 protocol
has two important drawbacks. First, it is based on the assumption of unique node IDs
and can only reserve the media for point-to-point communication. Hence, one should
either emulate broadcast by point-to-point transmission to each neighbor or just
broadcast and let the back-off algorithm resolve the collisions that will occur. Either
case would increase both delay and total number of messages for the algorithm to
converge. Therefore, we choose to enforce some randomization to the basic flooding
algorithm, in order to prevent synchronization of updates and avoid potential
collisions (to a large extent). Specifically, a node periodically broadcasts update
messages (if it has any), choosing in every step a different waiting period, uniformly
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distributed in [0, T], where T is the maximum amount of time that a tripwire node
may wait before broadcasting its update.

Assuming that no link or node failures occur during the data exchange, the
algorithm will result in each node calculating the same, optimal, set of trackers. This
follows from the fact that each node makes its decision by applying the same decision
function on the same set of information. Each tripwire node will broadcast an update
it receives (or its own initial local info) in at most time T after its reception.
Therefore, if DN is the diameter of the connected network formed by the N tripwires
then it will take at most Tcv for all local info messages to propagate throughout the
whole network and the algorithm to converge, where Tcv is given by T*DT NCV = .

Each of the N tripwire nodes has to receive and forward information about all M
trackers, at least once. Therefore, in the worst case (e.g. a different update message
propagates throughout the network for each of the M trackers) the total number of
messages MTOT that needs to be transmitted will be M)*O(NMTOT = .

Finally, flooding algorithms can exhibit very good fault-tolerance and robustness
properties. This is because they can discover all alternative paths from each node to
another in a straightforward manner. Therefore, even if link conditions or a collision
results in loss of some update packet to a node from one path, this packet will
probably reach the node from some alternative path if there is any

3.2 A Centralized Approach

The opposite end in the continuum of approaches is the centralized one. In the general
centralized case, some leader for the whole network needs to be elected [10]. This
leader is going to collect data from all other nodes, combine them or make a decision
based on the global data, and send back to all the nodes (or some specified sink node,
depending on the application) the final result or decision.  A path from each node to
the leader must be pre-established (during initialization or periodic re-configuration)
and be known, before data can be gathered at the leader. Different approaches can be
taken to establish those paths, based on the specific application requirements and/or
optimization goals. One approach would be to enforce a spanning tree on the network
rooted on the elected leader. Then, each node can send its local view (e.g. set of
associated trackers along with values for their attributes) up the tree towards the
leader. Parent nodes combine data from children nodes with their own and further
forward it up the tree. When the root node (leader) has collected all necessary info, it
can use this to make a decision and forward that back to all nodes through that tree.
Such a tree could be constructed, for example, by implementing diffusion routing [7]
to establish gradients towards the leader.  Alternatively, one could establish a shortest
path (i.e. greedy) chain that spans all nodes in the network. Each node will then send
its info to the successor in the chain, which in its turn will combine the received
message with its own and forward it to its own successor. When the last node (leader)
in the chain is reached, it will make a decision based on the global data and send back
this decision through that chain to all nodes. This approach is slower than the
spanning tree one, but can be more energy efficient when transmission distances are
relatively long or environment is harsh [11].

We claim that adopting any centralized approach for our problem would be
conflicting with the fault-tolerance and robustness requirements posed earlier for any
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algorithm used. Additionally, it is evident that both approaches presented require a
number of “helpful” general assumptions to be made, in order to be feasible (e.g.
require tripwire nodes to have unique ids, in order to construct the spanning tree or
chain). This would ultimately lead in lack of correctness and/or convergence under a
broader range of operating conditions. Furthermore, it is well known that centralized
approaches do not scale well with large number of nodes, which may be the case in
many sensor applications. However, a centralized approach for this problem, albeit
impractical in many cases, could be designed to be optimal in theory in terms of
specific goals (e.g. energy-efficiency, delay, etc.). Therefore, we will analyze and use
the performance of the centralized algorithm as a means to compare our distributed
algorithm’s performance to the best achievable one.

Since the algorithm is centralized, the leader (i.e. tree root or last node in chain)
will eventually receive info by all nodes, assuming no nodes fail and no collisions
occur. Therefore, it will be able to make an optimal decision and send it back to all
nodes. In the case of the spanning tree, sibling nodes will collide if the try to transmit
to their parent at the same time. Therefore, a random waiting interval, uniformly
distributed in [0, T’], must be enforced, before each sibling will send its message to
the parent. Note that the maximum waiting interval T’ that is necessary to avoid
collisions between neighboring nodes, with a high probability, depends on the average
number of children per node compared to the case of the baseline distributed
algorithm, where the maximum waiting time interval T depends on the average node
degree (i.e. number of neighbors) in the network. In any case T’ is at most equal to T.
Let us denote the average number of children per node as d. Then the convergence
time for the algorithm will be at most NT’*log*2T dCV = . The total number of

messages in each case will be equal to N*2MTOT ≈ , since each node (excluding

leader and leaf nodes) has to send one message “upwards” to the leader and forward
back the decision message down the tree or chain.

3.3 A Fusion-Based Distributed Algorithm

One drawback of flooding is that it requires each node to maintain a considerable
amount of state information, in order to recognize duplicate packets. Additionally, it
may propagate non-useful info throughout the network, resulting in a large number of
unnecessary transmissions. Specifically, a node will forward a packet containing new
info, regardless of whether that info is going to be useful or not in making the final
local decision. For example, assume that the tripwires are cooperating in order to
choose the 2 trackers with the maximum amount of energy, among the M ones.
Assume further that some tripwire j, which has already broadcasted a packet
containing two trackers T1 and T2 with their respective energy levels E1 and E2,
receives a new packet containing the following info: {T3, E3}, {T4, E4}. If
E1,E2>E3,E4, then T3 and T4 do not belong in the optimal solution constitute non-
useful information that should not propagate any further. This last argument is the
motivation for our distributed fusion-based algorithm.

Our algorithm consists of one basic fusion-and-update step and a back-off
mechanism, designed to optimize performance. First, we’re going to present the basic
algorithm steps and prove the conditions under which the basic algorithm converges
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to the correct (i.e. optimal) decision. Then, we’re going to present the complete
algorithm, along with its termination condition, and discuss how the back-off
mechanism affects its performance.

3.3.1 Basic Algorithm and Convergence Requirements

We have already formulated the basic problem, but here we’ll summarize the
assumptions for the sake of clarity:

- There are N tripwires and M trackers. Choose K trackers among M that
optimize some function F (K < M < N)

- The tripwires form a connected network
- Each tracker j is related with a set of attributes Aj (e.g. energy, location, etc.),

that are known by each tripwires associated with tracker j.
- F = f(A1, A2, …, AK) is a function of the trackers’ attributes belonging in a

chosen set of size K.
- Each tracker j is associated with at least one tripwire node.

- Function F unambiguously ranks all 





K

M
 choices in some total order.

The basic algorithm is the following and is executed by all tripwires:

Initial Step) Each tripwire is associated with an initial set of (0 to K) tracker nodes. If  
more than K tracker nodes are within reach of a tripwire, then the tripwire chooses
the K “best” ones using function F. It assumes that this initial set is the optimal set of
nodes and broadcasts it.

Fusion-and-Update Step) Upon receiving a set of nodes from some neighbor,  
combine(fuse) the received set with the current one using F, to produce a superior,
higher-ranked, set if possible.

- If a superior set is produced, update the current set and broadcast it.
- If not, ignore the received set and do not broadcast an update

Lemma 1: If any set of nodes S1 = {s11, s12, …, s1K) that contains some number of
nodes, say N1, that belong in the optimal set of tracker OS = {os1, os2, …,osK), is
ranked higher according to F than any other set containing less than N1 nodes in OS,
then: The comparison of two sets S1= {s11, s12, …, s1K) and S2= {s21, s22,…,s2K) at some
tripwire node can only yield a set S3 that is ranked equal or higher than both S1 and
S2. Note: osi, s1i, s2i ∈M
Proof: There are only to possible cases that cover all scenarios:
Case 1) Assume there is some j for which OSs1j ∈  and there is no i for which

OSs2i ∈ , then S1 wins over S2 at this node. Consequently, S1 continues to be the

current set, while S2 gets discarded at this node.
Case 2) If there are “optimal” nodes (i.e. nodes belonging in the optimal set OS) in
both S1 and S2, then the combination from S1 and S2 that contains the largest number
of “optimal” nodes is ranked the highest among any other combination of choices
from S1 and S2. Since all combinations are tried, it is guaranteed that the best one
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among those will be discovered and get chosen (i.e. win) over both S1 and S2, which
both get discarded at this node.

Lemma 2: Any non-optimal set of trackers S1 will propagate through the network for
a finite number of steps, less than N, before it encounters a tripwire node with another
set of trackers S2, the combination of which (S1 and S2) results in a set S3 that is
higher-ranked than S1.

Proof: According to the basic algorithm, a set S1 that is received by some node L,
will be further propagated (as is) by node L, only if it’s superior than L’s current set
(say S2) and L’s current set does not contain any optimal nodes (as shown before).
Otherwise, S1 will either “lose” to S2, or produce a higher ranked set S3 and trigger a
broadcast of the new set S3. If set S1 is non-optimal then it cannot visit all tripwires N
and win over the local choices without producing a new better choice. Otherwise, S1
would be optimal.

Theorem 1: The basic distributed fusion-based algorithm converges after a finite
number of steps to the optimal set of trackers OS, if and only if: any set of nodes S1 =
{s11, s12, …, s1K) that contains some number of nodes, say N1, that belong in OS, is
ranked higher according to F than any other set containing less than N1 nodes in OS.

Proof:
Direct) Assume there are I initial sets in the network of tripwires, where
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be an initial set or get constructed at some step in the algorithm. According to Lemma
1, at any step of the algorithm the comparison of any two sets of trackers will never
yield another set that is lower ranked than the initial two. Furthermore, according to
Lemma 2, each set will take at most N steps to prevail (if optimal), produce a better

one and trigger its broadcast, or lose. Therefore, it will take at most N*
K

M
 





 steps

for all possible sets (including the optimal one) to propagate and the optimal one to
prevail.

Converse) We’re going to prove the converse, by the use of a counterexample.
Assume the problem is to choose 2 among 4 total trackers. Let the 6 possible pairs be
ranked by some F from better to worse as follows: (x1,x2), (x3,x4), (x1,x3), (x4,x2),
(x1,x4), (x2, x3). It is evident that Lemma 1 cannot be applied for this scenario.
Assume there are 3 tripwires, A, B, and C, with the following initial sets: A -> (x3,
x4), B -> (x1, x4), C -> (x2, x3). All 4 trackers are associated with some tripwire.
However, if A broadcasts his set first, and reaches B and C, then (x3, x4) will win
over (x1,x4) and (x2,x3) and prevail. After that, there is no way that the basic
algorithm can find the optimal solution (x1,x2), since neither x1 nor x2 are included
in any existing set any more.
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3.3.2 Complete Algorithm

The complete algorithm is created by introducing some amount of randomization on
each step of the basic algorithm and adding a termination condition for it. Here are the
modified steps of the distributed fusion-based algorithm:

Initial Step) Each tripwire is associated with an initial set of (0 to K) tracker nodes. If  
more than K tracker nodes are within reach of a tripwire, then the tripwire chooses
the K “best” ones using function F. It assumes that this initial set is the optimal set of
nodes. The tripwire waits for an amount of time t1, uniformly distributed in [0, T] and
then broadcasts the initial set. T is initially set to maxDelay, where maxDelay is a
parameter of the algorithm.

Fusion-and-Update Step) Upon receiving a set of nodes from some neighbor,  
compare the received set with the current one using F, to produce a superior, higher-
ranked, set if possible.

- If superior set produced, update the current set. Reduce the maximum
backoff time T: T = max {T / d, Tmin}, where d is a parameter of the
algorithm. Wait for an amount of time t2, uniformly distributed in [0, T] and
broadcast the updated set.

- If not, ignore the received set. Continue counting down to the next update
broadcast (if one is pending)   

Termination Condition and Actions) If no update message has been received for  
maxDelay time since the last update has been received, assume that the algorithm has
reached a global decision and should terminate. Compare the initial associated set of
trackers with the final chosen set. If there are any common trackers in both sets, send
a wakeup message to those nodes. A tracker that successfully receives a wakeup
message will broadcast an acknowledgement that it has woken up. This
acknowledgement prevents other tripwire nodes, from sending redundant wake-up
messages to the same trackers. The tripwire terminates its run of the algorithm when
acknowledgements by all associated trackers belonging to the final set have been
received.

The reason for introducing the random waiting is twofold. First, it helps avoid
synchronization effects between nodes’ transmissions. If a fixed period was to be used
for the updates, then concurrent transmissions by nearby nodes would result in a
collision and either retransmission of the packets, if the collision gets detected, or else
permanent loss of the transmitted packet. The former would imply an increased
number of transmitted messages as well as increased delay. The latter could
compromise the correct operation of the algorithm, if the algorithm is not robust
enough to overcome a few packet losses of this kind. Second, it tries to dynamically
impose some hierarchical structure on the flow of information between tripwires and
hence approach the centralized algorithm’s performance. However, it does so without
requiring any initialization or re-configuration protocol to explicitly enforce this
structure beforehand. The price paid for this lack of pre-existing structure is that each
link of this structure may potentially be “traversed” more than twice, which is the case
for the (optimal) centralized algorithm. Finally, note that only a reasonable amount of
computation needs to be performed by each tripwire node during the fusion-and-
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update step. In the general case, all possible combinations resulting from the merging
of two sets of tracker would need to be examined, to make sure that the higher-ranked
set will be discovered. This would imply an exponential (on K) amount of work.
However, for the classes of converging functions that we’re interested in, the higher-
ranked set can be produced through only a linear (on K) number of combinations
checked. We defer addressing the issue of computational complexity of different
fusion algorithms for general optimization functions for future work.

4 Performance

We have simulated our algorithm using a high-level, event-driven, sensor network
simulator we’re building at USC. The tripwire topology assumed in all scenarios is a
NxN random grid. A random grid has a grid-like structure, but with the following
differences: Each vertex of the grid has a random skew from its position in a perfect
grid, in order to model typical deployment processes that provide adequate coverage
of the sensor field. Additionally, some links in the grid may not exist. Finally, extra
bypass links may exist in the grid. The latter two model random propagation effects
(e.g. shadowing, fading, ground reflection, etc.) that result in non-predictable
connectivity effects in real sensor network [12]. The tracker nodes are uniformly
distributed in the field.  In the following paragraphs, we present the performance of
our algorithm in terms of message complexity, convergence delay and fault-
tolerance/robustness. All results are averaged over a large number of runs for various
scenarios.

4.1 Message Complexity

In Fig.1, we depict the number of total messages transmitted by all tripwire nodes
involved, until the algorithm converges, as a function of the number of tripwire nodes
(N) and the number of trackers (M). It is evident that the number of total messages
grows linearly with N, but is not sensitive to M. Specifically, we can see that our
algorithm is more efficient and scalable than the distributed baseline (flooding)
algorithm, whose message complexity grows linearly with M as well. Furthermore,
the total number of messages is in the order of 3N for all M and N, which is quite
close to the optimal 2N of the centralized approach.
    In Fig.2 we examine another two aspects of the algorithm’s behavior, namely the
algorithm’s dependence on the number K of trackers to be chosen and its load-
balancing behavior. We can see that the number of total messages increases with
increasing K. However, this dependency is not linear, as in the case of N. This
behavior is ratified as follows: While K approaches M the number of extra messages
per increase of K decreases, since info about a larger percentage of the tracker nodes
is already included in the message. Finally, it is evident that our algorithm is able to
balance the load of total messages among all participating tripwire nodes. This is very
important in order to avoid depleting any specific tripwire’s energy and maximize the
network’s operational lifetime.
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Fig. 1. Number of total messages needed for the algorithm to converge as a function of the
number of tripwires (N) and trackers (M). An NxN random grid topology is assumed, with N
from 5 to 8. The number of trackers K to be chosen is fixed to 3.

Fig. 2. The graph on the left shows the number of total messages as a function of K. N is fixed
to 49 (7x7 random grid) and M is fixed to 18. The graph on the right depicts the distribution of
number of messages per tripwire node for two different scenarios.

4.2   Convergence Delay

The basic time unit in our algorithm and implementation is assumed to be the time it
takes to transmit a single message. All other waiting interval parameters of our
algorithm are calculated as multiples of that time. Therefore, the convergence time of
the algorithm is not absolute, but is measured in terms of the basic time unit.
However, in order to demonstrate the feasibility and practical value of our algorithm,
we present results for its convergence delay, assuming a reasonable message
transmission time, derived from current applicable technology specifications.
Specifically, we have assumed that the message size is equal to 40 Bytes and
transmission rate is 1Mbps for our simulations. The exact message size will depend
on K, as well as the attributes that needed by function F. Nonetheless, 40-50 Bytes is
a representative value, considering that K will not be too large and F is required to be
relatively simple. Faster radios would reduce this time, while large Ks or a function F
that depends on a large number of tracker attributes would increase it.
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Fig. 3. Convergence delay of distributed wake-up algorithm as a function of the number of
tripwire nodes (N) and tracker nodes (M). K is fixed to 3.

In Fig.3 we show the time it takes for the algorithm to converge (i.e. until all
tripwires have decided on the final/optimal set of trackers to be woken up) as a
function of N (no. tripwires) and M (no. of trackers). It is evident, as in the case of
message complexity, that convergence delay is mainly affected by the total number of
tripwires N and not as much by the total number of trackers. In all scenarios
presented, the convergence time is less than 100ms. Therefore, we conclude that the
delay overhead of our waking up algorithm is not very significant and the algorithm is
fast enough to allow time to the trackers to do the “useful” work.

4.3 Fault-Tolerance & Robustness

In Fig.4 we examine the behavior of our algorithm under increasing link loss
probability (i.e. probability that a message, that should otherwise be received
correctly, is lost). It is evident that the algorithm is able to perform very well even in
very harsh environments. It manages to overcome almost all losses and perform
correctly up to a “threshold point” (~35%), where significantly sized patches of non-
optimal decisions start to appear in the field. Such high link loss probabilities may
seem unrealistic for the typical sensor network. However, it is interesting to study the
behavior of the algorithm under such high losses, since they could realistically model
more hostile environments, where adverse ground-propagation effects or jamming
may be present.
    Intuition for why this threshold point exists is provided in Fig.5. Some link losses
result in avoiding some collisions that would otherwise have occurred. Consequently,
initially the number of total losses (collisions + link losses) does not grow rapidly and
our algorithm can overcome them, by discovering (or re-discovering) alternate paths.
However, after a specific point/threshold the number of alternate paths in the topology
as well as well as any inherent redundancy in the algorithm is not enough to
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probabilistically overcome the majority of message losses. At this point, the algorithm
starts to allow considerable decision inconsistencies among tripwire nodes.

Fig. 4. The left graph depicts the percentage of tripwire nodes that fail to converge to the
optimal set of trackers, as a function of the link loss probability, while the graph of the right
shows how link loss probability affects the convergence delay of the algorithm.
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bad link conditions) are counted in terms of messages that should have been received

A final observation that needs to be made is the following. A few (<10%) incorrect
tripwire decisions do not necessarily result in incorrect overall behavior. According to
the termination step, each tripwire will attempt to wake up a tracker only if that
tracker belongs in both its initial and its final set of trackers. In most of the scenarios
observed, only a few non-optimal (but high-ranked) tracker nodes, if any, will manage
to not lose to the optimal ones after the end of the algorithm. Therefore, the
probability of some tripwire having a non-optimal tracker in its final set and having
that same tracker in its initial set is low, if the total number of misbehaving tripwires
is also low. Consequently, in most cases where more than 90% of the tripwires
converge, zero or one extra (non-optimal) trackers are expected be woken up.
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4.4  Performance of Fusion-Based Algorithm for General Optimization
Functions

We have used simulations to evaluate our algorithm’s behavior for general
optimization functions, that is, functions that do not provide a partial or total ordering
of the different sets. Such functions appear in scenarios like, for example, in the
search for the tightest cluster of trackers or functions that are non-trivial combinations
of distances between trackers, battery level of trackers and other tracker attributes.
Those functions are not covered by Theorem 1, and therefore our algorithm does not
provably converge to the optimal set. However, our simulations indicate that our
algorithm manages to produce the correct, optimal, set of trackers for the vast
majority of trial scenarios and a range of non-conforming optimization functions.
Furthermore, it does so with no noticeable extra overhead. We plan to look further
into such optimizations functions from a theoretical point of view, in future work.

5 Conclusions and Future Work

In this paper, we have presented a general fusion-based distributed algorithm for
waking up in a heterogeneous sensor network, consisting of two types of sensor
nodes, namely tripwire and tracker nodes. In our algorithm, tripwire nodes coordinate
among each other to decide on an optimal set of a specific number of trackers to
perform some sensing task. The number of trackers to be woken up, and an
optimization function to be used to evaluate the appropriateness of a set, are provided
by the application. We have proven the convergence of our algorithm for specific
classes of optimizations functions. Furthermore, we have demonstrated that our
algorithm is efficient, in terms of message complexity and convergence delay, for the
majority of realistic scenarios. Finally, we have shown that our algorithm exhibits a
very robust and fault-tolerant behavior, making it applicable for sensor applications
operating in hostile environments, where adverse propagation effects like shadowing,
fading and jamming are the rule, rather than the exception.

In the future, we’re planning to further explore the behavior of the algorithm for
different classes of optimization functions. Specifically, we would like to identify
ways to approximate non-converging optimization functions with converging ones,
and devise appropriate variations of the basic algorithm, in order to achieve near-
optimal results for a wider range of function classes. Finally, we plan to extend our
algorithm and provide a complete framework for event-driven sensor applications
where, waking up appropriate tracker nodes when an event is detected, routing the
result(s) back to the sink(s) and potentially cueing of a moving event/target, are all
handled uniformly and efficiently.
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Abstract. The wireless sensor network is an emerging technology that may
greatly facilitate human life by providing ubiquitous sensing, computing, and
communication capability, through which people can more closely interact with
the environment wherever he/she goes. To be context-aware, one of the central
issues in sensor networks is location tracking, whose goal is to monitor the roam-
ing path of a moving object. While similar to the location-update problem in PCS
networks, this problem is more challenging in two senses: (1) there are no central
control mechanism and backbone network in such environment, and (2) the wire-
less communication bandwidth is very limited. In this paper, we propose a novel
protocol based on the mobile agent paradigm. Once a new object is detected, a
mobile agent will be initiated to track the roaming path of the object. The agent
is mobile since it will choose the sensor closest to the object to stay. The agent
may invite some nearby slave sensors to cooperatively position the object and in-
hibit other irrelevant (i.e., farther) sensors from tracking the object. As a result, the
communication and sensing overheads are greatly reduced. Our prototyping of the
location-tracking mobile agent based on IEEE 802.11b NICs and our experimental
experiences are also reported.

1 Introduction

The rapid progress of wireless communication and embedded micro-sensing MEMS
technologies have made wireless sensor networks possible. Such environments may have
many inexpensive wireless nodes, each capable of collecting, processing, and storing
environmental information, and communicating with neighboring nodes. In the past,
sensors are connected by wire lines. Today, this environment is combined with the
novel ad hoc networking technology to facilitate inter-sensor communication [8]. The
flexibility of installation and configuration is greatly improved. A flurry of research
activities have recently been commenced in sensor networks.

With sensor networks, the physical world can interact with the internet more closely.
Grouping thousands of sensors together may revolutionize information gathering. For
example, a disaster detector may be set up so that temperatures of a forest can be
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monitored by sensors to prevent small harmless brush fires from becoming monstrous
infernos. Similar techniques can be applied to flood and typhoon detection. Another
application is environment control; sensors can monitor factors such as temperature and
humidity and feed these information back to a central air conditioning and ventilation
system. By attaching sensors on vehicles, roads, and traffic lights, traffic information
can be fed back to the traffic control center immediately. Location-based services can be
combined with sensor networks. We can dispatch a mobile agent following a person to
provide on-site services (such applications might be attractive for disability people who
have such as hearing or visual problems). Sensors may also be used in combination with
GPS to improve positioning accuracy. However, many issues remain to be resolved for
the success of sensor networks.

– Scalability: Since a sensor network typically comprises a large number of nodes,
how to manage these resources and information is not an easy job. Distributed and
localized algorithms are essential in such environments [1,6,7]. Also, scalability
is a critical issue in handling the related communication problems. In [17,18,19],
the coverage and exposure of an irregular sensor network are formulated as com-
putational geometry problems. This coverage problem is related to the Art Gallery
Problem and can be solved optimally in a 2D plane, but is shown to be NP-hard in the
3D case [10]. Regular placement of sensors and their sensing ability are discussed
in [4] and [13].

– Stability: Since sensors are likely to be installed in outdoor or even hostile environ-
ments, it is reasonable to assume that device failures would be regular and common
events. Protocols should be stable and fault-tolerant.

– Power-saving: Since no plug-in power is available, sensor devices will be operated
by battery powers. Energy conservation should be kept in mind in all cases. Energy
consumption of communications might be a major factor. Techniques such as data
fusion may be necessary [3], but the timeliness of data should be considered too. Data
dissemination is investigated in [5]. Mobile agent-based solutions are sometimes
more power-efficient [9].

Since sensor networks are typically used to monitor the environment, one funda-
mental issue is the location-tracking problem, whose goal is to trace the roaming paths
of moving objects in the network area [15,21,11,16,14]. This problem is similar to the
location-update problem in PCS networks, but is more challenging in two senses: (1)
there are no central control mechanism and backbone network in such environment, and
(2) the wireless communication bandwidth is very limited. In this paper, we propose
a novel protocol based on the mobile agent paradigm. Once a new object is detected,
a mobile agent will be initiated to track the roaming path of the object. The agent is
mobile since it will choose the senor closest to the object to stay. In fact, the agent will
follow the object by hopping from sensor to sensor. The agent may invite some nearby
slave sensors to cooperatively position the object and inhibit other irrelevant (i.e., far-
ther) sensors from tracking the object. Using mobile agents may have two advantages.
First, the sensing, computing, and communication overheads can be greatly reduced. In
this work, we will address the delivery and fusion of the tracking results [22]. Second,
on-site or follow-me services may be provided by mobile agents. Our prototyping of
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the location-tracking mobile agent based on IEEE 802.11b NICs and our experimental
experiences are also reported. The work reported in this paper is an extended version of
our previous work [20]. Irregularity of sensor deployment is considered. The data fusion
issue for sensors to process and deliver the collected information is addressed, too. Also,
performance of the proposed data fusion strategies are compared through simulations.

The organization of this paper is as follows. Section 2 describes our network model
and defines the location-tracking problem. Our protocol based on mobile agents is pre-
sented in Section 3. Fusion and delivery of tracking history are discussed in Section 4.
Our prototyping experiences and some simulation results are given in Section 5. Section 6
draws our conclusions.

2 Network Model and Problem Statement

We consider a sensor network, which consists of a set of sensor nodes placed in a 2D
plane. Sensors may be arranged as a regular or irregular network, as shown in Fig. 1.
However, unless otherwise stated, throughout the discussion we will assume a triangular
network as illustrated in Fig. 1(a), our framework should be easily extended to other
regular, or even irregular, networks (this will be commented in Section 3-3). In order
to track objects’ routes, each sensor is aware of its physical location as well as the
physical locations of its neighboring sensors. Each sensor has sensing capability as well
as computing and communication capabilities, so as to execute protocols and exchange
messages.

(a) (c)(b)

Fig. 1. (a) Triangular, (b) square, and (c) irregular sensor networks.

Each sensor is able to detect the existence of nearby moving objects. We assume
that the sensing scope is r, which is equal to the side length of the triangles1. Within the
detectable distance, a sensor is able to determine its distance to an object. This can be
achieved either by the fly time or signal strength that are transmitted by the object, or of
the signals that are transmitted by the sensor and reflected by the object.

We assume that three sensors are sufficient to determine the location of an object.
Specifically, suppose that an object resides within a triangle formed by three neighboring
sensors S1, S2, and S3 and that the distances to the object detected by these sensors are

1 In practice, r should be slightly larger than the side length. We make such an assumption for
ease of presentation.
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r1, r2, and r3, respectively. As shown in Fig. 2(a), by the intersections of the circles
centered at S1 and S2, two possible positions of the object can be determined. With
the assistance of S3, the precise position can be determined. (It should be noted that
in practice errors may exist, and thus more sensors will be needed to to improve the
accuracy.)

The goal of this work is to determine the roaming path of a moving object in the
sensor network. The trace of the object should be reported to a location server from time
to time, depending on whether this is a real-time application or not. The intersection of
the sensing scopes of three neighboring sensors is as shown in Fig. 2(b). We further divide
the area into one working area A0 and three backup areas A1, A2, and A3. Intuitively,
the working area defines the scope where these three sensors work normally, while the
backup areas specify when “handover” should be taken.

A0

A1

A2A3

S0

S2S1

A0

(b)

S1 S2

S3

(a)

r1 r2

r3

Fig. 2. (a) Positioning example and (b) working area and backup areas.

3 The Location Tracking Protocol

3.1 Basic Idea

Our location-tracking protocol is derived by the cooperation of sensors. Whenever an
object is detected, an election process will be conducted by some nearby sensors to
choose a sensor, on which an agent will be initiated, to monitor the roaming behavior of
the object. As the object moves, the agent may migrate to a sensor that is closer to the
object to keep on monitoring the object. Fig. 3(a) illustrates this concept, where the dash
line is the roaming path of the object, and arrows are the migration path of the agent. By
so doing, the computation and communication overheads can be reduced significantly.

Recall that positioning an object requires the cooperation of at least three sensors.
The mobile agent, called the master, will invite two neighboring sensors to participate
by dispatching a slave agent to each of them. These three agents (master and slaves)
will cooperate to perform the trilateration algorithm [1]. From time to time, the slaves
will report their sensing results to the master agent, who will then calculate the object’s
precise locations.As the object moves, these slave agents may be revoked and reassigned.
Certain signal strength thresholds will be used to determine when to revoke/reassign a
slave agent. The details will be given later. In Fig. 3(a), those sensors that ever host a
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slave agent are marked by black. We comment that although our development is based
on the cooperation of two slave agents, it will be straightforward to extend our work to
more slave agents to improve the positioning accuracy. To reduce the amount of data to
be carried on, a master may decide to forward some tracking histories to the location
server. This issue will be further addressed in Section 4.

A0

A1

E0

F0

F1
S0

S1 S2

S5

S6

M

S0

S1 S2

S3 S4 S5

S6

S7

S8S9

S10

S11

(a) (b)

Fig. 3. (a) Roaming path of an object (dash line) and the migration path of the corresponding
master agent (arrows). Sensors that ever host a slave agent are marked by black. (b) Inhibiting
farther sensors S3, S4, . . . , S11 from monitoring the object.

We now discuss how slave agents are revoked and reassigned. Observe the top part
of Fig. 3(a). When resident in the working area A0, the object is tracked by sensors S0,
S1, and S2. On entering the backup area A1, since the signals received by S2 will reduce
to a level below a threshold, the slave agent at S2 will be revoked and a new slave will be
issued to S6. Similarly, on entering the backup area F1, the slave at S1 will be revoked,
and a new one will be issued to S5. As the object passes S5, the master itself will lose the
target, in which case the master will migrate itself to S5. All old slaves will be revoked
and new slaves will be invited.

When an object is in the backup areas of some sensors, it is possible that it can be
sensed by more than three sensors. To reduce the sensing overheads, master and slave
agents can inhibit other irrelevant sensors from monitoring the object. This concept is
illustrated in Fig. 3(b). The object is currently in area A0. Sensors S3, S4, . . . , S11, which
may sometimes detect the object, will be inhibited from tracking this object by warning
signals that are issued periodically by the agents in S0, S1, and S2.

3.2 Protocol Details

Below, we formally develop our tracking protocol. Since there may exist multiple objects
in the network, we have to assume that sensors can distinguish one object from the other.
This can be done by having each object periodically send a unique ID code. Otherwise,
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Out of 
sensing range
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Detect a new 
target   

Bid 
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Sensing

Fig. 4. State transition diagram of a sensor (for one particular object).

some mechanism is needed for sensors to combine proper signals from proper sensors
to differentiate objects.

We consider an environment with multiple objects. However, since the processing of
each individual object is independent, the following discussion will focus on only one
particular object. For each object, three or even more sensors will be able to detect its
existence. Fig. 4 shows the state transition diagram of each sensor. (It should be noted that
for different objects, a sensor may stay in different states.) Initially, each sensor is in the
idle state and performs the Basic Protocol. Under this state, a sensor will continuously
detect any object appearing in its sensing scope. Once detecting a new object, the sensor
will enter the election state and perform the Election Protocol to bid for serving as a
master. Most likely, the sensor that is closest to the object will win and become the master
agent, which will then dispatch two slave agents to two nearby sensors. The master will
go to the master state and perform the Master Protocol, while the slaves will go to the
slave state and perform the Slave Protocol. To prevent too frequent moves of the agents,
as long as the object remains in the working area, the states will not change. However,
once the object enters the backup areas, the roles of master and slave may be changed.
In this case, an idle sensor may be invited to serve as a master or slave. Another case
that a sensor may stay in the idle state is when it detects an object in its backup areas
and keeps on receiving inhibiting messages from neighboring sensors. This is reflected
by the self-looped transition for the idle state.

Fig. 5 shows six tracks that an object may leave a triangle. Suppose that the master is
currently in S0, and the two slaves are in S1 and S2. By symmetry, these can be reduced
3 tracks (numbered by 1 to 3). For track 1, the master discovers two slaves losing the
target simultaneously. So the master will revoke all slaves and invite two new slaves.
For track 2, only the slave agent in S1 will be revoked, and a new one will be invited.
For track 3, the master discovers one slave as well as itself losing the target. In this case,
the master should migrate itself to the sensor that can still detect the object (typically
with the strongest receive signals) and revoke all current slaves. After moving to the new
sensor, two new slaves should be invited. Finally, we comment that the object may move
too fast to be detected. If so, sensors may suddenly lose the target. As a last resort, all
agents,when losing the object for a timeout period, will be dissolved. Since no inhibiting
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S0

S2S1
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(1)
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Fig. 5. Possible roaming tracks for an object to leave a triangle.

message will be heard, all sensors must remain in the idle state for this particular object,
and new election process will take place to choose a new master to track this object. Our
protocol is thus quite fault-tolerant in this sense.

Fig. 6. The Basic Protocol.

Each sensor will keep an object list (OL) to record the status of all targets in its
sensing scope. Each entry in OL is indexed by the object’s unique identity, denoted by
ID. For each object, there are two sub-fields: status and time-stamp. ID.status can be
one of the four values: Master, Slave, Standby, and Inhibited. ID.time-stamp is the time
when the record is last updated.

Seven types of control messages may be sent by our protocol.
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(1) bid master(ID, sig): This is for a sensor to compete as a master for object ID, if
no inhibiting record has been created in OL for ID. The parameter sig reflects the
receive signal strength for this object.

(2) assign slave(ID, si, t): This is for a master to invite a nearby sensor si to serve as
slave agent for object ID for an effective time interval of t.

(3) revoke slave(si): This is for a master to revoke its slave at sensor si.
(4) inhibit(ID): This is a broadcast message for a master/slave to inhibit neighboring

irrelevant sensors from tracking object ID. The effective time of the inhibiting mes-
sage is defined by a system parameter Tinh.

(5) release(ID): This is to invalidate an earlier inhibiting message.
(6) move master(ID, si, hist): A master uses this message to migrate itself from its cur-

rent sensor to a nearby sensor si, where hist carries all relevant codes/data/roaming
histories related to object ID.

(7) data(ID, sig, ts): A slave uses this packet to report to its master the tracking results
(sig =signal strength and ts = timestamp ) for ID.

Fig. 7. The Election Protocol.

Below, we formally present our four protocols. The Basic Protocol is shown in
Fig. 6. This is an endless loop containing six event-driven actions. The first one describes
the reaction when detecting an object. If an inhibiting record exists, it will ignore the
object. Otherwise, the sensor will go to the election state. The next four events describe
the reactions when receiving a message from a neighboring sensor. In particular, if an
inhibit(ID) message is received, a timer Tinh(ID) will be set. The last event describes
the reaction when the above timer expires, in which case the object’s status will be
changed to Standby and the sensor will be allowed to monitor this object.
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The Election Protocol is shown in Fig. 7. In the beginning, a bid master message
will be sent and a timer Tbid(ID) will be set. Then the sensor will wait for three possible
events to occur: receiving bid master, receiving inhibit, and finding timer Tbid expired.
Signal strength will be used in the competition. Depending of different events, the sensor
will go to the Master or Idle state.

Fig. 8. The Master Protocol.

Fig. 8 shows the Master Protocol. The first event is to collect data from neighboring
sensors. The next two events are for slave agents and the master agent when losing the
target, respectively. Note that the areas A1, A2, and A3 refer to Fig. 2(b). The last event
is to inhibit irrelevant sensors from monitoring the object.

The Slave Protocol is shown in Fig. 9. The first event controls the timing, by timer
Trep, to report data to the master. The second event is for the master to revoke the slave.
The last event is to inhibit other irrelevant sensors.

3.3 Extension to Irregular Network Topologies

The above discussion has assumed a triangular sensor network topology. In the following,
we briefly discuss how to extend our work to handle irregular deployment of sensors.

The election process does not need to be changed because sensors can still bid for
serving as a master/slave based on their receive signal strengths. However, the rules to
migrate masters/slaves need to be modified slightly as follows. Sensors need to know the
locations of at least their two-hop neighbors. The working and backup areas are redefined
based on the sensing scope, r, of each sensor. Specifically, there is a predefined value
r′ < r. The working area of a sensor is the circle centered at itself with radius r′. The
rest of the area is the backup area. As before, we still use one master and two slaves
to track an object (although more slaves may be used). Whenever the master finds the
object moves into the backup area of itself or any of the slaves, the corresponding agent
will be revoked and new agent will be assigned.

One interesting theoretical problem is how to define the master and two slaves given
an object in an irregular network. This can be related to the classical Voronoi graph
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Fig. 9. The Slave Protocol.

problem in geometry [2]. Given a set of points V in a 2D plane, the Voronoi graph
partitions the plane into |V | segments such that each segment contains all points that
is closest to the (only) vertex in the segment. As a result, if V is the set of all sensors,
the sensor of the segment containing the object will serve as its master agent. Fig. 10(a)
shows an example. The problem can be solved by a divide-and-conquer solution in time
complexity O(|V | log |V |) [2].
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Fig. 10. Using Voronoi graphs to find the master and slaves: (a) the Voronoi graph of all vertics,
(b) the Voronoi graph after removing the master, and (c) the Voronoi graph after removing the
master and first slave.

The next two sensors that are closest to the object will serve as the slave agents. This
can be found recursively as follows. Specifically, let m be the master sensor. We can
construct the Voronoi graph again based on the vertex set V − {m}. Then the sensor,
say s1, of the segment containing the object will serve as the first slave. For example,
Fig. 10(b) is the new Voronoi graph after removing the master sensor m. Similarly,
to find the second slave, we repeat the process by constructing the Voronoi graph of
V − {m, s1}. Then the sensor, say s2, of the segment containing the object will serve
as the second slave. An example is in Fig. 10(c).

The advantage of using the Voronoi graph is as follows. For a particular location of
the object, we can sort its distance to each sensor and pick the first three sensors closest
to it. The complexity is O(|V | log |V |). However, whenever the object moves, the list
needs to be re-sorted. The computational cost increases as time proceeds. If the above
approach is used, we only need to pre-compute 1 +

(|V −1|
1

)
+

(|V −1|
2

)
Voronoi graphs.
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So the saving of using Voronoi graphs is clear when we need to track the object for
longer time.

4 Fusion and Delivery of Tracking Results

One issue not yet addressed is when a master agent should deliver its tracking result
to the outside world. We assume that one of the sensors in the network serves as the
gateway connecting to a location server in the wireline network. From time to time, the
tracking result should be sent to the location server. We assume that more tracking result
will be accumulated as time proceeds. So an optimization problem is that the master
agent needs to decide whether it should carry the tracking result from sensor to sensor,
or forward the result to the gateway.

We assume that the amount of tracking resulta increases with time at a constant
rate. Also, two pieces of tracking results can be combined with a fusion factor ρ, where
0 ≤ ρ < 1. Specifically, for two consecutive tracking results of sizes Nt and Nt+1, they
can be merged into one of size Nt + (1 − ρ)Nt+1. If ρ = 0, data fusion has no benefit.
Otherwise, the data size reduces after fusion. This is normally the case when data has
certain level of dependence. In the following, we propose three data delivery solutions.
Note that the first one is in fact not an agent-based solution. It only serves as a referential
strategy so as to make comparison to our agent-based solutions.

The first one is called the Non-Agent-Based (NAB) strategy. Each sensor works
independently and forwards its sensing results back to the gateway from time to time.
Note that the sensing result is raw data and needs to be combined with other sensors’
sensing results to calculate the object’s locations. The shortest paths, which are assumed
to be supported by the underlying routing protocol, are always used for data delivery.
Also, we assume an ideal situation that only the three sensors nearest to the object will
track the object.

The second solution is called the Threshold-Based (TB) strategy.A predefined thresh-
old value T is given. The master agent will accumulate the tracking result and “carry”
the result with it as long as the amount of result does not exceed T . Whenever the amount
reaches T , it will be forwarded to the gateway through a shortest path.

The third solution is called the Distance-Based (DB) strategy. The delivery action
may be taken only when the master agent moves. Basically, the distances from its current
and next sensors’ locations to the gateway are considered. Suppose the master agent is
currently at sensor St and is migrating to sensor St+1. Let Nt be the current amount
of tracking results at St, and Nt+1 the expected amount of tracking results at St+1.
(The value of Nt+1 may be approximated by the data generation rate times the agent’s
average sensor residential time from the past experience.) If the master decides to carry
the tracking result with it, the expected cost is:

C1 = Nt + (Nt + (1 − ρ)Nt+1)d(g, St+1),

where the first term is the cost to migrate the current result to the next sensor, and
the second term the expected cost to deliver the fused result at the next sensor to the
gateway, g. Function d() specifies the minimum number of hops between two sensors.
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If the master decides to deliver its current tracking result to the gateway, the expected
cost is:

C2 = Ntd(g, St) + Nt+1d(g, St+1).

So the master agent will carry the results with it if C1 ≤ C2; otherwise, the results will be
sent to g. Since sensors St and St+1 are neighbors, |d(g, St+1)−d(g, St)| = 1, 0, or −1.
This simplifies the condition to three cases.

– Move away: That is, d(g, St+1) − d(g, St) = 1. Then we have

C1 ≤ C2 ≡ d(g, St) ≥ 2Nt

ρNt+1
− 1. (4.1)

– Move parallel: That is, d(g, St+1) = d(g, St). Then we have

C1 ≤ C2 ≡ d(g, St) ≥ Nt

ρNt+1
. (4.2)

– Move closer: That is, d(g, St+1)−d(g, St) = −1. Then the agent will always carry
the data with it because

C1 ≤ C2 ≡ (ρNt+1d(g, St) ≥ 0) ≡ TRUE (4.3)
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Fig. 11. Experimental environment: (a) triangular sensor network and (b) square sensor network.
Dash lines represented tested roaming paths.

5 Prototyping Experiences and Simulation Results

5.1 Prototyping Experiences

In order to verify the feasibility of the proposed protocol, we have prototyped a system
based on IEEE 802.11 NICs. Signal strength is used as the criterion to position objects.
Specifically, four IBM laptops each equipped with a Lucent ORiNOCO 802.11b Wave-
LAN card are used. Three of them are placed as an equilateral triangle each separated by
80 meters to emulate sensor nodes, as shown in Fig. 11(a). One laptop is used to simulate
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Fig. 12. Experiment of signal strength vs. distance for IEEE 802.11b.

the roaming object by periodically broadcasting beacons. For better sensitivity, an extra
WaveLAN Range Extender Antenna is attached to this laptop. The sensor nodes monitor
the received beacon strength transmitted by the object using the Client Manager utility.

First, we measure the degradation of signal strength versus distance. Fig. 12 shows
one set of data that we collected. For every 5 meters from 0 to 100 meters a measurement
is recorded. As can be expected, signal strengths received from IEEE 802.11b are not
very stable. We use the “regression quadratic polynomial” to smooth out the curve, as
illustrated by the solid line in Fig. 12. The curve is used to convert a received signal
strength to an estimated distance.

Since signal strength is not an accurate measurement, the aforementioned trilateration
algorithm can not be applied directly. In fact, as one may expect, signal strengths change
all the time, even under a motionless situation. Certain gaps inherently exist between
estimated distances and actual distances. The real situation is as shown in Fig. 13, where
the three estimated circles centered at sensors have no common intersection.
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Fig. 13. The position approximation algorithm.

To solve the problem, we propose an approximation algorithm as follows. Let A,
B, and C be the sensor nodes, which are located at (xA, yA), (xB , yB), and (xC , yC),
respectively. For any point (x, y) on the plane, we then define a difference function
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σx,y = |
√

(x − xA)2 + (y − yA)2 − rA|
+ |

√
(x − xB)2 + (y − yB)2 − rB |

+ |
√

(x − xC)2 + (y − yC)2 − rC |,
Where rA, rB , and rC are the estimated distances to A, B, and C respectively. The
location of the object is determined to be the point (x, y) among all points such that its
difference function σx,y is minimized. In our experiment, we consider only integer grid
points on the plane. We measure the location of the object every second. Furthermore, to
take sudden fluctuation of signal strength into account, we enforce a condition that the
object does not move faster than 5 meters per second. As a result, when searching for the
object’s location, only those points in (x ± 5, y ± 5) are evaluated for their difference
functions, where (x, y) represents the location in the previous measurement.

Our experiments were done in an outdoor, plain area with no obstacles. Two roaming
paths as illustrated in Fig. 11(a) were tested. For roaming path (1), three sets of results
are demonstrated in Fig. 14(a). For roaming path (2), the results are demonstrated in
Fig. 14(b). As can be seen, the predicted paths are close to the actual roaming paths, but
there are still large gaps yet remaining to be improved further.

We have also tested the arrangement in Fig. 11(b), where four sensors arranged as
a square are used. The extension for the tracking protocol and positioning algorithm is
straightforward. Our tested results are shown in Fig. 14(c) and Fig. 14(d).

(a)

(c)

(b)

(d)

Fig. 14. Tracking result: (a) path (1) in Fig. 11(a), (b) path (2) in Fig. 11(a), (c) path (3) in Fig. 11(b)
and (d) path (4) in Fig. 11(b).

5.2 Simulation Results

To verify the advantage of using our agent-based approach, we have developed a simula-
tor. Sensors are deployed in a 10,000m x 10,000m environment with triangular topology.
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The distance between two neighboring sensors is 80m. The gayeway is located at the
center of the network.

Each control packet is 2 bytes. Each location is represented by 2 bytes. The IP routing
header is assumed, wtih header equal to 2 bytes and MTU as large as 500 bytes.

The Random Way Point Model [12] is used to simulate the mobility of objects.
The initial locations of objects are chosen randomly. Each object alternates between
moving and pausing states. On entering the moving state, the object’s next destination
is randomly chosen from (x± 15, y ± 15), where (x, y) is its current location. Note that
locations outside the boundary are not considered. Then the object moves at a constant
speed of an uniform distribution between 1∼3 m/sec. After arriving at its destination,
the object will pause a period with an exponential distribution of mean = 5 sec.

We first experiment on different threshold values of T for the TB strategy. The result
is in Fig. 15(a). We measure the average traffic load. A T significantly less than the
largest MTU is not good due to high packet header overheads. On the contrary, tuning T
too large is also inefficient because the master agent will need to carry too much history
while traveling. The figure suggests that a T equal to or slightly larger than the largest
MTU be a good choice. Fig. 15(b) further demonstrates the effect of the correlation
coefficient ρ. We compare different strategies. The DB strategy performs the best. The
TB also performs well, if proper T can be selected. In all cases, NAB performs the worst.

In the Fig. 16(a), we change the network size to visualize the effect. It is reasonable
that larger networks incur higher traffics due to longer delivery paths. This justifies the
importance of using our agent-based strategies. In Fig. 16(b), we further vary the mobility
ratio, which is defined to be the ratio of moving time to pausing time. A higher mobility
ratio indicates more frequent change of master agents. DB and TB with lower thresholds
are less sensitive to mobility. With a too large threshold, TB will degrade significantly
because at the time when data delivery is taken place, the distance to the gateway may
increase significantly compared to when data was generated.

To summarize, we conclude that DB performs well in all cases. TB is quite simple,
but one needs to be cautious in choosing its threshold. These strategies outperform NAB
by 60∼80% in terms of average traffic load.
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Fig. 15. Simulation results: (a) the threshold T of TB vs traffic load, and (b) the data fusion ratio
vs. traffic load.
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Fig. 16. Simulation results: (a) network size vs. traffic load (ρ = 0.1), and (b) mobility ratio vs.
traffic load (ρ = 0.1).

6 Conclusions

We have proposed a novel location-tracking protocol for regular and irregular sensor
networks. A mobile-agent approach is adopted, which enables agents to roam around to
follow the moving objects, hence significantly reducing the communication and sensing
overheads. A data fusion model is proposed, and several data delivery strategies are
proposed and evaluated. We have prototyped a system based on the idea using IEEE
802.11b NICs, where signal strengths are used as the criterion to measure objects’ posi-
tions. While the prototyping is proved to work correctly, the accuracy still has rooms to
be improved further.
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Abstract. With the advancement of MEMS technologies, wireless
networks consist of tiny sensor devices hold the promise of revolution-
izing sensing in a wide range of application domains because of their
flexibility, low cost and ease of deployment. However, the constrained
computation power, battery power, storage capacity and communication
bandwidth of the tiny devices pose challenging problems in the design
and deployment of such systems. Target localization using acoustic
signal with tiny wireless devices is a particularly difficult task due to the
amount of signal processing and computation involved. In this paper,
we provide an in-depth study of designing such wireless sensor networks
for real-world acoustic tracking applications. We layout a cluster-based
architecture to address the limitations of the tiny sensing devices.
To achieve effective utilization of the scarce wireless bandwidth, a
quality-driven paradigm to suppress redundant information and resolve
contention is proposed. One instance of the quality-driven approach is
implemented in the acoustic tracking system, where the quality of the
tracking reports can be quantified numerically. We demonstrate the
effectiveness of our proposed architecture and protocols using a sensor
network testbed based on UCBerkeley mica motes. Considering the
performance limitations of tiny sensor devices, the achieved acoustic
target tracking accuracy is extraordinarily good. Our experimental
study also shows that the acoustic target tracking quality can be
indeed measured and used to assist resource allocation decisions. This
application-driven design and implementation exercises also serve to
identify important areas of further work in in-network processing and
communications.
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sensors hold the promise of revolutionizing a wide range of application do-
mains such as battlefield surveillance, machine failure diagnosis, biological de-
tection, home security, smart spaces, inventory tracking etc[8]. In surveillance
applications, visual and audio data are two key sources of information. Air-
borne/satellite cameras can easily monitor a wide area while the collection of
acoustic information can only be done close to the source due to the limited
distance of propagation of sound in the air. As a result, we currently have many
eyes in the sky but not enough ears on the ground, so to speak. This makes
acoustic tracking of mobile targets using tiny sensing devices very attractive, as
massive deployment of wireless sensors in large area can provide more accurate
and timely information about the geographical location of the targets. The basic
idea of acoustic tracking is to detect the location of a target by analyzing the
specific cues such as delay and amplitude received by multiple sensors.

Generally speaking, wireless sensor networks consist of tiny sensory devices
deployed in a region of interest. Each device has limited processing and wireless
communication capabilities, which enable it to gather information from the en-
vironment and deliver this information to actuators for appropriate actions. The
major challenges in design and deployment of such wireless sensor networks are
the constrained computation power, battery power, storage capacity and com-
munication bandwidth of the tiny devices. Target tracking using acoustic signal
is a particular daunting task for the following reasons,

– Acoustic tracking needs collaborative communication/computation among
multiple sensors. The information gathered by a single sensor is usually in-
complete and inaccurate.

– Acoustic tracking requires a significant amount of signal processing and com-
putation to detect and locate the sources of interest.

– The reports generated by the sensing components need to be delivered to
the actuators in a timely fashion. Out-dated reports are of little use.

In this paper, we provide an in-depth study of the architecture and algorith-
mic issues in applying networks of tiny wireless sensors to real-world acoustic
tracking applications. The acoustic signal processing techniques used can be quite
simplistic, nevertheless, it provides a context for our research. In addition, in this
paper, we only deal with tracking impulsive acoustic signals, such as foot steps,
sniper shots etc. However, the networking aspect of the system is applicable to
any type of target localization.

The overall system architecture consists of two self-contained components,
the acoustic target tracking subsystem, which deals with the detection, pro-
cessing and triangulation of impulsive acoustic signals; and the communication
subsystem, which is responsible for reporting high quality tracking results to the
data sink in a timely fashion. To address the limited computational and battery
power of wireless sensor devices, we organize sensors into clusters. Sensors in
each cluster coordinate in sensing and communication to perform the sensing
task. To deal with the inaccuracy in measurement and unreliability typical with
low-end device in remote or hostile environment, we explore the redundancy in
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a large number of sensors to obtain more robust results. To achieve effective uti-
lization of the scarce wireless bandwidth, a quality-driven scheme is proposed to
suppress redundant data and resolve channel contention. The novelty of quality-
driven scheme is that it aims to increase the flow of information as compared
to raw bits. One instance of the quality-driven approach is implemented in our
testbed, where the quality of the acoustic tracking reports can be quantified.

We demonstrate the effectiveness of our proposed architecture and protocols
using a sensor network testbed consisting a number of UCBerkeley mica mote
sensor nodes and a few pc/104 single board computers. In our experiments, with
an acoustic sensor density of 0.125/ft2, we can locate a sound source with an
average error of 13.8 inches, among which 35% of the errors are less than 3 inches
and 48.3% of the errors are less than 6 inches. Our experimental study shows that
the data quality can be indeed measured and used to assist resource allocation
decisions. This application-oriented design and implementation exercises also
serve to identify and provide insights to important areas in in-network processing
and communications.

The organization of this paper is as follows. After the introductory part, we
give a brief overview of hardware constraints and the system architecture. Sec-
tion 3 presents the design and implementation of time synchronization, acoustic
signal processing and triangulation for acoustic target tracking. In Section 4, a
quality-driven in-network signal processing and communication scheme for re-
dundancy suppression and contention resolution is proposed, together with a
novel multi-parent sink-tree routing algorithm. In Section 5, we evaluate the
proposed architecture and algorithms using a sensor network testbed and con-
clude the paper in Section 6 with a list of future work.

2 System Overview

2.1 Networked Wireless Sensor Device

As stated in Section 1, our mission is to implement acoustic target tracking using
networked sensors. In designing our system, we face the following challenges:

1. Limited hardware capability (in terms of CPU MIPS, sampling rate, program
and data memory, wireless bandwidth etc.);

2. Error- and failure-proneness (e.g., due to the low sampling rate and low sam-
pling accuracy, loss of interrupt events, power constraints, physical damage
etc.);

3. Difficulty in programming and debugging embedded systems.

The specific hardware we use is mica mote, developed by UC Berkeley [5] [14].
Mica mote uses the ATmega103L micro-controller [3] with a 4MHz CPU cycle
frequency and a 4KB data RAM. The wireless networking hardware component
on the mica motes is the RFM TR1000 radio transceiver [7], which operates
at the unique radio frequency of 916.5MHz. It can achieve a maximal applica-
tion layer throughput of approximately 520Bytes/sec [13]. The acoustic sensor
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module on mica mote can at most reach a stable sampling rate of 4kHz. A
component-based OS – TinyOS [5] is used as the software system architecture
for manipulating motes.

As will become clearer later on, the hardware capability is very limited for
data-centric, computational-intensive acoustic tracking applications.

2.2 System Architecture

Due to the aforementioned hardware and software limitation of tiny devices, our
system architecture design has to take extra care on the application require-
ment, availability, robustness and manageability. We adopt the following design
philosophies, i) exploring the redundancy in large number of sensing devices, ii)
divide-and-conquering acoustic tracking tasks by carrying out role differentia-
tion, and iii) targeting for effective utilization of limited resources rather than
nominal utilization. Redundancy is desirable not only for the purpose of better
availability (to counteract the impact of high device failure rate), but also for
the purpose of robustness. Redundant data can statistically mitigate the nega-
tive impact of errors. Role differentiation splits the complex nationalities of the
entire system into sub-tasks that are affordable and manageable for each one
of the tiny devices. Increasing effective resource utilization makes use of limited
resources to better serve the application requirements.

Specifically, we divide the overall system into two subsystems: the acoustic
target tracking subsystem and the communication subsystem.

Acoustic target tracking subsystem: The acoustic target tracking subsystem con-
sists of multiple sensory clusters. A sensory cluster is the primary unit for track-
ing the locations of acoustic targets. It has a cluster head and several slavery
acoustic sensors which jointly monitor a specific area. A cluster can be formed
using mechanisms such as the one used in Jini [12] to account various application-
specific factors (such as geology, algorithm, device capability etc.) Dynamic clus-
tering for moving targets is one of our ongoing research work. Redundancy is
achieved by deploying extra sensors within a cluster and allowing the monitor-
ing areas of adjacent clusters to overlap with each other. Traditionally, acoustic
tracking needs only three sensors to carry out the triangulation. However, in our
implementation, we require more than three sensors in each cluster to obtain
one tracking report to combat the inaccuracy of individual sensor’s data. Role
differentiation is done by assigning cluster head and sensors different jobs and
coordinating them to jointly carry out acoustic target tracking.

We assume that geographical location of each slavery sensor can be obtained
via mechanisms such as described [4,10]. Over the runtime of the system, the
cluster head and all its slavery sensors are clock synchronized. When a sound
with the specified signature arrives, all sensors record the sound and timing
information and report them to the cluster head. By analyzing the differences of
the sound arrival times among slavery sensors, the cluster head can estimate the
location of the sound source using triangulation and then report the tracking
result back to the data sink via the communication subsystem.
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The cluster head needs to handle a significant amount of computation, which
is beyond the capability of the current generation of mica motes. Therefore, in
our implementation, we use pc/104 single board computers [6] as cluster heads,
which are widely used in embedded systems.

Communication Subsystem: The communication subsystem is responsible for
relaying the tracking reports from cluster heads to the data sink. In order to
achieve high effective throughput and low latency, we propose a novel scheme
called quality-driven redundancy suppression and contention resolution to speed
up the delivery of higher quality tracking reports and suppress inferior/erroneous
reports. Note, the redundancy of acoustic sensory motes reduces the error in a
single cluster and thus is desirable. However, due to the overlapping of clusters,
multiple reports can be generated for a single acoustic event across multiple adja-
cent clusters, which may unnecessarily lead to congestion of the network or waste
of network resources. Quality-driven redundancy suppression picks the best one
from the multiple tracking reports, thus accomplishes the goal of achieving better
robustness out of redundant tracking reports. More importantly, quality-driven
redundancy suppression and contention resolution is the major mechanism that
realized the idea of effective utilization of communication subsystem rather than
nominal utilization. To relay the report to the data sink we introduce multi-
parent sink tree routing scheme to provide fast local recovery and higher message
delivery ratio.

3 Acoustic Target Tracking Subsystem

In this section, we present the detailed design of the key components for the
acoustic tracking system including the time synchronization, onset detection,
cross-correlation, triangulation, and determination of the quality of results.

3.1 Time Synchronization

We use delay-based triangulation to locate impulsive sound sources, hence ac-
curate timing information is a necessity. Specifically, all the sensors within the
same cluster have to be time-synchronized. The method of time synchroniza-
tion we adopt in the system is Reference-Broadcast Synchronization (RBS)[2],
which is a light-weight scheme that can achieve high accuracy. In RBS, a head
node broadcasts reference radio beacons to its neighbors. Each receiver records
the arrival time based on its local clock and sends this information back to the
originator of the head node. Under the assumption that the broadcasted radio
beacon arrives at all receivers simultaneously, after a few rounds of the beacon-
ing and replies, the head node can obtain mapping functions of clock readings
between any pair of receivers, using statistically methods such as least square
linear regression. To this end, the head node can convert any receiver’s clock
readings into a universal clock reading.
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In our implementation, we have a initialization phase when n (n = 12 in our
practice) rounds of beaconing and replies are performed. After the initialization,
timing information can be piggybacked on the packets exchanged between the
cluster head and the sensors. Therefore, the clocks can be calibrated without
introducing extra control overheads. Experiment results show that the distortion
of clock readings can be kept within 30µs, which is sufficient for our delay-based
acoustic tracking.

3.2 Onset Detection

Due to the limited computation capability, the current generation of mica motes
are not capable of sampling and processing acoustic data concurrently. Instead,
major functions such as sensing, wireless transceiving and processing have to be
serialized. Moreover, because of the limited memory in motes, acoustic samples
have to be stored in a circular buffer. In order to avoid buffer overflow for useful
sample data , an onset detection mechanism is needed to instruct sensors to
stop sampling data once the interested acoustic signal is captured. The way a
sensor determines whether the incoming acoustic signal is of potential interest is
based on the magnitude of the signal. A small sliding window is used to compute
the moving average of the magnitude of signals. If the energy within the window
exceeds a threshold, the sensor assumes that the current time is close to the onset
point of the acoustic signal. The sensor continues recording data into the circular
buffer until it winds back and reaches a prelude point prior to the onset point.
Once the sound of interest is captured, post-processing is conducted separately
at both the cluster head and the sensors. The cluster head extracts the sound
signature from the recorded samples and broadcasts it to the sensors in its own
cluster. Upon receiving the signature packet from the cluster head, sensors apply
cross-correlation to compare the received signature with the buffered data.

3.3 Cross-Correlation

After receiving the sound signature from the cluster head, each sensor cross-
correlates the received signature with buffered data to extract the desired pattern
and determine the starting portion of signal. There are several advantages in
choosing the starting portion as the reference portion. First, the starting portion
is less susceptible to echoes. In in-door environments, the effect of echoes is
quite significant. Fortunately, the echo is not presented in the starting portion of
acoustic signal unless the sensor is very close to a wall. Second, the uniqueness
of onset point and the salient change in sound wave shape at the onset point
makes the starting portion very easy to be consistently located among distributed
independent sensors.

The procedures of cross-correlation are summarized in Fig. 1. Two prepro-
cessing procedures are applied to buffered data before cross-correlation. The first
step is to remove the interference of noise. The average magnitude of noise is
calculated first, and then the samples whose values are close to the average are
replaced with the average so that the results of correlation do not ripple due
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to the oscillation of noises. In the second step, the signal is passed through a
second-order Butterworth low-pass filter to remove the high frequency compo-
nents. After the pre-processing, cross-correlation is applied to the filtered data
with the received sound signature to do pattern matching. The final step is to
find the first significant peak in the correlation result using thresholding and
thus the arrival time is extracted.

Sampling Record
Sound

Detection
First Peak

correlation
Cross−

Filter
Low Pass

Cancellation
Noise

Time
Sound Arrival

Fig. 1. Procedures of cross-correlation for sensors

3.4 Triangulation (Sound Source Locating) and Evaluation of
Quality Rank

Upon receiving the sound arrival times from sensors in the cluster, the cluster
head translates the time into the universal reference time before executing the
triangulation.

Triangulation is done by comparing the differences in sound propagation
delays from the source to different acoustic sensors. Suppose the location of
sound source is (x, y) and the sound is generated at time t. If a sensor M1
located at (x1, y1) detects the sound reaches it at time t1 (i.e. sound arrival
time). We shall have the following equation:

√
(x − x1)2 + (y − y1)2 = (t1 − t) · v (1)

where v is the velocity of sound.
Theoretically triangulation can use three such equations generated by three

sensors to analytically compute the sound source location. In practice, due to
the coarse-grained acoustic sampling data of low-performance sensors, errors
generated in cross-correlation are not negligible (for example, the errors can
vary from 0.1 to 0.5ms). The above theoretical approach is mostly impractical.
How to counteract this problem is a big research topic. Relevant works can be
found in [11][1][9] etc. However, this topic is out of the scope of this paper. In
this paper we simply consider a maximum likelihood (ML) based heuristic as a
context for our research.

Algorithm Description: Consider n sensors, for each hypothetical source lo-
cation (x̃, ỹ) in the field A, there is a vector p̃(x̃, ỹ) = (d̃1, d̃2, . . . , d̃n) rep-
resenting the theoretical propagation delay to each one of the n sensors. Let
p = (d1, d2, . . . , dn) be the observed propagation delay vector based on the re-
ports gathered at the cluster head for a single sound events. Then, the estimated
location of the sound source (x̂, ŷ) is given by

(x̂, ŷ) = arg(x̃,ỹ)∈A min d(p̃(x̃, ỹ), p) (2)

where d is an algorithm specific difference measurement scheme.



Acoustic Target Tracking Using Tiny Wireless Sensor Devices 649

This algorithm only involves multiplicity, additions and comparisons. Com-
pared to equation-based solution, which usually requires division and solving of
linear and quadratic equations, our algorithm is more robust to floating point
errors or degenerations.

However, since there are infinite points in area A, to make the algorithm
work, the monitored area of a cluster is first divided into N-by-N grids (in our
implementation, we choose N so that the granularity of the grid is 3 × 3inch2).
Therefore the time complexity of the algorithm is roughly O(N2). In addition,
it is possible to throw out out-of-bound readings based on the physical laws to
avoid unnecessarily degradation of the triangulation result.

The confidence level of estimated location can also be approximated by the
percentage of p̃’s elements that falls within the ε boundary of p. This percentage
is defined as the quality rank of the location report. The higher the percentage,
the more confidence in the sensed result and thus the higher the quality rank.
Determination of the quality rank of triangulation results is important. In the
case of multiple clusters (whose monitored areas may overlap), multiple reports
for the same sound event may be generated and delivered to the data sink.
Ideally, only the cluster head with the best quality rank (or highest confidence)
need to send the report back. Inferior quality reports should be suppressed to
better utilize the limited bandwidth and computational power in the wireless
networks. This point will be further illustrated in Section 4.1.

The pseudo code for locating the sound source and determining quality rank
is given in Fig. 2, where, ∆̂ is the estimation of the fixed time difference between
the time reference systems used by p̃ and p. Because p̃ uses the relative time which
takes actual sound event happening time as 0; while p can only use universal
time which takes the time synchronization initialization time as 0.

1. LocateSoundSource(observed propagation delay vector p = (d1, . . . , dn)):
2. mark apparently invalid di s in p
3. m← number of valid elements in p
4. for each point (x̃, ỹ) ∈ Grid

5. calculate p̃ = (d̃1, · · · , d̃n) for (x̃, ỹ) according to Equation (1)
6. for each valid di ∈ p

7. δi ← d̃i − di

8. ∆̂← average of δi s
9. vote← 0
10. for each valid di ∈ p

11. erri ← δi − ∆̂
12. if |erri| ≤ ε then vote← vote + 1
13. QualityRank(x̃,ỹ) ← vote

m
14. (x̂, ŷ)← the (x̃, ỹ) with the highest QualityRank

15. Q̂← (x̂, ŷ)’s corresponding QualityRank

16. return (x̂, ŷ) as the sensed sound source location, with a quality rank of Q̂

Fig. 2. Sound Source Locating Algorithm
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4 Communication Subsystem

Communication subsystem serves to forward the tracking report from cluster
head to the data sink. We use the default MAC and routing protocol (i.e., CSMA
and sink tree) of TinyOS [5] as a baseline. In order to achieve high robustness
in acoustic tracking report, availability, effective throughput and low delay, we
propose the idea of Quality-driven redundancy suppression and contention reso-
lution (QDR) and multi-parent routing .

4.1 Quality-Driven Redundancy Suppression and Contention
Resolution

As mentioned before, in the acoustic target tracking subsystem, for the pur-
pose of providing better robustness and availability, we allow the overlapping of
clusters’ monitoring areas to generate redundant reports for each sound event.
Therefore, a mechanism is needed to quantify the quality of reports and select
the one with the best quality. Inferior redundant reports can be suppressed from
entering the communication subsystem, so as to conserve the scarce wireless
bandwidth for effective data. In case of contention resolution, it is desirable to
give higher priority to reports with better quality and speed-up their delivery.
Inferior reports are assigned lower priority or even dropped in presence of con-
gestion.

To determine the quality of reports during runtime, we use the quality rank
defined in acoustic target tracking according to Fig. 2’s algorithm. As demon-
strated in the experimental result in Section5, quality rank has a strong corre-
lation with the accuracy of the triangulation results.

We implement quality-driven contention resolution and redundancy suppres-
sion with the original CSMA MAC protocol in TinyOS. Specifically, we use the
quality rank to determine the backoff time for CSMA contention resolution. The
better the quality rank, the shorter the backoff. Every time a cluster head/router
wants to send out a tracking report packet with a quality rank of Q, its backoff
time is computed as,

Tbackoff = Q · interval + random (3)

where interval is an implementation-specific constant, Q is the quality rank
(with 0 as the highest quality), and random is the random backoff generated by
the original CSMA protocol. If before the firing of its own back-off timer, a node
overhears a report belonging to the same sound event1 with a higher quality, it
drops its pending report.

The pseudo code of the protocol is described in Fig. 3.

1 If the Euclidean distance of the two vectors of the acoustic reports (sound source
location, time) is smaller than an error bound, the two reports are regarded as “same
sound event”
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/* Upon generation/reception of an report R(location, time, QualityRank) */
1. enque(R);
2. set backoff timer(QualityRank*interval+random);
/* Upon overhearing of an report R(location, time) at node i */
3. if PacketQueue(i) �= ∅ {
4. if find match(R) ≡ true
5. drop inferior report(QualityRank);
6. }
/* Upon backoff timer expiration */
7. R = dequeue();
8. transmit(R);

Fig. 3. Operation of QDR

4.2 Sink-Tree Construction

We propose a multi-parent sink tree routing algorithm. Compared with the orig-
inal implementation of sink tree routing [5], the main difference is that instead
of maintaining a single upstream node (with respect to the data sink), a node
keeps a candidate parent list of multiple upstream nodes to reach the data sink.
The candidate parent list is ordered by certain preference (e.g., the number of
hops to the sink). All the parent candidates are maintained as soft states. The
data sink periodically sends out flooding packets to construct the sink tree. New
parent candidates are inserted into the router’s candidate parent list when a
flooding packet from the corresponding node is received.

To forward a data packet, a node always tries to forward it to the first parent
candidate. If a link failure is detected (e.g. exceeding the retransmission limit),
a node drops the corresponding parent candidate and uses the next one in the
list.

The main advantage of multi-parent sink tree protocol is that it improves
availability by fast recovery. The link failures can be repaired locally using
multi-parent information. Compared with the original sink tree routing algo-
rithm, where the links are not repaired until the next round of sink tree building
flooding, local recovery can increase the reliability and throughput for packet
delivery in the network.

5 Experiments

In this section, we conduct several experiments in our sensor network testbed.
Sensors and routers are made up by a number of mica motes. A few pc/104 single
board computers are deployed to serve as the cluster heads. Each pc/104 board is
connected via serial port to a mica mote for sensing and wireless communication.
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5.1 Sound Source Locating within a Cluster

In this section, we study the performance of the acoustic tracking subsystem. Of
primary interests are, i) the accuracy of triangulation result and ii) the correla-
tion between triangulation accuracy and quality rank Q proposed in Section 3.

As mentioned earlier, clusters are the basic units for locating and tracking
acoustic target. In this set of experiment, sensors are placed uniformly in a
100 × 100inch2 2-D area to form a single cluster (see Fig. 4). Three settings are
tested, using 8, 10 and 12 sensors per cluster respectively. A pc/104 is placed
at the center of the 2-D area to serve as the cluster head. To understand the
sensitivity of triangulation result to the sound source location, we also vary
the location of sound source as shown in Fig. 4. In each test setting (8, 10 or
12 sensors/cluster), 10 trials are carried out for each of the 18 sound source
locations. Therefore, altogether there are 10 × 18 × 3 = 640 trials.
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Fig. 4. Locations of sensors and sound sources in a single cluster

Accuracy of triangulation: The accuracy of triangulation result is defined as
the Euclidean distance between the actual location (xa, ya) and the computed
location (xm, ym) as,

SensingError =
√

(xa − xm)2 + (ya − ym)2 (4)

Fig. 5 gives an example of the tracking results for the 12 sensor case (due to space
limit, we only show 6 out of the total 18 locations). Each “∗” represents the actual
location of the sound source, while each “·” corresponds to the triangulation
result in one trial. As shown in Fig. 5, the majorities of the locating reports
fall within the vicinity of the sound source. However, the triangulation accuracy
degrades as the sound source moves to the corner of the sensing area. This can
mitigated by overlapping multiple sensing clusters.
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Fig. 6(a) shows the average sensing error with respect to different sound location
and the number of sensors used. Roughly speaking, with more sensors, the ac-
curacy of triangulation gets higher. The triangulation result is quite satisfying,
considering the fact that the sound source itself (a speaker) is approximately a
cubic with dimension 4 inches. There are some cases in Fig. 6(a), where using
eight sensor gives the best result. This is because ”bad” data generated by mul-
tiple sensors can potentially “poison” the result. We will further investigate this
issue as one of our future work. A closer view of the stochastic property of the
triangulation reports is given in Fig. 6(b) for different number of sensors for a
fixed sound source location at (54, 54).

Quality of reports: Fig. 7(a) demonstrate the correlation between quality rank
and the accuracy of the triangulation result. As expected, the smaller the quality
rank (or the higher the quality), the higher the accuracy of the triangulation
result. When the quality rank is inferior (with QualityRank ≥ 4), both the
mean and deviation of the sensing errors are very large. On the other hand,
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superior quality rank reports are statistically trustworthy. This speaks strongly
for using the quality rank defined in Section 3 as an indication of the quality of
the triangulation results. In addition, as shown in Fig. 7(b), using more sensors
can improve the trustworthiness in superior quality ranks (the percentage of
reports at rank 1 within 3-inch error range is close to 100%).
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5.2 Study of QDR and Multi-parent Sink Tree Routing

In this section, we study the effectiveness of the quality-driven redundancy sup-
pression and contention resolution (QDR). As mentioned earlier, the benefits of
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QDR scheme for communication subsystem are two-folded, i) it alleviates the
channel contention thus leads to higher throughout and ii) it increases the in-
formation throughput by giving higher priority for high-quality reports to be
transmitted. Therefore, the performance metrics of interests are,

– The average quality rank of received reports (Q). As demonstrated
in previous section, the quality rank provide a quantitative measurement of
the report. The smaller the quality rank, the better the data quality.

– Deviation from the minimum rank. Ideally, only the report with the
most superior quality rank should be delivered. However, reports may get
lost or multiple reports can be delivered since they are generated at different
time. Deviation from the minimum rank defined as the difference from the
minimum rank, reflects the effectiveness of communication and suppression.

– Utility. In attempt to gauge the rate of effective information throughput
(rather than nominal throughput of raw bits), we define a utility function
U(k) = Sk

Qk
for the kth packet, where Qk and Sk are the rank and size of the

kth packet.

In this set of experiments, there are 3 ajacent clusters, 7 router motes in-
cluding the ones attached to the sink and the pc/104 board. A sound source
can be heard by all of the clusters. However, depending on the location of the
sound source and the triangulation result, different clusters can generate reports
of different quality. The reports are routed via a 2-hop communication network
to the data sink. Transmission of the reports are subject to the quality-driven
backoff timer, which is computed as in Equation 3.

Impact of the backoff timer value: In this set of experiment, we vary the inter-
val from 0ms (no backoff) to 400ms. The percentage of suppressed reports are
depicted in Fig. 8. Also shown in the graph are the levels of confidence for five
runs of experiments. Consistent with our expectation, as the backoff timer value
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gets large, more redundant reports get suppressed. However, this comes at the
expense of longer interval to deliver the report. Therefore, in the next set of
experiment, we choose the interval to be 100ms.

Study of QDR: In this set of experiment, we fix the interval to be 100ms and
compare the scheme with QDR and one without. From Table 1, we can see that

Table 1. Effect of QDR

rank dev. rank utility % of dropped reports
without QDR 3.4900 1.2517 0.1160 0

with QDR 3.2920 1.1348 0.1312 9.5%

as expected, with the QDR, the average quality of delivered report is better
and thus the utility is better. However, the percentage of suppressed reports is
not very significant (ideally, it should be around 66.6%). This can be attributed
to the fact that the reports are not always generated around the same time.
Therefore, a report of inferior quality rank may still get delivered because its
backoff period doesn’t overlap with the sending of the other reports with superior
quality rank.

6 Conclusion and Future Work

In this paper, we investigate the design and implementation of acoustic tracking
using tiny wireless devices. To achieve high reliability, availability in a system of
networked sensors with only limited computation and communication capability,
we propose decomposition of the different roles and divide the system into two
components, i) the acoustic target tracking subsystem and ii) the communication
subsystem. Our main contributions can be summarized as follows,

– Designed and implemented an acoustic target tracking system using tiny
wireless devices.

– Proposed a ranking mechanism to decide the quality of tracking result.
– Proposed the idea of quality-driven redundancy suppression and contention

resolution, together with an implementation using quality rank.

Experimental results using our sensor network testbed demonstrate the effec-
tiveness of the proposed design and validate the idea of quality rank.

Through our first-hand experience with the system, we identify several
agenda for future work, First, protocol design and experimentation with moving
targets needs to be investigated. Of particular interest is the real-time issue to
deliver high-quality reports in a timely fashion. Secondly, we are interested in
applying energy conservation techniques to the acoustic tracking system. Our
hierarchical structure can naturally take advantage of the redundancy in highly
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dense sensor networks for power saving. Lastly, further study of the quality-
driven approach and its applicability to other application domain for sensor
networks should be studied.
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Abstract. Recent technology advances in low-cost, low-power chip de-
signs have made feasible the deployment of large-scale sensor networks.
Although data forwarding has been among the first set of issues explored
in sensor networking, how to reliably deliver sensing data through a vast
field of small, vulnerable sensors remains a research challenge. In this pa-
per we present GRAdient Broadcast (GRAB), a new set of mechanisms
and protocols which is designed specifically for robust data delivery in
spite of unreliable nodes and fallible wireless links. Similar to previous
work [1], GRAB builds and maintains a cost field, providing each sensor
in the network the direction to forward sensing data. Different from all
the existing approaches, however, GRAB forwards data along an inter-
leaved mesh from each source to the receiver. The width of the forwarding
mesh is controlled by the amount of credit carried in each data message,
allowing the degree of delivery robustness to be adjusted by the sender.
GRAB design harnesses the advantage of large scale and relies on the col-
lective efforts of multiple nodes to deliver data, without dependency on
any individual ones. As demonstrated in our extensive simulation exper-
iments, GRAB can successfully deliver above 90% of data with relatively
low energy cost even under adverse conditions of up to 30% node failures
compounded with 15% link packet losses.

1 Introduction

Recent technology advances in low-cost, low-power chip designs have made it
economically feasible to deploy large-scale sensor networks. Thousands or even
millions of small, inexpensive, and low-power sensors, such as Berkeley Motes[2],
can be quickly deployed to monitor a vast field. The sensors collectively sense the
environment and deliver the sensing data via a wireless channel. In near future
such sensor networks may play an important role in both civil applications such
as agriculture as well as disaster recovery and military surveillance. On the other
hand, the above mentioned potential applications also present great challenges
to reliable sensing data delivery. Wireless communications among the small,
power-limited sensor nodes are prone to errors. Severe operational conditions
(e.g. strong wind or high temperature) and disasters (e.g. fire or earthquake)
may easily destroy individual sensors, resulting in a constantly changing topol-
ogy. Furthermore, the short transmission range of small sensors also means that
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sensing data may travel through a large number of hops to reach intended des-
tinations, with potential delivery errors and unexpected node failures at each
hop.

In this paper we propose GRAdient Broadcast (GRAB) to address the prob-
lem of robust data forwarding to a data collecting point (called the sink) using
unreliable sensor nodes with error-prone wireless links. The objects or events to
be monitored are called stimuli. All the sensor nodes that detect the same stimu-
lus collectively select the one with strongest sensing signal to generate a sensing
report. We call such a node a data source. Although several data forwarding
protocols have been designed for sensor networks, such as Directed Diffusion [3]
and TTDD [4], they typically assume a relatively stable sensor network where
nodes do not fail frequently and unexpectedly.

GRAB achieves robust data delivery through building and maintaining a
cost field for the sink. Each node keeps a cost for forwarding a packet along
a certain path to the sink. Nodes “closer” to the sink have smaller costs. A
packet can follow the direction of decreasing cost to reach the sink. In stead of a
sender appoints which receivers to continue forwarding, GRAB lets each receiver
decides whether it should forward by comparing its cost to that of the sender.
Multiple such paths exist between a source and the sink.

To further control the redundancy of the multiple paths, a source assigns a
credit to the packets it sends out. The credit is some extra budget that allows
multiple copies of a packet be forwarded over a mesh of interleaved paths, each
of which has a cost not greater than the total budget. The amount of credit
determines the “width” of the mesh, thus the degree of robustness and overhead.

GRAB design harnesses the advantage of large scale. It achieves system ro-
bustness by relying on collective efforts from multiple sensors without depen-
dency on any individual ones. A packet is forwarded over multiple paths, which
improves reliability. Such paths interleave and recover each other from node fail-
ures or link errors, further increasing robustness. Since it is the receivers, not
the sender that decide which nodes should forward, a sender merely broadcasts
a packet without worrying repairing failed nodes or broken links. The packet
is delivered to the sink by those surviving nodes. This receiver-based design
eliminates the overhead of repairing paths of failed nodes or broken links. The
credit provides a means to trade off between robustness and total cost. A source
can assign a credit that achieves required robustness without causing excessive
redundancy.

The rest of the paper is organized as follows: We present the design of GRAB
in Section 2. Then we evaluate its performance in Section 3. We discuss future
work to GRAB in Section 4. In Section 5, we first describe the differences between
GRAB and existing work in sensor networking area, then report our performance
comparison study of GRAB with an existing protocol [3]. Section 6 concludes
the paper.
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2 GRAB Data Forwarding Protocol

2.1 Design Overview

In this paper we assume the following sensor network model: Large numbers of
small, stationary sensor nodes are densely deployed over a field. A stimulus is
detected by multiple nearby sensor nodes for reliable sensing. Nodes are equipped
with CSMA MACs. The lack of RTS/CTS/ACK makes packets more easily
lost than those sent with 802.11 DCF. External noises and disturbances may
further exacerbate the condition. Sensor nodes fail unpredictably due to the
harsh environment. Nodes can tune their transmitting powers to control how
far the transmission may reach. Such power adjustments save energy and reduce
collisions whenever possible1. We use an example of one sink and one stimulus
to illustrate how GRAB works.

To collect data reports, the sink first builds a cost field by propagating ad-
vertisement (ADV) packets in the network. The cost at a node is the minimum
energy overhead to forward a packet from this node to the sink along a path.
We assume each node can estimate the cost of sending data to nearby neighbors.
The costs of all nodes in the network form the cost field2. If we imagine each
node be elevated to a height proportional to its cost, the whole cost field would
look like a funnel(see Figure1 for a illustration): nodes “closer” to the sink have
smaller costs and are “lower”, while those “farther” away have greater costs and
are “higher”.

The cost field gives the global direction towards the sink implicitly. When a
node sends a packet, it does not designate which nodes are the next hop. It just
includes its own cost in the packet and broadcasts the packet. Only neighbors
with smaller costs may continue forwarding the packet. Neighbors with higher or
equal costs silently drop the packet because they are at the “wrong” direction.
Thus packets travel in a cost field like water flows down to the bottom of a
funnel: they follow the direction of decreasing cost to reach the bottom of the
cost field, which is the sink. The paths of decreasing cost interleave and form a
mesh.

The selection of the source follows the same mechanism. We want only one
node to generate the report since it would be a waste of resources if every node
detecting the stimulus sends a report. The stimulus creates a field of sensing
signal strength, the “shape” of which is similar to that of the cost field. Each
node broadcasts a message indicating its signal strength (with some random
delay to avoid collision). A node rebroadcasts its signal strength whenever it
hears a neighbor’s message with a weaker signal, but stops broadcasting when
it hears a stronger one. This way, messages roll towards the center of the signal
strength field. Finally the node with the strongest signal generates a report. We
call this node the Center of Stimulus (COS).
1 Some existing hardware [2] already have different levels of transmitting power.
2 The cost may take different forms such as the hop number, the energy overhead or

even physical distance. The current energy form is meant to save the scarce energy
resources of nodes.
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COS election and data forwarding utilize the same concept of a funnel-shaped
field. The differences are: The signal strength field already exists in the physical
world, whereas the cost field is an artifact created by the sink; nodes farther
to the stimulus have weaker signals, but nodes farther to the sink have greater
costs; when a stimulus is detected, data come from all directions to the center,
but for forwarding, they come only from the direction of the source.

After the cost field is built, we want to limit the “width” of the forwarding
mesh. Otherwise the packet would follow every possible path of decreasing cost,
creating excessive redundancy and wasting resources. Ideally, the mesh starts
at the source and expands to a certain width quickly, then it keeps the width
while going towards the sink until finally it reaches the sink (see Figure 2 for an
example). The width of the forwarding mesh determines the robustness of data
forwarding.

To control the “width”, a source assigns a credit α to the packets it sends out.
The credit is some extra budget that can be consumed to forward the packet.
The sum of the credit and the source’ cost (i.e., α + Csource) is the total budget
that can be used to send a packet to the sink along a path. A packet can take
any path that requires a cost less than or equal to, but not beyond the total
budget.

The amount of credit controls the redundancy of the mesh flexibly. If there is
no credit, the packet can only be forwarded along the single minimum cost path
of the source; when more credit is added to increase the budget, more paths are
available to deliver the packet. Such paths surround the minimum cost path and
form the forwarding mesh dynamically through the combined effect of the cost
field and the credit value carried in each packet.

A final point we would like to make before presenting the design is the number
of sources and sinks the GRAB design can support. To simplify the presentation
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we use a simple model of one stationary source (COS) and one stationary sink.
However we point out that the GRAB supports data forwarding from multiple,
mobile stimuli as well. When a stimulus, such as a tank, moves through the
field, a different COS sensor is elected to generate the report; the old COS node
stops reporting automatically because it finds itself no longer at the center of the
stimulus. For multiple stimuli multiple COS’s are elected. The exact details of
COS election are not presented in this paper, which focuses on data forwarding.

In the rest of this section, we give a brief summary in Section 2.2 about an
algorithm proposed in a previous work [5] to build the cost field efficiently. Then
we present the GRAB forwarding algorithm in Section 2.3.

2.2 Building and Maintaining the Cost Field

The cost field can be built in the following straightforward way. A sink broadcasts
an advertisement packet (ADV) announcing a cost of 0. Each node initially has a
cost of ∞. When hearing an ADV packet containing the cost of the sender, a node
obtains a cost by adding the link cost to the cost of the sender. It compares this
cost to its old one and sets the new cost as the smaller of the two. Whenever
it obtains a cost smaller than the old one, it also broadcasts an ADV packet
containing the new cost. The “rippling” of ADV packets from the sink outwards
builds the cost field for the sink3.

The problem with the above method is excessive ADV messages, which pre-
vent it from scaling to large numbers of nodes. Before a node settles with the
minimum cost, it may hear many ADV packets, each of which results in a smaller
cost than the previous one. Thus the node broadcasts many ADV packets. To
build the cost field in a scalable manner, we proposed a waiting algorithm in [5]
and proved that the waiting algorithm ensures each node broadcasts only once,
and with its minimum cost.

The value of a node’s cost depends on the topology. The topology changes
as nodes fail, exhaust energy, or new nodes are deployed. The initially built cost
field thus becomes inaccurate. Although the GRAB forwarding protocol is highly
robust against inaccuracies in cost field (we will see that in Section 3), the cost
field should be refreshed on time to keep the forwarding efficient.

To avoid the overhead of periodic refreshing, we choose an event-driven de-
sign. The sink keeps a profile about the recent history of data reports from the
source. It includes the success ratio (packets are numbered so a sink can calcu-
late success ratio), the average consumed budget, the average number of copies
received per packet and the average number of hops traveled for recent reports.
Once a new packet is received, the sink compares the parameters of the packet
to those in the past. If a parameter differs from its past by a certain threshold,
the sink broadcasts a new ADV packet to rebuild the cost field. Due to space
limit, more details are in a technical report[6].
3 This is originally how GRAB gets its name. “Gradient” stands for the cost, the

broadcast of gradients builds the cost field. Notice that although the same word is
used, the “gradient” here is completely different from that in [3]
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The rationale behind the event-driven refreshing is that topology changes
bring variations in data delivery. By monitoring certain parameters which reflect
the quality of data delivery, we can tell how much change has happened. Only
major changes that make the data delivery deteriorate beyond acceptable levels
trigger refreshings. The forwarding algorithm itself is robust enough to withstand
significant amount of minor changes, which will be shown in Section 3.

Before we proceed to the forwarding algorithm, we want to point out that [5]
solves only the problem of building the cost field. It does not address robust data
delivery with unreliable sensor nodes, which is the centerpiece of this paper.

2.3 Realizing a Robust Forwarding Mesh by the Credit

This section describes how to build a forwarding mesh by the credit. To realize
the mesh we need to address three issues.

Issues in Realizing the Mesh. First, how to expand the mesh quickly starting
from the source. To be robust, the mesh should be wide enough to contain
sufficient parallel nodes (paths). When there are node failures or packet losses,
a sufficient width ensures some nodes can still deliver packets successfully to the
next hop. Since there is only one node (the source) at the first hop, we need to
expand the mesh to a sufficient width quickly. Otherwise, the delivery can fail
before the mesh is wide enough.

Second, after the mesh has expanded sufficiently, how to maintain the width.
Due to node failures and packet losses, the number of parallel nodes that forward
a packet tend to decrease from one hop to the next. A failed node or a node that
does not receive the packet can reduce the number of parallel forwarding nodes.
If no measure is taken to counteract this tendency, the mesh can narrow down
later.

Finally, how to prevent packets from traveling along some devious paths or
diverting too much from the direction of the sink. For any sender, roughly half
of its neighbors have smaller costs. If all such directions of decreasing costs are
followed, the forwarding could diffuse into a sector-shape, in which many packets
divert significantly from the direction of the sink. We want to stop packets from
following such diverting paths.

Solutions to the Issues. To address the first two issues, we divide the total
amount of credit among different hops in the right way. Specifically, we want
beginning hops to consume larger shares of the credit, while later hops consume
some, but smaller shares of the credit. This is because the share of credit a
node receives decides whether it can expand the mesh. If a node does not have
any “bonus” to use but has only a budget equal to its cost, it should reach
only its next hop neighbor on the minimum cost path, without expanding the
mesh. When a node has some “bonus” (credit) to use, it can consume more
budget, reaching more receivers and expanding the mesh. Beginning hops use
more credit to expand the mesh quickly while later hops do not need as much
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credit because they do not need to expand the mesh. However, they should also
receive certain credit to maintain the width. Otherwise node failures and packet
losses can “narrow down” the mesh.

Now, how to solve the last issue? If a packet has been traveling on a quite
devious path, or divert from the direction of the sink too much, it would con-
sume much credit, without traveling proportionately close towards the sink. An
analogy to this is spending most of a month’s budget in a few days. Thus by com-
paring the remaining credit to how far it still ahead we can detect and terminate
such packets.

To calculate the remaining credit, we let each packet carry certain informa-
tion, so a node can first calculate how much credit has been consumed. To tell
how “far” a node is to the sink, it uses a threshold function, whose value tells the
relative “position” of this node between the source and the sink. By comparing
the remaining credit to the threshold value, we can tell if the packet has already
consumed too much credit, or there is still enough to use. We choose the format
of the threshold function such that it achieves desired division of credit among
different hops, solving the first two issues (an analysis will be shown later). We
first explain what are carried in a packet, then present the detailed forwarding
algorithm.

The Forwarding Algorithm. A packet carries the following fields:

– α: the amount of credit assigned to the packet at the source. A node needs
it to calculate how much credit remains. This field does not change as the
packet travels towards the sink.

– Csource: the cost of the source to send a packet to the sink. It is used to
calculate the threshold. This field does not change at different hops, either.

– Pconsumed: the amount of budget that has been consumed from the source
to the current hop. It is set to the cost used by the source to broadcast the
packet initially and increased by the amount used to forward the packet at
each hop.

After a COS assigns an α to a data report, it fills the above three fields and
broadcasts the packet. To prevent loops, only receivers with smaller costs may
forward the packet. Thus a packet is forwarded by successive nodes of decreasing
costs, leading to the sink finally.

If a receiver finds it has a smaller cost, it calculates and compare two ratios
Rα and Rthresh as follows.

Rα =
REP.α − αused

REP.α
(1)

Rthresh = (
Creceiver

REP.Csource
)2 (2)

where
αused = REP.Pconsumed + Creceiver − REP.Csource (3)
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In the above equations, αused stands for the amount of credit that has been
consumed. REP is the report packet received, Creceiver is the cost of this node.
REP.Pconsumed + Creceiver is the least amount of total budget required should
this node forward the packet via any path to the sink. This minimum amount
is achieved when the packet took the minimum cost path from this node to the
sink. The “extra” amount of this to Csource, would be the credit consumed. So
Eqn.3 is at least how much credit has been used. Thus Rα represents the fraction
of credit that is still available for this node and later hops. Rthresh indicates how
“far” the node is to the sink. Both Rα and Rthresh range between 0 and 1.

The node then compares Rα to Rthresh. If Rα is greater than Rthresh, we
consider the node has sufficient credit to use. It broadcasts at a power to reach
multiple neighbors towards the sink (We define neighbors with smaller costs as
this node’s nearer neighbors). How much power depends on the degree of ro-
bustness desired. A higher robustness requires more nearer neighbors. In current
design, we let the node broadcast the packet at a power to reach three closest
nearer neighbors.4 The node knows this power from the ADV messages it re-
ceived during cost field building[5]. It increases Pconsumed by how much budget
it is going to consume in broadcasting. Then it broadcasts the packet to reach
those nearer neighbors. Different forwarding nodes on the same hop may reach
the same nearer neighbor(s) on the next hop. This is how the paths interleave.

If Rα is smaller, however, the node does not have sufficient credit and should
forward the packet along its minimum cost path to minimize the total cost. Thus
the node sends the packet to the next hop neighbor on its minimum cost path.
It increases Pconsumed in the sent packet similarly.

To reduce collisions, a forwarding node always waits for some random time
before sending the packet, so that senders on the same hops do not broadcast
simultaneously and result in collisions.

It is possible that a node receives multiple copies of the same packet from
different upstream nodes, and each copy has enough credit to use. To suppress
such duplicates, each node maintains a cache which stores the signatures of re-
cently forwarded packets. The signature of a packet can be the header of the
packet, or a hash of the packet calculated on demand. It serves as an identi-
fier to distinguish packets. If the signature of a received packet is found in the
cache, the packet is dropped. Notice that this is an optimization technique, not
a fundamental requirement of the design.

Analysis of Credit Allotment. Now we give an analysis of the amount of
credit that can be used at any hop. For a node A, its cost is CA. The maximum
share of credit is consumed when the remaining credit ratio Rα is equal to
threshold Rthresh, i.e.

α − (Pconsumed + CA − Csource)
α

=
(

CA

Csource

)2

(4)

4 We call the number of nearer neighbors to reach the branching factor . It repre-
sents a tradeoff between robustness and energy. Experiments show that three is an
appropriate number.
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Taking derivatives of CA for Pconsumed, we have

∂Pconsumed

∂CA
= −

(
1 + 2α

CA

C2
source

)
.

Then, the allowed energy consumption at a hop is:

∆Pconsumed = −∆CA − 2α
∆CA

C2
source

CA (5)

In Eqn.5, ∆Pconsumed is the amount of cost that can be consumed at A. ∆CA

denotes the minimum required cost to go to the next hop, which is the link cost
to the next hop. 2α ∆CA

C2
source

CA is roughly the maximum amount of credit that
can be used at this hop It is proportional to CA, the cost from this node to the
sink. Thus the higher a node’s cost, the more credit it can use. Therefore, as
a packet travels from source to sink, it is allowed to consume more credit near
the source, and less at later hops. This way, the forwarding mesh can expand
aggressively initially, while still having some credit later to maintain the width.
We will evaluate other forms of threshold function in Section 3.
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A1 C1

A3 C3

C2
B2

B1

A2

A1 C1

A3 C3

C2
B2

A

B3 B3

B

Fig. 3. A: any single node failure or packet loss ruins a single path; B: interleaving
paths can recover each other from failures or packet losses

Implicit and Interleaving Paths Add to Robustness. GRAB achieves
robustness through the redundancy in the mesh. We carefully make the design
choices so that the paths in the mesh are implicit and interleaving. Implicit
means a sender does not appoint which node should continue forwarding. It is
up to each receiver to decide whether or not it should forward. When there are
node failures or packet losses, each node still perform the same operations. As
long as there are some surviving nodes that can continue forwarding the packet,
data delivery will not fail. The lack of explicit paths eliminates the need to repair
them when they are broken.

Interleaving means these paths are not disjoint, they intersect with each
other. This is more robust than multiple disjoint paths. The failure of any single
node or loss of packet along a single path destroy the forwarding on the path.
When there are many hops between the source and the sink, a single path has a
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high probability to fail. In contrast, interleaving paths in a forwarding mesh can
recover the node failures and packet losses of each other. For example (Figure
3A), there exist three disjoint paths A1-A2-A3, B1-B2-B3 and C1-C2-C3. If A2
fails and both B3 and C2 do not receive the packet, all three paths fail to deliver
the packet. In contrast(Figure 3B), given the same failure of A2 and loss of
packet at B3 and C2, A3 and C3 can still receive from the broadcast of B2.
Thus path A and C can be recovered by B2. Similarly, path B can be recovered
by broadcasts from A3 or C3 later.

3 Performance Evaluation

In this section we evaluate the performance of GRAB through simulations. We
implemented GRAB forwarding protocol in Parsec [7] due to its ability to scale
to large numbers of nodes. We select sensor hardware parameters similar to
Berkeley motes [2]. The maximum transmission range of a node is 10 meters,
each node can adjusts its transmitting power to reach a given range. We sim-
ulated both the two ray ground and the free space signal propagation models.
Due to space limit we present the results from the former only5. The power
consumptions of full power transmitting, receiving and idling are 60mW, 12mW
and 12mW. The transmission (receiving) time for a packet is 10 ms. In most
scenarios, we use a field size of 150×150m2 where 1200 nodes are uniformly dis-
tributed. One sink and one source sit in opposite corners of the field. The source
generates a report packet every 10 seconds. In each run 100 reports are gener-
ated. The average number of hops of the source’ minimum cost path is about
70 hops. To simulate fallible wireless links, packets are dropped at the receiver
with a probability, which is called packet loss rate. Node failures are uniformly
distributed over time. The fraction of failed nodes is defined as the node failure
rate.

To test if GRAB achieves its goal in robust data delivery, we measure the
success ratio, which is the ratio of the number of report packets successfully
received at the sink to the total number generated at the source. It indicates
the degree of robustness of GRAB to forward data in the presence of node
failures and packet losses. To see if GRAB satisfies robustness at the cost of
excessive overhead, we also measure total energy consumption and control packet
overhead. Total energy consumption is the total amount of energy consumed in
the simulation. It shows how much energy GRAB incurs for robust data delivery.
Control packet overhead is the number of control packets in the simulation. The
results are averaged over 10 different runs.

We first evaluate the impact of control parameters, including the amount
of credit and the threshold function; then the impact of various environmental
settings, including node failure rate, packet loss rate, node density and the size
of the field.

5 Results from the free space model are similar
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3.1 Impact of Control Parameters

Different amounts of credit α. The amount of credit directly affects the
degree of robustness. To find how much credit α is enough for robust delivery,
we vary the amount of credit from 1 to 10 times that of the source’ cost to reach
the sink. A fixed 15% node failure and a fixed 15% packet loss rate are present
in all runs.
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Figure 4 shows the success ratio as a function of α, which is normalized
to the source’ cost. When the credit is small, the chance of successful delivery
is also very small. When α ≤ 2, almost all reports are lost. This is because
there are many hops (around 70) from the source to the sink, along which node
failures and packet losses happen frequently. When α increases, the success ratio
improves steadily. α = 5 gives an 80% success ratio. When the amount of credit
is sufficient, the forwarding is very robust. For α ≥ 6, over 95% report packets
are successfully delivered to the sink6. This shows that credit decides the degree
of robustness. A sufficient credit ensure good robustness.

To find whether GRAB consumes excessive energy to ensure robustness,
Figure 5 gives the total energy consumption as a function of α. When α is
small(α = 1), about 16050 Joules are consumed. As α increases, the total energy
also increases. At α = 4, total energy reaches 16058 Joules, which is 8 Joules
more. This is because more energy is used in data delivery and building the cost
field. When α ≥ 6, the total energy decreases to 16054 Joules. The fluctuation
is very small compared to the total amount. Thus GRAB is efficient and does
not achieve robustness at the cost of excessive energy consumption.

The decrease of total energy when α is high is a little counter-intuitive be-
cause more data packets are successfully delivered and more energy should be
used. Actually the decrease comes from the reduced control packets. Figure 6
shows the control packet overhead. When α is small(≤ 2) or big(≥ 6), the deliv-
ery quality is constantly low or high. The measured parameters about delivery
6 A sufficient α ≥ 6 because we use transmitting energy as the cost. It does not mean

6 times more total energy is consumed. In two-ray ground model, the transmitting
power increases linearly to the 4th power of distance. Six times in power means 1.56
times in distance on average. In free space model, α ≥ 1.2 is sufficient under the
same topologies.
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quality at the sink seldom differ from their recent history beyond the thresholds.
Thus less refreshings happen, and less total energy consumption. The number of
control packet is below 3100, and on average less than 3 cost field (re)buildings
happen. When α is medium(from 3 to 5), the delivery quality is not stable, and
the measured parameters differ from their recent averages beyond the thresholds
more often, triggering more refreshings and thus more energy consumption. The
number of control packets reaches 11500, and about 10 cost field (re)buildings
happen.

The different control packet overhead also shows that the event-driven cost
field refreshing can adapt to the delivery quality. When the delivery quality is
stable(either constantly low or constantly high), more refreshings cannot improve
the success ratio much(the improvement is less than 1%). So GRAB has less
refreshings. When the delivery quality is not stable, the sink refreshes the cost
field more often, thus more packets which otherwise could not reach the sink are
successfully delivered(the improvement is about 10%).
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Different threshold functions. The form of the threshold function decides
how credit is alloted among different hops. We evaluate four different thresh-
old functions: (CA/Csource), (CA/Csource)2, (CA/Csource)3 and (CA/Csource)4,
where CA is the cost of the receiving node A and Csource is the cost of the source
to reach the sink. We repeat the same simulations in Section 3.1. The success ra-
tio, energy consumption and control packet overhead are shown in Figure 7, 8 and
9, respectively. The success ratios for the threshold (CA/Csource) is smaller than
the those of the other three. Its energy consumption and control packet overhead
are obviously higher, while the other three have similar energy consumption and
control packet overhead. The metrics do not change much for the latter three
threshold functions((CA/Csource)2, (CA/Csource)3 and (CA/Csource)4). This is
because they all give more credit to beginning hops and still allot some amount
to later hops7. Thus the forwarding mesh can expand quickly and maintain a
certain width later.
7 Similar analysis on credit allotment can be made by following the analysis in Section

2.3.
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3.2 Impact of Node Failures and Packet Losses

We evaluate the robustness of GRAB by studying how node failures and packet
losses affect the success ratio in this section. We first vary the node failure rate
from 5% to 50%, while using a fixed 15% packet loss rate. Then we vary the
packet loss rate from 5% to 50%, while using a fixed 15% node failure rate. The
amount of credit α is set to 6. This is the value that achieves higher than 95%
success ratio in the previous section.
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Figure 10 shows the success ratio as functions of node failure rate and packet
loss rate. We first look at the impact of node failures. The success ratio is above
95% for node failure rates of up to 20%. As the node failure rate continues to
increase, although the success ratio tends to decrease, GRAB still maintains
very high degrees of robustness. The success ratio remains above 85% when 35%
nodes fail, and is around 70% in the extreme case when half of the nodes fail.
This shows that GRAB is robust even with severe node failures. For packet loss
rates of up to 25%, the success ratio is above 90%. After 25%, the success ratio
drops quickly. With a packet loss rate of 65%, the success ratio is about 67%.
Compared to node failure cases, GRAB is less robust when the packet loss rate
is high. This is because no acknowledgement or retransmission is used to recover
a lost packet in CSMA MAC. For node failures, however, as long as there are
still enough surviving nodes, a cost field refreshing can resume data delivery.
Nevertheless, GRAB delivers over 80% reports successfully for node failure rates
or packet loss rates of up to 30%. The high success ratio also demonstrates
that GRAB is highly tolerate to inaccurate cost fields because node failures and
packet losses both cause inaccuracies during cost field building.

The energy consumptions are shown in Figure 11. When node failure in-
creases, the energy decreases linearly. This is because the idle energy dominates
the total energy consumption. A higher node failure rates means more node
failures, thus proportionally less energy consumption. For different packet loss
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rates, the energy remains almost constant around 16054, increasing less than 6
Joules as the packet loss rate grows from 5% to 50%. Again, although less energy
is consumed for data delivery, more is spent in rebuilding the cost field. Thus
the total energy increases a little.

4 Future Work

We plan to further improve GRAB to make the credit assignment adaptive. The
sink may include some information that reflects recent data delivery quality when
sending ADV packets. A source can use this feedback to choose an appropriate
credit to adapt to network conditions. In addition, the allotment of credit among
different hops can also adapt to local failure and noise characteristics. Nodes in
a neighborhood with more severe conditions can use greater shares of the credit
if they can measure local failures or packet losses. So far we have been focusing
on one stationary sink. When there are multiple sinks, each needs to build its
own cost field. Every node keeps one cost per sink. This per-sink state may not
allow GRAB to scale to large numbers of sinks directly. Sink mobility is not well
addressed in the current design, either. Although a sink can simply rebuilds its
cost field every time it moves to a new location, such rebuildings may consume
much energy and bandwidth when the sink is highly mobile. We plan to apply
landmark routing [8] to address the multiple, mobile sink problem in the future.

5 Related Work

There have been a plethora of research efforts in sensor networking area in the
last few years. Directed diffusion [3] is a data forwarding protocol designed for
sensor networks where a sink floods its interests to build reverse paths from all
potential sources to the sink. GRAB also builds a field, but it is a scalar field
of cost values, not one of reverse path vectors. Diffusion uses reinforcement and
negative reinforcement mechanisms to select a high quality path for the data
flow from each source and deactivate low quality ones. Braided diffusion [9] is a
variant of directed diffusion. It maintains multiple “braided” paths as backup.
When a node on the primary path fails, data can go on an alternate path. Both
Directed diffusion and Braided diffusion establish explicit paths to forward data;
each node forwards data to a specific next hop neighbor. In contract, a sender
in GRAB simply transmits data to the radio channel without appointing any
neighbor as the next hop; each receiving node decides whether it should fur-
ther forward the data. There is no explict path in GRAB; data simply follows
whichever surviving nodes to reach the destination. Diffusion combats against
errors and failures by periodically re-flooding the interests messages to repair the
paths. GRAB achieves robustness by exploiting the redundancy from interleav-
ing paths in the forwarding mesh. Diffusion detects forwarding loops by caching
previous packets. In GRAB, because packets can only go along the decreasing
cost direction (toward the sink), no loop can form.
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TTDD [4] solves the problem to delivering data to mobile sinks that are in
constant motion. It builds a grid structure for each source. The impact of a
mobile sink is confined within a local cell. Data delivery and query forwarding
traverse the grid tier and the local cell tier in reverse order. TTDD does not
address the robustness issue. Only a single path is used to forward data.

Both Diffusion and TTDD work with 802.11 DCF MAC which has
RTS/CTS/ ACK. They have yet to demonstrate their robustness using nodes
with less reliable CSMA MACs.

Gradient Routing [1] shares similarity in design with GRAB in that it also
builds and uses a cost field. However it has no mechanism to control the de-
gree of redundancy in data forwarding. When a sender broadcasts a packet,
all neighboring nodes with lower costs forward the packet, leading to much re-
dundancy and higher energy consumption. In GRAB, the credit carried in each
packet effectively controls the width of the forwarding mesh, thus the degree of
redundancy and energy consumption.

Energy Aware Routing [10] also builds per-sink cost fields to direct data
delivery but it uses single path only. A sender probabilistically pick a receiver to
forward the packet. GRAB has multiple interleaving paths forming a mesh and
senders do not decide who are receivers.

Redundant mesh forwarding is also proposed in [11,12] for robust multicast
delivery in wireless ad hoc networks. However these designs exchange control
messages to establish explicit path states at each node; the forwarding mesh is
made of a set of explicit paths. In contrast, the forwarding mesh in GRAB is
dynamically formed by the combined effect of the cost field and the credit value
carried in each packet, which allows data to flow along any path within the mesh.

Routing has been a very active research area in the context of ad hoc net-
works, many proposals have appeared in the literature [13,14]. However, they
are not designed for sensor networks and do not address the unique issues in
sensor networks.

6 Conclusions

As the deployment of large scale sensor networks showing up on the horizon
today, we are facing new research challenges of providing reliable sensing and ro-
bust data delivery via vast numbers of potentially unreliable sensors. Compared
to data networks in general, individual sensors have much lower utilization but
potentially much higher failure rate. These special requirements demand new
solutions to reliable data delivery. In this paper, we presented the GRAB design
which ensures robust data delivery over large numbers of hops of small, unre-
liable sensor nodes and error-prone wireless channels. GRAB exploits the large
scale property of sensor networks and achieves robust data delivery through
controlled mesh forwarding. GRAB builds and maintains a cost field for each
destination. It controls the “width” of the forwarding mesh, thus the degree
of redundancy, by the amount of credit carried in each data packet. Extensive
simulations confirmed GRAB’s effectiveness in providing reliable delivery under
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severe operational conditions, demonstrating the principle that a reliable system
can be built out of unreliable components.
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